Novell
Developer Kit

www.novell.com

‘ VIRTUAL FILE SERVICES
October 17, 2007

Novell.

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to http://www.novell.com/info/exports/ (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2001-2005, 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ (http://www.novell.com/company/legal/patents/) and
one or more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

1 Basic Concepts

1.1
1.2
1.3
1.4

1.5

1.6

1.7

1.8
1.9

2.1

22

23

24

Overview

VFS vs Traditional File System Access.

Virtual File Composition
Cautions.

1.4.1 eDirectory Name Formats.

14.2 Multiple Reade

rsand Writers

143 Maximum Lengths
144 Readand Write Offsets.
145 Client-Side Caching.
1.4.6 Device Sharing e

Partitions

1.5.1 Number of Partitions

15.2 Partition Types

153 Partition IDs and Media Manager Objects.
154 Mirrored Partitions e

1.5.5 Shared Cluster
Pools

1.6.1 Freeze and Thaw Functionality

Volumes............

1.71 Encrypted Volumes

1.7.2 EVS Tests . ..

1.7.3 Console Commandst e

Junctions
Command Definitions .

manage.cmd Definitions

getServerConfiguration (AFP)
setServerConfiguration (AFP) e

Adapter
getAdapterinfo.
listAdapters
Authorize System.
addTrustee.

addContext
addDomainACL
addShare...........
createContextList.
createDomain
deleteDomain.
findContext.

getCreateContextListStatus.

getDomainConfiguration

getimportWindowsUsersStatus e

getServerConfiguration

13

15

15
16
16
17
17
17
17
17
18
18
18
18
19
19
20
20
20
21
21
22
23
24
24
24

27

29
30
31
32
33
35
36
37
39
40
41
43
44
45
47
49
50
51
53
54

Contents

5

6

2.5

26

27

2.8

29

2.10

2.1

getShareProperties. 57

IMPOrtWINAOWSUSEISo e 59
JOINDOMAIN e e 60
leaveDomain. 62
listCoNteXtS 64
listDomainControllers 65
listimportedUsSers 67
IStSNareS 68
modifyContextList. 70
modifyShare e 71
remoVeCONtEXt 73
FEMOVESNAIE 74
setDomainConfiguration. 75
setServerConfiguration. e 77
Deleted Volume 80
CONtINUEStAtE 81
PaUSES ate 83
PUrGEVOIUME . . . o e 85
SalvageVolUME 87
DBVICE. . . . e 90
getDevicelnfoo 91
getDevicelnfo? 94
getPathinfo 98
initializeDeviCe 100
IS DEVICES 102
listDevicePartitions 105
liIStDeVICEPOOISo 106
iStMUItIPaths 107
MOdIfyDEVICE ot 108
multiPath. 110
renNamMEDEVICE 115
SCANDBVICESo 116
DR S . 117
createlink 118
deletelink 121
GetDISGUID . . . e 122
INEDFSGUIDS e 124
MOdifyLiNK . .. 125
readlink 128
SetDISGUID 130
Directory QUOta e 132
addQuota (obsolete). 133
JUNCHION oo 134
createJUNClion 135
deletedunction 137
LSS . o e 139
getlSSINfO . . .o 140
getLSSVolumelnfo 146
Partition e 149
addPartition 150
addPartition2 155
addPartitionToMIrror. e 156
getPartitionInfo e 158
getPartitionMirrorStats 160
listPartitions 162
modifyPartition 167
removePartition 169
removePartitionFromMirror. 171

NDK: Virtual File Services

2.12

2.13

2.14

2.15

2.16

resyncPartitionMirror 173

POl . . e 175
activatePoolSnapshot 176
addPool . . . 177
addPoo0l2 . . . 180
addPoolSnapshot 182
deactivatePoolSnapshot 183
expandPool 184
expandPool2 186
getDefaultClusterNames e 187
getNDSNamMe. 189
getPOOIDEVICES 191
getPooIINfO. . . 192
getPoolSnapshotinfo 198
getstate . . . 200
IStPOOIS 202
listPooISNaPShOts e 205
modifyPoolInfo. e 207
modifyState 209
POOIFrEEZE 211
pPoolFreezeStatus. 213
POOITNAW . . . e 218
remMOVEPOOI . . . o 220
remMOVEPOO0IZ . . 222
removePoolSnapshot e 223
renamePool 224
renamePoolSnapshot 226
RAID . 227
AddRAID . .. 228
addRAIDZ . . . 231
expandRAID 233
remMOVERAID . . . 235
remOVERAID 2 . . . e 237
renameRAID 238
restripeRAID 239
T = 241
getServerFreeSpace 242
liStDeVICES (SEIVEr) . . . oo e 244
listPartitions (Server) e 245
IStPOOIS 248
User Space Restriction 249
browseUserSpaceRestrictions. 250
getUserSpaceRestriction. 252
setUserSpaceRestriction. 254
VDB . . o 256
addVolumeToVLDB e 257
createNeWSeIVICEo 259
deleteService. 261
GetVLDBIN O . .. 263
10adVLDB. 271
IOOKUD . 272
removeVolumeFromVLDB. e 274
replicaAddedToVLDB e 276
replicaRemovedFromVLDB e 278
setVLDBCoNfiguration 280
ShUutdownV LD B 282
StartRepaIr. 283
Star S erVICE 285

Contents

7

8

StOPREpaIr . . .
SIOP S EIVICE. . . o ot e
217 Volume Operations.ttt e
addTraditionalVolume. e
addVolume . . .
expandTraditionalVolume.
getNDSName (VolumMe)
getstate . ..
getTraditionalVolumelnfo
getVolumelnfo e
StVOlUMES . . . e
modifyState. e
modifyVolumelnfo.
FEMOVEU ST . . . o
remoVeVoIUME
renameVolUME e
218 Volume MN Operations i e e e e
changedobState
Createdob . . .o
getJobList . . .o
getdobStatus. e
listSKippedFiles. e

User Commands

browseUserSpaceRestrictions (USer) i
getUserSpaceRestriction (USEr)t e
setUserSpaceRestriction (USer) e

nds.cmd Definitions

4.1 Object Operations.ot
getAttribUte . . .
4.2 Pool Operations
addPool . ..
remOVEPOOI e
4.3 Volume Operations.o
addVolume
remMOVEVOIUME . . .
4.4 User Operationsot

AddUSEr . ..
FEMOVEUS B . . .o

files.cmd Definitions

addQuUOtA.
addTruStee . . . o
getAllEffectiveRIghts e
getFilelnfo . . oo
modifylnheritedRightsFilter e
purgeDeletedFile. e e
remMOVEAITIUSIEES e
FEMOVE T TUSEEE o e
salvageDeletedFile
scanSalvageableFiles

NDK: Virtual File Services

335

336
338
340

343

344
345
346
347
349
351
352
354
356
357
359

setFilelnfo.

FileEvents.xml Definitions

changeEventEpoch
getEFLNameSpacelD.
getlnactiveEpochinterval
lStAIIFIles
listEpochs
listFileEvents
pingEpoch.
removeEventEpoch
resetEventList.
setEFLNameSpacelD.
setlnactiveEpochinterval,
startEventEpoch
stopEventEpoch

Inventory.xml Definitions

NRMServerinventory.xml
Volume_Inventory.xml
Volume_Trustees.xml.

Archive Definitions

8.1 archiveAdmin.cmd Definitions
activatedob.
deactivatedob.
getinfo L
getdobInfo
getLogTimeRange
listdbobNames
qQUEeryLog . ..o
setinfo
startdJob
stopdob
testFilter.

8.2 archive.cmd Definitions
deleteFile.........
getContentVersions
getDirContents. i
getVersions
restoreFile
shutdown

Linux Definitions

activatePoolSnapshot (Linux).
addPoolSnapshot (Linux)
deactivatePoolSnapshot (Linux)..........................
getPoolSnapshotinfo (Linux)
listEvmsVolumes
listPoolSnapshots (Linux). i,

395

396
397
398
399
400
401
402
403
404
405
406
407
408

409

410
414
417

419

420
421
422
423
425
428
429
430
433
435
436
437
438
439
441
444
446
449
451

453

454
455
456
457
459
460

Contents

9

POOIIDTONAME e 462

removePoolSnapshot (LINUX) 463
uidToEquivalentGUIDS e 464
USErIDTONAME e 465
volumelDFileIDToPath 466
volumelDTONamMe 468
10 Advanced Concepts 469
10.1 Transformation Templates i e 469
10.1.1 Datastreams.o 471

10.2 Virtual I/O Commands 472
11 Values 475
111 DEVICE TYPES . oottt e 475
11.2 Enabled Attributes Bits 475
11,3 JOb TYPES . . oot 476
11.4 Mirror Group Statuses e 476
11.5 NSSVolume States 476
11.6 Pool States 477
11,7 POl TYPES . . oot e 477
11.8 State Values. 477
11.9 Traditional Volume States 478
11.10 Volume States e 479
1111 VolUME TYPES. . . oottt e e e 479
12 Functions 481
MGMT_FindFirstElement 482
MGMT_MakeCommandVirtualFile e 483
MGMT_MakeCommandVirtualFileWithHelp 484
MGMT_MakeFunctionVirtualFile. e e 485
VIRT_AddResultData e 486
VIRT_AddResultElement e 487
VIRT_AddRESURTAg ottt e e e e e e 488
VIRT _MakeResultsimportant e 489
VIRT _MakeResultsNormal et e 490
VIRT _ResetResult. e 491
XML_BackwardFindEndTago e 492
XML_findEndOfNonWhiteSpace 493
XML_ForwardFindTag.ot e 494
XML _GetNeXtTag . . . ot et e 495
XML_GetTagElement 496
13 Examples 497
13.1 Creatinga Virtual File. 497
13.2 Accessing a Virtual File with Perl 499
13.21 ReadingaDatastream.......... e 499

13.2.2 Writinga Datastream e e 500

13.2.3 Writinga Command 501

10 NDK: Virtual File Services

A Revision History 503

Contents 11

12 NDK: Virtual File Services

About This Guide

Virtual File Services (VFS) provides methods that allow you to manage services such as Novell®
Storage Services (NSS) and Novell eDirectory™ using standard file system functions. Using VFS
and a scripting or GUI-based interface, you can view the status and statistics for your system and
change the system parameters.

This guide contains the following sections:

¢ “Basic Concepts” on page 15

+ “manage.cmd Definitions” on page 27

¢ “nds.cmd Definitions” on page 343

¢ “files.cmd Definitions” on page 361

+ “FileEvents.xml Definitions” on page 395
+ “Inventory.xml Definitions” on page 409
¢ “Archive Definitions” on page 419

¢ “Linux Definitions” on page 453

¢ “Advanced Concepts” on page 469

¢ “Values” on page 475

+ “Functions” on page 481

+ “Examples” on page 497

¢ “Revision History” on page 503

Audience

This guide is intended for developers interested in using standard file system functions to manage
Novell services.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comment feature at the bottom of each page of the
online documentation.

Additional Information

For the related developer support postings for Virtual File Services, see the Developer Support
Forums (http://developer.novell.com/ndk/devforums.htm).

Documentation Updates

For the most recent version of this guide, see the Virtual File Services NDK page (http://
developer.novell.com/ndk/vfs.htm).

About This Guide

13

http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/vfs.htm

Docuentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™_etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

14 NDK: Virtual File Services

Basic Concepts

Virtual File Services (VFS) provides file system API access to non-file system entities through six
basic file system functions: create, delete, open, close, read, and write.

VFS allows not only the file system, but any service provided by a server to be managed through
simple file system functions. Because Web browsers operate through simple functions, this
functionality opens the ability to have virtual files that generate XML or HTML. Managing your file
system is now as easy as opening your favorite browser and accessing the appropriate files.

You can also create your own virtual files using more advanced features that are discussed in later
sections.

TIP: Use the CDATA element to pass strings that contain special characters. CDATA is an XML
standard, and the information in a CDATA element is not parsed.

The following topics are discussed in this section:

¢ Section 1.1, “Overview,” on page 15

¢ Section 1.2, “VFS vs Traditional File System Access,” on page 16
¢ Section 1.3, “Virtual File Composition,” on page 16

¢ Section 1.4, “Cautions,” on page 17

¢ Section 1.5, “Partitions,” on page 18

¢ Section 1.6, “Pools,” on page 20

¢ Section 1.7, “Volumes,” on page 21

¢ Section 1.8, “Junctions,” on page 24

¢ Section 1.9, “Command Definitions,” on page 24

1.1 Overview

NSS provides a special administration volume—known as the admin volume—that exists on all
servers. This volume uses no disk space and is created at startup time. Using VFS and the services
provided by files that are created on the admin volume, your administrator can potentially control all
server management functions.

At Novell, the NSS team uses VFS to create all of the files on the Admin volume. Using VFS, the
NSS team accepts commands and returns information dynamically. For example, they can use VFS
to read a file that returns the statistics for cache buffer utilization. The contents of that file are
generated in real time. They can also use files on the _Admin volume to control all of their storage
management by sending XML commands and reading the resulting XML stream. Both ConsoleOne
and NORM use this same method to handle their storage needs.

There are three basic virtual files provided with this release:

¢ Admin/manage NSS/manage.cmd
¢ Admin/manage NSS/nds.cmd

¢ Admin/manage OS/setparmcontrol.cmd

Basic Concepts

15

These files are predefined by NSS and support a predefined XML syntax for managing NSS with
basic commands. Since they are predefined, these files cannot be deleted or created.

1.2 VFS vs Traditional File System Access

Normally, you write data to a file with the intention of retrieving it at a later time. The file system
stores your original data to some type of persistent media and ensures that the data returned is the
same data that you originally stored.

Virtual files are treated much like regular files and can be deleted, created, opened, closed, read, and
written. However, virtual files do not contain data and nothing is persistently stored in these files.
Instead, a virtual file is configured at creation with information that tells the file system how to
generate data for read operations and how to process data for write operations.

For example, a virtual file might represent a memory location that contains the amount of memory
to be used in file system caching. When a read is posted to the file, the contents of the memory
location are read, converted to ASCII, and the generated number is used to satisfy the read request.
Data that is written to the file is converted from ASCII into a number and used to change the
contents of the memory location. This process is demonstrated in the following graphic.

Figure 1-1 Virtual File Memory Contents

READ 23"

L1

"Use contents of
CACHE_SIZE™

:

CACHE_SIZE: 123

1.3 Virtual File Composition

A virtual file has both of the following elements:

¢ A behavior definition, which is also known as a Transformation Template (see “Transformation
Templates™ on page 469) and provides instructions to the virtual file system so it can render
virtual data in an appropriate manner

¢ Virtual contents, which is the content generated at the time the file is read

The transformation template (behavior definition) for a virtual file is created by opening the file and
writing a sequence of XML-based commands to the file.

The predefined command files, manage.cmd and nds.cmd, contain predefined transformation
templates, which you should not modify.

How does the system know if you are writing a transformation template or the virtual contents of the
file? The "virtuallO" XML element must be written to the file before you send the transformation
template. This element is used for many virtual file I/O commands on the admin volume and
includes a definition for the behavior of the virtual file.

16 NDK: Virtual File Services

1.4 Cautions

When using virtual files, you should be aware of the following issues:

¢ Section 1.4.1, “eDirectory Name Formats,” on page 17

¢ Section 1.4.2, “Multiple Readers and Writers,” on page 17

*

Section 1.4.3, “Maximum Lengths,” on page 17
Section 1.4.4, “Read and Write Offsets,” on page 17
Section 1.4.5, “Client-Side Caching,” on page 18

*

*

*

Section 1.4.6, “Device Sharing,” on page 18

1.4.1 eDirectory Name Formats

Older XML requires eDirectory™ names in backslash format. For example
\novell inc\novell\prv\nss\randys

However, in VFS, you can enter eDirectory names in any format and it is changed internally to the
backslash format.

You can input names in the following eDirectory container format (with or without the leading dot):

.cn=admin.o=novell

However, container format is not required.

1.4.2 Multiple Readers and Writers

To manage consistency, when virtual reads reference memory or a function, the results are put in a
buffer that is specific to that instance of opening the file. However, this process means that if you
close and reopen a file, the results from any previous commands are no longer accessible.

Also, read operations that start reading at an offset other than zero reference the results buffer
without refreshing it. Read operations at offset zero usually refresh the read information. However,
if it is a function-type datastream that does not specify a read function, you must write to the file to
refresh the data.

1.4.3 Maximum Lengths

The results buffer is initially set to 8K. However, read and write operations can change the size of
the buffer so that responses are limited only by the amount of free memory that is available.

The transformation template is compiled at the time it is written to the file and held in memory.
Generally, the template does not use very much memory. However, "data" type datastreams can
consume more memory than is initially set.

1.4.4 Read and Write Offsets

Because you are writing the virtual /O commands to a file, by default the offset of any following
read and write operations is set to occur just past the data that was supposedly written. VFS tracks
the length of the virtual commands and adjusts the offset so that any suceeding read and write
operations appear to start at offset zero.

Basic Concepts

17

You must be careful when you seek to an offset other than zero in a virtual file since the offset might
not be where you expected it.

The file system examines incoming offsets. As long as these offsets are greater than the length of the
original virtual I/O command, they are adjusted to account for that length. However, if an offset is
ever less than the length of the virtual I/O command, the file system assumes that a seek has been
performed and no longer makes an adjustment. All future seek operations to location zero start at the
front of the data being rendered by the virtual file and all subsequent seek operations start at the
actual position in the result buffer.

If you are going to read from a file without closing and reopening it, you should seek to location
zero after writing to the same file.

1.4.5 Client-Side Caching

Due to the dynamic results of virtual files, no client-side caching should be performed on virtual
files.

Any oplock requests are rejected for virtual files.

1.4.6 Device Sharing

If a device is shareable and you intend to use it in a cluster, you must manually mark the state of the
device as shared (because Novell Storage Services (NSS) cannot automatically detect the intended
use of a device). By marking a device "shared," all partitions, NSS storage pools, and NSS logical
volumes created on that device are automatically marked "shareable for clustering."

1.5 Partitions

Before using any of the partition operations listed in “Partition” on page 149, you should have a
basic understanding of the following topics that explain how partitions work on NetWare®:

¢ Section 1.5.1, “Number of Partitions,” on page 18

*

Section 1.5.2, “Partition Types,” on page 19

*

Section 1.5.3, “Partition IDs and Media Manager Objects,” on page 19

*

Section 1.5.4, “Mirrored Partitions,” on page 20

*

Section 1.5.5, “Shared Clustering Partitions,” on page 20

1.5.1 Number of Partitions

A disk can be divided into a maximum of four partitions, which is the same rule that NetWare
follows with versions prior to NetWare 6.0. Starting with NetWare 6.0, the NetWare media manager
abstracts NetWare partitions to include one additional level so that a single physical NetWare
partition can contain an unlimited number of virtual NetWare partitions.

When you use the XML commands for “Partition” on page 149, each virtual NetWare partition
appears as a real physical partition. Only when you are examining the disk by using a DOS-based
partition management utility can you see that there is actually one physical partition.

18 NDK: Virtual File Services

1.5.2 Partition Types

NetWare supports multiple partition types. Some of these types can be managed by the XML
commands in “Partition” on page 149, while other types are merely recognized by the listPartitions
(page 162) command.

The following partition types can be created and/or managed by XML commands:

Type 0 (0x00) -- Free Space Partition type
This partition type is not actually a real partition. It is used in the listPartitions (page 162)
command to represent any unpartitioned free space that exists on a device.

Type 101 (0x65) -- Traditional NetWare Partition type
This type of partition is used by the traditional NetWare file system. Traditional NetWare
volumes contain one or more partitions (or pieces of partitions) of this type.

Type 105 (0x69) -- NSS Partition type
This type of partition is used by the NSS file system. NSS pools contain one or more partitions
of this type.

Type 207 (0xCF) -- Virtual Device Partition type

This type of partition is used by the media manager to construct virtual RAID devices. A
partition that is created with this type appears to the file system as a device that can be added
into a software RAID configuration.

All other partition types, such as DOS type 4 or type 6 partitions, and clustering SBD partitions
show up in the partition list returned by the listPartitions (page 162) command. However, these
types cannot be managed in any other way using the XML commands.

1.5.3 Partition IDs and Media Manager Objects

A partition ID is a number that is automatically assigned to a partition by the media manager when a
NetWare server is booted. The ID for a partition is not guaranteed to be the same number each time
the server is booted.

The NetWare media manager maintains an in-memory database of all disk-related objects
(including, but not limited to, adapters, devices, physical partitions, HotFix objects, and mirror
objects). Every object in this database has a media manager ID that is assigned at boot time.

If a partition is used with mirroring, it has three different media manager objects that can be used to
manage it:

¢ A physical partition ID, which represents the raw physical partition

+ A logical HotFix partition ID

¢ A logical mirror group partition ID
With NetWare 6.0, a HotFix (bad block redirection) area is also required in order to implement
mirroring, so the media manager maintains a HotFix object for the partition as well. This HotFix

object has a "logical" HotFix partition ID, which is unique and is different from the "physical"
partition ID.

Each mirror group (group of partitions that are mirrored to each other) is also represented by another
media manager object that has a "logical" mirror group partition ID.

Basic Concepts

19

If two partitions are mirrored to each other, both have unique and separate physical partition IDs and
logical HotFix partition IDs, but they share a single logical mirror group partition ID.

When you create an NSS pool or a traditional NetWare volume, you must specify the ID of the
partition to be added. For the XML commands, you should always use the most abstract ID of the
partition. For example, if the partition does not support HotFix and mirroring, the most abstract ID is
the physical partition ID.

However, if the partition has a HotFix and mirror group object, you should use the logical partition
ID. (A single mirror group object can represent multiple physical partitions that are mirrored to each
other. The only unique way to represent creating a pool or volume on the mirrored group of
partitions is to specify the partition ID that represents the entire mirror group.)

1.5.4 Mirrored Partitions

In order to mirror two partitions together, both partitions must have HotFix and Mirror objects. Both
partitions must also have identical data sizes. If a partition is too big or too small to mirror to another
partition, the data size of the partition can be controlled by increasing or decreasing the size of the
HotFix area so that the data sizes are identical. A partition's HotFix area can be from 200-245,760
sectors.

When you create a partition, you can create it in its own standalone mirror group so that it can be
combined with other partitions at a later time. You can also create a partition and add it directly to an
existing mirror group.

1.5.5 Shared Clustering Partitions

When you create a partition on a device that is marked as "shareable for clustering," the partition
inherits that state from the device. Operations that create and delete partitions check the "shareable
for clustering" state of the device and require that the clustering software be loaded and operational
before allowing the partition deletion or creation on such devices.

The ignoreShareState element can be specified on these operations to prevent the state from being
checked for clustering.

1.6 Pools

Before you create any NSS logical volumes, you must first create an NSS storage pool on which to
place the volumes. The commands in “Pool” on page 175 create, delete, and manipulate NSS
storage pools. For information about freezing and thawing pools and why this functionality is useful,
see “Freeze and Thaw Functionality” on page 21.

Prior to NetWare 6.0, all volumes were directly associated with physical storage. With NetWare 6.0
and later, the physical storage is separated from the volumes, and NSS storage pools now exist.

An NSS storage pool is a group of one or more NSS partitions, while an NSS volume is a logical
entity that contains user data and is assigned to reside on an NSS pool. The location of an NSS
logical volume is not physically tied to a specific NSS storage pool, and a single NSS storage pool
can contain multiple NSS logical volumes.

How you design an NSS logical volume allows it to be migrated from one pool to another and
allows it to be replicated across multiple NSS storage pools on different servers.

20 NDK: Virtual File Services

1.6.1 Freeze and Thaw Functionality

The freeze and thaw functions (see poolFreeze (page 211), poolFreezeStatus (page 213), and
poolThaw (page 218)) help you ensure all the data in your pool is consistent. For example, a
snapshot NLM can freeze and thaw a pool to ensure that snapshots contain consistent data for
snapshot and server applications.

You must register your application to receive the two following events, which inform your
application when to freeze and when to thaw:

* “NSS.PoolFreeze” on page 21
¢ “NSS.PoolThaw” on page 21

These events are not consumable. You cannot call file system functions during the event, and you
must return quickly (in less than half a second) so that other applications can be notified. Most of the
work to ensure that data is synchronized and consistent is performed on an application thread and
not during an event.

NSS does not prevent multiple freezes from occurring at the same time on a specific server.
However, NSS prevents multiple freezes on the same pool at the same time.

NSS.PoolFreeze

The NSS.PoolFreeze event notifies your application that another application wants to synchronize
all the data on a specific pool. If the freeze cannot happen quickly, your event handler must start up
a thread to finish the work.

Your application must then synchronize all its data on all volumes in the specified pool. This data
must remain consistent until your application receives the NSS.PoolThaw event.

To receive a list of all volumes in a pool, call getPoollnfo (page 192). To receive a list of pools on a
specified server, call listPools (page 202). To retrieve the pool that a specified volume is in, call
getVolumelnfo (page 304).

NSS.PoolThaw

The NSS.PoolThaw event notifies your application that you can thaw your data on the specified
pool. If the thaw cannot happen quickly, your event handler must start up a thread to finish the work.

Once your application returns from handling the NSS.PoolThaw event, you can receive another
NSS.PoolFreeze event on the same pool.

1.7 Volumes

For additional information about Volumes, see the following subsections:

¢ Section 1.7.1, “Encrypted Volumes,” on page 22
¢ Section 1.7.2, “EVS Tests,” on page 23

¢ Section 1.7.3, “Console Commands,” on page 24

The commands listed in “Volume Operations” on page 288 can be called to manipulate both NSS
logical volumes and traditional NetWare volumes.

Basic Concepts

21

NSS logical volumes reside inside of NSS storage pools. Instead of being assigned to occupy an
exact amount of physical space, they are assigned a maximum quota size. This size can be a specific
amount, or it may be limited by the size of the available space in the NSS storage pool. An NSS
logical volume can grow to be as big as its assigned quota, but it occupies only as much physical
space in the NSS storage pool as is needed to store the current data that is owned by the volume.

NSS logical volumes can be in one of the following states:

¢ deactive — Indicates that the volume is not currently activated or is not currently available for
use.

¢ active — Indicates that the volume is currently activated and is available for use by the File
System Services (64-Bit) (http://developer.novell.com/wiki/index.php/
File System_ Services %2864-Bit%29).

+ mounted — Indicates that the volume is currently activated and is also mounted by the
traditional NetWare file system. A volume in this state can be accessed by the traditional
NetWare file system APIs and NCPs and the 64-Bit File System Services functions.

NOTE: The XML commands do not report a dismounted state. If an NSS logical volume is active
but not currently mounted, it is in the "active" state.

Traditional NetWare volumes exist in, and are managed by, the traditional NetWare file system.
Traditional volumes directly consume physical partitions or portions of physical partitions. These
volumes can be in only a mounted or dismounted state and cannot be accessed using the 64-Bit File
System Services functions. However, they can be accessed using the traditional file system APIs and
NCPs (see the documentation for NetWare Core Protocols (http://developer.novell.com/wiki/
index.php/Category:Novell _Developer Kit Unsupported)).

1.7.1 Encrypted Volumes

Encrypted Volume Support (EVS) is available in NetWare 6.5 SP2 and later.

EVS provides a mechanism to store user data in an encrypted form on NSS volumes while
continuing to use most applications, NLMs, and backup utilities that currently work with NSS.

The basic feature set and internal operations of EVS is as follows:

¢ Any NSS volume (with the exception of the sys volume) can be designated an encrypted
volume at the time it is created. The encrypted volume attribute remains with the volume
throughout its existence. A volume cannot be later converted to be an unencrypted volume once
it is designated as encrypted. The encryption functionality must be designated at the time it is
created.

¢ Currently, only NSSMU version 3.20, build 940 or later can be used to encrypt a volume. At
volume creation time, NSS prompts you to designate the volume as encrypted. If encryption is
selected, NSS prompts you for a password and accepts the designation. Passwords can be any
character string 16 characters or less in length.

¢ When a password is detected, NSS consults with the NICI libraries to generate a 128-bit AES
key that remains associated with the volume. The password is then used to wrap the key and
other volume-specific cryptographic information into 128-byte packages that are persistently
stored in two locations in NSS. The primary location is in the volume data block. The second
location is in the volume locator beast. One the password is used to wrap the cryptographic

22 NDK: Virtual File Services

http://developer.novell.com/wiki/index.php/File_System_Services_%2864-Bit%29
http://developer.novell.com/wiki/index.php/File_System_Services_%2864-Bit%29
http://developer.novell.com/wiki/index.php/Category:Novell_Developer_Kit_Unsupported

data, the password is deleted from memory; and the volume is marked with the encrypted
attribute (which is part of the volume-specific persistent data).

+ When a volume is activated, its persistent data is loaded from the volume data block. If the
volume has the encrypted attributed, a memory list of volume names and keys is consulted to
see if this volume has a known key. If the key is present, it's used. If the key is not present, the
list of volumes and passwords is consulted. If a password is available, it is used to unwrap the
key from the persistent data and the new key is added to the volume and key list.

+ Once the encrypted volume is activated, all encryption operations are transparent to file system
applications that call file I/O functions. Data that is written to files is held in cache until the
time that the data is normally written. At the time the data is physically written, the data is
encrypted to a temporary write buffer, which is then delivered to the lower-level zlss function.
After the data is written, the buffer is returned to an available list and the clear-text data
remains in the cache. During reads, the cache is consulted to determine if a requested block is
already in memory. If it is in memory, the clear-text data is transferred. If the requested block is
not in cache, a physical read request is made, with the read being directed to a temporary buffer.
After the read completion (but before control is returned to the calling function), the encrypted
data in the temporary buffer is decrypted into a cache buffer, and the temporary buffer is
assigned back to an available list. The read then proceeds as usual, and the clear-text data is
made available to all future requestors.

+ To see new XML tags and volume attributes that were added to accomodate EVS, see
¢ addVolume (page 293)
+ getVolumelnfo (page 304)
+ modifyVolumelnfo (page 317)

Because direct I/O to an encrypted volume bypasses the encryption engine and potentially allows a
mix of encrypted and non-encrypted data on the same volume, you should avoid it.

Encrypted volumes increment the media major version number when a volume is created, so that
encrypted volumes cannot be activated by releases prior to NetWare 6.5 SP2. The volume cannot be
rolled back from SP2 to SP1. If you attempt such a rollback, the volume fails to activate and you
won't be able to repair the pool. To effectively rollback an encrypted volume, the system
administrator must move the user data off the encrypted volume. For example, by backing up a
volume to volume copy.

If you archive files from an encrypted volume to a unencrypted volume, those files are stored in an
non-encrypted state. If you want files to be archived in an encrypted state, the destination path for
your archive manager must be on an encrypted volume.

1.7.2 EVS Tests

When testing an encrypted volume, use all the tests available for testing any other volume.
Encryption should be transparent above the physical read/write layer of zlss, so applications should
run without any changes. All the rules of rights, trustees, ownership, sharing, visibility, locking,
transactions, restrictions, etc., remain the same. The only noticeable difference between encrypted
and non-encrypted volumes during run time is that encrypted volumes run slower.

Basic Concepts

23

1.7.3 Console Commands

You can manipulate EVS using nssmu.nlm and iManager. You can also use console command lines
to display a volume's status and to activate or mount and deactivate or dismount encrypted volumes.
Some example console command contexts follow:

MYSERVER:NSS /activate=MYVOLUME:volPasswordXYZZY
MYSERVER:NSS /volumeActivate=MYVOLUME:volPasswordXYZZY
MYSERVER:NSS /activate=MYVOLUME

The last console command is followed by a prompt to enter an encrypted volume password.

If an encrypted volume has been activated after the server is brought up, no further passwords are
required.

Note that it is not permissible to activate encrypted volumes using ALL as the volume name.

The status of an encrypted volume can be displayed using the following console command:
NSS /volumes

1.8 Junctions

For NetWare 6.5 SP1 and later, Virtual File Services supports junctions.

For each junction operation, the Ul must generate the file data. However, a generic link file format
has been defined that allows for a junction link file. The UI doesn't need to know the file format.

Whenever an ndsObject element is used, a fully distinguished, untyped name is expected. This name
can include a leading dot and trailing tree name, but they are not necessary. If the tree name is
omitted from the ndsObject element, it can be specified in the tgtTree element.

The following operations support junctions:

¢ createLink (page 118)
¢ deleteLink (page 121)
¢ readLink (page 128)

1.9 Command Definitions

This documentation provides the XML element definitions for manage.cmd and nds.cmd.
The following abbreviations are used to indicate if the element is

¢ Opt for optional. This is not a required element.
¢ Req for required. This element is required and is not optional.
+ Rpt for repeating. You can include as many of these elements as you need.
To present XML elements as succinctly as possible, the end tags for various elements are not shown.

When you use these elements, however, you must add an appropriate value and the end tag, as
shown in the following examples:

The poolName element is often documented as
<poolName> <!-- The name of the volume's pool -->

24 NDK: Virtual File Services

However, to indicate the SYS pool in the poolName element, you need to substitute the following
line:
<poolName>SYS</poolName>

The value attribute of the nameSpaces element is often documented as
<nameSpaces value=" ">

To indicate a volume that supports the four basic namespaces, substitute the following line:
<nameSpaces value="23">DOS Long Macintosh Unix</nameSpaces>

Note that white space and new lines were added to the all examples for readability.

Basic Concepts 25

26 NDK: Virtual File Services

manage.cmd Definitions

Use the following path name to open the manage.cmd file:

_Admin/Manage NSS/manage.cmd

Every time you open the manage.cmd file (and before you send other commands), you must write
the following sequence to the file:

<virtualIO><datastream name="command"/></virtualIO>

This sequence notifies manage.cmd that you are ready to write XML commands and read the XML
responses to those commands.

Every command is wrapped with either nssRequest or nssReply elements, as shown in the following
examples:

<nssRequest>

<afp>
<getServerConfiguration>
</afp>

</nssRequest>

<nssReply>

<afp>
<getServerConfiguration>
<isOnline>
<result value=" ">
<description/>
</result>
</getServerConfiguration>
</afp>

</nssReply>

This section contains definitions for the following command categories:

*

Section 2.1, “AFP,” on page 29

Section 2.2, “Adapter,” on page 32

Section 2.3, “Authorize System,” on page 36
Section 2.4, “CIFS,” on page 39

Section 2.5, “Deleted Volume,” on page 80
Section 2.6, “Device,” on page 90

Section 2.7, “DFS,” on page 117

Section 2.8, “Directory Quota,” on page 132
Section 2.9, “Junction,” on page 134
Section 2.10, “LSS,” on page 139

Section 2.11, “Partition,” on page 149
Section 2.12, “Pool,” on page 175

Section 2.13, “RAID,” on page 227

Section 2.14, “Server,” on page 241

manage.cmd Definitions

27

*

Section 2.15, “User Space Restriction,” on page 249
Section 2.16, “VLDB,” on page 256
Section 2.17, “Volume Operations,” on page 288

*

*

*

Section 2.18, “Volume MN Operations,” on page 326

28 NDK: Virtual File Services

21 AFP

This section contains the following AFP commands:

+ “getServerConfiguration (AFP)” on page 30
+ “setServerConfiguration (AFP)” on page 31

Each command is wrapped with either the nssRequest or nssReply element and the afp element.

manage.cmd Definitions 29

getServerConfiguration (AFP)

Returns AFP configuration information for the server.

Request

<getServerConfiguration>

Reply

<getServerConfiguration>
<isOnline>
<result value=" ">
<description/>
</result>
</getServerConfiguration>

Elements

isOnline

(Optional) Specifies that AFPTCP is currently loaded and online.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

30 NDK: Virtual File Services

setServerConfiguration (AFP)

Adds a trustee with the specified rights.

Request

<setServerConfiguration>
<isOnline enabled = "">
</setServerConfiguration>

Reply

<setServerConfiguration>
<result value=" ">
<description/>
</result>
</setServerConfiguration>

Elements

isOnline

(Optional)

result

Specifies a zError or eDirectory error value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

enabled

Indicates whether AFP is enabled:

yes AFPSTRT.NCF is added to AUTOEXEC.NCF and the AFP NLMs are loaded.

no AFPSTRT.NCEF is removed from AUTOEXEC.NCF and the AFP NLMs are unloaded

from the server

manage.cmd Definitions

31

2.2 Adapter

This section contains the following Adapter commands:

¢ “getAdapterInfo” on page 33
+ “listAdapters” on page 35

Each command is wrapped with either the nssRequest or nssReply element and the adapter element.

32 NDK: Virtual File Services

getAdapterinfo

Returns information about the adapter that was passed in. This command is implemented only on
NetWare and not on Linux.

