
Micro Focus
®

Modernization Workbench™

Preparing Projects

Copyright © 2010 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

Contents

Chapter: 1 Registering Source Files . 1
Setting Registration Options: Extensions Tab . 2
Setting Registration Options: Source Files Tab . 3
Creating New Source Files . 5
Refreshing Source Files . 5
Exporting Source Files from a Workspace . 6
Deleting Objects from a Workspace . 6
Deleting a Workspace . 6
Support for Job Schedulers . 6

Preparing CA-7 Job Schedule Information 7
Preparing TWS (OPC) Job Schedule Information 8
Using an XML Job Schedule Format for Unsupported Job Schedules . . . 8

Support for Japanese-Language Applications . 9

Chapter: 2 Setting Up Projects . 11
Creating Projects . 11
Sharing Projects . 12
Protecting Projects . 12
Moving or Copying Files into Projects . 12
Including Referenced and Referencing Objects in a Project 13
Removing Unused Support Objects from a Project 14
Emptying a Project . 14
Deleting a Project . 15
1

Chapter: 3 Verifying Source Files . 17
Enabling Parallel Verification . 18
How the System Refreshes the Repository . 19
Invalidating Objects Before Reverification . 20
Setting Workspace Verification Options: Legacy Dialects Tab 20
Setting Workspace Verification Options: Settings Tab 23

Enabling Staged Parsing . 27
Enabling Relaxed Parsing . 29
Enabling Advanced Data Flow Analysis for Control Language Files . . . 30
Enabling Sort Card Analysis . 30
Enabling Natural Library Support . 30
Truncating Names of Absolute Elements 31

Setting Workspace Verification Options: Parallel Verification Tab 31
Setting Project Verification Options . 32

Specifying the Processing Environment 36
Specifying Conditional Compiler Constants 37
Optimizing Verification for Advanced Program Analysis 37

Identifying System Programs . 38
Specifying Boundary Decisions . 39
Generating Copybooks . 40

Setting Generate Copybooks Options . 41
Copybook Generation Order . 42

Performing IMS Port Analysis . 43
Mapping Root Programs to PSBs in JCL or System Definition Files . . . 43
Verification Order for IMS Applications 44
Reverifying Files in IMS Applications . 44

Performing Post-Verification Program Analysis 45
Restrictions on Cobol Post-Verification Program Analysis 46
Restrictions on PL/I Post-Verification Program Analysis 46

Chapter: 4 Using Post-Verification Reports . 47
Viewing Verification Reports . 47

Errors Pane . 49
Files Affected Pane . 49
Source Pane . 50
Marking Items . 50
Including Files into Projects . 50

Viewing Executive Reports . 51
Setting Executive Report Options . 52
Defining Potential Code Anomalies . 53
Cobol Range Overlaps and Range Jumps 55

Viewing CRUD Reports . 61
Setting CRUD Report Options . 62
 2

Chapter: 5 Inventorying Applications . 65
Using Reference Reports . 66

Understanding the Reference Reports Window 66
Setting Reference Reports Options . 68

Using Orphan Analysis Reports . 69
Understanding the Orphan Analysis Window 69
Setting Orphan Analysis Options . 71
Deleting Orphans from a Project . 72
Deleting Orphans from a Workspace . 72

Resolving Decisions . 72
Understanding Decisions . 72
Understanding the Decision Resolution Tool Window 73
Resolving Decisions Manually . 75
Restoring Manually Resolved Decisions 76
Resolving Decisions Automatically . 77
Setting Decision Resolution Tool User Preferences 77

Chapter: 6 Identifying Interfaces for Generic API Analysis 79
Identifying Unsupported API Calls to the Parser 80

Using the API Entry Tag . 81
Using the match Tag . 81
Using the flow Tag . 81
Using the vars Tag . 82
Using the rep and hc Tags . 84

Using Expressions . 87
Basic Usage . 88
Using a Function Call . 90
Understanding Enumeration Order . 91

Understanding Decisions . 92
Understanding Conditions . 93
Usage Example . 95
Support for IMS Aliases . 96

Skip Type Usage . 97
3

 4

1
 Registering Source
Files
Before you can analyze application source files in Modernization Workbench,
you need to load, or register, the source files in a workspace. Only a master user
can register source files in a multiuser environment.

The workbench creates copies of the registered files on the server machine (or
locally in a single-user environment) in the Sources folder for the workspace.
These are the files you view and edit in the workbench tools. You can restore a
file to its original state, update it to its current state, or export it as necessary.

Source files must have recognized DOS file extensions before they can be regis-
tered. You can view and add to the recognized extensions in the Workspace
Registration options window. Files without extensions are checked for content,
and if the content is recognized, the files are registered with appropriate exten-
sions appended.

The workbench assumes that input source files are ASCII files in DOS format.
Occasionally, files may be converted incorrectly from other formats to
DOS-based ASCII with an extra special character (like “M”) at the end of each
line. While Modernization Workbench accepts these files as input, some work-
bench tools may not work correctly with them. Make sure all source files are in
valid ASCII format.

You can register source files in compressed formats (ZIP or RAR), as well as
uncompressed formats. Modernization Workbench automatically unpacks the
compressed file and registers its contents.
1

REGISTERING SOURCE FILES
SETTING REGISTRATION OPTIONS: EXTENSIONS TAB
NOTE: The workbench extracts compressed source files using the command line
syntax for archiver versions most widely in use. If you use newer archiver versions,
specify the command line syntax in the Archivers tab of the User Preferences
window.

Workspace Registration options determine registration behavior. The default
values for these options are preset based on your configuration and should be
appropriate for most installations.

TASK

1. In the Repository Browser, create a project for the source files you want
to register, or use the default project. To create a project, choose
Project > New Project. The Create Project dialog opens. Enter the
name of the new project and click OK. The new project is displayed in
the Repository Browser.

2. Select the project in the Repository Browser, then drag-and-drop the
file or folder for the source files you want to register onto the Repository
Browser.
STEP RESULT: You are notified that you have registered the files successfully and
are prompted to verify the files. Click Close. The Repository Browser displays
the contents of the new workspace, organized by file type.

NOTE: In the notification dialog, select Never ask again if you do not want
to be prompted to verify files. On the Environment tab of the User Prefer-
ences window, select Ask user about verification if you want to be
prompted again.

Setting Registration Options: Extensions Tab

Describes how to set workspace registration options on the Extensions tab.

Source files must have recognized DOS file extensions before they can be regis-
tered. Files without extensions are checked for content, and if the content is
recognized, the files are registered with appropriate extensions appended.

Files with unknown extensions are flagged, provided that you uncheck Ignore
Unknown and Overloaded Extensions on the Extensions tab of the Workspace
Registration options window. If a file fails to register because its extension is
unknown, simply add the extension to the list of recognized extensions on the
Extensions tab and register the file again.
 2

REGISTERING SOURCE FILES
SETTING REGISTRATION OPTIONS: SOURCE FILES TAB
TASK

1. Choose Tools > Workspace Options. The Workspace Options window
opens. Click the Registration tab, then the Extensions tab.

2. In the Source Type pane, select the source file type whose extensions
you want to view. The extensions for the file type are listed in the Exten-
sions pane. Select each extension you want the system to recognize.
Add extensions as necessary.

NOTE: If a source file does not specify an extension when it references an
included file, the verification process assumes that the included file has one
of the recognized extensions. If multiple included files have the same name
but different extensions, the system registers the file with the first extension
in the list.

3. Select Ignore Unknown and Overloaded Extensions if you do not
want the registration process to issue warnings about unrecognized
and overloaded extensions. An overloaded extension is one assigned
to more than one file type.

4. For Cobol programs and copybooks, select Remove Sequence
Numbers if you want the system to replace preceding enumeration
characters, or sequence numbers, in source lines with blanks. Sequence
numbers are removed only from the source file versions maintained by
the workbench.

5. For C, C++, or PowerBuilder files, select Preserve Folder Structure if
you want the folder structure for the application to be preserved in the
Repository Browser. You must select this option if your application uses
the same program in multiple folders.

Setting Registration Options: Source Files Tab

Describes how to set workspace registration options on the Source Files tab.

If your legacy application executes on a mainframe, it’s usually best to convert
the application source to workstation encoding. If that’s not practical, you can
have Modernization Workbench convert it for you, using the options on the
Registration > Source Files tab of the Workspace Options window.
3

REGISTERING SOURCE FILES
SETTING REGISTRATION OPTIONS: SOURCE FILES TAB
TASK

1. Choose Tools > Workspace Options. The Workspace Options window
opens. Click the Registration tab, then the Source Files tab.

2. In the Legacy Source Encoding group box, choose:
• Workstation if the source is workstation-encoded. For DBCS configura-

tions, if Japanese-language source files were downloaded in worksta-
tion (text) mode, specify how DBCS escape control characters were
handled.

• Mainframe if the source is mainframe-encoded. When this option is
selected, the registration process automatically converts source files to
workstation-encoding. Only the source files maintained by the work-
bench are converted.

3. In the Object System Encoding group box, choose:
• English - US (ANSI MS-1252) if the original source was U.S. English

ANSI-encoded (Unisys 2200 and HP3000 Cobol).

• English - US (EBCDIC-CCSID-37) if the original source was U.S. English
EBCDIC-encoded (IBM Cobol).

• Japanese (EBCDIC-CCSID-930, 5026) if the original source was Japa-
nese EBCDIC-encoded, CCSID-930, 5026 (DBCS configurations only).

• Japanese (EBCDIC-CCSID-939, 5035) if the original source was Japa-
nese EBCDIC-encoded, CCSID-939, 5035 (DBCS configurations only).

STEP RESULT: During analysis and transformation, hexadecimal literals in Cobol
programs and BMS files are translated into character literals according to this
setting.

NOTE: Do not change these settings after source files are registered in a
workspace.

4. Select Strip trailing numeration if you want the system to strip trailing
numeration characters (columns 73 through 80) from source lines.
Trailing numeration characters are removed only from the source files
maintained by the workbench.

5. Select Expand tabulation symbols if you want the system to replace
tabulation symbols with a corresponding number of spaces. Tabulation
symbols are replaced only in the source files maintained by the work-
bench. You must select this option if you want to view HyperView infor-
mation for C or C++ programs.

6. In the Default Source Directory field, enter the root folder on your PC
from which the system should refresh unresolved files. You can type
over the path in the text box or click the button to the right of the text
box to browse for a new location.
 4

REGISTERING SOURCE FILES
CREATING NEW SOURCE FILES
Creating New Source Files

Describes how to create new source files.

To create a new source file, select the project for the source file in the Repository
Browser and choose File > New. A dialog box opens, where you can specify the
file name (with extension) and source file type. To create a new source file with
the same content as an existing file, select the file and choose File > Save As. The
system automatically registers the created files and stores them in the appro-
priate folder.

Refreshing Source Files

Describes how to update source files in the workspace.

Use the Modernization Workbench refresh feature to update registered source
files to their current state. You can refresh all of the objects in a project or folder,
or only selected objects.

The refresh looks for updated legacy source in the original location of the file or,
for unresolved source, the location you specified in the Registration > Source
Files tab of the Workspace Options window. Once it finds the source, it over-
writes the version of the source file maintained by the system. Reverify the file
after the refresh.

NOTE: If you are licensed to use the Batch Refresh feature, you can perform the
refresh in batch mode. Contact support services for more information.

TASK

1. In the Repository Browser, select the project, folder, or file you want to
refresh and choose File > Refresh Sources from Disk.

2. You are prompted to confirm that you want to refresh the selected files.
Click Yes.

RESULT: The system overwrites the workspace source files.
5

REGISTERING SOURCE FILES
EXPORTING SOURCE FILES FROM A WORKSPACE
Exporting Source Files from a Workspace

Describes how to export source files from a workspace.

To export the workspace source for a project or file to a new location, select the
project or file in the Repository Browser and click File > Export Sources. A
dialog box opens, where you can specify the location.

Deleting Objects from a Workspace

Describes how to delete a file or folder from a workspace.

To delete an object from a workspace, select it and choose File > Delete from
Workspace. To delete a folder and all its contents from a workspace, select it
and choose File > Delete Contents from Workspace.

Deleting a Workspace

Describes how to delete a workspace.

To delete a workspace, choose File > Delete Workspace in the Modernization
Workbench Administration tool. A Delete workspace dialog opens, where you
can select the workspace you want to delete.

NOTE: Only a master user can delete a workspace in a multiuser environment.

Support for Job Schedulers

Describes Modernization Workbench support for job scheduling formats.

Enterprise applications use job scheduling software to define dependencies
between jobs. Modernization Workbench supports CA-7 and TWS (OPC) job
 6

REGISTERING SOURCE FILES
SUPPORT FOR JOB SCHEDULERS
scheduling formats. It also provides an XML job schedule format that you can
use to define unsupported job schedules.

Preparing CA-7 Job Schedule Information

Describes how to prepare CA-7 job schedule information for Modernization
Workbench processing.

You make CA-7 job schedule information available to Modernization Work-
bench in LJOB reports. Use the LJOB utility with the LIST=NODD parameter
to generate the reports on the mainframe.

The reports must have a .ca7 extension. Each report should have ANSI carriage
control characters in column 1. You can create a report with carriage control
characters in column 1 by specifying DCB=RECFM=FBA (or FA) in the JCL
used to run the LJOB utility.

Supplying Schedule IDs for a CA-7 Job Triggered by a Dataset

Describes how to supply schedule IDs for a CA-7 job triggered by the creation
of a dataset.

When a CA-7 job is triggered by the creation of a dataset, rather than by a job
or manual operation, the parser cannot always determine which schedule IDs
are used to run the triggered job. You can supply this information in a file.

The file should have the same name as the .CA7 file, and be in the same direc-
tory, but have an .SID extension. Specify the location of the file in the Job to
Schedule Ids File field for a CA-7 Schedule on the Project Verification options
tab.

Each line of the file should contain a comma-separated list with the job name
and schedule IDs used for the job. For example, if job JOB0001 has the trigger:

--- TRIGGERED BY JOBS/DATASETS/NETWORKS ---
DSN=DS00061219(POSTED.BY.XXXX.YYY.ZZZZ)
SCHID=000 QTM=0030 LEADTM=0010 SUBMTM=0000

you would enter the following line in the .SID file:

JOB0001,10,30

That line identifies schedule IDs 10 and 30 for JOB0001.
7

REGISTERING SOURCE FILES
SUPPORT FOR JOB SCHEDULERS
Preparing TWS (OPC) Job Schedule Information

Describes how to prepare TWS (OPC) job schedule information for Modern-
ization Workbench processing.

You make TWS job schedule information available to Modernization Work-
bench in three reports:

• The application description report contains most of the information about
jobs and how they are scheduled. Use the EQQADPRT utility to generate
application description reports on the mainframe. The reports must have
a .adr extension. Only these reports are registered in the workspace.

• The workstation description report identifies components and the tasks
they perform. Use the EQQWSPRT utility to generate workstation
description reports on the mainframe. The reports must have a .wdr
extension. These reports are not registered in the workspace, but must be
identified in the Workstation Report field for a TWS Schedule on the
Verification > Settings tab of the Workspace Options.

• The optional cross reference of applications and external dependencies
report resolves job names. Use the EQQADDEP utility to generate
cross-reference reports on the mainframe. The reports must have a .xrf
extension. These reports are not registered in the workspace, but must be
identified in the Cross-reference Report field for a TWS Schedule on the
Verification > Settings tab of the Workspace Options.

Each report should have ANSI carriage control characters in column 1. You can
create a report with carriage control characters in column 1 by specifying
DCB=RECFM=FBA (or FA) in the JCL used to run the utility.

Using an XML Job Schedule Format for Unsupported Job Schedules

Describes how to use the Modernization Workbench XML job schedule format
to define unsupported job schedules.

