Programmer’s Reference

Attachmate’

INFOCONNECT

Enterprise Edition

IHLLAPI

Copyrights and Notices

Attachmate® INFOConnect® Enterprise Edition
© 2013 Attachmate Corporation. All Rights Reserved.
Patents

This Attachmate software is protected by U.S. patents 6252607 and 6803914.
Trademarks

Attachmate, the Attachmate logo, CryptoConnect, FileXpress, and PEPgate are either

registered trademarks or trademarks of Attachmate Corporation in the USA. INFOConnect

is a registered trademark of Unisys Corporation. FIPS 140-1 and/or FIPS 140-2 Validated are certification
marks of NIST, which does not imply product endorsement by NIST, the U.S. or Canadian

Governments. All other trademarks, trade names, or company names referenced in product

materials are used for identification only and are the property of their respective owners.

Attachmate Software License Agreement

A copy of the Attachmate software license agreement governing this product can be found
in a ‘license’ file in the root directory of the product.

Licensor

Attachmate Corporation
705 5th Avenue South
Seattle, WA 98104 USA
USA

+1.206.217.7100
http://www.attachmate.com

Third-Party Notices

Third Party Terms and notices are provided in a ‘thirdpartynotices’ file in the root directory
of the product.

Contents

Chapter 1

About This Guide Vii
ConNVeNtioNS it e viii
Abbreviations. iX
Related Documentation. i X
Readme Files X
GUIAES. . oo X
Introduction 1
What IS IHLLAPI? 2
Differences from Other Versions of HLLAPI 3
How IHLLAPIWOrkS e 4
About Short Names and Session File Names. 5
About the Presentation Space. 6
Presentation Space Positions. 7
Standard Presentation Space Sizes................... 8
Calculating the Presentation Space Position 8
About Fields and Attributes 9
Identifying Fields. 10
About Session Parameters 11
Overview of IHLLAPI Functionsc... .. 12
Trying Out IHLLAPI Functions., 15

Contents

Chapter 2

Chapter 3

Guidelines for Developing IHLLAPI Applications 17
Prerequisites for Using IHLLAPI 18
Knowledge Prerequisites. 18
System Prerequisites 18
Using Existing IHLLAPI Applications with 32-bit Emulators. . . .19
Using Short Names i e 20
Associating Sessions with Short Names. 20
Specifying Short Names 21
Examples. 22
Connecting to Multiple Sessions 24
Setting Session Parameters 25
Interacting with Host Applications 26
Waiting for Host Responses ot 27
Timer and Delay Routines. 29
Using Field Functions i 30
Field Function Limitations 30
Workingwith Fields 31
Handling Return Codesand Errors 32
Developing IHLLAPI Applications in Visual Basic 33
Variable Declarations 33
Call Function Syntaxot 33
Developing IHLLAPI ApplicationsinC. 34
Header Files i 34
Variable Declaration 34
Running Your IHLLAPI Application 35
IHLLAPI Functions 37
Unsupported HLLAPI Functions 40
How IHLLAPI Functions Are Documented. 41
PUIpOSE . . . 41
Prerequisites e 41
SYNtAX . . o 41
Call Parameters. e 42
Return Parameters i 42
COMMENTS. . .. 42
SEe AlSO . . 42
Alphabetical Function List 43
Numerical Function List. 44
Connect Presentation Space (1) 45
Disconnect Presentation Space (2) a7
SendKey (3) ..o i i 49
Wait (4) ..o 60

Contents

Chapter 3

IHLLAPI Functions, continued

Copy PresentationSpace (5)o 62
Search Presentation Space (6) 64
Query Cursor Location (7). . . .o oo 66
Copy Presentation Spaceto String (8) 68
Set Session Parameters (9) i 71
Query Sessions (10)ot 77
Query Sessions Full (910).o 79
Copy OIA (13) . oot 81
Query Field Attribute (14) i 87
Copy String to Presentation Space (15) 90
Pause (18) 92
Query System (20) 94
Reset System (21)t 96
Query Session Status (22) 97
Start Host Notification (23), 99
Query Host Update (24) 101
Stop Host Notification (25) 103
Search Field (30)t 105
Find Field Position (31) 107
Find Field Length (32) i 109
Copy Stringto Field (33) i 111
Copy Fieldto String (34)o 114
SetCursor (40) ... 117
Start Keystroke Intercept (50) 119
GetKey (B51) ..o 122
Post Intercept Status (52) 125
Stop Keystroke Intercept (53) 127
SendFile (90) 128

Prerequisites e 128
Receive File (91) 130

Prerequisites 130
Convert Position or RowCol (99) 132
Connect Window Services (101) 135
Disconnect Window Services (102) 137
Query Window Coordinates (103) 139
Window Status (104) 141
Associate Profile (911) 147
Remove Profile (912) 148
Get Associations (913)o 149
Find File Name (914) 150
Find Short Name (915) 152

Contents

vi

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Return Codes

IHLLAPI Return Codest
Functions That Return Standard Return Codes.
Sample ReturnCode Usageciiiininnn.

Attribute Values

IT 27 Attributes.
UTS Attributes

IHLLAPI Header Files

WHLLAPIL.HHeader File
HLLAPILH HeaderFile..
IHLAPI32.HHeaderFile

Troubleshooting

General Troubleshooting Procedures

RAWMODE
Using RAWMODE . .

ACMState
Using ACMState.exe

Glossary

Index

155

156
159
160

163

164
165

168

168
173
187

189
190

191
192

195

199

201

About This Guide

This guide describes the INFOConnect™ High-Level Language
Application Program Interface THLLAPI). It covers programming
guidelines and THLLAPI functions, and is intended for
programmers writing IHLLAPI applications.

Conventionst viii
Abbreviations

Related Documentation

vii

About This Guide

Conventions

viii

Conventions

This guide uses the following documentation conventions:

Text that you type as well as messages and prompts that
appear on the screen appearin this type style.

In addition to emphasizing text and highlighting terms used for
the first time, italics indicate variables. For example, if you
were asked to type drive:\directory\filename.ext, you would
enter the actual drive, directory, and file name in place of the
italicized words.

The word PC refers to any personal computer running
Windows® 7, Windows Vista, Windows XP or Windows 2000.

The word host refers to any mainframe, mini-computer, or
information hub with which the PC communicates.

About This Guide

Abbreviations

The following is an alphabetical list of common abbreviations and
acronyms used in this guide. Please note that abbreviations and
acronyms are not generally spelled out in the text. Refer back to
this table as necessary.

Abbreviation/

Acronym Meaning

ADK Automation Development Kit

AID Attention identification

DLL Dynamic link library

EAB Extended attribute byte

EHLLAPI Emulator high-level language application programming
interface

EOT End-of-text

HLLAPI High-level language application programming interface

IHLLAPI INFOConnect high-level language application programming
interface

LTAI Line transmission activity indicator

MDI Multiple document interface

MDT Modified data tag

OlA Operator information area (status line)

PS Presentation space

Abbreviations ix

About This Guide

Related Documentation

Additional information exists in the form of Readme files and
guides.

Readme Files README.ADK contains important notices, known limitations,

Guides

X

and the latest information about IHLLAPI that could not be
included in this guide.

If you double-click this file in My Computer or File Manager, your
PC might not recognize the file extension. Select Notepad as the
application to use to read the file.

For more information, refer to the following documentation:

The Getting Started guide explains how to install your
INFOConnect products and get them up and running.

The INFOConnect Connectivity Services Installation,
Configuration, and Operations Guide provides information
about INFOConnect paths, path templates, libraries, and
accessories.

Related Documentation

Introduction

In This Chapter

This chapter provides an overview of INFOConnect HLLAPI as
well as the concepts and terms you’ll need to understand as you
work with the functions. It includes the following headings:

What Is IHLLAPI? 2
How THLLAPI Workso, 4
About Short Names and Session File Names 5
About the Presentation Space 6
About Fields and Attributes 9
About Session Parameters 11
Overview of IHLLAPI Functions 12
Trying Out IHLLAPI Functions 15

Chapter 1 Introduction

What Is IHLLAPI?

2

What Is IHLLAPI?

INFOConnect HLLAPI (IHLLAPI) is a set of function calls that
you can use to write Windows applications that interact with
Attachmate’s terminal emulators (such as T 27 and UTS), and
therefore with host applications.

The primary IHLLAPI module is a dynamic link library
(THLAPI32.DLL) that is automatically or explicitly linked to your
application. This file and other IHLLAPI files are installed in the
ACCMGR32 folder within the INFOConnect folder when you
install any of Attachmate’s emulators (which are purchased
separately). You can use the IHLAPI32.DLL when writing
applications using Visual Basic®, C, or any language that provides
interfaces for Windows DLLs.

The Automation Development Kit (ADK) also includes the
following additional files, which are installed in the ADK32 folder
of your INFOConnect folder:

File Description

HLLAPI.H A header file that must be included with applications
written in C, C++, or any other language that can include
a header file
For information about this file, refer to “HLLAPI.H Header
File” on page 173.

HLLAPI32.LIB The import library included in C and C++ applications in

their link list to supply the names and locations of
functions that are exported by the HLLAPI32.DLL

HLLWATCH.EXE

An application run by the IHLAPI32.DLL that intercepts
messages from Accessory Manager for host notification
and keystroke intercept functions

IHLAPI32.H

A header file that must be included with applications
written in C, C++, or any other language that can include
a header file

For information about this file, refer to “IHLAPI32.H
Header File” on page 187.

IHLAPI32.LIB

The import library included in C and C++ applications in
their link list to supply the names and locations of
functions that are exported by the IHLAPI32.DLL

Chapter 1 Introduction

Differences from
Other Versions of
HLLAPI

File Description

IHLDEM32.EXE An application that you can use to test IHLLAPI calls

For information about this application, refer to “Trying
Out IHLLAPI Functions” on page 15

IHLLAPI.LIB The import library included in C and C++ applications in
their link list to supply the names and locations of
functions that are exported by the IHLLAPI.DLL.

VBHLLAPI.BAS A base file that lists the IHLLAPI functions

You can include this file with a Visual Basic project.

WHLLAPI.H A header file that must be included with applications
written in C, C++, or any other language that can include
a header file

For information about this file, refer to “WHLLAPI.H
Header File” on page 168.

THLLAPI includes most of the functions from Microsoft’s
WinHLLAPI and IBM’s EHLLAPI, and most IHLLAPI calls work
exactly as described in the Microsoft WinHLLAPI Specification.
However, there are a several differences between IHLLAPI and
other HLLAPI implementations.

For example, several IHLLAPI functions use the standard
WinHLLAPI return codes differently, or use other return codes in
addition to the standard codes. (Refer to Appendix A, “Return
Codes,” for more information about the return codes.)

In addition, since Unisys® terminal emulators have different
characteristics than IBM terminal emulators, IHLLAPI differs
from EHLLAPI in how it handles field attributes and status line
information.

THLLAPI also includes additional functions (such as Associate
Profile) that support the IHLAPI32.DLL’s interactions with
Accessory Manager. These functions are not defined within the
Microsoft WinHLLAPI specification but are described in this
guide.

What Is IHLLAPI? 3

Chapter 1 Introduction

How IHLLAPI Works

When your application calls an IHLLAPI function, the following
actions occur:

If the IHLAPI32.DLL is not already in memory, Windows loads
it.

The application passes the call parameters to the
THLAPI32.DLL.

The IHLAPI32.DLL interprets the request.

The IHLAPI32.DLL sends the request to a terminal emulation
session (a T 27 session or UTS session) running within
Accessory Manager.

The emulator performs any necessary host communication,
processes the request, and returns the result of the request to
the ITHLAPI32.DLL.

The IHLAPI32.DLL sends the results back to the application
through the return parameters.

The following figure shows the flow of IHLLAPI functions:

IHLLAPI Application

Call Return
Parameters Parameters

IHLLAPI32.DLL

! i

Accessory Manager

When your application closes, Windows removes the
THLAPI32.DLL from memory.

4 How IHLLAPI Works

Chapter 1 Introduction

About Short Names and Session File Names

THLLAPI functions refer to sessions by short names (the letters A
through Z) rather than file names (such as SESSION1.ADP).

To use IHLLAPI applications with a T 27 or UTS session, you
must associate a short name with an existing session file name.
For example, you can associate the short name A with the session
file name SESSION1.ADP. Whenever an IHLLAPI function uses
the short name A, that function is performed using
SESSION1.ADP.

You can associate short names with session file names using
Accessory Manager or using an IHLLAPI function call from your
application. The procedure for doing this using Accessory Manager
is provided in “Using Short Names” on page 20. For information
about doing this using an IHLLAPI function call, refer to
“Associate Profile (911)” on page 147.

About Short Names and Session File Names 5

Chapter 1 Introduction

About the Presentation Space

Each session that your IHLLAPI application can connect with is
configured to use a specific number of columns and rows that
define the area within which the host or user can display or type
data. For IHLLAPI functions, this area is called the presentation
space:

4)

4— Presentation Space —>

_ Status Line)

Many THLLAPI functions interact with the presentation space.
For example, your IHLLAPI application can perform the following
tasks:

Search the presentation space for certain strings to determine
which host application screen is displayed

Position the cursor within the presentation space and send
keystrokes to navigate among host application screens or
retrieve data

Copy data from the presentation space and display them in
your IHLLAPI application

The status line that appears at the bottom of the screen (also
known as the operator information area, or OIA) is not included in
the presentation space. There are separate functions for accessing
the presentation space and the OIA.

6 About the Presentation Space

Chapter 1 Introduction

Presentation
Space Positions

When specifying a location within a presentation space, IHLLAPI
functions use presentation space positions rather than column and
row coordinates.

Presentation space positions start at position 1 and end with the
maximum number of presentation space positions for the
emulator. For example, a session with 24 rows and 80 columns has
1920 presentation space positions (24x80); a session with 24 rows
and 132 columns has 3168 presentation space positions (24x132).

The following figure shows the presentation space positions for an
emulator configured for 24 rows and 80 columns:

/0001, 0002... 0080 Line 1
0081, 0082... 0160
1841, 1842... 1920 4 Line 24
_ Status Line)

For sessions that have multiple pages, each page is treated like a
new presentation space. For example, in a session configured for
24 rows, 80 columns, and two pages, the first page would contain
presentation space positions 1 through 1920, and the second page
would also contain positions 1 through 1920.

About the Presentation Space 7

Chapter 1 Introduction

Standard
Presentation
Space Sizes

Calculating the
Presentation
Space Position

Different emulators support different presentation space sizes.
For example, T 27 supports up to 255 rows and 132 columns; UTS
supports up to 255 rows and 256 columns. Although you can
configure the size of the presentation space, the following table
shows the standard sizes that are generally associated with each
emulator:

Emulator Rows Columns Total Size
T 27 24 80 1920
UTS 24 80 1920

24 132 3168

The row totals shown in the preceding table do not include the
status line. The status line appears at the bottom of each terminal
emulation screen and contains information about the session
status (such as what mode the emulator is in) and other
information (such as the location of the cursor). T 27 can also
display a line of information between the presentation space and
the status line; this is known as the user message.

You can use the Convert Position or RowCol (99) function to
convert a presentation space position into row and column
coordinates. For example, for a session with 80 columns,
presentation space position 160 would occur at row 2, column 80.
However, for a session with 132 columns, presentation space 160
would occur at row 2, column 28.

You can also use this function to converts row and column
coordinates into a presentation space position. In the preceding
example, this function could convert row 2, column 80, to
presentation space position 160.

For more information about this function, refer to “Send File (90)”
on page 128.

8 About the Presentation Space

Chapter 1 Introduction

About Fields and Attributes

A presentation space can be either unformatted or formatted. In
an unformatted presentation space, the data generally appear as
continuous lines of text on the screen. In a formatted presentation
space, the data generally appear in individual fields.

Each field has attributes that define the type of information that
can be typed in that field, as well as the appearance of the field on
the screen. For example, field attributes can specify the following
types of information:

Whether the field is protected (read-only) or unprotected (read
and write)

Type of data allowed in the field (alphanumeric or numeric)
Appearance of the field (color, blinking, reverse video)

Whether the field has been modified since it was put on the
presentation space

Many ITHLLAPI functions interact with fields. For example, your
THLLAPI application can perform the following tasks:

Determine the attributes of a particular field (such as whether
it 1s protected or unprotected)

Copy data from your application to a particular field

Copy data from a particular field to your application

About Fields and Attributes 9

Chapter 1 Introduction

Identifying Fields The THLAPI32.DLL identifies fields by detecting certain changes
in the attributes of each field. For example, the following figure
shows how fields would be identified in an T 27 session:

Field 1 Field 2 Field 3

/ []

¥

Customer ID P 12345 «
Customer Name P_John Doe L |

Field 4

In this example, the first field begins at the upper left corner of
the screen and contains empty spaces and the label Customer ID.
The second field includes all the data between the delimiters. The
third field begins at the end of the delimiter for Field 2 and
contains empty spaces and the label Customer Name. The fourth
field includes all the data between the second set of delimiters.

The attributes that define fields are unique to each emulator. For
example, in the preceding figure, the label Customer ID might be
blinking, but these character attributes do not indicate the
beginning of a new field. The following table lists the attributes of
each emulator and whether they denote a field:

Denote
Emulator New Field? Attributes
T27 YES Non-transmittable, protected, unprotected,
left and right justified
NO Intensity, blinking, reverse video, secure
uTsS YES Protected, unprotected, numeric only,
alphanumeric only, left and right justified
NO Color, emphasis

10 About Fields and Attributes

Chapter 1 Introduction

About Session Parameters

Many IHLLAPI functions are affected by options known as session
parameters. This term does not refer to the configuration of the
terminal emulation session with which your application
communicates, but rather to options specified by the Set Session
Parameters (9) function.

For example, when the disconnect session parameter is set to
DISCONLOG, the Disconnect Presentation Space (2) function only
disconnects your application from the session. When this
parameter is set to DISCONPHYS, this function disconnects your
application from the session, disconnects the session from the
host, and closes the session.

For recommendations about how to use the Set Session
Parameters (9) function, refer to “Setting Session Parameters” on
page 25. For detailed information about this function, refer to “Set
Session Parameters (9)” on page 71.

About Session Parameters 11

Chapter 1 Introduction

Overview of IHLLAPI Functions

The following tables provide a numerical list of the IHLLAPI
functions and a brief description of each. For detailed information

about these functions and how to use them, refer to Chapter ,
“THLLAPI Functions.”

Function

Description

Connect Presentation
Space (1)

Connects your application to the specified
presentation space

Disconnect
Presentation Space (2)

Disconnects your application from the current
presentation space

Send Key (3)

Places a keystroke or string of keystrokes in the
current presentation space at the current cursor
location

Wait (4)

Tests the status of the current presentation space to
determine whether it can receive keystrokes

Copy Presentation
Space (5)

Copies the entire presentation space to a string in
your application

Search Presentation
Space (6)

Scans the current presentation space for a specified
string

Query Cursor
Location (7)

Determines the location of the cursor in the current
presentation space

Copy Presentation
Space to String (8)

Copies the specified portion of the current
presentation space to a string in your application

Set Session
Parameters (9)

Changes the default session parameters

Query Sessions (10)

Determines the number of open sessions, as well as
the short name, filename, session type, and
presentation space size of each session

Query Sessions Full
(910)

Same as Query Sessions, except that it returns long
filenames and the full path of each session.

Copy OIA (13)

Copies the operator information area (status line) and
other information to a string in your application

Query Field
Attribute (14)

Determines the attribute of the specified field in the
current presentation space

Copy String to
Presentation Space
(15)

Copies an ASCII string from your application to a
specific location in the current presentation space

12 Overview of IHLLAPI Functions

Chapter 1 Introduction

Function

Description

Pause (18)

Causes your application to wait a specific amount of
time for an event to occur

Query System (20)

Determines the support level provided to your
application by the underlying low-level and high-level
modules (and other system-related values)

Reset System (21)

Re-initializes the default session parameters, stops
host event notification, and disconnects the
application from any connected sessions

Query Session
Status (22)

Obtains information about a particular session,
including the short name, file name, session type,
session characteristics, and the number of rows and
columns in the presentation space

Start Host
Notification (23)

Enables notifying your IHLLAPI application of
changes in the presentation space or operator
information area (OIA)

Query Host
Update (24)

Determines if the presentation space or OIA of the
specified session has been updated since Start Host
Notification (23) was called, or since the previous call
of this function

Stop Host
Notification (25)

Disables notifying your IHLLAPI application of
changes in the presentation space or OIA

Search Field (30)

Searches the specified field within the current
presentation space for a specified string

Find Field Position (31)

Determines the beginning position of the current field
in the current presentation space

Find Field Length (32)

Determines the length of the current field in the
current presentation space

Copy String to

Copies characters from your application to a specified

Field (33) field in the current presentation space

Copy Field to Copies all the characters from a specified field in the

String (34) current presentation space to a data string in your
application

Set Cursor Positions the cursor within the current presentation

Position (40)

space

Start Keystroke
Intercept (50)

Enables your application to intercept keystrokes
typed by a user in the session window

Get Key (51)

Intercepts keystrokes from sessions that have
keystroke intercept enabled and processes those
keystrokes

Overview of IHLLAPI Functions 13

Chapter 1 Introduction

14

Function

Description

Post Intercept
Status (52)

Notifies the IHLAPI32.DLL that a keystroke obtained
with the Get Key (51) function has been accepted or
rejected

Stop Keystroke
Intercept (53)

Stops your application from intercepting keystrokes

Send File (90)

Transfers a file from the local workstation to the host
session.

Receive File (91)

Transfers a file from the host session to the local
workstation.

Convert Position or
RowCol (99)

Converts the presentation space position into row and
column coordinates, or converts row and column
coordinates into a presentation space position,
depending on the call parameters passed by your
application

Connect Window
Services (101)

Connects your application to the specified
presentation space

Disconnect Window
Services (102)

Disconnects your application from the specified
presentation space

Query Window
Coordinates (103)

Requests the coordinates of the specified
presentation space

Window Status (104)

Queries or changes a window’s presentation space
size, location, or visible state

Associate Profile (911)

Associates the specified short name with the
specified session

Remove Profile (912)

Unassociates any session from the specified short
name

Get Associations (913)

Retrieves a list of all short names that have been
associated with sessions

Find File Name (914)

Gets the session file name for the specified short
name

Find Short Name (915)

Gets the short name for the specified session file
name

Overview of IHLLAPI Functions

Chapter 1 Introduction

Trying Out IHLLAPI Functions

To see what the IHLLAPI functions do, use the test application
included with the ADK. This application lets you send function
calls to an emulator and see what values are returned. For
example, you could see what happens when you issue a Connect
Presentation Space (1) function call.

To run the test application, follow these steps:

1 Run Accessory Manager and assign a session file name to a
HLLAPI short name.

For instructions on this procedure, refer to “About Short Names
and Session File Names” on page 5.

For example, you could assign the session TCPA_1.ADP to the
short name A.

2 Run IHLDEMS32.EXE.

Using My Computer or File Manager, go to the ADK32 folder
within the INFOConnect folder and double-click IHLDEM32.EXE.

Note: To run this application from the ADK32 folder, the
THLAPI32.DLL must be accessible. For more information, refer
to “Running Your IHLLAPI Application” on page 35.
Alternatively, you can copy this application to the ACCMGR32
folder and run it from there.

3 Click the desired IHLLAPI function from the menu.

4 If the test application prompts you for any additional information,
type the appropriate response for each prompt as it appears.

The test application sends the function call to the IHLAPI32.DLL
and displays any returned data.

5 To exit the test application, click Exit.

Trying Out IHLLAPI Functions 15

Guidelines for Developing
IHLLAPI Applications

In This Chapter

This chapter provides general guidelines for developing IHLLAPI
applications, as well specific guidelines for developing in Visual
Basic and C. It includes the following headings:

Prerequisites for Using THLLAPT 18
Using Existing IHLLAPT Applications with 32-bit Emulators . . 19

Using Short Names 20
Connecting to Multiple Sessions 24
Setting Session Parameters 25
Interacting with Host Applications 26
Waiting for Host Responses 27
Using Field Functions 30
Handling Return Codes and Errors 32
Developing THLLAPI Applications in Visual Basic 33
Developing IHLLAPI ApplicationsinC 34
Running Your IHLLAPI Application 35

17

Chapter 2 Guidelines for Developing IHLLAPI Applications

Prerequisites for Using IHLLAPI

Before writing any applications using IHLLAPI, you should have
a working knowledge of the following:

Microsoft Windows 7, Vista, XP and 2000.

An INFOConnect emulator (such as INFOConnect T 27 for
Windows, INFOConnect UTS for Windows, or EXTRA!® Office
for Accessory Manager)

The programming language (Visual Basic, C, C++, or any
language that provides interfaces for Windows DLLs) and the
compiler or assembler you plan to use

18 Prerequisites for Using IHLLAPI

Chapter 2 Guidelines for Developing IHLLAPI Applications

Using Existing IHLLAPI Applications with 32-bit Emulators

If you previously created IHLLAPI applications for use with 16-bit
(Windows 3.1x) terminal emulators, you can use those
applications with the 32-bit (Windows 7, Vista, XP, and 2000)
emulators with some minor modifications:

Copy the IHLLAPI.DLL and WHLLAPI.DLL included with the
32-bit Accessory Manager over the existing IHLLAPI.DLL and
WHLLAPI.DLL that you're using with your application.

Note: When you overwrite your existing files with the new
versions, you will not be able to use your IHLLAPI
application with the 16-bit emulators.

If you need to use both the 16-bit and 32-bit emulators, it is
recommended that you create two folders for your
application. In one, include the original IHLLAPI.DLL and
WHLLAPI.DLL for use with 16-bit emulators, and in the
other, include the new IHLLAPI.DLL and WHLLAPI.DLL
for use with the 32-bit emulators.

Make sure that the IHLLAPI.DLL is in the same folder as the
THLAPI32.DLL.

If you completed the preceding procedures and experience any
difficulty using your existing application, you might need to
make additional modifications. Specifically, if your application
was written in C, C++, or another language that includes
header files, you might need to include WHLLAPI.H,
HLLAPI.H, and IHLAPI32.H and recompile. In addition, if
your application uses WHLLAPI.LIB, you must change this to
IHLLAPI.LIB and recompile.

