
Micro Focus
®

Modernization Workbench™

Preparing Projects

Copyright © 2009 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

iii
Contents
Preface

Audience .vii
Organization . viii
Conventions . ix
Related Manuals . ix
Online Help . x

1 Overview

Registering Applications .1-1
Verifying Applications .1-2
Inventorying Applications .1-3
Support for Japanese Language Applications 1-4
What’s Next?. .1-5

2 Setting Up a Workspace and Projects

Registering Source Files. .2-1
Creating New Source Files .2-3
Refreshing Source Files .2-3

Contentsiv
Exporting Source Files from a Workspace .2-4
Setting Registration Options .2-4
Creating Projects .2-9
Sharing Projects .2-10
Protecting Projects .2-10
Moving or Copying Files in Projects .2-10
Including Objects in Projects. .2-12
Deleting a Workspace, Project, or Object .2-13
What’s Next?. .2-14

3 Setting Verification Options

Setting Workspace Verification Options .3-2
Specifying Options on the Legacy Dialects Tab.3-2
Specifying Options on the Settings Tab .3-6
Source Type Settings Tab Options .3-8

Setting Project Verification Options .3-16
Specifying the Processing Environment.3-24
Optimizing Verification for Advanced Program Analysis 3-25

Identifying System Programs .3-25
Specifying Boundary Decisions .3-27
What’s Next?. .3-29

4 Verifying Files and Performing Post-Verification Tasks

Verifying Source Files .4-1
Viewing Verification Reports .4-3

Generating Verification Reports .4-3
Working with Verification Reports .4-4
Setting Verification Report User Preferences 4-6
Filtering Verification Reports .4-8
Exporting Verification Reports .4-10

Viewing Inventory Reports .4-12
Viewing Executive Reports .4-13

Generating Executive Reports .4-13
Defining Potential Code Anomalies .4-16

Viewing Key Object Relationships .4-17

Contents v
Performing Post-Verification Program Analysis 4-18
Enabling IMS Port Analysis. .4-20

Mapping Root Programs to PSBs in JCL or System
Definition Files .4-21
Verification Order for IMS Applications .4-22
Reverifying Files in IMS Applications .4-22

Generating Copybooks .4-23
What’s Next?. .4-27

5 Identifying Missing or Unneeded Program Elements

Using Reference Reports .5-1
Generating Reference Reports .5-2
Working with Reference Reports .5-3
Detecting System Programs .5-6
Exporting Reference Reports. .5-6

Using the Orphan Analysis Tool .5-6
Generating Orphan Analysis Reports .5-7
Exporting Orphan Analysis Reports .5-12

What’s Next?. .5-13

6 Resolving Decisions

Understanding Decisions .6-1
Resolving Decisions Manually .6-2
Restoring Manually Resolved Decisions. .6-6
Resolving Decisions Automatically .6-7
Exporting Decision Resolution Reports .6-7
What’s Next?. .6-7

A Identifying Interfaces for Generic API Analysis

Identifying Unsupported API Calls to the Parser. A-2
Using the <match> Tag . A-4
Using the <flow> Tag . A-5
Using the <vars> Tag. A-6
Using the <rep> Tag . A-8

Contentsvi
Using the <hc> Tag . A-11
Using Expressions . A-12

Basic Usage . A-12
Using a Function Call . A-15
Understanding Enumeration Order . A-16

Understanding Decisions . A-17
Understanding Conditions. A-18
Example . A-20
Support for IMS Aliases . A-21

B Cobol Range Overlaps and Range Jumps Detected in the
Executive Report

C Recognized File Extensions

Glossary

Index

vii
Preface
he Modernization Workbench is a suite of PC-based software
products for analyzing, re-architecting, and transforming legacy
applications. The products are deployed in an integrated envi-

ronment with access to a common repository of program objects. Lan-
guage-specific parsers generate repository models that serve as the basis
for a rich set of diagrams, reports, and other documentation.

The Modernization Workbench suite consists of customizable modules
that together address the needs of organizations at every stage of legacy
application evolution: maintenance/enhancement, renovation, and mod-
ernization.

Audience

This guide assumes that you are a corporate Information Technology
(IT) professional with a working knowledge of the legacy platforms you
are using the product to analyze. If you are transforming a legacy appli-
cation, you should also have a working knowledge of the target platform.

T

Prefaceviii
Organization

This guide contains the following chapters:

• Chapter 1, “Overview,” provides an overview of the preparation
process and reviews basic Modernization Workbench concepts.

• Chapter 2, “Setting Up a Workspace and Projects,”describes how to
register applications in the repository, and set up workspaces and
projects.

• Chapter 3, “Setting Verification Options,” describes how to set op-
tions that determine the legacy dialect the parser recognizes, wheth-
er to use staged or relaxed parsing, how to treat system programs,
and other verification behavior.

• Chapter 4, “Verifying Files and Performing Post-Verification
Tasks,” describes how to verify and reverify source files, and
how to perform key post-verification tasks.

• Chapter 5, “Identifying Missing or Unneeded Program Elements,”
describes how to use reference reports and orphan analysis to iden-
tify missing or unneeded application elements.

• Chapter 6, “Resolving Decisions,” describes how to identify and re-
solve dynamic calls and other relationships that the parser cannot re-
solve from static sources in Cobol, PL/I, and Natural programs.

• Appendix A, “Identifying Interfaces for Generic API Analysis,” de-
scribes how to enable the generic API analysis feature.

• Appendix B, “Cobol Range Overlaps and Range Jumps Detected in
the Executive Report,” describes Cobol range overlaps and range
jumps listed in the Executive Report.

• Appendix C, “Recognized File Extensions,” lists the file extensions
recognized by the workbench registration process.

• The Glossary defines the names, acronyms, and special terminology
used in this guide.

Preface ix
Conventions

This guide uses the following typographic conventions:

• Bold type: indicates a specific area within the graphical user inter-
face, such as a button on a screen, a window name, or a command or
function.

• Italic type: indicates a new term. Also indicates a document title. Oc-
casionally, italic type is used for emphasis.

• Monospace type: indicates computer programming code.

• Bold monospace type: indicates input you type on the computer
keyboard.

• 1A/1B, 2A/2B: in task descriptions, indicates mutually exclusive steps;
perform step A or step B, but not both.

Related Manuals

This document is part of a complete set of Modernization Workbench
manuals. Together they provide all the information you need to get the
most out of the system.

• Getting Started introduces the Modernization Workbench. This
guide provides an overview of the workbench tools, discusses basic
concepts, and describes how to use common product features.

• Analyzing Projects describes how to analyze applications at the
project level. This guide describes how to create diagrams of appli-
cations, how to perform change analysis across applications, and
how to estimate application complexity and effort.

• Analyzing Programs describes how to analyze applications at the
program level. This guide describes how to use HyperView tools to
view programs interactively and perform program analysis in stages.
It also describes how to set up an application glossary and how to ex-
tract business rules.

• Managing Application Portfolios describes how to build enterprise
dashboards that track survey-based metrics for applications in your
portfolio. It also describes how to use Enterprise View Express to
browse Web-generated views of application repositories.

Prefacex
• Creating Components describes how to use Application Architect to
extract program components from legacy applications.

• Batch Refresh Process describes how to use the Modernization
Workbench Batch Refresh Process utility to batch-synchronize
workbench sources with sources at their original location.

• Transforming Applications describes how to generate legacy appli-
cation components in modern languages.

• Error Messages lists the error messages issued by Modernization
Workbench, with a brief explanation of each and instructions on how
to proceed.

Online Help

In addition to the manuals provided with the system, you can learn about
the product using the integrated online help. All GUI-based tools include
a standard Windows Help menu.

You can display:

• The entire help system, with table of contents, index, and search
tool, by selecting Help:Help Topics.

• Help about a particular Modernization Workbench window by click-
ing the window and pressing the F1 key.

Many Modernization Workbench tools have guides that you can use to
get started quickly in the tool. The guides are help-like systems with hy-
perlinks that you can use to access functions otherwise available only in
menus and other program controls.

To open the guide for a tool, choose Guide from the View menu. Use the
table of contents in the Page drop-down to navigate quickly to a topic.

1-1
1
Overview
efore you can analyze a legacy application in Modernization
Workbench, you need to prepare it. Preparing an application
consists of loading, or registering, the application in the work-

bench, and then verifying that the entire application can be understood
by the workbench parser. You use reports and other tools to ensure that
your application can be parsed in its entirety.

Registering Applications

When you register source files in a workspace, the workbench creates
copies of the legacy files on your machine. These are the files you view
and edit in the workbench tools. You can restore a file to its original state
or update it to its current state as necessary. After registration, the work-
bench displays the contents of the current workspace in the workbench
Repository Browser, organized by file type (Figure 1-1).

Make sure you have assigned appropriate file extensions to legacy files
before you register them. You can view and add to the recognized exten-

B

Overview
Verifying Applications

1-2
sions in the Extensions tab of the Workspace Registration options win-
dow (Figure 2-1).

Figure 1-1 Modernization Workbench Repository Browser

Verifying Applications

Verifying a source file ensures that its contents can be understood by the
workbench parser. If you have not verified a file, the workbench displays
the file in bold type. Since the parser has not generated an object model
of the file’s contents, only the file itself is displayed.

A verified file shows all the objects in the model generated for the file.
Verification results are denoted as follows:

• A blue dot means that the parser has verified the file successfully.

Repository Browser

File types

Overview
Inventorying Applications

1-3
• A red dot means that the parser has encountered an error in the
file.

• A yellow dot means that the parser has encountered an error in
the file, but the relaxed parser has verified the file successfully. For
more information on the relaxed parser, see “Enabling Relaxed Pars-
ing” on page 3-14.

Figure 1-2 compares unverified and verified workspaces. Notice in the
verified workspace that the parser has built an object model for DayOf-
Week.cbl, but not for DayOfWk.cbl, which contained an error. General-
ly, the parser creates an object model for as much of the file as it under-
stands.

Figure 1-2 Unverified and Verified Workspaces

Inventorying Applications

Users often ask why the Modernization Workbench parser encounters er-
rors in working production systems. The reasons usually have to do with
the source file delivery mechanism: incorrect versions or copybooks,
corruption of special characters because of source code ambiguities, FTP
errors, and so forth.

Modernization Workbench offers three related Reference Reports that
you can use to ensure that all the parts of an application are available for

unverified

verified

Overview
Support for Japanese Language Applications

1-4
analysis. The reports are based on the parser’s analysis of references in
verified source:

• An Unresolved Report identifies missing program elements.

• An Unreferred Report identifies unreferenced program elements.

• A Cross-Reference Report identifies all application references.

Two other tools let you perform related tasks:

• The Orphan Analysis tool lets you analyze and resolve objects that
do not exist in the reference tree for any top-level program object,
so-called orphans. Orphans can be removed from a system without
altering its behavior.

• The Decision Resolution tool identifies and lets you resolve dynam-
ic calls and other relationships that the parser cannot resolve from
static sources in Cobol, PL/I, and Natural programs.

Support for Japanese Language Applications

Modernization Workbench provides full support for mainframe-based
Cobol or PL/I Japanese language applications. You can register Japanese
source files downloaded in text or binary mode:

• Japanese source files downloaded in text, or workstation, mode must
be in Shift-JIS encoding. If Shift-Out and Shift-In delimiters were
replaced with spaces or removed during downloading, Moderniza-
tion Workbench restores them at registration.

Note: Replacing delimiters with spaces during download generally
yields better restoration results than removing them. Preserv-
ing delimiters during download is recommended.

• Japanese source files downloaded in binary, or mainframe, mode are
recoded by Modernization Workbench from EBCDIC to Shift-JIS
encoding at registration.

Overview
What’s Next?

1-5
Make sure to set the Windows system and user locales to Japanese before
registering source files. For more information on registration options,
see “Specifying Options on the Source Files Tab” on page 2-7.

Tip: In all workbench tools that offer search and replace facilities,
you can insert Shift-Out and Shift-In delimiters into patterns
using Ctrl-Shift-O and Ctrl-Shift-I, respectively. You need
only insert the delimiters if you are entering mixed strings.

What’s Next?

That’s all you need to know before you prepare a Modernization Work-
bench project. Now let’s look at how you register applications in your re-
pository, and set up workspaces and projects.

Overview
What’s Next?

1-6

2-1
2
Setting Up a Workspace and
Projects
etting Started in the workbench document set describes how to
create and connect to workspaces. This chapter looks at how
you register source files in a workspace and how you set up

projects.

Registering Source Files

Before you can analyze application source files in Modernization Work-
bench, you need to load, or register, the source files in a workspace. Only
a master user can register source files in a multiuser environment.

The workbench assumes that input source files are ASCII files in DOS
format. Occasionally, files may be converted incorrectly from other for-
mats to DOS-based ASCII with an extra special character (like “M”) at
the end of each line. While Modernization Workbench accepts these files
as input, some workbemch tools may not work correctly with them.
Make sure all source files are in valid ASCII format.

G

Setting Up a Workspace and Projects
Registering Source Files

2-2
You can register source files in compressed formats (ZIP or RAR), as
well as uncompressed formats. Modernization Workbench automatically
unpacks the compressed file and registers its contents.

The workbench extracts compressed source files using the command
line syntax for archiver versions most widely in use. If you use newer
archiver versions, specify the command line syntax in the Archivers tab
of the User Preferences window.

Workspace Registration options determine registration behavior. The de-
fault values for these options are preset based on your configuration and
should be appropriate for most installations. For complete information
on the registration options, see “Setting Registration Options” on
page 2-4.

Note: Make sure you have assigned appropriate file extensions to
legacy files before registering them. You can view and add to
the recognized extensions in the Extensions tab of the Work-
space Registration options window.

To register source files:

1 Set registration options as described in “Setting Registration Op-
tions” on page 2-4.

2 In the Modernization Workbench Repository pane, create a project
for the source files you want to register, or use the default project. To
create a project, choose New Project in the Project menu. The Cre-
ate Project dialog opens. Enter the name of the new project and click
OK. The new project is displayed in the Repository pane.

3 Select the project in the Repository pane, then drag-and-drop the file
or folder for the source files you want to register onto the Repository
pane.

You are notified that you have registered the files successfully and
are prompted to verify the files. Click Close. The Repository pane
displays the contents of the new workspace, organized by file type.
Verify the files as described in “Verifying Source Files” on page 4-1.

Setting Up a Workspace and Projects
Creating New Source Files

2-3
Tip: In the notification dialog, select Never ask again if you do
not want to be prompted to verify files. In the Environment
tab of the User Preferences window, select Ask user about
verification if you want to be prompted again.

Creating New Source Files

To create a new source file, choose New in the File menu. A dialog box
opens, where you can specify the file name (with extension!) and file
type. To create a new source file with the same content as an existing file,
select the file and choose Save As in the File menu. The system automat-
ically registers the created files.

Refreshing Source Files

Use the Modernization Workbench refresh feature to update source files
to their current state. You can refresh all of the objects in a project or
folder, or only selected objects.

The refresh looks for updated legacy source in the original location of
the file or, for unresolved source, the location you specified in the Source
Files tab of the Workspace Registration options. Once it finds the source,
it overwrites the version of the source file maintained by the system. Re-
verify the file after the refresh.

Note: If you are licensed to use the batch refresh feature, you can
perform the refresh in batch mode. Contact support services
for more information.

To refresh source files:

1 In the Repository Browser, select the project, folder, or file you want
to refresh and choose Refresh Sources from Disk in the File menu.

2 You are prompted to confirm that you want to refresh the selected
files. Click Yes. The system overwrites the workspace source files.

Setting Up a Workspace and Projects
Exporting Source Files from a Workspace

2-4
Exporting Source Files from a Workspace

Export the workspace source for a project or file to a new location by
selecting the project or file and clicking Export Sources in the File
menu. The source is copied to the location you specify.

Setting Registration Options

Workspace registration options determine the file extensions the system
recognizes, whether it converts source files to workstation encoding, and
how it handles trailing enumeration characters and tabulation symbols.

Note: Availability of options depends on your settings in the Mod-
ernization Workbench Configuration Manager. For more in-
formation, see the installation guide for your product.

Specifying Options on the Extensions Tab

The registration process does not load source files with unknown file ex-
tensions. If you already know the extensions that will cause problems,
you can add them to the Extensions tab before you register the files, as
described in step 2 on page 2-4.

If you don’t know the problem file extensions, you can run the registra-
tion process anyway. As long as you set the appropriate option (step 3 on
page 2-5), the workbench will generate messages indicating which ex-
tensions it did not recognize. You can then add those extensions to the
list of recognized extensions and run the registration process again, this
time only on the source files that failed to be registered earlier.

To specify options on the Extensions tab:

1 In the Modernization Workbench Tools menu, choose Workspace
Options. The Workspace Options window opens. Click the Regis-
tration tab, then the Extensions tab (Figure 2-1).

2 In the Source Type pane, select the source file type whose extensions
you want to view. The extensions for the file type are listed in the Ex-

Setting Up a Workspace and Projects
Setting Registration Options

2-5
tensions pane and described in Appendix C. Select each extension
you want the system to recognize.

Add an extension by right-clicking in the Extensions pane and
choosing Add in the pop-up menu. The system displays an empty
text field next to a selected check box. Enter the name of the new ex-
tension in the field and click outside the field. Make sure to enter the
dot (.). Case is irrelevant.

Edit an extension by selecting it and choosing Edit in the right-click
menu. Delete an extension by selecting it and choosing Delete in the
right-click menu.

Note: If a source file does not specify an extension when it referenc-
es an included file, the verification process assumes that the
included file has one of the recognized extensions. If multiple
included files have the same name but different extensions,
the system registers the file with the first extension in the list.

3 Select Ignore Unknown and Overloaded Extensions if you do not
want the registration process to issue warnings about unrecognized
and overloaded extensions. An overloaded extension is one assigned
to more than one file type.

4 For Cobol programs and copybooks, select Remove Sequence
Numbers f you want the system to replace preceding enumeration
characters, or sequence numbers, in source lines with blanks. Se-
quence numbers are removed only from the source file versions
maintained by the workbench.

5 For C, C++, or PowerBuilder files, select Preserve Folder Struc-
ture if you want the folder structure for the application to be pre-
served in the Repository Browser.

Note: You must select this option if your application uses the same
program in multiple folders.

Setting Up a Workspace and Projects
Setting Registration Options

2-6
Figure 2-1 Extensions Tab

Setting Up a Workspace and Projects
Setting Registration Options

2-7
Specifying Options on the Source Files Tab

If the legacy application executes on a mainframe, it’s usually best to
convert the application source to workstation encoding. If that’s not
practical, you can have Modernization Workbench convert it for you, as
described in step 2-2 on page 2-7.

To specify options on the Source Files tab:

1 In the Modernization Workbench Tools menu, choose Workspace
Options. The Workspace Options window opens. Click the Regis-
tration tab, then the Source Files tab (Figure 2-2).

Figure 2-2 Source Files Tab

Setting Up a Workspace and Projects
Setting Registration Options

2-8
2 In the Legacy Source Encoding group box, choose:

• Workstation if the source is workstation-encoded. In the DBCS
Escape Control Characters (SO/SI) group box, choose:

• Replaced with spaces if DBCS escape control characters
were replaced with spaces.

• Removed if DBCS escape control characters were removed.

• Retained or not used if DBCS escape control characters
were left as is or were not used.

Note: Workstation-encoded Japanese source files must use Shift-JIS
encoding.

• Mainframe if the source is mainframe-encoded. When this op-
tion is selected, the registration process automatically converts
source files to workstation-encoding. Only the source files main-
tained by the workbench are converted.

3 In the Object System Encoding group box, choose one of the follow-
ing:

• English - US (ANSI MS-1252) if the original source was U.S.
English ANSI-encoded (Unisys 2200 and HP3000 Cobol).

• English - US (EBCDIC-CCSID-37) if the original source was
U.S. English EBCDIC-encoded (IBM Cobol).

• Japanese (EBCDIC-CCSID-930, 5026) if the original source
was Japanese EBCDIC-encoded, CCSID-930, 5026.