Use the Modernization Workbench XML job schedule format to define unsup-
ported job schedules. The XML file must have a .jsx extension. See the online
help for Modernization Workbench for an annotated sample.
 8

REGISTERING SOURCE FILES
SUPPORT FOR JAPANESE-LANGUAGE APPLICATIONS
Support for Japanese-Language Applications

Describes Modernization Workbench support for Japanese-language applica-
tions

Modernization Workbench provides full support for mainframe-based Cobol
or PL/I Japanese-language applications. Make sure to set Windows system and
user locales to Japanese before registering source files.

You can register Japanese source files downloaded in text or binary mode:

• Source files downloaded in text (workstation) mode must be in Shift-JIS
encoding. If Shift-Out and Shift-In delimiters were replaced with spaces
or removed during downloading, Modernization Workbench restores
them at registration.

• Source files downloaded in binary (mainframe) mode are recoded by
Modernization Workbench from EBCDIC to Shift-JIS encoding at regis-
tration.

Use the options on the Registration > Source Files tab of the Workspace Options
window to specify how DBCS escape control characters were handled in source
file downloaded in text mode:

• Replaced with spaces if DBCS escape control characters were replaced
with spaces.

• Removed if DBCS escape control characters were removed.

• Retained or not used if DBCS escape control characters were left as is or
were not used.

Preserving delimiters during download is recommended. Replacing delimiters
with spaces during download generally yields better restoration results than
removing them.

In all workbench tools that offer search and replace facilities, you can insert
Shift-Out and Shift-In delimiters into patterns using Ctrl-Shift-O and
Ctrl-Shift-I, respectively. You need only insert the delimiters if you are entering
mixed strings.
9

REGISTERING SOURCE FILES
SUPPORT FOR JAPANESE-LANGUAGE APPLICATIONS
 10

2
 Setting Up Projects
Workspace projects typically represent different portions of the application
modeled in the workspace. You might have a project for the batch portion of the
application and another project for the online portion. You can also use a
project to collect items for discrete tasks: all the source files affected by a change
request, for example.

Creating Projects

Describes how to create a project.

When you set up a workspace in Modernization Workbench, the system creates
a default project with the same name as the workspace. Create projects in addi-
tion to the default project when you need to analyze subsystems separately or
organize source files in more manageable groupings.

TASK

1. Choose Project > New project. The Create Project dialog opens.

2. Enter the name of the new project and click OK.
STEP RESULT: The new project is displayed in the Repository Browser. The
project is selected by default.
11

SETTING UP PROJECTS
SHARING PROJECTS
Sharing Projects

Describes how to share a project.

In a multiuser environment, the user who creates a project is referred to as its
owner. Only the owner can share the project with other users.

A shared, or public, project is visible to other members of your team. A private
project is not. If the project is not protected, these team members can delete the
project, add source files, or remove source files.

Projects are private by default. Turn on sharing by choosing Project > Toggle
Sharing. Choose Project > Toggle Sharing again to turn it off. A symbol
indicates that the project is shared.

Protecting Projects

Describes how to protect a project.

By default, projects are unprotected: any user to whom the project is visible can
delete the project, add source files, or remove source files.

The project owner or master user can designate a project as protected, in which
case no user can delete or modify the project, including the project owner or
master user: the project is read-only, until the project owner or master user
turns protection off.

Turn on protection by selecting the project in the Repository pane and choosing
Project > Toggle Protection. Choose Project > Toggle Protection again to
turn it off. Look for a symbol like this one to indicate that a project is
protected.

Moving or Copying Files into Projects

Describes how to move or copy files in projects.

Copy the contents of a project, folder, or file to a different project by selecting it
and dragging and dropping the selection onto the project, or by using the Edit
 12

SETTING UP PROJECTS
INCLUDING REFERENCED AND REFERENCING OBJECTS IN A PROJECT
menu choices to copy and paste the selection. Use the Project menu choices
described below to move selections, or to include referenced or referencing
objects in a move or copy.

NOTE: In other workbench tools, use the right-click menu or the File menu to
include files into projects.

TASK

1. In the Repository Browser, select the project, folder, or file you want to
move or copy, then choose Project > Copy Project Contents (if you
selected a project) or Project > Include into Project (if you selected a
folder or file). The Select Project window opens.

2. In the Select Project window, select the target project. Click New to
create a new project.

3. Select:
• Include All Referenced Objects if you want to include objects refer-

enced by the selected object (the Cobol copybooks included in a Cobol
program file, for example).

• Select Include All Referencing Objects if you want to include objects
that reference the selected object.

NOTE: This feature is available only for verified files.

4. Select:
• Copy to copy the selection to the target project.

• Move From Current Project to move the selection to the target
project.

• Move From All Projects to move the selection from all projects to the
target project.

5. Click OK to move or copy the selection.

Including Referenced and Referencing Objects
in a Project

Describes how to include referenced or referencing objects in projects.

After verification, you can include referenced or referencing objects in a project
to ensure a closed system. You can include all referencing objects or only
“directly referencing” objects: If program A calls program B, and program B
13

SETTING UP PROJECTS
REMOVING UNUSED SUPPORT OBJECTS FROM A PROJECT
calls program C, A is said to directly reference B and indirectly reference C. You
can also remove unused support objects.

To include in a project:

• Every object referenced by the objects in the project (including indirectly
referenced objects), select the project in the Repository Browser and
choose Project > Include All Referenced Objects.

• Every object that references the objects in the project (including indirectly
referencing objects), select the project in the Repository Browser and
choose Project > Include All Referencing Objects.

• Every object that directly references the objects in the project, select the
project in the Repository Browser and choose Project > Include Directly
Referencing Objects.

Removing Unused Support Objects from a
Project

Describes how to remove unused support objects from a project.

To move unused support objects (Cobol copybooks, JCL procedures, PL/I
include files, and so forth) from a project to the workspace, select the project in
the Repository Browser and choose Project > Compact Project.

Emptying a Project

Describes how to delete source files from a project without deleting them from
the workspace.

To empty a project (without deleting the project or its contents from the work-
space), select the project and choose Project > Empty Project Contents.
 14

SETTING UP PROJECTS
DELETING A PROJECT
Deleting a Project

Describes how to delete a project from a workspace without removing its source
files from the workspace.

To delete a project from a workspace (without deleting its source files from the
workspace), select it and choose either File > Delete from Workspace or
Project > Delete Project.

NOTE: Only the owner of a project can delete it.
15

SETTING UP PROJECTS
DELETING A PROJECT
 16

3
 Verifying Source Files
Parsing, or verifying, an application source file generates the object model for
the file. Only a master user can verify source files.

You can verify a single file, a group of files, all the files in a folder, or all the files
in a project. It’s usually best to verify an entire project. Modernization Work-
bench parses the files in appropriate order, taking account of likely dependen-
cies between file types. Copybooks are verified when the including source file is
verified.

NOTE: If your RPG or AS/400 Cobol application uses copy statements that refer-
ence Database Description or Device Description files, or if your MCP Cobol
application uses copy statements that reference DMSII DASDL files, you need to
generate copybooks for the application before you verify program files.

For distributed languages, consult the support notes in the relevant language
support guide for pre-verification requirements. You can find the guides in
Start > All Programs > Micro Focus > Modernization Workbench Documen-
tation.

Workspace and Project Verification options determine verification behavior.
The default values for these options are preset based on your configuration and
should be appropriate for most installations.
17

VERIFYING SOURCE FILES
ENABLING PARALLEL VERIFICATION
TASK

1. In the Repository Browser, select the project, folder, or files you want to
verify and choose Prepare > Verify.

2. You are prompted to drop repository indexes to improve verification
performance. Click Yes. You will be prompted to restore the indexes
when you analyze the files.

RESULT: The parser builds an object model for each successfully verified file. For
an unsuccessfully verified file, the parser builds an object model for as much of
the file as it understands.

Enabling Parallel Verification

Describes how to enable parallel verification.

Parallel verification typically improves verification performance for very large
workspaces by using multiple execution agents, called HyperCode Converters, to
process source files concurrently. You can start any number of converters on the
local machine, remote machines, or some combination of local and remote
machines. You can run parallel verification online in the Modernization Work-
bench or in batch mode with the Batch Refresh Process (BRP).

You enable parallel verification in three steps:

• Select the parallel verification method and the minimum number of
concurrent converters on the Verification > Parallel Verification tab of the
Workspace Options.

• Start the converters on the local and/or remote machines. If you start
fewer than the minimum number of converters specified on the Parallel
Verification tab, the verification process starts the needed converters
automatically on the local machine.

• Verify the workspace online in the Modernization Workbench or in batch
mode using the Batch Refresh Process (BRP).

NOTE: Verification results are reported in the Activity Log History window. They
are not reported in the Activity Log itself (for online verification) or BRP log files
(for batch verification). You can also use a Verification Report to view the results.

 Follow the instructions below to launch HyperCode Converters and to specify
the type of work the converters perform. You can launch multiple converters on
 18

VERIFYING SOURCE FILES
HOW THE SYSTEM REFRESHES THE REPOSITORY
the same machine. Once the minimum number of converters has been started,
you can launch the converters at any point in the verification process.

TASK

1. In the Modernization Workbench Administration window, choose
Administer > Launch HyperCode Converter. The Launch HyperCode
Converter window opens.

2. In the Serve workspace combo box, specify the workspace to be
processed.

3. In the Processing Mode pane, select any combination of:
• Conversion to perform operations used to generate a HyperView

construct model.

• Verification to perform verification operations.

4. Select Produce Log File to generate a log file for parallel verification.
The log file has a name of the form
<workspace_name>HCC.<random_number>.log and is stored at the
same level as the workspace (.rwp) file.

5. Click OK.
STEP RESULT: The workbench launches the HyperCode Converter. Click the
button on the Windows toolbar to view the HyperCode Converter window.

NOTE: Once verification has started, you can change the processing mode
for a converter by selecting the appropriate choice in the Processing menu
in the HyperCode Converter window.

How the System Refreshes the Repository

Describes how the system refreshes the repository.

When you edit a source file in the Modernization Workbench, the system recur-
sively checks every repository object that may be affected by the edit: refreshes
the repository. If the edit invalidates the object, you need to reverify the source
file that contains it. The file with the invalidated object is displayed in bold type
in the Repository Browser.
19

VERIFYING SOURCE FILES
INVALIDATING OBJECTS BEFORE REVERIFICATION
Invalidating Objects Before Reverification

Describes how to invalidate objects before reverification.

You can save time reverifying very large applications by invalidating some or all
of the source files in them before you reverify. You can invalidate a single file, a
group of files, all the files in a folder, or all the files in a project.

In the Repository Browser, select the project, folder, or files you want to invali-
date and choose File > Invalidate Selected Objects. Invalidated files are
displayed in bold type in the Repository Browser.

Setting Workspace Verification Options: Legacy
Dialects Tab

Describes how to set workspace verification options on the Legacy Dialects tab.

Use the Verification > Legacy Dialects tab of the Workspace Options window to
identify the dialect of the source files in your application. For information on
supported dialects and versions, see the support guide for your product.

TASK

1. Choose Tools > Workspace Options. The Workspace Options window
opens. Click the Verification tab, then the Legacy Dialects tab.

2. In the Source Type pane, select the source file type whose dialect you
want to specify, then select the dialect in the dialect pane.

3. Set verification options for the dialect. The table below shows the avail-
able options.

Option Dialect Description

48-character set All PL/I Specifies that the parser handle the
48-character set used with older
hardware for logical operators.
 20

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: LEGACY DIALECTS TAB
Allow Long Program
Names

Cobol/390,
Enterprise Cobol

 Specifies that the parser process
programs with program IDs longer
than 8 characters.

ASCII Compatibility Unisys 2200 UCS
Cobol

Specifies that the parser ensure
consistency with the ASCII version of
Unisys Cobol. Emulates behavior of
compiler COMPAT option.

Binary Storage Mode ACUCOBOL-GT®,
Micro Focus Cobol

Specifies the binary storage mode:
Word (2, 4, or 8 bytes) or Byte (1 to 8
bytes).

COPY REPLACING
Substitutes Partial Words

All Cobol Specifies that the application was
compiled with partial-word
substitution enabled for COPY
REPLACE operations.

COPY statements as in
COBOL-68

All Cobol Specifies that the application was
compiled with the OLDCOPY option
set.

Currency Sign All Cobol Specifies the currency symbol used by
the application.

Data File Assignment Micro Focus Cobol Specifies the setting of the compiler
ASSIGN option: Dynamic or External.

Enable MF comments Micro Focus Cobol Specifies that the application contains
comments in the first position.

Graphical System ACUCOBOL-GT® Specifies that the application was
executed on a graphical rather than
character-based system.

In Margins All Specifies the current margins for source
files.

Line Number Step All Natural Specifies the line-numbering increment
to use in restoring stripped line
numbers in Natural source files:
Autodetect, to use a line-numbering
increment based on line number
references in the source code, or User
defined, to use the line-numbering
increment you specify. If you select
User defined, enter the increment in the
Value field.

Option Dialect Description
21

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: LEGACY DIALECTS TAB
Logical Operators All PL/I Specifies handling of logical operator
characters used in source files:
Autodetect, to autodetect logical
operator characters, or Characters, to
use the logical operator characters you
specify. If you select Characters, specify
the characters used for NOT and OR
operations.

Out Margins All PL/I Specifies the margins for components
to be created with the Modernization
Workbench Component Maker tool.

PERFORM behavior ACUCOBOL-GT®,
Micro Focus Cobol

Specifies the setting of the compiler
PERFORM-type option: Stack, to allow
recursive PERFORMS, or All exits
active, to disallow them.

Picture clause N-symbol Cobol/390,
Enterprise Cobol

Specifies the national language
behavior of picture symbol N and
N-literals: DBCS or National. Emulates
behavior of compiler NSYMBOL
option.

Preserve dialect for
verified objects

All Cobol Specifies that the parser reverify Cobol
files with the same dialect it used when
the files were verified first.

RM/Cobol compatibility ACUCOBOL-GT® Specifies that the parser ensure proper
memory allocation for applications
written for Liant RM/COBOL.
Emulates behavior of -Ds compatibility
option.

Support Hogan
Framework

Cobol/390,
Enterprise Cobol

Specifies that the parser create
relationships for Hogan Cobol
programs. Enter the location of Hogan
Cobol configuration files in the Hogan
Files Location field.

Special symbols All PL/I Specifies special symbols used in source
files.

Treat COMP-1/COMP-2
as FLOAT/DOUBLE

ACUCOBOL-GT® Specifies that the parser treat picture
data types with COMP-1 or COMP-2
attributes as FLOAT or DOUBLE,
respectively.

Option Dialect Description
 22

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
Setting Workspace Verification Options:
Settings Tab

Describes how to set workspace verification options on the Settings tab.

Use the Verification > Settings tab of the Workspace Options window to specify
verification behavior for the workspace. Among other tasks, you can:

• Enable staged parsing, which may improve verification performance by
letting you control which verification stages the parser performs.

• Enable relaxed parsing, which lets you verify source despite errors.

• Enable advanced data flow analysis for control language files.

• Enable sort card analysis.

TASK

1. Choose Tools > Workspace Options. The Workspace Options window
opens. Click the Verification tab, then the Settings tab.

2. In the Source Type pane, select the source file type whose verification
options you want to specify.

3. Set verification options for the source file type. The table below shows
the available options.

Unisys MCP Control
Options

Unisys MCP
Cobol-74, Unisys
MCP Cobol-85

Specifies that the application was
compiled with control options set or
reset as specified. Add control options
as necessary.

Option Dialect Description
23

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
NOTE: Click the More or Details button if an option listed below does not
appear on the Settings tab.

Option Source File Description

Allow Implicit Instream
Data

JCL Specifies that a DD * statement be
inserted before implicit instream data if
the statement was omitted from JCL.

Allow Keywords to Be
Used as Identifiers

Cobol, Copybook Allows Cobol keywords to be used as
identifiers.

C/C++ Parser
Parameters

C, C++ Specifies the parameters used to
compile the application. You can also
specify these parameters in the Project
Verification options, in which case the
project parameters are used for
verification.