Using Existing IHLLAPI Applications with 32-bit Emulators 19

Chapter 2 Guidelines for Developing IHLLAPI Applications

Using Short Names

Associating
Sessions with
Short Names

When writing IHLLAPT applications, you must perform two tasks
that involve short names:

Associate a session file name with at least one short name

Specify which short name to use for each IHLLAPI function

You can associate short names with session file names using
Accessory Manager or using an IHLLAPI function call from your
application. The procedure for doing this using Accessory Manager
is provided below. For information about doing this using an
THLLAPI function call, refer to “Associate Profile (911)” on

page 147.

Run Accessory Manager.

Click the Start button, point to Programs, point to INFOConnect
32-bit, and click Accessory Manager 32-bit.

From the Options menu, click Global Preferences.
Click the HLLAPI tab.

Click the desired short name.

If you click a short name that has no session name after it, you can
assign a session name to that short name. If you click a short
name that already has a session name after it, you can change the
session name.

Click Browse and double-click the session to associate with that
short name.

Note: To remove a session name from a short name, click the
short name and click Remove.

20 Using Short Names

Chapter 2 Guidelines for Developing IHLLAPI Applications

Specifying Short Many THLLAPI functions require a short name in their calling
Names parameters. However, hard-coding a short name can cause several
problems:

The corresponding session might be in use by the user or
another application.

The same short name might be used for one session type on one
PC and a different session type on another PC.

For example, the short name A might be associated with a T 27
session on one PC and a UTS session on another PC. Errors
occur if you try to use an application designed for use with one
type of emulator with a different emulator.

To avoid these problems, use the Get Associations (913) function
to retrieve a list of all short names that have been associated with
sessions, then use the Query Sessions (10) function to determine
which sessions are already open. By comparing these lists, you can
determine whether a session with a short name is not already in
use. Your application can then either select a session
automatically or display a list for the user to choose from.

The Query Sessions (10) and Query Session Status (22) functions
both provide information about what type of terminal is being
emulated by the session. You can use these functions to determine
whether a particular short name is associated with the right type
of session for use with your application.

Using Short Names 21

Chapter 2 Guidelines for Developing IHLLAPI Applications

Examples The following pseudo-code examples show how to obtain and use
short names. To keep the examples short and simple, normal
programming considerations such as waits and full return code
handling have been omitted. In addition, these examples show
how to connect to an active (already open) session.

Example 1 This example shows how to use Query Sessions (10) to obtain a
short name that can be used to connect to a particular session
type’s presentation space.

Defi ne gl obal variabl e SHORT_NAME for session short
nane
Start Sequence

Call Query Sessions (10) function
Returns: Variable string containing
informati on on all the open sessions.

End Query Sessions

Search for first host session
This is typically a | oop that searches for the
first occurrence of a session of a specific
type (HL A O or U, and then exits the | oop
upon finding it.
Returns: First valid short name returned and
pl aced in global variable SHORT_NAME.

End Search

Call Connect Presentation Space (1) function
Pass the gl obal variable SHORT_NAME as the
DataString of this function.

Returns: Success/failure status.

End Connect

End of Sequence

22 Using Short Names

Chapter 2 Guidelines for Developing IHLLAPI Applications

Example 2

This example adds the Query Session Status (22) function, which
examines the available sessions for various characteristics and
presentation space size. Here, the presentation space size is stored
in a global variable to be used elsewhere by the application.

Defi ne gl obal variable NAME for short nane
Define gl obal variable ROVNfor nunber of rows in PS
Define gl obal variable COL for nunmber of colums in PS

Start Sequence

Call Query Sessions (10) function
Returns: Variable string containing
information on all the open sessions.

End Query Sessions

Search for first host session
This is a |l oop that searches for the first
occurrence of a session of a specific type
(H A O or U, and then exits the | oop upon
finding it.
Returns: First valid short nane returned and
pl aced in global variable NAME

End Search

Call Query Session Status (22) function
Pass the gl obal variable NAME as part of the
DataString of this function.
Returns: Variable string containing the
sessi on short nane, session type, session
characteristics, and nunber of rows and
colums in the presentation space.

End Query Session Status

Read Data String
Assign gl obal variable RONfrom bytes 12 and 13
of the returned DataString.
Assign gl obal variable CO. frombytes 14 and 15
of the returned DataString.

End Read

Call Connect Presentation Space (1) function
Pass the gl obal variable NAME as the
DataString of this function.

Returns: Success/failure status.

End Connect

End of Sequence

Using Short Names 23

Chapter 2 Guidelines for Developing IHLLAPI Applications

Connecting to Multiple Sessions

24

You can write IHLLAPI applications that use multiple sessions.
For example, you can write an application that communicates
with both a T 27 session and a UTS session.

However, IHLLAPI works with only one session at a time. To work
with multiple sessions, you must use the following procedure:

Use the Connect Presentation Space (1) function to connect to one
session (such as an T 27 session).

Issue the appropriate function calls for that session.

Use the Disconnect Presentation Space (2) function to disconnect
from that session.

Repeat steps 1 through 3 for each session that you want to use.

Connecting to Multiple Sessions

Chapter 2 Guidelines for Developing IHLLAPI Applications

Setting Session Parameters

Using the Set Session Parameters (9) function, you can set session
parameters that determine how certain IHLLAPI functions
operate.

When designing your IHLLAPI application, keep the following
guidelines in mind:

Call the Reset System (21) function at the beginning of your
application to reset all session parameters to their default
settings. This ensures that your application operates in a
known environment.

Call the Set Session Parameters (9) function to set the session
options before connecting to the session or immediately after
connecting.

Using the proper options can make your application more
efficient. For example, when the STREOT session parameter is
set, your application will simply look for an end-of-text
character rather than calculate and specify the length of strings
explicitly.

Call the Reset System (21) function before closing your
application.

For more information on the Set Session Parameters (9) function,
refer to “Set Session Parameters (9)” on page 71.

Setting Session Parameters 25

Chapter 2 Guidelines for Developing IHLLAPI Applications

Interacting with Host Applications

26

When users interact directly with host applications, they can rely
on visual cues to determine which host application screen is
displayed, where the cursor is, which mode the session is
operating in, how the host has responded to commands or data,
and other similar information.

THLLAPI applications must rely on function calls to obtain this
kind of data and respond accordingly. For example, to determine
which host screen is displayed, the IHLLAPI application might
issue a function call to search for a particular string on the screen.

When interacting with host applications, use the following
THLLAPI functions:

Function Description

Connect Presentation Space (1) Connect to a session and check the
status of that session

Search Presentation Space (6) Search the presentation space for host
messages or prompts

Copy String to Presentation Space Send data to a presentation space

(15) or Copy String to Field (33) position or field

Send Key (3) Transmit data or a command to the host

Wait (4) or Pause (18) Wait for the host to process the data or
command

Search Presentation Space (6), Copy Determine how the host responded
Presentation Space to String (8), or
Copy OIA (13)

Disconnect Presentation Space (2) Disconnect your application from the
session

For more information about optimizing your application’s
interactions with the host, refer to “Waiting for Host Responses”
on page 27. For more information about all these functions, refer
to Chapter , “THLLAPI Functions.”

Interacting with Host Applications

Chapter 2 Guidelines for Developing IHLLAPI Applications

Waiting for Host Responses

After your application sends data or a command to the host, it
must wait for the host to complete processing the data or
otherwise respond to the command.

There are several ways to allow for this. For example, you can
make your application pause for a specific amount of time, or have
your application periodically check for an indication that the
session is ready to accept additional input.

However, each of these methods does have disadvantages. For
example, a timed pause might not allow sufficient time if the load
on the host, the network, or the PC processor causes unexpected
delays. Conversely, a timed pause might also cause your
application to operate more slowly than needed, allowing more
time than is actually required for processing.

Periodically checking the session for readiness can also cause
problems. If your application continuously checks for a host
response, system resources might not be available for other
applications running on the PC.

The optimum technique to use for waiting for host responses
varies depending on the type of programming language you use,
the PCs used to run the application, the type of host the PCs
communicate with, and the type of network connection between
the PC and the host.

The following table lists several IHLLAPI functions that you can
use to incorporate delays for host responses in your application.

Waiting for Host Responses 27

Chapter 2 Guidelines for Developing IHLLAPI Applications

Function Session Parameter

Description

Wait (4)

NWAIT

Check the session status and return information about
it immediately

Adding a timed delay and counter variables and using
this setting provides the simplest method of waiting for
a host response.

TWAIT

Wait up to one minute for the keyboard to become
ready for input, then return information about the
session status to your application

Pause (18) FPAUSE

Pause for the length of time specified in the Pause
(18) function

IPAUSE

Pause until the Start Host Notification (23) function
returns a value indicating that a host event has
occurred

Query Host Update (24) Not applicable

Determine whether the presentation space or OIA has
been updated since Start Host Notification (23) was
called or this function was previously called

Search Presentation Not applicable Search for a particular string that indicates a host
Space (6) or Search response (such as the appearance of a new host
Field (30) application screen)

Copy OIA (13) Not applicable Determine whether WAIT, XMIT, or similar information
that indicates that the session cannot accept input still
appears in the status line

28 Waiting for Host Responses

Chapter 2 Guidelines for Developing IHLLAPI Applications

Timer and Delay
Routines

The PC processor’s speed, sometimes referred to as clock speed,
determines the length of time it takes for the CPU to execute an
instruction. Normally, faster processors are advantageous because
by increasing the instruction execution speed, the application runs
faster. However, in an IHLLAPI application this can become a
disadvantage, especially when you create timers or delays to wait
for events that occur on a host.

Most problems occur when FOR-NEXT loops or incremental
counters are used to create a timed delay. These routines depend
on the efficiency of the compiler and on the processor speed of the
PC they are executed on. If an application was developed on a slow
PC, these loops might not provide adequate time delays on a faster
PC; if the application was developed on a fast PC, it has long
delays on a slow PC.

Timer and delay routines should be based on constant real-time
events such as the PC’s clock tick or the time-of-day information
(system clock). The PC’s clock tick occurs 18.2 times per second;
the system clock ticks at one-second intervals. These real time
events are constant across all models and processor speeds of PCs,
so they provide a consistent foundation for timers and delays.

For more detailed information on the PC’s clock tick and time-of-
day information, consult your Microsoft Windows SDK
documentation.

Waiting for Host Responses 29

Chapter 2 Guidelines for Developing IHLLAPI Applications

Using Field Functions

Field Function
Limitations

THLLAPI provides several functions that work with fields:
Query Field Attribute (14)
Search Field (30)
Find Field Position (31)
Find Field Length (32)
Copy String to Field (33)
Copy Field to String (34)

Field functions provide a finer degree of control than functions
that use the entire presentation space. However, you must keep
the following considerations in mind:

Field functions are time-consuming operations. Each call
to these functions allocates and frees memory, extracts whole

screen information (including attributes), processes the screen
information to identify the field structures, calculates the field
extents, and then performs the specified function. For example,
if your application calls Find Field Position (31), Find Field
Length (32), and Copy String to Field (33), the IHLAPI32.DLL
completes the whole processing three times.

Unformatted presentation spaces do not support field
function calls. Because there are no individually defined

fields in an unformatted presentation space, you should not use
field functions with unformatted presentation spaces.

Where processing time is a consideration or when you are working
with unformatted presentation spaces, you should use functions
that work with the entire presentation space rather than field

functions. For example, you can use Search Presentation Space (6)
rather than Search Field (30).

30 Using Field Functions

Chapter 2 Guidelines for Developing IHLLAPI Applications

Working with
Fields

When working with fields in a formatted presentation space, your
application must be able to perform the following tasks:

Determine the location of each field
Determine the characteristics of each field
Send the proper keystrokes to the correct location

Failure to take these conditions into account can cause your
application to send erroneous data to the host. For example, when
sending data to a field, your application should verify whether
data already exists in that field. If data exists, clear the field
before sending new data. This ensures that the new data is not
appended to the existing data.

In addition, even small changes in a host application can cause
errors to occur in your application. For example, if your
application expects to find a particular string in the presentation
space, an error would occur if that string changed due to changes
in the host application. In this case, you must change your
application to match the host application.

Be sure to design your application so that you can easily modify it
to conform to changes in the host application. For example, if your
application expects to find a particular string in the presentation
space, put that string in a resource file so that you can quickly
access and change it as needed.

Using Field Functions 31

Chapter 2 Guidelines for Developing IHLLAPI Applications

Handling Return Codes and Errors

32

Each IHLLAPI function uses a return code to indicate the result of
the execution of that function. For example, the Disconnect
Presentation Space (2) function returns one of the following codes:

Return Code Description

WHLLOK (0) The function was successful; your application
disconnected from the presentation space.

WHLLNOTCONNECTED (1) Your application is not connected to a session.

WHLLSYSERROR (9) The function failed due to a system error.

Some errors can be prevented by ensuring that functions are
called in the correct order. For example, to avoid the
WHLLNOTCONNECTED (1) error in the preceding example, you
must call the Connect Presentation Space (1) function before
calling the Disconnect Presentation Space (2) function. Refer to
the prerequisites for each function described in Chapter ,
“ITHLLAPI Functions,” to ensure that your application avoids
generating errors that can be prevented.

Others errors can be corrected by your application. Your
application must manage these return codes properly to keep it
running smoothly, regardless of the PC's processor speed, network
load, or host response speed.

When writing an error handling routine, remember to save the
call parameters before calling the function. The
PSPosition_ReturnCode in the call parameter always changes in
the return parameter. (Other call parameters might change as
well, depending on the function.) If your error handler tries to
correct a problem and then call the function again, the handler
must be able to find or reconstruct the original call parameters
passed to the function.

For a list of the standard return codes, their causes, and
suggestions for handling them, refer to Appendix A, “Return
Codes.” For details about the return parameters for a particular
function, refer to Chapter , “THLLAPI Functions.”

Handling Return Codes and Errors

Chapter 2 Guidelines for Developing IHLLAPI Applications

Developing IHLLAPI Applications in Visual Basic

Variable
Declarations

Call Function
Syntax

For Visual Basic applications to access the IHLLAPI functions,
you must include the following declarations and syntax.

You must use the following declarations in your application:

Variable Declaration Explanation

ApiFunc This integer passes the requested IHLLAPI function
number.
ApiString This string passes or receives a data string needed by

some IHLLAPI functions.

ApiLen This integer passes the length of the string variable or
receives integer data from some IHLLAPI functions.

ApiRetc This integer passes data to some IHLLAPI functions
and receives a return code back from all IHLLAPI
functions.

In addition, you must declare the IHLLAPI entry point in your
application’s global module, as follows:

Decl are Sub WnHLLAPI Lib "drive:\dir\IHLAPI 32. DLL" _
(Api Func As Integer, ByVal ApiString As String,
Api Len As |Integer, ApiRetc As Integer)

This declaration is provided in the VBHLLAPI.BAS file included
with the ADK. You can include this file in your project.

When writing a call, you must use the following syntax:

CALL W nHLLAPI (Api Func, Api String, ApilLen, ApiRetc)

Developing IHLLAPI Applications in Visual Basic 33

Chapter 2 Guidelines for Developing IHLLAPI Applications

Developing IHLLAPI Applications in C

For your C application to have access to the IHLLAPI functions,

you must include the following function declaration and variables
in either the main body of your application or, where appropriate,
in a header file that is included when you compile the application.

Header Files The Accessory Development Kit comes with three header files
(WHLLAPI.H, HLLAPI.H, and IHLAPI32.H) that include several
function declarations that must be included in your project.

For a listing of these files, refer to Appendix C, “THLLAPI Header

Files.”

Variable You must use the following declarations in your application:

Declaration
Variable Declaration

Explanation

LPWORD FunctionNumber

A pointer to the defined function name of the
IHLLAPI function being called. It has a
corresponding constant, included in IHLAPI32.H
(refer to Appendix , “IHLLAPI Header Files,” for
a listing). For example, when using the Connect
Presentation Space (1) function, the value sent
would be CONNECTPS.

LPBYTE DataString

A pointer to the data string. Although used by
most IHLLAPI functions, not all functions require
a data string. Some functions use the data string
only on the call, some only on the return, and
some on both the call and the return. Refer to
the function descriptions in Chapter 3, “IHLLAPI
Functions,” for details about the requirements of
each function.

LPWORD DatalLength

A pointer to the data length or the length of the
data string, depending on the IHLLAPI function.
Some functions use the data length only on the
call some only on the return, and some on both
the call and the return.

LPWORD
PSPosition_ReturnCode

A pointer to the presentation space position/
return code. This parameter supplies data to the
IHLAPI32.DLL on the call, and supplies the
response from the application on the return.

34 Developing IHLLAPI Applications in C

Chapter 2 Guidelines for Developing IHLLAPI Applications

Running Your IHLLAPI Application

When running your IHLLAPI application, verify that the
following criteria are met:

The THLAPI32.DLL is in the Windows PATH.

Accessory Manager is running and a session is open.

You can either run Accessory Manager and open a session
manually, or you can run it using the Connect Presentation
Space (1) function.

For instructions on using Accessory Manager, refer to the
online Help for that product.

Windows automatically loads and removes the IHLAPI32.DLL
and all supporting software as required.

Running Your IHLLAPI Application 35

IHLLAPI Functions

In This Chapter

This chapter includes the following headings. It also includes a
heading for each IHLLAPI function in numerical order.

Unsupported HLLAPI Functions 40
How IHLLAPI Functions Are Documented 41
Alphabetical Function List 43
Numerical Function List 44
Connect Presentation Space (1) 45
Disconnect Presentation Space (2) 47
Send Key (3) . ..o o i i i 49
Wait (4) ..o 60
Copy Presentation Space (5) 62
Search Presentation Space (6), 64
Query Cursor Location (7) 66
Copy Presentation Space to String (8) 68
Set Session Parameters (9) 71
Query Sessions (10) 77

37

Chapter 3 IHLLAPI Functions

38

Query Sessions Full (910) 79
Copy OTA (13) . oottt e 81
Query Field Attribute (14) 87
Copy String to Presentation Space (15) 90
Pause (18) o 92
Query System (20) 94
Reset System (21) e 96
Query Session Status (22) 97
Start Host Notification (23) 99
Query Host Update (24), 101
Stop Host Notification (25) 103
Search Field (30) 105
Find Field Position (31) 107
Find Field Length (32) 109
Copy String to Field (33) 111
Copy Field to String (34), 114
Set Cursor (40) ... 117
Start Keystroke Intercept (50) 119
Get Key (B1) ..o 122
Post Intercept Status (52) i 125
Stop Keystroke Intercept (53) 127
Send File (90) 128
Receive File (91)o e 130
Convert Position or RowCol (99) 132
Connect Window Services (101) 135

Chapter 3 IHLLAPI Functions

Disconnect Window Services (102) 137
Query Window Coordinates (103) 139
Window Status (104) 141
Associate Profile (911) 147
Remove Profile (912) 148
Get Associations (913) ... 149
Find File Name (914) i 150
Find Short Name (915) 152

39

Chapter 3 IHLLAPI Functions

Unsupported HLLAPI Functions

The following table lists the WinHLLAPI and EHLLAPI functions
that are not supported in this version of IHLLAPI:

Number Function

11 Reserve

12 Release

17 Storage Manager

41 Start Close Intercept

42 Query Close Intercept

43 Stop Close Intercept

60 Lock Presentation Space API
61 Lock Window Services API
105 Change Switch List LT Name
106 Change Presentation Space Window Name

40 Unsupported HLLAPI Functions

Chapter 3 IHLLAPI Functions

How IHLLAPI Functions Are Documented

Purpose

Prerequisites

Syntax

The description of each function in this chapter includes the
following information:

Purpose
Prerequisites
Syntax

Call parameters
Return parameters

Comments
See Also

Immediately following the function name is a brief description of
the function and how it should be used.

Some functions do not operate correctly unless the application
calls other functions first. This section lists the functions that your
application must call before calling the function being explained.

The syntax for all IHLLAPI calls is always the same:

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

The following table describes each parameter:

Parameter Description
FunctionNumber A pointer to an integer
DataString A pointer to an array of bytes
Datalength A pointer to an integer
PSPosition_ReturnCode A pointer to an integer

How IHLLAPI Functions Are Documented 41

Chapter 3 IHLLAPI Functions

Call Parameters

Return Parameters

Comments

See Also

When your application calls the IHLAPI32.DLL using this syntax,
it specifies the appropriate value for each parameter as described
in “Call Parameters.” When the IHLAPI32.DLL returns the
results of the call to the application, it uses the same syntax but
replaces the original call parameter values with the appropriate
return parameter values described in “Return Parameters.”

This section describes the parameters your application must pass
to the IHLAPI32.DLL.

Note: Use zeros or null strings for any unused parameters.

This section describes the parameters that the IHLAPI32.DLL
returns to your application as a result of the function call.

If any call parameters are not replaced by return parameters, the
original call parameters are returned unchanged.

All functions pass a return code as a return parameter. Many
functions use standard return codes, but certain functions
interpret the return codes differently, or use additions to the
standard return codes. Refer to Appendix A, “Return Codes,” and
the function descriptions in this chapter for more information
about return codes.

This section describes special considerations and restrictions, as
well as how to use the function with other IHLLAPI functions.
This section also points out how to use the function with different
terminal emulators.

This section lists other related IHLLAPI functions.

42 How IHLLAPI Functions Are Documented

Chapter 3 IHLLAPI Functions

Alphabetical Function List

The following tables provide an alphabetical list of the IHLLAPI

functions:
Function Number Function Number
Associate Profile 911 Query Host Update 24
Connect Presentation Space 1 Query Session Status 22
Connect Window Services 101 Query Sessions 10
Convert Position or RowCol 99 Query Sessions Full 910
Copy Field to String 34 Query System 20
Copy OIA 13 Query Window Coordinates 103
Copy Presentation Space 5 Receive File 91
Copy Presentation Space to String 8 Remove Profile 912
Copy String to Field 33 Reset System 21
Copy String to Presentation Space 15 Search Field 30
Disconnect Presentation Space 2 Search Presentation Space 6
Disconnect Window Services 102 Send File 90
Find Field Length 32 Send Key 3
Find Field Position 31 Set Cursor Position 40
Find File Name 914 Set Session Parameters 9
Find Short Name 915 Start Host Notification 23
Get Associations 913 Start Keystroke Intercept 50
Get Key 51 Stop Host Notification 25
Pause 18 Stop Keystroke Intercept 53
Post Intercept Status 52 Wait 4
Query Cursor Location 7 Window Status 104
Query Field Attribute 14

Alphabetical Function List 43

Chapter 3 IHLLAPI Functions

Numerical Function List

The following tables provide a numerical list of the IHLLAPI

functions:
Number Function Number Function
1 Connect Presentation Space 32 Find Field Length
2 Disconnect Presentation Space 33 Copy String to Field
3 Send Key 34 Copy Field to String
4 Wait 40 Set Cursor Position
5 Copy Presentation Space 50 Start Keystroke Intercept
6 Search Presentation Space 51 Get Key
7 Query Cursor Location 52 Post Intercept Status
8 Copy Presentation Space to String 53 Stop Keystroke Intercept
9 Set Session Parameters 90 Send File
10 Query Sessions 91 Receive File
13 Copy OIA 929 Convert Position or RowCol
14 Query Field Attribute 101 Connect Window Services
15 Copy String to Presentation Space 102 Disconnect Window Services
18 Pause 103 Query Window Coordinates
20 Query System 104 Window Status
21 Reset System 910 Query Sessions Full
22 Query Session Status 911 Associate Profile
23 Start Host Notification 912 Remove Profile
24 Query Host Update 913 Get Associations
25 Stop Host Notification 914 Find File Name
30 Search Field 915 Find Short Name
31 Find Field Position

44 Numerical Function List

Chapter 3 IHLLAPI Functions

Connect Presentation Space (1)

The Connect Presentation Space function connects your THLLAPI
application to the specified presentation space. After your
application connects to the presentation space, all communication
with the host occurs through it.

Prerequisites You must associate a session file name ((ADP) with a short name
using either Accessory Manager or the Associate Profile (911)
function.

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,

PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value

FunctionNumber CONNECTPS (1)

DataString The short name of the session to connect with.
DatalLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Return Parameters

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

Connect Presentation Space (1) 45

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode ~ WHLLOK (0) Function succeeded.
WHLLNOTCONNECTED An invalid short name
(2) was specified.
WHLLPSBUSY (4) The connection was
successfully made, but
the presentation space

is busy or input is inhibited.

WHLLINHIBITED (5) The connection was
successful, but the
keyboard is locked.

WHLLSYSERROR (9) The function failed due
to a system error.

WHLLUNAVAILABLE The specified
(12) presentation space is
already in use.

Comments This function runs Accessory Manager in a hidden state (if it is not
already running), opens the specified session (if it is not already
open), and connects to that session.

If the CONLOG session parameter is set (which is the default
state), your application window remains the active window on the
desktop.

If the CONPHYS session parameter is set, the terminal emulation
session window becomes the active window on the desktop.

See Also Disconnect Presentation Space (2), Associate Profile (911)

46 Connect Presentation Space (1)

Chapter 3 IHLLAPI Functions

Disconnect Presentation Space (2)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Disconnect Presentation Space function disconnects your
application from the current presentation space.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value
FunctionNumber DISCONNECTPS (2)
DataString Not applicable.
DatalLength Not applicable.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0)

Function succeeded.

WHLLNOTCONNECTED
)

Your application is not
connected to a
session.

WHLLSYSERROR (9)

The function failed due
to a system error.

Disconnect Presentation Space (2) 47

Chapter 3 IHLLAPI Functions

Comments

See Also

If the DISCONPHYS session parameter is set (which is the
default state), this function disconnects your application from the
presentation space, disconnects the session from the host, and
closes the session.

If the DISCONLOG session parameter is set, this function
disconnects your application from the presentation space, but does
not close the session.

As part of your application termination routine, always issue a
Reset System (21) call. This resets all the session parameters to
their defaults and helps avoid problems with any subsequent use
of the presentation space.

After the application disconnects from the presentation space,
functions that require a connected presentation space return an
error.

