
Programmer’s Reference

Copyrights and Notices

Attachmate® INFOConnect® Enterprise Edition

© 2013 Attachmate Corporation. All Rights Reserved.

Patents

This Attachmate software is protected by U.S. patents 6252607 and 6803914.

Trademarks

Attachmate, the Attachmate logo, CryptoConnect, FileXpress, and PEPgate are either
registered trademarks or trademarks of Attachmate Corporation in the USA. INFOConnect
is a registered trademark of Unisys Corporation. FIPS 140-1 and/or FIPS 140-2 Validated are certification
marks of NIST, which does not imply product endorsement by NIST, the U.S. or Canadian
Governments. All other trademarks, trade names, or company names referenced in product
materials are used for identification only and are the property of their respective owners.

Attachmate Software License Agreement

A copy of the Attachmate software license agreement governing this product can be found
in a ‘license’ file in the root directory of the product.

Licensor

Attachmate Corporation
705 5th Avenue South
Seattle, WA 98104 USA
USA
+1.206.217.7100
http://www.attachmate.com

Third-Party Notices

Third Party Terms and notices are provided in a ‘thirdpartynotices’ file in the root directory
of the product.

Contents

About This Guide vii

Conventions . viii
Abbreviations. .ix
Related Documentation. x

Readme Files . x
Guides. x

Chapter 1 Introduction 1

What Is IHLLAPI? . 2
Differences from Other Versions of HLLAPI 3

How IHLLAPI Works . 4
About Short Names and Session File Names 5
About the Presentation Space. 6

Presentation Space Positions . 7
Standard Presentation Space Sizes 8
Calculating the Presentation Space Position 8

About Fields and Attributes . 9
Identifying Fields . 10

About Session Parameters . 11
Overview of IHLLAPI Functions . 12
Trying Out IHLLAPI Functions. 15
iii

Contents
Chapter 2 Guidelines for Developing IHLLAPI Applications 17

Prerequisites for Using IHLLAPI .18
Knowledge Prerequisites. .18
System Prerequisites .18

Using Existing IHLLAPI Applications with 32-bit Emulators. . . .19
Using Short Names .20

Associating Sessions with Short Names20
Specifying Short Names .21
Examples. .22

Connecting to Multiple Sessions .24
Setting Session Parameters .25
Interacting with Host Applications .26
Waiting for Host Responses .27

Timer and Delay Routines. .29
Using Field Functions .30

Field Function Limitations .30
Working with Fields .31

Handling Return Codes and Errors .32
Developing IHLLAPI Applications in Visual Basic33

Variable Declarations .33
Call Function Syntax .33

Developing IHLLAPI Applications in C.34
Header Files .34
Variable Declaration .34

Running Your IHLLAPI Application .35

Chapter 3 IHLLAPI Functions 37

Unsupported HLLAPI Functions .40
How IHLLAPI Functions Are Documented.41

Purpose .41
Prerequisites .41
Syntax .41
Call Parameters. .42
Return Parameters .42
Comments .42
See Also .42

Alphabetical Function List .43
Numerical Function List .44
Connect Presentation Space (1) .45
Disconnect Presentation Space (2) .47
Send Key (3) .49
Wait (4) .60
iv

Contents
Chapter 3 IHLLAPI Functions, continued

Copy Presentation Space (5) . 62
Search Presentation Space (6) . 64
Query Cursor Location (7) . 66
Copy Presentation Space to String (8) 68
Set Session Parameters (9) . 71
Query Sessions (10) . 77
Query Sessions Full (910) . 79
Copy OIA (13) . 81
Query Field Attribute (14) . 87
Copy String to Presentation Space (15) 90
Pause (18) . 92
Query System (20) . 94
Reset System (21) . 96
Query Session Status (22) . 97
Start Host Notification (23) . 99
Query Host Update (24) . 101
Stop Host Notification (25) . 103
Search Field (30) . 105
Find Field Position (31) . 107
Find Field Length (32) . 109
Copy String to Field (33) . 111
Copy Field to String (34) . 114
Set Cursor (40) . 117
Start Keystroke Intercept (50) . 119
Get Key (51) . 122
Post Intercept Status (52) . 125
Stop Keystroke Intercept (53) . 127
Send File (90) . 128

Prerequisites . 128
Receive File (91) . 130

Prerequisites . 130
Convert Position or RowCol (99) . 132
Connect Window Services (101) . 135
Disconnect Window Services (102) . 137
Query Window Coordinates (103) . 139
Window Status (104) . 141
Associate Profile (911) . 147
Remove Profile (912) . 148
Get Associations (913) . 149
Find File Name (914) . 150
Find Short Name (915) . 152
v

Contents
Appendix A Return Codes 155

IHLLAPI Return Codes .156
Functions That Return Standard Return Codes.159
Sample Return Code Usage .160

Appendix B Attribute Values 163

IT 27 Attributes. .164
UTS Attributes .165

Appendix C IHLLAPI Header Files 168

WHLLAPI.H Header File .168
HLLAPI.H Header File .173
IHLAPI32.H Header File .187

Appendix D Troubleshooting 189

General Troubleshooting Procedures 190

Appendix E RAWMODE 191

Using RAWMODE .192

Appendix F ACMState 195

Using ACMState.exe . 196

Glossary 199

Index 201
vi

About This Guide

This guide describes the INFOConnect™ High-Level Language
Application Program Interface (IHLLAPI). It covers programming
guidelines and IHLLAPI functions, and is intended for
programmers writing IHLLAPI applications.

Conventions . viii

Abbreviations . ix

Related Documentation . x
vii

About This Guide
Conventions

This guide uses the following documentation conventions:

• Text that you type as well as messages and prompts that
appear on the screen appear in this type style.

• In addition to emphasizing text and highlighting terms used for
the first time, italics indicate variables. For example, if you
were asked to type drive:\directory\filename.ext, you would
enter the actual drive, directory, and file name in place of the
italicized words.

• The word PC refers to any personal computer running
Windows® 7, Windows Vista, Windows XP or Windows 2000.

• The word host refers to any mainframe, mini-computer, or
information hub with which the PC communicates.
viii Conventions

About This Guide
Abbreviations

The following is an alphabetical list of common abbreviations and
acronyms used in this guide. Please note that abbreviations and
acronyms are not generally spelled out in the text. Refer back to
this table as necessary.

Abbreviation/
Acronym Meaning

ADK Automation Development Kit

AID Attention identification

DLL Dynamic link library

EAB Extended attribute byte

EHLLAPI Emulator high-level language application programming
interface

EOT End-of-text

HLLAPI High-level language application programming interface

IHLLAPI INFOConnect high-level language application programming
interface

LTAI Line transmission activity indicator

MDI Multiple document interface

MDT Modified data tag

OIA Operator information area (status line)

PS Presentation space
Abbreviations ix

About This Guide
Related Documentation

Additional information exists in the form of Readme files and
guides.

Readme Files README.ADK contains important notices, known limitations,
and the latest information about IHLLAPI that could not be
included in this guide.

If you double-click this file in My Computer or File Manager, your
PC might not recognize the file extension. Select Notepad as the
application to use to read the file.

Guides For more information, refer to the following documentation:

• The Getting Started guide explains how to install your
INFOConnect products and get them up and running.

• The INFOConnect Connectivity Services Installation,
Configuration, and Operations Guide provides information
about INFOConnect paths, path templates, libraries, and
accessories.
x Related Documentation

Introduction

In This Chapter This chapter provides an overview of INFOConnect HLLAPI as
well as the concepts and terms you’ll need to understand as you
work with the functions. It includes the following headings:

What Is IHLLAPI? . 2

How IHLLAPI Works . 4

About Short Names and Session File Names 5

About the Presentation Space . 6

About Fields and Attributes . 9

About Session Parameters . 11

Overview of IHLLAPI Functions . 12

Trying Out IHLLAPI Functions . 15

1

1

Chapter 1 Introduction
What Is IHLLAPI?

INFOConnect HLLAPI (IHLLAPI) is a set of function calls that
you can use to write Windows applications that interact with
Attachmate’s terminal emulators (such as T 27 and UTS), and
therefore with host applications.

The primary IHLLAPI module is a dynamic link library
(IHLAPI32.DLL) that is automatically or explicitly linked to your
application. This file and other IHLLAPI files are installed in the
ACCMGR32 folder within the INFOConnect folder when you
install any of Attachmate’s emulators (which are purchased
separately). You can use the IHLAPI32.DLL when writing
applications using Visual Basic®, C, or any language that provides
interfaces for Windows DLLs.

The Automation Development Kit (ADK) also includes the
following additional files, which are installed in the ADK32 folder
of your INFOConnect folder:

File Description

HLLAPI.H A header file that must be included with applications
written in C, C++, or any other language that can include
a header file

For information about this file, refer to “HLLAPI.H Header
File” on page 173.

HLLAPI32.LIB The import library included in C and C++ applications in
their link list to supply the names and locations of
functions that are exported by the HLLAPI32.DLL

HLLWATCH.EXE An application run by the IHLAPI32.DLL that intercepts
messages from Accessory Manager for host notification
and keystroke intercept functions

IHLAPI32.H A header file that must be included with applications
written in C, C++, or any other language that can include
a header file

For information about this file, refer to “IHLAPI32.H
Header File” on page 187.

IHLAPI32.LIB The import library included in C and C++ applications in
their link list to supply the names and locations of
functions that are exported by the IHLAPI32.DLL
2 What Is IHLLAPI?

Chapter 1 Introduction
Differences from
Other Versions of
HLLAPI

IHLLAPI includes most of the functions from Microsoft’s
WinHLLAPI and IBM’s EHLLAPI, and most IHLLAPI calls work
exactly as described in the Microsoft WinHLLAPI Specification.
However, there are a several differences between IHLLAPI and
other HLLAPI implementations.

For example, several IHLLAPI functions use the standard
WinHLLAPI return codes differently, or use other return codes in
addition to the standard codes. (Refer to Appendix A, “Return
Codes,” for more information about the return codes.)

In addition, since Unisys® terminal emulators have different
characteristics than IBM terminal emulators, IHLLAPI differs
from EHLLAPI in how it handles field attributes and status line
information.

IHLLAPI also includes additional functions (such as Associate
Profile) that support the IHLAPI32.DLL’s interactions with
Accessory Manager. These functions are not defined within the
Microsoft WinHLLAPI specification but are described in this
guide.

IHLDEM32.EXE An application that you can use to test IHLLAPI calls

For information about this application, refer to “Trying
Out IHLLAPI Functions” on page 15

IHLLAPI.LIB The import library included in C and C++ applications in
their link list to supply the names and locations of
functions that are exported by the IHLLAPI.DLL.

VBHLLAPI.BAS A base file that lists the IHLLAPI functions

You can include this file with a Visual Basic project.

WHLLAPI.H A header file that must be included with applications
written in C, C++, or any other language that can include
a header file

For information about this file, refer to “WHLLAPI.H
Header File” on page 168.

File Description
What Is IHLLAPI? 3

Chapter 1 Introduction
How IHLLAPI Works

When your application calls an IHLLAPI function, the following
actions occur:

• If the IHLAPI32.DLL is not already in memory, Windows loads
it.

• The application passes the call parameters to the
IHLAPI32.DLL.

• The IHLAPI32.DLL interprets the request.

• The IHLAPI32.DLL sends the request to a terminal emulation
session (a T 27 session or UTS session) running within
Accessory Manager.

• The emulator performs any necessary host communication,
processes the request, and returns the result of the request to
the IHLAPI32.DLL.

• The IHLAPI32.DLL sends the results back to the application
through the return parameters.

The following figure shows the flow of IHLLAPI functions:

When your application closes, Windows removes the
IHLAPI32.DLL from memory.
4 How IHLLAPI Works

Chapter 1 Introduction
About Short Names and Session File Names

IHLLAPI functions refer to sessions by short names (the letters A
through Z) rather than file names (such as SESSION1.ADP).

To use IHLLAPI applications with a T 27 or UTS session, you
must associate a short name with an existing session file name.
For example, you can associate the short name A with the session
file name SESSION1.ADP. Whenever an IHLLAPI function uses
the short name A, that function is performed using
SESSION1.ADP.

You can associate short names with session file names using
Accessory Manager or using an IHLLAPI function call from your
application. The procedure for doing this using Accessory Manager
is provided in “Using Short Names” on page 20. For information
about doing this using an IHLLAPI function call, refer to
“Associate Profile (911)” on page 147.
About Short Names and Session File Names 5

Chapter 1 Introduction
About the Presentation Space

Each session that your IHLLAPI application can connect with is
configured to use a specific number of columns and rows that
define the area within which the host or user can display or type
data. For IHLLAPI functions, this area is called the presentation
space:

Many IHLLAPI functions interact with the presentation space.
For example, your IHLLAPI application can perform the following
tasks:

• Search the presentation space for certain strings to determine
which host application screen is displayed

• Position the cursor within the presentation space and send
keystrokes to navigate among host application screens or
retrieve data

• Copy data from the presentation space and display them in
your IHLLAPI application

The status line that appears at the bottom of the screen (also
known as the operator information area, or OIA) is not included in
the presentation space. There are separate functions for accessing
the presentation space and the OIA.
6 About the Presentation Space

Chapter 1 Introduction
Presentation
Space Positions

When specifying a location within a presentation space, IHLLAPI
functions use presentation space positions rather than column and
row coordinates.

Presentation space positions start at position 1 and end with the
maximum number of presentation space positions for the
emulator. For example, a session with 24 rows and 80 columns has
1920 presentation space positions (24x80); a session with 24 rows
and 132 columns has 3168 presentation space positions (24x132).

The following figure shows the presentation space positions for an
emulator configured for 24 rows and 80 columns:

For sessions that have multiple pages, each page is treated like a
new presentation space. For example, in a session configured for
24 rows, 80 columns, and two pages, the first page would contain
presentation space positions 1 through 1920, and the second page
would also contain positions 1 through 1920.
About the Presentation Space 7

Chapter 1 Introduction
Standard
Presentation
Space Sizes

Different emulators support different presentation space sizes.
For example, T 27 supports up to 255 rows and 132 columns; UTS
supports up to 255 rows and 256 columns. Although you can
configure the size of the presentation space, the following table
shows the standard sizes that are generally associated with each
emulator:

The row totals shown in the preceding table do not include the
status line. The status line appears at the bottom of each terminal
emulation screen and contains information about the session
status (such as what mode the emulator is in) and other
information (such as the location of the cursor). T 27 can also
display a line of information between the presentation space and
the status line; this is known as the user message.

Calculating the
Presentation
Space Position

You can use the Convert Position or RowCol (99) function to
convert a presentation space position into row and column
coordinates. For example, for a session with 80 columns,
presentation space position 160 would occur at row 2, column 80.
However, for a session with 132 columns, presentation space 160
would occur at row 2, column 28.

You can also use this function to converts row and column
coordinates into a presentation space position. In the preceding
example, this function could convert row 2, column 80, to
presentation space position 160.

For more information about this function, refer to “Send File (90)”
on page 128.

Emulator Rows Columns Total Size

T 27 24 80 1920

UTS 24 80 1920

24 132 3168
8 About the Presentation Space

Chapter 1 Introduction
About Fields and Attributes

A presentation space can be either unformatted or formatted. In
an unformatted presentation space, the data generally appear as
continuous lines of text on the screen. In a formatted presentation
space, the data generally appear in individual fields.

Each field has attributes that define the type of information that
can be typed in that field, as well as the appearance of the field on
the screen. For example, field attributes can specify the following
types of information:

• Whether the field is protected (read-only) or unprotected (read
and write)

• Type of data allowed in the field (alphanumeric or numeric)

• Appearance of the field (color, blinking, reverse video)

• Whether the field has been modified since it was put on the
presentation space

Many IHLLAPI functions interact with fields. For example, your
IHLLAPI application can perform the following tasks:

• Determine the attributes of a particular field (such as whether
it is protected or unprotected)

• Copy data from your application to a particular field

• Copy data from a particular field to your application
About Fields and Attributes 9

Chapter 1 Introduction
Identifying Fields The IHLAPI32.DLL identifies fields by detecting certain changes
in the attributes of each field. For example, the following figure
shows how fields would be identified in an T 27 session:

In this example, the first field begins at the upper left corner of
the screen and contains empty spaces and the label Customer ID.
The second field includes all the data between the delimiters. The
third field begins at the end of the delimiter for Field 2 and
contains empty spaces and the label Customer Name. The fourth
field includes all the data between the second set of delimiters.

The attributes that define fields are unique to each emulator. For
example, in the preceding figure, the label Customer ID might be
blinking, but these character attributes do not indicate the
beginning of a new field. The following table lists the attributes of
each emulator and whether they denote a field:

Emulator
Denote
New Field? Attributes

T 27 YES Non-transmittable, protected, unprotected,
left and right justified

NO Intensity, blinking, reverse video, secure

UTS YES Protected, unprotected, numeric only,
alphanumeric only, left and right justified

NO Color, emphasis
10 About Fields and Attributes

Chapter 1 Introduction
About Session Parameters

Many IHLLAPI functions are affected by options known as session
parameters. This term does not refer to the configuration of the
terminal emulation session with which your application
communicates, but rather to options specified by the Set Session
Parameters (9) function.

For example, when the disconnect session parameter is set to
DISCONLOG, the Disconnect Presentation Space (2) function only
disconnects your application from the session. When this
parameter is set to DISCONPHYS, this function disconnects your
application from the session, disconnects the session from the
host, and closes the session.

For recommendations about how to use the Set Session
Parameters (9) function, refer to “Setting Session Parameters” on
page 25. For detailed information about this function, refer to “Set
Session Parameters (9)” on page 71.
About Session Parameters 11

Chapter 1 Introduction
Overview of IHLLAPI Functions

The following tables provide a numerical list of the IHLLAPI
functions and a brief description of each. For detailed information
about these functions and how to use them, refer to Chapter ,
“IHLLAPI Functions.”

Function Description

Connect Presentation
Space (1)

Connects your application to the specified
presentation space

Disconnect
Presentation Space (2)

Disconnects your application from the current
presentation space

Send Key (3) Places a keystroke or string of keystrokes in the
current presentation space at the current cursor
location

Wait (4) Tests the status of the current presentation space to
determine whether it can receive keystrokes

Copy Presentation
Space (5)

Copies the entire presentation space to a string in
your application

Search Presentation
Space (6)

Scans the current presentation space for a specified
string

Query Cursor
Location (7)

Determines the location of the cursor in the current
presentation space

Copy Presentation
Space to String (8)

Copies the specified portion of the current
presentation space to a string in your application

Set Session
Parameters (9)

Changes the default session parameters

Query Sessions (10) Determines the number of open sessions, as well as
the short name, filename, session type, and
presentation space size of each session

Query Sessions Full
(910)

Same as Query Sessions, except that it returns long
filenames and the full path of each session.

Copy OIA (13) Copies the operator information area (status line) and
other information to a string in your application

Query Field
Attribute (14)

Determines the attribute of the specified field in the
current presentation space

Copy String to
Presentation Space
(15)

Copies an ASCII string from your application to a
specific location in the current presentation space
12 Overview of IHLLAPI Functions

Chapter 1 Introduction
Pause (18) Causes your application to wait a specific amount of
time for an event to occur

Query System (20) Determines the support level provided to your
application by the underlying low-level and high-level
modules (and other system-related values)

Reset System (21) Re-initializes the default session parameters, stops
host event notification, and disconnects the
application from any connected sessions

Query Session
Status (22)

Obtains information about a particular session,
including the short name, file name, session type,
session characteristics, and the number of rows and
columns in the presentation space

Start Host
Notification (23)

Enables notifying your IHLLAPI application of
changes in the presentation space or operator
information area (OIA)

Query Host
Update (24)

Determines if the presentation space or OIA of the
specified session has been updated since Start Host
Notification (23) was called, or since the previous call
of this function

Stop Host
Notification (25)

Disables notifying your IHLLAPI application of
changes in the presentation space or OIA

Search Field (30) Searches the specified field within the current
presentation space for a specified string

Find Field Position (31) Determines the beginning position of the current field
in the current presentation space

Find Field Length (32) Determines the length of the current field in the
current presentation space

Copy String to
Field (33)

Copies characters from your application to a specified
field in the current presentation space

Copy Field to
String (34)

Copies all the characters from a specified field in the
current presentation space to a data string in your
application

Set Cursor
Position (40)

Positions the cursor within the current presentation
space

Start Keystroke
Intercept (50)

Enables your application to intercept keystrokes
typed by a user in the session window

Get Key (51) Intercepts keystrokes from sessions that have
keystroke intercept enabled and processes those
keystrokes

Function Description
Overview of IHLLAPI Functions 13

Chapter 1 Introduction
Post Intercept
Status (52)

Notifies the IHLAPI32.DLL that a keystroke obtained
with the Get Key (51) function has been accepted or
rejected

Stop Keystroke
Intercept (53)

Stops your application from intercepting keystrokes

Send File (90) Transfers a file from the local workstation to the host
session.

Receive File (91) Transfers a file from the host session to the local
workstation.

Convert Position or
RowCol (99)

Converts the presentation space position into row and
column coordinates, or converts row and column
coordinates into a presentation space position,
depending on the call parameters passed by your
application

Connect Window
Services (101)

Connects your application to the specified
presentation space

Disconnect Window
Services (102)

Disconnects your application from the specified
presentation space

Query Window
Coordinates (103)

Requests the coordinates of the specified
presentation space

Window Status (104) Queries or changes a window’s presentation space
size, location, or visible state

Associate Profile (911) Associates the specified short name with the
specified session

Remove Profile (912) Unassociates any session from the specified short
name

Get Associations (913) Retrieves a list of all short names that have been
associated with sessions

Find File Name (914) Gets the session file name for the specified short
name

Find Short Name (915) Gets the short name for the specified session file
name

Function Description
14 Overview of IHLLAPI Functions

Chapter 1 Introduction
Trying Out IHLLAPI Functions

To see what the IHLLAPI functions do, use the test application
included with the ADK. This application lets you send function
calls to an emulator and see what values are returned. For
example, you could see what happens when you issue a Connect
Presentation Space (1) function call.

To run the test application, follow these steps:

1 Run Accessory Manager and assign a session file name to a
HLLAPI short name.

For instructions on this procedure, refer to “About Short Names
and Session File Names” on page 5.

For example, you could assign the session TCPA_1.ADP to the
short name A.

2 Run IHLDEM32.EXE.

Using My Computer or File Manager, go to the ADK32 folder
within the INFOConnect folder and double-click IHLDEM32.EXE.

3 Click the desired IHLLAPI function from the menu.

4 If the test application prompts you for any additional information,
type the appropriate response for each prompt as it appears.

The test application sends the function call to the IHLAPI32.DLL
and displays any returned data.

5 To exit the test application, click Exit.

Note: To run this application from the ADK32 folder, the
IHLAPI32.DLL must be accessible. For more information, refer
to “Running Your IHLLAPI Application” on page 35.
Alternatively, you can copy this application to the ACCMGR32
folder and run it from there.
Trying Out IHLLAPI Functions 15

Guidelines for Developing
IHLLAPI Applications

In This Chapter This chapter provides general guidelines for developing IHLLAPI
applications, as well specific guidelines for developing in Visual
Basic and C. It includes the following headings:

Prerequisites for Using IHLLAPI . 18

Using Existing IHLLAPI Applications with 32-bit Emulators . . 19

Using Short Names . 20

Connecting to Multiple Sessions . 24

Setting Session Parameters . 25

Interacting with Host Applications . 26

Waiting for Host Responses . 27

Using Field Functions . 30

Handling Return Codes and Errors . 32

Developing IHLLAPI Applications in Visual Basic 33

Developing IHLLAPI Applications in C . 34

Running Your IHLLAPI Application . 35

2

17

Chapter 2 Guidelines for Developing IHLLAPI Applications
Prerequisites for Using IHLLAPI

Before writing any applications using IHLLAPI, you should have
a working knowledge of the following:

• Microsoft Windows 7, Vista, XP and 2000.

• An INFOConnect emulator (such as INFOConnect T 27 for
Windows, INFOConnect UTS for Windows, or EXTRA!® Office
for Accessory Manager)

• The programming language (Visual Basic, C, C++, or any
language that provides interfaces for Windows DLLs) and the
compiler or assembler you plan to use
18 Prerequisites for Using IHLLAPI

Chapter 2 Guidelines for Developing IHLLAPI Applications
Using Existing IHLLAPI Applications with 32-bit Emulators

If you previously created IHLLAPI applications for use with 16-bit
(Windows 3.1x) terminal emulators, you can use those
applications with the 32-bit (Windows 7, Vista, XP, and 2000)
emulators with some minor modifications:

• Copy the IHLLAPI.DLL and WHLLAPI.DLL included with the
32-bit Accessory Manager over the existing IHLLAPI.DLL and
WHLLAPI.DLL that you’re using with your application.

• Make sure that the IHLLAPI.DLL is in the same folder as the
IHLAPI32.DLL.