Request

<getAdapterInfo>

Reply

<adapterInfo>

<adapterID/>

<adapterName/>

<adapterDriverID/>

<adapterDriverName/>

<adapterNumber/>

<adapterSlot/>

<adapterSubSystemID/>

<adapterInterruptInfo>
<adapterInterrupt/>

</adapterInterruptInfo>

<adapterDMAInfo>
<adapterDMAChannel/>

</adapterDMAInfo/>

<adapterMemoryInfo>
<adapterMemoryPhysicalAddress/>
<adapterMemoryPhysicalLength/>
<adapterMemoryVirtualAddress/>

</adapterMemoryInfo>

<adapterSupportedTargetIDs/>

<adapterSupportedUnitNumbers/>

<adapterCardTargetID/>

<adapterFlags/>

<adapterType/>

</adapterInfo>

Elements

adapterInfo

Occurs once.

adapterName

Specifies the name of the adapter.

adapterDriverID

Specifies the adapter's driver ID that was assigned by Novell® for the driver associated with
this adapter.

adapterDriverName

Specifies the name of the driver that is operating the adapter.

manage.cmd Definitions 33

34

adapterNumber

Specifies the number assigned by the 1O subsystem that defines an instance of the adapter.

adapterSlot
Specifies the slot or Hardware Interface Number (HIN) that is assigned to the adapter.

adapterSubSystemID

(Optional) Specifies the ID of the 10 subsystem that created and manages the adapter. This ID
is displayed only if the subsystem ID is NWPA or CIOS.

adapterInterruptInfo

(Optional) Specifies the adapter interrupt information.

adapterInterrupt

Specifies the primary and secondary interrupts that are associated with the adapter.

adapterDMAInfo
(Optional) Specifies the adapter DMA channel information.

adapterDMAChannels
Specifies the primary and secondary DMA channels that are used with the adapter.

adapterMemorylInfo

(Optional) Specifies the adapter's physical and virtual memory information.

adapterMemoryPhysicalAddress

Specifies the physical address of the primary and secondary memory addresses.

adapterMemoryPhysicalLength
Specifies the length of the adapterMemoryPhysicalAddress element.

adapterMemoryVirtualAddress

Specifies the virtual address that is associated with the physical memory address.

adapterSupportedTargetIDs
(Optional) Specifies the number of target IDs that are supported by the adapter.

adapterSupportedUnitNumbers
(Optional) Specifies the number of unit numbers that are supported by the adapter.

adapterCardTargetID
(Optional) Specifies the target ID that the adapter supports.

adapterFlags
(Optional) Specifies any flags adapter is Instance_Unloaded Support.

adapterTypes
(Optional) Specifies the type of the adapter (or the adapter's ID):

SCSI
IDB-ATA

NDK: Virtual File Services

listAdapters

Returns a list of all of a server's adapters. This command is implemented only on NetWare and not
on Linux.

Request

<listAdapters>

Reply

<listAdapters>
<adapterInfo>
<adapterID/>
<adapterName/>
</adapterInfo>
</listAdapters>

Elements

adapterInfo

Repeats for each physical or RAID device or mirror group listed.

adapterID
Specifies the adapter's ID.

adapterName

Specifies the name of the adapter.

manage.cmd Definitions 35

2.3 Authorize System

This section contains the following Authorize System commands:
¢ “addTrustee” on page 37

Each command is wrapped with either the nssRequest or nssReply element and the authorizeNW
element.

36 NDK: Virtual File Services

addTrustee

Adds a trustee with the specified rights. This is an outdated version for adding trustee rights. It
works okay, but it can be used only by the administrator and is strict about the way object names are

specified. Use addTrustee (page 363) instead.

Request

<addTrustee>
<name/>
<context/>
<rights/>
<fileName/>

</addTrustee>

Reply

<addTrustee>
<result wvalue=" ">
<description/>
</result>
</addTrustee>

Elements

name

(Required) Specifies the name of the user.

context

(Required) Specifies the eDirectory context for the user name, including the tree name.

rights

(Required) Specifies a string of characters that represents the NetWare® trustee rights mask,

where each character is a specific granted right:

a access control

Cc create

e delete (or erase)
f view (or file scan)
m modify

r read

W write

S supervisor

For example, to grant read, write, and file scan access, use
<rights>rwf</rights>

fileName

(Required) Specifies the target file name (including the volume).

manage.cmd Definitions

37

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

<addTrustee>
<name>test</name>
<context>novell.T=MYTREE</context>
<rights>rfce</rights>
<fileName>SYS:data/text.txt</filename>
</addTrustee>

38 NDK: Virtual File Services

2.4 CIFS

This section contains the following CIFS commands:

¢ “addContext” on page 40

¢ “addDomainACL” on page 41

¢ “addShare” on page 43

+ “createContextList” on page 44

¢ “createDomain” on page 45

¢ “deleteDomain” on page 47

+ “findContext” on page 49

+ “getCreateContextListStatus” on page 50
+ “getDomainConfiguration” on page 51
+ “getlmportWindowsUsersStatus” on page 53
+ “getServerConfiguration” on page 54
+ “getShareProperties” on page 57

+ “importWindowsUsers” on page 59

¢ “joinDomain” on page 60

¢ “leaveDomain” on page 62

+ “listContexts” on page 64

+ “listDomainControllers” on page 65

+ “listimportedUsers” on page 67

¢ “listShares” on page 68

+ “modifyContextList” on page 70

+ “modifyShare” on page 71

+ “removeContext” on page 73

+ “removeShare” on page 74

+ “setDomainConfiguration” on page 75

+ “setServerConfiguration” on page 77

Each command is wrapped with either the nssRequest or nssReply element and the cifs element.

manage.cmd Definitions 39

addContext

Adds an eDirectory context to the CIFS user context search list.

Request

<addContext>
<context/>
</addContext>

Reply

<addContext>
<result wvalue=" ">
<description/>

</result>

</addContext>

Elements

context

Specifies the eDirectory name (in typeless, distinguished-name format) of the user context to
add.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

40 NDK: Virtual File Services

addDomainACL

Adds an eDirectory ACL for the specified domain at the specified context. This ACL gives rights to
the domain's controller group to be able to work with users from a different part of the eDirectory
tree. The ACL gives read/write privileges to the CIFS Login Script and RID attributes in user,
group, container, and profile objects, which allows the controllers to manipulate these attributes at
the specified context and below it in the tree.

Request

<addDomainACL>
<domain/>
<context/>
<unp/>
<user/>
<password/>

</addDomainACL>

Reply

<addDomainACL>
<result value=" ">
<description/>
</result>
</addDomainACL>

Elements

domain
Specifies the eDirectory name (in typeless, distinguished-name format) of the domain object
that represents the domain for which an ACL is to be added.

context
Specifies the eDirectory name (in typeless, distinguished-name format) of the tree context
where the ACL is to be added.

unp
(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user
(Optional) Specifies the clear-text user name of a user that has rights to perform the operation.
This element is used only if the unp element is not specified.

password
(Optional/Required if user is specified) Specifies the clear-text password of a user that has
rights to perform the operation.

result

Specifies a zError or eDirectory value or 0 (for no error).

manage.cmd Definitions

4

description

Specifies a text description of the result.

42 NDK: Virtual File Services

addShare

Creates a CIFS share on the server.

Request

<addShare>
<server/>
<tree/>
<shareName/>
<pathName/>
<comment/>

</addShare>

Reply

<addShare>
<result wvalue=" ">
<description/>
</result>
</addShare>

Elements

server

(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object
within the current tree). The default is the eDirectory object for the physical server.

tree
(Optional) Specifies the name of the eDirectory tree that contains the server. The default is the
tree of the physical server.

shareName

Specifies the NetBios name to give to the new share.

pathName

Specifies the full path of the new share. For example, sys:/system.

comment

(Optional) Specifies a description of the new share.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions

43

createContextList

Begins the process of automatically generating the CIFS user context search list.

Request

<createContextList/>

Reply

<createContextList>
<result wvalue=" ">
<description/>
</result>
</createContextList>

Elements

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

44 NDK: Virtual File Services

createDomain

Creates a new CIFS PDC domain in the eDirectory tree and designates the specified server as the
starting PDC.

Request

<createDomain>
<server/>
<context/>
<domainName/>
<comment/>
<unp/>
<user/>
<password/>

</createDomain>

Reply

<createDomain>
<result wvalue=" ">
<description/>
</result>
</createDomain>

Elements

server
(Optional) Specifies the distinguished name of the eDirectory server object (must be a fully
distinguished name with a leading dot before the object name and a trailing dot after the tree
name or an identifier of the object within the current tree). The default is the eDirectory object
for the physical server.

context
Specifies the eDirectory name (in typeless, distinguished-name format) of the tree context
where the domain object is to be created.

domainName

Specifies the name of the new domain.

comment

(Optional) Specifies any descriptions or text strings relevant to the domain.

unp

(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user

(Optional) Specifies the clear-text username of a user that has rights to perform the operation.
The user element is present only if the unp element is not specified.

manage.cmd Definitions

45

password

(Optional) Specifies the clear-text password of a user that has rights to perform the operation.
The password element is present only if the unp element is not specified.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

46 NDK: Virtual File Services

deleteDomain

Creates a new CIFS PDC domain in the eDirectory tree and designates the specified server as the
starting PDC.

Request

<deleteDomain>
<server/>
<domain/>
<unp/>
<user/>
<password/>

</deleteDomain>

Reply

<deleteDomain>
<result wvalue=" ">
<description/>
</result>
</deleteDomain>

Elements

server
(Optional) Specifies the distinguished name of the eDirectory server object (must be a fully
distinguished name with a leading dot before the object name and a trailing dot after the tree
name or an identifier of the object within the current tree). The default is the eDirectory object
for the physical server.

domain
Specifies the eDirectory name (in typeless, distinguished-name format) of the new domain
object that represents the domain to be added.

unp
(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user
(Optional) Specifies the clear-text username of a user that has rights to perform the operation.
The user element is present only if the unp element is not specified.

password

(Optional/Required if user is specified) Specifies the clear-text password of a user that has
rights to perform the operation. The password element is present only if the unp element is not
specified.

result

Specifies a zError or eDirectory value or 0 (for no error).

manage.cmd Definitions

47

description

Specifies a text description of the result.

48 NDK: Virtual File Services

findContext

Finds a context in the CIFS user context search list.

Request

<findContext>
<context/>
</findContext>

Reply

<findContext>
<result wvalue=" ">
<description/>
</result>
</findContext>

Elements

context

Specifies the eDirectory name (in typeless, distinguished-name format) of the user context to

locate.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions

49

getCreateContextListStatus

Returns the status of the createContextList (page 44) command.

Request

<getCreateContextListStatus>

Reply

<getCreateContextListStatus>
<status/>
<state>
<lastCompletionTime/>
</status>
<result value=" ">
<description/>
</result>
</getCreateContextListStatus>

Elements

state

Specifies the state of the context:

running
notRunning

lastCompletionTime

Specifies a string representation of the UTC last completion time.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

50 NDK: Virtual File Services

getDomainConfiguration

Returns the CIFS configuration information for the domain.

Request

<getDomainConfiguration>
<domain/>
<unp/>
<user/>
<password/>
</getDomainConfiguration>

Reply

<getDomainConfiguration>
<domainName/>
<comment/>
<pdc/>
<group/>
<sid/>
<nextRID/>
<epoch/>
<result value=" ">
<description/>
</result>
</getDomainConfiguration>

Elements

domain
(Optional) Specifies the distinguished name of the eDirectory domain object (must be a fully
distinguished name with a leading dot before the object name and a trailing dot after the tree
name or an identifier of the object within the current tree). The default is the domain object that
is associated with the CIFS server that is being talked to.

unp
(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user
(Optional) Specifies the clear-text username of a user that has rights to perform the operation.
The user element is present only if the unp element is not specified.

password

(Optional/Required if user is specified) Specifies the clear-text password of a user that has
rights to perform the operation. The password element is present only if the unp element is not
specified.

manage.cmd Definitions

domainName

Specifies the NetBios name that was advertised by the domain.

comment

(Optional) Specifies any description of text associated with the domain.
pdc

Specifies the distinguished name of the PDC server object.
group

Specifies the DN of the domain controller group object.
sid

Specifies the SID for the domain.
nextRID

Specifies the next RID value that is not reserved yet.
epoch

Specifies the epoch number for this domain.
result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

52 NDK: Virtual File Services

getimportWindowsUsersStatus

Returns the status of the ImportWindowsUsers command.

Request

<getImportWindowsUsersStatus>

Reply

<getImportWindowsUsersStatus>
<status>
<state/>
<lastCompletionTime/>
</status>
<result value=" ">
<description/>
</result>
</getImportWindowsUsersStatus>

Elements

state

Specifies the state:

running
notRunning

lastCompletionTime

Specifies the string representation of the UTC last completion time.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions

53

getServerConfiguration

Returns CIFS configuration information for the server.

Request

<getServerConfiguration>
<server/>
<tree/>
</getServerConfiguration>

Reply

<getServerConfiguration>
<cifsServerName/>
<comment/>
<winsIPAddress/>
<authMode/>
<groupName/>
<pdcName/>
<pdcIPAddress/>
<attachIPAddresses>
<ipAddress/>
</attachIPAddresses>
<isVirtual/>
<isOnline/>
<dfs/>
<oplocks/>
<loginScripts/>
<shareVolsByDefault/>
<domain/>
<beginRID/>
<endRID/>
<result value=" ">
<description/>
</result>
</getServerConfiguration>

Elements

server

(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object
within the current tree). The default is the eDirectory object for the physical server.

tree

(Optional) Specifies the name of the eDirectory tree that contains the server. The default is the
tree of the physical server.

54 NDK: Virtual File Services

cifsServerName

Specifies the NetBios name advertised by the server.

comment

(Optional) Specifies a text string associated with the CIFS server.

winsIPAddress
(Optional) Specifies the WINS server IP address in dotted ASCII notation. For example,
137.65.67.72.
authMode
Specifies the authentication mode:
local
domain

domainMember
domainController

The domain mode means the domain pass-through mode.

groupName

Specifies the workgroup (if in local mode) or the domain name.

pdcName

Specifies the NetBios name of the primary domain controller. Optional if the mode element
specifies local, domainMember, or domainController.

pdcIPAddress

Specifies the IP address (in dotted ASCII notation) of the primary domain controller. Optional
if the mode element is local, domainMember, or domainController.

attachIPAddresses

(Optional) Specifies the attach IP addresses that are currently assigned to the server.

isVirtual

(Optional) Specifies that the server is a cluster virtual server.

isOnline

(Optional) Specifies that the server is currently loaded and online.

dfs
(Optional) Specifies that CIFS is enabled for distributed file system support.

oplocks
(Optional) Specifies that CIFS is enabled for Oplocks support.

loginScripts
(Optional) Specifies that CIFS is enabled for login script support.

manage.cmd Definitions

55

shareVolsByDefault

(Optional) Specifies that the server exports all mounted volumes as shares by default. The
server also exports any explicitly defined shares.

domain

(Optional) Specifies the distinguished name of the domain object. Valid only if the mode
element is domainController or domainMember.

beginRID

(Optional) Specifies the beginning value in the range of reserved RID values for a domain
controller. Valid only if the mode element is domainController.

endRID

(Optional) Specifies the ending value in the range of reserved RID values for a domain
controller. Valid only if the mode element is domainController.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

56 NDK: Virtual File Services

getShareProperties

Returns CIFS configuration information for the server.

Request

<getShareProperties>
<server/>
<tree/>
<shareName/>
</getShareProperties>

Reply

<getShareProperties>
<shareInfo>
<shareName/>
<pathName/>
<comment/>
</shareInfo>
<result wvalue=" ">
<description/>
</result>
</getShareProperties>

Elements

server

(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object

within the current tree). The default is the eDirectory object for the physical server.

tree

(Optional) Specifies the name of the eDirectory tree that contains the server. The default is the

tree of the physical server.

shareName

Specifies the NetBios name to give to the share.

pathName

Specifies the full path of the new share. For example, sys:/system.

comment

(Optional) Specifies a description of the new share.

result

Specifies a zError or eDirectory value or 0 (for no error).

manage.cmd Definitions

57

description

Specifies a text description of the result.

58 NDK: Virtual File Services

importWindowsUsers

Begins the process of importing Windows users from a Primary Domain Controller from a company
other than Novell.

Request

<importWindowsUsers/>

Reply

<importWindowsUsers>
<result value=" ">
<description/>
</result>
</importWindowsUsers>

Elements

result

Specifies a zError or eDirectory error or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 59

joinDomain
Joins the specified server into the existing domain identified by the domain distinguished name.

Request

<joinDomain>
<server/>
<domain/>
<mode/>
<unp/>
<user/>
<password/>

</joinDomain>

Reply

<joinDomain>
<result value=" ">
<description/>

</result>

</joinDomain>

Elements

server

(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object
within the current tree). The default is the eDirectory object for the physical server.

domain

Specifies the eDirectory name (in typeless, distinguished-name format) of the domain object
that represents the domain to be joined.

mode
Specifies the mode of the server to be set in the server configuration:
domainMember
domainController

unp

(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user

(Optional) Specifies the clear-text user name of a user that has rights to perform the operation.
This element is used only if the unp element is not specified.

60 NDK: Virtual File Services

password

(Optional/Required if user is specified) Specifies the clear-text password of a user that has
rights to perform the operation.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 61

leaveDomain

Leaves the specified domain that is identified by the domain distinguished name. This command
must be issued to the physical server that owns the server object. The mode of the server is left in
local mode after leaving the domain. If the server is not participating in the domain, the command
fails. Also, if the server is the PDC of the domain, the command fails. The PDC cannot leave a
domain.

Request

<leaveDomain>
<server/>
<domain/>
<unp/>
<user/>
<password/>

</leaveDomain>

Reply

<leaveDomain>
<result value=" ">
<description/>
</result>
</leaveDomain>

Elements

server
(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object
within the current tree). The default is the eDirectory object for the physical server.

domain
Specifies the eDirectory name (in typeless, distinguished-name format) of the domain object
that represents the domain to leave.

unp
(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user
(Optional) Specifies the clear-text user name of a user that has rights to perform the operation.
This element is used only if the unp element is not specified.

password

(Optional/Required if user is specified) Specifies the clear-text password of a user that has
rights to perform the operation.

62 NDK: Virtual File Services

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 63

listContexts

Returns all or a portion of the CIFS user context search list.

Request

<listContexts>
<startIdx/>
<numEntries/>

</listContexts>

Reply

<listContexts>
<context/>
<result wvalue=" ">
<description/>
</result>
</listContexts>

Elements

startldx
(Optional) Specifies the starting index of the first context to return. Defaults to 0 (start at the
beginning).

numEntries
(Optional) Specifies the maximum number of contexts to return in reply. Defaults to return all
contexts.

context
Specifies the eDirectory name (in typeless, distinguished-name format) of the user context list
entry.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

64 NDK: Virtual File Services

listDomainControllers

Returns all or a portion of a domain's domain controller list.

Request

<listDomainControllers>
<domain/>
<startIdx/>
<numEntries/>
<unp/>
<user/>
<password/>
</listDomainControllers>

Reply

<listDomainControllers>
<server/>
<result wvalue=" ">
<description/>
</result>
</listDomainControllers>

Elements

domain
(Optional) Specifies the distinguished name of the eDirectory domain object. The name must
be a fully distinguished name, including the leading dot before the object name and the trailing
dot after the tree name (or with no leading or trailing dot but a complete identity of the object
within the current tree). The default is the domain object that is associated with the CIFS server
you are talking to.

startldx
(Optional) Specifies the starting index of the first domain controller to return. Defaults to 0
(start at the beginning).

numEntries
(Optional) Specifies the maximum number of domain controllers to return in the reply. Defaults
to return all controllers.

unp
(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user

(Optional) Specifies the clear-text user name of a user that has rights to perform the operation.
This element is used only if the unp element is not specified.

manage.cmd Definitions

65

password

(Optional/Required if user is specified) Specifies the clear-text password of a user that has
rights to perform the operation.

server

Specifies the eDirectory name (in typeless, distinguished-name format) of the server that is
acting as a domain controller in the domain.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

66 NDK: Virtual File Services

listimportedUsers

Returns all or a portion of the imported Windows user list.

Request

<listImportedUsers>
<startIdx/>
<numEntries/>

</listImportedUsers>

Reply

<listImportedUsers>
<userName/>
<result value=" ">
<description/>
</result>
</listImportedUsers>

Elements

startldx

(Optional) Specifies the starting index of the first user to return. Default to 0 (start at the

beginning).

numEntries

(Optional) Specifies the maximum number of users to return in the reply. Defaults to return all

users.

userName

Specifies the imported user name.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions

67

listShares

Returns share information for all shares on the server.

Request

<listShares type=" “>
<server/>
<tree/>
<startIdx/>
<numEntries/>
</listShares>

Reply

<listShares>
<shareInfo>
<shareName/>
<pathName/>
<comment/>
</shareInfo>
<result wvalue=" ">
<description/>
</result>
</listShares>

Elements

listShares

Specifies what types of information to return for the shares.

server
(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object
within the current tree). The default is the eDirectory object for the physical server.

tree
(Optional) Specifies the name of the eDirectory tree that contains the server. Defaults to the tree
of the physical server.

startldx
(Optional) Specifies the starting index of the first share to return. Defaults to 0 (start at the
beginning).

numEntries

(Optional) Specifies the maximum number of shares to return. Defaults to return all shares.

sharelnfo

Specifies the share information.

68 NDK: Virtual File Services

shareName
Specifies the share NetBios name that is advertised by CIFS. The share name is returned for
both the basic and all type.

pathName
(Optional) Specifies the share path name. For example, sys:\system\. The path name is returned
for only the all type.

comment
(Optional) Specifies a text string associated with the share. Comments are returned for only the
all type.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

Attributes
type
(Optional) Specifies what type of information to return:

basic
all

Defaults to basic information being returned.

manage.cmd Definitions

69

modifyContextList

Modifies all or a portion of the CIFS user context search list.

Request

<modifyContextList
<context>
<find/>
<replace/>
</context>
</modifyContextList>

Reply

<modifyContextList>
<result value=" ">
<description/>
</result>
</modifyContextList>

Elements

context

Specifies the context to modify.

find

Specifies the original name (in typeless, distinguished-name format) of the context to change.

replace

Specifies the new context name.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

70 NDK: Virtual File Services

modifyShare

Modifies all or a portion of the CIFS user context search list.

Request

<modifyShare>
<server/>
<tree/>
<shareName/>
<newShareName/>
<pathName/>
<comment/>

</modifyShare>

Reply

<modifyShare>
<result value=" ">
<description/>
</result>
</modifyShare>

Elements

server
(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object
within the current tree). The default is the eDirectory object for the physical server.

tree
(Optional) Specifies the name of the eDirectory tree that contains the server. Defaults to the tree
of the physical server.

shareName
Specifies the share NetBios name that is advertised by CIFS. The share name is returned for
both the basic and all type.

newShareName

(Optional) Specifies the new name of the share.

pathName

(Optional) Specifies the share path name. For example, sys:\system\.

comment

(Optional) Specifies a text string associated with the share.

result

Specifies a zError or eDirectory value or 0 (for no error).

manage.cmd Definitions

7

description

Specifies a text description of the result.

72 NDK: Virtual File Services

removeContext

Removes a context from the CIFS user context search list.

Request

<removeContext>
<context/>
</removeContext>

Reply

<removeContext>
<result wvalue=" ">
<description/>
</result>
</removeContext>

Elements

context

Specifies the context or contexts to remove.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions

73

removeShare

Removes a CIFS share on the server.

Request

<removeContext>
<context/>
</removeContext>

Reply

<removeContext>
<result wvalue=" ">
<description/>
</result>
</removeContext>

Elements

context

Specifies the context or contexts to remove.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

74 NDK: Virtual File Services

setDomainConfiguration

Updates CIFS configuration information for the domain. If this command is used to set a new PDC
for the domain, the new PDC must already be a domain controller that is participating in the domain.

Request

<setDomainConfiguration>

<domain/>

<pdc/>

<comment/>

<unp/>

<user/>

<password/>
</setDomainConfiguration>

Reply

<setDomainConfiguration>
<result value=" ">
<description/>
</result>
</setDomainConfiguration>

Elements

domain
(Optional) Specifies the distinguished name of the eDirectory domain object (must be a fully
distinguished name with a leading dot before the object name and a trailing dot after the tree
name or an identifier of the object within the current tree). The default is the domain object that
is associated with the CIFS server that is being talked to.

pdc
(Optional) Specifies the eDirectory name (in typeless, distinguished-name format) of the NCP
server object that is configured as the PDC of the domain.

comment

(Optional) Specifies a text string that is associated with the domain.

unp
(Optional) Specifies the NMAS-encrypted username and password that has rights to perform
the operation at the specified context.

user

(Optional) Specifies the clear-text username of a user that has rights to perform the operation.
The user element is present only if the unp element is not specified.

manage.cmd Definitions

75

password

(Optional/Required if user is specified) Specifies the clear-text password of a user that has
rights to perform the operation. The password element is present only if the unp element is not
specified.

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

76 NDK: Virtual File Services

setServerConfiguration

Updated CIFS configuration information for the server.

Request

<setServerConfiguration>
<server/>
<tree/>
<cifsServerName/>
<comment/>
<winsIPAddress/>
<authMode/>
<groupName/>
<pdcName/>
<pdcIPAddress/>
<attachIPAddresses>
<ipAddress/>
</attachIPAddresses>
<dfs enabled="“/>
<oplocks enabled=""“/>
<loginScripts enabled="“/>
<isOnline enabled=““/>
<shareVolsByDefault enabled="“/>
</setServerConfiguration>

Reply

<setServerConfiguration>
<result value="">
<description/>
</result>
</setServerConfiguration>

Elements

server

(Optional) Specifies the distinguished name of the eDirectory server object. The name must be
a fully distinguished name, including the leading dot before the object name and the trailing dot
after the tree name (or with no leading or trailing dot but a complete identity of the object

within the current tree). The default is the eDirectory object for the physical server.

tree

(Optional) Specifies the name of the eDirectory tree that contains the server. The default is the

tree of the physical server.

cifsServerName

(Optional) Specifies the NetBios name advertised by the server.

comment

(Optional) Specifies a text string associated with the CIFS server.

manage.cmd Definitions

77

winsIPAddress
(Optional) Specifies the WINS server IP address in dotted ASCII notation. For example,
137.65.67.72.
authMode
Specifies the authentication mode:
local
domain
The domainMember and domainController modes can be set only by using joinDomain
(page 60).
groupName

Specifies the workgroup (if in local mode) or the domain name.

pdcName

Specifies the NetBios name of the primary domain controller. Optional if the mode element
specifies local.

pdcIPAddress

Specifies the IP address (in dotted ASCII notation) of the primary domain controller. Optional
if the mode element is local.

attachIPAddresses

(Optional) Specifies the attach IP addresses that are currently assigned to the server.

ipAddress

Specifies from 1-6 IP addresses, each of which is in dotted ASCII notation. For example,
137.65.67.72.

dfs
(Optional) Specifies that CIFS is enabled for distributed file system support.

oplocks
(Optional) Specifies that CIFS is enabled for Oplocks support.

loginScripts
(Optional) Specifies that CIFS is enabled for login script support.

isOnline

(Optional) Specifies whether CIFS is enabled on the server. When enabling CIFS, the
cifsstrt.ncf file is added to the autoexec.ncf files and the CIFS NLMs are loaded on the server.
When disabling CIFS, cifsstrt.ncf is removed from autoexec.ncf and the CIFS NLMs are
unloaded from the server.

shareVolsByDefault

(Optional) Specifies that the server exports all mounted volumes as shares by default. The
server also exports any explicitly defined shares.

78 NDK: Virtual File Services

result

Specifies a zError or eDirectory value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

enabled

Specifies yes or no to indicate whether a specific feature is enabled.

manage.cmd Definitions 79

2.5 Deleted Volume

The following commands can be used to manipulate deleted NSS logical volumes:

+ “continueState” on page 81
¢ “pauseState” on page 83

+ “purgeVolume” on page 85

+ “salvageVolume” on page 87

Each command is wrapped with either the nssRequest or nssReply element and the deletedVolume
element.

NSS logical volumes reside inside of NSS storage pools. When a logical volume is deleted, it is not
immediately purged from the system. Instead, it goes into a deleted state, is renamed to an encoded
name, and is assigned a time when it is permanently purged from the system. At any time before the
deleted volume is automatically purged, it can be salvaged or manually purged.

NOTE: Do not confuse the deleted functionality of entire volumes with the salvage feature for files
and directories.

80 NDK: Virtual File Services

continueState

Continues the current state of the deleted logical volume. If the current state is purging paused, it
changes the state back to purging and resumes the purge of the deleted volume. If the current state is
auto purging paused, it has the effect of changing the deleted volume back to the salvageable state

and allows a future auto purge of the volume.

Request

<continueState>
<deletedVolumeName/>
</continueState>

Reply

<continueState>
<result value=" ">
<description/>
</result>
</continueState>

Elements

deletedVolumeName

(Required) Specifies the internal name of the deleted volume.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to continue a volume's state is as follows:

<nssRequest>
<deletedVolume>
<continueState>
<deletedVolumeName>2FNC78F4IHL3 DV
</deletedVolumeName>
</continueState>
</deletedvVolume>
</nssRequest>

A nssReply packet to the continue state command follows:
<nssReply>
<deletedVolume>
<continueState>
<result value="0">
<description/>success</description>

manage.cmd Definitions

81

</result>
</continueState>
</deletedVolume>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

82 NDK: Virtual File Services

pauseState

Pauses the current state of a deleted logical volume. If the current state is salvageable, it has the
effect of preventing the volume from being auto purged. If the current state is purging, it pauses the

purge process.

Request

<pauseState>
<deletedVolumeName/>
</pauseState>

Reply

<pauseState>
<result value=" ">
<description/>

</result>

</pauseState>

Elements

deletedVolumeName

(Required) Specifies the internal name of the deleted volume that is being paused.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to pause a volume's state is as follows:

<nssRequest>
<deletedVolume>
<pauseState>
<deletedVolumeName>2FNC78F4IHL3 DV
</deletedVolumeName>
</pauseState>
</deletedvVolume>
</nssRequest>

A nssReply packet to the pause state command follows:
<nssReply>
<deletedVolume>
<pauseState>
<result value="0">
<description/>success</description>
</result>

manage.cmd Definitions

83

</pauseState>
</deletedvVolume>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

84 NDK: Virtual File Services

purgeVolume

Purges a deleted NSS logical volume.

Request

<purgeVolume>
<deletedVolumeName/>
</purgeVolume>

Reply

<purgeVolume>
<result value=" ">
<description/>
</result>
</purgeVolume>

Elements

deletedVolumeName

(Required) Specifies the internal name of the deleted volume that is being purged.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to purge a deleted volume is as follows:

<nssRequest>
<deletedVolume>
<purgeVolume>
<deletedVolumeName>417F2724IHL3 DV
</deletedVolumeName>
</purgeVolume>
</deletedvVolume>
</nssRequest>

A nssReply packet to the purge volume command follows:
<nssReply>
<deletedVolume>
<purgeVolume>
<result value="0">
<description/>success</description>
</result>
</purgeVolume>
</deletedVolume>

manage.cmd Definitions

85

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

86 NDK: Virtual File Services

salvageVolume

Salvages or undeletes a deleted NSS logical volume. salvageVolume can also optionally re-add the
eDirectory volume object for the undeleted volume.

Request

<salvageVolume state=" ">
<deletedVolumeName/>
<volumeName/>
<ndsName/>
<context/>
<poolName/>
<ndsPoolName/>
<noNDSObject/>
<updateVLDB/>
</salvageVolume>

Reply

<salvageVolume>
<result value=" ">
<description/>
</result>
</salvageVolume>

Elements

salvageVolume

Specifies the volume to be salvaged.

deletedVolumeName

(Required) Specifies the internal name of the deleted volume to salvage.

volumeName

(Required) Specifies the new name to assign to the salvaged volume.

ndsName

(Required unless noNDSObject is used) Specifies the name of the eDirectory volume object
that represents the volume in eDirectory. [f NULL is specified, the name of the eDirectory
volume object is generated by pre-pending the server name and an underscore to the name
specified in the volumeName element.

context
(Required unless noNDSQjbect is used) Specifies where the eDirectory volume object is
created. If no context is specified, defaults to be the same as the server object.

poolName

Specifies the value to use as the nssfsPool attribute of the eDirectory volume object. If NULL
is specified, the pool's actual eDirectory name is retrieved from eDirectory and used.

manage.cmd Definitions

87

ndsPoolName

(Required unless noNDSODbject is used) Specifies the value to use as the nssfsPool attribute of
the eDirectory volume object. If NULL is specified, the pool's actual eDirectory name is
retrieved from eDirectory and used.

noNDSObject

(Optional) Specifies that no eDirectory objects should be created for the salvaged volume. If
used, the ndsName, context, and ndsPoolName elements are ignored.

updateVLDB

Specifies that the DFS Volume Location Database (VLDB) is updated by the XML processing
code. This element is used for backward compatibility with ConsoleOne, which does not know
about this element but does its own VLDB updating. New code should include this element.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

state

(Optional) Specifies what state the salvaged volume is set to:

deactive
active
mounted

Defaults to whatever state the current file system policies dictate (see “NSS Volume States™ on
page 476).

Example

The following example salvages a deleted volume, which is currently named
"M8C6CTP2IHL3 DV" on MYPOOL, and renames it MYPOOL. It also creates an eDirectory
volume object for NSS2 using the default names.
<nssRequest>
<deletedVolume>
<salvageVolume state="mounted">
<deletedVolumeName>M8C6CTP2IHL3 DV
</deletedVolumeName>
<volumeName>NSS2</volumeName>
<poolName>MYPOOL</poolName>
<ndsName>
<context>
<ndsPoolName>
</salvageVolume>
</deletedVolume>
</nssRequest>

88 NDK: Virtual File Services

A nssReply packet to the salvage volume command follows:

<nssReply>
<deletedVolume>
<salvageVolume>
<result value="0">
<description/>success</description>
</result>
</salvageVolume>
</deletedvVolume>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions

89

2.6 Device

The following commands allow you to manipulate devices on your server. (For a caution on shared
devices, see “Device Sharing” on page 18.)

+ “getDevicelnfo” on page 91

¢ “getDevicelnfo2” on page 94

¢ “getPathInfo” on page 98

+ “initializeDevice” on page 100

+ “listDevices” on page 102

+ “listDevicePartitions” on page 105

+ “listDevicePools” on page 106

¢ “listMultiPaths” on page 107

+ “modifyDevice” on page 108

+ “multiPath” on page 110

+ “renameDevice” on page 115

+ “scanDevices” on page 116

Each command is wrapped with either the nssRequest or nssReply element and the device element.

90 NDK: Virtual File Services

getDevicelnfo

Returns information about the passed in object ID, which can be a physical device, a RAID device,
or a mirror virtual device.

Request

<getDeviceInfo>
<objectID/>
</getDeviceInfo>

Reply

<deviceSimpleInfo>
<name/>
<objectID/>
<type/>
<size/>
<freeSize/>
<shared/>
<deviceRAID>
<raidType/>
<elementSize/>
<stripeSize/>
<restripeFlag/>
<segmentInfo>
<numSegments/>
<segmented/>
</segmentInfo>
</deviceRAID>
<mirrored/>
<deviceMirror>
<mirrorGroupStatus/>
<mirrorGroupPercent/>
<numMirrors/>
<mirrorInfo>
<id/>
<mirrorPercent/>
</mirrorInfo>
</deviceMirror>
</deviceSimpleInfo>

Elements
name
Specifies the name of the device as assigned by Media Manager.

objectID

Specifies the device ID (for a non-mirrored virtual device) or specifies the mirror ID (for a
mirrored virtual device).

manage.cmd Definitions 91

92

type

Specifies the type of the object as assigned by Media Manager.
size

Specifies the total size of the object.
freeSize

Specifies the object's available size.

shared

Specifies if this is a shared device.

deviceRAID
Specifies this is a software RAID device and describes the RAID configuration.

raidType
Specifies the type of RAID device, such as RAID 0 or RAID 5.

elementSize

Specifies the size (in bytes) of the RAID segments. All segments must be of identical size.

stripeSize

Specifies the stripe size (in bytes) of the RAID device.

restripeFlag
Specifies the restripe status of the RAID device. A non0 value indicates that the RAID device
is in the process of restriping.

segmentInfo

Specifies information about each segment.

numSegments

Specifies the number of segments in the RAID.

segmented

Specifies the ID of each segment as assigned by Media Manager.

mirrored

Specifies if the device is mirrored.

deviceMirror
Specifies if the device is a mirrored device (RAID 1- Mirroring) and describes the mirrored
device.

mirrorGroupStatus

Specifies the status bits for the entire mirror device.

mirrorGroupPercent

Specifies the lowest remirror percentage of any segment in the entire mirror device. If the
device is fully synchronized, the percentage is 100. If one segment is 63% sychronized and
another is 77% synchronized, the percentage is 63.

NDK: Virtual File Services

numMirrors

Specifies the number of segments in the mirror device.

mirrorInfo

Specifies information about each segment's mirror.
id
Specifies the segment ID as assigned by Media Manager.

mirrorPercent

Specifies the percentage of how complete each remirror is for each segment.

manage.cmd Definitions 93

getDevicelnfo2

Returns information about the passed in object ID, which can be a physical device or a RAID device
(RAID 0, RAID 1, RAID 5).

Request

<getDeviceInfo2>
<objectID/>
</getDeviceInfo2>

Reply

<getDeviceInfo2>
<name/>
<objectID/>
<type/>
<size/>
<freeSize/>
<majorVersion/>
<minorVersion/>
<partitions>
<partition>
<partitionID/>
<partitionType/>
<mountPoint/>
<hasSYS/>
<bootable/>
</partition>
</partitions>
<hasDOS/>
<multiPath/>
<shared/>
<removable/>
<deviceRAID>
<raidType/>
<elementSize/>
<elementCount/>
<stripeSize/>
<restripeFlag/>
<restripeEnabled/>
<segmentInfo>
<numSegments/>
<segment>
<mirrorPercent/>
<deviceName/>
<segmentName/>
<deviceID/>
<segmentID/>
</segment>
</segmentInfo>
</deviceRAID>

94 NDK: Virtual File Services

<mirrored/>
<deviceMirror>
<mirrorGroupStatus/>
<mirrorGroupPercent/>
<numMirrors/>
<remirrorEnabled/>
<mirrorInfo>
<segment>
<mirrorPercent/>
<deviceName/>
<segmentName/>
<devicelID/>
<segmentID/>
</segment>
</mirrorInfo>
</deviceMirror>
<result value=" “>
<description/>
</result>
</getDeviceInfo2>

Elements

objectID

(Required) On input for NetWare, specifies the device ID received from Media Manager. On
output for NetWare, specifies the device ID received from Media Manager. On Linux, specifies
the device object name.

name

NetWare only. Specifies the name of the device assigned by Media Manager.

type
(Optional) Specifies the RAID type of the device assigned by Media Manager.

size

Specifies the total size of the object in bytes.

freeSize

Specifies the object's available size in bytes.

majorVersion

Linux only. Specifies the major number of the device.

minorVersion

Linux only. Specifies the minor number of the device.

partition

Repeats for each partition on the device.

manage.cmd Definitions 95

partitionID

On NetWare, specifies the partition ID number received from Media Manager. On Linux,
specifies the partition object name.

partitionType
(Required) Specifies the type of the partition. The following types are for Linux:

0x00 freespace
0x82 Linux Swap
0x83 general Linux

mountPoint

Linux only. Specifies the partition's mount point.

hasSYS
(Optional) Specifies that the partition contains the SYS pool.

bootable

Linux only. Specifies that the partition contains the boot partition.

hasDOS

NetWare only. Specifies that this is a DOS partition. On Linux, this information can be
retrieved from the partition type.

multiPath
(Optional) Specifies that the device has multipath.

shared

(Optional) Specifies that the device is shared.

removable

(Optional) NetWare only. Specifies that the deivce is removable.
raidType

Specifies the RAID type: 0, 1, or 5.

elementSize

Specifies the size in bytes.

elementCount

(Required) If deviceRAID is used, specifies the number of segments that are present. If
raidType is 5 and elementCount equals the numSegments, one segment can be deleted.

stripeSize

Specifies the size in KB.

restripeEnabled

Linux only. Specifies if the restripe is enabled.