Connect Presentation Space (1), Set Session Parameters (9), Reset
System (21)

48 Disconnect Presentation Space (2)

Chapter 3 IHLLAPI Functions

Send Key (3)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Send Key function places a keystroke or string of keystrokes
in the presentation space at the current cursor location. This
function is equivalent to typing on the keyboard.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber SENDKEY (3)

DataString String of keystrokes (up to 255 bytes). Refer to the
tables later in this section for valid keystrokes.

Datalength Number of bytes in the DataString.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

Send Key (3) 49

Chapter 3 IHLLAPI Functions

Comments

See Also

50

Send Key (3)

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.
WHLLNOTCONNECTED Your application is
(1) not connected to a
session.
WHLLPARAMETERERROR An incorrect call

)

parameter was
passed.

WHLLPSBUSY (4)

The presentation

space is busy or input
was inhibited; some
keystrokes were not sent.

WHLLINHIBITED (5)

Input to the presen-
tation space was
inhibited or rejected;
some keystrokes
were not sent.

WHLLSYSERROR (9)

The function failed
due to a system
error.

Refer to “Waiting for Host Responses” on page 27 for suggested
methods for waiting for the session to become available before

sending keystrokes to the presentation space.

To send terminal keystrokes, you can use either the terminal
keystroke name enclosed in angle brackets or an escape character
(@ 1s the default) followed by an ASCII mnemonic code. For
example, to send the transmit keystroke, you can use either
<Transmit> or @E. The ASCII mnemonic codes are listed in the

following tables.

To send T 27 control sequences using the ASCII mnemonics, send
the code for Ctrl (@QA@") followed by the desired character. For
example, to send Ctrl w, the DataString would be @A@" w.

The ASCII mnemonics apply to the total length of the DataString
(which cannot exceed 255 characters). For example, if you send the
code for transmit (@E), you must include two bytes in the

DataLength parameter.

Connect Presentation Space (1), Set Session Parameters (9)

Chapter 3 IHLLAPI Functions

ASCIl Mnemonic
Codes

T 27 Terminal Keystrokes

The following tables list the ASCII mnemonic codes for T 27, UTS,

and VT terminal keystrokes.

You can change the escape character using the Esc=c session
parameter. Refer to “Set Session Parameters (9)” on page 71 for

more information.

ASCII

Terminal Keystroke Function Mnemonic
BackSpace Moves the cursor one column to the left without deleting any @<

characters

If the cursor is in the first column of a line, it moves to the last

column of the preceding line. If it is home, it moves to the last

column of the last line of the page.
CarriageReturn Moves the cursor to the first column of the next line or the first @N

column of the current line, depending on the session configuration
ClearPageCursorHome Deletes all text on the page and moves the cursor home @C

In forms mode, this keystroke clears either text in unprotected

fields or all text, depending on the session configuration.

Subsequently, the cursor moves to the first unprotected field.
ClearToEndOfLine Deletes all text from the cursor to the end of the line @F

In forms mode, this keystroke deletes all text from the cursor to the

end of the field.
CTRL Puts the session in control mode @A@"
CursorToEndOfPage Moves the cursor to the last position on the current page @q
DeleteFromLine Deletes the character that the cursor is on and shifts the remaining @D

characters on the line to the left
DeleteLine Deletes the line containing the cursor @A@D
Down Moves the cursor down one line @V

If the cursor is in the bottom line of a page, it moves to the top line.
F1...F9 Perform host-defined functions @1...@9
F10 Performs host-defined function @a
Home Moves the cursor home @0 (zero)
Ins Toggles between overwrite mode and insert-in-line mode @A@I

This keystroke might also insert a space at the cursor location,
depending on the session configuration.

Send Key (3)

51

Chapter 3 IHLLAPI Functions

T 27 Terminal Keystrokes, continued

ASCII

Terminal Keystroke Function Mnemonic
InsertLine Inserts a line at the cursor location, moving all subsequent lines @A@L

down and moving the cursor to the first column of the new line. Any

data that was on the last line of the page is lost.
Left Moves the cursor one column to the left @L

If the cursor is in the first column of a line, it moves to the last

column of the preceding line. If it is in the first column of the first

line of the page, it moves to the last column of the last line of the

page.
Local Puts the session in local mode @A@W
PageDown Displays the next page @v

If the last page already is displayed, this keystroke displays the first

page.
PageUp Displays the previous page @u

If the first page already is displayed, this keystroke displays the last

page.
PuteTX Inserts an end-of-text character at the cursor position and moves @A@S

the cursor home

In insert-in-line or insert-in-page mode, characters after the ETX

character shift to the right. In overwrite mode, the ETX character

replaces any character at the cursor position.
Receive Puts the session in receive mode @A@M
Right Moves the cursor one column to the right @z

If the cursor is in the last column of a line, it moves to the first

column of the next line. If it is in the last column of the last line of

the page, it moves to the first column of the first line of the page.
SHIFTF1 Performs host-defined function @b
SHIFTF2 Performs host-defined function @c
SHIFTF3 Performs host-defined function @d
SHIFTF4 Performs host-defined function @e
SHIFTF5 Performs host-defined function @f
SHIFTF6 Performs host-defined function @g
SHIFTF7 Performs host-defined function @h
SHIFTF8 Performs host-defined function @i

52 Send Key (3)

Chapter 3 IHLLAPI Functions

T 27 Terminal Keystrokes, continued

ASCII
Terminal Keystroke Function Mnemonic
SHIFTF9 Performs host-defined function @]
SHIFTF10 Performs host-defined function @k
Specify Sends the cursor location to the host @A@H
This keystroke might also send the page number, depending on
the session configuration. The session configuration also
determines whether the data is sent in hexadecimal or ASCII
format.
Tab Moves the cursor to the next tab stop @T
If tab stops were not set, this keystroke moves the cursor home.
In forms mode, this keystroke moves the cursor to the next
unprotected field.
TabBack Moves the cursor to the previous tab stop @B
If tabs were not set, this keystroke moves the cursor home.
In forms mode, this keystroke moves the cursor to the previous
unprotected field.
Transmit Sends data to the host @E
Depending on the session configuration, this keystroke sends the
data from home to the cursor position or from home to the end of
the page.
TransmitLine Sends to the host the data from the beginning of the line to the @A@X
cursor location
Up Moves the cursor up one line in the same column @u

If the cursor is in the top line of a page, it moves to the bottom line.

Send Key (3) 53

Chapter 3 IHLLAPI Functions

UTS Terminal Keystrokes

ASCII
Terminal Keystroke Function Mnemonic
BackSpace Moves the cursor one column to the left @<
If the cursor is in the first column of a row, it moves to the last
column of the preceding row. If the cursor is home, it moves to the
last column of the last row of the page.
CarriageReturn Moves the cursor to the first column of the next row @N
ClearChange Resets the changed-field indicator to zero on all FCC fields, @A@C
thereby indicating that all the fields are unchanged and should not
be transmitted
ClearPageCursorHome Deletes all text and FCC fields in the current page and moves the @C
cursor home
ClearToEndOfField Deletes all unprotected characters in an FCC field from the cursor @F
to the end of the FCC field
ClearToEndOfLine Deletes all text from the cursor to the end of the row or the end of @A@!I
an FCC field, whichever comes first
ClearToEndOfPage Deletes all text from the cursor to the end of the page except @A@p
protected fields
ControlPageToggle Displays/hides the Control Page or Extended Control Page, @A@"
depending on how the session is configured
CursorToEndOfField Moves the cursor to the end of the FCC field @A@)
If the last position is the trail byte of a DBCS character, the cursor
moves to the lead byte.
If the last position is protected, the cursor moves to the next
unprotected character.
CursorToEndOfLine Moves the cursor to the last position of the current row @A@]
If the last position is the trail byte of a DBCS character, the cursor
moves to the lead byte.
If the last position is protected, the cursor moves to the next
unprotected character.
CursorToEndOfPage Moves the cursor to the last position on the current page @q

If the last position is the trail byte of a DBCS character, the cursor
moves to the lead byte.

If the last position is protected, the cursor moves to the next
unprotected character.

54 Send Key (3)

Chapter 3 IHLLAPI Functions

UTS Terminal Keystrokes, continued

Terminal Keystroke

Function

ASCII
Mnemonic

CursorToEOPANdXmit

Moves the cursor to the end of the page and transmits the screen

@A@T

CursorToStartOfField

Moves the cursor to the first position in the FCC field in which
cursor is located

If the first position is the trail byte of a DBCS character, the cursor
moves back to the lead byte.

If the first position is protected, the cursor moves to the next
unprotected character.

@A@(

CursorToStartOfLine

Moves the cursor to the first position on the same row

If the first position is the trail byte of a DBCS character, the cursor
moves back to the lead byte.

If the first position is protected, the cursor moves to the next
unprotected character.

@AQI

DeleteFromLine

Deletes the character that the cursor is on, shifts the remaining
characters on the row to the left, and inserts a space in the last
column of the row

In an FCC field, this keystroke deletes the character, shifts the
remaining characters in that field to the left, and inserts a space in
the last column of the field. Emphasis is unchanged, and the
characters in the rest of the row aren’t shifted.

@D

DeleteFromPage

Deletes the character that the cursor is on and shifts all the
remaining characters one position to the left

If the cursor is in an FCC field, the characters in that field are
shifted to the left, but the characters beyond the current field aren’t
shifted. A space is inserted in the last position of the page or field.

@A@%

DeleteLine

Deletes the row containing the cursor

Subsequent rows move up one row. The bottom row is filled with
spaces.

@A@D

Down

Moves the cursor down one row in the same column
If the cursor is in the bottom row of a page, it moves to the top row.

If there is a protected character below, the cursor moves to the
next unprotected character to the right of the protected character.

@V

DuplicateLine

Copies the row containing the cursor to the row below, overwriting
whatever was on that row

The cursor moves to the same column on the duplicated row.

@A@$

F1...F9

Perform host-defined functions

@1..@9

Send Key (3)

55

Chapter 3 IHLLAPI Functions

UTS Terminal Keystrokes, continued

ASCII
Terminal Keystroke Function Mnemonic
F10 Performs host-defined function @a
F11 Performs host-defined function @b
F12 Performs host-defined function @c
F13 Performs host-defined function @d
F14 Performs host-defined function @e
F15 Performs host-defined function @f
F16 Performs host-defined function @g
F17 Performs host-defined function @h
F18 Performs host-defined function @i
F19 Performs host-defined function @j
F20 Performs host-defined function @k
F21 Performs host-defined function @l
F22 Performs host-defined function @m
FCCClear Deletes all text in the FCC field at the cursor location @A@\
If there isn’t an FCC at the cursor location, this keystroke clears the
closest FCC to the left of the cursor.
FCCEnable Re-enables FCCs so that you can enter data in them @A@e
FCCGenerate Initiates the FCC definition process using the keyboard instead of @A@g
the Generate FCC dialog box
FCCLocate Moves the cursor to the first character of the next FCC, whetherit @A@/
is protected or not
If this character is protected, protection is cleared.
Home Moves the cursor home @0 (zero)
If the home position is protected, this keystroke moves the cursor
to the first unprotected field on the page.
56 Send Key (3)

Chapter 3 IHLLAPI Functions

UTS Terminal Keystrokes, continued

ASCII

Terminal Keystroke Function Mnemonic
InsertinPage Inserts a space at the cursor location, moving subsequent @A@*

characters on the page one column to the right

Any character in the rightmost column moves to the first position

on the next row.

If the cursor is in an FCC field, the subsequent characters in that

field are shifted to the right, but the characters in the rest of the

page aren't shifted.

If there is a character in the last column in the page or field, it is

lost.
InsertLine Inserts a row at the cursor location and shifts subsequent rows @A@L

down one

The last row on the page is lost.
Left Moves the cursor one column to the left @L

If the cursor is in the first column of a row, it moves to the last

column of the preceding row. If it is in the first column of the first

row of the page, it moves to the last column of the last row of the

page.

If there is a protected character to the left, the cursor moves to the

next unprotected character to the right of the protected character.
MessageWait Displays the waiting host message @A@M
PageDown Displays the next page @v

If the last page already is displayed, this keystroke displays the

first page.
PageUp Displays the previous page @u

If the first page already is displayed, this keystroke displays the

last page.
Right Moves the cursor one column to the right @z

If the cursor is in the last column of a row, it moves to the first
column of the next row. If it is in the last column of the last row of
the page, it moves to the first column of the first row of the page.

If there is a protected character to the right, the cursor moves to
the next unprotected character to the left of the protected
character.

Send Key (3) 57

Chapter 3 IHLLAPI Functions

UTS Terminal Keystrokes, continued

ASCII
Terminal Keystroke Function Mnemonic
SetStartOfEntry Inserts a start-of-entry (SOE) character at the cursor position @A@S
In insert mode, characters after the SOE character shift to the
right. In overwrite mode, the SOE character replaces any
character at the cursor position.
SystemMode Puts the session in system mode so that you can send and receive ~ @A@Q
certain commands to and from a System 80 host
Tab Moves the cursor to the next tab stop (eitheran FCCtaboratab @T
on the screen)
If tabs were not set, this keystroke moves the cursor home.
TabBack Moves the cursor to the previous tab stop (eitheran FCCtabora @B
tab on the screen)
If tabs were not set, this keystroke moves the cursor home.
TabSet Places a tab on the screen at the cursor location and moves the @A@=
cursor one column to the right
Transmit Sends data to the host @E
Depending on the session configuration, this keystroke sends
either all data, only unprotected data, or only changed data.
UnlockKeyboard Restores keyboard functionality when it is locked due to a @R
communication error
Up Moves the cursor up one row in the same column @uU
If the cursor is in the top row of a page, it moves to the bottom row.
If there is a protected character above, the cursor moves to the
next unprotected character to the right of the protected character.
WorkstationMode Exits system mode and restores the session page @A@W

58 Send Key (3)

Chapter 3 IHLLAPI Functions

VT Terminal Keystrokes

Terminal Keystroke ASCIl Mnemonic
Backspace @<
Break @A@Q
Down @V
Enter @E
F6 @6
F7 @7
F8 @8
F9 @9
F10 @a
F11 @b
F12 @c
F13 @d
F14 @e
F15 of
F16 @g
F17 @h
F18 @i
F19 @j
F20 @k
Insert @A@I
Left @L
Next @v
PF1 @1
PF2 @2
PF3 @3
PF4 @4
Prev @u
Remove @D
Right @z
Up @Uu

Send Key (3) 59

Chapter 3 IHLLAPI Functions

Wait (4)

Prerequisites

Syntax

Call Parameters

Return Parameters

Comments

60 Wait (4)

The Wait function checks the status of the session to determine
whether it can accept input.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value
FunctionNumber WAIT (4)
DataString Not applicable.
DatalLength Not applicable.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0) The session is ready
for input.
WHLLNOTCONNECTED Your application is not

@)

connected to a
session.

WHLLPSBUSY (4)

The presentation space is
busy or input is still inhibited.

WHLLINHIBITED (5)

The keyboard is locked
and input is inhibited.

WHLLSYSERROR (9)

The function failed due
to a system error.

Since keystrokes are not accepted while the session is waiting for
a response from the host, use the Wait (4) function to check the
status of the session before sending keystrokes using the Send Key

(8) function.

Chapter 3 IHLLAPI Functions

See Also

If the TWAIT session parameter is set (which is the default state),
the Wait (4) function waits for up to one minute before returning
the appropriate return parameter to the application. If the session
becomes ready for input within that time, the function returns
WHLLOK (0) as soon as the session is ready. If the session does
not become ready for input within that time, the function returns
WHLLINHIBITED (5) at the end of the minute.

If the NWAIT session parameter is set, this function does not wait;
it returns the current status of the session immediately.

For more information about session parameters, refer to “Set
Session Parameters (9)” on page 71.

Refer to “Waiting for Host Responses” on page 27 for other
methods for waiting for the session to become available before
sending keystrokes to the presentation space.

Connect Presentation Space (1), Send Key (3), Set Session
Parameters (9)

Wait (4) 61

Chapter 3 IHLLAPI Functions

Copy Presentation Space (5)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Copy Presentation Space function copies the contents of the
presentation space to a string in your application.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber COPYPS (5)

DataString A data string defined in your application that will
contain the data in the presentation space.
If the EAB session parameter is set, this string must
be two or three times the size of the presentation
space (see “Comments”).

Datalength Not applicable (the length of the presentation space

is implied).

PSPosition_ReturnCode

Not applicable.

Parameter Value Description

DataString A string containing the See “Comments” for
contents of the information about how
presentation space. the data is returned.

Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0)

Function succeeded.

WHLLNOTCONNECTED
@)

Your application is not
connected to a
session.

WHLLINHIBITED (5)

The copy was
successful, but the
keyboard is locked.

WHLLSYSERROR (9)

The function failed
due to a system error.

62 Copy Presentation Space (5)

Chapter 3 IHLLAPI Functions

Comments

See Also

This function copies the entire presentation space. To copy only a
portion of the presentation space, use the Copy Presentation
Space to String (8) function.

If the NOATTRB session parameter is set (which is the default
state), bytes that are less than Ox1F are translated to spaces
(0x20). If the ATTRB session parameter is set, all bytes are passed
as their original values.

If the NOEAB session parameter is set (which is the default state),
this function copies only the data in the presentation space; it does
not copy any extended attributes.

If the EAB session parameter is set, each character in the
returned string is followed immediately by the attribute
information for that character. Therefore, you must allocate a
DataString that is long enough to accommodate both the screen
text and the attribute information.

For T 27, UTS 20, and UTS 40 sessions, the DataString must be
twice the size of the presentation space (one character and one
character attribute byte for each presentation space position). For
example, if the presentation space includes 1920 presentation
space positions, the DataString must be 3840 bytes. For UTS 60
sessions, the DataString must be three times the size of the
presentation space (one character, one character attribute byte,
and one color attribute byte for each presentation space position).

For information about the attribute bytes returned by T 27 and
UTS, refer to Appendix B, “Attribute Values.”

Connect Presentation Space (1), Copy Presentation Space to
String (8), Set Session Parameters (9), Copy Field to String (34)

Copy Presentation Space (5) 63

Chapter 3 IHLLAPI Functions

Search Presentation Space (6)

The Search Presentation Space function scans the current
presentation space for a specified string.

Prerequisites Connect Presentation Space (1)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value
FunctionNumber SEARCHPS (6)
DataString The string that you want this function to search for.

If the STREOT session parameter is set, the last
character in this string must be an end-of-text
character.

Datalength If the STRLEN session parameter is set (which is
the default state), this is the length of the
DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode If the SRCHALL session parameter is set (which is
the default state), this parameter is ignored.

If the SRCHFROM session parameter is set, this is
the presentation space position where you want the
search to begin. The upper left corner (row 1,
column 1) is position 1.

64 Search Presentation Space (6)

Chapter 3 IHLLAPI Functions

Return Parameters

Comments

See Also

Parameter Value Description
DataString Not applicable. Not applicable.
DatalLength 0 or greater than O If the value is O, the

string was not
found. A value
greater than O
indicates the
presentation space
position where the
string began.

PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR An incorrect call
2) parameter was
passed.

WHLLPOSITIONERROR (7) Aninvalid
presentation space
position was
passed.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The specified string
was not found.

Use this function to confirm that specific data exists in the
presentation space. For example, if your application expects a
specific prompt before sending data to the host, use this function
to search for the prompt before sending the data.

Connect Presentation Space (1), Set Session Parameters (9),
Search Field (30)

Search Presentation Space (6) 65

Chapter 3 IHLLAPI Functions

Query Cursor Location (7)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Query Cursor Location function returns the location of the
cursor in the presentation space.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber QUERYCURSORLOC (7)
DataString Not applicable.
DatalLength Not applicable.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength The presentation space This value is always

position where the cursor
is located

less than or equal to
the presentation
space size.

PSPosition_ReturnCode

WHLLOK (0)

Function succeeded.

WHLLNOTCONNECTED
@)

Your application is not
connected to a
session.

WHLLSYSERROR (9)

The function failed
due to a system error.

66 Query Cursor Location (7)

Chapter 3 IHLLAPI Functions

Comments For information about converting the presentation space position
to column and row coordinates, refer to “Send File (90)” on
page 128.

Use the Set Cursor Position (40) function to change the cursor
position.

See Also Connect Presentation Space (1), Set Cursor Position (40), Convert
Position or RowCol (99)

Query Cursor Location (7) 67

Chapter 3 IHLLAPI Functions

Copy Presentation Space to String (8)

The Copy Presentation Space to String function copies all or part
of the presentation space into a data string defined in your

application.
Prerequisites Connect Presentation Space (1), Set Session Parameters (9)
Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,

PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

COPYPSTOSTR (8)

DataString

A data string defined in your application that will
contain the data in the presentation space.

If the EAB session parameter is set, this string must
be two or three times the size of the presentation
space that is copied (see “Comments”).

DataLength

The number of characters that you want to copy.

PSPosition_ReturnCode

The presentation space position where you want to
begin copying. The upper left corner (row 1, column
1) is position 1.

Return Parameters

Parameter Value Description
DataString The string copied from the Not applicable.
presentation space.

Datalength Not applicable. Not applicable.

68 Copy Presentation Space to String (8)

Chapter 3 IHLLAPI Functions

Comments

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR A DatalLength of
2) zero was passed.

WHLLINHIBITED (5) The copy was
successful, but the
keyboard is locked.

WHLLPOSITIONERROR (7) An invalid
presentation space
position was
passed.

WHLLSYSERROR (9) The function failed
due to a system
error.

T 27 supports the display of a user message on an additional row
outside of the screen size (the 25th row in a 24-row screen). This
message is displayed by the host and cannot be edited by the user.
However, this function can copy this row as part of the
presentation space.

If the NOEAB session parameter is set (which is the default state),
this function copies only the data in the presentation space; it does
not copy any extended attributes.

If the EAB session parameter is set, each character in the
returned string is followed immediately by the attribute
information for that character. Therefore, you must allocate a
DataString that is long enough to accommodate both the screen
text and the attribute information.

For T 27, UTS 20, and UTS 40 sessions, the DataString must be
twice the size of the presentation space (one character and one
character attribute byte for each presentation space position). For
example, to copy 10 characters, the DataString must be 20 bytes.
For UTS 60 sessions, the DataString must be three times the size
of the presentation space (one character, one character attribute
byte, and one color attribute byte for each presentation space
position).

Copy Presentation Space to String (8) 69

Chapter 3 IHLLAPI Functions

For information about the attribute bytes returned by T 27 and
UTS, refer to Appendix B, “Attribute Values.”

If the NOATTRB session parameter is set (which is the default
state), bytes that are less than 0x1F are translated to spaces
(0x20). If the ATTRB session parameter is set, all bytes are passed
as their original values.

For more information about session parameters, refer to “Set
Session Parameters (9)” on page 71.

See Also Connect Presentation Space (1), Copy Presentation Space (5), Set
Session Parameters (9), Copy OIA (13), Copy Field to String (34)

70 Copy Presentation Space to String (8)

Chapter 3 IHLLAPI Functions

Set Session Parameters (9)

Prerequisites

Syntax

Call Parameters

Return Parameters

Comments

The Set Session Parameters function lets you specify the session
parameters that control how other IHLLAPI functions operate.

Unless you explicitly change the session parameters, the default
session parameters apply to all functions.

None.

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber SETSESSIONPARAMETERS (9)

DataString The session parameter to set.
All session parameters must be spelled exactly as
listed on the following pages. If you specify multiple
session parameters, be sure to separate them with
either a comma or a space.

DataLength The length of the DataString.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.
WHLLPARAMETERERROR One or more invalid

)

parameters were
passed.

WHLLSYSERROR (9)

The function failed
due to a system
error.

You can restore all session parameters to their default values by
calling the Reset System (21) function.

Set Session Parameters (9) 71

Chapter 3 IHLLAPI Functions

The following tables list the session parameters that you can set
(grouped by type), a description of each, and the functions each
session parameter or group of session parameters affect.

For types that include more than one session parameter, you can
set only one parameter at a time. For example, for the Translate
Attributes type, you can set either ATTRB or NOATTRB. The
default session parameters appear in bold.

Type Parameter

Description

Affected Functions

Translate NOATTRB

Attributes

Translates bytes that are less
than hexadecimal 1F to spaces
(hexadecimal 20)

ATTRB

Passes all bytes as their original
values

Copy Presentation Space (5)
Copy Presentation Space to String (8)
Copy Field to String (34)

Connect CONLOG

Connects physically to the
presentation space

The session window associated
with the presentation space
becomes the active window.

CONPHYS

Connects logically to the
presentation space

The session window associated
with the presentation space
does not become the active
window.

Connect Presentation Space (1)

Disconnect DISCONPHYS

Disconnects the application
from the session, disconnects
the session from the host, and
closes the session

DISCONLOG

Disconnects the application
from the session, but does not
disconnect from the host or
close the session

Disconnect Presentation Space (2)

Mode PSMODE

Writes data to the screen

RAWMODE

Simulates emulator transmits or
host data

Copy Presentation Space to String (8)
Copy String to Presentation Space
(15)

72 Set Session Parameters (9)

Chapter 3 IHLLAPI Functions

Type

Parameter

Description

Affected Functions

Extended
Attributes

NOEAB

Copies data without extended
attributes

EAB

Copies both the text and the
extended attributes

Each character in the returned
string is followed immediately by
the attribute information for that
character.

For T 27, UTS 20, and UTS 40
sessions, the DataString must
be twice the size of the
presentation space (one
character and one character
attribute byte for each
presentation space position).
For UTS 60 sessions, the
DataString must be three times
the size of the presentation
space (one character, one
character attribute byte, and
one color attribute byte for each
presentation space position).

For information about the
attribute bytes returned by T 27
and UTS, refer to Appendix B,
“Attribute Values.”

