

		Procedure Division - PERFORM - ROLLBACK		Object COBOL Language Extensions	

Chapter 16: Procedure Division - SEARCH - WRITE

 16.1 COBOL verbs

 16.1.1 The SEARCH Statement

 The SEARCH statement is used to

search a table for a table element that satisfies the specified
 condition and to adjust the associated index-name to indicate that table
 element.

 General Format

 Format 1

 Format 2

 Note that the required relational character "=" is not
 underlined to avoid confusion with other symbols.

 Syntax Rules

 All Formats (All Files)

 	Identifier-1 must not be subscripted or indexed, but its description
 must contain an

OCCURS clause and an

INDEXED BY clause. The description of identifier-1 in Format 2
 must also contain the KEY IS phrase in its OCCURS clause.

	Identifier-2, when specified, must be described as USAGE IS INDEX or
 as a numeric elementary item without any positions to the right of the
 assumed decimal point.

	

 If the END-SEARCH phrase is
 specified, the NEXT SENTENCE phrase must not be specified.

 END-SEARCH can be
 specified with NEXT SENTENCE. If the NEXT SENTENCE phrase is executed,
 control will not pass to the next statement following the END-SEARCH,
 but instead will pass to the statement after the closest following
 period.

	

 Both imperative-statement-1
 and imperative-statement-2 can be replaced by a conditional statement.

 Format 1

 	Condition-1, condition-2, and so on, can be any condition as
 described in the section Conditional Expressions earlier in this
 chapter.

	

 Identifier-1, the table
 element being searched, can be an internal or external floating-point
 item.

 Format 2

 	All referenced condition-names must be defined as having only a
 single value. The data-name associated with a condition-name must appear
 in the

KEY clause of identifier-1. Each data-name-1, data-name-2 can be
 qualified. Each data-name-1, data-name-2 must be indexed by the first
 index-name associated with identifier-1 along with other indices or
 literals as required, and must be referenced in the KEY clause of
 identifier-1. Identifier-3, identifier-4, or identifiers specified in
 arithmetic-expression-1, arithmetic-expression-2 must not be referenced
 in the KEY clause of identifier-1 or be indexed by the first index-name
 associated with identifier-1.

 When a data-name in the KEY clause of identifier-1 is referenced, or
 when a condition-name associated with a data-name in the KEY clause of
 identifier-1 is referenced, all preceding data-names in the KEY clause
 of identifier-1 or their associated condition-names must also be
 referenced.

	

 Identifier-1, the table
 element being searched, can not be a floating-point item.

	

 Neither data-name-1 nor
 data-name-2, the key data items, can be floating point items. However,
 identifier-3, identifier-4, literal-1, or literal-2, the items against
 which the key is compared, can be floating-point items.

 General Rules

 All Formats

 	The scope of a SEARCH statement can be terminated by any of the
 following:

 	

 An END-SEARCH phrase at
 the same level of nesting.

	separator period.

	An ELSE

 or END-IF

 associated with a previous IF statement.

	After execution of imperative-statement-1 or imperative-statement-2,
 that does not terminate with a GO TO statement, control passes to the
 next executable sentence.

	If identifier-1 is a data item subordinate to a data item that
 contains an OCCURS clause (providing for a

two- or

three-dimensional table), an index-name must be associated with
 each dimension of the table through the INDEXED BY phrase of the OCCURS
 clause. Only the setting of the index-name associated with identifier-1
 (and the data item identifier-2 or index-name-1, if present) is modified
 by the execution of the SEARCH statement. To search an entire two or
 three dimensional table it is necessary to execute a SEARCH statement
 several times. Prior to each execution of a SEARCH statement, SET
 statements must be executed whenever index-names must be adjusted to
 appropriate settings.

 Format 1

 	If Format 1 of the SEARCH is used, a

serial type of

search operation takes place, starting with the current index
 setting.

 	If, at the start of execution of the SEARCH statement, the
 index-name associated with identifier-1 contains a value that
 corresponds to an occurrence number that is greater than the highest
 permissible occurrence number for identifier-1, the SEARCH is
 terminated immediately. The number of occurrences of identifier-1,
 the last of which is the highest permissible, is discussed in the
 OCCURS clause. (See the section The OCCURS Clause earlier in
 this chapter.) Then, if the AT END phrase is specified, imperative-
 statement-1 is executed; if the AT END phrase is not specified,
 control passes to the next executable sentence.

	If, at the start of execution of the SEARCH statement, the
 index-name associated with identifier-1 contains a value that
 corresponds to an occurrence number that is not greater than the
 highest permissible occurrence number for identifier-1 (the number
 of occurrences of identifier-1, the last of which is the highest
 permissible is discussed in the OCCURS clause), the SEARCH statement
 operates by evaluating the conditions in the order that they are
 written, making use of the index settings, wherever specified, to
 determine the occurrence of those items to be tested. If none of the
 conditions is satisfied, the index name for identifier-1 is
 incremented to obtain reference to the next occurrence. The process
 is then repeated using the new index-name settings unless the new
 value of the index-name settings for identifier-1 corresponds to a
 table element outside the permissible range of occurrence values, in
 which case the search terminates as indicated in General Rule 1a
 above. If one of the conditions is satisfied upon its evaluation,
 the search terminates immediately and the imperative statement
 associated with that condition is executed; the index-name remains
 set at the occurrence which caused the condition to be satisfied.

	If the VARYING phrase is not used, the index-name that is used for
 the search operation is the first (or only) index-name that appears in
 the INDEXED BY phrase of identifier-1. Any other index-names for
 identifier-1 remain unchanged.

	If the VARYING index-name-1 phrase is specified, and if index-name-1
 appears in the INDEXED BY phrase of identifier-1, that index-name is
 used for this search. If this is not the case, or if the VARYING
 identifier-2 phrase is specified, the first (or only) index-name given
 in the INDEXED BY phrase of identifier-1 is used for the search. In
 addition, the following operations will occur:

 	If the VARYING index-name-1 phrase is used, and if index-name-1
 appears in the

INDEXED BY phrase of another table entry, the occurrence
 number represented by index-name-1 is incremented by the same amount
 as, and at the same time as, the index-name associated with
 identifier-1 is incremented.

	If the VARYING identifier-2 phrase is specified, and identifier-2
 is an index data item, then the data item referenced by identifier-2
 is incremented by the same amount as, and at the same time as, the
 index associated with identifier-1 is incremented. If identifier-2
 is not an index data item, the data item referenced by identifier-2
 is incremented by the value (1) at the same time as the index
 referenced by the index-name associated with identifier-1 is
 incremented.

 Format 2

 	The results of the

SEARCH ALL operation are predictable only when:

 	The data in the table is ordered in the same manner as described
 in the ASCENDING/DESCENDING KEY clause associated with the
 description of identifier-1, and:

	The contents of the key(s) referenced in the WHEN clause are
 sufficient to identify a unique table element.

	If Format 2 of the SEARCH is used, a

non-serial type of search operation can take place; the initial
 setting of the index-name for identifier-1 is ignored and its setting is
 varied during the search operation with the restriction that at no time
 is it set to a value that exceeds the value which corresponds to the
 last element of the table, or that is less than the value that
 corresponds to the first element of the table. The length of the table
 is discussed in the OCCURS clause. If any of the conditions specified in
 the WHEN clause cannot be satisfied for any setting of the index within
 the permitted range, control is passed to imperative-statement-1 of the
 AT END phrase, when specified, or to the next executable sentence when
 this phrase is not specified; in either case the final setting of the
 index is not predictable. If all conditions can be satisfied, the index
 indicates an occurrence that allows the conditions to be satisfied, and
 control passes to imperative-statement-2.

	The index-name that is used for the search operation is the first (or
 only) index-name that appears in the INDEXED BY phrase of identifier-1.
 Any other index-names for identifier-1 remain unchanged.

	

 Neither
 imperative-statement-2 nor NEXT SENTENCE is required. Without them, the
 SEARCH statement sets the index to the value in the table that matched
 the condition.

 Figure 16-5 shows a flowchart of the Format 1 SEARCH operation
 containing two WHEN phrases.

 Figure 16-1: Flowchart of SEARCH Operation Showing Two WHEN Phrases

 	These operations are options included only when specified in the
 SEARCH statement.
	Each of these control transfers is to the next executable sentence
 unless the imperative-statement ends with a GO TO statement.

 16.1.2 The SERVICE Statement

 The SERVICE

 statement is used to establish addressability to Linkage Section
 items usually in a CICS program.

 General Format

 Syntax Rules

 	SERVICE LABEL is generated by the mainframe CICS preprocessor to
 indicate control flow. It is not intended for general use.

	The SERVICE LABEL statement can appear only in the Procedure
 Division, not in the Declaratives Section.

	Identifier should be either the first 01-level item representing the
 BLL-cell block in the Linkage Section, or another Linkage Section
 01-level item for which addressability needs to be re-established
 following an EXEC CICS statement.

 General Rules

 	At the statement following the SERVICE LABEL statement, all registers
 that can no longer be valid are reloaded.

	If the OS/VS COBOL BLL mechanism is used in a CICS program,
 addressability to the parameter list must be established at the start of
 the Procedure Division. This is done by adding a SERVICE RELOAD
 identifier statement at the start of the Procedure Division where the
 identifier is the first item in Linkage Section and it includes pointers
 to all other entries in the Linkage Section.

	If a locate-mode EXEC CICS statement is included in a program
 compiled with the OSVS Compiler directive, then a SERVICE RELOAD
 statement must follow each such CICS command and the identifier must be
 the same pointer (BLL-cell reference) used in the CICS command.

	In a CICS program compiled with the OSVS Compiler directive, any time
 a reference is made to a Linkage Section which is greater than 4096
 bytes long, a SERVICE RELOAD statement should be made to re-establish
 addressability to that portion of the data item greater than 4096 byte.

	The SERVICE RELOAD statement is documentary only in a program
 compiled with the VSC2 Compiler directive.

 16.1.3 The SET Statement

 	

 The SET statement is used
 to alter the status of

external

switches.

	

 The SET statement is used
 to alter the value of

conditional

variables.

	

 The SET statement is used
 to assign the address of a data item to a pointer data item. It is also
 used to adjust the contents of a pointer data item.

	The SET statement establishes

reference points for

table handling operations by setting indices associated with
 table elements.

	

 The SET statement is used
 to assign the address of a program or an entry-point in a program to a
 procedure-pointer data item.

	

 The SET statemet is used
 to assign object references.

	

 The SET statement is used
 to alter the value of a synchronization data item.

	

 The SET statement is used
 to assign the address of a synchronization data item to another
 synchronization data item.

 General Formats

 Format 1

 Format 2

 Format 3

 Format 4

 Format 5

 Format 6

 Format 7

 Format 8

 Format 9 (Value of Event-pointer)

 Format 10 (Address of Event-pointer)

 Format 11 (Value of Monitor-pointer)

 Format 12 (Address of Monitor-pointer)

 Format 13 (Value of Mutex-pointer)

 Format 14 (Address of Mutex-pointer)

 Format 15 (Value of Semaphore-pointer)

 Format 16 (Address of Semaphore-pointer)

 Directives

 	In addition to Compiler directives which provide flagging and modify
 the reserved word list, the following directives may impact either the
 syntax or semantics described in this section.

 	STICKY-LINKAGE - determines whether addresses of data items
 placed in pointer data items by the SET statement are retained
 between invocations of a subprogram.

 Syntax Rules

 All Formats

 	The figurative constant NULL or NULLS or the data item referenced by
 pointer-name-2 or procedure-pointer-name-2 represents the sending area.
 ADDRESS OF identifier-2, ENTRY identifier-8, ENTRY literal-1 or the
 value held in the sending area, represents the sending value.

 The data item referenced by pointer-name-1, pointer-name-3 or
 procedure-pointer-name-1 or the COBOL system area implied by ADDRESS
 OF identifier-1 represents the receiving area.

 Identifier-3, integer-1 or LENGTH OF identifier-4 represents the
 increment value.

 Format 1

 	

 Mnemonic-name-1 must be
 associated with an external switch, the status of which can be altered.

 See the section The
 Special-Names Paragraph for details of which external switches can
 be referenced in the SET statement.

 Format 2

 	

 Condition-name-1 must be
 associated with a conditional variable.

	

 If the FALSE phrase is
 specified, the FALSE phrase must be specified in the VALUE clause of the
 Data Description entry for condition-name-1.

	

 Each FALSE or TRUE phrase
 applies to the occurrences of condition-name-1 that precede that phrase
 and follow a previous FALSE or TRUE phrase, if any.

 Format 3

 	

 Identifier-1 must
 reference a level 01 or level 77 data item that is declared in the
 Linkage Section.

