
Micro Focus
®

Modernization Workbench™

Transforming Applications

Copyright © 2009 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

iii
Contents
Preface

Audience .vii
Organization . viii
Conventions . viii
Related Manuals . ix
Online Help . x

1 Overview of Transformation

Data Transition .1-2
Interface Transition .1-3

2 Data Transition

Starting Database Schema Tool .2-1
Setting Database Schema Options .2-4
Editing a Database Schema. .2-8
Importing Structures. .2-18

Generating DDL Statements. .2-20
Generating Java Access Methods .2-21

Contentsiv
Access Methods for Java (JDBC) Usage.2-21
Implementing DAO Classes .2-22

Generating EJB Access Methods .2-23
Generating Entity Java Beans .2-23
Step-by-step Entity Beans Generation. .2-25
An Example of Client Program. .2-31

Generating XML .2-33
Exporting Source Files .2-38

3 Interface Transition

Starting User Interface Tool .3-2
Setting User Interface Options .3-3
Navigating the panes of the User Interface Tool Window 3-6
Working with User Interface Tool .3-10
Naming the Screens. .3-17
Setting the Startup Map .3-18
Editing Events .3-19

Generating Target Code .3-35
Generating Java Servlets for HTML. .3-36

Exporting Source Files .3-37

A Data Access Object Support (CRUD Runtime Facilities)

DATAX Modernization Workbench: ActiveX Interface Description4-1
Java Support for Data Access Objects .4-3

CRUDCell Class. .4-4
Class CRUDTypes .4-6
Class CRUDConstants. .4-7
Class CRUDMessages .4-7
Class CRUDException .4-7
Class CRUDRow .4-8
Class CRUDColumn .4-11
Class CRUDTable .4-11
Class CRUDCursor .4-14

Contents v
Glossary

Index

Contentsvi

vii
Preface
he Modernization Workbench is a suite of PC-based software
products for analyzing, re-architecting, and transforming legacy
applications. The products are deployed in an integrated envi-

ronment with access to a common repository of program objects. Lan-
guage-specific parsers generate repository models that serve as the basis
for a rich set of diagrams, reports, and other documentation.

The Modernization Workbench suite consists of customizable modules
that together address the needs of organizations at every stage of legacy
application evolution: maintenance/enhancement, renovation, and mod-
ernization.

Audience

This guide assumes that you are a corporate Information Technology
(IT) professional with a working knowledge of the legacy platforms you
are using the product to analyze. If you are transforming a legacy appli-
cation, you should also have a working knowledge of the target platform.

T

Prefaceviii
Organization

This guide contains the following chapters:

• Chapter 1, “Overview of Transformation,” contains common de-
scription of Modernization Workbench transformation tools and
phases.

• Chapter 2, “Data Transition,” describes Database Schema tool and
Data Transition phase, when you examine how the data is stored in
your legacy system and then generate object-oriented access meth-
ods for the new database schema.

• Chapter 3, “Interface Transition,” describes User Interface tool and
Interface Transition phase, when you analyze the interactions be-
tween the legacy screens on a project basis and generate the target
code for the interface to create a new graphical user interface (GUI)
based on the window flow.

• Appendix A, “Data Access Object Support (CRUD Runtime Facili-
ties),” describes Data Access Object support for Java.

• The Glossary defines the names, acronyms, and special terminology
used in this guide.

Conventions

This guide uses the following typographic conventions:

• Bold type: indicates a specific area within the graphical user inter-
face, such as a button on a screen, a window name, or a command or
function.

• Italic type: indicates a new term. Also indicates a document title. Oc-
casionally, italic type is used for emphasis.

• Monospace type: indicates computer programming code.

• Bold monospace type: indicates input you type on the computer
keyboard.

• 1A/1B, 2A/2B: in task descriptions, indicates mutually exclusive steps;
perform step A or step B, but not both.

Preface ix
Related Manuals

This document is part of a complete set of Modernization Workbench
manuals. Together they provide all the information you need to get the
most out of the system.

• Getting Started introduces the Modernization Workbench. This
guide provides an overview of the workbench tools, discusses basic
concepts, and describes how to use common product features.

• Preparing Projects describes how to set up Modernization Work-
bench projects. This guide describes how to load applications in the
repository and how to use reports and other tools to ensure that the
entire application is available for analysis.

• Analyzing Projects describes how to analyze applications at the
project level. This guide describes how to create diagrams of appli-
cations and how to perform impact analysis across applications. It
also describes how to estimate project complexity and effort.

• Analyzing Programs describes how to analyze applications at the
program level. This guide describes how to use HyperView tools to
view programs interactively and perform program analysis in stages.
It also describes how to analyze procedure and data flows, search the
repository, and extract business rules with HyperView.

• Managing Application Portfolios describes how to build enterprise
dashboards that track survey-based metrics for applications in your
portfolio. It also describes how to use Enterprise View Express to
browse Web-generated views of application repositories.

• Creating Components describes how to extract program components
from a legacy application.

• Error Messages lists the error messages issued by Modernization
Workbench, with a brief explanation of each and instructions on
how to proceed.

Prefacex
Online Help

In addition to the manuals provided with the system, you can learn about
the product using the integrated online help. All GUI-based tools include
a standard Windows Help menu.

You can display:

• The entire help system, with table of contents, index, and search
tool, by selecting Help:Help Topics.

• Help about a particular Modernization Workbench window by click-
ing the window and pressing the F1 key.

Many Modernization Workbench tools have guides that you can use to
get started quickly in the tool. The guides are help-like systems with hy-
perlinks that you can use to access functions otherwise available only in
menus and other program controls.

To open the guide for a tool, choose Guide from the View menu. Use the
table of contents in the Page drop-down to navigate quickly to a topic.

1-1
1
Overview of Transformation
he Modernization Workbench provides a powerful solution to
help with legacy application transformation to modern platforms
and computing paradigms. The Modernization Workbench ap-

plication is an integrated environment that lets you centrally locate and
analyze the massive amounts of legacy components. Once you decide
which portions of the applications you want to preserve and migrate,
Modernization Workbench can transform the selected code into compo-
nents targeted to the new environment.

Modernization Workbench uses a repository, which is a database of ob-
jects. You store the various components of your legacy application, and
the new code and models that you create from them, in this repository.
The repository is created when you are setting up your project. For de-
tailed information of this phase, refer to Preparing Projects book in the
workbench documentation set.

By using analysis tools of Modernization Workbench, parsers analyze
the legacy components to help you understand the relationships and de-
pendencies among system components. Graphical tools of Moderniza-

T

Overview of Transformation
Data Transition

1-2
tion Workbench help you to visualize the existing system by giving you
a better understanding of how the system flows. A legacy system can be
transformed without performing any analysis, however, the benefits of
modernizing such a system would be much less. For detailed informa-
tion about legacy applications analysis with Modernization Workbench,
refer to Analyzing Projects and Analyzing Programs books in the work-
bench documentation set.

Data Transition

During Data Transition phase (Chapter 2, “Data Transition”), you exam-
ine how the data is stored in your legacy system. Modernization Work-
bench creates a database schema that describes the design of the database
within the application.

After Modernization Workbench creates a model of the database, you
can make changes to that database — you can change the tables, col-
umns, and keys and the relationships among them, all on a project basis.

Finally, you can generate object-oriented access methods for the new da-
tabase schema using Data Active Objects (DAO) or Java Database Con-
nectivity (JDBC) and export them out of Modernization Workbench.

Database Overview

A database is a structured set of persistent data. A simple database might
be a single file containing many records, each of which contains the
same set of fields where each field is a certain fixed width.

Hierarchical, network, and relational databases are the three most com-
mon methods of organizing data:

• Hierarchical databases link records together similar to an organiza-
tion chart. A record type can be owned by only one owner. For ex-
ample, in a hierarchical database for processing customer orders, the
order record type is owned only by customer. Hierarchical structures
were widely used in the first mainframe database management sys-
tems. However, due to their restrictions, they often cannot be used to
relate structures that exist in the real world.

Overview of Transformation
Interface Transition

1-3
• Network database structures contain a record type that can have
multiple owners. In the order processing example, the order record
type is owned by both customer and product because that's the way
they relate in the business.

• Relational databases do not link records together physically. The
design of the records must provide a common field, such as account
number, to allow for matching. Quite often, the fields used for
matching are indexed to speed up the process. In the order-process-
ing example, customers, orders, and products are linked by compar-
ing data fields and/or indexes when information from more than one
record type is needed.

This method is the most flexible for ad hoc inquiries but may be too
slow for heavy transaction processing environments.

Modernization Workbench currently supports:

• DB2

• SQLServer

• Oracle

• Access

Interface Transition

In the Interface Transition phase (Chapter 3, “Interface Transition”), you
analyze the interactions between the legacy screens on a project basis.
You can use the User Interface tool to understand how the screen objects
and the program logic interact.

During Interface Transition Modernization Workbench creates a win-
dow flow, which describes the interface of the application. Once Mod-
ernization Workbench has created the window flow, you can modify it.

Finally, you generate the target code for the interface to create a new
graphical user interface (GUI) based on the window flow.

Overview of Transformation
Interface Transition

1-4

2-1
2
Data Transition
he Modernization Workbench enables you to transform struc-
tural information about your data into a database schema on a
project basis by using the Database Schema tool. You can then

make changes to the database schema. This phase of transformation is
described in “Editing a Database Schema” on page 2-8.

Once you have finished the database schema, you can generate (if the
Transformation Assistant component of Modernization Workbench is
installed) new DDL statements and object-oriented access methods for
the new database schema using Java Database Connectivity (JDBC), en-
tity Enterprise Java Beans (EJB), or XML document and export them out
of Modernization Workbench.

Starting Database Schema Tool

Start the Database Schema tool by selecting Transform:Data Transi-
tion or by clicking the Database Schema button on the Moderniza-

T

Data Transition
Starting Database Schema Tool

2-2
tion Workbench main toolbar. The Database Schema tool main window
is displayed (Figure 2-1).

Figure 2-1 Database Schema Tool Main Window

Navigating the Main Window

The Database Schema tool window can include the following panes:

• Browser pane — contains the hierarchy of the current project’s da-
tabase schema. The hierarchy tree automatically updates as objects
are added, modified, or deleted from the project.

• Diagram pane — contains the graphical representation of the cur-
rent project’s database schema.

Note: To switch between Browser and Diagram panes, select the
corresponding item in the View menu or click the respective
button on the Database Schema tool window’s toolbar.

• Properties pane — contains the subparts of whatever object is se-
lected in the Browser or Diagram pane. For example, if Table is se-
lected, it displays a list of tables.

Data Transition
Starting Database Schema Tool

2-3
• Origin pane — displays the source code and is enabled for Interac-
tive Analysis. For information about using HyperView, see the Ana-
lyzing Projects book of the workbench documentation set.

• Errors pane — contains an errors list generated by the last verifica-
tion procedure. You can navigate to the error’s location by double-
clicking on the error message.

Note: Furthermore, the Database Schema tool can display the Ac-
tivity Log window, which displays the information about the
results of Modernization Workbench operations.

Arranging the Panes

The Database Schema tool window is separated into panes by splitters.
All splitters are supplied with a pop-up menu. To open it, move the cur-
sor onto a splitter (as you would for dragging it, which is also possible)
and click the right mouse button. For additional information about using
the splitters, refer to Getting Started book of the workbench documenta-
tion set.

Selecting a View

After a schema is created, you can view data by either a list view
(Figure 2-1 on page 2-2) (default) or as a diagram (Figure 2-2 on
page 2-4). To choose, select View:Browser or View:Diagram from the
menu or click the corresponding button on the toolbar. Of course, you
can open both panes.

Data Transition
Starting Database Schema Tool

2-4
Figure 2-2 Diagram View

Locating Errors

When you Verify your table edits, if any errors are present, an errors list
is generated. To display the list, select View:Errors from the menu. You
can navigate to the error’s location by double-clicking on the error mes-
sage.

Setting Database Schema Options

Database Schema options specify import and generation operations for
the Database Schema tool.

To set Database Schema options:

1 In the View menu, choose Options. The Options window is dis-
played.

Data Transition
Starting Database Schema Tool

2-5
2 Click the Import tab, then click Cobol Structures (Figure 2-3 on
page 2-6)

• Create separate tables for array fields — indicate whether to
create additional tables for structure or field (these tables contain
references to the main table) by checking this selection (on). If
unchecked (off), then during data structures import, each array
field defined in a COBOL OCCURS phrase is repeated n times,
for example, mycol1, mycol2,... mycoln)

• Occurs threshold — if Create separate tables for array
fields is checked (on), then indicate the boundary value of
OCCURS n, such that when n is less or equal to the threshold,
each column is repeated and when n is greater than the thresh-
old, a new table is created

• Strip prefixes from imported names — indicate prefixes to be
stripped from the fields’ names. With the help of this option, you
can more easily tell one data structure from another by their
names, which could originally start with a common prefix. The
prefix list can be modified by right-clicking in the Prefixes box.
From the displayed pop-up menu, you can Add a new pattern,
Delete a selected pattern, of Edit a selected pattern’s text.