Copy Presentation Space (5)

Copy Presentation Space to String (8)
Copy String to Presentation Space
(15)

Copy String to Field (33)

Copy Field to String (34)

Strings

STRLEN

Requires an explicit length for all
strings

STREOT

Requires an end-of-text
character at the end of all strings
rather than an explicit length

Search Presentation Space (6)
Copy String to Presentation Space
(15)

Search Field (30)

Copy String to Field (33)

Copy Field to String (34)

Set Session Parameters (9) 73

Chapter 3 IHLLAPI Functions

Type Parameter Description Affected Functions

End-of-Text EOT=c Defines the end-of-text (EOT) Send Key (3)
character for the end of a string Copy Presentation Space (5)

Search Presentation Space (6)

The E?T I(.:thartlylct:r mutst bg a Copy Presentation Space to String (8)
one-byte fiteral character. o Copy String to Presentation Space
not insert a space between the (15)
eﬂual s:gn and the EOT Search Field (30)
character. Copy String to Field (33)
The EOT character is used only ~ Copy Field to String (34)
if the STREOT session
parameter is set.
The default EOT character is a
binary zero.

Escape ESC=c Defines the escape character Send Key (3)
used in the Send Key (3) and Get Key (51)
Get Key (51) functions
The escape character can be
any ASCII character. Do not
insert any spaces between the
equal sign and the escape
character.
The default escape character is
@.

Window NOHWND104 Omits the window handle in the Window Status (104)

Handle returned buffer

HWND104 Includes the window handle in

the returned buffer

Pause FPAUSE Pauses for the length of time Pause (18)
specified by the Pause (18) Start Host Notification (23)
function

IPAUSE Once a Start Host Notification

(23) call is made, pauses until a
host event occurs

74 Set Session Parameters (9)

Chapter 3 IHLLAPI Functions

Type Parameter Description Affected Functions
Search SRCHALL Searches the entire Search Presentation Space (6)
presentation space or the entire Search Field (30)
field, depending on which
function is called
SRCHFROM Searches from the specified
presentation space position to
the end of the presentation
space or the end of the field,
depending on which function is
called
Wait TWAIT Waits for up to one minute Wait (4)
before returning a parameter
that indicates whether the
session is ready to receive input
If the session becomes ready for
input within that time, the
function returns WHLLOK (0) as
soon as the session is ready. If
the session does not become
ready for input within that time,
the function returns
WHLLINHIBITED (5) at the end
of the minute.
NWAIT Immediately returns the current
status of the session (that is,
whether it can accept input)
AutoOpen AUTOOPEN AUTOOPEN opens a session Affects most functions that accept a
when a shortname points to a shortname input parameter, including:
session that isn’t running. Query Sessions (10)
Query Session Status (22)
Start Host Notification (23)
Query Host Update (24)
Start Keystroke Intercept (50)
Get Key (51)
Post Intercept Status (52)
Stop Keystroke Intercept (53)
Convert Position or RowCol (99)
Window Status (104)
NOAUTOOPEN NOAUTOOPEN will not open a

session when a shortname
points to a session that is not
running.

Set Session Parameters (9) 75

Chapter 3 IHLLAPI Functions

See Also Connect Presentation Space (1), Disconnect Presentation Space
(2), Send Key (3), Wait (4), Copy Presentation Space (5), Search
Presentation Space (6), Copy Presentation Space to String (8),
Copy String to Presentation Space (15), Pause (18), Reset System
(21), Start Host Notification (23), Search Field (30), Copy String to
Field (33), Copy Field to String (34), Window Status (104)

76 Set Session Parameters (9)

Chapter 3 IHLLAPI Functions

Query Sessions (10)

The Query Sessions function returns the number of all currently
open sessions. For each session, this function also returns a 12-
byte data string that contains the following information:

Short name of the session (if any)

File name of the session

Type of session (T 27, UTS)

Size of the presentation space

Prerequisites None.

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

QUERYSESSIONS (10)

DataString

A data string used to return the session information.

The string must be long enough to accommodate 12
bytes for each session.

DataLength

The length of the DataString.

PSPosition_ReturnCode

Not applicable.

Return Parameters

Parameter Value Description
DataString A data string. See “Comments.”
Datalength The number of currently Not applicable.

open sessions.

PSPosition_ReturnCode

WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR The DatalLength is

2 not a multiple of 12.

WHLLSYSERROR (9) The function failed
due to a system
error.

Query Sessions (10) 77

Chapter 3 IHLLAPI Functions

Comments The returned DataString for each session is formatted as shown in
the following table:

Byte Description

1 The short name (null if the session has no short name)
2-9 The file name of the session (up to 8 characters)

10 The session type (A for T 27, O for UTS)

11-12 A binary number that indicates the presentation space size

The return value of DataLength is set only when the
PSPosition_ReturnCode is WHLLOK (0) or
WHLLPARAMETERERROR (2).

See Also Connect Presentation Space (1), Query Session Status (22),
Associate Profile (911), Remove Profile (912), Get Associations
913), Find File Name (914), Find Short Name(915)

78 Query Sessions (10)

Chapter 3 IHLLAPI Functions

Query Sessions Full (910)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Query Sessions Full (910) function is the same as Query
Sessions (10) except that it additionally provides the full path of
the session file (using characters 13 through 272 of each entry) in

its returned values.

None.

W nHLLAPI (FunctionNumber, DataString, DataLength,
PSPosi t i on_ReturnCode)

Parameter

Value

FunctionNumber

QUERYSESSIONS (10)

DataString A data string used to return the session information.
The string must be long enough to accommodate
272 bytes for each session.

DatalLength The length of the DataString.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString A data string. See “Comments.”
Datalength The number of currently Not applicable.
open sessions.
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.
WHLLPARAMETERERROR The Datalength is

)

not a multiple of
272.

WHLLSYSERROR (9)

The function failed
due to a system
error.

Query Sessions Full (910) 79

Chapter 3 IHLLAPI Functions

The returned DataString for each session is formatted as shown in

the following table:

Description

The short filename of the session (up to 8 characters)

The session type (A for T 27, O for UTS)

A binary number that indicates the presentation space size

The full path of the session file

Comments
Byte
2-9
10
11-12
13-272

See Also

80 Query Sessions Full (910)

Query Sessions (10).

Chapter 3 IHLLAPI Functions

Copy OIA (13)

The Copy OIA function returns the information about the operator
information area (status line) and other information (such as the
cursor shape). The information returned varies from one emulator

to another.

Prerequisites

Syntax

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,

PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

COPYOIA (13)

DataString

A data string for the OIA information that will be
returned by this function.

For UTS, this string must be at least 103 bytes. For
T 27, the string length varies, depending on
whether you want this function to copy any T 27
user messages (that is, the row below the last
defined row). If you do not want to copy these
messages, the string must be 96 bytes. If you do
want to copy these messages, this string must be at
least 120 bytes.

Datalength

The number of bytes in the DataString.

This parameter must be at least 120 to ensure that
the DataString is large enough to hold all of the OIA
information.

PSPosition_ReturnCode

Not applicable.

Return Parameters
Parameter

Value Description

DataString

A 96- to 120-byte string
containing OIA information.

See “Comments.”

Datalength

Not applicable. Not applicable.

Copy OIA (13) 81

Chapter 3 IHLLAPI Functions

Comments

82

Copy OIA (13)

Parameter Value Description
PSPosition_Return WHLLOK (0) Function succeeded.
Code
WHLLNOTCONNECTED Your application is
Q) not connected to a
session.
WHLLPARAMETERERROR The DatalLength
2) contains an invalid

value; the status
information was not
copied.

WHLLINHIBITED (5)

The status
information copied
successfully, but the
session is locked
(input inhibited).

WHLLSYSERROR (9)

The function failed
due to a system
error.

The string returned in the DataString contains the following

information:
Byte Description
1 Emulator type
2-83 Reserved for future use
84-85 Information common to all emulators
86-120 Information specific to each emulator

The following tables display the OIA data for each emulator:

T 27 OIA Data
Byte Description
1 Emulator type
2-81 Reserved
82-83 Reserved
84 Connection status 0 = Normal
1 = Broken

Chapter 3 IHLLAPI Functions

T 27 OIA Data, continued

Byte Description Value
85 Cursor shape 0 = Block
1 = Underline
2 = Vertical bar
86 Current page number 1-256
87 Total number of pages 1-256
88 Editing mode 0 = Overtype
1 =Insertin line
2 = Insert in page
89 Forms mode 0 = off
1=o0n
90 Transmit mode 0 = off
1=o0n
91 Control mode 0 = off
1=on
92 Receive mode 0 = off
1=o0n
93 LTAI 0 = off
1=o0n
94 Enquire mode 0 = off
1=o0n
95 Search mode 0 = off
1=o0n
96 Transmit line mode 0 = off
1=o0n
97 Connection status 0 = Normal
(QuickApp® only) 0x80 = Broken
98-103 Reserved 0
104-119 User message* ASCII (padded with blanks)
120 Reserved for ASCII 0 0x00

* The T 27 user message area is the first line below the regular presentation
space and is used for messages sent by the host. Character attributes (such as
bright, underline) are supported on this line, but they are not copied using this
function. To retrieve the character attributes, use the Copy Presentation Space
To String (8) function, with the startup position set to the first character after the
normal presentation space ends.

Copy OIA (13) 83

Chapter 3 IHLLAPI Functions

84

Copy OIA (13)

Note: This function only allows you to capture the first 15 characters of the user
message (which starts on line 25).

UTS OIA Data
Byte Description Value
1 Emulator type 2
2-81 Reserved Spaces
82 Reserved 0
83 Terminal model 0=UTS 20
1=UTS 40
2=UTS 60
3=UTS50
84 Connection status 0 = No Poll/ The connection is
not active.
1 = Poll/ This is the normal
case, everything is fully up.
2 = Connection Suspended/
The connection is broken.
(Connection Suspended is
available only with the
PEPGate Client transport)
85 Cursor shape 0 = Block
1 = Underline
2 = Vertical bar
86 Current page number 1-256
87 Total number of pages 1-256
88 Editing mode 0 = Overtype
1 =Insert
89 Transmit mode 0 = Transmit ALL mode
1 = Transmit VAR mode
2 = Transmit CHAN mode
90 Keyboard lock (wait indicator) 0 = Keyboard unlocked
1 = Keyboard locked
91 Screen color OxBF*, where
B = Background color (0-7)
F = Foreground color (0-7)
92 Status line color O0xBF*, where

B = Background color (0-7)
F = Foreground color (0-7)

Chapter 3 IHLLAPI Functions

UTS OIA Data, continued

Byte Description Value
93 Control Page protected fields O0xBF*, where
color B = Background color (0-7)
F = Foreground color (0-7)
94 Control Page unprotected fields 0xBF*, where

color

B = Background color (0-7)
F = Foreground color (0-7)

*The color value is the color specified by the host, not the color specified by the
emulator: 0 = Black, 1 = Red, 2 = Green, 3 = Yellow, 4 = Blue, 5 = Magenta,
6 = Cyan, and 7 = White.

95 Current page type 0 = Workstation page
1 = System page
2 = Control Page
96 Control Page type 0 = Normal Control Page
1 = Extended Control Page
97 Connection status 0 = Normal
(QuickApp only) 0x80 = Broken
98 Print mode 0 = Print PRNT Mode
1 = Print FORM Mode
2 = Print XPAR Mode
99 System message 0 = No System Message
1 = System Message
100 FCC transmit type 0 =No FCCs
1 = Expanded FCCs (UTS 20
and UTS 40)
2 = Color FCCs (UTS 60)
101 Emphasis transmit type 0 = No emphasis
1=E2
2=E3
102 Print DID value 0x20-0x7F
103 Read DID value 0x20-0x7F
104 Message waiting 0 = No message waiting

1 = Message waiting

Copy OIA (13) 85

Chapter 3 IHLLAPI Functions

UTS OIA Data, continued

Byte Description Value
105 Host changed Control Page 1= Host accessed the Control
indicator Page (via an "Esc 0" sequence)
since the last time a transmit
was done.

0= UTS Control Page not
accessed since the last time a
transmit was done.

106 Host changed Screen indicator 1= Host placed at least 1
character on the 24x80 screen
since the last transmit was
done.

0= Host placed no characters
on the 24x80 screen since the
last transmit was done.

See Also Connect Presentation Space (1), Copy Presentation Space (5),
Copy Presentation Space to String (8), Copy Field to String (34)

86 Copy OIA (13)

Chapter 3 IHLLAPI Functions

Query Field Attribute (14)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Query Field Attribute function returns the attributes of the
specified field in the presentation space. The information returned
varies from one emulator to another.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber QUERYFIELDATTRIBUTE (14)
DataString Not applicable.

DatalLength Not applicable.

PSPosition_ReturnCode

Any presentation space position in the desired field.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength The value of the attribute Refer to the tables on

byte for the specified field

If the presentation space is
unformatted, this value is
zero.

the following pages
for information about
the returned values.

PSPosition_ReturnCode

WHLLOK (0) Function succeeded.
WHLLNOTCONNECTED Your application is not
1) connected to a

session.

WHLLPOSITIONERROR
@)

An invalid presen-
tation space position
was passed.

WHLLSYSERROR (9)

The function failed
due to a system error.

WHLLNOFIELD (24)

The field was not
found, or the
presentation space
was unformatted.

Query Field Attribute (14)

87

Chapter 3 IHLLAPI Functions

Comments The attributes for all the positions within a field should normally
be the same. If a field has multiple attributes, the returned
attribute value will be valid only for the specified presentation

space position.

The information returned varies from one emulator to another, as

shown in the following tables.

T 27 Field Attributes

Bit
Position Description

Value

7 Mode 0 = Nonforms mode
1 = Forms mode
6 Visibility 0 = Secure video
1 = Normal video
5 Unprotected/protected 0 = Unprotected
1 = Protected
4 Intensity 0 = Normal
1 = Bright
3 Justification 0 = Left justified
1 = Right justified
2 Protected types (valid 0 = Non-transmittable

when bit 5 is 1)

1 = Protected

1 Reverse video 0 = Normal video
1 = Reverse video
0 Reserved Space

user cannot change them.

transmittable.

88 Query Field Attribute (14)

Note: A non-transmittable field is a field that is not sent to the
host when the user transmits. For example, labels on forms are
typically non-transmittable fields. The information within field
delimiters is normally transmitted to the host. These fields can
be either protected or unprotected. If they are protected, the

Since field delimiters themselves occupy a position in the
presentation space, the field attribute for that position is non-

Chapter 3 IHLLAPI Functions

UTS Field Attributes

Bit
Position Description Value
7 Reserved Space
6 Visibility 0 = Secure video
1 = Normal video
5 Unprotected/protected 0 = Unprotected
1 = Protected
4 Intensity 0 = Normal
1=Dim
3 Justification 0 = Left justified
1 = Right justified
2 Field type 0 = Alphanumeric
1 = Numeric only
1 Reverse video 0 = Normal video
1 = Reverse video
0 FCC changed flag 0 = FCC has not been modified
1 = FCC has been modified
See Also Connect Presentation Space (1), Copy String to Field (33)

Query Field Attribute (14) 89

Chapter 3 IHLLAPI Functions

Copy String to Presentation Space (15)

The Copy String to Presentation Space function copies an ASCII
string from your application to a specific location in the

presentation space.

Prerequisites Connect Presentation Space (1), Set Session Parameters (9)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

COPYSTRTOPS (15)

DataString

The data string to copy to the presentation space.

Make sure that the string is not larger than the
presentation space.

Datalength

If the STRLEN session parameter is set (which is
the default state), you must explicitly provide the
length of the DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode

The presentation space position where you want to
place the copied data.

Return Parameters

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

90 Copy String to Presentation Space (15)

Chapter 3 IHLLAPI Functions

Comments

See Also

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR A DatalLength of
2) zero was specified.

WHLLINHIBITED (5) The presentation
space is protected
or inhibited, or
inappropriate data
(such as a field
attribute byte) was
passed. None of
the string was
copied.

WHLLTRUNCATED (6) The string was
copied, but data
was truncated at
the end of the
screen.

WHLLPOSITIONERROR (7) Aninvalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

If you are copying a string to a formatted presentation space, use
the Query Field Attribute (14) function to determine whether the
presentation space position occurs in a protected field before
copying the string to that location.

Connect Presentation Space (1), Set Session Parameters (9),
Query Field Attribute (14), Copy String to Field (33)

Copy String to Presentation Space (15) 91

Chapter 3 IHLLAPI Functions

Pause (18)

The Pause function causes your application to wait a specific
amount of time or for an event to occur. Use this function instead
of a timing loop.

Prerequisites None.

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value

FunctionNumber PAUSE (18)

DataString Not applicable.

DatalLength The number of half-seconds that the application

should pause. For example, to pause 60 seconds,
the DataLength should be 120.

PSPosition_ReturnCode Not applicable.

Return Parameters

Parameter Value Description

DataString Not applicable. Not applicable.

Datalength Not applicable. Not applicable.

PSPosition_ReturnCode ~ WHLLOK (0) The pause duration
expired.

WHLLSYSERROR The function failed due to a
9 system error.

WHLLPSCHANGED The presentation space
(26) has been updated.

92 Pause (18)

Chapter 3 IHLLAPI Functions

Comments

See Also

If the FPAUSE session parameter is set (which is the default
state), the application pauses until the amount of time specified by
the DataLength expires.

If the IPAUSE session parameter is set and Start Host
Notification (23) has been called, the application pauses the
amount of time specified by the DataLength or until the host sends
data to the session, whichever comes first.

Set Session Parameters (9), Start Host Notification (23), Query
Host Update (24)

Pause (18) 93

Chapter 3 IHLLAPI Functions

Query System (20)

The Query System function provides information about the
WinHLLAPI and THLLAPI DLL version numbers and level

numbers.
Prerequisites None.
Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,

PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value

FunctionNumber QUERYSYSTEM (20)

DataString A 35-byte buffer for incoming system data.
DatalLength Not applicable.

PSPosition_ReturnCode Not applicable.

Return Parameters

Parameter Value Description
DataString A 35-byte data string. See “Comments.”
Datalength Not applicable. Not applicable.
PSPosition_ReturnCode WHLLOK Function succeeded.

WHLLSYSERROR The function failed due to
a system error.

94 Query System (20)

Chapter 3 IHLLAPI Functions

Comments The returned DataString contains the following information:
Byte Description
1 The Microsoft WinHLLAPI version number
2-3 The Microsoft WinHLLAPI level number
4-9 The Microsoft WinHLLAPI release date in month/day/year format
(for example, 031996)
10-12 Reserved
13 U
14 E
15-16 The IHLLAPI version number
17-18 The IHLLAPI level number
19-35 Reserved
See Also Query Sessions (10), Query Session Status (22)

Query System (20) 95

Chapter 3 IHLLAPI Functions

Reset System (21)

Prerequisites

Syntax

Call Parameters

Return Parameters

Comments

See Also

The Reset System function sets all session parameters to their
default values. This function also stops host event notification and
disconnects any connected presentation spaces.

None.

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value
FunctionNumber RESETSYSTEM (21)
DataString Not applicable.
DatalLength Not applicable.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0) Function succeeded.
WHLLSYSERROR The function failed due to a
9) system error.

Your application should call this function before closing to ensure
that other applications start up in a known environment.

Disconnect Presentation Space (2), Set Session Parameters (9),
Start Host Notification (23), Stop Host Notification (25)

96 Reset System (21)

Chapter 3 IHLLAPI Functions

Query Session Status (22)

The Query Session Status function returns an 18-byte data string
with the following information about a specified session:

Short name
File name
Session type

Number of rows and columns in the presentation space
Prerequisites None.

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value
FunctionNumber QUERYSESSIONSTATUS (22)
DataString An 18-byte data string containing the short name of

the session plus 17 extra bytes (to reserve space for
the returned data).

The short name can be a space or null character if
you want to retrieve data about the current
presentation space.

Datalength The number of bytes in the DataString (at least 18).

PSPosition_ReturnCode Not applicable.

Return Parameters

Parameter Value Description
DataString An 18-byte string. See “Comments.”
Datalength Not applicable. Not applicable.

Query Session Status (22) 97

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED An invalid short

1) name was speci-
fied.

WHLLPARAMETERERROR An invalid

2) Datalength was
passed.

WHLLSYSERROR (9) The function failed

due to a system
error.

Comments The returned DataString contains the following information:
Byte Description
1 Short name of the session
2-9 File name of the session (up to eight characters)
10 Session type (A for T 27, O for UTS)
11 Reserved
12-13 Number of rows in the presentation space (binary number)
14-15 Number of columns in the presentation space (binary number)
16-18 Reserved

For an unopened session, this call returns only the short name
and file name for the session. Bytes 10 through 18 in the returned
DataString will contain null characters.

Use Query Sessions (10) to determine which sessions are open.

See Also Query Sessions (10)

98 Query Session Status (22)

Chapter 3 IHLLAPI Functions

Start Host Notification (23)

Prerequisites

Syntax

Call Parameters

Return Parameters

This function enables notifying your application of changes in the
presentation space or operator information area (OIA).

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber STARTHOSTNOTIFICATION (23)
DataString A 7-byte string. See “Comments” for details.
DatalLength Not applicable.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description

DataString Same as the DataString on See “Comments.”
the call parameter.

Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0)

WHLLNOTCONNECTED (1)

WHLLPARAMETERERROR
@

Function
succeeded.

Your application is
not connected to a
session.

One or more
parameters are
invalid.

WHLLSYSERROR (9)

The function failed
due to a system
error.

Start Host Notification (23)

99

Chapter 3 IHLLAPI Functions

Comments The DataString in the call parameter is a 7-byte string that
contains the following information:

Byte Description

1 Short name of the desired session, or a space or null character for the
current session

2 P for presentation space update only, O for OIA update only, B for
both presentation space and OIA updates

3-6 Not used; no error occurs if old IHLLAPI applications use these
positions

7 Reserved

Once host notification is enabled, it remains enabled until your
application calls Stop Host Notification (25) or Reset System (21).

If the IPAUSE session parameter is set and Start Host
Notification (23) has been called, you can use the Pause (18)
function to pause your application the amount of time specified by
the Pause (18) function’s DataLength or until the host updates the
presentation space and/or OIA, whichever comes first.

See Also Set Session Parameters (9), Pause (18), Reset System (21), Query
Host Update (24), Stop Host Notification (25)

100 Start Host Notification (23)

Chapter 3 IHLLAPI Functions

Query Host Update (24)

This function determines if the presentation space or operator
information area (OIA) has been updated since Start Host
Notification (23) was called or since this function was previously

called.
Prerequisites Start Host Notification (23)
Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,

PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

QUERYHOSTUPDATE (24)

DataString

The short name of the desired session, or a space
or null character for the current session.

Datalength

Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode

Not applicable.

Return Parameters

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

Query Host Update (24) 101

Chapter 3 IHLLAPI Functions

Comments

See Also

102

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) No updates occurred.
WHLLNOTCONNECTED The specified session

)

is invalid.

WHLLNOTAVAILABLE
(8)

Start Host Notification
(23) was not called for
the specified session
prior to this function.

WHLLSYSERROR (9)

The function failed due
to a system error.

WHLLOIAUPDATE (21)

One or more updates
to the OIA occurred.

WHLLPSUPDATE (22)

One or more updates
to the presentation
space occurred.

WHLLBOTHUPDATE
(23)

One or more updates
to both the OIA and the
presentation space
occurred.

In this version of IHLLAPI, the OIA is not handled separately

from the presentation space. This function returns

WHLLBOTHUPDATE (23) for any update.

Query Host Update (24)

Start Host Notification (23), Stop Host Notification (25)

Chapter 3 IHLLAPI Functions

Stop Host Notification (25)

Prerequisites

Syntax

Call Parameters

Return Parameters

This function disables notifying your application of changes in the
presentation space and/or operator information area (OIA).

Start Host Notification (23)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber STOPHOSTNOTIFICATION (25)

DataString The short name of the desired session, or a space
or null character for the current session.

Datalength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0)

Function succeeded.

WHLLNOTCONNECTED
@)

Your application is not
connected to a
session.

WHLLNOTAVAILABLE
®)

Start Host Notification
(23) was not called for
the specified session
prior to this function.

WHLLSYSERROR (9)

The function failed due
to a system error.

Stop Host Notification (25) 103

Chapter 3 IHLLAPI Functions

Comments Once host notification has been disabled, Query Host Update (24)
can no longer determine whether the presentation space or OIA
have been updated, and host events will not cause the Pause (18)
function to return a return code to the application.

The Reset System (21) function also stops host notification.

See Also Pause (18), Reset System (21), Start Host Notification (23), Query
Host Update (24)

104 Stop Host Notification (25)

Chapter 3 IHLLAPI Functions

Search Field (30)

The Search Field function searches the specified field for a
specified string.

Prerequisites Connect Presentation Space (1)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value
FunctionNumber SEARCHFIELD (30)
DataString The string that you want this function to search for.

If the STREOT session parameter is set, the last
character in this string must be an end-of-text
character.

Datalength If the STRLEN session parameter is set (which is
the default state), this is the length of the
DatasString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode A position within the field that you want to search.

If the SRCHALL session parameter is set (which is
the default state), this function searches the entire
field.

If the SRCHFROM session parameter is set, this
function begins searching at the specified location
and stops at the end of the field.

Search Field (30) 105

Chapter 3 IHLLAPI Functions

Return Parameters
Parameter

Value

Description

DataString

Not applicable.

Not applicable.

DataLength

0 or greater than O

If the value is
zero, the string
was not found. A
value greater
than zero indi-
cates the presen-
tation space
position where
the string begins.

PSPosition_ReturnCode

WHLLOK (0)

The function
succeeded.
Check the
DatalLength for
the search result.

WHLLNOTCONNECTED (1)

Your application
is not connected

to a session.
WHLLPARAMETERERROR An invalid
2) parameter was

passed.

WHLLPOSITIONERROR (7)

The PSPosition_
ReturnCode was
either zero or
greater than the
presentation
space size.

WHLLSYSERROR (9)

The function
failed due to a
system error.

WHLLNOFIELD (24)

The presentation
space was
unformatted.

Comments

This function applies only to formatted presentation spaces. For

unformatted presentation spaces, use the Search Presentation

Space (6) function.

See Also

Set Session Parameters (9)

106 Search Field (30)

Connect Presentation Space (1), Search Presentation Space (6),

Chapter 3 IHLLAPI Functions

Find Field Position (31)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Find Field Position function returns the beginning
presentation space position of a specified field.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber FINDFIELDPOSITION (31)

DataString A two-character code that specifies which field you
want to find the beginning position of.
See “Comments” for details.

Datalength Not applicable; a length of 2 bytes is implied.

