
Micro Focus
®

Modernization Workbench™

VS Cobol II Support Guide

Copyright © 2010 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

1

Contents

Chapter: 1 Supported Platforms . 1

Chapter: 2 Cobol Technical Reference . 3
Support Notes . 3
Complexity Metrics . 5
Relationship Projections from Cobol Statements 13

Chapter: 3 SQL Technical Reference . 17
Support Notes . 17
Complexity Metrics . 18
Relationship Projections from EXEC SQL Statements 19
Relationship Projections from SQL DDL Statements 20

Chapter: 4 JCL Technical Reference . 23
Support Notes . 23
Complexity Metrics . 25
Relationship Projections from JCL Statements 27

Chapter: 5 CICS Technical Reference . 31
Support Notes . 31
Complexity Metrics . 34
Relationship Projections from BMS Statements 37

 2

Relationship Projections from CSD, FCT, and PCT Statements 38
Relationship Projections from CICS Statements 42

Chapter: 6 IDMS Technical Reference . 49
IDMS Support Notes . 49
IDMS Complexity Metrics . 51
Relationship Projections from IDMS Schema Statements 53
Relationship Projections from IDMS DML Statements 54

Chapter: 7 IMS Technical Reference . 59
IMS Support Notes . 59
IMS Complexity Metrics . 63
Relationship Projections from DBD and PSB Statements 67
Relationship Projections from System Definition Statements 71

 1

1 Supported Platforms

This document describes Modernization Workbench (MW) support for Cobol
and related platforms:

• VS COBOL II, Release 4. See VS COBOL II Application Programming
Language Reference, Release 4, Publication No. GC26-4047-07, IBM, 1993.

• CICS Transaction Server for OS/390, Version 1 Release 3

– For CICS commands, see CICS Application Programming Reference,
CICS Transaction Server for OS/390, Release 3, Publication No.
SC33-1688-35, IBM, 2000.

– For Basic Mapping Support (BMS), see CICS Application Program-
ming Reference, CICS Transaction Server for OS/390, Release 3,
Publication No. SC33-1688-35, IBM, 2000.

– For resource definition, see CICS Resource Definition Guide, CICS
Transaction Server for OS/390, Release 3, Publication No.
SC33-1684-34, IBM, 2000.

• IDMS, Release 15.0

– For DML statements, see CA-IDMS DML Reference – COBOL with
FORTRAN and RPG II Supplements, 15.0, Computer Associates
International, 2001.

– For database definition, see CA-IDMS Database Administration,
15.0, Computer Associates International, 2001.

• IMS, Version 7

– For DL/I calls, see Application Programming: Database Manager,
Publication No. SC26-9422-01, IBM, 2001.

– For Exec DLI commands, see IMS/ESA Version 4 Application
Programming: EXEC DLI Commands, Publication No.
SC26-3063-01, IBM, 1994.

– For PSB and DBD files, see Utilities Reference: System, Publication
No. SC26-9441-01, IBM, 2001.

SUPPORTED PLATFORMS

 2

– For MFS files, see Application Programming: Transaction Manager,
Publication No. SC26-9425-02, IBM, 2002.

• SQL. DB2 Universal Database for z/OS, Version 8. See DB2 UDB for z/OS
SQL Reference, Publication No. SC18-7426-02, IBM, 2005.

 3

2 Cobol Technical
Reference

This section describes MW support for Cobol files and copybooks:

• “Support Notes” on page 3 describes MW limitations, caveats, and special
usage for Cobol applications.

• “Complexity Metrics” on page 5 describes the supported complexity
metrics for objects in the Cobol model.

• “Relationship Projections from Cobol Statements” on page 13 describes
the relationships generated from Cobol statements in programs and
support files.

Support Notes

These notes describe MW limitations, caveats, and special usage for Cobol
applications. Make sure to check the Release Notes on the installation CD for
any late-breaking support information.

Program IDs

Program IDs must be unique.

Separators Must Be Followed by Blanks

The Cobol parser assumes that every separator must be followed by a blank. If
you index a variable with a separator that is not followed by a blank,
MY-VARIABLE(1,1), the parser may treat (1,1) as a numeric literal, espe-
cially when the program was compiled with the DECIMAL POINT IS COMMA
option. To index a variable, use the format MY-VARIABLE(1, 1)or
MY-VARIABLE(1 1).

COBOL TECHNICAL REFERENCE
SUPPORT NOTES

 4

Copybooks in a Library

If the copybooks used in a Cobol program are in a library, and the library is
referenced in a COPY statement with the format COPY text-name IN
library-name or COPY text-name OF library-name, the parser
looks first for a copybook named library-name.text-name, and if it does not
exist, for a copybook named text-name. If text-name does not exist, the parser
reports library-name.text-name as an unresolved reference.

It is your responsibility to prefix library member names with library names or
filepaths and dot (.) separators: dir1.dir2.member.cpy represents the copybook
dir1/dir2/member, for example. When the parser encounters a reference to a
member, it first searches for the longest possible name, dir1.dir2.member.cpy,
and if not found, then the shorter versions, dir2.member.cpy and member.cpy.

NOTE: Unresolved references to library members are always reported with the
longest name. This means that if you subsequently register a missing copybook
with a short name, the referencing source file will not be invalidated. It’s up to you
to remember that the referencing source needs to be reverified.

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

5

Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the Cobol model.

Cobol File Complexity Metrics

The table below describes the supported complexity metrics for the Cobol File
object.

Copybook File Complexity Metrics

The table below describes the supported complexity metrics for the Copybook
File object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements: COPY,
++INCLUDE, –INC, EXEC SQL INCLUDE.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of include statements in the file and
any used include files.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Data Elements Number of declared data items (elementary
structures and their fields).

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

 6

Program Complexity Metrics

The table below describes the supported complexity metrics for the Program
object. For more information on dead code statistics, see “How MW Calculates
Cobol Dead Code Statistics” on page 11.

Note the following:

• Abbreviated conditions are expanded before calculations.

• DECLARATIVEs content and other exception-handling statements are
counted once, as ordinary statements.

• Handling of EVALUATE formats:

 EVALUATE … [ALSO …] Conditional Statement
 WHEN … [ALSO …] Binary Decision, Conditional Statement
 WHEN OTHER Conditional Statement
 END-EVALUATE

• Handling of SEARCH formats:

 SEARCH … AT END … Binary Decision
 WHEN … Binary Decision, Conditional Statement
 WHEN …AND… Binary Decision, Conditional Statement
 END-SEARCH

Include Statements Number of include statements: COPY,
++INCLUDE, –INC, EXEC SQL INCLUDE.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Metric Description

Absolute Complexity Binary Decisions divided by the number of
statements.

Asynchronous Calls Number of asynchronous calls, such as
Cobol INITIATE statements.

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

7

Binary Decisions Number of branching conditions in the flow
graph with two possible outcomes. Includes
statements with implicit condition
evaluation (loops, AT END, and so on): IF,
EVALUATE (number of WHEN except
WHEN OTHER), PERFORM…TIMES,
PERFORM…UNTIL,
PERFORM…VARYING,
PERFORM…VARYING…AFTER (number
of AFTER phrases + 1), statements with
ON/NOT ON, AT END/NOT AT END,
INVALID/NOT INVALID (one decision per
statement), GOTO…DEPENDING ON
(number of alternatives), SEARCH (number
of WHEN, AT END). IDMS: IF.

Computational Statements Number of statements performing
arithmetic calculations: ADD, SUBTRACT,
DIVIDE, MULTIPLY, COMPUTE.

Conditional Complexity Binary Decisions plus Unique Operands in
Conditions.

Conditional Statements Number of branching statements with
nested statements executed under certain
conditions, not including conditional
GOTOs. IF, EVALUATE, SEARCH,
PERFORM…UNTIL,
PERFORM…VARYING…UNTIL,
statements with ON/NOT ON, AT
END/NOT AT END, INVALID/NOT
INVALID. IDMS: IF.

Cyclomatic Complexity v(G) = e - n + 2, where v(G) is the
cyclomatic complexity of the flow graph (G)
for the program in question, e is the number
of edges in G, and n is the number of nodes.
Quantity of decision logic. The number of
linearly independent paths (minimum
number of paths to be tested). v(G) = DE +
1, where DE is the number of binary
decisions made in the program.

Data Elements Number of declared data items (elementary
structures and their fields).

Dead Data Elements Number of dead data elements in programs
and used include files. Dead data elements
are unused structures at any data level, all of
whose parents and children are unused.

Metric Description

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

 8

Dead Data Elements from Includes Number of dead data elements in include
files. Dead data elements are unused
structures at any data level, all of whose
parents and children are unused.

Dead Lines Number of dead lines in programs and used
include files. Dead lines are source lines
containing Dead Data Elements or Dead
Statements. Also, source lines containing
dead constructs. If an include file is included
multiple times, it is counted each time.

Dead Lines from Includes Number of dead lines in include files and
used include files. Dead lines are source
lines containing Dead Data Elements from
Includes or Dead Statements from Includes.
Also, source lines containing dead
constructs. If an include file is included
multiple times, it is counted each time.

Dead Statements Number of dead statements in programs
and used include files. A dead statement is a
procedural statement that can never be
reached during program execution.