96 NDK: Virtual File Services

numSegments
Specifies the number of segments in the RAID. If raidType is 1 (mirroring) and numSegments
is greater than one, segments can be deleted (down to one remaining segment).

segment

Repeats for each segment (partition) that makes up the RAID device.

deviceName

NetWare only. Specifies the device name assigned by Media Manager. If there's a missing
segment in a mirror device, no information is returned for deviceName and devicelD.

segmentName

NetWare only. Specifies the partition name assigned by Media Manager.

devicelD

On NetWare, specifies the segment's (or mirror segment's) device ID number received by
Media Manager. On Linux, specifies the segment's (or mirror segment's) device name. If there's

a missing segment in a mirror device, no information is returned for deviceName and devicelD.

deviceRAID

(Optional) If exists, specifies the device is a RAID device.
mirrored

(Optional) For RAID 1 devices only.

deviceMirror

(Optional) For RAID 1 devices only. If there's a missing segment in a mirror device, the
missing segment name is returned as missing_raid1 1.

remirrorEnabled

Linux only. Specifies if re-mirroring is enabled.

mirrorActive

Linux only. Specifies if the mirror segment is active:

1 in synchronization
0 not in synchronization

mirrorStatus

Linux only. Specifies the status of the mirror segment:

1 in synchronization
0 not in synchronization

manage.cmd Definitions

97

getPathinfo

Returns information about a multipath.

Request

<multiPath>
<getPathInfo>
<devicelID/>
<pathID/>
</getPathInfo>
</multiPath>

Reply

<multiPath>
<getPathInfo>
<pathInfo>
<deviceName/>
<pathName/>
<priority/>
<adaptorID/>
<port/>
<status>
<up/>
<selected/>
<loadBalance/>
</status>
<pathInfo>
</getPathInfo>
</multiPath>
<result wvalue=" ">
<description/>
</result>

Elements

devicelD

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the
device object name.

pathID

On NetWare, specifies the path ID received from Media Manager. On Linux, specifies the path
name.

deviceName

NetWare only.

adaptorID
NetWare only.

98 NDK: Virtual File Services

up
(Optional)

selected

(Optional)

loadBalance

(Optional)

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

manage.cmd Definitions

99

initializeDevice

Re-initializes a device. Use this command with extreme caution because it destroys all data on the
device. It also destroys all NSS storage pools and volumes that occupy any portion of the device that
is being initialized. If a pool spans multiple partitions, including one on the device that is being
initialized, the entire pool is destroyed. Note that when NSS storage pools and volumes are deleted
by initializeDevice, their corresponding eDirectory objects are not deleted from the directory. For
cleanup, it is best to first delete all pool and volumes that occupy a device before initializing the
device itself.

Request

<initializeDevice>
<deviceID/>
</initializeDevice>

Reply

<initializeDevice>
<result value=" ">
<description/>
</result>
</initializeDevice>

Elements

devicelD

On NetWare, specifies the device ID assigned by Media Manager. On Linux, specifies the
device object name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to initialize a device is as follows:
<nssRequest>
<device>
<initializeDevice>
<deviceID>3</devicelID>
</initializeDevice>
</device>
</nssRequest>

A nssReply packet to the initialize device command follows:

<nssReply>
<device>

100 NDK: Virtual File Services

<initializeDevice>
<result value="0">
<description/>success</description>
</result>
</initializeDevice>
</device>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

manage.cmd Definitions 101

listDevices

Obtains a detailed list of all devices on the server.

Request

<listDevices/>

Reply

<listDevices>
<deviceInfo>
<deviceName/>
<devicelID/>
<deviceType/>
<unitSize/>
<sectors/>
<capacity/>
<alignment/>
<deviceShared/>
<removable/>
<deviceRAID>
<raidType/>
<elementSize/>
<stripeSize/>
<restripeFlag/>
</deviceRAID>
<result wvalue=" ">
<descriptionn>
</result>
</deviceInfo>
<result value=" ">
<description/>
</result>
</listDevices>

Elements

devicelnfo

Repeats for each device being listed. Specifies information for each device.

deviceName

Specifies the name of the device as assigned by Media Manager and by the disk driver.

devicelD
Specifies the ID of the device as assigned by Media Manager.

deviceType
Specifies the type of the device (see Section 11.1, “Device Types,” on page 475).

102 NDK: Virtual File Services

unitSize

Specifies the size (in bytes) of the sector.

sectors
Specifies the number of sectors on a track. Because NetWare 6 partitions do not need to be
aligned on cylinder boundaries, this number is not very useful.

capacity

Specifies the capacity (in sectors) of the drive.

alignment

Specifies the number of sectors on a cylinder. Because NetWare 6 partitions do not need to be
aligned on cylinder boundaries, this number is not very useful.

deviceShared

Specifies that the device is flagged as a shared device.

removable

Specifies that the device is removable.

deviceRAID
Specifies the device is a software RAID device and contains information about the RAID
configuration.

raidType
Specifies the type of the RAID device, such as RAID 0.

elementSize
Specifies the size (in bytes) of the segments in the device. Each segment is a partition of type
Virtual Device Partition Type. All segments must be identical in size.

stripeSize

Specifies the stripe size of the device

restripeFlag
Specifies the restripe status of the device. A nonzero value indicates that the device is in the
process of restriping.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to list the devices is as follows:

<nssRequest>
<device>
<listDevices>

manage.cmd Definitions 103

</device>
</nssRequest>

The following nssReply response shows two devices. The first device is a physical device while the
second is a software RAID device.
<nssReply>
<device>
<deviceInfo>
<deviceName>
[V312-A0-D0:0] WDIGTL WDE4360-1807A3 rev:1.80
</deviceName>
<deviceID>1</devicelD>
<deviceType>0</deviceType>
<unitSize>512</unitSize>
<sectors>63</sectors>
<capacity>8385930</capacity>
<alignment>16065</alignment>
<result value="0">
<description/>success</description>
</result>
</devicelInfo>

<deviceInfo>
<deviceName>
[VO043-2A99-D0:0] RAID 0 Device 0
</deviceName>
<devicelID>16</devicelID>
<deviceType>0</deviceType>
<unitSize>512</unitSize>
<sectors>32</sectors>
<capacity>204800</capacity>
<alignment>32</alignment>
<deviceRAID>
<raidType>0</raidType>
<elementSize>104857600</elementSize>
<stripeSize>65536</stripeSize>
<restripeFlag>0</restripeFlag>
</deviceRAID>
<result value="0">
<description/>success</description>
</result>
</deviceInfo>

<result value="0">
<description/>success</description>
</result>
</device>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

104 NDK: Virtual File Services

listDevicePartitions

Returns a list of partitions for a device.

Request

<listDevicePartitions>
<deviceID/>
</listDevicePartitions>

Reply

<listDevicePartitions>
<partitions>
<partition>
<partitionID/>
<partitionType/>
</partition>
</partitions>
</listDevicePartitions>

Elements

devicelD

(Required) On NetWare, specifies the device ID received from Media Manager. On Linux,

specifies the device object name.

partition

One for each partition.

partitionID

On NetWare, specifies the partition ID number received from Media Manager. On Linux,

specifies the partition object name.

manage.cmd Definitions 105

listDevicePools

Returns the pool list on a device.

Request

<listDevicePools>
<objectID/>
</listDevicePools>

Reply

<listDevicePools>
<poolSimpleInfo>
<poolName/>
<poolState/>
<shared/>
</poolSimpleInfo>
</listDevicePools>

Elements

objectID

On NetWare, specifies the device ID assigned from Media Manager. On Linux, specifies the
device object name.

poolSimplelnfo

Repeats for each pool.

poolName

Specifies the name of the pool.

poolState

Specifies active, deactive, or mount.

shared

(Optional) Specifies the pool is shared.

106 NDK: Virtual File Services

listMultiPaths

Returns a list of multipaths for a device.

Request

<multiPath>
<listMultiPaths>
<devicelID/>
</listMultiPaths>
</multiPath>

Reply

<multiPath>
<listMultiPaths>
<pathID/>
</listMultiPaths>
</multiPath>

Elements

devicelD

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the

device object name.

pathID

On NetWare, specifies the path ID received from Media Manager. On Linux, specifies the path

name.

manage.cmd Definitions 107

modifyDevice

Modifies the "shared" state of the device. The shared state is a manually set flag that should be set by
the user on all devices that participate as shared devices in a cluster. The software has no mechanism
for automatically detecting which devices the user desires to have participate in a cluster. Once a
device is flagged as "shared," other XML commands allow partitions, NSS storage pools, and NSS
logical volumes to be created only if the proper clustering software is installed and running.

Request

<modifyDevice>
<devicelID/>
<shared state=" "/>
</modifyDevice>

Reply

<modifyDevice>
<result value=" ">
<description/>
</result>
</modifyDevice>

Elements

devicelD

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the
device object name.

shared

Specifies if the device should be marked as shareable for clustering.

description

Specifies a text description of the returned result.

Attributes

state

Specifies a lowercase yes or no.

value

Specifies an error value or 0 (for no error).

Example

A nssRequest packet to set the "shared" state on a device is as follows:

<nssRequest>
<device>
<modifyDevice>

108 NDK: Virtual File Services

<deviceID>3</devicelD>
<shared state="yes">
</modifyDevice>
</device>
</nssRequest>

A nssReply packet to the modify device command follows:
<nssReply>
<device>
<modifyDevice>
<result value="0">
<description/>success</description>
<result>
</modifyDevice>
</device>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 109

multiPath

Allows the user to control the behavior of multiple adaptors that are connected to the same
device(s). The controllable behaviors include listing the current configuration, setting priorities for
each path, setting path on-line and off-line, and selecting the path to use. Multiple paths can exist
due to multiple adaptors and/or ports to the same device.

Request

<multiPath>
<resetRegistry/>
<multiPathInfo/>
<setPathPriority>
<pathID/>
<priority/>
<insert/>
</setPathPriority>
<selectPath>
<pathID/>
</selectPath>
<setPathState>
<pathID/>
<state/>
</setPathState>
<selectDefaultPath>
<deviceID/>
</selectDefaultPath>
</multiPath>

Reply

<multiPath>
<resetRegistry>
<result value=" "/>
<description/>
</resetRegistry>
<multiPathInfo>
<deviceName/>
<deviceID/>
<pathInfo>
<pathName/>
<pathID/>
<priority/>
<adapterID/>
<port/>
<status>
<up/>
<selected/>
<loadBalance/>
</status>
<result value=" ">
<description/>

110 NDK: Virtual File Services

</result>
</pathInfo>
<result value="

<description/>

</result>
</multiPathInfo>
<setPathPriority>

<result value="

<description/>

</result>
</setPathPriority>
<selectPath>

<result value="

<description/>

</selectPath>
<setPathState>
<result value="

<description/>

</result>
</setPathState>
<selectDefaultPath>

<devicelID/>

<result value="

<description/>
</selectDefaultPath>

<result wvalue=" ">

<description/>
</result>
</multiPath>

Elements

resetRegistry

Specifies to reset the Media Manager failover registry entries.

multiPathInfo

Specifies to request all paths for all devices.

setPathPriority
Specifies the path priority.

pathID

(Required) On NetWare, specifies the path ID received from Media Manager. On Linux,

specifies the path name.

priority

(Required) Specifies the priority value (0 equals highest priority).

insert

(Optional) Specifies to bump all entries with an equal priority to a priority lower than the one

being set.

manage.cmd Definitions 111

selectPath
Specifies the path to be used to get to a device.

setPathState

Specifies to set a path either up or down.

state

Specifies up or down.

selectDefaultPath
Specifies to select the path with the highest priority.

devicelD
On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the
device object name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

deviceName

NetWare only.

pathInfo

Repeats for each path to a device.

adapterID
NetWare only.

status

Specifies the set states.

Example

The following example returns information from a system where two different devices are
connected to the same two adaptors:

<nssRequest>
<device>
<multiPath>
<multiPathInfo/>
</multipath>
</device>
</nssRequest>

A nssReply packet to the multiple path command follows:

<nssReply>
<device>
<multiPath>

112 NDK: Virtual File Services

<multiPathInfo>
<deviceName>
[V345-A2-D2:0] SEAGATE ST34573W
rev:5764
</deviceName>
<deviceID>23</devicelD>
<pathInfo>
<pathName>
[V345-A2-D2:0] SEAGATE ST34573W
rev:5764
</pathName>
<pathID>8</pathID>
<priority>0</priority>
<adaptorID>6</adaptorID>
<port>0</port>
<status><up><selected></status>
<result value="0">
<description/>success
</description>
</result>
</pathInfo>
<pathInfo>
<pathName>
[V345-A3-D2:0] SEAGATE ST34573W
rev:5764
</pathName>
<pathID>15</pathID>
<priority>0</priority>
<adaptorID>13</adaptorID>
<port>0</port>
<status><up></status>
<result value="0">
<description/>success
</description>
</result>
</pathInfo>

<result value="0">
<description/>success
</description>
</result>
</multiPathInfo>

<multiPathInfo>
<deviceName>
[V345-A3-D0:0] SEAGATE ST34573W
rev:5764
</deviceName>
<devicelID>32</devicelID>
<pathInfo>
<pathName>
[V345-A2-D0:0] SEAGATE ST34573W
rev:5764
</pathName>

manage.cmd Definitions 113

<pathID>7</pathID>
<priority>2</priority>
<adaptorID>6</adaptorID>
<port>0</port>
<status><up></status>
<result value="0">
<description/>success
</description>
</result>
</pathInfo>
<pathInfo>
<pathName>
[V345-A3-D0:0] SEAGATE ST34573W
rev:5764
</pathName>
<pathID>14</pathID>
<priority>1</priority>
<adaptorID>13</adaptorID>
<port>0</port>
<status><up><selected></status>
<result value="0">
<description/>success
</description>
</result>
</pathInfo>

<result value="0">
<description/>success
</description>
</result>
</multiPathInfo>

<result value="0">
<description/>success
</description>
</result>
</multiPath>
</device>
</nssreply>

114 NDK: Virtual File Services

renameDevice

Renames a device.

Request

<renameDevice>
<objectID/>
<name/>

</renameDevice>

Reply

<renameDevice>
<result value=" ">
<description/>
</result>
</renameDevice>

Elements

objectID

Specifies the ID of the object to rename.

name

Specifies the new name of the object.

result

Specifies an error or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 115

scanDevices

Requests that the media manager re-scan the server to look for any new devices.

Request

<scanDevices/>

Reply

<scanDevices>
<result wvalue=" ">
<description/>
</result>
</scanDevices>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to scan for new devices is as follows:

<nssRequest>
<device>
<scanDevices></scanDevices>
</device>
</nssRequest>

A nssReply packet to the scan device command follows:
<nssReply>
<device>
<scanDevices>
<result value="0">
<description/>success</description>
</result>
</scanDevices>
</device>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

116 NDK: Virtual File Services

2.7 DFS

The following Distributed File System (DFS) commands can be called to get and set the DFS
globally unique ID (GUID) for a volume:

¢ “createLink” on page 118

¢ “deleteLink” on page 121

¢ “getDfsGUID” on page 122

+ “initDFSGUIDs” on page 124

+ “modifyLink” on page 125

+ “readLink” on page 128

+ “setDfsGUID” on page 130

Each command is wrapped with either the nssRequest or nssReply element and the dfs element.

Every volume that participates in the DFS needs to have a GUID assigned. This is the ID by which it
is known to DFS.

When volume replication and volume moves are implemented in future NetWare versions, this DFS
GUID is the same on all replicated instances of the volume, no matter where they physically reside.

manage.cmd Definitions 117

createLink

Creates a link to a junction.

Request

<createlLink>
<pathName/>
<junction>
<managementContext>
<ndsObject/>
<tgtTree/>
</managementContext>
<dfsGUID/>
<ndsVolume>
<ndsObject/>
<tgtTree/>
</ndsVolume>
<volumeInfo>
<server/>
<tgtTree/>
<volumeName/>
</volumeInfo>
</junction>
<symlink>
<nameSpace/>
<pathName/>
</symlink>
<unc>
<pathName/>
</unc>
<url>
<pathName/>
</url>
</createLink>

Reply

<createLink>
<result value=" ">
<description/>

</result>

</createLink>

Elements

pathName
Specifies the link file to be created.

tgtTree
(Optional)

118 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Remarks

When you create a junction, the target volume needs to be identified by either a DFS GUID, an
eDirectory Volume object, or an eDirectory NCP Server object and Host Resource Name (or the
physical volume name). Supply only one of these forms. The combination of an eDirectory NCP
Server object and Host Resource Name applies only to NetWare 6 or later. Other forms can be used
to create a junction to a pre NetWare 6 server.

For NetWare 6.5 SP1, the managementContext element is required.

For NetWare 6.5 SP2, the managementContext element is option if ndsVolume or volumelnfo is
used. If the managementContext field is not supplied, the server that is creating the junction
determines the context from the ndsObject or server elements that you supplied in the request. If the
managementContext element is supplied with one of these forms, the supplied value is used and the
server does not need to determine the context.

Example
<nssRequest>
<dfs>
<createLink>
<pathName>VOL1:\foo\junction</pathName>
<junction> <!-- Creating a junction -->
<managementContext>
<ndsObject>nss.prv.novell</ndsObject>
<tgtTree>novell inc</tgtTree># optional
</managementContext>
<dfsGUID>C2EAAA00-3211-11D6-B7-C7-00C04FA33547</dfsGUID>
<ndsVolume>
<ndsObject>VLDB-MASTER VOLl.novell</ndsObject>
<tgtTree>novell inc</tgtTree># optional
</ndsVolume>
<volumeInfo>
<server>vldb-master.novell</server>
<tgtTree>novell inc</tgtTree>#optional
<volumeName>VOL1</volumeName>
</volumeInfo>
</junction>
<symlink> <!-- Creating a symbolic link -->
<nameSpace>long</nameSpace>
<pathName>abc/def</pathName>
</symlink>
<unc> <!-- Creating a UNC link -->
<pathName>\\ServName\VolName\foo.bar</pathName>
</unc>
<url> <!-- Creating a URL link -->

manage.cmd Definitions

119

<pathName>http://nss.provo.novell.com/dfs</pathName>
</url>
</createlLink>
</dfs>
</nssRequest>

120 NDK: Virtual File Services

deleteLink

Deletes a link to a junction.

Request

<deleteLink>
<pathName/>
</deleteLink>

Reply

<deleteLink>
<result wvalue=" ">
<description/>

</result>

</deletelLink>

Elements

pathName
Specifies the link file to be created.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

<nssRequest>
<dfs>
<deletelLink>
<pathName>VOL1:\foo\junction</pathName>
</deletelLink>
</dfs>
</nssRequest>

manage.cmd Definitions 121

getDfsGUID

Retrieves the currently assigned DFS GUID for a volume.

Request

<getDfsGUID>
<volumeName/>
</getDfsGUID>

Reply

<getDfsGUID>
<dfsGUID/>
<result wvalue=" ">
<description/>
</result>
</getDfsGUID>

Elements

volumeName

Specifies the name of the volume from which to get the GUID.

dfsGUID
Specifies the actual GUID that was assigned to this volume for use with DFS.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to return the DFS GUID is as follows:

<nssRequest>
<dfs>
<getDfsGUID>
<volumeName>NSS1</volumeName>
</getDfsGUID>
</dfs>
</nssRequest>

A nssReply packet to the get DFS GUID command follows:
<nssReply>
<dfs>
<getDfsGUID>
<dfsGUID>C212F8B4-3223-01D6-80-00-FBDA22AE6917
</dfsGUID>

122 NDK: Virtual File Services

<result value="0">
<description/>success</description>
</result>
</getDfsGUID>
</dfs>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 123

initDFSGUIDs

Assigns a DFS GUID if the volume does not already have a GUID assigned (for all mounted
volumes) and adds the volume to the VLDB if there is a management context defined and the
volume is not already included in the VLDB.

Request

<initDFSGUIDs/>

Reply

<initDFSGUIDs>
<result wvalue=" ">
<description/>
</result>
</initDFSGUIDs>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

124 NDK: Virtual File Services

modifyLink

Renames or changes the contents of a link file. The newName element is optional and allows the file
to be renamed. If a file is being renamed, the contents elements (junction, symlink, unc, or url) are
not necessary. However, by including these elements, you can rename and modify the contents of a

link file in the same call to modifyLink.

Request

<modifyLink>
<pathName/>
<newName />
<junction>

<managementContext>
<ndsObject/>

<tgtTree/>

</managementContext>

<dfsGUID/>
<ndsVolume>

<ndsObject/>

<tgtTree/>
</ndsVolume>
<volumeInfo>
<server/>
<tgtTree/>

<volumeName/>

</volumeInfo>
</junction>
<symlink>
<nameSpace/>
<pathName/>
</symlink>
<unc>
<pathName/>
</unc>
<url>
<pathName/>
</url>
</modifyLink>

Reply

<modifyLink>
<result value="">
<description/>

</result>

</modifyLink>

manage.cmd Definitions 125

Elements

pathName
Specifies the link file to modify.

newName

(Optional) Specifies the new name of the file.

tgtTree
(Optional)
result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

<nssRequest>
<dfs>
<modifyLink>

<pathName>VOL1:\foo\junction</pathName>

<newName>VOL1:\foo\newjunc</newName>

<junction> <!-- Modifying a junction -->

<managementContext>

<ndsObject>nss.prv.novell</ndsObject>

<tgtTree>novell inc</tgtTree>
</managementContext>

<dfsGUID>C2EAAA00-3211-11D6-B7-C7-00C04FA33547</dfsGUID>

<ndsVolume>

<ndsObject>VLDB-MASTER VOL1l.novell</ndsObject>

<tgtTree>novell inc</tgtTree>
</ndsVolume>
<volumeInfo>

<server>vldb-master.novell</server>

<tgtTree>novell inc</tgtTree>
<volumeName>VOL1</volumeName>
</volumeInfo>
</junction>

<symlink> <!-- Modifying a symbolic link -->

<nameSpace>long</nameSpace>
<pathName>abc/def</pathName>

</symlink>

<unc> <!-- Modifying a UNC link -->
<pathName>\\ServName\VolName\foo.bar</pathName>

</unc>

<url> <!-- Modifying a URL link -->

126 NDK: Virtual File Services

<pathName>http://nss.provo.novell.com/dfs</pathName>
</url>
</modifyLink>
</dfs>
</nssRequest>

manage.cmd Definitions 127

readLink

Reads a junction link and returns a list of physical volume instances. Note that there can be multiple
volumelnfo elements in the response.

Request
<readLink>

<pathName/>
</readLink>

Reply

<readLink>
<result value="">
<description/>
</result>

<junction>
<managementContext>
<ndsObject/>
<tgtTree/>
</managementContext>
<dfsGUID/>
<volumeInfo>
<server/>
<tgtTree/>
<volumeName/>
</volumeInfo>
</junction>
<symlink>
<nameSpace/>
<pathName/>
</symlink>
<unc>
<pathName/>
</unc>
<url>
<pathName/>
</url>
</readLink>

Elements

pathName
Specifies the link file to modify.

tgtTree
(Optional)

result

Specifies an error value or 0 (for no error).

128 NDK: Virtual File Services

description

Specifies a text description of the result.

Example

<nssRequest>
<dfs>
<readLink>
<result value="0">
<description/>success</description>
</result>
<junction> <!-- File is a junction -->
<managementContext>
<ndsObject>nss.prv.novell</ndsObject>
<tgtTree>novell inc</tgtTree>
</managementContext>
<dfsGUID>C2EAAA00-3211-11D6-B7-C7-00C04FA33547</dfsGUID>
<volumeInfo>
<server>vldb-master.novell</server>
<tgtTree>novell inc</tgtTree>
<volumeName>VOL1</volumeName>
</volumeInfo>
</junction>

<symlink> <!-- File is a symlink -->
<nameSpace>long</nameSpace>
<pathName>abc/def</pathName>

</symlink>

<unc> <!-- File is a UNC link -->
<pathName>\\ServName\VolName\foo.bar</pathName>

</unc>

<url> <!-- File is a URL link -->
<pathName>http://nss.provo.novell.com/dfs</pathName>

</url>

</readLink>
</dfs>
</nssReply>

manage.cmd Definitions 129

setDfsGUID

Assigns a DFS GUID to a volume. If you specify an exact DFS GUID, it is stored as specified.
Otherwise, if you specify the dfsGUID element with no content, a DFS GUID is generated for you
by setDfsGUID.

Request

<setDfsGUID>
<volumeName/>
<dfsGUID/>

</setDfsGUID>

Reply

<setDfsGUID>
<dfsGUID/>
<result value=" ">
<description/>
</result>
</setDfsGUID>

Elements

volumeName

Specifies the volume on which to set the GUID.

dfsGUID
(Required) Specifies the GUID. If NULL is specified, a DFS GUID is generated.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to set the GUID is as follows:
<nssRequest>
<dfs>
<setDfsGUID>
<volumeName>NSS1</volumeName>
<dfsGUID>
</setDfsGUID>
</dfs>
</nssRequest>

A nssReply packet to the set DFS GUID command follows:

130 NDK: Virtual File Services

<nssReply>

<dfs>
<setDfsGUID>
<dfsGUID>C212F8B4-3223-01D6-80-00-FBDA22AE6917
</dfsGUID>
<result value="0">
<description/>success</description>
</result>
</setDfsGUID>
</dfs>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 131

2.8 Directory Quota
This section contains the following Directory Quota commands:

¢ “addQuota (obsolete)” on page 133

Each command is wrapped with either the nssRequest or nssReply element and the directoryQuota
element.

132 NDK: Virtual File Services

addQuota (obsolete)

is obsolete. Call addQuota (page 362) instead.

manage.cmd Definitions 133

2.9 Junction

The following commands can be called to manipulate file system junctions:

¢ “createJunction” on page 135

¢ “deleteJunction” on page 137
Each command is wrapped with either the nssRequest or nssReply element and the junction element.
A junction is a special type of file that is used in Distributed File System (DFS).

To a client that is DFS-aware, a junction appears as a directory. The directory contains the entire
volume subtree to which the junction points.

To a non-DFS-aware client, a junction appears as a file that cannot be opened, modified, or deleted.

134 NDK: Virtual File Services

createdJunction

Creates a file system junction.

Request

<createJunction>
<junctionPath/>
<junctionName/>
<junctionDefinition/>
<nameSpace/>

</createdJunction>

Reply

<createJunction>
<result value=" ">
<description/>
<result>
</createJunction>

Elements

junctionPath

Specifies the full path to the directory where the new junction is created.

junctionName

Specifies the name of the junction to create.

junctionDefinition

Specifies the definition to write to the newly created junction. The format of this data is defined

in the DFS documentation.

nameSpace

Specifies the name space ID in which the junction name is created.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

The following example creates a junction named "mylJunction" in the SYS:/temp directory. The
junction name is to be created using the LONG (4) name space. The junction references volume

NSS1 on MYSERVER in MY TREE.

<nssRequest>
<junction>
<createJunction>

manage.cmd Definitions 135

<junctionPath>SYS:/tmp</junctionPath>
<junctionName>myJunction</junctionName>
<junctionDefinition>
/../junction/.MYSERVER NSSl.novell.MY TREE./
0xCC507D5C2732D6018002FBDA22AEG9L7
</junctionDefinition>
<nameSpace>4</nameSpace>
</createdJunction>
</junction>
</nssRequest>

A nssReply packet to the create junction command follows:
<nssReply>
<junction>
<createJunction>
<result value="0">
<description/>success</description>
</result>
</createJunction>
</Jjunction>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

136 NDK: Virtual File Services

deleteJunction

Deletes a file system junction.

Request

<deleteJunction>
<junctionPath/>
</deleteJunction>

Reply

<deleteJunction>
<result wvalue=" ">
<description/>
<result>
</deleteJunction>

Elements

junctionPath
Specifies the full path of the junction to delete.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to delete a junction is as follows:

<nssRequest>
<junction>
<deleteJunction>
<junctionPath>SYS:/tmp/myJunction</junctionPath>
</deleteJunction>
</Jjunction>
</nssRequest>

A nssReply packet to the delete junction command follows:
<nssReply>
<junction>
<deleteJunction>
<result value="0">
<description/>success</description>
</result>
</deleteJunction>
</Jjunction>

manage.cmd Definitions 137

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

138 NDK: Virtual File Services

210 LSS

This section contains the following Loadable Storage Systems (LSS) commands:

* “getl.SSInfo” on page 140
¢ “getL.SSVolumelnfo” on page 146

Each command is wrapped with either the nssRequest or nssReply element and the 1ss element.

NSS supports LSS, which provides the ability to add additional storage modules that expose and
make available different types of storage systems to NSS.

The main LSS for NSS is the ZLSS, which is the native storage system of NSS. Other LSS modules
include DOSFAT and CD9660, which allow NSS to access DOS partitions and CD devices,
respectively.

manage.cmd Definitions 139

getLSSInfo

Returns information about the Loadable Storage Systems on a server. This command is implemented
only on NetWare and not on Linux.

Request

<getLssInfo/>

Reply

<getLssInfo>
<lssInfo>
<lssName/>
<1lssID/>
<createAllowed/>
<poolSupportedFeatures value="">
<readonly/>
<shared/>
</poolSupportedFeatures>
<poolDefaultFeatures value="">
<readonly/>
<shared/>
</poolDefaultFeatures>
<poolChangeableFeatures value="">
<readonly/>
<shared/>
</poolChangeableFeatures>
<volSupportedFeatures>
<readonly/>
<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>
<shredding/>
<userTransaction/>
<migration/>
</volSupportedFeatures>
<volDefaultFeatures>
<readonly/>
<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>

140 NDK: Virtual File Services

<shredding/>
<userTransaction/>
<migration/>
</volDefaultFeatures>
<volChangeableFeatures>
<readonly/>
<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>
<shredding/>
<userTransaction/>
<migration/>
</volChangeableFeatures>
</lssInfo>
<result value=" ">
<description/>
</result>
</getLssInfo>

Elements

IssInfo

Repeats for each LSS on the system.

IssName

Specifies the name of the LSS.

IssID
Specifies the ID that is associated with the LSS.

createAllowed

Specifies that the LSS allows new volumes and pools to be created.

poolSupportedFeatures

Specifies a list of elements that represent pool features that are supported by the LSS type.

readonly

Specifies that read only is supported, enabled by default, or changeable for the pool or volume.

shared

Specifies that shared is supported, enabled by default, or changeable for the pool or volume.

poolDefaultFeatures

Specifies a list of elements that represent pool features that are enabled by default when pools

are created on the LSS type.

manage.cmd Definitions 141

poolChangeableFeatures

Specifies a list of elements that represent pool features that can be changed for the LSS type.

volSupportedFeatures

Specifies a list of elements that represent volume features that are supported by the LSS type.

salvage

Specifies that salvage is supported, enabled by default, or changeable on the volume.

compression

Specifies that compression is supported, enabled by default, or changeable on the volume.

directoryQuota

Specifies that a directory quota is supported, enabled by default, or changeable on the volume.

userQuota

Specifies that a user quota is supported, enabled by default, or changeable on the volume.

flushFiles
Specifies that flushing files is supported, enabled by default, or changeable on the volume.

mfl
Specifies that mfl is supported, enabled by default, or changeable on the volume.

snapshot

Specifies that snapshots are supported, enabled by default, or changeable on the volume.

backup
Specifies that back ups are supported, enabled by default, or changeable on the volume.

shredding
Specifies that shredding is supported, enabled by default, or changeable on the volume.

userTransaction

Specifies that user transactions are supported, enabled by default, or changeable on the volume.
migration
Specifies that migration is supported, enabled by default, or changeable on the volume.

volDefaultFeatures

Specifies a list of elements that represent volume features that are enabled by default when
volumes are created on the LSS type.

volChangeableFeatures

Specifies a list of elements that represent volume features that are changeable for volumes on
the LSS type.

result

Specifies an error value or 0 (for no error).

142 NDK: Virtual File Services

description

Specifies a text description of the result.

Atrributes

value

Specifies the decimal value of the LSS's supported, default, or changeable pool or volume
features bit mask.

Example

A nssRequest packet to return the LSS information is as follows:

<nssRequest>
<lss>
<getLSSInfo>
</getLSSInfo>
</lss>
</nssRequest>

In the following example, the server has the standard ZLSS loaded, as well as DOSFAT and CD9660
<nssReply>
<lss>
<getLSSInfo>
<lssInfo>
<lssName>ZLSS</lssName>
<1ssID>20</1ssID>
<createAllowed>
<poolSupportedFeatures value="123">
<shared>
</poolSupportedFeatures>
<poolDefaultFeatures value="57">
</poolDefaultFeatures>
<poolChangeableFeatures value="123">
<shared>
</poolChangeableFeatures>
<volSupportedFeatures value="469762043">
<salvage/>
<compression>
<directoryQuota>
<userQuota>
<flushFiles>
<mfl>
<snapshot>
<shredding>
<userTransaction>
<migration>
</volSupportedFeatures>
<volDefaultFeatures value="262129">
<salvage/>
<backup>
</volDefaultFeatures>
<volChangeableFeatures value="468975627">

manage.cmd Definitions 143

<salvage/>
<compression>
<directoryQuota>
<userQuota>
<flushFiles>
<mfl>
<snapshot>
<shredding>
<userTransaction>
<migration>
</volChangeableFeatures>
</lssInfo>

<lssInfo>
<lssName>DOSFAT</lssName>
<1ssID>30</1ssID>
<poolSupportedFeatures value="0">
</poolSupportedFeatures>
<poolDefaultFeatures value="0">
</poolDefaultFeatures>
<poolChangeableFeatures value="0">
</poolChangeableFeatures>
<volSupportedFeatures value="64">
<backup>
</volSupportedFeatures>
<volDefaultFeatures value="64">
<backup>
</volDefaultFeatures>
<volChangeableFeatures value="0">
<backup>
</volChangeableFeatures>
</lssInfo>

<lssInfo>
<lssName>CD9660</1lssName>
<1ssID>40</1ssID>
<poolSupportedFeatures value="0">
</poolSupportedFeatures>
<poolDefaultFeatures value="0">
</poolDefaultFeatures>
<poolChangeableFeatures value="0">
</poolChangeableFeatures>
<volSupportedFeatures value="68">
<readOnly>
<backup>
</volSupportedFeatures>
<volDefaultFeatures value="68">
<readOnly>
<backup>
</volDefaultFeatures>
<volChangeableFeatures value="0">
<backup>
</volChangeableFeatures>
</lssInfo>

144 NDK: Virtual File Services

<result value="0">
<description/>success</description>
</result>
</getLSSInfo>
</lss>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 145

getLSSVolumelnfo

Returns the supported, default, and chageable LSS features for the specified LSS type.

Request

<getLSSVolumeInfo>
<lssName/>
</getLSSVolumeInfo>

Reply

<getLSSVolumeInfo>
<lssVolumeInfo>

<volSupportedFeatures value=" ">
<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>
<shredding/>
<userTransaction/>
<migration/>
<backup/>

</volSupportedFeatures>

<volDefaultFeatures value=" ">
<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>
<shredding/>
<userTransaction/>
<migration/>
<backup/>

</volDefaultFeatures>

<volChangeableFeatures value=" ">
<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>
<shredding/>

146 NDK: Virtual File Services

<userTransaction/>
<migration/>
<backup/>
</volChangeableFeatures>
</1lssVolumeInfo>
<result value="0">
<description/>
</result>
</getLSSVolumeInfo>

Elements
IssName
Specifies the name of the LSS.

IssVolumelnfo

Specifies information for the volume.
volSupportedFeatures

Specifies a list of elements that represent volume features that are supported by the LSS type.
salvage

Specifies that salvage is supported, enabled by default, or changeable on the volume.
compression

Specifies that compression is supported, enabled by default, or changeable on the volume.
directoryQuota

Specifies that a directory quota is supported, enabled by default, or changeable on the volume.
userQuota

Specifies that a user quota is supported, enabled by default, or changeable on the volume.
flushFiles

Specifies that flushing files is supported, enabled by default, or changeable on the volume.
mfl

Specifies that mfl is supported, enabled by default, or changeable on the volume.
snapshot

Specifies that snapshots are supported, enabled by default, or changeable on the volume.
backup

Specifies that back ups are supported, enabled by default, or changeable on the volume.
shredding

Specifies that shredding is supported, enabled by default, or changeable on the volume.

userTransaction

Specifies that user transactions are supported, enabled by default, or changeable on the volume.

manage.cmd Definitions

147

migration

Specifies that migration is supported, enabled by default, or changeable on the volume.

volDefaultFeatures

Specifies a list of elements that represent volume features that are enabled by default when
volumes are created on the LSS type.

volChangeableFeatures

Specifies a list of elements that represent volume features that are changeable for volumes on
the LSS type.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Atrributes

value

Specifies the decimal value of the LSS's supported, default, or changeable volume features bit
mask.