• Japanese (EBCDIC-CCSID-939, 5035) if the original source
was Japanese EBCDIC-encoded, CCSID-939, 5035.

During analysis and transformation, hexadecimal literals in Cobol
programs and BMS files are translated into character literals accord-
ing to this setting.

Important: Do not change these settings after source files are registered in a
workspace.

Setting Up a Workspace and Projects
Creating Projects

2-9
4 Select the Strip trailing numeration check box if you want the sys-
tem to strip trailing numeration characters (columns 73 through 80)
from source lines. Trailing numeration characters are removed only
from the source files maintained by the workbench.

5 Select the Expand tabulation symbols check box if you want the
system to replace tabulation symbols with a corresponding number
of spaces. Tabulation symbols are replaced only in the source files
maintained by the workbench.

Note: You must select this option if you want to view HyperView in-
formation for C or C++ programs.

6 In the Default Source Directory field, enter the root folder on your
PC from which the system should refresh unresolved files. You can
type over the path in the text box or click the button to the right of
the text box to browse for a new location. For more information, see
“Refreshing Source Files” on page 2-3.

Creating Projects

When you set up a workspace, the system creates a default project with
the same name as the workspace. You can create projects in addition to
the default project when you need to analyze subsystems separately or
organize source files in more manageable groupings.

To create a project:

1 In the Modernization Workbench Project menu, choose New
Project. The Create Project dialog opens (Figure 2-3).

Figure 2-3 Create Project Dialog

Setting Up a Workspace and Projects
Sharing Projects

2-10
2 Enter the name of the new project and click OK. The new project is
displayed in the Modernization Workbench window. The project is
selected by default.

Sharing Projects

In a multiuser environment, the user who creates a project is referred to
as its owner. Only the owner can share the project with other users.

A shared, or public, project is visible to other members of your team. If
the project is not protected, these team members can delete the project,
add source files, or remove source files.

Projects are private by default. Turn on sharing by choosing Toggle
Sharing in the Project menu. Choose Toggle Sharing again to turn it
off. A symbol indicates that the project is shared.

Protecting Projects

By default, projects are unprotected: any user to whom the project is vis-
ible can delete the project, add source files, or remove source files.

The project owner or master user can designate a project as protected, in
which case no user can delete or modify the project, including the project
owner or master user: the project is read-only, until the project owner or
master user turns protection off.

Turn on protection by selecting the project in the Repository pane and
choosing Toggle Protection in the Project menu. Choose Toggle Pro-
tection again to turn it off. Look for a symbol like this one to indicate
that a project is protected.

Moving or Copying Files in Projects

You add source files to a project as described in “Registering Source
Files” on page 2-1. You move or copy source files to different projects as
described below.

Setting Up a Workspace and Projects
Moving or Copying Files in Projects

2-11
Tip: You can copy a source file or the contents of a project or fold-
er to a different project by selecting it and dragging and drop-
ping the selection, or by using the Edit menu choices to cut
and paste the selection.

To move or copy objects between projects:

1 In the Repository Browser, select the project, folder, or file you want
to move or copy. In the Project menu, choose Copy Project Con-
tents (if you selected a project) or Include into Project (if you
selected a folder or file). The Select Project window opens
(Figure 2-4).

Figure 2-4 Select Project Window

2 In the Select Project window, select the project you want to move or
copy the selection into. Click New if you want to create a new
project.

3 Select the Include All Referenced Objects check box if you want
to move or copy the objects in the workspace referenced by the se-
lected object (the Cobol copybooks included in a Cobol program
file, for example). Select the Include All Referencing Objects

Setting Up a Workspace and Projects
Including Objects in Projects

2-12
check box if you want to move or copy the objects in the workspace
that reference the selected object.

Note: This feature is available only for verified files.

4 Choose one of the following:

• Copy to copy the selection to the specified project.
• Move From Current Project to move the selection to the spec-

ified project.
• Move From All Projects to move the selection from all projects

to the selected project.

5 Click OK to move or copy the selection.

To move source files from a project to the workspace:

1 In the Repository Browser, select the project you want to move to the
workspace. In the Project menu, choose Empty Project Contents
(if you selected a project) or Exclude from Project (if you selected
a folder or file). You are prompted to confirm the removal. Click
Yes.

Including Objects in Projects

After verification, you can include referenced or referencing objects in a
project to ensure a closed system. You can include all referencing objects
or only “directly referencing” objects: If program A calls program B, and
program B calls program C, A is said to directly reference B and indi-
rectly reference C. You can also remove unused support objects.

To include referenced objects in a project:

1 To include in a project every object referenced by the objects in the
project (including indirectly referenced objects), select the project in
the Repository Browser and choose Include All Referenced Ob-
jects in the Project menu.

Setting Up a Workspace and Projects
Deleting a Workspace, Project, or Object

2-13
To include all referencing objects in a project:

1 To include in a project every object that references the objects in the
project (including indirectly referencing objects), select the project
in the Repository Browser and choose Include All Referencing Ob-
jects in the Project menu.

To include directly referencing objects in a project:

1 To include in a project every object that directly references the ob-
jects in the project, select the project in the Repository Browser and
choose Include Directly Referencing Objects in the Project menu.

To move unused support objects from a project to the workspace:

1 To move unused support objects (Cobol copybooks, JCL proce-
dures, PL/I include files, and so forth) from a project to the work-
space, select the project in the Repository Browser and choose
Compact Project in the Project menu.

Deleting a Workspace, Project, or Object

Follow the instruction in this section to delete workspaces, projects, or
objects.

Deleting a Workspace

Only a master user can delete a workspace in a multiuser environment.
Any user can delete a workspace in a single-user environment.

Delete a workspace by choosing Delete Workspace in the File menu of
the workbench Administration tool. A Delete workspace dialog opens,
where you can select the workspace you want to delete.

Deleting a Project

You can delete a project or empty it:

• To delete a project from a workspace (without deleting its source
files from the workspace), select it and choose either Delete from
Workspace in the File menu or Delete Project in the Project menu.

Setting Up a Workspace and Projects
What’s Next?

2-14
Note: Only the owner of a project can delete it. For more informa-
tion, see “Protecting Projects” on page 2-10.

• To leave a project in a workspace but empty out its source files
(without deleting the source files from the workspace), select the
project and choose Empty Project Contents in the Project menu.

In all cases, you are prompted to confirm the deletion. Click Yes.

Deleting an Object or Folder

Delete an object from a workspace by selecting it and choosing Delete
from Workspace in the File menu.

Delete a folder and all its contents from a workspace by selecting and
choosing Delete Contents from Workspace in the File menu.

In either case, you are prompted to confirm the deletion. Click Yes.

What’s Next?

Now that you have learned how to set up workspaces and projects and
register legacy source files, you are ready to start verifying source files.
The next chapter describes the verification options.

3-1
3
Setting Verification Options
erification options determine the legacy dialect the parser rec-
ognizes, whether to use staged or relaxed parsing, how to treat
system programs, and other verification behavior. Workspace

verification options control verification behavior for the current work-
space. Project verification options Project verification options control
verification behavior for the current project.

It’s a good idea to become familiar with the options before verifying ap-
plications. While your workbench configuration will determine appro-
priate defaults (see the topic box below), not all the defaults will be suited
to your needs. The staged verification feature especially may help you
save time by performing only as much of the verification as you need.

How Configuration Manager Settings Affect the Options

Both workspace and project verification options may be affected by
your settings in the Modernization Workbench Configuration Manag-
er, as described in the installation guide for your product. If you do
not configure the workbench for Natural, for example, you will not
see options related to verifying Natural source files.

V

Setting Verification Options
Setting Workspace Verification Options

3-2
Setting Workspace Verification Options

Workspace verification options control verification behavior for the cur-
rent workspace: recognized dialects, whether to perform staged or re-
laxed parsing, Natural library support, and the like.

Specifying Options on the Legacy Dialects Tab

Use the Legacy Dialects tab on the Workspace Options Verification tab
to identify the dialect the application is written in. For information on
supported dialects and versions, see the support guide for your product.

To specify options on the Legacy Dialects tab:

1 In the Modernization Workbench Tools menu, choose Workspace
Options. The Workspace Options window opens. Click the Verifica-
tion tab, then the Legacy Dialects tab (Figure 3-1).

2 In the Source Type pane, select the source file type whose dialects
you want to view. For:

• Cobol files, go to step 3.
• PL/I files, go to step 3-1 on page 3-4.
• Natural files, go to step 11 on page 3-5.
• Applications that use SQL, go to step 13 on page 3-5.
• C or C++ files, go to step 14 on page 3-5.

3 In the Cobol Dialect pane, choose the Cobol dialect used by the ap-
plication.

• For ACUCOBOL-GT®, select RM/Cobol compatibility to en-
sure proper memory allocation for applications written for Liant
RM/COBOL (emulate behavior of -Ds compatibility option). Se-
lect Graphical System for applications executed on a graphical
rather than character-based system.

In the PERFORM behavior drop-down, choose:

• Stack if the application was compiled with the PERFORM-
type option set to allow recursive PERFORMS.

Setting Verification Options
Setting Workspace Verification Options

3-3
• All exits active if the application was compiled with the PER-
FORM-type option set to not allow recursive PERFORMS.

• For Cobol/390, Enterprise Cobol, choose DBCS or National for
the national language behavior of picture symbol N and N-liter-
als in the Picture clause N-symbol drop -down (emulate behav-
ior of compiler NSYMBOL option).

• For MicroFocus Cobol, choose the binary storage mode, Word
(2, 4, or 8 bytes) or Byte (1 to 8 bytes), in the Binary Storage
Mode drop-down. Select Enable MF comments if the applica-
tion contains comments in the first position.

In the PERFORM behavior drop-down, choose:

• Stack if the application was compiled with the PERFORM-
type option set to allow recursive PERFORMS.

• All exits active if the application was compiled with the PER-
FORM-type option set to not allow recursive PERFORMS.

In the Data File Assignment drop-down, choose:

• Dynamic if the application was compiled with the ASSIGN
option set to Dynamic.

• External if the application was compiled with the ASSIGN
option set to External.

• For Unisys 2200 UCS Cobol, select ASCII compatibility if you
need to ensure consistency with the ASCII version of Unisys
Cobol (emulate behavior of compiler COMPAT option).

4 In the Currency Sign field, enter the currency symbol used by the
application.

5 Select COPY statements as in COBOL-68 if the application was
compiled on the mainframe with the OLDCOPY option set.

6 Select Preserve dialect for verified objects to ensure that the parser
re-verifies successfully verified Cobol files with the same dialect it
used when the files were first successfully verified.

Setting Verification Options
Setting Workspace Verification Options

3-4
Figure 3-1 Legacy Dialects Tab (Cobol File)

7 In the PL/I Dialect pane, choose the PL/I dialect used by the appli-
cation.

8 In the In margins pane, specify the current margins for PL/I source
files. In the Out margins pane, specify the margins for the PL/I com-
ponents to be created with the Modernization Workbench Compo-
nent Maker tool.

9 In the Special symbols pane, add or delete special symbols used in
PL/I files.

Setting Verification Options
Setting Workspace Verification Options

3-5
10 In the Logical Operators pane, choose:

• Autodetect if you want the parser to autodetect logical operator
characters used in PL/I files.

• Characters if you want to identify the logical operator charac-
ters yourself:

• In the Not field, specify the character used for NOT opera-
tions.

• In the Or field, specify the character used for OR operations.

11 In the Natural Dialect pane, choose the Natural dialect used by the
application.

12 In the Line Number Step pane, select the line-numbering increment
you want the parser to use if you choose to restore line numbers in
Natural source files (see “Restoring Line Numbers in Natural
Source”). Choose:

• Auto detect if you want the parser to use a line-numbering
increment based on line number references in the source code.

• User defined if you want the parser to use the line-numbering
increment you specify. Enter the increment in the Value field.

13 In the SQL Dialect pane, select the SQL dialect used by the applica-
tion.

14 In the Legacy Dialects pane, select the C or C++ dialect used by the
application.

Restoring Line Numbers in Natural Source

Your source file delivery mechanism may have stripped line numbers
from Natural source. You can restore stripped line numbers by select-
ing the Natural source files in the Repository Browser and choosing
Restore Line Numbers in Natural Source in the Edit menu. The
parser uses the increment settings you specified in step 12 on page 3-5
when it restores the line numbers.

Setting Verification Options
Setting Workspace Verification Options

3-6
Specifying Options on the Settings Tab

Use the Settings tab on the Workspace Options Verification tab to enable
staged parsing, relaxed parsing, sort card analysis for batch applications,
Natural library support, and the like. Set workspace verification options
for each type of file listed in the Settings tab.

To specify options on the Settings tab:

1 In the Modernization Workbench Tools menu, choose Workspace
Options. The Workspace Options window opens. Click the Verifica-
tion tab, then the Settings tab (Figure 3-2).

2 In the Source Type pane, select the source file type whose verifica-
tion options you want to set, then select the options. For a description
of the options, see “Source Type Settings Tab Options” on page 3-8.

3 Select Ignore Duplicate Entry Points if you want the parser to al-
low duplicate entry points defined by the Cobol statement ENTRY
‘PROG-ID’ USING A, or its equivalent in other languages. The
parser creates an entry point object for the first program in which the
entry point was encountered and issues a warning for the second pro-
gram.

Note: To use this option, you must select Enable Reference Re-
ports in the Settings tab, as described in “Enabling Staged
Parsing” on page 3-12. You cannot use this option to verify
multiple programs with the same program ID.

4 In the Timeout in seconds to stop verification execution, enter the
number of seconds to wait before stopping a stalled verification pro-
cess.

Setting Verification Options
Setting Workspace Verification Options

3-7
Figure 3-2 Settings Tab (Cobol File)

Setting Verification Options
Setting Workspace Verification Options

3-8
Source Type Settings Tab Options

The following table describes verification options for supported source
file types.

Table 3-1 Verification Options for Source File Types

Option File Types Description

Allow Implicit Instream Data JCL Inserts a DD * statement before
implicit instream data if the state-
ment was omitted from JCL.

Allow Keywords to Be Used as
Identifiers

Copybook Allows Cobol keywords to be
used as identifiers.

C/C++ Parser Parameters C, C++ Specifies the parameters used to
compile the application. You can
also specify these parameters in
project verification options, in
which case only the project
parameters are used for verifica-
tion. See step 25 on page 3-23.

Create Alternative Entry Point Cobol Creates an additional entry point
with a name based on the speci-
fied conversion pattern. Supports
systems in which load module
names differ from program IDs.
For assistance, contact support
services.

Debugging Lines Cobol Controls parsing of debugging
lines. Off means parse lines as
comments. On means parse lines
as normal statements. Auto means
parse lines based on the program
debugging mode.

Detect Potential Code
Anomalies

Cobol Enables generation of HyperView
information on potential code
anomalies. See “Enabling Staged
Parsing” on page 3-12.

Setting Verification Options
Setting Workspace Verification Options

3-9
Enable HyperView Cobol, Natural, PL/I,
RPG

Enables generation of HyperView
information. See “Enabling
Staged Parsing” on page 3-12.

Enable Reference Reports Cobol, Control Lan-
guage, ECL, JCL, Natu-
ral, PL/I, RPG, WFL

Enables generation of complete
repository information for logical
objects. See “Enabling Staged
Parsing” on page 3-12.

Enable Quoted SQL Identifiers Cobol, DDL Allows quoted SQL identifiers.

Enter classpath to JAR Files
and/or path to external Java file
root directories

Java For applications that use external
.java files or Java Archive (JAR)
files, specifies the location of the
external .java files and, if Include
Jar/Zip Files From Directories is
selected, of the JAR files or ZIP
files containing .java files. Right-
click in the pane and choose Add
in the pop-up menu to specify a
file. Right-click and choose Add
Folder to specify a folder. Folders
are searched recursively.

Ignore Text After Column 72 DDL Allows trailing enumeration char-
acters (columns 73 through 80) in
source lines.

Libraries PowerBuilder Specifies the PowerBuilder
libraries used by the application.
Libraries must be listed in the
order they appear in the PBL File
folder in the Repository pane.
Right-click in the pane and choose
Add in the pop-up menu to add a
library.

Table 3-1 Verification Options for Source File Types (continued)

Option File Types Description

Setting Verification Options
Setting Workspace Verification Options

3-10
Libraries support Natural Enables Natural library support.
See “Enabling Natural Library
Support” on page 3-15.

List of Include Directories C, C++ Specifies the full path of the fold-
ers for include files (either origi-
nal folders or Repository Browser
folders if the include files were
registered). Choose a recognized
folder in the List of Include Direc-
tories pane. Right-click in the
pane and choose Add Folder in
the pop-up menu to specify a
folder. You can also specify these
folders in project verification
options, in which case the tool
looks only for the folders for the
project. See step 24 on page 3-23.

National Characters System Definition Specifies the national language
characters for currency, number,
and at symbols.

Perform Dead Code Analysis Cobol, PL/I, RPG Enables collection of dead code
statistics. See “Enabling Staged
Parsing” on page 3-12.

Perform DSN Calling Chains
Analysis

Control Language, ECL,
JCL, WFL

Enables analysis of dataset calling
chains. See “Enabling Advanced
Data Flow Analysis for Control
Language Files” on page 3-15.

Perform System Calls Analysis JCL Enables analysis of system pro-
gram input data to determine the
application program started in a
job step.

Table 3-1 Verification Options for Source File Types (continued)

Option File Types Description

Setting Verification Options
Setting Workspace Verification Options

3-11
Relaxed Parsing AS400 Screen, BMS,
Cobol, Copybook, CSD,
DDL, Device Descrip-
tion, DPS, ECL, MFS,
Natural, PL/I

Enables relaxed parsing. See
“Enabling Relaxed Parsing” on
page 3-14.

Relaxed Parsing for Embedded
Statements

Cobol, PL/I Enables relaxed parsing for
embedded SQL, CICS, or DLI
statements. See “Enabling
Relaxed Parsing” on page 3-14.

Resolve Decisions Automati-
cally

Control Language, WFL Enables automatic decision reso-
lution. See Chapter 6, “Resolving
Decisions.”

Show Macro Generation C, C++ Specifies whether to display in
HyperView statements that derive
from macro processing.

Sort Program Aliases JCL Enables batch sort card analysis.
Choose a recognized sort utility in
the Sort Program Aliases pane.
Right-click in the pane and choose
Add in the pop-up menu to add a
sort utility. See “Enabling Sort
Card Analysis for Batch Applica-
tions” on page 3-15.

SQL Statements Processor Cobol Specifies whether the SQL Pre-
processor or Coprocessor was
used to process embedded SQL
statements.

Treat every file with main
procedure as a program

C, C++ Specifies whether to treat only
files with main functions as pro-
grams.

Table 3-1 Verification Options for Source File Types (continued)

Option File Types Description

Setting Verification Options
Setting Workspace Verification Options

3-12
Enabling Staged Parsing

File verification generates repository information in four stages, as
described below. You can control which stage the workbench parser
performs by setting the staged parsing options on the Settings tab for
workspace verification options (Figure 3-2). That may save you time
verifying very large applications.

Rather than verify the application completely, you can verify it one or
two stages at a time, generating only as much information as you need
right away. When you are ready to work with a full repository, you can
perform the entire verification at once, repeating the stages you’ve al-
ready performed and adding the stages you haven’t.

Tip: You can also improve verification performance by postponing
program analysis until after verification, as described in “Per-
forming Post-Verification Program Analysis” on page 4-18.

Truncate Names of Absolute
Elements

ECL Allows the parser to truncate
suffixes in the names of Cobol
programs called by ECL. Specify
a suffix in the adjoining text box.
See “Truncating Names of Abso-
lute Elements” on page 3-16.

Use Database Schema Cobol, PL/I Specifies whether to associate a
program with a database schema.
When this option is selected, the
parser collects detailed informa-
tion about SQL ports that cannot
be determined from program text
(SELECT *). If the schema does
not contain the items the SQL
statement refers to, an error is
generated.