PSPosition_ReturnCode

Any presentation space position within the field
where you want to begin the search.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength The starting position of the A zero for this

field. parameter
indicates that the
field was not found,
the presentation
space was
unformatted, or the
field length was
zero.

Find Field Position (31) 107

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR An incorrect
2) parameter was
specified.

WHLLPOSITIONERROR (7) Aninvalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The field was not
found, or the
presentation space
was unformatted.

WHLLZEROLENFIELD (28) The field length is
zZero.

Comments The DataString in the call parameter is a two-character code that
specifies which field you want to find the beginning position of.
These codes must be in uppercase.

Code Field

<space><space> The field specified by the PSPosition_ReturnCode
T<space> The field specified by the PSPosition_ReturnCode
P<space> Previous protected or unprotected field

PP Previous protected field

PU Previous unprotected field

N<space> Next protected or unprotected field

NP Next protected field

NU Next unprotected field

This function applies only to formatted presentation spaces.

See Also Connect Presentation Space (1), Find Field Length (32)

108 Find Field Position (31)

Chapter 3 IHLLAPI Functions

Find Field Length (32)

The Find Field Length function returns the length of a specified

field.
Prerequisites Connect Presentation Space (1)
Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,

PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

FINDFIELDLENGTH (32)

DataString

A two-character code that specifies which field you
want the length of.

See “Comments” for details.

Datalength

Not applicable; a length of 2 bytes is implied.

PSPosition_ReturnCode

Any presentation space position within the field
whose length you want to find.

Return Parameters

Parameter Value Description
DataString Not applicable. Not applicable.
DatalLength The length of the specified A zero indicates

field. that the field was
not found, the
presentation space
was unformatted,
or the field length
was zero.

Find Field Length (32) 109

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR An incorrect
2) parameter was
specified.

WHLLPOSITIONERROR (7) Aninvalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The field was not
found, or the
presentation space
was unformatted.

WHLLZEROLENFIELD (28) The field length is
zZero.

Comments The DataString in the call parameter is a two-character code that
specifies which field you want the length of. These codes must be
in uppercase.

Value Field

<space><space> The field specified by the PSPosition_ReturnCode
T<space> The field specified by the PSPosition_ReturnCode
P<space> Previous protected or unprotected field

PP Previous protected field

PU Previous unprotected field

N<space> Next protected or unprotected field

NP Next protected field

NU Next unprotected field

This function applies only to formatted presentation spaces.

See Also Connect Presentation Space (1), Find Field Position (31)

110 Find Field Length (32)

Chapter 3 IHLLAPI Functions

Copy String to Field (33)

The Copy String to Field function copies a string of characters
from your application to a specified field.

Prerequisites

Syntax

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,

PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

COPYSTRINGTOFIELD (33)

DataString

The data string to copy to the specified field.

If the STREOT session parameter is set, this string
must contain an end-of-text character.

Datalength

If the STRLEN session parameter is set (which is
the default state), you must explicitly provide the
length of the DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode

Any presentation space position within the field
where you want to place the data string. The data
string is always placed at the first position of the
field. If the field is right-justified, the emulator moves
the string to the appropriate position.

Return Parameters
Parameter

Value Description

DataString

Not applicable. Not applicable.

Datalength

Not applicable. Not applicable.

Copy String to Field (33) 111

Chapter 3 IHLLAPI Functions

112

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1)

Your application is
not connected to a
session.

WHLLPARAMETERERROR

)

A Datalength of
zero was specified.

WHLLINHIBITED (5)

The field is
protected or
inhibited, or
inappropriate data
(such as a field
attribute byte) was
passed. None ofthe
string was copied.

WHLLTRUNCATED (6)

The string was
copied, but data
was truncated.

WHLLPOSITIONERROR (7)

An invalid
presentation space
position was
specified.

WHLLSYSERROR (9)

The function failed
due to a system
error.

WHLLNOFIELD (24)

The presentation
space is
unformatted.

WHLLZEROLENFIELD (28)

The specified field
has a length of
zero.

Copy String to Field (33)

Chapter 3 IHLLAPI Functions

Comments This function applies only to formatted presentation spaces.

In addition, this function stops copying the string when it
encounters one of the following:

The end of the field

The number of characters specified by the DatalLength (if the
STRLEN session parameter is set)

An end-of-text character (if the STREOT session parameter is
set)

See Also Connect Presentation Space (1), Set Session Parameters (9), Copy
String to Presentation Space (15)

Copy String to Field (33) 113

Chapter 3 IHLLAPI Functions

Copy Field to String (34)

The Copy Field to String function copies all the characters from a
specified field to a data string in your application.

Prerequisites Connect Presentation Space (1)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value
FunctionNumber COPYFIELDTOSTRING (34)
DataString An empty data string large enough to hold all the

data copied from the field.

If the EAB session parameter is set, this string must
be two or three times the size of the presentation
space (see “Comments”).

DataLength If the STRLEN session parameter is set (which is
the default state), you must explicitly provide the
length of the DataString.

If the STREOT session parameter is set, this
parameter is ignored.

PSPosition_ReturnCode Any presentation space position within the field that
you want to copy. The copy always begins at the
first position of the field. If the field is right-justified,
the emulator moves the string to the appropriate

position.
Return Parameter -
etu arameters Parameter Value Description
DataString A string containing the See “Comments.”

contents of the field.

Datalength Not applicable. Not applicable.

114 Copy Field to String (34)

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

WHLLPARAMETERERROR An invalid

2) parameter was
passed.
WHLLTRUNCATED (6) The field in the

presentation space
and the string in
your application
are not the same
size. Some data
might have been
truncated.

WHLLPOSITIONERROR (7) Aninvalid
presentation space
position was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOFIELD (24) The field was not
found, or the
presentation space
was unformatted.

WHLLZEROLENFIELD (28) The specified field
has a length of
zero.

Comments This function applies only to formatted presentation spaces.

If the NOEAB session parameter is set (which is the default state),
this function copies only the data in the field; it does not copy any
extended attributes.

If the EAB session parameter is set, each character in the
returned string is followed immediately by the attribute
information for that character. Therefore, you must allocate a
DataString that is long enough to accommodate both the text and
the attribute information.

Copy Field to String (34) 115

Chapter 3 IHLLAPI Functions

See Also

For T 27, UTS 20, and UTS 40 sessions, the DataString must be
twice the size of the field (one character and one character
attribute byte for each field position). For example, if the field
includes 10 presentation space positions, the DataString must be
20 bytes. For UTS 60 sessions, the DataString must be three times
the size of the field (one character, one character attribute byte,
and one color attribute byte for each field position).

For information about the attribute bytes returned by T 27 and
UTS, refer to Appendix B, “Attribute Values.”

If the NOATTRB session parameter is set (which is the default
state), bytes that are less than 0x1F are translated to spaces
(0x20). If the ATTRB session parameter is set, all bytes are passed
as their original values.

Connect Presentation Space (1), Copy Presentation Space (5),
Copy Presentation Space to String (8), Set Session Parameters (9)

116 Copy Field to String (34)

Chapter 3 IHLLAPI Functions

Set Cursor (40)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Set Cursor function lets you position the cursor within the

presentation space.

Connect Presentation Space (1)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value
FunctionNumber SETCURSOR (40)
DataString Not applicable.
DatalLength Not applicable.

PSPosition_ReturnCode

The presentation space position where you
want to position the cursor. The upper left
corner (row 1, column 1) of the presentation
space is position 1.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

Set Cursor (40) 117

Chapter 3 IHLLAPI Functions

Comments

See Also

118

Set Cursor (40)

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.
WHLLNOTCONNECTED Your application is

1)

not connectedtoa
session.

WHLLPSBUSY (4)

The presentation
space is busy; the
cursor could not
be positioned.

WHLLPOSITIONERROR

)

You specified a
presen-tation
space position
less than 1 or
greater than the
presentation
space size.

WHLLSYSERROR (9)

The function failed
due to a system
error.

Use the Query Cursor Location (7) function to retrieve the current
position of the cursor.

Connect Presentation Space (1), Query Cursor Location (7)

Chapter 3 IHLLAPI Functions

Start Keystroke Intercept (50)

The Start Keystroke Intercept function lets your application
intercept keystrokes typed in the session by the user.

Prerequisites Connect Presentation Space (1)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value
FunctionNumber STARTKSINTERCEPT (50)
DataString A 6-byte string for each session.

See “Comments” for details.

Datalength Variable (256 bytes is recommended).
PSPosition_ReturnCode Not applicable.

Return Parameters Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

Start Keystroke Intercept (50) 119

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.
WHLLNOTCONNECTED Your
1) application is
not connected
to a session.
WHLLPARAMETERERROR One or more
2) call parame-

ters are invalid.

WHLLPSBUSY (4)

The presenta-
tion space is
busy.

WHLLSYSERROR (9)

The function
failed due to a
system error.

WHLLCANCEL (0xF002)

The asynchro-
nous function
was canceled.

Comments

The DataString in the call parameter is a 6-byte string for each
session that contains the following information:

Byte Description

1 Short name of the desired session, or a space or null
character for the current session

2 D = intercept only AID keystrokes, L = intercept all
keystrokes

3-6 Reserved

120 Start Keystroke Intercept (50)

Chapter 3 IHLLAPI Functions

See Also

Once this function is called, the intercepted keystrokes can be
handled in the following ways:

Received with the Get Key (51) function

Accepted or rejected with the Post Intercept Status (52)
function

Sent to the same session or another session with the Send Key
(3) function

Used in another manner appropriate for your application

If the second position of the DataString is D, only AID (Attention
identification) keystrokes are intercepted. AID keystrokes are
keystrokes that directly cause a change in the screen display, such
as letters. Non-AID keystrokes, such as Enter or function keys, do
not directly change the display.

Connect Presentation Space (1), Send Key (3), Get Key (51), Post
Intercept Status (52), Stop Keystroke Intercept (53)

Start Keystroke Intercept (50) 121

Chapter 3 IHLLAPI Functions

Get Key (51)

Prerequisites

Syntax

Call Parameters

Return Parameters

122 Get Key (51)

The Get Key function lets your application intercept keystrokes
from a session for which keystroke intercept has been enabled.

Start Keystroke Intercept (50)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber GETKEY (51)

DataString An 8-byte string. The first byte is the short name of
the desired session, or a space or null character for
the current session. Bytes 2—8 are reserved for
return data.

Datalength Not applicable; a length of 8 bytes is implied.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString An 8-byte string. See “Comments.”
DatalLength The number of characters Not applicable.

in the returned
DataString.

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function succeeded.
WHLLNOTCONNECTED Your application is not
1) connected to a
session.
WHLLINHIBITED (5) The Start Keystroke

intercept (50) function
was called with the D
option, but no AID
keystrokes were
intercepted.

WHLLNOTAVAILABLE The Start Keystroke

(8) Intercept (50) function
was not called prior to
this function.

WHLLSYSERROR (9) The function failed due
to a system error.

WHLLUNDEFINEDKEY The user typed an
(20) invalid keystroke
combination.

WHLLNOKEYSTROKES No keystrokes are
(25) available in the
keystroke queue.

WHLLKEYOVERFLOW The keystroke queue
(31) has overflowed and
keystrokes were lost.

Comments The returned DataString is an 8-byte string that contains the
following information:

Byte Description

1 Short name of the desired session, or a space or null character for the
current session

2 A =an ASCII character; S = a special modifier such as Shift, Ctrl, or Alt

3-8 Keystroke(s)

Unused bytes are set to null characters. See “Comments” for details.

Get Key (51) 123

Chapter 3 IHLLAPI Functions

The keystrokes typed by the user are queued by the
THLAPI32.DLL. This function reads the keystrokes from the
queue one at a time.

AID keystrokes are keystrokes that directly cause a change in the
screen display, such as letters. Non-AID keystrokes, such as Enter
or function keys, do not directly change the display.

The ESC=c session parameter determines which character is used
as the escape character. In the following examples, the default
escape character (@) is used.

The following modifiers indicate when the Alt, Shift, or Ctrl keys
were pressed in conjunction with another key:

Modifier Meaning

@A The Alt key was pressed.
@S The Shift key was pressed.
©@r The Ctrl key was pressed.

Returned DataString The following table shows possible returned DataStrings:
Examples

DataString Description

BAt B is the short name of the session, A indicates that the
following keystroke is ASCII, and t is the keystroke (bytes
4-8 are null).

CS@Aa C is the short name of the session, S indicates that the

following keystroke is a modifier, @A indicates that the
modifier is the Alt keystroke, and a is the keystroke that was
pressed in conjunction with the Alt key (bytes 6-8 are null).

DS@rA D is the short name of the session, S indicates that the
following keystroke is a modifier, @r indicates that the
modifier is the Ctrl keystroke, and A is the keystroke that was
pressed in conjunction with the Ctrl key (bytes 6-8 are null).

The uppercase A indicates that the Shift key was also
pressed.

See Also Send Key (3), Set Session Parameters (9), Start Keystroke
Intercept (50), Post Intercept Status (52), Stop Keystroke
Intercept (563)

124 Get Key (51)

Chapter 3 IHLLAPI Functions

Post Intercept Status (52)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Post Intercept Status function indicates whether to accept or
reject a keystroke obtained with the Get Key (51) function.

Start Keystroke Intercept (50)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber POSTINTERCEPTSTATUS (52)

DataString A 2-byte string. The first byte is the short name of
the desired session, or a space or null character for
the current session. The second byte is A (accept
the keystroke) or R (reject the keystroke).

Datalength Not applicable; a length of 2 bytes is implied.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0)

Function
succeeded.

WHLLNOTCONNECTED (1)

Your application is
not connected to a
session.

WHLLPARAMETERERROR

)

One or more call
parameters are
invalid.

WHLLNOTAVAILABLE (8)

The Start Key-
stroke Intercept
(50) function was
not called prior to
this function.

WHLLSYSERROR (9)

The function failed
due to a system
error.

Post Intercept Status (52) 125

Chapter 3 IHLLAPI Functions

Comments If a keystroke is rejected, a beep sounds, and the keystroke is not
displayed on the screen or sent to the host.

See Also Start Keystroke Intercept (50), Get Key (51), Stop Keystroke
Intercept (53)

126 Post Intercept Status (52)

Chapter 3 IHLLAPI Functions

Stop Keystroke Intercept (53)

The Stop Keystroke Intercept function stops your application from
being able to intercept keystrokes.

Prerequisites Start Keystroke Intercept (50)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value
FunctionNumber STOPKSINTERCEPT (53)
DataString The short name of the desired session, or a space

or null character for the current session.

Datal.ength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode Not applicable.

Return Parameters

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.
PSPosition_ReturnCode WHLLOK (0) Function succeeded.
WHLLNOTCONNECTED Your application is not
Q) connected to a
session.

WHLLNOTAVAILABLE (8) The Start Keystroke
Intercept (50) function
was not called prior to
this function.

WHLLSYSERROR (9) The function failed
due to a system error.

Comments Once keystroke intercept has been disabled, the Get Key (51)
function can no longer intercept keystrokes.

See Also Start Keystroke Intercept (50), Get Key (51), Post Intercept Status
(562)

Stop Keystroke Intercept (53) 127

Chapter 3 IHLLAPI Functions

Send File (90)

The SEND FILE function is used to transfer a file from the local
workstation to the host session. The host session must have access
to the INDS$FILE 3270 file transfer product, or its equivalent. File
transfers are subject to the same host state rules as user initiated
file transfers. TSO must be at a READY prompt or at the ISPF
TSO command screen, CMS must be at a CMS command line
prompt and in VM READ or RUNNING state.

Prerequisites Connect Presentation Space (1)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

SENDFILE (90)

DataString

The data string must consist of between 1 and 128
bytes containing one of the following:

For CMS: localfilename S:hostfilename (options)
For TSO: localfilename S:hostfilename options

where localfilename refers to the local path and file
name of the file to be transferred and hostfilename
refers to the host dataset name (including the
member name, if needed) for MVS or the CMS file
name for CMS to be created. S:, which is optional,
refers to the presentation space ID of the
presentation space to be used for the transfer. If not
supplied, the currently connected presentation
space is used.

DatalLength

The length of DataString

PSPosition_ReturnCode

Not applicable.

Return Parameters
Parameter

Value Description

PSPosition_ReturnCode

WHLLFTXCOMPLETE (3) Function
succeeded.

128 Send File (90)

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

Chapter 3 IHLLAPI Functions

Parameter Value Description

PSPosition_ReturnCode ~ WHLLPARAMETERERROR Invalid call
2) parameter.

WHLLFTXABORTED (27) File transfer failed.

WHLLSYSERROR (9) A system error
occurred.

Comments None.

See Also Receive File (91)

Send File (90) 129

Chapter 3 IHLLAPI Functions

Receive File (91)

The RECEIVE FILE function is used to transfer a file from the
host session to the local workstation. The host session must have
access to the IND$SFILE 3270 file transfer product, or its
equivalent. File transfers are subject to the same host state rules
as user initiated file transfers. TSO must be at a READY prompt
or at the ISPF TSO command screen, CMS must be at a CMS
command line prompt and in VM READ or RUNNING state.

Prerequisites Connect Presentation Space (1)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

RECEIVEFILE (91)

DataString

The data string must consist of between 1 and 128
bytes containing one of the following:

For CMS: localfilename S:hostfilename (options)
For TSO: localfilename S:hostfilename options

where localfilename refers to the local path and file
name of the file to be created and hostfilename
refers to the existing host dataset name (including
the member name, if needed) for MVS or the CMS
file name for CMS. S:, which is optional, refers to
the presentation space ID of the presentation space
to be used for the transfer. If not supplied, the
currently connected presentation space is used.

DataLength

The length of DataString

PSPosition_ReturnCode

Not applicable.

Return Parameters
Parameter

Value Description

PSPosition_ReturnCode

WHLLFTXCOMPLETE (3) Function
succeeded.

WHLLNOTCONNECTED (1) Your application is
not connected to a
session.

130 Receive File (91)

Chapter 3 IHLLAPI Functions

Parameter Value Description

PSPosition_ReturnCode ~ WHLLPARAMETERERROR Invalid call
2) parameter.

WHLLFTXABORTED (27) File transfer failed.

WHLLSYSERROR (9) A system error
occurred.

Comments None.

See Also Send File (90)

Receive File (91) 131

Chapter 3 IHLLAPI Functions

Convert Position or RowCol (99)

The Convert Position or RowCol function converts the
presentation space position into row and column coordinates, or
row and column coordinates into a presentation space position,
depending on the call parameters passed by your application.

Prerequisites None

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

CONVERT (99)

DataString

A two-byte string. The first byte is the short name of
the desired session, or a space or null character for
the current session. The second byte is P (convert
the presentation space position into row and
column coordinates) or R (convert row and column
coordinates into a presentation space position).

Datalength

If you're converting a presentation space position
into row and column coordinates, set this
parameter to zero.

If you're converting row and column coordinates
into a presentation space position, this is the row
number being converted.

PSPosition_ReturnCode

If you're converting a presentation space position
into row and column coordinates, this parameter is
the presentation space position being converted.

If you're converting row and column coordinates
into a presentation space position, this parameter is
the column number being converted.

132 Convert Position or RowCol (99)

Chapter 3 IHLLAPI Functions

Return Parameters

Comments

Parameter Value Description
DataString Not applicable. Not applicable.
DatalLength If you're converting a pre- If the function returns a

sentation space position
into row and column
coordinates, this is the
row number.

If you're converting row
and column coordinates
into a presentation space
position, this is not

zero for this para-
meter, you specified a
presentation space
position that was
larger than the number
of rows in the presen-
tation space.

applicable.

PSPosition_ReturnCode WHLLOK =0 An invalid presentation
space position or
column was specified.

WHLLOK >0 If you're converting a

presentation space
position into row and
column coordinates,
this is the column
number.

If you're converting
row and column
coordinates into a
presentation space
position, this is the
presentation space
position.

WHLLINVALIDPSID
(9998)

Your application
specified an invalid
short name or a
system error occurred.

WHLLINVALIDRC (9999)

The second character
in the DataString was
not an uppercase P or
R.

When you specify a short name in the call parameters, a
connection to that session is established automatically. You do not
have to invoke the Connect Presentation Space (1) function before
invoking the Convert Position or RowCol (99) function.

Since the Convert Position or RowCol (99) function does not return
a standard return code, your application could obtain misleading

Convert Position or RowCol (99)

133

Chapter 3 IHLLAPI Functions

information if you use a common error-handling routine for all of
the IHLLAPI functions. You should develop a special error-
handling routine for this function. (For more information, refer to
Appendix A, “Return Codes.”)

The presentation space position and row/column coordinates are
stored in the following two parameters:

Type of Data DatalLength PSPosition_ReturnCode
Presentation space Not applicable (0) Presentation space
position position

Row/column Row number Column number

coordinates

See Also Connect Presentation Space (1)

134 Convert Position or RowCol (99)

Chapter 3 IHLLAPI Functions

Connect Window Services (101)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Connect Window Services function connects your application
and a presentation space so that your application can call the

following functions:

Disconnect Window Services (102)

Query Window Coordinates (103)

Window Status (104)

You must associate a session file name ((ADP) with a short name

using either Accessory Manager or the Associate Profile (911)

function.

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber CONNECTWINDOWSERVICES (101)
DataString The short name of the session to connect with.
DatalLength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0)

Function succeeded.

WHLLNOTCONNECTED
)

An invalid short name
was specified.

WHLLSYSERROR (9)

The function failed
due to a system error.

WHLLUNAVAILABLE (11)

The specified
presentation space is
already in use.

Connect Window Services (101) 135

Chapter 3 IHLLAPI Functions

Comments

See Also

This function runs Accessory Manager in the minimized state (if it
is not already running), opens the specified session (if it is not
already open), and connects to that session.

However, this function cannot be used as a substitute for Connect
Presentation Space (1). Functions that require Connect
Presentation Space (1) as a prerequisite will return an error if
that function is not called. This function exists only to support the
Disconnect Window Services (102), Query Window Coordinates
(103), and Window Status (104) functions.

Disconnect Window Services (102), Query Window Coordinates
(103), Window Status (104), Associate Profile (911)

136 Connect Window Services (101)

Chapter 3 IHLLAPI Functions

Disconnect Window Services (102)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Disconnect Window Services function disconnects your
application from the presentation space that you connected to
using the Connect Window Services (101) function.

Connect Window Services (101)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber DISCONNECTWINDOWSERVICES (102)

DataString The short name of the session, or a space or null
character for the current session.

Datalength Not applicable; a length of 1 byte is implied.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0) Function succeeded.
WHLLNOTCONNECTED An invalid short name
1) was specified, or the

Connect Window
Services (101) function
was not called prior to
calling this function.

WHLLSYSERROR (9)

The function failed due
to a system error.

Disconnect Window Services (102)

137

Chapter 3 IHLLAPI Functions

Comments Once this function has been called, your application can no longer
call the Query Window Coordinates (103) or Window Status (104)
functions.

Your application should call this function for each presentation
space that has been connected using the Connect Window Services
(101) function before closing.

See Also Connect Window Services (101), Query Window Coordinates (103),
Window Status (104)

138 Disconnect Window Services (102)

Chapter 3 IHLLAPI Functions

Query Window Coordinates (103)

Prerequisites

Syntax

Call Parameters

Return Parameters

The Query Window Coordinates function returns the coordinates
of the specified session window or of Accessory Manager’s

application window.

Connect Window Services (101)

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter

Value

FunctionNumber

QUERYWINDOWCOORDINATES (103)

DataString

A 17-byte data string. The first byte is the short
name of the session, a space or null character for
the current session, or an asterisk (*) for the
Accessory Manager application window
coordinates rather than the session window
coordinates. Bytes 2—-17 are reserved for returned

data.

Datalength

Not applicable; a length of 17 bytes is implied.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString A 17-byte data string. See “Comments.”
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0) Function succeeded.
WHLLNOTCONNECTED An invalid short name
(1) was specified, or the

Connect Window
Services (101)
function was not
called prior to calling
this function.

WHLLPSENDED (12)

The session was
closed.

Query Window Coordinates (103) 139

Chapter 3 IHLLAPI Functions

Comments

See Also

140

The returned DataString is a 17-byte data string that contains the

following information:

Byte

Description

The same data sent by the call parameter

A 32-bit integer (in pixels) of the left X coordinate of the window
relative to the desktop

A 32-bitinteger (in pixels) of the bottom Y coordinate of the window
relative to the desktop

10-13

A 32-bit integer (in pixels) of the right X coordinate of the window
relative to the desktop

14-17

A 32-bit integer (in pixels) of the top Y coordinate of the window
relative to the desktop

All X and Y coordinates are given in pixels and are relative to the

desktop.

Connect Window Services (101), Disconnect Window Services

(102), Window Status (104)

Query Window Coordinates (103)

Chapter 3 IHLLAPI Functions

Window Status (104)

The Window Status function lets your application query or change
the size, location, or visible state of the specified session window or
of Accessory Manager’s application window.

Prerequisites Connect Window Services (101)

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

WINDOWSTATUS (104)

DataString

A 20-byte string. See “Comments” for details.

DataLength

Not applicable; the default is 16 bytes when the
NOHWND104 session parameter is set or 20 bytes
when the HWND104 session parameter is set.

PSPosition_ReturnCode

Not applicable.

Return Parameters

Parameter Value Description

DataString A 20-byte string. See “Comments”
for details.

Datalength Not applicable. Not applicable.

Window Status (104) 141

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLNOTCONNECTED (1)

An invalid short
name was
specified, or the
Connect Window
Services (101)
function was not
called prior to this
function.

WHLLPARAMETERERROR
@)

An invalid
parameter was
specified.

WHLLSYSERROR (9)

The function failed
due to a system
error.

WHLLPSENDED (12)

The session was
closed.

Comments The DataString in the call parameter is a 20-byte string that

contains the following information:

Call Parameter DataString

Byte Description

1 The short name of the session, a space or null character for the
current session, or an asterisk (*) for the Accessory Manager
application window coordinates rather than the session window

coordinates

2 To query for the status, set this to
WHLL_WINDOWSTATUS_QUERY.

To set the status, set this to WHLL_WINDOWSTATUS_SET.

142 Window Status (104)

Chapter 3 IHLLAPI Functions

Call Parameter DataString, continued

Byte

Description

3-4

If byte 2 is query for status, set these bytes to
WHLL_WINDOWSTATUS_NULL.