Create Alternative Entry
Point

Cobol Specifies that an additional entry point
be created with a name based on the
conversion pattern you enter in the
Conversion Pattern field. Supports
systems in which load module names
differ from program IDs. For
assistance, contact support services.

Cross-reference Report TWS Schedule Specifies the full path of the TWS
cross-reference report (.xrf).

Debugging Lines Cobol Specifies parsing of debugging lines:
Off, to parse lines as comments, On, to
parse lines as normal statements, Auto,
to parse lines based on the program
debugging mode.

Detect Potential Code
Anomalies

Cobol Enables generation of HyperView
information on potential code
anomalies.

Enable HyperView Cobol, Natural, PL/I,
RPG

Enables generation of HyperView
information.

Enable Quoted SQL
Identifiers

Assembler File,
Cobol, DDL

Allows quoted SQL identifiers.

Enable Reference
Reports

Cobol, Control
Language, ECL, JCL,
Natural, PL/I, RPG,
W.L.

Enables generation of complete
repository information for logical
objects.
 24

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
Enter classmate to JAR
Files and/or path to
external Java file root
directories

Java For applications that use external .java
files or Java Archive (JAR) files,
specifies the location of the external
.java files and, if Include Jar/Zip Files
From Directories is selected, of the JAR
files or ZIP files containing .java files.
Add files or folders as necessary.
Folders are searched recursively.

 Generate program entry
points for functions with
same name as file

C Specifies that a program entry point be
created for the function that has the
same name as the file. Typically used to
trace calls to C programs from Cobol,
PL/I, Natural, RPG, or Assembler
programs.

Ignore Duplicate Entry
Points

All Allows duplicate entry points defined
by the Cobol statement ENTRY
‘PROG-ID’ USING A, or its equivalent
in other languages. The parser creates
an entry point object for the first
program in which the entry point was
encountered and issues a warning for
the second program. To use this option,
you must select Enable Reference
Reports. You cannot use this option to
verify multiple programs with the same
program ID.

Ignore Text After
Column 72

DDL Allows trailing enumeration characters
(columns 73 through 80) in source
lines.

Libraries PowerBuilder Specifies the PowerBuilder libraries
used by the application. Libraries must
be listed in the order they appear in the
PBL File folder in the Repository
Browser. Add libraries as necessary.

Libraries support Natural Enables Natural library support.

List of Include
Directories

C, C++ Specifies the full path of the folders for
include files (either original folders or
Repository Browser folders if the
include files were registered). Choose a
recognized folder in the List of Include
Directories pane. Add folders as
necessary. You can also specify these
folders in the Project Verification
options, in which case the parser looks
only for the folders for the project.

Option Source File Description
25

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
National Characters System Definition Specifies the national language
characters for currency, number, and at
symbols.

Perform Dead Code
Analysis

Cobol, PL/I, RPG Enables collection of dead code
statistics.

Perform DSN Calling
Chains Analysis

Control Language,
ECL, JCL, WFL

Enables analysis of dataset calling
chains.

Perform System Calls
Analysis

JCL Enables analysis of system program
input data to determine the application
program started in a job step.

Relaxed Parsing AS400 Screen, BMS,
Cobol, Copybook,
CSD, DDL, Device
Description, DPS,
ECL, MFS, Natural,
Netron Specification
Frame, PL/I

Enables relaxed parsing.

Relaxed Parsing for
Embedded Statements

Assembler File,
Cobol, PL/I

Enables relaxed parsing for embedded
SQL, CICS, or DLI statements.

Resolve Decisions
Automatically

Control Language,
WFL

Enables automatic decision resolution.

Show Macro Generation C, C++ Specifies whether to display statements
that derive from macro processing in
HyperView.

Sort Program Aliases JCL Enables batch sort card analysis.
Choose a recognized sort utility in the
Sort Program Aliases pane. Add sort
utilities as necessary.

SQL Statements
Processor

Cobol Specifies whether the SQL
Preprocessor or Coprocessor was used
to process embedded SQL statements.

System Procedures JCL Specifies the system procedures
referenced by JCL files. Add system
procedures as necessary.

Timeout in seconds to
stop verification
execution

All The number of seconds to wait before
stopping a stalled verification process

Option Source File Description
 26

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
Enabling Staged Parsing

Introduces the staged parsing verification options.

File verification generates repository information in four stages, as described in
this section. You can control which stage the workbench parser performs by
setting the staged parsing options on the Settings tab for Workspace Verifica-
tion options. That may save you time verifying very large applications.

Rather than verify the application completely, you can verify it one or two stages
at a time, generating only as much information as you need at each point. When
you are ready to work with a full repository, you can perform the entire verifi-
cation at once, repeating the stages you’ve already performed and adding the
stages you haven’t.

Treat every file with
main procedure as a
program

C, C++ Specifies whether to treat only files
with main functions as programs.

Trim Date from Active
Schedule Names

TWS Schedule Specifies whether to append the
effective date range to a TWS
jobstream object.

Truncate Names of
Absolute Elements

ECL Allows the parser to truncate suffixes
in the names of Cobol programs called
by ECL. Specify a suffix in the
adjoining text box.

Use Database Schema Assembler File,
Cobol, PL/I

Specifies whether to associate a
program with a database schema.
When this option is selected, the parser
collects detailed information about
SQL ports that cannot be determined
from program text (SELECT *). If the
schema does not contain the items the
SQL statement refers to, an error is
generated.

Workstation Report TWS Schedule Specifies the full path of the TWS
workstation report (.wdr).

Option Source File Description
27

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
Basic Repository Information

Describes how to generate basic repository information only.

To generate basic repository information only, deselect Enable HyperView,
Enable Reference Reports, and Perform Dead Code Analysis on the Work-
space Verification options Settings tab. The parser:

• Generates relationships between source files (Cobol program files and
copybooks, for example).

• Generates basic logical objects (programs and jobs, for example, but not
entry points or screens).

• Generates Defines relationships between source files and logical objects.
Calculates program complexity.

• Identifies missing support files (Cobol copybooks, JCL procedures, PL/I
include files, and so forth).

NOTE: If you generate only basic repository information when you verify an appli-
cation, advanced program analysis information is not collected, regardless of your
settings in the Project Options Verification tab.

Full Logical Objects Information

Describes how to generate complete repository information for logical objects.

To generate complete repository information for logical objects, select Enable
Reference Reports on the Workspace Verification options Settings tab. Set this
option to generate Reference and Orphan Analysis reports for logical objects,
and to enable non-HyperView analysis tools.

NOTE: If you select this staged parsing option only, verify all legacy objects in the
workspace synchronously to ensure complete repository information.

HyperView Information

Describes how to generate a HyperView construct model.

To generate a HyperView construct model, select Enable HyperView on the
Workspace Verification options Settings tab. A HyperView construct model
defines the relationships between the constructs that comprise the file being
verified: its sections, paragraphs, statements, conditions, variables, and so forth.

To generate HyperView information on potential code anomalies, select Detect
Potential Code Anomalies ion the Workspace Verification options Settings
tab.
 28

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
NOTE: If you do not generate HyperView information when you verify an appli-
cation, impact analysis, data flow, and execution flow information is not
collected, regardless of your settings on the Project Verification options tab.

Dead Code Statistics

Describes how to generate dead code statistics.

To generate dead code statistics, and to set the Dead attribute to True for dead
constructs in HyperView, select Perform Dead Code Analysis on the Work-
space Verification options Settings tab. The statistics comprise:

• Number of dead statements in the source file and referenced copybooks.
A dead statement is a procedural statement that can never be reached
during program execution.

• Number of dead data elements in the source file and referenced copy-
books. Dead data elements are unused structures at any data level, all of
whose parents and children are unused.

• Number of dead lines in the source file and referenced copybooks. Dead
lines are source lines containing dead statements or dead data elements.

You can view the statistics in the Statistic tab of the Properties window for an
object or in the Complexity Metrics tool.

Enabling Relaxed Parsing

Describes how to enable relaxed parsing.

The relaxed parsing option lets you verify a source file despite errors. Ordinarily,
the parser stops at a statement when it encounters an error. Relaxed parsing tells
the parser to continue to the next statement.

Use relaxed parsing when you are performing less rigorous analyses that do not
need every statement to be modeled (estimating the complexity of an applica-
tion written in an unsupported dialect, for example). Select Relaxed Parsing or
Relaxed Parsing for Embedded Statements as appropriate on the Workspace
Verification options Settings tab.

NOTE: Relaxed parsing may affect the behavior of other tools. You cannot
generate component code, for example, from source files verified with the relaxed
parsing option.
29

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: SETTINGS TAB
Enabling Advanced Data Flow Analysis for Control Language Files

Describes how to enable advanced data flow analysis for control language files.

Ordinarily, Modernization Workbench data flow analysis tools let you trace the
flow of data into or out of a dataset only up to the program actually referenced
in the control language file, whether or not that program writes to or reads from
the dataset. If you need to trace the flow of data through the entire “calling
chain,” that is, not only the referenced program, but also any programs that
program calls, and any programs they call in turn:

• Select Perform DSN Calling Chains Analysis on the Workspace Verifi-
cation options Settings tab for the control language file.

• Verify control language files after you verify the source files for the
programs they use. If you reverify the source file for a program, you must
also reverify the control language file that uses it.

If you verify an entire project, the workbench parses the files in appropriate
order, taking account of the dependencies between control language and
program files.

Enabling Sort Card Analysis

Describes how to enable sort card analysis.

If you use sort utilities in JCL files, you can enable sort card analysis by speci-
fying the names of the sort utilities to the parser in the Sort Program Aliases
pane on the Workspace Verification options Settings tab. The parser creates an
artificial program entity that defines the inputs and outputs for each sort utility
invocation. The program has a name of the form JCLFileName.JobName.Step-
Name.SequenceNumber, where SequenceNumber identifies the order of the step
in the job.

Enabling Natural Library Support

Describes how to enable support for Natural libraries.

If you load Natural programs to a workspace from multiple libraries, and need
to prevent library name collisions or want to maintain a list of libraries, select
Libraries support in the Workspace Verification options Settings tab for
Natural files, then specify the library names for each project in the workspace in
the Project Verification Options window. If you use this feature, the source files
themselves must have names of the form library.program.extension.

NOTE: For assistance renaming Natural source files, contact support services.
 30

VERIFYING SOURCE FILES
SETTING WORKSPACE VERIFICATION OPTIONS: PARALLEL VERIFICATION TAB
Truncating Names of Absolute Elements

Describes how to truncate suffixes in the names of Cobol programs called by
ECL.

If you are verifying ECL files for an application in which absolute element
names differ from program IDs, you can tell the parser to truncate suffixes in
the names of Cobol programs called by ECL. Select Truncate Names of Abso-
lute Elements on the Workspace Verification options Settings tab for the ECL
file.

If a Cobol program named CAP13MS.cob, for example, defines the entry point
CAP13M, and an ECL program named CAP13M.ecl executes an absolute
element called CAP13MA, then setting this option causes the parser to create a
reference to the entry point CAP13M rather than CAP13MA.

Setting Workspace Verification Options:
Parallel Verification Tab

Describes how to set workspace verification options on the Parallel Verification
tab.

Use the Verification > Parallel Verification tab of the Workspace Options
window to enable online or batch parallel verification and to specify the
minimum number of HyperCode Converters the workbench should expect.

TASK

1. Choose Tools > Workspace Options. The Workspace Options window
opens. Click the Verification tab, then the Parallel Verification tab.

2. Select:
• Run Parallel Verification in the Online Tool to enable parallel verifi-

cation online. In the Minimum HyperCode Converters combo box,
specify the minimum number of concurrent HyperCode Converters the
workbench should expect.

• Run Parallel Verification in BRP to enable parallel verification in the
Batch Refresh Process (BRP) tool. In the Minimum HyperCode
Converters combo box, specify the minimum number of concurrent
HyperCode Converters the workbench should expect.

NOTE: Before running verification, start the necessary HyperCode
Converters on the local and/or remote machines. If you start fewer than the
31

VERIFYING SOURCE FILES
SETTING PROJECT VERIFICATION OPTIONS
minimum number of converters, the verification process starts the needed
converters automatically on the local machine.

Setting Project Verification Options

Describes how to set project verification options.

Use the Verification tab of the Project Options window to specify verification
behavior for the selected project. Among other tasks, you can:

• Specify how the parser treats environment-related code.

• Specify the conditional constants the parser uses to compile programs in
the project.

• Specify schedule IDs for CA-7 jobs triggered by datasets.

• Optimize verification for advanced program analysis.

TASK

1. Choose Tools > Project Options. The Project Options window opens.
Click the Verification tab.

2. In the Source Type pane, select the source file type whose verification
options you want to specify.

3. Set verification options for the source file type. The table below shows
the available options.

NOTE: Click the Environments, Advanced, or Cobol Dialect button if an
option listed below does not appear on the Settings tab.

Option Source File Description

AIM/DB Environment Cobol Specifies how the parser treats
AIM/DB-environment-related code or
its absence.

C/C++ Parser
Parameters

C, C++ Specifies the parameters used to
compile the application.
 32

VERIFYING SOURCE FILES
SETTING PROJECT VERIFICATION OPTIONS
CAP Processor
predefined variables

Netron Specification
Frame

 Specifies the values of predefined
environment variables the parser uses
to compile Netron Specification
Frames. Select each predefined variable
you want the parser to recognize, then
enter its value. Add variables as
necessary.

CICS Environment Assembler, Cobol,
PL/I

Specifies how the parser treats
CICS-environment-related code or its
absence.

Context-Sensitive Value
Analysis

Cobol Specifies that the parser perform
context-sensitive automatic decision
resolution for Unisys MCP COMS
analysis. Choosing this option may
degrade verification performance.

Dialect Specific Options Cobol Specifies dialect-specific options,
including the conditional constants the
parser uses to compile programs in the
project. Select the Cobol dialect, then
choose the constant in the Macro
Settings pane. Add constants as
necessary.

DMS Environment Cobol Specifies how the parser treats
DMS-environment-related code or its
absence.

DMSII Environment Cobol Specifies how the parser treats
DMSII-environment-related code or its
absence.

DPS routines may end
with error

Cobol Specifies that the parser perform call
analysis of Unisys 2200 DPS routines
that end in an error. Error-handling
code for these routines is either
analyzed or treated as dead code.

Enable Data Element
Flow

Cobol, Natural,
PL/I, RPG

Enables the Global Data Flow, Change
Analyzer, and impact trace tools.

Enable Execution Flow Cobol, PL/I Enables the Execution Path tool.

Enable Extraction of
Computation-Based
Components

Cobol Enables computation-based
componentization with Application
Architect.

Option Source File Description
33

VERIFYING SOURCE FILES
SETTING PROJECT VERIFICATION OPTIONS
Enable Impact Report Cobol, Natural,
PL/I, RPG

Enables the impact trace tools. You
must also set Enable Data Element
Flow to perform impact analysis.

Enable Parameterization
of Components

Cobol Enables parameterized structure- and
computation-based componentization
with Application Architect.

Helproutines Natural Map Specifies how you want the parser to
treat helproutines, as programs or
helpmaps.

IDMS Environment Cobol Specifies how the parser treats
IDMS-environment-related code or its
absence.

IMS Environment Cobol Specifies how the parser treats
IMS-environment-related code or its
absence.

Job to Schedule Ids File CA-7 Schedule Specifies the full path of a file that
supplies schedule IDs for CA-7 jobs
triggered by the creation of a dataset.

Libraries Natural If you selected Libraries support in the
Verification > Settings tab of the
Workspace Options window for
Natural files, select a recognized library
in the Libraries pane. Add libraries as
necessary.

List of Include
Directories

C, C++ Specifies the full path of the folders for
include files (either original folders or
Repository Browser folders if the
include files were registered). Choose a
recognized folder in the List of Include
Directories pane. Add folders as
necessary.

Maximum Number of
Variable’s Values

Cobol Specifies the maximum number of
values to be calculated for each variable
during verification for advanced
program analysis. Limit is 200.

