
Micro Focus
®

Modernization Workbench™

Analyzing Projects

Copyright © 2009 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

iii
Contents
Preface

Audience . ix
Organization . x
Conventions . xi
Related Manuals . xi
Online Help .xii

1 Overview

Analyzing Relationship Flows .1-1
Analyzing Data Operations .1-3
Estimating Complexity and Effort .1-3
Identifying Classes of Data Items .1-3
Performing SOA Analysis .1-4
What’s Next?. .1-5

2 Analyzing Relationship Flows

Understanding Relationship Flow Diagrams. .2-2
Understanding Diagram Scopes .2-2

Contentsiv
Understanding Diagram Layouts .2-3
Opening the Diagrammer .2-4
Generating Diagrams .2-4

Generating a Diagram for the Selected Project2-4
Generating a Diagram for Objects Copied and Pasted
onto the Canvas .2-6

Working in Diagrams. .2-7
Setting Diagrams User Preferences .2-11
Moving or Copying Source Files for Diagrammed Objects
into Projects .2-12
Using the Scope Editor .2-13

Understanding the Scope Editor WIndow 2-13
Managing Scopes .2-16
Creating Composite Relationships. .2-18
Defining a Relationship Filter .2-20
Pruning a Scope. .2-25
Mirroring a Scope. .2-25

Black-Boxing Objects in Diagrams .2-26
Assigning Tags to Objects .2-27
Expanding and Collapsing Black Boxes.2-31

What’s Next?. .2-31

3 Analyzing Global Data Flows

Understanding Global Data Flows .3-2
Searching for the Variable .3-2
Viewing Memory Usage for the Variable .3-3
Viewing the Data Flow for the Variable .3-4

Using the Global Data Flow Tool .3-5
Generating Global Data Flow Information3-5
Working with Global Data Flow Information3-7
Setting Global Data Flow Options .3-9
Copying Global Data Flow Diagrams to the Clipboard 3-12
Printing Global Data Flow Diagrams .3-12
Exporting Global Data Flow Diagrams .3-13

What’s Next?. .3-13

Contents v
4 Analyzing Batch Applications

Using the Batch Application Viewer .4-1
Generating Batch Application Information4-2
Working with Batch Application Table Views4-5
Searching Batch Application Table Views4-7
Working with Batch Application Diagrams4-7
Working with HyperView in Batch Application Viewer4-11

What’s Next?. .4-12

5 Analyzing Data Operations

Viewing CRUD Reports .5-1
Enabling IMS Port Analysis. .5-3

Mapping Root Programs to PSBs in JCL or System
Definition Files .5-4
Verification Order for IMS Applications .5-5
Reverifying Files in IMS Applications .5-5

What’s Next?. .5-6

6 Estimating Complexity and Effort

Using the Complexity Metrics Tool .6-2
Using the Effort Estimation Tool .6-3
Specifying Change Magnitudes .6-6
Exporting Complexity and Effort Reports .6-7
Supported Complexity Metrics .6-7
What’s Next?. .6-29

7 Identifying Classes of Data Items

Understanding Data Item Classification .7-1
Getting Started in Change Analyzer .7-3
Using Change Analyzer .7-7

Working with Change Impact Information 7-7
Setting Change Analyzer Options .7-10
Searching for Seed Fields in Change Analyzer7-13

Contentsvi
Creating Projects in Change Analyzer .7-15
Generating and Exporting Change Analyzer Reports7-16

What’s Next?. .7-17

8 Performing SOA Analysis

Understanding SOA Analysis .8-1
Understanding Client-Layer Programs. .8-2
Understanding Service-Layer Programs .8-3
Understanding Anomalous Programs .8-4

Starting SOA Analyzer .8-5
SOA Analyzer Basics .8-5

Viewing Object Classifications .8-6
Viewing Source .8-8
Viewing Object Properties .8-8
Assigning a Business Name and Description to an Object8-9
Assigning a Tag to an Object .8-9
Saving Classifications as Tags .8-9
Determining Program Reuse .8-9
Viewing SOA Measurements .8-10

Working with Diagrams .8-10
Drawing a Vertical Slice .8-12
Drawing a Horizontal Slice .8-13
Locating Items of Interest with a Clipper List8-14
Showing Program Inner Structure .8-15
Showing Tags in a Diagram .8-16
Setting Diagram Options .8-18

Identifying Problems .8-20
Identifying Missing Validation Rules. .8-20
Identifying Queue Access .8-21
Identifying Transaction Sync Points .8-23
Identifying Duplicated CRUD Operations.8-25

Creating Web Services .8-26
Identifying Potential Web Services. .8-26
Creating and Exporting Web Services .8-27
Generating and Exporting the Wrapper for a Web Service8-30

Contents vii
Mining the User Interface and Navigation. .8-31
Specifying Screen Events .8-31
Generating a Screen Navigation Diagram8-32
Exporting the User Interface and Navigation8-33

What’s Next?. .8-33

A Repository Exchange Protocol Syntax

Query Syntax . A-1
Example 1 . A-4
Example 2 . A-5

B Common Diagramming Features

Zooming . B-1
Printing Diagrams . B-1
Saving Diagrams. B-2
Copying Diagrams . B-2
Using the Diagram Editor . B-2

Opening a Diagram in the Diagram Editor B-2
Searching for Objects in the Diagram Editor B-3
Selecting Objects in the Diagram Editor B-5
Editing the Layout of a Diagram in the Diagram Editor B-6
Editing Objects in the Diagram Editor . B-8
Editing Relationships in the Diagram Editor. B-9
Editing General Properties of a Diagram in the Diagram
Editor . B-10
Saving Diagrams in the Diagram Editor B-11
Copying Diagrams with a Different Name (Saving As)
in the Diagram Editor . B-11
Printing Diagrams in the Diagram Editor B-11
Exporting Diagrams in the Diagram Editor. B-11

Glossary

Index

Contentsviii

ix
Preface
he Modernization Workbench is a suite of PC-based software
products for analyzing, re-architecting, and transforming legacy
applications. The products are deployed in an integrated envi-

ronment with access to a common repository of program objects. Lan-
guage-specific parsers generate repository models that serve as the basis
for a rich set of diagrams, reports, and other documentation.

The Modernization Workbench suite consists of customizable modules
that together address the needs of organizations at every stage of legacy
application evolution: maintenance/enhancement, renovation, and mod-
ernization.

Audience

This guide assumes that you are a corporate Information Technology
(IT) professional with a working knowledge of the legacy platforms you
are using the product to analyze. If you are transforming a legacy appli-
cation, you should also have a working knowledge of the target platform.

T

Prefacex
Organization

This guide contains the following chapters:

• Chapter 1, “Overview,” provides an overview of the Modernization
Workbench project analysis tools.

• Chapter 2, “Analyzing Relationship Flows,” describes how to use
the Diagrammer to perform high-level analysis of applications.

• Chapter 3, “Analyzing Global Data Flows,” describes how to use the
Global Data Flow tool to perform low-level analysis of program data
flows.

• Chapter 4, “Analyzing Batch Applications,”describes how to use
the Batch Application Viewer to perform low-level analysis of batch
processes.

• Chapter 5, “Analyzing Data Operations,” describes the workbench
CRUD report and IMS port analysis feature.

• Chapter 6, “Estimating Complexity and Effort,” describes how to
use the legacy estimation tools to estimate project complexity and
effort.

• Chapter 7, “Identifying Classes of Data Items,” describes how to
use the Change Analyzer to identify the class of data items used
to perform a business function in a legacy application.

• Chapter 8, “Performing SOA Analysis,” describes how to assess
legacy programs for their affinity with modern service-oriented ar-
chitectures (SOA).

• Appendix A, “Repository Exchange Protocol Syntax,” describes the
Repository Exchange Protocol (RXP) query syntax.

• Appendix B, “Common Diagramming Features,” describes features
shared by all the workbench diagramming tools, except the Dia-
grammer itself. Use these features to edit diagrams, save diagrams
in standard formats, print diagrams, and more.

• The Glossary defines the names, acronyms, and special terminology
used in this guide.

Preface xi
Conventions

This guide uses the following typographic conventions:

• Bold type: indicates a specific area within the graphical user inter-
face, such as a button on a screen, a window name, or a command or
function.

• Italic type: indicates a new term. Also indicates a document title. Oc-
casionally, italic type is used for emphasis.

• Monospace type: indicates computer programming code.

• Bold monospace type: indicates input you type on the computer
keyboard.

• 1A/1B, 2A/2B: in task descriptions, indicates mutually exclusive steps;
perform step A or step B, but not both.

Related Manuals

This document is part of a complete set of Modernization Workbench
manuals. Together they provide all the information you need to get the
most out of the system.

• Getting Started introduces the Modernization Workbench. This
guide provides an overview of the workbench tools, discusses basic
concepts, and describes how to use common product features.

• Preparing Projects describes how to set up Modernization Work-
bench projects. This guide describes how to load applications in the
repository and how to use reports and other tools to ensure that the
entire application is available for analysis.

• Analyzing Programs describes how to analyze applications at the
program level. This guide describes how to use HyperView tools to
view programs interactively and perform program analysis in stages.
It also describes how to set up an application glossary and how to ex-
tract business rules.

• Managing Application Portfolios describes how to build enterprise
dashboards that track survey-based metrics for applications in your

Prefacexii
portfolio. It also describes how to use Enterprise View Express to
browse Web-generated views of application repositories.

• Creating Components describes how to extract program components
from a legacy application.

• Transforming Applications describes how to generate legacy appli-
cation components in modern languages.

• Error Messages lists the error messages issued by Modernization
Workbench, with a brief explanation of each and instructions on how
to proceed.

Online Help

In addition to the manuals provided with the system, you can learn about
the product using the integrated online help. All GUI-based tools include
a standard Windows Help menu.

You can display:

• The entire help system, with table of contents, index, and search
tool, by selecting Help:Help Topics.

• Help about a particular Modernization Workbench window by click-
ing the window and pressing the F1 key.

Many Modernization Workbench tools have guides that you can use to
get started quickly in the tool. The guides are help-like systems with hy-
perlinks that you can use to access functions otherwise available only in
menus and other program controls.

To open the guide for a tool, choose Guide from the View menu. Use the
table of contents in the Page drop-down to navigate quickly to a topic.

1-1
1
Overview
hen you verify a legacy application, the parser generates a
model of the application that defines the objects it uses and
how they interact. The tools described in this guide help you

analyze the model at the project level. You can view high- and low-level
process and data flows, estimate project effort and complexity, identify
classes of data items that may be affected by a change in a field, and as-
sess legacy programs for their affinity with modern service-oriented ar-
chitectures (SOA).

Analyzing Relationship Flows

Modernization Workbench offers three related tools for analyzing rela-
tionship flows in legacy applications. The core Diagrammer tool lets you
analyze high-level relationship flows. The other tools let you drill down
deeper into data flows and batch processes All the tools let you browse
source code interactively.

W

Overview
Analyzing Relationship Flows

1-2
Note: Two other analysis tools, the Database Schema and User In-
terface tools, are described in Transforming Applications.

Analyzing Relationships with the Diagrammer

The Diagrammer lets you view the relationships between application ob-
jects interactively. These relationships describe the ways in which the
objects interact. In Figure 1-1, for example, the GSS2 program reads the
file CSS2.STATEMS. The file, in turn, is assigned to the CXX-
CP.OPK00.SNFILE data store.

Figure 1-1 Relationships in Diagrammatic Form

The Diagrammer’s high-level analysis of relationships lets you quickly
trace the flow of information in an application. Use the Diagrammer to
view:

• Program to program calls

• Program, transaction, and screen flows

• Program to table or data store flows

• Job, program, and data store flows

Analyzing Data Flows with the Global Data Flow Tool

The Global Data Flow tool lets you perform low-level analysis of pro-
gram data flows. Use it to determine how changes to a variable may
affect other variables and to trace assignments to and from a variable
across programs.

Analyzing Batch Applications with the Batch Application Viewer

The Batch Application Viewer lets you perform low-level analysis of
batch processes. Use it to determine whether jobs are dependent on one
another, the programs that use a data store, and the flow of data into or
out of a data store.

Overview
Analyzing Data Operations

1-3
Analyzing Data Operations

The workbench parser generates relationships that show the data opera-
tions a program performs (Insert, Read, Update, or Delete) and the data
objects on which the program operates (such as files, segments, tables,
and so forth).

The workbench CRUD Report lets you view these relationships in a con-
venient format. The IMS Port Analysis feature determines the database
segments or screens an IMS program operates on by tracing PSB usage
through an entire application call sequence.

Estimating Complexity and Effort

If you are planning to implement a change request for a program, one
thing you will want to know before you begin the work is how long it
will take to complete the change. Modernization Workbench Legacy Es-
timation tools let you compare programs based on weighted values for
selected complexity metrics. Based on the comparison, you can develop
a credible estimate of the time required to make the change.

The complexity metrics used in the calculation are a combination of
industry standard and Modernization Workbench-generated statistics
(Table 6-1). If your own analysis shows that a given program is more or
less complex than the weighted calculation would suggest, you can use
a change magnitude to override the calculated value.

The program might have thousands of source lines, for example, increas-
ing its calculated complexity, while actually being very easy to modify.
When you use a change magnitude, your “subjective” estimate of the ef-
fort involved, Small, Medium, Large, Extra-large, becomes an input to
the effort calculation, along with the weighted values.

Identifying Classes of Data Items

Suppose your organization is considering adding support for a new
currency and that you are going to have to expand the existing exchange
rate data field from 9(5)V9(3) to 9(5)V9(6) to accommodate the curren-

Overview
Performing SOA Analysis

1-4
cy. You will need to know the data fields that are affected in the database,
intermediate fields that may contain or use the exchange rate field in
calculations, and so forth.

The Change Analyzer identifies the class of data items that may need to
be modified to support the new currency: in our case, not only the ex-
change rate fields themselves, but any fields related to them by assign-
ment. In this way it lets you answer the kinds of “What if?” questions
posed in the recent past by the industry-wide changes for Y2K, Zip+4,
and the Euro dollar: “What if I change the type of this variable, or the
length of this field? What other fields will I also have to change?”

Use change analysis results to prepare project plans and technical spec-
ifications. You can generate reports showing source entities that may re-
quire modification, lines of code affected, and the like.

Performing SOA Analysis

Most legacy applications can be abstracted to an “ideal architecture,” in
which screens, UI programs, data abstraction programs, and data access
activities all are implemented in self-contained modules deployed in
sharply demarcated layers.

The reality, of course, is usually very different. Abstract knowledge of
the data, business logic, data access, and UI may be enmeshed in the
same programs, making it extremely difficult to isolate candidates for
reuse.

That’s where SOA Analyzer comes in. It categorizes programs accord-
ing to the functions they perform in an abstract legacy architecture: UI,
data abstraction, data access, and so forth. On the basis of the layering
analysis it performs and the wealth of analysis tools it provides, users can
identify legacy programs that now or with some rewriting can be ex-
posed as Web services. It also provides facilities that make it easy to
generate a user interface and navigation scheme on another platform.

Note: SOA Analyzer is a separately licensable add-on to Modern-
ization Workbench.

Overview
What’s Next?

1-5
What’s Next?

That’s all you need to know before you begin analyzing Modernization
Workbench projects. Now let’s look at how you use the Diagrammer to
perform high-level analysis of legacy applications.

Overview
What’s Next?

1-6

2-1
2
Analyzing Relationship Flows
he Diagrammer lets you view the relationships between
application objects interactively. These relationships describe
the ways in which program objects interact. In Figure 2-1, for

example, the GSS2 program reads the file CSS2.STATEMS. The file, in
turn, is assigned to the CXXCP.OPK00.SNFILE data store.

Figure 2-1 Relationships in Diagrammatic Form

The Diagrammer’s high-level analysis of relationships lets you quickly
trace the flow of information in an application. Use the Diagrammer to
view:

• Program to program calls

• Program, transaction, and screen flows

T

Analyzing Relationship Flows
Understanding Relationship Flow Diagrams

2-2
• Program to table or data store flows

• Job, program, and data store flows

Understanding Relationship Flow Diagrams

Relationship flow diagrams use boxes and lines to show the relationships
between objects in an application. Depending on the Diagrammer mode,
you can display the relationships for:

• All the objects in the selected project.

• Only the objects you copy and paste onto the canvas.

In each mode, all related workspace objects are included in the diagram.
In copy-and-paste mode, you can add objects to an existing diagram and
expand the diagram one level at a time.

Objects are color-coded, based on a color scheme of your choosing. If
you have assigned business names to objects, their business names ap-
pear in the diagram as well as their technical names. You can “black-
box” items in higher-level groupings that make it easy to visualize their
roles in your application, and you can hide objects temporarily in folders.

Understanding Diagram Scopes

The scope of a diagram determines the relationships it displays. To view
a diagram of the relationships, select the scope in the Scope drop-down
and choose View Scope in the Scope menu.

The Diagrammer provides default scopes that you can use for most anal-
ysis tasks, but you can create your own scopes if you like. You might
want to exclude data stores from a data flow, or include source files in a
call map. For more information, see “Using the Scope Editor” on
page 2-13.

Analyzing Relationship Flows
Understanding Diagram Layouts

2-3
Understanding Diagram Layouts

Diagrammer layout styles are designed to produce aesthetically pleas-
ing, easy-to-understand diagrams for a wide variety of needs. The fol-
lowing styles are available:

• The hierarchical layout style organizes nodes in precedence rela-
tionships, with levels for parent and child object types. Click the
button on the Diagram pane tool bar to choose the hierarchical lay-
out style.

• The orthogonal layout style organizes nodes in relationships drawn
with horizontal and vertical lines only. Click the button on the
Diagram pane tool bar to choose the orthogonal layout style.

• The symmetric layout style organizes nodes based on symmetries
detected in their relationships. Click the button on the Diagram
pane tool bar to choose the symmetric layout style.

• The tree layout style organizes nodes in parent-child relationships,
with child nodes arranged on levels farther from the root node than
their parents. Click the button on the Diagram pane tool bar to
choose the tree layout style.

• The circular layout style organizes nodes in clusters of related ob-
jects. Click the button on the Diagram pane tool bar to choose
the circular layout style.

Tip: Click a layout style button to change the style after a diagram
is drawn.

About Random Layout Style

The random layout style organizes nodes randomly, so as to maximize
drawing performance. When a very large diagram is being loaded for the
first time, the Diagrammer notifies you of the large number of display
objects and asks you if random layout style is acceptable. Click Yes to
accept random layout style. Click No to draw the diagram with the layout
style of your choosing.

Analyzing Relationship Flows
Opening the Diagrammer

2-4
Opening the Diagrammer

In the Modernization Workbench Repository Browser, select a project
and choose Diagram in the Analyze menu. The Diagrammer window
opens. The embedded Browser pane displays the projects in the work-
space. The current project is expanded one level.

Generating Diagrams

You can generate relationship flow diagrams for:

• All the objects in the selected project.

• Only the objects you copy and paste onto the canvas.

In each mode, all related workspace objects are included in the diagram.
In copy-and-paste mode, you can add objects to an existing diagram and
expand the diagram one level at a time.

Generating a Diagram for the Selected Project

Follow the steps below to generate a relationship flow diagram for the
selected project.

To generate a diagram for the selected project:

1 In the Project drop-down or the Browser pane, select the project for
the diagram.

2 In the View menu, choose:

• Exclude Objects Outside Project to limit the diagram to objects
in the current project. Otherwise, all related workspace objects
are included in the diagram.

• Potential Incomplete Composite Relationships to show in-
complete relationship chains in the diagram. Intermediate objects
in the chain are displayed even if the final object in the chain is
unresolved or otherwise unavailable. Relationships are displayed
in red in the diagram.

• Project Boundary Entities to colorize boundary objects in the
diagram. Boundary objects are objects with relationships to ob-

Analyzing Relationship Flows
Generating Diagrams

2-5
jects outside the project. Boundary objects are displayed in the
diagram with a red border. Related external objects are displayed
in the diagram with a blue border.

3 In the Scope drop-down, choose the scope of the diagram. You can
prune the scope directly in the Diagrammer window after the dia-
gram is drawn, as described in “Pruning a Scope” on page 2-25.

4 In the Group By drop-down, choose the tag you want to use to
“black box” the diagram. Choose Root Tags Only in the View menu
if you want the Group By drop-down to show top-level tags only.

5 On the Diagram pane tool bar, choose the layout style for the dia-
gram.

6 Click the button on the Diagrammer tool bar. The Diagrammer
draws the selected diagram (Figure 2-2).

Figure 2-2 Data Flow Diagram for Selected Project

Analyzing Relationship Flows
Generating Diagrams

2-6
Generating a Diagram for Objects Copied and Pasted onto the Canvas

Follow the steps below to generate a relationship flow diagram for ob-
jects copied and pasted onto the canvas from the embedded Browser
pane. In this mode, you can expand the diagram one level at a time and
add objects to an existing diagram.

To generate a diagram for copied-and-pasted objects:

1 In the View menu, choose:

• Exclude Objects Outside Project to limit the diagram to objects
in the current project. Otherwise, all related workspace objects
are included in the diagram.

• Potential Incomplete Composite Relationships to show in-
complete relationship chains in the diagram. Intermediate objects
in the chain are displayed even if the final object in the chain is
unresolved or otherwise unavailable. Relationships are displayed
in red in the diagram.

• Project Boundary Entities to colorize boundary objects in the
diagram. Boundary objects are objects with relationships to ob-
jects outside the project. Boundary objects are displayed in the
diagram with a red border. Related external objects are displayed
in the diagram with a blue border.

2 In the View menu, choose Auto Expand to show the entire relation-
ship flow for the selected objects. Turn off Auto Expand if you want
to expand the diagram one level at a time after it is drawn. Only im-
mediate relationships of the selected objects are drawn initially. Ex-
pand the diagram as described in “Expanding and Collapsing
Relationships” on page 2-8.

3 In the Scope drop-down, choose the scope of the diagram. You can
prune the scope directly in the Diagrammer window after the dia-
gram is drawn, as described in “Pruning a Scope” on page 2-25.

4 In the Group By drop-down, choose the tag you want to use to
“black box” the diagram. Choose Root Tags Only in the View menu
if you want the Group By drop-down to show top-level tags only.

Analyzing Relationship Flows
Working in Diagrams

2-7
5 On the Diagram pane tool bar, choose the layout style for the dia-
gram.

6 In the Browser pane, select the startup objects for the diagram, then
press CTRL-C to copy them onto the clipboard. In the Diagram
menu, choose Paste (or press CTRL-V) to paste the objects onto the
Diagrammer canvas.

Tip: Make sure to select startup objects in the diagram’s intended
scope. Most scopes include logical objects rather than source
files.

7 Repeat step 6 for each object whose relationships you want to add to
the existing diagram. The diagram is automatically redrawn.

Tip: Click the button on the Diagrammer tool bar to redraw
the diagram after you have modified it.

Working in Diagrams

The Diagrammer window consists of a Diagram pane, Browser pane,
List pane, Quick View pane, Overview pane, and Activity Log. You can
hide a pane by clicking the close box in the upper righthand corner. Se-
lect the appropriate choice in the View menu to show the pane again.

Diagram Pane

The Diagram pane displays the diagram for the selected scope. Follow
the instructions in “Generating a Diagram for the Selected Project” on
page 2-4 or “Generating a Diagram for Objects Copied and Pasted onto
the Canvas” on page 2-6 to generate diagrams.

Selecting an Object or Relationship Click the button on the Dia-
gram pane tool bar to choose select mode. Select an object in the diagram
by clicking it. Use Ctrl-click to select multiple objects. Click a blank area
of the canvas, then drag the mouse over multiple objects to “lasso” them.
Selected objects are displayed with handles that you can use to size the
object.

Select a relationship by clicking it. The selected relationship is displayed
in blue.

Analyzing Relationship Flows
Working in Diagrams

2-8
Searching for an Object Use the Search facility to find an object in the
diagram. Enter the text you want to match in the Search field on the Di-
agrammer tool bar and press Enter. You can use wildcard patterns al-
lowed in LIKE statements by Visual Basic for Applications (VBA).

Navigating to an Object from a Relationship Select a relationship and
choose Locate Left in the right-click menu to navigate to the object on
the left side of the relationship. Choose Locate Right in the right-click
menu to navigate to the object on the right side of the relationship.

Tip: Use the Overview pane to navigate to general locations in a
diagram.

Moving an Object or Relationship Select an object and drag it to move
it in the diagram. Select a relationship and drag it to move it in the dia-
gram.

Resizing an Object Drag the handle of a selected object to resize it.

Viewing Source Select an object in the diagram to view its source in the
Quick View pane.

Assigning a Business Name and Description to an Object Select an
object and choose Set Business Attributes:Name or Set Business At-
tributes:Description in the right-click menu to assign a business name
and description to the object. A dialog box opens, where you can enter
the business name or business description.

Expanding and Collapsing Relationships Select an object and choose
Expand:Expand Incoming in the right-click menu to expand incoming
relationships. Choose Expand:Expand Outgoing to expand outgoing
relationships.