Table 3-1 Verification Options for Source File Types (continued)

Option File Types Description

Setting Verification Options
Setting Workspace Verification Options

3-13
Basic Repository Information To generate basic repository informa-
tion only, deselect the staged parsing options on the Settings tab
(Figure 3-2). The parser:

• Generates relationships between source files (Cobol program files
and copybooks, for example).

• Generates basic logical objects (programs and jobs, for example, but
not entry points or screens).

• Generates Defines relationships between source files and logical ob-
jects.

• Calculates program complexity.

• Identifies missing support files (Cobol copybooks, JCL procedures,
PL/I include files, and so forth).

Note: If you generate only basic repository information when you
verify an application, advanced program analysis information
is not collected, regardless of your settings in the Project Op-
tions Verification tab.

Full Logical Objects Information To generate complete repository in-
formation for logical objects, select Enable Reference Reports in the
Settings tab (Figure 3-2). Set this option to generate Reference and Or-
phan Analysis reports for logical objects, and to enable non-HyperView
analysis tools.

Note: If you select this option, verify all legacy objects in the work-
space synchronously to ensure complete repository informa-
tion.

HyperView Information To generate a HyperView construct model, se-
lect Enable HyperView in the Settings tab (Figure 3-2). A HyperView
construct model defines the relationships between the constructs that
comprise the file being verified: its sections, paragraphs, statements,
conditions, variables, and so forth.

To generate HyperView information on potential code anomalies, select
Detect Potential Code Anomalies in the Settings tab. For more infor-
mation, see “Viewing Executive Reports” on page 4-13.

Setting Verification Options
Setting Workspace Verification Options

3-14
Note: If you do not generate HyperView information when you ver-
ify an application, impact analysis, data flow, and execution
flow information is not collected, regardless of your settings
in the Project Options Verification tab.

Dead Code Statistics To generate dead code statistics, and to set the
Dead attribute to True for dead constructs in HyperView, select Perform
Dead Code Analysis in the Settings tab (Figure 3-2). The statistics com-
prise:

• Number of dead statements in the source file and referenced
copybooks. A dead statement is a procedural statement that can
never be reached during program execution.

• Number of dead data elements in the source file and referenced
copybooks. Dead data elements are unused structures at any data
level, all of whose parents and children are unused.

• Number of dead lines in the source file and referenced copy-
books. Dead lines are source lines containing dead statements or
dead data elements.

You can view the statistics in the Statistic tab of the Properties window
for an object or in the Complexity Metrics tool, as described in Analyzing
Projects in the workbench documentation set.

Enabling Relaxed Parsing

The relaxed parsing option lets you verify a source file despite errors.
Ordinarily, the parser stops at a statement when it encounters an error.
Relaxed parsing tells the parser to continue to the next statement.

Use relaxed parsing when you are performing less rigorous analyses that
do not need every statement to be modeled (estimating the complexity of
an application written in an unsupported dialect, for example).

Note: Relaxed parsing may affect the behavior of other tools. You
cannot generate code from legacy application source verified
with the relaxed parser.

Setting Verification Options
Setting Workspace Verification Options

3-15
Enabling Advanced Data Flow Analysis for Control Language Files

Ordinarily, Modernization Workbench data flow analysis tools let you
trace the flow of data into or out of a dataset only up to the program
actually referenced in the control language file, whether or not that pro-
gram writes to or reads from the dataset. If you need to trace the flow of
data through the entire “calling chain,” that is, not only the referenced
program, but also any programs that program calls, and any programs
they call in turn:

• Select Perform DSN Calling Chains Analysis in the Settings tab
for the control language file.

• Verify control language files after you verify the source files for the
programs they use. If you reverify the source file for a program, you
must also reverify the control language file that uses it.

Tip: If you verify an entire project, the workbench parses the files
in appropriate order, taking account of the dependencies be-
tween control language and program files.

Enabling Sort Card Analysis for Batch Applications

If you use sort utilities in JCL files, you can enable sort card analysis by
specifying the names of the sort utilities to the parser in the Settings tab
for JCL files. The parser creates an artificial program entity that defines
the inputs and outputs for each sort utility invocation. The program has
a name of the form JCLFileName.JobName.StepName.SequenceNum-
ber, where SequenceNumber identifies the order of the step in the job.

Enabling Natural Library Support

If you load Natural programs to a workspace from multiple libraries, and
need to prevent library name collisions or want to maintain a list of li-
braries, select Libraries support in the Settings tab for Natural files,
then specify the library names for each project in the workspace, as de-
scribed in step 20 on page 3-22. If you use this feature, the source files
themselves must have names of the form library.program.extension.

Note: For assistance renaming Natural source files, contact support
services.

Setting Verification Options
Setting Project Verification Options

3-16
Truncating Names of Absolute Elements

If you are verifying ECL files for an application in which absolute ele-
ment names differ from program IDs, you can tell the parser to truncate
suffixes in the names of Cobol programs called by ECL. If a Cobol pro-
gram named CAP13MS.cob, for example, defines the entry point
CAP13M, and an ECL program named CAP13M.ecl executes an abso-
lute element called CAP13MA, then setting this option causes the parser
to create a reference to the entry point CAP13M rather than CAP13MA.

Setting Project Verification Options

Project verification options control verification behavior for the selected
project: the transaction-processing environment, whether to resolve de-
cisions automatically after verification, and the like.

To set project verification options:

1 In the Modernization Workbench Tools menu, choose Project Op-
tions. The Project Options window opens. Click the Verification tab.
The Verification tab opens (Figure 3-3).

2 In the Source Type pane, select the source file type whose project
verification options you want to view. For:

• Cobol files, go to step 3.
• PL/I files, go to step 14 on page 3-21.
• Natural files, go to step 20 on page 3-22.
• Natural Map files, go to step 23 on page 3-23.
• C or C++ files, go to step 24 on page 3-23.
• RPG files, step 27 on page 3-24.

Note: For background on the autodetection methods described in
steps 3-9 below, see “Specifying the Processing Environ-
ment” on page 3-24.

Setting Verification Options
Setting Project Verification Options

3-17
Figure 3-3 Verification Tab (Cobol File)

3 In the CICS Environment drop-down, specify how you want the
parser to interpret CICS-related code in Cobol files.

Select Override CICS Program Terminations if you want the
parser to interpret CICS RETURN, XCTL, and ABEND commands
as not terminating program execution. When this option is selected,
error-handling code after these statements is either analyzed or treat-
ed as dead code.

Setting Verification Options
Setting Project Verification Options

3-18
Select Support CICS HANDLE statements if you want the parser
to detect dependencies between CICS statements and related error-
handling statements.

4 In the SQL Environment drop-down, specify how you want the
parser to interpret SQL-related code in Cobol files. In the Report
Writer Environment drop-down, specify how you want the parser
to interpret Report Writer-related code.

5 In the IMS Environment drop-down, specify how you want the
parser to interpret IMS-related code in Cobol files.

6 In the IDMS Environment drop-down, specify how you want the
parser to interpret IDMS-related code in Cobol files. Select Handle
NNCOPY syntax if you want the parser to recognize NNCOPY
statements in Cobol files.

7 In the DMS Environment drop-down, specify how you want the
parser to interpret Unisys CDML statements in Cobol files.

8 In the DMSII Environment drop-down, specify how you want the
parser to interpret Unisys MCP DMS II statements in Cobol files.

9 In the AIM/DB Environment drop-down, specify how you want the
parser to interpret Fujitsu AIM/DB-related code in Cobol files.

10 Click the Advanced button. The Advanced Program Analysis win-
dow opens (Figure 3-4).

Setting Verification Options
Setting Project Verification Options

3-19
Figure 3-4 Advanced Program Analysis Window (Cobol File)

11 Select Perform Program Analysis to enable program analysis and
component extraction features for Cobol files in the project. If you
do not want to enable each feature, you can disable individual fea-
tures as necessary.

Tip: You can improve verification performance by postponing
program analysis until after verification, as described in
“Viewing Key Object Relationships” on page 4-17

Select:

• Resolve Decisions Automatically if you want the parser to
autoresolve decisions after successfully verifying files. For more
information, see Chapter 6, “Resolving Decisions.”

• Perform Unisys TIP and DPS Calls Analysis if you want the
parser to perform TIP and DPS calls analysis for Unisys 2200
Cobol files.

Setting Verification Options
Setting Project Verification Options

3-20
• DPS routines may end with error if you want the parser to per-
form call analysis of DPS routines that end in an error. When this
option is selected, error-handling code for these routines is either
analyzed or treated as dead code.

• Perform COMS Analysis if you want the parser to define rela-
tionships for Unisys MCP COMS SEND statements.

• Perform Generic API Analysis if you want the parser to define
relationships with objects passed as parameters in calls to unsup-
ported program interfaces, in addition to relationships with the
called programs themselves. For information on how to identify
the programs and parameters to the workbench, see Appendix A,
“Identifying Interfaces for Generic API Analysis.”

Tip: You may be able to improve verification performance and
avoid out-of-memory problems by manipulating the Maxi-
mum Number of Variable’s Values and Maximum Size of
Variable to Be Calculated fields. For more information, see
“Optimizing Verification for Advanced Program Analysis”
on page 3-25.

• Context-Sensitive Value Analysis if you want the parser to per-
form context-sensitive automatic decision resolution for Unisys
MCP COMS analysis.

Note: Choosing this option may degrade verification performance.

• Enable Extraction of Computation-Based Components if you
want to enable computation-based componentization.

• Enable Parameterization of Components if you want to enable
parameterized structure- and computation-based componentiza-
tion.

• Enable Impact Report if you want to enable impact analysis.

Note: You must also set Enable Data Element Flow to enable the
impact trace tool.

Setting Verification Options
Setting Project Verification Options

3-21
• Enable Execution Flow if you want to enable the Execution
Path tool.

12 Select Perform Unisys Common-Storage Analysis if you want the
parser to include in the analysis for Unisys Cobol files variables that
are not explicitly declared in CALL statements but participate in in-
terprogram communications.

Note: You must set this option to include Unisys Cobol common
storage variables in impact traces and global data flow dia-
grams.

13 Select Enable Data Element Flow if you want to enable the Global
Data Flow, Change Analyzer, and impact trace tools.

14 In the Transaction Environment pane, specify how you want the
parser to interpret CICS-related code in PL/I files. For more infor-
mation, see “Specifying the Processing Environment” on page 3-24.

Note: The Auto setting is not available for PL/I.

Select Override CICS Program Terminations if you want the
parser to interpret CICS RETURN, XCTL, and ABEND commands
as not terminating program execution. When this option is selected,
error-handling code after these statements is either analyzed or treat-
ed as dead code.

15 Click the Advanced button. The Advanced Program Analysis win-
dow opens (Figure 3-5).

Figure 3-5 Advanced Program Analysis Window (PL/I File)

Setting Verification Options
Setting Project Verification Options

3-22
16 Select Enable Execution Flow if you want to enable the Execution
Path tool for PL/I programs.

17 Select Enable Data Element Flow if you want to enable the Global
Data Flow and Change Analyzer tools for PL/I programs.

18 Select Enable Impact Report if you want to enable impact analysis
for PL/I programs.

19 Select Resolve Decisions Automatically if you want the parser to
autoresolve decisions after successfully verifying files. For more
information, see Chapter 6, “Resolving Decisions.”

20 If you selected Libraries support in the Settings tab for Natural
files, select a recognized library in the Libraries pane. Right-click in
the Libraries pane and choose Add in the pop-up menu to add a li-
brary to the list. The system displays an empty text field next to a se-
lected check box. Enter the name of the library in the field and click
outside the field.

Edit a library name by selecting it and choosing Edit in the right-
click menu. Delete a library by selecting it and choosing Delete in
the right-click menu.

For more information, see “Enabling Natural Library Support” on
page 3-15.

21 Click the Advanced button. The Advanced Program Analysis win-
dow opens (Figure 3-6).

Figure 3-6 Advanced Program Analysis Window (Natural File)

22 Select Enable Data Element Flow if you want to enable the Global
Data Flow and Change Analyzer tools for Natural programs. Select
Enable Impact Report if you want to enable impact analysis for
Natural programs.

Setting Verification Options
Setting Project Verification Options

3-23
23 In the Helproutines pane, choose:

• Programs if you want the parser to treat helproutines in Natural
map files as programs.

• Helpmaps if you want the parser to treat helproutines in Natural
map files as helpmaps.

24 In the List of Include Directories pane, choose the folder for include
files used by the project (either original folders or Repository
Browser folders if the include files were registered). Right-click in
the pane and choose Add in the pop-up menu to add a folder to the
list. Specify the full path of the folder.

Edit a folder by selecting it and choosing Edit in the right-click
menu. Delete a folder by selecting it and choosing Delete in the
right-click menu.

Note: If you do not set this option, workspace verification options
determine the include folders the parser looks for. For more
information, see “List of Include Directories” on page 3-10.

25 In the C/C++ Parser Parameters field, enter the parameters used to
compile the application.

Note: If you do not set this option, workspace verification options
control the parameters the parser uses. For more information,
see “C/C++ Parser Parameters” on page 3-8.

26 Select Use Precompiled Header File if you want the parser to use
a precompiled header file when it verifies the project. In the adjacent
field, enter the full path of the header file. Do not specify the file ex-
tension. Using a precompiled header file may improve verification
performance significantly.

Note: The content of the header file must appear in both a .c or .cpp
file and a .h file. The precompiled header file need not have
been used to compile the application.

Setting Verification Options
Setting Project Verification Options

3-24
27 In the SQL Environment drop-down, specify how you want the
parser to interpret SQL-related code in RPG files. For more informa-
tion, see “Specifying the Processing Environment” on page 3-24.

28 In the Advanced Program Analysis pane, select Enable Data Ele-
ment Flow if you want to enable the Global Data Flow and Change
Analyzer tools for RPG programs. Select Enable Impact Report if
you want to enable impact analysis for RPG programs.

29 Select Resolve Decisions Automatically if you want the parser to
autoresolve decisions after successfully verifying files. For more
information, see Chapter 6, “Resolving Decisions.”

Specifying the Processing Environment

The Modernization Workbench parser autodetects the environment a file
is intended to execute in based on the environment-related code it finds
in the file. To ensure correct data flow, it sets up the internal parse tree
for the file in a way that emulates the environment on the mainframe.

For Cobol CICS, for example, the parser treats an EXEC CICS statement
or DFHCOMMAREA variable as CICS-related and, if necessary, adds
the standard CICS copybook DFHEIB to the workspace; declares DFH-
COMMAREA in the internal parse tree; and adds the phrase Proce-
dure Division using DFHEIBLK, DFHCOMMAREA to the internal
parse tree.

Autodetection is not always appropriate, of course. You may want the
parser to treat a file as a transaction-processing program even in the
absence of CICS- or IMS-related code. For each autodetected environ-
ment, select:

• Auto, if you want the parser to autodetect the environment for the
file.

• Yes, if you want to force the parser to treat the file as environment-
related even in the absence of environment-related code.

• No, if you want to force the parser to treat the file as unrelated to the
environment even in the presence of environment-related code. The
parser classifies environment-related code as a syntax error.

Setting Verification Options
Identifying System Programs

3-25
Optimizing Verification for Advanced Program Analysis

When you set the advanced program analysis options for Cobol projects
described in step 11 on page 3-19, the parser calculates constant values
for variables at every node in the HyperView parse tree. That’s one rea-
son why very large Cobol applications may encounter performance or
memory problems during verification.

You may be able to improve verification performance and avoid out-of-
memory problems by manipulating advanced program analysis options:

• In the Maximum Number of Variable’s Values field, enter the
maximum number of values to be calculated for each variable during
verification for advanced program analysis. Limit is 200.

• In the Maximum Size of Variable to Be Calculated field, enter the
maximum size in bytes for each variable value to be calculated dur-
ing verification for advanced program analysis.

The lower the maximums, the better performance and memory usage
you can expect. For each setting, you are warned during verification
about variables for which the specified maximum is exceeded. It’s usu-
ally best to increase the overflowed maximum and reverify the applica-
tion.

Identifying System Programs

A system program is a generic program (a mainframe sort utility, for ex-
ample) provided by the underlying system and used in unmodified form
in the legacy application. You need to identify system programs to the
parser so that it can distinguish them from application programs and cre-
ate relationships for them with their referencing files. Use the System
Programs tab in the Workspace Options window to identify system pro-
grams.

Note: Contact support services to learn how to identify system
programs as drivers, and how to specify simple data flows
between input/output datasets of system programs.

Setting Verification Options
Identifying System Programs

3-26
To identify system programs:

1 In the Modernization Workbench Tools menu, choose Workspace
Options. The Workspace Options window opens. Click the System
Programs tab (Figure 3-7).

Figure 3-7 System Programs Tab

2 In the System Program Patterns pane, select the patterns that match
the names of the system programs your application uses.

Add a pattern by right-clicking in the System Program Patterns pane
and choosing Add in the pop-up menu. The system displays an emp-

Setting Verification Options
Specifying Boundary Decisions

3-27
ty text field next to a selected check box. Enter the pattern in the field
and click outside the field.

Edit a pattern by selecting it and choosing Edit in the right-click
menu. Delete a pattern by selecting it and choosing Delete in the
right-click menu.

Specifying Boundary Decisions

Specify a boundary decision object if your application uses a method call
to interface with a database, message queue, or other resource. Suppose
the function f1f() in the following example writes to a queue named
abc:

int f1f(char*)
{
return 0;
}

int f2f()
{
return f1f(“abc”);
}

As far as the parser is concerned, f1f(“abc”) is a method call like any
other method call. There is no indication from the code that the called
function is writing to a queue.

How to Detect the System Programs Your Application Uses

The most convenient way to detect the system programs an applica-
tion uses is to run an unresolved report after verification, as described
in Chapter 5. Once you learn from the report which system programs
are referenced, you can identify them in the System Programs tab and
reverify any one of their referencing source files.

The reference report tool lets you bring up the System Programs tab
while you are in the tool itself. Use the System Programs choice in
the reference report View menu to display the tab, then follow the in-
structions in step 2 to identify system programs to the parser.

Setting Verification Options
Specifying Boundary Decisions

3-28
When you specify the boundary decisions for a workspace, you tell the
parser to create a decision object of a given resource type for each such
call. Here is the decision object for the write to the queue:

int f2f().InsertsQueue.int f1f(char*)

After verification, you can resolve the decisions to the appropriate re-
sources in the Decision Resolution tool.

To set boundary decision options:

1 In the Tools menu, choose Workspace Options. The Workspace
Options window opens. Click the Boundary Decisions tab.

2 In the Decision Types pane, select the decision types associated with
called procedures in your application. For the example above, you
would select the Queue decision type.

3 In the righthand pane, select each signature of a given method type
you want to associate with the selected decision type. For the exam-
ple above, the method type signature would be int f1f(char*)

Add a signature to a method type by right-clicking in the appropriate
pane and choosing Add in the pop-up menu. The system displays an
empty text field next to a selected check box. Enter the name of the
new signature in the field and click outside the field.

Edit a signature by selecting it and choosing Edit in the right-click
menu. Delete a signature by selecting it and choosing Delete in the
right-click menu.

Note: Do not insert a space between the parentheses in the signature.
You can use wildcard patterns allowed in LIKE statements by
Visual Basic for Applications.

Special Handling for C or C++ Signatures

Keep in mind that the signatures of C or C++ functions can contain
an asterisk (*) character, as in the example above. So if you specify a
signature with a * character, you may receive results containing not
only the intended signatures but all signatures matching the wildcard
pattern. Delete the unwanted decision objects manually.

Setting Verification Options
What’s Next?

3-29
What’s Next?

That completes our survey of Modernization Workbench verification
options. Now let’s look at how you use the workbench to verify applica-
tions and view inventory reports.

Setting Verification Options
What’s Next?

3-30

4-1
4
Verifying Files and Performing
Post-Verification Tasks
erifying a source file ensures that its contents can be under-
stood by the workbench parser. For each successfully verified
file, the parser builds an object model that serves as the basis

for diagrams, reports, and other documentation. For an unsuccessfully
verified file, the parser builds an object model for as much of the file as
it understands. The workbench stops parsing the file at the statement at
which it encountered an error.