• Autodetect primary keys — indicates that specified pattern ref-
erences to VSAM data items that are referenced in copybooks
should be selected as primary keys. The Key Patterns list can be
modified by right-clicking in the Key Patterns box. From the
displayed pop-up menu, you can Add a new pattern, Delete a se-
lected pattern, of Edit a selected pattern’s text.

• Restore Cobol Structures Defaults — click button to restore
Modernization Workbench defaults

Note

This tab is COBOL-specific, so you should use only the next tab to
set PL/I options.

Data Transition
Starting Database Schema Tool

2-6
Figure 2-3 Project Options — Database Schema:Import:Cobol Structures

3 Click the Generation tab (Figure 2-4 on page 2-7). From the list in
the left pane, select the type of object to be generated. The options
are different for each object-type:

• DDL — select the object-type by clicking the corresponding ra-
dio button (Figure 2-4 on page 2-7). When executing DDLs at a
target database environment, the order of execution has to be
known, for example, a table has to be created before references
to it (foreign keys) are created. For a large system, creating one
table could become too complicated to find the correct order for
executing the DDLs. However, by creating a single DDL file,
you can ensure that “main” tables are created before a table that
references them. Also, for target environments where execution
of multiple SQL statements in one query is not possible, such as
MS Access, you can, with one file, inherit a means of executing
separate DDLs in correct order.

Data Transition
Starting Database Schema Tool

2-7
Figure 2-4 Project Options — Database Schema:Generation:DDL

• Generate separate DDL file for each table — select the ra-
dio button to generate multiple DDL for each table

• Generate single DDL file — select the radio button to gener-
ate only one DDL file

• Convert GRAPHIC to CHAR — when selected, the
GRAPHIC data structures are converted to CHARs (one
byte), otherwise to NCHARs (two bytes).

• Restore DDL Defaults — click button to restore Moderniza-
tion Workbench defaults

• EJB (Figure 2-5 on page 2-8)

• Persistence Management Type — Container managed (de-
fault) or Bean managed. To change the type, select the pull-
down menu and click on your choice.

• Restore EJB Defaults — click button to restore Moderniza-
tion Workbench defaults

Data Transition
Starting Database Schema Tool

2-8
Figure 2-5 Project Options — Database Schema:Generation:EJB

Editing a Database Schema

After the Database Schema tool creates a database schema or executes
the conversion to the relational database, you can make changes to it.

Note: If you make the changes in the structure of the relational da-
tabase, you should perform in future all actions concerned
with maintenance of this new software.

You can, for example, create a table definition from a COBOL copy-
book. COBOL copybooks represent a nonrelational data structure that is
used to read and write to a file.

By creating a schema from one or more copybooks or data definition
modules, you can create a relational model from a flat or hierarchical
model. To refine the model, you can identify additional structures, such
as foreign keys, and new tables representing many-to-many
relationships. It is possible to import data structures from COBOL pro-

Data Transition
Starting Database Schema Tool

2-9
grams, copybooks, data definition modules, to any of the existing tables
or to a new one, if you like. Also, you can create a data map to prescribe
subsequent physical transfer of certain data fields to table columns.

If the database schema is already relational, you might want to modify
the schema based on the transformation target. For example, if you have
a table in the schema that will not be transformed, you could delete this
table and references to it (foreign keys) from the schema.

Creating a Table

To create a new table in your project:

1 Select Tables:New... from the main menu or right-click in the
Browser pane and select New... from a pop-up menu, or click the
Create New Table button on the toolbar.

The New Table dialog box (Figure 2-6) is displayed.

Figure 2-6 Table Name Dialog Box

2 Type a name for the table in the table name field.

3 Click OK.

The new table is created and is displayed in the left pane tree and in
the Table tab.

4 Select the table name in the Browser pane and select Tables:Prop-
erties from the menu or right-click the table name and select Prop-
erties from the pop-up menu. The Table Properties dialog box
(Figure 2-7 on page 2-10) is displayed.

You can enter Storage options and comments.

Data Transition
Starting Database Schema Tool

2-10
Figure 2-7 Table Properties Window

Editing a Table

After you create a table, you can edit its items by selecting them in the
corresponding tab in Properties pane. You can select:

• Columns — create, edit, and drop columns

• Indexes — create, edit, and drop indexes

• Keys — create, edit, and drop keys

• Referenced By — create, edit and drop reference keys

To create any of the items, select the appropriate tab, right-click in the
tab pane, and select New from the pop-up menu. The new item is added
to the pane’s list (Figure 2-8 on page 2-11).

Data Transition
Starting Database Schema Tool

2-11
Figure 2-8 New Column

Working with Columns

Creating a column

To create a column:

1 Click the Columns tab.

2 Right-click and select New from the pop-up menu.

After you create a column, the new column is displayed in the column
list (Figure 2-8). You can modify the column’s name, its type, scale, and
precision and add comments.

Changing a Column Name

To change a column name, right-click on the column name you want to
change and select Rename from the pop-up menu. Type the new name
in the column’s text box.

Data Transition
Starting Database Schema Tool

2-12
Editing a Column

To edit a column’s attributes, right-click on the column you want to
change, select Properties from the pop-up menu. The Column Proper-
ties dialog (Figure 2-9) is displayed. Type or select the new value.

Figure 2-9 Column Properties dialog

Dropping a Column

To drop a column, select a column, and right-click, and select Delete
from the pop-up menu.

Changing Column Order

If you have several columns, you can change their order in the table by
selecting a column, holding the mouse key down, and dragging the col-
umn to change its position.

Working with Indexes

Creating an Index

To create an index:

Data Transition
Starting Database Schema Tool

2-13
1 Click the Indexes tab.

2 Right-click and select New from the pop-up menu. The New index
for... dialog box (Figure 2-10) is displayed.

Figure 2-10 Create New Index Dialog

3 Type the name for the index in the dialog box and click OK.

4 The new index is added to the index list (Figure 2-11).

Figure 2-11 Indexes Tab

You can edit the index by selecting it from the index list, double-clicking
or right-clicking, and selecting Properties from the pop-up menu. The
Index dialog (Figure 2-12 on page 2-14) is displayed.

Data Transition
Starting Database Schema Tool

2-14
Adding a Column to an Index

To add a column to an index:

1 Select the column you want to add from the Available Columns list.

2 Repeat for each column.

3 Click the Add button.

4 Adjust the order of the index by selecting it in the In Index list and
using Up or Down arrows.

5 Select whether the index is unique by checking the Unique check-
box. If it is checked, the Primary checkbox is also available.

6 Click OK.

Figure 2-12 Edit Index Dialog

Removing a Column from an Index

To remove a column from an index:

1 Select the column you want to remove from the In Index list.

Data Transition
Starting Database Schema Tool

2-15
2 Repeat for each column.

3 Click the Remove button.

4 Click OK.

Working with Keys

Creating a Key

To create a key:

1 Click the Keys tab.

2 Right-click and select New from the pop-up menu. The Create for-
eign key for... dialog box (Figure 2-13) is displayed.

Figure 2-13 Create Foreign Key Dialog

3 Type the name for the key in the dialog box and click OK.

4 The new key is added to the key list (Figure 2-14).

Data Transition
Starting Database Schema Tool

2-16
Figure 2-14 New Foreign Key

To edit the foreign key, select it from the key list, double-click or right-
click, and select the Properties item from the pop-up menu. The For-
eign Key dialog box (Figure 2-15) is displayed.

Adding a Column to a Key

To add a column to a key:

1 Select the column in the list of columns on the left of the dialog box.

2 Select the referenced column on the right of the dialog box.

3 Select the action to perform from the On Delete drop-down menu if
the key is deleted.

4 Click Link. An arrow is drawn to illustrate the link.

5 Click OK.

Data Transition
Starting Database Schema Tool

2-17
Figure 2-15 Foreign Key Dialog

Dropping a Column from a Key

To drop a column from a key:

1 Select the column in the list of columns on the left of the dialog box.

2 Click Unlink.

The column is dropped from the key.

Dropping a Key

To drop a key, select the key in the Key tab on the Database Schema tool
window, right-click, and select Delete from the pop-up menu.

Editing Referenced Keys

To edit referenced keys:

1 Click the Referenced By tab.

2 Select a key from the key list.

Data Transition
Starting Database Schema Tool

2-18
3 Double-click or right-click and select Properties from the pop-up
menu. The Foreign key for... dialog box (Figure 2-15 on page 2-17)
is displayed.

4 Follow directions from “Creating a Key” on page 2-15.

Dropping a Table

To drop a table:

1 Select the table in the tree in the Browser pane.

2 Right-click and click Delete from the pop-up menu.

The table is dropped from the project.

Importing Structures

The Database Schema tool allows you to import tables from different
files included in your project. It can import Cobol structures and DMS
schemas as described below.

Importing Cobol Structures

To import COBOL structure from Cobol programs, copybooks or ports
in COBOL project, you should do the following steps:

1 Select Execute:Import Cobol Structures from the main Database
Schema tool menu or click the Execute button and select the
same item from the drop down list. The Import dialog will appear:

Data Transition
Starting Database Schema Tool

2-19
Figure 2-16 Import Cobol Structures Dialog

2 Choose a tab with necessary Cobol structure.

3 Select the name of desired Cobol structure in the drop-down list.

4 Check necessary tree branch (you can expand and collapse the tree
by clicking a plus sign to the left of desired branch). Only elements
that have children should be checked.

5 Choose whether creating new table or adding to existent.

6 Press OK.

All chosen branches will be imported as tables. If you chose Create new
table then a new table with the same name will be created for every
checked branch. You can also set Import options for COBOL structures
by clicking Options in the Import dialog. You can find detailed descrip-
tion in “Setting Database Schema Options” on page 2-4.

Data Transition
Generating DDL Statements

2-20
Importing DMS Schemas

If you add DMS DDL files to your project and verified them then corre-
sponding DMS schemas will be created and included in your project au-
tomatically. After verification you can import DMS schemas and convert
them to tables, for example, for further using during Cobol-SQL gener-
ation from Unisys-CDML.

To import DMS schemas, you should select Execute:Import DMS
Schemas from the main Database Schema tool menu or click the Exe-
cute button and select the same item from the drop down list. All
DMS schemas contained in your project will be imported (it means that
you cannot choose a specific schema to be imported).

Generating DDL Statements

To generate DDL statements for your database schema:

1 Select a database schema.

2 Select Execute:Generate DDL for <target database type> from
the Database Schema tool main window’s menu or click the Execute

 button and select the same name item from the drop down list.

You can select the following target database types:

• Microsoft SQL Server
• Microsoft Access
• Oracle
• DB2

The generated models appear in the Target DDL Models folder.

Note

This action is available only for COBOL projects.

Data Transition
Generating Java Access Methods

2-21
Generating Java Access Methods

To generate Java access methods for your database schema:

1 Select a database schema.

2 Select Execute:Generate Access for Java/JDBC from the Data-
base Schema tool main window’s menu or click the Execute
button and select the same name item from the drop down list.

The new methods appear in the Target Access Models folder.

Access Methods for Java (JDBC) Usage

To create the access methods for Java (JDBC):

1 Apply Generate Access for Java/JDBC method to the selected da-
tabase schema as it is described in “Generating Java Access Meth-
ods”.

2 Export the generated files (<Table>Service.java for each table in
schema) to new directory.

3 Create your application using the generated classes in the same di-
rectory and import the com.relativity.rescuent.dao run-time support
classes in your sources (import com.relativity.rescuent.dao.*).

4 To compile the created application, you should specify the path to
Java run-time support classes: …\RunTime\Java\classes.zip (for ex-
ample, using the -CLASSPATH option for the Sun Microsystems
compiler).

5 Run the program <java compiler> [-options]* <Test>.java.

6 You also need to create DSN for your database by means of the
ODBC32 Manager in your Windows' Control Panel.

7 Pass DSN as the only parameter for table constructor, if connection
to your DSN without User/Password is enabled; otherwise specify
DSN, User, Password as the parameters of the table constructor.

8 The only way to transfer data from/to the user is by using row class
instance, which has all necessary methods.

Data Transition
Generating Java Access Methods

2-22
9 Run the program <java interpreter> [-options]* <Test>, where <Test>
is your application file name.