148 NDK: Virtual File Services

2.11 Partition

This section contains partition commands. Before using the following commands, you should
understand the basic partition concepts that are explained in “Partitions” on page 18.

¢ “addPartition” on page 150

¢ “addPartition2” on page 155

+ “addPartitionToMirror” on page 156

+ “getPartitionInfo” on page 158

* “getPartitionMirrorStats” on page 160

+ “listPartitions” on page 162

+ “modifyPartition” on page 167

+ “removePartition” on page 169

* “removePartitionFromMirror” on page 171

+ “resyncPartitionMirror” on page 173

Each command is wrapped with either the nssRequest or nssReply element and the partition
element.

manage.cmd Definitions 149

addPartition

Creates a new partition on a device.

Request

<addPartition>
<deviceID/>
<partitionType/>
<startingSector/>
<numSectors/>
<freeSpacelD/>
<hotFixSize/>
<mirrorID/>
<label/>
<ignoreShareState/>

</addPartition>

Reply

All elements in partitionInfo are exact duplicates of the elements in listPartitions (page 162). The
only difference is that addPartition returns the partitionInfo for the partition that was just created.

<addPartition>
<partitionInfo>
<deviceName/>
<partitionName/>
<deviceID/>
<partitionType/>
<partitionID/>
<label/>
<startingSector/>
<numSectors/>
<logicalPartitionID/>
<logicalPartitionCapacity/>
<mirrorID/>
<hotFixID/>
<hotFixSize/>
<hotFixAvailSize/>
<poolName/>
<volumes>
<volumeInfo>
<volumeName/>
<volStartingSector/>
<volNumSectors/>
</volumeInfo>
</volumes>
<raidID/>
<result value=" ">
<description/>
</result>
</partitionInfo>
</addPartition>

150 NDK: Virtual File Services

Elements

devicelD

(Required) Specifies the ID of the device on which the new partition should be created. On
reply, specifies the device on which the partitions resides, as assigned by Media Manager at
boot time.

partitionType
(Required) Specifies the type of partition (see “Partition Types” on page 19).

startingSector

(Required) Specifies the starting sector where the partition begins on the device. If freeSpacelD
is specified, startingSector is ignored. Otherwise, Media Manager uses startingSector to locate
the free space on the device that contains the sector. Once the free space is loacted, the new
partition is created at the beginning of the free space.

numSectors

(Required) Specifies the size (in sectors) of the new partition.

freeSpacelD
(Required) Specifies the partition ID, as returned by listPartitions (page 162), of the free space
in which the partition is created. If freeSpacelD is nonzero, startingSector is ignored.
hotFixSize

(Required) Specifies the number of sectors to use as the HotFix area for the new partition. If 0,
no HotFix is created. If nonzero, the specified number of sectors on the new partition is
reserved for HotFix overhead.

On reply, specifies the size (in sectors) of the HotFix area that is reserved to track bad block
redirection. If the partition does not have a HotFix object, the size is 0. This element is filled
only if partitionType is NSS or traditional NetWare.

mirrorID

(Optional) Specifies the ID of the mirror group to add the partition to. If not included, a mirror
object is not created for the partition and the partition can never participate in a mirror group. If
NULL is passed, a new mirror group is created for the partition and the new partition is the
only member of the group.

On reply, specifies the ID of the mirror group. If the partition does not belong to a mirror group,
the ID is 0. This element is filled in the reply only if partitionType is NSS or traditional
NetWare.

label

(Optional) Specifies that no check is done to see if the device is marked shareable for
clustering. Usually, the server checks to validate that the clustering software is loaded and
operational before it allows partitions to be created on a device that is marked shareable.

On reply, specifies an optional label that was assigned to the partition when it was created. If
there is no label, an empty element exists in the reply.

ignoreShareState

Specifies that no check is done to see if the device is shared.

manage.cmd Definitions

151

deviceName
Specifies the name of the device on which the partition resides, as assigned by Media Manager
and the disk driver.

partitionName

Specifies the name of the partition, as assigned by Media Manager and the disk driver.

partitionID
Specifies the physical partition ID, as assigned by Media Manager. The ID represents the
partition itself but does not represent any HotFix or mirror objects on the partition.
logicalPartitionID

Specifies the logical partition ID that is used when creating NSS pools or traditional volumes
on the partition. If the partition does not have HotFix and mirroring, the ID is the same as the
physical partitionID. Otherwise, the ID is the same as the mirrorID. This element is used only if
partitionType is NSS or traditional NetWare.

logicalPartitionCapacity

Specifies the actual capacity (in sectors) of the logical partition. If the partition contains HotFix
and mirroring objects, the capacity is smaller than the size of the physical partition due to the
overhead associated with HotFix. This element is used only if partitionType is NSS or
traditional NetWare.
hotFixID
Specifies the ID of the HotFix object. If the partition does not have a HotFix object, the ID is 0.
This element is used only is partitionType is NSS or traditional NetWare.
hotFixAvailableSize

Specifies the useable size (in sectors) of the HotFix area that is reserved to track bad block
redirection. HotFix has some overhead, so this size is smaller than the size in hotFixSize. If the
partition does not have a HotFix object, the size is 0. This element is used only if partitionType
is NSS or traditional NetWare.

poolName

Specifies the pool name for an NSS partition that has a pool that uses the partition. This
element is used only if partitionType is NSS and if the partition is currently owned by an NSS
pool.

volumes
Specifies the traditional volume segments residing on a partition. This element is used only if
partitionType is traditional NetWare.

volumelnfo

Specifies information for each volume segment on the partition.

volumeName

Specifies the name of the traditional NetWare volume that owns this segment of the partition.

volStartingSector

Specifies the starting sector number of the piece of the partition that is owned by the volume.

152 NDK: Virtual File Services

volNumSectors

Specifies the number of sectors that are owned by the volume at the starting sector offset.

raidID

Specifies the media manager device ID of the RAID device that consumes the virtual device
partition. This element is used only if partitionType is virtual device.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to add an NSS partition is as follows:

<nssRequest>
<partition>
<addPartition>
<deviceID>2</devicelD>
<partitionType>105</partitionType>
<startingSector>63</startingSector>
<numSectors>204800</numSectors>
<freeSpacelD>12</freeSpacelD>
<hotFixSize>200</hotFixSize>
<mirrorID></mirrorID>
</addPartition>
</partition>
</nssRequest>

A nssReply packet to the add partition command follows:

<nssReply>
<partition>
<addPartition>
<partitionInfo>

<deviceName>
[V312-A0-D2:0] HP 2.13 GB #A2 rev:0180

</deviceName>

<partitionName>
[V312-A0-D2:0-P0] NSS Partition

</partitionName>

<deviceID>2</deviceID>
<partitionType>105</partitionType>
<partitionID>14</partitionID>
<label></label>
<startingSector>63</startingSector>
<numSectors>204800</numSectors>
<logicalPartitionID>17</logicalPartitionID>
<logicalPartitionCapacity>

204600
</logicalPartitionCapacity>
<mirrorID>17</mirrorID>

manage.cmd Definitions 153

<hotFixID>16</hotFixID>
<hotFixSize>200</hotFixSize>
<hotFixAvailSize>8</hotFixAvailSize>

</partitionInfo>

<result value="0">
<description/>success</description>

</result>

</addPartition>
</partition>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

154 NDK: Virtual File Services

addPartition2

Creates a new partition on a device.

Request

<addPartition2>
<devicelID/>
<partitionType/>
<size/>
<label/>
<ignoreShareState/>
</addPartition2>

Reply

<addPartition2>
<result wvalue=" ">
<description/>
</result>
</addPartition2>

Elements

devicelD

(Required) On NetWare, specifies the device ID received from Media Manager. On Linux,

specifies the device object name.

partitionType
(Required)
size
(Required) Specifies the size of the new partition in bytes.

label
(Optional) Specifies the user-defined partition label.

ignoreShareState

(Optional) If exists, specifies that no check is done to see if the device is shared.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

manage.cmd Definitions 155

addPartitionToMirror

Adds one or more partitions to another existing mirror group. In order to add a partition to a mirror
group, the partition must have been created with both a HotFix object and a mirror object. The data
size of the partition must be exactly the same as the data size of the partitions that already exist in the
mirror group. Also, the partition being added must not currently be a part of any other mirror group.

Request

<addPartitionToMirror>
<mirrorID/>
<partitions>
<partitionID/>
</partitions>
</addPartitionToMirror>

Reply

<addPartitionToMirror>
<result value=" ">
<description/>
</result>
</addPartitionToMirror>

Elements

mirrorID

(Required) Specifies the ID of the existing mirror group to add the partition to.

partitions

Specifies a list of partitions that need to be added to the mirror group.

partitionID

Repeats for each instance of a partition that needs to be added to the mirror group.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to add partitionID 14 to an existing mirror group (ID 20) is as follows:

<nssRequest>
<partition>
<addPartitionToMirror>
<mirrorID>20</mirrorID>
<partitions>
<partitionID>14</partitionID>

156 NDK: Virtual File Services

</partitions>
</addPartitionToMirror>
</partition>
</nssRequest>

A nssReply packet to the add partition to mirror command follows:
<nssReply>
<partition>
<addPartitionToMirror>
<result value="0">
<description/>success</description>
</result>
</addPartitionToMirror>
</partition>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 157

getPartitioninfo

Returns information about the specified partition.

Request

<getPartitionInfo>
<partitionID/>
</getPartitionInfo>

Reply

<getPartitionInfo>
<deviceName/>
<partitionName/>
<deviceID/>
<partitionType/>
<partitionID/>
<label/>
<startingSector/>
<numSectors/>
<logicalPartitionID/>
<logicalPartitionCapacity/>
<mirrorID/>
<hotFixID/>
<hotFixSize/>
<hotFixAvailSize/>
<poolName/>
<raidID/>
<result value=" “>

<description/>

</result>

</getPartitionInfo>

Elements

deviceName

NetWare only.

devicelD

(Required) On NetWare, specifies the device ID received from Media Manager. On Linux,
specifies the device name.

partitionID

(Required) On NetWare, specifies the partition ID received from Media Manager. On Linux,
specifies the partition name.

label
(Optional)

158 NDK: Virtual File Services

numSectors

Specifies the size of the partition.

logicalPartitionID
On NetWare, specifies the logical partition ID received from Media Manager. On Linux,
specifies the logical partition name.

mirrorID

On NetWare, specifies the mirror ID received from Media Manager. On Linux, specifies the
mirror name.

hotFixID

On NetWare, specifies the hot fix ID received from Media Manager. On Linux, specifies the
hot fix name.

raidID

(Optional) If exists, specifies that the device is a RAID virtual device. On NetWare, specifies
the device ID received from Media Manager. On Linux, specifies the device name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

manage.cmd Definitions 159

getPartitionMirrorStats

Returns statistics for the specified mirror group.

Request

<getPartitionMirrorState>
<mirrorID/>
</getPartitionMirrorState>

Reply

<getPartitionMirrorStats>
<result value=" ">
<description/>
</result>
<mirrorGroupStatus/>
<mirrorGroupPercent/>
<numMirrors/>
<mirrorInfo>
<hotFixID/>
<mirrorPercent/>
</mirrorInfo>
</getPartitionMirrorStats>

Elements

mirrorID

Specifies the mirror group ID for which you want the statistics.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

mirrorGroupStatus

Specifies the status bits for the entire mirror group (see “Mirror Group Statuses” on page 476).

mirrorGroupPercent

Specifies the lowest remirror percentage of any partition in the entire mirror group. If the entire
group is fully synchronized, this is 100. If one of the partitions is 63% synchronized and
another partition is 77% synchronized, the percentage returned is 63.

numMirrors

Specifies the number of partitions in the mirror group.

mirrorInfo

Repeats for each partition in the mirror group.

160 NDK: Virtual File Services

hotFixID
Specifies the HotFix ID of the partition.

mirrorPercent

Specifies the remirror complete percentage for the partition.

Example

A nssRequest packet to get the partition mitror statistics on mirror group 20 is as follows:

<nssRequest>
<partition>
<getPartitionMirrorStats>
<mirrorID>20</mirrorID>
</getPartitionMirrorStats>
</partition>
</nssRequest>

The following nssReply packet to the get partition statistics command has two partitions with
HotFix IDs of 19 and 16, and both partitions are 100% synchronized with the mirror group:

<nssReply>
<partition>
<getPartitionMirrorStats>
<mirrorGroupStatus>7</mirrorGroupStatus>
<mirrorGroupPercent>100</mirrorGroupPercent>
<numMirrors>2</numMirrors>
<mirrorInfo>
<hotFixID>19</hotFixID>
<mirrorPercent>100</mirrorPercent>
</mirrorInfo>

<mirrorInfo>
<hotFixID>16</hotFixID>
<mirrorPercent>100</mirrorPercent>

</mirrorInfo>

<result value="0">
<description/>success</description>

</result>

</getPartitionMirrorStats>
</partition>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 161

listPartitions

Obtains a detailed list of all partitions. listPartitions can be used to list either all of the partitions on
the entire server or all the partitions that exist on a single device.

Request

<listPartitions>
<deviceID/>
</listPartitions>

Reply

<listPartition>
<partitionInfo>
<deviceName/>
<partitionName/>
<devicelID/>
<partitionType/>
<partitionID/>
<label/>
<startingSector/>
<numSectors/>
<logicalPartitionID/>
<logicalPartitionCapacity/>
<mirrorID/>
<hotFixID/>
<hotFixSize/>
<hotFixAvailSize/>
<poolName/>
<volumes>
<volumeInfo>
<volumeName/>
<volStartingSector/>
<volNumSectors/>
</volumeInfo>
</volumes>
<raidID/>
<result value=" ">
<description/>
</result>
</partitionInfo>
</listPartition>

Elements

deviceName

Specifies the name of the device on which the partition resides, as assigned by Media Manager
and the disk driver.

162 NDK: Virtual File Services

partitionName

Specifies the name of the partition, as assigned by Media Manager and the disk driver.

devicelD

On input, specifies that only the partitions on this device are returned. If not used, all partition
on all devices are returned.

On output, specifies the device on which the partition resides, as assigned by Media Manager at
boot time.
partitionID
Specifies the physical partition ID, as assigned by Media Manager. The ID represents the
physical partition itself but does not represent any HotFix or mirror objects of the partition.
label
(Optional) Specifies a label that was assigned to the partition when it was created. If there is no
label, an empty element is returned.
startingSector

Specifies the starting sector offset where the partitions begins on the device.

numSectors

Specifies the length (in sectors) of the partition.

logicalPartitionID

Specifies the logical partition ID that should be used when creating NSS pools or traditional
volumes on the partition. If the partition does not have HotFix and mirroring, this ID is the
same as the physical partition ID. Otherwise, this ID is the same as the mirrorID. This element
is filled only if partitionType is NSS or traditional NetWare.

logicalPartitionCapacity
Specifies the actual capacity (in sectors) of the logical partition. If the partition contains HotFix
and mirroring objects, the capacity is smaller than the size of the physical partition due to the
overhead associated with HotFix. This element is filled only if partitionType is NSS or
traditional NetWare.

mirrorID
Specifies the ID of the mirror group. If the partition does not belong to a mirror group, the ID is
0. This element is filled only if partitionType is NSS or traditional NetWare.

hotFixID
Specifies the ID of the HotFix object. If the partition does not have a HotFix object, the ID is 0.
This element is filled only if partitionType is NSS or traditional NetWare.

hotFixSize

Specifies the size (in sectors) of the HotFix area that is reserved to track bad block redirection.
If the partition does not have a HotFix object, the size is 0. This element is filled only if
partitionType is NSS or traditional NetWare.

manage.cmd Definitions

163

hotFixAvailSize

Specifies the useable size (in sectors) of the HotFix area that is reserved to track bad block
redirection. HotFix has some overhead, so this size is smaller than the size in hotFixSize. If the
partition does not have a HotFix object, the size is 0. This element is filled only if partitionType
is NSS or traditional NetWare.

poolName

Specifies the name of the pool if the partition is an NSS partition and a pool has been created
that uses the partition. This element is filled only if partitionType is NSS and if the partition is
currently owned by an NSS pool.

volumes
Specifies that the partition has one or more traditional volume segments on it. This element is
filled only if partitionType is traditional NetWare.

volumelnfo

Repeats for each volume segment on the partition.

volumeName

Specifies the name of the traditional NetWare volume that owns this segment of the partition.

volStartingSector

Specifies the starting sector number of the piece of the partition that is owned by the volume.

volNumSectors

Specifies the number of sectors that are owned by the volume at the starting sector offset.

raidID

Specifies the Media Manager device ID of the RAID device that consumes this virtual device
partition. This element is filled only if partitionType is virtual device.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to list partitions is as follows:
<nssRequest>
<partition>
<listPartitions>
</partition>
</nssRequest>

The following nssReply packet shows three partitions, all on devicelD one. The first partitionInfo
represents a DOS partition, the second partitionInfo represents an NSS partition, and the third
partitionInfo represents an unpartitioned free space at the end of the device.
<nssReply>

<partition>

164 NDK: Virtual File Services

<partitionInfo>
<deviceName>
[V312-A0-D0:0] WDIGTL WDE4360-1807A3 rev:1.80
</deviceName>
<partitionName>
[V312-A0-D0:0-P0] Big DOS; 0S/2; Win95 Partition
</partitionName>
<deviceID>1</devicelD>
<partitionType>6</partitionType>
<partitionID>10</partitionID>
<label></label>
<startingSector>63</startingSector>
<numSectors>417627</numSectors>
<result value="0">
<description/>success</description>
</result>
</partitionInfo>

<partitionInfo>

<deviceName>

[V312-A0-D0:0] WDIGTL WDE4360-1807A3 rev:1.80
</deviceName>
<partitionName>

[V312-A0-D0:0-PCB] NSS Partition
<partitionName>
<deviceID>1</devicelD>
<partitionType>105</partitionType>
<partitionID>11</partitionID>
<label></label>
<startingSector>417690</startingSector>
<numSectors>4116480</numSectors>
<logicalPartitionID>23</logicalPartitionID>
<logicalPartitionCapacity>

4108200
</logicalPartitionCapacity>
<mirrorID>23</mirrorID>
<hotFixID>22</hotFixID>
<hotFixSize>8280</hotFixSize>
<hotFixAvailSize>8056</hotFixAvailSize>
<poolName>SYS</poolName>
<result value="0">

<description/>success</description>
</result>

</partitionInfo>

<partitionInfo>

<deviceName>

[V312-A0-D0:0] WDIGTL WDE4360-1807A3 rev:1.80
</deviceName>
<partitionName>

[V312-A0-D0:0-P8A5] Free Partition Space
</partitionName>
<deviceID>1</devicelID>
<partitionType>0</partitionType>

manage.cmd Definitions 165

<partitionID>13</partitionID>
<label></label>
<startingSector>4534170</startingSector>
<numSectors>3851760</numSectors>
<result value="0">
<description/>success</description>
</result>
</partitionInfo>
</partition>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

166 NDK: Virtual File Services

modifyPartition

Modifies the partition label and size.

Request

<modifyPartition>
<partitionID/>
<label/>
<growSize/>
<shrinkSize/>

</modifyPartition>

Reply

<modifyPartition>
<result value=" ">
<description/>
</result>
</modifyPartition>

Elements

partitionID
(Required) On NetWare, specifies the partition ID received from Media Manager. On Linux,
specifies the partition name.

label

(Optional) If exists, specifies the new value for the partition label.

growSize

(Optional) If exists, specifies that the partition size is increasing. Specifies the amount to grow
the partition by in bytes (not the desired total partition size). If growSize exists, shrinkSize
should not exist.

shrinkSize

(Optional) If exists, specifies that the partition size is decreasing. Specifies the amount to
shrink the partition by in bytes (not the desired total partition size). If shrinkSize exists,
growSize should not exist.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Example

A nssRequest packet to remove an NSS partition is as follows:

manage.cmd Definitions 167

<nssRequest>
<partition>
<removePartition>
<partitionID>14</partitionID>
</removePartition>
</partition>
</nssRequest>

A nssReply packet to the remove partition command follows:

<nssReply>
<partition>
<removePartition>
<result value="0">
<description/>success</description>
</result>
</removePartition>
</partition>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

168 NDK: Virtual File Services

removePartition

Deletes an existing partition on a device. If the partition being deleted contains a portion of NSS
pools or traditional NetWare volumes, removePartition causes those pools and volumes to also be
deleted. However, removePartition does not deleted the eDirectory objects for those pools and
volumes. Before deleting a partition, you should use other XML commands to delete the pools and
volumes to ensure that all eDirectory cleanup occurs correctly. If the partition being deleted is
currently part of an active mirror group, you should first remove the partition from the mirror group
before deleting it.

Request

<removePartition>
<partitionID/>
<ignoreShareState/>

</removePartition>

Reply

<removePartition>
<result value=" ">
<description/>
</result>
</removePartition>

Elements

partitionID
On NetWare, specifies the partition ID received from Media Manager. On Linux, specifies the
partition name.

ignoreShareState

(Optional) If exists, no check is done to see if the device is marked shareable for clustering.
Usually, the server checks to validate that the clustering software is loaded and operational
before allowing partition deletions on a device that is marked for clustering.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Example

A nssRequest packet to remove an NSS partition is as follows:
<nssRequest>
<partition>
<removePartition>
<partitionID>14</partitionID>
</removePartition>

manage.cmd Definitions 169

</partition>
</nssRequest>

A nssReply packet to the remove partition command follows:
<nssReply>
<partition>
<removePartition>
<result value="0">
<description/>success</description>
</result>
</removePartition>
</partition>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

170 NDK: Virtual File Services

removePartitionFromMirror

Removes a partition from another existing mirror group. Use removePartitionFromMirror only if the
mirror group contains more than one partition. If the partition is the only partition in the group, there

is no need to remove it.

Request

<removePartitionFromMirror>
<partitionID/>
</removePartitionFromMirror>

Reply

<remmovePartitionFromMirror>
<result wvalue=" ">
<description/>
</result>
</removePartitionFromMirror>

Elements

partitionID
Specifies the physical partition ID of the partition to be removed.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to remove a partition from a mirror group is as follows:

<nssRequest>
<partition>
<removePartitionFromMirror>
<partitionID>14</partitionID>
</removePartitionFromMirror>
</partition>
</nssRequest>

A nssReply packet to the remove partition from a mirror group command follows:

<nssReply>
<partition>
<removePartitionFromMirror>
<result value="0">
<description/>success</description>
</result>
</removePartitionFromMirror>

manage.cmd Definitions 171

</partition>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

172 NDK: Virtual File Services

resyncPartitionMirror

Causes a mirror group to resynchronize.

Request

<resyncPartitionMirror>
<mirrorID/>
</resyncPartitionMirror>

Reply

<resyncPartitionMirror>
<result value=" ">
<description/>
</result>
</resyncPartitionMirror>

Elements

mirrorID

Specifies the ID of the mirror group that needs to be synchronized.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to resynchronize mirror group 20 is as follows:

<nssRequest>
<partition>
<resyncPartitionMirror>
<mirrorID>20</mirrorID>
</resyncPartitionMirror>
</partition>
</nssRequest>

A nssReply packet to the resynchronize command follows:

<nssReply>
<partition>
<resyncPartitionMirror>
<result value="0">

<description/>success</description>

</result>
</resyncPartitionMirror>
</partition>

manage.cmd Definitions 173

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

174 NDK: Virtual File Services

2.12 Pool

This section contains the following Pool commands. For more information on NSS pools, see
Section 1.6, “Pools,” on page 20.

+ “activatePoolSnapshot” on page 176

¢ “addPool” on page 177

¢ “addPool2” on page 180

+ “addPoolSnapshot” on page 182

+ “deactivatePoolSnapshot” on page 183

+ “expandPool” on page 184

+ “expandPool2” on page 186

¢ “getDefaultClusterNames” on page 187

¢ “getNDSName” on page 189

+ “getPoolDevices” on page 191

+ “getPoollnfo” on page 192

+ “getPoolSnapshotInfo” on page 198

* “getState” on page 200

+ “listPools” on page 202

+ “listPoolSnapshots” on page 205

+ “modifyPoolInfo” on page 207

+ “modifyState” on page 209

¢ “poolFreeze” on page 211

+ “poolFreezeStatus” on page 213

¢ “poolThaw” on page 218

* “removePool” on page 220

+ “removePool2” on page 222

+ “removePoolSnapshot” on page 223

+ “renamePool” on page 224

+ “renamePoolSnapshot” on page 226

Each command is wrapped with either the nssRequest or nssReply element and the pool element.

manage.cmd Definitions 175

activatePoolSnapshot

Activates a pool snapshot.

Request

<activatePoolSnapshot>
<snapName/>
</activatePoolSnapshot>

Reply

<activatePoolSnapshot>
<result value=" ">
<description/>
</result>
</activatePoolSnapshot>

Elements

snapName

Specifies the name of the pool snapshot.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

176 NDK: Virtual File Services

addPool

Creates an NSS storage pool on the server. This command is implemented only on NetWare and not
on Linux.

Request

<addPool state=" ">
<poolName/>
<ndsName/>
<context/>
<noNDSOjbect/>
<partitions>
<partitionID/>
</partitions>
<lssType/>
<ignoreShareState/>
<cluster>
<advertisingProtocol/>
<ipAddress/>
<virtualServerName/>
<cifsVirtualServerName/>
</cluster>
</addPool>

Reply

<addPool>
<result wvalue=" ">
<description/>
</result>
</addPool>

Elements

poolName

Specifies the name to be given to the new pool.

ndsName

(Required unless noNDSObject is used) Specifies the name of the eDirectory pool object that
represents the pool. If NULL is passed, the name of the eDirectory pool object is generated by
prepending the server name and an underscore to the poolName value and adding “ POOL” to
the end of the name.

context

(Required unless noNDSObject is used) Specifies the eDirectory context in which the
eDirectory pool object is created. If NULL is passed, the eDirectory pool object is created in
the same eDirectory context where the server object resides.

manage.cmd Definitions 177

noNDSObject
(Optional) Specifies that no eDirectory objects should be created for the pool. If used, the
ndsName and context elenments are ignored.

partitions

Specifies a list of one or more partitionID elements.

partitionID
Repeats for each partition being added to the new pool. Specifies the logical ID. If the partition
has HotFix and mirroring, the ID is the mirror group ID for the partition. If the partition does
not have HotFix and mirroring, the ID is the raw physical partition ID.

IssType
Specifies the loadable storage system type to be used by the new pool. Currently, the only
supported type is “ZLSS.”

ignoreShareState

(Optional) Specifies that no check is performed to see if the device is marked shareable for
clustering. Usually, the server checks to validate that the clustering software is loaded and
operaitonal before allowing pools to be created on a device that is marked shareable.

cluster
(Optional) Specifies that the NSS pool should be auto-enabled to work with clustering
software. Use this element only if the device on which the pool is being created is marked
shareable for clustering.

advertisingProtocol
(Optional) Specifies a space-separated list of protocols on which the clustered pool advertises
its clustering services:
cifs
afp
necp

ipAddress

(Required) Specifies the IP address to assign to the virtual server for the clustered pool.

virtualServerName

(Required) Specifies the name to assign to the eDirectory virtual server object. If you do not
choose your own name, call getDefaultClusterNames (page 187) to retrieve the suggested
default virtualServerName before calling addPool.

cifsVirtualServerName

(Required if advertisingProtocol is cifs) Specifies the name to be used to advertise the cluster
virtual server on the CIFS protocol. If advertisingProtocol does not specify cifs, this element is
ignored.

result

Specifies an error value or 0 (for no error).

178 NDK: Virtual File Services

description

Specifies a text description of the result.

Attributes

state

(Optional) Specifies what state the pool is set to after it is created:

active
deactive

Example

The following is an example of adding a pool named MYPOOL. addPool creates the pool and adds
a pool object into eDirectory in the same eDirectory container as the server. The name of the
eDirectory pool object is <serverName> MYPOOL. The pool consumes two partition with IDs 20

and 23.

<nssRequest>
<pool>
<addPool state="active">
<poolName>MYPOOL</poolName>
<ndsName>
<context>
<lssType>ZLSS</lssType>
<partitions>
<partitionID>20</partitionID>
<partitionID>23</partitionID>
</partitions>
</addPool>
</pool>
</nssRequest>

A nssReply packet to the add pool command follows:
<nssReply>
<pool>
<addPool>
<result value="0">

<description/>success</description>

</result>
</addPool>
</pool>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 179

addPool2

Creates an NSS storage pool on the server.

Request

<addPool2 state=" ">

<poolName/>

<ndsName/>

<context/>

<noNDSOjbect/>

<devices>
<addPoolDeviceInfo>

<objectID/>
<size/>

</addPoolDeviceInfo>

</devices>

<lssType/>

<ignoreShareState/>

<cluster>
<advertisingProtocols/>
<ipAddress/>
<virtualServerName/>
<cifsVirtualServerName/>

</cluster>

</addPool2>

Reply

<addPool2>
<result wvalue=" ">
<description/>
</result>
</addPool2>

Elements

poolName

Specifies the name to give to the new pool.

ndsName

(Required, unless noNDSObject is used) Specifies the name of the eDirectory object for the
pool. If no name is given, the name is generated by appending the server name and an
underscore to the pool name and adding POOL to the end of the name.

context

(Required, unless noNDSObject is used) Specifies the context where the eDirectory pool object
is created. If no context is given, the context is assumed to be the same as the server object.

180 NDK: Virtual File Services

noNDSObject

(Optional) Specifies that only the pool is created (not the eDirectory object). If noNDSOjbect is
specified, ndsName, context, and ndsPoolName are ignored.

devices

Specifies the list of devices whose segments are included in the pool.

addPoolDeviceInfo

(Repeating) Specifies a device whose segments need to be included in the pool.

objectID

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the
device name.

size
Specifies the size for the device.

IssType
Specifies the LSS type for the pool. Currently, always zLSS.

ignoreShareState

If exists, specifies that the partition is not checked to see if it's shared.

advertisingProtocols

(Optional) Specifies a space-separated list of protocols on which the clustered pool advertises
its clustering services. Valid protocols include: cifs, aft, and ncp.

ipAddress

(Required) Specifies the address to be assigned to the virtual server for the clustered pool.

virtualServerName

(Required) Specifies the name to give to the virtual server object in eDirectory.

cifsVirtualServerName

(Required if advertisingProtocols specifies cifs) Specifies the name to use when advertising
this virtual server object in the CIFS protocol.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

manage.cmd Definitions 181

addPoolSnapshot

Creates a snapshot (snapName) of a pool and designates another pool (snapPoolName) as a snapshot
data repository.

Request

<addPoolSnapshot>
<poolName/>
<snapPoolName/>
<snapName/>

</addPoolSnapshot>

Reply

<addPoolSnapshot>
<result value=" ">
<description/>
</result>
</addPoolSnapshot>

Elements

poolName

Specifies the name of the pool to take a snapshot of.

snapPoolName

Specifies the pool name on which to store the snapshot data.

snapName

Specifies the name of the pool snapshot.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

182 NDK: Virtual File Services

deactivatePoolSnapshot

Deactivates a pool snapshot.

Request

<deactivatePoolSnapshot>
<snapName/>
</deactivatePoolSnapshot>

Reply

<deactivatePoolSnapshot>
<result value=" ">
<description/>
</result>
</deactivatePoolSnapshot>

Elements
snapName
Specifies the name of the pool snapshot.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 183

expandPool

Expands the size of (adds additional partitions to) an NSS storage pool. This command is
implemented only on NetWare and not on Linux.

Request

<expandPool>
<poolName/>
<partitions>
<partitionID/>
</partitions>
</expandPool>

Reply

<expandPool>
<result value=" ">
<description/>

</result>

</expandPool>

Elements

poolName

Specifies the name of the pool to expand.

partitions

Specifies one or more partitions.

partitionID

Repeats for each partition. Specifies the logical ID of a partition to add to the pool. If the pool
has HotFix and mirroring, the ID is the mirror group ID for the partition. If the partition does
not have HotFix and mirroring, it is the ID of the raw physical partition.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

The following is an example of expanding the size of MYPOOL by adding another partition to it:

<nssRequest>
<pool>
<expandPool>
<poolName>MYPOOL</poolName>
<partitions>
<partitionID>18</partitionID>

184 NDK: Virtual File Services

</partitions>
</expandPool>
</pool>
</nssRequest>

A nssReply packet to the expand pool command follows:
<nssReply>
<pool>
<expandPool>
<result value="0">
<description/>success</description>
</result>
</expandPool>
</pool>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 185

expandPool2

Expands the size of (adds additional partitions to) an NSS storage pool.

Request

<expandPool2>
<poolName/>
<devices>
<addPoolDeviceInfo>
<objectID/>
<size/>
</addPoolDeviceInfo>
</devices>
</expandPool2>

Reply

<expandPool2>
<result value=" ">
<description/>
</result>
</expandPool2>

Elements

devices

Specifies the list of devices whose segments are in the pool.

addPoolDevicelnfo

(Repeating) Specifies a device whose segments need to be included in the pool.

objectID

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the
device name.

size
Specifies the user-defined size for the device.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

186 NDK: Virtual File Services

getDefaultClusterNames

Returns the default names the clustering software would assign for a given pool name. Before
calling the addPool (page 177) command with the cluster element, you should call this command to
acquire the suggested default names for the clustering parameters. Then pass the values returned by
getDefaultClusterNames as input element values to the addPool command.

Request

<getDefaultClusterNames>
<poolName/>
</getDefaultClusterNames>

Reply

<getDefaultClusterNames>
<poolName/>
<ndsName/>
<virtualServerName/>
<cifsVirtualServerName/>
<result value=" ">

<description/>

</result>

</getDefaultClusterNames>

Elements

poolName
Specifies the NSS storage pool name for which default names are to be returned. The named
pool does not need to exist.

ndsName

Specifies the suggested default name for the pool's eDirectory object.

virtualServerName

Specifies the suggested default name for the pool's virtual server eDirectory object.

cifsVirtualServerName

Specifies the suggested default name for the pool's CIFS virtual server (that's used in
advertising on the CIFS protocol).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 187

Example

The following is an example of calling getDefaultClusterNames on the "ibm_cluster" server on the
"MYPOOL" pool:

<nssRequest>
<pool>
<getDefaultClusterNames>
<poolName>MYPOOL</poolName>
</getDefaultClusterNames>
</pool>
</nssRequest>

A nssReply packet to the get default cluster names command follows:

<nssReply>
<pool>
<getDefaultClusterNames>
<poolName>MYPOOL</poolName>
<ndsName>ibm cluster MYPOOL POOL</ndsName>
<virtualServerName>
ibm cluster MYPOOL SERVER
</virtualServerName>
<cifsVirtualServerName>
ibm clust MYPOO
</cifsVirtualServerName>
<result value="0">
<description/>success</description>
</result>
</getDefaultClusterNames>
</pool>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

188 NDK: Virtual File Services

getNDSName

Returns what the eDirectory name is for an existing NSS storage pool.

Request

<getNDSName>
<poolName/>
</getNDSName>

Reply

<getNDSName>
<ndsName/>
<context/>
<result wvalue=" ">
<description/>
</result>
</getNDSName>

Elements

poolName

Specifies the name of the pool for which to find the eDirectory name.

ndsName

Specifies the name of the eDirectory pool object that represents the NSS storage pool.

context

Specifies the eDirectory context of the returned ndsName.

result

Specifies an error value or 9 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to return the eDirectory name is as follows:

<nssRequest>
<pool>
<getNDSName>
<poolName>SYS</poolName>
</getNDSName>
</pool>
</nssRequest>

A nssReply packet to the get name command follows:

manage.cmd Definitions 189

<nssReply>
<pool>
<getNDSName>
<ndsName>MYSERVER_ SYS POOL</ndsName>
<context>\MYSERVER TREE\novell</context>
<result value="0">
<description/>success</description>
</result>
</getNDSName>
</pool>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

190 NDK: Virtual File Services

getPoolDevices

Returns the device occupied by the specified pool.

Request

<getPoolDevices>
<poolName/>
<getPoolDevice>

Reply

<getPoolDevices>
<deviceSimpleInfo>
<objectID/>
<mirrored/>
<name/>
<size/>
<shared/>
</deviceSimpleInfo>
</getPoolDevices>

Elements

poolName

Specifies the name of the pool to return information about.

deviceSimpleInfo

Repeats. Specifies a device (physical or RAID) or a mitror group.

objectID

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the

device name.

mirrored

(Optional) Specifies that the device is mirrored.

size
Specifies the size of the device (in bytes).

shared

(Optional) Specifies that the device is shared.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

manage.cmd Definitions 191

getPoolinfo

Returns detailed information about an existing NSS storage pool on the server. Also returns the
pool's segment information.

Request

<getPoolInfo type=" ">
<poolName/>
<getPoolInfo>

Reply

<getPoolInfo>
<basicInfo>
<mountPoint/>
<poolName/>
<ndsPoolName/>
<ndsPoolGUID/>
<poolGUID/>
<poolState/>
<nameSpaces value=" "/>
<blockSize/>
<size/>
<usedSize/>
<createdTime value=" "/>
<modifiedTime value=" "/>
<lssType/>
</basicInfo>
<attributeInfo>
<supportedAttributes value=" ">
<readonly/>
<shared/>
</supportedAttributes>
<enabledAttributes wvalue=" ">
<readonly/>
<shared/>
</enabledAttributes>
</attributeInfo>
<salvageInfo>
<freeableSize/>
<nonFreeableSize
</salvageInfo/>
<volumeInfo>
<volumeName/>
</volumeInfo>
<deletedVolumeInfo>
<volumeName/>
</deletedVolumeInfo>
<segmentInfo>
<segment>
<deviceName/>

192 NDK: Virtual File Services

<segmentName/>
<deviceID/>
<segmentID/>
<label/>
<offset/>
<size/>
</segment>
</segmentInfo>
<result value=" ">
<description/>
</result>
</getPoolInfo>

Elements

poolName

Specifies the name of the pool.

basicInfo

Specifies that the type was either all or basic.

mountPoint

Linux only. Specifies the pool's mount point.

ndsPoolName

Specifies the name of the pool's eDirectory object.

ndsPoolGUID

Specifies the globally unique ID (GUID) of the eDirectory pool object.

poolGUID
Specifies the GUID of the NSS pool.

poolState
Specifies the state of the pool:

mounted
active
deactive
maintenance
unknown

nameSpaces

Specifies a list of name spaces, separated by spaces:

DOS
Long
Macintosh
Unix

manage.cmd Definitions 193

blockSize
Specifies the size of the pool's block.
size
Specifies the total size of the pool (in bytes).

usedSize

Specifies the total number of bytes used by the pool. This number also includes all files that are
contained in the salvage system.

createdTime

Specifies a string representation of the UTC time when the pool was created.

modifiedTime

Specifies a string representation of the UTC time when the pool was modified.