Dead Statements from Includes Number of dead statements in include files.
A dead statement is a procedural statement
that can never be reached during program
execution.

Difficulty D = (n1 / 2) * (N2 / n2), where n1 is Unique
Operators, N2 is Operands, and n2 is
Unique Operands.

Entry Points Number of program entry points:
PROCEDURE DIVISION, ENTRY.

Error Estimate B = E**(2/3) / 3000, where E is
Programming Effort.

Essential Complexity Quantity of unstructured logic (a loop with
an exiting GOTO statement, for example).
v(G) for reduced graph without
D-structured primes.

Executable Statements All Procedure Division statements, plus
CONTINUE and NEXT STATEMENT.

Extended Cyclomatic Complexity Cyclomatic Complexity plus Logical
Operators in Conditions. Number of all
paths in the program.

Metric Description

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

9

Function Points Lines of Code/K, where K=77. Estimate of
the number of end-user business functions
implemented by the program.

GoTo Statements Number of GOTO statements, including
conditional GOTOs: GOTO,
GOTO...DEPENDING ON.

Inner Call Statements Number of statements that invoke Inner
Procedures: PERFORM procedure-name.

Inner Procedures Number of structured pieces of code that
cannot be invoked from external programs:
Cobol paragraphs (including nameless).

Intelligent Content I = L * V, where L is Program Level and V is
Program Volume. Complexity of a given
algorithm independent of the language used
to express the algorithm.

IO Statements Number of statements performing
input/output operations: OPEN, CLOSE,
READ, WRITE, REWRITE, DELETE,
START, SORT, MERGE, RETURN,
RELEASE, ACCEPT, DISPLAY, STOP
literal. SQL: INSERT, FETCH, SELECT,
UPDATE, DELETE, EXECUTE. CICS:
CONVERSE, SEND, SEND MAP, SEND
TEXT, RECEIVE, RECEIVE MAP,
RECEIVE TEXT, READQ, WRITEQ,
DELETEQ, READ, READNEXT,
READPREV, WRITE, REWRITE, DELETE.
IDMS: ERASE, OBTAIN, GET, MODIFY,
STORE.

Lines of Code Number of lines of code, including include
files, but not including comments and blank
lines. If an include file is included multiple
times, it is counted each time.

Logical Operators in Conditions Number of binary logical operators used in
conditions: AND, OR.

Loop Statements Number of repetitively executing
statements: PERFORM…TIMES,
PERFORM…UNTIL,
PERFORM…VARYING
PERFORM…VARYING…AFTER (# of
AFTER + 1).

Metric Description

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

 10

Maintainability Index MI = 171 - 5.2 * ln (PgmVolume) - 0.23 *
ExtCycComp - 16.2 * ln (LOC) + 50 * sin
(sqrt (2.46 * CommentLines/SourceLines)),
where PgmVolume is Program Volume,
ExtCycComp is Extended Cyclomatic
Complexity, LOC is Lines of Code,
CommentLines is Comment Lines, and
SourceLines is Source Lines.

Nesting Level Maximum nesting of conditional statements
within conditional statements (0 if no
conditional statements, 1 if no nesting).

Non-returning Calls Number of non-returning calls, such as
CICS XCTL statements.

Operands Number of operand occurrences (N2).
Operands are variables and literals used in
operators. Compare Unique Operands.

Operators Number of operator occurrences (N1).
Operators are executable statements and
unary and binary operations: +, -, *, /, **,
NOT, AND, OR, <, <=, >, >=, =, IS,
(subscript), (reference:modification),
FUNCTION. Compare Unique Operators.

Parameters Number of Cobol Procedure Division
USING...RETURNING parameters.

Pointers Number of data elements declared as
pointers. Data items with USAGE IS
POINTER, PROCEDURE-POINTER.

Program Length N = N1 + N2, where N1 is Operators and N2
is Operands.

Program Level L = 1 / D, where D is Difficulty.

Program Volume V = N * log2(n), where N is Program Length
and n is Vocabulary. Minimum number of
bits required to code the program.

Programming Effort E = V / L, where V is Program Volume and L
is Program Level. Estimated mental effort
required to develop the program.

Programming Time T = E / 18, where E is the Programming
Effort and 18 is Stroud’s Number. Estimated
amount of time required to implement the
algorithm, in seconds.

Metric Description

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

11

How MW Calculates Cobol Dead Code Statistics

This section provides details on how MW calculates Cobol dead code statistics.

Dead Statements

A dead statement is a statement that can never be reached during program
execution. Only control flow analysis techniques (static analysis) are used for
the detection of dead statements. Domain-based analysis is not performed.

Statements directly connected with dead statements are also considered to be
dead. For instance, EXEC CICS HANDLE statements are dead when all EXEC
CICS statements are dead or there are no EXEC CICS statements at all.

Dead Data Elements

Dead data elements are unused structures at any data level, all of whose parents
and children are unused. Condition names (88-level items) are dead if unused.

Only user-defined data elements can be counted as dead. Data elements from
system copybooks are never counted as dead.

Returning Calls Number of returning calls, such as CALL or
LINK statements.

Unique Operands Number of distinct operands (n2).
Operands are variables and literals used in
operators. Uniqueness of literals is
determined by their notation. Compare
Operands.

Unique Operands in Conditions Number of distinct operands used in
conditions.

Unique Operators Number of distinct operators (n1).
Operators are executable statements and
unary and binary operations: +, -, *, /, **,
NOT, AND, OR, <, <=, >, >=, =, IS,
(subscript), (reference:modification),
FUNCTION. Compare Operators.

Vocabulary n = n1 + n2, where n1 is the number of
Unique Operators and n2 is the number of
Unique Operands.

Metric Description

COBOL TECHNICAL REFERENCE
COMPLEXITY METRICS

 12

Dead Constructs

A paragraph consisting solely of dead statements is a dead paragraph. A section
consisting solely of dead paragraphs or that is empty is a dead section. The
exception to this is the Configuration Section. Because there are no candidate
dead constructs (statements or data elements) in the Configuration Section, this
section is not processed and does not contribute to dead code metrics. A divi-
sion is never considered dead.

A file description entry (FD) containing only dead data elements and not used
in any file operation is a dead file description. A file section containing only
dead file descriptions is a dead section. A SELECT statement referring to a dead
file description is a dead construct.

A file-control paragraph consisting solely of dead SELECT statements is a dead
paragraph. An input-output section consisting solely of dead file-control para-
graphs is a dead section.

Dead Statements, Dead Data Elements, and Dead Lines from Copybooks

Dead statements and dead data elements from copybooks (that either start or
end in a copybook) are counted in the Dead Statements, Dead Data Elements,
and Dead Lines metrics. They are also counted separately in the Dead State-
ments from Includes, Dead Data Elements from Includes, and Dead Lines from
Includes metrics.

If a copybook is included multiple times, then each instance of the copybook is
considered to be an independent source file, and all dead constructs and dead
lines from the copybook are counted as many times as they are identified as
dead. For instance, if a copybook is included twice and both inclusions result in
a dead data element, the result is Dead Data Elements from Includes=2 and
Dead Lines from Includes=2 (assuming each dead data element occupies only
one line of the included copybook). If the same copybook is included twice but
only one instance results in a dead data element, then Dead Data Elements from
Includes=1 and Dead Lines from Includes=1.

All “Dead from Includes” metrics are for the specified program only. These
metrics do not include an analysis of the same copybook over the entire appli-
cation.

HyperView Usage

In HyperView, all dead statements, dead paragraphs, dead sections, dead data
declarations, dead files, and instances of dead files in statements will have the
attribute Dead set to True.

COBOL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM COBOL STATEMENTS

13

NOTE: Not all language syntax phrases are represented in the HyperView model,
so not all dead constructs contributing to dead lines can be identified using
Clipper searches. In other words, Clipper can identify all dead data elements and
all dead statements, but not necessarily all dead lines.

Relationship Projections from Cobol
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for Cobol model objects from the state-
ments in programs and support files.

Cobol File Relationship Projections

The Cobol File object represents the source file for a Cobol program. The table
below describes the relationships generated from Cobol statements in the
source file.

Statement Format Relationship Entities

COPY COPY member
[OF library]

Cobol File Includes
Copybook File

For resolved files:
Copybook.Name =
<resolved-name>
For unresolved files:
Copybook.Name =
[<library>.]<member>

++INCLUDE
(Panvalet)

++INCLUDE
member

Cobol File Includes
Copybook File

For resolved files:
Copybook.Name =
<resolved-name>
For unresolved files:
Copybook.Name =
[<library>.]<member>

-INC
(Librarian)

-INC member Cobol File Includes
Copybook File

For resolved files:
Copybook.Name =
<resolved-name>
For unresolved files:
Copybook.Name =
[<library>.]<member>

COBOL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM COBOL STATEMENTS

 14

Copybook File Relationship Projections

The Copybook File object represents a Cobol copybook. The table below
describes the relationships generated from Cobol statements in the copybook.