The options depend on Java VM being used:

• adding to classpath DIR=.\RunTime\Java\classes.zip;.
• for Sun javac: java -classpath%classpath%;DIR, for jre -cp DIR;
• for MS jvc: jview -cp DIR

Implementing DAO Classes

A Data Access Object is generated as a class, one per relational table.
Class. Methods are:

• Insert — method to insert new row in the table

Input: Single row

Output: SQL code

• Singleton Select — method to search any table row by primary key

Input: Primary Key

Output: Single Row + SQL code

• Cursor Select — iteration method to sequentially fetch all rows in
the table

Input: Cursor

Output: Single Row + Cursor + SQL code

• Update — method to update table row

Input: Primary Key + Row with values for update

Output: SQL code

• Delete — method to delete any row by primary key

Input: Primary key

Output: SQL code

Note: Create table and Drop table actions are not supported.

Data Transition
Generating EJB Access Methods

2-23
Note: Referential Integrity Constraints are enforced by the DBMS
system.

Note: The current implementation of cursor allows browsing the
whole table only, without any selection criteria. For example,
if you specify that you want to browse a table for values be-
tween 100 and 200, the entire table is returned.

Generating EJB Access Methods

To generate EJB (Enterprise Java Bean) access methods for your
database schema:

1 Select a database schema.

2 Select Execute:Generate Entity EJBs from the Database Schema
tool main window’s menu or click the Execute button and se-
lect the same name item from the drop down list.

The new methods appear in the Target Access Models folder.

Generating Entity Java Beans

Entity Beans generation highlights

1 For each table from a DB Schema, Modernization Workbench gen-
erates an entity Java bean (EJB) that corresponds to a row of this ta-
ble. Each bean resides in its own subdirectory of the target
generation directory.

2 Table fields become the entity bean's private members.

3 The remote interface should contain methods set/get for all the table
fields, and this is the only business logic of the generated entity bean.

4 If a table from DB Schema has no primary key, then no entity bean
is generated for it.

5 The home interface should contain the following methods:

• create(...)

Data Transition
Generating EJB Access Methods

2-24
with all table fields' values as the parameters; this is a method to
create a new entity instance (and therefore to insert a new row in
the table)

• remove(<primary-key>)

to remove an entity bean instance (and therefore to delete the cor-
responding row from table)

• findByPrimaryKey(<primary-key>)

 to get an entity bean instance by primary key (i.e., to search a ta-
ble row by primary key)

• findAll()

to get collection with all entity bean instances from a persistent
storage (i.e., to open cursor with all table records)

6 Modernization Workbench provides two models of entity bean per-
sistence by a user option:

• bean-managed
• managed by container

7 Transaction management attribute for the generated entity bean by
default is TX_REQUIRED, i.e. the generated bean will be executed
inside the client transaction context (if it exists), otherwise it starts
its own transaction. Access DBMS does not support transactions, so
for this DBMS a default transaction attribute is
TX_NOT_SUPPORTED.

8 The generation uses templates located in <Modernization Work-
bench>\Templates\Gen\EJB*.*, so the user can slightly modify the
text to be generated; however, in that case he is responsible for pos-
sible errors.

9 Modernization Workbench generates the entity bean source code
and default deployment descriptor, as well as a Build.cmd file to
compile and create a jar from. Also, for each DB Schema a master
Build.cmd file is generated, which allows to compile all beans gen-
erated for the DB Schema (it subsequently calls Build.cmd of each
generated bean). These .cmd files use paths to Java compiler and

Data Transition
Generating EJB Access Methods

2-25
server platform, which paths are taken from the <Modernization
Workbench>\Data\Environment.ini file. Generated jar file placed in
<WebLogic>\config\<Domain>\applications\ directory (for WebLog-
ic) or in %WAS_HOME%\classes\ (for WebSphere) and is automat-
ically deployed by server platform. As additional for every bean
Modernization Workbench generates a small test which performs
simple operation using the generated bean. This test is placed in the
TEST subdirectory.

Step-by-step Entity Beans Generation

Assume existence of a DB Schema to generate EJBs from. EJBs will be
generated only for tables with primary keys.

The order of execution is as follows:

1 Apply the Generate Access for Java/ADBC or Generate Entity
EJBs action to the chosen DB Schema.

2 This method has the option Persistence Management Type with
two values:

• Bean managed — to generate Entity Bean with bean-managed
persistence

• Container managed — to generate Entity Bean with container-
managed persistence

3 When the sources of EJBs are generated, the stage of compilation
and deployment ensues. Modernization Workbench provides batch
files to compile and deploy EJBs using WebLogic classes, but the
deployment descriptor and file with WebLogic properties should be
modified manually.

Customization of Deployment Descriptor

The deployment descriptor contains some parameters common for both
persistence management types. Among such parameters is transaction
attribute that specifies how the container should manage the transaction
boundaries when delegating method invocation to a business method of
an enterprise bean.

Data Transition
Generating EJB Access Methods

2-26
Modernization Workbench uses the value required (TX_REQUIRED or
Required in EJB v1.1 specification) for the default one, but some data-
bases (e.g., Microsoft Access) do not support this feature, so in that case,
the value not supported is used (TX_NOT_SUPPORTED or NotSup-
ported in EJB v1.1 specification).

Having information about the database type, it is possible to generate the
transaction attribute more accurately.

Bean-Managed Persistence

Because an EJB with bean-managed persistence has to “know” the data
source name and account to connect with, Modernization Workbench
generates environment values with this information. If the information is
absent at the moment, it should be specified before deployment.

Because the EJB generation does not have these options available for the
user now, the info should be specified manually before deploying. Nev-
ertheless, the default values have an effect. They are shown in the right
column.

database database type (Access |
SQLServer | Oracle | DB2)

SQLServer

driverClass JDBC driver class (e.g.
sun.jdbc.odbc.JdbcOdb-
cDriver)

sun.jdbc.odbc.
JdbcOdbcDriver

subProtocol subprotocol for JDBC driver
(e.g. odbc)

odbc

dataSource-
Name

DSN registered in ODBC
administrator

DSN

user user name to use for connec-
tion

“”

password user password to use for
connection

“”

Data Transition
Generating EJB Access Methods

2-27
Container-Managed Persistence

An EJB with container-managed persistence does not contain code for
interaction with any data source. Thus, the values described in the previ-
ous section are unnecessary for these beans. The container, however,
should know the parameters of the bean's storage. So, this is how the
concept of a connection pool appears. A server platform connection pool
provides a pool of connections that are created when the server starts up.
Then, when an authorized user needs a connection to a database, he re-
quests and uses an already existing connection from the pool, rather than
create a direct, specific connection to the database. When persistence is
container-managed, such a user is the container itself.

The deployment descriptor should contain the name of connection pool,
and this pool must be described in server platform properties. Modern-
ization Workbench generates the default name “Pool” for the connection
pool.

Customization of WebLogic Properties

Weblogic 6.0 performs automatic deploying of EJBs if they are placed
in directory <WebLogic>\config\<Domain>\applications\.

For more details, refer to WebLogic User’s Guide.

Bean-Managed Persistence

There are no additional options for EJBs with bean-managed persis-
tence.

Container-Managed Persistence

You must describe the connection pool.

For example, do the following:

1 In administrative console choose Domain:Services:JDBC:Con-
nection Pool, then choose Create a new Connection Pool.

2 Set pool name — the same as used in EJBs.

3 Specify the values for url and driver fields (for example jd-
bc:odbc:DSN and sun.jdbc.odbc.JdbcOdbcDriver).

Data Transition
Generating EJB Access Methods

2-28
4 In properties field specify user name and password.

5 Confirm creating by pressing Apply.

6 In TARGETS, choose target server from list.

For more details, refer to WebLogic User's Guide.

After customizing the WebLogic properties, the server can be started and
any client application will be able to use the deployed EJBs.

Customization of WebSphere Properties

To work with EJBs you need installed IBM WebSphere 4.0 server, Java
compiler and configured Database DNS's.

For Entity bean designed with container managed persistence you must
add a connection pool in a server. There are two examples of creating a
pool. The first one is for Oracle database and uses Oracle driver for a
connection pool. The second one uses Modernization Workbench driver
located in the <Modernization Workbench>\RunTime\Java\rwsql.jar.
This driver uses JdbcOdbc bridge to connect Data Source Name (DSN)
specified in the system.

Example 1

1 Start server.

2 Start console.

3 Switch to Resources:JDBC Drivers.

4 Choose Create a New.

• Set some Name of resource.
• Specify Implementation Classname — the Java class name

with ConnectionPoolDataSource interface — Oracle.jd-
bc.pool.OracleConnectionPoolDataSource.

• Specify Server Class Path — the path to JAR files containing
driver classes (for example, d:\Oracle\jdbc\lib\classes12.zip).

• Press OK.

Data Transition
Generating EJB Access Methods

2-29
5 Switch to Resources:JDBC Drivers:<Your new driver
name>:Data Sources.

6 Choose Create a New.

• Set some Name of this resource.
• Set the same JNDI name as a Pool name in generated EJBs.
• Set minimum pool size.
• Set maximum pool size.
• Set timeouts.
• Set default user ID and password.
• Press OK.

7 Go to the Property Set of this new Data source.

8 Add new Property:

• Name = ‘URL’
• Type = ‘java.lang.string’
• Value = connection url (for example, jdbc:oracle:thin:user/pass-

word@host:1521:orcl)
• Press OK.

Example 2

1 Start server.

2 Start console.

3 Switch to Resources:JDBC Drivers.

4 Choose Create a New.

• Set some Name of resource.
• Specify Implementation Classname — javax.rw.RWData-

Source.
• Specify Server Class Path — the path to rwsql.jar file.
• Press OK.

Data Transition
Generating EJB Access Methods

2-30
5 Switch to Resources:JDBC Drivers:<Your new driver
name>:Data Sources.

6 Choose Create a New.

• Set some Name of this resource.
• Set the same JNDI name as Pool name in generated EJBs.
• Set minimum pool size.
• Set maximum pool size.
• Set timeouts.
• Press OK.

7 Go to the Property Set of this new Data source.

8 Add new Property:

• Name = url
• Type = String
• Value = connection url (that is ODBC Data Source name, for ex-

ample, DSND for DB2)

9 Add new Property:

• Name = user
• Type = String
• Value = user name

10 Add new Property:

• Name = password
• Type = String
• Value = user password

11 Add new Property:

• Name = driverclass
• Type = String
• Value = driver class - sun.jdbc.odbc.JdbcOdbcDriver

12 Add new Property

Data Transition
Generating EJB Access Methods

2-31
• Name = subprotocol
• Type = String
• Value = subprotocol - odbc

An Example of Client Program
import javax.naming.*;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.*;

public class Client

{

 static String url = "t3://localhost:7001";

 static String user = null;

 static String password = null;

 public static void println(String S)

 {

 System.out.println(S);

 }

 public static void main(String[] args)

 {

 println("Beginning...");

 try

 {

 Context ctx = getInitialContext();

 BooksHome home = (BooksHome) ctx.lookup("BooksTable");

 Books books;

 if (args != null)

 {

Data Transition
Generating EJB Access Methods

2-32
 switch(args.length)

 {

 case 0:

 {

 println("Fetching all instances...");

 Enumeration e = home.findAll();

 println("Fetching ended...");

 if (e != null)

 {

 while (e.hasMoreElements())

 {

 println("Getting element from enumeration...");

 books = (Books) e.nextElement();

 println("Output element contents...");

 println("" + books.getId() + ", " + books.getAuthor()

 + ", " + books.getTitle());

 books.remove();

 }

 }

 }

 break;

 case 1:

 case 2:

 break;

 case 3:

 println("Creating new instance...");

 books = home.create(Integer.parseInt(args[0]), args[1],

 args[2]);

 break;

 }

 }

 }

Data Transition
Generating XML

2-33
 catch (Exception e)

 {

 println(":::::::::::::: Unexpected Error :::::::::::::::::");

 e.printStackTrace();

 }

 finally { println("End..."); }

 }

 static public Context getInitialContext() throws Exception

 {

 Hashtable h = new Hashtable();

 h.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 h.put(Context.PROVIDER_URL, url);

 if (user != null)

 {

 System.out.println ("user: " + user);

 h.put(Context.SECURITY_PRINCIPAL, user);

 if (password == null) password = "";

 h.put(Context.SECURITY_CREDENTIALS, password);

 }

 return new InitialContext(h);

 }

}

Generating XML

To generate XML from objects of the “DB Schema” type, select Exe-
cute:Generate XML from the Database Schema tool menu, or click the
Execute button and choose Generate XML from a drop-down
menu.

XML file and corresponding schema file will be generated for every ta-
ble from DB Schema. The names of files are formed using the next rule:

Data Transition
Generating XML

2-34
<file-name> = xml + <table-name> + <extension>. For example for ta-
ble “A” there will be generated two files: xmlA.xml and xmlA.xsd.