Choose Collapse:Collapse Incoming in the right-click menu to collapse
incoming relationships. Choose Collapse:Collapse Outgoing to col-
lapse outgoing relationships.

Hiding Objects in a Folder Select an object or objects and click the
button on the Diagram pane tool bar to hide the objects temporarily in a
folder node (). Select the folder and click the button on the tool
bar to restore the objects to the diagram.

Analyzing Relationship Flows
Working in Diagrams

2-9
Deleting an Object or Relationship Select an object and choose Delete
Node in the right-click menu to delete the object from the diagram. Se-
lect a relationship and choose Delete Edge in the right-click menu o de-
lete the relationship from the diagram.

Zooming Click the button on the Diagram pane tool bar to fit the
diagram in the Diagram pane.

Click the button to zoom in interactive mode. Drag the mouse over
the diagram to zoom on it.

Click the button to zoom in marquee mode. Drag the mouse over the
the diagram to draw a marquee. The Diagrammer displays the portion of
the diagram inside the marquee.

Moving a Diagram Click the button on the Diagram pane tool bar to
choose panning mode. Hold down the left mouse button and drag the
mouse to move the diagram in the Diagram pane.

Clearing a Diagram In the Diagram menu, choose Clear to delete the
current diagram from the Diagram pane.

Saving a Diagram Click the button on the Diagram pane tool bar to
save a diagram as an image. A Save As dialog opens, where you can
specify the image type and characteristics. Click the button on the
Diagram pane tool bar to save a diagram as a Tom Sawyer Visualization
file (.tsv). A Save dialog opens, where you can specify the name and lo-
cation of the file.

Saving Diagram-Based Reports Choose Save Type Report in the File
menu to display a printable report based on a diagram. Choose Save
Blackbox Interface Report in the File menu to display a printable re-
port showing the relationship of black boxes in a diagram to each other
and to other diagram objects. In the printable report, click Print to print
the report. Click Save to export the report to HTML, Excel, RTF, Word,
or formatted text.

Printing a Diagram In the Diagram menu, click the button on the
Diagram pane tool bar to print a diagram. A Print dialog opens, where
you can specify the properties of the print job. Click the button to
preview the printed diagram.

Analyzing Relationship Flows
Working in Diagrams

2-10
Browser Pane

The Browser pane displays the workspace repository in tree form. Fol-
low the instructions in “Generating a Diagram for Objects Copied and
Pasted onto the Canvas” on page 2-6 to generate a diagram for objects in
the Browser pane. For Browser usage information, see Getting Started in
the workbench documentation set.

Note: To improve Diagrammer startup performance in your next
session, hide the Browser pane before you end your current
session. Click the close box in the upper righthand corner to
hide the pane. When the Browser pane is hidden, select the
project you want to diagram in the Project drop-down.

List Pane

The List pane displays the relationships in the selected scope, as they
appear from left to right in the diagram. Select the relationship for an
object in the List pane to navigate to the object in the Diagram pane.

The list includes relationship chains, such as Program[IsDefinedInCo-
bol]Cobol[Includes]Copybook[GeneratesTargetXml]TargetXML. If
you selected Partial Relationships in the View menu when you drew
the diagram, the list shows incomplete relationship chains, in which the
final object in the chain is unresolved or otherwise unavailable.

Sorting Entries Click a column heading in the List pane to sort the rela-
tionship entries by that column.

Sizing Columns Grab-and-drag the border of a column heading to in-
crease or decrease the width of the column.

Quick View Pane

The Quick View pane lets you browse HyperView information for the
object selected in the Diagram pane. The information available depends
on the type of object selected. You see only source code for a copybook,
for example, but full HyperView information for a program. You can
also view the properties of the selected object.

Select an object in the Diagram pane to view it in the Quick View pane.
Choose the information you want to view for the object from the Source

Analyzing Relationship Flows
Setting Diagrams User Preferences

2-11
drop-down. For HyperView usage information, see Analyzing Programs
in the workbench documentation set. For Properties pane usage informa-
tion, see Getting Started in the workbench documentation set.

Overview Pane

The Overview pane lets you navigate to a general location in a diagram.
It displays the entire diagram, with a frame surrounding the portion of
the diagram visible in the Diagram pane. Drag the frame to the area of
the diagram you want to view in the Diagram pane. Diagrammer dis-
plays the selected area in the Diagram pane.

Setting Diagrams User Preferences

Object types are color-coded in relationship flow diagrams so that you
can distinguish one type from another: programs from transactions,
transactions from screens, and so forth. You can use the default color
scheme or create your own. Color settings apply across workspaces.

To set Diagrams user preferences:

1 In the View menu, choose Options. The Options window opens
(Figure 2-3).

Figure 2-3 Options Window

Analyzing Relationship Flows
Moving or Copying Source Files for Diagrammed Objects into Projects

2-12
2 In the Color Scheme pane, click the object type whose color you
want to edit. The current background color of the type (if any) is dis-
played in the Color drop-down.

3 Click the arrow beside the Color drop-down and choose ForeColor
from the pop-up menu if you want to edit the color of the caption for
the object type, or BackColor if you want to edit the color of the
background for the object type.

4 A standard Windows color control is displayed. Use the Palette tab
to select the color of the caption or background from the Windows
palette. Use the System tab to match the color of the caption or back-
ground with the color of standard Windows elements.

Moving or Copying Source Files for Diagrammed Objects into
Projects

You can use the Diagrammer to move or copy the source files for the ob-
jects in a diagram to different projects.

To move or copy source files for diagrammed objects into projects:

1 In the Diagram menu, choose Include in Project. The Select
Project window opens.

2 In the Select Project window, select the project you want to move or
copy source files into. Click New to create a new project.

3 Select the Include All Related Objects check box if you want to
move or copy the objects in the workspace related to the diagram
objects, the Cobol copybooks included in a Cobol program file, for
example.

4 Choose one of the following:

• Copy to copy the source files to the specified project.
• Move From Current Project to move the source files to the

specified project.
• Move From All Projects to move the source files from all

projects to the selected project.

5 Click OK to move or copy the selection.

Analyzing Relationship Flows
Using the Scope Editor

2-13
Using the Scope Editor

Use the Scope Editor to manage the scopes in your repository, create cus-
tom composite relationships, and define relationship filters. For back-
ground on scopes, see “Understanding Diagram Scopes” on page 2-2.

Understanding the Scope Editor WIndow

The Scope Editor displays the scopes in your repository and their rela-
tionships. To open the Scope Editor, choose Scope Editor in the Scope
menu. The Scope Editor window opens (Figure 2-4).

Figure 2-4 Scope Editor Window

Analyzing Relationship Flows
Using the Scope Editor

2-14
The lefthand pane of the Scope Editor window lists every scope in the
repository. Table 2-1 describes the columns in the lefthand pane.

Table 2-1 Scope Editor Window Lefthand Columns

Column Name Description

Scope The name of the scope. Scopes are color-coded
as follows:
• Blue means that the scope is available in the

Diagrammer Scope drop-down.
• Gray means that the scope is not available in

the Scope drop-down, because it is hidden or
because it is a private scope owned by another
user. Make a private scope owned by another
user available by copying it, as described in
“Exporting Scopes” on page 2-18.

• Red means that the scope has no relationships
associated with it. Specify the relationships in
a scope as described in “Specifying the
Relationships in a Scope” on page 2-17.

Type The type of the scope, public or private. The
type determines availability of the scope in the
Diagrammer Scope drop-down:
• A public scope is available to every user of the

workspace.
• A private scope is available only to its owner.

Private scopes are listed in the Scope Editor,
where you can copy them as described in
“Exporting Scopes” on page 2-18.

Owner The owner of the scope. SYSTEM denotes a
default scope.

Hide Whether the scope is hidden in the Diagrammer
Scope drop-down. A check mark means that the
scope is hidden.

Analyzing Relationship Flows
Using the Scope Editor

2-15
The righthand pane of the Scope Editor window lists every relationship
in the repository. Table 2-2 describes the columns in the righthand pane.

Table 2-2 Scope Editor Window Righthand Columns

Column Name Description

Use Whether the relationship is used in the selected
scope. A check mark means that the relationship
is used.

Relationship Name The name of the relationship. Relationships for
which a filter has been defined are color-coded
magenta.

Left Entity The entity on the left end of the relationship.
Entities for which a relationship filter has been
defined are color-coded magenta. A tool tip dis-
plays the text of the condition.

Caption The caption of the relationship.

Right Entity The entity on the right end of the relationship.
Entities for which a relationship filter has been
defined are color-coded magenta. A tool tip dis-
plays the text of the condition.

Class The class of the relationship, basic or compos-
ite:
• A basic relationship defines the direct

interaction of two objects: a program and a
program entry point, for example.

• A composite relationship defines the indirect
interaction of two objects. If a job runs a
program entry point that belongs to a
program, for example, the relationship
between the job and program is said to be
composite: defined by the chain of
relationships between the job and program.

Occurs The number of times a basic relationship occurs
in the repository. For composite relationships,
N/A.

Analyzing Relationship Flows
Using the Scope Editor

2-16
Managing Scopes

Use the Scope Editor to edit the Diagrammer Scope drop-down, view
scope diagrams, create, edit, copy, and delete scopes, import and export
scopes, and more.

Editing the Scope Drop-Down Remove a scope from the Diagrammer
Scope drop-down (but not from the repository) by selecting the scope in
the Scope Editor and putting a check mark next to it in the Hide column.

Displaying Only Relationships Used in a Scope Display only the rela-
tionships used in a scope by selecting the scope in the Scope Editor and
clicking the Hide Unused button in the righthand pane.

Hiding Empty Relationships Hide relationships that have no instances
in the repository by clicking the Hide Empty button in the righthand
pane.

Viewing a Diagram of a Scope View the diagram of a scope by select-
ing the scope in the Scope Editor and choosing Diagram in the File
menu. You can also view a scope diagram by selecting the scope in the
Diagrammer Scope drop-down and choosing View Scope in the Scope
menu.

Use the buttons described in “Understanding Diagram Layouts” on
page 2-3 to view the scope diagram in different layouts. Use the features
described in “Working in Diagrams” on page 2-7 to manipulate the dia-
gram.

Viewing a Diagram of a Composite Relationship View the diagram of
a composite relationship by selecting the relationship in the Scope Editor
and choosing Diagram in the right-click menu.

Use the buttons described in “Understanding Diagram Layouts” on
page 2-3 to view the relationship diagram in different layouts. Use the
features described in “Working in Diagrams” on page 2-7 to manipulate
the diagram.

Creating a Scope Create a scope by choosing New Scope in the File
menu. A dialog box prompts you to enter the name, optional caption,

Analyzing Relationship Flows
Using the Scope Editor

2-17
class, and owner of the scope. Enter the requested information and click
Save. For a description of scope details, see Table 2-1.

Specifying the Relationships in a Scope Specify the relationships in a
scope by selecting the scope in the Scope Editor and putting a check
mark in the Use column next to each relationship you want to include in
the scope. Choose Save in the File menu to save the scope. You can spec-
ify relationships only for a scope you own.

Create custom composite relationships as described in “Creating Com-
posite Relationships” on page 2-18. Define relationship filters as de-
scribed in “Defining a Relationship Filter” on page 2-20.

Editing Scope Details Edit the name, caption, class, and owner of a
scope by selecting the scope in the Scope Editor and choosing Edit in
the File menu. A dialog box displays the current details for the scope.
Enter the new information and click Save. You can only edit details for
a scope you own.

Copying a Scope Copy a scope by selecting the scope in the Scope Ed-
itor and choosing Copy in the File menu. A dialog box prompts you to
enter the name, optional caption, class, and owner of the new scope. En-
ter the requested information and click Save. You can copy default
scopes and public or private scopes owned by another user, then edit
them as you would your own scope.

Deleting a Scope Delete a scope by selecting the scope in the Scope
Editor and choosing Delete in the File menu. A dialog box prompts you
to confirm that you want to delete the scope. Click OK. You can only de-
lete a scope you own.

Deleting a Composite Relationship Delete a composite relationship by
selecting the relationship in the Scope Editor and choosing Delete in the
right-click menu. A dialog box prompts you to confirm that you want to
delete the composite relationship. Click OK. You can only delete a com-
posite relationship you own.

Importing Scopes Import scopes from an XML file by choosing Im-
port in the File menu. A dialog box prompts you to specify the name and

Analyzing Relationship Flows
Using the Scope Editor

2-18
location of the file. Enter the requested information and click Open. The
type of an imported scope defaults to public. The owner defaults to the
current user.

Note: If a scope or relationship being imported conflicts with an ex-
isting scope or relationship, you are notified and the conflict-
ing item is ignored.

Exporting Scopes Export a scope to an XML file by selecting the
scope in the Scope Editor and choosing Export Selected in the File
menu. A dialog box prompts you to specify the name and location of the
file. Enter the requested information and click Save.

To export all the scopes in the repository to an XML file, choose Export
All in the File menu. A dialog box prompts you to specify the name and
location of the file. Enter the requested information and click Save. To
export selected scopes, use Shift-click or Ctrl-click to select the scopes,
then choose Export Selected in the File menu.

Note: Relationship filters are not exported.

Hiding Columns Hide a column in the Scope Editor by deselecting the
column name in the View menu.

Sorting Columns Click a column heading in the Scope Editor to sort list
entries by that column.

Sizing Columns Grab-and-drag the border of a column heading in the
Scope Editor to increase or decrease the width of the column.

Creating Composite Relationships

A composite relationship defines the indirect interaction of two objects.
If a job runs a program entry point that belongs to a program, for exam-
ple, the relationship between the job and program is said to be compos-
ite: defined by the chain of relationships between the job and program.

You can use the default composite relationships provided with the sys-
tem, or use the Scope Editor to create custom composite relationships as

Analyzing Relationship Flows
Using the Scope Editor

2-19
described below. Custom composite relationships are available to all us-
ers of the workspace.

Note: Custom composite relationships are not copied or exported
when a scope is copied or exported.

To create custom composite relationships:

1 In the Scope Editor File menu, choose New Relationship. The New
Relationship Wizard opens (Figure 2-5).

Figure 2-5 New Relationship Wizard (Screen One)

2 In the Enter Relationship Name field, enter the name of the com-
posite relationship. In the Select First Entity pane, select the object
you want to appear on the left side of the relationship chain. Click
Next. The screen shown in Figure 2-6 appears.

Analyzing Relationship Flows
Using the Scope Editor

2-20
Figure 2-6 New Relationship Wizard (Screen Two)

3 In the Select relationship pane, select the relationship you want to
appear next in the relationship chain. Click Next. A screen similar to
the one shown in Figure 2-6 appears.

4 Repeat step 3 for each relationship you want to include in the chain.
When you are done, click Finish. The New Relationship Wizard
closes and the new composite relationship is added to the Scope Ed-
itor window.

Defining a Relationship Filter

You can define a relationship filter by setting conditions for either side
of the relationships defined in a scope you own. You might want a scope
to be restricted to programs that have a cyclomatic complexity greater
than 300 and that are defined in COBOL source files, for example, as
shown in the steps below.

Condition definitions are based on the Repository Exchange Protocol
(RXP), an XML-based API that you can use to interact with application-
level information in the workspace repository. For RXP syntax, see Ap-
pendix A, “Repository Exchange Protocol Syntax.”

Analyzing Relationship Flows
Using the Scope Editor

2-21
In the Scope Editor, relationships and entities for which a filter has been
defined are color-coded magenta. A tool tip over the filtered entity dis-
plays the text of the condition.

To set conditions for a scope:

1 In the Scope Editor window, select the relationship you want to set
conditions for and choose:

• Left Cond in the right-click menu to qualify the entity on the left
side of the relationship.

• Right Cond in the right-click menu to qualify the entity on the
right side of the relationship.

The Condition window opens (Figure 2-7).

Figure 2-7 Condition Window

2 In the Condition window, click:

• attribute to qualify the entity according to the value of a given
attribute. Programs that have a cyclomatic complexity greater
than 300, for example.

Analyzing Relationship Flows
Using the Scope Editor

2-22
• has (not) related object to qualify the entity according to a given
relationship type. Programs defined in COBOL source files, for
example.

• add AND condition to qualify the entity according to inclusive
criteria using an AND operator. Programs that have a cyclomatic
complexity greater than 300 and that are defined in COBOL
source files, for example.

• add OR condition to qualify the entity according to exclusive
criteria using an OR operator. Programs that have a cyclomatic
complexity greater than 300 or that are defined in COBOL source
files, for example.

The Condition window displays the shell definition for the selected
condition (Figure 2-8). The following steps describe how to qualify
the program entity using an AND operator. The procedure for other
entities and conditions is similar.

Figure 2-8 Condition Window with Shell Definition for AND Condition

Analyzing Relationship Flows
Using the Scope Editor

2-23
3 In the definition for the AND condition, click attribute. The defini-
tion for the attribute condition is displayed:

<attr name="..." op="..." arg="..." negate="..."/>

Note: Click the X in a definition to delete the condition.

4 Click the ellipsis (…) in name="…". The User Input dialog opens
(Figure 2-9).

Figure 2-9 User Input Dialog

5 In the User Input dialog, select the Program entity in the Choose en-
tity drop-down and the Cyclomatic Complexity attribute in the At-
tributes for Program drop-down, then click OK. The attribute is
added to the condition definition.

Note: Click Delete in the User Input dialog to delete the criterion
defined in the dialog.

6 Click the ellipsis (…) in op="…". A User Input dialog similar to the
one shown in Figure 2-9 opens. In the Choose new value drop-
down, choose the greater than (>) symbol, then click OK. The great-
er than symbol is added to the condition definition.

7 Click the ellipsis (…) in arg="…". A User Input dialog similar to
the one shown in Figure 2-9 opens. In the Enter new value drop-
down, enter 300, then click OK. The new value is added to the con-
dition definition:

<attr name="Cyclomatic Complexity" op=">" arg="300"
 negate="..."/>

Analyzing Relationship Flows
Using the Scope Editor

2-24
Note: In a condition definition, negate means not the specified
criterion. Programs that do not have a cyclomatic complexity
greater than 300, for example. Click the ellipsis (…) in ne-
gate="…" to set its value to true. Ignore the field otherwise.

8 In the definition for the AND condition, click has (not) related ob-
ject. The definition for the relationship type condition is displayed:

<hasrelated negate="...">

9 In the choices for the relationship type condition, click define rela-
tionship type. The choices for the relationship type are displayed.

10 In the choices for the relationship type, click define relationship.
The definition for the relationship type is displayed:

<rel name="..." negate="..."/>

11 Click the ellipsis (…) in name="…". A User Input dialog similar
to the one shown in Figure 2-9 opens. In the Choose entity drop-
down, select the Program entity. In the Relations for Program
drop-down, select the IsDefinedInCobol relationship, then click
OK. The relationship is added to the condition definition, which
looks like this:

- <hasrelated negate="...">
 - <reltype>
 <rel name="IsDefinedInCobol" negate="..."/>
 </reltype>
 </hasrelated>

12 The AND condition is now complete. The diagram scope will be re-
stricted to programs that have a cyclomatic complexity greater than
300 and that are defined in COBOL source files. The full condition
looks like this:

- <cond>
 <and negate="...">
 <attr name="Cyclomatic Complexity" op=">"
 arg="300" negate="..."/>
 - <hasrelated negate="...">
 - <reltype>
 <rel name="IsDefinedInCobol"
 negate="..."/>
 </reltype>
 </hasrelated>

Analyzing Relationship Flows
Using the Scope Editor

2-25
 </and>
 </cond>

Pruning a Scope

You can prune relationships from a scope you own directly in the Dia-
grammer window. When you prune a scope, keep in mind that:

• You are deleting relationships from the current scope exactly as if
you were deleting them in the Scope Editor window (Figure 2-4).
For that reason, you might want to save the original scope with a dif-
ferent name and use the renamed scope as the basis for the pruned
diagram.

• All the relationships of the selected type are deleted for the selected
object, not just the single relationship you selected in the diagram.

To prune a scope:

1 Select the relationship you want to prune in the diagram and choose:

• Prune type for right object in the right-click menu to delete
from the current scope all relationships of the selected type for
the right object in the relationship.

• Prune type for left object in the right-click menu to delete from
the current scope all relationships of the selected type for the left
object in the relationship.

Redraw the Diagram as described in “Generating a Diagram for the
Selected Project” on page 2-4 or “Generating a Diagram for Objects
Copied and Pasted onto the Canvas” on page 2-6. Diagrammer de-
letes the relationships from the redrawn diagram.

Mirroring a Scope

By default, Diagrammer shows the flow of relationships from a dia-
grammed object rather than to a diagrammed object. Choose Mirror
Scope in the Scope menu to show the flow of relationships to the object.
Choose Mirror Scope again to return to the original view.

Analyzing Relationship Flows
Black-Boxing Objects in Diagrams

2-26
Black-Boxing Objects in Diagrams

The deeper your understanding of your application, the more confidently
you can abstract from its lower-level details to a “bigger picture” view,
one that organizes related programs in functional, structural, or other
types of groupings: a Customer Maintenance subsystem, for example, in
an Order Acceptance application. This is the kind of view a subject mat-
ter expert needs to evaluate whether an application does everything it is
supposed to do, in the appropriate order.

The Diagrammer black-box feature lets you assign lower-level objects to
higher-level groupings that make it easy to visualize their roles in your
application. (Literally speaking, “black box” is a misnomer. The boxes
as drawn are red.) Your diagram might have one black box for the Cus-
tomer Maintenance subsystem, another for the Order Entry subsystem,
and so forth (Figure 2-10). Because the details of these relationships are
hidden in the black box until you need to view them, the subject matter
expert can hone in quickly on the higher-order functions you have ab-
stracted from them.

You use a simple tagging language to identify the items in each higher-
level grouping, as described in “Assigning Tags to Objects” on
page 2-27. Each grouping can, in turn, reference a more inclusive group-
ing.

If you assign the Customer Maintenance tag to one set of programs, for
example, and the Order Entry tag to another, and both tags reference the
Application Functions tag, then when you choose Application Functions
in the Group By drop-down, the Diagrammer puts the programs in black
boxes named Application Functions Customer Maintenance and Appli-
cation Functions Order Entry (Figure 2-10).

After the diagram is drawn, you can:

• Expand or collapse the black box, as described in “Expanding and
Collapsing Black Boxes” on page 2-31.

• Print a report showing the relationship of black boxes in the diagram
to each other and to other diagram objects, as described in “Saving
Diagram-Based Reports” on page 2-9.

Analyzing Relationship Flows
Black-Boxing Objects in Diagrams

2-27
Figure 2-10 Call Map Diagram with Black Boxes

Assigning Tags to Objects

You use a simple tagging language to identify workspace objects as
members of higher-level functional, structural, or other types of group-
ings. After you set up these groupings, you can chart them in Enterprise
View Express or “black box” them in the Diagrammer.

Each member of the higher-level grouping is identified by a tag: Cus-
tomer Maintenance, for example. Each grouping can, in turn, reference
a more inclusive grouping: Application Functions, for example. Later,
when you generate charts or diagrams, the tags determine what the chart
measures or the diagram “black boxes.”

If you assign the Customer Maintenance tag to one set of programs, for
example, and the Order Entry tag to another, and both tags reference the
Application Functions tag, then when you group diagram objects by Ap-

Analyzing Relationship Flows
Black-Boxing Objects in Diagrams

2-28
plication Functions, the Diagrammer puts the programs in black boxes
named Application Functions/Customer Maintenance and Application
Functions/Order Entry (Figure 2-10).

Note: You can assign different tags to the same object. A tag can ref-
erence any tag other than itself. The default tag structure is
provided for Enterprise View Express use, as described in
Managing Application Portfolios in the workbench documen-
tation set.

To manage tags:

1A In the Browser or Search view of the Repository pane, select the ob-
jects you want to assign a tag. Right-click and choose Assign Tags
in the pop-up menu.

Tip: Select a project or folder to assign tags to every first-level
object in the project or folder.

1B In the Diagram pane, select the objects you want to assign a tag.
Right-click inside one of the selected objects and choose Assign
Tags in the pop-up menu.

Tip: Use Shift-click to select multiple objects. In the Diagrammer,
hold down the left mouse button and drag the mouse to “las-
so” objects.

The Entity Tag Browser window opens (Figure 2-11).

Note: Choose Entity Tag Browser in the File menu to view the
Entity Tag Browser window without having a diagram drawn
on the canvas.

Analyzing Relationship Flows
Black-Boxing Objects in Diagrams

2-29
Figure 2-11 Entity Tag Browser Window

2 In the Tags pane, select the tag you want to assign and click Assign.
To unassign a tag, select the tag and click Remove. If you are assign-
ing a tag to a legacy source file, check Assign to Derived Objects
to assign the selected tag(s) to all objects derived from this file by
the workbench. Click OK to assign or unassign a tag.

Tip: You can assign multiple tags to an object. Use Shift-click or
Ctrl-click to select multiple tags.