If byte 2 is set status, set these bytes to one or more of the following
values:

WHLL_WINDOWSTATUS_SIZE—resize the window (invalid
with minimize, maximize, restore, or move)

WHLL_WINDOWSTATUS_MOVE—move the window (invalid
with minimize, maximize, size, or restore)

WHLL_WINDOWSTATUS_ZORDER—place the window in a
specified layer of the display

WHLL_WINDOWSTATUS_SHOW-—make the window visible
WHLL_WINDOWSTATUS_HIDE—make the window invisible

WHLL_WINDOWSTATUS_ACTIVATE—activate the window
(uses the ZORDER setting or sets focus to the window and
places it in the foreground. Used with the session window, it also
activates the Accessory Manager application window.

WHLL_WINDOWSTATUS_DEACTIVATE—deactivate the
window (uses the ZORDER setting or places it on the bottom)

WHLL_WINDOWSTATUS_MINIMIZE—minimize the window
(invalid with maximize, restore, size, or move)

WHLL_WINDOWSTATUS_MAXIMIZE—maximize the window
(invalid with minimize, restore, size, or move). This sets focus to
the window except when the session window is being maximized
and the application window is minimized.

WHLL_WINDOWSTATUS_RESTORE—restore the window
(invalid with maximize, minimize, size, or move)

5-6

If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the X coordinate of the upper left corner of the window.

If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the Y coordinate of the upper left corner of the window.

Window Status (104) 143

Chapter 3 IHLLAPI Functions

Call Parameter DataString, continued

Byte Description

9-10 If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the width of the window.

11-12 If byte 2 is query for status or if you are not moving or sizing the
window, leave these bytes blank.

If byte 2 is set status and you are moving or sizing the window, set
these bytes to the height of the window.

13-16 If byte 2 is query for status or if you are not using ZORDER, leave
these bytes blank.

If byte 2 is set status and you are using ZORDER, set these bytes to
one of these values:

WHLL_WINDOWSTATUS_FRONT-place the window in the
foreground

WHLL_WINDOWSTATUS_BACK-place the window in the
background

17-20 Reserved for returned data

144 Window Status (104)

Chapter 3 IHLLAPI Functions

The returned DataString is a 20-byte string that contains the
following information:

Return Parameter DataString

Byte Description
1-2 The same data sent by the call parameter
3-4 If byte 2 is set status, these bytes are the same as the call parameter.

If byte 2 is a query for status, the following are the possible return
values (you can combine more than one status using a binary OR
operation):

WHLL_WINDOWSTATUS_SHOW—the window is visible.
WHLL_WINDOWSTATUS_HIDE—the window is invisible.
WHLL_WINDOWSTATUS_ACTIVATE—the window is activated.

WHLL_WINDOWSTATUS_DEACTIVATE—the window is
deactivated.

WHLL_WINDOWSTATUS_MINIMIZE—the window is
minimized.

WHLL_WINDOWSTATUS_MAXIMIZE—the window is
maximized.

5-6 If byte 2 is query for status, these bytes are the X coordinate of the
upper left corner of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

7-8 If byte 2 is query for status, these bytes are the Y coordinate of the
upper left corner of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

9-10 If byte 2 is query for status, these bytes are the width of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

11-12 If byte 2 is query for status, these bytes are the height of the window.

If byte 2 is set status, these bytes are the same as the call parameter.

13-16 The same data sent by the call parameter

17-20 If byte 2 is set status, or if byte 2 is query for status and the
NOHWND104 session parameter is set, these bytes are blank.

If byte 2 is query for status and the HWND104 session parameter is
set, the application returns a 32-bit string containing the window
handle.

Window Status (104) 145

Chapter 3 IHLLAPI Functions

See Also

If you set the size and position of a session window and Autosize
Window is selected in the session configuration, the resulting size
and position might be slightly different from what you specified.
When Autosize Window 1is selected, the session window
automatically resizes based on the size of the font. To determine
the exact window size and position, call the Window Status (104)
function again, this time querying for the window status rather
than setting it.

For Accessory Manager’s application window, the X and Y
coordinates are relative to the whole desktop.

For session windows, the X and Y coordinates are relative to
Accessory Manager’s application window and include the title bar,
border, and scroll bars, if present. To get coordinates relative to
the whole desktop, use the Query Window Coordinates (103)
function.

Connect Window Services (101), Disconnect Window Services
(102), Query Window Coordinates (103)

146 Window Status (104)

Chapter 3 IHLLAPI Functions

Associate Profile (911)

Prerequisites

Syntax

Call Parameters

Return Parameters

Comments

See Also

The Associate Profile function associates the specified short name

with the specified session file name.

The specified session must already exist.

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber PROFILEASSOCIATE (911)

DataString A string up to 255 bytes. The first bye is the short
name to associate with the session file name. The
remaining bytes are the file name of the session to
associate with the specified short name.

Datalength Not applicable.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0) Function
succeeded.
WHLLPARAMETERERROR An invalid

)

parameter was

passed.

WHLLSYSERROR (9)

error.

The function failed
due to a system

If the short name is already associated with a session file name,

this function changes the association to the specified file name.

Remove Profile (912), Get Associations (913), Find File Name

(914), Find Short Name (915)

Associate Profile (911)

147

Chapter 3 IHLLAPI Functions

Remove Profile (912)

The Remove Profile function removes any session file name from
the specified short name.

Prerequisites None.

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters

Parameter Value
FunctionNumber PROFILEREMOVE (912)
DataString The short name that you want to remove from any

session file name.

Datalength Not applicable.

PSPosition_ReturnCode Not applicable.

Return Parameters

Parameter Value Description
DataString Not applicable. Not applicable.
Datalength Not applicable. Not applicable.
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR An invalid short
2) name was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOMATCH (42) No session
associated with the
short name.

Comments If you call this function and then call another function using the
removed short name, that function will return an error.

See Also Association Profile (911), Get Associations (913), Find File Name
(914), Find Short Name (915)

148 Remove Profile (912)

Chapter 3 IHLLAPI Functions

Get Associations (913)

Prerequisites

Syntax

Call Parameters

Return Parameters

Comments

See Also

The Get Associations function retrieves a list of all the short
names that have been associated with session file names.

None.

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber PROFILEGETASSOCIATIONS (913)

DataString A data string for the returned value (at least 27 bytes
long).

Datalength Not applicable.

PSPosition_ReturnCode

Not applicable.

Parameter Value Description

DataString Anull-terminated string If no session file names
of short names thatare are associated with short
associated with names, this parameter
session file names. contains a null character.

Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0)

Function succeeded.

WHLLSYSERROR (9)

The function failed due to
a system error.

None.

Association Profile (911), Remove Profile (912), Find File Name
(914), Find Short Name (915)

Get Associations (913)

149

Chapter 3 IHLLAPI Functions

Find File Name (914)

Prerequisites

Syntax

Call Parameters

Return Parameters

Comments

The Find File Name function retrieves the session file name
associated with a specified short name.

None.

W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Parameter Value

FunctionNumber PROFILEFINDFILENAME (914)

DataString The short name for which you want to retrieve the
session file name.

Datalength The length of the DataString that will be returned

(256 bytes recommended).

PSPosition_ReturnCode

Not applicable.

Parameter Value Description

DataString The session file name The returned
associated with the short DataStringincludes
name specified in the call the full DOS path to
parameter. the session file.

Datalength Not applicable. Not applicable.

PSPosition_ReturnCode

WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR An invalid short

2) name was
specified.

WHLLSYSERROR (9)

The function failed
due to a system
error.

WHLLNOMATCH (42)

The specified short
name is not
associated with a
session file name.

None.

150 Find File Name (914)

Chapter 3 IHLLAPI Functions

See Also Association Profile (911), Remove Profile (912), Get Associations
(913), Find Short Name (915)

Find File Name (914) 151

Chapter 3 IHLLAPI Functions

Find Short Name (915)

The Find Short Name function retrieves the short name
associated with a specified session file name.

Prerequisites None.

Syntax W nHLLAPI (Functi onNunber, Dat aStri ng, Dat aLengt h,
PSPosi ti on_Ret ur nCode)

Call Parameters
Parameter

Value

FunctionNumber

PROFILEFINDSHORTNAME (915)

DataString

The session file name that you want to retrieve the
short name of.

Be sure to include the drive and folder where the
session file is located, as well as the file extension
(for example, C:\INFOCN32\ACCMGR32\
SESSION1.ADP).

Datalength

Not applicable.

PSPosition_ReturnCode

Not applicable.

Return Parameters

Parameter Value Description
DataString The short name associated Not applicable.
with the session file name
specified in the call
parameter.
Datalength Not applicable. Not applicable.

152 Find Short Name (915)

Chapter 3 IHLLAPI Functions

Parameter Value Description
PSPosition_ReturnCode WHLLOK (0) Function
succeeded.

WHLLPARAMETERERROR An invalid session

2) file name was
specified.

WHLLSYSERROR (9) The function failed
due to a system
error.

WHLLNOMATCH (42) The specified

session file name is
not associated with
a short name.

Comments None.

See Also Association Profile (911), Remove Profile (912), Get Associations
(913), Find File Name (914)

Find Short Name (915) 153

Chapter 3 IHLLAPI Functions

154 Find Short Name (915)

Return Codes

In This Appendix

This appendix includes the following headings:

IHLLAPI Return Codest 156
Functions That Return Standard Return Codes 159
Sample Return Code Usage 160

155

Appendix A Return Codes

IHLLAPI Return Codes

156

The following table lists the standard return codes, their causes,
and suggested solutions:

Return Code Explanation

WHLLOK (0) The function completed successfully.

WHLLNOTCONNECTED (1) The application is not connected to a session,
but tried to execute a function that requires a
connection. Call the Connect Presentation
Space (1) function before calling a function that
requires a connection.

WHLLPARAMETERERROR An invalid parameter was passed, or the
2) Datalength was too short.

Double-check the parameters for the function. If
the parameter is valid and is being passed as a
variable, make sure that the variable is being
changed before it is passed to the function.

If the EAB session parameter is set, you must
provide a DataString at least twice as long as the
size of the visible data.

WHLLFTXCOMPLETE (3) The function succeeded.

WHLLPSBUSY (4) The presentation space is busy or input is inhibited.
Your application should wait until the session is
ready to accept data. If the function did not try to
send data to the presentation space (for example,
if the function was Connect Presentation Space),
the function otherwise completed successfully,
and you can ignore this return code.

WHLLINHIBITED (5) Your application tried to send a keystroke before
the session was ready for input.

To prevent this error, your application must wait
for the session to become ready for input. Once
the session is ready, call the function again.

For information on waiting for host responses,
refer to “Waiting for Host Responses” on
page 27.

IHLLAPI Return Codes

Appendix A Return Codes

Return Code

Explanation

WHLLTRUNCATED (6)

The application specified a DataLength shorter
than the presentation space.

Check the DataLength. If the length is being
passed as a variable, make sure that the
variable contains the correct data when it is
passed to the function.

WHLLPOSITIONERROR (7)

The application specified a presentation space
position of zero or a number larger than the
number of positions in the presentation space.

Specify a value greater than zero, or use the
Query Sessions (10) function to determine the
size of the presentation space.

WHLLNOTAVAILABLE (8)

The application called a function that is not
supported in this version of IHLLAPI, or the
application did not call the Start Host Notification
(23) function prior to calling Query Host Update
(24) or Stop Host Notification (25).

Verify that the function is supported, and be sure
to call any prerequisite functions.

WHLLSYSERROR (9)

A system error occurred. Your application should
disconnect from any connected sessions, call
Reset System (21) to restore the default session
parameters, then close.

WHLLUNAVAILABLE (11)

The presentation space is unavailable or already
in use, usually because another IHLLAPI
application has connected to the specified
session.

Use Query Sessions (10) to find valid sessions
and connect to the next available session, or
close with an error message if no more sessions
are available.

WHLLPSENDED (12)

The session was closed. Close your application
or prompt the user to reopen the session and try
again.

WHLLNOFIELD (24)

The presentation space is unformatted, the field
was not found, or the host returned data that the
application did not expect.

Verify that the presentation space is formatted,
or substitute a function that interacts with the
presentation space rather than a particular field.

IHLLAPI Return Codes 157

Appendix A Return Codes

Return Code Explanation

WHLLFTXABORTED (27) The file transfer timed out due to an error or was
manually cancelled by the user.

158 IHLLAPI Return Codes

Appendix A Return Codes

Functions That Return Standard Return Codes

The following functions return only the standard error codes and
can use a standard error handler:

Connect Presentation Space (1) Query System (20)
Disconnect Presentation Space (2) Reset System (21)

Send Key (3) Query Session Status (22)
Wait (4) Start Host Notification (23)
Copy Presentation Space (5) Stop Host Notification (25)
Query Cursor Location (7) Search Field (30)

Copy Presentation Space to String (8) Find Field Position (31)
Set Session Parameters (9) Find Field Length (32)
Query Sessions (10) Copy String to Field (33)
Copy OIA (13) Copy Field to String (34)
Query Field Attribute (14) Set Cursor (40)

Copy String to Presentation Space (15)

The other functions either use the standard return codes
differently, or use other return codes in addition to the standard
codes. You can handle these functions by checking for special cases
first and then calling your standard error handler if the return
code is standard.

Note: The Convert Position or RowCol (99) function has unique
return codes; you must respond to them outside the standard
error handler. Refer to Chapter 3, “THLLAPI Functions,” for
more information on this function.

Functions That Return Standard Return Codes 159

Appendix A Return Codes

Sample Return Code Usage

160

The following pseudo-code example shows how to manage the
possible return codes for the Send Key (3) function.

This type of return code management can be applied to all
THLLAPI functions. However, be sure to refer to Chapter 3,
“THLLAPI Functions,” for exact return codes and their
explanation as they pertain to each particular function.

Start SendKey Function
Functi on Nunber = SENDKEY
Data String = "MyNane@"
String Length = equals the length of the
Dat aString
PS Position = 0 (Zero)

HLLAPI CALL(Functi onNunber, DataStri ng,
Dat aLengt h, PSPosition_Return Code)

Start Return Code Check
Return Code = WHLLOK: Functi on was successful .
Continue with the next function in the
application.

Ret urn Code = WHLLNOTCONNECTED: Application
not connected to a session. Call Query
Sessions (10) to find a valid short nane
and then call Connect Presentation Space (1)
usi ng the short nanme returned fromthe Query
Sessi ons functi on.

Once these functions have successfully been
conpl eted, retry the original SendKey
functi on.

Return Code = WHLLPARAMETERERROR: | ncorrect
paraneter was passed to the function. d ose
the application with an error nessage
i ndicating the nature of the failure.

Sample Return Code Usage

Appendix A Return Codes

Return Code = WHLLPSBUSY: Presentation space

is busy. Do not try to send data to the
host. Wait until the session is no |onger
busy before executing the next function
or calling the original function again

Return Code = WHLLINHI BI TED: I nput to the
presentation space is inhibited. This
normal ly indicates that the keyboard is
| ocked and that the session cannot accept
further input. Wait until this condition
is cleared, then retry the origina
functi on.

Return Code = WHLLSYSERROR: A systemerror
occurred. Call Reset System (21) and cl ose
the application with an error nessage
indicating that a systemerror occurred.

End Return Code Check

End SendKey Function

Sample Return Code Usage

161

Attribute Values

In This Appendix This appendix includes the following headings:
T 27 Attributes 164
UTS Attributes ... 165

163

Appendix B Attribute Values

T 27 Attributes

The following table lists the character attribute values that are
returned by an T 27 session when the EAB session parameter is
set, as well as what each value represents:

Bit Position Description Value

7 Reverse video 0 = Normal
1 = Reverse

6 Underscore 0 = None

1 = Underscore

5 Blink 0 = None
1 = Blink
4 Bright 0 = None
1 = Bright
3 Secure 0 = None
1 = Secure
2-0 Reserved Spaces

164 T 27 Attributes

Appendix B Attribute Values

UTS Attributes

The following table lists the character attribute values that are
returned by a UTS session when the EAB session parameter is
set, as well as what each value represents:

Bit Position Description Value
7 Reverse video 0 = Normal
1 = Reverse
6 Underscore 0 = None
1 = Underscore
5 Blink 0 = None
1 = Blink
4 Left column separator 0 = None
1 = Column separator
3 Secure 0 = None
1 = Secure
2 Right column separator 0 = None
1 = Column separator
1 Strikethrough 0 = None
1 = Strikethrough
0 Upperscore 0 = None

1 = Upperscore

UTS Attributes 165

Appendix B Attribute Values

166

UTS Attributes

The following table lists the color attribute values that are
returned by a UTS session when the EAB session parameter is
set, as well as what each value represents:

Bit Position Description Value
7-4 Background 0000 = Black 0101 = Magenta
character colors 0001 = Blue 0110 = Yellow
0010 = Green 0111 = White
0100 = Red
0011 = Cyan
3-0 Foreground 0000 = Black 1001 = Light blue
character colors 0001 = Blue 1010 = Light green
0010 = Green 1011 = Light cyan
0011 = Cyan 1100 = Light red
0100 = Red 1101 = Light magenta
0101 = Magenta 1110 = Brown
0110 = Yellow 1111 = Light grey
0111 = White

1000 = Dark grey

Note: These are the colors specified by the host rather than
any colors specified by the emulator.

IHLLAPI Header Files

In This Appendix

This appendix provides a printed listing of three header files
(WHLLAPI.H, HLLAPI.H, and IHLAPI32.H) that are included
with the Automation Development Kit. These files must be
included with applications written in C, C++, or any other
language that can include a header file.

WHLLAPI.H Header File 168
HLLAPI.H Header File 173
IHLAPI32.H Header File 187

167

Appendix C IHLLAPI Header Files

WHLLAPI.H Header File

/***/

* whllapi.h - W ndows HLLAPI functions, types, and definitions *
* Version 1.0 *

/***/

#i ncl ude "wi ndows. h"

#i f ndef WHLLAPI | NC
#defi ne WHLLAPI | NC

#pragma pack(1l) // Pack HLLAPI structures on 1-byte boundary
#pragma nmessage(" I nformati on: HLLAPI structures are packed on 1-byte
boundaries.")

/****** FUnCthn nunbers ***/

#def i ne OEMFUNCTI ON 0 /* CEM Function */

#defi ne CONNECTPS 1 /* Connect Presentation Space */
#defi ne DI SCONNECTPS 2 /* Di sconnect Presentation Space*/
#defi ne SENDKEY 3 /* Send Key */

#define WAI'T 4 [* Wit */

#defi ne COPYPS 5 /* Copy Presentation Space */
#defi ne SEARCHPS 6 /* Search Presentation Space */
#defi ne QUERYCURSORLOC 7 /* Query Cursor Location */
#defi ne COPYPSTOSTR 8 /* Copy Presentation Space To String */
#def i ne SETSESSI ONPARAVETERS 9 /* Set Session Paraneters */
#defi ne QUERYSESSI ONS 10 /* Query Sessions */

#defi ne RESERVE 11 /* Reserve */

#def i ne RELEASE 12 /* Rel ease */

#defi ne COPYO A 13 /* Copy OA Information */

#def i ne QUERYFI ELDATTRI BUTE 14 /* Query Field Attribute */
#def i ne COPYSTRTOPS 15 /* Copy String To Presentation Space */
#defi ne STORAGEMGR 17 /* Storage Manager */

#def i ne PAUSE 18 /* Pause */

#defi ne QUERYSYSTEM 20 /* Query System */

#def i ne RESETSYSTEM 21 /* Reset System */

#defi ne QUERYSESSI ONSTATUS 22 /* Query Session Status */

#def i ne STARTHOSTNOTI FI CATI ON 23 /* Start Host Notification */
#def i ne QUERYHOSTUPDATE 24 /* Query Host Update */

#def i ne STOPHOSTNOTI FI CATI ON 25 /* Stop Host Notification */
#def i ne SEARCHFI ELD 30 /* Search Field */

#def i ne FI NDFI ELDPOSI Tl ON 31 /* Find Field Position */

#defi ne FI NDFI ELDLENGTH 32 /* Find Field Length */

#defi ne COPYSTRI NGTOFI ELD 33 /* Copy String To Field */

#defi ne COPYFI ELDTOSTRI NG 34 /* Copy String To Field */

#def i ne SETCURSOR 40 /* Set Cursor */

#defi ne STARTCLOSElI NTERCEPT 41 /[* Start Close Intercept */

168 WHLLAPI.H Header File

Appendix C IHLLAPI Header Files

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

/******

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

QUERYCLGOSEI NTERCEPT 42 /* Query Close Intercept */
STOPCLOSEI NTERCEPT 43 /* Stop Close Intercept */

STARTKSI NTERCEPT 50 /* Start Keystroke Intercept */
GETKEY 51 /* Get Key */

POSTI NTERCEPTSTATUS 52 /* Post Intercept Status */

STOPKSI NTERCEPT 53 /* Stop Keystroke Intercept */
LOCKPSAPI 60 /* Lock Presentation Space APl */

L OCKWBAPI 61 /* Lock W ndow Services APl */
SENDFI LE 90 /* Send File */

RECEI VEFI LE 91 /* Receive File */

CONVERT 99 /* Convert Position or RowCol */
CONNECTW NDOWSERVI CES 101 /* Connect W ndow Services */

DI SCONNECTW NDOWSERVI CES 102 /* Disconnect W ndow Services */
QUERYW NDOWCOORDI NATES 103 /* Query or Set Wndow Coordi nates */
W NDOWSTATUS 104 /* Query or Set Wndow Status */
CHANGEPSNAME 105 /* Change Presentation Space Nane */
CONNECTSTRFLDS 120 /* Connect Structured Fields */

DI SCONSTRFLDS 121 /* Disconnect Structured Fields */
QUERYCOMVBUFSI Z 122 /* Query Communi cations Buffer Size */
ALL OCCOMVBUFF 123 /* Allocate Communi cations Buffer */
FREECOMVBUFF 124 |/ * Free Conmmuni cations Buffer */
GETREQUESTCOWP 125 /* Get Request Conpletion */
READSTRFLDS 126 /* Read Structured Fields */

WRI TESTRFLDS 127 /* Wite Structured Fields */

Set SeSSI OnParanet ers Val ues ************************************/

WHLL_SSP_NEWRET
WHLL_SSP_OLDRET
WHLL_SSP_ATTRB
WHLL_SSP_NOATTRB
WHLL_SSP_NWAI T
WHLL_SSP_LWAI T
WHLL_SSP_TWAI T
WHLL_SSP_EAB
WHLL_SSP_NOEAB

WHLL_SSP_AUTORESET

WHLL_SSP_NORESET
WHLL_SSP_SRCHALL
WHLL_SSP_SRCHFROM
WHLL_SSP_SRCHFRWD
WHLL_SSP_SRCHBKWD
WHLL_SSP_FPAUSE
WHLL_SSP_I| PAUSE

(DWORD) 0x00000001
(DWORD) 0x00000002
(DWORD) 0x00000004
(DWORD) 0x00000008
(DWORD) 0x00000010
(DWORD) 0x00000020
(DWORD) 0x00000040
(DWORD) 0x00000080
(DWORD) 0x00000100
(DWORD) 0x00000200
(DWORD) 0x00000400
(DWORD) 0x00001000
(DWORD) 0x00002000
(DWORD) 0x00004000
(DWORD) 0x00008000
(DWORD) 0x00010000
(DWORD) 0x00020000

WHLLAPI.H Header File

169

Appendix C IHLLAPI Header Files

/****** Convert ROW or Col um val ues **********************************/

#defi ne WHLL_CONVERT_PCSI TION ' P'
#defi ne WHLL_CONVERT_ROW 'R

/******* Storage Wnager Sub_ FUnCtIOﬂ Val ues **************************/

#def i ne WHLL_GETSTORACE 1
#def i ne WHLL_FREESTORAGE 2
#defi ne WHLL_FREEALLSTORAGE 3
#defi ne WHLL_QUERYFREESTORAGE 4

/****** C:hange PS Nane Val ues **/

#def i ne WHLL_CHANGEPSNAME_SET 0x01
#def i ne WHLL_CHANGEPSNAME_RESET 0x02

/****** Wndow St at us Val ues ***/

#def i ne WHLL_W NDOWSTATUS_SET 0x01

#def i ne WHLL_W NDOWSTATUS_QUERY 0x02

#def i ne WHLL_ W NDOWSTATUS_EXTQUERY 0x03

#def i ne WHLL_W NDOWSTATUS_NULL 0x0000

#def i ne WHLL_W NDOWSTATUS_S| ZE 0x0001

#def i ne WHLL_W NDOWSTATUS_MOVE 0x0002

#defi ne WHLL_W NDOWSTATUS_ZORDER 0x0004

#defi ne WHLL_W NDOASTATUS_SHOW 0x0008

#def i ne WHLL_W NDOWSTATUS_HI DE 0x0010

#def i ne WHLL_W NDOWSTATUS_ACTI VATE 0x0080

#def i ne WHLL_\W NDOWSTATUS_DEACTI VATE 0x0100

#def i ne WHLL_W NDOWSTATUS_M NI M ZE 0x0400

#def i ne WHLL_W NDOWSTATUS_MAXI M ZE 0x0800

#def i ne WHLL_\W NDOWSTATUS_RESTORE 0x1000

#def i ne WHLL_\W NDOWSTATUS_FRONT (DWORD) 0x00000003
#def i ne WHLL_W NDOWSTATUS_BACK (DWORD) 000000004

/****** LOCk APl val ues **/

#defi ne WHLL_LOCKAPI _LOCK L
#define WHLL_LOCKAPI _UNLOCK ‘U
#defi ne WHLL_LOCKAPI _RETURN 'R
#def i ne WHLL_LOCKAPI _QUEUE 'Q

170 WHLLAPI.H Header File

Appendix C IHLLAPI Header Files

/******

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

W ndows HLLAPI

VHLLOK
VHLLNOTCONNECTED
VWHLLBLOCKNOTAVAI L
VWHLL PARAMETERERROR
VHLLBLOCKI DI NVALI D
VHLLFTXCOVPLETE
VHLLFTXSEGVENTED
VHLLPSBUSY
VHLLI NHI BI TED
VWHLLTRUNCATED
VHLLPGSI TI ONERROR
VHLLNOTAVAI LABLE
VHLLSYSERRCR
VHLLNOTSUPPORTED
VHLLUNAVAI LABLE
VWHLLPSENDED