PROGRAM-
ID

PROGRAM-ID.
name

Cobol File Defines
Program

Program.Name =
<name> …

Statement Format Relationship Entities

Statement Format Relationship Entities

COPY COPY member
[OF library]

Copybook File Includes
Copybook File

For resolved files:
Copybook.Name =
<resolved-name>
For unresolved files:
Copybook.Name =
[<library>.]<member>

++INCLUDE
(Panvalet)

++INCLUDE
member

Copybook File Includes
Copybook File

For resolved files:
Copybook.Name =
<resolved-name>
For unresolved files:
Copybook.Name =
[<library>.]<member>

-INC
(Librarian)

-INC member Copybook File Includes
Copybook File

For resolved files:
Copybook.Name =
<resolved-name>
For unresolved files:
Copybook.Name =
[<library>.]<member>

COBOL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM COBOL STATEMENTS

15

Program Relationship Projections

The Program object represents a Cobol program. The table below describes the
relationships generated from Cobol statements in the program.

Statement Format Relationship Entities

ACCEPT ACCEPT
varname [FROM
mnemonic-
name]

Program.OnlineFlag. =
True

CALL CALL ‘name’ Program Calls
Program Entry Point

ProgramEntry.Name =
<name>

CALL
(dynamic)

CALL varname Program Calls
Program Entry
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
#Also Known As =
<program-name>.
Calls.<varname>
Decision Type =
PROGRAMENTRY…

ENTRY ENTRY ‘name’ Program Has Program
Entry Point

ProgramEntry.Name =
<name>
ProgramEntry.
MainEntry = True

PROGRAM-ID PROGRAM-ID.
name

Program Has Program
Entry Point

ProgramEntry.Name =
<name>
ProgramEntry.
MainEntry = True

COBOL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM COBOL STATEMENTS

 16

File Description SELECT
file-name
ASSIGN TO
[label-][org-]
<name1>
[assignment-
name2…]
FD file-name.01
file-record-name
…

See CRUD statements
below.

external-name =
<name1>
File attributes:
Name =
<program-name>.
external-file-name
DD Name =
external-file-name
File Type = FILE

NOTE: A File object is
generated only when the
first CRUD statement
for the file is encoun-
tered. File attributes do
not depend on the
CRUD statement itself.

DELETE DELETE
file-name…

Program Deletes From
File

See File Description for
File attributes.

READ READ
file-name…

Program Reads File See File Description for
File attributes.

REWRITE REWRITE
file-record-name
…

Program Updates File See File Description for
File attributes.

WRITE WRITE
file-record-name
…

Program Inserts Into
File

See File Description for
File attributes.

Statement Format Relationship Entities

 17

3 SQL Technical
Reference

This section describes MW support for EXEC SQL statements in programs and
SQL DDL statements in DDL files:

• “Support Notes” on page 17 describes MW limitations, caveats, and
special usage for SQL.

• “Complexity Metrics” on page 18 describes the supported complexity
metrics for objects in the SQL model.

• “Relationship Projections from EXEC SQL Statements” on page 19
describes the relationships generated from EXEC SQL statements in
programs.

• “Relationship Projections from SQL DDL Statements” on page 20
describes the relationships generated from SQL DDL statements in DDL
files.

Support Notes

These notes describe MW limitations, caveats, and special usage for SQL. Make
sure to check the Release Notes on the installation CD for any late-breaking
support information.

Renaming DCLGEN Include Files

Installations that use DCLGEN include files with the same names as ordinary
include files should rename the DCLGEN includes with a DCLGEN prefix and
dot (.) separator, so that both types of file can be registered: ATTR.<valid exten-
sion>, for example, and DCLGEN.ATTR.<valid extension>. When the parser
encounters EXEC SQL INCLUDE <name>, it first searches for
DCLGEN.<name>.<valid extension>, and if not found, then <name>.<valid
extension>.

SQL TECHNICAL REFERENCE
COMPLEXITY METRICS

 18

NOTE: Unresolved references to library members are always reported with the
longest name. This means that if you subsequently register a missing include file
with a short name, the referencing source file will not be invalidated. It’s up to you
to remember that the referencing source needs to be reverified.

Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the SQL model.

DDL File Complexity Metrics

The table below describes the supported complexity metrics for the DDL File
object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Columns Number of columns.

Foreign Keys Number of foreign keys.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Primary Keys Number of primary keys.

Source Lines Number of lines of source, including blank
lines and comments.

Tables Number of tables.

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM EXEC SQL STATEMENTS

19

Relationship Projections from EXEC SQL
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for SQL model objects from the EXEC
SQL statements in programs.

Program Relationship Projections

The Program object represents a Cobol program. The table below describes the
relationships generated from EXEC SQL statements in the program.

Statement Format Relationship Entities

ALTER TABLE ALTER TABLE
<table-name> …

Program Manipulates
Table

Table.Name =
<table-name>

CREATE INDEX CREATE INDEX
<index-name>
ON <table-name>
…

Program Manipulates
Table

Table.Name =
<table-name>

CREATE TABLE CREATE TABLE
<table-name>...

Program Manipulates
Table

Table attributes:
Name = <table-name>
Origin =
<source-file-path>

DELETE DELETE FROM
<table-name>…

Program Deletes From
Table

Table.Name =
<table-name>

DROP TABLE DROP TABLE
<table-name>

Program Manipulates
Table

Table.Name =
<table-name>

INSERT INSERT INTO
<table-name> …

Program Inserts Into
Table

Table.Name =
<table-name>

SELECT SELECT …
FROM
table-name

Program Reads Table Table.Name =
<table-name>

UPDATE UPDATE
<table-name> …

Program Updates
Table

Table.Name =
<table-name>

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SQL DDL STATEMENTS

 20

Relationship Projections from SQL DDL
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for SQL model objects from the SQL DDL
statements in DDL files.

DDL File Relationship Projections

The DDL File object represents a Data Definition Language file. The table below
describes the relationships generated from SQL DDL statements in the file.
Note the following:

• To maintain uniqueness of ERD entity names, MW specifies SQL names
with an SQLID prefix, defined by a corresponding SET CURRENT SQLID
statement. Names of Table objects are prefixed with CURRENT SQLID
when it is set by a preceding SET CURRENT SQLID statement.

Statement Format Relationship Entities

ALTER TABLE ALTER TABLE
table-name …

DDL File Refers To
Table

Table attributes:
Name = <table-name>
Is View = False

COMMENT COMMENT ON
[TABLE]
table-name …

DDL File Refers To
Table

Table.Name =
<table-name>

CREATE ALIAS CREATE ALIAS
alias-name ON
table-name …

DDL File Defines
Table

Table Represents
Table

Table attributes:
Name = <alias-name>
Is View = True
Source =
"DBSchema.mdb’
Origin =
<source-file-path>

Table.Name =
<table-name>

CREATE INDEX CREATE INDEX
index-name ON
table-name …

DDL File Refers To
Table

Table.Name =
<table-name>

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SQL DDL STATEMENTS

21

CREATE
SYNONYM

CREATE
SYNONYM
synonym FOR
authorization-na
me.table-name…

DDL File Defines
Table

Table Represents
Table

Table attributes:
Name = <synonym>
Is View = True
Source =
"DBSchema.mdb"
Origin =
<source-file-path>

Table.Name =
<table-name>

CREATE TABLE CREATE TABLE
table-name …

DDL File Defines
Table

Table attributes:
Name = <table-name>
Is View = False
Source =
"DBSchema.mdb"
Origin =
<source-file-path>

CREATE VIEW CREATE VIEW
view-name …AS
SELECT …
FROM
table-name

DDL File Defines
Table

Table Represents
Table

Table attributes:
Name = <view-name>
Is View = True
Source =
"DBSchema.mdb"
Origin =
<source-file-path>

Table.Name =
<table-name>

Referential
constraint

FOREIGN KEY
key
REFERENCES
base-table…

DDL File Refers To
Table

Table.Name =
<base-table>

SET CURRENT
SQLID

SET CURRENT
SQLID =
'user-name'

sqlid = <user-name>

Statement Format Relationship Entities

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SQL DDL STATEMENTS

 22

 23

4 JCL Technical
Reference

This section describes MW support for JCL files, JCL procedures, and control
card files:

• “Support Notes” on page 23 describes MW limitations, caveats, and
special usage for JCL applications.

• “Complexity Metrics” on page 25 describes the supported complexity
metrics for objects in the JCL model.

• “Relationship Projections from JCL Statements” on page 27 describes the
relationships generated from statements in JCL files and procedures.

Support Notes

These notes describe MW limitations, caveats, and special usage for JCL appli-
cations. Make sure to check the Release Notes on the installation CD for any
late-breaking support information.

External Control Cards Registration Requirements

Both inline cards (DD *) and external cards (DSN=) are supported. Source files
for external cards are registered in the repository as Control Cards files, and
must be named as follows, where .srt is the default file extension:

For an ordinary dataset:

//SYSIN DD DSN=MY.SORTCARDS.LIB.FILE1

the source file name must be MY.SORTCARDS.LIB.FILE1.srt.

For a PDS member:

//SYSIN DD DSN=MY.SORTCARDS.LIB(FILE2)

JCL TECHNICAL REFERENCE
SUPPORT NOTES

 24

the source file name must be MY.SORTCARDS.LIB(FILE2).srt, or if the
member name is unique, FILE2.srt.