	

 Identifier-2 must
 reference a data item with a level of 77 or between 01 and 49 inclusive

 that is declared in the
 Linkage-Section.

	

 Pointer-name-1,
 pointer-name-2 must each be an identifier that references an elementary
 data item with USAGE IS POINTER.

 Format 4

 	

 Pointer-name-3 must be an
 identifier that references an elementary data item with USAGE IS
 POINTER.

	

 Identifier-3 must be an
 elementary numeric integer.

	

 Integer-1 may be signed.

 Format 5

 	Identifier-5 and identifier-6 must each reference an index data item
 or an elementary item described as an integer. If both are specified,
 they must not both reference an elementary item.

 Formats 5 and 6

 	Integer-2 and integer-3 may be signed. Integer-2 must be positive.

 Format 6

 	Identifier-7 must reference an elementary numeric integer.

 Format 7

 	

 Procedure-pointer-name-1
 and procedure-pointer-name-2 must each be an identifier that references
 an elementary data item with USAGE IS PROCE

DURE-POINTER.

	

 Identifier-8 must be
 defined as an alphanumeric data item such that its value can be a COBOL
 or a non-COBOL program name.

	

 Literal-1 must be a
 nonnumeric literal.

 Format 8

 	Identifier-9 must be any item of class object that is permitted as a
 receiving item.

	Identifier-10 must be a class-name or an object reference; the
 predefined object reference SUPER must not be specified.

	If the data item referenced by identifier-9 is a universal object
 reference, the only predefined object references that may be specified
 for identifier-10 are SELF and NULL.

	If the data item referenced by identifier-9 is described with an
 interface-name that identifies the interface int-1, the data item
 referenced by identifier-10 mustl be one of the following:

 	an object reference described with an interface-name that
 identifies an interface conforming to int-1;

	an object reference described with a class-name, subject to the
 following rules:
 	if described with a FACTORY phrase, the interface of the
 factory object of the specified class must conform to int-1,

	if described without a FACTORY phrase, the interface of the
 objects of the specified class must conform to int-1;

	an object reference described with an ACTIVE-CLASS phrase,
 subject to the following rules:

 	if described with a FACTORY phrase, the interface of the
 factory object of the class containing the data item referenced
 by identifier-10 must conform to int-1,

	if described without a FACTORY phrase, the interface of the
 objects of the class containing the data item referenced by
 identifier-10 must conform to int-1;

	a class-name, where the interface of its factory object conforms
 to int-1;

	the predefined object reference SELF, where the interface of the
 object containing the SET statement conforms to int-1;

	 the predefined object reference NULL.

	If the data item referenced by identifier-9 is described with a
 class-name, the data item referenced by identifier-10 must be either of
 the following:

 	an object reference described with a class-name, subject to the
 following rules:

 	if the data item referenced by identifier-9 is described with
 an ONLY phrase, the data item referenced by identifier-10 must
 be described with the ONLY phrase, and the class-name specified
 in the description of the data item referenced by identifier-10
 shall be the same as the class-name specified in the description
 of the data item referenced by identifier-9,

	if the data item referenced by identifier-9 is described
 without an ONLY phrase, the class-name specified in the
 description of the data item referenced by identifier-10 must
 reference the same class or a subclass of the class specified in
 the description of the data item referenced by identifier-9,

	the presence or absence of the FACTORY phrase shall be the
 same as in the description of the data item referenced by
 identifier-9;

	an object reference described with an ACTIVE-CLASS phrase,
 subject to the following rules:
 	the data item referenced by identifier-9 must not be
 described with the ONLY phrase,

	the class containing the data item referenced by
 identifier-10 must be the same class or a subclass of the class
 specified in the description of the data item referenced by
 identifier-9,

	the presence or absence of the FACTORY phrase must be the
 same as in the description of the data item referenced by
 identifier-9;

	the predefined object reference SELF, subject to the following
 rules:
 	the data item referenced by identifier-9 must not be
 described with the ONLY phrase,

	the class of the object containing the SET statement must be
 the same class or a subclass of the class specified in the
 description of the data item referenced by identifier-9,

	if the data item referenced by identifier-9 is described
 without a FACTORY phrase, the object containing the SET
 statement shall be an instance object,

	if the data item referenced by identifier-9 is described with
 a FACTORY phrase, the object containing the SET statement shall
 be a factory object;

	a class-name, provided the data item referenced by identifier-9
 is described with the FACTORY phrase, and class-name references the
 same class or a subclass of the class specified in the description
 of the data item referenced by identifier-9;

	the predefined object reference NULL.

	If the data item referenced by identifier-9 is described with an
 ACTIVE-CLASS phrase, the data item referenced by identifier-10 must be
 either of the following:

 	an object reference described with the ACTIVE-CLASS phrase, where
 the presence or absence of the FACTORY phrase is the same as in the
 data item referenced by identifier-9;

	the predefined object reference SELF, subject to the following
 rules:

 	if the data item referenced by identifier-9 is described
 without a FACTORY phrase, the object containing the SET
 statement must be an instance object,

	if the data item referenced by identifier-9 is described with
 a FACTORY phrase, the object containing the SET statement must
 be a factory object;

	the predefined object reference NULL.

 Format 9

 	

 Event-pointer-1 must be
 defined as a data item with USAGE EVENT-POINTER.

 Format 10

 	

 Event-pointer-1 and
 event-pointer-2 must be defined as data items with USAGE EVENT-POINTER.

 Format 11

 	

 Monitor-pointer-1 must be
 defined as a data item with USAGE MONITOR-POINTER.

	

 If the NOT phrase is
 specified, then the CONVERTING phrase must not be specified.

 Format 12

 	

 Monitor-pointer-1 and
 monitor-pointer-2 must be defined as data items with USAGE
 MONITOR-POINTER.

 Format 13

 	

 Mutex-pointer-1 must be
 defined as a data item with USAGE MUTEX-POINTER.

 Format 14

 	

 Mutex-pointer-1 and
 mutex-pointer-2 must be defined as data items with USAGE MUTEX-POINTER.

 Format 15

 	

 Semaphore-pointer-1 must be
 defined as a data item with USAGE SEMAPHORE-POINTER.

	

 Identifier-11 must
 reference an integer.

 Format 16

 	

 Semaphore-pointer-1 and
 semaphore-pointer-2 must be defined as data items with USAGE
 SEMAPHORE-POINTER.

 General Rules

 Format 1

 	

 The status of each external
 switch associated with the specified mnemonic-name-1 is modified such
 that the truth value resulting from evaluation of a condition-name
 associated with that switch will reflect an on status if the ON phrase
 is specified, or an off status if the OFF phrase is specified. (See the
 section Switch-Status Condition earlier in this chapter.)

 Format 2

 	

 The literal in the VALUE
 clause associated with condition-name-1 is placed in the conditional
 variable according to the rules of the VALUE clause (see the section
 The VALUE Clause earlier in this chapter.) If more than one
 literal is specified in the VALUE clause, the conditional variable is
 set to the value of the first literal that appears in the VALUE clause.

	

 If multiple condition-names
 are specified, the results are the same as if a separate SET statement
 had been written for each condition-name-1 in the same order as
 specified in the SET statement.

	

 If the FALSE phrase is
 specified, the literal in the FALSE phrase of the VALUE clause
 associated with condition-name-1 is placed in the conditional variable
 according to the rules for the VALUE clause. (See the section The
 VALUE Clause earlier in this chapter.)

 Format 3

 	

 The sending value
 represents the address of a data item. If pointer-name-2 is specified,
 the sending value is the value contained with the data item referenced
 by pointer-name-2. If ADDRESS OF identifier-2 is specified, the sending
 value represents the address of identifir-2.

	

 If pointer-name-1 is
 specified, the sending value is moved to the data name referenced by
 pointer-name-1.

	

 If ADDRESS OF identifier-1
 is specified, the sending value is moved to a COBOL system area and the
 runtime element subsequently operates such that the area of storage
 referenced by identifier-1 is located at the address represented by the
 sending value.

 Whether or not the link
 is retained between invocations of a subprogram is dependent on the
 STICKY-LINKAGE Compiler directive.

 Format 4

 	

 Before execution of the SET
 statement, the value of the data item referenced by pointer-name-3 must
 represent the address of a data item within a logical record, the
 original address. After execution of the SET statement, the value of the
 data item referenced by pointer-name-3 represents the new address. If
 the original address and the new address do not both lie within the same
 logical record, (or, for environments in which address space is
 segmented, within the same segment) then the results of using the value
 of the data item referenced by pointer-name-3 are undefined.

	

 If the UP clause is
 specified, the new address is formed by adding the number of bytes given
 by the increment value to the original address.

	

 If the DOWN clause is
 specified, the new address is formed by subtracting the number of bytes
 given by the increment value from the original address.

 Format 5

 	

 	Index-name-1 is set to a value causing it to refer to the table
 element that corresponds in occurrence number to the table element
 referenced by index-name-2, identifier-6, or integer-2. If
 identifier-6 references an index data item, or if index-name-2 is
 related to the same table as index-name-1, no conversion takes
 place.

	If identifier-5 references an index data item, it can be set
 equal to either the contents of index-name-2 or identifier-6 where
 identifier-6 also references an index item; no conversion takes
 place in either case.

	If identifier-5 does not reference an index data item, it can be
 set only to an occurrence number that corresponds to the value of
 index-name-2. Neither identifier-6 nor integer-2 can be used in this
 case.

	The process is repeated for all recurrence of index-name-1, or
 identifier-5, if specified. Each time the value of index-name-2 or
 identifier-6 is used as it was at the beginning of the execution of
 the statement. Any subscripting or indexing associated with
 identifier-5 and so on is evaluated immediately before the value of
 the respective data item is changed.

	Data in the following table represents the validity of various
 operand combinations in the SET statement. The general rule reference
 indicates the applicable general rule.

 Table 16-1: SET Index Statement Valid Operand Combinations

 	Sending Item	Receiving Item
	Integer Data Item	Index-Name	Index Data Item
	Integer Literal	No/11c	Valid/11a	No/11b
	Integer Data Item	No/11c	Valid/11a	No/11b
	Index-Name	Valid/11c	Valid/11a	Valid/11b1
	Index Data Item	No/11c	Valid/11a1	Valid/11b1

 1 = No conversion takes place.

 Formats 5 and 6

 	Index-names are associated with a given table by being specified in
 the

INDEXED BY phrase of the OCCURS clause for that table.

	If index-name-1 is specified, the value of the index after the
 execution of the SET statement must correspond to an occurrence number
 of an element in the table associated with index-name-1. The value of
 the index associated with an index-name after the execution of a PERFORM
 or SEARCH statement may be set to an occurrence number that is outside
 the range of its associated table. (See the sections The PERFORM
 Statement and The SEARCH Statement earlier in this chapter.)

 If index-name-2 is specified, the value of the index before the
 execution of the SET statement must correspond to an occurrence number
 of an element in the table associated with index-name-1.

 If index-name-3 is specified, the value of the index both before and
 after the execution of the SET statement must correspond to an
 occurrence number of an element in the table associated with
 index-name-3.

 Format 6

 	The contents of index-name-3 are incremented (UP BY) or decremented
 (DOWN BY) by a value that corresponds to the number of occurrences
 represented by the value of integer-3 or the data item referenced by
 identifier-7; thereafter, the process is repeated for each recurrence of
 index-name-3. For each repetition, the value of the data item referenced
 by identifier-7 is used as it was at the beginning of the execution of
 the statement.

 Format 7

 	

 The sending value
 represents the address of the start of a procedure within a COBOL or
 non-COBOL program.

	

 The sending value is moved
 to the data item referenced by procedure-pointer-name-1.

	

 If procedure-pointer-name-2
 is specified, the sending value is the value contained within the data
 item referenced by procedure-pointer-name-2.

	

 Literal-1 or the content of
 the data item referenced by identifier-8 is the name of the referenced
 procedure. If the referenced procedure is a COBOL procedure, the name of
 the referenced procedure must contain the program-name contained in the
 PROGRAM-ID paragraph of the referenced program or the entry-name
 contained in the ENTRY statement of the referenced procedure.

 If the program being
 called is not a COBOL program, the rules for the formation of the
 program or procedure name are given in your COBOL system documentation
 on interfacing.

 If the referenced
 procedure has been previously made available and remains available at
 the time of execution of the SET statement, then the sending value
 represents the address of the referenced procedure.

 If the referenced
 procedure is not available at the time of execution of the SET
 statement, then the sending value represents the address of a COBOL
 system error procedure.

 Format 8

 	If identifer-10 is an object reference, a reference to the object
 identified by identifier-10 is placed into each data item referenced by
 identifier-9 in the order specified.