3 To create a tag, click Create. A dialog box prompts you to enter the
name of the new tag. Enter the name and click OK. To edit a tag, se-
lect it in the Tags pane, then click inside the text box for its name and
enter the new text. To delete a tag, select it and click Delete.

4 To create a reference from one tag to another, click Reference. The
References window opens (Figure 2-12).

Analyzing Relationship Flows
Black-Boxing Objects in Diagrams

2-30
Figure 2-12 References Window

In the References window, select a tag and click the button on the
toolbar. A Select window prompts you to select the tag to reference.
Select the tag and click OK. The tool draws a line between the tags.
To delete a reference, select the relationship line and click the
button on the toolbar.

To create a tag in the References window, click the button on the
toolbar. A dialog box prompts you to enter the name of the new tag.
Enter the name and click OK. To delete a tag in the References win-
dow, select the tag and click the button on the toolbar.

To redraw the diagram in the References window, click the but-
ton on the toolbar.

To view the tags assigned to an object, right-click the object in the
Repository or Diagram pane and choose Properties in the pop-up
menu. Tags appear on the Object Tags tab.

Analyzing Relationship Flows
What’s Next?

2-31
Expanding and Collapsing Black Boxes

Expand a black box to view its contents. Collapse a black box to hide its
contents.

• If a black box is collapsed (including a black box in a more inclusive
black box), double-click it to expand it. Click the button on the
Diagram pane toolbar to expand all the black boxes in an inclusive
black box.

• If a black box is expanded (including a black box in a more inclusive
black box), double-click it to collapse it. Click the button on the
toolbar to collapse all the black boxes in an inclusive black box.

To view a diagram of objects in the black box only, select the black box
and choose Navigate to Child Diagram in the right-click menu. To re-
store the full diagram, click the button on the tool bar.

What’s Next?

Now that you have performed high-level analysis of relationship flows
in the Diagrammer, you are ready to drill down deeper into your appli-
cation. The next chapter shows you how to analyze program data flows.

Analyzing Relationship Flows
What’s Next?

2-32

3-1
3
Analyzing Global Data Flows
he Global Data Flow tool lets you analyze incoming and outgo-
ing data flows in a program. You can view the memory alloca-
tion and offset for a variable to determine how changes to the

variable may affect other variables, and trace assignments to and from
the variable across programs.

Note: Projects must have been verified with the Enable Data Ele-
ment Flow option set in the project verification options.

How the Global Data Flow Tool Is Implemented

The Global Data Flow tool is implemented as both a standalone and
HyperView-based tool. This chapter describes the HyperView ver-
sion. Usage is identical for the standalone tool. For Context and Clip-
per pane usage, and for HyperView usage in general, see Analyzing
Programs in the workbench documentation set.

T

Analyzing Global Data Flows
Understanding Global Data Flows

3-2
Understanding Global Data Flows

Suppose your task is to learn how data flows to and from the variable
TCB-USER-ID in the GSS5 program in the GSS project. The Global
Data Flow tool offers four views of a project that together let you
perform low-level analysis of application data flows. Let’s look at how
you use these views to analyze the TCB-USER-ID variable.

Searching for the Variable

When you open the Global Data Flow tool in HyperView, the Source
pane displays the source code for the selected program. In the text field
next to the button on the tool bar, enter the name of the variable in
our example, TCB-USER-ID, to navigate to the variable in the source
code (Figure 3-1). We can see that a MOVE statement assigns the value
of the COMM-USER-ID variable to TCB-USER-ID, and that the Data
View pane highlights the variable in red.

Figure 3-1 Global Data Flow Tool: Searching for a Variable

MOVE statement

enter search text
for variable

Analyzing Global Data Flows
Understanding Global Data Flows

3-3
Viewing Memory Usage for the Variable

Although we have located a reference to TCB-USER-ID in the GSS5
source code, we still don’t know where the variable is declared. Click
TCB-USER-ID in the Data View pane to display the copybook source
for the declaration (Figure 3-2).

Figure 3-2 Global Data Flow Tool: Viewing Copybook Source

We can see from the source that TCB-USER-ID is a structure that is
redefined by the structures TCB-USER-ID-R and TCB-USER-ID-NEW.
Let’s take a closer look at these structures in the Data View pane
(Figure 3-3).

Figure 3-3 Global Data Flow Tool: Viewing Memory Usage

redefines

Analyzing Global Data Flows
Understanding Global Data Flows

3-4
The Data View pane provides a visual representation of memory usage
by the redefining structures. We can see which fields in TCB-USER-ID-
NEW (in the fifth column) share memory locations with fields in TCB-
USER-ID-R (in the fourth column).

Knowing this, we can be alert to the possibility that changing one of
these variables might affect another variable at the same location. If we
double-click TCB-USER-ID in the Data View pane, we can pinpoint the
memory locations in the Origin pane, which shows the offset and size of
each variable in both structures (Figure 3-4).

Figure 3-4 Global Data Flow Tool: Viewing Memory Locations

Viewing the Data Flow for the Variable

Double-click TCB-USER-ID in the Data View pane to display a diagram
that shows how data flows to and from the variable in the GSS5 program
(Figure 3-5). The diagram traces the incoming and outgoing data flows
in the program up to a dataport, an I/O statement or a call to or from an-
other program.

At the dataport for the call from GSS3, for example, we can trace the
COMM-USER-ID field to an 8-byte variable at memory offset 593 in the
WS-05-COMMON-AREA structure. When we select the dataport and
choose Reconstruct in the Diagram menu, the Global Data Flow tool

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-5
displays the data flow diagram for COMM-USER-ID in the GSS3 pro-
gram.

Figure 3-5 Global Data Flow Tool: Viewing Program Data Flow

Using the Global Data Flow Tool

You can start the Global Data Flow tool as a standalone or HyperView-
based tool. Start the standalone tool by selecting a project in the Repos-
itory Browser and choosing Data Flow in the Analyze menu. Start the
HyperView-based tool as described below.

Generating Global Data Flow Information
Follow the steps below to start the Global Data Flow tool in HyperView.

To generate global data flow information in HyperView:

1 In the Repository Browser, select the program you want to analyze
and choose Interactive Analysis in the Analyze menu. The Hyper-
View window opens. In the View menu, choose Data Flow. The
Global Data Flow tool opens (Figure 3-6).

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-6
Figure 3-6 Global Data Flow Tool Window

2 In the Source pane, use the Quick Search field next to the button
on the tool bar to navigate to the variable you want to analyze. The
Global Data Flow tool highlights the variable name in the Source
pane and displays the name in red in the Data View pane. Click the
variable name in the Data View pane to display the source code for
the variable declaration in the Source pane.

3 The Data View pane shows variable structures, substructures, and
fields in hierarchical order from left to right. Double-click a variable
name to generate a data flow diagram for the variable in the Data
Flow pane, and a list of offsets and memory allocations for the vari-
able and any related variables in the Origin pane.

4 Select a dataport in the Data Flow pane and choose Reconstruct in
the Data Flow menu to display the data flow diagram for the vari-

Source Pane

Data Flow Pane

Origin Pane

Context Pane

Data View Pane

Clipper Pane

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-7
able identified at the dataport. For more information on dataports,
see “Viewing the Data Flow for the Variable” on page 3-4.

Working with Global Data Flow Information

The window for the Global Data Flow tool consists of a Source pane,
Data View pane, Data Flow pane (which includes the Origin pane), Con-
text pane, Clipper pane, and Activity Log. You can hide a pane by click-
ing the close box in the upper righthand corner. Select the appropriate
choice in the View menu to show the pane again.

Note: For Context and Clipper pane usage, see Analyzing Programs
in the workbench documentation set.

Source Pane

The Source pane lets you browse the source code for the program select-
ed in the Global Diagram pane or the variable selected in the Data View
or Data Flow panes. For usage information, see Analyzing Programs in
the workbench documentation set.

Data View Pane

For the program selected in the Source pane, the Data View pane shows
variable structures, substructures, and fields in hierarchical order from
left to right. The selected variable is displayed in red.

Double-click a variable name to generate a data flow diagram for the
variable in the Data Flow pane, and a list of offsets and memory alloca-
tions for the variable and any related variables in the Origin pane.

Origin Pane

For the variable selected in the Data View or Data Flow panes, the Origin
pane displays a list of offsets and memory allocations for the variable
and any related variables. For the relationship selected in the Data Flow
pane, it lists all the statements that determine the data flow between the
related variables. For the dataport selected in the Data Flow pane, it dis-
plays related variables.

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-8
Data Flow Pane

The Data Flow pane displays a data flow diagram for the variable select-
ed in the Data View pane. The selected variable is displayed in red, con-
stants in gray, and dataports in blue. Place your cursor over a variable for
a moment to display a tool tip that identifies the memory offset and allo-
cation for the variable.

Note: For tool bar usage, see Appendix B, “Common Diagramming
Features.”

Select a dataport in the Data Flow pane and choose Reconstruct in the
Data Flow menu to display the data flow diagram for the variable iden-
tified at the dataport. For more information on dataports, see “Viewing
the Data Flow for the Variable” on page 3-4.

Tip: If the Data View pane is closed, you can generate the data
flow diagram by selecting the variable name in the Source
pane and choosing Reconstruct in the Data Flow menu.

Select a variable in the Data Flow pane to view its memory usage in the
Data View and Origin panes and its source code in the Source pane. Se-
lect a relationship line in the Diagram pane to display all the statements
that determine the data flow between variables in the Origin pane.

Note: For descriptions of the relationships between data items, see
Table 5-1 in Analyzing Programs in the workbench documen-
tation set.

In the Diagram menu, choose any combination of

• Show Causes to show data flows into the selected variable.

• Show Consequences to show data flows from the selected variable.

• Show Self-Dependencies to show recursive data flows for the se-
lected variable.

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-9
Setting Global Data Flow Options
Use the Global Data Flow User Preferences window to edit the display
in the Data View pane. Use the Global Data Flow Project Options win-
dow to edit the display in the Data Flow pane.

Setting Global Data Flow User Preferences

Global Data Flow User Preferences determine the order of display of
variables with the same offset and the colors used in the Data View pane.

To set Global Data Flow User Preferences:

1 In the View menu, choose User Preferences. The User Preferences
window opens. Click the HyperView tab. In the Preferences pane,
click Data View. The Global Data Flow User Preferences window
opens (Figure 3-8).

Figure 3-7 Global Data Flow User Preferences Window

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-10
2 In the Same offset order group box, specify the order you want vari-
ables with the same offset to be displayed in the Data View pane.
Choose:

• Data item size if you want variables with the same offset to be
displayed in size order, largest to smallest.

• Appearance in the source code if you want variables with the
same offset to be displayed in the order they appear in the source
code.

3 The current default background color of the box representing free
space in memory is displayed in the Free Space Color drop-down.
The current background color of the box representing used space in
memory is displayed in the Used Space Color drop-down. The cur-
rent background color of the box representing filler is displayed in
the FILLER Color drop-down.

Click the adjacent buttons to edit the color of the paragraphs. A
standard Windows color control is displayed. Use the Palette tab to
select the color from the Windows palette. Use the System tab to
match the color with the color of standard Windows elements.

Setting Global Data Flow Project Options

Global Data Flow Project Options determine whether data flow dia-
grams include literals, variable values set at initialization, and Unisys
Cobol common storage variables; whether they show incoming, outgo-
ing, and recursive data flows; and the number of nodes they display.

To set Global Data Flow Project Options:

1 In the View menu, choose Project Options. The Project Options
window opens. Click the Global Data Flow tab. The Global Data
Flow Options window opens (Figure 3-8).

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-11
Figure 3-8 Global Data Flow Options Window

2 In the Relationships pane, choose any combination of:

• Literal Flow to include literals in the data flow diagram for the
selected variable.

• Initial Values to include variable values set at initialization in the
data flow diagram for the selected variable.

• Common Area Transition to include Unisys Cobol common
storage variables in the data flow diagram for the selected vari-

Analyzing Global Data Flows
Using the Global Data Flow Tool

3-12
able. Common storage variables are not explicitly declared in
CALL statements.

Note: To include Unisys Cobol common storage variables, you must
have verified the project with the Perform Unisys Common-
Storage Analysis option set in the project verification op-
tions. For more information, see Preparing Projects in the
workbench documentation set.

3 In the Directions pane, choose any combination of:

• Causes to generate data flows into the selected variable.
• Consequences to generate data flows from the selected variable.
• Self-Dependencies to show recursive data flows for the selected

variable.

4 In the Node Limit combo box, enter the maximum number of dia-
gram nodes you want to display. You might restrict the number of
nodes to improve performance or make the diagram easier to read.
You can also use the slider on the Node Limit tool bar to adjust the
number of displayed nodes.

Note: All children of a parent node are displayed even if some of
them exceed the specified maximum.

Copying Global Data Flow Diagrams to the Clipboard
Choose Copy:Diagram in the Data Flow menu to copy a global data
flow diagram to the clipboard in EMF format. You can paste the diagram
from the clipboard to a document in a third-party tool such as Word.

Printing Global Data Flow Diagrams

Choose Print:Diagram in the Data Flow menu to print a global data
flow diagram. The Print Preview window opens, where you can change
the zoom factor for the diagram to control the number of pages in the
print job. Click OK.

Analyzing Global Data Flows
What’s Next?

3-13
Exporting Global Data Flow Diagrams

You can export global data flow diagrams to a variety of standard for-
mats. Choose Save Diagram in the Data Flow menu to export a diagram
to BED, bitmap, JPEG, Visio, Visio XML, DOT, or EMF.

Note: Visio 2002 must be installed to save a diagram to Visio. Visio
2002 is not required to save to Visio XML.

What’s Next?

That’s all you need to know to analyze program data flows in the Global
Data Flow tool. Now let’s look at how you perform low-level analysis of
batch programs in the Batch Application Viewer. That’s the subject of
the next chapter.

Analyzing Global Data Flows
What’s Next?

3-14

4-1
4
Analyzing Batch Applications
he Batch Application Viewer lets you perform low-level analy-
sis of batch processes. Use the Batch Application Viewer’s rich
set of tables and diagrams to determine if batch jobs are depen-

dent on one another, the programs that use a data store, and the flow of
data into or out of a data store.

Note: Batch Application Viewer analyzes JCL and ECL jobs. Usage
is identical except for language-specific differences in termi-
nology.

Using the Batch Application Viewer

You generate batch application information for the current project. The
information is presented in linked table and diagram views. The tables
cross-reference jobs, steps, procedures and programs, and data stores.
The diagrams show the relationships between jobs, procedures and pro-
grams, and data stores.

T

Analyzing Batch Applications
Using the Batch Application Viewer

4-2
Generating Batch Application Information
Follow the steps below to generate batch application information.

To generate batch application information:

1 In the Repository Browser, select the project you want to analyze
and choose Batch Application in the Analyze menu. The Batch Ap-
plication Viewer window opens (Figure 4-1).

Figure 4-1 Batch Application Viewer Window (Job View)

2 In the Job pane, select a job to view the steps the job uses, the pro-
cedure or program each step executes, and the data stores each pro-
cedure or program reads from or writes to.

Tip: Use the search facility described in “Searching Batch Appli-
cation Table Views” on page 4-7 to locate jobs.

Search for items
in lefthand column

Data Set Pane

Procedure/
Program Pane

Job Pane

Analyzing Batch Applications
Using the Batch Application Viewer

4-3
3 Click Procedure View at the bottom of the window to open the pro-
cedure view. In the Procedure/Program pane, select a procedure or
program to view the jobs and steps that execute it, and the data stores
programs read from or write to. For programs executed by proce-
dures, Batch Application Viewer displays data stores referenced by
DD statements added after the substitution of the procedure.

4 Click Dataset View at the bottom of the window to open the dataset
view. In the Dataset pane, select a dataset to view the procedure or
program that reads or writes to it, the step that executes the proce-
dure or program, and the job that contains the step.

5 When you select the dataset view, Batch Application Viewer dis-
plays the Data Set Flow pane in the bottom right part of the window.
Select a dataset in the Data Set pane and a step in the Procedure/Pro-
gram pane, then click the button in the Data Set Flow pane to
view the flow of data into or out of the selected dataset (Figure 4-2).

Click the button in the Data Set Flow pane to view the flow of
data into the dataset, click the button to view the flow of data out
of the dataset.

Figure 4-2 Batch Application Viewer Window (Data Set Flow)

Analyzing Batch Applications
Using the Batch Application Viewer

4-4
6 In any view, place a check mark next to one or more objects and click
Diagram at the bottom of the window to display a diagram of batch
application objects related to the checked objects. The diagram
shows the relationships between jobs, programs or procedures, and
data stores (Figure 4-3). For tool bar usage, see Appendix B, “Com-
mon Diagramming Features.”

Figure 4-3 Batch Application Viewer Window (Diagram View)

7 In any table view or diagram, select an object and click HyperView
at the bottom of the window to view the object in HyperView. For
procedures or data stores referenced by procedures, HyperView nav-
igates to the object in the source code for the procedure. Otherwise,
it navigates to the object in the JCL file. For HyperView usage infor-
mation, see Analyzing Programs in the workbench documentation
set.

Analyzing Batch Applications
Using the Batch Application Viewer

4-5
Working with Batch Application Table Views
Batch Application Viewer offers three table views of a batch application:

• The Job View cross-references the selected job with the steps the job
contains, the procedure or program each step executes, and the DD
and dataset names of the files each procedure or program reads from
or writes to. Click Job View at the bottom of the Batch Application
Viewer window to open the job view.

• The Procedure View cross-references the selected procedure or pro-
gram with the jobs and steps that execute it, and the selected pro-
gram with the DD and dataset names of the files the program reads
from or writes to. Click Procedure View at the bottom of the Batch
Application Viewer window to open the procedure view.

Note: For programs executed by procedures, Batch Application
Viewer displays the DD and dataset names of files referenced
by DD statements added after the substitution of the proce-
dure.

• The Dataset View cross-references the selected dataset with the pro-
cedure or program that reads or writes to it, the step that executes the
procedure or program, and the job that contains the step. Click
Dataset View at the bottom of the Batch Application Viewer win-
dow to open the dataset view.

Note: All batch application table views consist of a Job pane, Pro-
gram/Procedure pane, and Data Set pane. For the data set
view, Batch Application Viewer also displays a Data Set Flow
pane, where you can investigate the flow of data into or out of
a data store.

You can hide a pane by clicking the close box in the upper righthand cor-
ner. Select the appropriate choice in the View menu to show the pane
again.

Sorting Entries Click a column heading in a table view pane to sort the
entries by that column.

Analyzing Batch Applications
Using the Batch Application Viewer

4-6
Sizing Columns Grab-and-drag the border of a column heading to in-
crease or decrease the width of the column.

Selecting Objects Click an object in a table view pane to select it. To se-
lect a range of objects, hold down the Shift key, click the first object in
the range, then click the last object in the range. To select objects that are
not in a range, hold down the Control key, then click each object you
want to select.

Selecting Entries to Diagram Place a check mark next to an object and
click Diagram at the bottom of the Batch Application Viewer window
to display a diagram of batch application objects related to the object.

To place a check mark next to all the objects in a table view pane, choose
Check All in the Edit menu. To uncheck all the selected objects, choose
Uncheck All in the Edit menu.

To place a check mark next to selected objects, select the objects and
choose Check Selected in the Edit menu. To uncheck all the objects,
choose Uncheck Selected in the Edit menu.

Viewing the Flow of Data into or out of a Dataset Select a dataset in
the Data Set pane and a step in the Procedure/Program pane, then click
the button in the Data Set Flow pane to view the flow of data into or
out of the selected dataset (Figure 4-2). Click the left arrow in the Data
Set Flow pane to view the flow of data into the dataset, click the right
arrow to view the flow of data out of the dataset.

Viewing Properties Select an object in a table view pane and choose
Properties in the View menu to display a set of tabs with object proper-
ties. For usage information, see Getting Started in the Modernization
Workbench document set.

Exporting a Table View Report Open a table view and choose Report
in the File menu to export a printed report on the view to HTML, Excel,
RTF, Word, or formatted text.

Analyzing Batch Applications
Using the Batch Application Viewer

4-7
Searching Batch Application Table Views

Use the Batch Application Viewer search facility to locate objects in the
lefthand column of table views. You can use wildcard patterns allowed
in LIKE statements by Visual Basic for Applications (VBA).

For simple searches, enter the text for the search in the field next to the
 button on the tool bar. Batch Application Viewer locates text matches

as you type. Click the button or choose Search in the drop-down
menu under the adjacent button to find the next matching object.
Choose Find All in the drop-down menu to find all matching objects.

For wildcard searches, enter the text for the search in the field next to the
 button and choose Wild Search in the drop-down menu. Choose

Wild Search again to navigate to the next matching object. Choose Wild
Find All in the drop-down menu to find all matching objects.

Working with Batch Application Diagrams

Batch application diagrams show the relationships between jobs, proce-
dures and programs, and data stores (Figure 4-3). For tool bar usage, see
Appendix B, “Common Diagramming Features.”

Generating a Batch Application Diagram
Follow the steps below to generate a batch application diagram.

To generate a batch application diagram:

1 In the appropriate table view pane, place a check mark next to the
objects you want to diagram, as described in “Selecting Entries to
Diagram” on page 4-6.

2 In the Diagram menu, choose the relationships you want to view in
the diagram:

• Job Dependencies show dependencies between jobs. Jobs are
regarded as dependent if one writes to a dataset and the other
reads from the same dataset.

• Data Set Usage shows interactions with datasets.
• JCL Procedures Usage shows interactions with procedures.
• Program Usage shows interactions with programs.

Analyzing Batch Applications
Using the Batch Application Viewer

4-8
Tip: Use these choices to control the level of detail in the diagram.
The choice is grayed out with a check mark beside it if the re-
lationship must be displayed in the diagram. You can also set
these choices after you display the diagram.

3 Edit the color scheme for the relationships if necessary, as described
in “Editing the Color Scheme for Batch Application Diagrams” on
page 4-8.

4 Click Diagram at the bottom of the Batch Application Viewer win-
dow. The diagram is displayed in the Diagram pane.

Editing the Color Scheme for Batch Application Diagrams
Diagram objects are color-coded based on the color scheme set in the Di-
agrammer tool described in Chapter 2, “Analyzing Relationship Flows.”
Relationship lines are color-coded based on your settings in the Batch
Application View Options window.

To edit the color scheme for relationships in batch diagrams:

1 In the View menu, choose Options. The Options window opens
(Figure 4-4).

2 In the Diagram Relations pane, click the relationship type whose
color you want to edit. The current color of the type is displayed in
the Edge Color drop-down.

3 Click the arrow beside the drop-down to display a standard Win-
dows color control. Use the Palette tab to select the color of the
relationship type from the Windows palette. Use the System tab to
match the color of the relationship type with the color of standard
Windows elements.

Analyzing Batch Applications
Using the Batch Application Viewer

4-9
Figure 4-4 Options Window

Creating Job Dependencies in Batch Application Diagrams
Batch Application Viewer treats jobs as dependent if one writes to a
dataset and the other reads from the same dataset. Occasionally, you may
want to define dependencies between jobs based on other criteria: ad-
ministrative needs such as scheduling, for example. Batch Application
Viewer modifies the diagram only, not the repository.

Defining Job Dependencies To define dependencies between jobs in a
batch application diagram, hold down the Alt key, select either job, and
drag-and-drop the relationship to the other job. The relationship is dis-
played in red with three plus (+) signs at either end of the relationship
line.

Exporting and Importing Job Dependencies To export job dependen-
cies to a file, for import to diagrams for other projects, choose Export
Dependency Changes in the File menu. A Save As dialog opens, where
you can specify the name and folder for the export file.

To import job dependencies from a file, choose Import Dependency
Changes in the File menu. An Open dialog appears, where you can se-
lect the file you want to import.

click to display
current color

click to display
color options

Analyzing Batch Applications
Using the Batch Application Viewer

4-10
Removing Job Dependencies To remove all user-defined dependencies
from a batch application diagram, choose Clean Up Dependencies in
the File menu.

Tip: In certain circumstances (jobs that use cataloged file genera-
tion, for example), Batch Application Viewer may create false
dependencies. You must remove these relationships manually
by right-clicking the dependency and choosing Remove from
the pop-up menu.

Creating User Names for Objects in Batch Application Diagrams

You can give diagram objects friendlier names, called user names. Batch
Application Viewer modifies the diagram only, not the repository.

Creating and Displaying User Names To create a user name for an ob-
ject in a batch application diagram, select the object and choose User
Name in the View menu. The User Name dialog opens (Figure 4-5). En-
ter the user name in the text field and click OK. To display user names
in a diagram, select User Names in the Batch Application Viewer Op-
tions window (Figure 4-4).

Figure 4-5 User Name Dialog

Exporting and Importing User Names To export user names to a file,
for import to diagrams for other projects, choose Export User Names in
the File menu. A Save As dialog opens, where you can specify the name
and folder for the export file.