For a generation dataset:

//SYSIN DD DSN=MY.SORTCARDS.LIB.FILE3(+1)

the source file name must be MY.SORTCARDS.LIB.FILE3.srt, without the
generation number.

Sort Cards Verification Requirements

Before verification, specify the names of the sort utilities you use in the Sort
Program Aliases workspace verification option for JCL files. The defaults are
SORT, DFSORT, and SYNCSORT.

Sort Cards Parser Output

The parser creates an artificial program entity that defines the inputs and
outputs for each sort utility invocation. The program has a name of the form
JCLFileName.JobName.StepName.SequenceNumber, where SequenceNumber
identifies the order of the step in the job. For every sort invocation in the
program, you can view data structures for sort input and output records and the
data movements between them in the HyperCode for the JCL file.

Detecting Programs Started by Driver Utilities

Use the Driver Utility Analysis feature to model programs started by a driver
utility. For more information, see the Parser Reference Manual in the work-
bench documentation set.

JCL TECHNICAL REFERENCE
COMPLEXITY METRICS

25

Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the JCL model.

JCL File Complexity Metrics

The table below describes the supported complexity metrics for the JCL File
object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Control Cards Usages Number of DD statements referencing
control cards identified in Legacy.xml to
generate program to control card
relationships.

EXEC Cataloged Procedure Steps Number of EXEC statements invoking
cataloged procedures.

EXEC In-stream Procedure Steps Number of EXEC statements invoking
instream procedures.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Steps Number of top-level steps in the job (not
including steps in invoked procedures).

Total EXEC Cataloged Procedure Steps Number of EXEC statements invoking
cataloged procedures in the job and invoked
procedures. If a procedure is invoked
multiple times, it is counted each time.

Total Include Statements Number of include statements in the job,
invoked procedures, and any include files.

JCL TECHNICAL REFERENCE
COMPLEXITY METRICS

 26

JCL Procedure Complexity Metrics

The table below describes the supported complexity metrics for the JCL Proce-
dure File object.

Job Complexity Metrics

The table below describes the supported complexity metrics for the Job object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Control Cards Usages Number of DD statements referencing
control cards identified in Legacy.xml to
generate program to control card
relationships.

EXEC Cataloged Procedure Steps Number of EXEC statements invoking
cataloged procedures.

EXEC In-stream Procedure Steps Number of EXEC statements invoking
instream procedures.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Steps Number of steps in the procedure.

Metric Description

Steps Number of steps in the job and invoked
procedures. If a procedure is invoked
multiple times, it is counted each time.

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

27

Control Cards File Complexity Metrics

The table below describes the supported complexity metrics for the Control
Cards File object.

Relationship Projections from JCL Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for JCL model objects from the statements
in JCL files and procedures.

JCL File Relationship Projections

The JCL File object represents a Job Control Language file. The tables below
describe the relationships generated from JCL statements in the file.

Note the following:

• Job steps are enumerated from the beginning of the job, after all proce-
dures are expanded. The EXEC PROC= command is counted first, as a
separate step. Thereafter, all steps inside the invoked procedure are
enumerated. The number of job steps, then, is the number of all EXEC
commands processed during job execution.

• No relationships are generated for EXECs to internal procedures.

• For steps placed directly in a job, the Step Full Name attribute of the Data
Connector object generated from DD statements is <execName> if speci-

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

 28

fied, or “Ln <line-number>” if <execName> is empty. For steps within
procedures, the following is the path to the step from the EXEC PROC=
command placed inside the job through all intermediate procedures:

 <jobExecName>[/<ProcName>.<procExecName>]…

• An invoked program is known as a system program if it is defined with a
sort utility alias in the workspace verification options for a JCL file, or
specified in the <SystemPrograms> section of the Legacy.xml file.

Statement Format Relationship Entities

DD
(program)

//[execName]
EXEC PGM =
ProgName
…//ddName DD
DSN =
DSName,…

Job Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
Refers To File

Data Connector
attributes:
Name =
<Job.Name>.
<UniqueID>
Program Entry Point =
<ProgName>
DD Name = <ddName>
Step Name =
<execName>
Step Full Name =
<StepPath>
Step Number =
<StepNumber>

Datastore.Name =
<dsn-name>
Datastore.DSN =
<dsn-name>

File.Name =
<ProgName>.
<ddName>
File.PortName =
<ddName>

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

29

DD
(system
program)

//[execName]
EXEC PGM =
SysProgName
…//ddName DD
DSN =
DSName,…

Job Has Data
Connector

Data Connector
Refers To Data Store

Connector Is Read In
System Program

Connector Is Written
In System Program

Data Connector
attributes:
Name =
<Job.Name>.
<UniqueID>
Program Entry Point =
<ProgName>
DD Name = <ddName>
Step Name =
<execName>
Step Full Name =
<StepPath>
Step Number =
<StepNumber>

Datastore.Name =
<dsn-name>
Datastore.DSN =
<dsn-name>

Sysprogram.Name =
<SysProgName>

EXEC
(program)

//EXEC PGM =
ProgName

Job Runs Program
Entry Point

ProgramEntry.Name =
<ProgName>

EXEC
(system
program)

//EXEC PGM =
SysProgName

Job Runs System
Program

Sysprogram.Name =
<SysProgName>

EXEC
(procedure)

//[execName]
EXEC [PROC =]
ExternalProc
Name

JCL File Executes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<ExternalProcName>

INCLUDE //INCLUDE
MEMBER =
member

JCL File Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
Jclproc.Name =
<member>

-INC (Librarian) -INC member JCL File Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
Jclproc.Name =
<member>

Statement Format Relationship Entities

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

 30

JCL Procedure Relationship Projections

The JCL Procedure File object represents a Job Control Language Procedure
file. The tables below describe the relationships generated from JCL statements
in the file.

JOB //jobName JOB
[parameters]

JCL File Defines Job Job.Name =
<Jcl.Name>.
<jobName>
Job.JobName =
<jobName>
Job.StepsNum =
<JobStepsNumber>

Statement Format Relationship Entities

Statement Format Relationship Entities

EXEC //[execName]
EXEC
[PROC=]External
ProcName

JCL File Executes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<ExternalProcName>

INCLUDE // INCLUDE
MEMBER =
member

JCL Procedure
Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<member>

-INC (Librarian) -INC member JCL Procedure
Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<member>

 31

5 CICS Technical
Reference

This section describes MW support for BMS files and copybooks, CSD, FCT,
and PCT files, and CICS statements in programs:

• “Support Notes” on page 31 describes MW limitations, caveats, and
special usage for CICS applications.

• “Complexity Metrics” on page 34 describes the supported complexity
metrics for objects in the CICS model.

• “Relationship Projections from BMS Statements” on page 37 describes the
relationships generated from statements in BMS files and copybooks.

• “Relationship Projections from CSD, FCT, and PCT Statements” on page
38 describes the relationships generated from statements in CSD, FCT,
and PCT files.

• “Relationship Projections from CICS Statements” on page 42 describes
the relationships generated from CICS statements in programs.

Support Notes

These notes describe MW limitations, caveats, and special usage for CICS appli-
cations. Make sure to check the Release Notes on the installation CD for any
late-breaking support information.

Deprecated CICS Statements

Deprecated CICS statements are supported. Programs containing these state-
ments verify successfully.

CICS TECHNICAL REFERENCE
SUPPORT NOTES

 32

Keyword Permutations

Keywords without parameters cannot be permuted if they start a statement.
SEND TEXT NOEDIT, for example, must start with SEND TEXT NOEDIT.
TEXT or NOEDIT should not be placed after other statement’s keywords and
parameters. The following statement is invalid, for example:

EXEC CICS SEND TEXT LENGTH (10) NOEDIT

Generally, you can permute statement keywords with parameters in any order,
keeping in mind that the first keyword should not be permuted with the others.
Below is a list of statements for which you cannot permute the second keyword.
That is, the keywords must appear in the order shown:

• CHANGE PASSWORD

• CHANGE TASK

• CHECK ACQPROCESS

• CHECK ACTIVITY

• CHECK ACQACTIVITY

• CHECK TIMER

• DEFINE ACTIVITY

• DEFINE COMPOSITE

• DEFINE INPUT EVENT

• DEFINE PROCESS

• DEFINE TIMER

• DELETE CONTAINER

• DELETE COUNTER

• DELETE DCOUNTER

• EXTRACT CERTIFICATE

• GET CONTAINER

• GETNEXT ACTIVITY

• GETNEXT CONTAINER

• GETNEXT EVENT

• GETNEXT PROCESS

• INQUIRE ACTIVITYID

CICS TECHNICAL REFERENCE
SUPPORT NOTES

33

• INQUIRE CONTAINER

• INQUIRE EVENT

• INQUIRE TIMER

• LINK PROGRAM

• RETRIEVE SUBEVENT

• WAIT CONVID

• WAIT JOURNALNAME

• WAIT JOURNALNUM

• WRITE JOURNALNAME

• WRITE JOURNALNUM

Statements Taken to Be the Same

The statements in each set of statements below are recognized as the same state-
ment and assumed to handle a united set of conditions:

• DOCUMENT CREATE, DOCUMENT INSERT, DOCUMENT
RETRIEVE, DOCUMENT SET

• ENDBROWSE ACTIVITY, ENDBROWSE CONTAINER,
ENDBROWSE EVENT, ENDBROWSE PROCESS

• START, START CHANNEL

• SYNCPOINT, SYNCPOINT ROLLBACK

• WEB ENDBROWSE HTTPHEADER, WEB ENDBROWSE FORM-
FIELD

• WEB READ FORMFIELD, WEB READ HTTPHEADER

• WEB READNEXT FORMFIELD, WEB READNEXT

• WEB STARTBROWSE FORMFIELD, WEB STARTBROWSE HTTP-
HEADER

BTS and CHANNEL versions of statements are not distinguished and assumed
to handle a united set of conditions.