	If identifier-10 is a class-name, a reference to the factory object
 of the class identified by identifier-10 is placed into each data item
 referenced by identifier-9 in the order specified.

 Formats 9 and 10

 	

 If more than one
 event-pointer-1 is specified, the results are the same as if a separate
 SET statement had been written for each event-pointer-1 in the same
 order as specified in the SET statement.

 Format 9

 	

 The execution of the SET
 statement sets the value of the event referenced by event-pointer-1 to
 TRUE or FALSE.

 Note: When an event is set to FALSE, the execution of any
 thread which executes a WAIT statement which references that event will
 suspend until the event is set to TRUE in another thread.

 Format 10

 	

 Event-pointer-1 is set to
 reference the same event data item that event-pointer-2 references.

 Formats 11 and 12

 	

 If more than one
 monitor-pointer-1 is specified, the results are the same as if a
 separate SET statement had been written for each monitor-pointer-1 in
 the same order as specified in the SET statement.

 Format 11

 	

 If the NOT phrase is not
 specified, the value of the monitor referenced by monitor-pointer-1 is
 set to one of BROWSING, READING, or WRITING, thus establishing the
 corresponding form of lock. This specific lock type for this specific
 monitor must be eventually released by a SET statement either with a
 matching NOT phrase or a matching CONVERTING FROM phrase.

 For example, the lock established by

	SET mon-1 TO READING

 can be cleared by

	SET mon-1 TO NOT READING

	

 The CONVERTING phrase is
 used to change the current type of lock established on a monitor. The
 lock type specified in the FROM phrase must be currently established by
 that thread and upon successful execution of the statement, that lock
 will have been changed, in one atomic operation, to the lock type
 specified in the TO phrase.

	

 Nested locks can be
 obtained by the execution of successive SET monitor statements with no
 intervening SET statement that releases the lock. Once a READING lock is
 established, no BROWSING or WRITING lock is allowed to nest within that
 thread. Once a BROWSING lock or a WRITING lock is established, any other
 level of lock is allowed to nest within that thread.

 Format 12

 	

 Monitor-pointer-1 is set to
 reference the same monitor data item that monitor-pointer-2 references.

 Formats 13 and 14

 	

 If more than one
 mutex-pointer-1 is specified, the results are the same as if a separate
 SET statement had been written for each mutex-pointer-1 in the same
 order as specified in the SET statement.

 Format 13

 	

 The execution of the SET
 statement sets the value of the mutex referenced by mutex-pointer-1 to
 ON or OFF.

	

 When a mutex is set to ON,
 the execution of any thread that attempts to set that mutex to ON will
 suspend until the mutex is set to OFF in the thread that set it ON.

 Format 14

 	

 Mutex-pointer-1 is set to
 reference the same mutex data item that mutex-pointer-2 references.

 Formats 15 and 16

 	

 If more than one
 semaphore-pointer-1 is specified, the results are the same as if a
 separate SET statement had been written for each semaphore-pointer-1 in
 the same order as specified in the SET statement.

 Format 15

 	

 The contents of the
 semaphore data item referenced by semaphore-pointer-1 are incremented
 (UP BY) or decremented (DOWN BY) by a value that corresponds to the
 value of integer-4 or the data item referenced by identifier-11;
 thereafter, the process is repeated for each recurrence of
 semaphore-pointer-1. For each repetition, the value of the data item
 referenced by identifier-11 is used as it was at the beginning of the
 execution of the statement.

	

 If a semaphore is set DOWN
 BY n and the semaphore is less than n, the thread is suspended until
 another thread raises the semaphore to above n.

 Format 16

 	

 Semaphore-pointer-1 is set
 to reference the same semaphore data item that semaphore-pointer-2
 references.

 16.1.4 The SORT Statement

 The SORT statement creates a

sort file by executing input procedures or by transferring records
 from another file, sorts the records in the sort file on a set of
 specified keys, and in the final phase of the

sort operation, makes available each record from the sort file, in
 sorted order to some output procedures or to an output file.

 The SORT statement can also
 be used to sort the elements of a

table.

 Examples:

 	Examples of using the SORT verb with input and output procedures to
 order elements in a file are provided in the Examples chapter in
 your Language Reference - Additional Topics.

	Examples of using the SORT verb to order elements in a table are
 provided in the Examples chapter in your Language
 Reference - Additional Topics.

 General Formats

 Format 1

 Format 2

 Directives

 	In addition to Compiler directives which provide flagging and modify
 the reserved word list, the following directives may impact either the
 syntax or semantics described in this section.

 	CALLSORT - specifies the program to be used to handle SORT and
 MERGE operations.

 Syntax Rules

 All Formats

 	A Format 1

SORT statement cannot appear in the declaratives portion of the
 Procedure Division, or in an input or output procedure associated with a
 SORT or MERGE statement.

 A Format 2 SORT can
 appear in the Declaratives Section.

	Data-name-1 is a

KEY data-name and is subject to the following rules:

 	KEY data-names can be qualified.

	The data items identified by KEY data-names must not be variable
 length items.

	KEY data items can be floating-point items.

	

 If the KEY is an
 external floating-point item, the compiler will treat the data item
 as character data, rather than numeric data. The sequence in which
 the records are sorted depends on the collating sequence used.

	

 If the KEY data item
 is internal floating-point, the sequence of key values will be in
 numeric order.

 Format 1

 	File-name-1 must be described in a Sort-Merge File Description entry
 in the Data Division.

	Data-name-1 is a KEY data-name and is subject to the following rules:

 	The data items identified by KEY data-names must be described in
 records associated with file-name-1.

	If file-name-1 has more than one record description, then the
 data items identified by KEY data-names need be described in only
 one of the record descriptions.

	None of the data items identified by KEY data-names can be
 described by an entry which either contains an OCCURS clause or is
 subordinate to an entry which contains an OCCURS clause.

	If the file referenced by file-name-1 contains variable length
 records, all the data items identified by key data-names must be
 contained within the first x character positions of the record,
 where x equals the minimum record size specified for the file
 referenced by file-name-1.

	The words THRU and THROUGH are equivalent.

	File-name-2 and file-name-3 must be described in the file description
 entry, not in a sort-merge file description entry, in the Data Division.

	

 The files referenced by
 file-name-2 and file-name-3 can reside on the same multiple file reel.

	

 If file-name-3 references
 an indexed file, the first specification of data-name-1 must be
 associated with an

ASCENDING phrase and the data item referenced by that data-name-1
 must occupy the same character positions in its record as the data item
 associated with the prime record key for that file.

	No pair of file-names in the same

SORT statement can be specified in the SAME SORT AREA or SAME
 SORT-MERGE AREA clause. File-names associated with the

GIVING phrase can not be specified in the same SAME clause.

	

 If the GIVING phrase is
 specified and the file referenced by file-name-3 contains variable
 length records, the size of the records contained in the file referenced
 by file-name-1 must not be less than the smallest record nor larger than
 the largest record described for file-name-3. If the file referenced by
 file-name-3 contains fixed length records, the size of the records
 contained in the file referenced by file-name-1 must not be larger than
 the largest record described for the file referenced by file-name-3.

 If the data descriptions
 of the elementary items that make up these records are not identical,
 it is the programmer's responsibility to describe the corresponding
 records in such a manner as to cause equal amounts of character
 positions to be allocated for the corresponding records.

	

 If the

USING phrase is specified and the file referenced by file-name-1
 contains variable length records, the size of the records contained in
 the file

referenced by file-name-2 must not be less than the smallest
 record nor larger than the largest record described for file-name-1. If
 the file referenced by file-name-1 contains fixed length records, the
 size of the records contained in the file referenced by file-name-2 must
 not be larger than the largest record described for the file referenced
 by file-name-1.

	Procedure-name-1 represents the name of an input procedure.
 Procedure-name-3 represents the name of an output procedure.

	Procedure-name-1, procedure-name-2, procedure-name-3 and
 procedure-name-4 must be section-names.

 This restriction is
 removed.

	If you want to specify more than 10 file-names in the USING or GIVING
 clause, you must use the Compiler directive CALLSORT"EXTSM";
 this allows you to specify up to 255 files.

 Format 2

 	

 Data-name-2 can be
 qualified and must have an OCCURS clause in the data description entry.

	

 The data item referenced by
 data-name-1 must be the same as the data item referenced by data-name-2,
 or an entry subordinate to the data item referenced by data-name-2.

	

 Unless data-name-1 and
 data-name-2 are the same, the data item referenced by data-name-1 must
 not be described by an entry containing an

OCCURS clause. The data item referenced by data-name-1 must not
 be subordinate to an entry containing an OCCURS clause that is also
 subordinate to data-name-2.

	

 The KEY phrase can be
 omitted only if the description of the table referenced by data-name-2
 contains a KEY phrase.

	

 If data-name-2 references a
 data item subordinate to a data item that contains an OCCURS clause, an
 index-name must be associated with each data item containing an OCCURS
 clause to which the data item referenced by data-name-2 is subordinate.

 General Rules

 All Formats

 	The words ASCENDING and DESCENDING are transitive across all
 occurrences of data-name-1 until another word ASCENDING or DESCENDING is
 encountered.

	The data items referenced by the specifications of data-name-1 are
 the key data items which determine the order in which records are
 returned from the file referenced by file-name-1 or the order in which
 the

table elements are stored after

sorting takes place. The order of significance of the keys is the
 order in which they are specified in the

SORT statement, without regard to their association with

ASCENDING or

DESCENDING phrases.

	If the

DUPLICATES phrase is specified and the contents of all the key
 data items associated with one data record or table element are equal to
 the contents of the corresponding key data items associated with one or
 more other data records or table elements, the order of return of these
 records is:

 	The order of the associated input files as specified in the SORT
 statement, or by means of a run-time switch. Within a given input
 file the order is that in which the records are accessed from that
 file.

	The order in which these records are released by an input
 procedure, when an input procedure is specified.

	The relative order of the contents of these table elements before
 sorting takes place.

	If the DUPLICATES phrase is not specified and the contents of all the
 key data items associated with one data record or table element are
 equal to the contents of the corresponding key data items associated
 with one or more other data records or table elements, the order of
 return of these records or the relative order of the contents of these
 table elements is undefined.

	The collating sequence that applies to the comparison of the
 nonnumeric key data items specified is determined at the beginning of
 the execution of the SORT statement in the following order of
 precedence:

 	First, the collating sequence established by the

COLLATING SEQUENCE phrase, if specified, in the SORT
 statement.

	Second, the collating sequence established as the program
 collating sequence.

 Format 1

 	The

SORT statement releases all the records in the file referenced by
 file-name-2 or released by an input procedure to the file referenced by
 file-name-1, and returns them to an output procedure, or to the file
 referenced by file-name-3, in an order determined by the

ASCENDING and

DESCENDING phrases and the values of the data items referenced by
 the specifications of data-name-1.

	To determine the relative order in which two records returned from
 the file referenced by file-name-1, the contents of corresponding key
 data items are compared according to the rules for comparison of
 operands in a relation condition, starting with the most significant key
 data item:

 	If the contents of the corresponding key data items are not equal
 and the key is associated with the ASCENDING phrase, the record
 containing the key data item with the lower value is returned first.

	If the contents of the corresponding key data items are not equal
 and the key is associated with the DESCENDING phrase, the record
 containing the key data item with the higher value is returned
 first.

	If the contents of the corresponding key data items are equal,
 the determination is made on the contents of the next most
 significant key data item.

	The execution of the SORT statement consists of three distinct phases
 as follows:

 	Records are made available to the file referenced by file-name-1.
 This is achieved either by the execution of RELEASE statements in
 the input procedure or by the implicit execution of READ statements
 for file-name-2. When this phase commences, the file referenced by
 file-name-2 must not be in the open mode. When this phase
 terminates, the file referenced by file-name-2 is not in the open
 mode.

	The file referenced by file-name-1 is sequenced. No processing of
 the files referenced by file-name-2 and file-name-3 takes place
 during this phase.

	The records of the file referenced by file-name-1 are made
 available in sorted order. The so

rted records are either written to the file referenced by
 file-name-3, or, by the execution of a RETURN statement, are made
 available for processing by the output procedure. When this phase
 commences, the file referenced by file-name-3 must not be in the
 open mode. When this phase terminates, the file referenced by
 file-name-3 is not in the open mode.

	The input procedure can consist of any procedure needed to select,
 modify or copy the records that are made available one at a time by the
 RELEASE statement to the file referenced by file-name-1. The range
 includes all statements that are executed as a result of a transfer of
 control by CALL, EXIT without the optional PROGRAM or METHOD phrase, GO
 TO and PERFORM statements in the range of the input procedure. The range
 of the input procedure must not cause the execution of any MERGE, RETURN
 or SORT statement.