• If you completed the preceding procedures and experience any
difficulty using your existing application, you might need to
make additional modifications. Specifically, if your application
was written in C, C++, or another language that includes
header files, you might need to include WHLLAPI.H,
HLLAPI.H, and IHLAPI32.H and recompile. In addition, if
your application uses WHLLAPI.LIB, you must change this to
IHLLAPI.LIB and recompile.

Note: When you overwrite your existing files with the new
versions, you will not be able to use your IHLLAPI
application with the 16-bit emulators.

If you need to use both the 16-bit and 32-bit emulators, it is
recommended that you create two folders for your
application. In one, include the original IHLLAPI.DLL and
WHLLAPI.DLL for use with 16-bit emulators, and in the
other, include the new IHLLAPI.DLL and WHLLAPI.DLL
for use with the 32-bit emulators.
Using Existing IHLLAPI Applications with 32-bit Emulators 19

Chapter 2 Guidelines for Developing IHLLAPI Applications
Using Short Names

When writing IHLLAPI applications, you must perform two tasks
that involve short names:

• Associate a session file name with at least one short name

• Specify which short name to use for each IHLLAPI function

Associating
Sessions with
Short Names

You can associate short names with session file names using
Accessory Manager or using an IHLLAPI function call from your
application. The procedure for doing this using Accessory Manager
is provided below. For information about doing this using an
IHLLAPI function call, refer to “Associate Profile (911)” on
page 147.

1 Run Accessory Manager.

Click the Start button, point to Programs, point to INFOConnect
32-bit, and click Accessory Manager 32-bit.

2 From the Options menu, click Global Preferences.

3 Click the HLLAPI tab.

4 Click the desired short name.

If you click a short name that has no session name after it, you can
assign a session name to that short name. If you click a short
name that already has a session name after it, you can change the
session name.

5 Click Browse and double-click the session to associate with that
short name.

Note: To remove a session name from a short name, click the
short name and click Remove.
20 Using Short Names

Chapter 2 Guidelines for Developing IHLLAPI Applications
Specifying Short
Names

Many IHLLAPI functions require a short name in their calling
parameters. However, hard-coding a short name can cause several
problems:

• The corresponding session might be in use by the user or
another application.

• The same short name might be used for one session type on one
PC and a different session type on another PC.

For example, the short name A might be associated with a T 27
session on one PC and a UTS session on another PC. Errors
occur if you try to use an application designed for use with one
type of emulator with a different emulator.

To avoid these problems, use the Get Associations (913) function
to retrieve a list of all short names that have been associated with
sessions, then use the Query Sessions (10) function to determine
which sessions are already open. By comparing these lists, you can
determine whether a session with a short name is not already in
use. Your application can then either select a session
automatically or display a list for the user to choose from.

The Query Sessions (10) and Query Session Status (22) functions
both provide information about what type of terminal is being
emulated by the session. You can use these functions to determine
whether a particular short name is associated with the right type
of session for use with your application.
Using Short Names 21

Chapter 2 Guidelines for Developing IHLLAPI Applications
Examples The following pseudo-code examples show how to obtain and use
short names. To keep the examples short and simple, normal
programming considerations such as waits and full return code
handling have been omitted. In addition, these examples show
how to connect to an active (already open) session.

Example 1 This example shows how to use Query Sessions (10) to obtain a
short name that can be used to connect to a particular session
type’s presentation space.

Define global variable SHORT_NAME for session short
name

Start Sequence

Call Query Sessions (10) function
Returns: Variable string containing
information on all the open sessions.

End Query Sessions

Search for first host session
This is typically a loop that searches for the
first occurrence of a session of a specific
type (H, A, O, or U), and then exits the loop
upon finding it.
Returns: First valid short name returned and
placed in global variable SHORT_NAME.

End Search

Call Connect Presentation Space (1) function
Pass the global variable SHORT_NAME as the
DataString of this function.
Returns: Success/failure status.

End Connect

End of Sequence
22 Using Short Names

Chapter 2 Guidelines for Developing IHLLAPI Applications
Example 2 This example adds the Query Session Status (22) function, which
examines the available sessions for various characteristics and
presentation space size. Here, the presentation space size is stored
in a global variable to be used elsewhere by the application.

Define global variable NAME for short name
Define global variable ROW for number of rows in PS
Define global variable COL for number of columns in PS

Start Sequence

Call Query Sessions (10) function
Returns: Variable string containing
information on all the open sessions.

End Query Sessions

Search for first host session
This is a loop that searches for the first
occurrence of a session of a specific type
(H, A, O, or U), and then exits the loop upon
finding it.
Returns: First valid short name returned and
placed in global variable NAME.

End Search

Call Query Session Status (22) function
Pass the global variable NAME as part of the
DataString of this function.
Returns: Variable string containing the
session short name, session type, session
characteristics, and number of rows and
columns in the presentation space.

End Query Session Status

Read Data String
Assign global variable ROW from bytes 12 and 13
of the returned DataString.
Assign global variable COL from bytes 14 and 15
of the returned DataString.

End Read

Call Connect Presentation Space (1) function
Pass the global variable NAME as the
DataString of this function.
Returns: Success/failure status.

End Connect

End of Sequence
Using Short Names 23

Chapter 2 Guidelines for Developing IHLLAPI Applications
Connecting to Multiple Sessions

You can write IHLLAPI applications that use multiple sessions.
For example, you can write an application that communicates
with both a T 27 session and a UTS session.

However, IHLLAPI works with only one session at a time. To work
with multiple sessions, you must use the following procedure:

1 Use the Connect Presentation Space (1) function to connect to one
session (such as an T 27 session).

2 Issue the appropriate function calls for that session.

3 Use the Disconnect Presentation Space (2) function to disconnect
from that session.

4 Repeat steps 1 through 3 for each session that you want to use.
24 Connecting to Multiple Sessions

Chapter 2 Guidelines for Developing IHLLAPI Applications
Setting Session Parameters

Using the Set Session Parameters (9) function, you can set session
parameters that determine how certain IHLLAPI functions
operate.

When designing your IHLLAPI application, keep the following
guidelines in mind:

• Call the Reset System (21) function at the beginning of your
application to reset all session parameters to their default
settings. This ensures that your application operates in a
known environment.

• Call the Set Session Parameters (9) function to set the session
options before connecting to the session or immediately after
connecting.

Using the proper options can make your application more
efficient. For example, when the STREOT session parameter is
set, your application will simply look for an end-of-text
character rather than calculate and specify the length of strings
explicitly.

• Call the Reset System (21) function before closing your
application.

For more information on the Set Session Parameters (9) function,
refer to “Set Session Parameters (9)” on page 71.
Setting Session Parameters 25

Chapter 2 Guidelines for Developing IHLLAPI Applications
Interacting with Host Applications

When users interact directly with host applications, they can rely
on visual cues to determine which host application screen is
displayed, where the cursor is, which mode the session is
operating in, how the host has responded to commands or data,
and other similar information.

IHLLAPI applications must rely on function calls to obtain this
kind of data and respond accordingly. For example, to determine
which host screen is displayed, the IHLLAPI application might
issue a function call to search for a particular string on the screen.

When interacting with host applications, use the following
IHLLAPI functions:

For more information about optimizing your application’s
interactions with the host, refer to “Waiting for Host Responses”
on page 27. For more information about all these functions, refer
to Chapter , “IHLLAPI Functions.”

Function Description

Connect Presentation Space (1) Connect to a session and check the
status of that session

Search Presentation Space (6) Search the presentation space for host
messages or prompts

Copy String to Presentation Space
(15) or Copy String to Field (33)

Send data to a presentation space
position or field

Send Key (3) Transmit data or a command to the host

Wait (4) or Pause (18) Wait for the host to process the data or
command

Search Presentation Space (6), Copy
Presentation Space to String (8), or
Copy OIA (13)

Determine how the host responded

Disconnect Presentation Space (2) Disconnect your application from the
session
26 Interacting with Host Applications

Chapter 2 Guidelines for Developing IHLLAPI Applications
Waiting for Host Responses

After your application sends data or a command to the host, it
must wait for the host to complete processing the data or
otherwise respond to the command.

There are several ways to allow for this. For example, you can
make your application pause for a specific amount of time, or have
your application periodically check for an indication that the
session is ready to accept additional input.

However, each of these methods does have disadvantages. For
example, a timed pause might not allow sufficient time if the load
on the host, the network, or the PC processor causes unexpected
delays. Conversely, a timed pause might also cause your
application to operate more slowly than needed, allowing more
time than is actually required for processing.

Periodically checking the session for readiness can also cause
problems. If your application continuously checks for a host
response, system resources might not be available for other
applications running on the PC.

The optimum technique to use for waiting for host responses
varies depending on the type of programming language you use,
the PCs used to run the application, the type of host the PCs
communicate with, and the type of network connection between
the PC and the host.

The following table lists several IHLLAPI functions that you can
use to incorporate delays for host responses in your application.
Waiting for Host Responses 27

Chapter 2 Guidelines for Developing IHLLAPI Applications
Function Session Parameter Description

Wait (4) NWAIT Check the session status and return information about
it immediately

Adding a timed delay and counter variables and using
this setting provides the simplest method of waiting for
a host response.

TWAIT Wait up to one minute for the keyboard to become
ready for input, then return information about the
session status to your application

Pause (18) FPAUSE Pause for the length of time specified in the Pause
(18) function

IPAUSE Pause until the Start Host Notification (23) function
returns a value indicating that a host event has
occurred

Query Host Update (24) Not applicable Determine whether the presentation space or OIA has
been updated since Start Host Notification (23) was
called or this function was previously called

Search Presentation
Space (6) or Search
Field (30)

Not applicable Search for a particular string that indicates a host
response (such as the appearance of a new host
application screen)

Copy OIA (13) Not applicable Determine whether WAIT, XMIT, or similar information
that indicates that the session cannot accept input still
appears in the status line
28 Waiting for Host Responses

Chapter 2 Guidelines for Developing IHLLAPI Applications
Timer and Delay
Routines

The PC processor’s speed, sometimes referred to as clock speed,
determines the length of time it takes for the CPU to execute an
instruction. Normally, faster processors are advantageous because
by increasing the instruction execution speed, the application runs
faster. However, in an IHLLAPI application this can become a
disadvantage, especially when you create timers or delays to wait
for events that occur on a host.

Most problems occur when FOR-NEXT loops or incremental
counters are used to create a timed delay. These routines depend
on the efficiency of the compiler and on the processor speed of the
PC they are executed on. If an application was developed on a slow
PC, these loops might not provide adequate time delays on a faster
PC; if the application was developed on a fast PC, it has long
delays on a slow PC.

Timer and delay routines should be based on constant real-time
events such as the PC’s clock tick or the time-of-day information
(system clock). The PC’s clock tick occurs 18.2 times per second;
the system clock ticks at one-second intervals. These real time
events are constant across all models and processor speeds of PCs,
so they provide a consistent foundation for timers and delays.

For more detailed information on the PC’s clock tick and time-of-
day information, consult your Microsoft Windows SDK
documentation.
Waiting for Host Responses 29

Chapter 2 Guidelines for Developing IHLLAPI Applications
Using Field Functions

IHLLAPI provides several functions that work with fields:

• Query Field Attribute (14)

• Search Field (30)

• Find Field Position (31)

• Find Field Length (32)

• Copy String to Field (33)

• Copy Field to String (34)

Field Function
Limitations

Field functions provide a finer degree of control than functions
that use the entire presentation space. However, you must keep
the following considerations in mind:

• Field functions are time-consuming operations. Each call
to these functions allocates and frees memory, extracts whole
screen information (including attributes), processes the screen
information to identify the field structures, calculates the field
extents, and then performs the specified function. For example,
if your application calls Find Field Position (31), Find Field
Length (32), and Copy String to Field (33), the IHLAPI32.DLL
completes the whole processing three times.

• Unformatted presentation spaces do not support field
function calls. Because there are no individually defined
fields in an unformatted presentation space, you should not use
field functions with unformatted presentation spaces.

Where processing time is a consideration or when you are working
with unformatted presentation spaces, you should use functions
that work with the entire presentation space rather than field
functions. For example, you can use Search Presentation Space (6)
rather than Search Field (30).
30 Using Field Functions

Chapter 2 Guidelines for Developing IHLLAPI Applications
Working with
Fields

When working with fields in a formatted presentation space, your
application must be able to perform the following tasks:

• Determine the location of each field

• Determine the characteristics of each field

• Send the proper keystrokes to the correct location

Failure to take these conditions into account can cause your
application to send erroneous data to the host. For example, when
sending data to a field, your application should verify whether
data already exists in that field. If data exists, clear the field
before sending new data. This ensures that the new data is not
appended to the existing data.

In addition, even small changes in a host application can cause
errors to occur in your application. For example, if your
application expects to find a particular string in the presentation
space, an error would occur if that string changed due to changes
in the host application. In this case, you must change your
application to match the host application.

Be sure to design your application so that you can easily modify it
to conform to changes in the host application. For example, if your
application expects to find a particular string in the presentation
space, put that string in a resource file so that you can quickly
access and change it as needed.
Using Field Functions 31

Chapter 2 Guidelines for Developing IHLLAPI Applications
Handling Return Codes and Errors

Each IHLLAPI function uses a return code to indicate the result of
the execution of that function. For example, the Disconnect
Presentation Space (2) function returns one of the following codes:

Some errors can be prevented by ensuring that functions are
called in the correct order. For example, to avoid the
WHLLNOTCONNECTED (1) error in the preceding example, you
must call the Connect Presentation Space (1) function before
calling the Disconnect Presentation Space (2) function. Refer to
the prerequisites for each function described in Chapter ,
“IHLLAPI Functions,” to ensure that your application avoids
generating errors that can be prevented.

Others errors can be corrected by your application. Your
application must manage these return codes properly to keep it
running smoothly, regardless of the PC's processor speed, network
load, or host response speed.

When writing an error handling routine, remember to save the
call parameters before calling the function. The
PSPosition_ReturnCode in the call parameter always changes in
the return parameter. (Other call parameters might change as
well, depending on the function.) If your error handler tries to
correct a problem and then call the function again, the handler
must be able to find or reconstruct the original call parameters
passed to the function.

For a list of the standard return codes, their causes, and
suggestions for handling them, refer to Appendix A, “Return
Codes.” For details about the return parameters for a particular
function, refer to Chapter , “IHLLAPI Functions.”

Return Code Description

WHLLOK (0) The function was successful; your application
disconnected from the presentation space.

WHLLNOTCONNECTED (1) Your application is not connected to a session.

WHLLSYSERROR (9) The function failed due to a system error.
32 Handling Return Codes and Errors

Chapter 2 Guidelines for Developing IHLLAPI Applications
Developing IHLLAPI Applications in Visual Basic

For Visual Basic applications to access the IHLLAPI functions,
you must include the following declarations and syntax.

Variable
Declarations

You must use the following declarations in your application:

In addition, you must declare the IHLLAPI entry point in your
application’s global module, as follows:

Declare Sub WinHLLAPI Lib "drive:\dir\IHLAPI32.DLL" _
(ApiFunc As Integer, ByVal ApiString As String, _
ApiLen As Integer, ApiRetc As Integer)

This declaration is provided in the VBHLLAPI.BAS file included
with the ADK. You can include this file in your project.

Call Function
Syntax

When writing a call, you must use the following syntax:

CALL WinHLLAPI(ApiFunc, ApiString, ApiLen, ApiRetc)

Variable Declaration Explanation

ApiFunc This integer passes the requested IHLLAPI function
number.

ApiString This string passes or receives a data string needed by
some IHLLAPI functions.

ApiLen This integer passes the length of the string variable or
receives integer data from some IHLLAPI functions.

ApiRetc This integer passes data to some IHLLAPI functions
and receives a return code back from all IHLLAPI
functions.
Developing IHLLAPI Applications in Visual Basic 33

Chapter 2 Guidelines for Developing IHLLAPI Applications
Developing IHLLAPI Applications in C

For your C application to have access to the IHLLAPI functions,
you must include the following function declaration and variables
in either the main body of your application or, where appropriate,
in a header file that is included when you compile the application.

Header Files The Accessory Development Kit comes with three header files
(WHLLAPI.H, HLLAPI.H, and IHLAPI32.H) that include several
function declarations that must be included in your project.

For a listing of these files, refer to Appendix C, “IHLLAPI Header
Files.”

Variable
Declaration

You must use the following declarations in your application:

Variable Declaration Explanation

LPWORD FunctionNumber A pointer to the defined function name of the
IHLLAPI function being called. It has a
corresponding constant, included in IHLAPI32.H
(refer to Appendix , “IHLLAPI Header Files,” for
a listing). For example, when using the Connect
Presentation Space (1) function, the value sent
would be CONNECTPS.

LPBYTE DataString A pointer to the data string. Although used by
most IHLLAPI functions, not all functions require
a data string. Some functions use the data string
only on the call, some only on the return, and
some on both the call and the return. Refer to
the function descriptions in Chapter 3, “IHLLAPI
Functions,” for details about the requirements of
each function.

LPWORD DataLength A pointer to the data length or the length of the
data string, depending on the IHLLAPI function.
Some functions use the data length only on the
call some only on the return, and some on both
the call and the return.

LPWORD
PSPosition_ReturnCode

A pointer to the presentation space position/
return code. This parameter supplies data to the
IHLAPI32.DLL on the call, and supplies the
response from the application on the return.
34 Developing IHLLAPI Applications in C

Chapter 2 Guidelines for Developing IHLLAPI Applications
Running Your IHLLAPI Application

When running your IHLLAPI application, verify that the
following criteria are met:

• The IHLAPI32.DLL is in the Windows PATH.

• Accessory Manager is running and a session is open.

You can either run Accessory Manager and open a session
manually, or you can run it using the Connect Presentation
Space (1) function.

For instructions on using Accessory Manager, refer to the
online Help for that product.

Windows automatically loads and removes the IHLAPI32.DLL
and all supporting software as required.
Running Your IHLLAPI Application 35

IHLLAPI Functions

In This Chapter This chapter includes the following headings. It also includes a
heading for each IHLLAPI function in numerical order.

Unsupported HLLAPI Functions . 40

How IHLLAPI Functions Are Documented 41

Alphabetical Function List . 43

Numerical Function List . 44

Connect Presentation Space (1) . 45

Disconnect Presentation Space (2) . 47

Send Key (3) . 49

Wait (4) . 60

Copy Presentation Space (5) . 62

Search Presentation Space (6) . 64

Query Cursor Location (7) . 66

Copy Presentation Space to String (8) . 68

Set Session Parameters (9) . 71

Query Sessions (10) . 77

3

37

Chapter 3 IHLLAPI Functions
Query Sessions Full (910) .79

Copy OIA (13) .81

Query Field Attribute (14) .87

Copy String to Presentation Space (15) .90

Pause (18) .92

Query System (20) .94

Reset System (21) .96

Query Session Status (22) .97

Start Host Notification (23) .99

Query Host Update (24) .101

Stop Host Notification (25) .103

Search Field (30) .105

Find Field Position (31) .107

Find Field Length (32) .109

Copy String to Field (33) .111

Copy Field to String (34) .114

Set Cursor (40) .117

Start Keystroke Intercept (50) .119

Get Key (51) .122

Post Intercept Status (52) .125

Stop Keystroke Intercept (53) .127

Send File (90) .128

Receive File (91) .130

Convert Position or RowCol (99) .132

Connect Window Services (101) .135
38

Chapter 3 IHLLAPI Functions
Disconnect Window Services (102) . 137

Query Window Coordinates (103) . 139

Window Status (104) . 141

Associate Profile (911) . 147

Remove Profile (912) . 148

Get Associations (913) . 149

Find File Name (914) . 150

Find Short Name (915) . 152
39

Chapter 3 IHLLAPI Functions
Unsupported HLLAPI Functions

The following table lists the WinHLLAPI and EHLLAPI functions
that are not supported in this version of IHLLAPI:

Number Function

11 Reserve

12 Release

17 Storage Manager

41 Start Close Intercept

42 Query Close Intercept

43 Stop Close Intercept

60 Lock Presentation Space API

61 Lock Window Services API

105 Change Switch List LT Name

106 Change Presentation Space Window Name
40 Unsupported HLLAPI Functions

Chapter 3 IHLLAPI Functions
How IHLLAPI Functions Are Documented

The description of each function in this chapter includes the
following information:

• Purpose

• Prerequisites

• Syntax

• Call parameters

• Return parameters

• Comments

• See Also

Purpose Immediately following the function name is a brief description of
the function and how it should be used.

Prerequisites Some functions do not operate correctly unless the application
calls other functions first. This section lists the functions that your
application must call before calling the function being explained.

Syntax The syntax for all IHLLAPI calls is always the same:

WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

The following table describes each parameter:

Parameter Description

FunctionNumber A pointer to an integer

DataString A pointer to an array of bytes

DataLength A pointer to an integer

PSPosition_ReturnCode A pointer to an integer
How IHLLAPI Functions Are Documented 41

Chapter 3 IHLLAPI Functions
When your application calls the IHLAPI32.DLL using this syntax,
it specifies the appropriate value for each parameter as described
in “Call Parameters.” When the IHLAPI32.DLL returns the
results of the call to the application, it uses the same syntax but
replaces the original call parameter values with the appropriate
return parameter values described in “Return Parameters.”

Call Parameters This section describes the parameters your application must pass
to the IHLAPI32.DLL.

Return Parameters This section describes the parameters that the IHLAPI32.DLL
returns to your application as a result of the function call.

If any call parameters are not replaced by return parameters, the
original call parameters are returned unchanged.

All functions pass a return code as a return parameter. Many
functions use standard return codes, but certain functions
interpret the return codes differently, or use additions to the
standard return codes. Refer to Appendix A, “Return Codes,” and
the function descriptions in this chapter for more information
about return codes.

Comments This section describes special considerations and restrictions, as
well as how to use the function with other IHLLAPI functions.
This section also points out how to use the function with different
terminal emulators.

See Also This section lists other related IHLLAPI functions.

Note: Use zeros or null strings for any unused parameters.
42 How IHLLAPI Functions Are Documented

Chapter 3 IHLLAPI Functions
Alphabetical Function List

The following tables provide an alphabetical list of the IHLLAPI
functions:

Function Number Function Number

Associate Profile 911 Query Host Update 24

Connect Presentation Space 1 Query Session Status 22

Connect Window Services 101 Query Sessions 10

Convert Position or RowCol 99 Query Sessions Full 910

Copy Field to String 34 Query System 20

Copy OIA 13 Query Window Coordinates 103

Copy Presentation Space 5 Receive File 91

Copy Presentation Space to String 8 Remove Profile 912

Copy String to Field 33 Reset System 21

Copy String to Presentation Space 15 Search Field 30

Disconnect Presentation Space 2 Search Presentation Space 6

Disconnect Window Services 102 Send File 90

Find Field Length 32 Send Key 3

Find Field Position 31 Set Cursor Position 40

Find File Name 914 Set Session Parameters 9

Find Short Name 915 Start Host Notification 23

Get Associations 913 Start Keystroke Intercept 50

Get Key 51 Stop Host Notification 25

Pause 18 Stop Keystroke Intercept 53

Post Intercept Status 52 Wait 4

Query Cursor Location 7 Window Status 104

Query Field Attribute 14
Alphabetical Function List 43

Chapter 3 IHLLAPI Functions
Numerical Function List

The following tables provide a numerical list of the IHLLAPI
functions:

Number Function Number Function

1 Connect Presentation Space 32 Find Field Length

2 Disconnect Presentation Space 33 Copy String to Field

3 Send Key 34 Copy Field to String

4 Wait 40 Set Cursor Position

5 Copy Presentation Space 50 Start Keystroke Intercept

6 Search Presentation Space 51 Get Key

7 Query Cursor Location 52 Post Intercept Status

8 Copy Presentation Space to String 53 Stop Keystroke Intercept

9 Set Session Parameters 90 Send File

10 Query Sessions 91 Receive File

13 Copy OIA 99 Convert Position or RowCol

14 Query Field Attribute 101 Connect Window Services

15 Copy String to Presentation Space 102 Disconnect Window Services

18 Pause 103 Query Window Coordinates

20 Query System 104 Window Status

21 Reset System 910 Query Sessions Full

22 Query Session Status 911 Associate Profile

23 Start Host Notification 912 Remove Profile

24 Query Host Update 913 Get Associations

25 Stop Host Notification 914 Find File Name

30 Search Field 915 Find Short Name

31 Find Field Position
44 Numerical Function List

Chapter 3 IHLLAPI Functions
Connect Presentation Space (1)

The Connect Presentation Space function connects your IHLLAPI
application to the specified presentation space. After your
application connects to the presentation space, all communication
with the host occurs through it.

Prerequisites You must associate a session file name (.ADP) with a short name
using either Accessory Manager or the Associate Profile (911)
function.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber CONNECTPS (1)

DataString The short name of the session to connect with.

DataLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.
Connect Presentation Space (1) 45

Chapter 3 IHLLAPI Functions
Comments This function runs Accessory Manager in a hidden state (if it is not
already running), opens the specified session (if it is not already
open), and connects to that session.