CICS TECHNICAL REFERENCE
COMPLEXITY METRICS

 34

Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the CICS model.

BMS File Complexity Metrics

The table below describes the supported complexity metrics for the BMS File
object.

BMS Copybook File Complexity Metrics

The table below describes the supported complexity metrics for the BMS Copy-
book File object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Screens Number of screens.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of include statements in the file and
any used include files.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

CICS TECHNICAL REFERENCE
COMPLEXITY METRICS

35

Screen Complexity Metrics

The table below describes the supported complexity metrics for the Screen
object.

CSD File Complexity Metrics

The table below describes the supported complexity metrics for the CSD File
object.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Metric Description

Hidden Fields Number of hidden fields.

Input Fields Number of input fields.

Input/Output Fields Number of input/output fields.

Output Fields Number of output fields.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

CICS TECHNICAL REFERENCE
COMPLEXITY METRICS

 36

FCT File Complexity Metrics

The table below describes the supported complexity metrics for the FCT File
object.

PCT File Complexity Metrics

The table below describes the supported complexity metrics for the PCT File
object.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM BMS STATEMENTS

37

Relationship Projections from BMS Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for CICS model objects from the state-
ments in BMS files and copybooks.

BMS File Relationship Projections

The BMS File object represents a BMS file in a CICS application. The table
below describes the relationships generated from statements in the BMS file.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Statement Format Relationship Entities

COPY COPY member BMS File Includes
BMS Copybook File

For resolved files:
BmsCopy.Name =
<resolved-name>
For unresolved files:
BmsCopy.Name =
<member>

DFHMDI mapset
DFHMSD...
map DFHMDI ...

BMS File Defines
Screen

Map.Name=
<mapset>.<map>

DFHMDI
(no mapset)

map DFHMDI ... BMS File Defines
Screen

Map.Name =
<source-filename-
without-extension>.
<map>

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

 38

BMS Copybook File Relationship Projections

The BMS Copybook File object represents a BMS copybook included in a BMS
file or in another BMS copybook. The table below describes the relationships
generated from statements in the BMS copybook file.

Relationship Projections from CSD, FCT, and
PCT Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for CICS model objects from statements
in CSD, FCT, and PCT files.

CSD File Relationship Projections

The CSD File object represents a CICS System Definition dataset. The table
below describes the relationships generated from statements in the CSD file.

Statement Format Relationship Entities

COPY COPY member BMS Copybook File
Includes BMS
Copybook File

For resolved files:
BmsCopy.Name =
<resolved-name>
For unresolved files:
BmsCopy.Name=
<member>

Statement Format Relationship Entities

DEFINE
DOCTEMPLATE

DEFINE
DOCTEMPLATE
(doc-name)
 GROUP
 (group-name)...

CSD File Defines
Document
Template

DocTemplate.Name =
<doc-name>

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

39

DEFINE FILE DEFINE
 FILE
 (file-name)
 GROUP
 (group-name)
 DSNAME
 (dsn-name)
 LOAD(YES)…

NOTE: Nothing is
generated if LOAD
(NO) is specified.

CSD File Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
attributes:
Name =
CICS.<file-name>
DD Name =
<file-name>
Program Entry
Point = *

Datastore.Name =
<dsn-name>

DEFINE FILE
(base file)

NSRGROUP
(base-group)

Base file:
DEFINE FILE
(base-group)
DSNAME
(base-dsn-name)

Data Store Based On
Data Store

BaseDatastore.Name
= <base-dsn-name>

DEFINE
TRANSACTION

DEFINE
 TRANSACTION
 (tran-name)
 GROUP
 (group-name)
 PROGRAM
 (prg-name)...

CSD File Defines
Transaction

Transaction Initiates
Program Entry
Point

Transaction.Name =
<tran-name>

ProgramEntry.Name
= <prg-name>
Program.Root = True

NOTE: Root is empty if
Program does not exist
in the repository before
CSD file verification.

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

 40

FCT File Relationship Projections

The FCT File object represents a CICS File Control Table. The table below
describes the relationships generated from statements in the FCT file.

Statement Format Relationship Entities

DFHFCT
DATASET

DFHFCT TYPE =
DATASET,
DATASET =
data-set, DSNAME
= dsn-name...

FCT File Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
attributes:
Name =
CICS.<file-name>
DD Name =
<file-name>
Program Entry
Point = *

Datastore.Name =
<dsn-name>

DFHFCT
DATASET
(base file)

BASE = base-name

Base file:
DFHFCT TYPE =
DATASET,
DATASET =
base-name,
DSNAME =
base-dsn-name…

NOTE: Base file may
be defined with any
TYPE = FILE or
TYPE = DATASET
statement.

Data Store Based On
Data Store

BaseDatastore.Name
= <base-dsn-name>

DFHFCT FILE DFHFCT TYPE =
FILE,
FILE = file-name,
DSNAME =
dsn-name...

FCT File Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
attributes:
Name =
CICS.<file-name>
DD Name =
<file-name>
Program Entry
Point = *

Datastore.Name =
<dsn-name>

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

41

PCT File Relationship Projections

The PCT File object represents a CICS Program Control Table. The table below
describes the relationships generated from statements in the PCT file.

DFHFCT FILE
(base file)

BASE = base-name

Base file:
DFHFCT TYPE =
FILE,
FILE =
base-name,
DSNAME =
base-dsn-name...

NOTE: Base file may
be defined with any
TYPE=FILE or
TYPE=DATASET
statement.

NOTE: Root is empty if
Program does not exist
in the repository
before PCT file verifi-
cation.

Data Store Based On
Datastore

BaseDatastore.Name
= <base-dsn-name>

Statement Format Relationship Entities

Statement Format Relationship Entities

DFHPCT DFHPCT TYPE =
ENTRY, TRANSID
= tran-name,
PROGRAM =
prg-name

PCT File Defines
Transaction

Transaction Initiates
Program Entry
Point

Transaction.Name =
<tran-name>

ProgramEntry.Name
= <prg-name>
Program.Root = True

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 42

Relationship Projections from CICS Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for CICS model objects from CICS state-
ments in programs.

Program Relationship Projections

The Program object represents a Cobol program. The tables below describe the
relationships generated from CICS statements in the program.

Statement Format Relationship Entities

any EXEC CICS Program.EnvFlags =
+CICS

NOTE: EnvFlags may
contain other environ-
ment codes, so search as
follows: Like '*+CICS*'

DELETE DELETE FILE
 ('file-name') …

Program Deletes From
File

File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

DELETE
(dynamic)

DELETE FILE
 (file-name) …

Program Deletes From
File Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
DeletesDataPort.
<file-name>
Decision Type =
DATAPORT…

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

43

DOCUMENT DOCUMENT
CREATE
TEMPLATE
('name') …
DOCUMENT
INSERT
TEMPLATE
('name') …

Program Uses
Document Template

DocTemplate.Name =
<name>

DOCUMENT
(dynamic)

DOCUMENT
CREATE
TEMPLATE
(name) …
DOCUMENT
INSERT
TEMPLATE
(name) …

Program Uses
Document Template
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program- name>.
UsesDocTemplate
<name>
Decision Type =
DOCTEMPLATE…

INVOKE INVOKE
WEBSERVICE
('name')
OPERATION
('opname') …

Program Invokes
Service

Service.Name =
<name>.<opname>

INVOKE
(dynamic)

INVOKE
WEBSERVICE
(name)
OPERATION
('opname') …
INVOKE
WEBSERVICE
('name')
OPERATION
(opname) …
INVOKE
WEBSERVICE
(name)
OPERATION
(opname) …

Program Invokes
Service Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program- name>.
InvokesService.<name>
Decision Type =
SERVICE…

LINK LINK
PROGRAM
('pgm-name') …

Program Links
Program Entry Point

ProgramEntry.Name =
<program-name>

NOTE: If literal is long,
only 8 leading characters
are used as program
name.