1ddType
Specifies the LSS type for the pool:
ZLSS
CD9%660
unknown
attributelnfo

Specifies the type was all or attributes

supportedAttributes
Specifies a list of tags that represent the attributes that are supported by the pool.

readonly

If exists, specifies that the read only feature is supported on the pool.

shared

If exists, specifies that the shareable-for-clustering feature is supported on the pool.

enabledAttributes

Specifies a list of elements that represent supported pool attributes.

salvagelnfo

Specifies that the type is all or salvage.

freeableSize
Specifies the number of purgeable bytes on the pool. A purgeable file is one that is deleted but
which still exists in the file system so it can be either purged or salvaged.

nonFreeableSize

Specifies the number of nonpurgeable bytes on the pool. A nonpurgeable file is one that is
deleted and still exists in the file system but has not yet met the criteria for being purged
automatically.

194 NDK: Virtual File Services

volumelnfo

Specifies that the type is all or volumes.

volumeName

(Repeating) Specifies a list of all NSS logical volume names that are contained in the pool.
Each NSS logical volume is represented by one instance.

deletedVolumelnfo
Specifies that the type is all or deletedVolumes.

segmentInfo

Specifies that the type is all or segments.

deviceName

NetWare only. Specifies the name of the device on which the segment resides as assigned by
Media Manager and the disk driver.

segmentName

NetWare only. Specifies the name of the segment assigned by Media Manager and the disk
driver.

devicelD

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the
device name.

segmentID

On NetWare, specifies the partition ID received from Media Manager. On Linux, specifies the
partition name.

label

(Optional) Specifies a label that was assigned to the partition when it was created. If there is no
label, an empty element is returned.

offset

Specifies the starting offset (in bytes) where the segment begins on the device.
size
Specifies the length of the segment (in bytes).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Attributes

type
(Optional) Specifies what type of information is returned. (See Section 11.7, “Pool Types,” on
page 477.) If not specified, all information is returned.

manage.cmd Definitions 195

nameSpaces value

Specifies the decimal value of the name space mask for the pool.

value

(For createdTime and modifiedTime) Specifies the decimal UTC time.

value

(For supportedAttributes and enabledAttributes) Specifies the decimal value of the pool's bit
masks.

Example

A nssRequest packet to return information on the SYS pool is as follows:

<nssRequest>
<pool>
<getPoolInfo type="all">
<poolName>SYS</poolName>
</getPoolInfo>
</pool>
</nssRequest>

A nssReply packet to the get pool information command follows:
<nssReply>
<pool>
<getPoolInfo>
<basicInfo>
<poolName>SYS</poolName>
<ndsPoolName>
.CN=BRENDAL SYS POOL.O=novell.T=BRENDAL TREE.
</ndsPoolName>
<ndsPoolGUID>
8ABF1880-E425-11D5-B7-C1-00C04FA33547
</ndsPoolGUID>
<poolGUID>
C252E4EE-E3E8-01D5-80-00-F26070A1467D
</poolGUID>
<poolState>active</poolState>
<nameSpaces value="0"></nameSpaces>
<blockSize>4096</blockSize>
<s51ze>2102394880</size>
<usedSize>1199800320</usedSize>
<createdTime value="1015426180">
Mar 6, 2002 7:49:40 am
</createdTime>
<modifiedTime value="1015426180">
Mar 6, 2002 7:49:40 am
</modifiedTime>
<lssType>ZLSS</lssType>
</basicInfo>

<attributeInfo>
<supportedAttributes value="123">

196 NDK: Virtual File Services

<shared>
</supportedAttributes>
<enabledAttributes value="57">
</enabledAttributes>
</attributeInfo>

<salvageInfo>
<freeableSize>569831424</freeableSize>
<nonFreeableSize>0</nonFreeableSize>
</salvageInfo>

<volumeInfo>
<volumeName>SYS</volumeName>
</volumeInfo>

<deletedVolumeInfo>
</deletedvVolumeInfo>

<result value="0">
<description/>success</description>
</result>
</getPoolInfo>
</pool>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 197

getPoolSnapshotinfo

Returns information for a specified pool snapshot.

Request

<getPoolSnapshotInfo>
<snapName/>
</getPoolSnapshotInfo>

Reply
<getPoolSnapshotInfo>
<poolSnapshotInfo>
<snapName/>
<poolName/>
<snapPoolName/>
<poolSize/>
<time/>
<allocatedSize/>
<state/>
</poolSnapshotInfo>
<result value="">
<description/>
</result>

</getPoolSnapshotInfo>

Elements

snapName

Specifies the name of the pool's snapshot.

poolName

Specifies the name of the pool of which to take a snapshot.

snapPoolName

Specifies the pool name on which to store the snapshot data.

time

Specifies the UTC time when the pool snapshot is created.

allocatedSize

Specifies the snapshot's allocated size.

state

Specifies the state of the pool:

active
deactive

198 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 199

getState

Retrieves the current state of an existing NSS storage pool. This command is implemented only on
NetWare and not on Linux.

Request

<getState>
<poolName/>
</getState>

Reply

<getState>
<poolName/>
<poolState/>
<result value=" ">
<description/>
</result>
</getState>

Elements

poolName

Specifies the name of an existing NSS storage pool for which to return the state.

poolState
Specifies the state of an NSS storage pool:

active
deactive
maintenance

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to returns the state is as follows:

<nssRequest>
<pool>
<getState>
<poolName>SYS</poolName>
</getState>
</pool>
</nssRequet>

200 NDK: Virtual File Services

A nssReply packet to the get state command follows:

<nssReply>
<pool>
<getState>
<poolName>SYS</poolName>
<poolState>active</poolState>
<result value="0">
<description/>success</description>
</result>
</getState>
</pool>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 201

listPools

Lists basic information about all of the NSS storage pools residing on the server. This command is
implemented only on NetWare and not on Linux.

Request

<listPools>

Reply

<listPools>
<poolInfo>
<poolName/>
<poolState/>
<totalBytes/>
<freeBytes/>
<enabledAttributeBits/>
<result value=" ">
<description/>
</result>
</poolInfo>
<result wvalue=" ">
<description/>
</result>
</listPools>

Elements

poollnfo

Repeats for each pool.

poolName

Specifies the name of the pool.

poolState
Specifies a numeric value that represents the internal state of the pool (see “Pool States” on
page 477).

totalBytes
Specifies the total size (in bytes) of the pool.

freeBytes

Specifies the total number of bytes that are available for use in the pool. This value is
calculated by taking the total size of the pool, subtracting how many bytes are actually in use,
adding back the number of used bytes in the salvage system that are currently purgeable, and
subtracting a free space adjustment amount (which is used by the LSS to reserve a certain
amount of free space for internal use so that it always has enough free space to logging and
transaction operations).

202 NDK: Virtual File Services

enabledAttributeBits

Specifies a hex bit value, such as 0x39 (see “Enabled Attributes Bits” on page 475).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to list pools is as follows:

<nssRequest>
<pool>
<listPools>
</listPools>
</pool>
</nssRequest>

A nssReply packet to the modify device command follows:
<nssReply>
<pool>
<listPools>
<poolInfo>
<poolName>SYS</poolName>
<poolState>6</poolState>
<totalBytes>2102394880</totalBytes>
<freeBytes>1471926272</freeBytes>
<enabledAttributeBits>
0X39
</enabledAttributeBits>
<result value="0">
<description/>success</description>
</result>
</poolInfo>

<poolInfo>
<poolName>MYPOOL</poolName>
<poolState>6</poolState>
<totalBytes>103809024</totalBytes>
<freeBytes>94285824</freeBytes>
<enabledAttributeBits>
0X39
</enabledAttributeBits>
<result value="0">
<description/>success</description>
</result>
</poolInfo>

<result value="0">
<description/>success</description>
</result>

manage.cmd Definitions 203

</listPools>
</pool>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

204 NDK: Virtual File Services

listPoolSnapshots

Lists all existing pool snapshots and their related information.

Request

<listPoolSnapshots>
<poolName/>
<details/>

</listPoolSnapshots>

Reply

<listPoolSnapshots>
<poolSnapshotInfo>
<snapName/>
<poolName/>
<snapPoolName/>
<poolSize/>
<time/>
<allocatedSize/>
<state/>
<result value="">
<description/>
</result>
</poolSnapshotInfo>
<result value="">
<description/>
</result>
</listPoolSnapshots>

Elements
poolName
Specifies the name of the pool to return information for.

details

Specifies to return the detailed information for the existing pools. If this element isn’t included,
listPoolSnapshots returns only a list of snapPoolName elements.

snapName

Specifies the name of the pool snapshot.

poolName

Specifies the name of the pool of which to take a snapshot.

snapPoolName

Specifies the name of the pool on which to store the snapshot data.

manage.cmd Definitions 205

time
Specifies the UTC time when the pool snapshot was created.

allocatedSize

Specifies the number of sectors allocated to the snapshot.

state

Specifies the state of the pool:

active
deactive

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

206 NDK: Virtual File Services

modifyPoolinfo

Modifies the properties of an existing NSS storage pool on the server. Note that no properties can
currently be modified with modifyPoollnfo. However, the command is documented with examples
of how it works in the future when modifications are allowed. This command is implemented only
on NetWare and not on Linux.

Request

<modifyPoolInfo>
<poolName/>
<basicInfo>
<mountPoint/>
</basicInfo>
<enabledAttributes>
<shared enabled=" "/>
</enabledAttributes>
</modifyPoolInfo>

Reply

<modifyPoolInfo>
<result value=" ">
<description/>
</result>
</modifyPoolInfo>

Elements

modifyPoollnfo

(Optional, Repeating) Specifies to modify the properties of an existing pool. Currently, no
properties can be modified.

poolName

Specifies the name of the pool for which information is to be modifieds.

basicInfo

Specifies the basic information for the pool.

mountPoint

Specifies the pool's mount point for Linux only.

enabledAttributes

Is not used.

shared

Specifies an example only. The shareable-for-clustering state cannot be modified for an NSS
storage pool. If modifications were allowed, the enabled attribute would state either yes or no.

manage.cmd Definitions 207

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Example

Because the shared attribute cannot currently be modified, the following examples are not
functional.

A nssRequest packet to modify pool information is as follows:

<nssRequest>
<pool>
<modifyPoolInfo>
<poolName>MYPOOL</poolName>
<enabledAttributes>
<shared enabled="yes">
</enabledAttributes>
</modifyPoolInfo>
</pool>
</nssRequest>

A nssReply packet to the modify pool information command follows:

<nssReply>
<pool>
<modifyPoolInfo>
<result value="0">
<description/>success</description>
</result>
</modifyPoolInfo>
</pool>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

208 NDK: Virtual File Services

modifyState

Activates or deactivates an existing NSS storage pool.

Request

<modifyState>
<poolName/>
<poolState/>
<ignoreShareState/>

</modifyState>

Reply

<modifyState>
<result value=" ">
<description/>
</result>
</modifyState>

Elements

poolName

Specifies the name of an existing NSS storage pool for which the state is modified.

poolState
Specifies the desired target state to which the pool should be set:

active
deactive

ignoreShareState

(Optional) Specifies that a pool can be activated when the clustering software is not present.
Usually, the server checks to validate that the clustering software is loaded and operational
before allowing pools to be activated on a device that is marked shareable for clustering. Use
this switch in rare circumstances where you can ensure that the pool is not in use on another
node and that it is not started or used elsewhere. If a shared pool is accidentally activated on
two nodes, the pool becomes corrupted.

result

Specifies an error value or 0 (for no error).

description
Specifies a text description of the result.
Example

A nssRequest packet to modify the state of a pool is as follows:

<nssRequest>
<pool>

manage.cmd Definitions 209

<modifyState>
<poolName>MYPOOL</poolName>
<poolState>deactive</poolState>
</modifyState>
</pool>
</nssRequest>

A nssReply packet to the modify device command follows:
<nssReply>
<pool>
<modifyState>
<result value="0">
<description/>success</description>
</result>
</modifyState>
</pool>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

210 NDK: Virtual File Services

poolFreeze

Freezes the specified pool (as an asynchronous request). Call poolFreezeStatus (page 213) to check
on the freeze status. Call poolThaw (page 218) to indicate that you are finished with the freeze. This
command is implemented only on NetWare and not on Linux.

Request

<poolFreeze>
<poolName/>
<timeout/>
<holdSeconds/>

</poolFreeze>

Reply

<poolFreeze>
<userKey value=" "/>
<poolName value=" "/>
<result value=" ">
<description/>
</result>
</poolFreeze>

Elements

poolName

Specifies the name of the pool.

timeout

Specifies the number of seconds to wait before a timeout is generated.

holdSeconds

Specifies the number of seconds to hold the results for the command.

userKey

Specifies for which freeze the results match.

result

Specifies an error value or 0 (for no error). The result applies to the freeze command.

description

Specifies a text description of the result.

Remarks

poolFreeze causes NSS to inform all registered applications to synchronize their data. After all the
data for registered applications is synchronized, NSS flushes all user and system-cached data on the
pool.

manage.cmd Definitions 211

Only active pools can be frozen. If the specified pool is not active when poolFreeze is called, the
function returns an NSS error.

If poolFreeze returns success, you must call poolThaw in a timely manner. However, if poolFreeze
returns failure, do not call poolThaw.

Example

The nssRequest packet to freeze a pool follows:

<nssRequest>
<pool>
<poolFreeze>
<poolName>SM</poolName>
<timeOut>40</timeOut>
<holdSeconds>70</holdSeconds>
</poolFreeze>
</pool>
</nssRequest>

The nssReply packet to freeze a pool follows:
<nssReply>
<pool>
<poolFreeze>
<userKey value="28B95AB0-DBB4-01D6-80-00-B78907429F66">
<poolName wvalue="SM">
<result value="0">
<description/>success</description>
</result>
</poolFreeze>
</pool>
<result value="0">
<description/>zOK</description>
</result>
</nssReply>

212 NDK: Virtual File Services

poolFreezeStatus

Returns the status of a freeze request. This command is implemented only on NetWare and not on
Linux.

Request

<poolFreezeStatus>
<userKey/>
</poolFreezeStatus>

Reply

<poolFreezeStatus>
<userKey value=" "/>
<poolName value=" "/>
<timeOut wvalue=" "/>
<holdSeconds value=" "/>
<thawDone value=" "/>
<thawStatus value=" "/>
<thawOperationReturnCode value=" "/>
<freezeDone value=" "/>
<freezeStatus value=" "/>
<results/>
<count used=" " needed=" "/>
<application>
<status value=" "/>
<source value=" "/>
<sourceMessage value=" "/>
</application>
</results>
<result wvalue=" ">
<description/>
</result>
</poolFreezeStatus>

Elements

userKey

Specifies the key (from the poolFreeze (page 211) command) that indicates from which freeze
to return the status.

poolName

Specifies the name of the pool.

timeOut

Specifies the number of seconds before the freeze times out.

holdSeconds

Specifies the number of seconds before the status is no longer available.

manage.cmd Definitions 213

thawDone
Specifies whether the thaw is complete:
TRUE
FALSE
thawStatus
Specifies the zZERR code of the thaw command (only if the thaw is complete and thawDone is
TRUE). Otherwise, this element is not used.
thawOperationReturnCode
Specifies the zZERR code that was supplied to the thaw command (only if the thaw is complete
and thawDone is TRUE). This value might not be the same value that was passed to pool Thaw
(page 218). For example, if the thaw was automatically performed because of a timeout, this
value is set to indicate that condition. If thawDone is FALSE, this element is not used.
freezeDone
Specifies whether the freeze portion is complete:
TRUE
FALSE
freezeStatus

Specifies the ZERR code of the freeze command (only if the freeze is complete and freezeDone
is TRUE). To determine if the applications have frozen their data, see the results element. Zero
indicates that the freeze completed successfully. If freezeDone is FALSE, this element is not
used.

results

Specifies application-specific results. This element is used only if freezeDone is TRUE.

count
Specifies the number of application results.
application
Repeats for each application that is registered to freeze its data.

status

Specifies the zZERR code from the specified application freeze attempt.

source

Specifies the application name.

sourceMessage

Specifies an application help message. This message can contain information as to why an
application cannot freeze its data.

result

Specifies an error value or 0 (for no error).

214 NDK: Virtual File Services

description

Specifies a text description of the result.

Attributes

used

Specifies how many application results have been returned.

needed

Specifies the total number of application results. If this value does not equal the number
specified in the used attribute, some results are not present. You can correct this state by
performing another freeze and thaw on the pool.

Example

Before Calling a Thaw

The nssRequest packet to return the status of a freeze before calling a thaw follows:

<nssRequest>
<pool>
<poolFreezeStatus>
<userKey>28B95AB0-DBB4-01D6-80-00-B78907429F66</userKey>
</poolFreezeStatus>
</pool>
</nssRequest>

The nssReply packet containing the freeze status follows:
<nssReply>
<pool>
<poolFreezeStatus>
<userKey value="28B95AB0-DBB4-01D6-80-00-B78907429F66">
<poolName wvalue="SM">
<timeOut value="39">
<holdSeconds value="69">
<thawDone value="FALSE">
<freezeDone value="TRUE">
<freezeStatus wvalue="0">
<results>
<count used="2" needed="2">
<application>
<status value="0">
<source value="Novell.FreezeEventUnitTest.Handler2">
<sourceMessage value="Hi mom">
</application>
<application>
<status value="0">
<source value="Novell.FreezeEventUnitTest.Handlerl">
<sourceMessage value="Hello world">
</application>
</results>
<result value="0">

manage.cmd Definitions

215

<description/>success</description>
</result>

</poolFreezeStatus>

</pool>

<result value="0">
<description/>zOK</description>

</result>

</nssReply>

After Calling a Thaw

The nssRequest packet to return the status of a freeze after calling a thaw follows:

<nssRequest>
<pool>
<poolFreezeStatus>
<userKey>28B95AB0-DBB4-01D6-80-00-B78907429F66</userKey>
</poolFreezeStatus>
</pool>
</nssRequest>

The nssReply packet containing the freeze status follows:

<nssReply>
<pool>
<poolFreezeStatus>
<userKey value="28B95AB0-DBB4-01D6-80-00-B78907429F66">
<poolName value="SM">
<timeOut value="34">
<holdSeconds value="64">
<thawDone value="TRUE">
<thawStatus value="0">
<thawOperationReturnCode value="0">
<freezeDone value="TRUE">
<freezeStatus value="0">
<results>
<count used="2" needed="2">
<application>
<status value="0">
<source value="Novell.FreezeEventUnitTest.Handler2">
<sourceMessage value="Hi mom">
</application>
<application>
<status value="0">
<source value="Novell.FreezeEventUnitTest.Handlerl">
<sourceMessage value="Hello world">
</application>
</results>
<result value="0">
<description/>success</description>
</result>
</poolFreezeStatus>
</pool>
<result value="0">
<description/>z0OK</description>

216 NDK: Virtual File Services

</result>
</nssReply>

manage.cmd Definitions 217

poolThaw

Allows a pool to thaw. After poolThaw is called, the following tags from poolFreezeStatus

(page 213) must have a value of 0 to indicate a successful freeze/thaw operation: freezeStatus,
thawStatus, and thawOperationReturnCode. In addition, the results content should indicate that all
applications were successful in the quiescent attempts.

Request

<poolThaw>
<userKey/>
<thawOperationReturnCode/>
</poolThaw>

Reply

<poolThaw>
<userKey value=" "/>
<poolName value=" "/>
<result value=" ">
<description/>
</result>
</poolThaw>

Elements

userKey

Specifies a key that indicates from which freeze to return the status.

thawOperationReturnCode

Specifies a ZERR code that indicates any errors. zOK indicates there were no errors.

poolName

Specifies the name of the pool.

result

Specifies an error value or 0 (for no error). The result applies directly to the thaw operation.

description

Specifies a text description of the result.

Example

The nssRequest packet to thaw a pool follows:
<nssRequest>
<pool>
<poolThaw>
<userKey>28B95AB0-DBB4-01D6-80-00-B78907429F66</userKey>
</poolThaw>

218 NDK: Virtual File Services

</pool>
</nssRequest>

The nssReply packet from a pool thaw follows:
<nssReply>
<pool>
<poolThaw>
<userKey value="28B95AB0-DBB4-01D6-80-00-B78907429F66">
<poolName value="SM">
<result value="0">
<description/>success</description>
</result>
</poolThaw>
</pool>
<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 219

removePool

Deletes an NSS storage pool on the server. Unless instructed not to, removePool also deletes the
eDirectory object for the pool. Deleting an NSS storage pool implicitly deletes all NSS logical
volumes on the pool. However, is does not delete the eDirectory objects for all of those NSS logical
volumes. If you want the volume's eDirectory objects to be properly cleaned up, first delete all of the
logical volumes that are contained on the pool before deleting the pool itself. This command is
implemented only on NetWare and not on Linux.

Request

<removePool>
<poolName/>
<dontRemoveNDSObject/>
<ignoreShareState/>
</removePool>

Reply

<removePool>
<result value=" ">
<description/>

</result>

</removePool>

Elements

poolName

Specifies the name of the pool to delete.

dontRemoveNDSObject
Specifies not to delete the eDirectory object for the pool.

ignoreShareState

(Optional) Specifies not to check and see if the device is marked shareable for clustering.
Usually, the server checks to validate that the clustering software is loaded and operational
before allowing pools to be deleted on a device that is marked shareable.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example
A nssRequest packet to remove a pool is as follows:

<nssRequest>
<pool>

220 NDK: Virtual File Services

<removePool>
<poolName>MYPOOL</poolName>
</removePool>
</pool><
</nssRequest>

A nssReply packet to the remove pool command follows:
<nssReply>
<pool>
<removePool>
<result value="0">
<description/>success</description>
</result>
</removePool>
</pool>
<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 221

removePool2

Deletes the specified pool.

Request

<removePool2>
<poolName/>
</removePool2>

Reply

<removePool2>
<result wvalue=" ">
<description/>
</result>
</removePool2>

Elements

poolName

Specifies the name of the pool to delete.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

222 NDK: Virtual File Services

removePoolSnapshot

Removes a specified pool snapshot.

Request

<removePoolSnapshot>
<snapName/>
</removePoolSnapshot>

Reply

<removePoolSnapshot>
<result value=" ">
<description/>
</result>
</removePoolSnapshot>

Elements

snapName

Specifies the name of the pool's snapshot.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

manage.cmd Definitions 223

renamePool

Renames an NSS storage pool on the server (and optionally renames the corresponding eDirectory
pool object).

Request

<renamePool>
<poolName/>
<newPoolName/>
<newNDSName/>
<dontRenameNDSObject/>
</renamePool>

Reply

<renamePool>
<result wvalue=" ">
<description/>

</result>

</renamePool>

Elements

poolName

Specifies the current name of the pool.

newPoolName

Specifies the new name the pool is known by on the server.

newNDSName

(Required unless dontRenameNDSODbject is specified) Specifies the new name to assign to the
pool's eDirectory object. If NULL is passed, a default name is generated by prepending the
server name and adding “ POOL” to the end of the name.

dontRenameNDSObject

Specifies not to rename the eDirectory object for the pool. If this element is used,
newNDSName is ignored.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

The following example renames MYPOOL to YOURPOOL and also renames the eDirectory pool
object to the new default name:

224 NDK: Virtual File Services

<nssRequest>
<pool>
<renamePool>
<poolName>MYPOOL</poolName>
<newPoolName>YOURPOOL</newPoolName>
<newNDSName>
</renamePool>
</pool>
</nssRequest>

A nssReply packet to the rename pool command follows:
<nssReply>
<pool>
<renamePool>
<result value="0">

<description/>success</description>

</result>
</renamePool>
</pool>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 225

renamePoolSnapshot

Renames a pool snapshot. This command is implemented only on NetWare and not on Linux.

Request

<renamePoolSnapshot>
<snapName/>
<newSnapName/>

</renamePoolSnapshot>

Reply

<renamePoolSnapshot>
<result value=" ">
<description/>
</result>
</renamePoolSnapshot>

Elements

snapName

(Required) Specifies the current snapshot name of the pool.

newSnapName

(Required) Specifies the new snapshot name for the pool.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

226 NDK: Virtual File Services

213 RAID

The following commands can be called to manipulate software RAID devices on a server:

¢ “addRAID” on page 228

¢ “addRAID2” on page 231

+ “expandRAID” on page 233
+ “removeRAID” on page 235
+ “removeRAID2” on page 237
+ “renameRAID” on page 238
+ “restripeRAID” on page 239

Each command is wrapped with either the nssRequest or nssReply element and the raid element.

NSS currently supports software RAID 0. In the future, it will support other RAID types. A software
RAID device is made up of virtual device partitions, which have a partition type of 207 (0xCF).
These virtual device partitions are created for you by the addRAID (page 228) and expandRAID
(page 233) commands.

This section does not apply to RAID hardware configurations, which are fully supported in the NSS
environment.

manage.cmd Definitions 227

addRAID

Creates a software RAID device form one or more free spaces. Currently, only RAID type 0 is
supported. However, other RAID types will be supported in the future. Note that all segments in a
software RAID device must be exactly the same size.

Request

<addRAID>
<stripeSize/>
<raidType/>
<raidSegments>
<segment>
<deviceID/>
<freeSpacelD/>
<startingSector/>
<numSectors/>
</segment>
</raidSegments>
</addRAID>

Reply

<addRAID>
<result value=" ">
<description/>
</result>
<partialResult value=" ">
<description/>
<partitionsRequested/>
<partitionsCreated/>
<partitionsAdded/>
<partitionsStranded/>
<maxPartitions/>
</partialResult>
</addRAID>

Elements

stripeSize

Specifies the strip size for the RAID device.

raidType
Specifies the type of RAID. For example, 0 for a RAID 0 device.

raidSegments
Specifies the list of RAID segments to add to the RAID device.

segment

Repeats for each RAID segment to add.

228 NDK: Virtual File Services

devicelD

Specifies the device ID on which the segment is created.

freeSpacelD

Specifies the ID of the free space partition of the device from which to consume space.

startingSector

Specifies the starting sector offset within the free space partition of the segment to include.

numSectors

Specifies the number of sectors to include.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

partialResult
(Optional) Specifies what happened and why not all of the segments were added. It is possible
that the RAID device was created but not all of the requested segments were successfully
added. In this case, result is zOK and this element specifies more details about what occurred.
partitionRequested
Specifies the number of partitions that were originally supposed to be added to the RAID
device.
partitionsCreated
Specifies the number of partitions that were successfully created with the intent to add them to
the RAID device.
partitionsAdded
Specifies the number of partitions that were successfully added to the RAID device.

partitionsStranded

Specifies the number of partitions that were created but could not be successfully added to the
RAID device. These partitions were, for some reason, not able to be deleted either.

maxPartitions

(Optional) Specifies that one or more partitions were not added to the RAID device because the
maximum number of RAID segments was exceeded on the device.

Attributes

value

Specifies the first reason why the operation partially failed.

manage.cmd Definitions

229

Example

The following example creates a RAID 0 device with two segments: one on device 2 and one on
device 3:

<nssRequest>
<raid>
<addRAID>
<stripeSize>65536</stripeSize>
<raidType>0</raidType>
<raidSegments>
<segment>
<deviceID>2</devicelID>
<freeSpacelD>7</freeSpacelD>
<startingSector>208845</startingSector>
<numSectors>102400</numSectors>
</segment>
<segment>
<deviceID>3</devicelID>
<freeSpaceID>14</freeSpacelD>
<startingSector>197321</startingSector>
<numSectors>102400</numSectors>
</segment>
</raidSegments>
</addRAID>
</raid>
</nssRequest>

A nssReply packet to the add RAID command follows:
<nssReply>
<raid>
<addRAID>
<result value="0">
<description/>success</description>
</result>
</addRAID>
</raid>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

230 NDK: Virtual File Services

addRAID2

Creates a RAID 0, RAID 1 mirror group, or a RAID 5 device.

Request

<addRAID2>
<stripeSize/>
<raidName/>
<raidType/>
<raidSegments>
<segment>
<deviceID/>
<freeSpacelD/>
</segment>
</raidSegments>
</addRAID2>

Reply

<addRAID2>
<raidID/>
<result wvalue=" ">
<description/>
</result>
</addRAID2>

Elements

stripeSize

(Optional, but required for RAID 0 and 5)

raidName

(Optional)

raidType
(Required)

numSectors

(Required) Specifies the RAID segment size.

segment

(Repeating) Repeat for all segments.

devicelD

(Required) On NetWare, specifies the device ID received from Media Manager. On Linux,

specifies the device name.

manage.cmd Definitions 231

freeSpacelD

(Required) On NetWare, specifies the free space ID received from Media Manager. On Linux,
specifies the free space name.

raidID

(Required) On NetWare, specifies the RAID ID received from Media Manager. On Linux,
specifies the RAID name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

232 NDK: Virtual File Services

expandRAID

Adds additional segments to a software RAID device.

Request

<expandRAID>
<raidID/>
<raidSegments>
<segment>
<deviceID/>
<freeSpacelD/>
<startingSector/>
<numSectors/>
</segment>
</raidSegments>
</expandRAID>

Reply

<expandRAID>
<result value=" ">
<description/>

</result>

</expandRAID>

Elements

raidID

(Required) On NetWare, specifies the RAID ID received from Media Manager. On Linux,

specifies the RAID name.

raidSegments

Specifies a list of RAID segments (partitions) to add.

segment

(Repeating) Specifies a RAID segment to add.

devicelD

(Required) On NetWare, specifies the device ID received from Media Manager. On Linux,

specifies the device name.

freeSpacelD

(Required) On NetWare, specifies the free space ID received from Media Manager. On Linux,

specifies the free space name.

startingSector

(Optional) Specifies the starting sector offset within the free space partition of the segment to

include.

manage.cmd Definitions

233

numsSectors

(Optional) Specifies the number of sectors to include.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Example

The following example adds one additional segment from device 2 to the existing RAID device with
an ID of 21:

<nssRequest>
<raid>
<expandRAID>
<raidID>21</raidID>
<raidSegments>
<segment>
<devicelID>2</devicelD>
<freeSpacelD>7</freeSpacelD>
<startingSector>321300</startingSector>
<numSectors>102400</numSectors>
</segment>
</raidSegments>
</expandRAID>
</raid>
</nssRequest>

A nssReply packet to the expand RAID command follows:
<nssReply>
<raid>
<expandRAID>
<result value="0">
<description/>success</description>
</result>
</expandRAID>
</raid>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

234 NDK: Virtual File Services

removeRAID

Deletes a software RAID device.

Request

<removeRAID>
<raidID/>
</removeRAID>

Reply

<removeRAID>
<result wvalue=" ">
<description/>

<result>

</removeRAID>

Elements

raidID
Specifies the ID of the RAID device to be deleted.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to remove a RAID device is as follows:

<nssRequest>
<raid>
<removeRAID>
<raidID>21</raidID>
</removeRAID>
</raid>
</nssRequest>

A nssReply packet to the remove RAID command follows:
<nssReply>
<raid>
<removeRAID>
<result value="0">
<description/>success</description>
</result>
</removeRAID>
</raid>

manage.cmd Definitions 235

<result value="0">
<description/>zOK</description>
</result>
</nssReply

236 NDK: Virtual File Services

removeRAID2

Deletes the specified RAID and deletes all of the partitions in the RAID, including any pool and
volume that resides on the RAID.

Request

<raid>
<removeRAID2>
<raidID/>
</removeRAID2>
</raid>

Reply

<raid>
<removeRAID2>
<result value=" ">
<description/>
<result>
</removeRAID2>
</raid>

Elements

raidID

On NetWare, specifies the RAID ID received from Media Manager. On Linux, specifies the
RAID name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

manage.cmd Definitions 237

renameRAID

Renames a RAID 0, RAID 1 - mirror group, or a RAID 5 device.

Request

<renameRAID>
<raidID/>
<name/>

</renameRAID>

Reply

<renameRAID>
<result wvalue=" ">
<description/>
<result>
</renameRAID>
</raid>

Elements

raidID

(Required) On NetWare, specifies the RAID ID received from Media Manager. On Linux,
specifies the RAID name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

238 NDK: Virtual File Services

restripeRAID

Initiates a restripe command on a software RAID device.

Request

<restripeRAID>
<raidID/>
</restripeRAID>

Reply

<restripeRAID>
<result value=" ">
<description/>
<result>
</restripeRAID>

Elements

raidID

(Required) On NetWare, specifies the RAID ID received from Media Manager. On Linux,

specifies the RAID name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Example

A nssRequest packet to restripe a RAID device is as follows:

<nssRequest>
<raid>
<restripeRAID>
<raidID>21</raidID>
</restripeRAID>
</raid>
</nssRequest>

A nssReply packet to the restripe RAID command follows:
<nssReply>
<raid>
<restripeRAID>
<result value="0">
<description/>success</description>
</result>
</restripeRAID>
</raid>

manage.cmd Definitions 239

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

240 NDK: Virtual File Services

2.14 Server

This section contains the following Server commands:

+ “getServerFreeSpace” on page 242
+ “listDevices (Server)” on page 244
* “listPartitions (Server)” on page 245

+ “listPools” on page 248

Each command is wrapped with either the nssRequest or nssReply element and the server element.

manage.cmd Definitions 241

getServerFreeSpace

Returns all of a server's available free space (returned by disk device as a byte value). It also returns
mirror groups (the mirror ID and the available space in bytes) and virtual RAID devices (device ID
and the available free space in bytes).

Request

<getServerFreeSpace type="detail"/>

Reply

<getServerFreeSpace>
<deviceSimpleInfo>
<objectID/>
<mirrored/>
<name/>
<size/>
<shared/>
<freeSpaces>
<freeSpacelInfo>
<freeSpacelD/>
<size/>
<offset/>
</freeSpaceInfo>
</freeSpaces>
</deviceSimpleInfo>
</getServerFreeSpace>

Elements

deviceSimpleInfo

Repeats for each device (physical or RAID) or mirror group being listed.
objectID

Specifies the NetWare device ID from Media Manager or the Linux device object name.

mirrored

(Optional) Specifies that the device is a mirrored virtual device.

name

(Optional) Specifies the name of the device as assigned by Media Manager (for NetWare only).

size

(Optional) Specifies the free space (in megabytes) for this device or mirror group.

shared

(Optional) Specifies that the device is flagged as a shared device.

242 NDK: Virtual File Services

freeSpaces

(Optional) Specifies the detailed free space information

freeSpacelnfo

Repeats for each free space on the device.

freeSpacelD

(Required) Specifies the NetWare device ID received from Media Manager or the Linux device
object name.

size
(Required)
offset
(Required)

Attributes

type
(Optional)

manage.cmd Definitions 243

listDevices (Server)

Returns a list of all of a server's devices. The difference between this command and the listDevices
(page 102) command is the outer tag and whether each command is called as a device or a server
command.

Request

<listDevices type=" "/>

Reply

<listDevices>
<serverDeviceInfo>
<objectID/>
<name/>
<mirrored/>
<shared/>
</serverDevicelInfo>
</listDevices>

Elements

serverDevicelnfo

Repeats for each device (physical or raid) or mirror group being listed.

objectID
Specifies the NetWare device ID received from Media Manager or the Linux device object
name.

name

Specifies the name of the device, as assigned by Media Manager (for NetWare only).

mirrored

(Optional) Specifies that the device is a mirrored virtual device.

shared

(Optional) Specifies that the device is flagged as a shared device.

Attributes

type
Specifies the types of devices to list:

all

physical

raid

mirror

virtual (which includes raid and mirror)

244 NDK: Virtual File Services

listPartitions (Server)

Lists all partitions on a server.

Request

<listPartitions type=" "/>

Reply

<listPartitions>
<partitionInfo>
<partitionID/>
<type/>
<details>
<partitionName/>
<state/>
<label/>
<deviceName/>
<deviceID/>
<poolName/>
<startingSector/>
<size/>
<logicalPartitionID/>
<logicalPartitionCapacity/>
<mirrorID/>
<hotFixID/>
<hotFixSize/>
<hotFixAvailSize/>
<raidID/>
<growable/>
<growSize/>
<shrinkable/>
</details>
</partitionInfo>
<result value=" ">
<description/>
</result>
</listPartitions>

Elements

partitionInfo

Repeats for each partition on the server.

partitionID

(Required) On NetWare, specifies the partition ID number as received from Media Manager.

On Linux, specifies the partition name.

manage.cmd Definitions 245

type
(Optional) Specifies the partition type. The only valid type is detail. Any other value is treated
as if you left this attribute out.

details

(Optional) Specifies to return the child elements.

partitionName

(Optional) Specifies the name of the partition, as assigned by Media Manager (for NetWare
only).

state
Specifies the state of the partition:
used
free
label
(Optional) Specifies the user-defined partition label.

deviceName

(Optional) Specifies the name of the device, as assigned by Media Manager (for NetWare
only).

devicelD

On NetWare, specifies the device ID received from Media Manager. On Linux, specifies the
device object name.

poolName

Specifies that the pool name (if the partitions contains a pool).

startingSector

Specifies the partition's starting sector.
size

Specifies the partition size (in bytes).
logicalPartitionID

On NetWare, specifies the logical partition ID received from Media Manager. On Linux,
specifies the logical partition name.

logicalPartitionCapacity
Specifies the logical partition capacity in bytes.
mirrorID

(Optional) On NetWare, specifies the mirror ID received from Media Manager.

hotFixID

(Optional) On NetWare, specifies the hot fix ID received from Media Manager. On Linux,
specifies the hot fix name.