To import user names from a file, choose Import User Names in the File
menu. An Open dialog appears, where you can select the file you want
to import.

Analyzing Batch Applications
Using the Batch Application Viewer

4-11
Removing User Names To remove all user names from a batch applica-
tion diagram, choose Clean Up User Names in the File menu.

Copying Batch Application Diagrams to the Clipboard

Choose Copy to Clipboard in the Diagram menu to copy a batch appli-
cation diagram to the clipboard in EMF format. You can paste the dia-
gram from the clipboard to a document in a third-party tool such as
Word.

Printing Diagrams

Choose Print in the Diagram menu to print a diagram. The Print Pre-
view window opens, where you can change the zoom factor for the dia-
gram to control the number of pages in the print job. Click OK.

Exporting Diagrams

You can export diagrams to a variety of standard formats. Choose Save
in the File menu to export a diagram to BED, bitmap, JPEG, Visio, Visio
XML, DOT, or EMF. If you choose Save Multiple Pages for a bitmap
or JPEG file, a dialog opens where you can specify the size and zoom
factor for the diagram.

Note: Visio 2002 must be installed to save a diagram to Visio. Visio
2002 is not required to save to Visio XML.

Working with HyperView in Batch Application Viewer

Select an object in a table view or diagram and click HyperView at the
bottom of the Batch Application Viewer window to view the object in
HyperView. For procedures or data stores referenced by procedures, Hy-
perView navigates to the object in the source code for the procedure.
Otherwise, it navigates to the object in the JCL file. For HyperView us-
age information, see Analyzing Programs in the workbench documenta-
tion set.

Analyzing Batch Applications
What’s Next?

4-12
What’s Next?

Now that you know how to analyze batch applications in the Batch Ap-
plication Viewer, let’s look at how you analyze data operations in the
workbench CRUD Report and the IMS Port Analysis feature. That’s the
subject of the next chapter.

5-1
5
Analyzing Data Operations
he workbench parser generates relationships that show the data
operations a program performs (Insert, Read, Update, or Delete)
and the data objects on which the program operates (files, seg-

ments, tables, etc.). This chapter looks at a report that lets you view these
relationships in a convenient format, and a mechanism that lets you trace
PSB usage through an entire IMS application call sequence.

Viewing CRUD Reports

The CRUD Report for a project shows the data operations each program
in the project performs, and the data objects on which the programs op-
erate.

Note: The IMS data column of the CRUD report behaves differently
from the columns for other data types. What appears in the
IMS data column cells depends on what can be determined. If
the segment can be determined, the cell is populated with the

T

Analyzing Data Operations
Viewing CRUD Reports

5-2
PSB name and segment name. Otherwise, the segment name
is left blank. The format is xxxxxx.yyyyyyy, where xxxxxx is
the PSB name and yyyyyyy is the segment name or blank if
the segment cannot be determined.

To generate a CRUD report:

1 In the Repository Browser, select a project and choose CRUD
Report in the Prepare menu. The CRUD Report window opens
(Figure 5-1).

Figure 5-1 CRUD Report

Tip: Click a column heading in the Results pane to sort the entries
by that column. Grab-and-drag the border of a column head-
ing to increase or decrease the width of the column.

2 To select the types of program-to-data object relationships to dis-
play, and the data operations to show for each type, choose Options
in the View menu. The CRUD Report Options window opens
(Figure 5-2).

3 In the CRUD Report Options window:

Analyzing Data Operations
Enabling IMS Port Analysis

5-3
• Place a check mark next to each type of program-to-data object
relationship you want to display.

• Place a check mark next to each data operation you want to dis-
play.

Click Apply if you want to save your settings without dismissing the
CRUD Report Options window. Click OK if you want to save your
settings and dismiss the CRUD Report Options window.

4 Choose Refresh in the File menu to refresh the report.

5 Choose Report in the File menu to export the report to HTML, Ex-
cel, RTF, Word, or formatted text.

Figure 5-2 CRUD Report Options Window

Enabling IMS Port Analysis

It is virtually impossible to determine from program code the database
segments or screens an IMS program operates on. Only an application-
wide analysis can trace PSB usage through the entire application call se-
quence.

Analyzing Data Operations
Enabling IMS Port Analysis

5-4
To determine the types of database operation (insert, read, update, or de-
lete) IMS programs perform, and to list in the browser each of the data-
base segments or screens the operations are performed on, select the
project or the individual source files for the programs and choose IMS
Analysis in the Prepare menu.

Figure 5-3 shows typical results. The objects marked with the icon
are abstract decision objects, indicating that the database operation, in
this case, Deletes, has been resolved to multiple segments.

Figure 5-3 IMS Port Analysis Results

Mapping Root Programs to PSBs in JCL or System Definition Files

You must identify IMS “root programs” and corresponding PSBs in a
JCL file for a batch application or a System Definition file for an online
application. A root program is directly invoked by IMS with a list of
PCBs as parameters. It can pass these PCBs as parameters in calls to oth-
er programs.

If you do not have actual JCL or System Definition files, you must create
dummy ones. Analyzing the application without these files does nothing.
Sample JCL and System Definition files follow:

Sample JCL file:

database operation

decision object

segment

Analyzing Data Operations
Enabling IMS Port Analysis

5-5
//imsbatch JOB

//S1 EXEC PGM=DFSRRC00,REGION=2048K,

//
PARM=(DLI,progname,psbname,7,0000,,0,,N,0,T,0,,N,,,N
)

//

Sample System Definition file:

 APPLCTN PSB=progname

 TRANSACT CODE=trnname

Verification Order for IMS Applications

If you verify an entire project for an IMS application, the workbench
parses the source files in appropriate order, taking account of the depen-
dencies between file types. Otherwise, verify source files in the follow-
ing order:

• DBD files (for GSAM databases)

• MFS files

• PSB files

• Cobol or PL/I files

Note: For Cobol files, set the Perform Program Analysis and
Enable Data Element Flow project verification options. For
PL/I files, set the Enable Data Element Flow project verifi-
cation option.

• JCL or System Definition files.

Reverifying Files in IMS Applications

If you reverify a root program, the JCL or System Definition file that
maps the program to a PSB will be invalidated. If you reverify non-root
programs, all call chains leading to them will be analyzed and any JCLs
or System Definition files that start corresponding root programs will be
invalidated. Make sure to reverify invalidated files.

Analyzing Data Operations
What’s Next?

5-6
Conversely, if you change a program-to-PSB mapping inside a JCL or
System Definition file, or change the PSB file itself, make sure to rever-
ify the mapped program before reverifying the JCL or System Definition
file.

When you rerun IMS Analysis, it will process all complete call chains,
starting from all reverified JCLs and System Definition files. You can
limit the number of root programs that are re-analyzed in subsequent
runs of IMS calls analysis by setting up System Definition files so that
they reference one transaction only.

Note: If you rerun IMS Analysis without changing anything in the
project, it will end with the warning “No information to per-
form IMS Analysis.” If you receive this message on the first
run of IMS Analysis, make sure that all JCLs, System Defini-
tion files, and corresponding root programs have been veri-
fied, and that you have a call chain from root to every IMS-
relevant program in the project (check for the strings “+IM-
SC” or “+IMSE” in the Environment attribute on the System
tab of the properties for the program).

What’s Next?

That’s all you need to know to use the workbench CRUD report and IMS
port analysis feature to analyze project data operations. Now let’s look
at how you use the legacy estimation tools to estimate project complexity
and effort.

6-1
6
Estimating Complexity and
Effort
uppose you are planning to implement a change request for a
program and want to know how long it will take to complete the
change. Modernization Workbench Legacy Estimation tools let

you compare programs based on weighted values for selected complex-
ity metrics. Based on the comparison, you can develop a credible esti-
mate of the time required to make the requested change.

The complexity metrics used in the calculation are a combination of
industry standard and Modernization Workbench-generated statistics
(Table 6-1). If your own analysis shows that a given program is more or
less complex than the weighted calculation would suggest, you can set a
change magnitude to override the calculated value for the program.

The program might have thousands of source lines, for example, increas-
ing its calculated complexity, while actually being very easy to modify.
When you use a change magnitude, your “subjective” estimate of the ef-
fort involved, Small, Medium, Large, Extra Large, becomes an input to
the effort calculation, along with the weighted values.

S

Estimating Complexity and Effort
Using the Complexity Metrics Tool

6-2
Using the Complexity Metrics Tool

Use the Complexity Metrics tool to compare raw complexity values for
the objects in your project.

To generate complexity metrics:

1 In the Repository Browser, select the project whose complexity
metrics you want to calculate and choose Complexity in the Ana-
lyze menu. A blank Complexity Metrics window opens.

2 In the Entity Type drop-down, choose the type of object you want
to calculate complexity metrics for. Figure 6-1 shows the results for
the program object. The metrics are described in Table 6-1.

Figure 6-1 Complexity Metrics Window

Tip: Click a column heading to sort the entries by that column.
Grab-and-drag the border of a column heading to increase
or decrease the width of the column.

3 To select the metrics to be included in the calculation, choose Col-
umns in the View menu. The Attributes window opens (Figure 6-2).

Estimating Complexity and Effort
Using the Effort Estimation Tool

6-3
Figure 6-2 Complexity Metrics (Attributes Window)

4 In the Attributes window, place a check mark next to each complex-
ity metric you want to calculate. Click Apply if you want to save
your settings without dismissing the Attributes window open. Click
OK if you want to save your settings and dismiss the Attributes win-
dow.

5 Select an object and choose Properties in the View menu to display
a set of tabs with object properties. For usage information, see Get-
ting Started in the workbench documentation set.

Using the Effort Estimation Tool

Use the Effort Estimation tool to compare source files based on weighted
values for selected complexity metrics.

To generate effort estimation statistics:

1 In the Repository Browser, select the project whose effort estimation
you want to calculate and choose Effort in the Analyze menu. A
blank Effort Estimation window opens.

2 To select the file types to be included in the calculation, and the com-
plexity metrics for each type, and to set the percentage factor for the

Estimating Complexity and Effort
Using the Effort Estimation Tool

6-4
change magnitudes used in the calculation, choose Options in the
View menu. The Effort Estimation Options window opens
(Figure 6-3).

Figure 6-3 Effort Estimation Options Window

3 In the Effort Estimation Options window:

• Place a check mark next to each source file type you want to in-
clude in the calculation.

• For each source file type to be included in the calculation, click
Attributes to edit the complexity metrics used in the calculation.
In the Attributes window, select each complexity metric you
want to use, then enter its weight in the Weighting Factor field.
If you want Cyclomatic Complexity to have twice the weight of
Conditional Complexity, for example, set the weighting factor
for Cyclomatic Complexity to 2 and the weighting factor for
Conditional Complexity to 1. The metrics are described in
Table 6-1.

• To set the percentage factor for the change magnitudes used in
the calculation, enter the percentage you want to be applied in the

Estimating Complexity and Effort
Using the Effort Estimation Tool

6-5
combo box for each change magnitude value: Small, Medium,
Large, and Extra Large. The values shown in Figure 6-3 are rep-
resentative. For background on change magnitudes, see “Speci-
fying Change Magnitudes” on page 6-6.

Click Apply if you want to save your settings without dismissing the
Effort Estimation Options window open. Click OK if you want to
save your settings and dismiss the Effort Estimation Options win-
dow.

4 Click the button on the tool bar to generate effort estimation sta-
tistics. The statistics for the selected source file type are displayed.
Figure 6-4 shows the results for Cobol source files.

Tip: Click a column heading to sort the entries by that column.
Grab-and-drag the border of a column heading to increase or
decrease the width of the column.

5 Select a source file in the Effort pane to show the effort statistics for
each logical object for the file in the Details pane.

6 Select a source file in the Effort pane to view HyperCode for the file
in the Preview pane. The information available depends on the type
of object selected. For example, you see only source code for a copy-
book, but full HyperCode for a program.

Note: “HyperCode” is shorthand for the information displayed in
HyperView. For HyperView usage information, see Analyz-
ing Programs in the workbench documentation set.

7 Select a file and choose Properties in the View menu to display a set
of tabs with object properties. For usage information, see Getting
Started in the workbenchdocumentation set.

Estimating Complexity and Effort
Specifying Change Magnitudes

6-6
Figure 6-4 Effort Estimation Window

Specifying Change Magnitudes

What if your own analysis of a project shows that a given program will
actually take much less time to change than the weighted effort estima-
tion would suggest. The program might have thousands of source lines,
for example, increasing its calculated complexity, while actually being
very easy to modify.

A change magnitude is a way of overriding the calculated value for a
source file. Your “subjective” estimate of the effort involved, Small, Me-

click to generate
statistics

logical objects
for selected file

total effort for
listed files

weighted complexity
value

change magnitude

total effort

source for
selected file

Estimating Complexity and Effort
Exporting Complexity and Effort Reports

6-7
dium, Large, Extra Large, becomes an input to the effort calculation,
along with the weighted values.

You typically set the change magnitude for a file in the HyperView Con-
text pane, but you can also set it (or change it) in the Effort Estimation
tool. For Hyperview usage, see Analyzing Programs in the Moderniza-
tion Workbench document set.

In the Effort Estimation window (Figure 6-4), select the files whose
change magnitudes you want to set and choose Set Change Magni-
tude:magnitude in the Edit menu, where magnitude is S for Small, M
for Medium, L for Large, or XL for Extra Large. The effort calculation
for the selected files is automatically updated.

Tip: To select a range of files, hold down the Shift key, click the
first item in the range, then click the last item in the range. To
select files that are not in a range, hold down the Control key,
then click each file you want to add.

Exporting Complexity and Effort Reports

Choose Report in the File menu to display a printable complexity or ef-
fort report. In the printable report, click Print to print the report. Click
Save to export the report to HTML, Excel, RTF, Word, or formatted text.

Supported Complexity Metrics

The following table describes the industry standard and Modernization
Workbench-generated complexity metrics supported by the legacy esti-
mation tools. In the table, “program” refers to Cobol, PL/I, Natural, RPG,
and Assembler program entities. For details on language-specific met-

Estimating Complexity and Effort
Supported Complexity Metrics

6-8
rics, see the Parser Reference Manual in the workbench documentation
set.

Table 6-1 Complexity Metrics

Metric Object Types Description

Absolute Complexity C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

Binary Decisions divided by the
number of statements.

Abstract Classes Java Package, Java File Number of abstract classes and
interfaces.

Abstract Methods Java Package, Java File Number of abstract methods.

Abstractness Java Package Ratio of Number of Abstract
Classes (and interfaces) in the ana-
lyzed package to the total number
of classes in the analyzed package.

Afferent Coupling Java Package Number of other packages that
depend on classes in the package.
An indicator of the package’s
responsibility.

Areas DMS DDL File, IDMS
Schema File, IDMS Sub-
schema

Number of areas.

Asynchronous Calls Program Number of asynchronous calls,
such as Cobol INITIATE state-
ments.

Average Absolute Complexity Java Class, Java Inter-
face, Java Package, Java
File

Average Absolute Complexity of
methods.

Average Binary Decisions Java Class, Java Inter-
face, Java Package, Java
File

Average Binary Decisions of
methods.

Estimating Complexity and Effort
Supported Complexity Metrics

6-9
Average Catch Clauses Java Class, Java Inter-
face, Java Package, Java
File

Average Catch Clauses in meth-
ods.

Average Computational
Statements

Java Class, Java Inter-
face, Java Package, Java
File

Average Computational State-
ments of methods.

Average Conditional
Complexity

Java Class, Java Inter-
face, Java Package, Java
File

Average Conditional Complexity
of methods.

Average Cyclomatic
Complexity

Java Class, Java Inter-
face, Java Package, Java
File, PB Object

Average Cyclomatic Complexity
of methods.

Average Depth of Inheritance
Hierarchy

Java Package, Java File Average Depth of Inheritance
Hierarchy of classes and inter-
faces.

Average Essential Complexity Java Class, Java Inter-
face, Java Package, Java
File

Average Essential Complexity of
methods.

Average Extended Cyclomatic
Complexity

Java Class, Java Inter-
face, Java Package, Java
File

Average Extended Cyclomatic
Complexity of methods.

Average IF Statements Java Class, Java Inter-
face, Java Package, Java
File

Average IF Statements in methods.

Average Lack of Cohesion Per
Type

Java Package, Java File Average Lack of Cohesion of
classes and interfaces.

Average Loop Statements Java Class, Java Inter-
face, Java Package, Java
File

Average Loop Statements in meth-
ods.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-10
Average Maximum Switch
Cases

Java Class, Java Inter-
face, Java Package, Java
File

Average Maximum Switch Cases
in methods.

Average Nested Block Depth Java Class, Java Inter-
face, Java Package, Java
File, PB Object

Average Nested Block Depth of
methods.

Average Parameters Java Class, Java Inter-
face, Java Package, Java
File, PB Object

Average Parameters in methods.

Average Specialization Index
Per Type

Java Package, Java File Average Specialization Index of
classes and interfaces.

Average Subtypes Java Package Average Subtypes in methods.

Average Switch Cases Java Class, Java Inter-
face, Java Package, Java
File

Average Switch Cases in methods.

Average Switch Statements Java Class, Java Inter-
face, Java Package, Java
File

Average Switch Statements in
methods.

Average Unique Method Calls Java Class, Java Inter-
face, Java Package, Java
File

Average Unique Method Calls in
methods.

Binary Decisions Java Method, PB
Method, Program, VB
Function, VB Method,
C/C++ Function, C++
Member Function

Number of branching conditions
in the flow graph with two possi-
ble outcomes. Includes statements
with implicit condition evaluation
(loops, AT END, and so on).

Blank Lines All source files Number of blank lines of source
(sequence number area content is
ignored).

Catch Clauses Java Method, PB Method Number of catch clauses.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-11
Classes VB Library Number of classes.

Columns DDL File Number of columns.

Comment Lines PL/I File, PL/I Include
File

Number of lines of source contain-
ing comments only and no code.

Comments Ratio C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
PB Method, PB Object

Number of Comments divided by
Lines of Code.

Computational Statements C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

Number of statements performing
arithmetic calculations.

Conditional Complexity C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

Binary Decisions plus Unique
Operands in Conditions.

Conditional Statements Program Number of branching statements
with nested statements executed
under certain conditions, not
including conditional GOTOs.

Constructors C++ Class, Java Method,
Java Class, Java Inter-
face, Java Package, Java
File, PB Method, PB
Object

Number of constructors.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-12
Control Cards Usages JCL File, JCL Procedure Number of DD statements refer-
encing control cards identified in
Legacy.xml to generate program to
control card relationships.

Cyclomatic Complexity C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

v(G) = e - n + 2, where v(G) is the
cyclomatic complexity of the flow
graph (G) for the program in ques-
tion, e is the number of edges in G,
and n is the number of nodes.
Quantity of decision logic. The
number of linearly independent
paths (minimum number of paths
to be tested). v(G) = DE + 1, where
DE is the number of binary deci-
sions made in the program.

Data Elements Copybook File, Program Number of declared data items
(elementary structures and their
fields). For PL/I, the implicit vari-
able DFHEIBLK for CICS state-
ments is counted as a data
element.

Data Members C++ Class Number of data members.

Data Sets DMSII Database Number of data sets.

Dead Data Elements Program Number of dead data elements in
programs and used include files.
Dead data elements are unused
structures at any data level, all of
whose parents and children are
unused. For PL/I, number of
declared data items in dead inter-
nal procedures.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-13
Dead Data Elements from
Includes

Program Number of dead data elements in
include files. Dead data elements
are unused structures at any data
level, all of whose parents and
children are unused. For PL/I,
N/A.

Dead Lines Program Number of dead lines in programs
and used include files. Dead lines
are source lines containing Dead
Data Elements or Dead State-
ments. For Cobol, also source
lines containing “dead constructs.”
For more information on dead
constructs, see the Parser Refer-
ence Manual.

Dead Lines from Includes Program Number of dead lines in include
files. Dead lines are source lines
containing Dead Data Elements
from Includes or Dead Statements
from Includes. For Cobol, also
source lines containing “dead con-
structs.” For more information on
dead constructs, see the Parser
Reference Manual.

Dead Statements Program Number of dead statements in pro-
grams and used include files. A
dead statement is a procedural
statement that can never be
reached during program execution.
For PL/I, dead DECLARE state-
ments are not calculated as dead
statements.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-14
Dead Statements from Includes Program Number of dead statements in
include files. A dead statement is a
procedural statement that can
never be reached during program
execution.

Depth of Inheritance Hierarchy C++ Class, Java Class,
Java Interface, PB Object

Maximum nesting of the inherit-
ance hierarchy.

Destructors C++ Class, VB Class Number of destructors.

Difficulty C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

D = (n1 / 2) * (N2 / n2), where n1 is
Unique Operators, N2 is Oper-
ands, and n2 is Unique Operands.

Disjoint Data Sets DMSII Database Number of disjoint data sets.

Efferent Coupling Java Package Number of other packages that the
classes in the package depend on.
An indicator of the package’s
independence.

Entry Points Program Number of program entry points.

Error Estimate C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

B = E**(2/3) / 3000, where E is Pro-
gramming Effort.

Essential Complexity C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program

Quantity of unstructured logic (a
loop with an exiting GOTO state-
ment, for example). v(G) for
reduced graph without D-struc-
tured primes.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-15
Exception Handling Statements C/C++ Function, C++
Member Function, VB
Function, VB Method

Number of exception handling
statements.

EXEC Cataloged Procedure
Steps

JCL File, JCL Procedure Number of EXEC statements
invoking cataloged procedures.

EXEC In-stream Procedure
Steps

JCL File, JCL Procedure Number of EXEC statements
invoking instream procedures.

Executable Statements C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

All Cobol Procedure Division
statements, plus CONTINUE and
NEXT STATEMENT. All PL/I
statements, except BEGIN,
DECLARE, DO (block), END,
ENTRY, PACKAGE, and PRO-
CEDURE. All Natural statements,
except DEFINE DATA and
IGNORE. For object-oriented lan-
guages, all assignments, function
calls (alone on a line), calls,
returns, IF, DO, FOR, CHOOSE,
EXIT, CONTINUE, and GOTO
statements.

Extended Cyclomatic
Complexity

C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

Cyclomatic Complexity plus Logi-
cal Operators in Conditions. Num-
ber of all paths in the program.

Fields AS/400 Database File,
Java Class, Java Inter-
face, Java Package, Java
File, PB Object, VB
Class

Number of fields.

Fields of Adabas File Number Natural DDM File Number of fields of Adabas file
number.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-16
Foreign Keys DDL File Number of foreign keys.

Function Calls C/C++ Function, C++
Member Function, VB
Function, VB Method

Number of function calls.

Function Points C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method,
VB Class, VB Function,
VB Method

Lines of Code divided by K,
where K depends on the language:
Cobol=77, Natural=52, PL/I=67,
PowerBuilder=24. For RPG, Lines
of Code/K + 0.5, where K=61.
Estimate of the number of end-
user business functions imple-
mented by the program.

Functions VB Library Number of functions.

Global Data Items DMSII Database Number of global data items.

GoTo Statements C/C++ Function, C++
Member Function, Pro-
gram, VB Function, VB
Method

Number of GOTO statements,
including conditional GOTOs.

Hidden Fields Map Number of hidden fields.

IF Statements C/C++ Function, C++
Member Function, Java
Method, PB Method, VB
Function, VB Method

Number of IF statements.

Import Statements Java Package, Java File Number of import statements.

Include Copybook Statements APS File, APS Include
File

Number of include copybook
statements.

Include Data Structure APS Application Number of included data struc-
tures.

Include DDI APS Application Number of included DDIs.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-17
Include DDL/PSB APS Application Number of included data defini-
tions.

Include Global Data Area
Statements

Natural File, Natural
Subroutine File

Number of included global data
area statements.

Include Local Data Area State-
ments

Natural File, Natural
Subroutine File

Number of included local data
area statements.

Include Macro Statements APS File, APS Include
File

Number of included macro state-
ments.

Include Macro/Copybook APS Application Number of included macros/copy-
books.

Include Parameter Data Area
Statements

Natural File, Natural
Subroutine File

Number of included parameter
data area statements.

Include Program APS Application Number of included programs.

Include Report APS Application Number of included reports.

Include Resource Statement Copybook File, Cobol
File (ACUCOBOL only)

Number of included resource
statements.

Include Screen APS Application Number of included screens.

Include Statements All source files, except
DDL File, Java Inter-
face, Java File, PB Object

Number of language-specific
include statements.

Inherited Methods C++ Class, VB Class Number of inherited methods.

Inner Call Statements Program Number of statements that invoke
Inner Procedures.

Inner Procedures Program Number of structured pieces of
code that cannot be invoked from
external programs (Cobol para-
graphs, inner PL/I procedures,
Natural inline subroutines).

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-18
Input Fields Map Number of input fields.

Input/Output Fields Map Number of input/output fields.

Instability Java Package Ratio of Efferent Coupling (Ce) to
total coupling (Ce + Ca), such that
I = Ce / (Ce + Ca). An indicator of
the package’s resilience to change.