Maximum Size of
Variable to Be Calculated

Cobol Specifies the maximum size in bytes for
each variable value to be calculated
during verification for advanced
program analysis.

Option Source File Description
 34

VERIFYING SOURCE FILES
SETTING PROJECT VERIFICATION OPTIONS
Override CICS Program
Terminations

Cobol, PL/I Specifies that the parser interpret CICS
RETURN, XCTL, and ABEND
commands as not terminating program
execution. Error-handling code after
these statements is either analyzed or
treated as dead code.

Perform COMS Analysis Cobol Specifies that the parser define
relationships for Unisys MCP COMS
SEND statements.

Perform Generic API
Analysis

Cobol, PL/I Specifies that the parser define
relationships with objects passed as
parameters in calls to unsupported
program interfaces, in addition to
relationships with the called programs
themselves.

Perform Program
Analysis

Cobol Enables program analysis and
component extraction features.

Perform Unisys
Common-Storage
Analysis

Cobol Specifies that the parser include in the
analysis for Unisys Cobol files variables
that are not explicitly declared in CALL
statements, but that participate in
interprogram communications. You
must set this option to include Unisys
Cobol common storage variables in
impact traces and global data flow
diagrams.

Perform Unisys TIP and
DPS Calls Analysis

Cobol Specifies that the parser perform
Unisys 2200 TIP and DPS call analysis.

Report Writer
Environment

Cobol Specifies how the parser treats Report
Writer-environment-related code or its
absence.

Resolve Decisions
Automatically

Cobol, Natural,
PL/I, RPG

Specifies that the parser autoresolve
decisions after successfully verifying
files.

SQL Environment Assembler, Cobol,
RPG

Specifies how the parser treats
SQL-environment-related code or its
absence.

Support CICS HANDLE
statements

Cobol Specifies that the parser detect
dependencies between CICS statements
and related error-handling statements,

Option Source File Description
35

VERIFYING SOURCE FILES
SETTING PROJECT VERIFICATION OPTIONS
Specifying the Processing Environment

Describes how to specify the parser's handling of environment-related code.

The Modernization Workbench parser autodetects the environment in which a
file is intended to execute, based on the environment-related code it finds in the
file. To ensure correct data flow, it sets up the internal parse tree for the file in a
way that emulates the environment on the mainframe.

For Cobol CICS, for example, the parser treats an EXEC CICS statement or
DFHCOMMAREA variable as CICS-related and, if necessary:

• Adds the standard CICS copybook DFHEIB to the workspace.

• Declares DFHCOMMAREA in the internal parse tree.

• Adds the phrase Procedure Division using DFHEIBLK, DFHCOM-
MAREA to the internal parse tree.

Autodetection is not always appropriate, of course. You may want the parser to
treat a file as a transaction-processing program even in the absence of CICS- or
IMS-related code, for example. For each autodetected environment on the
Project Verification options tab, select:

• Auto, if you want the parser to autodetect the environment for the file.

Use overwritten VALUEs Cobol Specifies that the parser use constants
from VALUE clauses as known values
even if they are overwritten in the
program by unknown values.

Use Precompiled Header
File

C, C++ Specifies that the parser verify the
project with the precompiled header
file you enter in the adjacent field. Do
not specify the file extension. Using a
precompiled header file may improve
verification performance significantly.
The content of the header file must
appear in both a .c or .cpp file and a .h
file. The precompiled header file need
not have been used to compile the
application.

Use VALUEs from
Linkage Section

Cobol Specifies that advanced analysis tools
not ignore parameter values in the
Linkage Section.

Option Source File Description
 36

VERIFYING SOURCE FILES
SETTING PROJECT VERIFICATION OPTIONS
• Yes, if you want to force the parser to treat the file as environment-related
even in the absence of environment-related code.

• No, if you want to force the parser to treat the file as unrelated to the envi-
ronment even in the presence of environment-related code. The parser
classifies environment-related code as a syntax error.

Specifying Conditional Compiler Constants

Describes how to specify the conditional constants the parser uses to compile
programs in the project.

Compiler constant directives let you compile programs conditionally. Specify
the conditional constants the parser uses to compile programs in the project in
the Dialect Specific Options for your dialect on the Project Verification options
tab. For Micro Focus Cobol, two formats are supported:

• constant_name=value (where no space is allowed around the equals sign).
In the following example, if you specify WHERE=PC on the Project Veri-
fication options tab, the source that follows the $if clause is compiled:

 $if WHERE = "PC"
 evaluate test-field
 when 5 perform test-a
 end-evaluate

• constant_name. In the following example, if you specify NOMF on the
Project Verification options tab, the source that follows the $if clause is
compiled:

 $if NOMF set
 $display Not MF dialect
 go to test-a test-b depending on test-field
 $end

Optimizing Verification for Advanced Program Analysis

Describes how to optimize verification for advanced program analysis.

When you enable advanced program analysis options for Cobol projects, the
parser calculates constant values for variables at every node in the HyperView
parse tree. That’s one reason why very large Cobol applications may encounter
performance or memory problems during verification.
37

VERIFYING SOURCE FILES
IDENTIFYING SYSTEM PROGRAMS
You may be able to improve verification performance and avoid
out-of-memory problems by manipulating the Maximum Number of Variable’s
Values and Maximum Size of Variable to Be Calculated options in the Project
Verification options tab. The lower the maximums, the better performance and
memory usage you can expect.

For each setting, you are warned during verification about variables for which
the specified maximum is exceeded. It’s usually best to increase the overflowed
maximum and reverify the application.

Identifying System Programs

Describes how to identify system programs to the parser.

A system program is a generic program provided by the underlying operating
system and used in unmodified form in the legacy application: a mainframe sort
utility, for example. You need to identify system programs to the parser so that
it can distinguish them from application programs and create relationships for
them with their referencing files.

The most convenient way to identify the system programs your application uses
is to run an unresolved report after verification. Once you learn from the report
which system programs are referenced, you can identify them in the System
Programs tab of the Workspace Options window and reverify any one of their
referencing source files.

NOTE: The reference report tool lets you bring up the System Programs tab of the
Workspace Options window while you are in the tool itself. Choose View >
System Programs in the reference report window to display the tab.

TASK

1. Choose Tools > Workspace Options. The Workspace Options window
opens. Click the System Programs tab.

2. In the System Program Patterns pane, select the patterns that match
the names of the system programs your application uses. Add patterns
as necessary.
 38

VERIFYING SOURCE FILES
SPECIFYING BOUNDARY DECISIONS
Specifying Boundary Decisions

Describes how to specify a boundary decision object.

Specify a boundary decision object if your application uses a method call to
interface with a database, message queue, or other resource. Suppose the func-
tion f1f() in the following example writes to a queue named abc:

int f1f(char*)
{
 return 0;
}
int f2f()
{
 return f1f(“abc”);
}

As far as the parser is concerned, f1f(“abc”) is a method call like any other
method call. There is no indication from the code that the called function is
writing to a queue.

When you specify the boundary decisions for a workspace, you tell the parser to
create a decision object of a given resource type for each such call. Here is the
decision object for the write to the queue:

int f2f().InsertsQueue.int f1f(char*)

You can resolve the decision objects to the appropriate resources in the Deci-
sion Resolution tool.

TASK

1. Choose Tools > Workspace Options. The Workspace Options window
opens. Click the Boundary Decisions tab.

2. In the Decision Types pane, select the decision types associated with
called procedures in your application. For the example, you would
select the Queue decision type.

3. In the righthand pane, select each signature of a given method type
you want to associate with the selected decision type. For the example,
the method type signature would be int f1f(char*). Add signa-
tures as necessary. Do not insert a space between the parentheses in
the signature. You can use wildcard patterns allowed in LIKE state-
ments by Visual Basic for Applications (VBA).

NOTE: Keep in mind that the signatures of C or C++ functions can contain
an asterisk (*) character, as in the example. So if you specify a signature with
39

VERIFYING SOURCE FILES
GENERATING COPYBOOKS
a * character, you may receive results containing not only the intended
signatures but all signatures matching the wildcard pattern. Delete the
unwanted decision objects manually.

4. Select the source file with the called procedures and choose Prepare >
Verify.
STEP RESULT: A decision object is added to the tree for the source file in the
Browser.

Generating Copybooks

Describes how to generate copybooks for RPG programs, Cobol programs that
execute in the AS/400 environment, and MCP Cobol programs.

RPG programs and Cobol programs that execute in the AS/400 environment
often use copy statements that reference Database Description or Device
Description files rather than copybooks. MCP Cobol programs occasionally use
copy statements that reference DMSII DASDL files. If your application uses
copy statements to reference these types of files, you need to verify the files and
generate copybooks for the application before you verify program files.

Copybook generation takes place in two steps:

• For each database and device file object generated at verification, the
system creates a target copybook object.

• For each target copybook object, the system creates one or more physical
copybooks.

Settings on the Generate Copybooks tab of the Project Options window deter-
mine conversion behavior. The default values should be appropriate for most
installations.
 40

VERIFYING SOURCE FILES
GENERATING COPYBOOKS
TASK

1. Verify:
• Database Description files. For each Database Description file, the

system creates a database file object with the same name as the Data-
base Description file.

• Device Description files. For each Device Description file, the system
creates a device file object with the same name as the Device Description
file.

• DMSII DASDL files. For each DMSII DASDL file, the system creates a DMSII
database file object with the same name as the DMSII DASDL file.

2. In the Repository Browser, select the project, database file, or device file
and choose:
• Prepare > Generate RPG Copybooks for Project for RPG.

• Prepare > Generate Copybooks for Project for AS/400 Cobol or MCP
Cobol.

NOTE: Skip this step for MCP Cobol if you selected Generate After
Successful Verification on the Generate Copybooks tab of the Project
options window.

STEP RESULT: The system creates a target copybook for each database or device
file object, with a name of the form database file.DBCOPYBOOK or device
file.DVCOPYBOOK, in the Target Copybooks folder.

3. The system automatically converts the target copybooks to physical
copybooks if you selected Convert Target Copybooks to Legacy
Objects on the Generate Copybooks tab of the Project options
window. If you chose not to convert target copybooks automatically,
select the target copybooks and choose Prepare > Convert to Legacy.
The system generates physical copybooks with names of the form
DD_OF_database file.CPY or DV_OF_device file.CPY,

NOTE: After generating copybooks, you can generate screens for AS/400
Cobol device file objects by selecting the objects in the Repository Browser
and choosing Prepare > Generate Screens.

Setting Generate Copybooks Options

Describes how to set Generate Copybook options.

For RPG or AS/400 Cobol application that use copy statements to reference
Database Description or Device Description files, or MCP Cobol applications
that use copy statement to reference DMSII DASDL files, use the Generate
41

VERIFYING SOURCE FILES
GENERATING COPYBOOKS
Copybooks tab of the Project Options window to specify how the system
converts the files to physical copybooks.

TASK

1. Choose Tools > Project Options. The Project Options window opens.
Click the Generate Copybooks tab.

2. For Cobol MCP only, select Generate After Successful Verification if
you want to generate target copybooks automatically on verification of
DMSII DASDL files.

3. Select Convert Target Copybooks to Legacy Objects if you want to
convert target copybooks automatically to physical copybooks when
they are generated. then select:
• Assign Converted Files to the Current Project if you want the system

to create physical copybooks in the current project.

• Keep Old Legacy Objects if you want the system not to overwrite
existing physical copybooks, Replace Old Legacy Objects if you want
the system to overwrite existing physical copybooks.

• Remove Target Copybooks After Successful Conversion if you want
the system to remove target copybooks from the current project after
physical copybooks are generated.

Copybook Generation Order

Describes the order in which copybooks should be generated.

It’s usually best to generate copybooks for an entire project, because the system
processes objects in the appropriate order, taking account of the dependencies
between them. That is not the case when you generate copybooks for given
objects. Follow these rules to ensure correct results:

• Copybooks for database file objects must be generated before copybooks
for device file objects.

• Copybooks for referenced objects must be generated before copybooks for
referencing objects.
 42

VERIFYING SOURCE FILES
PERFORMING IMS PORT ANALYSIS
Performing IMS Port Analysis

Describes how to perform IMS port analysis.

It is virtually impossible to determine from program code the database
segments or screens an IMS program operates on. Only an application-wide
analysis can trace PSB usage through the entire application call sequence.

To determine the types of database operation (insert, read, update, or delete)
IMS programs perform, and to list in the browser each of the database segments
or screens the operations are performed on, select the project or the individual
source files for the programs and choose Prepare > IMS Analysis.

The figure shows typical results. The objects marked with the icon are
abstract decision objects, indicating that the database operation, in this case,
Deletes, has been resolved to multiple segments.

Mapping Root Programs to PSBs in JCL or System Definition Files

Describes how to map IMS root programs and corresponding PSBs in a JCL file
for a batch application or a System Definition file for an online application.

You must identify IMS “root programs” and corresponding PSBs in a JCL file
for a batch application or a System Definition file for an online application. A
root program is directly invoked by IMS with a list of PCBs as parameters. It can
pass these PCBs as parameters in calls to other programs.

If you do not have actual JCL or System Definition files, you must create dummy
ones. Analyzing the application without these files does nothing. Sample JCL
and System Definition files follow:
43

VERIFYING SOURCE FILES
PERFORMING IMS PORT ANALYSIS
Sample JCL file:
//imsbatch JOB
//S1 EXEC PGM=DFSRRC00,REGION=2048K,
//
PARM=(DLI,progname,psbname,7,0000,,0,,N,0,T,0,,N,,,N)
//

Sample System Definition file:
APPLCTN PSB=progname
TRANSACT CODE=trnname

Verification Order for IMS Applications

Describes the order in which source files in IMS applications should be verified.

If you verify an entire project for an IMS application, the workbench parses the
source files in appropriate order, taking account of the dependencies between
file types. Otherwise, verify source files in the following order:

• DBD files (for GSAM databases)

• MFS files

• PSB files

• Cobol or PL/I files

NOTE: For Cobol files, set the Perform Program Analysis and Enable Data
Element Flow project verification options. For PL/I files, set the Enable
Data Element Flow project verification option.

• JCL or System Definition files

Reverifying Files in IMS Applications

Describes when source files in IMS applications are invalidated and need to be
reverified.

If you reverify a root program, the JCL or System Definition file that maps the
program to a PSB will be invalidated. If you reverify non-root programs, all call
chains leading to them will be analyzed and any JCLs or System Definition files
that start corresponding root programs will be invalidated. Make sure to
reverify invalidated files.

Conversely, if you change a program-to-PSB mapping inside a JCL or System
Definition file, or change the PSB file itself, make sure to reverify the mapped
program before reverifying the JCL or System Definition file.
 44

VERIFYING SOURCE FILES
PERFORMING POST-VERIFICATION PROGRAM ANALYSIS
When you rerun IMS Analysis, it will process all complete call chains, starting
from all reverified JCLs and System Definition files. You can limit the number
of root programs that are re-analyzed in subsequent runs of IMS calls analysis
by setting up System Definition files so that they reference one transaction pcf
only.

NOTE: If you rerun IMS Analysis without changing anything in the project, it will
end with the warning “No information to perform IMS Analysis.” If you receive
this message on the first run of IMS Analysis, make sure that all JCLs, System
Definition files, and corresponding root programs have been verified, and that
you have a call chain from root to every IMS-relevant program in the project
(check for the strings “+IMSC” or “+IMSE” in the Environment attribute on the
System tab of the properties for the program).

Performing Post-Verification Program Analysis

Describes how to perform post-verification program analysis.

Much of the performance cost of program verification for Cobol projects is
incurred by the advanced program analysis options in the Project Verification
Options window. These features enable impact analysis, data flow analysis, and
similar tasks.

You can improve verification performance by postponing some or all of
advanced program analysis until after verification. As long as you have verified
source files with the Enable Reference Reports and Enable HyperView work-
space verification options, you can use the post-verification program analysis
feature to collect the remaining program analysis information without having
to reverify your entire legacy program.