Verifying Source Files

Parsing, or verifying, an application source file generates the object mod-
el for the file. Only a master user can verify source files in a multiuser
environment.

You can verify a single file, a group of files, all the files in a folder, or all
the files in a project. If you verify an entire project, the workbench parses
the files in appropriate order, taking account of likely dependencies be-

V

Verifying Files and Performing Post-Verification Tasks
Verifying Source Files

4-2
tween file types. Verify Cobol copybooks only if you plan to use the Data
Fusion Facility for copybooks not included in a source file.

If your RPG or AS/400 Cobol application uses copy statements that ref-
erence Database Description or Device Description files, or if your MCP
Cobol application uses copy statements that reference DMSII DASDL
files, you need to generate copybooks for the application before you ver-
ify program files, as described in “Generating Copybooks” on page 4-23.

For distributed languages, consult the support notes in the relevant lan-
guage support guide for pre-verification requirements. You can find the
guides in Start:All Programs:Micro Focus:Modernization Work-
bench Documentation.

To verify source files:

1 Set verification options, as described in Chapter 3, “Setting Verifica-
tion Options.”

2A In the Repository Browser, select the project, folder, or files you
want to verify and choose Verify in the Prepare menu.

2B In the Repository Browser, select the Cobol copybooks you want to
verify and choose Verify Copybook in the Prepare menu.

Note: In a multiuser environment, you are prompted to drop repos-
itory indexes to improve verification performance. Click Yes.
You will be prompted to restore the indexes when you analyze
the files. For more information, see Getting Started in the
workbench documentation set.

The parser builds an object model for each successfully verified file.
For an unsuccessfully verified file, the parser builds an object model
for as much of the file as it understands. Verification results are dis-
played in the Activity Log.

How the System Refreshes the Repository

When you edit a source file in the Modernization Workbench, the system
recursively checks every repository object that may be affected by the
edit: refreshes the repository. If the edit invalidates the object, you need
to reverify the source file that contains it. The file with the invalidated
object is displayed in bold type in the Repository Browser.

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-3
Invalidating Objects before Reverification

You can save time reverifying very large applications by invalidating
some or all of the source files in them before you reverify. You can in-
validate a single file, a group of files, all the files in a folder, or all the
files in a project. In the Repository Browser, select the project, folder, or
files you want to invalidate and choose Invalidate Selected Objects in
the File menu. Invalidated files are displayed in bold type in the Repos-
itory Browser.

Viewing Verification Reports

Verification Reports offer a convenient way to analyze verification re-
sults for a project. The report displays the verification status and number
of verification errors and warnings for each source file in the project, a
count of each type of error and warning, and a detailed list of errors and
warnings.

You can set options that control the source file types reported on, the
amount of program context reported for each message, and the appear-
ance of the display. After generating the report, you can filter out items
not of interest to your project.

Generating Verification Reports

You generate Verification Reports for the current project. Options let you
control the types of source files you report on, the amount of program
context reported for each message, and the appearance of the display. For
more information, see “Setting Verification Report User Preferences” on
page 4-6.

To generate a Verification Report:

1 In the Repository Browser, select the project for the report and
choose Verification Report in the Prepare menu. The Verification
Report window opens on top of the Modernization Workbench main
window (Figure 4-1).

2 In the File menu, choose Generate report. The Verification Report
window displays the results.

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-4
Figure 4-1 Verification Report Window

Working with Verification Reports

The Verification Report window consists of a Main pane, Details pane,
and Source pane. Select the appropriate choice in the View menu to
show or hide a pane.

Main Pane

By default, the Main pane displays the Files tab, showing the verification
status of each file in the project and a count of the verification errors and
warnings issued for each file. Click a file to view the message types and
messages issued for it in the Details pane.

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-5
The Message Types tab displays a count of each type of verification error
and warning issued for the project. It shows the severity and error num-
ber of the message type, its generic text, and the number of files for
which it was issued. Errors are indicated with a symbol. Warnings are
indicated with a symbol. Click a message type to view a list of source
files for which it was issued and each instance of the message type in the
Details pane.

The Messages tab displays each verification error and warning issued for
the project. It shows the severity and error number of the message, its de-
tailed text, a count of the number of occurrences of the message in the
project, and the number of files for which it was issued. Click a message
to view a list of source files for which it was issued in the Details pane.

Sorting Entries Click a column heading to sort the report entries by that
column.

Sizing Columns Grab-and-drag the border of a column heading to in-
crease or decrease the width of the column.

Viewing Properties Select a source file and choose Properties in the
View menu to display a set of tabs with file properties. For usage infor-
mation, see Getting Started in the workbench documentation set.

Marking Items Place a check mark next to an item to mark it. To mark
all the items in the selected tab, choose Mark All in the Edit menu. To
unmark all the items in the selected tab, choose Unmark All. For the re-
lationship between marking and filtering, see “Filtering Verification Re-
ports” on page 4-8.

Copying or Moving Objects between Projects Mark the source files
you want to copy or move in the Main pane, then choose Include Into
Project in the File menu. The Copy To Project window opens. Click
Move if you want to move rather than copy the objects. Click New if you
want to create a new project. Then choose the project you want to copy
or move the objects to and click OK.

Copying Entries to the Clipboard Mark the items you want to copy to
the clipboard and choose Copy in the Edit menu.

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-6
Details Pane

When the Files tab is selected in the Main pane, the Details pane displays
the message types and messages issued for the selected file. Click a mes-
sage to navigate to the source for the offending code in the Source pane.

When the Message Types tab is selected, the Details pane displays a list
of source files for which the selected message type was issued and each
instance of the message type. Click a message to navigate to the source
for the offending code in the Source pane. Click a file to view its source
code in the Source pane. Click the button to navigate to the first in-
stance of offending code.

When the Messages tab is selected, the Details pane displays a list of
source files for which the selected message was issued. Click a file to
view its source code in the Source pane. Click the button to navigate
to the first instance of offending code.

Sort and size columns, and view properties, as described in “Main Pane.”

Source Pane

The Source pane displays view-only source for the file selected in the
Main or Details pane. Offending code is highlighted in yellow. Click the

 button to navigate to the next instance of offending code. Click the
 button to navigate to the previous instance.

Usage is similar to that for the Modernization Workbench HyperView
Source pane. For more information, see Analyzing Programs in the doc-
umentation set.

Setting Verification Report User Preferences

Verification Report user preferences control the types of source files you
report on and the amount of information you display in the Main and De-
tails panes.

To set Verification Report user preferences:

1 In the Verification Report window, choose Options in the View
menu. The Verification Report Options window opens (Figure 4-2).

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-7
Figure 4-2 Verification Report Options Window

2 Click the Entities tab. In the list box, select each type of source file
you want to display in the report. Click Select All to select all the
source file types. Click Unselect All to deselect all the source file
types.

Tip: You can also click the icons on the Included Entity Types tool
bar to select and deselect included types.

3 Click the Common tab. Select Include source context if you want
to display code in the “neighborhood” of the offending code in the
Source Code column for a message in the Details pane. In the Before
and After combo boxes, enter the number of lines of code before and
after the offending code you want to display.

4 Click the Appearance tab. In the Select Region drop-down, select
the pane you want to set options for. In the Tables list box, select the
tab you want to set options for. In the Visible Columns list box, se-
lect each column you want to display in the selected tab.

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-8
Filtering Verification Reports

After generating a Verification Report, you can filter out source files,
message types, and messages that are not of interest to your project. You
filter a Verification Report in two steps:

• Set up the filter. For small projects, you can mark the items you want
to appear manually, either in the Verification Report window or the
Define Filter window. For larger projects, you’ll need to mark items
in batch mode, by defining a filter in the Define Filter window.

• Apply the filter. When you apply the filter, only marked items are
displayed in the report.

To filter a Verification Report:

1 In the Verification Report window, choose Filter in the Edit menu.
The Define Filter window opens (Figure 4-3).

Figure 4-3 Define Filter Window

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-9
2 Click the Files tab. The Current Results pane displays the results for
the current files filter.

In the Name Pattern field, enter a matching pattern for files you
want to display in the report. You can use wildcard patterns allowed
in LIKE statements by Visual Basic for Applications (VBA).

Select Parse Status to display only source files with a given verifi-
cation status, then select each verification status you want to report
on.

Note: The Name Pattern and Parse Status fields are ANDed. If a
file that matches the name pattern does not have one of the
specified statuses, it is not marked.

When you are satisfied with your choices, click Select to mark the
matched files in the Current Results pane. Click Unselect to unmark
the matched files. You can also mark files manually.

Click Apply to mark the files in the Files tab of the Verification Re-
port window. If Show Filtered Only is selected in the Edit menu,
the Files tab is filtered to show only marked items.

Tip: If no files are marked, clicking Select marks them all in the
Current Results pane. If all files are marked, clicking Unse-
lect unmarks them all in the Current Results pane.

3 Click the Message Type tab. The Current Results pane displays the
results for the current message types filter.

In the Name Pattern field, enter a matching pattern for message
types you want to display in the report. You can use wildcard pat-
terns allowed in LIKE statements by Visual Basic for Applications
(VBA).

Select Status to display only message types with a given status, then
select each status you want to report on.

Select Severity to display only message types with a given severity,
then select each severity, you want to report on.

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-10
Note: The Name Pattern, Status, and Severity fields are ANDed.
If a message type that matches the name pattern does not have
one of the specified statuses or severities, it is not marked.

When you are satisfied with your choices, click Select to mark the
matched message types in the Current Results pane. Click Unselect
to unmark the matched message types. You can also mark message
types manually.

Click Apply to mark the message types in the Message Types tab of
the Verification Report window. If Show Filtered Only is selected
in the Edit menu, the Message Types tab is filtered to show only
marked items.

Tip: If no message types are marked, clicking Select marks them
all in the Current Results pane. If all message types are
marked, clicking Unselect unmarks them all in the Current
Results pane.

4 Click Cancel to dismiss the Define Filter window. In the Verifica-
tion Report window, choose Show Filtered Only in the Edit menu.
The Files and Message Types tab are filtered to show only marked
items. The Messages tab is filtered to show only messages for the
marked files or message types.

Note: The filtering results for files and message types are ANDed.
If a marked message type was not issued for a marked file, the
file does not appear in the report. Of course, this means that
source files with 0 errors and warnings are not displayed even
if they are marked.

Exporting Verification Reports

You can create printable Verification Reports for the selected tab in the
Main or Details pane. You can also use the Report Wizard to create print-
able reports for files and associated message types.

After a report is generated, click Page Setup to specify print job options.
Click Print to send the job to the printer. Click Save to save the report
to a variety of standard formats.

Verifying Files and Performing Post-Verification Tasks
Viewing Verification Reports

4-11
To create printable reports for the selected tab:

1 In the Verification Report window, choose:

• Report:Main in the File menu to create a printable report for the
selected tab in the Main pane.

• Report:Details in the File menu to create a printable report for
the selected tab in the Details pane.

The printable report is displayed.

To create printable reports for files and message types:

1 In the Verification Report window, choose Report:Constructor in
the File menu. The Report Wizard opens.

2A Deselect Correct Filtering if you want to report on all files and
message types. Click Next. The Edit Columns window opens.

2B Select Correct Filtering if you want to edit the report filter. Click
Next. The Correct Filtering window opens.

In the Files pane, select the files you want to report on. In the Mes-
sage Types pane, select the message types you want to report on.
Select Auto Complete Filtering if you want the Report Wizard to
select items in the right column based on your selection in the left
column, and vice versa. When you are satisfied with your choices,
click Next. The Edit Columns window opens.

3 In the Select Main Table drop-down, select Files if you want the re-
port to be organized by the files table, Message Types if you want
the report to be organized by the message types table. The Select
Subordered Table drop-down is modified to reflect your choice.

In the Available Columns pane for each table, select the columns you
want to appear in the printed report and click the button to
move the column into the Report Columns panes. In the Report Col-
umns pane, select a column and click the button to move the
column into the Available Columns pane.

Click the button to move all columns from the Available Col-
umns pane to the Report Columns pane. Click the button to
move all columns from the Report Columns pane to the Available
Columns pane.

Verifying Files and Performing Post-Verification Tasks
Viewing Inventory Reports

4-12
When you are satisfied with your choices, click Finish. The print-
able report is displayed.

Viewing Inventory Reports

Inventory Reports give high-level statistics for each source file type in
the current workspace: size in bytes, number of lines of code, whether
verified, and the like.

To generate an Inventory Report:

1 In the Repository Browser, select a project and choose Inventory
Report in the Prepare menu. The Inventory Report window opens
(Figure 4-4).

2 Choose Save As in the File menu to export the report to HTML, Ex-
cel, RTF, Word, or formatted text.

Figure 4-4 Inventory Report

Verifying Files and Performing Post-Verification Tasks
Viewing Executive Reports

4-13
Viewing Executive Reports

Executive Reports offer HTML views of application inventories that a
manager can use to assess the risks and costs of supporting the applica-
tion:

• The Application Summary view gives statistics for industry-stan-
dard metrics such as program volume, maintainability, cyclomatic
complexity, and number of defects.

• The Potential Code Anomalies view gives statistics for potential
anomalies that may mark programs as candidates for re-engineering:
GOTO non-exits, range overlaps, and the like. You can customize
potential code anomalies as described in “Defining Potential Code
Anomalies” on page 4-16.

Note: Set Detect Potential Code Anomalies in the Settings tab of
the workspace verification options to generate these statistics.

• The Repository Statistics view gives statistics for Modernization
Workbench verification results and unresolved or unreferenced ap-
plication elements.

• The Standard Deviations view displays graphs that plot the deviation
of the programs in the application from the means for six key indus-
try-standard metrics.

The top page in each view displays the available statistics and graphs.
Click the links to view the detail for each type of statistic or graph. In the
statistic or graph detail page, click the link for a program to view the de-
tail for that program.

Generating Executive Reports

Generate an Executive report as described in this section.

Tip: After generating an Executive Report, use the Executive Re-
port category in the HyperView Clipper tool to view potential
code anomalies in program context. For HyperView usage,
see Analyzing Programs in the workbench documentation set.

Verifying Files and Performing Post-Verification Tasks
Viewing Executive Reports

4-14
To generate an Executive Report:

1 In the Repository Browser, select a project and choose Project Op-
tions in the Tools menu. The Project Options window opens. Click
the Reports tab, then the Executive Report tab (Figure 4-5).

Figure 4-5 Project Options Executive Report Tab

2 In the Executive Report tab:

• Select each report function you want to enable. For the Applica-
tion Summary function, click Select Metrics. In the Application
Summary (Averages) window, select Application Summary
(Averages) to enable the function, then choose each metric you
want to include in the report.

• Select each type of entity you want to include in the report. To
edit the attributes included in the report for the entity type, click

Verifying Files and Performing Post-Verification Tasks
Viewing Executive Reports

4-15
Attributes. In the Attributes window, select each attribute of the
selected entity type to include in the report.

Generally, the fewer entities and functions you choose, the better
performance you can expect. You should especially consider not
reporting on:

• Detail for code anomalies. Leave Generate Details unchecked.
• Data stores. Leave data store entities unchecked.
• Relationships, if you do not need cross-reference information.

Leave Relationships unchecked

3 In the Repository Browser, choose Executive Report in the Pre-
pare menu.You are prompted to display the report now. Click Yes if
you want to view the report immediately. The Executive Report
opens in a browser (Figure 4-6). The report is stored in \Work-
space\Output\Executive Report\Project\index.htm.

Figure 4-6 Executive Report

Verifying Files and Performing Post-Verification Tasks
Viewing Executive Reports

4-16
Defining Potential Code Anomalies

You can view and modify existing definitions of potential code anoma-
lies (other than range overlaps and range jumps) in the HyperView ad-
vanced search criteria in the Coding Standards folder.

To define a new code anomaly, you must define an advanced search
criterion for the anomaly and a matching entry in the file workbench
home\Data\CodeDefects.xml. The entry has the form:

<DEFECT Id="name"
 Internal="True|False"
 Enabled="True|False"
 Caption="display name"
 ListName="list name"
 Criterion="path of criterion"
/>

where:

• Id is a unique name identifying the code anomaly in the workbench.

• Internal specifies whether the anomaly is implemented internal-
ly in program code (True), or externally in an advanced search crite-
rion (False).

Note: You must specify False. Code anomalies with an Internal val-
ue of True cannot be modified.

• Enabled specifies whether the code anomaly is displayed in the
Executive Report.

• Caption is the display name for the anomaly in the Executive Re-
port.

• ListName is the name of the list of anomalous code constructs dis-
played in the Executive Report category of the HyperView Clipper
tool.

• Criterion is the full path name of the criterion in the HyperView
Advanced Search tool, including the tab name (General) and any
folder names. For example, General:Coding Standards\MOVE
Statements\Possible Data Padding.

Verifying Files and Performing Post-Verification Tasks
Viewing Key Object Relationships

4-17
You can display the anomaly caption in Japanese or Korean in the Exec-
utive Report by creating an entry for the anomaly in the file workbench
home\Language\[Jpn|Kor]\CodeDefects.xrc. The entry has the form:

<String name="name"
 listname="list name"
 caption="translated display name"
 description="description"
/>

where:

• name is the unique name of the code anomaly in the workbench (Id
attribute of CodeDefects.xml entry).

• listname is the name of the list of anomalous code constructs dis-
played in the Executive Report category of the HyperView Clipper
tool (ListName attribute of CodeDefects.xml entry).

• caption is the translated display name for the anomaly in the Ex-
ecutive Report.

• description contains a description of the entry.

Viewing Key Object Relationships

The Query Repository feature lets you hone in on key relationships of an
object: all the programs that call another program, or all the programs
that update a data store, for example. From the results, you can launch
further queries without having to return to the Repository Browser. You
can create printable relationship reports and export them to a variety of
standard formats.

Use this feature to view:

• Dependent sources: all the sources files that depend on another file.

• Direct references: all the objects that another object references (out-
going) or is referenced by (incoming).

• Calls: all the objects that call another object.

• CRUD operations: all the data stores another object creates, reads,
updates, or deletes.

Verifying Files and Performing Post-Verification Tasks
Performing Post-Verification Program Analysis

4-18
• Used data stores: all the data stores used by another file.

• Used source files: all the source files (such as copybooks) used by
another file.

To query object relationships:

1 In the Repository Browser, select the workspace, project, folder,
files, or objects you want to view relationships for and choose Que-
ry Repository:Relationship Type in the Edit menu. A window sim-
ilar to the one shown in Figure 4-7 appears.

Figure 4-7 Query Repository Results Window

2 To launch a query from the results, select one or more objects in the
righthand column and choose Query Repository:Relationship
Type in the Edit menu.

3 To create a printable relationship report, select the report you want
to print and choose Print in the File menu. The printable report is
displayed. In the printable report window, click Page Setup to spec-
ify print job options. Click Print to send the job to the printer. Click
Save to save the report to a variety of standard formats.

Performing Post-Verification Program Analysis

Much of the performance cost of program verification for Cobol projects
is incurred by the advanced program analysis options described in
step 11 on page 3-19. These features enable impact analysis, data flow
analysis, and similar tasks.

Verifying Files and Performing Post-Verification Tasks
Performing Post-Verification Program Analysis

4-19
You can improve verification performance by postponing some or all of
advanced program analysis until after verification. Use the post-verifica-
tion program analysis feature to collect the remaining program analysis
information without having to reverify your entire legacy program.

To perform post-verification program analysis, select the project verifi-
cation options for each program analysis feature you want to enable
(Figure 3-4). In the Repository Browser, select the programs you want to
analyze (or the entire project) and choose Analyze Program in the Pre-
pare menu.

Note: Source files must have been verified with the Enable Refer-
ence Reports and Enable HyperView options selected in the
Settings tab for workspace verification options, as described
in “Enabling Staged Parsing” on page 3-12.

The system collects the required information for each analysis feature
you select. And it does so incrementally: if you verify a Cobol source file
with the Enable Data Element Flow option selected, and then perform
post-verification analysis with both that option and the Enable Impact
Analysis option selected, only impact analysis information will be col-
lected.