Intelligent Content C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

I = L * V, where L is Program Level
and V is Program Volume. Com-
plexity of a given algorithm inde-
pendent of the language used to
express the algorithm.

Interfaces Java Class, Java Inter-
face, Java Package, Java
File

Number of interfaces.

IO Statements Program Number of statements performing
input/output operations.

Key Fields AS/400 Database File Number of key fields.

Labels C/C++ Function, C++
Member Function, VB
Function, VB Method

Number of labels.

Lack of Cohesion Java Class, Java Interface LOCM = (m - sum(mA)/a1+a2) / (m-1),
where mA is the number of meth-
ods that access class attributes.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-19
Lines of Code C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

Number of lines of code, including
copybooks (if applicable), but not
including comments and blank
lines.

Lines with Both Comments and
Code

PL/I File, PL/I Include
File

Number of lines of source contain-
ing both comments and code.

Lines with Comments All source files, except
PL/I, PL/I Include, and
Java Files

Number of lines of source contain-
ing comments, including inline
comments placed on lines with
statements.

Local Data Items C/C++ Function, C++
Member Function, VB
Function, VB Method

Number of local data items.

Logical Operators in
Conditions

C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method,
VB Class, VB Function,
VB Method

Number of binary logical opera-
tors used in conditions.

Logical Records IDMS Subschema File Number of logical records.

Loop Statements C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

Number of repetitively executing
statements.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-20
Macro Assignments PL/I File, PL/I Include
File

Number of assignments to global
macro variables outside any macro
procedure.

Macro Declarations PL/I File, PL/I Include
File

Number of global macro variables.
Macro variables within macro pro-
cedures are not counted.

Macro Lines PL/I File, PL/I Include
File

Number of lines for include state-
ments, macro invocations, declara-
tions, macro procedures, and %-
statements. Blank lines and com-
ments lines are ignored.

Macro Procedures PL/I File, PL/I Include
File

Number of macro procedures
declared in the file.

Macro Statements PL/I File, PL/I Include
File

Number of macro statements.

Maintainability Index C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

MI = 171 - 5.2 * ln (PgmVolume) - 0.23
* ExtCycComp - 16.2 * ln (LOC) + 50 *
sin (sqrt (2.46 * Comment-
Lines/SourceLines)), where Pgm-
Volume is Program Volume,
ExtCycComp is Extended Cyclo-
matic Complexity, LOC is Lines
of Code, CommentLines is Com-
ment Lines, and SourceLines is
Source Lines.

Maps Natural Map Number of maps.

Maximum Depth of Logic
Nesting

C/C++ Function, C++
Member Function

Maximum nesting of logic.

Maximum Switch Cases C/C++ Function, C++
Member Function, Java
Method, PB Method

Maximum Switch Cases.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-21
Member Function Calls C/C++ Function, C++
Member Function

Number of member function calls.

Member Functions C++ Class Number of member functions.

Method Calls VB Function, VB
Method

Number of method calls.

Methods Java Class, Java Inter-
face, Java Package, Java
File, PB Object, VB
Class

Number of methods.

Nested Block Depth Java Method, PB Method Maximum nesting of IF,
CHOOSE, TRY, DO, SWITCH, or
FOR constructs. 1 is added to the
depth in the IF and ELSE parts of
IF statements, the bodies of loops,
and the code in each case of a
Choose statement.

Nesting Level Program, VB Function,
VB Method

Maximum nesting of conditional
statements within conditional
statements (0 if no conditional
statements, 1 if no nesting).

Non-returning Calls Program Number of non-returning calls,
such as Cobol XCTL statements.

Normalized Distance Java Package Perpendicular distance of the
package from the idealized line A
+ I = 1. An indicator of the pack-
age’s balance between abstract-
ness and stability.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-22
Number of Comments C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
PB Method, PB Object

For C/C++, number of items
containing text preceded by // or
enclosed between /* and */.
For Java, number of lines of
source containing comments,
including inline comments placed
on lines with statements.
For PowerBuilder, number of lines
of source containing comments
only and no code.

Number of Controls PB DataWindow Number of controls.

Number of Entries CSD File, FCT File, PCT
File, Valtab File

Number of entries.

Number of Executes ECL File Number of executes.

Number of Lines PB DataWindow, PB
Query, PB Pipeline

Number of lines.

Number of PCBs PSB File Number of PCBs.

Number of Processor Calls ECL File Number of processor calls.

Omit Fields AS/400 Database File Number of Omit fields.

Operands C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

Number of operand occurrences
(N2). Operands are variables and
literals used in operators. Compare
Unique Operands.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-23
Operators C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

Number of operator occurrences
(N1). Operators are executable
statements and unary and binary
operations. Compare Unique
Operators.

Output Fields Map Number of output fields.

Overridden Methods Java Class, Java Inter-
face, Java Package, Java
File

Number of overridden methods.

Parameters C/C++ Function, C++
Member Function, Java
Method, PB Method,
Program, VB Function,
VB Method

Number of Cobol Procedure Divi-
sion USING...RETURNING
parameters. Number of PL/I PRO-
CEDURE parameters. Number of
Natural PARAMETER and
PARAMETER USING parame-
ters. Otherwise, number of param-
eters in method calls.

Path Groups IDMS Subschema File Number of path groups.

Pointers C/C++ Function, C++
Member Function, C++
Class, Program, VB
Function, VB Method

Number of data elements declared
as pointers.

Primary Keys DDL File Number of primary keys.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-24
Program Length C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

N = N1 + N2, where N1 is Operators
and N2 is Operands.

Program Level C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

L = 1 / D, where D is Difficulty.

Program Volume C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

V = N * log2(n), where N is Program
Length and n is Vocabulary. Mini-
mum number of bits required to
code the program.

Programming Effort C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

E = V / L, where V is Program Vol-
ume and L is Program Level. Esti-
mated mental effort required to
develop the program.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-25
Programming Time C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

T = E / 18, where E is the Program-
ming Effort and 18 is Stroud’s
Number. Estimated amount of
time required to implement the
algorithm, in seconds.

Public Data Members C++ Class Number of public data members.

Public Fields VB Class Number of public fields.

Public Member Functions C++ Class Number of public member func-
tions.

Public Methods VB Class Number of public methods.

Records ADL File, AS/400 Data-
base File, DMS DDL
File, IDMS Schema File,
IDMS Subschema File

Number of records.

Remapped Data Sets DMSII Database Number of remapped data sets.

Response for Class C++ Class, Java Class,
Java Interface, Java Pack-
age, Java File, Program,
PB Method, PB Object

Response for class.

Returning Calls Program Number of returning calls, such as
Cobol CALL or LINK statements.

Screens AS/400 Device Descrip-
tion, BMS File, DPS File,
ICL Form, MFS File

Number of screens.

Segments DBD File Number of segments.

SELECT (SWITCH)
Statements

VB Method Number of SWITCH statements.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-26
Select Fields AS/400 Database File Number of select fields.

Sets ADL File, DMS DDL
File, DMSII Database,
IDMS Schema File,
IDMS Subschema File

Number of sets.

Sliceable Dead Lines PL/I Program Number of Dead Lines that can be
sliced using the Application
Architect Dead Code Elimination
method. Dead procedures contain-
ing either preprocessor statements
or statements subject to macro pre-
processor replacement are not
counted as sliceable dead lines,
since it is not always possible to
determine whether they can be
safely removed. Lines from
include files are not counted.

Source Lines All source files Number of lines of source.

Specialization Index Java Class, Java Interface Number of subclasses divided by
number of superclasses.

Static Data Items C/C++ Function, C++
Member Function, VB
Function, VB Method

Number of static data items.

Static Data Members C++ Class Number of static data members.

Static Fields Java Class, Java Inter-
face, Java Package, Java
File, PB Object, VB
Class

Number of static fields.

Static Functions C++ Class Number of static functions.

Static Member Functions C++ Class Number of static member func-
tions.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-27
Static Methods Java Class, Java Inter-
face, Java Package, Java
File, VB Class

Number of static methods.

Steps JCL File, JCL Proce-
dure, Job

Number of steps.

Subsets DMSII Database Number of subsets.

Subtypes Java Class, Java Inter-
face, Java File, PB Object

Number of subtypes.

Switch Cases C/C++ Function, C++
Member Function, Java
Method, PB Method

Number of SWITCH cases.

Switch/Choose Statements Java Method, PB Method Number of SWITCH in Java,
CHOOSE statements. in Power-
Builders.

SWITCH/SELECT Statements C/C++ Function, C++
Member Function, VB
Function

Number of SWITCH statements.

Tables DDL File Number of tables.

Total EXEC Cataloged
Procedure Steps

JCL File Number of EXEC statements
invoking cataloged procedures in
the job and invoked procedures. If
a procedure is invoked multiple
times, it is counted each time.

Total Include Copybook
Statements

APS File, APS Include Total number of include copy-
book statements.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
Supported Complexity Metrics

6-28
Total Include Statements Assembler File, BMS
File, Cobol File, Copy-
book File, DMS II
DASDL File, ECL File,
JCL File, MFS File, Nat-
ural File, Natural Subrou-
tine File, PL/I File, PSB
File, RPG File, VB
Project File, WFL File

Total Include Statements. For
PL/I, all the include statements in
the file and the used include files.

Unique Function Calls C/C++ Function, C++
Member Function

Number of unique function calls.

Unique Member Function Calls C/C++ Function, C++
Member Function

Number of unique member func-
tion calls.

Unique Method Calls Java Method, PB
Method, PB Object

Number of distinct method calls.

Unique Operands C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

Number of distinct operands (n2).
Operands are variables and literals
used in operators. Uniqueness of
literals is determined by their nota-
tion. Compare Operands.

Unique Operands in Conditions C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

Number of distinct operands used
in conditions.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
What’s Next?

6-29
What’s Next?

Now that you know how to estimate project complexity and effort, let’s
look at one final project analysis task: using Change Analyzer to under-
stand how a change in the definition or usage of a data field might impact
the rest of the application.

Unique Operators C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

Number of distinct operators (n1).
Operators are statements and
unary and binary operations. Com-
pare Operators.

Unique System Macro
Instructions

Assembler File Number of unique system macro
instructions.

Vocabulary C/C++ Function, C++
Member Function, C++
Class, Java Method, Java
Class, Java Interface,
Java Package, Java File,
Program, PB Method, PB
Object, VB Class, VB
Function, VB Method

n = n1 + n2, where n1 is the number
of Unique Operators and n2 is the
number of Unique Operands.

Weighted Methods Java Class, Java Inter-
face, Java Package, Java
File, PB Object

Number of weighted methods.

Table 6-1 Complexity Metrics (continued)

Metric Object Types Description

Estimating Complexity and Effort
What’s Next?

6-30

7-1
7
Identifying Classes of Data
Items
he Change Analyzer identifies the class of data items used to
perform a business function in a legacy application. Among
other uses, it lets you answer the kinds of “What if?” questions

posed in the recent past by the industry-wide changes for Y2K, Zip+4,
and the Euro dollar: “What if I change the type of this variable, or the
length of this field? What other fields will I also have to change?”

Use change analysis results to prepare project plans and technical spec-
ifications. You can generate reports showing source entities that may re-
quire modification, lines of code affected, and the like.

Understanding Data Item Classification

Suppose your organization is considering adding support for a new
currency and that you are going to have to expand the existing exchange
rate data field from 9(5)V9(3) to 9(5)V9(6) to accommodate the curren-
cy. You will need to know the data fields that are affected in the database,
intermediate fields that may contain or use the exchange rate field in cal-
culations, and so forth.

T

Identifying Classes of Data Items
Understanding Data Item Classification

7-2
Seed Fields

Use Change Analyzer to search for the exchange rate field. The object of
the search is called a seed field:

• If the application uses field names like EX-RATE, EXCH-RATE,
EXCHANGE-RATE, and RATE-OF-EXCHG, you would search for
data names that contain *EXCH* or *RATE*.

• If you know that some fields already contain the required number of
decimal positions and are interested only in those that don’t, you
might further limit the search by filtering on the PICTURE clause
format of the variable, selecting only data items that have a format
of 9(5)V9(3).

• You might limit the search even further by choosing fields that have
a given initial value.

• If you know there are data fields that will meet the search criteria for
name, but are not what you are looking for, you might set up a list of
names to exclude, such as INTEREST-RATE and *PRORATE*.

Synonyms

When you execute the search, Change Analyzer returns not only the
fields that match the search criteria but any synonyms for the fields. A
synonym is a data field whose value is related to the value of the matched
field (a field whose value is assigned by a MOVE or REDEFINE state-
ment, for example). In these cases, if you increase the size of the
matched field, you probably will have to increase the size of the syn-
onym as well.

Seed Lists

As you examine the source code for seed fields and synonyms in Change
Analyzer and determine whether a field is affected by a proposed
change, you move the fields between seed lists:

• The Working list contains seed fields or synonyms that you are cur-
rently investigating.

• The Affected list contains seed fields or synonyms that you have
determined would be affected by the proposed change.

Identifying Classes of Data Items
Getting Started in Change Analyzer

7-3
• The Clean list contains seed fields or synonyms that you have deter-
mined would not be affected by the proposed change.

You can generate reports based on these lists, as well as reports showing
the affected source code in context.

Getting Started in Change Analyzer

This section describes a sample use of Change Analyzer that should help
you get oriented in it. Assume that you want to evaluate the impact of
changing the YEAR field in your application.

To evaluate change impacts:

1 In the Repository Browser, select the project you want to analyze
and choose Field Change in the Analyze menu. The Change Ana-
lyzer window opens (Figure 7-2).

Figure 7-1 Change Analyzer Window

view program
data

view source

view synonyms

view seed lists

Identifying Classes of Data Items
Getting Started in Change Analyzer

7-4
2 In the File menu, choose Apply Filter:To Working. The Search
window opens (Figure 7-2).

Figure 7-2 Search Window (After Step 4)

3 In the Search window, click the Change Analyzer tab to view a list
of recognized search criteria. Select a search criterion to view its def-
inition in the tabs in the righthand portion of the window. Click the

 button on the tool bar to define a new criterion. The New Search
Criterion dialog opens (Figure 7-3).

Figure 7-3 New Search Criterion Dialog

list of search
criteria

definition of
selected criterion

Identifying Classes of Data Items
Getting Started in Change Analyzer

7-5
4 In the text field, enter YEAR and click OK. The YEAR criterion is
displayed in the list of recognized criteria in the Change Analyzer
tab in the Search window.

5 In the Change Analyzer tab, select the YEAR criterion, enter
YEAR in the Name Like tab, and click Find All Constructs.
Change Analyzer returns the seed fields for the criterion in the
Working list and their synonyms in the Synonyms pane. Select a pro-
gram in the Programs pane to view its seed fields and synonyms.

6 In the Working tab, select a seed field to navigate to its source in the
Source pane. Examine the source to determine whether the field will
be affected by the proposed change:

• If the field will be affected by the change, choose Move to Af-
fected in the Edit menu. Change Analyzer moves the field to the
Affected tab.

• If the field will not be affected by the change, choose Move to
Clean in the Edit menu. Change Analyzer moves the field to the
Clean tab.

7 Repeat step 6 for each seed field in the Working list.

8 Repeat step 6 and step 7 for each program in the Programs pane.

9 In the File menu, choose Find Synonyms. The Find Synonyms dia-
log opens (Figure 7-4).

Figure 7-4 Find Synonyms Dialog

10 In the Find In pane, select Affected Lists. In the Add Synonyms To
pane, select Working Lists. Click OK. Change Analyzer returns the
synonyms for the affected fields in the Working list.

Identifying Classes of Data Items
Getting Started in Change Analyzer

7-6
11 Repeat step 6 for each synonym in the Working list.

12 In the File menu, choose Remove Unused:From Affected Lists to
remove fields that are declared but not used from the Affected list.

13 In the File menu, choose Report:Affected Datanames. Change An-
alyzer generates the Affected Datanames report (Figure 7-5).

Figure 7-5 Affected Datanames Report

14 In the File menu, choose Report:Affected Code. Change Analyzer
generates the Affected Code report (Figure 7-6).

Identifying Classes of Data Items
Using Change Analyzer

7-7
Figure 7-6 Affected Code Report

Using Change Analyzer

You generate change impact information for the current project. The
project must have been verified with the Enable Data Element Flow
option set in the project verification options.

Note: For more information on verification, see Preparing Projects
in the workbench documentation set.

Working with Change Impact Information

The window for the Change Analyzer consists of a Programs pane, Lists
pane, Synonyms pane, Source pane, and Activity Log. You can hide a
pane by clicking the close box in the upper righthand corner. Select the
appropriate choice in the View menu to show the pane again.

Sorting Entries Click a column heading in a pane to sort the entries by
that column.

Sizing Columns Grab-and-drag the border of a column heading to in-
crease or decrease the width of the column.

Identifying Classes of Data Items
Using Change Analyzer

7-8
Programs Pane

The Programs pane displays the programs in the selected project and the
distribution of their seed fields in the seed lists. Select a program to view
its seed fields in the List pane and their synonyms in the Synonyms pane.
You also select a program to view its source in the Source pane.

Lists Pane

The Lists pane displays the Working, Affected, and Clean lists for the
program selected in the Programs pane. Click the appropriate tab to view
a list. Create projects from a list as described in “Creating Projects in
Change Analyzer” on page 7-15. Generate reports as described in “Gen-
erating and Exporting Change Analyzer Reports” on page 7-16.

Each tab and its corresponding report contains the following columns:

Tip: Use the Report Control option to restrict the columns dis-
played in the tab.

• The Name column lists the seed fields or synonyms on the list.

• The Length column displays the length of the seed fields or syn-
onyms on the list.

• The Normalized Picture column displays the normalized picture of
the seed fields or synonyms on the list.

• The Picture column displays the format of the seed fields or syn-
onyms on the list.

• The Value column displays the initial value of the seed fields or syn-
onyms on the list.

• The Comment field describes the basis for including the seed field
or synonym on the list. Select an entry in the Lists or Synonyms pane
and choose Comment in the Edit menu to open a dialog where you
can modify the comment.

Applying a Search Filter to a List To apply a search filter to a list,
choose Apply Filter:To List in the File menu, then follow the instruc-
tions for performing searches in “Searching for Seed Fields in Change
Analyzer” on page 7-13.

Identifying Classes of Data Items
Using Change Analyzer

7-9
Selecting Fields Click a field on a list to select it. To select all the fields
on a list, click the tab for the list and choose Select All in the Edit menu.

To select fields based on search patterns, click the tab for the list and
choose Select in the Edit menu. A Select dialog opens, where you can
enter the search patterns. You can use wildcard patterns allowed in LIKE
statements by Visual Basic for Applications (VBA).

To select a range of fields, hold down the Shift key, click the first field
in the range, then click the last field in the range. To select fields that are
not in a range, hold down the Control key, then click each field you want
to select.

Viewing Source Select a field to view its source in the Source pane.

Moving Fields between Lists To move fields between lists, select the
fields, then choose Move to List in the Edit menu. Removing Unused
Fields from Lists To remove fields that are declared but not used from
a list, choose Remove Unused:From List in the File menu.

Deleting Seed Fields from a List To delete a seed field from a list, se-
lect the field and choose Delete in the Edit menu. You are prompted to
confirm the deletion. Click Yes.

Clearing Lists Search results are added to any previous results in a list.
To clear the previous results from the list, choose Clear:List in the File
menu. To clear all the lists, choose Clear:All Lists in the File menu.

Synonyms Pane

The Synonyms pane displays the synonyms for the field selected in the
Lists pane. Select synonyms the same way you select list fields, as de-
scribed in “Selecting Fields” on page 7-9.

Viewing Source Select a synonym to view its source in the Source pane.

Moving Synonyms to Lists To move synonyms to a list, choose Find
Synonyms in the File menu. The Find Synonyms dialog opens, where
you can select the list of seed fields to find synonyms for and the list to
move the synonyms to.

Identifying Classes of Data Items
Using Change Analyzer

7-10
Source Pane

The Source pane lets you browse the source code for the program select-
ed in the Programs pane and the field or synonym selected in the Lists or
Synonyms pane. Usage is similar to that for the Source pane in Hyper-
View. For HyperView usage information, see Analyzing Programs in the
workbench documentation set.

Setting Change Analyzer Options
Change Analyzer options control seed field and synonym pattern search-
es and the amount of information displayed in the Affected Code report.

To set Change Analyzer options:

1 In the View menu, choose Options. The Change Analyzer options
window opens (Figure 7-7).

Figure 7-7 Change Analyzer Options Window

2 In the Pattern Search group box, choose any combination of:

Identifying Classes of Data Items
Using Change Analyzer

7-11
• Override status if you want the search results to override the
current list assignment of a field. If you do not select this option,
Change Analyzer applies the search results only to fields not yet
assigned to a seed list.

• Refresh lists if you want the search results to replace fields in the
target seed list. If you do not select this option, Change Analyzer
adds the search results to the fields already assigned to the target
list.

3 In the Synonym Search group box, choose Override status if you
want the search results to override the current list assignment of a
synonym. If you do not select this option, Change Analyzer applies
the search results only to synonyms not yet assigned to a seed list.

4 Choose Apply actions to selected programs if you want Change
Analyzer to act only on the programs selected in the Programs pane.

5 In the Affected Code Report pane, specify in the Neighborhood
Size combo box the number of lines of unaffected code you want the
report to display above and below the line of affected code. (The line
of affected code is displayed in bold in the report.) Then choose
Show unused datanames if you want the report to include unused
data fields.

6 In the Synonyms group box, click Change. The Synonyms Options
window opens (Figure 7-8).

Identifying Classes of Data Items
Using Change Analyzer

7-12
Figure 7-8 Synonym Options Window

7 Choose any combination of:

• High-Affinity Operations if you want Change Analyzer to iden-
tify as synonyms data fields that have a high affinity to seed
fields, such as those used in assignment and addition operations.
Then choose the types of high-affinity operations in the list box.

• Low-Affinity Operations if you want Change Analyzer to iden-
tify as synonyms data fields that have a low affinity to seed fields,
such as those used in multiplication and division operations.
Then choose the types of low-affinity operations in the list box.

• Same Memory Location if you want Change Analyzer to iden-
tify as synonyms data fields that share a memory location with
seed fields. Then choose View all redefinitions to identify as
synonyms all data fields that share a memory location with seed
fields. If you do not select this option, Change Analyzer identi-
fies as synonyms only data fields that are exact redefinitions of a
seed field, such as one declared with the same size and offset.

Click OK to dismiss the Synonyms Options window and return to
the Change Analyzer Options window.

Identifying Classes of Data Items
Using Change Analyzer

7-13
8 In the Report Control group box, click Edit. The Report Control Op-
tions window opens (Figure 7-9).

Figure 7-9 Report Control Options Window

9 In the Report Control group box, select the type of file you are ana-
lyzing in the drop-down, then choose the columns you want to be
displayed in Change Analyzer lists and their corresponding reports.
Click OK to dismiss the Report Control Options window and return
to the Change Analyzer Options window.

Searching for Seed Fields in Change Analyzer

The Change Analyzer search facility (Figure 7-2) contains two tabs:

• The General tab opens the HyperView advanced search facility.

• The Change Analyzer tab opens a scoped version of the advanced
search facility for Change Analyzer.

Ordinarily, the scoped version of the tool should be sufficient for most
searches. If you are already familiar with the advanced search facility,
however, you may want to use it instead of the scoped tool. For Hyper-
View usage information, see Analyzing Programs in the workbench doc-
umentation set.

Note: Change Analyzer returns only constants and literals found in
the Procedure section of Cobol programs.

Identifying Classes of Data Items
Using Change Analyzer

7-14
To search for seed fields:

1 In the File menu, choose Apply Filter: To List. The Change Ana-
lyzer Search window opens (Figure 7-2).

2 In the Search window, click the Change Analyzer tab. The Change
Analyzer tab displays a list of recognized search criteria. Define a
new criterion as described in step 3 on page 7-4.

3 Select a criterion to edit its definition in the tabs in the righthand
portion of the window. Each tab specifies a condition in the defini-
tion. The definition can consist of any combination of conditions.

For each condition, enter a list of patterns you want to match, one
pattern per line. Select:

• Name Like to specify patterns that are like the name of the field
you are searching for.

• Name Not Like to specify patterns that are unlike the name of the
field you are searching for.

• Picture Like to specify patterns that are like the format of the
field you are searching for.

• Value Like to specify patterns that are like the initial value of the
field you are searching for.

You can use wildcard patterns allowed in LIKE statements by Visual
Basic for Applications (VBA).

4 Select Use OR Connection Inside List if you want the patterns list-
ed in the tabs to be ORed. If you do not select this option, the patterns
are ANDed.

5 Select Use OR Connection Between Lists if you want the condi-
tions defined in the tabs to be ORed. If you do not select this option,
the conditions are ANDed.

6 Select Used Data Items Only if you want the search results to con-
sist only of fields that are used in the selected programs. If you do
not select this option, search results include fields that are declared
but not used.