If the CONLOG session parameter is set (which is the default
state), your application window remains the active window on the
desktop.

If the CONPHYS session parameter is set, the terminal emulation
session window becomes the active window on the desktop.

See Also Disconnect Presentation Space (2), Associate Profile (911)

Parameter Value Description

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

An invalid short name
was specified.

WHLLPSBUSY (4) The connection was
successfully made, but
the presentation space
is busy or input is inhibited.

WHLLINHIBITED (5) The connection was
successful, but the
keyboard is locked.

WHLLSYSERROR (9) The function failed due
to a system error.

WHLLUNAVAILABLE
(11)

The specified
presentation space is
already in use.
46 Connect Presentation Space (1)

Chapter 3 IHLLAPI Functions
Disconnect Presentation Space (2)

The Disconnect Presentation Space function disconnects your
application from the current presentation space.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber DISCONNECTPS (2)

DataString Not applicable.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLSYSERROR (9) The function failed due
to a system error.
Disconnect Presentation Space (2) 47

Chapter 3 IHLLAPI Functions
Comments If the DISCONPHYS session parameter is set (which is the
default state), this function disconnects your application from the
presentation space, disconnects the session from the host, and
closes the session.

If the DISCONLOG session parameter is set, this function
disconnects your application from the presentation space, but does
not close the session.

As part of your application termination routine, always issue a
Reset System (21) call. This resets all the session parameters to
their defaults and helps avoid problems with any subsequent use
of the presentation space.

After the application disconnects from the presentation space,
functions that require a connected presentation space return an
error.

See Also Connect Presentation Space (1), Set Session Parameters (9), Reset
System (21)
48 Disconnect Presentation Space (2)

Chapter 3 IHLLAPI Functions
Send Key (3)

The Send Key function places a keystroke or string of keystrokes
in the presentation space at the current cursor location. This
function is equivalent to typing on the keyboard.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber SENDKEY (3)

DataString String of keystrokes (up to 255 bytes). Refer to the
tables later in this section for valid keystrokes.

DataLength Number of bytes in the DataString.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.
Send Key (3) 49

Chapter 3 IHLLAPI Functions

t.
Comments Refer to “Waiting for Host Responses” on page 27 for suggested
methods for waiting for the session to become available before
sending keystrokes to the presentation space.

To send terminal keystrokes, you can use either the terminal
keystroke name enclosed in angle brackets or an escape character
(@ is the default) followed by an ASCII mnemonic code. For
example, to send the transmit keystroke, you can use either
<Transmit> or @E. The ASCII mnemonic codes are listed in the
following tables.

To send T 27 control sequences using the ASCII mnemonics, send
the code for Ctrl (@A@^) followed by the desired character. For
example, to send Ctrl w, the DataString would be @A@^w.

The ASCII mnemonics apply to the total length of the DataString
(which cannot exceed 255 characters). For example, if you send the
code for transmit (@E), you must include two bytes in the
DataLength parameter.

See Also Connect Presentation Space (1), Set Session Parameters (9)

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED
(1)

Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

An incorrect call
parameter was
passed.

WHLLPSBUSY (4) The presentation
space is busy or input
was inhibited; some
keystrokes were not sen

WHLLINHIBITED (5) Input to the presen-
tation space was
inhibited or rejected;
some keystrokes
were not sent.

WHLLSYSERROR (9) The function failed
due to a system
error.

Parameter Value Description
50 Send Key (3)

Chapter 3 IHLLAPI Functions
ASCII Mnemonic
Codes

The following tables list the ASCII mnemonic codes for T 27, UTS,
and VT terminal keystrokes.

You can change the escape character using the Esc=c session
parameter. Refer to “Set Session Parameters (9)” on page 71 for
more information.

T 27 Terminal Keystrokes

Terminal Keystroke Function
ASCII
Mnemonic

BackSpace Moves the cursor one column to the left without deleting any
characters

If the cursor is in the first column of a line, it moves to the last
column of the preceding line. If it is home, it moves to the last
column of the last line of the page.

@<

CarriageReturn Moves the cursor to the first column of the next line or the first
column of the current line, depending on the session configuration

@N

ClearPageCursorHome Deletes all text on the page and moves the cursor home

In forms mode, this keystroke clears either text in unprotected
fields or all text, depending on the session configuration.
Subsequently, the cursor moves to the first unprotected field.

@C

ClearToEndOfLine Deletes all text from the cursor to the end of the line

In forms mode, this keystroke deletes all text from the cursor to the
end of the field.

@F

CTRL Puts the session in control mode @A@^

CursorToEndOfPage Moves the cursor to the last position on the current page @q

DeleteFromLine Deletes the character that the cursor is on and shifts the remaining
characters on the line to the left

@D

DeleteLine Deletes the line containing the cursor @A@D

Down Moves the cursor down one line

If the cursor is in the bottom line of a page, it moves to the top line.

@V

F1...F9 Perform host-defined functions @1...@9

F10 Performs host-defined function @a

Home Moves the cursor home @0 (zero)

Ins Toggles between overwrite mode and insert-in-line mode

This keystroke might also insert a space at the cursor location,
depending on the session configuration.

@A@I
Send Key (3) 51

Chapter 3 IHLLAPI Functions
InsertLine Inserts a line at the cursor location, moving all subsequent lines
down and moving the cursor to the first column of the new line. Any
data that was on the last line of the page is lost.

@A@L

Left Moves the cursor one column to the left

If the cursor is in the first column of a line, it moves to the last
column of the preceding line. If it is in the first column of the first
line of the page, it moves to the last column of the last line of the
page.

@L

Local Puts the session in local mode @A@W

PageDown Displays the next page

If the last page already is displayed, this keystroke displays the first
page.

@v

PageUp Displays the previous page

If the first page already is displayed, this keystroke displays the last
page.

@u

PutETX Inserts an end-of-text character at the cursor position and moves
the cursor home

In insert-in-line or insert-in-page mode, characters after the ETX
character shift to the right. In overwrite mode, the ETX character
replaces any character at the cursor position.

@A@S

Receive Puts the session in receive mode @A@M

Right Moves the cursor one column to the right

If the cursor is in the last column of a line, it moves to the first
column of the next line. If it is in the last column of the last line of
the page, it moves to the first column of the first line of the page.

@Z

SHIFTF1 Performs host-defined function @b

SHIFTF2 Performs host-defined function @c

SHIFTF3 Performs host-defined function @d

SHIFTF4 Performs host-defined function @e

SHIFTF5 Performs host-defined function @f

SHIFTF6 Performs host-defined function @g

SHIFTF7 Performs host-defined function @h

SHIFTF8 Performs host-defined function @i

T 27 Terminal Keystrokes, continued

Terminal Keystroke Function
ASCII
Mnemonic
52 Send Key (3)

Chapter 3 IHLLAPI Functions
SHIFTF9 Performs host-defined function @j

SHIFTF10 Performs host-defined function @k

Specify Sends the cursor location to the host

This keystroke might also send the page number, depending on
the session configuration. The session configuration also
determines whether the data is sent in hexadecimal or ASCII
format.

@A@H

Tab Moves the cursor to the next tab stop

If tab stops were not set, this keystroke moves the cursor home.

In forms mode, this keystroke moves the cursor to the next
unprotected field.

@T

TabBack Moves the cursor to the previous tab stop

If tabs were not set, this keystroke moves the cursor home.

In forms mode, this keystroke moves the cursor to the previous
unprotected field.

@B

Transmit Sends data to the host

Depending on the session configuration, this keystroke sends the
data from home to the cursor position or from home to the end of
the page.

@E

TransmitLine Sends to the host the data from the beginning of the line to the
cursor location

@A@x

Up Moves the cursor up one line in the same column

If the cursor is in the top line of a page, it moves to the bottom line.

@U

T 27 Terminal Keystrokes, continued

Terminal Keystroke Function
ASCII
Mnemonic
Send Key (3) 53

Chapter 3 IHLLAPI Functions
UTS Terminal Keystrokes

Terminal Keystroke Function
ASCII
Mnemonic

BackSpace Moves the cursor one column to the left

If the cursor is in the first column of a row, it moves to the last
column of the preceding row. If the cursor is home, it moves to the
last column of the last row of the page.

@<

CarriageReturn Moves the cursor to the first column of the next row @N

ClearChange Resets the changed-field indicator to zero on all FCC fields,
thereby indicating that all the fields are unchanged and should not
be transmitted

@A@C

ClearPageCursorHome Deletes all text and FCC fields in the current page and moves the
cursor home

@C

ClearToEndOfField Deletes all unprotected characters in an FCC field from the cursor
to the end of the FCC field

@F

ClearToEndOfLine Deletes all text from the cursor to the end of the row or the end of
an FCC field, whichever comes first

@A@l

ClearToEndOfPage Deletes all text from the cursor to the end of the page except
protected fields

@A@p

ControlPageToggle Displays/hides the Control Page or Extended Control Page,
depending on how the session is configured

@A@^

CursorToEndOfField Moves the cursor to the end of the FCC field

If the last position is the trail byte of a DBCS character, the cursor
moves to the lead byte.

If the last position is protected, the cursor moves to the next
unprotected character.

@A@)

CursorToEndOfLine Moves the cursor to the last position of the current row

If the last position is the trail byte of a DBCS character, the cursor
moves to the lead byte.

If the last position is protected, the cursor moves to the next
unprotected character.

@A@]

CursorToEndOfPage Moves the cursor to the last position on the current page

If the last position is the trail byte of a DBCS character, the cursor
moves to the lead byte.

If the last position is protected, the cursor moves to the next
unprotected character.

@q
54 Send Key (3)

Chapter 3 IHLLAPI Functions
CursorToEOPAndXmit Moves the cursor to the end of the page and transmits the screen @A@T

CursorToStartOfField Moves the cursor to the first position in the FCC field in which
cursor is located

If the first position is the trail byte of a DBCS character, the cursor
moves back to the lead byte.

If the first position is protected, the cursor moves to the next
unprotected character.

@A@(

CursorToStartOfLine Moves the cursor to the first position on the same row

If the first position is the trail byte of a DBCS character, the cursor
moves back to the lead byte.

If the first position is protected, the cursor moves to the next
unprotected character.

@A@[

DeleteFromLine Deletes the character that the cursor is on, shifts the remaining
characters on the row to the left, and inserts a space in the last
column of the row

In an FCC field, this keystroke deletes the character, shifts the
remaining characters in that field to the left, and inserts a space in
the last column of the field. Emphasis is unchanged, and the
characters in the rest of the row aren’t shifted.

@D

DeleteFromPage Deletes the character that the cursor is on and shifts all the
remaining characters one position to the left

If the cursor is in an FCC field, the characters in that field are
shifted to the left, but the characters beyond the current field aren’t
shifted. A space is inserted in the last position of the page or field.

@A@%

DeleteLine Deletes the row containing the cursor

Subsequent rows move up one row. The bottom row is filled with
spaces.

@A@D

Down Moves the cursor down one row in the same column

If the cursor is in the bottom row of a page, it moves to the top row.

If there is a protected character below, the cursor moves to the
next unprotected character to the right of the protected character.

@V

DuplicateLine Copies the row containing the cursor to the row below, overwriting
whatever was on that row

The cursor moves to the same column on the duplicated row.

@A@$

F1 ... F9 Perform host-defined functions @1...@9

UTS Terminal Keystrokes, continued

Terminal Keystroke Function
ASCII
Mnemonic
Send Key (3) 55

Chapter 3 IHLLAPI Functions
F10 Performs host-defined function @a

F11 Performs host-defined function @b

F12 Performs host-defined function @c

F13 Performs host-defined function @d

F14 Performs host-defined function @e

F15 Performs host-defined function @f

F16 Performs host-defined function @g

F17 Performs host-defined function @h

F18 Performs host-defined function @i

F19 Performs host-defined function @j

F20 Performs host-defined function @k

F21 Performs host-defined function @l

F22 Performs host-defined function @m

FCCClear Deletes all text in the FCC field at the cursor location

If there isn’t an FCC at the cursor location, this keystroke clears the
closest FCC to the left of the cursor.

@A@\

FCCEnable Re-enables FCCs so that you can enter data in them @A@e

FCCGenerate Initiates the FCC definition process using the keyboard instead of
the Generate FCC dialog box

@A@g

FCCLocate Moves the cursor to the first character of the next FCC, whether it
is protected or not

If this character is protected, protection is cleared.

@A@/

Home Moves the cursor home

If the home position is protected, this keystroke moves the cursor
to the first unprotected field on the page.

@0 (zero)

UTS Terminal Keystrokes, continued

Terminal Keystroke Function
ASCII
Mnemonic
56 Send Key (3)

Chapter 3 IHLLAPI Functions
InsertInPage Inserts a space at the cursor location, moving subsequent
characters on the page one column to the right

Any character in the rightmost column moves to the first position
on the next row.

If the cursor is in an FCC field, the subsequent characters in that
field are shifted to the right, but the characters in the rest of the
page aren’t shifted.

If there is a character in the last column in the page or field, it is
lost.

@A@*

InsertLine Inserts a row at the cursor location and shifts subsequent rows
down one

The last row on the page is lost.

@A@L

Left Moves the cursor one column to the left

If the cursor is in the first column of a row, it moves to the last
column of the preceding row. If it is in the first column of the first
row of the page, it moves to the last column of the last row of the
page.

If there is a protected character to the left, the cursor moves to the
next unprotected character to the right of the protected character.

@L

MessageWait Displays the waiting host message @A@M

PageDown Displays the next page

If the last page already is displayed, this keystroke displays the
first page.

@v

PageUp Displays the previous page

If the first page already is displayed, this keystroke displays the
last page.

@u

Right Moves the cursor one column to the right

If the cursor is in the last column of a row, it moves to the first
column of the next row. If it is in the last column of the last row of
the page, it moves to the first column of the first row of the page.

If there is a protected character to the right, the cursor moves to
the next unprotected character to the left of the protected
character.

@Z

UTS Terminal Keystrokes, continued

Terminal Keystroke Function
ASCII
Mnemonic
Send Key (3) 57

Chapter 3 IHLLAPI Functions
SetStartOfEntry Inserts a start-of-entry (SOE) character at the cursor position

In insert mode, characters after the SOE character shift to the
right. In overwrite mode, the SOE character replaces any
character at the cursor position.

@A@S

SystemMode Puts the session in system mode so that you can send and receive
certain commands to and from a System 80 host

@A@Q

Tab Moves the cursor to the next tab stop (either an FCC tab or a tab
on the screen)

If tabs were not set, this keystroke moves the cursor home.

@T

TabBack Moves the cursor to the previous tab stop (either an FCC tab or a
tab on the screen)

If tabs were not set, this keystroke moves the cursor home.

@B

TabSet Places a tab on the screen at the cursor location and moves the
cursor one column to the right

@A@=

Transmit Sends data to the host

Depending on the session configuration, this keystroke sends
either all data, only unprotected data, or only changed data.

@E

UnlockKeyboard Restores keyboard functionality when it is locked due to a
communication error

@R

Up Moves the cursor up one row in the same column

If the cursor is in the top row of a page, it moves to the bottom row.

If there is a protected character above, the cursor moves to the
next unprotected character to the right of the protected character.

@U

WorkstationMode Exits system mode and restores the session page @A@W

UTS Terminal Keystrokes, continued

Terminal Keystroke Function
ASCII
Mnemonic
58 Send Key (3)

Chapter 3 IHLLAPI Functions
VT Terminal Keystrokes

Terminal Keystroke ASCII Mnemonic

Backspace @<

Break @A@Q

Down @V

Enter @E

F6 @6

F7 @7

F8 @8

F9 @9

F10 @a

F11 @b

F12 @c

F13 @d

F14 @e

F15 @f

F16 @g

F17 @h

F18 @i

F19 @j

F20 @k

Insert @A@I

Left @L

Next @v

PF1 @1

PF2 @2

PF3 @3

PF4 @4

Prev @u

Remove @D

Right @Z

Up @U
Send Key (3) 59

Chapter 3 IHLLAPI Functions

d.
Wait (4)

The Wait function checks the status of the session to determine
whether it can accept input.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments Since keystrokes are not accepted while the session is waiting for
a response from the host, use the Wait (4) function to check the
status of the session before sending keystrokes using the Send Key
(3) function.

Parameter Value

FunctionNumber WAIT (4)

DataString Not applicable.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) The session is ready
for input.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLPSBUSY (4) The presentation space is
busy or input is still inhibite

WHLLINHIBITED (5) The keyboard is locked
and input is inhibited.

WHLLSYSERROR (9) The function failed due
to a system error.
60 Wait (4)

Chapter 3 IHLLAPI Functions
If the TWAIT session parameter is set (which is the default state),
the Wait (4) function waits for up to one minute before returning
the appropriate return parameter to the application. If the session
becomes ready for input within that time, the function returns
WHLLOK (0) as soon as the session is ready. If the session does
not become ready for input within that time, the function returns
WHLLINHIBITED (5) at the end of the minute.

If the NWAIT session parameter is set, this function does not wait;
it returns the current status of the session immediately.

For more information about session parameters, refer to “Set
Session Parameters (9)” on page 71.

Refer to “Waiting for Host Responses” on page 27 for other
methods for waiting for the session to become available before
sending keystrokes to the presentation space.

See Also Connect Presentation Space (1), Send Key (3), Set Session
Parameters (9)
Wait (4) 61

Chapter 3 IHLLAPI Functions
Copy Presentation Space (5)

The Copy Presentation Space function copies the contents of the
presentation space to a string in your application.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber COPYPS (5)

DataString A data string defined in your application that will
contain the data in the presentation space.

If the EAB session parameter is set, this string must
be two or three times the size of the presentation
space (see “Comments”).

DataLength Not applicable (the length of the presentation space
is implied).

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A string containing the
contents of the
presentation space.

See “Comments” for
information about how
the data is returned.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLINHIBITED (5) The copy was
successful, but the
keyboard is locked.

WHLLSYSERROR (9) The function failed
due to a system error.
62 Copy Presentation Space (5)

Chapter 3 IHLLAPI Functions
Comments This function copies the entire presentation space. To copy only a
portion of the presentation space, use the Copy Presentation
Space to String (8) function.

If the NOATTRB session parameter is set (which is the default
state), bytes that are less than 0x1F are translated to spaces
(0x20). If the ATTRB session parameter is set, all bytes are passed
as their original values.

If the NOEAB session parameter is set (which is the default state),
this function copies only the data in the presentation space; it does
not copy any extended attributes.

If the EAB session parameter is set, each character in the
returned string is followed immediately by the attribute
information for that character. Therefore, you must allocate a
DataString that is long enough to accommodate both the screen
text and the attribute information.

For T 27, UTS 20, and UTS 40 sessions, the DataString must be
twice the size of the presentation space (one character and one
character attribute byte for each presentation space position). For
example, if the presentation space includes 1920 presentation
space positions, the DataString must be 3840 bytes. For UTS 60
sessions, the DataString must be three times the size of the
presentation space (one character, one character attribute byte,
and one color attribute byte for each presentation space position).

For information about the attribute bytes returned by T 27 and
UTS, refer to Appendix B, “Attribute Values.”

See Also Connect Presentation Space (1), Copy Presentation Space to
String (8), Set Session Parameters (9), Copy Field to String (34)
Copy Presentation Space (5) 63

Chapter 3 IHLLAPI Functions
Search Presentation Space (6)

The Search Presentation Space function scans the current
presentation space for a specified string.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters
Parameter Value

FunctionNumber SEARCHPS (6)

DataString The string that you want this function to search for.

If the STREOT session parameter is set, the last
character in this string must be an end-of-text
character.

DataLength If the STRLEN session parameter is set (which is
the default state), this is the length of the
DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode If the SRCHALL session parameter is set (which is
the default state), this parameter is ignored.

If the SRCHFROM session parameter is set, this is
the presentation space position where you want the
search to begin. The upper left corner (row 1,
column 1) is position 1.
64 Search Presentation Space (6)

Chapter 3 IHLLAPI Functions
Return Parameters

Comments Use this function to confirm that specific data exists in the
presentation space. For example, if your application expects a
specific prompt before sending data to the host, use this function
to search for the prompt before sending the data.

See Also Connect Presentation Space (1), Set Session Parameters (9),
Search Field (30)

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength 0 or greater than 0 If the value is 0, the
string was not
found. A value
greater than 0
indicates the
presentation space
position where the
string began.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

An incorrect call
parameter was
passed.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
passed.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The specified string
was not found.
Search Presentation Space (6) 65

Chapter 3 IHLLAPI Functions
Query Cursor Location (7)

The Query Cursor Location function returns the location of the
cursor in the presentation space.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYCURSORLOC (7)

DataString Not applicable.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength The presentation space
position where the cursor
is located

This value is always
less than or equal to
the presentation
space size.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLSYSERROR (9) The function failed
due to a system error.
66 Query Cursor Location (7)

Chapter 3 IHLLAPI Functions
Comments For information about converting the presentation space position
to column and row coordinates, refer to “Send File (90)” on
page 128.

Use the Set Cursor Position (40) function to change the cursor
position.

See Also Connect Presentation Space (1), Set Cursor Position (40), Convert
Position or RowCol (99)
Query Cursor Location (7) 67

Chapter 3 IHLLAPI Functions
Copy Presentation Space to String (8)

The Copy Presentation Space to String function copies all or part
of the presentation space into a data string defined in your
application.

Prerequisites Connect Presentation Space (1), Set Session Parameters (9)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber COPYPSTOSTR (8)

DataString A data string defined in your application that will
contain the data in the presentation space.

If the EAB session parameter is set, this string must
be two or three times the size of the presentation
space that is copied (see “Comments”).

DataLength The number of characters that you want to copy.

PSPosition_ReturnCode The presentation space position where you want to
begin copying. The upper left corner (row 1, column
1) is position 1.

Parameter Value Description

DataString The string copied from the
presentation space.

Not applicable.

DataLength Not applicable. Not applicable.
68 Copy Presentation Space to String (8)

Chapter 3 IHLLAPI Functions
Comments T 27 supports the display of a user message on an additional row
outside of the screen size (the 25th row in a 24-row screen). This
message is displayed by the host and cannot be edited by the user.
However, this function can copy this row as part of the
presentation space.

If the NOEAB session parameter is set (which is the default state),
this function copies only the data in the presentation space; it does
not copy any extended attributes.

If the EAB session parameter is set, each character in the
returned string is followed immediately by the attribute
information for that character. Therefore, you must allocate a
DataString that is long enough to accommodate both the screen
text and the attribute information.

For T 27, UTS 20, and UTS 40 sessions, the DataString must be
twice the size of the presentation space (one character and one
character attribute byte for each presentation space position). For
example, to copy 10 characters, the DataString must be 20 bytes.
For UTS 60 sessions, the DataString must be three times the size
of the presentation space (one character, one character attribute
byte, and one color attribute byte for each presentation space
position).

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

A DataLength of
zero was passed.

WHLLINHIBITED (5) The copy was
successful, but the
keyboard is locked.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
passed.

WHLLSYSERROR (9) The function failed
due to a system
error.

Parameter Value Description
Copy Presentation Space to String (8) 69

Chapter 3 IHLLAPI Functions
For information about the attribute bytes returned by T 27 and
UTS, refer to Appendix B, “Attribute Values.”

If the NOATTRB session parameter is set (which is the default
state), bytes that are less than 0x1F are translated to spaces
(0x20). If the ATTRB session parameter is set, all bytes are passed
as their original values.

For more information about session parameters, refer to “Set
Session Parameters (9)” on page 71.

See Also Connect Presentation Space (1), Copy Presentation Space (5), Set
Session Parameters (9), Copy OIA (13), Copy Field to String (34)
70 Copy Presentation Space to String (8)

Chapter 3 IHLLAPI Functions
Set Session Parameters (9)

The Set Session Parameters function lets you specify the session
parameters that control how other IHLLAPI functions operate.
Unless you explicitly change the session parameters, the default
session parameters apply to all functions.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments You can restore all session parameters to their default values by
calling the Reset System (21) function.

Parameter Value

FunctionNumber SETSESSIONPARAMETERS (9)

DataString The session parameter to set.

All session parameters must be spelled exactly as
listed on the following pages. If you specify multiple
session parameters, be sure to separate them with
either a comma or a space.

DataLength The length of the DataString.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR
(2)

One or more invalid
parameters were
passed.

WHLLSYSERROR (9) The function failed
due to a system
error.
Set Session Parameters (9) 71

Chapter 3 IHLLAPI Functions
The following tables list the session parameters that you can set
(grouped by type), a description of each, and the functions each
session parameter or group of session parameters affect.

For types that include more than one session parameter, you can
set only one parameter at a time. For example, for the Translate
Attributes type, you can set either ATTRB or NOATTRB. The
default session parameters appear in bold.

Type Parameter Description Affected Functions

Translate
Attributes

NOATTRB Translates bytes that are less
than hexadecimal 1F to spaces
(hexadecimal 20)

Copy Presentation Space (5)
Copy Presentation Space to String (8)
Copy Field to String (34)

ATTRB Passes all bytes as their original
values

Connect CONLOG Connects physically to the
presentation space

The session window associated
with the presentation space
becomes the active window.