XML Generation Results

During this process Modernization Workbench generates:

In XML document:

1 A general heading with the XML version and encoding indicated:
<?xml version=“1.0” encoding=“UTF-8”?> - for English
version

<?xml version=“1.0” encoding=“Shift_JIS”?> - for Japanese
version

2 A root element named after this table and consisting of sequence of
elements each of them corresponds to table column. The root ele-
ment has only the one attribute named Comments which contains
comments specified in DBSchema.

Example:

<Table1 Comments=“”>

... //columns go here

</Table1>

3 Sub elements for each column of this table named after this column.

Each element has the Value attribute. If the field has some default value,
then this value will be generated, otherwise it will be made a null string.

Example:

<Table1 Comments=“User comments”>

 <A1 Value=“”/>

 <A2 Value=“”/>

</Table1>

In XML Schema document:

1 A general heading with the XML version and encoding indicated:

Data Transition
Generating XML

2-35
<?xml version=“1.0” encoding=“UTF-8”?> - for English
version

<?xml version=“1.0” encoding=“Shift_JIS”?> - for Japanese
version

2 schema header containing ‘xs’ namespace definition:
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

3 simpleType element with the name SQLType defining SQL types.
This type defines enumeration with the next values: Character, Date,
Time, Float, Real, Double, Integer, LongVarCharacter, Numeric,
SmallInt, TinyInt, Timestamp, VarCharacter, Graphic, VarGraphic
and LongGraphic.
<xs:simpleType name=“SQLType”>

 <xs:restriction base=“xs:string”>

 <xs:enumeration value=“Character”/>

 <xs:enumeration value=“Date”/>

 <xs:enumeration value=“Time”/>

 <xs:enumeration value=“Float”/>

 <xs:enumeration value=“Real”/>

 <xs:enumeration value=“Double”/>

 <xs:enumeration value=“Integer”/>

 <xs:enumeration value=“LongVarCharacter”/>

 <xs:enumeration value=“Numeric”/>

 <xs:enumeration value=“SmallInt”/>

 <xs:enumeration value=“TinyInt”/>

 <xs:enumeration value=“Timestamp”/>

 <xs:enumeration value=“VarCharacter”/>

 <xs:enumeration value=“Graphic”/>

 <xs:enumeration value=“VarGraphic”/>

 <xs:enumeration value=“LongGraphic”/>

 </xs:restriction>

</xs:simpleType>

4 Element description for every table column.

Data Transition
Generating XML

2-36
<xs:element name=“A1”>

Element has the name according to column name and the following at-
tributes:

• Name — character name of the column. This attribute has a string
type.

• Type — type of the column, that can have one of SQL types: Char-
acter, Float, Real etc. This attribute has a SQLType type.

• Length — length of the field. This attribute has a string type.

• Prec — precision. This attribute has a string type.

• Scale — scale. This attribute has a string type.

• Comments — comments entered by the user in the DB schema edi-
tor. This attribute has a string type.

• Value — if the field has some default value, then this value will be
generated, otherwise it will be made a null string. This attribute has
a string type.

Note: Attributes except Comments and Value are fixed.

Note: If two columns in the DB schema have identical names, then
one of those names will be changed (by adding some number
to its end), because XML does not allow non-unique names of
elements.

Example:

 <xs:element name=“A1”>

 <xs:complexType>

 <xs:attribute name=“Name” type=“xs:string”
fixed=“A1”/>

 <xs:attribute name=“Type” type=“SQLType”
fixed=“SmallInt”/>

 <xs:attribute name=“Length” type=“xs:string”
fixed=“0”/>

 <xs:attribute name=“Prec” type=“xs:string”
fixed=“0”/>

Data Transition
Generating XML

2-37
 <xs:attribute name=“Scale” type=“xs:string”
fixed=“0”/>

 <xs:attribute name=“Comments” type=“xs:string”
default=“”/>

 <xs:attribute name=“Value” type=“xs:string”
default=“”/>

 </xs:complexType>

 </xs:element>

5 Root element description. This element has the same name as a ta-
ble.

Description of this element consists of sequence of references to subele-
ments. Each element represents table column.

 <xs:element name=“Table1”>

 <xs:complexType>

 <xs:sequence minOccurs=“0” maxOccurs=“unbounded”>

 <xs:element ref=“A1”/>

 <xs:element ref=“A2” minOccurs=“0”/>

 </xs:sequence>

 <xs:attribute name=“Comments” type=“xs:string”
default=“”/>

 </xs:complexType>

 </xs:element>

The sequence may not occur. This is identified by minOccurs and
maxOccurs attributes.

Elements corresponded to columns that are not a part of a primary key
or unique index may not occur. This is identified by minOccurs attribute
in element reference.

Also the root element has attribute named Comments and a string type.
This attribute has default value specified in DBSchema.

Data Transition
Exporting Source Files

2-38
Exporting Source Files

When you have generated the new access methods or DDL statements,
you can export them out of the repository. This makes them available to
your development environment.

To export source files:

1 Select the access method that you want to export (Figure 2-17 on
page 2-38).

2 Right-click to display the pop-up menu, and select Export

Note: Click View to view the generated object in text form.

Figure 2-17 Select the item to export

3 Select a directory and click OK. To move the files instead of copy-
ing them, check the Move Files check box (Figure 2-18).

Data Transition
Exporting Source Files

2-39
Figure 2-18 Select a directory for exported files

Data Transition
Exporting Source Files

2-40

3-1
3
Interface Transition
he Interface Transition phase lets you analyze the interaction
among programs, maps, and screens (and COBOL copybooks
in COBOL projects), and also find all events that may occur on

a mainframe 3270 panel. The outputs from the Interface Transition phase
are interfaces that you can implement in Java or HTML.

The Interface Transition phase enables you to edit the window flow to
transfer your legacy application’s 3270 interface to a new type of inter-
face. While editing, you can change which events cause windows to be
displayed, change the appearance of the interface, and emulate it. Once
you are satisfied, you generate the new interfaces. Finally, you export the
model of your interface to an external directory.

A window flow is edited with the help of User Interface tool. When you
start this tool, it first scans the maps and screens, programs, COBOL
copybooks (for COBOL projects) to find the events inside the legacy
code that define the interactions between screen objects and the program
logic. This action adds your legacy application interface data to the win-
dow flow.

T

Interface Transition3-2
Then, based on the discovered events, User Interface creates emulated
window views for the programs. Using this tool, you can change the win-
dow flow and add buttons, menu options, and different text.

Events can be added to the new interface in the following ways:

• Programmatically

Modernization Workbench determines the mapping between the
field in the screen and the field in the program, then finds all the oc-
currences of that field in the program. This occurs during the Event
Mining.

• Manually associating fields and events

If the field in the legacy program that maps directly to the field in the
screen is not the one that gets tested because it is assigned to another
field, you can add an event-sensitive data item to the field in the
screen that is tested.

• Manually adding new events

If you want to add new events that did not appear in the legacy sys-
tem, you can go directly to the screen and add events. These events
have no associated fields in the legacy system but will appear in the
new system.

Starting User Interface Tool

To start the User Interface tool, click Transform:User Interface or
click the User Interface button on the Modernization Workbench
main toolbar. The User Interface tool main window (Figure 3-1 on
page 3-3) is displayed.

Interface Transition 3-3
Figure 3-1 User Interface Tool Main Window

At this point, you may name your screens following the recommenda-
tions of the “Naming the Screens” section below.

Setting User Interface Options

User Interface options specify import and generation operations for the
User Interface Transition tool.

To set User Interface options:

1 In the View menu, choose Options. The Options window is dis-
played.

2 Click the Import tab (Figure 3-2 on page 3-4).

Emulated 3270 panel

Note

This tab is COBOL-specific and so you should use only the next tabs
to set PL/I options.

Interface Transition3-4
• Field Matching panel

• Starting screen field — indicate the first field you want to
map.

• Starting copybook field — indicate first field in the COBOL
copybook that BMS maps match.

• Period in copybook — the number of fields in a COBOL
copybook group. Each item in a BMS map matches a group
of fields in the COBOL copybook.

• Restore Import Defaults — click button to restore Moderniza-
tion Workbench defaults.

Figure 3-2 Project Options — User Interface:Import

3 Click the Generation tab (Figure 3-3 on page 3-5).

Select the type of generation that you want to set options for from
the available types in the left-side panel.

• HTML — Generate Servlet (Figure 3-3 on page 3-5)

By default it is set to off (unchecked). If you want to generate
standard servlets providing user’s access via Internet to the trans-
formed interface (and written in Java), click the option’s check-
box to display a checkmark (on). For more details on generating

Interface Transition 3-5
Java servlets refer to “Generating Java Servlets for HTML” on
page 3-36.

Figure 3-3 Project Options — User Interface:Generation:HTML

• Java (Figure 3-4 on page 3-6)

• Generate Intermediate Container (JPanel) — By default it
is set to off (unchecked). If you want to generate JPanels,
click the option’s checkbox to display a checkmark (on).

• Generate JBuilder project — By default it is set to off (un-
checked). If you want to generate a JBuilder project, click the
option’s checkbox to display a checkmark (on).

Interface Transition3-6
Figure 3-4 Project Options — User Interface:Generation:Java

• Restore Generation Defaults — click button to restore Modern-
ization Workbench defaults

If you do not want to change any of the settings, click Cancel to discard
any changes and return to the main Modernization Workbench window.
Otherwise, change the settings as necessary, click Apply to save settings
and keep the window open or click OK to save the changes and return to
the main Modernization Workbench window.

Navigating the panes of the User Interface Tool Window

The User Interface tool window can be divided into three different
panes. Moreover, the Activity Log can be displayed in this window. You
can reduce the number of panes in the window by hiding them, as well
as restore any pane by displaying it again. You can also rearrange the
panes within the window as you want. Figure 3-1 shows the window
with all the panes and Activity Log. The panes are:

• Event Explorer pane

In Figure 3-1 on page 3-3, this is the left pane. You can display/hide
it by selecting View:Event Explorer from the menu.

The Event Explorer pane is the leading pane of the User Interface
tool window. However, the Diagram Pane, described below, can also

Interface Transition 3-7
be a leading window. The display in the other panes depends on what
you select in the hierarchy (event tree) drawn by the Explorer. The
hierarchy levels for COBOL projects in the Event Explorer pane
are:

1 BMS maps (these correspond to 3270 panels), MFS maps and AS
400 screens

2 COBOL programs (if available; otherwise, just the “Fields” group
label)

3 Screen fields

4 COBOL fields (data items; these correspond to fields on the screen)

5 Events

Note: The last two levels are displayed only if the corresponding
COBOL program is available.

Note: MFS and DPS maps can be displayed in the same way as
BMS maps or AS 400 screens, including the fields highlight-
ing/selection, but no other actions described below are cur-
rently supported for MFS or DPS maps.

Note: You can right-click on any of the items in the hierarchy to dis-
play context-sensitive pop-up menus, which are always cop-
ied by the main Action menu.

• Source pane

In Figure 3-1 on page 3-3, this is the right upper pane. You can dis-
play/hide it by selecting View:Source from the menu.

The display in the Source pane depends on what you select in the
Event Explorer pane:

• A topmost-level selection (map) shows you the emulated screen,
which is a visual display of the map, with the selector positioned
in the first line (as in Figure 3-5 on page 3-11)

• A second-level selection (source COBOL program, if available),
shows this program’s code in HyperView, with the selector indi-

Interface Transition3-8
cating the statement that relates to this map, as in Figure 3-5 be-
low (selecting the “Fields” group label on the second level does
not change the display at all)

• A third-level selection (field) shows the emulated screen for the
map, with the selector positioned on this field

• A fourth-level selection (COBOL variable) shows the source
program code, with the selector positioned on the declaration of
this variable

• A bottom-level selection (event) shows the source program code,
with the selector positioned on the code line corresponding to this
event

• Diagram pane

In Figure 3-1 on page 3-3, this is the right lower pane. You can dis-
play/hide it by selecting View:Diagram from the menu.

Two different views are provided for the Diagram pane:

• Current

This view is set by checking Current window, unchecking
Whole diagram in the Diagram menu, or by clicking the Cur-
rent Window Links button on the toolbar (each of these im-
mediately switches the other two).

In this view, the pane contains the object for a map as it appears
in the window flow diagram.

No modes or tools specific for the Diagram pane are provided in
the Current view.

• Diagram

This view is set by checking Whole diagram, unchecking Cur-
rent window in the Diagram menu, or by clicking the Window
Flow Diagram button on the toolbar (each of these immedi-
ately switches the other two).

In this view, the whole window flow diagram is displayed (if any
part of the diagram is not seen immediately, you can always
scroll the pane to it).