To perform post-verification program analysis, select the project verification
options for each program analysis feature you want to enable. In the Repository
Browser, select the programs you want to analyze (or the entire project) and
choose Prepare > Analyze Program.

The system collects the required information for each analysis feature you
select. And it does so incrementally: if you verify a Cobol source file with the
Enable Data Element Flow option selected, and then perform post-verification
analysis with both that option and the Enable Impact Analysis option selected,
only impact analysis information will be collected.

The same is true for information collected in a previous post-verification anal-
ysis. In fact, if all advanced analysis information has been collected for a
program, the post-verification analysis feature simply will not start. In that case,
45

VERIFYING SOURCE FILES
PERFORMING POST-VERIFICATION PROGRAM ANALYSIS
you can only generate the analysis information again by reverifying the
program.

Restrictions on Cobol Post-Verification Program Analysis

Describes restrictions on Cobol post-verification program analysis.

With the exception of Enable Impact Report and Enable Execution Flow, you
should select all of the Perform Program Analysis options you are going to
need for Cobol program analysis the first time you collect analysis information,
whether during verification or subsequent post-verification analysis.This is
because, with the exception of Enable Impact Report and Enable Execution
Flow, selecting any of the options dependent on the Perform Program Anal-
ysis project verification option, whether during a previous verification or a
previous program analysis, results in none of the information for those options
being collected in a subsequent post-verification program analysis.

So if you verify a program with the Resolve Decisions Automatically option
selected, then perform a subsequent program analysis with the Perform
Generic API Analysis option selected, API analysis information is not
collected. Whereas if you perform the subsequent program analysis with the
Enable Impact Report option selected, impact analysis information is
collected.

Similarly, if you perform program analysis with the Enable Impact Report
option selected, then perform a subsequent program analysis with the Enable
Parameterization of Components option selected, no parameterization infor-
mation is collected. Whereas if you perform the subsequent program analysis
with the Enable Execution Flow option selected, execution flow information is
collected.

Restrictions on PL/I Post-Verification Program Analysis

Describes restrictions on PL/I post-verification program analysis.

For PL/I programs, selecting Resolve Decisions Automatically causes informa-
tion for Enable Data Element Flow also to be collected, whether or not it
already has been collected. Select these options together when you perform
program analysis.
 46

4
 Using Post-Verification
Reports
Use Modernization Workbench post-verification reports to check verification
results, perform detailed executive assessments of the application, and view key
data operations:

• Verification Reports offer a convenient way to analyze project verification
results.

• Executive Reports offer HTML views of application inventories that a
manager can use to assess the risks and costs of supporting the applica-
tion.

• CRUD Reports show the data operations each program in the project
performs, and the data objects on which the programs operate.

Viewing Verification Reports

Describes Modernization Workbench Verification Reports.

Use Verification Reports to display the verification errors and warnings for each
source file in the selected project and to navigate to the offending code in source.
To open the Verification Report window, select a project in the Repository
Browser and choose Prepare > Verification Report. The verification report is
displayed in the Verification Report window. To show the verification report
47

USING POST-VERIFICATION REPORTS
VIEWING VERIFICATION REPORTS
for a different project, select the project in the Projects drop-down on the
toolbar.

To refresh the report after reverifying a file, choose File > Generate Report. To
generate HTML reports of Verification Report results, choose File > Report >
<Report Type>.

TIP: The Missing Files report is a convenient alternative to an Unresolved Report
when you are interested only in missing source files, and not in unresolved objects
like system programs.

The figure below shows the Verification Report window. By default, the Report
and Source windows are displayed. Select the appropriate choice in the View
menu to hide a window. Select the choice again to show the window.
 48

USING POST-VERIFICATION REPORTS
VIEWING VERIFICATION REPORTS
Errors Pane

Describes the Errors pane of the Verification Report window.

The Errors pane of the Verification Report window displays the errors and
warning for the project sorted by the Files Affected column. Click the
button to display the errors for the project. Click the button to display
the warnings for the project. The buttons are toggles. Click the buttons again to
hide errors or warnings.

Click an error or warning to display the affected files in the Files Affected pane
and to highlight each instance of offending code in the Source pane. Mark an
error or warning to mark the affected files in the Files Affected pane. The table
below describes the columns in the Errors pane.

Files Affected Pane

Describes the Files Affected pane of the Verification Report window.

The top portion of the Files Affected pane displays the files affected by the error
or warning selected in the Errors pane, the verification status of the file, and the
numbers of occurrences of the error and warning in the file. Click a file to
display the occurrences in the Details portion of the Files Affected pane. Select
Show All Errors to display every error and warning for the selected file.

Errors are indicated with a symbol. Warnings are indicated with a
symbol. Click an occurrence of an error or warning to navigate to the offending
code in the Source pane.

Column Description

Severity The severity of the error or warning.

Number The error or warning number.

Count The number of occurrences of errors or
warnings of this type in the project.

Files Affected The number of files affected by the error
or warning.

Sample Text The text of the error or warning message.
If there are multiple occurrences of the
error or warning, and the text of the
message differs among occurrences, then
the text of a sample occurrence.
49

USING POST-VERIFICATION REPORTS
VIEWING VERIFICATION REPORTS
Source Pane

Describes the Source pane of the Verification Report window.

The Source pane displays view-only source for the file selected in the Files
Affected pane. Offending code is highlighted in red.

Usage is similar to that for the Modernization Workbench HyperView Source
pane. For more information, see Analyzing Programs in the workbench docu-
mentation set.

Marking Items

Describes how to mark items in the Verification Report window.

To mark an item, place a check mark next to it. To mark all the items in the
selected tab, choose Edit > Mark All. To unmark all the items in the selected tab,
choose Edit > Unmark All.

Including Files into Projects

Describes how to move or copy files listed in Verification Reports into projects.

In very large workspaces, you may find it useful to move or copy files into
different projects based on the errors they contain. Follow the instructions
below to move or copy files listed in a Verification Report into a project.

TASK

1. In the Files Affected pane, mark the items you want to move and
choose File > Include Into Project. The Select Project window opens.

2. In the Select Project window, select the target project. Click New to
create a new project.

3. Select:
• Include All Referenced Objects if you want to include objects refer-

enced by the selected object (the Cobol copybooks included in a Cobol
program file, for example).

• Select Include All Referencing Objects if you want to include objects
that reference the selected object.

NOTE: This feature is available only for verified files.
 50

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
4. Select:
• Copy to copy the selection to the target project.

• Move From Current Project to move the selection to the target
project.

• Move From All Projects to move the selection from all projects to the
target project.

5. Click OK to move or copy the selection.

Viewing Executive Reports

Describes Modernization Workbench Executive Reports.

Executive Reports offer HTML views of application inventories that a manager
can use to assess the risks and costs of supporting the application:

• The Application Summary view gives statistics for industry-standard
metrics such as program volume, maintainability, cyclomatic complexity,
and number of defects.

• The Potential Code Anomalies view gives statistics for potential code
anomalies that may mark programs as candidates for re-engineering:
GOTO non-exits, range overlaps, and the like. You can customize poten-
tial code anomalies using the Define Anomalies feature.

NOTE: You must set Detect Potential Code Anomalies in the Verification
> Settings tab of the Workspace Options window to generate these statistics.

• The Repository Statistics view gives statistics for Modernization Work-
bench verification results and unresolved or unreferenced application
elements.

• The Standard Deviations view displays graphs that plot the deviation of
the programs in the application from the means for six key industry-stan-
dard metrics.

To generate an Executive Report, choose Prepare > Executive Report. Project
options on the Report > Executive Report tab determine the entities included in
the report, and the functions the report performs. The report is stored in
\<Workspace Home>\Output\Executive Report\Project\index.htm.

The figure below shows an Executive Report. The top page in each view displays
the available statistics and graphs. Click the links to view the detail for each type
51

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
of statistic or graph. In the statistic or graph detail page, click the link for a
program to view the detail for that program.

NOTE: After generating an Executive Report, use the Executive Report category in
the HyperView Clipper tool to view potential code anomalies in program context.

Setting Executive Report Options

Describes how to set Executive Report options.

Use the Report > Executive Report tab of the Project Options window to specify
the entities included in executive reports, and the functions the report performs.
Generally, the fewer entities and functions you choose, the better report gener-
 52

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
ation performance you can expect. You should especially consider not reporting
on:

• Detail for code anomalies. Leave Generate Details unchecked.

• Data stores. Leave data store entities unchecked.

• Relationships, if you do not need cross-reference information. Leave Rela-
tionships unchecked.

TASK

1. Choose Tools > Project Options. The Project Options window opens.
Click the Report tab, then the Executive Report tab.

2. Click Functionality, then select each report function you want to
enable. For the Application Summary function, click Select Metrics. In
the Application Summary (Averages) window, select Application
Summary (Averages) to enable the function, then choose each metric
you want to include in the report.

3. Select each type of entity you want to include in the report. To edit the
attributes included in the report for the entity type, click Attributes. In
the Attributes window, select each attribute of the selected entity type
to include in the report.

Defining Potential Code Anomalies

Describes how to modify existing definitions of potential code anomalies in the
HyperView advanced search criteria.

You can view and modify existing definitions of potential code anomalies (other
than range overlaps and range jumps) in the HyperView advanced search
criteria in the Coding Standards folder.

To define a new code anomaly, you must define an advanced search criterion
for the anomaly and a matching entry in the file <Workbench
Home>\Data\CodeDefects.xml. The entry has the form:

<DEFECT Id="name"
Internal="True|False"
Enabled="True|False"
Caption="display name"
ListName="list name"
Criterion="path of criterion"/>

where:

• Id is a unique name identifying the code anomaly in the workbench.
53

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
• Internal specifies whether the anomaly is implemented internally in
program code (True), or externally in an advanced search criterion
(False).

NOTE: You must specify False. Code anomalies with an Internal value of
True cannot be modified.

• Enabled specifies whether the code anomaly is displayed in the Execu-
tive Report.

• Caption is the display name for the anomaly in the Executive Report.

• ListName is the name of the list of anomalous code constructs displayed
in the Executive Report category of the HyperView Clipper tool.

• Criterion is the full path name of the criterion in the HyperView
Advanced Search tool, including the tab name (General) and any folder
names. For example, General > Coding Standards\MOVE State-
ments\Possible Data Padding.

You can display the anomaly caption in Japanese or Korean in the Executive
Report by creating an entry for the anomaly in the file <Workbench
Home>\Language\[Jpn|Kor]\CodeDefects.xrc. The entry has the form:

<String name="name"
listname="list name"
caption="translated display name"
description="description"/>

where:

• name is the unique name of the code anomaly in the workbench (Id attri-
bute of CodeDefects.xml entry).

• listname is the name of the list of anomalous code constructs displayed
in the Executive Report category of the HyperView Clipper tool (List-
Name attribute of CodeDefects.xml entry).

• caption is the translated display name for the anomaly in the Executive
Report.

• description contains a description of the entry.
 54

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
Cobol Range Overlaps and Range Jumps Detected in the Executive
Report

Describes Cobol range overlaps and range jumps detected in the Executive
Report.

This section lists Cobol range overlaps and range jumps detected in the Execu-
tive Report. S* defects appear in the report under “Range Overlaps” as the sum
of all defects S1+S2+S3+S4+S5+S6. G* defects appear in the report under
“Range Jumps” as the sum of all defects G1+G2+G3+G5+G6+G7.

S0. No defects

Perform A1 thru A2.
Perform B1 thru B2.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.
…
.--B1.
| StatementsB1.
| …
| B2.
‘--- StatementsB2.

S1. Overlapped sections

Perform A1 thru A2.
Perform B1 thru B2.
…
.--A1.
| StatementsA1.
| …
| B1. --.
| StatementsB1. |
| … |
| A2. |
‘--- StatementsA2. |
… |
B2. |
StatementsB2. –-’
55

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
S2. Overlapped sections

Perform A1 thru A2.
Perform B1 thru B2.
…
.--B1.
| StatementsB1.
| …
| A1. --.
| StatementsA1. |
| … |
| B2. |
‘--- StatementsB2. |
… |
A2. |
StatementsA2. –-’

S3. Overlapped sections

Perform A1 thru A2.
Perform B1 thru B2.
…
.--A1.
| StatementsA1.
| …
| B1. --.
| StatementsB1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.

S4. Overlapped sections

Perform A1 thru A2.
Perform A1 thru B2.
…
.--A1. --.
| StatementsA1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.
 56

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
S5. Overlapped sections

Perform A1 thru A2.
Perform B1 thru A2.
…
.--A1.
| StatementsA1.
| …
| B1. --.
| StatementsB1. |
| … |
| A2. |
‘--- StatementsA2. --’

S6. Overlapped sections

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| Perform B1 thru B2.
| …
| B1. --.
| StatementsB1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.

G0. No defects

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto B1.
| …
| B1.
| StatementsB1.
| …
| A2.
‘--- StatementsA2.
57

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
G0. No defects

Perform A1 thru A2.
goto B1.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.
…
B1.
StatementsB1.

G0. No defects

Perform A1 thru A2.
goto B1.
…
B1.
StatementsB1.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.

G0. No defects

Perform A1 thru A2.
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.
…
goto B1.
…
B1.
StatementsB1.

G1. Break-in goto

Perform A1 thru A2.
…

 58

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
goto B1.
…
.--A1.
| StatementsA1.
| …
| B1.
| StatementsB1.
| …
| A2.
‘--- StatementsA2.

G2. Break-in goto

Perform A1 thru A2.
…
goto A1.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.

G3. Break-in goto

Perform A1 thru A2.
…
goto A2.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.

S3G4=G1. Overlapped sections, break-in goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| Perform B1 thru B2.
| …
| goto C1.
| B1. --.
| StatementsB1. |
59

USING POST-VERIFICATION REPORTS
VIEWING EXECUTIVE REPORTS
| … |
| C1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.

G5. Break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto B1.
| …
| A2.
‘--- StatementsA2.
…
B1.
StatementsB1.

G6. Break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto A1.
| …
| A2.
‘--- StatementsA2.

G7. Break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto A2.
| …
| A2.
‘--- StatementsA2.
 60

USING POST-VERIFICATION REPORTS
VIEWING CRUD REPORTS
G8. No Defects

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto A2.
| …
| A2.
‘--- EXIT.

S3G9=G5. Overlapped sections, break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| Perform B1 thru B2.
| …
| B1. --.
| StatementsB1. |
| … |
| goto C1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| C1.
| …
| A2.
‘--- StatementsA2.

Viewing CRUD Reports

Describes Modernization Workbench CRUD Reports.

The CRUD Report for a project shows the data operations each program in the
project performs, and the data objects on which the programs operate. To
generate a CRUD Report, select a project in the Repository Browser and choose
Prepare > CRUD Report. The figure below shows a CRUD Report.
61

USING POST-VERIFICATION REPORTS
VIEWING CRUD REPORTS
Project options on the Report > CRUD Report tab determine the data opera-
tions and program-to-data object relationships displayed in CRUD reports. To
refresh the report after modifying display options, choose File > Refresh in the
CRUD Report window. To generate the report in HTML, choose File > Report.

NOTE: The IMS data column of the CRUD report behaves differently from the
columns for other data types. What appears in the IMS data column cells depends
on what can be determined. If the segment can be determined, the cell is populated
with the PSB name and segment name. Otherwise, the segment name is left blank.
The format is xxxxxx.yyyyyyy, where xxxxxx is the PSB name and
yyyyyyy is the segment name or blank if the segment cannot be determined.

Setting CRUD Report Options

Describes how to set CRUD Report options.

Use the Report > CRUD Report tab of the Project Options window to specify
the data operations and program-to-data object relationships displayed in
CRUD Reports.
 62

USING POST-VERIFICATION REPORTS
VIEWING CRUD REPORTS
TASK

1. Choose Tools > Project Options. The Project Options window opens.
Click the Report tab, then the CRUD Report tab.

2. Place a check mark next to each type of program-to-data object rela-
tionship you want to display.

3. Place a check mark next to each type of data operation you want to
display.
63

USING POST-VERIFICATION REPORTS
VIEWING CRUD REPORTS
 64

5
 Inventorying
Applications
Users often ask why the Modernization Workbench parser encounters errors in
working production systems. The reasons usually have to do with the source file
delivery mechanism: incorrect versions or copybooks, corruption of special
characters because of source code ambiguities, FTP errors, and so forth.