Connect Presentation Space (1)

CONPHYS Connects logically to the
presentation space

The session window associated
with the presentation space
does not become the active
window.

Disconnect DISCONPHYS Disconnects the application
from the session, disconnects
the session from the host, and
closes the session

Disconnect Presentation Space (2)

DISCONLOG Disconnects the application
from the session, but does not
disconnect from the host or
close the session

Mode PSMODE Writes data to the screen

Copy Presentation Space to String (8)
Copy String to Presentation Space
(15)

RAWMODE Simulates emulator transmits or
host data
72 Set Session Parameters (9)

Chapter 3 IHLLAPI Functions
Extended
Attributes

NOEAB Copies data without extended
attributes

Copy Presentation Space (5)
Copy Presentation Space to String (8)
Copy String to Presentation Space
(15)
Copy String to Field (33)
Copy Field to String (34)

EAB Copies both the text and the
extended attributes

Each character in the returned
string is followed immediately by
the attribute information for that
character.

For T 27, UTS 20, and UTS 40
sessions, the DataString must
be twice the size of the
presentation space (one
character and one character
attribute byte for each
presentation space position).
For UTS 60 sessions, the
DataString must be three times
the size of the presentation
space (one character, one
character attribute byte, and
one color attribute byte for each
presentation space position).

For information about the
attribute bytes returned by T 27
and UTS, refer to Appendix B,
“Attribute Values.”

Strings STRLEN Requires an explicit length for all
strings

Search Presentation Space (6)
Copy String to Presentation Space
(15)
Search Field (30)
Copy String to Field (33)
Copy Field to String (34)

STREOT Requires an end-of-text
character at the end of all strings
rather than an explicit length

Type Parameter Description Affected Functions
Set Session Parameters (9) 73

Chapter 3 IHLLAPI Functions
End-of-Text EOT=c Defines the end-of-text (EOT)
character for the end of a string

The EOT character must be a
one-byte literal character. Do
not insert a space between the
equal sign and the EOT
character.

The EOT character is used only
if the STREOT session
parameter is set.

The default EOT character is a
binary zero.

Send Key (3)
Copy Presentation Space (5)
Search Presentation Space (6)
Copy Presentation Space to String (8)
Copy String to Presentation Space
(15)
Search Field (30)
Copy String to Field (33)
Copy Field to String (34)

Escape ESC=c Defines the escape character
used in the Send Key (3) and
Get Key (51) functions

The escape character can be
any ASCII character. Do not
insert any spaces between the
equal sign and the escape
character.

The default escape character is
@.

Send Key (3)
Get Key (51)

Window
Handle

NOHWND104 Omits the window handle in the
returned buffer

Window Status (104)

HWND104 Includes the window handle in
the returned buffer

Pause FPAUSE Pauses for the length of time
specified by the Pause (18)
function

Pause (18)
Start Host Notification (23)

IPAUSE Once a Start Host Notification
(23) call is made, pauses until a
host event occurs

Type Parameter Description Affected Functions
74 Set Session Parameters (9)

Chapter 3 IHLLAPI Functions
Search SRCHALL Searches the entire
presentation space or the entire
field, depending on which
function is called

Search Presentation Space (6)
Search Field (30)

SRCHFROM Searches from the specified
presentation space position to
the end of the presentation
space or the end of the field,
depending on which function is
called

Wait TWAIT Waits for up to one minute
before returning a parameter
that indicates whether the
session is ready to receive input

If the session becomes ready for
input within that time, the
function returns WHLLOK (0) as
soon as the session is ready. If
the session does not become
ready for input within that time,
the function returns
WHLLINHIBITED (5) at the end
of the minute.

Wait (4)

NWAIT Immediately returns the current
status of the session (that is,
whether it can accept input)

AutoOpen AUTOOPEN AUTOOPEN opens a session
when a shortname points to a
session that isn’t running.

Affects most functions that accept a
shortname input parameter, including:

Query Sessions (10)
Query Session Status (22)
Start Host Notification (23)
Query Host Update (24)
Start Keystroke Intercept (50)
Get Key (51)
Post Intercept Status (52)
Stop Keystroke Intercept (53)
Convert Position or RowCol (99)
Window Status (104)

NOAUTOOPEN NOAUTOOPEN will not open a
session when a shortname
points to a session that is not
running.

Type Parameter Description Affected Functions
Set Session Parameters (9) 75

Chapter 3 IHLLAPI Functions
See Also Connect Presentation Space (1), Disconnect Presentation Space
(2), Send Key (3), Wait (4), Copy Presentation Space (5), Search
Presentation Space (6), Copy Presentation Space to String (8),
Copy String to Presentation Space (15), Pause (18), Reset System
(21), Start Host Notification (23), Search Field (30), Copy String to
Field (33), Copy Field to String (34), Window Status (104)
76 Set Session Parameters (9)

Chapter 3 IHLLAPI Functions
Query Sessions (10)

The Query Sessions function returns the number of all currently
open sessions. For each session, this function also returns a 12-
byte data string that contains the following information:

• Short name of the session (if any)

• File name of the session

• Type of session (T 27, UTS)

• Size of the presentation space

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYSESSIONS (10)

DataString A data string used to return the session information.

The string must be long enough to accommodate 12
bytes for each session.

DataLength The length of the DataString.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A data string. See “Comments.”

DataLength The number of currently
open sessions.

Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR
(2)

The DataLength is
not a multiple of 12.

WHLLSYSERROR (9) The function failed
due to a system
error.
Query Sessions (10) 77

Chapter 3 IHLLAPI Functions
Comments The returned DataString for each session is formatted as shown in
the following table:

The return value of DataLength is set only when the
PSPosition_ReturnCode is WHLLOK (0) or
WHLLPARAMETERERROR (2).

See Also Connect Presentation Space (1), Query Session Status (22),
Associate Profile (911), Remove Profile (912), Get Associations
913), Find File Name (914), Find Short Name(915)

Byte Description

1 The short name (null if the session has no short name)

2–9 The file name of the session (up to 8 characters)

10 The session type (A for T 27, O for UTS)

11–12 A binary number that indicates the presentation space size
78 Query Sessions (10)

Chapter 3 IHLLAPI Functions
Query Sessions Full (910)

The Query Sessions Full (910) function is the same as Query
Sessions (10) except that it additionally provides the full path of
the session file (using characters 13 through 272 of each entry) in
its returned values.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYSESSIONS (10)

DataString A data string used to return the session information.

The string must be long enough to accommodate
272 bytes for each session.

DataLength The length of the DataString.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A data string. See “Comments.”

DataLength The number of currently
open sessions.

Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR
(2)

The DataLength is
not a multiple of
272.

WHLLSYSERROR (9) The function failed
due to a system
error.
Query Sessions Full (910) 79

Chapter 3 IHLLAPI Functions
Comments The returned DataString for each session is formatted as shown in
the following table:

See Also Query Sessions (10).

Byte Description

2–9 The short filename of the session (up to 8 characters)

10 The session type (A for T 27, O for UTS)

11–12 A binary number that indicates the presentation space size

13-272 The full path of the session file
80 Query Sessions Full (910)

Chapter 3 IHLLAPI Functions
Copy OIA (13)

The Copy OIA function returns the information about the operator
information area (status line) and other information (such as the
cursor shape). The information returned varies from one emulator
to another.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber COPYOIA (13)

DataString A data string for the OIA information that will be
returned by this function.

For UTS, this string must be at least 103 bytes. For
T 27, the string length varies, depending on
whether you want this function to copy any T 27
user messages (that is, the row below the last
defined row). If you do not want to copy these
messages, the string must be 96 bytes. If you do
want to copy these messages, this string must be at
least 120 bytes.

DataLength The number of bytes in the DataString.

This parameter must be at least 120 to ensure that
the DataString is large enough to hold all of the OIA
information.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A 96- to 120-byte string
containing OIA information.

See “Comments.”

DataLength Not applicable. Not applicable.
Copy OIA (13) 81

Chapter 3 IHLLAPI Functions
Comments The string returned in the DataString contains the following
information:

The following tables display the OIA data for each emulator:

PSPosition_Return
Code

WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

The DataLength
contains an invalid
value; the status
information was not
copied.

WHLLINHIBITED (5) The status
information copied
successfully, but the
session is locked
(input inhibited).

WHLLSYSERROR (9) The function failed
due to a system
error.

Parameter Value Description

Byte Description

1 Emulator type

2–83 Reserved for future use

84–85 Information common to all emulators

86–120 Information specific to each emulator

T 27 OIA Data

Byte Description Value

1 Emulator type 3

2–81 Reserved Spaces

82–83 Reserved 0

84 Connection status 0 = Normal
1 = Broken
82 Copy OIA (13)

Chapter 3 IHLLAPI Functions
* The T 27 user message area is the first line below the regular presentation
space and is used for messages sent by the host. Character attributes (such as
bright, underline) are supported on this line, but they are not copied using this
function. To retrieve the character attributes, use the Copy Presentation Space
To String (8) function, with the startup position set to the first character after the
normal presentation space ends.

85 Cursor shape 0 = Block
1 = Underline
2 = Vertical bar

86 Current page number 1-256

87 Total number of pages 1-256

88 Editing mode 0 = Overtype
1 = Insert in line
2 = Insert in page

89 Forms mode 0 = off
1 = on

90 Transmit mode 0 = off
1 = on

91 Control mode 0 = off
1 = on

92 Receive mode 0 = off
1 = on

93 LTAI 0 = off
1 = on

94 Enquire mode 0 = off
1 = on

95 Search mode 0 = off
1 = on

96 Transmit line mode 0 = off
1 = on

97 Connection status
(QuickApp® only)

0 = Normal
0x80 = Broken

98–103 Reserved 0

104–119 User message* ASCII (padded with blanks)

120 Reserved for ASCII 0 0x00

T 27 OIA Data, continued

Byte Description Value
Copy OIA (13) 83

Chapter 3 IHLLAPI Functions
Note: This function only allows you to capture the first 15 characters of the user
message (which starts on line 25).

UTS OIA Data

Byte Description Value

1 Emulator type 2

2–81 Reserved Spaces

82 Reserved 0

83 Terminal model 0 = UTS 20
1 = UTS 40
2 = UTS 60
3 = UTS 50

84 Connection status 0 = No Poll/ The connection is
not active.
1 = Poll/ This is the normal
case, everything is fully up.
2 = Connection Suspended/
The connection is broken.
(Connection Suspended is
available only with the
PEPGate Client transport)

85 Cursor shape 0 = Block
1 = Underline
2 = Vertical bar

86 Current page number 1–256

87 Total number of pages 1–256

88 Editing mode 0 = Overtype
1 = Insert

89 Transmit mode 0 = Transmit ALL mode
1 = Transmit VAR mode
2 = Transmit CHAN mode

90 Keyboard lock (wait indicator) 0 = Keyboard unlocked
1 = Keyboard locked

91 Screen color 0xBF*, where
B = Background color (0–7)
F = Foreground color (0–7)

92 Status line color 0xBF*, where
B = Background color (0–7)
F = Foreground color (0–7)
84 Copy OIA (13)

Chapter 3 IHLLAPI Functions
93 Control Page protected fields
color

0xBF*, where
B = Background color (0–7)
F = Foreground color (0–7)

94 Control Page unprotected fields
color

0xBF*, where
B = Background color (0–7)
F = Foreground color (0–7)

*The color value is the color specified by the host, not the color specified by the
emulator: 0 = Black, 1 = Red, 2 = Green, 3 = Yellow, 4 = Blue, 5 = Magenta,
6 = Cyan, and 7 = White.

95 Current page type 0 = Workstation page
1 = System page
2 = Control Page

96 Control Page type 0 = Normal Control Page
1 = Extended Control Page

97 Connection status
(QuickApp only)

0 = Normal
0x80 = Broken

98 Print mode 0 = Print PRNT Mode
1 = Print FORM Mode
2 = Print XPAR Mode

99 System message 0 = No System Message
1 = System Message

100 FCC transmit type 0 = No FCCs
1 = Expanded FCCs (UTS 20

and UTS 40)
2 = Color FCCs (UTS 60)

101 Emphasis transmit type 0 = No emphasis
1 = E2
2 = E3

102 Print DID value 0x20–0x7F

103 Read DID value 0x20–0x7F

104 Message waiting 0 = No message waiting
1 = Message waiting

UTS OIA Data, continued

Byte Description Value
Copy OIA (13) 85

Chapter 3 IHLLAPI Functions
See Also Connect Presentation Space (1), Copy Presentation Space (5),
Copy Presentation Space to String (8), Copy Field to String (34)

105 Host changed Control Page
indicator

1= Host accessed the Control
Page (via an "Esc o" sequence)
since the last time a transmit
was done.

0= UTS Control Page not
accessed since the last time a
transmit was done.

106 Host changed Screen indicator 1= Host placed at least 1
character on the 24x80 screen
since the last transmit was
done.

0= Host placed no characters
on the 24x80 screen since the
last transmit was done.

UTS OIA Data, continued

Byte Description Value
86 Copy OIA (13)

Chapter 3 IHLLAPI Functions
Query Field Attribute (14)

The Query Field Attribute function returns the attributes of the
specified field in the presentation space. The information returned
varies from one emulator to another.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYFIELDATTRIBUTE (14)

DataString Not applicable.

DataLength Not applicable.

PSPosition_ReturnCode Any presentation space position in the desired field.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength The value of the attribute
byte for the specified field

If the presentation space is
unformatted, this value is
zero.

Refer to the tables on
the following pages
for information about
the returned values.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLPOSITIONERROR
(7)

An invalid presen-
tation space position
was passed.

WHLLSYSERROR (9) The function failed
due to a system error.

WHLLNOFIELD (24) The field was not
found, or the
presentation space
was unformatted.
Query Field Attribute (14) 87

Chapter 3 IHLLAPI Functions
Comments The attributes for all the positions within a field should normally
be the same. If a field has multiple attributes, the returned
attribute value will be valid only for the specified presentation
space position.

The information returned varies from one emulator to another, as
shown in the following tables.

T 27 Field Attributes

Bit
Position Description Value

7 Mode 0 = Nonforms mode
1 = Forms mode

6 Visibility 0 = Secure video
1 = Normal video

5 Unprotected/protected 0 = Unprotected
1 = Protected

4 Intensity 0 = Normal
1 = Bright

3 Justification 0 = Left justified
1 = Right justified

2 Protected types (valid
when bit 5 is 1)

0 = Non-transmittable
1 = Protected

1 Reverse video 0 = Normal video
1 = Reverse video

0 Reserved Space

Note: A non-transmittable field is a field that is not sent to the
host when the user transmits. For example, labels on forms are
typically non-transmittable fields. The information within field
delimiters is normally transmitted to the host. These fields can
be either protected or unprotected. If they are protected, the
user cannot change them.

Since field delimiters themselves occupy a position in the
presentation space, the field attribute for that position is non-
transmittable.
88 Query Field Attribute (14)

Chapter 3 IHLLAPI Functions
See Also Connect Presentation Space (1), Copy String to Field (33)

UTS Field Attributes

Bit
Position Description Value

7 Reserved Space

6 Visibility 0 = Secure video
1 = Normal video

5 Unprotected/protected 0 = Unprotected
1 = Protected

4 Intensity 0 = Normal
1 = Dim

3 Justification 0 = Left justified
1 = Right justified

2 Field type 0 = Alphanumeric
1 = Numeric only

1 Reverse video 0 = Normal video
1 = Reverse video

0 FCC changed flag 0 = FCC has not been modified
1 = FCC has been modified
Query Field Attribute (14) 89

Chapter 3 IHLLAPI Functions
Copy String to Presentation Space (15)

The Copy String to Presentation Space function copies an ASCII
string from your application to a specific location in the
presentation space.

Prerequisites Connect Presentation Space (1), Set Session Parameters (9)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber COPYSTRTOPS (15)

DataString The data string to copy to the presentation space.

Make sure that the string is not larger than the
presentation space.

DataLength If the STRLEN session parameter is set (which is
the default state), you must explicitly provide the
length of the DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode The presentation space position where you want to
place the copied data.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.
90 Copy String to Presentation Space (15)

Chapter 3 IHLLAPI Functions
Comments If you are copying a string to a formatted presentation space, use
the Query Field Attribute (14) function to determine whether the
presentation space position occurs in a protected field before
copying the string to that location.

See Also Connect Presentation Space (1), Set Session Parameters (9),
Query Field Attribute (14), Copy String to Field (33)

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

A DataLength of
zero was specified.

WHLLINHIBITED (5) The presentation
space is protected
or inhibited, or
inappropriate data
(such as a field
attribute byte) was
passed. None of
the string was
copied.

WHLLTRUNCATED (6) The string was
copied, but data
was truncated at
the end of the
screen.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

Parameter Value Description
Copy String to Presentation Space (15) 91

Chapter 3 IHLLAPI Functions
Pause (18)

The Pause function causes your application to wait a specific
amount of time or for an event to occur. Use this function instead
of a timing loop.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber PAUSE (18)

DataString Not applicable.

DataLength The number of half-seconds that the application
should pause. For example, to pause 60 seconds,
the DataLength should be 120.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) The pause duration
expired.

WHLLSYSERROR
(9)

The function failed due to a
system error.

WHLLPSCHANGED
(26)

The presentation space
has been updated.
92 Pause (18)

Chapter 3 IHLLAPI Functions
Comments If the FPAUSE session parameter is set (which is the default
state), the application pauses until the amount of time specified by
the DataLength expires.

If the IPAUSE session parameter is set and Start Host
Notification (23) has been called, the application pauses the
amount of time specified by the DataLength or until the host sends
data to the session, whichever comes first.

See Also Set Session Parameters (9), Start Host Notification (23), Query
Host Update (24)
Pause (18) 93

Chapter 3 IHLLAPI Functions
Query System (20)

The Query System function provides information about the
WinHLLAPI and IHLLAPI DLL version numbers and level
numbers.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYSYSTEM (20)

DataString A 35-byte buffer for incoming system data.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A 35-byte data string. See “Comments.”

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK Function succeeded.

WHLLSYSERROR The function failed due to
a system error.
94 Query System (20)

Chapter 3 IHLLAPI Functions
Comments The returned DataString contains the following information:

See Also Query Sessions (10), Query Session Status (22)

Byte Description

1 The Microsoft WinHLLAPI version number

2–3 The Microsoft WinHLLAPI level number

4–9 The Microsoft WinHLLAPI release date in month/day/year format
(for example, 031996)

10–12 Reserved

13 U

14 E

15–16 The IHLLAPI version number

17–18 The IHLLAPI level number

19–35 Reserved
Query System (20) 95

Chapter 3 IHLLAPI Functions
Reset System (21)

The Reset System function sets all session parameters to their
default values. This function also stops host event notification and
disconnects any connected presentation spaces.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments Your application should call this function before closing to ensure
that other applications start up in a known environment.

See Also Disconnect Presentation Space (2), Set Session Parameters (9),
Start Host Notification (23), Stop Host Notification (25)

Parameter Value

FunctionNumber RESETSYSTEM (21)

DataString Not applicable.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLSYSERROR
(9)

The function failed due to a
system error.
96 Reset System (21)

Chapter 3 IHLLAPI Functions
Query Session Status (22)

The Query Session Status function returns an 18-byte data string
with the following information about a specified session:

• Short name

• File name

• Session type

• Number of rows and columns in the presentation space

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYSESSIONSTATUS (22)

DataString An 18-byte data string containing the short name of
the session plus 17 extra bytes (to reserve space for
the returned data).

The short name can be a space or null character if
you want to retrieve data about the current
presentation space.

DataLength The number of bytes in the DataString (at least 18).

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString An 18-byte string. See “Comments.”

DataLength Not applicable. Not applicable.
Query Session Status (22) 97

Chapter 3 IHLLAPI Functions
Comments The returned DataString contains the following information:

For an unopened session, this call returns only the short name
and file name for the session. Bytes 10 through 18 in the returned
DataString will contain null characters.

Use Query Sessions (10) to determine which sessions are open.

See Also Query Sessions (10)

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED
(1)

An invalid short
name was speci-
fied.

WHLLPARAMETERERROR
(2)

An invalid
DataLength was
passed.

WHLLSYSERROR (9) The function failed
due to a system
error.

Parameter Value Description

Byte Description

1 Short name of the session

2–9 File name of the session (up to eight characters)

10 Session type (A for T 27, O for UTS)

11 Reserved

12–13 Number of rows in the presentation space (binary number)

14–15 Number of columns in the presentation space (binary number)

16–18 Reserved
98 Query Session Status (22)

Chapter 3 IHLLAPI Functions
Start Host Notification (23)

This function enables notifying your application of changes in the
presentation space or operator information area (OIA).

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber STARTHOSTNOTIFICATION (23)

DataString A 7-byte string. See “Comments” for details.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Same as the DataString on
the call parameter.

See “Comments.”

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

One or more
parameters are
invalid.

WHLLSYSERROR (9) The function failed
due to a system
error.
Start Host Notification (23) 99

Chapter 3 IHLLAPI Functions
Comments The DataString in the call parameter is a 7-byte string that
contains the following information:

Once host notification is enabled, it remains enabled until your
application calls Stop Host Notification (25) or Reset System (21).

If the IPAUSE session parameter is set and Start Host
Notification (23) has been called, you can use the Pause (18)
function to pause your application the amount of time specified by
the Pause (18) function’s DataLength or until the host updates the
presentation space and/or OIA, whichever comes first.

See Also Set Session Parameters (9), Pause (18), Reset System (21), Query
Host Update (24), Stop Host Notification (25)

Byte Description

1 Short name of the desired session, or a space or null character for the
current session

2 P for presentation space update only, O for OIA update only, B for
both presentation space and OIA updates

3–6 Not used; no error occurs if old IHLLAPI applications use these
positions

7 Reserved
100 Start Host Notification (23)

Chapter 3 IHLLAPI Functions
Query Host Update (24)

This function determines if the presentation space or operator
information area (OIA) has been updated since Start Host
Notification (23) was called or since this function was previously
called.

Prerequisites Start Host Notification (23)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYHOSTUPDATE (24)

DataString The short name of the desired session, or a space
or null character for the current session.

DataLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.
Query Host Update (24) 101

Chapter 3 IHLLAPI Functions
Comments In this version of IHLLAPI, the OIA is not handled separately
from the presentation space. This function returns
WHLLBOTHUPDATE (23) for any update.

See Also Start Host Notification (23), Stop Host Notification (25)

PSPosition_ReturnCode WHLLOK (0) No updates occurred.

WHLLNOTCONNECTED
(1)

The specified session
is invalid.

WHLLNOTAVAILABLE
(8)

Start Host Notification
(23) was not called for
the specified session
prior to this function.

WHLLSYSERROR (9) The function failed due
to a system error.

WHLLOIAUPDATE (21) One or more updates
to the OIA occurred.

WHLLPSUPDATE (22) One or more updates
to the presentation
space occurred.

WHLLBOTHUPDATE
(23)

One or more updates
to both the OIA and the
presentation space
occurred.

Parameter Value Description
102 Query Host Update (24)

Chapter 3 IHLLAPI Functions
Stop Host Notification (25)

This function disables notifying your application of changes in the
presentation space and/or operator information area (OIA).

Prerequisites Start Host Notification (23)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber STOPHOSTNOTIFICATION (25)

DataString The short name of the desired session, or a space
or null character for the current session.

DataLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLNOTAVAILABLE
(8)

Start Host Notification
(23) was not called for
the specified session
prior to this function.

WHLLSYSERROR (9) The function failed due
to a system error.
Stop Host Notification (25) 103

Chapter 3 IHLLAPI Functions
Comments Once host notification has been disabled, Query Host Update (24)
can no longer determine whether the presentation space or OIA
have been updated, and host events will not cause the Pause (18)
function to return a return code to the application.

The Reset System (21) function also stops host notification.

See Also Pause (18), Reset System (21), Start Host Notification (23), Query
Host Update (24)
104 Stop Host Notification (25)

Chapter 3 IHLLAPI Functions
Search Field (30)

The Search Field function searches the specified field for a
specified string.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters
Parameter Value

FunctionNumber SEARCHFIELD (30)

DataString The string that you want this function to search for.

If the STREOT session parameter is set, the last
character in this string must be an end-of-text
character.

DataLength If the STRLEN session parameter is set (which is
the default state), this is the length of the
DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode A position within the field that you want to search.

If the SRCHALL session parameter is set (which is
the default state), this function searches the entire
field.

If the SRCHFROM session parameter is set, this
function begins searching at the specified location
and stops at the end of the field.
Search Field (30) 105

Chapter 3 IHLLAPI Functions
Return Parameters

Comments This function applies only to formatted presentation spaces. For
unformatted presentation spaces, use the Search Presentation
Space (6) function.

See Also Connect Presentation Space (1), Search Presentation Space (6),
Set Session Parameters (9)

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength 0 or greater than 0 If the value is
zero, the string
was not found. A
value greater
than zero indi-
cates the presen-
tation space
position where
the string begins.