	If an input procedure is specified, control is passed to the input
 procedure before the file referenced by file-name-1 is sequenced by the
 SORT statement. The compiler inserts a return mechanism at the end of
 the last statement in the input procedure and when control passes the
 last statement in the input procedure, the records that have been
 released to the file referenced by file-name-1 are sorted.

	If the USING phrase is specified, all the records in the file(s)
 referenced by file-name-2 are transferred to the file referenced by
 file-name-1. For each of the files referenced by file-name-2 the
 execution of the SORT statement causes the following actions to be
 taken:

 	The processing of the file is initiated. The initiation is
 performed as if an OPEN statement with the INPUT and the WITH LOCK
 phrases had been executed

 .

	The logical records are obtained and released to the sort
 operation. Each record is obtained as if a READ statement with the
 NEXT and AT END phrases had been executed. If the file referenced by
 file-name-1 contains fixed length records, any record in the file
 referenced by file-name-2 containing fewer character positions than
 that specified for file-name-1 is space-filled on the right,
 beginning with the first character position after the last character
 in the record, when that record is released to the file referenced
 by file-name-1. If the file referenced by file-name-1 is described
 with variable-length records, the size of any record written to
 file-name-1 is the size of that record when it was read from
 file-name-2 or file-name-3, regardless of the contents of the data
 item referenced by a RECORD VARYING DEPENDING ON or OCCURS DEPENDING
 ON clause specified in the File Description entry for file-name-1.

	The processing of the file is terminated. The termination is
 performed as if a CLOSE statement without optional phrases had been
 executed. This termination is performed before the file referenced
 by file-name-1 is sequenced by the SORT statement.

 For a relative file, the content of the Relative Key data item
 is undefined after the execution of a

SORT statement if file-name-2 is not referenced in the

GIVING phrase.

 These implicit functions are performed such that any associated
 USE AFTER EXCEPTION procedures are executed; however, the
 execution of such a USE procedure must not cause the execution of
 any statement manipulating the file referenced by file-name-2 or
 accessing the record area associated with file-name-2.

 The value of the data item referenced by a RECORD VARYING
 DEPENDING ON clause specified in the File Description entry for
 file-name-2 is undefined upon completion of the SORT statement.

	The output procedure can consist of any procedure needed to select,
 modify or copy the records that are made available one at a time by the
 RETURN statement in sorted order from the file referenced by
 file-name-1. The range includes all statements that are executed as a
 result of a transfer of control by CALL, EXIT without the optional
 PROGRAM or METHOD phrase, GO TO and PERFORM statements in the range of
 the output procedure, as well as all statements in the Declarative
 procedures that are executed as a result of the execution of statements
 in the range of the output procedure. The range of the output procedure
 must not cause the execution of any MERGE, RELEASE or SORT statement.

	If an output procedure is specified, control passes to it after the
 file referenced by file-name-1 has been sequenced by the SORT statement.
 The compiler inserts a return mechanism at the end of the last statement
 in the output procedure and when control passes the last statement in
 the output procedure, the return mechanism provides for termination of
 the sort and then passes control to the next executable statement after
 the

SORT statement. Before entering the output procedure, the sort
 procedure reaches a point at which it can select the next record in
 sorted order when requested. The RETURN statements in the output
 procedure are the requests for the next record.

	If the

GIVING phrase is specified, all the sorted records are written on
 the file referenced by file-name-3 as the implied output procedure for
 the SORT statement. For each of the files referenced by file-name-3, the
 execution of the SORT statement causes the following actions to be
 taken:

 	The processing of the file is initiated. The initiation is
 performed as if an OPEN statement with the OUTPUT phrase had been
 executed. This initiation is performed after the execution of any
 input procedure.

	The logical records are returned and written onto the file. The
 records are written as if a WRITE statement without any optional
 phrases had been executed. If the file referenced by file-name-3 is
 described with fixed-length records, any record in the file
 referenced by file-name-1 containing fewer character positions than
 that specified for file-name-3 is space-filled on the right,
 beginning with the first character position after the last character
 in the record, when that record is returned to the file referenced
 by file-name-3. If the file referenced by file-name-3 is described
 with variable-length records,the size of any record written to
 file-name-3 is the size of that record when it was read from
 file-name-1, regardless of the contents of the data item referenced
 by a RECORD VARYING DEPENDING ON or OCCURS DEPENDING ON clause
 specified in the File Description entry for file-name-3.

 For a relative file, the Relative Key data item for the first
 record returned contains the value "1"; for the second
 record returned, the value "2", and so on. The content
 of the Relative Key data item is undefined after execution of a
 SORT statement.

	The processing of the file is terminated. The termination is
 performed as if a CLOSE statement without optional phrases had been
 executed.

 These implicit functions are performed such that any associated
 USE AFTER EXCEPTION procedures are executed; however, the
 execution of such a USE procedure must not cause the execution of
 any statement manipulating the file referenced by file-name-3 or
 accessing the record area associated with file-name-3. On the
 first attempt to write beyond the externally-defined boundaries of
 a file, the USE AFTER EXCEPTION procedure, if any, associated with
 the file is executed; if control is returned as specified by the
 rules of the USE statement, no additional implicit write
 operations are executed for that file and the processing of the
 file is terminated as specified in this part.

 The value of the data item referenced by a RECORDING VARYING
 DEPENDING ON clause specified in the File Description entry for
 file-name-1 is undefined upon completion of the SORT statement for
 which the

GIVING phrase is specified.

	Segmentation, as defined in the chapter Segmentation in your
 Language Reference - Additional Topics, can be applied
 to programs containing the SORT statement. However, the following
 restrictions apply:

 	If a

SORT statement appears in a section that is not in an
 independent segment, then any input procedures or output procedures
 referenced by that SORT statement must appear:

 	Totally within non-independent segments, or

	Wholly contained in a single independent segment.

	If a SORT statement appears in an independent segment, then any
 input procedures or output procedures referenced by that SORT
 statement must be contained:

 	Totally within non-independent segments, or

	Wholly within the same independent segment as that SORT
 statement.

	

 The SORT-RETURN special
 register is available to SORT runtime elements. It contains a return
 code of 0 (successful) or 16 (unsuccessful) at the completion of a sort
 operation. You can set the

SORT-RETURN special

register to 16 in an error declarative or input/output procedure
 to terminate a sort operation before all records are processed. The
 operation is terminated on the next RETURN or RELEASE statement.

 Format 2

 	

 The

SORT statement sorts the table referenced by data-name-2 and
 presents the sorted table in data-name-2 either in the order determined
 by the

ASCENDING or

DESCENDING phrases, if specified, or in the order determined by
 the

KEY phrase associated with data-name-2.

	

 To determine the relative
 order in which the table elements are stored after sorting, the contents
 of the corresponding key data items are compared according to the rules
 for comparison of operands in a relation condition, starting with the
 most significant key data item.

 	If the contents of the corresponding key data items are not equal
 and the key is associated with the ASCENDING phrase, the table
 element containing the key data item with the lower value has the
 lowest occurrence number.

	If the contents of the corresponding key data items are not equal
 and the key is associated with the DESCENDING phrase, the table
 element containing the key data item with the higher value has the
 lowest occurrence number.

	If the contents of the corresponding key data items are equal,
 the determination is based on the contents of the next most
 significant key data item.

	

 The number of occurrences
 of table elements referenced by data-name-2 is determined by the rules
 in the OCCURS clause.

	

 If data-name-2 references a
 data item which is subordinate to a data item which contains an OCCURS
 clause, the first or only index-name associated with each such
 superordinate table must be set to the desired occurrence number before
 the SORT statement is executed.

	

 If the KEY phrase is not
 specified, the sequence is determined by the KEY phrase in the Data
 Description entry of the table referenced by data-name-2.

	

 If the KEY phrase is
 specified, it overrides any KEY phrase specified in the Data Description
 entry of the table referenced by data-name-2.

	

 If the key phrase is
 specified but data-name-1 is omitted, the data item referenced by
 data-name-2 is the key data item.

	

 The

sorted table elements of the table referenced by data-name-2 are
 placed in the table referenced by data-name-2.

	

 The COLLATING SEQUENCE
 phrase is treated as documentary only.

 16.1.5 The START Statement

 The

START statement provides a basis for logical positioning within a
 relative or indexed file for subsequent retrieval of records. This
 statement is not available for files with sequential organization.

 The START statement initiates
 execution of a thread, either synchronously or asynchronously.

 General Formats

 Format 1 (Relative Files)

 Format 2 (Indexed Files)

 Format 3 (Threads)

 Note that the required relational characters ">", " <",
 ">=", "<=" and "=" are not underlined
 to avoid confusion with other symbols, such as ">"
 (greater than or equal to).

 Syntax Rules

 All Formats (Relative and Indexed Files)

 	File-name-1 must be the name of a relative or indexed file.

	File-name-1 must be the name of a file with sequential or dynamic
 access.

	Data-name-1 can be qualified.

	The INVALID KEY phrase must be specified if no applicable USE
 procedure is specified for file-name-1.

 This rule is not
 enforced.

 Format 1 (Relative Files)

 	If the

KEY phrase is specified, data-name-1 must be the data item
 specified in the RELATIVE KEY phrase of the associated file control
 entry.

 Format 2 (Indexed Files)

 	If the KEY phrase is specified, data-name-1 can reference a data item
 specified as a record key associated with file-name-1. It can also
 reference any data item of category alphanumeric, subordinate to the
 data item specified as a

record key associated with file-name-1, whose leftmost character
 position corresponds to the leftmost character position of that record
 key data item.

	

 Split-key-name-1 can
 reference one or more data items, and is specified as a record key
 associated with file-name-1.

	

 WITH SIZE specifies the
 number of characters in the key to be used in the positioning process.

	

 Identifier-1 must be the
 name of an elementary integer data item when used with the

WITH SIZE phrase.

 Format 3 (Threads)

 	Literal-1 must be a nonnumeric literal and cannot be a figurative
 constant.

	Identifier-1 must be defined as an alphanumeric data item such that
 its value can be a COBOL or non-COBOL program-name.

	Identifier-3 must be defined as either USAGE POINTER or a data item
 that is 4 bytes in size. The definition depends on the definition of the
 GIVING/RETURNING item within the EXIT PROGRAM / STOP RUN statement for
 the new thread. If identifier-3 is defined as a USAGE POINTER item, it
 must not be a function-identifier.

	Thread-pointer-1 must be defined as USAGE THREAD-POINTER.

	Identifier-4 must be defined as an integer data item that has a
 length of at least 4 digits.

 General Rules

 All Formats (All Files)

 	File-name-1 must be open in the INPUT or I/O mode at the time that
 the

START statement is executed. (See the section The OPEN
 Statement earlier in this chapter.)

	If the KEY phrase is not specified, the relational operation IS EQUAL
 TO is implied.

	Execution of the START statement causes the value of the

FILE STATUS data item, if any, associated with file-name-1 to be
 updated. (See the section I/O Status earlier in this chapter.)

	

 The START statement never
 acquires, detects or releases recordlocks.

 Format 1 (Relative Files)

 	The type of comparison specified by the relational operator in the

KEY phrase occurs between a key associated with a record in the
 file referenced by file-name-1 and a data item as specified in General
 Rule 6.

 	

 If the relational
 operator specifies that the key must be equal to, greater than, or
 greater than or equal to the data item, then

 the file

position indicator is positioned to the

first logical record currently existing in the file whose
 key satisfies the comparison.

	

 If the relational
 operator specifies that the key must be less than, or less than or
 equal to the data item, then the file position indicator is
 positioned to the l

ast logical record currently existing in the file whose key
 satisfies the comparison.

	If the comparison is not satisfied by any record in the file, an

INVALID KEY condition exists. The execution of the

START statement will be unsuccessful, and the position of the
 file position indicator will be undefined. (See the section The
 INVALID KEY Condition in this chapter.)

	The comparison described in General Rule 5 uses the data item
 referenced by the RELATIVE KEY clause associated with file-name-1. A
 RELATIVE KEY clause must be associated with file-name-1.

 Format 2 (Indexed Files)

 	The type of comparison specified by the relational operator in the
 KEY phrase occurs between a key associated with a record in the file
 referenced by file-name-1 and a data item as specified in General Rule
 8. If file-name-1 references an indexed file and the operands are of
 unequal size, the comparison proceeds as though the longer one were
 truncated on the right so that its length is equal to that of the
 shorter. All other nonnumeric comparison rules apply except that the
 presence of the

PROGRAM COLLATING SEQUENCE clause will have no effect on the
 comparison. (See the section Comparison Of Nonnumeric Operands
 earlier in this chapter.)