Use Modernization Workbench inventory analysis tools to ensure that all parts
of your application are available to the parser:

• Reference Reports let you track referential dependencies in verified
source.

• Orphan Analysis lets you analyze and resolve objects that do not exist in
the reference tree for any top-level program object, so-called orphans.
Orphans can be removed from a system without altering its behavior.

• Decision Resolution identifies and lets you resolve dynamic calls and
other relationships that the parser cannot resolve from static sources in
Cobol, PL/I, and Natural programs.
65

INVENTORYING APPLICATIONS
USING REFERENCE REPORTS
Using Reference Reports

Describes Modernization Workbench Reference Reports.

When you verify a legacy application, the parser generates a model of the appli-
cation that describes the objects in the application and how they interact. If a
Cobol source file contains a COPY statement, for example, the system creates a
relationship between the file and the Cobol copybook referenced by the state-
ment. If the copybook doesn’t exist in the repository, the system flags it as
missing by listing it with a symbol in the tree view of the Repository Browser.

Reference Reports let you track these kinds of referential dependencies in veri-
fied source:

• An Unresolved Report identifies missing application elements.

• An Unreferred Report identifies unreferenced application elements.

• A Cross-reference Report identifies all application references.

• An External Reference Report identifies references in object-oriented
applications to external files that are not registered in the workspace, such
as .java, Java Archive (JAR), or C++ include files (assuming you have iden-
tified the locations of these files in the Workspace Verification options
window for the source files). These references are not reported as unre-
solved in the Unresolved Report.

TIP: The Missing Files report in the Verification Report tool is a convenient alter-
native to an Unresolved Report when you are interested only in missing source
files, and not in unresolved objects like system programs.

Understanding the Reference Reports Window

Describes the Reference Reports window

Use Reference Reports to track referential dependencies in verified project
source. To open the Reference Reports window, select a project in the Reposi-
tory Browser and choose Prepare > Reference Reports.

When the Reference Reports window opens, choose the Reference Report type
in the Report type drop-down. To limit the report to references in the current
project, choose View > Restrict References to Project. To generate the report
in HTML, choose File > Report.

The figure below shows an Unreferred Report window. The windows for the
other reports are similar. By default, all Reference Report panes are displayed.
 66

INVENTORYING APPLICATIONS
USING REFERENCE REPORTS
Select the appropriate choice in the View menu to hide a pane. Select the choice
again to show the pane.

Main Pane

Describes the Reference Reports Main pane.

The Main pane displays the objects in the Reference Report and their relation-
ships. The table below describes the columns in the Main pane.

Column Report Type Description

Object Name All The name of the unresolved,
unreferenced, cross-referenced, or
externally referenced object.

Object Type All The entity type of the unresolved,
unreferenced, cross-referenced, or
externally referenced object.
67

INVENTORYING APPLICATIONS
USING REFERENCE REPORTS
Preview Pane

Describes the Reference Reports Preview pane.

The Preview pane lets you browse HyperView information for the object
selected in the Report pane. The information available depends on the type of
object selected. You see only source code for a copybook, for example, but full
HyperView information for a program. Choose the information you want to
view for the object from the Source drop-down.

Setting Reference Reports Options

Describes how to set Reference Reports options.

Use the Report > Reference Reports tab of the Project Options window to
specify the entity types for which reference report information is collected.

Legacy Object Unreferred Report,
Cross-reference
Report

The source file that contains the
unreferenced or cross-referenced
object.

Source Unreferred Report,
Cross-reference
Report

The location in the workspace folder of
the source file that contains the
unreferenced or cross-referenced
object.

Referred by Unresolved Report,
Cross-reference
Report, External
Reference Report

The name of the referring object.

Referring Object Type Unresolved Report,
Cross-reference
Report, External
Reference Report

The entity type of the referring object.

Relationship Unresolved Report,
Cross-reference
Report, External
Reference Report

The relationship between the
unresolved, cross-referenced, or
externally referenced object and the
referring object.

Object Description All The description of the unresolved,
unreferenced, cross-referenced, or
externally referenced object entered by
the user on the Description tab of the
Object Properties window.

Column Report Type Description
 68

INVENTORYING APPLICATIONS
USING ORPHAN ANALYSIS REPORTS
TASK

1. Choose Tools > Project Options. The Project Options window opens.
Click the Report tab, then the Reference Reports tab.

2. Place a check mark next to each type of entity you want to be included
in reference reports.

Using Orphan Analysis Reports

Introduces orphan analysis.

An object that does not exist in the reference tree for any top-level object is
called an orphan. Orphans can be removed from a system without altering its
behavior. Use the Orphan Analysis tool to find orphans.

What’s the difference between an orphan and an unreferenced object?

• All unreferenced objects are orphans.

• Not every orphan is unreferenced.

Suppose an unreferred report shows that the copybook GSS3.CPY is not refer-
enced by any object in the project. Meanwhile, a cross-reference report shows
that GSS3.CPY references GSS3A.CPY and GSS3B.CPY.

These copybooks do not appear in the unreferred report because they are refer-
enced by GSS3.CPY. Only orphan analysis will show that the two copybooks are
not in the reference tree for the GSS program and, therefore, can be safely
removed from the project.

Understanding the Orphan Analysis Window

Describes the Orphan Analysis window.

Use the Orphan Analysis tool to determine whether an object exists in the refer-
ence tree for a top-level program object. To open the Orphan Analysis tool
window, select a project in the Repository Browser and choose Prepare >
Orphan Analysis.

Project options on the Report > Orphan Analysis tab specify the search filter for
the report. To refresh the report after modifying the options, choose Orphans
> Refresh in the Orphan Analysis window. To generate the report in HTML,
choose File > Save Report As.
69

INVENTORYING APPLICATIONS
USING ORPHAN ANALYSIS REPORTS
NOTE: The Filter, Startup, and Find panes let you use hyperlinks to set up and
apply the Orphan Analysis search filter. Use these panes instead of the options
window if you prefer.

The figure below shows the Orphan Analysis window. By default, all Orphan
Analysis panes are displayed. Select the appropriate choice in the View menu to
hide a pane. Select the choice again to show the pane.

Found Objects Pane

Describes the Orphan Analysis Found Objects pane.

The Found Objects pane shows the name, type, and source location of orphans.
To show the list of orphans only, deselect View > Report View.
 70

INVENTORYING APPLICATIONS
USING ORPHAN ANALYSIS REPORTS
Orphan Source Pane

Describes the Orphan Analysis Source pane.

The Orphan Source pane lets you browse HyperView information for the object
selected in the Found Objects pane. The information available depends on the
type of object selected. You see only source code for a copybook, for example,
but full HyperView information for a program. Choose the information you
want to view for the object from the Source drop-down.

Setting Orphan Analysis Options

Describes how to set Orphan Analysis options.

Use the Report > Orphan Analysis tab of the Project Options window to specify
the search filter for an Orphan Analysis report.

TASK

1. Choose Tools > Project Options. The Project Options window opens.
Click the Report tab, then the Orphan Analysis tab.

2. In the Startup pane, click Select Startup Types. The Startup dialog
opens.

3. In the Startup dialog, set up a search filter for the startup objects in the
orphan analysis. You can filter on entity type, entity name, or both:
• To filter on entity type, place a check mark next to the entity type you

want to search for in the Roots pane.

• To filter on entity name, place a check mark next to a recognized
matching pattern in the Like pane, the Unlike pane, or both. Add
patterns as necessary. You can use wildcard patterns allowed in LIKE
statements by Visual Basic for Applications (VBA).

4. When you are satisfied with your choices in the Startup dialog, click OK.

5. In the Find pane, define the terms of the search by selecting the appro-
priate choice in the Relationships to Checked Startups drop-down,
the Relationships to Unchecked Startups drop-down, or both.

6. In the Entities pane, click Displayed Types. The Entities dialog opens.
In the Entities dialog, place a check mark next to each type of entity to
include in the report. When you are satisfied with your choices in the
Entities dialog, click OK.
71

INVENTORYING APPLICATIONS
RESOLVING DECISIONS
Deleting Orphans from a Project

Describes how to delete orphans from a project without deleting them from the
workspace.

To delete an orphan from a project (but not the workspace), select the orphan
in the Found Objects pane and choose Orphans > Exclude from Project.

Deleting Orphans from a Workspace

Describes how to delete orphans from a workspace.

To delete an orphan from the workspace, select the orphan in the Found Objects
pane and choose Orphans > Delete from Workspace.

Resolving Decisions

Introduces decision resolution.

You need to have a complete picture of the control and data flows in a legacy
application before you can diagram and analyze the application. The parser
models the control and data transfers it can resolve from static sources. Some
transfers, however, are not resolved until run time. Decision resolution lets you
identify and resolve dynamic calls and other relationships that the parser cannot
resolve from static sources.

Understanding Decisions

Describes the decision resolution feature.

A decision is a reference to another object, a program or screen, for example,
that is not resolved until run time. Consider a Cobol program that contains the
following statement:

CALL ‘NEXTPROG’.

The Modernization Workbench parser models the transfer of control to
program NEXTPROG by creating a Calls relationship between the original
program and NEXTPROG.

But what if the statement read this way instead:
 72

INVENTORYING APPLICATIONS
RESOLVING DECISIONS
CALL NEXT.

where NEXT is a field whose value is only determined at run time. In this case,
the parser creates a Calls relationship between the program and an abstract
decision object called PROG.CALL.NEXT, and lists the decision object with a

 icon in the tree view of the Repository Browser.

The Decision Resolution tool creates a list of such decisions and helps you navi-
gate to the program source code that indicates how the decision should be
resolved. You may learn from a declaration or MOVE statement, for example,
that the NEXT field takes either the value NEXTPROG or ENDPROG at run
time. In that case, you would resolve the decision manually by telling the system
to create resolves to relationships between the decision and the programs these
literals reference.

Of course, where there are hundreds or even thousands of such decisions in an
application, it may not be practical to resolve each decision manually. In these
situations, you can use the autoresolve feature to resolve decisions automati-
cally.

The Decision Resolution tool analyzes declarations and MOVE statements, and
any other means of populating a decision point, to determine the target of the
control or data transfer. The tool may not be able to autoresolve every decision,
or even every decision completely, but it should get you to a point where you can
complete decision resolution manually.

Understanding the Decision Resolution Tool Window

Describes the Decision Resolution Tool window.

Use the Decision Resolution tool to view and manually resolve decisions. To
open the Decision Resolution tool window, select a project in the Repository
Browser and choose Prepare > Resolve Decisions.

To save decision resolutions to the repository, choose File > Save. To generate
the Decision Resolution report in HTML, choose File > Report.

The figure below shows the Decision Resolution window. By default, all Deci-
sion Resolution panes are displayed. Select the appropriate choice in the View
menu to hide a pane. Select the choice again to show the pane.
73

INVENTORYING APPLICATIONS
RESOLVING DECISIONS
Decision List Pane

Describes the Decision Resolution Tool Decision List pane.

The Decision List pane displays the decisions in the project. To filter the list,
choose the type of decision you want to display in the Decision Type
drop-down. The table below describes the columns in the Decision List pane.

Column Description

Name The name of the object that contains the decision.

Type The type of the object that contains the decision.

Variable The program variable that requires the decision.

Completed Whether the decision has been resolved.

Unreachable Whether the decision is in dead code.
 74

INVENTORYING APPLICATIONS
RESOLVING DECISIONS
Available Targets Pane

Describes the Decision Resolution Tool Available Targets pane.

For the selected decision type, the Available Targets pane lists the objects in the
workspace to which the decision can be resolved. To resolve a decision to an
available target, select the decision in the Decision List pane and place a check
mark next to the target.

To limit the targets to objects in the current project, choose View > Restrict to
Current Project. To delete a decision resolution, remove the check mark next
to the target. To undo changes, choose Edit > Undo all changes.

Source Pane

Describes the Decision Resolution Tool Source pane.

The Source pane lets you browse HyperView information for the object selected
in the Decision List pane. The information available depends on the type of
object selected. You see only source code for a copybook, for example, but full
HyperView information for a program. Choose the information you want to
view for the object from the drop-down in the upper lefthand corner of the
pane.

Resolving Decisions Manually

Describes how to resolve decisions manually.

Follow the instructions below to resolve decisions manually to targets in or out
of the workspace.

TASK

1. To resolve decisions to available targets, select one or more entries in
the Decision List pane and place a check mark next to one or more
target objects in the Available Targets pane. If you link an entry to

Manual Whether the decision was resolved manually.

Resolved to The target object the variable resolves to (an entry
point, for example). An unresolved decision contains
the grayed-out text Some Object.

Column Description
75

INVENTORYING APPLICATIONS
RESOLVING DECISIONS
multiple targets, the Decision Resolution tool creates as many entries in
the Decision List pane as there are targets.

NOTE: If you are linking an entry to multiple targets, you can save time by
selecting the targets and choosing Edit > Link Selected Targets. You can
also choose Edit > Copy to copy selected targets to the clipboard, then Edit
> Paste to link the targets to an entry.

2. To resolve decisions to targets not in the workspace, select one or more
entries in the Decision List pane and choose Edit > Link New Target.
The Link New Target window opens.

3. In the Link New Target window, enter the name of the new target in the
field on the righthand side of the window, or populate the field by
clicking a literal in the list of program literals on the Literals tab. Filter
the list by using:
• The Minimum Literal Length slider to specify the minimum number of

characters the literal can contain.

• The Maximum Literal Length slider to specify the maximum number of
characters the literal can contain.

• The Names Like field to enter a matching pattern for the literal. You can
use wildcard patterns allowed in LIKE statements by Visual Basic for
Applications (VBA).

4. Place a check mark next to Completed if you want the resolution to be
marked as completed. When you are satisfied with your entry, click OK.

Restoring Manually Resolved Decisions

Reverifying a file invalidates all of its objects, including its manually resolved
decisions. The decision persistence feature lets you restore manually resolved
decisions when you return to the Decision Resolution tool.

After reverifying a file for which you have manually resolved decisions, reopen
the Decision Resolution tool. A dialog box prompts you to restore manually
resolved decisions. Click Yes if you want to restore the decisions. Click No
otherwise.

NOTE: Place a check mark next to Don’t show me again if you want the Decision
Resolution tool to open without prompting you to restore manually resolved deci-
sions. In the Decision Resolution Tool tab of the User Preferences window, place
a check mark next to Ask before restoring previous manual changes if you want
to be prompted again.
 76

INVENTORYING APPLICATIONS
RESOLVING DECISIONS
Resolving Decisions Automatically

You can autoresolve decisions during verification by setting the Resolve deci-
sions automatically option on the Verification tab of the Project Options
window for a source file type.

For programs only, you can autoresolve decisions after verification by selecting
the project, folder, or files for which you want to autoresolve decisions and
choosing Prepare > AutoResolve Decisions. Only a master user can autore-
solve decisions in a multiuser environment.

NOTE: Decision Resolution cannot autoresolve every decision. The target name
may be read from a data file, for example.

Setting Decision Resolution Tool User Preferences

Describes how to set Decision Resolution Tool user preferences.

Use the Decision Resolution Tool tab of the User Preferences window to specify
whether you want to be prompted to restore invalidated manually resolved deci-
sions when you reopen the Decision Resolution tool.

TASK

1. Choose Tools > User Preferences. The User Preferences window
opens. Click the Decision Resolution Tool tab.

2. Select Ask before restoring previous manual changes if you want to
be prompted to restore manually resolved decisions when you reopen
the Decision Resolution tool.
77

INVENTORYING APPLICATIONS
RESOLVING DECISIONS
 78

6
 Identifying Interfaces
for Generic API Analysis
Use the Generic API Analysis feature if your legacy program calls an unsup-
ported API to interface with a database manager, transaction manager, or
similar external facility. In this call, for example:

CALL 'XREAD' using X

where X evaluates to a table name, the call to XREAD is of less interest than its
parameter, the table the called program reads from. But because the parser does
not recognize XREAD, only the call is modeled in the workbench repository.