Interface Transition 3-9
The window flow diagram consists of map rectangles and direct-
ed event lines that connect some of them (characterization of the
corresponding event is provided near each line). The current (se-
lected map’s) rectangle casts a shadow and, thus, is always dis-
tinguishable in the diagram.

Note: Event lines in a window flow diagram are drawn only for
those events which you have created yourself, as described
below. The events originally existing in your window flow are
not reflected in the diagram.

When you click any rectangle it becomes the current one. It im-
mediately appears selected as the topmost item in the Event Ex-
plorer pane. The display in the Source pane also switches to the
corresponding screen. Thus, the Diagram pane in the Diagram
view is the second leading pane of the User Interface window.
For the purpose of controlling your navigation within the win-
dow flow, sometimes it may be convenient to alternate between
the Diagram and Event Explorer panes.

For rearranging the diagram, you can manually select the rectan-
gles in the diagram and drag them to other locations in the pane.
To do so, click on a rectangle, then hold down the mouse button
(you can use either mouse button) while you drag the rectangle
to its new location. Modernization Workbench redraws the event
lines automatically. You can also drag a line or its segments in a
similar way: where ever you place a line, it will always connect
the same two rectangles. In addition, you can resize a rectangle
as you like by dragging any of its sides in the same manner.

Note: For editing a diagram, you can click the Edit diagram
button on the Diagram pane’s toolbar. As a result, the Dia-
gram Editor window will be displayed.

If you move the items and then decide that you want
Modernization Workbench to realign the diagram, select
Diagram:Auto place in the menu.

Interface Transition3-10
You can also zoom your diagram by selecting a desired scale with
the help of the zoom slider on the Diagram pane’s toolbar or by
clicking the Normal Zoom button.

Working with User Interface Tool

To proceed with editing your window flow:

1 Click on the plus sign (+) next to a BMS map (for example,
GSS1003 — see Figure 3-5) in the hierarchy to see the COBOL pro-
grams that receive the map.

For this application, there is a COBOL program named GSS. Note
the name “via GSS1003I”. That means this COBOL program re-
ceives this map in an area that has 01-level in the COBOL working
storage called GSS1003I.

2 Click a COBOL program to display its source code. The selected
COBOL program in Figure 3-5 on page 3-11 is “GSS via
GSS1003I,” which means the COBOL program GSS receives this
map in an area that has 01-level in the COBOL working storage
called GSS1003I. The cursor is positioned at the RECEIVE state-
ment in the code, which shows you where the COBOL program re-
ceived the BMS map in the code.

3 (does not apply to AS400) Right-click on the COBOL program to
display the pop-up menu and select View INTO Record. This repo-
sitions the cursor in the source code to the area where the COBOL
program receives data (Figure 3-6 on page 3-12).

Note: The RECEIVE statement is in the Procedure division. The
data is in the working storage.

4 Click the plus sign (+) next to a COBOL program in the hierarchy to
display the screen fields.

Note

These actions are available only for COBOL projects.

Interface Transition 3-11
5 Click on a screen name in the hierarchy. This positions the cursor
and highlights the field in the emulated screen (Figure 3-7 on
page 3-12).

6 Click on a COBOL field in the hierarchy to display the associated
source code (Figure 3-8 on page 3-13).

Figure 3-5 COBOL Program and RECEIVE Statement

Interface Transition3-12
Figure 3-6 COBOL Program and Area where Data Is Received

Figure 3-7 COBOL Field and Associated Location in the 3270 Panel

Interface Transition 3-13
Figure 3-8 COBOL Field and Source Code

Some data items have attributes that contain conditions. In general,
these conditions are testing for user-initiated events. For conve-
nience, we call these conditions events.

7 Click on one of these events to position the cursor in the source
where the condition occurs (Figure 3-9).

Interface Transition3-14
Figure 3-9 Event Condition and Source Code where Condition Is Checked

Examples of events are: pressing the Clear key, pressing the F3 key,
pressing Enter, and so on. The COBOL program has code for these
events. Event mining discovers these events and what happens when
they occur.

8 To display the window flow for the project, select the Whole dia-
gram view of the Diagram pane and then arrange the window flow
diagram in that pane as you need. How exactly you can do this, is
described in “Diagram pane” on page 3-8. If the diagram is big, then
you can switch off the other panes (see page 3-6) and zoom the dia-
gram to fit in the whole User Interface window (Figure 3-10 on
page 3-15).

Interface Transition 3-15
Figure 3-10 Window Flow Diagram before Editing Flow

The diagram shows the screens. After you edit the window flow, the
new flow (event) relationships in the map are displayed in the dia-
gram, too.

9 To browse the records and data items in the COBOL programs (and
included copybooks), select File:Inspect Data or click the View
application data button on the toolbar. The Inspect data window
(Figure 3-11 on page 3-16) is displayed.

The Inspect data window can show you the data in two views:

• Event sensitive items

In this view, the window displays the following three-level hierar-
chy:

1. COBOL programs or copybooks

2. Event-sensitive COBOL fields (variable declarations)

3. Events

Interface Transition3-16
(An event-sensitive field is a node where the program determines
what to do with a user request such as an event displaying another
window. The COBOL program checks an event-sensitive field to de-
termine what the user wants to do.)

Figure 3-11 Inspect Data Window

• All items

In this view, the window displays a hierarchy, whose upper level lists
COBOL programs and copybooks. The branches descending from
each upper-level object represent the source COBOL data structure
within the object, with all the levels defined for this structure.

The Inspect data window works in tandem with the Source pane of the
User Interface window (even though the latter is disabled while the dia-
log box is on the screen). A selection made in the Inspect data window’s
hierarchy shows you the related part of the code in the Source pane. The
selector is positioned on the beginning of the program or copybook, on
the variable declaration of the corresponding level, or on the event, de-
pending on what you selected. To be able to scroll the code in the Source

Interface Transition 3-17
pane or move/resize the User Interface window, exit the Inspect data
window.

To browse your data in the Inspect data window:

1 Select the name of a COBOL program in the drop-down list.

2 Depending on the desired view, make sure to have selected one of
the two provided tabs, named after the two views available:

• Event sensitive items
• All items

3 In the tree, click any boxes with the plus sign (+) to expand the
branch(es) you are interested in.

To collapse any branch, click the corresponding box with the minus
sign (–).

4 Select any item to view the related code in the Source pane. Repeat
this for all items which you want to see in the code.

5 After browsing the data, click Close to exit the Inspect data window.

Naming the Screens

Before you begin working with the window flow, give meaningful
names to all of the screens in your application. Otherwise, it is difficult
to determine the connections among windows.

To name the maps, do the following:

1 (optional) We recommend that you base the name of your map on
the title of the window.

2 Right-click on the map name in the Event Explorer pane to display
the pop-up menu and select Describe map..., or select the same-
name item in the Action menu, or click the Describe map button
on the toolbar. A dialog box (Figure 3-12) is displayed.

Interface Transition3-18
Figure 3-12 Pasting or Typing New Name

3 Type a description. You can also use the standard Edit pop-up menu,
opened by a right-click.

You can change the pasted text. For example, panel titles are often
in all uppercase letters, so you can retype the text to make it mixed
case.

4 Click OK. The description appears in the first column next to the
map (Figure 3-13).

Figure 3-13 Description Added to a Map

5 Repeat this procedure to name all the maps.

Setting the Startup Map

By default, the startup map during emulation is the current map or the
first map in the list of maps. To specify which map to use as the startup
map:

1 Select a map in the hierarchy on the left of the window.

2 Right-click and select Declare as startup map from the pop-up
menu, or select the same-name item in the Action menu, or click the
Declare as startup button on the toolbar.

The name of the new startup map in the Event Explorer hierarchy, as well
as the corresponding window flow object in the Diagram pane, turn red.

Interface Transition 3-19
Editing Events

Modernization Workbench found events during event mining. An event
is a place in the code where the program tests a field related to the screen
(an IF statement). Based on the test, the program branches one way or
another. If the branch causes a different window to be displayed, it is a
screen event. For all screen events, you add the links to other windows
in the flow.

At the interface level, events are actions that cause a new window to be
displayed. Pressing a key such as F3 or Enter, clicking a button, or se-
lecting a menu item are examples of events. When you edit events, you
add controls to the window, such as buttons, and you specify which win-
dow is displayed (for example, pressing F3 opens window X). These
links between windows are displayed in the window flow diagram.

To edit an event:

1 Select an event from the hierarchy.

2 Right-click and select Edit event from the pop-up menu, or select
the same item in the Action menu, or click the same button on
the toolbar. The Event Editor window (Figure 3-14 on page 3-20) is
displayed.

The condition for the event appears in the Condition field, and the
default name of your New Item in the Caption field. This name also
appears selected at the end of the list in the Menu pane, which is on
the window’s bottom.

In Figure 3-14 on page 3-20, the event occurs on the 3270 panel
when the user types IA.

3 The fields in this window determine the user actions that display a
new window in the new interface you are building. Use the upper
fields of the window to specify any of the following controls for the
event:

• Menu item (Caption text field)

In this field, type the name (caption) for your new menu item
which should activate the event. By default the field contains the

Interface Transition3-20
standard name “New Item”. As you edit the item selected in the
Menu pane, its display changes accordingly.

• Condition (Condition text field)

Edit here the programmatic condition that triggers the event. By
default, the original condition for this event is provided.

• Button (Button text field)

In the field, type the text to appear on your new button that acti-
vates the event.

• Shortcut (Shortcut drop-down list)

In the drop-down list, select the shortcut to trigger this event from
the keyboard. By default, “None” (no shortcut) is selected.

In Figure 3-14, the control is a button identified as “New Standard
Activity.”

Figure 3-14 The Event Editor Window

4 In the Target Window drop-down list, select the window that is dis-
played when the event occurs. In Figure 3-14, when the user presses
the NSA button, the window named GSS1004 is displayed.

Interface Transition 3-21
In addition to the windows from your legacy application, Modernization
Workbench adds (on top of the drop-down list) the following choices for
all applications:

• *END* exits the entire program,

• *UNLOAD* closes the current window and returns to the previous
window,

• *VOID* is an event that may trigger some internal process, but does
not lead to another window, and

• *HELP* displays your online help, if there is any.

To determine which window should be displayed, analyze the source
code. In particular, look for SEND MAP statements in the COBOL
program (Figure 3-15).

Figure 3-15 Analyzing the Code to Find the Next Window

5 Check or uncheck the Modal check box to make the displayed win-
dow modal or modeless. Modeless windows allow the user to select
other windows in the interface while the window is displayed. Use
modal windows for error messages and other windows that require

Interface Transition3-22
a user action, such as selecting Cancel, before the user can select any
other windows.

6 In the Action field, specify the associated action to be called in re-
sponse to this event.

7 You can specify a parent menu for your new item. The Menu pane,
which is actually a two-level hierarchy (parent menus and indepen-
dent items on the top level and menu items on the second one), helps
you do this in a convenient way.

To create a new menu for this purpose, click the New Group button.
The default name of your New Group (menu) appears in the Cap-
tion field. It also appears selected above the previously selected item
(so that no other menu separates them) in the Menu pane. (The menu
names are always bold type.) You can also use an existing menu if
you have specified one before for any previous items. To specify a
menu as a parent of the item, make sure to position the latter under
the former (so that no other menu could separate them) in the Menu
pane and to set the item as a second-level one by shifting its name in
the pane to the right. You can do all this by selecting corresponding
names in the Menu pane and moving them there with the help of the
“up”/ “down” and “right” arrow buttons.

You can always delete any menu by selecting its name in the Menu
pane and clicking the Delete Group button. You can as well restore
any item to the top level by shifting it back to the left with the help
of the “left” button (by this you make the item independent of any
menu).

Note: If you delete a menu, you should restore to the top level all its
former items. If you restore to the top level of items of some
menu, you should delete this menu. If you create a menu, you
should include at least one second-level item. If you move any
item to the second level, you should include it in at least one
menu. It is not possible to leave “orphaned” second-level
items and “childless” menus in the pane. This is incorrect, and
you will receive an error message after you click OK.

Interface Transition 3-23
8 Click OK to save your changes (or Cancel to discard them) and exit
the Event Editor window.

The edited event is displayed under the COBOL field (data item) in the
hierarchy on the left and as a link leaving the window flow diagram at
the lower right portion of the window (Figure 3-16 on page 3-23).

Figure 3-16 Edited Event

9 To test the new button on the emulated Visual Basic window, select
Action:Emulate in the menu or click the Emulate window flow

 button on the toolbar (Figure 3-17 on page 3-24).

10 To see how the emulated windows flow, click the new button. For
example, clicking the New Standard Activity button in Figure 3-17
on page 3-24 displays window GSS1004 (Figure 3-18 on
page 3-24).