Identifying Classes of Data Items
Using Change Analyzer

7-15
7 In the Search in pane, click Name Like to specify a pattern that is
like the name of the program or programs you want to limit the
search to. You can use wildcard patterns allowed in LIKE statements
by Visual Basic for Applications (VBA).

8 Click Find All Constructs to execute the search. Change Analyzer
returns the seed fields for the selected criterion in the Working list
and their synonyms in the Synonyms pane. The results are added to
any previous results.

Note: Tool bar usage in the Search window is identical to that for the
HyperView advanced search facility. For HyperView usage
information, see Analyzing Programs in the workbench doc-
umentation set.

Creating Projects in Change Analyzer

You can create a project directly in Change Analyzer from the results of
your analysis. The project contains only source files with fields in a
Working, Affected, or Clean list.

To create a project from a list:

1 In the File menu, choose Create Project:From List. The New
Project dialog opens. Enter the name of the new project in the text
field and click OK. The Change Magnitude window opens
(Figure 7-10).

Figure 7-10 Change Magnitude Window

Identifying Classes of Data Items
Using Change Analyzer

7-16
2 In the Change Magnitude window, select the Automatically calcu-
late change magnitude check box if you want Change Analyzer to
set change magnitudes for the listed source files based on the ranges
specified in the fields below the check box. The Change Analyzer
settings will override any existing change magnitudes for the files.

The fields below the check box contain default ranges for the
available values: Small, Medium, Large, and Extra Large. Compare
the number of fields in each source file listed in the Programs pane
with the default ranges, then modify the ranges as necessary.

If you want Cobol source files with 6 to 10 fields in a list to have a
Large change magnitude, for example, set the range for Medium to
less than 6 and the range for Large to less than 11. When you are sat-
isfied with your choices, click OK. For more information on change
magnitudes, see “Specifying the Change Magnitude for a Source
File” on page 2-5.

Generating and Exporting Change Analyzer Reports

In the File menu, choose Report:Type to display printable Change An-
alyzer reports:

• The Affected Datanames Report (Figure 7-5) lists the datanames in
the Affected list. In addition to the information displayed in the Af-
fected list, the report displays the program that uses the dataname, a
comment that identifies the search criterion the dataname matched,
the source file in which the dataname is declared, and the line and
column numbers of the declaration.

• The Possible Datanames Report lists every dataname in the Work-
ing, Affected, and Clean lists. In addition to the information dis-
played in the Affected Datanames report, the Possible Datanames
report displays the disposition of datanames in seed lists.

• The Clean Datanames Report lists the datanames in the Clean list.
The report displays the same information as the Affected Datanames
report.

• The Affected Code Report (Figure 7-6) displays the source code for
the datanames in the Affected list in both the program that uses the

Identifying Classes of Data Items
What’s Next?

7-17
field and the source file in which the field is declared. The line of af-
fected code is displayed in bold, surrounded by the number of lines
of neighboring code you specified in step 5 on page 7-11.

• The Metrics Report displays, for each program in the selected
project, the number of declarations that contain possible, affected, or
clean datanames, the percentage of declarations that contain affected
datanames, and the percentage of uses of affected datanames.

In the printable report, click Print to print the report. Click Save to ex-
port the report to HTML, Excel, RTF, Word, or formatted text.

What’s Next?

That’s all you need to know to use the Change Analyzer tool to identify
data item classes. Now let’s look at how you use SOA Analyzer to assess
legacy programs for their affinity with modern service-oriented architec-
tures (SOA).

Identifying Classes of Data Items
What’s Next?

7-18

8-1
8
Performing SOA Analysis
he Modernization Workbench SOA Analyzer lets you assess
legacy programs for their affinity with modern service-oriented
architectures (SOA): how modular the programs are, the extent

to which they encapsulate data operations, whether they isolate business
logic, and similar measures. Once you have identified SOA-conforming
programs, you can use the tool to create wrappers that expose the pro-
grams to other applications as Web services.

Understanding SOA Analysis

Most legacy applications can be abstracted to an “ideal architecture”
similar to the one shown in Figure 8-1. In this architecture, UI programs,
transitional programs with navigation logic, data abstraction programs,
and data access activities all are implemented in self-contained modules
deployed in sharply demarcated layers.

The reality, of course, is usually very different. Abstract knowledge of
the data, business logic, data access, and UI may be enmeshed in the
same programs, making it extremely difficult to isolate candidates for
reuse.

T

Performing SOA Analysis
Understanding SOA Analysis

8-2
Figure 8-1 Abstraction of Legacy Application

That’s where SOA Analyzer comes in. It categorizes programs accord-
ing to the functions they perform in an abstract legacy architecture: UI,
data abstraction, data access, and so forth. On the basis of the layering
analysis it performs and the wealth of analysis tools it provides, users can
identify legacy programs that now or with some rewriting can be ex-
posed as Web services. It also provides facilities that make it easy to
generate a user interface and navigation scheme on another platform.

Understanding Client-Layer Programs

Client-layer programs contain the logic for capturing user requests, val-
idating input data, invoking appropriate service programs from lower lay-
ers, and formatting the output that responds to user requests.

In this layer, execution moves to lower layers via CALL or LINK oper-
ations and to other programs of the same layer via exclusive transfer of
control; in CICS, for example, by XCTL or RETURN TRANID state-
ments.

SOA Analyzer evaluates legacy applications against
an abstract “ideal architecture.”

Performing SOA Analysis
Understanding SOA Analysis

8-3
SOA Analyzer identifies two types of program in this layer:

• Client programs receive and send screens.

• Transitional programs make navigation decisions.

The benefit of transitional programs is that they encapsulate navigation
logic so that client programs can be confined to screen logic. A program
CPROG1, for example, may receive SCREEN1 and pass exclusive con-
trol to a “traffic dispatcher” TPROG that analyzes the user request to de-
cide which is the next screen to be presented to the user.

It may be that TPROG passes exclusive control back to CPROG1, which
presents SCREEN1 again, with additional data that satisfies the request.
Or it may be that TPROG decides to transfer control to CPROG2, which
presents SCREEN2. In any case, navigation logic is confined to a single
program.

Understanding Service-Layer Programs

Service-layer programs consist of all programs that satisfy a request with-
out regard to screen communication or screen logic. Most programs in
this layer interact in one way or another with the application’s persistent
data, but they may also perform certain pure logic related to computations
or formatting. A service program may retrieve invoice information based
on an invoice number, for example, or it may simply compute the number
of business days between two dates.

SOA Analyzer identifies two types of program in this layer:

• Frontier programs with business level data manipulation logic.

• Subfrontier programs with both business level and technical data
manipulation logic.

Frontier programs are called directly by client layer programs. Subfron-
tier programs consist of:

• Indirect data access programs, which access data through some oth-
er called service program, or perform computations or formatting.

• Direct data access programs, which access persistent data in VSAM
files or databases.

Performing SOA Analysis
Understanding SOA Analysis

8-4
Understanding Anomalous Programs

SOA Analyzer identifies four types of non-conforming, or anomalous,
programs. These programs typically do not contain errors and may func-
tion satisfactorily. But they contain exceptions to an SOA approach that
probably will cause problems in migration.

Client Programs with Data All programs that belong to the client layer
should deal only with screen logic and navigation. Data access should be
accomplished through programs belonging to the frontier and subfron-
tier layers, which in turn are called by these client programs.

This is always the case in a well-layered application, but in real life pro-
grammers may take short cuts and combine screen access with data ac-
cess. A program that displays a customer inquiry screen, for example,
may also read the customer’s date of birth from a master file and calcu-
late the customer’s age, which is then displayed on the screen.

Client Programs Called It is natural to assume that all called programs
are potential services, because a call is a request to the called program to
perform a task. But if a called program also converses a screen, it cannot
be made into a service.

Perhaps the most common scenario in which this anomaly arises is one
in which a program written as a service encounters some kind of excep-
tion. The programmer finds it convenient to have the program immedi-
ately report the exception to the operator, by sending a screen with a
message. By writing the program in this style, the programmer simplifies
the code, but renders it unfit for a service, which by definition cannot
converse a user interface.

Transitional Programs Called Transitional programs are dedicated to
directing screen navigation, not to the fulfillment of a task. Although it
may look like a potential service, a called traffic-directing program is not
a good candidate for wrapping.

Called Program on a Path to a Screen Conversation This anomaly oc-
curs when a client program calls a “service” program that in turn calls
another client program. Although the program in between seems to be a
service, because it is called and does not converse a screen, it is in fact
impossible to turn it into a service, because one of its called programs
converses a screen.

Performing SOA Analysis
Starting SOA Analyzer

8-5
Starting SOA Analyzer

SOA Analyzer is certified for COBOL CICS with VSAM or DB/2 online
applications. Batch applications or the batch portions of applications are
captured and categorized, but cannot be enabled as services without first
being converted to CICS.

To start SOA Analyzer:

1 In the Repository Browser, select the project you want to analyze
and choose SOA Analysis in the Extract menu. The SOA Analyzer
window opens. SOA Analyzer displays the analysis results for the
workspace (Figure 8-2).

Tip: The panes in the SOA Analyzer window open automatically
as needed. You can show or hide panes by selecting the appro-
priate choice in the View menu.

Figure 8-2 SOA Analyzer Window with Analysis Results

SOA Analyzer Basics

This section describes basic tasks you perform with objects in SOA An-
alyzer: viewing classifications, viewing source code and properties, as-

Performing SOA Analysis
SOA Analyzer Basics

8-6
signing business names and tags, and calculating reuse and other
metrics.

Viewing Object Classifications

The Legacy classification pane categorizes legacy objects in the classi-
fications listed in Table 8-1. Anomalous programs are displayed with a
red background, and classified as described in “Understanding Anoma-
lous Programs” on page 8-4.

Table 8-1 Program Classifications

Category Description

Batch with direct
access to data

A program that:
• Is not on an execution path that contains a

screen.
• Accesses a data store directly.

Batch with indirect
access to data

A program that:
• Is not on an execution path that contains a

screen.
• Calls a program that accesses a data store

directly.

Batch without
access to data

A program not on an execution path that con-
tains a screen.

Client with direct
access to data

A program that:
• Sends or receives a screen.
• Accesses a data store directly.

Client with indirect
access to data

A program that:.
• Sends or receives a screen
• Calls a program that accesses a data store

directly.

Client without
access to data

A program that sends or receives a screen.

Performing SOA Analysis
SOA Analyzer Basics

8-7
Frontier with direct
access to data

A program that:
• Is called (via a returning call like CALL or

LINK) or XCTLed to by a client or transi-
tional program.

• Accesses a data store directly.

Frontier without
access to data

A program that is called (via a returning call
like CALL or LINK) or XCTLed to by a cli-
ent or transitional program.

Subfrontier with
direct access to data

A program that:
• Is called (via a returning call like CALL or

LINK) or XCTLed to by a frontier or sub-
frontier program.

• Accesses a data store directly.

Subfrontier with
indirect access to
data

A program that:
• Is called (via a returning call like CALL or

LINK) or XCTLed to by a frontier or sub-
frontier program.

• Calls a program that accesses a data store
directly.

Subfrontier A program that is called (via a returning call
like CALL or LINK) or XCTLed to by a fron-
tier or subfrontier program.

Transitional with
direct access to data

A program that:
• Is XCTLed to by a client or transitional pro-

gram.
• XCTLs to a client or transitional program.
• Accesses a data store directly.

Table 8-1 Program Classifications (continued)

Category Description

Performing SOA Analysis
SOA Analyzer Basics

8-8
Viewing Source

To view the source for an object, select the object in the Legacy classifi-
cation, Diagram, or Services panes and choose Show Source in the
right-click menu. The source is displayed in the Source pane.

The information available depends on the type of object you selected.
You see only source code for a copybook, for example, but full Hyper-
View information for a program. You can also view the properties of the
selected object.

Choose the information you want to view for the object from the Source
drop-down. For HyperView usage information, see Analyzing Programs
in the workbench documentation set. For Properties pane usage informa-
tion, see Getting Started in the workbench documentation set.

Viewing Object Properties

To view the properties of an object, select the object in the Legacy clas-
sification pane. The properties of the object are displayed in the Object
Properties pane. The properties are described in Table 8-2.

Transitional without
access to data

A program that:
• Is XCTLed to by a client or transitional pro-

gram.
• XCTLs to a client or transitional program.

Table 8-1 Program Classifications (continued)

Category Description

Table 8-2 Object Properties

Property Description

Name The name of the object.

Type The type of the object.

Layer The layer in which the object is classified.

Performing SOA Analysis
SOA Analyzer Basics

8-9
Assigning a Business Name and Description to an Object

To assign a business name and description to an object, select the object
in the Legacy classification or Diagram panes and choose Business
Name in the right-click menu. A dialog box opens, where you can enter
the business name and business description. For more information on
business names, see Analyzing Programs in the workbench documenta-
tion set.

Assigning a Tag to an Object

To assign a tag to an object, select the object in the Legacy classification
or Diagram panes and choose Assign Tag in the right-click menu. The
Entity Tag Browser window opens. Follow the instructions for assigning
tags in “Assigning Tags to Objects” on page 2-27.

Saving Classifications as Tags

To create tags based on the names of the basic program classifications,
choose Save classification as tags in the Tools menu.

Determining Program Reuse

Generally speaking, the more often a program is called, the better a can-
didate it is to be made into a Web service. Use SOA Analyzer to deter-
mine the number of times a program is called.

To determine program reuse:

1 In the Tools menu, choose Find reuse. The Reuse window opens
(Figure 8-3).

Access type The type of data access by the object.

Access mode The mode of data access by the object,
direct or indirect.

Anomaly The type of anomaly, if any, that character-
izes the object.

Table 8-2 Object Properties

Property Description

Performing SOA Analysis
Working with Diagrams

8-10
Figure 8-3 Reuse Window

2 The Reuse column shows the number of times each called program
is called. Select a program to view its reuse diagram.

Viewing SOA Measurements

The SOA measurements report displays a summary of SOA analysis
results in HTML format. To display the report, choose Compute mea-
surements in the Tools menu. The report opens in a Web browser win-
dow.

Note: The reuse measurement is calculated as follows: 100 * (num-
ber of calls - number of programs called) / number of calls

Working with Diagrams

This section describes basic tasks you perform with diagrams in SOA
Analyzer. For guidance on how to use the diagrams to identify potential
problems, see “Identifying Problems” on page 8-20. For complete infor-
mation on diagrammer functions, see “Generating Diagrams” on
page 2-4. Table 8-3 describes the notations used in the diagrams.

Performing SOA Analysis
Working with Diagrams

8-11
Tip: Click the plus sign (+) next to a node to expand diagrams that
exceed the number of edges specified in the diagram options.
To change the number of edges, see “Setting Diagram Op-
tions” on page 8-18.

Table 8-3 Diagram Legend

Notation Description

Calls Program calls another program.

D Program deletes from a data store.

I Program inserts into a data store.

Initiates Transaction initiates a program.

R Program reads a data store.

Receives Program receives a screen.

Sends Program sends a screen.

Starts Program starts a transaction.

Trans Program transfers control to a program.

U Program updates a data store.

Performing SOA Analysis
Working with Diagrams

8-12
Drawing a Vertical Slice

A vertical slice shows the context in which an artifact is used, and how
it uses other artifacts. The vertical slice for the client program CUSTINQ
in Figure 8-4 shows that the program accesses data directly, in addition
to sending and receiving screens.

To draw a vertical slice:

1 In the Legacy classification pane, select the artifact whose vertical
slice you want to show and choose Show vertical slice in the right-
click menu. The diagram of the vertical slice opens in the Diagram-
mer pane (Figure 8-4).

Figure 8-4 Vertical Slice for CUSTINQ

Performing SOA Analysis
Working with Diagrams

8-13
Drawing a Horizontal Slice

A horizontal slice shows how control passes between artifacts, usually
through exclusive change of control or through screen navigation.
Figure 8-5 shows the horizontal slice for the ORDSET1.ORDMAP1
screen.

The gray block on the left shows the screens from which the operator
could potentially move to ORDSET1.ORDMAP1, while the block on
the right shows the screens to which the operator could potentially move
from ORDSET1.ORDMAP1. “Potentially,” for the simple reason that
static analysis cannot discover the exact transitions that will occur at run
time, because these may be controlled deep in a program or even in a file
or table.

“Mining the User Interface and Navigation” on page 8-31 shows how
you can specify the events that lead to transitions between screens at run
time; view a complete screen navigation diagram that reflects the event
specification; and export the screen layout and event specification to an
XML file.

To draw a horizontal slice:

1 In the Legacy classification pane, select the artifact whose horizon-
tal slice you want to show and choose Show horizontal slice in the
right-click menu. The diagram of the horizontal slice opens in the
Diagrammer pane (Figure 8-5).

Figure 8-5 Horizontal Slice for ORDSET1.ORDMAP1 (Cropped)

Performing SOA Analysis
Working with Diagrams

8-14
Locating Items of Interest with a Clipper List

Clipper lists record the results of program searches and analyses. When
you intersect an SOA Analyzer diagram with a Clipper list, you make
references to the search or analysis results available in the diagram.
From the intersection, you can navigate directly to the location of con-
structs of interest in the Source pane. For more information on Clipper
lists, see Analyzing Programs in the workbench documentation set.

To intersect a diagram with a Clipper list:

1 With a diagram open, choose Intersect list in the Tools menu. The
Select list dialog opens (Figure 8-6).

Figure 8-6 Select List Dialog

2 The Select List dialog shows every list available in Clipper. Click the
list you want to intersect. For each diagram object that contains a list
occurrence, SOA Analyzer inserts a label with the number of occur-
rences (Figure 8-7).

Performing SOA Analysis
Working with Diagrams

8-15
Figure 8-7 Vertical Slice for GETINV with List Intersections (Cropped)

3 In the diagram, double-click the label for the intersection you want
to investigate. The List dialog opens (Figure 8-8).

Figure 8-8 List Dialog

4 The List dialog displays every list occurrence. Click an occurrence
to navigate to it in the Source pane.

Showing Program Inner Structure

Program inner structure shows the flow of paragraphs in a program. The
paragraphs are color-coded to indicate their function: data access, screen
access, and the like (Figure 8-9).

That means you can quickly identify portions of anomalous programs to
“slice out” as services in Application Architect. Once you have decided
on the paragraphs to slice, you can assign them to a Clipper list for use

Performing SOA Analysis
Working with Diagrams

8-16
in Architect. For more information on Application Architect, see Creat-
ing Components in the workbench documentation set.

To show inner structure:

1 In the Legacy classification pane, select the program whose inner
structure you want to show and choose Show inner structure in the
right-click menu. The diagram of the inner structure opens in the Di-
agram pane (Figure 8-9).

Note: Only paragraphs relevant to the task of slicing out service
code are shown in the diagram.

2 Select each paragraph you want to slice and choose Create slice
item in the right-click menu. The paragraphs are included in a Clip-
per list called “SOA slice points” in the Architect category.

Figure 8-9 Inner Structure of CUSTINQ

Showing Tags in a Diagram

Showing the tags assigned to objects in a diagram is a good way to un-
derstand their roles in the application. Figure 8-11 shows the vertical
slice for the program CUSTINQ with tags displayed.

To show tags:

1 With a diagram open, choose Display tags in the Tools menu. The
Tag display options dialog opens (Figure 8-10).

Performing SOA Analysis
Working with Diagrams

8-17
Figure 8-10 Tag Display Options Dialog

2 In the Tag display options dialog, click the plus sign (+) next to a tag
to expand the tag hierarchy. Select:

• Display all tags, if you want to display all tags assigned to
objects in the diagram.

• Display only checked tags, if you want to display only tags you
place a check mark next to.

• Display tags subordinated to a selected tag, if you want to dis-
play only tags below the selected tag in the hierarchy (direct chil-
dren only). Select the tag by clicking it (not by checking it).

When you are satisfied with your choices, click Show tags in dia-
gram. For each object assigned a tag, SOA Analyzer inserts a label
with the name of the tag (Figure 8-11).

Performing SOA Analysis
Working with Diagrams

8-18
Figure 8-11 Vertical Slice for CUSTINQ with Tags

Setting Diagram Options

Diagram options determine the colors of objects in diagrams, whether
the object type is included in the object caption, and the maximum num-
ber of edges.

To set diagram options:

1 In the View menu, choose Legend. The Legend for the diagram col-
or scheme is displayed. On the Legend pane, click Options. The Op-
tions dialog opens above the Legend pane (Figure 8-12).

2 In the Diagram Colors list box, select the object type whose color
you want to change. The current background color is displayed in the
Edge Color drop-down. Click the adjacent button to edit the col-
or of the object type. A standard Windows color control is displayed.
Use the Palette tab to select the color from the Windows palette. Use

Performing SOA Analysis
Working with Diagrams

8-19
the System tab to match the color with the color of standard Win-
dows elements.

3 To exclude the object type from the object caption, select the object
type in the Diagram Colors list box and deselect Show object type.

4 To change the maximum number of edges shown in the diagram, en-
ter the new value in the Maximum edges shown field.

Note: Restricting the number of edges ensures against very long
load times for large diagrams. Even when the number of edg-
es exceeds the limit specified in the diagram options, you can
still expand the diagram by clicking the plus sign (+) next to
the nodes at the diagram boundary.

Figure 8-12 Options Dialog Above Legend Pane

Performing SOA Analysis
Identifying Problems

8-20
Identifying Problems

This section describes how to use SOA Analyzer diagrams to identify
problems in legacy programs that may need to be corrected before the
programs can be exposed as Web services. For information on how to
perform basic tasks in SOA Analyzer diagrams, see “Working with Dia-
grams” on page 8-10.

Identifying Missing Validation Rules

Before you can expose a called program as a Web service, you must en-
sure that its input data is validated either before invocation or inside the
program. Failure to validate data may result in service failure.

When you intersect an SOA Analyzer diagram with a list of validation
rules generated in Business Rule Manager, you make references to the
rules available in the diagram. From the intersection, you can investigate
the rules in the Source pane. For more information on validation rules,
see Analyzing Programs in the workbench documentation set.

To intersect a diagram with validation rules:

1 With a diagram open, choose Intersect validations in the Tools
menu. For each program that contains a validation rule, SOA Ana-
lyzer inserts a label with the number of rules (Figure 8-13).

Figure 8-13 Vertical Slice for CUSTMNT1 with Validation Rule Intersection
(Cropped)

Performing SOA Analysis
Identifying Problems

8-21
2 In the diagram, double-click the label for the intersection you want
to investigate. The Validation Rule dialog opens (Figure 8-14).

Figure 8-14 Validation Rule Dialog

3 In the Validation Rule dialog, select a rule to display its name, de-
scription, and location. Use the location information to navigate to
the code for the rule in the Source pane.

Identifying Queue Access

Called and caller programs in a CICS environment ordinarily communi-
cate through the CICS COMMAREA. But it is not uncommon, especial-
ly when dealing with large amounts of data, for called programs to write
the data into a temporary storage queue, which the caller reads from. Be-
cause most CICS adapters are equipped only to deal with data passing
through the COMMAREA, it’s important to identify queue usage and re-
place it with another storage method before exposing a called program
as a Web service.

When you intersect an SOA Analyzer diagram with reads or writes to a
storage queue, you make references to the operations available in the di-
agram. From the intersection, you can investigate the operations in the
Source pane.

To intersect a diagram with reads or writes to a queue:

1 With a diagram open, choose Intersect queues in the Tools menu.
For each program that reads or writes to a queue, SOA Analyzer in-
serts a label with the number of reads or writes (Figure 8-15).

Performing SOA Analysis
Identifying Problems

8-22
Figure 8-15 Vertical Slice for GETINV with Queue Intersection (Cropped)

2 In the diagram, double-click the label for the intersection you want
to investigate. The List dialog opens (Figure 8-16).

Figure 8-16 Queue List Dialog

3 In the List dialog, click a read or write statement to navigate to its
code in the Source pane.

Performing SOA Analysis
Identifying Problems

8-23
Identifying Transaction Sync Points

When a CICS application involves a number of related updates to tables
or files, it ensures data integrity by committing the changes only after ev-
ery update has been performed successfully, and rolling them back if any
of the updates fails.

In some legacy systems, these updates may be performed by different
programs. An item marked for shipping by one program may be taken
out of inventory by another, for example. Wrapping these programs as
Web services without understanding how the operations they perform
are synchronized will cause the data to be compromised if one of the pro-
grams fails.

To prevent this, you need to understand the boundaries of the transaction,
by analyzing the sync points at which commits or rollbacks are per-
formed. When you intersect an SOA Analyzer diagram with transaction
sync points, you make references to the sync points available in the dia-
gram. From the intersection, you can investigate the sync points in the
Source pane.

To intersect a diagram with transaction sync points:

1 With a diagram open, choose Intersect sync points in the Tools
menu. For each program that performs a commit or rollback, SOA
Analyzer inserts a label with the number of commits or rollbacks
(Figure 8-17).