 	

 If the relational
 operator specifies that the key must be equal to, greater than, or
 greater than or equal to the data item, then

 the file

position indicator is positioned to the

first logical record currently existing in the file whose
 key satisfies the comparison.

	

 If the relational
 operator specifies that the key must be less than, or less than or
 equal to the data item, then the file

position indicator is positioned to the

last logical record currently existing in the file whose key
 satisfies the comparison. If this key has duplicate entries, the
 file position indicator is positioned to the last of these entries.

	If the comparison is not satisfied by any record in the file, an

INVALID KEY condition exists, the execution of the START
 statement is unsuccessful, and the position of the file position
 indicator is undefined. (See the section The INVALID KEY
 Condition in this chapter.)

	If the KEY phrase is specified, the comparison described in General
 Rule 7 uses the data item referenced by data-name.

	If the K

EY phrase is not specified, the comparison described in General
 Rule 7 uses the data item referenced in the RECORD KEY clause associated
 with file-name-1.

	After successful execution of the

START statement, a key of

reference is established and used in subsequent Format 3 READ
 statements as follows (see the section The READ Statement
 earlier in this chapter):

 	If the KEY phrase is not specified, the prime record key
 specified for file-name-1 becomes the key of reference.

	If the KEY phrase is specified, and data-name-1

 or split-key-name-1

 is specified as a record key for file-name-1, that record key
 becomes the key of reference.

	If the KEY phrase is specified, and data-name-1

 or split-key-name-1

 is not specified as a record key for file-name-1, the record key
 whose leftmost character position corresponds to the leftmost
 character position of the data item specified by data-name-1

 or split-key-name-1

 becomes the key of reference.

	If execution of the START statement is not successful, the key of
 reference is undefined.

 Format 3 (Threads)

 	Literal-1, identifier-1, or procedure-pointer-1 must reference a
 program-id which is either the outermost program-id in a compilation
 unit, an ENTRY point in a program or a label in another language. This
 will be the starting point of the newly created thread's execution.

	If identifier-2 is specified, the starting point of the newly created
 thread must be defined in such a way that it accepts a single parameter
 that is passed by reference.

	If the BY CONTENT phrase is specified, the contents of identifier-2
 are copied to a system allocated, thread-safe work area and a reference
 to this work area will be passed to the starting point of the newly
 created thread. This work area will remain valid during the entire
 execution of the created thread, irrespective of the lifetime of the
 creating program's data areas.

	If the BY CONTENT phrase is not specified, a direct reference to
 identifier-2 is passed to the starting point of the newly created
 thread. It is left to the programmer to ensure that this data area
 remains valid while the newly created thread references it.

	If the RETURNING phrase is specified, the newly created thread
 executes to completion, returns a value in identifier-3 and returns
 control to the START statement.

	If the IDENTIFIED BY phrase is specified, execution of the newly
 created thread is initiated, a handle to reference the newly created
 thread is placed into thread-pointer-1 and control is returned to the
 START statement. The handle can be used in a WAIT statement to retrieve
 a returned value, synchronize execution and free the thread's resources.
 This handle is a valid thread handle as used by the CBL_THREAD_ Api.

	If neither the RETURNING phrase nor the IDENTIFIED phrase is
 specified, the newly created thread is initiated and control is returned
 to the START statement. All resources of the thread will be
 automatically freed when the thread terminates.

	If the STATUS phrase is specified, the execution of the START
 statement places into identifier-4 one of the return codes specified for
 the CBL_THREAD_ Api.

	If the START statement fails, one of the return codes specified for
 the CBL_THREAD_ Api is placed into identifier-4, if specified, and then
 one of the following occurs:

 	If the ON EXCEPTION phrase is specified, control is transferred
 to imperative-statement-1. Execution then continues according to the
 rules for each statement specified in imperative-statement-1. If a
 procedure branching or conditional statement that causes explicit
 transfer of control is executed, control is transferred in
 accordance with the rules of that statement; otherwise, upon
 completion of the execution of imperative-statement-1, control is
 transferred to the end of the START statement and the NOT ON
 EXCEPTION phrase, if specified, is ignored.

	Otherwise, if the NOT ON EXCEPTION phrase or the STATUS phrase is
 specified, control is transferred to the end of the START statement
 and the NOT ON EXCEPTION phrase, if specified, is ignored.

	Otherwise, the run-unit will terminate with an RTS error.

	If the START statement is successful, the following occurs in the
 order specified:

 	If the STATUS phrase, is specified, ZERO is moved to
 identifier-4.

	If the NOT ON EXCEPTION phrase is specified, control is
 transferred to imperative-statement-2. Execution then continues
 according to the rules for each statement specified in
 imperative-statement-2. If a procedure branching or conditional
 statement that causes explicit transfer of control is executed,
 control is transferred in accordance with the rules of that
 statement; otherwise, upon completion of the execution of
 imperative-statement-2, control is transferred to the end of the
 START statement and the ON EXCEPTION phrase, if specified, is
 ignored.

 16.1.6 The STOP Statement

 The STOP statement causes a permanent or temporary suspension of the
 execution of the run unit.

 The

STOP literal statement is classed as an obsolete element in the
 ANSI'85 standard and is scheduled to be deleted from the next full
 revision of the ANSI Standard.

 All dialects within this
 COBOL implementation fully support this syntax. The FLAGSTD Compiler
 directive can be used to detect all occurrences of this syntax.

 Although it is a part of the
 standard COBOL definition, the Stop literal format is explicitly excluded
 from the X/Open COBOL language definitions and should not be used in an
 X/Open COBOL conforming source program.

 General Format

 Format 1

 Format 2

 Syntax Rules

 	Literal-1 must not be a figurative constant that begins with the word
 ALL.

	If literal-1 is numeric, then it must be an unsigned integer.

 A signed integer is
 allowed.

	

 Integer-1 may be signed.

	If a STOP RUN statement appears in a consecutive sequence of
 imperative statements within a sentence, it must appear as the last
 statement in that sequence.

 This rule is not
 enforced, although any statements in the sentence that follow the STOP
 RUN statement will not be executed.

	

 GIVING and RETURNING are
 equivalent.

	

 Identifier-1 must be no
 larger than 8 bytes in size.

	

 If a STOP RUN GIVING
 statement is executed within a thread created with the START statement
 (format 3 threads) and if the ADDRESS OF clause is not specified,
 identifier-1 must be defined as either USAGE POINTER or a data item that
 is 4 bytes in size. The definition depends on the definition of the
 RETURNING item within the START statement. If identifier-1 is defined as
 a USAGE POINTER item, it must not be a function-identifier.

 General Rules

 	If the RUN phrase is specified, execution of the run unit ceases and
 control is transferred to the operating system.

	During the execution of a STOP RUN statement, an implicit CLOSE
 statement without any optional phrases is executed for each file that is
 in the open mode in the run unit. Any USE procedures associated with any
 of these files are not executed.

 	

 Execution of a STOP RUN
 statement causes a return value to be set in the system area generally
 available for non-COBOL runtime elements to return a value. If the
 operating system supports the facility of returning a value from a
 program that is run to the operating system environment then it will
 return the value from the system area.

 If the GIVING phrase is
 not specified then the run unit operates as if the system area were
 declared as a COBOL numeric data item with USAGE COMP-5 and with a
 size determined by the operating environment external to the COBOL
 system and as if a MOVE statement had been executed with the
 RETURN-CODE as the sending item and the system area as the receiving
 item. (See the section Special Registers in the chapter Concepts
 of the COBOL Language for details of RETURN-CODE.)

 If the GIVING
 identifier-1 phrase is specified, identifier-1 must describe the same
 number of character positions as is required to hold the return value
 in the system area and must be of the type and usage that is expected
 by the operating system. Typically identifier-1 will need to be
 declared with an explicit or implicit PIC S9 (9) USAGE COMP-5.
 The run unit operates as if a MOVE statement had been executed with
 identifier-1 as the sending item and the system area as the receiving
 item.

 IF the GIVING integer-1
 phrase is specified, integer-1 must not be larger than the value that
 can be held in the system area. The run unit operates as if a MOVE
 statement had been executed with integer-1 as the sending item and the
 system area as the receiving item.

	If STOP literal-1 is specified, the execution of the run unit is
 suspended and literal-1 is communicated to the operator. Continuation of
 the execution of the run unit begins with the next executable statement
 when the operator presses the ENTER key or its equivalent.

	

 When executed within a thread created with a START statement or the
 CBL_CREATE_THREAD (necessarily in the multi-threaded run-time system),
 a STOP RUN GIVING statement does not end the run-unit; it simply
 provides a return value and terminates the thread. It is equivalent
 to:

CALL 'CBL_THREAD_EXIT' USING BY VALUE ADDRESS OF thread-parm

 STOP RUN in threads not created by the START statement or
 CBL_THREAD_CREATE (that is, the main thread, or a thread created by a
 program written in another programming language) will wait for all
 active CBL_THREAD_CREATE threads to finish and then terminate the run
 unit.

16.1.7 The STRING Statement

 The STRING statement provides juxtaposition of the partial or complete
 contents of two or more data items into a single data item.

 General Format

 Syntax Rules

 	Each literal can be any figurative constant without the optional word
 ALL.

	All literals must be described as nonnumeric literals, and all
 identifiers, except identifier-4, must be described implicitly or
 explicitly as USAGE IS DISPLAY.

	Identifier-3 must represent an elementary alphanumeric data item
 without editing symbols or the JUSTIFIED clause.

	Identifier-4 must represent an elementary numeric integer data item
 of sufficient size to contain a value equal to the size plus 1 of the
 area referenced by identifier-3. The "P" can not be used in
 the PICTURE character-string of identifier-4.

	Where identifier-1 or identifier-2 is an elementary numeric data
 item, it must be described as an integer without the symbol "P"
 in its PICTURE character-string.

	

 Identifier-3 must not be
 reference modified.

	

 Identifier-3 can be
 reference modified.

 General Rules

 	Identifier-1, or literal-1, represents the sending item. Identifier-3
 represents the receiving item.

	Literal-2, identifier-2, indicate the character(s) delimiting the
 move. If the SIZE phrase is used, the complete data item defined by
 identifier-1, or literal-1, is moved. When a figurative constant is used
 as the delimiter, it stands for a single character nonnumeric literal.

	When a figurative constant is specified as literal-1, or literal-2,
 it refers to an implicit one-character data item whose usage is DISPLAY.

	When the STRING statement is executed, the transfer of data is
 governed by the following rules:

 	Those characters from literal-1, or from the contents of the data
 item referenced by identifier-1, are transferred to the contents of
 identifier-3 in accordance with the rules for alphanumeric to
 alphanumeric moves, except that no space filling will be provided.
 (See the section The MOVE Statement earlier in this
 chapter.)

	If the DELIMITED phrase is specified without the SIZE phrase, the
 contents of the data item referenced by identifier-1, or the value
 of literal-1, is transferred to the receiving data item in the
 sequence specified in the STRING statement beginning with the
 leftmost character and continuing from left to right until the end
 of the data item is reached, or until the character(s) specified by
 literal-2, or by the contents of identifier-2 are encountered. The
 character(s) specified by literal-2, or by the data item referenced
 by identifier-2 are not transferred.

	If the

DELIMITED phrase is specified with the SIZE phrase, the
 entire contents of literal-1, or the contents of the data item
 referenced by identifier-1, are transferred, in the sequence
 specified in the STRING statement, to the data item referenced by
 identifier-3 until all data has been transferred or the end of the
 data item referenced by identifier-3 has been reached.

	If the

POINTER phrase is specified, identifier-4 is explicitly available
 to the programmer, who is then responsible for setting its initial
 value. The initial value must not be less than one.

	If the

POINTER phrase is not specified, the following General Rules
 apply as if the user had specified identifier-4 with an initial value of
 1.

	When characters are transferred to the data item referenced by
 identifier-3, the moves behave as though the characters were moved one
 at a time from the source into the character position of the data item
 referenced by identifier-3 designated by the value associated with
 identifier-4, and then identifier-4 was increased by one prior to the
 move of the next character. The value associated with identifier-4 is
 changed during execution of the STRING statement only by the behavior
 specified above.

	At the end of execution of the STRING statement, only the portion of
 the data item referenced by identifier-3 that was referenced during the
 execution of the STRING statement is changed. All other portions of the
 data item referenced by identifier-3 will contain data that was present
 before this execution of the STRING statement.