Edited event

Event displayed as
a link

Interface Transition3-24
Figure 3-17 New Button on Emulated Window

Figure 3-18 Viewing the Next Window in the Flow

Interface Transition 3-25
Editing an Event to Flow Back to the First Window

Often, when you edit an event for one window to link to a second win-
dow, you want to link back to the first window. For example, you might
want the interface to return to the first window after the user exits the
second window.

To edit the window flow to return to the first window:

1 In the hierarchy, find the map for the second window. For example,
selecting the New Standard Activity button on window GSS1003
(Figure 3-17 on page 3-24) causes window GSS1004 to be dis-
played. Find GSS1004 in the hierarchy.

2 To add a link back to window GSS1003, select the event under
GSS1004 that displays the previous window. In Figure 3-19, that
event occurs when the user presses the PF3 key in the 3270 inter-
face.

Figure 3-19 Select the Event that Displays the Previous Window

Interface Transition3-26
3 Right-click the event and select Edit Event from the pop-up menu.
The event from the COBOL program (pressing the PF3 key) appears
in the Condition field (Figure 3-20 on page 3-26).

Figure 3-20 Adding a Shortcut and a Menu Item for an Event

4 In the upper fields, choose the options that you want in the new in-
terface. For example, in Figure 3-20, the new window is displayed
by pressing F3.

5 From the Target Window drop-down list, select the name of the
window to be displayed when the event occurs. In Figure 3-20, the
GSS1003 window will be displayed.

6 In the Action field, specify the associated action to be called in re-
sponse to this event.

7 Click OK.

The diagram pane shows that window GSS1004 now has a flow going
back to GSS1003 (Figure 3-21).

Interface Transition 3-27
Figure 3-21 Bidirectional Window Flow

8 Close the Window Flow Diagram window.

9 Select Action:Emulate in the menu or click the Emulate window
flow button on the toolbar. The emulated Visual Basic window
(Figure 3-22) is displayed.

Figure 3-22 Emulated Menu and Function Key on GSS1004 Window

10 To test the flow, select My Menu:GoBack or select the emulated F3
key. The GSS1003 window is displayed.

Interface Transition3-28
Adding an Event-Sensitive Data Item

An event-sensitive field is a node where the program determines what to
do with a user request such as an event displaying another window. The
COBOL program checks an event-sensitive field to determine what the
user wants to do. For example, suppose your application has a panel
where users enter customer information. There are two fields:

• In first field, users enter the customer name.

• In the second, users enter A to add a customer or B to delete a cus-
tomer.

The field where users enter the customer name is not an event-sensitive
field. Users enter some data there when adding or deleting a name. Only
the field that adds or deletes the customer is event-sensitive.

In some cases, Modernization Workbench does not find all the events for
a field because it found no conditional test (IF statement). If you know
that a field is event-sensitive or you want to define an event for a field,
evaluate the COBOL code to determine which data items you need to
add. The data items you add must have associated events that result in a
different panel being displayed.

There can be event-sensitive fields that are hidden. A list of fields in a
hierarchy is shown in Figure 3-23.

Interface Transition 3-29
Figure 3-23 Fields in the GSS COBOL Program

Notice that most of the fields in Figure 3-23 have names like USER,
FUNCTION, and so on. There are also two special fields that are en-
closed in quotation marks:

• EIBAID receives the value of the key that the user presses when the
map is displayed on the screen.

• EIBCPOSN receives coordinates of the cursor on screen when the
user presses a key while the BMS map is displayed on the screen.
This field is an event-sensitive field in all BMS maps.

Unlike the other fields, these two fields do not appear in the emulated
3270 panel. They appear only in the COBOL program. However, these
fields are very important for the interaction between the map and the pro-
gram. Modernization Workbench automatically inserts these two fields.

All BMS maps use the EIBAID field. If a plus sign (+) is displayed be-
side EIBAID, then Modernization Workbench found events that are as-
sociated with this field. However, if there is no plus sign, then
Modernization Workbench did not find events for this field. That occurs

Interface Transition3-30
when the program moves EIBAID to a field and then checks that field
instead of checking EIBAID directly. So, when Modernization Work-
bench checks which conditions are tested on “EIBAID,” nothing is dis-
covered. The check is being done on another field. Such fields are, in
effect, hidden event-sensitive fields. When this occurs in the COBOL
program, EIBAID has no plus sign beside it (no events). You must deter-
mine what the events should be and add them to declare that field as
event-sensitive. To determine which field the COBOL program checks
for the cursor position, look in the source code to see where the program
moves “EIBAID.”

To add an event-sensitive data item:

1 Right-click on the field that is missing data items (Figure 3-24 on
page 3-31) to display the pop-up menu.

2 Select Add Event Sensitive Data Item from the pop-up menu. The
Add event sensitive data item window (Figure 3-25 on page 3-31) is
displayed.

3 Select the data item you want to add to the field and click the Select
button.

The new event appears in the hierarchy (Figure 3-26 on page 3-32).

Interface Transition 3-31
Figure 3-24 Select a Field

Figure 3-25 Select Event Sensitive Data Item Window

Right-click
on field

Select an event

Interface Transition3-32
Figure 3-26 Event-Sensitive Data Item Added to Field

Adding a New Event to a Window

In some cases, you may want to add events to your new interface that did
not exist in the legacy system. For example, you may want to add new
events for your windows to display online help windows.

To add a new event:

1 Select a map from the hierarchy.

2 Right-click to display the pop-up menu and select Add Event. The
Add event window (Figure 3-27 on page 3-33) is displayed.

3 Type a description of the event in the Condition field. This descrip-
tion is displayed in the hierarchy at the left of the User Interface win-
dow after clicking OK.

4 Select the key, button, and menu controls you want to use. For ex-
ample, to display a help window when the user presses F1, select the
Shortcut drop-down list (Figure 3-27 on page 3-33) and choose F1.

New event

Interface Transition 3-33
Figure 3-27 Adding an Event to Display a Help Window

5 Select a window from the Target Window drop-down list. In addi-
tion to the windows from your legacy application, Modernization
Workbench adds the following choices for all applications:

• *END* exits the entire program.
• *UNLOAD* closes the current window and returns to the previ-

ous window.
• *VOID* is an event that may trigger some internal process, but

does not lead to another window.
• *HELP* displays online help.

6 In the Action field, specify the associated action to be called in re-
sponse to the new event.

7 Click OK. The new event is displayed in the hierarchy.

8 Select File:Emulate to see the changes to the interface resulting
from adding a new event. An emulated F1 key is shown in
Figure 3-28 on page 3-34.

Interface Transition3-34
Figure 3-28 Emulated F1 Key on Window

If you select the emulated F1 key, a window representing online help
(Figure 3-29) is displayed.

Figure 3-29 Emulated Help Window

Deleting a Data Item

If you want to delete a data item from the window hierarchy (for exam-
ple, if you added an incorrect event-sensitive data item), right-click on
the data item you want to delete. Select Delete dataitem from the pop-

Interface Transition
Generating Target Code

3-35
up menu that is displayed or click the Delete data item button on the
toolbar.

Generating Target Code

Use the specification of the window flow diagram to generate a target
interface which is a group of generated files for a single kind of output,
such as HTML. You can generate the following types of output:

• HTML

• Java

To generate the target code Select File:Generate:Generate <code
type> from the menu or click the triangle next to the Generate but-
ton and select the code type from the drop down menu.

Modernization Workbench generates the new code for your application
and adds a new object in the current project’s Target Interface folder. The
object’s name is the name of the current project with a suffix indicating
the target code type (Figure 3-30).

Figure 3-30 Target Interface Model

To view the code, right-click on a target interface and select View from
the pop-up menu or double-click. This displays a window that lists all the
generated source. To view the source file, double-click on it or right-
click and select Open from the pop-up menu.

Interface Transition
Generating Target Code

3-36
Note: To view a transformed window, a third party application will
have to be installed on the target machine.

Generating Java Servlets for HTML

To generate Java servlets for screens in a window flow, which is being
converted to HTML, execute the Generate HTML action with the Gen-
erate Servlet option set to on, as described above. This results in gener-
ating for each BMS\AS400 screen a pair of files:

• <Screen name>.html (target HTML screen);

• <Screen name>.java (servlet file).

Note: Some actions that you have added to the window flow when
editing it (like calling other screens from a given one) may not
be recognized by the corresponding servlet, if you do not
make proper changes in the HTML code.

The servlets can then be installed on your server and provide user's ac-
cess to target HTML screens, showing them via Internet. This is all that
the generated servlets can do originally: they are templates for real serv-
let application and one has to add an additional servlet code to meet any
particular needs.

To enable a servlet, it is necessary to add to the servlet.properties file the
following line of code:

'servlet.<ServletName>.initArgs=htmlLocation=<directory
for html file>'.

The directory pathname should end with slash (‘\’).

Note: All slash (‘\’) symbols in the directory pathname should be
doubled (‘\\’) to avoid confusing them with the line
continuation symbol.

An example of Modernization Workbench-generated servlet code for the
screen named NCPSRTSM is as follows:

// Generated on Wed Dec 19 17:21:22 2001

// File: GSS1003.java

Interface Transition
Exporting Source Files

3-37
import javax.servlet.http.*;

import javax.servlet.*;

import com.relativity.rescuent.servlet.*;

import java.io.*;

public class GSS1003 extends FileServlet {

 public void service

 (HttpServletRequest req, HttpServletResponse res)

 throws IOException

 {sendHtml(res,null);

}

Exporting Source Files

After you generate the code, you export the files to an external directory.

To export the target interface model:

1 Right-click the target interface you want to export.

2 Select Export from the pop-up menu or click the Export button
on the Target View toolbar. The Export object window
(Figure 3-31 on page 3-38) is displayed.

3 Select a directory.

You can either copy or move the files to the directory. By default,
Modernization Workbench copies the files. If you want to move the
files (copy them and then delete them from your project’s directory),
select the Move check box.

4 Click OK

Interface Transition
Exporting Source Files

3-38
Figure 3-31 Selecting Directory for Export

A-1
A
Data Access Object Support
(CRUD Runtime Facilities)
he Modernization Workbench provides Data Access Object
(DAO) support for Java.

DATAX Modernization Workbench: ActiveX Interface Description

Interface ITable: IDispatch

Properties:

• DSN: the ODBC data source name

• TableName: the name of table in the data source

• User: user name

• Password: user password

• DBMS: target DBMS (Data Base Management System)

• Debug – to enable/disable debug output in console

T

T E C H N O L O G I E S

Data Access Object Support (CRUD Runtime Facilities)
DATAX Modernization Workbench: ActiveX Interface Description

A-2
• LastError – string representation of last error

Methods:

• Init: initialization

• GetEmptyRow—creates new object to handle table record, returns
its IRow interface pointer

• Insert: insert record

• Update: update records

• Delete: delete records

• Select: single class selection

• OpenCursor: open cursor for the table

• OpenCursorEx: open cursor for the record set

Interface IRow : IDispatch

Properties:

• SchemaPtr: interface to the external database schema ISchema in-
terface (Modernization Workbench ODBC Schema component)

• TableName: table which owns the row

• FieldsCount: count of fields in the row

• EmptyFlag: flag to specify empty rows

Methods:

• Init: initialization

• Clear: clear contents

• Copy: copy the contents from another row

• Clone: create a copy of the row

• SetFieldValue: set value for the specified field

• GetFieldValue: get value from the specified field

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-3
Interface IScrollCursor: IDispatch

Properties:

• There are no properties for this interface.

Methods:

• Scroll: fetch the next row in the record set

• GetCurrentRow: get the row at which the cursor is positioned

• DeleteCurrent: delete the records in the table, as does COBOL DE-
LETE WHERE CURRENT OF

• DeleteCurrent: update the records in the table, as does COBOL
UPDATE WHERE CURRENT OF

Java Support for Data Access Objects

Java support for Data Access Objects (DAO) is implemented by the Java
CRUD Runtime library.The library consists of several classes designed
to simplify the work with such data structures as database tables, cursors,
and others. All classes are implemented in the Java package by their
DAO names.

The following classes are in the DAO package:

• CRUDCell

• CRUDColumn

• CRUDRow

• CRUDTable

• CRUDCursor

• CRUDTypes

• CRUDException

• CRUDConstants

• CRUDMessages

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-4
In the target classes generated for a particular SQL table, you would not
see all of the methods. There are inherited classes, specific for the table.
A more detailed description of the base DAO classes is given below.

CRUDCell Class

The Cell class corresponds to the abstract notion of a table cell and has
the suitable members and methods.

Members:

There are not the public members for this class.The only means to get/set
the data is by a method call. For this reason the data members are de-
scribed with their get/set methods.