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 44

LINK
(dynamic)

LINK
PROGRAM
(pgm-name) …

Program Links
Program Entry Point
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program- name>.
Links.
<program-name>
Decision Type =
PROGRAMENTRY…

READ
READNEXT
READPREV

READ FILE
 ('file-name') …
READNEXT
 FILE
 ('file-name') …
READPREV
 FILE
 ('file-name') …

Program Reads File File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

READ
READNEXT
READPREV
(dynamic)

READ FILE
 (file-name) …
READNEXT
 FILE
 (file-name) …
READPREV
 FILE
 (file-name) …

Program Reads File
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program-name>.
ReadsDataPort.
<file-name>
Decision Type =
DATAPORT…

RECEIVE RECEIVE … Program.OnlineFlag =
true

RECEIVE MAP RECEIVE
 MAP
 ('map-name')
 MAPSET
 ('mapset') …
RECEIVE
 MAP
 ('map-name')

Program Receives
Screen

Screen.Name =
<mapset>.
<map-name>
Program.OnlineFlag =
true
Screen.Name = <map-
name>.<map-name>
Program.OnlineFlag =
true

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

45

RECEIVE MAP
(dynamic)

RECEIVE
 MAP
 (map-name)
 MAPSET
 (‘mapset’) …
RECEIVE
 MAP
 (map-name)
RECEIVE
 MAP
 (‘map-name’)
 MAPSET
 (mapset) …
RECEIVE
 MAP
 (map-name)
 MAPSET
 (mapset) …

Program Receives
Screen Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
Receives. <map-name>
Decision Type = MAP
…
Program.OnlineFlag =
true

RETURN RETURN
 TRANSID
 ('name') …

Program Starts
Transaction

Transaction.Name =
<name>

NOTE: If literal is long,
only 4 leading characters
are used as program
name.

RETURN
(dynamic)

RETURN
 TRANSID
 (name) …

Program Starts
Transaction Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program-name>.
Starts.<name>
Decision Type =
TRANSACTION

REWRITE REWRITE
 FILE
 ('file-name') …

Program Updates File File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 46

REWRITE
(dynamic)

REWRITE
 FILE
 (file-name) …

Program Updates File
Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
UpdatesDataPort.
<file-name>
Decision Type =
DATAPORT…

SEND MAP SEND MAP
 ('map-name')
 MAPSET
 ('mapset') …
SEND MAP
 ('map-name')

Program Sends Screen Screen.Name =
<mapset>.
<map-name>
Program.OnlineFlag =
true
Screen.Name = <map-
name>.<map-name>
Program.OnlineFlag =
true

SEND MAP
(dynamic)

SEND MAP
 (map-name)
 MAPSET
 ('mapset') …
SEND MAP
 (map-name)
SEND MAP
 (‘map-name’)
 MAPSET
 (mapset) …
SEND MAP
 (map-name)
 MAPSET
 (mapset) …

Program Sends Screen
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program-name>.
Sends.<mapset>
Decision Type = MAP
…
Program.OnlineFlag =
true

SEND SEND Program.OnlineFlag =
true

START START
 TRANSID
 ('name') …

Program Starts
Transaction

Transaction.Name =
<name>

NOTE: If literal is long,
only 4 leading characters
are used as program
name.

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

47

START
(dynamic)

START
 TRANSID
 (name) …

Program Starts
Transaction Decision

Decision attributes:
Name =
 <program-name>@
 <internal-name>
Also Known As =
<program-name>.
Starts.<name>
Decision Type =
TRANSACTION

WRITE WRITE FILE
 ('file-name') …

Program Inserts Into
File

File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

WRITE
(dynamic)

WRITE FILE
 (file-name) …

Program Inserts Into
File Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
InsertsDataPort.
<file-name>
Decision Type =
DATAPORT…

XCTL XCTL
 PROGRAM
 ('pgm-name') …

Program Xctls To
Program Entry Point

ProgramEntry.Name =
<pgm-name>

NOTE: If literal is long,
only 8 leading characters
are used as program
name.

XCTL
(dynamic)

XCTL
 PROGRAM
 (pgm-name) …

Program Xctls To
Program Entry Point
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
 <program-name>.
Xctls.<pgm-name>
Decision Type =
PROGRAMENTRY…

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 48

 49

6 IDMS Technical
Reference

This section describes MW support for IDMS schema and subschema files and
IDMS DML statements in programs:

• “IDMS Support Notes” on page 49 describes MW limitations, caveats, and
special usage for IDMS applications.

• “IDMS Complexity Metrics” on page 51 describes the supported
complexity metrics for objects in the IDMS model.

• “Relationship Projections from IDMS Schema Statements” on page 53
describes the relationships generated from statements in IDMS schema
files.

• “Relationship Projections from IDMS DML Statements” on page 54
describes the relationships generated from IDMS DML statements in
programs.

IDMS Support Notes

These notes describe MW limitations, caveats, and special usage for IDMS
applications. Make sure to check the Release Notes on the installation CD for
any late-breaking support information.

COPY IDMS Statements

COPY IDMS statements are the source manipulation statements for IDMS
DML:

–[level-number] COPY IDMS [RECORD] copybook-name [REDEFINES
data-item-name]

You must register a a separate copybook <copybook-name> for each COPY
IDMS statement in the application. These copybooks should describe corre-

IDMS TECHNICAL REFERENCE
IDMS SUPPORT NOTES

 50

sponding IDMS database records. They can be extracted manually from
IDMS-preprocessed sources.

If the COPY IDMS statement depends on a schema or subschema:

– COPY IDMS SUBSCHEMA-< copybook>

the copybook name must be
<schema_name>$<subschema_name>$SUBSCHEMA-<copybook>.
SUBSCHEMA-CTRL and SUBSCHEMA-LR-CTRL are considered to be inde-
pendent of schema/subschema and should not be prefixed.

NNCOPY Statements

The NNCOPY statement is an extension of the common COPY statement:

–[level-number] NNCOPY copybook-name [([struct,] substruct)]
[suffix]

Select Handle NNCOPY syntax in the project verification options for Cobol
files if you want the parser to recognize NNCOPY statements.

Manipulation of Logical Records

Manipulation of logical records in Cobol programs is not supported.

IDMS TECHNICAL REFERENCE
IDMS COMPLEXITY METRICS

51

IDMS Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This sectiondescribes the supported metrics
for objects in the IDMS model.

IDMS Schema File Complexity Metrics

The table below describes the supported complexity metrics for the IDMS
Schema File object.

IDMS Subschema File Complexity Metrics

The table below describes the supported complexity metrics for the IDMS
Subschema File object.

Metric Description

Areas Number of areas.

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Records Number of records.

Sets Number of sets.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Areas Number of areas.

IDMS TECHNICAL REFERENCE
IDMS COMPLEXITY METRICS

 52

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Logical Records Number of logical records.

Path Groups Number of path groups.

Records Number of records.

Sets Number of sets.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

IDMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM IDMS SCHEMA STATEMENTS

53

Relationship Projections from IDMS Schema
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for IDMS model objects from the state-
ments in IDMS schema files.

IDMS Schema File Relationship Projections

The IDMS Schema File object represents a schema in an IDMS application. The
tables below describe the relationships generated from statements in the schema
file.

Statement Format Relationship Entities

RECORD ADD
 RECORD
 NAME IS
recordName …

Network Database
Schema Has Network
Database Record

NETRECORD.Name =
<schemaName>.
<recordName>
NETRECORD.
RecordName =
<recordName>

SCHEMA ADD
 SCHEMA
 NAME IS
schemaName …

IDMS Schema File
Defines Network
Database Schema

NETSCHEMA.Name =
<schemaName>

IDMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM IDMS DML STATEMENTS

 54

Relationship Projections from IDMS DML
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for IDMS model objects from the IDMS
DML statements in programs.

Cobol File Relationship Projections

The Cobol File object represents the source file for a Cobol program. The table
below describes the relationships generated from IDMS DML statements in the
source file.

Statement Format Relationship Entities

COPY IDMS [level-number]
COPY IDMS
name

Cobol File Includes
Copybook File

Where member-name
= <name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

COPY IDMS
(file|module)

COPY IDMS
[FILE |
MODULE] name

Cobol File Includes
Copybook File

Where member-name
= <name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

IDMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM IDMS DML STATEMENTS

55

COPY IDMS
(record)

[level-number]
COPY IDMS
RECORD
rec-name

Cobol File Includes
Copybook File

Where member-name
= <rec-name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

COPY IDMS
(subschema)

[level-number]
COPY IDMS
SUBSCHEMA-
name

Cobol File Includes
Copybook File

Where member-name
 = <schema-name>
$<subschema-name>
$<name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

COPY IDMS
(subschema-
ctrl)

[level-number]
COPY IDMS
SUBSCHEMA-
CTRL
[level-number]
COPY IDMS
SUBSCHEMA-
LR-CTRL

Cobol File Includes
Copybook File

Where member-name
= SUBSCHEMA-CTRL
or member-name =
SUBSCHEMA-LR-
CTRL:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

IDMS-
CONTROL
SECTION

IDMS-
CONTROL
SECTION…
[IDMS
-RECORDS
WITHIN
[WORKING-
STORAGE |
LINKAGE]]

Cobol File Includes
Copybook File

Where member-name
 = SUBSCHEMA-
CTRL
 or member-name =
<schema-name>
$<subschema-name>
$SUBSCHEMA-
RECORDS:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

Statement Format Relationship Entities

IDMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM IDMS DML STATEMENTS

 56

Copybook File Relationship Projections

The Copybook File object represents a copybook included in a Cobol program
or in another copybook. The table below describes the relationships generated
from IDMS DML statements in the copybook file.