WHL LUNDEFI NEDKEY
VHLLO AUPDATE
VHLLPSUPDATE
VHLLBOTHUPDATE
VWHLLNOFI ELD
VHLLNOKEYSTROKES
WHLLPSCHANGED
VHLLFTXABORTED
VHLLZERCLENFI ELD
VHLLKEYOVERFLOW
VHLLSFACONN

VHL L TRANCANCL
VHLL TRANCANCL
VHLLHOSTCLOST
VHLLOKDI SABLED
VHLLNOTCOVPLETE
\HLL SFDDM

VHLL SFDPEND
VHLLBUFFI NUSE
VHLLNOVATCH
VHLLLOCKERROR

VHLLI NVALI DFUNCTI ONNUM

VHLLFI LENOTFOUND
VWHLLACCESSDENI ED
VHLLMVEMORY

VHLLI NVALI DENVI RONMVENT

VHLLI NVALI DFORVAT

O©CO~NOOOPAAPMAWNNRELPELO

301
302
305
308
310
311

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

Successful */

Ret urn @des ************************************/

Not Connected To Presentati on Space */

Requested size is not available */
Error/Invalid Function */

Par anet er

Invalid Block ID was specified */
/* File Transfer Conplete */
File Transfer Conplete / segnmented */

Present ati on

Space is Busy */

I nhi bi t ed/ Keyboard Locked */
Data Truncated */

Invalid Presentati on Space Position */
Unavai | abl e Operation */

System Error
Functi on Not

*
Supported */

Resource is unavail able */
The session was stopped */
Undefi ned Key Conbination */
O A Updated */

PS Updated */

Both PS And O A Updated */

No Such Field Found */

No Keystrokes are avail able */
PS or O A changed */

File transfer
Field length

aborted */
is zero */

Keystroke overfl ow */
Q her application already connected*/

Msg sent

Contact with
The function

host was | ost */
was successful */

i nbound to host cancel | ed*/

Qut bound trans from host cancelled */

The requested fn was not conpleted */
One DDM session al ready connected */
Di sconnected w async reqs pending */
Specified buffer currently in use */

No matching r

equest found */

APl al ready | ocked or unl ocked */
I nvalid function nunber */

File Not Found */

Access Denied */

I nsuf ficient Menory */

I nvalid environnment */

Invalid format */

WHLLAPI.H Header File

171

Appendix C IHLLAPI Header Files

#defi ne WHLLI NVALI DPSI D 9998 /* Invalid Presentation Space ID */
#defi ne WHLLI NVALI DRC 9999 /* Invalid Row or Columm Code */

[***x*x% \Wndows HLLAPI Extentions Return Codes *****x**kxkkkkkkkkdkkxkkrx/

#def i ne WHLLALREADY OxFO000 /* Async call is already outstanding */
#defi ne WHLLI NVALI D OxF001 /* Async Task Id is invalid */

#def i ne WHLLCANCEL 0xF002 /* Blocking call was cancelled */

#def i ne WHLLSYSNOTREADY 0xF003 /* Underlying subsystem not started */

#defi ne WHLLVERNOTSUPPORTED 0xF004 /* Application version not supported */
/****** Wndov\s HLLAPl Structure ***************************************/
#def i ne WHLLDESCRI PTI ON_LEN 127

typedef struct tagWHLLAPI DATA {

WORD w\er si on;

char szDescri pti on[WHLLDESCRI PTI ON_LEN+1] ;
} WHLLAPI DATA, * PWHLLAPI DATA, FAR * LPWHLLAPI DATA;

#i fdef __cpl usplus
extern "C'

{
#endi f

/****** Wndov\s HLLAPI Functlon Prototypes *****************************/

extern void WNAPI W nHLLAPI (LPWORD, LPSTR, LPWORD, LPWORD);

extern HANDLE W NAPI W nHLLAPI Async(HWAD, LPWORD, LPSTR, LPWORD, LPWORD);
extern BOOL W NAPI W nHLLAPI Cl eanup(voi d);

extern BOOL W NAPI W nHLLAPI | sBl ocki ng(voi d);

extern int WNAPI W nHLLAPI Cancel AsyncRequest (HANDLE, WORD) ;

extern int WNAPI W nHLLAPI Cancel Bl ocki ngCal | (voi d);

extern int WNAPI W nHLLAPI St art up(WORD, LPWHLLAPI DATA) ;

extern FARPROC W NAPI W nHLLAPI Set Bl ocki ngHook (FARPROC) ;

extern BOOL W NAPI W nHLLAPI UnhookBl ocki ngHook(voi d);

#i fdef __ cpl usplus
}
#endi f

#pragma pack() /1l Revert to previous packing

#endi f

172 WHLLAPI.H Header File

Appendix C IHLLAPI Header Files

HLLAPI.H Header File

/**

Modul e Header

R EE RS SRS SRS E SR RS SRS R SRR R EREREEEEEREEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEE RS S

File: hllapi.h
Pur pose: data structures, definitions & prototypes conprising HLLAPI
Not es:

13- Jun-1991:

Added new hllapi functions HLL_CopyO A5 and HLL_Copyd A9.

01- Apr-1991:

HLL_WBCTRLSTARTEMULATOR s EMULATORCONTRCL structure byPower field
Has been renaned byReserved, reflecting the fact that the
subfunction no | onger affects the POAER condition of a new

term nal enul ator.

30- Cct - 1990:
Added HLL_PROTECTED as synonym for return code 5.

18- Cct - 1990:
Added WBCTRL subfunctions: -BLOCKEMJULATORUPDATES &
- ENABLEEMULATORUPDATES.

05- Feb- 1990:
HLL_Recei veFile and HLL_SendFil e: additional paraneter.

**/

/***

HLLAPI function selectors ~~ HLLAPI subfunction selectors
***/
#def i ne HLL_ATMQUERYSYSTEM 0

#def i ne HLL_CONNECTPS
#def i ne HLL_DI SCONNECTPS
#defi ne HLL_SENDKEY
#define HLL_ WAI'T

A WOWDN P

#defi ne HLL_COPYPS

#def i ne HLL_SEARCHPS

#def i ne HLL_QUERYCURSOR

#defi ne HLL_COPYPSTOSTRI NG
#defi ne HLL_SETHLLW NPARAMETERS

© 0o ~NO !,

HLLAPI.H Header File 173

Appendix C IHLLAPI Header Files

#def i ne HLL_QUERYSESSI ONS

#def i ne HLL_RESERVE

#def i ne HLL_RELEASE

#define HLL_COPYO A

#def i ne HLL_QUERYFI ELDATTRI BUTE

#def i ne HLL_COPYSTRI NGTOPS
#def i ne HLL_WSCTRL

#def i ne HLL_PAUSE

#def i ne HLL_QUERYSYSTEM
#define HLL_RESETHLLW N

#def i ne HLL_QUERYSESSI ONSTATUS
#def i ne HLL_STARTHOSTNOTI FI CATI ON
#def i ne HLL_QUERYHOSTUPDATE

#def i ne HLL_STOPHOSTNOTI FI CATI ON
#def i ne HLL_SEARCHFI ELD

#def i ne HLL_FI NDFI ELDPCSI TI ON
#def i ne HLL_FI NDFI ELDLENGTH
#def i ne HLL_COPYSTRI NGTOFI ELD
#def i ne HLL_COPYFI ELDTOSTRI NG
#def i ne HLL_SETCURSOR

#def i ne HLL_STARTKEYSTROKEI NTERCEPT
#def i ne HLL_GETKEY

#def i ne HLL_POSTI NTERCEPTSTATUS
#def i ne HLL_STOPKEYSTROKElI NTERCEPT
#def i ne HLL_SENDFI LE

#defi ne HLL_RECEI VEFI LE
#defi ne HLL_CONVERT

/***********

sui generis

************/

#defi ne HLL_HLLAPI

#defi ne HLL_ENUVHLLW NS

#defi ne HLL_QUERYHLLW NPARAMETERS
#def i ne HLL_SETMESSAGELOOPCALLBACK

174 HLLAPIL.H Header File

10
11
12
13
14

15
16
18
20
21

22
23
24
25
30

31
32
33
34
40

50
51
52
53
90

91
99

500
501
502
503

Appendix C IHLLAPI Header Files

#i f ndef RC_| NVOKED

/*************************

system mani f est constants
*************************/

#def i ne MAXSENDKEYLENGTH

#def i ne MAXPAUSEDURATI ON

#defi ne M NKEYSTROKEBUFFERLENGTH
#def i ne MAXFI LETRANSFERSTRI NGLENGTH

/*********************************

informal list of HLL return codes
**********************************/
#defi ne HLL_ SUCCESS

#defi ne HLL_I NVALI DPSI D

#def i ne HLL_I NVALI DPARAMVETER

#def i ne HLL_SESSI ONOCCUPI ED

#def i ne HLL_TI MEQUT

#def i ne HLL_PSLOCKED

#def i ne HLL_PROTECTED

#def i ne HLL_FI ELDSI ZEM SVATCH
#def i ne HLL_DATATRUNCATED

#defi ne HLL_I NVALI DPSPCSI TI ON
#def i ne HLL_NOPRI ORSTARTKEYSTROKE
#def i ne HLL_NOPRI ORSTARTHOSTNOTI FY
#def i ne HLL_SYSTEMERROR

#def i ne HLL_RESOURCEUNAVAI LABLE
#def i ne HLL_SEARCHSTRI NGNOTFOUND
#def i ne HLL_UNFORMATTEDHOSTPS
#def i ne HLL_NOSUCHFI ELD

#def i ne HLL_NOHOSTSESSI ONUPDATE
#defi ne HLL_KEYSTROKESNOTAVAI LABLE
#def i ne HLL_HOSTSESSI ONUPDATE
#def i ne HLL_KEYSTROKEQUEUEOVERFLOW
#def i ne HLL_MEMORYUNAVAI LABLE
#defi ne HLL_DELAYENDEDBYCL| ENT
#def i ne HLL_UNCONFI GUREDPSI D

#def i ne HLL_NOEMULATORATTACHED
#def i ne HLL_WBCTRLFAI LURE

/********************************

val ues for Post Intercept Status
********************************/
#defi ne HLL_| NTERCEPTACCEPTED
#defi ne HLL_| NTERCEPTREJECTED

255
OxFFFF

6

512 /*
0

1

2

4

4 /* e.qg.
5/* e.g.
5

6 /* e.g.
6 /* e.g.
7

8

8

9

11

24

24 | *
24 |*
24 |*
25

26 /*
31

101 /*

102 /* \Wait,

103 /* Connect,

104 /*
105

i t
Connect PS */

keystroke intercept,

07-Jun-1990 */

(XCLOCK/ XSYSTEM) */

CopyFi el dToString */
CopyStringToField */

/* e.g. SearchField */

e.g. CopyFieldToString */
e.g. FindFieldPosition */
new code for

Quer yHost Update */

end of Pause */

cf StartKSI ntercept */

Pause, GetKey */
I nt er cept */
etc */

HLLAPI.H Header File 175

Appendix C IHLLAPI Header Files

/*********************************

wOpt i onCode val ues for HLL_Cet Key
**********************************/
#def i ne HLL_CETKEYASC |

#defi ne HLL_GETKEYMNEMONI C

#defi ne HLL_GETKEYSHI FTED

/*************************************

HLL_St art Host Noti fi cation

**************************************/

options for

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

HLL_NOTI FYALLUPDATES
HLL_NOTI FYPSUPDATE
HLL_NOTI FYO AUPDATE
HLL_NOTI FYCURSORUPDATE
HLL_NOTI FYBEEP

HLL_NOTI FYBASECOLORCHANGE
HLL_NOTI FYMODEL CHANGE
HLL_NOTI FYPOAERCHANGE

-

16
32
64

/***

field specifiers for

HLL_Fi ndFi el dLengt h/ Posi ti on

***/

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

HLL_TH SFI ELD

HLL_NEXTFI ELD

HLL_PREVI QUSFI ELD
HLL_NEXTPROTECTEDFI ELD
HLL_NEXTUNPROTECTEDFI ELD
HLL_PREVI QUSPROTECTEDFI ELD
HLL_PREVI OQUSUNPROTECTEDFI ELD

0

1
2
3
4
5
6

/**

session specifiers for

HLL_Quer ySessi ons

**/

#def i ne HLL_QUERYSESSI ONSCONFI GURED
#def i ne HLL_QUERYSESSI ONSOPENED
#def i ne HLL_QUERYSESSI ONSPONERED

176

HLLAPI.H Header File

1 /* in config file */

2 /* opened, i.e. QpenSession () */

3 /[* termnal on */ [*

def aul t

*/

Appendix C IHLLAPI Header Files

/********************************

option specifiers for HLL_WsCtrl
********************************/
#def i ne HLL_WSCTRLOPENCONFI GURATI ON
#defi ne HLL_WSCTRLCLOSECONFI GURATI ON
#def i ne HLL_WSCTRLQUERYCONFI GURATI ON
#def i ne HLL_WSCTRLOPENLAYOUT

#def i ne HLL_WSCTRLQUERYLAYOUT

#def i ne HLL_WSCTRLEMULATORHANDLE
#defi ne HLL_WBCTRLSTARTEMULATOR
#def i ne HLL_WSCTRLSTOPEMULATOR

#defi ne HLL_WSCTRLTERM NALON

#def i ne HLL_WSCTRLTERM NALOFF

#defi ne HLL_WBCTRLSETEXECUTEPATH 11
#def i ne HLL_WBCTRLQUERYEXTRADI RECTORY 12
#defi ne HLL_WSCTRLALLONEMULATORUPDATES 13
#def i ne HLL_WSCTRLBLOCKEMULATORUPDATES 14

O~NO O WNPRF

= ©
o

typedef struct tagEnul atorControl {

char cPSI b /* mnimumrequirenent */

BYTE byVisibility; /* N(ormal) I(conic) Maximzed) H(idden) */
BYTE byReser ved; /* until O01-Apr-1991, byPower */

BYTE byCase; /* U(pper) Mixed) */

WORD wLeft; /* absolute position, in screen coordinates */

WORD wBot t om

WORD WRi ght ;

WORD wrlop;

} EMULATORCONTROL, * LPEMULATORCONTROL, * NPEMULATORCONTRCL;

/***

19-Jul -1989 this structure is subject to expansion: e.g. fonts,

***/

HLLAPI.H Header File 177

Appendix C IHLLAPI Header Files

/*********************************

option specifiers for HLL_Convert
*********************************/

#defi ne HLL_CONVERTPOCSI TI ON 1
#defi ne HLL_CONVERTRONMCOLUWN 2
typedef struct tagHLLParans {
BYTE byAttri bute; /* ATTRB or NOATTRB */
BYTE byAut oReset ; /* AUTORESET or NOAUTORESET */
BYTE byConnect Type; /* CONLOG or CONPHYS */
BYTE by EAB; /* EAB or NOEAB */
char cEscape; [* default '@ */
BYTE byPause; /* | PAUSE or FPAUSE */
BYTE bySear chOri gi n; /* SRCHALL or SRCHFROM */
BYTE bySearchDirection; /* SRCHFORWARD or SRCHBKWD */
WORD wTi meQut ; /* 0..64k */
BYTE byTrace; /* TRON or TROFF */
BYTE byWii t ; [* TWAIT, LMAIT, NWAIT */
BYTE by Xl at e; /* ASCl | <->3270DC transl ati on or not
} HLLPARAMS, * NPHLLPARAMS, * LPHLLPARANMS;

/******************************

val ues for fields of HLLPARAMS

******************************/

/******************

byAttribute val ues
******************/
#defi ne HLLW N_ATTRB 1
#def i ne HLLW N_NOATTRB 2

/******************

byAut oReset val ues
******************/
#def i ne HLLW N_AUTORESET 1
#defi ne HLLW N_NOAUTORESET 2

/***********************

byConnecti onType val ues
***********************/
#defi ne HLLW N_CONLOG 1
#def i ne HLLW N_CONPHYS 2

/************

byEAB val ues
************/
#defi ne HLLW N_EAB
#def i ne HLLW N_NCEAB 2

/*************

=

byPause val ues
*************/

178 HLLAPI.H Header File

*/

Appendix C IHLLAPI Header Files

#def i ne HLLW N_FPAUSE
#defi ne HLLW N_I PAUSE

/*********************

bySearchOri gi n val ues
*********************/
#defi ne HLLW N_SRCHALL
#defi ne HLLW N_SRCHFROM

/************************

bySear chDi recti on val ues
************************/
#def i ne HLLW N_SRCHFRWD
#defi ne HLLW N_SRCHBKWD

/**************

byTrace val ues
**************I
#define HLLW N_TRON
#defi ne HLLW N_TROFF

/************

byWait val ues
************/
#define HLLW N TWAI T
#define HLLWN LWAI T
#define HLLW N_NWAIT

/**************

byXl at e val ues
**************/

#def i ne HLLW N_XLATE
#defi ne HLLW N_NOXLATE

typedef struct tagATMSystem {

N

WWORD WHLLAPI Ver si onNunber ;

WORD WHLLAPI Level Nurber ;
NPATMSYSTEM

} ATMSYSTEM *

typedef struct tagStartlntercept {

char cPSI D
WORD wKeyFil ter;
WORD wQueuelengt h;

BOCL bW ndowsMessage;
} STARTI NTERCEPT,

/**********************************

val ues for wKeyFilter interception
**********************************/
#def i ne HLL_| NTERCEPTAI DKEYS
#defi ne HLL_| NTERCEPTALLKEYS

NPSTARTI| NTERCEPT,

1
2

LPATMSYSTEM

LPSTARTI NTERCEPT,

HLLAPI.H Header File 179

Appendix C IHLLAPI Header Files

typedef struct tagKeystroke {

char cPSI D,
char szKeystroke [M NKEYSTROKEBUFFERLENGTH] ;
} KEYSTROKE, * NPKEYSTROKE, * LPKEYSTROKE;

typedef struct tagO AG oup {
char szO AGoup [22];
} O AGROUP, * NPO AGROUP, * LPO AGROUP;

typedef struct tagSessions {

char cPSI D;

char szLongNanme [8];

BYTE bySt at e;
/**
bit 0: configured? bit 1. opened?
bit 2: powered?

***/

WWORD WPSSi ze;

} SESSI ONS, * NPSESSI ONS, * LPSESSI ONS;
typedef struct tagSessionStatus {

char cPSID;, /* session short name */

char szLongNanme [8];

BOOL bType; /* FALSE = CUT,; TRUE = DFT */

BYTE byCharacteristics;

/***

bit 0: EABs? Y/N bit 1. Programmed Synbols Y/ N

***/

BYTE byUsage;
/**
bit 0: Configured? YN bit 1: Opened? Y/N
bit 2: Powered? Y/N bit 3: AutoPowered? Y/N
bit 4. Emul ated? Y/N bit 5: HLLAPI-Connected? Y/N
bit 6: FileTrans? Y/N

**/

/**

note that bit 5, HLLAPI-Connected, nay be either HLLWnN connection,
HLLW n keystroke interception, or HLLWn-initiated file transfer

***/

WORD wRows ;
WORD wCol utms;
} SESSI ONSTATUS, * NPSESSI ONSTATUS, * LPSESSI ONSTATUS;

/**

definitions for use in probing the bySessi onCharacteristics byte
**/

#def i ne HLL_SESSI ONEABS 0x01
#def i ne HLL_SESSI ONPROGRAMVEDSYMBOLS 0x02

/**

180 HLLAPI.H Header File

Appendix C IHLLAPI Header Files

definiti

ons for

use in probing the bySessi onUsage byte in SessionStatus

**/

#def i ne
#defi ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne

t ypedef
BYTE
BYTE

HLL_SESSI ONCONFI GURED
HLL_SESSI ONOPENED
HLL_SESSI ONPONERED
HLL_SESSI ONAUTOPOVERED
HLL_SESSI ONEMULATED
HLL_SESSI ONCONNECTED

HLL_SESSI ONFI LETRANSFER

struct tagSystem {
byHLLAPI Mont h
byHLLAPI Day;

WORD WHLLAPI Year ;

char

cPSI D,

DWORD dwSyst enError

}

/**************************************

exported

SYSTEM * NPSYSTEM *

routines, in al phabetic order

***************************************/

#i fdef __cpl uspl us
extern "C'
{
#endi f
WORD W NAPI
HLL_At t achmat eQuer ySyst em (
HWAD hwhd,
LPATMSYSTEM | pATMSyst en) ;

0x01
0x02
0x04
0x08
0x10
0x20

0x40

LPSYSTEM

/****************************

HLLW n connecti ons, keystroke

interception, or nonitors
*****************************/

HLLAPI.H Header File 181

Appendix C IHLLAPI Header Files

WORD W NAPI
HLL_Connect PS (
HWAD hwhd,
char cPSID);
WORD W NAPI
HLL_Convert (
HWND hwhd,
char cPSI D,
WORD wPosi t i onOr RowCol um,
LPPO NT | pPoi nt) ;
WORD W NAPI
HLL_CopyFi el dToString (
HWAD hwhd,
LPSTR | pBuffer,
WORD wBuf f er Lengt h,
WORD WPSP) ;
WWORD W NAPI
HLL_CopyO A (/1 Xclock info sw tchable between 5/9
HWAD hwhd,
LPSTR | pOA); /* 103 chars of binary data */
WORD W NAPI
HLL_Copyd A9 (/1 Xclock info in position 9
HWND hwhd,
LPSTR | paA); /* 103 chars of binary data */
WORD W NAPI
HLL_Copyd A5 (/1 Xclock info in position 5
HWND hwhd,
LPSTR | pO A); /* 103 chars of binary data */
WORD W NAPI
HLL_CopyPS (
HWND hwhd,
LPSTR | pBuffer);
WORD W NAPI
HLL_CopyPSToString (
HWND hwWhd,
LPSTR | pBuffer,
WORD wBuf f er Lengt h,
WORD wWPSP) ;

182 HLLAPI.H Header File

Appendix C IHLLAPI Header Files

WORD W NAPI
HLL_CopyStringToFi el d (
HWAD hwhd,
LPSTR | pBuffer,
WORD wBuf f er Lengt h,
WORD WPSP) ;
WORD W NAPI
HLL_CopyStri ngToPS (
HWND hwWhd,
LPSTR | pBuffer,
WORD wBuf f er Lengt h,
WORD wWPSP) ;
WORD W NAPI
HLL_Di sconnect PS (
HWND hwhd) ;
DWORD W NAPI
HLL_EnumHLLW ns (
HWND hwWhd,
HWAD *nWhd) ;
DWORD W NAPI
HLL_Fi ndFi el dLengt h (
HWAD hwhd,
WORD wFi el dSpeci fier,
WORD wTar get Fi el dPSP) ;
DWORD W NAPI
HLL_Fi ndFi el dPosi tion (
HWND hwhd,
WORD wFi el dSpeci fier,
WORD wTar get Fi el dPSP) ;
WORD W NAPI
HLL_Get Key (
HWND hwWhd,

LPKEYSTROKE | pKeyst r oke) ;

WORD W NAPI
HLL_ Pause (
HWND hwhd,
WORD wDur ati on) ; /*

500-nmillisecond units */

HLLAPI.H Header File 183

Appendix C IHLLAPI Header Files

WORD W NAPI
HLL_Post I ntercept Status (
HWND hwhd,
char cPSI D,
WORD WSt at us) ;
WWORD W NAPI
HLL_Quer yHLLW nPar anet ers (
HWND hwhd,

LPHLLPARAMS | pHLLPar ans) ;

DWORD W NAPI
HLL_QueryCursor (
HWND hwhd) ;
DWORD W NAPI
HLL_QueryFi el dAttri bute (
HWND hwhd,
WORD WPSP) ;
DWORD W NAPI
HLL_Quer yHost Updat e (
HW\D hwhd,
char cPSID);
DWORD W NAPI
HLL_Quer ySessi ons (
HWND hwhd,
LPSESSI ONS | pSessi ons,
WORD wSessi onSt at e,
WORD wNunber O Sessi ons) ;
WWORD W NAPI
HLL_QuerySessi onStat us (
HWND hwhd,

LPSESSI ONSTATUS | pSessi onSt at us) ;

WORD W NAPI
HLL_QuerySystem (
HW\D hwhd,
LPSYSTEM | pSystem;
DWORD W NAPI
HLL_Recei veFile (
HWND hwhd,
LPSTR | pszRecei veConmand,
LPWORD | pwSequencel D) ;
WORD W NAPI
HLL_Rel ease (
HWND hwhd) ;

184 HLLAPI.H Header File

Appendix C IHLLAPI Header Files

WORD W NAPI
HLL_Reserve (
HWND hwhd) ;
WORD W NAPI
HLL_Reset HLLW n (
HWND hwhd) ;
DWORD W NAPI
HLL_SearchField (
HWND hwhd,
LPSTR | psSear chStri ng,
WORD WSt ri ngLengt h, /* if HLLWN_NOXLATE */
WORD WPSP) ; /* if HLLW N_SRCHFROM */
DWORD W NAPI
HLL_Sear chPS (
HWAD hwhd,
LPSTR | psSear chString,
WORD WSt ri ngLengt h, /* if HLLW N_NOXLATE */
WORD WPSP) ; /* either HLLW N _SRCHALL or SRCHFROM */
DWORD W NAPI
HLL_SendFil e (
HWAD hwhd,
LPSTR | pszRecei veConmmand,
LPWORD | pwSequencel D) ;
WORD W NAPI
HLL_SendKey (
HWND hwhd,
LPSTR | pszKeys) ;
WORD W NAPI
HLL_Set Cur sor (
HW\D hwhd,
WORD wCur sor Locat i on) ;
WORD W NAPI
HLL_Set MessagelLoopCal | back (
HWND hwWhd,
FARPROC | pf nCal | back) ;

HLLAPI.H Header File 185

Appendix C IHLLAPI Header Files

WORD W NAPI
HLL_Set HLLW nPar aneters (
HWND hwhd,

LPHLLPARANMS | pHLLPar ams) ;

WORD W NAPI
HLL_Start Host Noti fication (
HWND hwhd,
char cPSI D,
WORD wNot i fi cationType,
BOCL bW ndowsMessage) ;
WORD W NAPI
HLL_St art Keystrokel ntercept (
HWAD hwhd,
LPSTARTI NTERCEPT | pl ntercept);
WORD W NAPI
HLL_St opHost Noti fi cation (
HWAD hwhd,
char cPSID);
WORD W NAPI
HLL_St opKeystrokel ntercept (
HWND hwWhd,
char cPSID);
WORD W NAPI
HLL_Wait (
HWAD hwhd) ;
WORD W NAPI
HLL_WSCtrl (
HWNDhWhd,
WORD wOpt i on,
LPVO D | pvSt at e,
WORD WSt at eLengt h) ;
#i fdef __ cpl uspl us
}
#endi f

#endif /* RC_INVOKED */

186 HLLAPI.H Header File

Appendix C IHLLAPI Header Files

IHLAPI32.H Header File

/1 1 NCLUDE FI LES

#i fdef __cpl uspl us
#i ncl ude "af xwi n. h"
#endi f

/1 to allow exporting the DLL functions

#i f def VOY32DLL

#defi ne VOYAPI _ decl spec(dl | export)
#el se

#defi ne VOYAPI _ decl spec(dllinport)
#endi f

[/ constants
/1 d obal variables
/1 Function prototypes

#i fndef | HLLAPI I NC
#define | HLLAPI I NC

#pragma pack(1) /1 Pack HLLAPI structures on 1-byte boundary
#pragma nessage(" I nformation: HLLAPI structures are packed on 1-byte
boundaries.")