	Before each move of a character to the data item referenced by
 identifier-3, if the value associated with the data item referenced by
 identifier-4 is either less than one or exceeds the number of character
 positions in the data item referenced by identifier-3, no (further) data
 is transferred to the data item referenced by identifier-3,

 and the NOT ON OVERFLOW
 phrase, if specified, is ignored

 and control is transferred to the end of the STRING statement or, if
 the ON OVERFLOW phrase is specified, to imperative- statement-1. If
 control is transferred to imperative- statement-1, execution continues
 according to the rules for each statement specified in
 imperative-statement-1. If a procedure branching or conditional
 statement which causes explicit transfer of control is executed,
 control is transferred in accordance with the rules for that
 statement; otherwise, upon completion of the execution of
 imperative-statement-1, control is transferred to the end of the
 STRING statement.

	

 If, at the time of
 execution of a STRING statement with the NOT ON

OVERFLOW phrase, the conditions described in General Rule 9 are
 not encountered, after completion of the transfer of data according to
 the other general rules, the ON OVERFLOW phrase, if specified, is
 ignored and control is transferred to the end of the STRING statement
 or, if the NOT ON OVERFLOW phrase is specified, to imperative-
 statement-2. If control is transferred to imperative- statement-2,
 execution continues according to the rules for each statement specified
 in imperative-statement-2. If a procedure branching or conditional
 statement which causes explicit transfer of control is executed, control
 is transferred in accordance with the rules for that statement;
 otherwise, upon completion of the execution of imperative-statement-2,
 control is transferred to the end of the STRING statement.

	

 The END-STRING phrase
 delimits the scope of the STRING statement. (See the section Explicit
 And Implicit Scope Terminators in the chapter Concepts of the
 COBOL Language.)

 16.1.8 The SUBTRACT Statement

 The SUBTRACT statement is used to subtract one, or the sum of two or
 more, numeric data items from one or more items, and set the values of one
 or more items equal to the results.

 General Formats

 Format 1

 Format 2

 Format 3

 Syntax Rules

 All Formats

 	Each identifier must refer to a numeric elementary item, except that
 in Format 2 each identifier following the word GIVING must refer to
 either an elementary numeric item or an elementary numeric edited item,
 and in Format 3 each identifier must refer to a group item.

	The

composite of

operands must not contain more than 18 digits. (See the section
 The Arithmetic Statements earlier in this chapter.)

 	In Format 1 the composite of operands is determined by using all
 of the operands in a given statement.

	In Format 2 the composite of operands is determined by using all
 of the operands in a given statement excluding the data items that
 follow the word GIVING.

	In Format 3 the composite operands is determined separately for
 each pair of corresponding data items.

 Formats 1 and 2

 	Each literal must be a numeric literal.

	

 Floating-point data items
 and literals can be used anywhere numeric data items and literals can be
 specified.

 Format 3

 	CORR is an abbreviation for CORRESPONDING.

 General Rules

 All Formats

 	See the sections The ROUNDED Phrase, The ON SIZE ERROR
 Phrase, Arithmetic Statements, Overlapping Operands
 and Multiple Results In Arithmetic Statements in this chapter.

	

 The COBOL system ensures
 enough places are carried so as not to lose significant digits during
 execution.

 Format 1

 	All literals or identifiers preceding the word FROM are added
 together and this total is subtracted from the current value of
 identifier-2 storing the result immediately into identifier-2, and
 repeating this process respectively for each operand following the word
 FROM.

 Format 2

 	In Format 2, all literals or identifiers preceding the word FROM are
 added together, the sum is subtracted from literal-2 or identifier-2 and
 the result of the subtraction is stored as the new value of each data
 item referenced by identifier-3.

 Format 3

 	If Format 3 is used, data items in identifier-1 are subtracted from
 and stored into corresponding data items in identifier-2.

 16.1.9 The TRANSFORM Statement

 The TRANSFORM statement is used to alter characters according to a
 transformation rule.

 General Format

 Syntax Rules

 	Identifier-3 can be any elementary item except a numeric item with
 USAGE other than DISPLAY, or a group item.

	Identifier-1 and identifier-2 should be elementary alphabetic or
 alphanumeric items.

	Nonnumeric-literal-2 or identifier-2 must be either one character
 long or the same length as nonnumeric-literal-1 or identifier-1.

 General Rules

 	The use of figurative-constant-1 and/or figurative-constant-2 is
 equivalent to the use of a single-character nonnumeric- literal with the
 same value.

	If either identifier-1 or identifier-2 references the same computer
 storage area as identifier-3, the result of the TRANSFORM is undefined.
 (See the section The REDEFINES Clause earlier in this chapter.)

	If characters are repeated in nonnumeric-literal-1 or identifier-1,
 then the result of the TRANSFORM operation is undefined.

	Execution of the TRANSFORM statement scans identifier-3 for
 occurrences of individual characters from identifier-1 or
 nonnumeric-literal-1. When a match is found, the corresponding character
 (or the single character of a one-character field) from identifier-2 or
 nonnumeric-literal-2 is substituted into that character position in
 identifier-3. The correspondence between identifier-1 or nonnumeric-
 literal-1 and identifier-2 or nonnumeric-literal-2 is by occurrence
 number of the character within the data item (starting from the left).

 16.1.10 The UNLOCK Statement

 The

UNLOCK statement releases all

record locks held by the run unit on a named file.

 General Format

 Syntax Rule

 File-name must occur in the SELECT statement of the FILE CONTROL entry.

 General Rules

 	The file referenced by file-name must already be opened with the OPEN
 statement.

	The UNLOCK statement releases all record locks held by the run unit
 on a named file.

 16.1.11 The UNSTRING Statement

 The UNSTRING statement causes contiguous data in a sending field to be
 separated and placed into multiple receiving fields.

 General Format

 Syntax Rules

 	Each literal must be a nonnumeric literal. In addition, each literal
 can be any figurative constant without the optional word ALL.

	Identifier-1, identifier-2, identifier-3, and identifier-5 must be
 described, implicitly or explicitly, as an alphanumeric data-item.

	Identifier-4 can be described as either alphabetic (except that the
 symbol "B" can not be used in the PICTURE character-string),
 alphanumeric, or numeric (except that the symbol "P" can not
 be used in the PICTURE character-string), and must be described as USAGE
 IS DISPLAY.

	

 Syntax Rules 2 and 3 do not
 apply. Instead, the following rules apply:

 	Identifier-1 must be alphanumeric

	Identifier-2 and identifier-3 must be USAGE DISPLAY and must not
 be edited

	Identifier-5 must be USAGE DISPLAY

	Identifier-4 can be USAGE DISPLAY

	Identifier-4 can have any USAGE that defines a numeric data item
 as long as the data results in a valid MOVE operation.

	

 Identifier-4 must not be
 defined as a floating-point item.

	Identifier-6 and identifier-8 must reference integer data items,
 (except that the symbol " P" can not be used in the PICTURE
 character-string).

	Identifier-1 must be described as an elementary numeric integer data
 item of sufficient size to contain a value equal to 1 plus the size of
 the data item referenced by identifier-1. The symbol "P" can
 not be used in the PICTURE character string of identifier-7.

	No identifier can name a level 88 entry.

	The DELIMITER IN phrase and the COUNT IN phrase can be specified only
 if the DELIMITED BY phrase is specified.

	

 The source of an UNSTRING
 operation can be reference modified.

 General Rules

 	All references to identifier-2, literal-1, apply equally to
 identifier-3, literal-2, respectively and all recursions thereof.

	Identifier-1 represents the sending area.

	Identifier-4 represents the data receiving area. Identifier-5
 represents the receiving area for delimiters.

	Literal-1 or the data item referenced by identifier-2 specifies a
 delimiter.

	The data item referenced by identifier-6 represents the count of the
 number of characters within the data item referenced by identifier-1
 isolated by the delimiters for the move to the data item referenced by
 identifier-4. This value does not include a count of the delimiter
 character(s).

	The data item referenced by identifier-7 contains a value that
 indicates a relative character position within the area defined by
 identifier-1.

	The data item referenced by identifier-8 is a counter that records
 the number of data items acted upon during the execution of an UNSTRING
 statement.

	When a figurative constant is used as the delimiter, it stands for a
 single character nonnumeric literal.

 When the ALL phrase is specified, one occurrence or two or more
 contiguous occurrences of literal-1 (figurative constant or not) or
 the contents of the data item referenced by identifier-2 are treated
 as if it were only one occurrence, and this occurrence is moved to the
 receiving data item according to the rules in General Rule 13d.

	When any examination encounters two contiguous delimiters, the
 current receiving area is either space or zero filled according to the
 description of the receiving area.

	Literal-1 or the contents of the data item referenced by identifier-2
 can contain any character in the computer's character set.

	Each literal-1 or the data item referenced by identifier-2 represents
 one delimiter. When a delimiter contains two or more characters, all of
 the characters must be present in contiguous positions of the sending
 item and in the order given, to be recognized as a delimiter.

	When two or more delimiters are specified in the DELIMITED BY phrase,
 an "OR" condition exists between them. Each delimiter is
 compared to the sending field. If a match occurs, the character(s) in
 the sending field is considered to be a single delimiter. No
 character(s) in the sending field can be considered a part of more than
 one delimiter.

 Each delimiter is applied to the sending field in the sequence
 specified in the UNSTRING statement.

	When the UNSTRING statement is initiated, the current receiving area
 is the data item referenced by identifier-4. Data transferred from the
 data item referenced by identifier-1 to the data item referenced by
 identifier-4 according to the following rules:

 	If the

POINTER phrase is specified, the string of characters
 referenced by identifier-1 is examined beginning with the relative
 character position indicated by the contents of the data item
 referenced by identifier-7. If the POINTER phrase is not specified,
 the string of characters is examined beginning with the leftmost
 character position.

	If the DELIMITED BY phrase is specified, the examination proceeds
 left to right until either a delimiter specified by the value of
 literal-1 or the data item referenced by identifier-2 is
 encountered. (See General Rule 11.) If the DELIMITED BY phrase is
 not specified, the number of characters examined is equal to the
 size of the current receiving area. However, if the sign of the
 receiving item is defined as occupying a separate character
 position, the number of characters examined is one less than the
 size of the current receiving area.

 If the end of the data item referenced by identifier-1 is
 encountered before the delimiting condition is met, the
 examination terminates with the last character examined.

	The characters thus examined (excluding the delimiting
 character(s), if any) are treated as an elementary alphanumeric data
 item, and are moved into the current receiving area according to the
 rules for the MOVE statement. (See the section The MOVE
 Statement earlier in this chapter.)

	If the DELIMITER IN phrase is specified, the delimiting
 character(s) are treated as an elementary alphanumeric data item and
 are moved into the data item referenced by identifier-5 according to
 the rules for the MOVE statement. (See the section The MOVE
 Statement earlier in this chapter.) If the delimiting condition
 is the end of the data item referenced by identifier-1, then the
 data item referenced by identifier-5 is space-filled.

	If the COUNT IN phrase is specified, a value equal to the number
 of characters thus examined (excluding the delimiter character(s) if
 any) is moved into the area referenced by identifier-6 according to
 the rules for an elementary move.

	If the DELIMITED BY phrase is specified the string of characters
 is further examined beginning with the first character to the right
 of the delimiter. If the DELIMITED BY phrase is not specified, the
 string of characters is further examined beginning with the
 character to the right of the last character transferred.

	After data is transferred to the data item referenced by
 identifier-4, the current receiving area is the data item referenced
 by the next recurrence of identifier-4. The behavior described in
 paragraph 13b. through 13f. is repeated until either all the
 characters are exhausted in the data item referenced by
 identifier-1, or until there are no more receiving areas.

	The initialization of the contents of the data items associated with
 the

POINTER phrase or the

TALLYING phrase is the responsibility of the user.

	The contents of the data item referenced by identifier-7 will be
 incremented by one for each character examined in the data item
 referenced by identifier-1. When the execution of an UNSTRING statement
 with a POINTER phrase is complete, the contents of the data item
 referenced by identifier-7 will contain a value equal to the initial
 value plus the number of characters examined in the data item referenced
 by identifier-1.

	When the execution of an UNSTRING statement with a TALLYING phrase is
 completed, the contents of the data item referenced by identifier-8
 contains a value equal to its initial value plus the number of data
 receiving items acted upon.

	Either of the following situations causes an overflow condition:

 	An UNSTRING is initiated, and the value in the data item
 referenced by identifier-7 is less than 1 or greater than the size
 of the data item referenced by identifier-1.

	If, during execution of an UNSTRING statement, all data receiving
 areas have been acted upon, and the data item referenced by
 identifier-1 contains characters that have not been examined.