Performing SOA Analysis
Identifying Problems

8-24
Figure 8-17 Vertical Slice for PRODMNT1 with Sync Point Intersection
(Cropped)

2 In the diagram, double-click the label for the intersection you want
to investigate. The Sync Points List dialog opens (Figure 8-18).

Figure 8-18 Sync Points List Dialog

3 In the Sync Points List dialog, click a sync point to navigate to the
code for the commit or rollback in the Source pane.

Performing SOA Analysis
Identifying Problems

8-25
Identifying Duplicated CRUD Operations

In many legacy applications, more than one program performs essential-
ly the same operation against a data store. A first cut at SOA Analysis
might suggest that one of these programs is a good Web service candi-
date, when a deeper analysis would show that another program is better-
suited. Use the SOA Analyzer clone detection utility to ensure that you
know all the programs that perform the same operation against a data
store before deciding which to promote as a Web service.

To detect clones:

1 In the Tools menu, choose Detect clones. The Clone detection win-
dow opens. Click the button to start clone detection. SOA Ana-
lyzer populates the Clone detection window with the results
(Figure 8-19).

Figure 8-19 Clone Detection Window

Performing SOA Analysis
Creating Web Services

8-26
2 Each row in the CRUD Similarity pane compares one program in the
project with another to determine the extent to which they perform
similar CRUD operations. The Common value is the percentage of
CRUD operations they perform that are similar.

Note: CRUD similarity is calculated from the data operations per-
spective only. The logic used in the operations may differ.

3 Select a row to view the CRUD operations performed by each pro-
gram in the righthand pane. You can also view the source for each
program and a diagram describing their interaction.

Creating Web Services

This section looks at some guidelines for choosing Web service candi-
dates, then shows you how to create and export candidates as Web ser-
vices.

Identifying Potential Web Services

Both functional and technical considerations will affect your choice of
Web service candidates. To publish an order entry process as a Web ser-
vice, for example, you need to decide whether to wrap the program han-
dling the client order entry screen, or some other program that actually
services the order entry process.

The classifications provided by SOA Analyzer (Table 8-1) can help you
make this determination. Here are some guidelines worth considering:

• A client program is not typically the most desirable choice for SOA
publishing, since it contains mostly screen handling and validation
logic.

• A transitional program does not typically include business logic. It
mainly serves as a connector between client programs.

• A frontier program is usually the best candidate for coarse-grained
SOA publishing, since it resides at the top layer of server-level pro-
grams and is isolated from client-level validations and pop-up
screens. It is therefore most likely to contain, or point to, meaningful

Performing SOA Analysis
Creating Web Services

8-27
business logic without the distraction of user interface and screen
validation logic.

• A subfrontier program may also be safely published, although if it
resides very close to the data, it may not contain services as mean-
ingful as desired.

• Anomalous programs may not require much effort to re-architect. A
client data program, for example, may actually be a business logic
program that contains a pop-up screen. Once you change the pro-
gram to remove the pop-up logic, shifting it to the application server
level in the new application, you can safely publish it as a Web ser-
vice.

Creating and Exporting Web Services

Once you have identified appropriate candidates for reuse, you can use
SOA Analyzer to create wrappers that expose them to other applications
as Web services. You typically use SOA Analyzer to perform “data port
wrapping” of programs in the data abstraction layer.

The wrapping allows external applications to call the programs in the
same way they are called in the native environment. The wrapping infra-
structure knows which programs to call and how to convert program in-
put/output parameters into correctly formed XML messages that can be
consumed by an SOA architecture.

Defining a Web Service

Initially a Web service is just a shell. This section describes how to name
and document the Web service, and how to assign candidates, or seeds,
to the service.

To define a Web service:

1 In the Services menu, choose New Service. A placeholder for the
new service is added to the Services pane. To name the service, click
in the Name field in the Service properties pane to open a text box
where you can enter the service name. To delete the service, select it
and choose Delete in the right-click menu.

Performing SOA Analysis
Creating Web Services

8-28
2 To enter a description of the service, click Documentation in the ser-
vice tree. In the Service properties pane, click in the Description
field to open a text box where you can enter the service description.

3 To add a legacy program to a service, select the service in the Ser-
vices pane. In the Legacy classification or Diagram pane, select the
legacy program you want to add and choose Add to Service in the
right-click menu. SOA Analyzer adds the program to the service tree
as a seed. You can add as many seeds as necessary.

4 In the Services pane, select a seed to view its properties in the Ser-
vice properties pane. Click in a field in the Service properties pane
to open a text box where you can edit service properties related to
the seed.

Importing Data Element Synonyms

The tree for a seed displays the data elements for each port in the pro-
gram. In many cases, the actual parameters of the program are defined in
a synonym for the data element. A data port that appears as DFHCOM-
MAREA in the linkage section, for example, may immediately be
moved to another 01 structure that actually details the parameters of the
program. You need to import this second structure as a synonym.

To define a synonym for a data element:

1 In the Services pane, select a data element and choose View in
source in the right-click menu to navigate to its declaration in the
Source pane. A declaration such as DFHCOMMAREA PIC X(119)
will almost certainly have a synonym.

2 Select the declaration for which you want to define a synonym in the
Source pane and choose Instances in the right-click menu. The Dec-
laration Properties window opens.

3 In the Declaration Properties window, select an instance to navigate
to it in the Source pane. Choose Declaration in the right-click menu
to view its declaration.

4 When you are satisfied that a structure is an appropriate synonym,
select it in the Source pane, then select the data element for the seed
port in the Services pane and choose Import synonym in the right-
click menu. You can import as many synonyms as necessary.

Performing SOA Analysis
Creating Web Services

8-29
5 SOA Analyzer adds the structure to the seed tree, with the data items
at the lowest level automatically selected for inclusion in the service.
Items selected for inclusion are shown in bold. If you want to in-
clude a higher-level item instead of the lower-level items (a field
with a complete date, for example, rather than the year, month, and
day fields that constitute the date), select the higher-level item and
choose Include in the right-click menu.

Editing Data Elements

Select a data element in the Services pane to view its properties in the
Service properties pane. To edit a data element, select it and choose:

• View glossary in the right-click menu to assign a business name and
description to the data element. A dialog box opens, where you can
enter the business name and business description. For more informa-
tion on business names, see Analyzing Programs in the workbench
documentation set.

• Make input in the right-click menu to define the data element as an
input field.

• Make output in the right-click menu to define the data element as
an output field.

• Make input/output in the right-click menu to define the data ele-
ment as an input/output field.

Tip: Needless to say, it makes little sense to redefine an input field
as an output field, or vice versa. But you may have occasion
to define an input or output field as an input/output field.

• Include in the right-click menu to include the data element in the
service. Items selected for inclusion are shown in bold.

• Include children in the right-click menu to include the children of
the data element in the service.

• Exclude in the right-click menu to exclude the data element from the
service.

• Remove in the right-click menu to delete the data element from the
seed tree.

Performing SOA Analysis
Creating Web Services

8-30
Generating and Exporting the Wrapper for a Web Service

Once you have chosen the structures that will serve as the input and out-
put messages for the Web service, you can generate and export the Web
Service Description Language (WSDL) message syntax for the service.

To generate and export the wrapper for a Web service:

1 In the Services pane, select the service you want to wrap and choose
Generate WSDL in the right-click menu. SOA Analyzer generates
the WSDL for the wrapper and displays it in tree form in the Servic-
es pane (Figure 8-20).

2 To export the WSDL to a file, select the service and choose Export
WSDL in the right-click menu. A Select Folder dialog opens, where
you can specify the location of the file. The file has the same name
as the service.

Figure 8-20 Service Definition

Performing SOA Analysis
Mining the User Interface and Navigation

8-31
Mining the User Interface and Navigation

SOA Analyzer provides facilities that make it easy to generate a user
interface and navigation scheme on another platform. This section de-
scribes how to:

• Specify the events that lead to transitions between screens at run
time.

• View a complete screen navigation diagram that reflects the event
specification.

• Export the screen layout and event specification to an XML file.

Specifying Screen Events

Static analysis cannot discover the exact transitions between screens that
occur at run time, because these may be controlled deep in a program or
even in a file or table. You need to view the screen source to determine
the intended runtime flow, then specify the events that lead to transitions
between screens at run time.

To specify screen events:

1 In the Legacy classification or Diagram pane, select the screen for
which you want to specify events and choose Specify screen events
in the right-click menu. The Screen events window opens
(Figure 8-21).

2 The Screen transitions pane lists every transition between the select-
ed screen and a target screen, including transitions to itself. Select a
transition to view the source and properties for the selected screen in
the Source screen pane, and the source and properties for the target
screen in the Target screen pane.

3 To specify an event (“Return,” for example, to indicate that the op-
erator returns from the source screen to the target screen), click in the
Event column for the transition to open a text box where you can en-
ter the event name.

4 Repeat these steps for the remaining screens in the application.

Performing SOA Analysis
Mining the User Interface and Navigation

8-32
Figure 8-21 Screen Events Window

Generating a Screen Navigation Diagram

Once you have completely specified the screen events that define the
transitions between screens, you can generate a screen navigation dia-
gram that reflects the event specification.

To generate a screen navigation diagram:

1 In the Tools menu, choose Show navigation. The screen navigation
diagram opens (Figure 8-22).

Performing SOA Analysis
What’s Next?

8-33
Figure 8-22 Screen Navigation Diagram

Exporting the User Interface and Navigation

When you are sure that you have understood the screen flow for the ap-
plication, you can export the layout and event specification for the
screens to XML files. Based on the sample XSLT provided with SOA
Analyzer, you can write your own XSLT to convert the XML files to the
HTML in which the screens will be rendered on a modern platform.

To export the user interface and navigation:

1 In the File menu, choose Export user interfaces. A Select Folder
dialog opens, where you can specify the location of the XML files.
An XML file is created for each screen in the project. The file has
the same name as the screen.

Tip: You can find the sample XSLT provided with SOA Analyzer
in the Modernization Workbench SOAInstall folder.

What’s Next?

That completes your tour of the workbench project analysis tools! Now
you’re ready to start using the program analysis tools, collectively called
HyperView, to view programs interactively and perform program analy-
sis in stages. Analyzing Programs in the workbench documentation set
describes HyperView.

Performing SOA Analysis
What’s Next?

8-34

A-1
A
Repository Exchange
Protocol Syntax
he Repository Exchange Protocol (RXP) is an XML-based API
that you can use to interact with application-level information
in the workspace repository. This appendix describes the RXP

query syntax.

Query Syntax

An RXP query consists of the tags and attributes described in this sec-
tion.

Query

<query [name='QueryName']> { Object } </query>

Object

 <object [global='false']>

[<objecttype> ObjectTypeCondition </objecttype>]

[<cond> Condition </cond>]

T

Repository Exchange Protocol Syntax
Query Syntax

A-2
[<fetchtype as='FieldName'/>]

[<fetchid as='FieldName'/>]

[<fetchdisplay as='FieldName'/>]

[<fetchorigin as='FieldName'/>]

[<fetchsource as='FieldName'/>]

[<fetchsize as='FieldName'/>]

{ <fetchconst type='FieldType' value='Constant'
as='FieldName'/> }

{ <fetchattr attr='AttrName' as='FieldName'/> }

[<related [countas='FieldName'][optional='true']>
RelatedSpec

 </related>]

</object>

ObjectTypeCondition

 <typeset flag='FlagName' [negate='true']/>

| <type name='EntityName' [negate='true']/>

| <and [negate='true']> { ObjectTypeCondition }
 </and>

| <or [negate='true']> { ObjectTypeCondition }
 </or>

RelatedSpec

[<reltype> RelTypeCondition </reltype>]

[<cond> Condition </cond>]

[<fetchtype as='FieldName'/>]

{ <fetchattr attr='AttrName' as='FieldName'/> }

Object

RelTypeCondition

 <relset flag='RelFlagName' [negate='true']
[incoming='true']/>

| <rel name='RelationName' [negate='true']/>

| <and [negate='true']> { RelTypeCondition } </and>

Repository Exchange Protocol Syntax
Query Syntax

A-3
| <or [negate='true']> { RelTypeCondition } </or>

Condition

 <attr name='AttrName' op='Operation'
arg='Argument' [negate='true']/>

| <hasrelated [negate='true']> RelatedSpec

</hasrelated>

| <id equals='Integer' [negate='true']/>

| <id in='Integer{,Integer}' [negate='true']/>

| <source equals='String' [negate='true']/>

| <source in='String{,String}' [negate='true']/>

| <origin equals='SID' [negate='true']/>

| <origin in='SID{,SID}' [negate='true']/>

| <and [negate='true']> { Condition } </and>

| <or [negate='true']> { Condition } </or>

EntityName

The name of a repository entity.

AttrName

The name of an entity attribute.

FieldName

The field name of the returned record set.

Operation

 = | <> | > | >= | < | <= | like | in | between

FlagName

LEGACY | PROGRAMCODE | SYSTEM | KNOWLEDGE | GENER-
ATED | EXTRACT | COMPOSITE

Repository Exchange Protocol Syntax
Example 1

A-4
RelFlagName

REFER | USE | GENERATE | PRODUCE

RelationName

As defined in the repository metamodel.

Argument

The argument to the operation that depends both on argument type and
operation.

QueryName

A string.

Example 1

This example queries the repository for the object ID and parse status of
the GSS.cbl source file:

<query name="Select a COBOL object by name">

<object>

<objecttype>

<type name="COBOL"/>

</objecttype>

<fetchid as="ID"/>

<fetchattr name="ParseStatus" as="Parsed"/>
<cond>

<attr name="Name" op="=" arg="GSS.cbl"/>

</cond>

</object>

</query>

Repository Exchange Protocol Syntax
Example 2

A-5
Example 2

This example queries the repository for copybooks used in three Cobol
programs:

<query name="Find COPYBOOKs used in given programs">

<object>

<objecttype>

<type name="COBOL"/>

</objecttype>

<cond>

<attr name="Name" op="in"

 arg="'GSS1.CBL','GSS2.CBL','GSS3.CBL'"/>

</cond>

<related>

<reltype>

 <relset flag="USE"/>

</reltype>

<object>

<fetchid as="ID2"/>

<fetchtype as="ObjectType2"/>

<fetchdisplay as="ObjectName2"/>

</object>

</related>

</object>

</query>

Repository Exchange Protocol Syntax
Example 2

A-6

B-1
B
Common Diagramming
Features
his appendix describes features shared by all the workbench di-
agramming tools, except the Diagrammer itself. Use these fea-
tures to edit diagrams, save diagrams in standard formats, print

diagrams, and more.

Zooming

Use the slider on the tool bar in the lower lefthand
corner of the tool window to zoom in or out on a diagram. Click the
button on the tool bar to restore the 100% zoom level.

Printing Diagrams

Click the button on the tool bar in the lower lefthand corner of the
tool window to print the diagram. The Print Preview window opens,
where you can change the zoom factor for the diagram to control the
number of pages in the print job. Click OK.

T

Common Diagramming Features
Saving Diagrams

B-2
Saving Diagrams

Click the button on the tool bar in the lower lefthand corner of the
tool window to save a diagram to BED, bitmap, JPEG, Visio, Visio
XML, DOT, or EMF.

Note: Visio 2002 must be installed to save a diagram to Visio. Visio
2002 is not required to save to Visio XML.

Copying Diagrams

Click the button on the tool bar in the lower lefthand corner of the
tool window to copy the diagram to the clipboard in EMF format. You
can paste the diagram from the clipboard to a document in a third-party
tool such as Word.

Using the Diagram Editor

Use the built-in Diagram Editor to edit diagrams, change the appearance
of diagrams, cut-and-paste from a diagram, and other tasks.

Opening a Diagram in the Diagram Editor

You can invoke the Diagram Editor from any tool that displays a dia-
gram, or by double-clicking BEDit.exe in the Modernization Work-
bench Bin directory. If you open the Diagram Editor from within another
tool, the Editor creates a copy of the diagram on view in the tool.

To open a diagram in the Diagram Editor:

1A If the Diagram Editor is not open, click the button on the tool bar
in the lower lefthand corner of the tool window. The diagram on
view in the tool opens in the Diagram Editor (Figure B-1).

1B If the Diagram Editor is already open, choose Open in the File
menu. The Open diagram dialog appears. Select the diagram you
want to open and click Open.

Common Diagramming Features
Using the Diagram Editor

B-3
Tip: Choose New Diagram in the File menu to create a new blank
diagram. You can paste portions of an existing diagram into
the blank diagram, as described in “Copying Objects” on
page B-6.

Figure B-1 Diagram Editor Window

Searching for Objects in the Diagram Editor

The Diagram Editor offers facilities for navigating to general locations
in a diagram, or to specific objects. You can use the search and replace
feature to modify captions or tool tips globally.

Using the Locate Facility

Use the Locate facility to navigate to general locations in a diagram. To
invoke the Locate facility, click Locate in the View menu. The Locate
window opens (Figure B-2).

quick search

edit diagram

Common Diagramming Features
Using the Diagram Editor

B-4
The Locate window displays the entire diagram on view in the Diagram
Editor main window. A frame surrounds the portion of the diagram vis-
ible in the main window.

Drag the frame to the area of the diagram you want to view. The Diagram
Editor displays the selected area in the main window.

Figure B-2 Locate Window

Using the Quick Search Facility

Use the Quick Search facility to navigate to objects in a diagram. To in-
voke Quick Search, choose Search pane in the View menu. The Quick
Search facility opens at the top of the window.

Enter the text for the search in the Quick Search field. You can use wild-
card patterns allowed in LIKE statements by Visual Basic for Applica-
tions (VBA).

Using the Search and Replace Facility

Use the Search and Replace facility to modify captions or tool tips glo-
bally. The Diagram Editor modifies the diagram only, not the repository.

To search for and replace text in a diagram:

1 In the Edit menu, choose Replace. The Replace window opens
(Figure B-3).

drag frame to
area you want
to view

Common Diagramming Features
Using the Diagram Editor

B-5
Figure B-3 Replace Window

2 Enter the text you want to replace in the Find field. Enter the text
you want to substitute in the Replace field.

3 Select Match case if you want to match the case of the entered text.

4 You can apply the change to any combination of object captions, re-
lationship captions, or tool tips by selecting the appropriate choices
in the Apply to pane. If you apply the change to object captions, se-
lect the appropriate choice in the Scope pane to apply the change to
all the objects that contain the text or only the selected objects that
contain the text.

5 Click Replace to run the operation and dismiss the Replace window.

Selecting Objects in the Diagram Editor

Select an object or relationship in the Diagram Editor by clicking it. De-
select an object by clicking on white space or selecting another object.
To select all the objects in the diagram, choose Select All in the Edit
menu.

To select a range of objects, click in the diagram, hold down the right
mouse button, drag the selection box over the objects you want to select,
and release the mouse button. To select objects that are not in a range,
hold down the Control key, then click each object you want to select.

Common Diagramming Features
Using the Diagram Editor

B-6
Editing the Layout of a Diagram in the Diagram Editor

You can change the layout of a diagram, and copy, add or delete objects
from the diagram. The Diagram Editor modifies the diagram only, not
the repository.

Unlocking the Diagram Layout

When you open a diagram in the Diagram Editor, the diagram layout is
locked. You cannot move or resize the objects in the diagram. To unlock
the diagram layout, deselect Lock Layout in the Edit menu.

Autoplacing Objects

To rearrange the objects in a diagram automatically, choose Auto Place
in the Auto menu. You are prompted to confirm that you want to au-
toplace the objects. Click Yes.

Splitting Objects

To “split” an object that has multiple relationships into an equal number
of objects with a single relationship, select the object and choose Split
in the Edit menu. Rearrange the objects manually or use the autoplace
feature to rearrange the objects automatically.

Moving and Resizing Objects

To move an object in a diagram, drag-and-drop the object to the new lo-
cation, or enter the grid coordinates of the location in the fields beside
the symbol on the Box tool bar. The Diagram Editor redraws the re-
lationships for the object.

To resize an object in a diagram, grab the border of the object with the
mouse and drag it to a new location, or enter the grid coordinates for the
height and width of the resized box in the fields beside the symbol
on the Box tool bar.

Copying Objects

To create a copy of an object and all its relationships, select the object
and choose Clone in the Edit menu.

Common Diagramming Features
Using the Diagram Editor

B-7
To copy an object but not its relationships to the clipboard, select the
object and choose Copy in the Edit menu. To paste the object from the
clipboard, choose Paste in the Edit menu.

Tip: Choose Clipboard in the View menu to view the contents of
the clipboard.

Adding Objects

To add an empty object to a diagram, click New Box in the Edit menu.
To create a relationship between the new object and another object, hold
down the Alt key, select either object, and drag-and-drop the relationship
to the other object.

Deleting Objects

To delete an object from a diagram, select the object and click Delete in
the Edit menu. To delete an object from the diagram and copy it to the
clipboard, select the object and choose Cut from the Edit menu. The Di-
agram Editor also deletes the relationships for the object.

Autoattaching Relationships

To redraw a relationship line in a diagram automatically, select the rela-
tionship line and choose Auto Attach in the Auto menu.

Redrawing Relationships

To redraw a relationship in a diagram, grab the relationship line with the
mouse and drag it to a new location, or enter the grid coordinates for the
length and offset of each end of the redrawn line in the fields beside the

 and symbols on the Edge tool bar.

Deleting Relationships

To delete a relationship from a diagram, select the relationship and click
Delete Edge in the Edit menu.

Common Diagramming Features
Using the Diagram Editor

B-8
Editing Objects in the Diagram Editor

You can change the caption, color scheme, and border characteristics of
an object. The Diagram Editor modifies the diagram only, not the repos-
itory.

Editing the Captions of an Object and Tool Tip

To edit the caption of an object, select the object and enter the new cap-
tion in the text field on the Box caption tool bar. To edit the caption of
the tool tip for an object, select the object and enter the new caption in
the text field on the Box tooltip tool bar.

Editing the Color Scheme for an Object

You can change the color of the background, border, and caption of an
object:

• To change the background color of an object, select the object and
click the arrow beside the symbol on the Box tool bar.

• To change the border color of an object, select the object and click
the arrow beside the symbol on the Box tool bar.

• To change the color of the caption for an object, select the object and
click the arrow beside the symbol on the Box tool bar.

A standard Windows color control is displayed. Use the Palette tab to
select the color of the background, border, or caption from the Windows
palette. Use the System tab to match the color of the background, border,
or caption with the color of standard Windows elements.

Editing the Border of an Object

You can change the thickness of the border for an object, specify that the
border have rounded or square corners, and add a background shadow to
the border:

• To change the thickness of the border for an object, select the object
and click the arrow beside the drop-down on the Box tool bar. In
the drop-down, choose the thickness you want, where 1 is the thin-
nest border and 4 is the thickest.

Common Diagramming Features
Using the Diagram Editor

B-9
• To specify that the border of an object has rounded corners, select
the object and click the button on the Box tool bar. The button is
a toggle. Click the button again to specify that the border has square
corners.

• To add a background shadow to the border for an object, select the
object and click the button on the Box tool bar. The button is a
toggle. Click the button again to specify that the border has no shad-
ow.

Editing Relationships in the Diagram Editor

You can add a caption to, or delete a caption from, either end of a rela-
tionship, edit the captions, and edit the cardinality of the relationship.
The Diagram Editor modifies the diagram only, not the repository.

Adding, Deleting, or Editing a Caption for a Relationship

There are two text fields for relationship captions on the Edge tool bar.
The field on the left contains the caption for the left end of the relation-
ship, the field on the right contains the caption for the right end of the
relationship.

To add a caption to a relationship, select the relationship and enter the
new caption in the appropriate text field. To delete a caption from a re-
lationship, select the relationship and clear the caption in the appropriate
text field. To edit the caption for a relationship, select the relationship
and enter the new caption in the appropriate text field.

Editing the Cardinality of a Relationship

There are two drop-downs for relationship cardinalities on the Edge tool
bar. The drop-down on the left contains the cardinality for the left end of
the relationship, the drop-down on the right contains the cardinality for
the right end of the relationship.

To edit the cardinality of a relationship, select the relationship and click
the appropriate drop-down on the Edge tool bar. In the drop-down,
choose the cardinality for the relationship.

Common Diagramming Features
Using the Diagram Editor

B-10
Editing General Properties of a Diagram in the Diagram Editor

Use the Diagram Properties window to specify general properties of a
diagram in the Diagram Editor: the font for captions, whether relation-
ships are displayed as orthogonal (right-angled) lines, and the back-
ground color of the Diagram Editor window.

To edit the general properties of a diagram:

1 In the File menu, choose Properties. The Diagram Properties win-
dow opens (Figure B-4).

Figure B-4 Diagram Properties Window

2 Click the button next to the Font drop-down. A standard Windows
font control is displayed, where you can choose the font type, style,
and size for diagram captions.

3 Select Orthogonal Edges if you want the Diagram Editor to display
relationships as orthogonal (right-angled) lines.

4 Click the arrow beside the Background color drop-down to specify
the background color for the Diagram Editor window. A standard
Windows color control is displayed. Use the Palette tab to select the
color of the text or background from the Windows palette. Use the
System tab to match the color of the text or background with the col-
or of standard Windows elements.