PSPosition_ReturnCode WHLLOK (0) The function
succeeded.
Check the
DataLength for
the search result.

WHLLNOTCONNECTED (1) Your application
is not connected
to a session.

WHLLPARAMETERERROR
(2)

An invalid
parameter was
passed.

WHLLPOSITIONERROR (7) The PSPosition_
ReturnCode was
either zero or
greater than the
presentation
space size.

WHLLSYSERROR (9) The function
failed due to a
system error.

WHLLNOFIELD (24) The presentation
space was
unformatted.
106 Search Field (30)

Chapter 3 IHLLAPI Functions
Find Field Position (31)

The Find Field Position function returns the beginning
presentation space position of a specified field.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber FINDFIELDPOSITION (31)

DataString A two-character code that specifies which field you
want to find the beginning position of.

See “Comments” for details.

DataLength Not applicable; a length of 2 bytes is implied.

PSPosition_ReturnCode Any presentation space position within the field
where you want to begin the search.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength The starting position of the
field.

A zero for this
parameter
indicates that the
field was not found,
the presentation
space was
unformatted, or the
field length was
zero.
Find Field Position (31) 107

Chapter 3 IHLLAPI Functions
Comments The DataString in the call parameter is a two-character code that
specifies which field you want to find the beginning position of.
These codes must be in uppercase.

This function applies only to formatted presentation spaces.

See Also Connect Presentation Space (1), Find Field Length (32)

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

An incorrect
parameter was
specified.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The field was not
found, or the
presentation space
was unformatted.

WHLLZEROLENFIELD (28) The field length is
zero.

Parameter Value Description

Code Field

<space><space> The field specified by the PSPosition_ReturnCode

T<space> The field specified by the PSPosition_ReturnCode

P<space> Previous protected or unprotected field

PP Previous protected field

PU Previous unprotected field

N<space> Next protected or unprotected field

NP Next protected field

NU Next unprotected field
108 Find Field Position (31)

Chapter 3 IHLLAPI Functions
Find Field Length (32)

The Find Field Length function returns the length of a specified
field.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber FINDFIELDLENGTH (32)

DataString A two-character code that specifies which field you
want the length of.

See “Comments” for details.

DataLength Not applicable; a length of 2 bytes is implied.

PSPosition_ReturnCode Any presentation space position within the field
whose length you want to find.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength The length of the specified
field.

A zero indicates
that the field was
not found, the
presentation space
was unformatted,
or the field length
was zero.
Find Field Length (32) 109

Chapter 3 IHLLAPI Functions
Comments The DataString in the call parameter is a two-character code that
specifies which field you want the length of. These codes must be
in uppercase.

This function applies only to formatted presentation spaces.

See Also Connect Presentation Space (1), Find Field Position (31)

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

An incorrect
parameter was
specified.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The field was not
found, or the
presentation space
was unformatted.

WHLLZEROLENFIELD (28) The field length is
zero.

Parameter Value Description

Value Field

<space><space> The field specified by the PSPosition_ReturnCode

T<space> The field specified by the PSPosition_ReturnCode

P<space> Previous protected or unprotected field

PP Previous protected field

PU Previous unprotected field

N<space> Next protected or unprotected field

NP Next protected field

NU Next unprotected field
110 Find Field Length (32)

Chapter 3 IHLLAPI Functions
Copy String to Field (33)

The Copy String to Field function copies a string of characters
from your application to a specified field.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber COPYSTRINGTOFIELD (33)

DataString The data string to copy to the specified field.

If the STREOT session parameter is set, this string
must contain an end-of-text character.

DataLength If the STRLEN session parameter is set (which is
the default state), you must explicitly provide the
length of the DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode Any presentation space position within the field
where you want to place the data string. The data
string is always placed at the first position of the
field. If the field is right-justified, the emulator moves
the string to the appropriate position.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.
Copy String to Field (33) 111

Chapter 3 IHLLAPI Functions
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

A DataLength of
zero was specified.

WHLLINHIBITED (5) The field is
protected or
inhibited, or
inappropriate data
(such as a field
attribute byte) was
passed. None of the
string was copied.

WHLLTRUNCATED (6) The string was
copied, but data
was truncated.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The presentation
space is
unformatted.

WHLLZEROLENFIELD (28) The specified field
has a length of
zero.

Parameter Value Description
112 Copy String to Field (33)

Chapter 3 IHLLAPI Functions
Comments This function applies only to formatted presentation spaces.

In addition, this function stops copying the string when it
encounters one of the following:

• The end of the field

• The number of characters specified by the DataLength (if the
STRLEN session parameter is set)

• An end-of-text character (if the STREOT session parameter is
set)

See Also Connect Presentation Space (1), Set Session Parameters (9), Copy
String to Presentation Space (15)
Copy String to Field (33) 113

Chapter 3 IHLLAPI Functions
Copy Field to String (34)

The Copy Field to String function copies all the characters from a
specified field to a data string in your application.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber COPYFIELDTOSTRING (34)

DataString An empty data string large enough to hold all the
data copied from the field.

If the EAB session parameter is set, this string must
be two or three times the size of the presentation
space (see “Comments”).

DataLength If the STRLEN session parameter is set (which is
the default state), you must explicitly provide the
length of the DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode Any presentation space position within the field that
you want to copy. The copy always begins at the
first position of the field. If the field is right-justified,
the emulator moves the string to the appropriate
position.

Parameter Value Description

DataString A string containing the
contents of the field.

See “Comments.”

DataLength Not applicable. Not applicable.
114 Copy Field to String (34)

Chapter 3 IHLLAPI Functions
Comments This function applies only to formatted presentation spaces.

If the NOEAB session parameter is set (which is the default state),
this function copies only the data in the field; it does not copy any
extended attributes.

If the EAB session parameter is set, each character in the
returned string is followed immediately by the attribute
information for that character. Therefore, you must allocate a
DataString that is long enough to accommodate both the text and
the attribute information.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

An invalid
parameter was
passed.

WHLLTRUNCATED (6) The field in the
presentation space
and the string in
your application
are not the same
size. Some data
might have been
truncated.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The field was not
found, or the
presentation space
was unformatted.

WHLLZEROLENFIELD (28) The specified field
has a length of
zero.

Parameter Value Description
Copy Field to String (34) 115

Chapter 3 IHLLAPI Functions
For T 27, UTS 20, and UTS 40 sessions, the DataString must be
twice the size of the field (one character and one character
attribute byte for each field position). For example, if the field
includes 10 presentation space positions, the DataString must be
20 bytes. For UTS 60 sessions, the DataString must be three times
the size of the field (one character, one character attribute byte,
and one color attribute byte for each field position).

For information about the attribute bytes returned by T 27 and
UTS, refer to Appendix B, “Attribute Values.”

If the NOATTRB session parameter is set (which is the default
state), bytes that are less than 0x1F are translated to spaces
(0x20). If the ATTRB session parameter is set, all bytes are passed
as their original values.

See Also Connect Presentation Space (1), Copy Presentation Space (5),
Copy Presentation Space to String (8), Set Session Parameters (9)
116 Copy Field to String (34)

Chapter 3 IHLLAPI Functions
Set Cursor (40)

The Set Cursor function lets you position the cursor within the
presentation space.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber SETCURSOR (40)

DataString Not applicable.

DataLength Not applicable.

PSPosition_ReturnCode The presentation space position where you
want to position the cursor. The upper left
corner (row 1, column 1) of the presentation
space is position 1.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.
Set Cursor (40) 117

Chapter 3 IHLLAPI Functions
Comments Use the Query Cursor Location (7) function to retrieve the current
position of the cursor.

See Also Connect Presentation Space (1), Query Cursor Location (7)

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED
(1)

Your application is
not connected to a
session.

WHLLPSBUSY (4) The presentation
space is busy; the
cursor could not
be positioned.

WHLLPOSITIONERROR
(7)

You specified a
presen-tation
space position
less than 1 or
greater than the
presentation
space size.

WHLLSYSERROR (9) The function failed
due to a system
error.

Parameter Value Description
118 Set Cursor (40)

Chapter 3 IHLLAPI Functions
Start Keystroke Intercept (50)

The Start Keystroke Intercept function lets your application
intercept keystrokes typed in the session by the user.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber STARTKSINTERCEPT (50)

DataString A 6-byte string for each session.

See “Comments” for details.

DataLength Variable (256 bytes is recommended).

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.
Start Keystroke Intercept (50) 119

Chapter 3 IHLLAPI Functions
Comments The DataString in the call parameter is a 6-byte string for each
session that contains the following information:

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED
(1)

Your
application is
not connected
to a session.

WHLLPARAMETERERROR
(2)

One or more
call parame-
ters are invalid.

WHLLPSBUSY (4) The presenta-
tion space is
busy.

WHLLSYSERROR (9) The function
failed due to a
system error.

WHLLCANCEL (0xF002) The asynchro-
nous function
was canceled.

Parameter Value Description

Byte Description

1 Short name of the desired session, or a space or null
character for the current session

2 D = intercept only AID keystrokes, L = intercept all
keystrokes

3–6 Reserved
120 Start Keystroke Intercept (50)

Chapter 3 IHLLAPI Functions
Once this function is called, the intercepted keystrokes can be
handled in the following ways:

• Received with the Get Key (51) function

• Accepted or rejected with the Post Intercept Status (52)
function

• Sent to the same session or another session with the Send Key
(3) function

• Used in another manner appropriate for your application

If the second position of the DataString is D, only AID (Attention
identification) keystrokes are intercepted. AID keystrokes are
keystrokes that directly cause a change in the screen display, such
as letters. Non-AID keystrokes, such as Enter or function keys, do
not directly change the display.

See Also Connect Presentation Space (1), Send Key (3), Get Key (51), Post
Intercept Status (52), Stop Keystroke Intercept (53)
Start Keystroke Intercept (50) 121

Chapter 3 IHLLAPI Functions
Get Key (51)

The Get Key function lets your application intercept keystrokes
from a session for which keystroke intercept has been enabled.

Prerequisites Start Keystroke Intercept (50)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber GETKEY (51)

DataString An 8-byte string. The first byte is the short name of
the desired session, or a space or null character for
the current session. Bytes 2–8 are reserved for
return data.

DataLength Not applicable; a length of 8 bytes is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString An 8-byte string. See “Comments.”

DataLength The number of characters
in the returned
DataString.

Not applicable.
122 Get Key (51)

Chapter 3 IHLLAPI Functions
Comments The returned DataString is an 8-byte string that contains the
following information:

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLINHIBITED (5) The Start Keystroke
intercept (50) function
was called with the D
option, but no AID
keystrokes were
intercepted.

WHLLNOTAVAILABLE
(8)

The Start Keystroke
Intercept (50) function
was not called prior to
this function.

WHLLSYSERROR (9) The function failed due
to a system error.

WHLLUNDEFINEDKEY
(20)

The user typed an
invalid keystroke
combination.

WHLLNOKEYSTROKES
(25)

No keystrokes are
available in the
keystroke queue.

WHLLKEYOVERFLOW
(31)

The keystroke queue
has overflowed and
keystrokes were lost.

Parameter Value Description

Byte Description

1 Short name of the desired session, or a space or null character for the
current session

2 A = an ASCII character; S = a special modifier such as Shift, Ctrl, or Alt

3–8 Keystroke(s)

Unused bytes are set to null characters. See “Comments” for details.
Get Key (51) 123

Chapter 3 IHLLAPI Functions
The keystrokes typed by the user are queued by the
IHLAPI32.DLL. This function reads the keystrokes from the
queue one at a time.

AID keystrokes are keystrokes that directly cause a change in the
screen display, such as letters. Non-AID keystrokes, such as Enter
or function keys, do not directly change the display.

The ESC=c session parameter determines which character is used
as the escape character. In the following examples, the default
escape character (@) is used.

The following modifiers indicate when the Alt, Shift, or Ctrl keys
were pressed in conjunction with another key:

Returned DataString
Examples

The following table shows possible returned DataStrings:

See Also Send Key (3), Set Session Parameters (9), Start Keystroke
Intercept (50), Post Intercept Status (52), Stop Keystroke
Intercept (53)

Modifier Meaning

@A The Alt key was pressed.

@S The Shift key was pressed.

@r The Ctrl key was pressed.

DataString Description

BAt B is the short name of the session, A indicates that the
following keystroke is ASCII, and t is the keystroke (bytes
4–8 are null).

CS@Aa C is the short name of the session, S indicates that the
following keystroke is a modifier, @A indicates that the
modifier is the Alt keystroke, and a is the keystroke that was
pressed in conjunction with the Alt key (bytes 6–8 are null).

DS@rA D is the short name of the session, S indicates that the
following keystroke is a modifier, @r indicates that the
modifier is the Ctrl keystroke, and A is the keystroke that was
pressed in conjunction with the Ctrl key (bytes 6–8 are null).

The uppercase A indicates that the Shift key was also
pressed.
124 Get Key (51)

Chapter 3 IHLLAPI Functions
Post Intercept Status (52)

The Post Intercept Status function indicates whether to accept or
reject a keystroke obtained with the Get Key (51) function.

Prerequisites Start Keystroke Intercept (50)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber POSTINTERCEPTSTATUS (52)

DataString A 2-byte string. The first byte is the short name of
the desired session, or a space or null character for
the current session. The second byte is A (accept
the keystroke) or R (reject the keystroke).

DataLength Not applicable; a length of 2 bytes is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR
(2)

One or more call
parameters are
invalid.

WHLLNOTAVAILABLE (8) The Start Key-
stroke Intercept
(50) function was
not called prior to
this function.

WHLLSYSERROR (9) The function failed
due to a system
error.
Post Intercept Status (52) 125

Chapter 3 IHLLAPI Functions
Comments If a keystroke is rejected, a beep sounds, and the keystroke is not
displayed on the screen or sent to the host.

See Also Start Keystroke Intercept (50), Get Key (51), Stop Keystroke
Intercept (53)
126 Post Intercept Status (52)

Chapter 3 IHLLAPI Functions
Stop Keystroke Intercept (53)

The Stop Keystroke Intercept function stops your application from
being able to intercept keystrokes.

Prerequisites Start Keystroke Intercept (50)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments Once keystroke intercept has been disabled, the Get Key (51)
function can no longer intercept keystrokes.

See Also Start Keystroke Intercept (50), Get Key (51), Post Intercept Status
(52)

Parameter Value

FunctionNumber STOPKSINTERCEPT (53)

DataString The short name of the desired session, or a space
or null character for the current session.

DataLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

Your application is not
connected to a
session.

WHLLNOTAVAILABLE (8) The Start Keystroke
Intercept (50) function
was not called prior to
this function.

WHLLSYSERROR (9) The function failed
due to a system error.
Stop Keystroke Intercept (53) 127

Chapter 3 IHLLAPI Functions
Send File (90)

The SEND FILE function is used to transfer a file from the local
workstation to the host session. The host session must have access
to the IND$FILE 3270 file transfer product, or its equivalent. File
transfers are subject to the same host state rules as user initiated
file transfers. TSO must be at a READY prompt or at the ISPF
TSO command screen, CMS must be at a CMS command line
prompt and in VM READ or RUNNING state.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber SENDFILE (90)

DataString The data string must consist of between 1 and 128
bytes containing one of the following:

For CMS: localfilename S:hostfilename (options)

For TSO: localfilename S:hostfilename options

where localfilename refers to the local path and file
name of the file to be transferred and hostfilename
refers to the host dataset name (including the
member name, if needed) for MVS or the CMS file
name for CMS to be created. S:, which is optional,
refers to the presentation space ID of the
presentation space to be used for the transfer. If not
supplied, the currently connected presentation
space is used.

DataLength The length of DataString

PSPosition_ReturnCode Not applicable.

Parameter Value Description

PSPosition_ReturnCode WHLLFTXCOMPLETE (3) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.
128 Send File (90)

Chapter 3 IHLLAPI Functions
Comments None.

See Also Receive File (91)

PSPosition_ReturnCode WHLLPARAMETERERROR
(2)

Invalid call
parameter.

WHLLFTXABORTED (27) File transfer failed.

WHLLSYSERROR (9) A system error
occurred.

Parameter Value Description
Send File (90) 129

Chapter 3 IHLLAPI Functions
Receive File (91)

The RECEIVE FILE function is used to transfer a file from the
host session to the local workstation. The host session must have
access to the IND$FILE 3270 file transfer product, or its
equivalent. File transfers are subject to the same host state rules
as user initiated file transfers. TSO must be at a READY prompt
or at the ISPF TSO command screen, CMS must be at a CMS
command line prompt and in VM READ or RUNNING state.

Prerequisites Connect Presentation Space (1)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber RECEIVEFILE (91)

DataString The data string must consist of between 1 and 128
bytes containing one of the following:

For CMS: localfilename S:hostfilename (options)

For TSO: localfilename S:hostfilename options

where localfilename refers to the local path and file
name of the file to be created and hostfilename
refers to the existing host dataset name (including
the member name, if needed) for MVS or the CMS
file name for CMS. S:, which is optional, refers to
the presentation space ID of the presentation space
to be used for the transfer. If not supplied, the
currently connected presentation space is used.

DataLength The length of DataString

PSPosition_ReturnCode Not applicable.

Parameter Value Description

PSPosition_ReturnCode WHLLFTXCOMPLETE (3) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.
130 Receive File (91)

Chapter 3 IHLLAPI Functions
Comments None.

See Also Send File (90)

PSPosition_ReturnCode WHLLPARAMETERERROR
(2)

Invalid call
parameter.

WHLLFTXABORTED (27) File transfer failed.

WHLLSYSERROR (9) A system error
occurred.

Parameter Value Description
Receive File (91) 131

Chapter 3 IHLLAPI Functions
Convert Position or RowCol (99)

The Convert Position or RowCol function converts the
presentation space position into row and column coordinates, or
row and column coordinates into a presentation space position,
depending on the call parameters passed by your application.

Prerequisites None

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters
Parameter Value

FunctionNumber CONVERT (99)

DataString A two-byte string. The first byte is the short name of
the desired session, or a space or null character for
the current session. The second byte is P (convert
the presentation space position into row and
column coordinates) or R (convert row and column
coordinates into a presentation space position).

DataLength If you’re converting a presentation space position
into row and column coordinates, set this
parameter to zero.

If you’re converting row and column coordinates
into a presentation space position, this is the row
number being converted.

PSPosition_ReturnCode If you’re converting a presentation space position
into row and column coordinates, this parameter is
the presentation space position being converted.

If you’re converting row and column coordinates
into a presentation space position, this parameter is
the column number being converted.
132 Convert Position or RowCol (99)

Chapter 3 IHLLAPI Functions
Return Parameters

Comments When you specify a short name in the call parameters, a
connection to that session is established automatically. You do not
have to invoke the Connect Presentation Space (1) function before
invoking the Convert Position or RowCol (99) function.

Since the Convert Position or RowCol (99) function does not return
a standard return code, your application could obtain misleading

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength If you’re converting a pre-
sentation space position
into row and column
coordinates, this is the
row number.

If you’re converting row
and column coordinates
into a presentation space
position, this is not
applicable.

If the function returns a
zero for this para-
meter, you specified a
presentation space
position that was
larger than the number
of rows in the presen-
tation space.

PSPosition_ReturnCode WHLLOK = 0 An invalid presentation
space position or
column was specified.

WHLLOK > 0 If you’re converting a
presentation space
position into row and
column coordinates,
this is the column
number.

If you’re converting
row and column
coordinates into a
presentation space
position, this is the
presentation space
position.

WHLLINVALIDPSID
(9998)

Your application
specified an invalid
short name or a
system error occurred.

WHLLINVALIDRC (9999) The second character
in the DataString was
not an uppercase P or
R.
Convert Position or RowCol (99) 133

Chapter 3 IHLLAPI Functions
information if you use a common error-handling routine for all of
the IHLLAPI functions. You should develop a special error-
handling routine for this function. (For more information, refer to
Appendix A, “Return Codes.”)

The presentation space position and row/column coordinates are
stored in the following two parameters:

See Also Connect Presentation Space (1)

Type of Data DataLength PSPosition_ReturnCode

Presentation space
position

Not applicable (0) Presentation space
position

Row/column
coordinates

Row number Column number
134 Convert Position or RowCol (99)

Chapter 3 IHLLAPI Functions
Connect Window Services (101)

The Connect Window Services function connects your application
and a presentation space so that your application can call the
following functions:

• Disconnect Window Services (102)

• Query Window Coordinates (103)

• Window Status (104)

Prerequisites You must associate a session file name (.ADP) with a short name
using either Accessory Manager or the Associate Profile (911)
function.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber CONNECTWINDOWSERVICES (101)

DataString The short name of the session to connect with.

DataLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

An invalid short name
was specified.

WHLLSYSERROR (9) The function failed
due to a system error.

WHLLUNAVAILABLE (11) The specified
presentation space is
already in use.
Connect Window Services (101) 135

Chapter 3 IHLLAPI Functions
Comments This function runs Accessory Manager in the minimized state (if it
is not already running), opens the specified session (if it is not
already open), and connects to that session.

However, this function cannot be used as a substitute for Connect
Presentation Space (1). Functions that require Connect
Presentation Space (1) as a prerequisite will return an error if
that function is not called. This function exists only to support the
Disconnect Window Services (102), Query Window Coordinates
(103), and Window Status (104) functions.

See Also Disconnect Window Services (102), Query Window Coordinates
(103), Window Status (104), Associate Profile (911)
136 Connect Window Services (101)

Chapter 3 IHLLAPI Functions
Disconnect Window Services (102)

The Disconnect Window Services function disconnects your
application from the presentation space that you connected to
using the Connect Window Services (101) function.

Prerequisites Connect Window Services (101)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber DISCONNECTWINDOWSERVICES (102)

DataString The short name of the session, or a space or null
character for the current session.

DataLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

An invalid short name
was specified, or the
Connect Window
Services (101) function
was not called prior to
calling this function.

WHLLSYSERROR (9) The function failed due
to a system error.
Disconnect Window Services (102) 137

Chapter 3 IHLLAPI Functions
Comments Once this function has been called, your application can no longer
call the Query Window Coordinates (103) or Window Status (104)
functions.

Your application should call this function for each presentation
space that has been connected using the Connect Window Services
(101) function before closing.

See Also Connect Window Services (101), Query Window Coordinates (103),
Window Status (104)
138 Disconnect Window Services (102)

Chapter 3 IHLLAPI Functions
Query Window Coordinates (103)

The Query Window Coordinates function returns the coordinates
of the specified session window or of Accessory Manager’s
application window.

Prerequisites Connect Window Services (101)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber QUERYWINDOWCOORDINATES (103)

DataString A 17-byte data string. The first byte is the short
name of the session, a space or null character for
the current session, or an asterisk (*) for the
Accessory Manager application window
coordinates rather than the session window
coordinates. Bytes 2–17 are reserved for returned
data.

DataLength Not applicable; a length of 17 bytes is implied.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A 17-byte data string. See “Comments.”

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLNOTCONNECTED
(1)

An invalid short name
was specified, or the
Connect Window
Services (101)
function was not
called prior to calling
this function.

WHLLPSENDED (12) The session was
closed.
Query Window Coordinates (103) 139

Chapter 3 IHLLAPI Functions
Comments The returned DataString is a 17-byte data string that contains the
following information:

All X and Y coordinates are given in pixels and are relative to the
desktop.

See Also Connect Window Services (101), Disconnect Window Services
(102), Window Status (104)

Byte Description

1 The same data sent by the call parameter

2–5 A 32-bit integer (in pixels) of the left X coordinate of the window
relative to the desktop

6–9 A 32-bit integer (in pixels) of the bottom Y coordinate of the window
relative to the desktop

10–13 A 32-bit integer (in pixels) of the right X coordinate of the window
relative to the desktop

14–17 A 32-bit integer (in pixels) of the top Y coordinate of the window
relative to the desktop
140 Query Window Coordinates (103)

Chapter 3 IHLLAPI Functions
Window Status (104)

The Window Status function lets your application query or change
the size, location, or visible state of the specified session window or
of Accessory Manager’s application window.

Prerequisites Connect Window Services (101)

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber WINDOWSTATUS (104)

DataString A 20-byte string. See “Comments” for details.

DataLength Not applicable; the default is 16 bytes when the
NOHWND104 session parameter is set or 20 bytes
when the HWND104 session parameter is set.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A 20-byte string. See “Comments”
for details.

DataLength Not applicable. Not applicable.
Window Status (104) 141

Chapter 3 IHLLAPI Functions
Comments The DataString in the call parameter is a 20-byte string that
contains the following information:

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) An invalid short
name was
specified, or the
Connect Window
Services (101)
function was not
called prior to this
function.

WHLLPARAMETERERROR
(2)

An invalid
parameter was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLPSENDED (12) The session was
closed.