	When an overflow condition exists, the UNSTRING operation is
 terminated,

 the NOT

ON OVERFLOW phrase, if specified, is ignored and

 control is transferred to the end of the UNSTRING statement or, if
 the ON OVERFLOW phrase is specified, to imperative-statement-1. If
 control is transferred to imperative-statement-1, execution continues
 according to the rules for each statement specified in
 imperative-statement-1. If a procedure branching or conditional
 statement which causes explicit transfer of control is executed,
 control is transferred in accordance with the rules for that
 statement; otherwise, upon completion of the execution of
 imperative-statement-1, control is transferred to the end of the
 UNSTRING statement.

	

 The END-UNSTRING phrase
 delimits the scope of the UNSTRING statement. (See the section Explicit
 And Implicit Scope Terminators in the chapter Concepts of the
 COBOL Language.)

	If, at the time of execution of an UNSTRING statement, the conditions
 described in General Rule 17 are not encountered, after completion of
 the transfer of data according to the other general rules, the ON

OVERFLOW phrase, if specified, is ignored and control is
 transferred to the end of the UNSTRING statement

 or, if the NOT ON
 OVERFLOW phrase is specified, to imperative-statement-2. If control is
 transferred to imperative- statement-2, execution continues according
 to the rules for each statement specified in imperative-statement-2.
 If a procedure branching or conditional statement which causes
 explicit transfer of control is executed, control is transferred in
 accordance with the rules for that statement; otherwise, upon
 completion of the execution of imperative-statement-2, control is
 transferred to the end of the UNSTRING statement.

	The evaluation of subscription and indexing for the identifiers is as
 follows:

 	Any subscripting or indexing associated with identifier-1,
 identifier-7, or identifier-8 is evaluated only once, immediately
 before any data is transferred as the result of the execution of the
 UNSTRING statement.

	Any subscripting or indexing associated with identifier-2, -3,
 -4, -5, or -6 is evaluated immediately before the transfer of data
 into the respective data item.

	

 22..Any subscripting
 associated with the DELIMITED BY identifier, the INTO identifier, the
 DELIMITER IN identifier, or the COUNT IN identifier is evaluated once,
 immediately before the examination of the sending fields for the
 delimiter.

	If identifier-1, -2 or -3, occupies the same storage area as
 identifier-4, -5, -6, -7 or -8, or if identifier-4, -5 or -6 , occupies
 the same storage area as identifier-7 or -8, or if identifier-7 and
 identifier-8 occupy the same storage area, the result of the execution
 of this statement is undefined, even if they are defined by the same
 data description entry.

 16.1.12 The USE Statement

 The U

SE statement specifies procedures for input-output error handling,
 that are in addition to the standard procedures provided by the
 input-output control system.

 General Formats

 Format 1 (Sequential , Relative and Indexed Files)

 Format 2 (Record Sequential Files)

 Format 3 (Relative And Indexed Files)

 Syntax Rules

 All Formats (All Files)

 	Format 1 is the

ERROR declarative.

 Formats 2 and 3 are the

LABEL declarative.

	A

USE statement, when present, must immediately follow a section
 header in the Declaratives Section and must be followed by a period
 followed by a space.

	The USE statement itself is never executed; it merely defines the
 conditions calling for the execution of the

USE procedures.

	The files implicitly or explicitly referenced in a USE statement need
 not all have the same organization or access.

 Format 1 (Sequential, Relative and Indexed Files)

 	The same file-name can appear in a different specific arrangement of
 the format. Appearance of a file-name in a USE statement must not cause
 the simultaneous request for execution of more than one USE procedure.

 The same file-name must
 not appear in more than one USE AFTER EXCEPTION statement within the
 same Procedure Division.

	The words

ERROR and EXCEPTION are equivalent and can be used
 interchangeably.

 Formats 2 and 3 (Record Sequential, Relative and Indexed
 Files)

 	

 If both BEGINNING and
 ENDING are omitted, the effect is as though both BEGINNING and ENDING
 had been specified.

 Format 2 (Record Sequential Files)

 	

 REEL and UNIT are treated
 as equivalent.

	

 If both FILE and REEL/UNIT
 are omitted, the effect is as though both REEL or UNIT and FILE had been
 specified.

	

 Any one file-name and any
 one OPEN mode can appear in only one declarative for each of the
 possible combinations of BEGINNING/ENDING and FILE/REEL as shown below:

 BEGINNING FILE

 BEGINNING REEL/UNIT

 ENDING FILE

 ENDING REEL/UNIT

 General Rules

 All Formats (All Files)

 	After execution of a USE procedure, control is returned to the
 invoking routine.

	Within a USE procedure, there must not be any reference to any
 non-declarative procedures. Conversely, in the non-declarative portion
 there must be no reference to procedure-names that appear in the
 declarative portion, except that PERFORM statements can refer to a

USE statement.

 This restriction can be
 ignored.

	Within a

USE procedure, there must be no execution of any statement that
 would cause the execution of a USE procedure that had previously been
 invoked and had not yet returned control to the invoking routine.

 Format 1 (Sequential, Relative and Indexed Files)

 	The designated procedures are executed by the input-output system
 after completing the standard input-output error routine, or upon
 recognition of the AT END condition, when the AT END phrase has not been
 specified in the input-output statement.

	

 When file-name-1 is
 specified explicitly, no other USE statement applies to file-name-1.

	The GIVING phrase is documentary only.

 Formats 2 and 3 (Record Sequential, Relative and Indexed
 Files)

 	

 If the BEGINNING phrase is
 specified explicitly or implicitly, the following actions are taken
 during the execution of an applicable OPEN statement:

 	Open Mode	Action
	INPUT	
 	Read header labels
	 Execute beginning declarative

	OUTPUT	
 	Execute beginning declarative
	 Write header labels

	I/O	
 	Read header labels
	 Execute beginning declarative
	 Write header labels

	EXTEND	
 	Read header labels
	 Execute beginning declaratives (trailer labels treated as
 header)
	 Write header labels

	

 If the ENDING phrase is
 specified explicitly or implicitly, the following actions are taken
 during the execution of an applicable CLOSE statement:

 	Open Mode	Action
	INPUT	
 	Read trailer labels
	Execute ending declarative

	OUTPUT	
 	Execute ending declarative
	 Write trailer labels

	I/O	
 	Read trailer labels
	 Execute ending declarative
	 Write trailer labels

	EXTEND	
 	Execute ending declaratives
	 Write trailer labels

	

 The statement GO TO

MORE-LABELS is treated as a simple jump to the start of the
 declarative procedure in which it appears.

 16.1.13 The WAIT Statement

 The

WAIT statement suspends the current thread's execution until the
 targeted thread's execution terminates and optionally retrieves the value
 returned from the targeted thread's execution.

 The WAIT statement suspends execution until an event is TRUE.

 General Formats

 Format 1 (Thread)

 Format 2 (Event)

 Syntax Rules

 Format 1 (Thread)

 	Thread-pointer-1 must be defined as USAGE THREAD-POINTER.

	Identifier-1 must be defined either as USAGE POINTER or must be 4
 bytes in size. It must not be a function-identifier.

	Identifier-2 must be defined as an integer data item that has a
 length of at least 4 digits.

 Format 2 (Event)

 	Event-pointer-1 must be defined as USAGE EVENT-POINTER.

 General Rules

 Format 1 (Thread)

 	Thread-pointer-1 must contain a thread handle as returned from the
 START statement with the IDENTIFIED BY phrase or from the CBL_THREAD_
 Api.

	A successful WAIT statement suspends the current thread's execution
 until the termination of the thread referenced by the thread handle
 contained in thread-pointer-1.

	If the RETURNING phrase is specified, a successful WAIT statement
 returns a value in identifier-1.

	After the successful execution of a WAIT statement, the thread handle
 contained in thread-pointer-1 is invalid.

	If the STATUS phrase is specified, the execution of the WAIT
 statement places into identifier-4 one of the return codes specified for
 the CBL_THREAD_ Api.

	If the WAIT statement fails, one of the return codes specified for
 the CBL_THREAD_ Api is placed into identifier-2, if specified, and then
 one of the following occurs:

 	If the ON EXCEPTION phrase is specified, control is transferred
 to imperative-statement-1. Execution then continues according to the
 rules for each statement specified in imperative-statement-1. If a
 procedure branching or conditional statement that causes explicit
 transfer of control is executed, control is transferred in
 accordance with the rules of that statement; otherwise, upon
 completion of the execution of imperative-statement-1, control is
 transferred to the end of the WAIT statement and the NOT ON
 EXCEPTION phrase, if specified, is ignored.

	Otherwise, if the NOT ON EXCEPTION phrase or the STATUS phrase is
 specified, control is transferred to the end of the WAIT statement
 and the NOT ON EXCEPTION phrase, if specified, is ignored.

	Otherwise, the run-unit will terminate with an RTS error.

	If the WAIT verb is successful, the following occurs in the order
 specified:

 	If the STATUS phrase, is specified, ZERO is moved to
 identifier-2.

	If the NOT ON EXCEPTION phrase is specified, control is
 transferred to imperative-statement-2. Execution then continues
 according to the rules for each statement specified in
 imperative-statement-2. If a procedure branching or conditional
 statement that causes explicit transfer of control is executed,
 control is transferred in accordance with the rules of that
 statement; otherwise, upon completion of the execution of
 imperative-statement-2, control is transferred to the end of the
 WAIT statement and the ON EXCEPTION phrase, if specified, is
 ignored.

 Format 2 (Event)

 	A successful WAIT statement suspends execution until the event
 referenced by event-pointer-1 is TRUE.

 Note: Execution resumes immediately if the event referenced
 by event-pointer-1 is TRUE when the statement is executed.

	If the WAIT statement fails, the run-unit will terminate with an RTS
 error.

 16.1.14 The WRITE Statement

 The

WRITE statement releases a logical record for an output or
 input-output file. For sequential files it can also be used for vertical
 positioning of lines within a logical page.

 Although they are a part of
 the standard COBOL definition, mnemonic names in the

ADVANCING phrase are explicitly excluded from the X/Open COBOL
 language definitions and should not be used in X/Open COBOL source
 programs.

 General Formats

 Format 1 (Record

 and Line

 Sequential Files)

 Format 2 (Record Sequential Files)

 Format 3 (Record Sequential Files)

 Format 4 (Relative and Indexed Files)

 Directives and Run-time Switches

 	In addition to Compiler directives which provide flagging and modify
 the reserved word list, the following directives may impact either the
 syntax or semantics described in this section.

 	WRITE-LOCK - causes a WRITE statement to acquire a record lock
 when multiple recording locking is used.

	FDCLEAR - causes the contents of the record area to be
 predictable after a WRITE statement.

	The following run-time switches may impact the semantics described in
 this section.

 	N - controls the insertion of null characters before control
 characters when writing line sequential records.

	T - controls the insertion of tab characters when writing line
 sequential records.

 Syntax Rules

 All Formats (All Files)

 	

 If identifier-1 is a
 function-identifier, it must reference an alpha-numeric function. When
 identifier-1 is not a function-identifier, record-name and identifier-1
 must not reference the same storage area.

	Record-name is the name of a logical record in the File Section of
 the Data Division and can be qualified.

	

 Record-name can define a
 floating-point item.

	

 Identifier-1 can be
 defined as a floating-point item.

 Format 1 (Record Sequential Files)

 	

 When the mnemonic-name
 associated with

TAB is specified the result is to cause the paper to throw to the
 standard vertical tabulation position. A user-defined mnemonic-name can
 be used instead of TAB if it is associated in the SPECIAL-NAMES
 paragraph. (See the section The SPECIAL-NAMES Paragraph.)

	When identifier-2 is used in the

ADVANCING phrase, it must be the name of an elementary integer
 data item.

	Integer, or the value of the data item referenced by identifier-2,
 can be zero.

	

 Integer can be signed.

	If the

END-OF-PAGE phrase is specified, the linage clause must be
 specified in the file description entry for the associated file.

	The words END-OF-PAGE and

EOP are equivalent.

	The ADVANCING mnemonic-name phrase cannot be specified when writing a
 record to a file whose file description entry contains the

LINAGE clause.

	

 The phrases ADVANCING PAGE
 and END-OF-PAGE must not both be specified in a single WRITE statement.

 This restriction can be
 ignored.

 Alternatively,
 function-name can itself be used instead of an associated mnemonic
 name.

 Format 2 (Record Sequential Files)

 	

 This format cannot be
 specified when writing a record to a file whose file description entry
 contains the LINAGE clause.

	

 If this format of the

WRITE statement is used for writing to a given file, then every
 WRITE statement used for that file should be in this format.

	

 In the

AFTER POSITIONING phrase, identifier-2 must be defined as a
 single-character alphanumeric item. See General Rule 18 for itspossible
 values.

 Format 4 (Relative And Indexed Files)

 	The INVALID KEY phrase must be specified if an applicable USE
 procedure is not specified for the associated file.