The same is true for information collected in a previous post-verification
analysis. In fact, if all advanced analysis information has been collected
for a program, the post-verification analysis feature simply will not start.
In that case, you can only generate the analysis information again by
reverifying the program.

Restrictions

There are a few cases in which analysis information is not collected in-
crementally:

• For PL/I programs, selecting Resolve Decisions Automatically
causes information for Enable Data Element Flow also to be col-
lected, whether or not it already has been collected. Select these
options together when you perform program analysis.

• For Cobol programs, selecting any of the options dependent on the
Perform Program Analysis option, whether during a previous ver-

Verifying Files and Performing Post-Verification Tasks
Enabling IMS Port Analysis

4-20
ification or a previous program analysis, results in none of the infor-
mation for those options being collected in a subsequent post-
verification program analysis, with two exceptions: information is
collected for Enable Impact Report and Enable Execution Flow,
as long as you have not selected the options previously.

So if you verify a program with the Resolve Decisions Automati-
cally option selected, then perform a subsequent program analysis
with the Perform Generic API Analysis option selected, API anal-
ysis information is not collected. Whereas if you perform the subse-
quent program analysis with the Enable Impact Report option
selected, impact analysis information is collected.

Similarly, if you perform program analysis with the Enable Impact
Report option selected, then perform a subsequent program analysis
with the Enable Parameterization of Components option selected,
no parameterization information is collected. Whereas if you per-
form the subsequent program analysis with the Enable Execution
Flow option selected, execution flow information is collected.

What this suggests is that, with the exception of Enable Impact
Report and Enable Execution Flow, you should select all of the
Perform Program Analysis options you are going to need for
program analysis the first time you collect analysis information,
whether during verification or subsequent post-verification analysis.

Enabling IMS Port Analysis

It is virtually impossible to determine from program code the database
segments or screens an IMS program operates on. Only an application-
wide analysis can trace PSB usage through the entire application call se-
quence.

To determine the types of database operation (insert, read, update, or de-
lete) IMS programs perform, and to list in the browser each of the data-
base segments or screens the operations are performed on, select the
project or the individual source files for the programs and choose IMS
Analysis in the Prepare menu.

Verifying Files and Performing Post-Verification Tasks
Enabling IMS Port Analysis

4-21
Figure 4-8 shows typical results. The objects marked with the icon are
abstract decision objects, indicating that the database operation, in this
case, Deletes, has been resolved to multiple segments.

Figure 4-8 IMS Port Analysis Results

Mapping Root Programs to PSBs in JCL or System Definition Files

You must identify IMS “root programs” and corresponding PSBs in a
JCL file for a batch application or a System Definition file for an online
application. A root program is directly invoked by IMS with a list of
PCBs as parameters. It can pass these PCBs as parameters in calls to other
programs.

If you do not have actual JCL or System Definition files, you must create
dummy ones. Analyzing the application without these files does nothing.
Sample JCL and System Definition files follow:

Sample JCL file:

//imsbatch JOB

//S1 EXEC PGM=DFSRRC00,REGION=2048K,

//
PARM=(DLI,progname,psbname,7,0000,,0,,N,0,T,0,,N,,,N)

//

database operation

decision object

segment

Verifying Files and Performing Post-Verification Tasks
Enabling IMS Port Analysis

4-22
Sample System Definition file:

 APPLCTN PSB=progname

 TRANSACT CODE=trnname

Verification Order for IMS Applications

If you verify an entire project for an IMS application, the workbench
parses the source files in appropriate order, taking account of the depen-
dencies between file types. Otherwise, verify source files in the following
order:

• DBD files (for GSAM databases)

• MFS files

• PSB files

• Cobol or PL/I files

Note: For Cobol files, set the Perform Program Analysis and
Enable Data Element Flow project verification options. For
PL/I files, set the Enable Data Element Flow project verifi-
cation option.

• JCL or System Definition files.

Reverifying Files in IMS Applications

If you reverify a root program, the JCL or System Definition file that
maps the program to a PSB will be invalidated. If you reverify non-root
programs, all call chains leading to them will be analyzed and any JCLs
or System Definition files that start corresponding root programs will be
invalidated. Make sure to reverify invalidated files.

Conversely, if you change a program-to-PSB mapping inside a JCL or
System Definition file, or change the PSB file itself, make sure to reverify
the mapped program before reverifying the JCL or System Definition file.

When you rerun IMS Analysis, it will process all complete call chains,
starting from all reverified JCLs and System Definition files. You can
limit the number of root programs that are re-analyzed in subsequent runs
of IMS calls analysis by setting up System Definition files so that they
reference one transaction only.

Verifying Files and Performing Post-Verification Tasks
Generating Copybooks

4-23
Note: If you rerun IMS Analysis without changing anything in the
project, it will end with the warning “No information to per-
form IMS Analysis.” If you receive this message on the first
run of IMS Analysis, make sure that all JCLs, System Defini-
tion files, and corresponding root programs have been veri-
fied, and that you have a call chain from root to every IMS-
relevant program in the project (check for the strings “+IM-
SC” or “+IMSE” in the Environment attribute on the System
tab of the properties for the program).

Generating Copybooks

RPG programs and Cobol programs that execute in the AS/400 environ-
ment often use copy statements that reference Database Description or
Device Description files rather than copybooks. MCP Cobol programs
use copy statements that reference DMSII DASDL files. If your applica-
tion uses copy statements to reference these types of files, you need to
verify the files and generate copybooks for the application before you
verify program files.

Copybook generation takes place in two steps:

• For each database and device file object generated at verification,
the system creates a target copybook object.

• For each target copybook object, the system creates one or more
physical copybooks.

Options let you combine the steps or perform them separately.

To generate copybooks for RPG or AS/400 Cobol programs:

1 Verify Database Description and Device Description files, as de-
scribed in “Verifying Source Files” on page 4-1.

• For each Database Description file, the system creates a database
file object with the same name as the Database Description file.

• For each Device Description file, the system creates a device file
object with the same name as the Device Description file.

Verifying Files and Performing Post-Verification Tasks
Generating Copybooks

4-24
2 Before converting target copybooks to physical copybooks, set
project options that control conversion behavior. In the Repository
Browser, select the project and choose Project Options in the Tools
menu. The Project Options window opens. Click the Generate Copy-
books tab.

In the Generate Copybooks tab:

• Select Convert Target Copybooks to Legacy Objects if you
want to generate target copybooks and convert them to physical
copybooks in the same step (see step 3).

• In the Target Copybooks Conversion pane, select Assign Con-
verted Files to the Current Project if you want the system to
create physical copybooks in the current project.

• In the Conversion Conflicts pane, choose:

• Keep Old Legacy Objects if you want the system not to
overwrite existing physical copybooks.

• Replace Old Legacy Objects if you want the system to over-
write existing physical copybooks.

• Select Remove Target Copybooks After Successful Conver-
sion if you want the system to remove target copybooks from the
current project after physical copybooks are generated.

3 In the Repository Browser, select the project and choose:

• Generate Copybooks for Project in the Prepare menu for
AS/400 Cobol.

• Generate RPG Copybooks for Project in the Prepare menu for
RPG.

The system creates a target copybook object for each database and
device file object, with a name of the form database file.DBCOPY-
BOOK or device file.DVCOPYBOOK, in the Target Copybooks
folder.

If you selected the Convert Target Copybooks to Legacy Objects
option in step 2, the system converts the target copybooks to physi-
cal copybooks, with names of the form DD_OF_database file.CPY
or DV_OF_device file.CPY.

Verifying Files and Performing Post-Verification Tasks
Generating Copybooks

4-25
Note: To generate copybooks for given database or device file
objects, select the objects and choose Generate Copybooks
or Generate RPG Copybooks, as appropriate, in the Pre-
pare menu.

Keep in mind that when you generate copybooks for an entire
project, the system processes objects in the appropriate order,
taking account of the dependencies between them. That is not
the case when you generate copybooks for given objects.

Copybooks for database file objects must be generated before
copybooks for device file objects. Copybooks for referenced
objects must be generated before copybooks for referencing
objects.

4 If you did not select the Convert Target Copybooks to Legacy Ob-
jects option in step 2, select the target copybooks in the Repository
Browser and choose Convert to Legacy in the Prepare menu. The
system converts the target copybooks to physical copybooks, with
names of the form DD_OF_database file.CPY or DV_OF_device
file.CPY.

Note: After generating copybooks, you can generate screens for
AS/400 Cobol device file objects by selecting the objects in
the Repository Browser and choosing Generate Screens in
the Prepare menu.

To generate copybooks for MCP Cobol programs:

1 Before converting target copybooks to physical copybooks, set
project options that control conversion behavior. In the Repository
Browser, select the project and choose Project Options in the Tools
menu. The Project Options window opens. Click the Generate Copy-
books tab.

In the Generate Copybooks tab:

• Select Generate After Successful Verification if you want to
generate target copybooks automatically on verification of DM-
SII DASDL files.

Verifying Files and Performing Post-Verification Tasks
Generating Copybooks

4-26
• Select Convert Target Copybooks to Legacy Objects if you
want to generate target copybooks and convert them to physical
copybooks in the same step.

• In the Target Copybooks Conversion pane, select Assign Con-
verted Files to the Current Project if you want the system to
create physical copybooks in the current project.

• In the Conversion Conflicts pane, choose:

• Keep Old Legacy Objects if you want the system not to
overwrite existing physical copybooks.

• Replace Old Legacy Objects if you want the system to over-
write existing physical copybooks.

• Select Remove Target Copybooks After Successful Conver-
sion if you want the system to remove target copybooks from the
current project after physical copybooks are generated.

2 Verify DMSII DASDL files, as described in “Verifying Source
Files” on page 4-1. For each DMSII DASDL file, the system creates
a DMSII database file object with the same name as the DMSII
DASDL file.

If you selected the Generate After Successful Verification option
in step 1, the system creates a target copybook object for each data-
base file object, with a name of the form database file.DBCOPY-
BOOK, in the Target Copybooks folder. If you also selected the
Convert Target Copybooks to Legacy Objects option in step 1, the
system converts the target copybooks to physical copybooks, with
names of the form DV_OF_device file.CPY.

3 If you did not select the Generate After Successful Verification
option in step 1, select the project in the Repository Browser and
choose Generate Copybooks for Project in the Prepare menu.

The system creates a target copybook object for each database file
object, with a name of the form database file.DBCOPYBOOK, in
the Target Copybooks folder.

Verifying Files and Performing Post-Verification Tasks
What’s Next?

4-27
If you selected the Convert Target Copybooks to Legacy Objects
option in step 1, the system converts the target copybooks to physi-
cal copybooks, with names of the form DD_OF_database file.CPY.

Note: To generate copybooks for given database file objects, select
the objects and choose Generate Copybooks in the Prepare
menu.

Keep in mind that when you generate copybooks for an entire
project, the system processes objects in the appropriate order,
taking account of the dependencies between them. That is not
the case when you generate copybooks for given objects.
Copybooks for referenced objects must be generated before
copybooks for referencing objects.

4 If you did not select the Convert Target Copybooks to Legacy Ob-
jects option in step 1, select the target copybooks in the Repository
Browser and choose Convert to Legacy in the Prepare menu. The
system converts the target copybooks to physical copybooks with
names of the form DD_OF_database file.CPY.

What’s Next?

You need to correct any errors in your application before the parser can
generate a complete object model. You can correct coding errors in the
system editor, as described in Getting Started. Use the tools described in
the next chapter to identify missing or unneeded program elements.

Verifying Files and Performing Post-Verification Tasks
What’s Next?

4-28

5-1
5
Identifying Missing or
Unneeded Program Elements
eference Reports identify missing or unneeded files or objects
in legacy applications. The reports are based on the parser’s
analysis of references in verified source:

• An Unresolved Report identifies missing application elements.

• An Unreferred Report identifies unreferenced application elements.

• A Cross-reference Report identifies all application references.

The Orphan Analysis tool lets you analyze and resolve objects that do
not exist in the reference tree for any top-level object, so-called orphans.
Orphans can be removed from a system without altering its behavior.

Using Reference Reports

When you verify a legacy application, the parser generates a model of
the application that describes the objects in the application and how they
interact. If a Cobol source file contains a COPY statement, for example,
the system creates a relationship between the file and the Cobol copy-

R

Identifying Missing or Unneeded Program Elements
Using Reference Reports

5-2
book referenced by the statement. If the copybook doesn’t exist in the re-
pository, the system flags it as missing by listing it with a symbol in
the tree view of the Repository Browser. Reference Reports let you track
these kinds of referential dependencies in verified source.

Generating Reference Reports

You generate Reference Reports for the current project. You can restrict
the report to that project, or include references from other projects.

To generate reference reports:

1 In the Repository Browser, select the project for the Reference Re-
port and choose Reference Reports in the Prepare menu. An empty
Reference Reports window opens on top of the Modernization
Workbench main window.

2 In the Report type drop-down, choose the Reference Report type.
Figure 5-1 shows an Unreferred Report window. The windows for
the other reports are similar.

Figure 5-1 Unreferred Report Window

choose
report type

Report pane

Preview pane

Activity Log “floats”

choose included
entity types

Identifying Missing or Unneeded Program Elements
Using Reference Reports

5-3
Working with Reference Reports

The Reference Report window consists of a Report pane, Preview pane,
and Activity Log. The Report pane is always displayed. Select the appro-
priate choice in the View menu to show/hide the Preview pane and Ac-
tivity Log.

Report Pane

The Report pane displays the objects in the Reference Report and their
relationships. Table 5-1 describes the columns in the Report pane.

Table 5-1 Reference Report Columns

Column
Name

Report Types Description

Object Name All The name of the unresolved,
unreferenced, or cross-refer-
enced object.

Object Type All The entity type of the unre-
solved, unreferenced, or
cross-referenced object.

Legacy Object Unreferred Report,
Cross-reference Report

The source file that contains
the unreferenced or cross-ref-
erenced object.

Source Unreferred Report,
Cross-reference Report

The location in the workspace
folder of the source file that
contains the unreferenced or
cross-referenced object.

Referred by Unresolved Report,
Cross-reference Report

The name of the referring
object.

Referring
Object Type

Unresolved Report,
Cross-reference Report

The entity type of the refer-
ring object.

Identifying Missing or Unneeded Program Elements
Using Reference Reports

5-4
Sorting Entries Click a column heading in the Report pane to sort the
report entries by that column.

Sizing Columns Grab-and-drag the border of a column heading to in-
crease or decrease the width of the column.

Viewing Properties Select an object in the Report pane and choose
Properties in the Object menu to display a set of tabs with object prop-
erties. For usage information, see Getting Started in the workbench doc-
umentation set.

Restricting the Types of Objects Included in the Report Choose Op-
tions in the View menu to open the Reference Reports Options window,
where you can select the types of entities included in the report.

Tip: You can also click the icons on the Included Entity Types tool
bar to select and deselect included types. You can hide the tool
bar by deselecting Selection Toolbar in the View menu.

Restricting References to the Current Project Choose Restrict Refer-
ences to Project in the View menu to limit the report to references in the
current project.

Relationship Unresolved Report,
Cross-reference Report

The relationship between the
unresolved or cross-refer-
enced object and the referring
object.

Object
Description

All The description of the unre-
solved, unreferenced, or
cross-referenced object
entered by the user on the
Description tab of the Object
Properties window.

Table 5-1 Reference Report Columns (continued)

Column
Name

Report Types Description

Identifying Missing or Unneeded Program Elements
Using Reference Reports

5-5
Preview Pane

The Preview pane lets you browse information about the object selected
in the lefthand column of the Report pane. The information available de-
pends on the type of object selected. You see only source code for a
copybook, for example, but full HyperCode for a program.

Note: “HyperCode” is shorthand for the information displayed in
the Modernization Workbench HyperView tool. For Hyper-
View usage information, see Analyzing Programs in the
workbench documentation set.

Choose Preview in the View menu to open the Preview pane
(Figure 5-2). Select an object in the Object Name column of the Report
pane to view it in the Preview pane. Choose the information you want to
view for the object from the Source drop-down. Use the search facilities
to navigate to the source you want to view.

Note: The Preview pane shows a view-only copy of application
source.

Figure 5-2 Preview Pane for Program Object

choose referenced
file you want to view

view-only source

choose
HyperCode view

Identifying Missing or Unneeded Program Elements
Using the Orphan Analysis Tool

5-6
Detecting System Programs

A system program is a generic program (a mainframe sort utility, for ex-
ample) provided by the underlying system and used in unmodified form
in the legacy application. You need to identify system programs to the
parser so that it can create relationships for them with their referencing
files.

The most convenient way to detect the system programs an application
uses is to run an Unresolved Report after verification. Once you learn
from the report which system programs are referenced, you can identify
them to the parser in the System Programs tab (Figure 3-7) and reverify
any one of their referencing source files.

The Reference Report tool lets you bring up the System Programs tab
while you are in the tool itself. Use the System Programs choice in the
View menu to display the tab, then follow the instructions in step 2 on
page 3-26 to identify system programs to the parser.

Exporting Reference Reports

Choose Report in the File menu to display a printable Reference Report.
In the printable report, click Print to print the report. Click Save to ex-
port the report to HTML, Excel, RTF, Word, or formatted text.

Using the Orphan Analysis Tool

Use the Orphan Analysis tool to determine whether an object exists in
the reference tree for a top-level program object. An object that does not
exist in the reference tree for any top-level object is called an orphan.
Orphans can be removed from a system without altering its behavior.

What’s the difference between an orphan and an unreferenced object?

• All unreferenced objects are orphans.

• Not every orphan is unreferenced.

Consider the example shown in Figure 5-3 below. An unreferred report
shows that the copybook GSS3.CPY is not referenced by any object in
the project. Meanwhile, a cross-reference report shows that GSS3.CPY

Identifying Missing or Unneeded Program Elements
Using the Orphan Analysis Tool

5-7
references GSS3A.CPY and GSS3B.CPY. These copybooks do not
appear in the unreferred report because they are referenced by
GSS3.CPY.

Only orphan analysis will show that the two copybooks are not in the
reference tree for the GSS program and, therefore, can be safely removed
from the project.

Figure 5-3 Unreferenced and Orphan Objects

Generating Orphan Analysis Reports

Orphan Analysis reports show whether an object exists in the reference
tree for a top-level object: whether it can be reached in the tree for one
or more startup objects. You generate Orphan Analysis reports for the
current project. Unlike Reference Reports, the report cannot include ref-
erences from other projects.

To generate orphan analysis reports:

1 In the Repository Browser, select the project for orphan analysis and
choose Orphan Analysis in the Prepare menu. An empty Orphan
Analysis window opens on top of the Modernization Workbench
main window (Figure 5-4).

GSS2.CPY

GSS1.CPY

GSS3.CPY

GSS3B.CPY

GSS3A.CPY

GSS.CBL

GSS3.CPY is unreferenced, while GSS3A.CPY and GSS3B.CPY
are referenced. But all three copybooks are orphans!

Identifying Missing or Unneeded Program Elements
Using the Orphan Analysis Tool

5-8
Figure 5-4 Orphan Analysis Window (Empty)

2 In the Orphan Types tool bar, choose the types of entities to include
in the report by clicking the appropriate icon. Place your cursor over
an icon for a moment to display a tool tip that describes the icon.

Tip: You can also set up the analysis in the Options window.
Choose Options in the View menu to open the Options
window.

3 In the Filter pane, set up a search filter for the startup objects in the
analysis. You can filter on entity type, entity name, or both:

• To filter on entity type, click on the link for an entity type in the
For objects of type field, or if no entities are displayed, click on
the [Entity Types] link. The Startup Options window opens
(Figure 5-5). Select the types of entities you want to filter on and
click OK.

set up filter for
startup objects

found objects

orphan source

choose included
entity types

startup objects

start search

Identifying Missing or Unneeded Program Elements
Using the Orphan Analysis Tool

5-9
Figure 5-5 Startup Options Window

• To filter on entity name, click the here link. The Name Options
window opens (Figure 5-6). The recognized name matching pat-
terns for orphan analysis are listed in the Like and Unlike fields.
Select the patterns for the entities you want to filter on and click
OK

Add a pattern by right-clicking in the Like or Unlike field and
choosing Add in the pop-up menu. The system displays an empty
text field next to a selected check box. Enter the text for the pat-
tern and click outside the field. You can use wildcard patterns al-
lowed in LIKE statements by Visual Basic for Applications
(VBA).