You enable the Generic API Analysis feature by identifying unsupported APIs
and their parameters in the file \<Workbench Home>\Data\Legacy.xml. Before
you verify your application, set Perform Generic API Analysis on the Verifica-
tion tab of the Project Options window. That option tells the parser to define
relationships with the objects passed as parameters in the calls, in addition to
relationships with the unsupported APIs themselves.

This section shows you how to identify the programs and parameters to the
parser before verifying your application. You can specify both object and
construct model information, and create different relationships or entities for
the same parameter in a call.

The specification requires a thorough understanding of the Modernization
Workbench repository models. For background on the repository models, see
the Software Development Kit manual, available from support services.
79

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
IDENTIFYING UNSUPPORTED API CALLS TO THE PARSER
NOTE: Only the predefined definitions described in this section are guaranteed to
provide consistent data to workbench databases.

Identifying Unsupported API Calls to the Parser

Provides a checklist of Generic API Analysis tasks.

Follow the instructions in the steps below and the detailed specifications in the
following sections to identify unsupported API calls to the parser. For each call,
you need to define an entry in \<Workbench Home>\Data\Legacy.xml that
specifies at a minimum:

• The name of the called program and the method of invocation in the
<match> tag.

• The program control flow in the <flow> tag, and the direction of the data
flow through the parameters of interest in the <param> subtags.

• How to represent the call in the object model repository in the <rep> tag,
and in the construct model repository in the <hc> tag.

Use the optional <vars> tag to extract values of a specified type, size, and offset
from a parameter for use in a <rep> or <hc> definition.

Most repository entities can be represented in a <rep> or <hc> definition with
the predefined patterns in \<Workbench Home>\Data\Legacy.xml.api. These
patterns do virtually all of the work of the specification for you, supplying the
relationship of the entity to the called program, its internal name, and so forth.

The syntax for specifying predefined patterns in a <rep> or <hc> definition is
described in the section for the tag. Consult Legacy.xml.api for supported
patterns and for required parameters and values.

TASK

1. Open the file \<Workbench Home>\Data\Legacy.xml in an editor.

2. Locate the <GenericAPI> section for the language and dialect you use.

3. Create entries for each unsupported API call, following the specifica-
tions in the sections below and the samples of Generic API usage in
Legacy.xml.
 80

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
IDENTIFYING UNSUPPORTED API CALLS TO THE PARSER
4. Set Perform Generic API Analysis on the Verification tab of the Project
Options window.

5. Verify the project.

Using the API Entry Tag

Describes how to use the API Entry tag.

The name attribute of the <API Entry> tag is the name of the entry, used for
error diagnostics only.

Using the match Tag

Describes how to use the match tag.

The stmt attribute of the <match> tag identifies the method of invocation: a
CALL, LINK, or XCTL statement. The value attribute of the <name> subtag
identifies the name of the program to be matched. It can also be used to specify
an alternative name for the entry.

NOTE: The name of the program to be matched must be unique in the <Generi-
cAPI> section. If names are not unique, the parser uses the last entry in which the
name appears.

Example

<match stmt="CALL">
 <name value="XREAD"/>
</match>

Using the flow Tag

Describes how to use the flow tag.

The <flow> tag characterizes the program control flow. The halts attribute of
the <flow> tag specifies whether the calling program terminates after the call:

• yes, if control is not received back from the API.

• no (the default), if the calling program returns normally.

The <param> subtag identifies characteristics of the call parameters. Attributes
are:
81

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
IDENTIFYING UNSUPPORTED API CALLS TO THE PARSER
• index is the index of the parameter that references the item of interest,
beginning with 1. Use an asterisk (*) to specify all parameters not specified
directly.

• usage specifies the direction of the data flow through the parameter: r for
input, w for output, rw for input/output. Unspecified parameters are
assumed to be input/output parameters.

NOTE: halts is supported only for call statements. For PL/I, input parameters are
treated as input/output parameters.

Example

<flow halts='no'>
 <param index='1' usage='r'/>
 <param index='2' usage='r'/>
 <param index='3' usage='rw'/>
 <param index='*' usage='rw'/>
</flow>

Using the vars Tag

Describes how to use the vars tag.

Use the <vars> tag to extract values of a specified type, size, and offset from a
call parameter. You can then refer to the extracted values in the <rep> and <hc>
tags using the %var_name notation.

The <arg> subtag characterizes the argument of interest. Attributes are:

• var specifies the variable name.

• param specifies the index of the parameter.

• type specifies the variable type.

• offset specifies the offset of the field in bytes.

• bitoffset specifies the offset of the field in bits.

• size specifies the size of the field in bytes.

• bitsize specifies the size of the field in bits.

Additional attributes for PL/I are:

• len specifies the size of a character or bit string field.

• mode specifies the binary or decimal mode for a numeric field.

• scale specifies the scale of a fixed-point numeric field.
 82

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
IDENTIFYING UNSUPPORTED API CALLS TO THE PARSER
• prec specifies the precision of a fixed-point or floating-point numeric
field.

• varying specifies whether a bit string variable is encoded as a
varying-length string in the structure (yes or no, the default).

Supported data types are described in the language-specific sections below.

Example

Suppose a call to a database-entry API looks like this:

CALL 'DBNTRY' USING DB-USER-ID
 DB-XYZ-REQUEST-AREA
 XYZ01-RECORD
 DB-XYZ-ELEMENT-LIST.

If the second parameter contains a 3-character table name in bytes 6-8, the
following definition extracts the name for use as the right end of a relationship:

<vars>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
</vars>
<rep>
 <rel>
 <target type='TABLE'
 name='%TableName'/>
 .
 .
 .
 </rel>
</rep>

Cobol-Specific Usage

Describes Cobol-specific usage for the vars tag.

For Cobol, use the following data types in the <vars> tag:

• data extracts a subarea of the parameter as raw byte data. You must specify
the size and offset.

• auto automatically determines the type of the variable, using the offset. If
that is not possible, auto looks for a matching variable declaration and
uses its type. You must specify the offset.
83

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
IDENTIFYING UNSUPPORTED API CALLS TO THE PARSER
• int behaves as auto, additionally checking that the resulting value is a valid
integer and converting it to the canonical form. Offset defaults to 0.

NOTE: bitoffset and bitsize are currently not supported. auto is not always reli-
able. Use data whenever possible.

PL/I-Specific Usage

Describes PL/I-specific usage for the vars tag.

For PL/I, use the following data types in the <vars> tag:

• data extracts a subarea of the parameter as raw byte data. You must specify
the size and offset.

• char specifies a character variable, with attribute varying if the string is
encoded as a varying-length string in the structure. Offset defaults to 0,
and size is specified via the required len attribute, which specifies the
string length.

• bit specifies a bit string variable, with attribute varying if the string is
encoded as a varying-length string in the structure. Offset defaults to 0,
and size is specified via the required len attribute, which specifies the
string length in bits.

• fixed specifies a fixed-point numeric variable, with attributes mode (binary
or decimal, the default), scale (default 0), and prec (precision, default 5).
Offset defaults to 0, and size is overridden with a value calculated from the
type.

• float specifies a floating-point numeric variable, with attributes mode
(binary or decimal, the default) and prec (precision, default 5). Offset
defaults to 0, and size is overridden with a value calculated from the type.

NOTE: Do not use bitoffset and bitsize for types other than bit string.

Using the rep and hc Tags

Describes how to use the rep and hc tags.

Use the <rep> tag to represent the API call in the object model repository. Use
the <hc> tag and the <attr> subtag to represent the construct model (Hyper-
Code) attributes of entities defined in the call.

You can use predefined or custom patterns to specify the relationship of
interest. Expressions let you extract parameter values and context information
for use in specifications of entity or relationship characteristics.
 84

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
IDENTIFYING UNSUPPORTED API CALLS TO THE PARSER
Using Predefined Patterns

Describes how to use predefined patterns to specify repository relationships.

Most repository entities can be represented with the predefined patterns in
\<Workbench Home>\Data\Legacy.xml.api. These patterns do virtually all of
the work of the specification for you, supplying the relationship of the entity to
the called program, its internal name, and so forth. They are guaranteed to
provide consistent data to workbench databases.

To specify a predefined pattern, use the pattern name as a tag (for example,
<tip-file>) anywhere you might use a <rel> tag. If the predefined pattern is spec-
ified at the top level of the entry, the parser creates a relationship with the calling
program. If the predefined pattern is nested in an entity specification, the parser
creates a relationship with the parent entity.

Each pattern has parameters that you can code as XML attributes or as subtags.
So:

<transaction name='%2' params='' hc-kind='dpsSETRX'/>

Is equivalent to:

<transaction params=''>
 <name value='%2'/>
 <hc-kind value ='dpsSETRX'/
</transaction>

Use the subtag method when a parameter can have multiple values:

<file filename= '%2' data-record='%3'>
 <action switch-var='%op'>
 <case eq='1' value='Reads'/>
 <case eq='2' value='Reads'/>
 <case eq='4' value='Updates'/>
 <case eq='28' value='Inserts'/>
 </action>
 <hc-kind switch-var='%op'>
 <case eq='1' value='fcssRR'/>
 <case eq='2' value='fcssRL'/>
 <case eq='4' value='fcssWR'/>
 <case eq='28' value='fcssAW'/>
 </hc-kind>
</file>

Check Legacy.xml.api for further details of predefined pattern usage and for
required parameters and values.
85

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
IDENTIFYING UNSUPPORTED API CALLS TO THE PARSER
Using Custom Patterns

Describes how to use custom patterns to specify repository relationships.

Use custom patterns only when a predefined pattern is not available. Custom
patterns are not guaranteed to provide consistent data to workbench databases.

Using the entity Subtag

Describes how to use custom patterns with the entity subtag to specify reposi-
tory relationships.

The <entity> subtag represents an entity in the object model repository. Attri-
butes are:

• type specifies the entity type.

• name specifies the entity name.

• produced optionally indicates whether the entity is extracted, in which
case it is deleted from the repository when the source file is invalidated
(yes or no, the default).

Use the <attr> subtag to specify entity attributes. Attributes of the subtag are:

• name specifies the attribute name.

• value contains an expression that defines the attribute value.

• join specifies the delimiter to use if all possible variable values are to be
joined in a single value.

Use the <cond> subtag to specify a condition.

Using the rel Subtag

Describes how to use custom patterns with the rel subtag to represent repository
relationships.

The <rel> subtag represents a relationship in the object model repository. Attri-
butes are:

• name specifies the relationship end name, which can be unrolled into a
separate tag like the name or type of an entity.

• decision specifies a decision.

The <target> and <source> subtags represent, respectively, the right and left
ends of the relationship. These subtags are equivalent in function and syntax to
the <entity> tag. Use the <cond> subtag to specify a condition.

NOTE: As a practical matter, you will almost never have occasion to use the
<entity> subtag.
 86

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
USING EXPRESSIONS
If the <rel> subtag is specified at the top level of the entry, and no <source> tag
is specified, the parser creates the relationship with the calling program; other-
wise, it creates the relationship between the <source> and <target> entities. If
the <rel> subtag is nested in an entity specification, the parser creates the rela-
tionship with the parent entity.

Example

Assume that we know that the second parameter in the API call described
earlier for the <vars> tag contains a variable in bytes 1-3 that specifies the CRUD
operation, in addition to the variable in bytes 6-8 specifying the table name. The
following definition extracts the CRUD operation and table name:

<vars>
 <arg var='OpName'
 param='2'
 type='data'
 offset='0'
 size='3'/>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
</vars>
<rep>
 <rel>
 <target type='TABLE'
 name='%TableName'/>
 <name switch-var='OpName'>
 <case eq='RED' value='ReadsTable'/>
 <case eq='UPD' value='UpdatesTable'/>
 <case eq='ADD' value='InsertsTable'/>
 <case eq='DEL' value='DeletesTable'/>
 </name>
 </rel>
</rep>

Using Expressions

Describes how to use expressions to extract parameter values and context infor-
mation.

Expressions let you extract parameter values and context information for spec-
ifications of entity or relationship characteristics. You can use simple variable
names in expressions, or apply a primitive function call to a variable.
87

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
USING EXPRESSIONS
Basic Usage

Describes basic usage of expressions.

Use the %var_name or %parameter_number notation to define variables for
parameter values. The number corresponds to the index of the parameter;
parameters are indexed beginning with 1. Negative numbers index from the last
parameter to the first.

Variables with names beginning with an underscore are reserved for special
values. They generally have only one value. The table below describes the
reserved variable names.

Simple Notation

Describes simple notation for expressions.

The simplest way to use a variable is to include it in an attribute value, prefixed
with the percent character (%). (%% denotes the character itself.) If the char-
acter directly after the % is a digit or a minus sign (-), the end of the variable
name is considered to be the first non-digit character. Otherwise, the end of the
name is considered to be the first non-alphanumeric, non-underscore char-
acter. In:

Name Description

_line, _col Line and column numbers of the call in source
code.

_file Index of the file in the file table.

_uid UID of the node of the call in the syntax tree.

_fail A permanently undefined variable. Use it to cause
explicit failure.

_yes A non-empty string for use as a true value.

_no An empty string for use as a false value.

_pgmname Name of the calling program.

_hcid HyperCode ID of the call node.

_varname nn If parameter number nn is passed using a simple
variable reference (not a constant or an
expression), this substitution variable contains its
name. Otherwise, it is undefined.
 88

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
USING EXPRESSIONS
'%abc.%2def'

the first variable name is abc and the second is 2. It is also possible to specify the
end of the variable name explicitly by enclosing the name in curly brackets:

'%{abc}.%{2}def'

When evaluated, a compound string like this produces a string value that
concatenates variable values and simple text fragments, or fails if any of the vari-
ables is undefined.

Switch Usage

Describes switch usage in expressions.

Use a switch-var attribute instead of the value attribute when a tag expects a
value with a compound string expression. The switch-var attribute contains a
single variable name (which may be prefixed by %, but cannot be enclosed in
curly brackets). Use <case>, <undef>, or <default> subtags to specify switch
cases. These tags also expect the value attribute, so switches can be nested:

<name switch-var='var'>
 <case eq='value1' value='...'/>
 <case eq='value2' switch-var='%var2'>
 <undef value='...'/>
 </case>
 <undef value='...'/>
 <default value='...'/>
</name>

When a switch is evaluated, the value of the variable specified using the
switch-var attribute is matched against the literal specified in the <case> tags.
The literal must be the same size as the variable. (The literals value1 and
value2 in the example assume that var is defined as having six bytes.) If an
appropriate case is found, the corresponding case value is evaluated. If the vari-
able is undefined, and the <undef> tag is specified, its value is used; if not, the
switch fails. Otherwise, if the <default> case is specified, it is used; if not, the
switch fails.

Fallback Chain Usage

Describes fallback chain usage in expressions.

Whenever multiple tags specifying a single attribute are presented in a <name>,
<type>, or <case>/<undef>/<default> specification, those tags are joined into a
fallback chain. If an entry in the chain fails, evaluation proceeds to the next
89

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
USING EXPRESSIONS
entry. Only when the last entry of the chain fails is the failure propagated
upward:

<name value='%a'/>
<name value='%b'/>
<name value='UNKNOWN'/>

If %a is defined, the name is its value. Otherwise, if %b is defined, the name is
%b. Finally, if both are undefined, the name is UNKNOWN.

Fallback Semantics for Attributes

Describes fallback semantics for attributes.

To determine the value of an attribute, the <attr> definitions for that attribute
are processed one by one in order of appearance within the parent tag. For each
definition, all combinations of variables used within it are enumerated, and all
non-fail values produced are collected into a set:

• If the set contains exactly one value, it is taken as the value of the attribute.