Parameter Value Description

Call Parameter DataString

Byte Description

1 The short name of the session, a space or null character for the
current session, or an asterisk (*) for the Accessory Manager
application window coordinates rather than the session window
coordinates

2 To query for the status, set this to
WHLL_WINDOWSTATUS_QUERY.

To set the status, set this to WHLL_WINDOWSTATUS_SET.
142 Window Status (104)

Chapter 3 IHLLAPI Functions
3–4 If byte 2 is query for status, set these bytes to
WHLL_WINDOWSTATUS_NULL.

If byte 2 is set status, set these bytes to one or more of the following
values:

• WHLL_WINDOWSTATUS_SIZE—resize the window (invalid
with minimize, maximize, restore, or move)

• WHLL_WINDOWSTATUS_MOVE—move the window (invalid
with minimize, maximize, size, or restore)

• WHLL_WINDOWSTATUS_ZORDER—place the window in a
specified layer of the display

• WHLL_WINDOWSTATUS_SHOW—make the window visible

• WHLL_WINDOWSTATUS_HIDE—make the window invisible

• WHLL_WINDOWSTATUS_ACTIVATE—activate the window
(uses the ZORDER setting or sets focus to the window and
places it in the foreground. Used with the session window, it also
activates the Accessory Manager application window.

• WHLL_WINDOWSTATUS_DEACTIVATE—deactivate the
window (uses the ZORDER setting or places it on the bottom)

• WHLL_WINDOWSTATUS_MINIMIZE—minimize the window
(invalid with maximize, restore, size, or move)

• WHLL_WINDOWSTATUS_MAXIMIZE—maximize the window
(invalid with minimize, restore, size, or move). This sets focus to
the window except when the session window is being maximized
and the application window is minimized.

• WHLL_WINDOWSTATUS_RESTORE—restore the window
(invalid with maximize, minimize, size, or move)

5–6 If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the X coordinate of the upper left corner of the window.

7–8 If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the Y coordinate of the upper left corner of the window.

Call Parameter DataString, continued

Byte Description
Window Status (104) 143

Chapter 3 IHLLAPI Functions
9–10 If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the width of the window.

11–12 If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the height of the window.

13–16 If byte 2 is query for status or if you are not using ZORDER, leave
these bytes blank.

If byte 2 is set status and you are using ZORDER, set these bytes to
one of these values:

• WHLL_WINDOWSTATUS_FRONT-place the window in the
foreground

• WHLL_WINDOWSTATUS_BACK-place the window in the
background

17–20 Reserved for returned data

Call Parameter DataString, continued

Byte Description
144 Window Status (104)

Chapter 3 IHLLAPI Functions
The returned DataString is a 20-byte string that contains the
following information:

Return Parameter DataString

Byte Description

1–2 The same data sent by the call parameter

3–4 If byte 2 is set status, these bytes are the same as the call parameter.

If byte 2 is a query for status, the following are the possible return
values (you can combine more than one status using a binary OR
operation):

• WHLL_WINDOWSTATUS_SHOW—the window is visible.

• WHLL_WINDOWSTATUS_HIDE—the window is invisible.

• WHLL_WINDOWSTATUS_ACTIVATE—the window is activated.

• WHLL_WINDOWSTATUS_DEACTIVATE—the window is
deactivated.

• WHLL_WINDOWSTATUS_MINIMIZE—the window is
minimized.

• WHLL_WINDOWSTATUS_MAXIMIZE—the window is
maximized.

5–6 If byte 2 is query for status, these bytes are the X coordinate of the
upper left corner of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

7–8 If byte 2 is query for status, these bytes are the Y coordinate of the
upper left corner of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

9–10 If byte 2 is query for status, these bytes are the width of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

11–12 If byte 2 is query for status, these bytes are the height of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

13–16 The same data sent by the call parameter

17–20 If byte 2 is set status, or if byte 2 is query for status and the
NOHWND104 session parameter is set, these bytes are blank.

If byte 2 is query for status and the HWND104 session parameter is
set, the application returns a 32-bit string containing the window
handle.
Window Status (104) 145

Chapter 3 IHLLAPI Functions
If you set the size and position of a session window and Autosize
Window is selected in the session configuration, the resulting size
and position might be slightly different from what you specified.
When Autosize Window is selected, the session window
automatically resizes based on the size of the font. To determine
the exact window size and position, call the Window Status (104)
function again, this time querying for the window status rather
than setting it.

For Accessory Manager’s application window, the X and Y
coordinates are relative to the whole desktop.

For session windows, the X and Y coordinates are relative to
Accessory Manager’s application window and include the title bar,
border, and scroll bars, if present. To get coordinates relative to
the whole desktop, use the Query Window Coordinates (103)
function.

See Also Connect Window Services (101), Disconnect Window Services
(102), Query Window Coordinates (103)
146 Window Status (104)

Chapter 3 IHLLAPI Functions
Associate Profile (911)

The Associate Profile function associates the specified short name
with the specified session file name.

Prerequisites The specified session must already exist.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments If the short name is already associated with a session file name,
this function changes the association to the specified file name.

See Also Remove Profile (912), Get Associations (913), Find File Name
(914), Find Short Name (915)

Parameter Value

FunctionNumber PROFILEASSOCIATE (911)

DataString A string up to 255 bytes. The first bye is the short
name to associate with the session file name. The
remaining bytes are the file name of the session to
associate with the specified short name.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR
(2)

An invalid
parameter was
passed.

WHLLSYSERROR (9) The function failed
due to a system
error.
Associate Profile (911) 147

Chapter 3 IHLLAPI Functions
Remove Profile (912)

The Remove Profile function removes any session file name from
the specified short name.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments If you call this function and then call another function using the
removed short name, that function will return an error.

See Also Association Profile (911), Get Associations (913), Find File Name
(914), Find Short Name (915)

Parameter Value

FunctionNumber PROFILEREMOVE (912)

DataString The short name that you want to remove from any
session file name.

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString Not applicable. Not applicable.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR
(2)

An invalid short
name was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOMATCH (42) No session
associated with the
short name.
148 Remove Profile (912)

Chapter 3 IHLLAPI Functions
Get Associations (913)

The Get Associations function retrieves a list of all the short
names that have been associated with session file names.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments None.

See Also Association Profile (911), Remove Profile (912), Find File Name
(914), Find Short Name (915)

Parameter Value

FunctionNumber PROFILEGETASSOCIATIONS (913)

DataString A data string for the returned value (at least 27 bytes
long).

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString A null-terminated string
of short names that are
associated with
session file names.

If no session file names
are associated with short
names, this parameter
contains a null character.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function succeeded.

WHLLSYSERROR (9) The function failed due to
a system error.
Get Associations (913) 149

Chapter 3 IHLLAPI Functions
Find File Name (914)

The Find File Name function retrieves the session file name
associated with a specified short name.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Comments None.

Parameter Value

FunctionNumber PROFILEFINDFILENAME (914)

DataString The short name for which you want to retrieve the
session file name.

DataLength The length of the DataString that will be returned
(256 bytes recommended).

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString The session file name
associated with the short
name specified in the call
parameter.

The returned
DataString includes
the full DOS path to
the session file.

DataLength Not applicable. Not applicable.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR
(2)

An invalid short
name was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOMATCH (42) The specified short
name is not
associated with a
session file name.
150 Find File Name (914)

Chapter 3 IHLLAPI Functions
See Also Association Profile (911), Remove Profile (912), Get Associations
(913), Find Short Name (915)
Find File Name (914) 151

Chapter 3 IHLLAPI Functions
Find Short Name (915)

The Find Short Name function retrieves the short name
associated with a specified session file name.

Prerequisites None.

Syntax WinHLLAPI(FunctionNumber,DataString,DataLength,
PSPosition_ReturnCode)

Call Parameters

Return Parameters

Parameter Value

FunctionNumber PROFILEFINDSHORTNAME (915)

DataString The session file name that you want to retrieve the
short name of.

Be sure to include the drive and folder where the
session file is located, as well as the file extension
(for example, C:\INFOCN32\ACCMGR32\
SESSION1.ADP).

DataLength Not applicable.

PSPosition_ReturnCode Not applicable.

Parameter Value Description

DataString The short name associated
with the session file name
specified in the call
parameter.

Not applicable.

DataLength Not applicable. Not applicable.
152 Find Short Name (915)

Chapter 3 IHLLAPI Functions
Comments None.

See Also Association Profile (911), Remove Profile (912), Get Associations
(913), Find File Name (914)

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR
(2)

An invalid session
file name was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOMATCH (42) The specified
session file name is
not associated with
a short name.

Parameter Value Description
Find Short Name (915) 153

Chapter 3 IHLLAPI Functions
154 Find Short Name (915)

Return Codes

In This Appendix This appendix includes the following headings:

IHLLAPI Return Codes . 156

Functions That Return Standard Return Codes 159

Sample Return Code Usage . 160

A

155

Appendix A Return Codes
IHLLAPI Return Codes

The following table lists the standard return codes, their causes,
and suggested solutions:

Return Code Explanation

WHLLOK (0) The function completed successfully.

WHLLNOTCONNECTED (1) The application is not connected to a session,
but tried to execute a function that requires a
connection. Call the Connect Presentation
Space (1) function before calling a function that
requires a connection.

WHLLPARAMETERERROR
(2)

An invalid parameter was passed, or the
DataLength was too short.

Double-check the parameters for the function. If
the parameter is valid and is being passed as a
variable, make sure that the variable is being
changed before it is passed to the function.

If the EAB session parameter is set, you must
provide a DataString at least twice as long as the
size of the visible data.

WHLLFTXCOMPLETE (3) The function succeeded.

WHLLPSBUSY (4) The presentation space is busy or input is inhibited.
Your application should wait until the session is
ready to accept data. If the function did not try to
send data to the presentation space (for example,
if the function was Connect Presentation Space),
the function otherwise completed successfully,
and you can ignore this return code.

WHLLINHIBITED (5) Your application tried to send a keystroke before
the session was ready for input.

To prevent this error, your application must wait
for the session to become ready for input. Once
the session is ready, call the function again.

For information on waiting for host responses,
refer to “Waiting for Host Responses” on
page 27.
156 IHLLAPI Return Codes

Appendix A Return Codes
WHLLTRUNCATED (6) The application specified a DataLength shorter
than the presentation space.

Check the DataLength. If the length is being
passed as a variable, make sure that the
variable contains the correct data when it is
passed to the function.

WHLLPOSITIONERROR (7) The application specified a presentation space
position of zero or a number larger than the
number of positions in the presentation space.

Specify a value greater than zero, or use the
Query Sessions (10) function to determine the
size of the presentation space.

WHLLNOTAVAILABLE (8) The application called a function that is not
supported in this version of IHLLAPI, or the
application did not call the Start Host Notification
(23) function prior to calling Query Host Update
(24) or Stop Host Notification (25).

Verify that the function is supported, and be sure
to call any prerequisite functions.

WHLLSYSERROR (9) A system error occurred. Your application should
disconnect from any connected sessions, call
Reset System (21) to restore the default session
parameters, then close.

WHLLUNAVAILABLE (11) The presentation space is unavailable or already
in use, usually because another IHLLAPI
application has connected to the specified
session.

Use Query Sessions (10) to find valid sessions
and connect to the next available session, or
close with an error message if no more sessions
are available.

WHLLPSENDED (12) The session was closed. Close your application
or prompt the user to reopen the session and try
again.

WHLLNOFIELD (24) The presentation space is unformatted, the field
was not found, or the host returned data that the
application did not expect.

Verify that the presentation space is formatted,
or substitute a function that interacts with the
presentation space rather than a particular field.

Return Code Explanation
IHLLAPI Return Codes 157

Appendix A Return Codes
WHLLFTXABORTED (27) The file transfer timed out due to an error or was
manually cancelled by the user.

Return Code Explanation
158 IHLLAPI Return Codes

Appendix A Return Codes
Functions That Return Standard Return Codes

The following functions return only the standard error codes and
can use a standard error handler:

The other functions either use the standard return codes
differently, or use other return codes in addition to the standard
codes. You can handle these functions by checking for special cases
first and then calling your standard error handler if the return
code is standard.

Connect Presentation Space (1) Query System (20)

Disconnect Presentation Space (2) Reset System (21)

Send Key (3) Query Session Status (22)

Wait (4) Start Host Notification (23)

Copy Presentation Space (5) Stop Host Notification (25)

Query Cursor Location (7) Search Field (30)

Copy Presentation Space to String (8) Find Field Position (31)

Set Session Parameters (9) Find Field Length (32)

Query Sessions (10) Copy String to Field (33)

Copy OIA (13) Copy Field to String (34)

Query Field Attribute (14) Set Cursor (40)

Copy String to Presentation Space (15)

Note: The Convert Position or RowCol (99) function has unique
return codes; you must respond to them outside the standard
error handler. Refer to Chapter 3, “IHLLAPI Functions,” for
more information on this function.
Functions That Return Standard Return Codes 159

Appendix A Return Codes
Sample Return Code Usage

The following pseudo-code example shows how to manage the
possible return codes for the Send Key (3) function.

This type of return code management can be applied to all
IHLLAPI functions. However, be sure to refer to Chapter 3,
“IHLLAPI Functions,” for exact return codes and their
explanation as they pertain to each particular function.

Start SendKey Function
Function Number = SENDKEY
Data String = "MyName@E"
String Length = equals the length of the

DataString
PS Position = 0 (Zero)

HLLAPI CALL(FunctionNumber, DataString,
DataLength, PSPosition_Return Code)

Start Return Code Check
Return Code = WHLLOK: Function was successful.

Continue with the next function in the
application.

Return Code = WHLLNOTCONNECTED: Application
not connected to a session. Call Query
Sessions (10) to find a valid short name
and then call Connect Presentation Space (1)
using the short name returned from the Query
Sessions function.
Once these functions have successfully been
completed, retry the original SendKey
function.

Return Code = WHLLPARAMETERERROR: Incorrect
parameter was passed to the function. Close
the application with an error message
indicating the nature of the failure.
160 Sample Return Code Usage

Appendix A Return Codes
Return Code = WHLLPSBUSY: Presentation space
is busy. Do not try to send data to the
host. Wait until the session is no longer
busy before executing the next function
or calling the original function again.

Return Code = WHLLINHIBITED: Input to the
presentation space is inhibited. This
normally indicates that the keyboard is
locked and that the session cannot accept
further input. Wait until this condition
is cleared, then retry the original
function.

Return Code = WHLLSYSERROR: A system error
occurred. Call Reset System (21) and close
the application with an error message
indicating that a system error occurred.

End Return Code Check

End SendKey Function
Sample Return Code Usage 161

Attribute Values

In This Appendix This appendix includes the following headings:

T 27 Attributes . 164

UTS Attributes . 165

B

163

Appendix B Attribute Values
T 27 Attributes

The following table lists the character attribute values that are
returned by an T 27 session when the EAB session parameter is
set, as well as what each value represents:

Bit Position Description Value

7 Reverse video 0 = Normal
1 = Reverse

6 Underscore 0 = None
1 = Underscore

5 Blink 0 = None
1 = Blink

4 Bright 0 = None
1 = Bright

3 Secure 0 = None
1 = Secure

2–0 Reserved Spaces
164 T 27 Attributes

Appendix B Attribute Values
UTS Attributes

The following table lists the character attribute values that are
returned by a UTS session when the EAB session parameter is
set, as well as what each value represents:

Bit Position Description Value

7 Reverse video 0 = Normal
1 = Reverse

6 Underscore 0 = None
1 = Underscore

5 Blink 0 = None
1 = Blink

4 Left column separator 0 = None
1 = Column separator

3 Secure 0 = None
1 = Secure

2 Right column separator 0 = None
1 = Column separator

1 Strikethrough 0 = None
1 = Strikethrough

0 Upperscore 0 = None
1 = Upperscore
UTS Attributes 165

Appendix B Attribute Values
The following table lists the color attribute values that are
returned by a UTS session when the EAB session parameter is
set, as well as what each value represents:

Bit Position Description Value

7–4 Background
character colors

0000 = Black 0101 = Magenta
0001 = Blue 0110 = Yellow
0010 = Green 0111 = White
0100 = Red
0011 = Cyan

3–0 Foreground
character colors

0000 = Black 1001 = Light blue
0001 = Blue 1010 = Light green
0010 = Green 1011 = Light cyan
0011 = Cyan 1100 = Light red
0100 = Red 1101 = Light magenta
0101 = Magenta 1110 = Brown
0110 = Yellow 1111 = Light grey
0111 = White
1000 = Dark grey

Note: These are the colors specified by the host rather than
any colors specified by the emulator.
166 UTS Attributes

IHLLAPI Header Files

In This Appendix This appendix provides a printed listing of three header files
(WHLLAPI.H, HLLAPI.H, and IHLAPI32.H) that are included
with the Automation Development Kit. These files must be
included with applications written in C, C++, or any other
language that can include a header file.

WHLLAPI.H Header File . 168

HLLAPI.H Header File . 173

IHLAPI32.H Header File . 187

C

167

Appendix C IHLLAPI Header Files
WHLLAPI.H Header File

/***/
* whllapi.h - Windows HLLAPI functions, types, and definitionsssssss*
* Version 1.0 xx*
/***/

#include "windows.h"

#ifndef WHLLAPIINC
#define WHLLAPIINC

#pragma pack(1) // Pack HLLAPI structures on 1-byte boundary
#pragma message("Information: HLLAPI structures are packed on 1-byte
boundaries.")

/****** Function numbers ***/

#define OEMFUNCTION 0 /* OEM Function */
#define CONNECTPS 1 /* Connect Presentation Space */
#define DISCONNECTPS 2 /* Disconnect Presentation Space*/
#define SENDKEY 3 /* Send Key */
#define WAIT 4 /* Wait */
#define COPYPS 5 /* Copy Presentation Space */
#define SEARCHPS 6 /* Search Presentation Space */
#define QUERYCURSORLOC 7 /* Query Cursor Location */
#define COPYPSTOSTR 8 /* Copy Presentation Space To String */
#define SETSESSIONPARAMETERS 9 /* Set Session Parameters */
#define QUERYSESSIONS 10 /* Query Sessions */
#define RESERVE 11 /* Reserve */
#define RELEASE 12 /* Release */
#define COPYOIA 13 /* Copy OIA Information */
#define QUERYFIELDATTRIBUTE 14 /* Query Field Attribute */
#define COPYSTRTOPS 15 /* Copy String To Presentation Space */
#define STORAGEMGR 17 /* Storage Manager */
#define PAUSE 18 /* Pause */
#define QUERYSYSTEM 20 /* Query System */
#define RESETSYSTEM 21 /* Reset System */
#define QUERYSESSIONSTATUS 22 /* Query Session Status */
#define STARTHOSTNOTIFICATION 23 /* Start Host Notification */
#define QUERYHOSTUPDATE 24 /* Query Host Update */
#define STOPHOSTNOTIFICATION 25 /* Stop Host Notification */
#define SEARCHFIELD 30 /* Search Field */
#define FINDFIELDPOSITION 31 /* Find Field Position */
#define FINDFIELDLENGTH 32 /* Find Field Length */
#define COPYSTRINGTOFIELD 33 /* Copy String To Field */
#define COPYFIELDTOSTRING 34 /* Copy String To Field */
#define SETCURSOR 40 /* Set Cursor */
#define STARTCLOSEINTERCEPT 41 /* Start Close Intercept */
168 WHLLAPI.H Header File

Appendix C IHLLAPI Header Files
#define QUERYCLOSEINTERCEPT 42 /* Query Close Intercept */
#define STOPCLOSEINTERCEPT 43 /* Stop Close Intercept */
#define STARTKSINTERCEPT 50 /* Start Keystroke Intercept */
#define GETKEY 51 /* Get Key */
#define POSTINTERCEPTSTATUS 52 /* Post Intercept Status */
#define STOPKSINTERCEPT 53 /* Stop Keystroke Intercept */
#define LOCKPSAPI 60 /* Lock Presentation Space API */
#define LOCKWSAPI 61 /* Lock Window Services API */
#define SENDFILE 90 /* Send File */
#define RECEIVEFILE 91 /* Receive File */
#define CONVERT 99 /* Convert Position or RowCol */
#define CONNECTWINDOWSERVICES 101 /* Connect Window Services */
#define DISCONNECTWINDOWSERVICES 102 /* Disconnect Window Services */
#define QUERYWINDOWCOORDINATES 103 /* Query or Set Window Coordinates */
#define WINDOWSTATUS 104 /* Query or Set Window Status */
#define CHANGEPSNAME 105 /* Change Presentation Space Name */
#define CONNECTSTRFLDS 120 /* Connect Structured Fields */
#define DISCONSTRFLDS 121 /* Disconnect Structured Fields */
#define QUERYCOMMBUFSIZ 122 /* Query Communications Buffer Size */
#define ALLOCCOMMBUFF 123 /* Allocate Communications Buffer */
#define FREECOMMBUFF 124 /* Free Communications Buffer */
#define GETREQUESTCOMP 125 /* Get Request Completion */
#define READSTRFLDS 126 /* Read Structured Fields */
#define WRITESTRFLDS 127 /* Write Structured Fields */

/****** SetSessionParameters values ************************************/

#define WHLL_SSP_NEWRET (DWORD)0x00000001
#define WHLL_SSP_OLDRET (DWORD)0x00000002
#define WHLL_SSP_ATTRB (DWORD)0x00000004
#define WHLL_SSP_NOATTRB (DWORD)0x00000008
#define WHLL_SSP_NWAIT (DWORD)0x00000010
#define WHLL_SSP_LWAIT (DWORD)0x00000020
#define WHLL_SSP_TWAIT (DWORD)0x00000040
#define WHLL_SSP_EAB (DWORD)0x00000080
#define WHLL_SSP_NOEAB (DWORD)0x00000100
#define WHLL_SSP_AUTORESET (DWORD)0x00000200
#define WHLL_SSP_NORESET (DWORD)0x00000400
#define WHLL_SSP_SRCHALL (DWORD)0x00001000
#define WHLL_SSP_SRCHFROM (DWORD)0x00002000
#define WHLL_SSP_SRCHFRWD (DWORD)0x00004000
#define WHLL_SSP_SRCHBKWD (DWORD)0x00008000
#define WHLL_SSP_FPAUSE (DWORD)0x00010000
#define WHLL_SSP_IPAUSE (DWORD)0x00020000
WHLLAPI.H Header File 169

Appendix C IHLLAPI Header Files
/****** Convert Row or Column values **********************************/

#define WHLL_CONVERT_POSITION 'P'
#define WHLL_CONVERT_ROW 'R'

/******* Storage Manager Sub-Function values **************************/

#define WHLL_GETSTORAGE 1
#define WHLL_FREESTORAGE 2
#define WHLL_FREEALLSTORAGE 3
#define WHLL_QUERYFREESTORAGE 4

/****** Change PS Name values **/

#define WHLL_CHANGEPSNAME_SET 0x01
#define WHLL_CHANGEPSNAME_RESET 0x02

/****** Window Status values ***/

#define WHLL_WINDOWSTATUS_SET 0x01
#define WHLL_WINDOWSTATUS_QUERY 0x02
#define WHLL_WINDOWSTATUS_EXTQUERY 0x03

#define WHLL_WINDOWSTATUS_NULL 0x0000
#define WHLL_WINDOWSTATUS_SIZE 0x0001
#define WHLL_WINDOWSTATUS_MOVE 0x0002
#define WHLL_WINDOWSTATUS_ZORDER 0x0004
#define WHLL_WINDOWSTATUS_SHOW 0x0008
#define WHLL_WINDOWSTATUS_HIDE 0x0010
#define WHLL_WINDOWSTATUS_ACTIVATE 0x0080
#define WHLL_WINDOWSTATUS_DEACTIVATE 0x0100
#define WHLL_WINDOWSTATUS_MINIMIZE 0x0400
#define WHLL_WINDOWSTATUS_MAXIMIZE 0x0800
#define WHLL_WINDOWSTATUS_RESTORE 0x1000

#define WHLL_WINDOWSTATUS_FRONT (DWORD)0x00000003
#define WHLL_WINDOWSTATUS_BACK (DWORD)0x00000004

/****** Lock API values **/

#define WHLL_LOCKAPI_LOCK 'L'
#define WHLL_LOCKAPI_UNLOCK 'U'
#define WHLL_LOCKAPI_RETURN 'R'
#define WHLL_LOCKAPI_QUEUE 'Q'
170 WHLLAPI.H Header File

Appendix C IHLLAPI Header Files
/****** Windows HLLAPI Return Codes ************************************/