Edit a pattern by selecting it and choosing Edit in the right-click
menu. Delete a pattern by selecting it and choosing Delete in the
right-click menu.

Identifying Missing or Unneeded Program Elements
Using the Orphan Analysis Tool

5-10
Figure 5-6 Name Options Window

4 Click the Add Matched link to apply the filter. The matched objects
are displayed in the Startup Objects pane. Place a check mark next
to each startup object you want to use in the analysis.

Tip: To place a check mark next to all the matched objects, choose
Select All in the Startup menu, then Mark as Startup in the
Startup menu. To uncheck all the matched objects, choose
Unmark in the Startup menu.

To select (but not mark as startup) all objects of a given type,
choose Select:Object Type in the Startup menu. You can re-
move a matched object from the list by selecting it and choos-
ing Remove from List in the Startup menu.

To add all the objects in the project that would be appropriate
startup objects to the list, click the Add All link in the Filter
pane. You can filter this list by clicking the Remove Matched
link in the Filter pane. To clear the list, click Clear in the Fil-
ter pane.

right-click menu

Identifying Missing or Unneeded Program Elements
Using the Orphan Analysis Tool

5-11
5 Click the link in the Find legacy objects... text at the top of the pane.
The Find Options dialog opens (Figure 5-7). Define the terms of the
orphan search by selecting the appropriate choice in the Relation-
ships to Checked Startups drop-down, the Relationships to Un-
checked Startups drop-down, or both. Click OK when you are
done.

Figure 5-7 Find Options Dialog

6 Click the Start Search link in the Startup pane to start the search.
The system shows the results of the search in the Found Objects pane
(Figure 5-8).

7 Choose Report View in the View menu to show the entity type and
source file of the orphan in the Found Objects pane. Deselect Report
View to show the list of orphans only.

8 Select an orphan to show its source code in the Orphan Source pane.
The Orphan Source pane is similar to the Reference Report window
Preview pane. For more information, see “Preview Pane” on
page 5-5.

Tip: Select a startup object or orphan and choose Properties in the
right-click menu to display a set of tabs with object properties.
For usage information, see Getting Started in the Moderniza-
tion Workbench document set.

9 Select an orphan in the Found Objects pane and choose Exclude
from Project to remove the orphan from the project but not the
workspace. Choose Delete from Workspace to remove the orphan
from the workspace.

Identifying Missing or Unneeded Program Elements
Using the Orphan Analysis Tool

5-12
Tip: You can hide the Orphan Source pane and Orphan Types tool
bar by selecting the appropriate choice in the View menu. You
can display the Activity Log for the Modernization Work-
bench session by selecting Activity Log in the View menu.

Figure 5-8 Orphan Analysis Window (Populated)

Exporting Orphan Analysis Reports

Choose Save Report As in the File menu to display a printable Orphan
Analysis report. In the printable report, click Print to print the report.
Click Save to export the report to HTML, Excel, RTF, Word, or format-
ted text.

Identifying Missing or Unneeded Program Elements
What’s Next?

5-13
What’s Next?

Now that you have identified missing program elements in your project
and removed any orphans, you can drill down deeper into the application
to locate potential problems. The tool described in the next chapter lets
you identify and resolve dynamic calls and other relationships that the
parser cannot resolve from static sources.

Identifying Missing or Unneeded Program Elements
What’s Next?

5-14

6-1
6
Resolving Decisions
ou need to have a complete picture of the control and data flows
in a legacy application before you can diagram and analyze the
application. The parser models the control and data transfers it

can resolve from static sources. Some transfers, however, are not re-
solved until run time. Decision resolution lets you identify and resolve
dynamic calls and other relationships that the parser cannot resolve from
static sources.

Understanding Decisions

A decision is a reference to another object, a program or screen, for ex-
ample, that is not resolved until run time. Consider a Cobol program that
contains the following statement:

CALL ‘NEXTPROG’.

The Modernization Workbench parser models the transfer of control to
program NEXTPROG by creating a Calls relationship between the orig-
inal program and NEXTPROG.

Y

Resolving Decisions
Resolving Decisions Manually

6-2
But what if the statement read this way instead:

 CALL NEXT.

where NEXT is a field whose value is only determined at run time. In
this case, the parser creates a Calls relationship between the program and
an abstract decision object called PROG.CALL.NEXT, and lists the de-
cision object with a icon in the tree view of the Repository Browser.

Manually Resolving Decisions The Decision Resolution tool creates a
list of such decisions and helps you navigate to the program source code
that indicates how the decision should be resolved. You may learn from
a declaration or MOVE statement, for example, that the NEXT field
takes either the value NEXTPROG or ENDPROG at run time. In that
case, you would resolve the decision manually by telling the system to
create resolves to relationships between the decision and the programs
these literals reference.

Automatically Resolving Decisions Of course, where there are hun-
dreds or even thousands of such decisions in an application, it may not
be practical to resolve each decision manually. In these situations, you
can use the autoresolve feature to resolve decisions automatically.

The Decision Resolution tool analyzes declarations and MOVE state-
ments, and any other means of populating a decision point, to determine
the target of the control or data transfer. The tool may not be able to auto-
resolve every decision, or even every decision completely, but it should
get you to a point where you can complete decision resolution manually.

Resolving Decisions Manually

The Decision Resolution tool generates decisions for programs in the
current project. You can limit the targets for decision resolution to ob-
jects in the current project, or include objects in other projects as poten-
tial targets.

To resolve decisions manually:

1 In the Repository Browser, select the project for which you want to
resolve decisions and choose Resolve Decisions in the Prepare

Resolving Decisions
Resolving Decisions Manually

6-3
menu. The Decision Resolution tool window opens on top of the
Modernization Workbench main window (Figure 6-1).

Figure 6-1 Decision Resolution Tool Window

2 In the Decision Type drop-down, choose the type of decision you
are interested in. A list of decisions of that type is displayed in the
Decision List pane:

• The Program column lists the names of programs that contain
decisions.

• The Variable column lists the program variables that require
decisions.

• The Completed column indicates whether the decision has been
resolved. A plus sign (+) means Yes.

• The Unreachable column lists decisions in dead code.

decision type

code for source
object

Activity Log

decision list

available targets

Resolving Decisions
Resolving Decisions Manually

6-4
• The Resolved to column lists the target objects each variable
resolves to: one or more entry points, for example. An unresolved
decision contains the grayed-out text Some Object.

Tip: Click a column heading in the Decision List pane to sort the
report entries by that column. Grab-and-drag the border of a
column heading to increase or decrease the width of the col-
umn.

3 The Available Targets pane lists the targets in the workspace for the
selected decision type. In the View menu, choose Restrict to Cur-
rent Project to limit the targets to objects in the current project.

4 Select an entry in the Decision List pane to navigate to the decision
in the Source pane. The Source pane is similar to the Reference Re-
port window Preview pane. For more information, see “Preview
Pane” on page 5-5.

5A To resolve decisions to available targets, select one or more entries
in the Decision List pane and place a check mark next to one or more
target objects in the Available Targets pane.

Tip: To select a range of entries, hold down the Shift key, click the
first item in the range, then click the last item in the range. To
select entries that are not in a range, hold down the Control
key, then click each entry you want to select.

If you link an entry to multiple targets, the Decision Resolution tool
creates as many entries as there are targets.

Tip: If you are linking an entry to multiple targets, you can save
time by selecting the targets and choosing Link Selected
Targets in the Edit menu. Use the Copy choice in the Edit
menu to copy selected targets to the clipboard, then the Paste
choice to link the targets to an entry.

5B To resolve decisions to targets not in the workspace, select one or
more entries in the Decision List pane and choose Link New Target
in the Edit menu.The Link New Target window opens (Figure 6-2).

Resolving Decisions
Resolving Decisions Manually

6-5
Figure 6-2 Link New Target Window

In the Link New Target window, enter the name of the new target in
the field on the righthand side of the window, or populate the field
by clicking a literal in the list of program literals on the Literals tab.
You can filter the list by using:

• The Minimum Literal Length slider to specify the minimum
number of characters the literal can contain.

• The Maximum Literal Length slider to specify the maximum
number of characters the literal can contain.

• The Names Like field to enter a matching pattern for the literal.
You can use wildcard patterns allowed in LIKE statements by
Visual Basic for Applications (VBA).

Place a check mark next to Completed if you want the resolution to
be marked as completed. When you are satisfied with your entry,
click OK.

Tip: Before saving, you can undo changes by choosing Undo all
changes in the Edit menu.

Resolving Decisions
Restoring Manually Resolved Decisions

6-6
6 To delete a decision resolution, remove the check mark next to the
target object.

7 In the File menu, choose Save to save the decision resolutions in the
repository.

Tip: You can hide the Source pane or Activity Log window by
clicking the close box in the upper righthand corner. Select the
appropriate choice in the View menu to show the Source pane
or Activity Log window again.

Restoring Manually Resolved Decisions

Reverifying a file invalidates all of its objects, including its manually re-
solved decisions. The decision persistence feature lets you restore man-
ually resolved decisions when you return to the Decision Resolution
tool.

After reverifying a file for which you have manually resolved decisions,
reopen the Decision Resolution tool. A dialog box prompts you to re-
store manually resolved decisions (Figure 6-3). Click Yes if you want to
restore the decisions. Click No otherwise.

Figure 6-3 Restore Decisions Dialog Box

Tip: Place a check mark next to Don’t show me again if you want
the Decision Resolution tool to open without prompting you
to restore manually resolved decisions. In the Decision Reso-
lution Tool tab of the User Preferences window, place a check
mark next to Ask before restoring previous manual chang-
es if you want to be prompted again.

Resolving Decisions
Resolving Decisions Automatically

6-7
Resolving Decisions Automatically

You can autoresolve decisions during verification by setting the Resolve
decisions automatically option in the project verification options, as de-
scribed in “Setting Project Verification Options” on page 3-16. For pro-
gram objects, you can also autoresolve decisions after verification, in the
Modernization Workbench main window, as described below. Only a
master user can autoresolve decisions in a multiuser environment.

To resolve decisions automatically:

1 In the Modernization Workbench Repository pane, select the
project, folder, or files you want to autoresolve decisions in and
choose AutoResolve Decisions in the Prepare menu.

Note: The Decision Resolution tool cannot autoresolve every deci-
sion. The target name may be read from a data file, for exam-
ple. The Autoresolve feature is available only for programs. It
is not available for Natural programs.

Exporting Decision Resolution Reports

Choose Report in the File menu to display a printable Decision Resolu-
tion report. In the printable report, click Print to print the report. Click
Save to export the report to HTML, Excel, RTF, Word, or formatted text.

What’s Next?

You should now have a completely verified and resolved workspace.
That means you’re ready to start analyzing your application, as de-
scribed in Analyzing Projects in the workbench documentation set.

Resolving Decisions
What’s Next?

6-8

A-1
A
Identifying Interfaces for
Generic API Analysis
se the Generic API Analysis feature if your legacy program
calls an unsupported API to interface with a database manager,
transaction manager, or similar external facility. In this call, for

example:

CALL 'XREAD' using X

where X evaluates to a table name, the call to XREAD is of less interest
than its parameter, the table the called program reads from. But because
the parser does not recognize XREAD, only the call is modeled in the
workbench repository.

You enable the Generic API Analysis feature by identifying unsupported
APIs and their parameters in the file workbench home\Data\Legacy.xml.
When you verify the application, select Perform Generic API Analysis
in the project verification options (step 11 on page 3-19) to instruct the
parser to define relationships with the objects passed as parameters in the
calls, in addition to relationships with the unsupported APIs themselves.

This appendix shows you how to identify the programs and parameters
to the parser before verifying your application. You can specify both ob-

U

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-2
ject and construct model information, and create different relationships
or entities for the same parameter in a call.

The specification requires a thorough understanding of the Moderniza-
tion Workbench repository models. Only the predefined definitions de-
scribed below are guaranteed to provide consistent data to workbench
databases. For background on the repository models, see the Software
Development Kit, available from support services.

Identifying Unsupported API Calls to the Parser

Follow the instructions in this section to identify unsupported API calls
to the parser. For each call, you need to define an entry in workbench
home\Data\Legacy.xml that specifies, at a minimum:

• The name of the called program and the method of invocation in the
<match> tag.

• The program control flow in the <flow> tag, and the direction of the
data flow through the parameters of interest in the <param> subtags.

• How to represent the call in the object model repository in the <rep>
tag, and in the construct model repository in the <hc> tag.

Use the optional <vars> tag to extract values of a specified type, size, and
offset from a parameter for use in a <rep> or <hc> definition.

Most repository entities can be represented in a <rep> or <hc> definition
with the predefined patterns in workbench home\Data\Legacy.xml.api
These patterns do virtually all of the work of the specification for you,
supplying the relationship of the entity to the called program, its internal
name, and so forth.

“Using Predefined Patterns” on page A-8 describes the syntax for speci-
fying predefined patterns in a <rep> or <hc> definition. Consult Lega-
cy.xml.api for supported patterns and for required parameters and
values.

Note: You can find samples of Generic API usage in workbench
home\Data\Legacy.xml. Consult support services for addi-
tional assistance.

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-3
To identify unsupported API calls to the parser:

1 Open the file workbench home\Data\Legacy.xml in an editor.

2 Locate the <GenericAPI> section for the language and dialect you
use.

3 Create entries for each unsupported API call, of the form:

 <APIEntry name='entry name'>
 <match stmt='method of invocation'>
 <name value='program name to be matched'/>
 <name value='alternate program name'/>
 </match>
 <flow halts='yes|no'>
 <param index='index of parameter'
 usage='r|w|rw'/>
 </flow>
 <vars>
 <arg var='variable name'
 param='index of parameter'
 type='variable type'
 offset='offset of field in bytes'
 bitoffset='offset of field in bits'
 size='size of field in bytes'
 bitsize='size of field in bits'/>
 <!-- PL/I-specific -->
 len='size of char or bit string field'
 mode='binary|decimal' [numeric field]
 scale='scale of fixed point field'
 prec='precision of numeric field'
 varying='yes|no'/>
 </vars>
 <rep>
 <entity type='type of entity'
 name='name of entity'
 produced='yes|no'/>
 <attr name='name of attribute'
 value='value of attribute'
 join='delimiter'/>
 <cond if-cond='expression'
 value='expression'/>
 </entity>

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-4
 <rel name='name of relationship'
 decision='yes|no'/>
 <target type='entity type of right end'
 name='name of left end'
 produced='yes|no'/>
 <attr name='name of attribute'
 value='value of attribute'
 join='delimiter'/>
 <source type='entity type of left end'
 name='name of left end'
 produced='yes|no'/>
 <attr name='name of attribute'
 value='value of attribute'
 join='delimiter'/>
 <cond if-cond='expression'
 value='expression'/>
 </rel>
 </rep>

 <hc>
 <attr name='name of attribute'
 value='value of attribute'
 join='delimiter'/>

 </hc>
 </APIEntry>

where the name attribute of the <API Entry> tag is the name of the
entry (used for error diagnostics only) and the remaining tags are as
described in the following sections.

4 Select Perform Generic API Analysis in the Verification tab of the
Project Options window (step 11 on page 3-19).

5 Verify the project.

Using the <match> Tag

The stmt attribute of the <match> tag identifies the method of invoca-
tion: a CALL, LINK, or XCTL statement. The value attribute of the
<name> subtag identifies the name of the program to be matched. It can
also be used to specify an alternative name for the entry.

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-5
Note: The name of the program to be matched must be unique in the
<GenericAPI> section. If names are not unique, the parser
uses the last entry in which the name appears.

Example:

 <match stmt="CALL">
 <name value="XREAD"/>
 </match>

Using the <flow> Tag

The <flow> tag characterizes the program control flow. The halts at-
tribute of the <flow> tag specifies whether the calling program termi-
nates after the call:

• yes, if control is not received back from the API.

• no (the default), if the calling program returns normally.

The <param> subtag identifies characteristics of the call parameters. At-
tributes are:

• index is the index of the parameter that references the item of inter-
est, beginning with 1. Use an asterisk (*) to specify all parameters
not specified directly.

• usage specifies the direction of the data flow through the parameter:
r for input, w for output, rw for input/output. Unspecified parameters
are assumed to be input/output parameters.

Note: halts is supported only for call statements. For PL/I, input
parameters are treated as input/output parameters.

Example:

 <flow halts='no'>
 <param index='1' usage='r'/>
 <param index='2' usage='r'/>
 <param index='3' usage='rw'/>
 <param index='*' usage='rw'/>
 </flow>

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-6
Using the <vars> Tag

Use the <vars> tag to extract values of a specified type, size, and offset
from a call parameter. You can then refer to the extracted values in the
<rep> and <hc> tags using the %var_name notation. For more informa-
tion, see “Using Expressions” on page A-12.

The <arg> subtag characterizes the argument of interest. Attributes are:

• var specifies the variable name.

• param specifies the index of the parameter.

• type specifies the variable type.

• offset specifies the offset of the field in bytes.

• bitoffset specifies the offset of the field in bits.

• size specifies the size of the field in bytes.

• bitsize specifies the size of the field in bits.

Additional attributes for PL/I are:

• len specifies the size of a character or bit string field.

• mode specifies the binary or decimal mode for a numeric field.

• scale specifies the scale of a fixed-point numeric field.

• prec specifies the precision of a fixed-point or floating-point numer-
ic field.

• varying specifies whether a bit string variable is encoded as a vary-
ing-length string in the structure (yes or no, the default).

Supported data types are described in the language-specific sections
below.

Example:

Suppose a call to a database-entry API looks like this:

 CALL 'DBNTRY' USING DB-USER-ID
 DB-XYZ-REQUEST-AREA
 XYZ01-RECORD
 DB-XYZ-ELEMENT-LIST.

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-7
If the second parameter contains a 3-character table name in bytes 6-8,
the following definition extracts the name for use as the right end of a
relationship:

 <vars>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
 </vars>
 <rep>
 <rel>
 <target type='TABLE'
 name='%TableName'/>
 .
 .
 .
 </rel>
 </rep>

Cobol-Specific Usage

For Cobol, use the following data types in the <vars> tag:

• data extracts a subarea of the parameter as raw byte data. You must
specify the size and offset.

• auto automatically determines the type of the variable, using the off-
set. If that is not possible, auto looks for a matching variable decla-
ration and uses its type. You must specify the offset.

• int behaves as auto, additionally checking that the resulting value is
a valid integer and converting it to the canonical form. Offset de-
faults to 0.

Note: bitoffset and bitsize are currently not supported. auto is not al-
ways reliable. Use data whenever possible.

PL/I-Specific Usage

For PL/I, use the following data types in the <vars> tag:

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-8
• data extracts a subarea of the parameter as raw byte data. You must
specify the size and offset.

• char specifies a character variable, with attribute varying if the
string is encoded as a varying-length string in the structure. Offset
defaults to 0, and size is specified via the required len attribute,
which specifies the string length.

• bit specifies a bit string variable, with attribute varying if the string
is encoded as a varying-length string in the structure. Offset defaults
to 0, and size is specified via the required len attribute, which spec-
ifies the string length in bits.

• fixed specifies a fixed-point numeric variable, with attributes mode
(binary or decimal, the default), scale (default 0), and prec (preci-
sion, default 5). Offset defaults to 0, and size is overridden with a
value calculated from the type.

• float specifies a floating-point numeric variable, with attributes
mode (binary or decimal, the default) and prec (precision, default 5).
Offset defaults to 0, and size is overridden with a value calculated
from the type.

Note: Do not use bitoffset and bitsize for types other than bit string.

Using the <rep> Tag

Use the <rep> tag to represent the API call in the object model reposito-
ry. You can use predefined or custom patterns to specify the relationship
of interest. Expressions let you extract parameter values and context in-
formation for use in specifications of entity or relationship characteris-
tics, as described in “Using Expressions” on page A-12.