• String name: the name of the table column for which the Cell is cre-
ated

• String getName(): the method to get String name’s value

• int type: the SQL type of the corresponding column, in terms of the
constants described in the CRUDTypes class

• int getType(): the method to get type

• boolean empty: the ‘empty flag’ shows if there is any value in the
inner buffer of the Cell. Modernization Workbench checks whether
the Cell instance contains any value.

• boolean isEmpty(): allows Modernization Workbench to look at the
‘empty’ from outside

• boolean nullable: the ‘nullable flag’ shows if the corresponding ta-
ble column can contain the NULL value. This flag is being checked,
for example, when you want to submit an INSERT statement with
values for some columns unspecified.

• boolean isNullable(): allows Modernization Workbench to look at
the ‘nullable’ from outside

• boolean blank: the ‘blank flag’ shows if the cell contains the NULL
value. Because of the NULL value being a specific value, this flag
is different from the ‘empty flag’.

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-5
• boolean isNull(): allows Modernization Workbench to look at the
‘blank’ from outside

Constructors:

• CRUDCell(String name, int type, boolean nullable): constructs
the cell for the column with name and type transmitted, and the
‘null’ parameter, which shows if the cell allows the NULL value.

Methods:

• void setString(String val): method to fill the buffer with a non-null
string value

• String getString(): method to get the string representation of the
buffer contents. Empty string will be return, if buffer is empty.

• void load(String val, boolean blank): method that loads a particu-
lar value into the inner Cell buffer. The parameter ‘blank’ allows
Modernization Workbench to load the NULL value. Because the
Java language does not have the NULL value for all its types, such
as the ‘int’ type, Modernization Workbench uses a new parameter to
resolve this issue.

• void clear(): sets the cell contents to the empty state

• void setNull(): sets the cell contents to the null state

• void setInt(int i): sets the value from an integer

• setShort(short s): sets the value from an integer

• void setDouble(double d): sets the cell from a Double value

• void setFloat(float f): sets the cell from a Float

• void setBoolean(boolean b): sets the cell from Boolean

• void setByte(byte b): sets the cell value from Byte

• void setLong(long l): sets the cell from Long value

• int getInt(): gets the cell value as integer

• short getShort(): gets the cell value as short

• double getDouble(): gets the cell value as double

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-6
• float getFloat(): gets the cell value as float

• boolean getBoolean(): gets the cell value as a boolean

• byte getByte(): gets the cell value as a byte

• long getLong(): gets the cell value as a long

Class CRUDTypes

This class serves as the container for the ‘type’ constants necessary for
DAO. It was designed in the JDBC style, because the SQL ‘type’ con-
stants are declared in a similar way.

Members:

Public (final static) members in the class implementation are constituted
by the following constants:

• int BIT

• int TINYINT

• int SMALLINT

• int INTEGER

• int BIGINT

• int FLOAT

• int REAL

• int DOUBLE

• int NUMERIC

• int DECIMAL

• int CHAR

• int VARCHAR

• int LONGVARCHAR

• int DATE

• int TIME

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-7
• int TIMESTAMP

• int BINARY

• int VARBINARY

• int LONGVARBINARY

• int NULL

• int OTHER

• int DATE_TYPE

• int TIME_TYPE

• int TIMESTAMP_TYPE

Note: It is presumed that all the SQL types available are covered by
this types set. This class does not have instances.

Class CRUDConstants

This class serves as the container for others constants necessary for
DAO.

Class CRUDMessages

This class serves as the container for the CRUD messages.

Class CRUDException

This class extends the standard SQLException class. This class is neces-
sary because all SQL exceptions are also exceptions according to
CRUD, but not all exceptions, which appear as such from the CRUD
point of view, are SQL exceptions. More exactly, the CRUD routines
have a higher level than SQL, CRUD being a superstructure for JDBC.
Because users would usually require the high-level error messages,
CRUDException class is designed to work at the CRUD level.

Members:

This class has no data members.

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-8
Constructors:

• CRUDException(String reason)

These constructor are not smart and just recall the corresponding con-
structors from the super class.

Methods:

• void handler(CRUDException ex): a default handler that reads the
whole exceptions chain and prints the detailed messages from each
exception. Use this handler method to debug your application or as
a default handler in the ‘catch’ part.

Class CRUDRow

This class represents a real SQL table row. This class hides the buffers
for each column that are necessary to store one table row. Therefore, an
instance of the CRUDRow class can be used to insert a new row in the
table, to get one row from the table, and so on. An instance of this class
must be tuned for a particular table, therefore the most frequent way to
create it is by using the ‘createRow’ method from the CRUDTable class.

Members:

There are not the public data members for this class.

Constructors:

• CRUDRow(): initializes the inner members by nulls. To create an
instance of the CRUDRow class, execute the CRUDTable method
‘createRow’.

Methods:

• int getCount() {return cnt;}: returns the result of the columns count
for the row

• boolean isEmpty(): shows whether all cells in this row are in the
empty state

• boolean isEmpty(String name): shows whether a specified cells in
this row are in the empty state

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-9
• void assign(CRUDRow row): assigns this row to the parameter re-
ceived

• boolean isNull(String name) throws CRUDException: shows if
the row cell corresponding to the column with the name specified
has the NULL value (in SQL terms)

• void reset() throws CRUDException: clears all cells in the row

• void copy(CRUDRow row) throws CRUDException: copies this
row to the row specified

• public String getString(String col) throws CRUDException: gets
the string representation of the cell value for the cell associated with
the column with the name specified

• void setString(String col, String val) throws CRUDException:
sets the value for the cell linked to the specified column

• void setNull(String col) throws CRUDException: attempts to set
the Null value and throws an exception if this can’t be done

• void setEmpty(String col) throws CRUDException: attempts to
set the specified cell into the empty state and throws an exception if
this can’t be done

• void setByte(String col, byte val) throws CRUDException: at-
tempts to set byte and throws an exception if the data type does not
match its expected format

• byte getByte(String col) throws CRUDException: attempts to get
byte and throws an exception if the data type does not match its ex-
pected format

• void setInt(String col, int val) throws CRUDException: attempts
to set integer and throws an exception if the data type does not match
its expected format

• int getInt(String col) throws CRUDException: attempts to get in-
teger and throws an exception if the data type does not match its ex-
pected format

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-10
• void setShort(String col, short val) throws CRUDException: at-
tempts to set short integer and throws an exception if the data type
does not match its expected format

• short getShort(String col) throws CRUDException: attempts to
get short integer and throws an exception if the data type does not
match its expected format

• void setLong(String col, long val) throws CRUDException: at-
tempts to set long and throws an exception if the data type does not
match its expected format

• short getLong(String col) throws CRUDException: attempts to
get long and throws an exception if the data type does not match its
expected format

• void setDouble(String col, double val) throws CRUDException:
attempts to set double and throws an exception if the data type does
not match its expected format

• short getDouble (String col) throws CRUDException: attempts to
get double and throws an exception if the data type does not match
its expected format

• void setFloat(String col, float val) throws CRUDException: at-
tempts to set float and throws an exception if the data type does not
match its expected format

• short getFloat (String col) throws CRUDException: attempts to
get float and throws an exception if the data type does not match its
expected format

• void setBoolean(String col, boolean val) throws CRUDExcep-
tion: attempts to set boolean and throws an exception if the data type
does not match its expected format

• short getBoolean(String col) throws CRUDException: attempts
to get boolean and throws an exception if the data type does not
match its expected format

• CRUDCell getCell(int num) throws CRUDException: finds the
cell with number specified

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-11
• CRUDCell getCell(String name) throws CRUDException: finds
the cell with name specified

Class CRUDColumn

This class stores a real SQL column structure. During the CRUDTable
instance initialization, Modernization Workbench discovers all the col-
umn types, sizes, scales; so it must have a data structure that can keep the
column parameters. This data structure creates a CRUDRow instance.
The CRUDColumn class extends the base Java class Object and uses
Java growable arrays filled by CRUDColumns.

Members:

There are no public data members for this class.

Constructors:

• CRUDColumn(String name, int type, boolean nullable): creates
the CRUDColumn object for the column with the specified name,
type and Boolean flag of nullability which shows if the column can
contain the NULL value.

Methods:

• CRUDCell createCell() throws CRUDException: method to cre-
ate the CRUDCell instance corresponding to this column

Class CRUDTable

This class represents a real SQL table. It contains all the necessary
CRUD (Create, Update, Delete) routines.

Members:

• There are no public data members for this class.

Constructors:

• CRUDTable(String dsn, String table) throws CRUDException

• CRUDTable(String dsn, String table, String user, String pass-
word) throws CRUDException: creates new CRUDTable variable

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-12
for a real table in the registered database with DSN specified. During
initialization, a connection with the database is established with the
corresponding variable of java.sql. The connection type is stored
with private data members of the class. During initialization, Mod-
ernization Workbench explores the table structure by runtime JD-
BC(ODBC) calls and fills its inner structures with search results.

Destructors:

• void finalize() throws CRUDException: as a destructor for
CRUDTable, it must close the data-base connection and free all cap-
tured inner resources (such as open SQL statements)

Methods:

• done() throws CRUDException: disconnects from the database
and frees the CRUDTable instance from links with any table.

• String getName(): returns the name of the table associated with this
specimen of the CRUD-Table class

• getCount(): returns the result of the columns count in the associated
table

• CRUDRow createRow() throws CRUDException: the main
method for creating CRUDRow, initialized for a particular table

• String composeInsertQuery(CRUDRow row) throws SQLEx-
ception: constructs SQL query for INSERT method of CRUD

• String composeDeleteQuery (CRUDRow row) throws SQLEx-
ception: constructs SQL query for DELETE method of CRUD

• String composeUpdateQuery (CRUDRow row) throws CRU-
DException: constructs SQL query for UPDATE method of CRUD

• String composeSelectQuery (CRUDRow row) throws CRUDEx-
ception: constructs SQL query for SELECT method of CRUD

• void insert(CRUDRow row) throws CRUDException: inserts
new row in the table. The row must be filled with the help of the
CRUDRow class. It requires that some of the fields, which are not
nullable, should be filled; otherwise an exception (‘Nothing to insert

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-13
specified’) is thrown because an empty row cannot be inserted in the
table. This condition is checked by the driver at execution time.

• void delete(CRUDRow row) throws CRUDException: deletes
specified row from the table. It requires that some of the fields
should be filled; otherwise an exception (‘No row to delete’) is
thrown. This method considers the parameter row as a set of search
criteria to delete rows. For example, the parameter row is filled by
values (<value1>, <not filled>, <value3>, <value4>), so the “delete”
method will delete all rows that match the condition: <column1> =
<value1> AND <column3> = <value3> AND <column4> =
<value4>. In order to delete one row the user should specify enough
values to form a primary key tuple. The case of no value specifica-
tion is disabled because such a call would delete all table rows. Un-
der such a condition, no search criteria is specified, therefore all
rows fit to be deleted. Such a situation is dangerous and should be
cautiously handled.

• void update(CRUDRow row1, CRUDRow row2) throws CRU-
DException: updates a row in the table. The first parameter is this
row with its old values, and the second one is the row with the values
to set. Neither of the two specified rows can be empty, otherwise an
exception (‘No row to update specified’ / ‘No values to update with
specified’) is thrown.

• CRUDRow select(CRUDRow row) throws CRUDException: a
singleton select (i.e., searching for a record by primary key) method.
It returns one row or null as the result of a selection (search). The pa-
rameter row is used as a filter. The rows with the same values as in
the parameter are selected. To ignore some columns during the se-
lection, set empty values for them in the parameter row. If more than
one row has been selected (found), then only the first of the resulting
rows is returned. If all fields in the parameter row are empty, then all
the table rows participate in the result set, and only the first is re-
turned. If no results are produced, then this method returns NULL.

• CRUDCursor openCursor(CRUDRow row) throws CRUDEx-
ception: selection method for opening and returning the cursor. The
principle is the same as for the singleton select method immediately
above, but here the number of the resulting rows is not limited. Some

Data Access Object Support (CRUD Runtime Facilities)
Java Support for Data Access Objects

A-14
of the fields in the parameter row must be filled or all the table rows
are returned. Also, you receive the created cursor variable as the re-
sult, even if no row has been selected.

Class CRUDCursor

Because some CRUD routines, such as SELECT, can generate a result
set with more than one row, Modernization Workbench implements a
mechanism to work with results of this kind as the CRUDCursor class.
Usually a CRUDCursor instance is created by the CRUDTable.method
‘openCursor’.

Members:

• There are no public data members for this class.