#define WHLLOK 0 /* Successful */
#define WHLLNOTCONNECTED 1 /* Not Connected To Presentation Space */
#define WHLLBLOCKNOTAVAIL 1 /* Requested size is not available */
#define WHLLPARAMETERERROR 2 /* Parameter Error/Invalid Function */
#define WHLLBLOCKIDINVALID 2 /* Invalid Block ID was specified */
#define WHLLFTXCOMPLETE 3 /* File Transfer Complete */
#define WHLLFTXSEGMENTED 4 /* File Transfer Complete / segmented */
#define WHLLPSBUSY 4 /* Presentation Space is Busy */
#define WHLLINHIBITED 5 /* Inhibited/Keyboard Locked */
#define WHLLTRUNCATED 6 /* Data Truncated */
#define WHLLPOSITIONERROR 7 /* Invalid Presentation Space Position */
#define WHLLNOTAVAILABLE 8 /* Unavailable Operation */
#define WHLLSYSERROR 9 /* System Error */
#define WHLLNOTSUPPORTED 10 /* Function Not Supported */
#define WHLLUNAVAILABLE 11 /* Resource is unavailable */
#define WHLLPSENDED 12 /* The session was stopped */
#define WHLLUNDEFINEDKEY 20 /* Undefined Key Combination */
#define WHLLOIAUPDATE 21 /* OIA Updated */
#define WHLLPSUPDATE 22 /* PS Updated */
#define WHLLBOTHUPDATE 23 /* Both PS And OIA Updated */
#define WHLLNOFIELD 24 /* No Such Field Found */
#define WHLLNOKEYSTROKES 25 /* No Keystrokes are available */
#define WHLLPSCHANGED 26 /* PS or OIA changed */
#define WHLLFTXABORTED 27 /* File transfer aborted */
#define WHLLZEROLENFIELD 28 /* Field length is zero */
#define WHLLKEYOVERFLOW 31 /* Keystroke overflow */
#define WHLLSFACONN 32 /* Other application already connected*/
#define WHLLTRANCANCLI 34 /* Msg sent inbound to host cancelled*/
#define WHLLTRANCANCL 35 /* Outbound trans from host cancelled */
#define WHLLHOSTCLOST 36 /* Contact with host was lost */
#define WHLLOKDISABLED 37 /* The function was successful */
#define WHLLNOTCOMPLETE 38 /* The requested fn was not completed */
#define WHLLSFDDM 39 /* One DDM session already connected */
#define WHLLSFDPEND 40 /* Disconnected w async reqs pending */
#define WHLLBUFFINUSE 41 /* Specified buffer currently in use */
#define WHLLNOMATCH 42 /* No matching request found */
#define WHLLLOCKERROR 43 /* API already locked or unlocked */

#define WHLLINVALIDFUNCTIONNUM 301 /* Invalid function number */
#define WHLLFILENOTFOUND 302 /* File Not Found */
#define WHLLACCESSDENIED 305 /* Access Denied */
#define WHLLMEMORY 308 /* Insufficient Memory */
#define WHLLINVALIDENVIRONMENT 310 /* Invalid environment */
#define WHLLINVALIDFORMAT 311 /* Invalid format */
WHLLAPI.H Header File 171

Appendix C IHLLAPI Header Files
#define WHLLINVALIDPSID 9998 /* Invalid Presentation Space ID */
#define WHLLINVALIDRC 9999 /* Invalid Row or Column Code */

/****** Windows HLLAPI Extentions Return Codes *************************/

#define WHLLALREADY 0xF000 /* Async call is already outstanding */
#define WHLLINVALID 0xF001 /* Async Task Id is invalid */
#define WHLLCANCEL 0xF002 /* Blocking call was cancelled */
#define WHLLSYSNOTREADY 0xF003 /* Underlying subsystem not started */
#define WHLLVERNOTSUPPORTED 0xF004 /* Application version not supported */

/****** Windows HLLAPI structure ***************************************/

#define WHLLDESCRIPTION_LEN 127

typedef struct tagWHLLAPIDATA {
WORD wVersion;
char szDescription[WHLLDESCRIPTION_LEN+1];

} WHLLAPIDATA, * PWHLLAPIDATA, FAR * LPWHLLAPIDATA;

#ifdef __cplusplus
extern "C"

{
#endif

/****** Windows HLLAPI Function Prototypes *****************************/

extern void WINAPI WinHLLAPI(LPWORD, LPSTR, LPWORD, LPWORD);
extern HANDLE WINAPI WinHLLAPIAsync(HWND, LPWORD, LPSTR, LPWORD, LPWORD);
extern BOOL WINAPI WinHLLAPICleanup(void);
extern BOOL WINAPI WinHLLAPIIsBlocking(void);
extern int WINAPI WinHLLAPICancelAsyncRequest(HANDLE, WORD);
extern int WINAPI WinHLLAPICancelBlockingCall(void);
extern int WINAPI WinHLLAPIStartup(WORD, LPWHLLAPIDATA);
extern FARPROC WINAPI WinHLLAPISetBlockingHook(FARPROC);
extern BOOL WINAPI WinHLLAPIUnhookBlockingHook(void);

#ifdef __cplusplus
}
#endif

#pragma pack() // Revert to previous packing

#endif
172 WHLLAPI.H Header File

Appendix C IHLLAPI Header Files
HLLAPI.H Header File

/**
 Module Header

File: hllapi.h
Purpose: data structures, definitions & prototypes comprising HLLAPI

Notes:
 13-Jun-1991:
 Added new hllapi functions HLL_CopyOIA5 and HLL_CopyOIA9.

01-Apr-1991:
HLL_WSCTRLSTARTEMULATOR's EMULATORCONTROL structure byPower field
Has been renamed byReserved, reflecting the fact that the
subfunction no longer affects the POWER condition of a new
terminal emulator.

 30-Oct-1990:
 Added HLL_PROTECTED as synonym for return code 5.

18-Oct-1990:
Added WSCTRL subfunctions: -BLOCKEMULATORUPDATES &
 -ENABLEEMULATORUPDATES.

05-Feb-1990:
HLL_ReceiveFile and HLL_SendFile: additional parameter.

**/

/***
HLLAPI function selectors ~~ HLLAPI subfunction selectors
***/
#define HLL_ATMQUERYSYSTEM 0
#define HLL_CONNECTPS 1
#define HLL_DISCONNECTPS 2
#define HLL_SENDKEY 3
#define HLL_WAIT 4

#define HLL_COPYPS 5
#define HLL_SEARCHPS 6
#define HLL_QUERYCURSOR 7
#define HLL_COPYPSTOSTRING 8
#define HLL_SETHLLWINPARAMETERS 9
HLLAPI.H Header File 173

Appendix C IHLLAPI Header Files
#define HLL_QUERYSESSIONS 10
#define HLL_RESERVE 11
#define HLL_RELEASE 12
#define HLL_COPYOIA 13
#define HLL_QUERYFIELDATTRIBUTE 14

#define HLL_COPYSTRINGTOPS 15
#define HLL_WSCTRL 16
#define HLL_PAUSE 18
#define HLL_QUERYSYSTEM 20
#define HLL_RESETHLLWIN 21

#define HLL_QUERYSESSIONSTATUS 22
#define HLL_STARTHOSTNOTIFICATION 23
#define HLL_QUERYHOSTUPDATE 24
#define HLL_STOPHOSTNOTIFICATION 25
#define HLL_SEARCHFIELD 30

#define HLL_FINDFIELDPOSITION 31
#define HLL_FINDFIELDLENGTH 32
#define HLL_COPYSTRINGTOFIELD 33
#define HLL_COPYFIELDTOSTRING 34
#define HLL_SETCURSOR 40

#define HLL_STARTKEYSTROKEINTERCEPT 50
#define HLL_GETKEY 51
#define HLL_POSTINTERCEPTSTATUS 52
#define HLL_STOPKEYSTROKEINTERCEPT 53
#define HLL_SENDFILE 90

#define HLL_RECEIVEFILE 91
#define HLL_CONVERT 99

/***********
sui generis
************/
#define HLL_HLLAPI 500
#define HLL_ENUMHLLWINS 501
#define HLL_QUERYHLLWINPARAMETERS 502
#define HLL_SETMESSAGELOOPCALLBACK 503
174 HLLAPI.H Header File

Appendix C IHLLAPI Header Files
#ifndef RC_INVOKED
/*************************
system manifest constants
*************************/
#define MAXSENDKEYLENGTH 255
#define MAXPAUSEDURATION 0xFFFF
#define MINKEYSTROKEBUFFERLENGTH 6
#define MAXFILETRANSFERSTRINGLENGTH 512 /* 07-Jun-1990 */

/*********************************
informal list of HLL return codes
**********************************/
#define HLL_SUCCESS 0
#define HLL_INVALIDPSID 1
#define HLL_INVALIDPARAMETER 2
#define HLL_SESSIONOCCUPIED 4
#define HLL_TIMEOUT 4 /* e.g. Wait (XCLOCK/XSYSTEM)*/
#define HLL_PSLOCKED 5 /* e.g. ConnectPS */
#define HLL_PROTECTED 5
#define HLL_FIELDSIZEMISMATCH 6 /* e.g. CopyFieldToString */
#define HLL_DATATRUNCATED 6 /* e.g. CopyStringToField */
#define HLL_INVALIDPSPOSITION 7
#define HLL_NOPRIORSTARTKEYSTROKE 8
#define HLL_NOPRIORSTARTHOSTNOTIFY 8
#define HLL_SYSTEMERROR 9
#define HLL_RESOURCEUNAVAILABLE 11
#define HLL_SEARCHSTRINGNOTFOUND 24 /* e.g. SearchField */
#define HLL_UNFORMATTEDHOSTPS 24 /* e.g. CopyFieldToString */
#define HLL_NOSUCHFIELD 24 /* e.g. FindFieldPosition */
#define HLL_NOHOSTSESSIONUPDATE 24 /* new code for QueryHostUpdate */
#define HLL_KEYSTROKESNOTAVAILABLE 25
#define HLL_HOSTSESSIONUPDATE 26 /* end of Pause */
#define HLL_KEYSTROKEQUEUEOVERFLOW 31
#define HLL_MEMORYUNAVAILABLE 101 /* cf StartKSIntercept */
#define HLL_DELAYENDEDBYCLIENT 102 /* Wait, Pause, GetKey */
#define HLL_UNCONFIGUREDPSID 103 /* Connect, Intercept */
#define HLL_NOEMULATORATTACHED 104 /* keystroke intercept, etc */
#define HLL_WSCTRLFAILURE 105

/********************************
values for Post Intercept Status
********************************/
#define HLL_INTERCEPTACCEPTED 0
#define HLL_INTERCEPTREJECTED 1
HLLAPI.H Header File 175

Appendix C IHLLAPI Header Files
/*********************************
wOptionCode values for HLL_GetKey
**********************************/
#define HLL_GETKEYASCII 0
#define HLL_GETKEYMNEMONIC 1
#define HLL_GETKEYSHIFTED 2

/*************************************
options for HLL_StartHostNotification
**************************************/
#define HLL_NOTIFYALLUPDATES 127
#define HLL_NOTIFYPSUPDATE 1
#define HLL_NOTIFYOIAUPDATE 2
#define HLL_NOTIFYCURSORUPDATE 4
#define HLL_NOTIFYBEEP 8
#define HLL_NOTIFYBASECOLORCHANGE 16
#define HLL_NOTIFYMODELCHANGE 32
#define HLL_NOTIFYPOWERCHANGE 64

/***
field specifiers for HLL_FindFieldLength/Position
***/
#define HLL_THISFIELD 0
#define HLL_NEXTFIELD 1
#define HLL_PREVIOUSFIELD 2
#define HLL_NEXTPROTECTEDFIELD 3
#define HLL_NEXTUNPROTECTEDFIELD 4
#define HLL_PREVIOUSPROTECTEDFIELD 5
#define HLL_PREVIOUSUNPROTECTEDFIELD 6

/**
session specifiers for HLL_QuerySessions
**/
#define HLL_QUERYSESSIONSCONFIGURED 1 /* in config file */
#define HLL_QUERYSESSIONSOPENED 2 /* opened, i.e. OpenSession () */
#define HLL_QUERYSESSIONSPOWERED 3 /* terminal on */ /* default */
176 HLLAPI.H Header File

Appendix C IHLLAPI Header Files
/********************************
option specifiers for HLL_WSCtrl
********************************/
#define HLL_WSCTRLOPENCONFIGURATION 1
#define HLL_WSCTRLCLOSECONFIGURATION 2
#define HLL_WSCTRLQUERYCONFIGURATION 3
#define HLL_WSCTRLOPENLAYOUT 4
#define HLL_WSCTRLQUERYLAYOUT 5
#define HLL_WSCTRLEMULATORHANDLE 6
#define HLL_WSCTRLSTARTEMULATOR 7
#define HLL_WSCTRLSTOPEMULATOR 8
#define HLL_WSCTRLTERMINALON 9
#define HLL_WSCTRLTERMINALOFF 10
#define HLL_WSCTRLSETEXECUTEPATH 11
#define HLL_WSCTRLQUERYEXTRADIRECTORY 12
#define HLL_WSCTRLALLOWEMULATORUPDATES 13
#define HLL_WSCTRLBLOCKEMULATORUPDATES 14

typedef struct tagEmulatorControl {
char cPSID; /* minimum requirement */
BYTE byVisibility; /* N(ormal) I(conic) M(aximized) H(idden) */
BYTE byReserved; /* until 01-Apr-1991, byPower */
BYTE byCase; /* U(pper) M(ixed) */
WORD wLeft; /* absolute position, in screen coordinates */
WORD wBottom;
WORD wRight;
WORD wTop;
} EMULATORCONTROL, * LPEMULATORCONTROL, * NPEMULATORCONTROL;

 /***
 19-Jul-1989 this structure is subject to expansion: e.g. fonts, ...
 ***/
HLLAPI.H Header File 177

Appendix C IHLLAPI Header Files
/*********************************
option specifiers for HLL_Convert
*********************************/
#define HLL_CONVERTPOSITION 1
#define HLL_CONVERTROWCOLUMN 2

typedef struct tagHLLParams {
 BYTE byAttribute; /* ATTRB or NOATTRB */
 BYTE byAutoReset; /* AUTORESET or NOAUTORESET */
 BYTE byConnectType; /* CONLOG or CONPHYS */
 BYTE byEAB; /* EAB or NOEAB */
 char cEscape; /* default '@' */
 BYTE byPause; /* IPAUSE or FPAUSE */
 BYTE bySearchOrigin; /* SRCHALL or SRCHFROM */
 BYTE bySearchDirection; /* SRCHFORWARD or SRCHBKWD */
 WORD wTimeOut; /* 0..64k */
 BYTE byTrace; /* TRON or TROFF */
 BYTE byWait; /* TWAIT, LWAIT, NWAIT */
 BYTE byXlate; /* ASCII<->3270DC translation or not */
 } HLLPARAMS, * NPHLLPARAMS, * LPHLLPARAMS;

/******************************
values for fields of HLLPARAMS
******************************/

/******************
byAttribute values
******************/
#define HLLWIN_ATTRB 1
#define HLLWIN_NOATTRB 2

/******************
byAutoReset values
******************/
#define HLLWIN_AUTORESET 1
#define HLLWIN_NOAUTORESET 2

/***********************
byConnectionType values
***********************/
#define HLLWIN_CONLOG 1
#define HLLWIN_CONPHYS 2

/************
byEAB values
************/
#define HLLWIN_EAB 1
#define HLLWIN_NOEAB 2
/*************
byPause values
*************/
178 HLLAPI.H Header File

Appendix C IHLLAPI Header Files
#define HLLWIN_FPAUSE 1
#define HLLWIN_IPAUSE 2

/*********************
bySearchOrigin values
*********************/
#define HLLWIN_SRCHALL 1
#define HLLWIN_SRCHFROM 2

/************************
bySearchDirection values
************************/
#define HLLWIN_SRCHFRWD 1
#define HLLWIN_SRCHBKWD 2

/**************
byTrace values
**************/
#define HLLWIN_TRON 1
#define HLLWIN_TROFF 2

/************
byWait values
************/
#define HLLWIN_TWAIT 1
#define HLLWIN_LWAIT 2
#define HLLWIN_NWAIT 3

/**************
byXlate values
**************/
#define HLLWIN_XLATE 1
#define HLLWIN_NOXLATE 2

typedef struct tagATMSystem {
 WORD wHLLAPIVersionNumber;
 WORD wHLLAPILevelNumber;
 } ATMSYSTEM, * NPATMSYSTEM, * LPATMSYSTEM;

typedef struct tagStartIntercept {
 char cPSID;
 WORD wKeyFilter;
 WORD wQueueLength;
 BOOL bWindowsMessage;
 } STARTINTERCEPT, * NPSTARTINTERCEPT, * LPSTARTINTERCEPT;
/**********************************
values for wKeyFilter interception
**********************************/
#define HLL_INTERCEPTAIDKEYS 1
#define HLL_INTERCEPTALLKEYS 2
HLLAPI.H Header File 179

Appendix C IHLLAPI Header Files
typedef struct tagKeystroke {
 char cPSID;
 char szKeystroke [MINKEYSTROKEBUFFERLENGTH];
 } KEYSTROKE, * NPKEYSTROKE, * LPKEYSTROKE;

typedef struct tagOIAGroup {
 char szOIAGroup [22];
 } OIAGROUP, * NPOIAGROUP, * LPOIAGROUP;

typedef struct tagSessions {
 char cPSID;
 char szLongName [8];
 BYTE byState;
 /**
 bit 0: configured? bit 1: opened?
 bit 2: powered?
 ***/
 WORD wPSSize;
 } SESSIONS, * NPSESSIONS, * LPSESSIONS;

typedef struct tagSessionStatus {
 char cPSID; /* session short name */
 char szLongName [8];
 BOOL bType; /* FALSE = CUT; TRUE = DFT */
 BYTE byCharacteristics;
 /***
 bit 0: EABs? Y/N bit 1: Programmed Symbols Y/N
 ***/
 BYTE byUsage;
 /**
 bit 0: Configured? Y/N bit 1: Opened? Y/N
 bit 2: Powered? Y/N bit 3: AutoPowered? Y/N
 bit 4: Emulated? Y/N bit 5: HLLAPI-Connected? Y/N
 bit 6: FileTrans? Y/N
 **/
 /**

note that bit 5, HLLAPI-Connected, may be either HLLWin connection,
HLLWin keystroke interception, or HLLWin-initiated file transfer

 ***/

 WORD wRows;
 WORD wColumns;
 } SESSIONSTATUS, * NPSESSIONSTATUS, * LPSESSIONSTATUS;

/**
definitions for use in probing the bySessionCharacteristics byte
**/
#define HLL_SESSIONEABS 0x01
#define HLL_SESSIONPROGRAMMEDSYMBOLS 0x02

/**
180 HLLAPI.H Header File

Appendix C IHLLAPI Header Files
definitions for use in probing the bySessionUsage byte in SessionStatus
**/
#define HLL_SESSIONCONFIGURED 0x01
#define HLL_SESSIONOPENED 0x02
#define HLL_SESSIONPOWERED 0x04
#define HLL_SESSIONAUTOPOWERED 0x08
#define HLL_SESSIONEMULATED 0x10
#define HLL_SESSIONCONNECTED 0x20 /****************************

HLLWin connections, keystroke
interception, or monitors
*****************************/

#define HLL_SESSIONFILETRANSFER 0x40

typedef struct tagSystem {
 BYTE byHLLAPIMonth;
 BYTE byHLLAPIDay;
 WORD wHLLAPIYear;
 char cPSID;
 DWORD dwSystemError;
 } SYSTEM, * NPSYSTEM, * LPSYSTEM;

/**************************************
exported routines, in alphabetic order
***************************************/

#ifdef __cplusplus
extern "C"
{

#endif

WORD WINAPI
HLL_AttachmateQuerySystem (
 HWND hWnd,
 LPATMSYSTEM lpATMSystem);
HLLAPI.H Header File 181

Appendix C IHLLAPI Header Files
WORD WINAPI
HLL_ConnectPS (
 HWND hWnd,
 char cPSID);

WORD WINAPI
HLL_Convert (
 HWND hWnd,
 char cPSID,
 WORD wPositionOrRowColumn,
 LPPOINT lpPoint);

WORD WINAPI
HLL_CopyFieldToString (
 HWND hWnd,
 LPSTR lpBuffer,
 WORD wBufferLength,
 WORD wPSP);

WORD WINAPI
HLL_CopyOIA (// Xclock info switchable between 5/9
 HWND hWnd,
 LPSTR lpOIA); /* 103 chars of binary data */

WORD WINAPI
HLL_CopyOIA9 (// Xclock info in position 9
 HWND hWnd,
 LPSTR lpOIA); /* 103 chars of binary data */

WORD WINAPI
HLL_CopyOIA5 (// Xclock info in position 5
 HWND hWnd,
 LPSTR lpOIA); /* 103 chars of binary data */

WORD WINAPI
HLL_CopyPS (
 HWND hWnd,
 LPSTR lpBuffer);

WORD WINAPI
HLL_CopyPSToString (
 HWND hWnd,
 LPSTR lpBuffer,
 WORD wBufferLength,
 WORD wPSP);
182 HLLAPI.H Header File

Appendix C IHLLAPI Header Files
WORD WINAPI
HLL_CopyStringToField (
 HWND hWnd,
 LPSTR lpBuffer,
 WORD wBufferLength,
 WORD wPSP);

WORD WINAPI
HLL_CopyStringToPS (
 HWND hWnd,
 LPSTR lpBuffer,
 WORD wBufferLength,
 WORD wPSP);

WORD WINAPI
HLL_DisconnectPS (
 HWND hWnd);

DWORD WINAPI
HLL_EnumHLLWins (
 HWND hWnd,
 HWND *nWnd);

DWORD WINAPI
HLL_FindFieldLength (
 HWND hWnd,
 WORD wFieldSpecifier,
 WORD wTargetFieldPSP);

DWORD WINAPI
HLL_FindFieldPosition (
 HWND hWnd,
 WORD wFieldSpecifier,
 WORD wTargetFieldPSP);

WORD WINAPI
HLL_GetKey (
 HWND hWnd,
 LPKEYSTROKE lpKeystroke);

WORD WINAPI
HLL_Pause (
 HWND hWnd,
 WORD wDuration); /* 500-millisecond units */
HLLAPI.H Header File 183

Appendix C IHLLAPI Header Files
WORD WINAPI
HLL_PostInterceptStatus (
 HWND hWnd,
 char cPSID,
 WORD wStatus);

WORD WINAPI
HLL_QueryHLLWinParameters (
 HWND hWnd,
 LPHLLPARAMS lpHLLParams);

DWORD WINAPI
HLL_QueryCursor (
 HWND hWnd);

DWORD WINAPI
HLL_QueryFieldAttribute (
 HWND hWnd,
 WORD wPSP);

DWORD WINAPI
HLL_QueryHostUpdate (
 HWND hWnd,
 char cPSID);

DWORD WINAPI
HLL_QuerySessions (
 HWND hWnd,
 LPSESSIONS lpSessions,
 WORD wSessionState,
 WORD wNumberOfSessions);

WORD WINAPI
HLL_QuerySessionStatus (
 HWND hWnd,
 LPSESSIONSTATUS lpSessionStatus);

WORD WINAPI
HLL_QuerySystem (
 HWND hWnd,
 LPSYSTEM lpSystem);

DWORD WINAPI
HLL_ReceiveFile (
 HWND hWnd,
 LPSTR lpszReceiveCommand,
 LPWORD lpwSequenceID);

WORD WINAPI
HLL_Release (
 HWND hWnd);
184 HLLAPI.H Header File

Appendix C IHLLAPI Header Files
WORD WINAPI
HLL_Reserve (
 HWND hWnd);

WORD WINAPI
HLL_ResetHLLWin (
 HWND hWnd);

DWORD WINAPI
HLL_SearchField (
 HWND hWnd,
 LPSTR lpsSearchString,
 WORD wStringLength, /* if HLLWIN_NOXLATE */
 WORD wPSP); /* if HLLWIN_SRCHFROM */

DWORD WINAPI
HLL_SearchPS (
 HWND hWnd,
 LPSTR lpsSearchString,
 WORD wStringLength, /* if HLLWIN_NOXLATE */
 WORD wPSP); /* either HLLWIN_SRCHALL or SRCHFROM */

DWORD WINAPI
HLL_SendFile (
 HWND hWnd,
 LPSTR lpszReceiveCommand,
 LPWORD lpwSequenceID);

WORD WINAPI
HLL_SendKey (
 HWND hWnd,
 LPSTR lpszKeys);

WORD WINAPI
HLL_SetCursor (
 HWND hWnd,
 WORD wCursorLocation);

WORD WINAPI
HLL_SetMessageLoopCallback (
 HWND hWnd,
 FARPROC lpfnCallback);
HLLAPI.H Header File 185

Appendix C IHLLAPI Header Files
WORD WINAPI
HLL_SetHLLWinParameters (
 HWND hWnd,
 LPHLLPARAMS lpHLLParams);

WORD WINAPI
HLL_StartHostNotification (
 HWND hWnd,
 char cPSID,
 WORD wNotificationType,
 BOOL bWindowsMessage);

WORD WINAPI
HLL_StartKeystrokeIntercept (
 HWND hWnd,
 LPSTARTINTERCEPT lpIntercept);

WORD WINAPI
HLL_StopHostNotification (
 HWND hWnd,
 char cPSID);

WORD WINAPI
HLL_StopKeystrokeIntercept (
 HWND hWnd,
 char cPSID);

WORD WINAPI
HLL_Wait (
 HWND hWnd);

WORD WINAPI
HLL_WSCtrl (
 HWNDhWnd,
 WORD wOption,
 LPVOID lpvState,
 WORD wStateLength);

#ifdef __cplusplus
}

#endif

#endif /* RC_INVOKED */
186 HLLAPI.H Header File

Appendix C IHLLAPI Header Files
IHLAPI32.H Header File

//INCLUDE FILES

#ifdef __cplusplus
#include "afxwin.h"

#endif

// to allow exporting the DLL functions

#ifdef VOY32DLL
#define VOYAPI __declspec(dllexport)

#else
#define VOYAPI __declspec(dllimport)

#endif

//constants

//Global variables

// Function prototypes

#ifndef IHLLAPIINC
#define IHLLAPIINC

#pragma pack(1) // Pack HLLAPI structures on 1-byte boundary
#pragma message("Information: HLLAPI structures are packed on 1-byte
boundaries.")