246 NDK: Virtual File Services

hotFixSize
(Optional) Specifies the hot fix size (in bytes).

hotFixAvailSize
(Optional) Specifies the hot fix available size (in bytes).

raidID

(Optional) Specifies that this partition is part of a RAID. On NetWare, specifies the RAID ID
received from Media Manager. On Linux, specifies the RAID name.

growable

(Optional) Specifies that the partition can grow (for Linux only).

growSize

(Optional) Specifies the total number of bytes the partition can grow to (for Linux only).

shrinkable
(Optional) Specifies that the partition can shrink (for Linux only).

manage.cmd Definitions 247

listPools

Returns the pool list on a server.

Request

<listPools/>

Reply

<listPools>
<PoolSimpleInfo>
<poolName/>
<poolState/>
<shared/>
</poolSimpleInfo>
</listPools>

Elements

poolName

Repeats for each pool.

poolState

Specifies the name of the pool.

shared

(Optional) Specifies that the pool is shared.

248 NDK: Virtual File Services

2.15 User Space Restriction

This section contains the following User Space Restriction commands:

+ “browseUserSpaceRestrictions” on page 250
+ “getUserSpaceRestriction” on page 252
+ “setUserSpaceRestriction” on page 254

Each command is wrapped with either the nssRequest or nssReply element and the
userSpaceRestrictions element.

manage.cmd Definitions 249

browseUserSpaceRestrictions

Returns the list of users with space restrictions on a specified volume and the quotas for those users.

Request

<browse>
<volumeName/>
<allUsers/>

</browse>

Reply

<browse>
<userList>
<user>
<id/>
<userName/>
<quota/>
<spaceUsed/>
</user>
</userList>
<result value="">
<description/>
</result>
<browse>

Elements
volumeName

(Required) Specifies the volume's name for which to return the user space restriction.

allUsers

(Optional) Specifies to return all users that are using storage but have no restrictions. This
functionality is useful in listing the storage in use for all users.

user

Repeats for each user.
id
Specifies the unique ID for the user.

userName

Specifies the user name for the restricted user.

quota

Specifies the quota for the restricted user.

spaceUsed

Specifies the space in use by the restricted user.

250 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to list space restrictions for the MY VOL volume is as follows:

<nssRequest>
<userSpaceRestrictions>
<browse>
<volumeName>MYVOL</volumeName>
</browse>
</userSpaceRestrictions>
</nssRequest>

A nssReply packet to the list space restrictions command follows:

<nssReply>
<userSpaceRestrictions>
<browse>
<userList>
<user>
<userName>somebody.somedept.someorg</username>
<quota>1048576</quota>
<spaceUsed>401524</spaceUsed>
</user>
<user>
<userName>someone.somedept.someorg</username>
<quota>262144</quota>
<spaceUsed>65534</spaceUsed>
</user>
</userList>
</browse>

</userSpaceRestrictions>
<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 251

getUserSpaceRestriction

Returns the user space restriction for a supplied user on a specified volume.

Request

<get>
<volumeName/>
<id/>
<userName/>
</get>

Reply

<get>
<quota/>
<noQuota/>
<fullyRestricted/>
<spaceUsed/>
<result value="">

<description/>

</result>

</get>

Elements

volumeName

(Required) Specifies the volume's name for which to return the user space restrictions.

id
Specifies the unique ID for the user as returned from browseUserSpaceRestrictions (page 250).
Either the user's ID or name must be specified.
userName
Specifies the DN of the user for which to return restrictions. Either the user's name or ID must
be specified.
quota
Specifies the quota for the requested user.
noQuota
Specifies that the user has no limit quota on the specified volume.
fullyRestricted
Specifies that the user is limited to no space or new usage on the specified volume.
spaceUsed

Specifies the space in use by the restricted user.

252 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to get space restrictions for a volume is as follows:

<nssRequest>
<userSpaceRestrictions>
<get>
<volumeName>MYVOL</volumeName>
<userName>somebody.somedept.someorg</userName>
</get>
</userSpaceRestrictions>
</nssRequest>

A nssReply packet to the get space restrictions command follows:

<nssReply>
<userSpaceRestrictions>
<get>
<quota>1048576</quota>
<spaceUsed>401524</spaceUsed>
</get>
</userSpaceRestrictions>
<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 253

setUserSpaceRestriction

Adds the user space restriction for a supplied user DN to a specified volume.

Request

<set>
<volumeName/>
<id/>
<userName/>
<quota/>
<noQuota/>
<fullyRestricted/>
</set>

Reply

<set>
<result value="">
<description/>
</result>
</set>

Elements

volumeName

(Required) Specifies the volume's name to which to add a user space restriction.

id
Specifies the unique ID of the user. Either the user's ID or name must be specified.
userName
Specifies the DN of the user to add. Either the user's name or ID must be specified.
quota
(Required unless noQuota or fullyRestricted is specified) Specifies the quota for the specified
user.
noQuota
(Required unless quota or fullyRestricted is specified) Specifies that the user has no limit and
removes any existing restriction.
fullyRestricted
(Required unless quota or noQuota is specified) Specifies that the user is limited to no more
space.
result

Specifies an error value or 0 (for no error).

254 NDK: Virtual File Services

description

Specifies a text description of the result.

Example

A nssRequest packet to set space restrictions for a volume is as follows:

<nssRequest>
<userSpaceRestrictions>
<set>
<volumeName>MYVOL</volumeName>
<userName>somebody.somedept.someorg</userName>
<quota>1048576</quota>
</set>
</userSpaceRestrictions>
</nssRequest>

A nssReply packet to the set space restrictions command follows:
<nssReply>
<userSpaceRestrictions>
<set>
<result value="0">
<description/>success</description>
</result>
</set>
</userSpaceRestrictions>
<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 255

2.16 VLDB

This section contains the following commands that can be used to manipulate Volume Location Data
Base (VLDB):

*

“addVolumeToVLDB” on page 257

* “createNewService” on page 259

+ “deleteService” on page 261

+ “getVLDBInfo” on page 263

+ “loadVLDB” on page 271

+ “lookup” on page 272

¢ “removeVolumeFromVLDB” on page 274
+ “replicaAddedToVLDB” on page 276

+ “replicaRemovedFromVLDB” on page 278
+ “setVLDBConfiguration” on page 280

¢ “shutdownVLDB” on page 282

+ “startRepair” on page 283

* “startService” on page 285

+ “stopRepair” on page 286

* “stopService” on page 287

VLDBs are used by Distributed File System (DFS) to track the physical location of volumes that are
stored in NSS. The DFS GUID for each volume is stored in eDirectory. VLDBs can look up that
GUID and determine which server(s) contain the volume in question.

Each command is wrapped with either the nssRequest or nssReply element and the vldb element.

256 NDK: Virtual File Services

addVolumeToVLDB

Adds a volume to a VLDB.

Request

<addVolumeToVLDB>
<dfsGUID/>
<ndsServerName/>
<volumeName/>

</addvVolumeToVLDB>

Reply

<addVolumeToVLDB>
<result value=" ">
<description/>
<result>
</addvolumeToVLDB>

Elements

dfsGUID

Specifies the DFS GUID of the volume to add.

ndsServerName

Specifies the eDirectory name, in relative distinguished-name format, of the server which owns

the volume to add.

volumeName

Specifies the name of the volume to add.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to add a volume to a VLDB is as follows:

<nssRequest>
<vldb>
<addVolumeToVLDB>
<dfsGUID>

906D22B6-32DD-01D6-80-06-FBDA22AE6917

</dfsGUID>
<ndsServerName>

MYSERVER.novell.MY TREE.

</ndsServerName>

manage.cmd Definitions 257

<volumeName>NSS3</volumeName>
</addvVolumeToVLDB>
</v1ldb>
</nssRequest>

A nssReply packet to the add volume to VLDB command follows:
<nssReply>
<vldb>
<addVolumeToVLDB>
<result value="0">
<description/>success</description>
</result>
</addVolumeToVLDB>
</v1ldb>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

258 NDK: Virtual File Services

createNewService

Creates a new VLDB service on a server.

Request

<createNewService>
<dataBasePath/>
<autoLoadVLDB/>
<managementContext>
<ndsObject/>
<tgtTree/>
</managementContext>
<dbInfo>
<backEndDB/>
<dataBasePath/>
</dbInfo>
<user/>
<password/>
<unp/>
</createNewService>

Reply

<createNewService>
<result wvalue=" ">
<description/>
<result>
</createNewService>

Elements

dataBasePath

Specifies a path string that identifies the directory in which to store the VLDB.

autoLoadVLDB

Specifies whether to configure autoexec.ncf and nssvlbd.ncf to automatically load vldb.nlm

when the server is loaded:

true (default)
false

tgtTree
(Optional)

user

Specifies the user. The leading dot is optional. Do not include the tree name.

result

Specifies an error value or 0 (for no error).

manage.cmd Definitions 259

description

Specifies a text description of the result.

Remarks

This command allows ConsoleOne to continue running without changes while allowing iManager to
perform DFS commands without having to access eDirectory.

For backward compatibility, the dataBasePath element is available. However, if the new form is
used, dataBasePath should not appear at the top level.

The new form uses the management context container, which is created (by adding the DFS
attributes to the specified container, and this container must exist) if it doesn't previously exist.

Example

A nssRequest packet to create a new VLDB service is as follows:

<nssRequest>
<vldb>
<createNewService>
<dataBasePath>sys:\etc</dataBasePath>
<autoLoadVLDB/>
<managementContext>
<ndsObject>nss.prv.novell</ndsObject>
<tgtTree>novell inc</tgtTree>
</managementContext>
<dbInfo>
<backEndDB>vdgad</backEndDB>
<dataBasePath>sys:\etc</dataBasePath>
</dbInfo>
<user>.admin.novell</user>
<password>junk</password>
<unp>0123456789ABCDEF</unp>
</createNewService>
</v1ldb>
</nssRequest>

A nssReply packet to the create new VLDB service command follows:

<nssReply>
<vldb>
<createNewService>
<result value="0">
<description/>success</description>
</result>
</createNewService>
</v1ldb>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

260 NDK: Virtual File Services

deleteService

Removes the VLDB service from the server and updates eDirectory. If the last (or only) VLDB
server is removed from a management context, the management context is automatically deleted.

Request

<deleteService>
<user/>
<password/>
<unp/>

</deleteService>

Reply

<deleteService>
<result wvalue=" ">
<description/>
<result>
</deleteService>

Elements

user

Specifies the user. The leading dot is optional. Do not include the tree name.

unp

Specifies the protected credentials (encoded as a hex string). Either unp or the user and
password must be supplied.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Remarks

This command allows ConsoleOne to continue running without changes while allowing iManager to
perform DFS commands without having to access eDirectory.

For backward compatibility, the dataBasePath element is available. However, if the new form is
used, dataBasePath should not appear at the top level.

The new form uses the management context container, which is created (by adding the DFS
attributes to the specified container, and this container must exist) if it doesn't previously exist.

Example

A nssRequest packet to create a new VLDB service is as follows:

manage.cmd Definitions 261

<nssRequest>
<vldb>
<deleteService>
<user>.admin.novell</user>
<password>junk</password>
<unp>0123456789ABCDEF</unp>
</deleteService>
</v1ldb>
</nssRequest>

A nssReply packet to the create new VLDB service command follows:
<nssReply>
<vldb>
<deleteService>
<result value="0">
<description/>success</description>
</result>
</deleteService>
</v1ldb>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

262 NDK: Virtual File Services

getVLDBInfo

Returns detailed information about a VLDB.

Request

<getVLDBInfo type=" "/>

Reply

<getVLDBInfo>
<basicInfo>
<vldbState/>
<version>
<majorVersion/>
<minorVersion/>
<releaseNumber/>
<buildNumber/>
</version>
<backEndVersion>
<majorVersion/>
<minorVersion/>
<releaseNumber/>
<buildNumber/>
</backEndvVersion>
<vldbBuildDate value=" "/>
<vldbLoadTime value=" "/>
<numProcessThreads/>
<numRunningThreads/>
<backEndDatabasePath/>
<autoLoadVLDB/>
</basicInfo>
<statisticsInfo>
<vldbCreateCount/>
<vldbDeleteCount/>
<vldbModifyCount/>
<vldbLookupCount/>
<vldbTotalRequests/>
<vldbErrorCount/>
<vldbAuthErrorCount/>
</statisticsInfo>
<repairInfo>
<repairState/>
<repairPercentComplete/>
<repairLevel/>
<repairStartTime value = " "/>
<repairEndTime value=" "/>
<repairStatus/>
<repairCompletionCode/>
</repairInfo>
<result value=" ">
<description/>

manage.cmd Definitions 263

</result>
</getVLDBInfo>

Elements

basicInfo
Specifies the basic information if the type specifies all or basic.
vldbState
Specifies the state of the VLDB:
initializing
stopped
running
broken
underRepair
unknown
version

Specifies the version of the VLDB.

majorVersion

Specifies the major version number.

minorVersion

Specifies the minor version number.

buildNumber
Specifies the build number.

backEndVersion
Specifies the version of the VLDB backend.

releaseNumber

Specifies the release number.

vldbBuildDate
Specifies the date that the vildb.nlm file was built.

vldbLoadTime
Specifies the time that the vldb.nlm file was loaded.

numProcessThreads

Specifies the number of threads the VLDB requested to use.

numRunningThreads

Specifies the number of threads that the VLDB is currently using.

backEndDatabasePath
Specifies the path where the backend database is located.

264 NDK: Virtual File Services

autoLoadVLDB

Specifies that the VLDB is set up to be auto loaded when the server is started.

statisticsInfo

Specifies the statistical information if the type specifies all or statistics.

vldbCreateCount
Specifies the number of volumes that were added to the VLDB.

vldbDeleteCount

Specifies the number of volumes that were deleted from the VLDB.

vldbModifyCount

Specifies the number of volumes that were modified in the VLDB.

vldbLookupCount

Specifies the number of volumes that were looked up in the VLDB.

vldbTotalRequests
Specifies the total number of requests made to the VLDB.

vldbErrorCount

Specifies the number of errors in VLDB requests.

vildbAuthErrorCount

Specifies the number of authorization errors.

repairInfo

Specifies the repair information if the type specifies all or repair.

repairState
Specifies the state of repairs:
notRepairing
repairing
complete

failed
unknown

repairPercentComplete

Specifies how complete (as a percentage) the current repair is.

repairLevel

Specifies the level of the current repair:

none
lowLevel
refresh
rebuild
unknown

manage.cmd Definitions 265

repairStartTime

Specifies the time the current or last repair started.

repairEndTime

Specifies the time the current or last repair ended.

repairStatus
Specifies the status of the current repair:

success
failed

aborted
unknown

repairCompletionCode

Specifies the error code that was returned by the last repair operation.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

type
Specifies the properties of the VLDB to return:

all
basic
statistics
repair
If all is specified, all the information for the VLDB is returned. Otherwise, only the specified
type of requested information is returned.
value

Specifies the decimal value of the date. The high 16 bits is the year, followed by 8 bits for the
month. The last 8 bits is the day.

or

Specifies the UTC decimal time.

Example

A nssRequest packet to returns VLDB information is as follows:
<nssRequest>
<vldb>
<getVLDBInfo type="all">
</getVLDBInfo>

266 NDK: Virtual File Services

</v1ldb>

</nssRequest>

Depending on the management context, the following are examples of reply packets that can be
returned:

*

*

“Usual Reply” on page 267

“No Management Context” on page 268

“Management Context: VLDB Server Running” on page 268
“Management Context: VLDB Server Not Running” on page 270
“Management Context: Not a VLDB Server” on page 270

Usual Reply

A nssReply packet to the get VLDB information command follows:

<nssReply>

<vldb>
<getVLDBInfo>
<basicInfo>

<vldbState>running</vldbState>

<version>
<majorVersion>3</majorVersion>
<minorVersion>l</minorVersion>
<releaseNumber>0</releaseNumber>
<buildNumber>37</buildNumber>

</version>

<backEndVersion>
<majorVersion>3</majorVersion>
<minorVersion>l</minorVersion>
<releaseNumber>0</releaseNumber>
<buildNumber>33</buildNumber>

</backEndVersion>

<vldbBuildDate value="131203344">
2002-1-16

</v1dbBuildDate>

<vldbLoadTime value="1015620810">
Mar 8, 2002 1:53:30 pm

</vldbLoadTime>

<numProcessThreads>1</numProcessThreads>

<numRunningThreads>1</numRunningThreads>

<backEndDatabasePath>
sys:\etc</backEndDatabasePath>

<autoLoadVLDB>true</autoLoadVLDB>

</basicInfo>

<statisticsInfo>
<vldbCreateCount>4</vldbCreateCount>
<vldbDeleteCount>0</vldbDeleteCount>
<vldbModifyCount>0</vl1dbModifyCount>
<vldbLookupCount>0</vldbLookupCount>
<vldbTotalRequests>10</vl1dbTotalRequests>
<vldbErrorCount>0</v1dbErrorCount>

manage.cmd Definitions 267

<vldbAuthErrorCount>0</v1dbAuthErrorCount>
</statisticsInfo>

<repairInfo>
<repairState>notRepairing</repairState>
<repairPercentComplete>0</repairPercentComplete>
<repairLevel>rebuild</repairLevel>
<repairStartTime value="1015620814">
Mar 8, 2002 1:53:34 pm
</repairStartTime>
<repairEndTime value="1015620815">
Mar 8, 2002 1:53:35 pm
</repairEndTime>
<repairStatus>success</repairStatus>
<repairCompletionCode>0</repairCompletionCode>
</repairInfo>

<result value="0">
<description/>success</description>
</result>
</getVLDBInfo>
</v1ldb>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

No Management Context

If there is no management context defined, the following response returns:

<nssReply>
<vldb>
<getVLDBInfo>
<result value="0">
<description/>success</description>
</result>
<basicInfo>
<statisticsInfo>
<repairInfo>
</getVLDBInfo>
</v1ldb>
</nssReply>

Management Context: VLDB Server Running
If a management context is defined for a VLDB server, the following response returns:

Note that for NetWare 6.5 SP2, replica server names are relative to the management context. For
NetWare 6.5 SP1, replica server names are fully distinguished eDirectory names.
<nssReply>
<vldb>
<getVLDBInfo>
<result value="0">

268 NDK: Virtual File Services

<description/>success</description>
</result>
<basicInfo>
<managementContext>
<ndsObject>nss.prv.novell</ndsObject>
<tgtTree>novell inc</tgtTree>
</managementContext>
<backEndDB>vdgad</backEndDB>
<serverName>vldb-master</serverName>
<serverName>vldb-other.nss.prv</serverName>
<vldbState>running</vldbState>
<version>
<majorVersion>3</majorVersion>
<minorVersion>20</minorVersion>
<releaseNumber>0</releaseNumber>
<buildNumber>157</buildNumber>
</version>
<backEndvVersion>
<majorVersion>3</majorVersion>
<minorVersion>20</minorVersion>
<releaseNumber>0</releaseNumber>
<buildNumber>152</buildNumber>
</backEndVersion>
<vldbBuildDate value="131203344">2002-1-16</v1dbBuildDate>
<vldbLoadTime value="1015620810">Mar 8, 2002 1:53:30 pm
</v1ldbLoadTime>
<numProcessThreads>1</numProcessThreads>
<numRunningThreads>1</numRunningThreads>
<backEndDatabasePath>sys:\etc</backEndDatabasePath>
<autoLoadVLDB>true</autoLoadVLDB>
</basicInfo>
<statisticsInfo>
<vldbCreateCount>4</vldbCreateCount>
<vldbDeleteCount>0</vldbDeleteCount>
<vldbModifyCount>0</v1dbModifyCount>
<vldbLookupCount>0</vldbLookupCount>
<vldbTotalRequests>10</v1dbTotalRequests>
<vldbErrorCount>0</vl1dbErrorCount>
<vldbAuthErrorCount>0</vldbAuthErrorCount>
</statisticsInfo>
<repairInfo>
<repairState>notRepairing</repairState>
<repairPercentComplete>0</repairPercentComplete>
<repairLevel>rebuild</repairLevel>
<repairStartTime value="1015620814>Mar 8, 2002 1:53:34 pm
</repairStartTime>
<repairEndTime value="1015620815">Mar 8, 2002 2:53:35 pm
</repairEndTime>
<repairStatus>success</repairStatus>
<repairCompletionCode>0</repairCompletionCode>
</repairInfo>
</getVLDBInfo>
</v1ldb>
</nssReply>

manage.cmd Definitions 269

Management Context: VLDB Server Not Running

If a management context is defined for a VLDB server but the server isn't running, the following
response returns:

<nssReply>
<vldb>
<getVLDBInfo>

<result value="0">
<description/>success</description>

</result>

<basicInfo>
<managementContext>

<ndsObject>nss.prv.novell</ndsObject>
<tgtTree>novell inc</tgtTree>

</managementContext>
<backEndDB>vdgad</backEndDB>
<serverName>vldb-master</serverName>
<serverName>vldb-other.nss.prv</serverName>
<vldbState>notLoaded</vldbState>

</basicInfo>

<statisticsInfo/>

<repairInfo/>

</getVLDBInfo>
</vldb>
</nssReply>

Management Context: Not a VLDB Server

If a management context is defined and the server isn't a VLDB server, the following response
returns:

<nssReply>
<vldb>
<getVLDBInfo>

<result value="0">
<description/>success</description>

</result>

<basicInfo>
<managementContext>

<ndsObject>nss.prv.novell</ndsObject>
<tgtTree>novell inc</tgtTree>

</managementContext>
<backEndDB>vdgad</backEndDB>
<serverName>vldb-master</serverName>
<serverName>vldb-other.nss.prv</serverName>
<vldbState>notVLDBServer</vldbState>

</basicInfo>

<statisticsInfo/>

<repairInfo/>

</getVLDBInfo>
</v1ldb>
</nssReply>

270 NDK: Virtual File Services

loadVLDB

Loads and starts up the VLDB software on a server where the VLDB resides.

Request

<loadVLDB/>

Reply

<loadVLDB>
<result wvalue=" ">
<description/>

<result>

</loadVLDB>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to load VLDB software is as follows:

<nssRequest>
<v1ldb>
<loadVLDB>
</loadVLDB>
</vldb>
</nssRequest>

A nssReply packet to the load VLDB command follows:

<nssReply>
<vldb>
<loadVLDB>
<result value="0">
<description/>success</description>
</result>
</loadVLDB>
</v1ldb>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

manage.cmd Definitions 271

lookup

Returns the physical volume mapping for a DFS GUID as returned by a read link request. As an
administrator, don't worry about what GUID a junction references; but note what volume on which
server the junction is pointing to.

Request

<lookup>
<dfsGUID/>
</lookup>

Reply

<lookup>
<result wvalue=" ">
<description/>
</result>
<dfsGUID/>
<volumeInfo>
<server/>
<tgtTree/>
<volumeName/>
<type/>
</volumeInfo>
</lookup>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

volumelnfo

Repeats for each instance of the volume.

Example

A nssRequest packet to load VLDB software is as follows:
<nssRequest>
<vldb>
<lookup>
<dfsGUID>C2EAAA00-3211-11D6-B7-C7-00C04FA33547</dfsGUID>
</lookup>
</v1db>
</nssRequest>

A nssReply packet to the load VLDB command follows:

272 NDK: Virtual File Services

<nssReply>
<vldb>
<lookup>
<result value="0">
<description/>success</description>
</result>
<dfsGUID>C2EAAA00-3211-11D6-B7-C7-00C04FA33547</dfsGUID>
<volumeInfo>
<server>prv-psst.nss.prv.novell</server>
<tgtTree>novell inc</tgtTree>
<volumeName>VOL1</volumeName>
<type>RW</type>
</volumeInfo>
</lookup>
</v1ldb>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 273

removeVolumeFromVLDB

Removes a volume from a VLDB.

Request

<removeVolumeFromVLDB>
<dfsGUID/>
</removeVolumeFromVLDB>

Reply

<removeVolumeFromVLDB>
<result wvalue=" ">
<description/>
<result>
</removeVolumeFromVLDB>

Elements

dfsGUID
Specifies the DFS GUID of the volume to remove.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to remove a volume from a VLDB is as follows:

<nssRequest>
<vl1ldb>
<removeVolumeFromVLDB>
<dfsGUID>
906D22B6-32DD-01D6-80-06-FBDA22AE6917
</dfsGUID>
</removeVolumeFromVLDB>
</v1ldb>
</nssRequest>

A nssReply packet to the remove volume from VLDB command follows:

<nssReply>
<vldb>
<removeVolumeFromVLDB>
<result value="0">
<description/>success</description>
</result>
</removeVolumeFromVLDB>

274 NDK: Virtual File Services

</v1ldb>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 275

replicaAddedToVLDB

Informs a VLDB server that another VLDB replica server has been added.

Request

<replicaAddedToVLDB>
<ndsServerName/>
</replicaAddedToVLDB>

Reply

<replicaAddedToVLDB>
<result value=" ">
<description/>
<result>
</replicaAddedToVLDB>

Elements

ndsServerName

Specifies the eDirectory name, in relative distinguished-name format, of the server to which a
replica was added.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

The following example tells the server that another VLDB replica was just added to MYSERVER:

<nssRequest>
<vldb>
<replicaAddedToVLDB>
<ndsServerName>
.MYSERVER.novell.MY TREE.
</ndsServerName>
</replicaAddedToVLDB>
</v1ldb>
</nssRequest>

A nssReply packet to the replica added to VLDB command follows:
<nssReply>
<vldb>
<replicaAddedToVLDB>
<result value="0">
<description/>success</description>
</result>

276 NDK: Virtual File Services

</replicaAddedToVLDB>
</vldb>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 277

replicaRemovedFromVLDB

Informs a VLDB server that another VLDB replica server has been removed.

Request

<replicaRemovedFromVLDB>
<ndsServerName/>
</replicaRemovedFromVLDB>

Reply

<replicaRemovedFromVLDB>
<result value=" ">
<description/>
<result>
</replicaRemovedFromVLDB>

Elements

ndsServerName

Specifies the eDirectory name, in relative distinguished-name format, of the server from which
a replica was removed.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

The following example informs a server that the VLDB replica on MYSERVER has been removed:

<nssRequest>
<vldb>
<replicaRemovedFromVLDB>
<ndsServerName>
.MYSERVER.novell.MY TREE.
</ndsServerName>
</replicaRemovedFromVLDB>
</v1ldb>
</nssRequest>

A nssReply packet to the modify device command follows:
<nssReply>
<vldb>
<replicaRemovedFromVLDB>
<result value="0">
<description/>success</description>
</result>

278 NDK: Virtual File Services

</replicaRemovedFromVLDB>
</vldb>

<result value="0">
<description/>z0OK</description>
</result>
<nssReply>

manage.cmd Definitions 279

setVLDBConfiguration

Sets the configuration parameters for a VLDB.

Request

<setVLDBConfiguration>
<v1ldbNumThreads/>
<dataBasePath/>
<autoLoadVLDB/>

</setVLDBConfiguration/>

Reply

<setVLDBConfiguration>
<result value=" ">
<description/>
<result>
</setVLDBConfiguration>

Elements

vldbNumThreads
(Optional) Specifies that the number of threads the VLDB should use is modified.

dataBasePath
(Optional) Specifies the new directory to move the VLDB database to.

autoLoadVLDB
(Optional) Specifies whether the state of autoloading is modified:
true (default)
false

result

Specifies an error value or O (for no error).

description

Specifies a text description of the result.

Example

The following example sets the number of threads to two and turns on the auto-load option:

<nssRequest>
<vldb>
<setVLDBConfiguration>
<numThreads>2</numThreads>
<autoLoadVLDB>true</autoLoadVLDB>
</setVLDBConfiguration>

280 NDK: Virtual File Services

</vldb>
</nssRequest>

A nssReply packet to the set VLDB configuration command follows:

<nssReply>
<vl1ldb>
<setVLDBConfiguration>
<result value="0">
<description/>success</description>
</result>
</setVLDBConfiguration>
</v1ldb>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

manage.cmd Definitions 281

shutdownVLDB

Shuts down and unloads the VLDB software on a server where the VLDB resides.

Request

<shutdownVLDB/>

Reply

<shutdownVLDB>
<result wvalue=" ">
<description/>
<result>
</shutdownVLDB>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to shutdown the VLDB software is as follows:

<nssRequest>
<vldb>
<shutdownVLDB>
</shutdownVLDB>
</v1ldb>
</nssRequest>

A nssReply packet to the shutdown VLDB command follows:

<nssReply>
<vldb>
<shutdownVLDB>
<result value="0">
<description/>success</description>
</result>
</shutdownVLDB>
</v1ldb>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

282 NDK: Virtual File Services

startRepair

Starts a repair command on the VLDB.

Request

<startRepair>
<vldbRepairLevel/>
<user/>
<password/>
<unp/>
</startRepair>

Reply

<startRepair>
<result value=" ">
<description/>
<result>
</startRepair>

Elements

vldbRepairLevel

Specifies the type of repair to perform:

lowLevel
refresh
rebuild

user

Specifies the user. The leading dot is optional. Do not include the tree name.

unp

Specifies the protected credentials, encoded as a hex string. Either unp or both user and
password can be supplied. If neither is specified, the repair runs logged in as the file server (for

ConsoleOne compatibility).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

The following example does a "rebuild" type of repair on the VLDB:

<nssRequest>
<vldb>
<startRepair>

manage.cmd Definitions 283

<repairLevel>rebuild</repairLevel>
<user>.admin.novell</user>
<password>junk</password>
<unp>0123456789ABCDEF</unp>
</startRepair>
</vldb>
</nssRequest>

A nssReply packet to the start VLDB repair command follows:
<nssReply>
<vldb>
<startRepair>
<result value="0">
<description/>success</description>
</result>
</startRepair>
</v1ldb>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

284 NDK: Virtual File Services

startService

Starts the VLDB service on a server.

Request

<startService/>

Reply

<startService>
<result wvalue=" ">
<description/>
<result>
</startService>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to start the VLDB service is as follows:

<nssRequest>
<v1ldb>
<startService>
</startService>
</v1ldb>
</nssRequest>

A nssReply packet to the start VLDB service command follows:

<nssReply>
<vldb>
<startService>
<result value="0">
<description/>success</description>
</result>
</startService>
</v1ldb>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

manage.cmd Definitions 285

stopRepair

Stops a repair command on the VLDB.

Request

<stopRepair/>

Reply

<stopRepair>
<result value=" ">
<description/>
<result>
</stopRepair>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to stop a VLDB repair is as follows:

<nssRequest>
<vldb>
<stopRepair>
<repairLevel>rebuild</repairLevel>
</stopRepair>
</v1ldb>
</nssRequest>

A nssReply packet to the stop VLDB repair command follows:

<nssReply>
<vldb>
<stopRepair>
<result value="0">
<description/>success</description>
</result>
</stopRepair>
</v1ldb>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

286 NDK: Virtual File Services

stopService

Stops the VLDB service on a server.

Request

<stopService/>

Reply

<stopService>
<result value=" ">
<description/>
<result>
</stopService>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to stop the VLDB service is as follows:

<nssRequest>
<v1ldb>
<stopService>
</stopService>
</vldb>
</nssRequest>

A nssReply packet to the stop VLDB service command follows:

<nssReply>
<vldb>
<stopService>
<result value="0">
<description/>success</description>
</result>
</stopService>
</v1ldb>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

manage.cmd Definitions 287

2.17 Volume Operations

This section contains the following Volume commands:

¢ “addTraditional Volume” on page 289

¢ “addVolume” on page 293

+ “expandTraditional Volume” on page 296
+ “getNDSName (Volume)” on page 298
+ “getState” on page 299

¢ “getTraditional Volumelnfo™ on page 301
+ “getVolumelnfo” on page 304

+ “listVolumes” on page 314

+ “modifyState” on page 315

+ “modifyVolumelnfo” on page 317

+ “removeUser” on page 321

+ “removeVolume” on page 323

+ “renameVolume” on page 325
For more information on volumes, see “Volumes™ on page 21.

Each command is wrapped with either the nssRequest or nssReply element and the volume element.

288 NDK: Virtual File Services

addTraditionalVolume

Creates a traditional NetWare volume on the server.

Request

<addTraditionalVolume state=" ">

<volumeName/>

<ndsName/>

<context/>

<noNDSObject/>

<noDFSGUID/>

<dfsGUID/>

<blockSize/>

<compression/>

<suballocation/>

<migration/>

<volSegments>

<segment>
<partitionID/>
<volStartingSector/>
<volNumSectors/>
</segment>
</volSegments>
<updateVLDB>
</addTraditionalVolume>

Reply

<addTraditionalVolume>
<result wvalue=" ">
<description/>
</result>
</addTraditionalVolume>

Elements

volumeName

(Required) Specifies the name to give the volume being created.

ndsName

(Required unless noNDSObject is specified) Specifies the name of the eDirectory volume
object to create that represents the created volume. If NULL is specified, the name of the
eDirectory volume object is generated by prepending the server name and an underscore to the
volumeName element.

context

(Required unless noNDSObject is specified) Specifies the eDirectory context in which the
eDirectory volume object is created. If NULL is specified, the eDirectory volume object is
created in the same eDirectory context where the server object resides.

manage.cmd Definitions 289

noNDSObject
(Optional) Specifies that no eDirectory objects should be created for the volume. The ndsName
and context elements are ignored.

noDFSGUID
(Optional) Specifies that no DFS GUID is assigned to the volume when it is created. If
specified, dfsGUID and updateVLDB might not be used.

dfsGUID
(Optional) Specifies the value of the DFS GUID that is used to identify the volume in
distributed file system (DFS) operations. If not specified, the file system generates a new DFS
GUID for each volume being created.

blockSize
(Required) Specifies the block size (in bytes) of the traditional volume:
4096
8192
16384

32768
65536

compression

Specifies that the traditional volume is created with the compression feature enabled.

suballocation

Specifies that the traditional volume is created with the suballocation feature enabled.

migration

Specifies that the traditional volume is created with the data migration feature enabled.

volSegments
Repeats for each volume segment on the traditional volume. A volume segment can be either a
whole partition or a portion of a partition.

segment

Repeats for each volume segment that needs to be included in the traditional volume.

partitionID

Specifies the logical ID of a partition that's being added to the new traditional volume. If the
partition has HotFix and mirroring, it is the mirror group ID for the partition. If the partition
does not have HotFix and mirroring, it is the ID of the raw physical partition.

volStartingSector

Specifies the starting sector offset within the partition of the segment to include.

volNumSectors

Specifies the number of sectors to include.

290 NDK: Virtual File Services

updateVLDB

Specifies that the DFS Volume Location Database (VLDB) is updated by the XML processing
code. This element is added for backward-compatibility with ConsoleOne, which does not
know about this element but does its own VLDB updating. All new code should include this
element.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

state

(Optional) Specifies what state the volume should be set to after it is created:

mounted
dismounted

If a state is not specified, the volume defaults to whatever state the file system policies dictate.

Example

The following is an example of adding a traditional volume called "VOL1" on partition 28. It adds
an eDirectory volume object using the default name of "servername_VOL1" and puts the eDirectory
volume object in the same eDirectory context as the server itself.

<nssRequest>
<volume>
<addTraditionalVolume state="mounted">
<volumeName>VOL1</volumeName>
<ndsName>
<context>
<blockSize>65536</blockSize>
<suballocation>
<volSegments>
<segment>
<partitionID>28</partitionID>
<volStartingSector>0</volStartingSector>
<volNumSectors>202752</volNumSectors>
</segment>
</volSegments>
</addTraditionalVolume>
</volume>
</nssRequest>

A nssReply packet to the add traditional volume command follows:
<nssReply>
<volume>
<addTraditionalVolume>
<result value="0">
<description/>success</description>

manage.cmd Definitions 291

</result>
</addTraditionalVolume>
</volume>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

292 NDK: Virtual File Services

addVolume

Creates an NSS logical volume on an existing NSS storage pool. By default, addVolume also creates
the corresponding eDirectory volume object (unless instructed not to). To create a traditional
NetWare volume, use the addTraditional Volume (page 289) command.

Request

<addVolume state=" ">
<volumeName/>
<poolName/>
<volumePassword/>
<ndsName/>
<context/>
<ndsPoolName/>
<noNDSOjbect/>
<noDFSGUID/>
<updateVLDB/>
<volumeGUID/>
<dfsGUID/>

</addVolume>

Reply

<addVolume>
<result wvalue=" ">
<description/>

</result>

</addvolume>

Elements

volumeName

(Required) Specifies the name of the volume to create.

poolName

(Required) Specifies the name of the NSS storage pool on which the volume is created.

volumePassword

Specifies to create an ecrypted volume.

ndsName

(Required unless noNDSODbject is specified) Specifies the name of the eDirectory volume
object that is created to represent the volume. If NULL is specified, the name of the eDirectory
volume object is generated by prepending the server name and an underscore to the value of
volumeName.

manage.cmd Definitions 293

context

(Required unless noNDSObject is specified) Specifies the eDirectory context in which the
eDirectory volume object is created. If NULL is specified, the eDirectory volume object is
created in the same eDirectory context where the server object resides.

ndsPoolName

(Required unless noNDSObject is specified) Specifies the value to use as the nssfsPool
attribute for the eDirectory volume object. If NULL is specified, the pool's eDirectory name is
retrieved and is used for the nssfsPool attribute.

noNDSObject

(Optional) Specifies that no eDirectory objects should be created for the volume. If this element
is specified, the ndsName, context, and ndsPoolName elements are ignored.

noDFSGUID
(Optional) Specifies that no DFS GUID is assigned to the volume when it is created. If
specified, the dfsGUID and updateVLDB elements might not be included.
updateVLDB

Specifies that the DFS Volume Location Database (VLDB) is updated by the XML processing
code. This element was added for backward-compatibility with ConsoleOne, which does not
know about this element but does its own VLDB updating. All new code should include this
element.

volumeGUID

(Optional) Specifies a globally unique ID (GUID) to be assigned to the volume that is being
created. Usually, the file system assigns a new GUID to each volume that is being created.

dfsGUID

(Optional) Specifies the value of the GUID that is used to identify the volume in DFS
operations. If not specified, the file system generates a new DFS GUID for each volume that is
being created.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

state
(Optional) Specifies what state the volume shoudl be set to after it is created:
deactive

active
mounted

If the state is not specified, the pool defaults to whatever the file system policies dictate.