Using Predefined Patterns

Most repository entities can be represented with the predefined patterns
in workbench home\Data\Legacy.xml.api. These patterns do virtually all
of the work of the specification for you, supplying the relationship of the
entity to the called program, its internal name, and so forth. They are
guaranteed to provide consistent data to workbench databases.

To specify a predefined pattern, use the pattern name as a tag (<tip-file>,
for example) anywhere you might use a <rel> tag. If the predefined pat-

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-9
tern is specified at the top level of the entry, the parser creates a relationship
with the calling program. If the predefined pattern is nested in an entity spec-
ification, the parser creates a relationship with the parent entity.

Each pattern has parameters that you can code as XML attributes or as subtags.
So:

 <transaction name='%2' params='' hc-kind='dpsSETRX'/>

Is equivalent to:

 <transaction params=''>
 <name value='%2'/>
 <hc-kind value ='dpsSETRX'/
 </transaction>

Use the subtag method when a parameter can have multiple values:

 <file filename= '%2' data-record='%3'>
 <action switch-var='%op'>
 <case eq='1' value='Reads'/>
 <case eq='2' value='Reads'/>
 <case eq='4' value='Updates'/>
 <case eq='28' value='Inserts'/>
 </action>
 <hc-kind switch-var='%op'>
 <case eq='1' value='fcssRR'/>
 <case eq='2' value='fcssRL'/>
 <case eq='4' value='fcssWR'/>
 <case eq='28' value='fcssAW'/>
 </hc-kind>
 </file>

Check Legacy.xml.api for further details of predefined pattern usage and for
required parameters and values.

Using Custom Patterns

Use custom patterns only when a predefined pattern is not available. Custom
patterns are not guaranteed to provide consistent data to workbench databases.

Using the <entity> Subtag The <entity> subtag represents an entity in the ob-
ject model repository. Attributes are:

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-10
• type specifies the entity type.

• name specifies the entity name.

• produced optionally indicates whether the entity is extracted, in
which case it is deleted from the repository when the source file is
invalidated (yes or no, the default).

Use the <attr> subtag to specify entity attributes. Attributes of the subtag
are:

• name specifies the attribute name.

• value contains an expression that defines the attribute value.

• join specifies the delimiter to use if all possible variable values are
to be joined in a single value.

Use the <cond> subtag to specify a condition, as described in “Under-
standing Conditions” on page A-18.

Using the <rel> Subtag The <rel> subtag represents a relationship in
the object model repository. Attributes are:

• name specifies the relationship end name, which can be unrolled into
a separate tag like the name or type of an entity.

• decision specifies a decision, as described in “Understanding Deci-
sions” on page A-17.

The <target> and <source> subtags represent, respectively, the right and
left ends of the relationship. These subtags are equivalent in function and
syntax to the <entity> tag. Use the <cond> subtag to specify a condition,
as described in “Understanding Conditions” on page A-18.

Tip: As a practical matter, you will almost never have occasion to
use the <entity> subtag.

If the <rel> subtag is specified at the top level of the entry, and no
<source> tag is specified, the parser creates the relationship with the
calling program; otherwise, it creates the relationship between the
<source> and <target> entities. If the <rel> subtag is nested in an entity
specification, the parser creates the relationship with the parent entity.

Identifying Interfaces for Generic API Analysis
Identifying Unsupported API Calls to the Parser

A-11
Example:

Let’s assume now that we know that the second parameter in the API call
on page A-6 contains a variable in bytes 1-3 that specifies the CRUD op-
eration, in addition to the variable in bytes 6-8 specifying the table name.
The following definition extracts the CRUD operation and table name:

 <vars>
 <arg var='OpName'
 param='2'
 type='data'
 offset='0'
 size='3'/>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
 </vars>
 <rep>
 <rel>
 <target type='TABLE'
 name='%TableName'/>
 <name switch-var='OpName'>
 <case eq='RED' value='ReadsTable'/>
 <case eq='UPD' value='UpdatesTable'/>
 <case eq='ADD' value='InsertsTable'/>
 <case eq='DEL' value='DeletesTable'/>
 </name>
 </rel>
 </rep>

Using the <hc> Tag

Use the <attr> subtag of the <hc> tag to represent the construct model,
or HyperCode, attributes of entities defined in the call. Syntax is identi-
cal to that described for object model attributes in “Using the <rep> Tag”
on page A-8.

Identifying Interfaces for Generic API Analysis
Using Expressions

A-12
Using Expressions

Expressions let you extract parameter values and context information for
specifications of entity or relationship characteristics. You can use sim-
ple variable names in expressions, or apply a primitive function call to a
variable.

Basic Usage

Use the %var_name or %parameter_number notation to define variables
for parameter values. The number corresponds to the index of the param-
eter; parameters are indexed beginning with 1. Negative numbers index
from the last parameter to the first.

Variables with names beginning with an underscore are reserved for spe-
cial values. They generally have only one value. Table A-1 describes the
reserved variable names.

Table A-1 Reserved Variable Names

Name Description

_line, _col Line and column numbers of the call in source code.

_file Index of the file in the file table.

_uid UID of the node of the call in the syntax tree.

_fail A permanently undefined variable. Use it to cause explicit
failure.

_yes A non-empty string for use as a true value.

_no An empty string for use as a false value.

_pgmname Name of the calling program.

_hcid HyperCode ID of the call node.

_varname nn If parameter number nn is passed using a simple variable
reference (not a constant or an expression), this substitu-
tion variable contains its name. Otherwise, it is undefined.

Identifying Interfaces for Generic API Analysis
Using Expressions

A-13
Simple Notation

The simplest way to use a variable is to include it in an attribute value,
prefixed with the percent character (%). (%% denotes the character it-
self.) If the character directly after the % is a digit or a minus sign (-), the
end of the variable name is considered to be the first non-digit character.
Otherwise, the end of the name is considered to be the first non-alphanu-
meric, non-underscore character. In:

'%abc.%2def'

the first variable name is abc and the second is 2. It is also possible to
specify the end of the variable name explicitly by enclosing the name in
curly brackets:

'%{abc}.%{2}def'

When evaluated, a compound string like this produces a string value that
concatenates variable values and simple text fragments, or fails if any of
the variables is undefined.

Switch Usage

Use a switch-var attribute instead of the value attribute when a tag
expects a value with a compound string expression. The switch-var
attribute contains a single variable name (which may be prefixed by %,
but cannot be enclosed in curly brackets). Use <case>, <undef>, or
<default> subtags to specify switch cases. These tags also expect the
value attribute, so switches can be nested:

 <name switch-var='var'>
 <case eq='value1' value='...'/>
 <case eq='value2' switch-var='%var2'>
 <undef value='...'/>
 </case>
 <undef value='...'/>
 <default value='...'/>
 </name>

When a switch is evaluated, the value of the variable specified using the
switch-var attribute is matched against the literal specified in the <case>
tags. The literal must be the same size as the variable. (The literals
value1 and value2 in the example assume that var is defined as

Identifying Interfaces for Generic API Analysis
Using Expressions

A-14
having six bytes.) If an appropriate case is found, the corresponding case
value is evaluated. If the variable is undefined, and the <undef> tag is
specified, its value is used; if not, the switch fails. Otherwise, if the <de-
fault> case is specified, it is used; if not, the switch fails.

Fallback Chain Usage

Whenever multiple tags specifying a single attribute are presented in a
<name>, <type>, or <case>/<undef>/<default> specification, those tags
are joined into a fallback chain. If an entry in the chain fails, evaluation
proceeds to the next entry. Only when the last entry of the chain fails is
the failure propagated upward:

 <name value='%a'/>
 <name value='%b'/>
 <name value='UNKNOWN'/>

If %a is defined, the name is its value. Otherwise, if %b is defined, the
name is %b. Finally, if both are undefined, the name is UNKNOWN.

Fallback Semantics for Attributes To determine the value of an at-
tribute, the <attr> definitions for that attribute are processed one by one
in order of appearance within the parent tag. For each definition, all com-
binations of variables used within it are enumerated, and all non-fail val-
ues produced are collected into a set:

• If the set contains exactly one value, it is taken as the value of the
attribute.

• If the set contains multiple values, and the <attr> tag has a join at-
tribute specified, the values are concatenated using the value of the
join attribute as a delimiter, and the resulting string is used as the val-
ue for the repository attribute.

• Otherwise, the definition fails, and the next definition in the se-
quence is processed. If there are no definitions left, the attribute is
left unspecified.

This behavior provides a way to determine if the variable has a specific
value in its value set. The following example sets the attribute to False if
the first parameter can be undefined, to True otherwise:

Identifying Interfaces for Generic API Analysis
Using Expressions

A-15
 <attr name='Completed' switch-var='1'>
 <undef value='False'/>
 </attr>
 <attr name='Completed' value='True'/>

Using a Function Call

When a variable name contains commas, it is split into a sequence of
fragments at their boundaries, and then interpreted as a sequence of func-
tion names and their parameters. In the following example:

 %{substr,0,4,myvar}

the substr function extracts the first four characters from the value of
%myvar. Table A-2 describes the available functions.

Functions can be nested by specifying additional commas in the last ar-
gument of the preceding function. In the following example:

 %{int,substr,0,4,map}
 switch-var='trim,substr,4,,map'

the first line takes the first four characters of the variable and converts
them to a canonical integer, the second line takes the remainder, removes
leading and trailing spaces, and uses the result in a switch, and so forth.

Table A-2 Generic API Analysis Functions

Function Description

substr,<start>,<size>,<variable> Extracts a substring from the value of
the variable. The substring begins at
position <start> (counted from 0), and
is <size> characters long. If <size> is
an empty string, the substring extends
up to the end of the value string.

int,<variable> Interprets the value of the variable as
an integer and formats it in canonical
form, without preceding zeroes or
explicit plus (+) sign. If the value is not
an integer, the function fails.

Identifying Interfaces for Generic API Analysis
Using Expressions

A-16
Understanding Enumeration Order

If the definition of the name of a relationship or the name or type of an
entity contains substitution variables that have several possible values,
the parser enumerates the possible combinations. The loops are per-
formed at the boundary of the innermost <entity> or <rel> tag that con-
tains the reference. (Loops for the target or source are raised to the <rel>
level.)

Once the value for a variable has been established at a loop insertion
point, it is propagated unchanged to the tags within the loop tag. So an
entity attribute specification that refers to a variable used in the name of
the entity will always use the exact single value that was used in the
name.

If the expression for a name or type fails, the specified entity or relation-
ship is locked out from processing for the particular combination of val-
ues that caused it to fail. This behavior can be used to completely block
whole branches of entity/relationship definition tags:

 <entity ...>
 <type switch-var='a'>
 <case eq='1' value='TABLE'/>
 </type>

trim,<variable> Removes leading and trailing spaces
from a string value of the variable.

const,<string> or =,<string> Returns the string as the function
result.

warning,<id-num>[,<variable>] Produces the warning specified by <id-
num>, a numeric code that identifies
the warning in the backend.msg file,
and returns the value of the variable. If
the variable is not specified, the func-
tion fails. So %{warning,12345} is
equivalent to %{warning,12345,_fail}.

Table A-2 Generic API Analysis Functions (continued)

Function Description

Identifying Interfaces for Generic API Analysis
Understanding Decisions

A-17
 <rel name='InsertsTable'/>
 </entity>
 <entity ...>
 <type switch-var='a'>
 <case eq='2' value='MAP'/>
 </type>
 <rel name='Sends'..../>
 </entity>

If %a is 1, the first declaration tree is used, and the table relationship is gen-
erated; the second declaration is blocked. If %a is 2, the second declaration
tree is used, and the map relationship is generated; the first declaration is
blocked.

Note: These enumeration rules require that the value of a repository en-
tity attribute not depend on variables used in the name of an en-
closing <rel> tag, unless that variable is also used in the name of
the entity itself. Otherwise, the behavior is undefined.

Understanding Decisions

A decision is a reference to another object (a program or screen, for exam-
ple) that is not resolved until run time. If there are multiple possible combi-
nations of values of variables used in the name of the target entity, or if some
of the variables are undefined, the parser creates a decision entity, replacing
the named relationship with a relationship to the decision and a set of rela-
tionships from the decision to each instance of the target entity.

When you use the <rel> tag at the top level of the repository definition, you
can specify a decision attribute that tells the parser to create a decision re-
gardless of the number of possible values:

• yes means that a decision is created regardless of the number of possible
values.

• no means that a decision is never created (multiple values results in
multiple direct relationships).

• auto means that a decision is created if more than one possible value
exists, and is not created if there is exactly one possible value.

Identifying Interfaces for Generic API Analysis
Understanding Conditions

A-18
Both the relationship name and the type of the target entity must be specified
as plain static strings, without any variable substitutions or switches:

 <rep>
 <rel name='ReadsDataport' decision='yes'>
 <target type='DATAPORT' name='%_pgmname.%x'/>
 </rel>
 </rep>

Understanding Conditions

The <cond> subtag specifies a condition that governs the evaluation of
declarations in its parent <entity> or <relationship> tag. The evaluation
semantics of the tag follow the semantics for the <attr> tag: a non-empty
string as a result indicates that the condition is true, an empty string or a
failure indicates that the condition is false. Multiple <cond> tags can be spec-
ified, creating a fallback chain with <attr>-style fallback semantics.

Notice in the example given in the previous section that the parser creates a
decision entity even when the name of the target resolves to a single value.
Use a <cond> subtag in the relationship definition to avoid that:

 <rel name='ReadsDataportDecision'>
 <cond if-multi='%x' value='%_yes'/>
 <target type='DECISION'>
 <attr name='HCID' value='%_hcid'/>
 <attr name='DecisionType' value='DATAPORT'/>
 <attr name='AKA'
 value='%_pgmname.ReadsDataport.%_varname1'/>
 <attr name='AKA'
 value='%_pgmname.ReadsDataport.'/>
 <attr name='VariableName' value='%_varname1'/>
 <attr name='Completed' if-closed='%x'
 value='True'/>
 <rel name='ResolvesToDATAPORT'>
 <target type='DATAPORT'
 name='%_pgmname.%x'/>
 </rel>
 </target>
 </rel>
 <rel name='ReadsDataport'>

Identifying Interfaces for Generic API Analysis
Understanding Conditions

A-19
 <cond if-single='%x' value='%_yes'/>
 <target type='DATAPORT' name='%_pgmname.%x'/>
 </rel>

This repository definition produces the same result as the example in the pre-
vious section, except that no decision is created when the name of the target
resolves to a single value.

_yes and _no are predefined variables that evaluate, respectively, to a non-
empty and empty string, as described in Table A-1. The if-single attribute
means that the <cond> tag should be interpreted only if the specified variable
has a single defined value. The if-multi attribute means that the <cond> tag
should be interpreted if the variable has multiple values, none, or can be un-
defined. The if-closed attribute blocks the <cond> tag if the variable has an
undefined value.

Note: if-single, if-multi, and if-closed can also be used with the <attr>
tag.

Conditions have join set to an empty string by default, resulting in a _yes
outcome if any combination of values of the variables used in switches within
causes it to evaluate to _yes. If a particular condition definition should fail
when some of the values evaluate to _no and others to _yes, use a yes-
only='yes' attribute specification. That causes join to be unset, and the
condition to give a non-fail outcome only when all values evaluate to _yes.

In a relationship definition, <cond> determines whether the relationship is
generated. For a decision relationship, it also determines whether the decision
entity should be generated.

In an entity definition, <cond> governs all attribute and subrelationship defi-
nitions in the tag, and the creation of the entity in case of a standalone entity.
For an entity specified in a <target> or <source> tag, instantiation of the re-
lationship automatically spawns the corresponding entity, meaning that a
false condition on the source or target of a relationship does not prevent cre-
ation of corresponding entities.

Identifying Interfaces for Generic API Analysis
Example

A-20
Example

The following example illustrates use of the Generic API Analysis feature:

 <APIEntry name='Call another program'>
 <match stmt="CALL">
 <name value="INVOKEPGM"/>
 </match>
 <flow halts='no'>
 <param index='1' usage='r'/>
 <param index='*' usage='w'/>
 </flow>
 <vars>
 <arg var='a' param='2' type='bit' len='5'/>
 </vars>
 <rep>
 <rel name='CallsDecision'>
 <target type='DECISION'>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM(%_varname1)'/>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM'/>

 <attr name='DecisionType'
 value='PROGRAMENTRY'/>
 <attr name='HCID' value='%_hcid'/>
 <attr name='VariableName'
 value='%_varname1'/>

 <attr name='Completed' switch-var='1'>
 <undef value='False'/>
 </attr>
 <attr name='Completed' value='True'/>

 <rel name='ResolvesToProgramEntry'>
 <target type='PROGRAMENTRY'
 name='%1'/>
 </rel>
 </target>
 </rel>
 </rep>

Identifying Interfaces for Generic API Analysis
Support for IMS Aliases

A-21
 <hc>
 <attr name='test' switch-var='a' join=','
 <case eq='00101' value='X'/>
 <undef value='?'/>
 <default value='%a'/>
 </attr>
 </hc>
 </APIEntry>

Support for IMS Aliases

The <IMSC> subtag in the <Auxiliary> section of Legacy.xml contains
definitions for the standard CBLTDLI or PLITDLI programs. You can
also use it to define aliases for non-standard IMS batch interfaces.

If the order of parameters in the alias program is the same as the order of
parameters in the standard program, simply enter the alias name in the
<Detect> and <APIEntry> tags, as follows:

<IMSC>
 <Cobol>
 <Detect>
 <item> 'CBLTDLI' </item>
 <item> 'MYCBLTDLI' </item>
 </Detect>
 ...
 <Process>
 <APIEntry name='IMS call'>
 <match stmt="CALL">
 <name value="CBLTDLI"/>
 <name value="MYCBLTDLI"/>
 </match>
 ...
 </Process>
 </Cobol>
</IMSC>

If the order of parameters in the alias program differs from the order in
the standard program, you also need to specify a full API entry, using
the:

Identifying Interfaces for Generic API Analysis
Support for IMS Aliases

A-22
• <match> tag to define the alias name and method of invocation.

• <flow> tag to characterize the program control flow.

• <ims-call> tag to specify the call parameters.

Use the definitions for CBLTDLI or PLITDLI as examples.

Attributes of <ims-call> are:

• count specifies the index of the parameter that contains the argument
count.

• opcode specifies the index of the parameter that contains the opera-
tion code.

• pcb specifies the index of the parameter that contains the Program
Control Block (PCB) pointer.

• arg-base specifies the index of the first data parameter, usually io-
area.

Note: Alternative parameter order is allowed only for the params-
num, function-code, and pcb parameters. All other parameters
(io-area and ssa) must appear in the same order as they do in
the standard IMS call, at the end of the parameter list.

Skip Type Usage

Use the skip-type attribute of the <param> subtag in the <halts> section
to ensure that the optional first parameter of a Cobol IMS CALL is
parsed only if necessary. If the actual parameter passed by the program
in the first position has the type specified by the regular expression in
skip-type, the parameter is filled with a dummy value and the actual val-
ue is used in the next parameter.

Note: Skip definitions are also available for use in non-IMS generic
API entries.

Identifying Interfaces for Generic API Analysis
Support for IMS Aliases

A-23
Example:

If the first parameter in a call is a 4-character picture, the following def-
inition inserts a dummy value in the first position and treats the actual
value as that of the second parameter:

 <param index='1'
 usage='r'
 skip-type='PIC:(X\(4\)'/>

Note: Skip definitions are currently limited to declarations having
picture clauses. Use regular expression syntax to specify nor-
malized picture strings.

Identifying Interfaces for Generic API Analysis
Support for IMS Aliases

A-24

B-1
B
Cobol Range Overlaps and
Range Jumps Detected in the
Executive Report
his appendix lists Cobol range overlaps and range jumps
detected in the Executive Report. S* defects appear in the
report under “Range Overlaps” as the sum of all defects

S1+S2+S3+S4+S5+S6. G* defects appear in the report under “Range
Jumps” as the sum of all defects G1+G2+G3+G5+G6+G7.

S0. No defects

 Perform A1 thru A2.