/****** Function numbers ***/
#define PROFILEASSOCIATE 911
#define PROFILEREMOVE 912
#define PROFILEGETASSOCIATIONS 913
#define PROFILEFINDFILENAME 914
#define PROFILEFINDSHORTNAME 915
/****** Windows HLLAPI structure ***************************************/

#define WHLLDESCRIPTION_LEN 127

typedef struct tagIHLLAPIDATA {
WORD wVersion;
char szDescription[WHLLDESCRIPTION_LEN+1];

} IHLLAPIDATA, * PIHLLAPIDATA, FAR * LPIHLLAPIDATA;

#pragma pack() // Revert to previous packing

#endif
IHLAPI32.H Header File 187

Troubleshooting

In This Appendix This appendix contains the following sections:

General Troubleshooting Procedures . 190

D

189

Appendix D Troubleshooting
General Troubleshooting Procedures

If you have problems running your IHLLAPI applications, follow
these steps:

1 Make sure that IHLAPI32.DLL is accessible. IHLAPI32.DLL
must be in the Windows PATH.

2 Make sure that Accessory Manager is accessible. If you use the
Connect Presentation Space (1) function to run Accessory
Manager and open a session, Accessory Manager must be in the
Windows PATH.

3 Make sure that the appropriate session file name is associated
with the appropriate short name. Refer to “Using Short Names” on
page 20 for more information.

4 Check the prerequisites for each function. Some functions have
prerequisite functions that must be called prior to calling that
function.

5 Check the function using the test application included with the
ADK. (For more information, refer to “Trying Out IHLLAPI
Functions” on page 15.) If the function works with the test
application but not with your IHLLAPI application, the problem
might be in your IHLLAPI application.

6 Review the return code generated by the function. Return codes
are provided for each function in the PSPosition_ReturnCode
portion of the “Return Parameters” section. In addition, refer to
Appendix A, “Return Codes,” for information about standard
return codes and return code handling.

7 Consult your distributor. If you cannot identify and solve the
problem without assistance, contact your product distributor. Call
from a location where you have access to the problem PC.
190 General Troubleshooting Procedures

RAWMODE

In This Appendix This appendix explains the use of raw mode when sending host data. The
following sections are included:

Using RAWMODE . 192

E

191

Appendix E RAWMODE
Using RAWMODE

HLLAPI RAWMODE allows the equivalent of datastream and
high level access (similar to the OS/2 ULLAPI) for Windows. This
is not a replacement for the IDK (which is still the only way to get
total control over events under INFOConnect), but will allow for
more precise control in your HLLAPI projects.

RAWMODE is one of two options available within the Set Session
Parameters function that determines if raw host data will be
received by the application. In RAWMODE, the appropriate
functions look at raw data coming from the connection tool within
Accessory Manager before data is delivered to the terminal tool.

The RAWMODE option affects the Copy Presentation Space to
String and Copy String to Presentation Space functions.

The other option available within Set Session Parameters,
PSMODE, is the default setting that allows applications to receive
screen data.

SetSession
Parameters
Changes

Two new options, RAWMODE and PSMODE, have been added.
The default setting would be PSMODE. In PSMODE, all HLLAPI
functions would work identically to the way they do now (as
documented). In RAWMODE, the appropriate functions would be
looking at raw data coming from the connection tool within
Accessory Manager before the data was delivered to the terminal
tool. In fact, this would work like a hook procedure so that data
wouldn’t be delivered to the terminal tool unless the HLLAPI
application wanted to.

Accessory
Manager Changes

When the frame is notified by the connection tool that data has
been received, the frame has to determine if StartHostNotification
has been turned on while in RAWMODE. If so, then it has to hold
the data and notify HLLAPI of a host update. Then, once
CopyPSToString has been called, copy the data into the buffer and
discard it without delivering it to the emulator.

If CopyStringToPS is called with a PS Position of zero, then
Accessory Manager will need to send the data directly to the
connection tool. If CopyStringToPS is called with a PS Position of
one, then the data must be delivered to the emulator as if it had
just been received from the connection tool.
192 Using RAWMODE

Appendix E RAWMODE
If StopHostNotification is called by the application, then
Accessory Manager must release the communications data hook
and allow all data from the connection tool to go directly to the
terminal tool. While in RAWMODE, if CopyPSToString is called
while host notification is disabled, then this function should
always fail. However, CopyStringToPS can be called anytime after
RAWMODE has been turned on. This would allow a HLLAPI
application to simulate emulator transmits or to simulate host
data.

Copy Presentation
Space to String
Function in
RAWMODE

Because HLLAPI does not return the length of the buffer in
wDataLength, but the application is required to know it,
Accessory Manager stores communications data in the buffer,
using the data length specified as a maximum length. The PS
Position parameter is ignored. Upon return, the first two bytes of
the data buffer will contain the length of the buffer.

CopyPSToString
Changes

In RAWMODE, this function becomes the equivalent of a low-
level communications receive function. The only changes would be
that Accessory Manager would put communications data in the
specified buffer using the data length specified as a maximum
length. The PS position parameter would be ignored. Upon return,
the first two bytes of the data buffer will contain the length of the
buffer. This change is necessary because HLLAPI does not return
the length of the buffer in wDataLength. The application is
required to know the size of the buffer.

Copy String to
Presentation
Space Function in
RAWMODE

The PS parameter setting determines how the data is transmitted
to the terminal tool. It allows applications to modify host data
before delivering it to the emulator.

 PS Parameter
Setting Copy Sting to Presentation Space (15) Function

0 Transmits the data from the specified buffer (using the
specified length) directly to the connection tool.

1 Transmits the data to the terminal tool as if the data had just
been received.
Using RAWMODE 193

Appendix E RAWMODE
CopyStringToPS
Changes

In RAWMODE, this function will be similar to a low-level
communications transmit function. If the PS parameter is set to
zero, then this function will transmit the data from the specified
buffer (using the specified length) directly to the connection tool. If
the PS parameter is set to one, then the data specified will be
delivered to the terminal tool as if the data had just been received.
This provides the hook mechanism so that if a HLLAPI
application doesn’t want the emulator to see any host data, then
the application just has to never call CopyStringToPS with a PS
Position of one. This would also allow applications to modify host
data before delivering it to the emulator.

Currently, when an application wants to do screen scraping
through HLLAPI, the following pseudo-code shows the required
steps:

StartHostNotification(“A“)

while
{

ReturnCode = Pause() // Must have called SetSessionParameters with IPAUSE
if ReturnCode = WHLLPSCHANGED
{

QueryHostUpdate()
CopyPSToString()

}
// Once all of the appropriate data has been received, break out of the
loop

}

StopHostNotification()

When the frame is notified by the connection tool that data has
been received, the frame determines whether or not Start Host
Notification (25) has been turned on while in RAWMODE. If so,
the connection tool holds the data and notifies HLLAPI of a host
update.
194 Using RAWMODE

Appendix E RAWMODE
The following example in pseudo-code shows how an application
could use the raw mode for host notification.

if (RawData) // Some value that determines whether the application wants raw
data or screen data
SetSessionParameters(“RAWMODE“)

else
SetSessionParameters(“PSMODE“)

StartHostNotification(“A“)

while
{

ReturnCode = Pause() // Must have called SetSessionParameters with IPAUSE
if ReturnCode = WHLLPSCHANGED
{

QueryHostUpdate()
if (RawData)

CopyPSToString(Buffer,len) // This call will retrieve raw host data
DataLen = *((short*)&Buffer[0]0;
if (Transmit) // Some value that determines whether to transmit data

to the host or deliver to the emulator
CopyStringToPS(XmitBuffer, len, 0) // This transmits a buffer to the

host bypassing the emulator
else

CopyStringToPS(&Buffer[sizeof(short)], DataLen, 1) // Sends the raw
data to the emulator

else
CopyPSToString(Buffer, len) // This call will retrieve screen data

}
// Once all of the appropriate data has been received, break out of the
loop

}

StopHostNotification()
Using RAWMODE 195

ACMState

In This Appendix This appendix explains the new utility ACMState.exe. The following
sections are included:

Using ACMState.exe . 196

F

195

Appendix F ACMState
Using ACMState.exe

ACMState.exe can be used to determine if a particular Accessory
Manager UTS session is up and active, which means that the
POLL indicator is displayed so that host communications are
ready and you can proceed normally. The utility accepts three
optional command line parameters:

timeout interval = A value indicated in seconds. (The default is
30 seconds.)

HLLAPI shortname = A single letter, in uppercase. (The default
is A.)

Connection Status checking = (Optional) The string “/S” to
request a Connection Status check. (The default is to omit it,
and perform no Connection Status check).

This utility uses the Attachmate IHLLAPI interface, and it makes
a call to the "ConnectPS" function. For example, if the given
session (or the Accessory Manager itself) is not running, it is
started. If the Accessory Manager and/or session are already
running, then that will work too. Just be sure to start your other
HLLAPI applications after ACMState has exited.

ACMState waits for the given session to start. If no Connection
Status check is requested, it will return immediately once the UTS
session is up. If Connection Status Checking is enabled, it
immediately returns once the session reports a normal connection
status. You can visually check the state, as ACMState outputs a
line to indicate the HLLAPI and session state.
196 Using ACMState.exe

Appendix F ACMState
Possible states can be inspected programmatically via a return
code. Those return code values are:

If you want to check the status of multiple UTS sessions, call the
ACMState utility once for each session. By running the utility
with an input timeout parameter of "0", ACMState will check the
session's connection status only once and immediately report a
result. In that case, it will not wait for a gateway or host
connection to be established. This utility with work with any of the
UTS transports (i.e., both PEPGate LAN Client and INT-1).

No changes to the product installation or configuration are
needed. ACMState can be placed in any desired directory location.
You will need to have IHLAPI32.DLL in the PATH. You can get a
usage output by specifying a command line input of: ?, /?, -?, Help,
/Help, or -Help. If the input is unrecognized, a usage statement
will be displayed, and no HLLAPI calls will be made.

Time/Date stamps are now output at utility startup, after the
"ConnectPS" is successfully completed, and (if Connection Status
Checking is requested) when the utility returns a final status.

Value Description

0 Success. The HLLAPI session is up (if no State Checking
performed).

0 Success. The HLLAPI session is up and active (if State is
Checked).

1 Timeout. Connection State is NOT normal and Timeout
has expired.

2 Failed. There is a problem with the session or HLLAPI.

3 BadInput. The command line input was not recognized.
Using ACMState.exe 197

Glossary

application window The window that includes the title bar, menu bar, toolbar, scroll
bars, status bar, and display area for session windows.

character attributes Attributes that determine how characters look on the screen. For
example, blinking and underline are character attributes.

end-of-text (EOT) A character used to indicate the end of the text.

ENQ An abbreviation that appears on an T 27 session's status line and
indicates that the session is in enquire mode. A session
automatically enters this mode when the host is trying to send
data and is unable to (for example, when the session is in local
mode). You must put the session in receive mode to receive the
data.

field attributes Attributes that define the existence, appearance, or behavior of a
field. For example, whether a field is protected or not is
determined by the field attribute.

host A mainframe, mini-computer, or information hub with which the
PC communicates.
199

Glossary
line transmission
activity indicator

(LTAI)

An abbreviation that appears on an T 27 session’s status line and
indicates that the session is connected to the host. If LTAI does
not appear on the status line, a communication problem exists
between the PC and the host.

operator information
area (OIA)

A line of data that appears at the bottom of a session window
(status line). The status line displays such information as which
mode the session is in and the cursor location. The OIA is not
considered part of the presentation space.

presentation space A specific number of columns and rows that define the area within
which the host or user can display or type data.

session A named communication connection between a PC and a host. T27
and UTS support long file names, but all session files end in the
.ADP extension.

session parameters Options specified by the Set Session Parameters (9) function that
determine how other IHLLAPI functions operate.

For example, when the disconnect session parameter is set to
DISCONLOG, the Disconnect Presentation Space (2) function only
disconnects your application from the session. When this
parameter is set to DISCONPHYS, this function disconnects your
application from the session, disconnects the session from the
host, and closes the session.

session window A window within Accessory Manager’s application window that
displays communication between the PC and the host.

short name A one-character (A–Z), case-insensitive name used by IHLLAPI
applications to identify a particular session. You can associate
short names with session file names via Accessory Manager’s
Global Preferences dialog box or programmatically via the
Associate Profile (911) function.

terminal keystroke A keystroke that a terminal sends to a host. Terminal keystrokes
(such as Transmit) typically do not exist on a PC keyboard and
must be emulated using various keystroke combinations.
200

Index

16-bit IHLLAPI applications, using with 32-
bit emulators 19

A
Accessory Manager

determining the application window
coordinates 136-137

managing the application
window 138-143

using to associate short names with
sessions 20

Alphabetical IHLLAPI function list 43
ApiFunc variable declaration 33
ApiLen variable declaration 33
ApiRetc variable declaration 33
ApiString variable declaration 33
Application window

determining the coordinates 136-137
managing 138-143

ASCII mnemonic codes, terminal
keystrokes 51-59

Associate Profile (911) function 144
Associating session file names with short

names
using Accessory Manager 20
using the Associate Profile (911)

function 144

ATTRB session parameter 63, 70, 72, 113
Attributes

character 160-162
color 162
field 9-10, 84-86
T 27 fields 10
UTS fields 10

C
C, developing IHLLAPI applications with 34
Call function syntax, Visual Basic 33
Call parameters, overview 42
Change Presentation Space Window Name

(106) function 40
Change Switch List LT Name (105)

function 40
Character attributes 160-162
Code, sample return code usage 156-157
Color attributes 162
Column and row coordinates

converting to presentation space
positions 129-131

overview 7
CONLOG session parameter 46, 72
Connect Presentation Space (1)

function 45-46
Connect Window Services (101)

function 132-133
201

Index
CONPHYS session parameter 46, 72
Convert Position or RowCol (99)

function 129-131
Copy Field to String (34) function 30, 111-113
Copy OIA (13) function 28, 78-83
Copy Presentation Space (5) function 62-63
Copy Presentation Space to String (8)

function 68-70, 188, 189, 189, 190
Copy String to Field (33) function 30, 108-110
Copy String to Presentation Space (15)

function 87-88, 189
Cursor

determining the cursor location 66-67
setting the cursor location 114-115

D
Delay routines 29
DISCONLOG session parameter 48, 72
Disconnect Presentation Space (2)

function 47-48
Disconnect Window Services (102)

function 134-135
DISCONPHYS session parameter 48, 72

E
EAB session parameter 63, 69, 112

definition 73
EHLLAPI

differences with IHLLAPI 3
unsupported functions 40

EOT session parameter 74
Error handling (see Return codes)
ESC session parameter 74, 121

F
Fields

identifying 10
overview 9-10
overview of field functions 30-31
T 27 field attributes 85
using field functions with unformatted

presentation spaces 30
UTS field attributes 86

Find Field Length (32) function 30, 106-107
Find Field Position (31) function 30, 104-105
Find File Name (914) function 147-148
Find Short Name (915) function 148-149

FPAUSE session parameter 28, 74, 90
Function declarations 34
Functions (see IHLLAPI or individual

function names)

G
Get Associations (913) function 146
Get Key (51) function 119-121

H
Header files

HLLAPI.H 169-182
IHLAPI32.H 183
WHLLAPI.H 164-168

HLLAPI.H 19, 34, 169-182
HLLAPI32.DLL 2
HLLWATCH.EXE 2
Host applications

interacting with 26
waiting for host responses 27-29

HWND104 session parameter 74, 142
HWPRX32.DLL 2

I
IHLAPI32.DLL 2, 18, 35
IHLAPI32.H 19, 34, 183
IHLAPI32.LIB 2
IHLDEM32.EXE 2, 15
IHLLAPI

alphabetical function list 43
developing in C 34
developing in Visual Basic 33
differences with other HLLAPI

versions 3
function overview 12-14
function syntax 41
HLLAPI.H header file 169-182
how functions are documented 41
IHLAPI32.H header file 183
interacting with host applications 26
numerical function list 44
overview 2-4
prerequisites for using 18
running IHLLAPI applications 35
standard return codes 152-155
test application for trying out

functions 15
202

Index
IHLLAPI, continued
unsupported functions 40
using existing applications with 32-bit

emulators 19
WHLLAPI.H header file 164-168

IHLLAPI.DLL 2, 19
IHLLAPI.LIB 19
INFOConnect HLLAPI (see IHLLAPI)
IPAUSE session parameter 28, 74, 90, 97

K
Keystrokes

ASCII mnemonic codes 51-59
intercepting 116-124

L
Lock Presentation Space API (60) function 40
Lock Window Services API (61) function 40
LPBYTE variable declaration 34
LPWORD variable declarations 34

M
Mnemonic codes, terminal keystrokes 51-59

N
NOATTRB session parameter 63, 70, 72, 113
NOEAB session parameter 63, 69, 112

definition 73
NOHWND104 session parameter 74, 142
Numerical IHLLAPI function list 44
NWAIT session parameter 28, 61, 75

O
OIA

Copy OIA (13) function 78-83
detecting changes using the Query Host

Update (24) function 98-99
relationship to presentation space 6

Operator information area (see OIA)

P
Parameters, session 11
Pause (18) function 28, 89-90
Post Intercept Status (52) function 122-123

Prerequisites for using IHLLAPI 18
Presentation space

Connect Presentation Space (1)
function 45-46

converting presentation space positions
to row and column coordinates 129-131

detecting changes using the Query Host
Update (24) function 98-99

determining the size using the Query
Session Status (22) function 94-95

determining the size using the Query
Sessions (10) function 76-77

Disconnect Presentation Space (2)
function 47-48

overview 6-8
presentation space positions 7
standard presentation space sizes 8
using field functions with unformatted

presentation spaces 30
PSPosition_ReturnCode (see Return codes)

Q
Query Close Intercept (42) function 40
Query Cursor Location (7) function 66-67
Query Field Attribute (14) function 30, 84-86
Query Host Update (24) function 28, 98-99
Query Session Status (22) function 94-95
Query Sessions (10) function 76-77
Query System (20) function 91-92
Query Window Coordinates (103)

function 136-137

R
Receive File (91) function 127
Release (12) function 40
Remove Profile (912) function 145
Removing session file names from short

names
using Accessory Manager 20
using the Remove Profile (912)

function 145
Reserve (11) function 40
Reset System (21) function 93
203

Index
Return codes
overview 32
sample return code usage 156-157
standard return codes 152-155

Return parameters, overview 42
Row and column coordinates

converting to presentation space
positions 129-131

overview 7

S
Sample code, return code usage 156-157
Search Field (30) function 28, 30, 102-103
Search Presentation Space (6)

function 28, 64-65
Send File (90) function 125
Send Key (3) function 49-59
Session file names

associating with short names using
Accessory Manager 20

associating with short names using the
Associate Profile (911) function 144

overview 5
removing from short names using

Accessory Manager 20
removing from short names using the

Remove Profile (912) function 145
retrieving using the Find File Name (914)

function 147-148
retrieving using the Query Session

Status (22) function 94-95
retrieving using the Query Sessions (10)

function 76-77
using multiple sessions 24

Session parameters
overview 11
using in IHLLAPI applications 25

Session windows
determining the coordinates 136-137
managing 138-143

Set Cursor (40) function 114-115
Set Session Parameters (9) function 71-75
Short names

associating with sessions using Accessory
Manager 20

associating with sessions using the
Associate Profile (911) function 144

Short names, continued
overview 5
retrieving using the Find Short Name

(915) function 149-150
retrieving using the Get Associations

(913) function 146
retrieving using the Query Session

Status (22) function 94-95
retrieving using the Query Sessions (10)

function 76-77
specifying in IHLLAPI

applications 21-23
using multiple sessions 24

SRCHALL session parameter 64, 65, 75, 102
SRCHFROM session

parameter 64, 65, 75, 102
Standard return codes 152-155
Start Close Intercept (41) function 40
Start Host Notification (23) function 96-97
Start Keystroke Intercept (50)

function 116-118
Status line (see OIA)
Stop Close Intercept (43) function 40
Stop Host Notification (25) function 100-101
Stop Keystroke Intercept (53) function 124
Storage Manager (17) function 40
STREOT session parameter 73
STRLEN session parameter, definition 73
Syntax, IHLLAPI calls 41

T
T 27

ASCII mnemonic codes for terminal
keystrokes 51-53

character attribute values 160
field attributes 85
field identifying attributes 10
OIA data 79-81
standard presentation space sizes 8

using 16-bit IHLLAPI applications with 19
Terminal keystrokes 51-59
Timing loops 29
Troubleshooting, general procedures 186
TWAIT session parameter 28, 61, 75

U
Unformatted presentation spaces, using field

functions with 30
204

Index
UTS
ASCII mnemonic codes for terminal

keystrokes 54-58
character attributes 161
color attributes 162
field attributes 86
field identifying attributes 10
OIA data 81-83
standard presentation space sizes 8
using 16-bit IHLLAPI applications

with 19

V
Variable declarations

C 34
Visual Basic 33

VBHLLAPI.BAS 33
Version numbers, retrieving 91-92

Visual Basic
call function syntax 33
developing IHLLAPI applications

with 33
VT, ASCII mnemonic codes for terminal

keystrokes 59-59

W
Wait (4) function 28, 60-61
Waiting for host responses 27-29
WHLLAPI.DLL 19
WHLLAPI.H 19, 34, 164-168
WHLLAPI.LIB 19
Window Status (104) function 138-143
Windows 3.1 (see 16-bit IHLLAPI

applications, using with 32-bit emulators)
WinHLLAPI

differences with IHLLAPI 3
unsupported functions 40
205

	Contents
	About This Guide
	Conventions
	Abbreviations
	Related Documentation

	Introduction
	What Is IHLLAPI?
	How IHLLAPI Works
	About Short Names and Session File Names
	About the Presentation Space
	About Fields and Attributes
	About Session Parameters
	Overview of IHLLAPI Functions
	Trying Out IHLLAPI Functions

	Guidelines for Developing IHLLAPI Applications
	Prerequisites for Using IHLLAPI
	Using Existing IHLLAPI Applications with 32-bit Emulators
	Using Short Names
	Connecting to Multiple Sessions
	Setting Session Parameters
	Interacting with Host Applications
	Waiting for Host Responses
	Using Field Functions
	Handling Return Codes and Errors
	Developing IHLLAPI Applications in Visual Basic
	Developing IHLLAPI Applications in C
	Running Your IHLLAPI Application

	IHLLAPI Functions
	Unsupported HLLAPI Functions
	How IHLLAPI Functions Are Documented
	Alphabetical Function List
	Numerical Function List
	Connect Presentation Space (1)
	Disconnect Presentation Space (2)
	Send Key (3)
	Wait (4)
	Copy Presentation Space (5)
	Search Presentation Space (6)
	Query Cursor Location (7)
	Copy Presentation Space to String (8)
	Set Session Parameters (9)
	Query Sessions (10)
	Query Sessions Full (910)
	Copy OIA (13)
	Query Field Attribute (14)
	Copy String to Presentation Space (15)
	Pause (18)
	Query System (20)
	Reset System (21)
	Query Session Status (22)
	Start Host Notification (23)
	Query Host Update (24)
	Stop Host Notification (25)
	Search Field (30)
	Find Field Position (31)
	Find Field Length (32)
	Copy String to Field (33)
	Copy Field to String (34)
	Set Cursor (40)
	Start Keystroke Intercept (50)
	Get Key (51)
	Post Intercept Status (52)
	Stop Keystroke Intercept (53)
	Send File (90)
	Receive File (91)
	Convert Position or RowCol (99)
	Connect Window Services (101)
	Disconnect Window Services (102)
	Query Window Coordinates (103)
	Window Status (104)
	Associate Profile (911)
	Remove Profile (912)
	Get Associations (913)
	Find File Name (914)
	Find Short Name (915)

	Return Codes
	IHLLAPI Return Codes
	Functions That Return Standard Return Codes
	Sample Return Code Usage

	Attribute Values
	T 27 Attributes
	UTS Attributes

	IHLLAPI Header Files
	WHLLAPI.H Header File
	HLLAPI.H Header File
	IHLAPI32.H Header File

	Troubleshooting
	General Troubleshooting Procedures

	RAWMODE
	Using RAWMODE

	ACMState
	Using ACMState.exe

	Glossary
	Index