294 NDK: Virtual File Services

Remarks

An encrypted volume uses the volumePassword field.

Example

The following is an example of the addVolume command that creates a volume called "MYVOL" on

the "MYPOOL" pool. It adds an eDirectory volume object using the default name of

"servername_MY VOL" and puts the eDirectory volume object in the same eDirectory context as the
server itself. This example uses the actual eDirectory pool object name for the nssfsPool attribute of

the volume object.

<nssRequest>
<volume>
<addVolume state="mounted">
<volumeName>MYVOL</volumeName>
<poolName>MYPOOL</poolName>
<ndsName>
<context>
<ndsPoolName>
</addvolume>
</volume><
/nssRequest>

A nssReply packet to the add volume command follows:
<nssReply>
<volume>
<addVolume>
<result value="0">
<description/>success</description>
</result>
</addVolume>
</volume>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 295

expandTraditionalVolume

Expands the size of a traditional NetWare volume on the server. To create an NSS logical volume,
call the addVolume (page 293) command.

Request

<expandTraditionalVolume>
<volumeName/>
<volSegments>
<segment>
<partitionID/>
<volStartingSector/>
<volNumSectors/>
</segment>
</volSegment>
</expandTraditionalVolume>

Reply

<expandTraditionalVolume>
<result value=" ">
<description/>
</result>
</expandTraditionalVolume>

Elements

volumeName

(Required) Specifies the name of the traditional volume to expand.

volSegments

Specifies a list of volume segments to add to the traditional volume.

segment

Repeats for every volume segment that needs to add.

partitionID

Specifies the logical ID of the partition to add to the existing traditional volume. If the partition
has HotFix and mirroring, it is the mirror group ID for the partition. If the partition does not
have HotFix and mirroring, it is the ID of the raw physical partition.

volStartingSector

Specifies the starting sector offset within the partition of the segment to include.

volNumSectors

Specifies the number of sectors to include.

result

Specifies an error value or 0 (for no error).

296 NDK: Virtual File Services

description

Specifies a text description of the result.

Example

A nssRequest packet to expand a traditional volume is as follows:

<nssRequest>
<volume>
<expandTraditionalVolume>
<volumeName>VOL1</volumeName>
<volSegments>
<segment>
<partitionID>31</partitionID>
<volStartingSector>0</volStartingSector>
<volNumSectors>100352</volNumSectors>
</segment>
</volSegments>
</expandTraditionalVolume>
</volume>
</nssRequest>

A nssReply packet to the expand a traditional volume command follows:
<nssReply>
<volume>
<expandTraditionalVolume>
<result value="0">
<description/>success</description>
</result>
</expandTraditionalVolume>
</volume>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 297

getNDSName (Volume)

Returns the eDirectory name for an existing volume.

Request

<getNDSName>
<volumeName/>
</getNDSName>

Reply

<getNDSName>
<ndsName/>
<context/>

</getNDSName>

Elements

volumeName

Specifies the name of the volume for which to find the eDirectory name.

ndsName

Specifies the name of the eDirectory volume object.

context

Specifies the eDirectory context of the returned ndsName.

298 NDK: Virtual File Services

getState

Returns the state of either an NSS logical volume or a traditional NetWare volume.

Request

<getState>
<volumeName/>
</getState>

Reply

<getState>
<volumeName/>
<volumeState/>
<result wvalue=" ">
<description/>
</result>
</getState>

Elements

volumeName

Specifies the name of the volume for which to return the state.

volumeState

Specifies the state of the volume (see “Volume States” on page 479).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to get a volume's state is as follows:

<nssRequest>
<volume>
<getState>
<volumeName>NSS1</volumeName>
</getState>
</volume>
</nssRequest>

A nssReply packet to the get state command follows:
<nssReply>
<pool>
<getState>
<volumeName>SYS</volumeName>

manage.cmd Definitions 299

<volumeState>active</volumeState>
<result value="0">
<description/>success</description>
</result>
</getState>
</pool>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

300 NDK: Virtual File Services

getTraditionalVolumeinfo

Returns detailed information about an existing traditional NetWare volume. To get information
about an NSS logical volume, call the getVolumelnfo (page 304) command.

Request

<getTraditionalVolumeInfo>
<volumeName/>
</getTraditionalVolumeInfo>

Reply

<getTraditionalVolumeInfo>
<volumeName/>
<volumeState/>
<nameSpaces value=" "/>
<compression/>
<suballocation/>
<migration/>
<blockSize/>
<numBlocks/>
<freeBytes/>
<totalFiles/>
<deletedFiles/>
<compressedFiles/>
<compressedDeletedFiles/>

<createdTime value=" "/>
<modifiedTime value=" "/>
<archivedTime value=" "/>
<result value = " ">

<description/>
</result>

</getTraditionalVolumeInfo>

Elements

volumeName

Specifies the name of the volume.

volumeState

Specifies the state of the volume:

mounted
dismounted

nameSpaces

Specifies a list of name space names, separated by spaces:

DOS
Long

manage.cmd Definitions 301

Macintosh
Unix

compression

Specifies that compression is enabled.

suballocation

Specifies that suballocation is enabled.
migration

Specifies that migration is enabled.

blockSize

Specifies the volume's block size.

numBlocks

Specifies the number of blocks in the volume.

freeBytes

Specifies the number of bytes that are free.

totalFiles

Specifies the total number of file objects that are stored on the volume.

deletedFiles

Specifies the number of deleted files on the volume.

compressedFiles

Specifies the number of compressed files.

compressedDeletedFiles

Specifies the number of compressed deleted files.

createdTime

Specifies a string representation of the UTC time when the volume was created.

modifiedTime

Specifies a string representation of the UTC time when the volume was last modified.

archivedTime

Specifies a string representation of the UTC time when the volume was last archived.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

302 NDK: Virtual File Services

Attributes

value
Specifies the decimal value of the name space mask for the volume.
or

Specifies the decimal UTC time.

Example

A nssRequest packet to return traditional volume information is as follows:

<nssRequest>
<volume>
<getTraditionalVolumeInfo>
<volumeName>VOL1</volumeName>
</getTraditionalVolumeInfo>
</volume>
</nssRequest>

A nssReply packet to the get traditional volume information command follows:

<nssReply>
<volume>
<getTraditionalVolumeInfo>

<volumeName>VOL1</volumeName>

<volumeState>mounted</volumeState>

<nameSpaces value="17">DOS Long </nameSpaces>

<suballocation>

<blockSize>65536</blockSize>

<numBlocks>1582</numBlocks>

<createdTime value="744977753">
07-Mar-2002 14:42:50

</createdTime>

<modifiedTime value="744977754">
07-Mar-2002 14:42:52

</modifiedTime>

<archivedTime value="0">Invalid DOS Time

</archivedTime>

<result value="0">
<description/>success</description>

</result>

</getTraditionalVolumeInfo>
</volume>

<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

manage.cmd Definitions 303

getVolumelnfo

Returns detailed information about an existing NSS logical volume. To get information about a
traditional NetWare volume, use the getTraditional Volumelnfo (page 301) command.

Request

<getVolumeInfo type=" ">
<volumeName/>
</getVolumeInfo>

Reply

<getVolumeInfo>
<basicInfo>
<mountPoint/>
<volumeName/>
<poolName/>
<ndsVolumeName/>
<ndsVolumeGUID/>
<volumeGUID/>
<owner/>
<volumeState/>
<nameSpaces value=" "/>
<blockSize/>
<volumeQuota/>
<usedSize/>
<totalObjects/>
<totalFiles/>
<createdTime value=" "/>
<modifiedTime value=" "/>
<archivedTime value=" "/>
<volumeReadAhead/>
</basicInfo>
<attributeInfo>
<supportedAttributes value=" ">
<volumeEncrypted/>
<readonly/>
<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>
<shredding/>
<userTransaction/>
<migration/>
</supportedAttributes>
<enabledAttributes value=" ">
<readonly/>

304 NDK: Virtual File Services

<salvage/>
<compression/>
<directoryQuota/>
<userQuota/>
<flushFiles/>
<mfl/>
<snapshot/>
<backup/>
<shredding/>
<userTransaction/>
<migration/>
</enabledAttributes>
</attributeInfo>
<salvageInfo>
<freeableSize/>
<nonFreeableSize/>
<deletedFiles/>
<oldestDeletedTime value=" "/>
<minKeepTime/>
<maxKeepTime/>
<lowWaterMark/>
<highWaterMark/>
</salvageInfo>
<compressionInfo>
<compressedFiles/>
<compressedDeletedFiles/>
<uncompressibleFiles/>
<precompressionBytes/>
<compressedBytes/>
</compressionInfo>
<deletedVolumeInfo>
<deleteState value=" ">
<originalVolumeName/>
<originalVolumeGUID/>
<deletedTime wvalue=" "/>
<scheduledPurgeTime value=" "/>
<lastStatus/>
<lastStatusSetter/>
</deletedVolumeInfo>
<result value=" ">
<description/>
</result>
</getVolumeInfo>

Elements

volumeName

Specifies the name of the volume to return information for.

basicInfo

Specifies that type is all or basic.

manage.cmd Definitions 305

mountPoint

Linux only. Specifies the pool's mount point.

poolName

Specifies the name of the NSS storage pool on which the volume resides.

ndsVolumeName

Specifies the fully distinguished name of the eDirectory volume object.

ndsVolumeGUID
Specifies the GUID that identifies the eDirectory volume object.

volumeGUID
Specifies the GUID that identifies the NSS volume.

owner

Specifies the user's name of the volume's owner.

volumeState

Specifies the current state of the volume (see “Volume States” on page 479).

nameSpaces
Specifies a list of name spaces. The lookup value can be the following:
dos
long
mac
unix
blockSize

Specifies the size of the volume's block.

volumeQuota

Specifies the size quota assigned to the NSS logical volume. If a number, the volume is
restricted not to grow larger than the specified size. If none is returned, the volume has no
assigned quota and can grow as big as the physical size of the NSS storage pool allows.

usedSize

Specifies the total number of used bytes on the volume.

totalObjects

Specifies the total number of objects that are stored on the volume.

totalFiles

Specifies the total number of file objects that are stored on the volume.

createdTime

Specifies a string representation of the UTC time when the volume was created.

306 NDK: Virtual File Services

modifiedTime

Specifies a string representation of the UTC time when the volume was last modified.

archivedTime

Specifies a string representation of the UTC time when the volume was archived.

volumeReadAhead

Specifies the current read ahead setting for the volume.

attributelnfo
Specifies that type is all or attributes.

supportedAttributes

Specifies a combination of the attribute elements that are supported by the volume.

volumeEncrypted
Specifies if the volume is encrypted (ZATTR_ENCRYPTED).

readonly

Specifies the read only feature is supported or enabled.

salvage

Specifies the salvage feature is supported or enabled.

compression

Specifies the compression feature is supported or enabled.

directoryQuota

Specifies the directory quota feature is supported or enabled.

userQuota

Specifies the user quota feature is supported or enabled.

flushFiles
Specifies the flush files feature is supported or enabled.

mfl
Specifies the modified file list feature is supported or enabled.

snapshot

Specifies the snapshot feature is supported or enabled.

backup
Specifies the backup bit is supported or enabled.

shredding
Specifies the data shredding feature is supported or enabled.

userTransaction

Specifies the user transaction feature is supported or enabled.

manage.cmd Definitions 307

migration
Specifies the migration feature is supported or enabled.

enabledAttributes

Specifies a list of attribute elements that are currently enabled on the volume.

salvagelnfo

Specifies that the type is all or salvage.

freeableSize

Specifies the number of purgeable bytes on the volume.

nonFreeableSize

Specifies the number of nonpurgeable bytes on the volume.

deletedFiles

Specifies the number of deleted files on the volume.

oldestDeleted Time
Specifies a string representation of the UTC time.

minKeepTime

Specifies the number of seconds a file must remain in a salvageable state before the file system
is allowed to automatically purge the file (if free space is needed). A value of 0 indicates that all
deleted files are immediate candidates for automatic purging.

lowWaterMark

Specifies the low water mark percentage for the volume. If the amount of free space on the
volume falls below this percentage, an automatic purge process is initiated.

highWaterMark

Specifies the high water mark percentage for the volum.e If the amount of free space on the
volume rises above this percentage, an automatic purge process is initiated.

compressionInfo

Specifies that the type is all or compression.

compressedFiles

Specifies the number of compressed files.

compressedDeletedFiles

Specifies the number of compressed deleted files.

uncompressibleFiles

Specifies the number of uncompressible files.

precompressionBytes

Specifies the number of precompression bytes.

compressedBytes

Specifies the number of compressed bytes.

308 NDK: Virtual File Services

deleted Volumelnfo

Specifies that type is all or deletedVolume. This information is returned only if the volume is a
volume that has been deleted but is not yet purged from the NSS storage pool.

deleteState

Specifies the current state of the volume.

originalVolumeName

Specifies the original name of the volume before it was deleted.

originalVolumeGUID
Specifies the original GUID of the volume before it was deleted.

deletedTime

Specifies a string representation of the UTC time.

scheduledPurgeTime

Specifies a string representation of the UTC time.

lastStatus
Specifies an error value or 0 (for no error) for the last reported error for the volume before it
was deleted.

lastStatusSetter
Specifies the source (which is the NSS standard source file line number format) that reported
the lastStatus error.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Attributes

type
(Optional) Specifies what type of information to return. (See “Volume Types” on page 479.)
The default value is all.

nameSpaces value

Specifies the decimal value of the name space mask for the volume.

value
(For createdtime, modifiedTime, archivedTime, oldestDeletedTime, deletedTime, and
scheduledPurgeTime) Specifies the decimal UTC time.

value

(For supportedAttributes and enabledAttributes) Specifies the decimal value of the volume's bit
masks.

manage.cmd Definitions 309

value

(For deleteState) Specifies the decimal value of the delete state of the volume.

Remarks

An encrypted volume uses the volumeEncrypted element, which cannot be modified on an existing
volume. If you try to modify the volumeEncrypted element, the volume is not changed.

deleteState can have the following values:

unknown
salvageable

purging

purging paused

auto purging paused
purge error
salvaging

salvage error
salvaged

First Example

A nssRequest packet to return the volume information is as follows:

<nssRequest>
<volume>
<getVolumeInfo type="all">
<volumeName>MYVOL</volumeName>
</getVolumeInfo>
</volume>
</nssRequest>

A nssReply packet to the get volume information command follows:

<nssReply>
<volume>
<getVolumeInfo>
<basicInfo>
<volumeName>MYVOL</volumeName>
<poolName>MYPOOL</poolName>
<ndsVolumeName>
.CN=MYSERVER MYVOL.O=novell.T=MY TREE.
</ndsVolumeName>
<ndsVolumeGUID>
C2EAAAQ00-3211-11D6-B7-C7-00C04FA33547
</ndsVolumeGUID>
<volumeGUID>
C2C86990-3211-01D6-80-00-BD09318C30CA
</volumeGUID>
<owner>. [Supervisor].</owner>
<volumeState>mounted</volumeState>
<nameSpaces value="23">
DOS Long Macintosh Unix

310 NDK: Virtual File Services

</nameSpaces>
<blockSize>4096</blockSize>
<volumeQuota>none</volumeQuota>
<usedSize>36864</usedSize>
<totalObjects>7</totalObjects>
<totalFiles>7</totalFiles>
<createdTime value="1015536291">
Mar 7, 2002 2:24:51 pm
</createdTime>
<modifiedTime value="1015536291">
Mar 7, 2002 2:24:51 pm
</modifiedTime>
<archivedTime value="0">Invalid UTC Time
</archivedTime>
</basicInfo>
<attributeInfo>
<supportedAttributes value="469762043">
<salvage/>
<compression>
<directoryQuota>
<userQuota>
<flushFiles>
<mfl>
<snapshot>
<shredding>
<userTransaction>
<migration>
</supportedAttributes>
<enabledAttributesvalue="50593779">
<salvage/>
<directoryQuota>
<userQuota>
<backup>
<shredding>2</shredding>
</enabledAttributes>
</attributeInfo>
<salvageInfo>
<freeableSize>0</freeableSize>
<nonFreeableSize>0</nonFreeableSize>
<deletedFiles>0</deletedFiles>
<oldestDeletedTime value="0">
Invalid UTC Time
</oldestDeletedTime>
<minKeepTime>0</minKeepTime>
<maxKeepTime>0</maxKeepTime>
<lowWaterMark>10</lowWaterMark>
<highWaterMark>20</highWaterMark>
</salvageInfo>
<compressionInfo>
<compressedFiles>0</compressedFiles>
<compressedDeletedFiles>0
</compressedDeletedFiles>
<uncompressibleFiles>0</uncompressibleFiles>
<preCompressionBytes>0</preCompressionBytes>

manage.cmd Definitions 311

<compressedBytes>0</compressedBytes>
</compressionInfo>
<result value="0">
<description/>success</description>
</result>
</getVolumeInfo>
</volume>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

Second Example

A nssRequest packet to return the volume information is as follows:

<nssRequest>
<volume>
<getVolumelInfo type="deletedVolume">
<volumeName>2FNC78F4IHL3 DV</volumeName>
</getVolumeInfo>
</volume>
</nssRequest>

A nssReply packet to the get volume information command follows:

<nssReply>
<volume>
<getVolumeInfo>
<deletedVolumeInfo>
<deleteState value="3">auto purging paused
</deleteState>
<originalVolumeName>NSS2</originalVolumeName>
<originalVolumeGUID>
CA55AC24-3223-01D6-80-01-FBDA22AE6917
</originalVolumeGUID>
<deletedTime value="1015544045">
Mar 7, 2002 4:34:05 pm
</deletedTime>
<scheduledPurgeTime value="1015889645">
Mar 11, 2002 4:34:05 pm
</scheduledPurgeTime>
<lastStatus>0</lastStatus>
<lastStatusSetter>zlssLogicalVolume.c[8326]
</lastStatusSetter>
</deletedvolumeInfo>
<result value="0">
<description/>success</description>
</result>
</getVolumeInfo>
</volume>

<result value="0">
<description/>z0OK</description>

312 NDK: Virtual File Services

</result>
</nssReply>

manage.cmd Definitions 313

listVolumes

Lists the volumes of a specified type.

Request

<listVolumes type=" "/>

Reply

<listVolumes>
<volumeName type=" "/>
</listVolumes>

Elements

volumeName

Specifies the name of the volume.

Attributes
type
(Optional) Specifies what type of information is returned:

all (default)
nss
traditional

314 NDK: Virtual File Services

modifyState

Modifies the state of either an NSS logical volume or a traditional NetWare volume.

Request

<modifyState>
<volumeName/>
<volumeState/>

</modifyState>

Reply

<modifyState>
<result value=" ">
<description/>
</result>
</modifyState>

Elements

volumeName

Specifies the name of the volume for which to modify the state.

volumeState

Specifies the state to which the volume should be set (see “NSS Volume States” on page 476

and “Traditional Volume States” on page 478).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to modify the state on a volume is as follows:

<nssRequest>
<volume>
<modifyState>

<volumeName>NSS1</volumeName>
<volumeState>deactive</volumeState>

</modifyState>
</volume>
</nssRequest>

A nssReply packet to the modify device command follows:

<nssReply>
<volume>
<modifyState>

manage.cmd Definitions 315

<result value="0">
<description/>success</description>
</result>
</modifyState>
</volume>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

316 NDK: Virtual File Services

modifyVolumelnfo

Modifies the quota or enabled attributes on an NSS logical volume.

Request

<modifyVolumeInfo>

<volumeName/>

<basicInfo>
<mountPoint/>

</basicInfo>

<volumeQuota quota=" "/>

<volumeReadAhead/>

<enabledAttributes>
<salvage enabled=" "/>
<compression enabled=" "/>
<directoryQuota enabled=" "/>
<userQuota enabled=" "/>
<flushFiles enabled=" "/>
<mfl enabled=" "/>
<snapshot enabled=" "/>
<backup enabled=" "/>
<shredding count=" "/>
<migration enabled=" "/>
<userTransaction enabled=" "/>

</enabledAttributes>

<mountPoint/>

<mountPointRename/>

<nameSpace/>

</modifyVolumeInfo>

Reply

<modifyVolumeInfo>
<result value=" ">
<description/>
</result>
</modifyVolumeInfo>

Elements

volumeName

Specifies the name of the NSS logical volume whose properties need to be modified.

basicInfo

Specifies the basic information for the volume.

mountPoint

Linux only. Specifies the volume's mount point.

manage.cmd Definitions 317

volumeQuota

(Optional) Specifies the NSS logical volume's quota is to be modified.
volumeReadAhead

Specifies the number of read ahead blocks to be used when reading data from the volume.

enabledAttributes

(Optional) Specifies that the state of one or more enabled attributes of a volume is to be
modified.

salvage

(Optional) Specifies to enable or disable salvage.

compression

(Optional) Specifies to enable or disable compression.

directoryQuota

(Optional) Specifies to enable or disable directory quotas.

userQuota

(Optional) Specifies to enable or disable user quotas.
flushFiles

(Optional) Specifies to enable or disable flush on close.
mfl

(Optional) Specifies to enable or disable the modified files list.

snapshot

(Optional) Specifies to enable or disable file level snapshotting.

backup
(Optional) Specifies to enable or disable the backup flag.

shredding
(Optional) Specifies to enable or disable data shredding.

migration
(Optional) Specifies to enable or disable migration. Not currently implemented.

userTransaction

(Optional) Specifies to enable to disable the user transaction feature.

mountPoint

(Optional) Specifies the mount point for the volume (to support the Linux platform). For
example

<mountPoint>/media/nss/volname</mountPoint>

318 NDK: Virtual File Services

mountPointRename
(Optional) Specifies that the mount point is renamed if the volume is renamed (to support the
Linux platform). This feature works only if the volume is mounted in its default location.
nameSpace
Specifies the default namespace for requests to the volume (to support the Linux platform):
long
unix
mac
dos

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the returned result.

Attributes

quota

Specifies the maximum size (in bytes) to which the volume is allowed to grow. A value of none
specifies that the volume is allowed to use any free space in the pool.

enabled
Specifies whether to enable the option:
“yes” Enable the option
“no” Disable the option

The quotes are required.

count

Specifies whether to enable the data shredding option:

1-7 Enable the option
0 Disable the option

Remarks

Note that volumes cannot be encrypted or unencrypted after they are created.

Example

The following command sets the quota for the volume to none, which allows it to grow to the size of
the pool and sets up the various enabled attributes:
<nssRequest>
<volume>
<modifyVolumeInfo>
<volumeName>MYVOL</volumeName>

manage.cmd Definitions 319

<volumeQuota quota="none">

<enabledAttributes>
<salvage enabled="yes">
<compression enabled="no">
<directoryQuota enabled="yes">
<userQuota enabled="yes">
<flushFiles enabled="no">
<mfl enabled="no">
<snapshot enabled="no">
<backup enabled="yes">
<shredding count="2">
<migration enabled="no">
<userTransaction enabled="no">

</enabledAttributes>

</modifyVolumeInfo>
</volume>
</nssRequest>

A nssReply packet to modify volume information command follows:
<nssReply>
<volume>
<modifyVolumeInfo>
<result value="0">
<description/>success</description>
</result>
</modifyVolumeInfo>
</volume>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

320 NDK: Virtual File Services

removeUser

Removes a user from the NSS user ID database.

Request

<removeUser>
<volumeName/>
<id/>

</removeUser>

Reply

<removeUser>
<result value=" ">
<description/>

</result>

</removeUser>

Elements

volumeName

Specifies the name of the volume on the server (not the eDirectory name).

id

Specifies the ID of the user, in complete form with dashes, where each x represents a

hexadecimal digit.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to remove a user is as follows:

<nssRequest>
<volume>
<removeUser>
<volumeName>volName</volumeName>
<IA>XXXXXXXX-XXXX-KKXKKXKX-XX—XX—XXXXXXXXXXXX</1d>
</removeUser>
</volume>
</nssRequest>

A nssReply packet to the modify device command follows:
<nssReply>
<volume>
<removeUser>

manage.cmd Definitions 321

<result value="0">
<description/>success</description>

<result>

</volume>

<result value="0">

<description/>zOK</description>
</result>
</nssReply>

322 NDK: Virtual File Services

removeVolume

Deletes either an NSS logical volume or a traditional NetWare volume. When a traditional NetWare
volume is deleted, it is immediately deleted from the system. However, when an NSS logical
volume is deleted, it remains in the NSS storage pool in a salvageable state until it is either manually

purged or until its scheduled auto purge time expires.

Request

<removeVolume>
<volumeName/>
<dontRemoveNDSObject/>
<updateVLDB/>

</removeVolume>

Reply

<removeVolume>
<result value=" ">
<description/>
</result>
</removeVolume>

Elements

volumeName

Specifies the name of the volume to remove.

dontRemoveNDSObject

Specifies that the volume's eDirectory object should not be removed. If this element is not

specified, the eDirectory name is removed.

updateVLDB

Specifies that the DFS Volume Location Database (VLDB) is updated by the XML processing
code. This element is for backward-compatibility with ConsoleOne, which does not know
about this element but does its own VLDB updating. All new code should include this element.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to remove a volume is as follows:

<nssRequest>
<volume>
<removeVolume>
<volumeName>NSS1</volumeName>

manage.cmd Definitions 323

</removeVolume>
</volume>
</nssRequest>

A nssReply packet to the remove volume command follows:
<nssReply>
<volume>
<removeVolume>
<result value="0">
<description/>success</description>
</result>
</removeVolume>
</volume>

<result value="0">
<description/>z0K</description>
</result>
</nssReply>

324 NDK: Virtual File Services

renameVolume

Renames either a NSS logical volume or a traditional NetWare volume.

Request

<renameVolume>
<volumeName/>
<newVolumeName/>
<newNDSName/>
<dontRenameNDSObject/>
<updateVLDB/>

</renameVolume>

Reply

<renameVolume>
<result wvalue=" ">
<description/>
</result>
</renameVolume>

Elements

volumeName

Specifies the name that the volume is known by on the server.

newVolumeName

Specifies the new name that the volume is known by.

newNDSName

(Required unless dontRenameNDSODbject is specified) Specifies the new name to which the
eDirectory volume object is renamed. If NULL is specified, the new name of the eDirectory
volume object is generated by prepending the server name and an underscore to the value of the

volumeName element.

dontRenameNDSObject

(Optional) Specifies not to rename the eDirectory object. If specified, the newNDSName and

context elements are ignored.

updateVLDB

(Optional) Specifies that the DFS Volume Location Database (VLDB) is updated by the XML
processing code. This element is for backward-compatibility with ConsoleOne, which does not
know about the element but does its own VLDB updating. All new code should include this

element.

result

Specifies an error value or 0 (for no error).

manage.cmd Definitions 325

description

Specifies a text description of the result.

Example

A nssRequest packet to rename a volume is as follows:
<nssRequest>
<volume>
<renameVolume>
<volumeName>MYVOL</volumeName>
<newVolumeName>NSS1</newVolumeName>
<newNDSName>
</renameVolume>
</volume>
</nssRequest>

A nssReply packet to the rename volume command follows:

<nssReply>
<volume>
<renameVolume>
<result value="0">
<description/>success</description>
</result>
</renameVolume>
</volume>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

2.18 Volume MN Operations

This section contains the following Volume MN commands:

+ “changeJobState” on page 327
+ “createJob” on page 328

+ “getJobList” on page 330

+ “getJobStatus” on page 331

+ “listSkippedFiles” on page 333

Each command is wrapped with either the nssRequest or nssReply element and the voIMN element.

326 NDK: Virtual File Services

changeJobState

Modifies the state of a job.

Request

<changeJobState>
<ID/>
<time/>
<pause/>
<abort/>
<resume/>
</changeJobState>

Reply

<changeJobState/>

Elements

time

Specifies the current time or GeneralizedTime value.

manage.cmd Definitions 327

createJob

Returns a list of jobs.

Request

<createJob>
<srcVol/>
<srcPath/>
<tgtServer/>
<tgtVol/>
<time/>
<user/>
<password/>
<unp/>
<copy/>

</createJob>

Reply

<createJob>
<result wvalue=" ">
<description/>
</result>
<ID/>
</createJob>

Elements

srcVol
Specifies a host resource name for the volume (rather than the eDirectory resource name). Do
not use a colon in the name.

srcPath

Specifies that the volume is split.

tgtServer
Specifies the name of the target server in the following format:
.CommonName .ContainerNamesDelimitedWithDots.TreeName.
time
Specifies the current time or the GeneralizedTime value.
user

Specifies the name of the user. The leading dot is required.

unp

Specifies the user's protected credentials, encoded as a hex string. Either unp or user and
password must be supplied.

328 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

ID
Specifies the ID for the job.
Example
One example of the request portion of createJob is as follows:
<nssRequest> <!-- Main element for NSS requests -->
<volMN> <!-- (Opt, Rpt) Volume MN operations -->
<createJob>

<srcVol>Vol</srcVol>
<srcPath>\a\b\c</srcPath>
<tgtServer>DSSvrObjectName</tgtServer>
<tgtVol>Vol</tgtVol>
<time>20021225060000</time>
<user>.admin.novell</user>
<password>junk</password>
<unp>0123456789ABCDEF</unp>
<copy/>
</createJob>
</volMN>
</nssRequest>

manage.cmd Definitions 329

getJobList

Returns a list of jobs.

Request

<getJobList/>

Reply

<getJobList>
<result value=" ">
<description/>
</result>
<ID/>
</getJobList>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

ID
Specifies the ID of each job. One ID is returned per job that is known to Volume Manager.

330 NDK: Virtual File Services

getJobStatus

Returns the status for a specified job.

Request

<getJobStatus>
<ID/>
</getJobStatus>

Reply

<getJobStatus>
<job>
<ID/>
<jobType/>
<srcPath/>
<state/>
<pctComplete/>
<time/>
<comment/>
<retryCount/>
<skippedFileCount/>
<totalFiles/>
</job>
<result value=" ">
<description/>
</result>
</getJobStatus>

Elements

ID
Specifies the ID of each job to return the status of.

jobType
Specifies the type of job (see “Job Types” on page 476).

state

Specifies the state of the job (see “State Values” on page 477).

time
Specifies the UTC time of the job.

comment

Specifies that the job is paused (only if the state is ReplayingEFL).

manage.cmd Definitions 331

retryCount

Specifies the number of EFL epochs that have been replayed so far. Volume Manager keeps
replaying indefinitely. If this number reaches a determined point, the administrator should
prevent any further changes.

skippedFileCount
Specifies the number of files that were skipped (only if the state is Completed or FilesSkipped).

totalFiles

Specifies the running count while the job is in the Scanning state (which shows the scan is
making progress). This element is used if state is not Completed or Failed. Once the job is out
of the Scanning state, this element shows the total number of data sets that need to be moved
until the job completes or fails.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Remarks

getJobStatus returns the following:
<nssReply>
<volMn>
<getJobStatus>
<job>
<id>1234</id>
<jobType>MOVE<L/jobType>
<srcPath>SYS:\</srcPath>
<state>Running</state>
<pctComplete>45</pctComplete>
<time>12452542346</time>
<comment>Cool</comment>
<retryCount>1</retryCount>
<skippedFileCount>0</skippedFileCount>
<totalFiles>6894</totalFiles>
</job>
</getJobStatus>
</volMn>
</nssReply>

332 NDK: Virtual File Services

listSkippedFiles

Returns a list of files that are in the FILES SKIPPED state.

Request

<listSkippedFiles>
<ID/>
<cookie/>
</listSkippedFiles>

Reply

<listSkippedFiles>
<result value=" ">
<description/>
</result>
<ID/>
<cookie/>
<fileName/>
<fileName/>
</listSkippedFiles>

Elements

ID

Specifies the operation ID of the move or split job that is in the FILES SKIPPED state.

cookie

Specifies the current value of the last request. The initial value is 0. Keep issuing the request

with the previous returned value to retrieve all files.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to expand a traditional volume is as follows:

<nssRequest>
<volMN>
<listSkippedFiles>
<ID>12345</1ID>
<cookie>0</cookie>
</listSkippedFiles>
</volMN>
</nssRequest>

manage.cmd Definitions 333

A nssReply packet to the expand a traditional volume command follows:
<nssReply>
<volMN>
<listSkippedFiles>
<result value=" ">
<description/>
</result>
<ID>12345</1ID>
<cookie>1234</cookie>
<fileName>VOL1:FOO/BAR.TXT</fileName>
<fileName>VOL1:FOO/BAR.XYZ</fileName>
</listSkippedFiles>
</volume>
</nssReply>

334 NDK: Virtual File Services

User Commands

The commands in this section are similar to the commands listed in Section 2.15, “User Space
Restriction,” on page 249. However, these commands are intended for user operations that can be
performed by non-administrative users.

Use the following path name to open the user.cmd file:

_admin/Manage NSS/user.cmd

Every command is wrapped with either the userRequest and userQuota elements or the userReply
element.

This section contains definitions for the following command categories:

+ “browseUserSpaceRestrictions (user)” on page 336
+ “getUserSpaceRestriction (user)” on page 338

+ “setUserSpaceRestriction (user)” on page 340

User Commands 335

browseUserSpaceRestrictions (user)

Returns the list of users with space restrictions on a specified volume and the quotas for those users.

Request

<browse>
<volumeName/>
<allUsers/>

</browse>

Reply

<browse>
<userList>
<user>
<id/>
<userName/>
<quota/>
<spaceUsed/>
</user>
</userList>
<result value="">
<description/>
</result>
<browse>

Elements
volumeName

(Required) Specifies the volume's name for which to return the user space restriction.

allUsers

(Optional) Specifies to return all users that are using storage but have no restrictions. This
functionality is useful in listing the storage in use for all users.

user

Repeats for each user.
id
Specifies the unique ID for the user.

userName

Specifies the user name for the restricted user.

quota

Specifies the quota for the restricted user.

spaceUsed

Specifies the space in use by the restricted user.

336 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to list space restrictions for the MY VOL volume is as follows:

<nssRequest>
<userSpaceRestrictions>
<browse>
<volumeName>MYVOL</volumeName>
</browse>
</userSpaceRestrictions>
</nssRequest>

A nssReply packet to the list space restrictions command follows:

<nssReply>
<userSpaceRestrictions>
<browse>
<userList>
<user>
<userName>somebody.somedept.someorg</username>
<quota>1048576</quota>
<spaceUsed>401524</spaceUsed>
</user>
<user>
<userName>someone.somedept.someorg</username>
<quota>262144</quota>
<spaceUsed>65534</spaceUsed>
</user>
</userList>
</browse>

</userSpaceRestrictions>
<result value="0">
<description/>z0K</description>
</result>
</nssReply>

User Commands 337

getUserSpaceRestriction (user)

Returns the user space restriction for a supplied user on a specified volume.

Request

<get>
<volumeName/>
<id/>
<userName/>
</get>

Reply

<get>
<quota/>
<noQuota/>
<fullyRestricted/>
<spaceUsed/>
<result value="">

<description/>

</result>

</get>

Elements

volumeName

(Required) Specifies the volume's name for which to return the user space restrictions.

id
Specifies the unique ID for the user as returned from browseUserSpaceRestrictions (page 250).
Either the user's ID or name must be specified.
userName
Specifies the DN of the user for which to return restrictions. Either the user's name or ID must
be specified.
quota
Specifies the quota for the requested user.
noQuota
Specifies that the user has no limit quota on the specified volume.
fullyRestricted
Specifies that the user is limited to no space or new usage on the specified volume.
spaceUsed

Specifies the space in use by the restricted user.

338 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to get space restrictions for a volume is as follows:

<nssRequest>
<userSpaceRestrictions>
<get>
<volumeName>MYVOL</volumeName>
<userName>somebody.somedept.someorg</userName>
</get>
</userSpaceRestrictions>
</nssRequest>

A nssReply packet to the get space restrictions command follows:

<nssReply>
<userSpaceRestrictions>
<get>
<quota>1048576</quota>
<spaceUsed>401524</spaceUsed>
</get>
</userSpaceRestrictions>
<result value="0">
<description/>z0K</description>
</result>
</nssReply>

User Commands 339

setUserSpaceRestriction (user)

Adds the user space restriction for a supplied user DN to a specified volume.

Request

<set>
<volumeName/>
<id/>
<userName/>
<quota/>
<noQuota/>
<fullyRestricted/>
</set>

Reply

<set>
<result value="">
<description/>
</result>
</set>

Elements

volumeName

(Required) Specifies the volume's name to which to add a user space restriction.

id
Specifies the unique ID of the user. Either the user's ID or name must be specified.
userName
Specifies the DN of the user to add. Either the user's name or ID must be specified.
quota
(Required unless noQuota or fullyRestricted is specified) Specifies the quota for the specified
user.
noQuota
(Required unless quota or fullyRestricted is specified) Specifies that the user has no limit and
removes any existing restriction.
fullyRestricted
(Required unless quota or noQuota is specified) Specifies that the user is limited to no more
space.
result

Specifies an error value or 0 (for no error).

340 NDK: Virtual File Services

description

Specifies a text description of the result.