Constructors:

• CRUDCursor(): creates new cursor and sets ‘rs’ equal to null

• CRUDCursor(Connection con, ResultSet rs): initializes private
variables ‘rs’ and ‘con’ by the parameter value. It is used in the
‘openCursor’ method of the CRUDTable.

Methods:

• void assign(CRUDCursor cur): assigns one cursor to another. This
method hides details of cursor class initialization in the generated
text.

• boolean next() throws CRUDException: the most important meth-
od for the CRUDCursor class. This method moves the cursor to the
next row in the result set, if possible, or returns FALSE and stays at
the current row.

• void read(CRUDRow row) throws CRUDException: reads the
current cursor row into the parameter. This method is the only way
to get data from the cursor. With the next() method, it provides a
mechanism for going through the cursor and fetching all the rows
needed.

• void close(): closes cursor.

GL-1
Glossary
ADABAS
ADABAS is a Software AG relational DBMS for large, mission-
critical applications.

API
API stands for application programming interface, a set of routines,
protocols, and tools for building software applications.

applet
See Java applet.

AS/400
The AS/400 is a midrange server designed for small businesses and
departments in large enterprises.

BMS
BMS stands for Basic Mapping Support, an interface between appli-
cation formats and CICS that formats input and output display data.

BSTR
BSTR is a Microsoft format for transferring binary strings.

GlossaryGL-2
CDML
CDML stands for Cobol Data Manipulation Language, an extension
of the Cobol programming language that enables applications pro-
grammers to code special instructions to manipulate data in a DMS
database and to compile those instructions for execution.

CICS
CICS stands for Customer Information Control System, a program
that allows concurrent processing of transactions from multiple ter-
minals.

Cobol
Cobol stands for Common Business-Oriented Language, a high-lev-
el programming language used for business applications.

COM
COM stands for Component Object Model, a software architecture
developed by Microsoft to build component-based applications.
COM objects are discrete components, each with a unique identity,
which expose interfaces that allow applications and other compo-
nents to access their features.

complexity
An application’s complexity is an estimate of how difficult it is to
maintain, analyze, transform, and so forth.

component
A component is a self-contained program that can be reused with
other programs in modular fashion.

construct
A construct is an item in the parse tree for a source file — a section,
statement, condition, variable, or the like. A variable, for example,
can be related in the parse tree to any of three other constructs — a
declaration, a dataport, or a condition.

copybook
A copybook is a common piece of source code to be copied into
many Cobol source programs. Copybooks are functionally equiva-
lent to C and C++ include files.

Glossary GL-3
CORBA
CORBA stands for Common Object Request Broker Architecture,
an architecture that enables distributed objects to communicate with
one another regardless of the programming language they were writ-
ten in or the operating system they are running on.

CSD file
CSD stands for CICS System Definition. A CSD file is a VSAM
data set containing a resource definition record for every resource
defined to CICS.

database schema
A database schema is the structure of a database system, described
in a formal language supported by the DBMS. In a relational data-
base, the schema defines the tables, the fields in each table, and the
relationships between fields and tables.

dataport
A dataport is an input/output statement or a call to or from another
program.

DB/2
DB/2 stands for Database 2, an IBM system for managing relational
databases.

DBCS
DBCS stands for double-byte character string, a character set that
uses two-byte (16-bit) characters rather than one-byte (8-bit) charac-
ters.

DBMS
DBMS stands for database management system, a collection of pro-
grams that enable you to store, modify, and extract information from
a database.

DDL
DDL stands for Data Description Language (DDL), a language that
describes the structure of data in a database.

decision resolution
Decision resolution lets you identify and resolve dynamic calls and
other relationships that the parser cannot resolve from static sources.

GlossaryGL-4
DMS
DMS stands for Data Management System, a Unisys database man-
agement software product that conforms to the CODASYL (net-
work) data model and enables data definition, manipulation, and
maintenance in mass storage database files.

DPS
DPS stands for Display Processing System, a Unisys product that
enables users to define forms on a terminal.

ECL
ECL stands for Executive Control Language, the operating system
language for Unisys OS 2200 systems.

effort
Effort is an estimate of the time it will take to complete a task related
to an application, based on weighted values for selected complexity
metrics.

EJB
EJB stands for Enterprise JavaBeans, a Java API developed by Sun
Microsystems that defines a component architecture for multi-tier
client/server systems.

EMF
EMF stands for Enhanced MetaFile, a Windows format for graphic
images.

entity
An entity is an object in the repository model for a legacy applica-
tion. The relationships between entities describe the ways in which
the elements of the application interact.

FCT
FCT stands for File Control Table (FCT), a CICS table that contains
processing requirements for output data streams received via a re-
mote job entry session from a host system. Compare PCT.

HTML
HTML stands for HyperText Markup Language, the authoring lan-
guage used to create documents on the World Wide Web.

Glossary GL-5
IDL
IDL stands for Interface Definition Language (IDL), a generic term
for a language that lets a program or object written in one language
communicate with another program written in an unknown lan-
guage.

IDMS
IDMS stands for Integrated Database Management System, a Com-
puter Associates database management system for the IBM main-
frame and compatible environments.

IMS
IMS stands for Information Management System, an IBM program
product that provides transaction management and database man-
agement functions for large commercial application systems.

Java
Java is a high-level object-oriented programming language devel-
oped by Sun Microsystems.

Java applet
A Java applet is a program that can be sent with a Web page. Java
applets perform interactive animations, immediate calculations, and
other simple tasks without having to send a user request back to the
server.

JavaBeans
JavaBeans is a specification developed by Sun Microsystems that
defines how Java objects interact. An object that conforms to this
specification is called a JavaBean.

JCL
JCL stands for Job Control Language, a language for identifying a
job to OS/390 and for describing the job’s requirements.

JDBC
JDBC stands for Java Database Connectivity, a standard for access-
ing diverse database systems using the Java programming language.

job
A job is the unit of work that a computer operator or a program
called a job scheduler gives to the operating system. In IBM main-

GlossaryGL-6
frame operating systems, a job is described with job control lan-
guage (JCL).

logical component
A logical component is an abstract repository object that gives you
access to the source files that comprise a component.

MFS
MFS stands for Message Format Service, a method of processing
IMS input and output messages.

Natural
Natural is a programming language developed and marketed by
Software AG for the enterprise environment.

object model
An object model is a representation of an application and its encap-
sulated data.

object-oriented programming
Object-oriented programming organizes programs in terms of ob-
jects rather than actions, and data rather than logic.

ODBC
ODBC stands for Open Database Connectivity, a standard for ac-
cessing diverse database systems.

orphan
An orphan is an object that does not exist in the reference tree for
any startup object. Orphans can be removed from a system without
altering its behavior.

parser
The parser defines the object model and parse tree for a legacy ap-
plication.

parse tree
A parse tree defines the relationships between the constructs that
comprise a source file — its sections, paragraphs, statements, con-
ditions, variables, and so forth.

PCT
PCT stands for Program Control Table, a CICS table that defines the
transactions that the CICS system can process. Compare FCT.

Glossary GL-7
PL/I
PL/I stands for Programming Language One, a third-generation pro-
gramming language developed in the early 1960s as an alternative to
assembler language, Cobol, and FORTRAN.

profile
Profiles are HTML views into a repository that show all of the anal-
ysis you have done on an application. Profiles are convenient ways
to share information about legacy applications across your organiza-
tion.

QSAM
QSAM stands for Queued Sequential Access Method, a type of
processing that uses a queue of data records—either input records
awaiting processing or output records that have been processed and
are ready for transfer to storage or an output device.

relationship
The relationships between entities in the repository model for a leg-
acy application describe the ways in which the elements of the ap-
plication interact.

relaxed parsing
Relaxed parsing lets you verify a source file despite errors.
Ordinarily, the parser stops at a statement when it encounters an er-
ror. Relaxed parsing tells the parser to continue to the next state-
ment.

repository
A repository is a database of program objects that comprise the mod-
el for an application.

schema
See database schema.

SQL
SQL stands for Structured Query Language, a standard language for
relational database operations

system program
A system program is a generic program — a mainframe sort utility,
for example — provided by the underlying system and used in un-
modified form in the legacy application.

GlossaryGL-8
TIP
TIP stands for Transaction Processing, the Unisys real-time system
for processing transactions under Exec control.

transaction
A transaction is a sequence of information exchange and related
work (such as database updating) that is treated as a unit for the pur-
poses of satisfying a request and for ensuring database integrity.

VALTAB
VALTAB stands for Validation Table, which contains the informa-
tion the system needs to locate, load, and execute transaction pro-
grams. See also TIP.

VSAM
VSAM stands for Virtual Storage Access Method, an IBM program
that controls communication and the flow of data in a Systems Net-
work Architecture network.

XML
XML stands for Extensible Markup Language, a specification for
creating common information formats.

Index-1
Index
A
access methods

Java 4-3
adding

events to a window 3-32
event-sensitive item 3-28
see also creating, generating

assigning BMS map 3-19

B
BMS maps

assigning 3-19
naming 3-17

C
code

generating target 3-35
column in database schema table

changing order 2-12
dropping 2-12
editing 2-12

creating
table in database schema 2-9

D
DAO

Java 4-3
data item, deleting 3-34
Data Transition phase 2-1
database

overview 1-2
database schema

creating table 2-9
dropping table 2-18
editing 2-8, 2-20
editing table 2-10
key

adding column 2-17

Index-2
creating 2-15
dropping 2-17
dropping column 2-17

table
changing column order 2-12
dropping column 2-12
editing column 2-12

DDL statements, generating 2-20
deleting

data item 3-34
DFF

creating a key 2-15
creating a table 2-9
creating an index 2-12
editing a database schema 2-8
editing a table 2-10
generating DDL statements 2-20
generating EJB access methods 2-23
generating Java access methods 2-21
initiating 2-1

dropping table in database schema 2-18

E
editing

database schema 2-8, 2-20
events (Event Mining) 3-19
table in database schema 2-10

EMF
editing events 3-19
exporting source files 3-37
generating target code 3-35
initiating 3-2
naming the screens 3-17
options 3-3
setting the startup map 3-18

event editing (during Event Mining) 3-19
Event Mining Facility

navigating with 3-25

events, adding to a window 3-32
event-sensitive item, adding 3-28
exporting

source files 2-38
target interface model source files 3-

37
Exporting source files 2-38

G
generating

DDL statements 2-20
Java access methods 2-21

Generating Entity Java Beans 2-23
Generating Java servlets for HTML 3-36

H
hierarchical database 1-2

J
Java access methods, generating 2-21

K
key in database schema table

adding column 2-17
creating 2-15
dropping 2-17
dropping column 2-17

N
naming BMS maps 3-17
navigating with

Event Mining Facility 3-25
network database 1-3

P
phase

Data Transition 2-1

Index-3
R
relational database 1-3

S
setting

startup map 3-18
source files, exporting 2-38
startup map, setting 3-18

T
target code, generating 3-35
target interface model source files,

exporting 3-37

W
WebLogic properties

customization 2-27, 2-28

Index-4

	Contents
	Preface
	Overview of Transformation
	Data Transition
	Database Overview

	Interface Transition

	Data Transition
	Starting Database Schema Tool
	Navigating the Main Window
	Arranging the Panes
	Selecting a View
	Locating Errors
	Setting Database Schema Options
	Editing a Database Schema
	Creating a Table
	Editing a Table
	Working with Columns
	Working with Indexes
	Working with Keys
	Editing Referenced Keys
	Dropping a Table

	Importing Structures
	Importing Cobol Structures
	Importing DMS Schemas

	Generating DDL Statements
	Generating Java Access Methods
	Access Methods for Java (JDBC) Usage
	Implementing DAO Classes

	Generating EJB Access Methods
	Generating Entity Java Beans
	Step-by-step Entity Beans Generation
	Customization of Deployment Descriptor
	Customization of WebLogic Properties
	Customization of WebSphere Properties

	An Example of Client Program

	Generating XML
	XML Generation Results

	Exporting Source Files

	Interface Transition
	Starting User Interface Tool
	Setting User Interface Options
	Navigating the panes of the User Interface Tool Window
	Working with User Interface Tool
	Naming the Screens
	Setting the Startup Map
	Editing Events
	Editing an Event to Flow Back to the First Window
	Adding an Event-Sensitive Data Item
	Adding a New Event to a Window
	Deleting a Data Item

	Generating Target Code
	Generating Java Servlets for HTML

	Exporting Source Files

	Data Access Object Support (CRUD Runtime Facilities)
	DATAX Modernization Workbench: ActiveX Interface Description
	Java Support for Data Access Objects
	CRUDCell Class
	Class CRUDTypes
	Class CRUDConstants
	Class CRUDMessages
	Class CRUDException
	Class CRUDRow
	Class CRUDColumn
	Class CRUDTable
	Class CRUDCursor

	Glossary
	Index