Statement Format Relationship Entities

COPY IDMS [level-number]
COPY IDMS
name

Copybook File Includes
Copybook File

Where member-name
= <name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

COPY IDMS
(file|module)

COPY IDMS
[FILE |
MODULE] name

Copybook File Includes
Copybook File

Where member-name
= <name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

COPY IDMS
(record)

[level-number]
COPY IDMS
RECORD
rec-name

Copybook File Includes
Copybook File

Where member-name
= <rec-name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

COPY IDMS
(subschema)

[level-number]
COPY IDMS
SUBSCHEMA-
name

Copybook File Includes
Copybook File

Where member-name
 = <schema-name>
$<subschema-name>
$<name>:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

IDMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM IDMS DML STATEMENTS

57

Program Relationship Projections

The Program object represents a Cobol program. The tables below describe the
relationships generated from IDMS DML statements in the program.

COPY IDMS
(subschema-
ctrl)

[level-number]
COPY IDMS
SUBSCHEMA-
CTRL
[level-number]
COPY IDMS
SUBSCHEMA-
LR-CTRL

Copybook File Includes
Copybook File

Where member-name
= SUBSCHEMA-CTRL
or member-name =
SUBSCHEMA-LR-
CTRL:
For resolved files:
Copybook.Name =
<member-name>
[.ext]...
For unresolved files:
Copybook.Name =
<member-name>

Statement Format Relationship Entities

Statement Format Relationship Entities

ERASE ERASE
record-name.

Program Deletes
Network Database
Record

NetRecord.Name =
<schema-name>.
<record-name>
NetRecord.Record
Name =
<record-name>

GET GET
record-name.

ProgramReads
Network Database
Record

NetRecord.Name =
<schema-name>.
<record-name>
NetRecord.Record
Name =
<record-name>

MODIFY MODIFY
record-name.

ProgramUpdates
Network Database
Record

NetRecord.Name =
<schema-name>.
<record-name>
NetRecord.Record
Name =
<record-name>

IDMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM IDMS DML STATEMENTS

 58

OBTAIN OBTAIN …
[CALC |
DUPLICATE]
record-name.
OBTAIN …
CURRENT
record-name.
OBTAIN …
record-name
DB-KEY IS
db-key.
OBTAIN …
record-name
WITHIN
[set-name |
area-name].

ProgramReads
Network Database
Record

NetRecord.Name =
<schema-name>.
<record-name>
NetRecord.Record
Name =
<record-name>

SCHEMA
SECTION

SCHEMA
SECTION.
DB subschema-
name
WITHIN
schema-name.

ProgramUses Network
Database Schema

NetSchema.Name =
<schema-name>

STORE STORE
record-name.

ProgramInserts
Network Database
Record

NetRecord.Name =
<schema-name>.
<record-name>
NetRecord.Record
Name =
<record-name>

Statement Format Relationship Entities

 59

7 IMS Technical
Reference

This section describes MW support for MFS files and MFS include files, DBD,
PSB, and PSB copybook files, System Definition files, and call-level (CALL
‘CBLTDLI’) and command-level (EXEC DLI) statements in programs:

• “IMS Support Notes” on page 59 describes MW limitations, caveats, and
special usage for IMS applications.

• “IMS Complexity Metrics” on page 63 describes the supported complexity
metrics for objects in the IMS model.

• “Relationship Projections from DBD and PSB Statements” on page 67
describes the relationships generated from statements in DBD and PSB
files.

• “Relationship Projections from System Definition Statements” on page 71
describes the relationships generated from statements in System Defini-
tion files.

IMS Support Notes

These notes describe MW limitations, caveats, and special usage for IMS appli-
cations. Make sure to check the Release Notes on the installation CD for any
late-breaking support information.

Impact Analysis and Interprogram Data Flows

Impact analysis and interprogram data flows are not supported.

IMS TECHNICAL REFERENCE
IMS SUPPORT NOTES

 60

Extra Dependencies between Variables

There may be extra dependencies between variables in IMS calls (in intrapro-
gram analysis, computational components, and so forth) because all CALL
arguments except function-code are considered as being used in INOUT mode
while in fact some CALLs have input-only and output-only parameters. This
also may cause decisions to appear not to have been resolved, when in fact they
have been.

When PCB Content Is Considered to Be Altered

PCB content is considered to be altered only by CBLTDLI(PLITDLI) calls or via
a group MOVE of the whole PCB structure to another structure. Presence of
MOVEs to subfields of a PCB may lead to incorrect analysis results. GU call is
not considered as nullifying alternate PCBs.

Port Analysis for IMS Database Calls

For unqualified IMS database calls (without SSAs), port analysis uses only PCB
information and does not analyze preceding IMS calls (for example, GNP after
GU). Similarly, dependencies between any other IMS calls are not traced except
the CHNG – ISRT pair.

For qualified database calls, only the unqualified portion of SSA is analyzed.
Command codes are not supported (for example, a path call will be interpreted
as a call reading only the last segment in a path).

Parmcount Parameter

The Parmcount parameter is accepted but not analyzed. All CALL parameters
are considered as valid.

CHNG Calls

All CHNG calls are treated as setting transaction code destinations because,
with no indicators of destination type, it is impossible to distinguish between
transaction and terminal names. System tables with transactions and terminal
names are needed to check type.

IMS TECHNICAL REFERENCE
IMS SUPPORT NOTES

61

ISRT Calls

ISRT calls to IO-PCB without MOD name are ignored. Most likely they repre-
sent the construction of multi-segment messages.

Parsing of Macro Statements

PSB/DBD parsers do not perform full semantic checks of corresponding macro
statements. Moreover, the PSB parser does not check that all referenced
segments and fields are defined in corresponding DBDs.

SET ADDRESS OF and PSB Scheduling

Limited support is available for SET ADDRESS OF <variable> to <PCB> and
scheduling of PSBs (calls to PCB functions in CICS programs).

Online CICS Applications Using IMS

Online CICS applications using IMS do no need System Definition files. They
need only native CICS PCT files.

EXEC DLI Support

Both batch and online CICS programs with EXEC DLI are supported. In addi-
tion to the restrictions described earlier in this section, the following restrictions
apply to EXEC DLI support.

Subsequent Runs of IMS Call Analysis for Online CICS Applications

Subsequent runs of IMS call analysis for online CICS applications may produce
incorrect results. Make sure that all root programs and PCT files are reverified
before you repeat IMS call analysis.

AIB Interface

The AIB interface is not supported.

IMS TECHNICAL REFERENCE
IMS SUPPORT NOTES

 62

Manual Decision Resolutions

Manual resolution of IMS-related decisions (PSB module decisions and the like)
do not affect the results of IMS call analysis.

SYSSERVE Parameter of SCHD Call

The SYSSERVE parameter of the SCHD call does not affect analysis. The
number of PCB blocks in the PSB is determined statically during PSB verifica-
tion. IO PCBs are added automatically as needed. That might affect PCB
numbering.

CALL Without Parameters

The active PSB name is not traced between programs if CALL without parame-
ters is used.

Active PSB Name Calculated in Called Subroutine

The active PSB name is not detected if it is calculated in a called subroutine.
Only “forward” passing of parameters is supported from calling to called
module.

Order of Command Options

The order of command options should correspond to the order of options as
they are specified in the EXEC DLI reference manual (there is no free format
there). Exceptions are the various options for SEGMENT, which can be coded
in any order.

Quoted Literals

Quoted literals, where not defined by command syntax, are treated exactly as
non-quoted IMS names. The only exception is the LOCKCLASS option.

Host Variables

Host variables must have the form: simple identifier, qualified identifier (a OF
b), LENGTH OF special register or a subscripted table element reference. Arith-
metic expressions, reference modifications, and other expressions are not
supported

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

63

Operators in WHERE Clauses

In WHERE clauses, only relational operators =, <, <=, >, >= and logical opera-
tors AND, OR, and NOT are supported.

Comma-Separated Lists

In comma-separated lists, such as for the FIELDLENGTH option, only uniform
elements are supported (all literals or all identifiers). Option is verification only.

PCB Option

The PCB option must be explicitly specified on EXEC DLI calls if applicable.

CBLTDLI Calls in CICS Call-Level Programs

For CICS call-level programs, CBLTDLI calls are not recognized as modifying
DLIUIB block content. Statements are not treated as dependent:

CALL ‘CBLTDLI’ USING GU-FUNC, PCB1, IOAREA1
IF UIBRCODE = SPACES THEN …

IMS Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the IMS model.

MFS File Complexity Metrics

The table below describes the supported complexity metrics for the MFS File
object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

 64

MFS Include File Complexity Metrics

The table below describes the supported complexity metrics for the MFS
Include File object.

Screen Complexity Metrics

The table below describes the supported complexity metrics for the Screen
object.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Screens Number of screens.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of include statements in the file and
any used include files.

Metric Description

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Hidden Fields Number of hidden fields.

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

65

DBD File Complexity Metrics

The table below describes the supported complexity metrics for the DBD File
object.

PSB File Complexity Metrics

The table below describes the supported complexity metrics for the PSB File
object.

Input Fields Number of input fields.

Input/Output Fields Number of input/output fields.

Output Fields Number of output fields.

Metric Description

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Segments Number of segments.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

 66

PSB Copybook File Complexity Metrics

The table below describes the supported complexity metrics for the PSB Copy-
book File object.