 Perform B1 thru B2.

 …

.--A1.

| StatementsA1.

| …

| A2.

‘--- StatementsA2.

 …

T

Cobol Range Overlaps and Range Jumps Detected in the Executive ReportB-2
.--B1.

| StatementsB1.

| …

| B2.

‘--- StatementsB2.

S1. Overlapped sections

 Perform A1 thru A2.

 Perform B1 thru B2.

 …

.--A1.

| StatementsA1.

| …

| B1. --.

| StatementsB1. |

| … |

| A2. |

‘--- StatementsA2. |

 … |

 B2. |

 StatementsB2. –-’

S2. Overlapped sections

 Perform A1 thru A2.

 Perform B1 thru B2.

 …

.--B1.

| StatementsB1.

| …

| A1. --.

| StatementsA1. |

| … |

Cobol Range Overlaps and Range Jumps Detected in the
Executive Report

B-3
| B2. |

‘--- StatementsB2. |

 … |

 A2. |

 StatementsA2. –-’

S3. Overlapped sections

 Perform A1 thru A2.

 Perform B1 thru B2.

 …

.--A1.

| StatementsA1.

| …

| B1. --.

| StatementsB1. |

| … |

| B2. |

| StatementsB2. –-’

| …

| A2.

‘--- StatementsA2.

S4. Overlapped sections

 Perform A1 thru A2.

 Perform A1 thru B2.

 …

.--A1. --.

| StatementsA1. |

| … |

| B2. |

| StatementsB2. –-’

| …

Cobol Range Overlaps and Range Jumps Detected in the Executive ReportB-4
| A2.

‘--- StatementsA2.

S5. Overlapped sections

 Perform A1 thru A2.

 Perform B1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| B1. --.

| StatementsB1. |

| … |

| A2. |

‘--- StatementsA2. --’

S6. Overlapped sections

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| Perform B1 thru B2.

| …

| B1. --.

| StatementsB1. |

| … |

| B2. |

| StatementsB2. –-’

| …

| A2.

‘--- StatementsA2.

Cobol Range Overlaps and Range Jumps Detected in the
Executive Report

B-5
G0. No defects

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| goto B1.

| …

| B1.

| StatementsB1.

| …

| A2.

‘--- StatementsA2.

G0. No defects

 Perform A1 thru A2.

 goto B1.

 …

.--A1.

| StatementsA1.

| …

| A2.

‘--- StatementsA2.

 …

 B1.

 StatementsB1.

G0. No defects

 Perform A1 thru A2.

 goto B1.

Cobol Range Overlaps and Range Jumps Detected in the Executive ReportB-6
 …

 B1.

 StatementsB1.

 …

.--A1.

| StatementsA1.

| …

| A2.

‘--- StatementsA2.

G0. No defects

 Perform A1 thru A2.

.--A1.

| StatementsA1.

| …

| A2.

‘--- StatementsA2.

 …

 goto B1.

 …

 B1.

 StatementsB1.

G1. Break-in goto

 Perform A1 thru A2.

 …

 goto B1.

 …

.--A1.

| StatementsA1.

| …

| B1.

Cobol Range Overlaps and Range Jumps Detected in the
Executive Report

B-7
| StatementsB1.

| …

| A2.

‘--- StatementsA2.

G2. Break-in goto

 Perform A1 thru A2.

 …

 goto A1.

 …

.--A1.

| StatementsA1.

| …

| A2.

‘--- StatementsA2.

G3. Break-in goto

 Perform A1 thru A2.

 …

 goto A2.

 …

.--A1.

| StatementsA1.

| …

| A2.

‘--- StatementsA2.

Cobol Range Overlaps and Range Jumps Detected in the Executive ReportB-8
S3G4=G1. Overlapped sections, break-in goto

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| Perform B1 thru B2.

| …

| goto C1.

| B1. --.

| StatementsB1. |

| … |

| C1. |

| … |

| B2. |

| StatementsB2. –-’

| …

| A2.

‘--- StatementsA2.

G5. Break-out goto

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| goto B1.

| …

| A2.

‘--- StatementsA2.

 …

 B1.

 StatementsB1.

Cobol Range Overlaps and Range Jumps Detected in the
Executive Report

B-9
G6. Break-out goto

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| goto A1.

| …

| A2.

‘--- StatementsA2.

G7. Break-out goto

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| goto A2.

| …

| A2.

‘--- StatementsA2.

G8. No Defect s

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| goto A2.

| …

Cobol Range Overlaps and Range Jumps Detected in the Executive ReportB-10
| A2.

‘--- EXIT.

S3G9=G5. Overlapped sections, break-out goto

 Perform A1 thru A2.

 …

.--A1.

| StatementsA1.

| …

| Perform B1 thru B2.

| …

| B1. --.

| StatementsB1. |

| … |

| goto C1. |

| … |

| B2. |

| StatementsB2. –-’

| …

| C1.

| …

| A2.

‘--- StatementsA2.

C-1
C
Recognized File Extensions
he table in this appendix section lists the file extensions recog-
nized by the workbench registration process.

Table C-1 Recognized File Extensions

File Type Extensions

BMS Copybook File .bmscpy

BMS File .bms

C File .c

Cobol File .cbl, .cob, .ccp

Control Cards File .crd, .srt

Copybook File .cpy, .dcl

T

Recognized File ExtensionsC-2
CPP File .cpp

CSD File .csd

DBD File .dbd

DDL File .ddl

EasyTrieve File .ezt, .esy

EasyTrieve Macro .ezm, .z

FCT File .fct

Header File .h, .hpp, .hxx, .tlh, .inl

IDMS Schema File .idms

Java File .java

JCL File .jcl

JCL Procedure .prc

MFS File .mfs

MFS Include File .mfi

PCT File .pct

PSB Copybook File .psbcpy

PSB File .psb

Table C-1 Recognized File Extensions (continued)

File Type Extensions

Recognized File Extensions C-3
System Definition File .ims

User Document .doc

Table C-1 Recognized File Extensions (continued)

File Type Extensions

Recognized File ExtensionsC-4

GL-1
Glossary
ADABAS
ADABAS is a Software AG relational DBMS for large, mission-
critical applications.

API
API stands for application programming interface, a set of routines,
protocols, and tools for building software applications.

applet
See Java applet.

AS/400
The AS/400 is a midrange server designed for small businesses and
departments in large enterprises.

BMS
BMS stands for Basic Mapping Support, an interface between appli-
cation formats and CICS that formats input and output display data.

BSTR
BSTR is a Microsoft format for transferring binary strings.

GlossaryGL-2
CDML
CDML stands for Cobol Data Manipulation Language, an extension
of the Cobol programming language that enables applications pro-
grammers to code special instructions to manipulate data in a DMS
database and to compile those instructions for execution.

CICS
CICS stands for Customer Information Control System, a program
that allows concurrent processing of transactions from multiple ter-
minals.

Cobol
Cobol stands for Common Business-Oriented Language, a high-lev-
el programming language used for business applications.

COM
COM stands for Component Object Model, a software architecture
developed by Microsoft to build component-based applications.
COM objects are discrete components, each with a unique identity,
which expose interfaces that allow applications and other compo-
nents to access their features.

complexity
An application’s complexity is an estimate of how difficult it is to
maintain, analyze, transform, and so forth.

component
A component is a self-contained program that can be reused with
other programs in modular fashion.

construct
A construct is an item in the parse tree for a source file — a section,
statement, condition, variable, or the like. A variable, for example,
can be related in the parse tree to any of three other constructs — a
declaration, a dataport, or a condition.

copybook
A copybook is a common piece of source code to be copied into
many Cobol source programs. Copybooks are functionally equiva-
lent to C and C++ include files.

Glossary GL-3
CORBA
CORBA stands for Common Object Request Broker Architecture,
an architecture that enables distributed objects to communicate with
one another regardless of the programming language they were writ-
ten in or the operating system they are running on.

CSD file
CSD stands for CICS System Definition. A CSD file is a VSAM
data set containing a resource definition record for every resource
defined to CICS.

database schema
A database schema is the structure of a database system, described
in a formal language supported by the DBMS. In a relational data-
base, the schema defines the tables, the fields in each table, and the
relationships between fields and tables.

dataport
A dataport is an input/output statement or a call to or from another
program.

DB/2
DB/2 stands for Database 2, an IBM system for managing relational
databases.

DBCS
DBCS stands for double-byte character string, a character set that
uses two-byte (16-bit) characters rather than one-byte (8-bit) charac-
ters.

DBMS
DBMS stands for database management system, a collection of pro-
grams that enable you to store, modify, and extract information from
a database.

DDL
DDL stands for Data Description Language (DDL), a language that
describes the structure of data in a database.

decision resolution
Decision resolution lets you identify and resolve dynamic calls and
other relationships that the parser cannot resolve from static sources.

GlossaryGL-4
DMS
DMS stands for Data Management System, a Unisys database man-
agement software product that conforms to the CODASYL (net-
work) data model and enables data definition, manipulation, and
maintenance in mass storage database files.

DPS
DPS stands for Display Processing System, a Unisys product that
enables users to define forms on a terminal.

ECL
ECL stands for Executive Control Language, the operating system
language for Unisys OS 2200 systems.

effort
Effort is an estimate of the time it will take to complete a task related
to an application, based on weighted values for selected complexity
metrics.

EJB
EJB stands for Enterprise JavaBeans, a Java API developed by Sun
Microsystems that defines a component architecture for multi-tier
client/server systems.

EMF
EMF stands for Enhanced MetaFile, a Windows format for graphic
images.

entity
An entity is an object in the repository model for a legacy applica-
tion. The relationships between entities describe the ways in which
the elements of the application interact.

FCT
FCT stands for File Control Table (FCT), a CICS table that contains
processing requirements for output data streams received via a re-
mote job entry session from a host system. Compare PCT.

HTML
HTML stands for HyperText Markup Language, the authoring lan-
guage used to create documents on the World Wide Web.

Glossary GL-5
IDL
IDL stands for Interface Definition Language (IDL), a generic term
for a language that lets a program or object written in one language
communicate with another program written in an unknown lan-
guage.

IDMS
IDMS stands for Integrated Database Management System, a Com-
puter Associates database management system for the IBM main-
frame and compatible environments.

IMS
IMS stands for Information Management System, an IBM program
product that provides transaction management and database man-
agement functions for large commercial application systems.

Java
Java is a high-level object-oriented programming language devel-
oped by Sun Microsystems.

Java applet
A Java applet is a program that can be sent with a Web page. Java
applets perform interactive animations, immediate calculations, and
other simple tasks without having to send a user request back to the
server.

JavaBeans
JavaBeans is a specification developed by Sun Microsystems that
defines how Java objects interact. An object that conforms to this
specification is called a JavaBean.

JCL
JCL stands for Job Control Language, a language for identifying a
job to OS/390 and for describing the job’s requirements.

JDBC
JDBC stands for Java Database Connectivity, a standard for access-
ing diverse database systems using the Java programming language.

job
A job is the unit of work that a computer operator or a program
called a job scheduler gives to the operating system. In IBM main-

GlossaryGL-6
frame operating systems, a job is described with job control lan-
guage (JCL).

logical component
A logical component is an abstract repository object that gives you
access to the source files that comprise a component.

MFS
MFS stands for Message Format Service, a method of processing
IMS input and output messages.

Natural
Natural is a programming language developed and marketed by
Software AG for the enterprise environment.

object model
An object model is a representation of an application and its encap-
sulated data.

object-oriented programming
Object-oriented programming organizes programs in terms of ob-
jects rather than actions, and data rather than logic.

ODBC
ODBC stands for Open Database Connectivity, a standard for ac-
cessing diverse database systems.

orphan
An orphan is an object that does not exist in the reference tree for
any startup object. Orphans can be removed from a system without
altering its behavior.

parser
The parser defines the object model and parse tree for a legacy ap-
plication.

parse tree
A parse tree defines the relationships between the constructs that
comprise a source file — its sections, paragraphs, statements, con-
ditions, variables, and so forth.

PCT
PCT stands for Program Control Table, a CICS table that defines the
transactions that the CICS system can process. Compare FCT.

Glossary GL-7
PL/I
PL/I stands for Programming Language One, a third-generation pro-
gramming language developed in the early 1960s as an alternative to
assembler language, Cobol, and FORTRAN.

profile
Profiles are HTML views into a repository that show all of the anal-
ysis you have done on an application. Profiles are convenient ways
to share information about legacy applications across your organiza-
tion.

QSAM
QSAM stands for Queued Sequential Access Method, a type of
processing that uses a queue of data records—either input records
awaiting processing or output records that have been processed and
are ready for transfer to storage or an output device.

relationship
The relationships between entities in the repository model for a leg-
acy application describe the ways in which the elements of the ap-
plication interact.

relaxed parsing
Relaxed parsing lets you verify a source file despite errors.
Ordinarily, the parser stops at a statement when it encounters an er-
ror. Relaxed parsing tells the parser to continue to the next state-
ment.

repository
A repository is a database of program objects that comprise the mod-
el for an application.

schema
See database schema.

SQL
SQL stands for Structured Query Language, a standard language for
relational database operations

system program
A system program is a generic program — a mainframe sort utility,
for example — provided by the underlying system and used in un-
modified form in the legacy application.

GlossaryGL-8
TIP
TIP stands for Transaction Processing, the Unisys real-time system
for processing transactions under Exec control.

transaction
A transaction is a sequence of information exchange and related
work (such as database updating) that is treated as a unit for the pur-
poses of satisfying a request and for ensuring database integrity.

VALTAB
VALTAB stands for Validation Table, which contains the informa-
tion the system needs to locate, load, and execute transaction pro-
grams. See also TIP.

VSAM
VSAM stands for Virtual Storage Access Method, an IBM program
that controls communication and the flow of data in a Systems Net-
work Architecture network.

XML
XML stands for Extensible Markup Language, a specification for
creating common information formats.

Index-1
Index
A
API analysis A-1
autoresolving decisions 3-19, 3-22, 3-24,

6-2, 6-7

B
batch sort card analysis 3-11, 3-15
boundary decisions 3-27

C
calling chains analysis for JCL 3-10
COBOL-68 3-3
COMS analysis 3-20
copybooks

verifying 4-2
copybooks, generating 4-23
cross-reference report

exporting 5-6
generating 4-3, 5-2
overview 5-1

currency sign 3-3
D
data operations 4-20
dead code analysis 3-10, 3-14
decision resolution

overview 6-1
resolving decision automatically 6-2,

6-7
resolving decision manually 6-2
restoring manually resolved decisions

6-6
dialects 3-2

E
extensions 2-4

F
file extensions iii-viii, 2-4, C-1

G
generic API analysis 3-20, A-1, A-4

Index-2
H
HyperView, enabling 3-9, 3-13

I
IMS port analysis 4-20
invalidating objects 4-3
Inventory Report 4-12

J
Japanese source files 2-8
JCL

verification requirements for data
flow analysis 3-10

verification requirements for IMS
port analysis 4-21

L
legacy dialects 3-2
loading source files 2-2

M
mainframe encoding 2-7

N
Natural library support 3-10, 3-15
Natural line numbers 3-5

O
orphan analysis

exporting reports 5-12
generating reports 5-7
overview 5-6

P
PERFORM behavior 3-2, 3-3
post-verification tasks

enabling IMS port analysis 4-20
program analysis 4-18
viewing Executive Reports 4-13
viewing Inventory Reports 4-3

project
copying files 2-10
creating 2-9
including objects 2-12
moving files 2-10
verifying files 4-1

Q
query repository feature 4-17

R
reference reports

enabling in verification options 3-6, 3-
9, 3-13

exporting 5-6
generating 4-3, 5-2
overview 5-1

refreshing source files 2-3
refreshing the repository 4-2
registering applications

loading source files 2-2
overview 1-1

registering files 2-1
relaxed parsing

discussed 3-14
selecting 3-11

repository
querying 4-17
refreshing 4-2

resolving decisions 6-1

Index-3
S
sharing projects 2-10
Shift-JIS encoding 2-8
sort card analysis 3-11, 3-15
source files

encoding 2-7
exporting 2-4
refreshing 2-3
registering 2-2
verifying 4-1

staged parsing 3-12
system programs 3-25, 5-6

T
transaction-processing verification option

3-17

U
unreferred report

exporting 5-6
generating 4-3, 5-2
overview 5-1

unresolved report
exporting 5-6
generating 4-3, 5-2
overview 5-1

V
verification options

and Configuration Manager 3-1
discussed 3-1
Legacy Dialects tab 3-2
project 3-16
Settings tab 3-6
staged parsing 3-12
workspace 3-2

Verification Report 4-3
verifying applications

invalidating objects 4-3
overview 1-2
verifying source files 4-1

verifying files 4-1

W
workspace

deleting 2-13
exporting files 2-4
registering files 2-1
verifying files 4-1

workstation encoding 2-7

Index-4

	Contents
	Preface
	Overview
	Registering Applications
	Verifying Applications
	Inventorying Applications
	Support for Japanese Language Applications
	What’s Next?

	Setting Up a Workspace and Projects
	Registering Source Files
	Creating New Source Files
	Refreshing Source Files
	Exporting Source Files from a Workspace
	Setting Registration Options
	Specifying Options on the Extensions Tab
	Specifying Options on the Source Files Tab

	Creating Projects
	Sharing Projects
	Protecting Projects
	Moving or Copying Files in Projects
	Including Objects in Projects
	Deleting a Workspace, Project, or Object
	Deleting a Workspace
	Deleting a Project
	Deleting an Object or Folder

	What’s Next?

	Setting Verification Options
	Setting Workspace Verification Options
	Specifying Options on the Legacy Dialects Tab
	Specifying Options on the Settings Tab
	Source Type Settings Tab Options
	Enabling Staged Parsing
	Enabling Relaxed Parsing
	Enabling Advanced Data Flow Analysis for Control Language Files
	Enabling Sort Card Analysis for Batch Applications
	Enabling Natural Library Support
	Truncating Names of Absolute Elements

	Setting Project Verification Options
	Specifying the Processing Environment
	Optimizing Verification for Advanced Program Analysis

	Identifying System Programs
	Specifying Boundary Decisions
	What’s Next?

	Verifying Files and Performing Post-Verification Tasks
	Verifying Source Files
	How the System Refreshes the Repository
	Invalidating Objects before Reverification

	Viewing Verification Reports
	Generating Verification Reports
	Working with Verification Reports
	Main Pane
	Details Pane
	Source Pane

	Setting Verification Report User Preferences
	Filtering Verification Reports
	Exporting Verification Reports

	Viewing Inventory Reports
	Viewing Executive Reports
	Generating Executive Reports
	Defining Potential Code Anomalies

	Viewing Key Object Relationships
	Performing Post-Verification Program Analysis
	Enabling IMS Port Analysis
	Mapping Root Programs to PSBs in JCL or System Definition Files
	Verification Order for IMS Applications
	Reverifying Files in IMS Applications

	Generating Copybooks
	What’s Next?

	Identifying Missing or Unneeded Program Elements
	Using Reference Reports
	Generating Reference Reports
	Working with Reference Reports
	Report Pane
	Preview Pane

	Detecting System Programs
	Exporting Reference Reports

	Using the Orphan Analysis Tool
	Generating Orphan Analysis Reports
	Exporting Orphan Analysis Reports

	What’s Next?

	Resolving Decisions
	Understanding Decisions
	Resolving Decisions Manually
	Restoring Manually Resolved Decisions
	Resolving Decisions Automatically
	Exporting Decision Resolution Reports
	What’s Next?

	Identifying Interfaces for Generic API Analysis
	Identifying Unsupported API Calls to the Parser
	Using the <match> Tag
	Using the <flow> Tag
	Using the <vars> Tag
	Using the <rep> Tag
	Using Predefined Patterns
	Using Custom Patterns

	Using the <hc> Tag

	Using Expressions
	Basic Usage
	Using a Function Call
	Understanding Enumeration Order

	Understanding Decisions
	Understanding Conditions
	Example
	Support for IMS Aliases

	Cobol Range Overlaps and Range Jumps Detected in the Executive Report
	Recognized File Extensions
	Glossary
	Index