• If the set contains multiple values, and the <attr> tag has a join attribute
specified, the values are concatenated using the value of the join attribute
as a delimiter, and the resulting string is used as the value for the reposi-
tory attribute.

• Otherwise, the definition fails, and the next definition in the sequence is
processed. If there are no definitions left, the attribute is left unspecified.

This behavior provides a way to determine if the variable has a specific value in
its value set. The following example sets the attribute to False if the first param-
eter can be undefined, to True otherwise:

<attr name='Completed' switch-var='1'>
 <undef value='False'/>
</attr>
<attr name='Completed' value='True'/>

Using a Function Call

Describes how to use a function call in expressions.

When a variable name contains commas, it is split into a sequence of fragments
at their boundaries, and then interpreted as a sequence of function names and
their parameters. In the following example:

%{substr,0,4,myvar}
 90

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
USING EXPRESSIONS
the substr function extracts the first four characters from the value of %myvar.
The table below describes the available functions.

Functions can be nested by specifying additional commas in the last argument
of the preceding function. In the following example:

%{int,substr,0,4,map}
switch-var='trim,substr,4,,map'

the first line takes the first four characters of the variable and converts them to
a canonical integer, the second line takes the remainder, removes leading and
trailing spaces, and uses the result in a switch, and so forth.

Understanding Enumeration Order

Describes enumeration rules for expressions.

If the definition of the name of a relationship or the name or type of an entity
contains substitution variables that have several possible values, the parser
enumerates the possible combinations. The loops are performed at the
boundary of the innermost <entity> or <rel> tag that contains the reference.
(Loops for the target or source are raised to the <rel> level.)

Function Description

substr,<start>,<size>,<variable> Extracts a substring from the value of the variable.
The substring begins at position <start> (counted
from 0), and is <size> characters long. If <size> is
an empty string, the substring extends up to the
end of the value string.

int,<variable> Interprets the value of the variable as an integer
and formats it in canonical form, without
preceding zeroes or explicit plus (+) sign. If the
value is not an integer, the function fails.

trim,<variable> Removes leading and trailing spaces from a string
value of the variable.

const,<string> or =,<string> Returns the string as the function result.

warning,<id-num>[,<variable>] Produces the warning specified by <id-num>, a
numeric code that identifies the warning in the
backend.msg file, and returns the value of the
variable. If the variable is not specified, the
function fails. So %{warning,12345} is equivalent
to %{warning,12345,_fail}.
91

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
UNDERSTANDING DECISIONS
Once the value for a variable has been established at a loop insertion point, it is
propagated unchanged to the tags within the loop tag. So an entity attribute
specification that refers to a variable used in the name of the entity will always
use the exact single value that was used in the name.

If the expression for a name or type fails, the specified entity or relationship is
locked out from processing for the particular combination of values that caused
it to fail. This behavior can be used to completely block whole branches of
entity/relationship definition tags:

<entity ...>
 <type switch-var='a'>
 <case eq='1' value='TABLE'/>
 </type>
 <rel name='InsertsTable'/>
</entity>
<entity ...>
 <type switch-var='a'>
 <case eq='2' value='MAP'/>
 </type>
 <rel name='Sends'..../>
</entity>

If %a is 1, the first declaration tree is used, and the table relationship is gener-
ated; the second declaration is blocked. If %a is 2, the second declaration tree is
used, and the map relationship is generated; the first declaration is blocked.

NOTE: These enumeration rules require that the value of a repository entity attri-
bute not depend on variables used in the name of an enclosing <rel> tag, unless
that variable is also used in the name of the entity itself. Otherwise, the behavior
is undefined.

Understanding Decisions

Describes how to specify decisions.

A decision is a reference to another object (a program or screen, for example)
that is not resolved until run time. If there are multiple possible combinations
of values of variables used in the name of the target entity, or if some of the vari-
ables are undefined, the parser creates a decision entity, replacing the named
relationship with a relationship to the decision and a set of relationships from
the decision to each instance of the target entity.
 92

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
UNDERSTANDING CONDITIONS
When you use the <rel> tag at the top level of the repository definition, you can
specify a decision attribute that tells the parser to create a decision regardless of
the number of possible values:

• yes means that a decision is created regardless of the number of possible
values.

• no means that a decision is never created (multiple values results in
multiple direct relationships).

• auto means that a decision is created if more than one possible value exists,
and is not created if there is exactly one possible value.

Both the relationship name and the type of the target entity must be specified as
plain static strings, without any variable substitutions or switches:

<rep>
 <rel name='ReadsDataport' decision='yes'>
 <target type='DATAPORT' name='%_pgmname.%x'/>
 </rel>
</rep>

Understanding Conditions

Describes how to specify conditions.

The <cond> subtag specifies a condition that governs the evaluation of declara-
tions in its parent <entity> or <relationship> tag. The evaluation semantics of
the tag follow the semantics for the <attr> tag: a non-empty string as a result
indicates that the condition is true, an empty string or a failure indicates that the
condition is false. Multiple <cond> tags can be specified, creating a fallback
chain with <attr>-style fallback semantics.

Notice in the example given in the section on decisions that the parser creates a
decision entity even when the name of the target resolves to a single value. Use
a <cond> subtag in the relationship definition to avoid that:

<rel name='ReadsDataportDecision'>
 <cond if-multi='%x' value='%_yes'/>
 <target type='DECISION'>
 <attr name='HCID' value='%_hcid'/>
 <attr name='DecisionType' value='DATAPORT'/>
 <attr name='AKA'
 value='%_pgmname.ReadsDataport.%_varname1'/>
 <attr name='AKA'
93

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
UNDERSTANDING CONDITIONS
 value='%_pgmname.ReadsDataport.'/>
 <attr name='VariableName' value='%_varname1'/>
 <attr name='Completed' if-closed='%x'
 value='True'/>
 <rel name='ResolvesToDATAPORT'>
 <target type='DATAPORT'
 name='%_pgmname.%x'/>
 </rel>
 </target>
</rel>
<rel name='ReadsDataport'>
 <cond if-single='%x' value='%_yes'/>
 <target type='DATAPORT' name='%_pgmname.%x'/>
</rel>

This repository definition produces the same result as the example in the section
on decisions, except that no decision is created when the name of the target
resolves to a single value.

_yes and _no are predefined variables that evaluate, respectively, to a
non-empty and empty string for true and false, respectively. The if-single attri-
bute means that the <cond> tag should be interpreted only if the specified vari-
able has a single defined value. The if-multi attribute means that the <cond> tag
should be interpreted if the variable has multiple values, none, or can be unde-
fined. The if-closed attribute blocks the <cond> tag if the variable has an unde-
fined value.

NOTE: if-single, if-multi, and if-closed can also be used with the <attr> tag.

Conditions have join set to an empty string by default, resulting in a _yes
outcome if any combination of values of the variables used in switches within
causes it to evaluate to _yes. If a particular condition definition should fail when
some of the values evaluate to _no and others to _yes, use a yes-only='yes' attri-
bute specification. That causes join to be unset, and the condition to give a
non-fail outcome only when all values evaluate to _yes.

In a relationship definition, <cond> determines whether the relationship is
generated. For a decision relationship, it also determines whether the decision
entity should be generated.

In an entity definition, <cond> governs all attribute and subrelationship defini-
tions in the tag, and the creation of the entity in case of a standalone entity. For
an entity specified in a <target> or <source> tag, instantiation of the relation-
ship automatically spawns the corresponding entity, meaning that a false condi-
tion on the source or target of a relationship does not prevent creation of
corresponding entities.
 94

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
USAGE EXAMPLE
Usage Example

Provides sample code illustrating use of the Generic API Analysis feature.

The following example illustrates use of the Generic API Analysis feature:

<APIEntry name='Call another program'>
 <match stmt="CALL">
 <name value="INVOKEPGM"/>
 </match>
 <flow halts='no'>
 <param index='1' usage='r'/>
 <param index='*' usage='w'/>
 </flow>
 <vars>
 <arg var='a' param='2' type='bit' len='5'/>
 </vars>
 <rep>
 <rel name='CallsDecision'>
 <target type='DECISION'>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM(%_varname1)'/>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM'/>
 <attr name='DecisionType'
 value='PROGRAMENTRY'/>
 <attr name='HCID' value='%_hcid'/>
 <attr name='VariableName'
 value='%_varname1'/>
 <attr name='Completed' switch-var='1'>
 <undef value='False'/>
 </attr>
 <attr name='Completed' value='True'/>
 <rel name='ResolvesToProgramEntry'>
 target type='PROGRAMENTRY'
 name='%1'/>
 </rel>
 </target>
 </rel>
 </rep>
 <hc>
 <attr name='test' switch-var='a' join=','
 <case eq='00101' value='X'/>
 <undef value='?'/>
 <default value='%a'/>
 </attr>
 </hc>
</APIEntry>
95

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
SUPPORT FOR IMS ALIASES
Support for IMS Aliases

Describes Generic API Analysis support for IMS aliases.

The <IMSC> subtag in the <Auxiliary> section of Legacy.xml contains defini-
tions for the standard CBLTDLI or PLITDLI programs. You can also use it to
define aliases for non-standard IMS batch interfaces.

If the order of parameters in the alias program is the same as the order of param-
eters in the standard program, simply enter the alias name in the <Detect> and
<APIEntry> tags, as follows:

<IMSC>
 <Cobol>
 <Detect>
 <item> 'CBLTDLI' </item>
 <item> 'MYCBLTDLI' </item>
 </Detect>
 ...
 <Process>
 <APIEntry name='IMS call'>
 <match stmt="CALL">
 <name value="CBLTDLI"/>
 <name value="MYCBLTDLI"/>
 </match>
 ...
 </Process>
 </Cobol>
</IMSC>

If the order of parameters in the alias program differs from the order in the stan-
dard program, you also need to specify a full API entry, using the:

• <match> tag to define the alias name and method of invocation.

• <flow> tag to characterize the program control flow.

• <ims-call> tag to specify the call parameters.

Use the definitions for CBLTDLI or PLITDLI as examples.

Attributes of <ims-call> are:

• count specifies the index of the parameter that contains the argument
count.

• opcode specifies the index of the parameter that contains the operation
code.

• pcb specifies the index of the parameter that contains the Program Control
Block (PCB) pointer.
 96

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
SUPPORT FOR IMS ALIASES
• arg-base specifies the index of the first data parameter, usually io-area.

NOTE: Alternative parameter order is allowed only for the params-num, func-
tion-code, and pcb parameters. All other parameters (io-area and ssa) must
appear in the same order as they do in the standard IMS call, at the end of the
parameter list.

Skip Type Usage

Describes skip type usage with IMS aliases.

Use the skip-type attribute of the <param> subtag in the <halts> section to
ensure that the optional first parameter of a Cobol IMS CALL is parsed only if
necessary. If the actual parameter passed by the program in the first position has
the type specified by the regular expression in skip-type, the parameter is filled
with a dummy value and the actual value is used in the next parameter.

NOTE: Skip definitions are also available for use in non-IMS generic API entries.

Example

If the first parameter in a call is a 4-character picture, the following definition
inserts a dummy value in the first position and treats the actual value as that of
the second parameter:

<param index='1'
 usage='r'
 skip-type='PIC:(X\(4\)'/>

NOTE: Skip definitions are currently limited to declarations having picture
clauses. Use regular expression syntax to specify normalized picture strings.
97

IDENTIFYING INTERFACES FOR GENERIC API ANALYSIS
SUPPORT FOR IMS ALIASES
 98

	Contents
	Registering Source Files
	Setting Registration Options: Extensions Tab
	Setting Registration Options: Source Files Tab
	Creating New Source Files
	Refreshing Source Files
	Exporting Source Files from a Workspace
	Deleting Objects from a Workspace
	Deleting a Workspace
	Support for Job Schedulers
	Preparing CA-7 Job Schedule Information
	Supplying Schedule IDs for a CA-7 Job Triggered by a Dataset

	Preparing TWS (OPC) Job Schedule Information
	Using an XML Job Schedule Format for Unsupported Job Schedules

	Support for Japanese-Language Applications

	Setting Up Projects
	Creating Projects
	Sharing Projects
	Protecting Projects
	Moving or Copying Files into Projects
	Including Referenced and Referencing Objects in a Project
	Removing Unused Support Objects from a Project
	Emptying a Project
	Deleting a Project

	Verifying Source Files
	Enabling Parallel Verification
	How the System Refreshes the Repository
	Invalidating Objects Before Reverification
	Setting Workspace Verification Options: Legacy Dialects Tab
	Setting Workspace Verification Options: Settings Tab
	Enabling Staged Parsing
	Basic Repository Information
	Full Logical Objects Information
	HyperView Information
	Dead Code Statistics

	Enabling Relaxed Parsing
	Enabling Advanced Data Flow Analysis for Control Language Files
	Enabling Sort Card Analysis
	Enabling Natural Library Support
	Truncating Names of Absolute Elements

	Setting Workspace Verification Options: Parallel Verification Tab
	Setting Project Verification Options
	Specifying the Processing Environment
	Specifying Conditional Compiler Constants
	Optimizing Verification for Advanced Program Analysis

	Identifying System Programs
	Specifying Boundary Decisions
	Generating Copybooks
	Setting Generate Copybooks Options
	Copybook Generation Order

	Performing IMS Port Analysis
	Mapping Root Programs to PSBs in JCL or System Definition Files
	Verification Order for IMS Applications
	Reverifying Files in IMS Applications

	Performing Post-Verification Program Analysis
	Restrictions on Cobol Post-Verification Program Analysis
	Restrictions on PL/I Post-Verification Program Analysis

	Using Post-Verification Reports
	Viewing Verification Reports
	Errors Pane
	Files Affected Pane
	Source Pane
	Marking Items
	Including Files into Projects

	Viewing Executive Reports
	Setting Executive Report Options
	Defining Potential Code Anomalies
	Cobol Range Overlaps and Range Jumps Detected in the Executive Report
	S0. No defects
	S1. Overlapped sections
	S2. Overlapped sections
	S3. Overlapped sections
	S4. Overlapped sections
	S5. Overlapped sections
	S6. Overlapped sections
	G0. No defects
	G0. No defects
	G0. No defects
	G0. No defects
	G1. Break-in goto
	G2. Break-in goto
	G3. Break-in goto
	S3G4=G1. Overlapped sections, break-in goto
	G5. Break-out goto
	G6. Break-out goto
	G7. Break-out goto
	G8. No Defects
	S3G9=G5. Overlapped sections, break-out goto

	Viewing CRUD Reports
	Setting CRUD Report Options

	Inventorying Applications
	Using Reference Reports
	Understanding the Reference Reports Window
	Main Pane
	Preview Pane

	Setting Reference Reports Options

	Using Orphan Analysis Reports
	Understanding the Orphan Analysis Window
	Found Objects Pane
	Orphan Source Pane

	Setting Orphan Analysis Options
	Deleting Orphans from a Project
	Deleting Orphans from a Workspace

	Resolving Decisions
	Understanding Decisions
	Understanding the Decision Resolution Tool Window
	Decision List Pane
	Available Targets Pane
	Source Pane

	Resolving Decisions Manually
	Restoring Manually Resolved Decisions
	Resolving Decisions Automatically
	Setting Decision Resolution Tool User Preferences

	Identifying Interfaces for Generic API Analysis
	Identifying Unsupported API Calls to the Parser
	Using the API Entry Tag
	Using the match Tag
	Using the flow Tag
	Using the vars Tag
	Cobol-Specific Usage
	PL/I-Specific Usage

	Using the rep and hc Tags
	Using Predefined Patterns
	Using Custom Patterns
	Using the entity Subtag
	Using the rel Subtag

	Using Expressions
	Basic Usage
	Simple Notation
	Switch Usage
	Fallback Chain Usage
	Fallback Semantics for Attributes

	Using a Function Call
	Understanding Enumeration Order

	Understanding Decisions
	Understanding Conditions
	Usage Example
	Support for IMS Aliases
	Skip Type Usage