System Definition File Complexity Metrics

The table below describes the supported complexity metrics for the System
Definition File object.

Number of PCBs Number of PCBs.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of include statements in the file and
any used include files.

Metric Description

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

67

Relationship Projections from DBD and PSB
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for IMS model objects from statements in
DBD and PSB files.

DBD File Relationship Projections

The DBD File object represents an IMS Database Description file. The table
below describes the relationships generated from statements in the DBD file.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Statement Format Relationship Entities

DBD DBD
 NAME=db-name
 ACCESS=
 (db-type, ...) ...

DBD File Defines
Hierarchical
Database

HiDatabase.Name =
<db-name>
HiDatabase.Type =
<db-type>

DATASET (GSAM
only)

DATASET
 DD1=dd-name1,
 DD2=dd-name2,
 ...

Hierarchical
Database Has
Hierarchical
Database Segment

HiSegment.Name =
<db-name>.
<db-name>
HiSegment.Segment
Name = <db-name>
HiSegment.DDName
= <dd-name1>
HiSegment.
DDName2
= <dd-name2>

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

 68

PSB File Relationship Projections

The PSB File object represents an IMS Program Specification Block file. The
table below describes the relationships generated from statements in the PSB
file.

SEGM SEGM
 NAME=seg-name,
 ...
 NAME=
 seg-name2, ...
 dbname2))

Hierarchical
Database Has
Hierarchical
Database Segment

Hierarchical
Database Segment
Has Logical Child
Hierarchical
Database Segment

HiSegment.Name =
<db-name>.
<seg-name>
HiSegment.Segment
Name = <seg-name>

HiSegment.Name =
<db-name>.
<seg-name>
HiSegmentChild.
Name = <db-name2>
.<seg-name2>
HiSegmentChild.
SegmentName =
<seg-name2>

LCHILD SEGM NAME=
 seg-name,
 ...
LCHILD=
 NAME=
 (seg-name,
 dbname)

Hierarchical
Database Segment
Has Logical Child
Hierarchical
Database Segment

HiSegment.Name =
<db-name>.
<seg-name>
HiSegmentChild.
Name = <db-name>
.<seg-name>
HiSegmentChild.
SegmentName =
<seg-name>

Statement Format Relationship Entities

Statement Format Relationship Entities

PSBGEN PSBGEN
 LANG=language,
 PSBNAME=
 psb-name, ...

PSB File Defines
PSB Module

PsbModule.Name =
<psb-name>
PsbModule.Language
= <language>

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

69

PCB PCB
 TYPE=DB,
 DBDNAME=
 dbd-name, ...
PCB
 TYPE=GSAM,
 DBDNAME=
 dbd-name, ...
PCB
 TYPE=DB,
 DBDNAME= ...,
 PROCSEQ=
 dbd-name, ...
PCB
 TYPE=GSAM,
 DBDNAME= ...,
 PROCSEQ=
 dbd-name, ...

PSB Module Refers
To Hierarchical
Database

HiDatabase.Name =
<dbd-name>

SENSEG SENSEG
 NAME= ...,
 INDICES=
 (dbd-name1, ...
 dbd-nameN)

NOTE: You can
specify up to 32 DBD
names of secondary
indices.

PSB Module Refers
To Hierarchical
Database

HiDatabase.Name =
<dbd-name1> ...
HiDatabase.Name =
<dbd-nameN> ...

COPY member [OF
library]

PSB File Includes
PSB Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

++INCLUDE
(Panvalet)

++INCLUDE
member

PSB File Includes
PSB Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

Statement Format Relationship Entities

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

 70

PSB Copybook File Relationship Projections

The PSB Copybook File object represents an IMS Program Specification Block
copybook file. The table below describes the relationships generated from state-
ments in the PSB copybook file.

-INC (Librarian) -INC member PSB File Includes
PSB Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

Statement Format Relationship Entities

Statement Format Relationship Entities

COPY member [OF
library]

PSB Copybook File
Includes PSB
Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

++INCLUDE
(Panvalet)

++INCLUDE
member

PSB Copybook File
Includes PSB
Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

-INC (Librarian) -INC member PSB Copybook File
Includes PSB
Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

NOTE: Relationships
are created for every
TRANSACT macro
that follows an
APPLCTN macro,
and for every trans-
action code in the
TRANSACT macro.

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SYSTEM DEFINITION STATEMENTS

71

Relationship Projections from System
Definition Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for IMS model objects from statements in
System Definition files.

System Definition File Relationship Projections

The System Definition File object represents an IMS System Definition file. The
table below describes the relationships generated from statements in the System
Definition file.

Statement Format Relationship Entities

APPLCTN APPLCTN PSB=
psb-name ...
TRANSACT
CODE= (trancode
[rtran-code], ...)...

System Definition
File Defines
Transaction

Transaction Initiates
Program Entry
Point

Program Uses PSB
Module

Transaction.Name =
<tran-code>

ProgramEntry.Name
= <psb-name>
Program.Root = True
Program.Ims
Completed = False

PsbModule.Name =
<psb-name>

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SYSTEM DEFINITION STATEMENTS

 72

	Contents
	Supported Platforms
	Cobol Technical Reference
	Support Notes
	Program IDs
	Separators Must Be Followed by Blanks
	Copybooks in a Library

	Complexity Metrics
	Cobol File Complexity Metrics
	Copybook File Complexity Metrics
	Program Complexity Metrics
	How MW Calculates Cobol Dead Code Statistics
	Dead Statements
	Dead Data Elements
	Dead Constructs
	Dead Statements, Dead Data Elements, and Dead Lines from Copybooks
	HyperView Usage

	Relationship Projections from Cobol Statements
	Cobol File Relationship Projections
	Copybook File Relationship Projections
	Program Relationship Projections

	SQL Technical Reference
	Support Notes
	Renaming DCLGEN Include Files

	Complexity Metrics
	DDL File Complexity Metrics

	Relationship Projections from EXEC SQL Statements
	Program Relationship Projections

	Relationship Projections from SQL DDL Statements
	DDL File Relationship Projections

	JCL Technical Reference
	Support Notes
	External Control Cards Registration Requirements
	Sort Cards Verification Requirements
	Sort Cards Parser Output
	Detecting Programs Started by Driver Utilities

	Complexity Metrics
	JCL File Complexity Metrics
	JCL Procedure Complexity Metrics
	Job Complexity Metrics
	Control Cards File Complexity Metrics

	Relationship Projections from JCL Statements
	JCL File Relationship Projections
	JCL Procedure Relationship Projections

	CICS Technical Reference
	Support Notes
	Deprecated CICS Statements
	Keyword Permutations
	Statements Taken to Be the Same

	Complexity Metrics
	BMS File Complexity Metrics
	BMS Copybook File Complexity Metrics
	Screen Complexity Metrics
	CSD File Complexity Metrics
	FCT File Complexity Metrics
	PCT File Complexity Metrics

	Relationship Projections from BMS Statements
	BMS File Relationship Projections
	BMS Copybook File Relationship Projections

	Relationship Projections from CSD, FCT, and PCT Statements
	CSD File Relationship Projections
	FCT File Relationship Projections
	PCT File Relationship Projections

	Relationship Projections from CICS Statements
	Program Relationship Projections

	IDMS Technical Reference
	IDMS Support Notes
	COPY IDMS Statements
	NNCOPY Statements
	Manipulation of Logical Records

	IDMS Complexity Metrics
	IDMS Schema File Complexity Metrics
	IDMS Subschema File Complexity Metrics

	Relationship Projections from IDMS Schema Statements
	IDMS Schema File Relationship Projections

	Relationship Projections from IDMS DML Statements
	Cobol File Relationship Projections
	Copybook File Relationship Projections
	Program Relationship Projections

	IMS Technical Reference
	IMS Support Notes
	Impact Analysis and Interprogram Data Flows
	Extra Dependencies between Variables
	When PCB Content Is Considered to Be Altered
	Port Analysis for IMS Database Calls
	Parmcount Parameter
	CHNG Calls
	ISRT Calls
	Parsing of Macro Statements
	SET ADDRESS OF and PSB Scheduling
	Online CICS Applications Using IMS
	EXEC DLI Support
	Subsequent Runs of IMS Call Analysis for Online CICS Applications
	AIB Interface
	Manual Decision Resolutions
	SYSSERVE Parameter of SCHD Call
	CALL Without Parameters
	Active PSB Name Calculated in Called Subroutine
	Order of Command Options
	Quoted Literals
	Host Variables
	Operators in WHERE Clauses
	Comma-Separated Lists
	PCB Option
	CBLTDLI Calls in CICS Call-Level Programs

	IMS Complexity Metrics
	MFS File Complexity Metrics
	MFS Include File Complexity Metrics
	Screen Complexity Metrics
	DBD File Complexity Metrics
	PSB File Complexity Metrics
	PSB Copybook File Complexity Metrics
	System Definition File Complexity Metrics

	Relationship Projections from DBD and PSB Statements
	DBD File Relationship Projections
	PSB File Relationship Projections
	PSB Copybook File Relationship Projections

	Relationship Projections from System Definition Statements
	System Definition File Relationship Projections