Common Diagramming Features
Using the Diagram Editor

B-11
5 Click OK to apply your changes and dismiss the Diagram Properties
window.

Saving Diagrams in the Diagram Editor

Choose Save in the File menu to save a diagram in the Diagram Editor.
The Save Diagram dialog opens. In the Save in drop-down, choose the
folder to save the new diagram in. In the File name field, enter the name
of the new diagram. Choose a name that describes the diagram as closely
as possible. Click Save.

Copying Diagrams with a Different Name (Saving As) in the Diagram Editor

Choose Save as in the File menu to copy a diagram with a different name
in the Diagram Editor. The Save Diagram dialog opens. In the Save in
drop-down, choose the folder to save the new diagram in. In the File
name field, enter the name of the new diagram. Choose a name that de-
scribes the diagram as closely as possible. Click Save.

Printing Diagrams in the Diagram Editor

Choose Print in the File menu to print a diagram in the Diagram Editor.
The Print Preview window opens, where you can change the zoom factor
for the diagram to control the number of pages in the print job. Click
OK.

Exporting Diagrams in the Diagram Editor

You can export diagrams to a variety of standard formats in the Diagram
Editor. Choose Export in the File menu to export a diagram to BED, bit-
map, JPEG, Visio, Visio XML, DOT, or EMF.

Note: Visio 2002 must be installed to save a diagram to Visio. Visio
2002 is not required to save to Visio XML.

Zooming in the Diagram Editor

Use the slider on the tool bar in the lower lefthand corner of the Dia-
gram Editor window to zoom in or out on the diagram. To display the
slider, choose Zoom in the View menu.

Common Diagramming Features
Using the Diagram Editor

B-12

GL-1
Glossary
ADABAS
ADABAS is a Software AG relational DBMS for large, mission-
critical applications.

API
API stands for application programming interface, a set of routines,
protocols, and tools for building software applications.

applet
See Java applet.

AS/400
The AS/400 is a midrange server designed for small businesses and
departments in large enterprises.

BMS
BMS stands for Basic Mapping Support, an interface between appli-
cation formats and CICS that formats input and output display data.

BSTR
BSTR is a Microsoft format for transferring binary strings.

GlossaryGL-2
CDML
CDML stands for Cobol Data Manipulation Language, an extension
of the Cobol programming language that enables applications pro-
grammers to code special instructions to manipulate data in a DMS
database and to compile those instructions for execution.

CICS
CICS stands for Customer Information Control System, a program
that allows concurrent processing of transactions from multiple ter-
minals.

Cobol
Cobol stands for Common Business-Oriented Language, a high-lev-
el programming language used for business applications.

COM
COM stands for Component Object Model, a software architecture
developed by Microsoft to build component-based applications.
COM objects are discrete components, each with a unique identity,
which expose interfaces that allow applications and other compo-
nents to access their features.

complexity
An application’s complexity is an estimate of how difficult it is to
maintain, analyze, transform, and so forth.

component
A component is a self-contained program that can be reused with
other programs in modular fashion.

construct
A construct is an item in the parse tree for a source file — a section,
statement, condition, variable, or the like. A variable, for example,
can be related in the parse tree to any of three other constructs — a
declaration, a dataport, or a condition.

copybook
A copybook is a common piece of source code to be copied into
many Cobol source programs. Copybooks are functionally equiva-
lent to C and C++ include files.

Glossary GL-3
CORBA
CORBA stands for Common Object Request Broker Architecture,
an architecture that enables distributed objects to communicate with
one another regardless of the programming language they were writ-
ten in or the operating system they are running on.

CSD file
CSD stands for CICS System Definition. A CSD file is a VSAM
data set containing a resource definition record for every resource
defined to CICS.

database schema
A database schema is the structure of a database system, described
in a formal language supported by the DBMS. In a relational data-
base, the schema defines the tables, the fields in each table, and the
relationships between fields and tables.

dataport
A dataport is an input/output statement or a call to or from another
program.

DB/2
DB/2 stands for Database 2, an IBM system for managing relational
databases.

DBCS
DBCS stands for double-byte character string, a character set that
uses two-byte (16-bit) characters rather than one-byte (8-bit) charac-
ters.

DBMS
DBMS stands for database management system, a collection of pro-
grams that enable you to store, modify, and extract information from
a database.

DDL
DDL stands for Data Description Language (DDL), a language that
describes the structure of data in a database.

decision resolution
Decision resolution lets you identify and resolve dynamic calls and
other relationships that the parser cannot resolve from static sources.

GlossaryGL-4
DMS
DMS stands for Data Management System, a Unisys database man-
agement software product that conforms to the CODASYL (net-
work) data model and enables data definition, manipulation, and
maintenance in mass storage database files.

DPS
DPS stands for Display Processing System, a Unisys product that
enables users to define forms on a terminal.

ECL
ECL stands for Executive Control Language, the operating system
language for Unisys OS 2200 systems.

effort
Effort is an estimate of the time it will take to complete a task related
to an application, based on weighted values for selected complexity
metrics.

EJB
EJB stands for Enterprise JavaBeans, a Java API developed by Sun
Microsystems that defines a component architecture for multi-tier
client/server systems.

EMF
EMF stands for Enhanced MetaFile, a Windows format for graphic
images.

entity
An entity is an object in the repository model for a legacy applica-
tion. The relationships between entities describe the ways in which
the elements of the application interact.

FCT
FCT stands for File Control Table (FCT), a CICS table that contains
processing requirements for output data streams received via a re-
mote job entry session from a host system. Compare PCT.

HTML
HTML stands for HyperText Markup Language, the authoring lan-
guage used to create documents on the World Wide Web.

Glossary GL-5
IDL
IDL stands for Interface Definition Language (IDL), a generic term
for a language that lets a program or object written in one language
communicate with another program written in an unknown lan-
guage.

IDMS
IDMS stands for Integrated Database Management System, a Com-
puter Associates database management system for the IBM main-
frame and compatible environments.

IMS
IMS stands for Information Management System, an IBM program
product that provides transaction management and database man-
agement functions for large commercial application systems.

Java
Java is a high-level object-oriented programming language devel-
oped by Sun Microsystems.

Java applet
A Java applet is a program that can be sent with a Web page. Java
applets perform interactive animations, immediate calculations, and
other simple tasks without having to send a user request back to the
server.

JavaBeans
JavaBeans is a specification developed by Sun Microsystems that
defines how Java objects interact. An object that conforms to this
specification is called a JavaBean.

JCL
JCL stands for Job Control Language, a language for identifying a
job to OS/390 and for describing the job’s requirements.

JDBC
JDBC stands for Java Database Connectivity, a standard for access-
ing diverse database systems using the Java programming language.

job
A job is the unit of work that a computer operator or a program
called a job scheduler gives to the operating system. In IBM main-

GlossaryGL-6
frame operating systems, a job is described with job control lan-
guage (JCL).

logical component
A logical component is an abstract repository object that gives you
access to the source files that comprise a component.

MFS
MFS stands for Message Format Service, a method of processing
IMS input and output messages.

Natural
Natural is a programming language developed and marketed by
Software AG for the enterprise environment.

object model
An object model is a representation of an application and its encap-
sulated data.

object-oriented programming
Object-oriented programming organizes programs in terms of ob-
jects rather than actions, and data rather than logic.

ODBC
ODBC stands for Open Database Connectivity, a standard for ac-
cessing diverse database systems.

orphan
An orphan is an object that does not exist in the reference tree for
any startup object. Orphans can be removed from a system without
altering its behavior.

parser
The parser defines the object model and parse tree for a legacy ap-
plication.

parse tree
A parse tree defines the relationships between the constructs that
comprise a source file — its sections, paragraphs, statements, con-
ditions, variables, and so forth.

PCT
PCT stands for Program Control Table, a CICS table that defines the
transactions that the CICS system can process. Compare FCT.

Glossary GL-7
PL/I
PL/I stands for Programming Language One, a third-generation pro-
gramming language developed in the early 1960s as an alternative to
assembler language, Cobol, and FORTRAN.

profile
Profiles are HTML views into a repository that show all of the anal-
ysis you have done on an application. Profiles are convenient ways
to share information about legacy applications across your organiza-
tion.

QSAM
QSAM stands for Queued Sequential Access Method, a type of
processing that uses a queue of data records—either input records
awaiting processing or output records that have been processed and
are ready for transfer to storage or an output device.

relationship
The relationships between entities in the repository model for a leg-
acy application describe the ways in which the elements of the ap-
plication interact.

relaxed parsing
Relaxed parsing lets you verify a source file despite errors.
Ordinarily, the parser stops at a statement when it encounters an er-
ror. Relaxed parsing tells the parser to continue to the next state-
ment.

repository
A repository is a database of program objects that comprise the mod-
el for an application.

schema
See database schema.

SQL
SQL stands for Structured Query Language, a standard language for
relational database operations

system program
A system program is a generic program — a mainframe sort utility,
for example — provided by the underlying system and used in un-
modified form in the legacy application.

GlossaryGL-8
TIP
TIP stands for Transaction Processing, the Unisys real-time system
for processing transactions under Exec control.

transaction
A transaction is a sequence of information exchange and related
work (such as database updating) that is treated as a unit for the pur-
poses of satisfying a request and for ensuring database integrity.

VALTAB
VALTAB stands for Validation Table, which contains the informa-
tion the system needs to locate, load, and execute transaction pro-
grams. See also TIP.

VSAM
VSAM stands for Virtual Storage Access Method, an IBM program
that controls communication and the flow of data in a Systems Net-
work Architecture network.

XML
XML stands for Extensible Markup Language, a specification for
creating common information formats.

Index-1
Index
A
Absolute Complexity 6-8
Abstract Classes 6-8
Abstract Methods 6-8
Abstractness 6-8
Afferent Coupling 6-8
Areas 6-8
Asynchronous Calls 6-8
Auto Expand 2-6
Average Absolute Complexity 6-8
Average Binary Decisions 6-8
Average Catch Clauses 6-9
Average Computational Statements 6-9
Average Conditional Complexity 6-9
Average Cyclomatic Complexity 6-9
Average Depth of Inheritance Hierarchy

6-9
Average Essential Complexity 6-9
Average Extended Cyclomatic

Complexity 6-9
Average IF Statements 6-9
Average Lack of Cohesion Per Type 6-9
Average Loop Statements 6-9
Average Maximum Switch Cases 6-10
Average Nested Block Depth 6-10
Average Parameters 6-10
Average Specialization Index Per Type 6-

10
Average Subtypes 6-10
Average Switch Cases 6-10
Average Switch Statements 6-10
Average Unique Method Calls 6-10

Index-2
B
basic relationship 2-15
Batch Application Viewer

copying diagrams 4-11
creating job dependencies 4-9
editing color scheme 4-8
exporting diagrams 4-11
generating batch application

information 4-2
generating diagrams 4-7
overview 4-1
printing diagrams 4-11
renaming objects 4-10
searching in table views 4-7
working with table views 4-5

Binary Decisions 6-10
Blank Lines 6-10
boundary objects 2-4, 2-6

C
Catch Clauses 6-10
Change Analyzer

creating a project 7-15
generating and analyzing reports 7-16
getting started 7-3
moving synonyms to lists 7-9
overview 7-1
searching for seed fields 7-13
setting options 7-10

Classes 6-11
Columns 6-11
Comment Lines 6-11
Comments Ratio 6-11
Complexity Metrics tool

exporting reports 6-7
generating complexity metrics 6-2
overview 6-1
supported complexity metrics 6-7

composite relationship 2-15, 2-18
Computational Statements 6-11
Conditional Complexity 6-11
Conditional Statements 6-11
Constructors 6-11
Control Cards Usages 6-12
CRUD report 5-2
Cyclomatic Complexity 6-12

D
Data Elements 6-12
Data Members 6-12
data operations 5-2, 5-3
Data Sets 6-12
Dead Data Elements 6-12
Dead Data Elements from Includes 6-13
Dead Lines 6-13
Dead Lines from Includes 6-13
Dead Statements 6-13
Dead Statements from Includes 6-14
Depth of Inheritance Hierarchy 6-14
Destructors 6-14
Diagram Editor

copying a diagram B-11
editing diagram layout B-6
editing objects B-8
editing relationships B-9
exporting a diagram B-11
opening a diagram B-2
printing a diagram B-11

Index-3
saving a diagram B-11
searching for objects B-3
selecting objects B-5

Diagrammer
assigning tags 2-27
black-boxing 2-26
clearing diagrams 2-9
defining scope conditions 2-20, 2-25
editing color scheme of diagrams 2-11
generating diagrams 2-4, 2-6
overview 2-1
printing diagrams 2-9
saving diagrams and reports 2-9
Using the Scope Editor 2-13

diagrams
batch application 4-1
editing B-2
global data flows 3-1
relationship flows 2-1

Difficulty 6-14
Disjoint Data Sets 6-14
duplicated CRUD functionality 8-25

E
Efferent Coupling 6-14
Effort Estimation tool

exporting reports 6-7
generating effort estimation statistics

6-3
overview 6-1
specifying change magnitudes 6-6
supported complexity metrics 6-7

Entry Points 6-14
Error Estimate 6-14
Essential Complexity 6-14
Exception Handling Statements 6-15

EXEC Cataloged Procedure Steps 6-15
EXEC IN-stream Procedure Steps 6-15
Executable Statements 6-15
Extended Cyclomatic Complexity 6-15

F
Fields 6-15
Fields of Adabas File Number 6-15
Foreign Keys 6-16
Function Calls 6-16
Function Points 6-16
Functions 6-16

G
Global Data Flow tool

copying diagrams 3-1, 3-12
exporting diagrams 3-13
generating diagrams 3-5
printing diagrams 3-12
setting options 3-9

Global Data Items 6-16
GoTo Statements 6-16

H
Hidden Fields 6-16
horizontal slice 8-13

I
IF Statements 6-16
Import Statements 6-16
IMS port analysis 5-3
Include Copybook Statements 6-16, 6-17
Include Data Structure 6-16
Include DDI 6-16
Include DDL/PSB 6-17
Include Global Data Area Statements 6-17

Index-4
Include Local Data Area Statements 6-17
Include Macro/Copybook 6-17
Include Program 6-17
Include Report 6-17
Include Resource Statement 6-17
Include Screen 6-17
Include Statements 6-17
Inner Call Statements 6-17
Inner Procedures 6-17
inner structure 8-15
Input Fields 6-18
Input/Output Fields 6-18
Instability 6-18
Intelligent Content 6-18
Interfaces 6-18
IO Statements 6-18

J
JCL

verification requirements for IMS
port analysis 5-4

K
Key Fields 6-18

L
Labels 6-18
Lack of Cohesion 6-18
legacy estimation tools

exporting reports 6-7
generating complexity metrics 6-2
generating effort estimation statistics

6-3
overview 6-1
specifying change magnitudes 6-6
supported complexity metrics 6-7

Lines of Code 6-19

Lines with Both Comments and Code 6-19
Lines with Comments 6-19
Local Data Items 6-19
Logical Operators in Conditions 6-19
Logical Records 6-19
Loop Statements 6-19

M
Macro Assignments 6-20
Macro Declarations 6-20
Macro Lines 6-20
Macro Procedures 6-20
Macro Statements 6-20
Maintainability Index 6-20
Maps 6-20
Maximum Depth of Logic Nesting 6-20
Maximum Switch Cases 6-20
Member Function Calls 6-21
Member Functions 6-21
Method Calls 6-21
Methods 6-21

N
Nested Block Depth 6-21
Nesting Level 6-21
Non-returning Calls 6-21
Normalized Distance 6-21
Number of Comments 6-22
Number of Controls 6-22
Number of Entries 6-22
Number of Executes 6-22
Number of Lines 6-22
Number of PCBs 6-22
Number of Processor Calls 6-22
Number of Steps 6-27

Index-5
O
Omit Fields 6-22
Operands 6-22
Operators 6-23
Options

Global Data Flow 3-9, 3-10
Output Fields 6-23
Overridden Methods 6-23

P
Parameters 6-23
Path Groups 6-23
Pointers 6-23
Primary Keys 6-23
private scope 2-14
program classifications 8-6
Program Length 6-24
Program Level 6-24
Program Volume 6-24
Programming Effort 6-24
Programming Time 6-25
project, creating in Change Analyzer 7-15
pruning scopes 2-25
Public Data Members 6-25
Public Fields 6-25
Public Member Functions 6-25
Public Methods 6-25
public scope 2-14

Q
queue access 8-21

R
Records 6-25
relationship filter 2-20
relationship flow diagrams

assigning tags 2-27

black-boxing 2-26
clearing 2-9
defining scope conditions 2-20, 2-25
editing color scheme 2-11
generating 2-4, 2-6
overview 2-1
printing 2-9
saving 2-9

Remapped Data Sets 6-25
reports, diagram-based 2-9
Repository Exchange Protocol A-1
Response for Class 6-25
Returning Calls 6-25
reuse 8-9
RXP A-1

S
scope

pruning 2-25
scope conditions

defining in relationship flow diagram
2-20, 2-25

Scope Editor 2-13
scopes 2-13
screen events 8-31
screen navigation 8-32
Screens 6-25
Segments 6-25
Select Fields 6-26
Sets 6-26
Sliceable Dead Lines 6-26
SOA Analyzer

assigning business names 8-9
assigning tags 8-9
classifications 8-6
creating Web services 8-27
determining reuse 8-9

Index-6
diagram options 8-18
diagrams 8-10
duplicated CRUD functionality 8-25
exporting UI and navigation 8-33
generating and exporting Web

services 8-30
guidelines for Web services 8-26
intersecting Clipper list 8-14
missing validation rules 8-20
overview 8-1
program inner structure 8-15
queue access 8-21
saving classifications as tags 8-9
screen navigation 8-32
specifying screen events 8-31
starting 8-5
synonyms 8-28
transaction sync points 8-23
viewing object properties 8-8
viewing SOA measurements 8-10
viewing source 8-8

SOA measurements 8-10
Source Lines 6-26
Specialization Index 6-26
Static Data Items 6-26
Static Data Members 6-26
Static Fields 6-26
Static Functions 6-26
Static Member Functions 6-26
Static Methods 6-27
Subsets 6-27
Subtypes 6-27
Switch Cases 6-27
Switch Choose Statements 6-27
SWITCH/SELECT Statements 6-27
sync points 8-23
synonyms 7-2, 8-28

T
Tables 6-27
Total EXEC Cataloged Procedure Steps 6-

27
Total Include Copybook Statements 6-27
Total Include Statements 6-28

U
Unique Function Calls 6-28
Unique Member Function Calls 6-28
Unique Method Calls 6-28
Unique Operands 6-28
Unique Operands in Conditions 6-28
Unique Operators 6-29
Unique System Macro Instructions 6-29

V
validation rules 8-20
vertical slice 8-12
Vocabulary 6-29

W
Web services 8-27, 8-30
Weighted Methods 6-29

	Contents
	Preface
	Overview
	Analyzing Relationship Flows
	Analyzing Relationships with the Diagrammer
	Analyzing Data Flows with the Global Data Flow Tool
	Analyzing Batch Applications with the Batch Application Viewer

	Analyzing Data Operations
	Estimating Complexity and Effort
	Identifying Classes of Data Items
	Performing SOA Analysis
	What’s Next?

	Analyzing Relationship Flows
	Understanding Relationship Flow Diagrams
	Understanding Diagram Scopes
	Understanding Diagram Layouts
	Opening the Diagrammer
	Generating Diagrams
	Generating a Diagram for the Selected Project
	Generating a Diagram for Objects Copied and Pasted onto the Canvas

	Working in Diagrams
	Diagram Pane
	Browser Pane
	List Pane
	Quick View Pane
	Overview Pane

	Setting Diagrams User Preferences
	Moving or Copying Source Files for Diagrammed Objects into Projects
	Using the Scope Editor
	Understanding the Scope Editor WIndow
	Managing Scopes
	Creating Composite Relationships
	Defining a Relationship Filter
	Pruning a Scope
	Mirroring a Scope

	Black-Boxing Objects in Diagrams
	Assigning Tags to Objects
	Expanding and Collapsing Black Boxes

	What’s Next?

	Analyzing Global Data Flows
	Understanding Global Data Flows
	Searching for the Variable
	Viewing Memory Usage for the Variable
	Viewing the Data Flow for the Variable

	Using the Global Data Flow Tool
	Generating Global Data Flow Information
	Working with Global Data Flow Information
	Source Pane
	Data View Pane
	Origin Pane
	Data Flow Pane

	Setting Global Data Flow Options
	Setting Global Data Flow User Preferences
	Setting Global Data Flow Project Options

	Copying Global Data Flow Diagrams to the Clipboard
	Printing Global Data Flow Diagrams
	Exporting Global Data Flow Diagrams

	What’s Next?

	Analyzing Batch Applications
	Using the Batch Application Viewer
	Generating Batch Application Information
	Working with Batch Application Table Views
	Searching Batch Application Table Views
	Working with Batch Application Diagrams
	Generating a Batch Application Diagram
	Editing the Color Scheme for Batch Application Diagrams
	Creating Job Dependencies in Batch Application Diagrams
	Creating User Names for Objects in Batch Application Diagrams
	Copying Batch Application Diagrams to the Clipboard
	Printing Diagrams
	Exporting Diagrams

	Working with HyperView in Batch Application Viewer

	What’s Next?

	Analyzing Data Operations
	Viewing CRUD Reports
	Enabling IMS Port Analysis
	Mapping Root Programs to PSBs in JCL or System Definition Files
	Verification Order for IMS Applications
	Reverifying Files in IMS Applications

	What’s Next?

	Estimating Complexity and Effort
	Using the Complexity Metrics Tool
	Using the Effort Estimation Tool
	Specifying Change Magnitudes
	Exporting Complexity and Effort Reports
	Supported Complexity Metrics
	What’s Next?

	Identifying Classes of Data Items
	Understanding Data Item Classification
	Getting Started in Change Analyzer
	Using Change Analyzer
	Working with Change Impact Information
	Programs Pane
	Lists Pane
	Synonyms Pane
	Source Pane

	Setting Change Analyzer Options
	Searching for Seed Fields in Change Analyzer
	Creating Projects in Change Analyzer
	Generating and Exporting Change Analyzer Reports

	What’s Next?

	Performing SOA Analysis
	Understanding SOA Analysis
	Understanding Client-Layer Programs
	Understanding Service-Layer Programs
	Understanding Anomalous Programs

	Starting SOA Analyzer
	SOA Analyzer Basics
	Viewing Object Classifications
	Viewing Source
	Viewing Object Properties
	Assigning a Business Name and Description to an Object
	Assigning a Tag to an Object
	Saving Classifications as Tags
	Determining Program Reuse
	Viewing SOA Measurements

	Working with Diagrams
	Drawing a Vertical Slice
	Drawing a Horizontal Slice
	Locating Items of Interest with a Clipper List
	Showing Program Inner Structure
	Showing Tags in a Diagram
	Setting Diagram Options

	Identifying Problems
	Identifying Missing Validation Rules
	Identifying Queue Access
	Identifying Transaction Sync Points
	Identifying Duplicated CRUD Operations

	Creating Web Services
	Identifying Potential Web Services
	Creating and Exporting Web Services
	Defining a Web Service
	Importing Data Element Synonyms
	Editing Data Elements

	Generating and Exporting the Wrapper for a Web Service

	Mining the User Interface and Navigation
	Specifying Screen Events
	Generating a Screen Navigation Diagram
	Exporting the User Interface and Navigation

	What’s Next?

	Repository Exchange Protocol Syntax
	Query Syntax
	Example 1
	Example 2

	Common Diagramming Features
	Zooming
	Printing Diagrams
	Saving Diagrams
	Copying Diagrams
	Using the Diagram Editor
	Opening a Diagram in the Diagram Editor
	Searching for Objects in the Diagram Editor
	Using the Locate Facility
	Using the Quick Search Facility
	Using the Search and Replace Facility

	Selecting Objects in the Diagram Editor
	Editing the Layout of a Diagram in the Diagram Editor
	Unlocking the Diagram Layout
	Autoplacing Objects
	Splitting Objects
	Moving and Resizing Objects
	Copying Objects
	Adding Objects
	Deleting Objects
	Autoattaching Relationships
	Redrawing Relationships
	Deleting Relationships

	Editing Objects in the Diagram Editor
	Editing the Captions of an Object and Tool Tip
	Editing the Color Scheme for an Object
	Editing the Border of an Object

	Editing Relationships in the Diagram Editor
	Adding, Deleting, or Editing a Caption for a Relationship
	Editing the Cardinality of a Relationship

	Editing General Properties of a Diagram in the Diagram Editor
	Saving Diagrams in the Diagram Editor
	Copying Diagrams with a Different Name (Saving As) in the Diagram Editor
	Printing Diagrams in the Diagram Editor
	Exporting Diagrams in the Diagram Editor

	Glossary
	Index