/****** FUnCtI on nunbers ***/

#def i ne PROFI LEASSCOCI ATE 911
#def i ne PROFI LEREMOVE 912
#def i ne PRCFI LEGETASSOC!I ATI ONS 913
#def i ne PROFI LEFI NDFI LENAMVE 914
#def i ne PROFI LEFI NDSHORTNAME 915

/****** WndOV\B HLLAPI Structure ***************************************/
#defi ne WHLLDESCRI PTI ON_LEN 127
typedef struct tagl HLLAPI DATA {
WORD wVer si on;
char szDescri pti on[WHLLDESCRI PTI ON_LEN+1] ;
} I HLLAPI DATA, * PI HLLAPI DATA, FAR * LPI HLLAPI DATA,;

#pragnma pack() /1 Revert to previous packing

#endi f

IHLAPI32.H Header File

187

Troubleshooting

In This Appendix This appendix contains the following sections:

General Troubleshooting Procedures 190

189

Appendix D Troubleshooting

General Troubleshooting Procedures

If you have problems running your IHLLAPI applications, follow
these steps:

1 Make sure that IHLAPI32.DLL is accessible. IHLAPI32.DLL
must be in the Windows PATH.

2 Make sure that Accessory Manager 1s accessible. If you use the
Connect Presentation Space (1) function to run Accessory
Manager and open a session, Accessory Manager must be in the
Windows PATH.

3 Make sure that the appropriate session file name is associated
with the appropriate short name. Refer to “Using Short Names” on
page 20 for more information.

4 Check the prerequisites for each function. Some functions have
prerequisite functions that must be called prior to calling that
function.

5 Check the function using the test application included with the
ADK. (For more information, refer to “T'rying Out ITHLLAPI
Functions” on page 15.) If the function works with the test
application but not with your IHLLAPI application, the problem
might be in your IHLLAPI application.

6 Review the return code generated by the function. Return codes
are provided for each function in the PSPosition_ReturnCode
portion of the “Return Parameters” section. In addition, refer to
Appendix A, “Return Codes,” for information about standard
return codes and return code handling.

7 Consult your distributor. If you cannot identify and solve the

problem without assistance, contact your product distributor. Call
from a location where you have access to the problem PC.

190 General Troubleshooting Procedures

RAWMODE

In This Appendix This appendix explains the use of raw mode when sending host data. The
following sections are included:
Using RAWMODE 192

191

Appendix E RAWMODE

Using RAWMODE

SetSession
Parameters
Changes

Accessory
Manager Changes

HLLAPI RAWMODE allows the equivalent of datastream and
high level access (similar to the OS/2 ULLAPI) for Windows. This
1s not a replacement for the IDK (which is still the only way to get
total control over events under INFOConnect), but will allow for
more precise control in your HLLAPI projects.

RAWMODE is one of two options available within the Set Session
Parameters function that determines if raw host data will be
received by the application. In RAWMODE, the appropriate
functions look at raw data coming from the connection tool within
Accessory Manager before data is delivered to the terminal tool.

The RAWMODE option affects the Copy Presentation Space to
String and Copy String to Presentation Space functions.

The other option available within Set Session Parameters,
PSMODE, is the default setting that allows applications to receive
screen data.

Two new options, RAWMODE and PSMODE, have been added.
The default setting would be PSMODE. In PSMODE, all HLLAPI
functions would work identically to the way they do now (as
documented). In RAWMODE, the appropriate functions would be
looking at raw data coming from the connection tool within
Accessory Manager before the data was delivered to the terminal
tool. In fact, this would work like a hook procedure so that data
wouldn’t be delivered to the terminal tool unless the HLLAPI
application wanted to.

When the frame is notified by the connection tool that data has
been received, the frame has to determine if StartHostNotification
has been turned on while in RAWMODE. If so, then it has to hold
the data and notify HLLAPI of a host update. Then, once
CopyPSToString has been called, copy the data into the buffer and
discard it without delivering it to the emulator.

If CopyStringToPS is called with a PS Position of zero, then
Accessory Manager will need to send the data directly to the
connection tool. If CopyStringToPS is called with a PS Position of
one, then the data must be delivered to the emulator as if it had
just been received from the connection tool.

192 Using RAWMODE

Appendix E RAWMODE

Copy Presentation
Space to String
Function in
RAWMODE

CopyPSToString
Changes

Copy String to
Presentation
Space Function in
RAWMODE

If StopHostNotification is called by the application, then
Accessory Manager must release the communications data hook
and allow all data from the connection tool to go directly to the
terminal tool. While in RAWMODE, if CopyPSToString is called
while host notification is disabled, then this function should
always fail. However, CopyStringToPS can be called anytime after
RAWMODE has been turned on. This would allow a HLLAPI
application to simulate emulator transmits or to simulate host
data.

Because HLLAPI does not return the length of the buffer in
wDataLength, but the application is required to know it,
Accessory Manager stores communications data in the buffer,
using the data length specified as a maximum length. The PS
Position parameter is ignored. Upon return, the first two bytes of
the data buffer will contain the length of the buffer.

In RAWMODE, this function becomes the equivalent of a low-
level communications receive function. The only changes would be
that Accessory Manager would put communications data in the
specified buffer using the data length specified as a maximum
length. The PS position parameter would be ignored. Upon return,
the first two bytes of the data buffer will contain the length of the
buffer. This change is necessary because HLLAPI does not return
the length of the buffer in wDataLength. The application is
required to know the size of the buffer.

The PS parameter setting determines how the data is transmitted
to the terminal tool. It allows applications to modify host data
before delivering it to the emulator.

PS Parameter
Setting Copy Sting to Presentation Space (15) Function
0 Transmits the data from the specified buffer (using the
specified length) directly to the connection tool.
1 Transmits the data to the terminal tool as if the data had just

been received.

Using RAWMODE 193

Appendix E RAWMODE

CopyStringToPS In RAWMODE, this function will be similar to a low-level
Changes communications transmit function. If the PS parameter is set to

zero, then this function will transmit the data from the specified
buffer (using the specified length) directly to the connection tool. If
the PS parameter is set to one, then the data specified will be
delivered to the terminal tool as if the data had just been received.
This provides the hook mechanism so that if a HLLAPI
application doesn’t want the emulator to see any host data, then
the application just has to never call CopyStringToPS with a PS
Position of one. This would also allow applications to modify host
data before delivering it to the emulator.

Currently, when an application wants to do screen scraping
through HLLAPI, the following pseudo-code shows the required
steps:

St art Host Noti fi cati on(“A)

whil e

{

}

Ret urnCode = Pause() // Mist have cal |l ed Set Sessi onParaneters with | PAUSE
i f ReturnCode = WHLLPSCHANGED
{
Quer yHost Updat e()
CopyPSToSt ring()
}
/1 Once all of the appropriate data has been received, break out of the
| oop

St opHost Noti fi cation()

When the frame is notified by the connection tool that data has
been received, the frame determines whether or not Start Host
Notification (25) has been turned on while in RAWMODE. If so,
the connection tool holds the data and notifies HLLAPI of a host
update.

194 Using RAWMODE

Appendix E RAWMODE

The following example in pseudo-code shows how an application
could use the raw mode for host notification.

if (RawData) // Sonme val ue that deterni nes whether the application wants raw
data or screen data
Set Sessi onPar anet er s(“RAWWODE")

el se
Set Sessi onPar anet er s(“PSMODE")

St art Host Not i fi cati on(“A“)

whi | e
{
Ret urnCode = Pause() // Mist have cal |l ed Set SessionParaneters with | PAUSE
if ReturnCode = WHLLPSCHANGED
{
Quer yHost Updat e()
i f (RawDat a)
CopyPSToString(Buffer,len) // This call will retrieve raw host data
Dat aLen = *((short*)&Buffer[0]O0;
if (Transnmit) // Some val ue that determ nes whether to transmit data
to the host or deliver to the enul ator
CopyStringToPS(XmitBuffer, len, 0) // This transnmits a buffer to the
host bypassing the enul ator
el se
CopyStri ngToPS(&Buf f er [si zeof (short)], DatalLen, 1) // Sends the raw
data to the enul ator
el se
CopyPSToString(Buffer, len) // This call will retrieve screen data
}
/1 Once all of the appropriate data has been received, break out of the
| oop

}

St opHost Noti fi cation()

Using RAWMODE 195

ACMState

In This Appendix This appendix explains the new utility ACMState.exe. The following
sections are included:

Using ACMState.exe 196

195

Appendix F ACMState

Using ACMState.exe

ACMState.exe can be used to determine if a particular Accessory
Manager UTS session is up and active, which means that the
POLL indicator is displayed so that host communications are
ready and you can proceed normally. The utility accepts three
optional command line parameters:

timeout interval = A value indicated in seconds. (The default is
30 seconds.)

HLLAPI shortname = A single letter, in uppercase. (The default
isA)

Connection Status checking = (Optional) The string “/S” to
request a Connection Status check. (The default is to omit it,
and perform no Connection Status check).

This utility uses the Attachmate IHLLAPI interface, and it makes
a call to the "ConnectPS" function. For example, if the given
session (or the Accessory Manager itself) is not running, it is
started. If the Accessory Manager and/or session are already
running, then that will work too. Just be sure to start your other
HLLAPI applications after ACMState has exited.

ACMState waits for the given session to start. If no Connection
Status check is requested, it will return immediately once the UTS
session is up. If Connection Status Checking is enabled, it
immediately returns once the session reports a normal connection
status. You can visually check the state, as ACMState outputs a
line to indicate the HLLAPI and session state.

196 Using ACMState.exe

Appendix F ACMState

Possible states can be inspected programmatically via a return
code. Those return code values are:

Value Description

0 Success. The HLLAPI session is up (if no State Checking
performed).

0 Success. The HLLAPI session is up and active (if State is
Checked).

1 Timeout. Connection State is NOT normal and Timeout
has expired.

2 Failed. There is a problem with the session or HLLAPI.

3 BadInput. The command line input was not recognized.

If you want to check the status of multiple UTS sessions, call the
ACMState utility once for each session. By running the utility
with an input timeout parameter of "0", ACMState will check the
session's connection status only once and immediately report a
result. In that case, it will not wait for a gateway or host
connection to be established. This utility with work with any of the
UTS transports (i.e., both PEPGate LAN Client and INT-1).

No changes to the product installation or configuration are
needed. ACMState can be placed in any desired directory location.
You will need to have IHLAPI32.DLL in the PATH. You can get a
usage output by specifying a command line input of: ?, /?, -?, Help,
/Help, or -Help. If the input is unrecognized, a usage statement
will be displayed, and no HLLAPI calls will be made.

Time/Date stamps are now output at utility startup, after the
"ConnectPS" is successfully completed, and (if Connection Status
Checking is requested) when the utility returns a final status.

Using ACMState.exe 197

Glossary

application window
character attributes

end-of-text (EOT)

ENQ

field attributes

host

The window that includes the title bar, menu bar, toolbar, scroll
bars, status bar, and display area for session windows.

Attributes that determine how characters look on the screen. For
example, blinking and underline are character attributes.

A character used to indicate the end of the text.

An abbreviation that appears on an T 27 session's status line and
indicates that the session is in enquire mode. A session
automatically enters this mode when the host is trying to send
data and is unable to (for example, when the session is in local
mode). You must put the session in receive mode to receive the
data.

Attributes that define the existence, appearance, or behavior of a
field. For example, whether a field is protected or not is
determined by the field attribute.

A mainframe, mini-computer, or information hub with which the
PC communicates.

199

Glossary

line transmission
activity indicator
(LTAI

operator information

area (OlA)

presentation space

session

session parameters

session window

short name

terminal keystroke

200

An abbreviation that appears on an T 27 session’s status line and
indicates that the session is connected to the host. If LTAI does
not appear on the status line, a communication problem exists
between the PC and the host.

A line of data that appears at the bottom of a session window
(status line). The status line displays such information as which
mode the session is in and the cursor location. The OIA is not
considered part of the presentation space.

A specific number of columns and rows that define the area within
which the host or user can display or type data.

A named communication connection between a PC and a host. T27
and UTS support long file names, but all session files end in the
ADP extension.

Options specified by the Set Session Parameters (9) function that
determine how other THLLAPI functions operate.

For example, when the disconnect session parameter is set to
DISCONLOG, the Disconnect Presentation Space (2) function only
disconnects your application from the session. When this
parameter is set to DISCONPHYS, this function disconnects your
application from the session, disconnects the session from the
host, and closes the session.

A window within Accessory Manager’s application window that
displays communication between the PC and the host.

A one-character (A-Z), case-insensitive name used by IHLLAPI
applications to identify a particular session. You can associate
short names with session file names via Accessory Manager’s
Global Preferences dialog box or programmatically via the
Associate Profile (911) function.

A keystroke that a terminal sends to a host. Terminal keystrokes
(such as Transmit) typically do not exist on a PC keyboard and
must be emulated using various keystroke combinations.

Index

16-bit IHLLAPT applications, using with 32-
bit emulators 19

A

Accessory Manager
determining the application window
coordinates 136-137
managing the application
window 138-143
using to associate short names with
sessions 20
Alphabetical IHLLAPI function list 43
ApiFunc variable declaration 33
ApiLen variable declaration 33
ApiRetc variable declaration 33
ApiString variable declaration 33
Application window
determining the coordinates 136-137
managing 138-143
ASCII mnemonic codes, terminal
keystrokes 51-59
Associate Profile (911) function 144
Associating session file names with short
names
using Accessory Manager 20
using the Associate Profile (911)
function 144

ATTRB session parameter 63, 70, 72, 113
Attributes

character 160-162

color 162

field 9-10, 84-86

T 27 fields 10

UTS fields 10

C
C, developing IHLLAPI applications with 34
Call function syntax, Visual Basic 33
Call parameters, overview 42
Change Presentation Space Window Name
(106) function 40
Change Switch List LT Name (105)
function 40
Character attributes 160-162
Code, sample return code usage 156-157
Color attributes 162
Column and row coordinates
converting to presentation space
positions 129-131
overview 7
CONLOG session parameter 46, 72
Connect Presentation Space (1)
function 45-46
Connect Window Services (101)
function 132-133

201

Index

CONPHYS session parameter 46, 72
Convert Position or RowCol (99)
function 129-131
Copy Field to String (34) function 30, 111-113
Copy OIA (13) function 28, 78-83
Copy Presentation Space (5) function 62-63
Copy Presentation Space to String (8)
function 68-70, 188, 189, 189, 190
Copy String to Field (33) function 30, 108-110
Copy String to Presentation Space (15)
function 87-88, 189
Cursor
determining the cursor location 66-67
setting the cursor location 114-115

D

Delay routines 29

DISCONLOG session parameter 48, 72

Disconnect Presentation Space (2)
function 47-48

Disconnect Window Services (102)
function 134-135

DISCONPHYS session parameter 48, 72

E

EAB session parameter 63,69, 112
definition 73

EHLLAPI
differences with IHLLAPI 3
unsupported functions 40

EOT session parameter 74

Error handling (see Return codes)

ESC session parameter 74, 121

F
Fields

identifying 10

overview 9-10

overview of field functions 30-31

T 27 field attributes 85

using field functions with unformatted

presentation spaces 30

UTS field attributes 86
Find Field Length (32) function 30, 106-107
Find Field Position (31) function 30, 104-105
Find File Name (914) function 147-148
Find Short Name (915) function 148-149

202

FPAUSE session parameter 28, 74, 90
Function declarations 34
Functions (see IHLLAPI or individual

function names)

Get Associations (913) function 146
Get Key (51) function 119-121

Header files

HLLAPI.H 169-182
THLAPI32.H 183
WHLLAPL.H 164-168

HLLAPIH 19, 34, 169-182
HLLAPI32.DLL 2
HLLWATCH.EXE 2

Host applications

interacting with 26
waiting for host responses 27-29

HWND104 session parameter 74, 142
HWPRX32.DLL 2

ITHLAPI32.DLL 2, 18, 35
THLAPI32.H 19, 34, 183
THLAPI32.LIB 2
THLDEMS32.EXE 2, 15
THLLAPI

alphabetical function list 43

developing in C 34

developing in Visual Basic 33

differences with other HLLAPI
versions 3

function overview 12-14

function syntax 41

HLLAPI.H header file 169-182

how functions are documented 41

THLAPI32.H header file 183

interacting with host applications 26

numerical function list 44

overview 2-4

prerequisites for using 18

running IHLLAPI applications 35

standard return codes 152-155

test application for trying out
functions 15

Index

THLLAPI, continued

unsupported functions 40

using existing applications with 32-bit

emulators 19

WHLLAPI.H header file 164-168
THLLAPI.DLL 2,19
THLLAPI.LIB 19
INFOConnect HLLAPI (see IHLLAPI)
IPAUSE session parameter 28, 74, 90, 97

K

Keystrokes
ASCII mnemonic codes 51-59
intercepting 116-124

L

Lock Presentation Space API (60) function 40
Lock Window Services API (61) function 40
LPBYTE variable declaration 34

LPWORD variable declarations 34

M

Mnemonic codes, terminal keystrokes 51-59

N

NOATTRB session parameter 63, 70, 72, 113

NOEAB session parameter 63, 69, 112
definition 73

NOHWND104 session parameter 74, 142

Numerical IHLLAPI function list 44

NWAIT session parameter 28, 61, 75

0]
OIA
Copy OIA (13) function 78-83
detecting changes using the Query Host
Update (24) function 98-99
relationship to presentation space 6
Operator information area (see OIA)

P

Parameters, session 11

Pause (18) function 28, 89-90

Post Intercept Status (52) function 122-123

Prerequisites for using IHLLAPI 18
Presentation space
Connect Presentation Space (1)
function 45-46
converting presentation space positions
to row and column coordinates 129-131
detecting changes using the Query Host
Update (24) function 98-99
determining the size using the Query
Session Status (22) function 94-95
determining the size using the Query
Sessions (10) function 76-77
Disconnect Presentation Space (2)
function 47-48
overview 6-8
presentation space positions 7
standard presentation space sizes 8
using field functions with unformatted
presentation spaces 30
PSPosition_ReturnCode (see Return codes)

Q

Query Close Intercept (42) function 40
Query Cursor Location (7) function 66-67
Query Field Attribute (14) function 30, 84-86
Query Host Update (24) function 28, 98-99
Query Session Status (22) function 94-95
Query Sessions (10) function 76-77
Query System (20) function 91-92
Query Window Coordinates (103)

function 136-137

R
Receive File (91) function 127
Release (12) function 40
Remove Profile (912) function 145
Removing session file names from short
names
using Accessory Manager 20
using the Remove Profile (912)
function 145
Reserve (11) function 40
Reset System (21) function 93

203

Index

Return codes
overview 32
sample return code usage 156-157
standard return codes 152-155
Return parameters, overview 42
Row and column coordinates
converting to presentation space
positions 129-131
overview 7

S
Sample code, return code usage 156-157
Search Field (30) function 28, 30, 102-103
Search Presentation Space (6)
function 28, 64-65
Send File (90) function 125
Send Key (3) function 49-59
Session file names
associating with short names using
Accessory Manager 20
associating with short names using the
Associate Profile (911) function 144
overview 5
removing from short names using
Accessory Manager 20
removing from short names using the
Remove Profile (912) function 145
retrieving using the Find File Name (914)
function 147-148
retrieving using the Query Session
Status (22) function 94-95
retrieving using the Query Sessions (10)
function 76-77
using multiple sessions 24
Session parameters
overview 11
using in IHLLAPI applications 25
Session windows
determining the coordinates 136-137
managing 138-143
Set Cursor (40) function 114-115
Set Session Parameters (9) function 71-75
Short names
associating with sessions using Accessory
Manager 20
associating with sessions using the
Associate Profile (911) function 144

204

Short names, continued
overview 5
retrieving using the Find Short Name
(915) function 149-150
retrieving using the Get Associations
(913) function 146
retrieving using the Query Session
Status (22) function 94-95
retrieving using the Query Sessions (10)
function 76-77
specifying in ITHLLAPI
applications 21-23
using multiple sessions 24
SRCHALL session parameter 64, 65, 75, 102
SRCHFROM session
parameter 64, 65, 75, 102
Standard return codes 152-155
Start Close Intercept (41) function 40
Start Host Notification (23) function 96-97
Start Keystroke Intercept (50)
function 116-118
Status line (see OIA)
Stop Close Intercept (43) function 40
Stop Host Notification (25) function 100-101
Stop Keystroke Intercept (53) function 124
Storage Manager (17) function 40
STREOT session parameter 73
STRLEN session parameter, definition 73
Syntax, IHLLAPI calls 41

T
T 27

ASCII mnemonic codes for terminal

keystrokes 51-53

character attribute values 160

field attributes 85

field identifying attributes 10

OIA data 79-81

standard presentation space sizes 8
using 16-bit IHLLAPI applications with 19
Terminal keystrokes 51-59
Timing loops 29
Troubleshooting, general procedures 186
TWAIT session parameter 28, 61, 75

U

Unformatted presentation spaces, using field
functions with 30

Index

UTS

ASCII mnemonic codes for terminal
keystrokes 54-58

character attributes 161

color attributes 162

field attributes 86

field identifying attributes 10

OIA data 81-83

standard presentation space sizes 8

using 16-bit IHLLAPI applications
with 19

V
Variable declarations
C 34
Visual Basic 33
VBHLLAPI.BAS 33
Version numbers, retrieving 91-92

Visual Basic
call function syntax 33
developing IHLLAPI applications
with 33
VT, ASCII mnemonic codes for terminal
keystrokes 59-59

W
Wait (4) function 28, 60-61
Waiting for host responses 27-29
WHLLAPI.DLL 19
WHLLAPIL.H 19, 34, 164-168
WHLLAPI.LIB 19
Window Status (104) function 138-143
Windows 3.1 (see 16-bit IHLLAPI
applications, using with 32-bit emulators)
WinHLLAPI
differences with ITHLLAPI 3
unsupported functions 40

205

	Contents
	About This Guide
	Conventions
	Abbreviations
	Related Documentation

	Introduction
	What Is IHLLAPI?
	How IHLLAPI Works
	About Short Names and Session File Names
	About the Presentation Space
	About Fields and Attributes
	About Session Parameters
	Overview of IHLLAPI Functions
	Trying Out IHLLAPI Functions

	Guidelines for Developing IHLLAPI Applications
	Prerequisites for Using IHLLAPI
	Using Existing IHLLAPI Applications with 32-bit Emulators
	Using Short Names
	Connecting to Multiple Sessions
	Setting Session Parameters
	Interacting with Host Applications
	Waiting for Host Responses
	Using Field Functions
	Handling Return Codes and Errors
	Developing IHLLAPI Applications in Visual Basic
	Developing IHLLAPI Applications in C
	Running Your IHLLAPI Application

	IHLLAPI Functions
	Unsupported HLLAPI Functions
	How IHLLAPI Functions Are Documented
	Alphabetical Function List
	Numerical Function List
	Connect Presentation Space (1)
	Disconnect Presentation Space (2)
	Send Key (3)
	Wait (4)
	Copy Presentation Space (5)
	Search Presentation Space (6)
	Query Cursor Location (7)
	Copy Presentation Space to String (8)
	Set Session Parameters (9)
	Query Sessions (10)
	Query Sessions Full (910)
	Copy OIA (13)
	Query Field Attribute (14)
	Copy String to Presentation Space (15)
	Pause (18)
	Query System (20)
	Reset System (21)
	Query Session Status (22)
	Start Host Notification (23)
	Query Host Update (24)
	Stop Host Notification (25)
	Search Field (30)
	Find Field Position (31)
	Find Field Length (32)
	Copy String to Field (33)
	Copy Field to String (34)
	Set Cursor (40)
	Start Keystroke Intercept (50)
	Get Key (51)
	Post Intercept Status (52)
	Stop Keystroke Intercept (53)
	Send File (90)
	Receive File (91)
	Convert Position or RowCol (99)
	Connect Window Services (101)
	Disconnect Window Services (102)
	Query Window Coordinates (103)
	Window Status (104)
	Associate Profile (911)
	Remove Profile (912)
	Get Associations (913)
	Find File Name (914)
	Find Short Name (915)

	Return Codes
	IHLLAPI Return Codes
	Functions That Return Standard Return Codes
	Sample Return Code Usage

	Attribute Values
	T 27 Attributes
	UTS Attributes

	IHLLAPI Header Files
	WHLLAPI.H Header File
	HLLAPI.H Header File
	IHLAPI32.H Header File

	Troubleshooting
	General Troubleshooting Procedures

	RAWMODE
	Using RAWMODE

	ACMState
	Using ACMState.exe

	Glossary
	Index