 This rule is not
 enforced.

 General Rules

 All Formats (All Files)

 	The results of the execution of the

WRITE statement with the FROM phrase is equivalent to the
 execution of:

 	The statement:

 MOVE identifier-1 TO record-name

 according to the rules specified for the MOVE statement,
 followed by:

	The same WRITE statement without the

FROM phrase.

 The contents of the record area prior to the execution of the
 implicit MOVE statement have no effect on the execution of this WRITE
 statement.

 After execution of the WRITE statement is complete, the information
 in the area referenced by identifier-1 is available, even though the
 information in the area referenced by record-name can not be. (See
 General Rule 13.)

	The file position indicator is unaffected by the execution of a WRITE
 statement.

	The execution of the WRITE statement causes the value of the FILE
 STATUS data item, if any, associated with the file to be updated. (See
 the section I/O Status earlier in this chapter.)

	The maximum record size for a file is established at the time the
 file is created and must not subsequently be changed.

	The number of character positions on a mass storage device to store a
 logical record in a file may or may not be equal to the number of
 character positions defined by the logical description of that record

 .

	The execution of the WRITE statement releases a logical record to the
 operating system.

	

 If the execution of the
 WRITE statement is unsuccessful, the I/O status of the file-name
 associated with record-name is updated and control is transferred
 according to the rules of the USE statement following the execution of
 any USE AFTER EXCEPTION procedure applicable to the file-name associated
 with record-name. (See the section The USE Statement in this
 chapter.)

 Format 1 (Record Sequential Files)

 	If the logical end of the representation of the printed page is
 reached during the execution of a

WRITE statement with the

END-OF-PAGE phrase, the imperative-statement specified in the
 END-OF-PAGE phrase is executed. The logical end is specified in the
 LINAGE clause associated with record-name.

	An end-of-page condition is reached whenever the execution of a given
 WRITE statement with the END-OF-PAGE phrase occurs, when the execution
 of such a WRITE statement causes the LINAGE-COUNTER to equal or exceed
 the value specified by integer-2 or the data item referenced by
 data-name-2 of the

LINAGE clause, if specified. In this case, the WRITE statement is
 executed and then the imperative statement in the END-OF-PAGE phrase is
 executed.

 An automatic page overflow condition is reached whenever the
 execution of a given WRITE statement (with or without an END-OF-PAGE
 phrase) cannot be fully accommodated within the current page body.

 This occurs when a WRITE statement, if executed, would cause the
 LINAGE-COUNTER to exceed the value specified by integer-1 or the data
 item referenced by data-name-1 of the LINAGE clause. In this case, the
 record is presented on the logical page before or after (depending on
 the phrase used) the device is repositioned to the first line that can
 be written on the next logical page as specified in the LINAGE clause.
 The imperative statement in the END-OF-PAGE clause, if specified, is
 executed after the record is written and the device has been
 repositioned.

 If integer-2 or data-name-2 of the LINAGE clause is not specified,
 no end-of-page condition distinct from the page overflow condition is
 detected. In this case, the end-of-page condition and page overflow
 condition occur simultaneously.

 If integer-2 or data-name-2 of the LINAGE clause is specified, but
 the execution of a given WRITE statement would cause LINAGE-COUNTER to
 simultaneously exceed the value of both integer-2 or the data item
 referenced by data-name-2 and integer-1 or the data item referenced by
 data-name-1, then the operation proceeds as if integer-2 or
 data-name-2 had not been specified.

 Format 1 (Line Sequential Files)

 	

 If the

ADVANCING phrase is not used, automatic advancing of one line is
 provided to act in accordance with the convention of your operating
 system text editor (usually as if you had specified BEFORE ADVANCING 1
 LINE).

	

 When an attempt is made to
 write beyond the externally defined boundaries of a

sequential file, an

exception condition exists and the contents of the record area
 are unaffected. The following actions take place:

 	The value of the

FILE STATUS data item, if any, of the associated file is set
 to a value indicating a boundary violation. (See the section I/O
 Status in this chapter.)

	If a USE

AFTER STANDARD EXCEPTION declarative is explicitly or
 implicitly specified for the file, that declarative procedure will
 be executed.

	If a USE AFTER STANDARD EXCEPTION declarative is not explicitly
 or implicitly specified for the file, the result will be undefined.

	

 After the recognition of an
 end-of-unit of an output file that is contained on more than one
 physical reel/unit, the WRITE statement performs the following
 operations:

 	The standard ending reel/unit procedure.

	The reel/unit swap.

	the standard beginning of reel/unit label procedure.

	

 If you have a fixed length
 record file, where records of different lengths are being redefined, you
 need to be aware that the entire buffer area is written to the file. You
 might, therefore, need to space-fill if the current record is shorter
 than the previous one.

	

 If, during the successful
 execution of a

WRITE statement with the NOT END-OF-PAGE phrase, the end-of-page
 condition does not occur, control is transferred to
 imperative-statement-2 after execution of the input-ouput operation.

 Format 1 (Record

 and Line

 Sequential Files)

 	Both the ADVANCING phrase and the

END-OF-PAGE phrase allow control of the vertical positioning of
 each line on a representation of a printed page.

 If the ADVANCING phrase is not used, automatic advancing is provided
 when output is directed to a list-device (PRINTER or PRINTER-1), to
 act as if the user had specified AFTER ADVANCING 1 LINE. If the

ADVANCING phrase is used, advancing is provided as follows:

 	If identifier-2 is specified, the representation of the printed
 page is advanced the number of lines equal to the current value
 associated with identifier-2.

	If integer is specified, the representation of the printed page
 is advanced in the number of lines equal to the value of integer.

	If mnemonic-name is specified, the representation of the printed
 page is advanced as specified under the SPECIAL-NAMES paragraph.

	If the

BEFORE phrase is used, the line is presented before the
 representation of the printed page is advanced according to rules a,
 b, and c above.

	If the

AFTER phrase is used, the line is presented after the
 representation of the printed page is advanced according to rules a,
 b, and c above.

	If PAGE is specified, the record is presented on the logical page
 before or after (depending on the phrase used) the device is
 repositioned to the next logical page. If the record to be written
 is associated with a record sequential file whose file description
 entry contains a

LINAGE clause, the device is repositioned to the first line
 that can be written on the next logical page as specified in the
 LINAGE clause.

	The phrases ADVANCING PAGE and

END-OF-PAGE must not both be specified in a single

WRITE statement.

 Formats 1, 2, and 3 (Sequential Files)

 	The associated file must be open in the OUTPUT or EXTEND mode at the
 time of the execution of this statement. (See the section The OPEN
 Statement in this chapter.)

	The logical record released by the execution of the WRITE statement
 is no longer available in the record area unless the associated file is
 named in a

SAME RECORD AREA clause or the execution of the WRITE statement
 was unsuccessful due to a boundary violation.

 The logical record is also available

 as a record of other files referenced in the SAME RECORD AREA clause
 as the associated output file, as well as to the file associated with
 record-name.

 Format 2 (Record Sequential Files)

 	

 When the

AFTER POSITIONING phrase is used in a

WRITE statement, the system will move a suitable character into
 the first position of the record before it is written to the file. This
 first character position must be reserved by the user for this purpose.
 If the identifier-2 option is used, then the character moved into the
 output record is simply the value held by identifier-2 and should be one
 of the following:

 	Identifier-2

	Interpretation

	(space)	Single-spacing
	0	Double-spacing
	–	Triple-spacing
	+	Suppress spacing
	1-9	Skip to channel 1-9, respectively
	A, B, C	Skip to channel 10, 11, 12, respectively
	V, W	Pocket select 1 or 2

 If the integer-1 option is used, then the character placed in the
 output record is determined as follows:

 	Integer

	Output Character

	Interpretation

	0	1	Skip to channel 1
	1	(space)	Single-space
	2	0	Double-spacing
	3	–	Triple-spacing

	

 The

END-OF-PAGE phrase, if specified, is documentary and as such is
 never executed.

 Format 3 (Record Sequential Files)

 	

 When an attempt is made
 to write beyond the externally defined boundaries of a sequential file,
 an

 INVALID KEY condition occurs. When the INVALID KEY condition is
 recognized by the COBOL system, the execution of the

WRITE statement is unsuccessful; the contents of the record area
 are unaffected, and the

FILE STATUS data item, if any, of the associated file is set to a
 value indicating the cause of the condition. Execution

 proceeds according to the rules stated in The INVALID KEY Condition in
 this chapter (see also the section I/O Status in this chapter).

 Format 4 (Relative and Indexed Files)

 	The associated file must be open in the OUTPUT, I/O or EXTEND mode at
 the time of execution of this statement; an indexed file must not be
 open in the

I/O mode with sequential access mode. (See the sections The
 FILE-Control Entry and The OPEN Statement in this chapter.)

	The logical record released by the execution of the WRITE statement
 is available in the record area only if the associated file is named in
 a SAME

RECORD AREA clause, or the execution of the WRITE statement is
 unsuccessful due to an INVALID KEY condition.

 The logical record is also available

 as a record of other files referenced in the same

SAME RECORD AREA clause as the associated output file, as well
 as to the file associated with record-name.

	When the INVALID KEY condition is recognized, the execution of the
 WRITE statement is unsuccessful; the contents of the record area are
 unaffected, and the FILE STATUS data item, if any, of the associated
 file is set to a value indicating the cause of the condition. Execution

 proceeds according to the rules stated in The INVALID KEY Condition in
 this chapter (see also the section I/O Status in this chapter).

 Format 4 (Relative Files)

 	When a file is opened in the OUTPUT mode, records can be placed into
 the file by one of the following:

 	If access mode is

sequential, the

WRITE statement will cause a record to be released to the
 operating system. The first record will have a relative record
 number of one and subsequent records released will have relative
 record numbers of 2, 3, 4, If the

RELATIVE KEY data item has been specified in the file control
 entry for the associated file, the relative record number of the
 record just released will be placed into the RELATIVE KEY data item
 by the operating system during execution of the WRITE statement.

	If access mode is

random or

dynamic, the value of the RELATIVE KEY data item must be
 initialized in the runtime element, prior to the execution of the
 WRITE statement, with the relative record number, or be associated
 with the record in the record area. That record is then released to
 the operating system by execution of the WRITE statement.

	When a file is opened in

I/O mode and access mode is random or dynamic, the value of the
 RELATIVE KEY data item must be initialized by the runtime element with
 the relative record number to be associated with the record in the
 record area. Execution of a WRITE statement then causes the contents of
 the record area to be released to the operating system.

	The

INVALID KEY condition exists under the following circumstances:

 	When access mode is random or

dynamic, and the RELATIVE KEY data item specifies a record
 which already exists in the file, or:

	When an attempt is made to write beyond the externally defined
 boundaries of the file.

 Format 4 (Indexed Files)

 	Execution of the WRITE statement causes the contents of the

record area to be released. The operating system uses the
 contents of the

record keys so that subsequent access of the record can be made
 via any of those specified record keys.

	The value of the prime record key should be unique within the records
 in the file.

	The data item specified as the prime record key must be set by the
 runtime element to the desired value prior to the execution of the

WRITE statement.

	If

sequential access mode is specified for the file, records must be
 released to the operating system in ascending order of prime record key
 values.

	If

random or

dynamic access mode is specified, records can be released to the
 operating system in any program-specified order.

	When the

ALTERNATE RECORD KEY clause is specified in the file control
 entry for an indexed file, the value of the

alternate record key can be non-unique only if the

DUPLICATES phrase is specified for that data item. In this case,
 the operating system provides storage of records so that when records
 are accessed sequentially, those records are retrieved in the order in
 which they are released to the operating system.

	The

INVALID KEY condition exists under the following circumstances:

 	When sequential access mode is specified for a file opened in
 OUTPUT mode, and the value of the prime record key is not greater
 than the value of the prime record key of the previous record, or:

	When the file is opened in OUTPUT or

I/O mode, and the value of the prime record key is equal to
 the value of a prime record key of a record already existing in the
 file, or:

	When the file is opened in OUTPUT or I/O mode, and the value of
 an alternate record key for which duplicates are not allowed equals
 the corresponding data item of a record already existing in the
 file, or:

	When an attempt is made to write beyond the externally defined
 boundaries of the file.

	

 Transfer of control
 following the successful or unsuccessful execution of the WRITE
 operation depends on the presence or absence of the INVALID KEY and NOT
 INVALID KEY phrases. (See the section Invalid Key Condition in
 this chapter.)

Copyright © 2000 MERANT International Limited. All rights reserved.

This document and the proprietary marks and names
 used herein are protected by international law.

		Procedure Division - PERFORM - ROLLBACK		Object COBOL Language Extensions	