Example

A nssRequest packet to set space restrictions for a volume is as follows:

<nssRequest>
<userSpaceRestrictions>
<set>
<volumeName>MYVOL</volumeName>
<userName>somebody.somedept.someorg</userName>
<quota>1048576</quota>
</set>
</userSpaceRestrictions>
</nssRequest>

A nssReply packet to the set space restrictions command follows:
<nssReply>
<userSpaceRestrictions>
<set>
<result value="0">
<description/>success</description>
</result>
</set>
</userSpaceRestrictions>
<result value="0">
<description/>z0OK</description>
</result>
</nssReply>

User Commands 341

342 NDK: Virtual File Services

nds.cmd Definitions

This documentation provides the XML element definitions for nds.cmd.

To open the nds.cmd file, type the following:
_Admin/Manage NSS/nds.cmd

Every time you open the nds.cmd file and before you send other commands, you must type the
following to write to the file:
<virtualIO><datastream name="command"></virtualIO>

The nds.cmd file contains XML element definitions for the following operations:

*

Section 4.1, “Object Operations,” on page 344

*

Section 4.2, “Pool Operations,” on page 346

*

Section 4.3, “Volume Operations,” on page 351

*

Section 4.4, “User Operations,” on page 356

nds.cmd Definitions 343

4.1 Object Operations

This section contains the following command, which is called to return the value of a specific
attribute on an eDirectory object:

+ “getAttribute” on page 345

Each command is wrapped with either the ndsRequest or ndsReply element and the ndsObject
element.

344 NDK: Virtual File Services

getAttribute

Returns the value of a specific attribute that belongs to a specific eDirectory object.

Request

<getAttribute>
<name/>
<context/>
<attributeName/>

</getAttribute>

Reply

<getAttribute>
<ndsAttribute name=" " syntax=" ">
<value/>
</ndsAttribute>
</getAttribute>

Elements

name

(Required) Specifies the eDirectory object name for which one of the attribute values is
returned.

context

(Required) Specifies the eDirectory context where the object is located.

attributeName

(Required) Specifies the name of the attribute whose value is returned.

ndsAttribute

Specifies the attribute's name and syntax.

value

Repeats for each attribute.

Attributes

name

Specifies the attribute's name.

syntax

Specifies the eDirectory syntax value. For example, 3 is case insensitive string.

nds.cmd Definitions 345

4.2 Pool Operations

This section contains the following commands that you can call to manipulate eDirectory objects for
NSS storage pools:

¢ “addPool” on page 347

* “removePool” on page 349

Call these commands if you want to manipulate eDirectory objects without affecting the actual NSS
storage pools.

Each command is wrapped with either the ndsRequest or ndsReply element and the ndsPool
element.

346 NDK: Virtual File Services

addPool

Creates an eDirectory pool object for an already existing NSS storage pool.

Request

<addPool>
<name/>
<context/>
<poolName/>
<shared/>
<linkVolumes/>
</addPool>

Reply

<addPool>
<result wvalue=" ">
<description/>
</result>
</addPool>

Elements

name

(Required) Specifies the name of the eDirectory pool object that will be created to represent the
pool. If NULL is specified, the name of the eDirectory pool object is generated by prepending
the server name and an underscore to the poolName element and adding “ POOL” to the end of

the name.

context

(Required) Specifies the eDirectory context in which the eDirectory pool object is created. If
NULL is specified, the eDirectory pool object is created in the same context where the server

object resides.

poolName

(Require) Specifies the name of the pool on the server.

shared

(Optional) Specifies that a flag is set in the eDirectory pool object that indicates the pool is on a

shareable-for-clustering partition. This element does not contain any content.

linkVolumes

Specifies that the eDirectory context is searched for volume objects. Each object associated
with the pool is then linked to the pool object. This element does not contain any content.

result

Specifies an error value or 0 (for no error).

nds.cmd Definitions 347

description

Specifies a text description of the result.

Example

The following example uses the default name and context for the eDirectory pool object:

<ndsRequest>
<ndsPool>
<addPool>
<poolName>MYPOOL</poolName>
<name>
<context>
<linkVolumes>
</addPool>
</ndsPool>
</ndsRequest>

A nssReply packet to the add pool command follows:
<nssReply>
<ndsPool>
<addPool>
<result value="0">
<description/>success</description>
</result>
</addPool>
</ndsPool>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

348 NDK: Virtual File Services

removePool

Removes an eDirectory pool object.

Request

<removePool>
<name/>

<context/>

</removePool>

Reply

<removePool>
<result value=" ">
<description/>

</result>

</removePool>

Elements

name

(Required) Specifies the eDirectory name of the pool object to remove.

context

(Required) Specifies the eDirectory context where the object is found.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to remove a pool is as follows:

<ndsRequest>
<ndsPool>
<removePool>
<name>MYSERVER MYPOOL POOL</name>
<context>
</removePool>
</ndsPool>
</ndsRequest>

A nssReply packet to the remove pool command follows:

<nssReply>
<ndsPool>
<removePool>

nds.cmd Definitions 349

<result value="0">
<description/>success</description>
</result>
</removePool>
</ndsPool>

<result value="0">
<description/>zOK</description>
</result>
</nssReply>

350 NDK: Virtual File Services

4.3 Volume Operations

This section contains the following commands that can be called to manipulate eDirectory objects
for NSS logical and traditional NetWare volumes:

¢ “addVolume” on page 352

+ “removeVolume” on page 354

Each command is wrapped with either the ndsRequest or ndsReply element and the ndsVolume
element.

nds.cmd Definitions 351

addVolume

Creates an eDirectory pool object for an already existing NSS storage pool.

Request

<addvVolume type=" ">
<name/>
<context/>
<volumeName/>
<poolName/>
<ndsPoolName/>
<dfsGUID/>

</addvolume>

Reply

<addVolume>
<result wvalue=" ">
<description/>

</result>

</addvolume>

Elements

name

(Required) Specifies the name of the eDirectory volume object to create. If NULL is specified,
the name of the eDirectory volume object is generated by prepending the server name and an
underscore to the volume name.

context

(Required) Specifies the eDirectory context in which the eDirectory volume object is created. If
NULL is specified, the eDirectory volume object is created in the same context where the
server object resides.

volumeName

Specifies the name of the volume on the server.

poolName
(Required for NSS) Specifies the name of the pool on the server. This element is ignored for
traditional volumes.

ndsPoolName

(Required for NSS) Specifies the value to be use as the nssfsPool attribute name of the
eDirectory volume object. If NULL is specified, the pool's actual eDirectory name is retrieved
and used for the nssfsPool attribute. This element is ignored for traditional volumes.

dfsGUID

Specifies the value used as the dfs-volume-guid attribute for the eDirectory volume object.

352 NDK: Virtual File Services

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to add a volume is as follows:

<ndsRequest>
<ndsVolume>
<addVolume>
<volumeName>NSS1</volumeName>
<poolName>MYPOOL</poolName>
<dfsGUID>
D428AB28-3216-01D6-80-01-BD09318C30CA
</dfsGUID>
<name>
<context>
<ndsPoolName>
</addvVolume>
</ndsVolume>
</ndsRequest>

A nssReply packet to the add volume command follows:

<nssReply>
<ndsVolume>
<addVolume>
<result value="0">
<description/>success</description>
</result>
</addvolume>
</ndsVolume>
<result value="0">
<description/>z0K</description>
</result>
</nssReply>

nds.cmd Definitions 353

removeVolume

Removes an eDirectory volume object.

Request

<removeVolume>
<name/>
<context/>

</removeVolume>

Reply

<removeVolume>
<result wvalue=" ">
<description/>
</result>
</removeVolume>

Elements

name

(Required) Specifies the eDirectory name of the volume object to remove.

context

(Required) Specifies the eDirectory context where the object is found.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

A nssRequest packet to remove a volume is as follows:

<ndsRequest>
<ndsVolume>
<removeVolume>
<name>MYSERVER NSS1</name>
<context>
</removeVolume>
</ndsVolume>
</ndsRequest>

A nssReply packet to the remove volume command follows:

<nssReply>
<ndsVolume>
<removeVolume>
<result value="0">

354 NDK: Virtual File Services

<description/>success</description>
</result>

</removeVolume>

</ndsVolume>

<result value="0">
<description/>z0OK</description>

</result>

</nssReply>

nds.cmd Definitions 355

4.4 User Operations

eDirectory user operations include the following commands:

¢ “addUser” on page 357

+ “removeUser” on page 359

Each command is wrapped with either the ndsRequest or ndsReply element and the ndsUser
element.

356 NDK: Virtual File Services

addUser

Adds a user.

Request

<addUser>
<name/>
<context/>
<surname/>
<userDescription/>
<securityEquals/>
<fullName/>
<givenName/>
<password/>
</addUser>

Reply

<addUser>
<result value =" ">
<description/>
</result>
</addUser>

Elements

name

(Required) Specifies the eDirectory name of the user.

context

(Required) Specifies the eDirectory context where the user object is created. Unlike other VFS
commands, the context must be in backslash format. For example

\novell inc\novell\prv\nss\randys

surname
(Required)

userDescription

(Optional)

securityEquals
(Optional)

fullName
(Optional)

givenName

(Optional)

nds.cmd Definitions 357

password
(Required)

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

<virtualIO><datastream name="command"/></virtualIO>

<ndsRequest>
<ndsUser>
<addUser>
<name>testuser</name>
<context>\TESTTREE\testorg\testou</context>
<surname>testuser surname</surname>
<fullName>testuser fullName</fullName>
<givenName>testuser givenName</givenName>
<userDescription>testuser description</userDescription>
<password>secret</password>
</addUser>
</ndsUser>
</ndsRequest>

358 NDK: Virtual File Services

removeUser

Removes a user.

Request

<removeUser>
<name/>
<context/>

</removeUser>

Reply

<removeUser>
<result wvalue =" ">
<description/>
</result>
</removeUser>

Elements

name

(Required) Specifies the eDirectory name of the user object to remove.

context

(Required) Specifies the eDirectory context where the object is found.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

nds.cmd Definitions 359

360 NDK: Virtual File Services

files.cmd Definitions

This documentation provides the following XML element definitions for files.cmd that are available
in NetWare® 6.5:

+ “addQuota” on page 362

¢ “addTrustee” on page 363

+ “getAllEffectiveRights” on page 365

¢ “getFilelnfo” on page 368

+ “modifyInheritedRightsFilter” on page 374

+ “purgeDeletedFile” on page 376

+ “removeAllTrustees” on page 377

+ “removeTrustee” on page 379

+ “salvageDeletedFile” on page 380

+ “scanSalvageableFiles” on page 383

+ “setFileInfo” on page 390

To open the files.cmd file, type the following:
_Admin/Manage NSS/files.cmd

Every time you open the files.cmd file and before you send other commands, you must type the
following to write to the file:

<virtualIO><datastream name="command"></virtualIO>

You can combine multiple commands inside of one <fileRequest> element.

files.cmd Definitions 361

addQuota

Adds a directory quota.

Request

<directoryQuotas>
<addQuota>
<fileName/>
<quotaAmount/>
</addQuota>
</directoryQuotas>

Reply

<directoryQuotas>
<addQuota>
<result value=" ">
<description/>
</result>
</addQuota>
</directoryQuotas>

Elements

fileName

Specifies the path name of the directory where the quota is to be set.

quotaAmount

Specifies the size of the quota (in bytes).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

362 NDK: Virtual File Services

addTrustee

Adds a trustee to a file or directory.

Request

<trustees>
<addTrustee>
<name>
<rights>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</rights>
<fileName/>
</addTrustee>
</trustees>

Reply

<trustees>
<addTrustee>
<result value=" ">
<description/>
</result>
</addTrustee>
</trustees>

Elements

name

Specifies a name with the full context (including the tree name). The name can be delimited

with either dots or slashes.

rights

Specifies the rights to assign to the file for the specified user.

fileName

Specifies the file name to add rights to.

result

Specifies an error value or 0 (for no error).

files.cmd Definitions 363

description

Specifies a text description of the result.

Example

<virtualIO>
<datastream name="command"/>
</virtualIO>

<fileRequest>
<trustees>
<addTrustee>
<name><! [CDATA[.CN=admin.O=novell.T=MYTREE.]]></name>
<rights>
<supervisor/>
</rights>
<fileName>sys:\setup\test.txt</fileName>
</addTrustee>
</trustees>
</fileRequest>

364 NDK: Virtual File Services

getAllEffectiveRights

Returns all effective rights assigned to a file or directory.

Request

<fileInfo>
<getAllEffectiveRights>
<fileName/>
</getAllEffectiveRights>
</fileInfo>

Reply

<fileInfo>
<getAllEffectiveRights>
<allAccessRights count="">
<accessRights>
<name/>
<id/>
<rights>
<read/>
<write/>
<create/>
<erase/>
<accessControl/>
<fileScan/>
<modify/>
<supervisor/>
</rights>
</accessRights>
</allAccessRights>
<result value="">
<description/>
</result>
</getAllEffectiveRights>
</fileInfo>

Elements

fileName

Specifies a fully qualified name for the file. The context doesn't have to be included if a fully

qualified name is specified.

accessRights

Repeats for each entry.

result

Specifies an error value or 0 (for no error).

files.cmd Definitions 365

description

Specifies a text description of the result.

Attributes

count

Specifies the number of entries.

Example

The file request to return all effective rights is as follows:

<fileRequest>
<fileInfo>
<getAllEffectiveRights>
<fileName>sys:\public
</fileName>
</getAllEffectiveRights>
</fileInfo>
</fileRequest>

The file reply in which all rights are returned is as follows:
<fileReply>
<fileInfo>
<getAllEffectiveRights>
<allAccessRights count="1">
<accessRights>

<name>.0O=novell.T=test tree
</name>

<i1d>083A4080-C752-11D7-A5-B7-888888888888

</id>
<rights>
<read/>
<write/>
<create/>
<erase/>
<accessControl/>
<fileScan/>
<modify/>
<supervisor/>
</rights>
</accessRights>
<allAccessRights>
<result value="0">
<description/>success
</description>
</result>
</getAllEffectiveRights>
</fileInfo>
<result value="0">
<description/>zOK
</description>
</result>

366 NDK: Virtual File Services

</fileInfo>
</fileReply>

files.cmd Definitions 367

368

getFilelnfo

Returns the information (properties of a file).

Request

<fileInfo>
<getEffectiveRightsByUser>
<context/>
<name/>
</getEffectiveRightsByUser>
<getFileInfo>
<fileName/>
<typeOfInfo>
<rightsInfo/>
<standardInfo/>
<timeInfo/>
<idInfo/>
<directoryQuotaInfo>
<quotaAmount/>
<usedAmount/>
</directoryQuotalInfo>
</typeOfInfo>
</getFileInfo>
</fileInfo>

Reply

<fileInfo>
<getEffectiveRightsByUser>
<effectiveRights>
<read/>
<write/>
<create/>
<erase/>
<accessControl/>
<fileScan/>
<modify/>
<supervisor/>
</effectiveRights>
</getEffectiveRightsByUser>
<getFileInfo>
<rightsInfo>
<trusteelList>
<trusteeInfo>
<trustee>
<rights>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>

NDK: Virtual File Services

<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</rights>
</trustee>
</trusteeInfo>
</trusteelList>
<inheritedRightsFilter>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</inheritedRightsFilter>
<result value=" ">
<description/>
</result>
</rightsInfo>
<standardInfo>
<volumeName/>
<id/>
<parentID/>
<logicalEOQOF/>
<physicalEOF/>
<attributes>
<readOnly/>
<hidden/>
<system/>
<subdirectory/>
<archive/>
<shareable/>
<noSuballoc/>
<transaction/>
<notVirtual/>
<immediatePurge/>
<renameInhibit/>
<deleteInhibit/>
<copyInhibit/>
<adminLink/>
<link/>
<remoteDataAccess/>
<remoteDatalInhibit/>
<compressImmediate/>
<dataStreamCompress/>
<doNotCompress/>
<noStreamCompress/>
<attrArchive/>

files.cmd Definitions 369

<volatile/>
</attributes>
</standardInfo>
<timeInfo>
<createdTime>
<utc/>
<string/>
</createdTime>
<archivedTime>
<utc/>
<string/>
</archivedTime>
<modifiedTime>
<utc/>
<string/>
</modifiedTime>
<accessedTime>
<utc/>
<string/>
</accessedTime>
<metaDataModifiedTime>
<utc/>
<string/>
</metaDataModifiedTime>
</timeInfo>
<idInfo>
<creator/>
<archiver/>
<modifier/>
<metaDataModifier/>
</idInfo>
<directoryQuotaInfo>
<quotaAmount/>
<usedAmount/>
</directoryQuotaInfo>
<result value=" ">
<description/>
</result>
</getFileInfo>
</fileInfo>
<result wvalue=" ">
<description/>
</result>
</fileReply>

Elements

context

Specifies the context of the user. For example, novell.server.tree. You can omit the context and
specify a fully qualified name instead.

name

Specifies the name of the user. For example, admin.

370 NDK: Virtual File Services

fileName

Specifies the file name to retrieve the information for.

typeOfinfo

Specifies the category of information to return.

rightsInfo

Specifies the trustee rights information.

standardInfo

Specifies the general information about the file (EOF, ID, attributes, etc.).

timelnfo

Specifies the creation, modification, archival, and access time.

directoryQuotalnfo

Specifies the directory quota information.

quotaAmount

Specifies the amount of the quota (in bytes). If there is no quota, quotaAmount is -1 and
usedAmount is 0.

usedAmount

Specifies the number of bytes that are used in the current directory and its children. If -1 is
specified, the quota is removed.

effectiveRights
Specifies the rights for the user that is making the request.

trusteeInfo
Repeats for each assigned trustee.
trustee

Specifies the right-rooted, dot-delimited trustee name.

rights
Specifies the assigned rights for the trustee.

inheritedRightsFilter

Specifies the rights in the current filter.

standardInfo

Specifies the generic information for the file.

volumeName

Specifies the name of the logical volume that contains the file.
id

Specifies the unique ID for a file on a volume.

files.cmd Definitions 371

parentID
Specified the ID of the primary parent.

logical EOF

Specifies the location of the end of useful data in the file.

physicalEOF

Specifies the number of allocated bytes for the file (unless it is sparse).

timelnfo

Specifies various time stamps for the file.

utc

Specifies a number representing the UTC time.
string
Specifies the date, in string format.

idInfo

Specifies the IDs of various users.

creator

Specifies the right-rooted, dot-delimited directory name of the file's creator.

archiver

Specifies the right-rooted, dot-delimited directory name of the person who last archived the
file.

modifier

Specifies the right-rooted, dot-delimited directory name of the person who last modified the
file.

metaDataModifier

Specifies the right-rooted, dot-delimited directory name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

<virtualIO>
<datastream name="command"/>
</virtualIO>

<fileRequest>
<fileInfo>
<getFileInfo>
<fileName>test:\testdir</fileName>

372 NDK: Virtual File Services

<typeOfInfo>
<rightsInfo/>
<standardInfo/>
<timeInfo/>
<idInfo/>
<directoryQuotaInfo>
<quotaAmount/>
<usedAmount/>
</directoryQuotalInfo>
</typeOfInfo>
</getFileInfo>
</fileInfo>
</fileRequest>

files.cmd Definitions 373

modifylnheritedRightsFilter

Sets the inherited rights filter on a file or directory.

Request

<trustees>
<modifyInheritedRightsFilter>
<inheritedRightsFilter>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</inheritedRightsFilter>
<fileName/>
</modifyInheritedRightsFilter>
</trustees>

Reply

<trustees>
<modifyInheritedRightsFilter>
<result value=" ">
<description/>
</result>
</modifyInheritedRightsFilter>
</trustees>

Elements

inheritedRightsFilter
Specifies the rights to allow through the filter.

fileName

Specifies the name of the file on which to remove rights.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

374 NDK: Virtual File Services

Example

<virtualIO>
<datastream name="command"/>
</virtualIO>

<fileRequest>
<trustees>
<modifyInheritedRightsFilter>
<inheritedRightsFilter>
<supervisor/>
<read/>
<write/>
<create/>
</inheritedRightsFilter>
<fileName>test:\testdir</fileName>
</modifyInheritedRightsFilter>
</trustees>
</fileRequest>

files.cmd Definitions 375

purgeDeletedFile

Permanently removes a deleted file from the salvage directory.

Request

<salvage>
<purgeDeletedFile>
<volumeName/>
<id/>
</purgeDeletedFile>
</salvage>

Reply

<salvage>
<purgeDeletedFile>
<result value=" ">
<description/>
</result>
</purgeDeletedFile>
</salvage>

Elements

volumeName
Specifies the name of the volume.
id
Specifies the zID of the deleted file (in string format of a 64-bit unsigned integer).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

376 NDK: Virtual File Services

removeAllTrustees

Removes all trustee from a file or directory.

Request

<trustees>
<removeAllTrustees>
<fileName/>
</removeAllTrustees>
</trustees>

Reply

<trustees>
<removeAllTrustees>
<result value=" ">
<description/>
</result>
</removeAllTrustees>
</trustees>

Elements

fileName

Specifies a full context name, including the tree name. The name can be delimited with either
dots or slashes.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

The request for removing all trustees is as follows:

<fileRequest>
<trustees>
<removeAllTrustees>
<fileName>sys:\public</fileName>
</removeAllTrustees>
</trustees>
</fileRequest>

The reply to removing all trustees follows:
<fileReply>
<trustees>
<removeAllTrustees>
<result value="0">

files.cmd Definitions 377

<description/>success
</description>
</result>
</removeAllTrustees>
</trustees>
<result value="0">
<description/>zOK
</description>
</result>
</fileReply>

378 NDK: Virtual File Services

removeTrustee

Removes a trustee from a file or directory.

Request

<trustees>
<removeTrustee>
<name/>
<fileName/>
</removeTrustee>
</trustees>

Reply

<trustees>
<removeTrustee>
<result value=" ">
<description/>
</result>
</removeTrustee>
</trustees>

Elements

name

Specifies a full context name, including the tree name. The name can be delimited with either
dots or slashes.

fileName

Specifies the file name on which to remove rights.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

files.cmd Definitions 379

salvageDeletedFile

Restores a deleted file.

Request

<salvage>
<salvageDeletedFile>
<volumeName/>
<id/>
<dstParentID/>
<dstParentPath/>
<dstParentFullPath/>
<fileName/>
<nameSpace/>
<typeOfInfo>
<rightsInfo/>
</typeOfInfo>
</salvageDeletedFile>
</salvage>

Reply

<salvage>
<salvageDeletedFile>
<typeOfInfo>
<rightsInfo>
<trusteelList>
<trusteeInfo>
<trustee>
<rights>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</rights>
</trustee>
</trusteeInfo>
</trusteelList>
<inheritedRightsFilter>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>

380 NDK: Virtual File Services

<fileScan/>
<accessControl/>

<salvage/>
<secure/>
</inheritedRightsFilter>
<effectiveRights>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</effectiveRights>
</rightsInfo>
</typeOfInfo>
<result value=" ">
<description/>
</result>
</salvageDeletedFile>
</salvage>
Elements
volumeName

Specifies the name of the volume.
id
Specifies the zID of the deleted file (in string format of a 64-bit unsigned integer).

dstParentID
Specifies the zID of the file's parent (in string format of a 64-bit unsigned integer).

dstParentPath

Specifies the path of the file's parent. An empty string indicates the volume root directory.

dstParentFullPath

Specifies the parent path of the salvaged file. This path can be a rooted Linux path or a
NetWare path that includes the volume name.

fileName

Specifies the file name of the file to salvage.

nameSpace

Specifies the name space of the file name.

typeOfinfo

Specifies the categories of information to return.

files.cmd Definitions 381

rightsInfo

Specifies to return information on trustee rights.

trusteelnfo

Repeats for each assigned trustee.

trustee

Specifies the right-rooted, dot-delimited trustee name.

rights
Specifies the assigned rights.

inheritedRightsFilter

Specifies the rights in the current filter.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

382 NDK: Virtual File Services

scanSalvageableFiles

Checks for files that can be salvaged.

Request

<salvage>
<scanSalvageableFiles>
<volumeName/>
<scanSequence/>
<nameSpace/>
<parentID/>
<parentPath/>
<parentFullPath/>
<typeOfInfo>
<rightsInfo/>
<standardInfo/>
<timeInfo/>
<idInfo/>
<dataStreamInfo/>
<nameSpaceInfo/>
<deletedInfo/>
</typeOfInfo>
</scanSalvageableFiles>
</salvage>

Reply

<salvage>
<scanSalvageableFiles>
<nextScanSequence/>
<fileName/>
<typeOfInfo>
<rightsInfo>
<trusteelList>
<trusteelInfo>
<trustee>
<rights>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</rights>
</trustee>
</trusteeInfo>
</trusteelList>

files.cmd Definitions 383

<inheritedRightsFilter>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</inheritedRightsFilter>
<effectiveRights>
<supervisor/>
<read/>
<write/>
<create/>
<erase/>
<modify/>
<fileScan/>
<accessControl/>
<salvage/>
<secure/>
</effectiveRights>

</rightsInfo>
<standardInfo>

384 NDK: Virtual File Services

<volumeName/>

<id/>

<parentID/>

<logicalEOQOF/>

<physicalEOF/>

<attributes>
<readOnly/>
<hidden/>
<system/>
<subdirectory/>
<archive/>
<shareable/>
<noSuballoc/>
<transaction/>
<notVirtual/>
<renameInhibit/>
<deleteInhibit/>
<copyInhibit/>
<adminLink/>
<link/>
<remoteDataAccess/>
<remoteDatalInhibit/>
<compressImmediatePurge/>
<dataStreamCompress/>
<doNotCompress/>
<noStreamCompress/>
<attrArchive/>
<volatile/>

</attributes>
</standardInfo>
<timeInfo>
<createdTime>
<utc/>
<string/>
</createdTime>
<archivedTime>
<utc/>
<string/>
</archivedTime>
<modifiedTime>
<utc/>
<string/>
</modifiedTime>
<accessedTime>
<utc/>
<string/>
</accessedTime>
<metaDataModifiedTime>
<utc/>
<string/>
</metaDataModifiedTime>
</timeInfo>
<idInfo>
<creator>
<name/>
<id/>
</creator>
<archiver>
<name/>
<id/>
</archiver>
<modifier>
<name/>
<id/>
</modifier>
<metaDataModifier>
<name/>
<id/>
</metaDataModifier>
</idInfo>
<dataStreamInfo/>
<count/>
<totalDataSize>
</dataStreamInfo>
<nameSpaceInfo>
<deletedInfo>
<deletedTime>
<utc/>
<string/>
</deletedTime>
<deletorID>
</deletedInfo>

files.cmd Definitions 385

</typeOfInfo>
<result value=" ">
<description/>
</result>
</scanSalvageableFiles>
</salvage>

Elements

volumeName

Specifies the name of the volume.

scanSequence

Specifies where to start the scan (in string format of a 64-bit unsigned integer). -1 specifies to
start from the beginning.

nameSpace

Specifies the name space of the file name.

parentID
Specifies the zID of the directory to be scanned (in string format of a 64-bit unsigned integer).

parentPath

Specifies the path of the directory to scan. An empty string indicates the volume root directory.

parentFullPath

Specifies the path of the directory to scan. This path can be a rooted Linux path or a NetWare
path that includes the volume name.

typeOfinfo

Specifies the categories of information to return.

rightsInfo

Specifies to return information on trustee rights.

standardInfo

Specifies to return general information about the file (EOF, ID, attributed, etc.).

timelnfo

Specifies to return the creation, modification, archival, and access times.

idInfo

Specifies to return the creation, modification, and archiver user names and IDs. If the ID cannot
be found, the name returns Unknown User.

dataStreamInfo

Specifies to return the non-primary data stream count, size, etc.

nameSpacelnfo

Specifies to return the primary name space information.

386 NDK: Virtual File Services

deletedInfo

Specifies to return information about deleted files.

nextScanSequence

Specifies the next scan sequence (in 64-bit unsigned integer format).

fileName
Specifies the deleted file name (in CDATA format).

rightsInfo

Specifies the rights information (only if rightsInfo was specified in the request).

trusteelnfo

Repeats for each assigned trustee.

trustee

Specifies the right-rooted, dot-delimited trustee name.
rights

Specifies the assigned rights.
inheritedRightsFilter

Specifies the rights in the current filter.

standardInfo

Specifies the generic information for the file.

volumeName

Specifies the name of the logical volume that contains the file.

id

Specifies the unique ID for a file or a volume (in string format of a 64-bit unsigned integer).
parentID

Specifies the primary parent ID (in string format of a 64-bit unsigned integer).
logical EOF

Specifies the location of the end of good data in the file.
physical EOF

Specifies the number of allocated bytes for the file (unless the file is sparse).
timelnfo

Specifies various time stamps for the file.
utc

Specifies the UTC time.
string

Specifies the date, converted to a string.

files.cmd Definitions 387

idInfo

Specifies various user IDs.

creator

Specifies the right-rooted, dot-delimited eDirectory name of the creator.

archiver

Specifies the right-rooted, dot-delimited eDirectory name of the archiver.
modifier
Specifies the right-rooted, dot-delimited eDirectory name of the modifier.

metaDataModifier

Specifies the right-rooted, dot-delimited eDirectory name of the metadata modifier.

dataStreamInfo

Specifies the non-primary data stream information.

count

Specifies the number of data streams.

totalDataSize
Specifies the total size (in bytes) of the data stream.

nameSpacelnfo
Specifies the primary name space:
DOS
Long
Macintosh
Unix
deletorID
Specifies the right-rooted, dot-delimited eDirectory name.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Example

<virtualIO>
<datastream name="command"/>
</virtualIO>

<fileRequest>
<salvage>
<scanSalveageableFiles>
<volumeName>test</volumeName>

388 NDK: Virtual File Services

<scanSequence>-1</scanSequence>
<nameSpace>D0S</nameSpace>
<parentID/>
<parentPath>test:\testdir</parentPath>
<typeOfInfo>
<rightsInfo/>
<standardInfo/>
<timeInfo/>
<idInfo/>
<dataStreamInfo/>
<nameSpaceInfo/>
<deletedInfo/>
</typeOfInfo>
</scanSalvageableFiles>
</salvage>

files.cmd Definitions 389

setFilelnfo

Modifies a file's information (properties).

Request

<fileInfo>
<setFileInfo>
<fileName/>
<owner/>
<attributes>
<readOnly enabled=" "/>
<hidden enabled=" "/>
<system enabled=" "/>
<execute enabled=" "/>
<archive enabled=" "/>
<sharable enabled=" "/>
<transaction enabled=" "/>
<immediatePurge enabled=" "/>
<renameInhibit enabled=" "/>
<deleteInhibit enabled=" "/>
<copyInhibit enabled=" "/>
<link enabled=" "/>
<remoteDataAccess enabled=" "/>
<remoteDatalInhibit enabled=" "/>
<compressImmediate enabled=" "/>
<dataStreamCompress enabled=" "/>
<doNotCompress enabled=" "/>
<noStreamCompress enabled=" "/>
<attrArchive enabled=" "/>
<volatile enabled=" "/>
</attributes>
<nfsInfo>
<user>
<id/>
<owner/>
</user>
<group>
<id/>
<owner/>
</group>
<rights>
</nfsInfo>
<idInfo>
<creator/>
<archiver/>
<modifier/>
<metaDataModifier/>
</idInfo>
<standardInfo>
<attributes/>
</standardInfo>
<timeInfo>

390 NDK: Virtual File Services

<createTime/>
<archivedTime/>
<accessedTime/>
<modifiedTime/>
<metaDataModifiedTime/>
</timeInfo>
</setFileInfo>
</fileInfo>

Reply

<fileInfo>
<setFileInfo>
<result value=" ">
<description/>
</result>
</setFilelInfo>
</fileInfo>

Elements

fileName

(Required) Specifies the name of the file.

owner

(Optional) Specifies the name of the new owner (in either dot or slash form).

attributes

(Optional) Specifies a list of attributes to change. Each listed attribute also lists whether to

enable or disable the specific attribute.

nfsInfo

(Optional) Specifies NFS information to change.

user

(Optional) Specifies either the ID or the name of the file owner.

id
Specifies the ID of the Unix owner.

owner

Specifies the dot- or slash-delimited name from which to get the ID.

group

(Optional) Specifies either the ID or the name of the group assigned to the file.

rights

(Optional) Specifies a Unix octal value that represents the permissions to set.

idInfo

(Optional) Specifies a list of IDs to change for the file.

files.cmd Definitions 391

creator

(Optional) Specifies the creator of the file (in dot or slash format).

archiver

(Optional) Specifies the archiver of the file (in dot or slash format).

modifier

(Optional) Specifies the modifier of the file (in dot or slash format).

metaDataModifier
(Optional) Specifies the metadata modifier of the file (in dot or slash format).

standardInfo

(Optional) Specifies the basic file attributes to change. This attributes list is the same as the
preceding attributes list contained in the attributes element.

timelnfo

(Optional) Specifies the time stamps to change for the file.

createTime

(Optional) Specifies a new created time for the file (as a string in the format of
YYYYMMDDHHMMSS).

archivedTime

(Optional) Specifies a new archived time for the file (as a string in the format of
YYYYMMDDHHMMSS).

accessedTime

(Optional) Specifies a new accessed time for the file (as a string in the format of
YYYYMMDDHHMMSS).

modifiedTime

(Optional) Specifies a new modified time for the file (as a string in the format of
YYYYMMDDHHMMSS).

metaDataModifiedTime

(Optional) Specifies a new metadata modified time for the file (as a string in the format of
YYYYMMDDHHMMSS).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

enabled

(Optional) Specifies if the current element should be enabled:

392 NDK: Virtual File Services

yes
no

files.cmd Definitions 393

394 NDK: Virtual File Services

FileEvents.xml Definitions

The event file list (EFL) logs file changes for each active epoch on a specific volume. It uses the
following admin volume file:

_admin:manage nss\volume\ (volumename) \FileEvents.xml

Each of the following commands is wrapped with either the nssRequest or nssReply element and the
fileEventList element:

+ “changeEventEpoch” on page 396

+ “getEFL.NameSpacelD” on page 397

+ “getlnactiveEpochInterval” on page 398

+ “listAllFiles” on page 399

+ “listEpochs” on page 400

+ “listFileEvents” on page 401

+ “pingEpoch” on page 402

+ “removeEventEpoch” on page 403

+ “resetEventList” on page 404

+ “setEFLNameSpacelD” on page 405

+ “setlnactiveEpochlnterval” on page 406

+ “startEventEpoch” on page 407

+ “stopEventEpoch” on page 408

FileEvents.xml Definitions 395

changeEventEpoch

Stops an existing active EFL epoch and starts a new active epoch.

Request

<changeEventEpoch epochNumber=" "/>

Reply

<changeEventEpoch>
<epoch value=" "/>
<newEpoch value=" "/>
<result value=" ">
<description/>
</result>
</changeEventEpoch>

Elements
epoch
Specifies the number of the epoch.

newEpoch

Specifies the new number of the epoch.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Attributes

epochNumber

Specifies the number of an epoch.

value

Specifies a number.

396 NDK: Virtual File Services

getEFLNameSpacelD

Returns the name space for the specified EFL. The returned value represents the name space in
which the EFL's full path is represented (default is 4, ZNSPACE LONG).

Request

<getEFLNameSpacelID/>

Reply
<getEFLNameSpacelD>

<namespace id=" "/>
</getEFLNameSpaceIlD>

Elements

namespace

Specifies the ID of the event list's name space.

FileEvents.xml Definitions 397

getinactiveEpochinterval

Returns the inactive interval (in seconds) for the specified EFL. The returned value determines
whether the epoch stays inactive for too long and needs to be removed. The default value is two
weeks (1,209,600 seconds). In order for an epoch to stay active longer than this value, the user needs
to ping the epoch periodically.

Request

<getInactiveEpochInterval/>

Reply

<getInactiveEpochInterval>
<interval value=" "/>
<result value=" ">
<description/>
</result>
</getInactiveEpochInterval>

Elements

interval

Specifies the value of the interval.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

398 NDK: Virtual File Services

listAllFiles

Enumerates all files on the specified volume, gives out their full path name and ID, and indicates
whether each is a directory.

Request

<listAllFiles/>

Reply

<listAllFiles>
<file>
<name/>
<id/>
<directory/>
</file>
<result wvalue=" ">
<description/>
</result>
</listAllFiles>

Elements

name

Specifies the name of the file.
id

Specifies the ID of the file.

directory

(Optional) Specifies that the file is a directory.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

FileEvents.xml Definitions 399

listEpochs

Lists all EFL epochs on a specific volume and indicates whether they are active or stopped (used).

Request

<listEpochs/>

Reply

<listEpochs>
<activeEpochs>
<epoch value=" "/>
</activeEpochs>
<usedEpochs>
<epoch value=" "/>
</usedEpochs>
<result value=" ">
<description/>
</result>
</listEpochs>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

400 NDK: Virtual File Services

listFileEvents

Enumerates the EFL of a specific epoch.

Request

<listFileEvents epochNumber=" "/>

Reply

<listFileEvents>
<file>
<action/>
<name/>
<id/>
<directory/>
</file>
<result wvalue=" ">
<description/>
</result>
</listFileEvents>

Elements

action

Specifies the action that was performed (created, renamed, etc.).

name

Specifies the full path name of the file.
id
Specifies the ID of the file.

directory

(Optional) Specifies that the file is a directory.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

FileEvents.xml Definitions 401

pingEpoch

Pings a specific EFL epoch and prevents the epoch from removal during the period of time specifed
by the EFL epoch inactive interval.

Request

<pingEpoch epochNumber=" "/>

Reply

<pingEpoch>
<epoch value=" "/>
<result value=" ">
<description/>
</result>
</pingEpoch>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

402 NDK: Virtual File Services

removeEventEpoch

Removes an EFL epoch and its file event list.

Request

<removeEventEpoch epochNumber=" "/>

Reply

<removeEventEpoch>
<epoch value=" "/>
<result value=" ">
<description/>
</result>
</removeEventEpoch>

Elements

epoch
Specifies the number of the epoch.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

FileEvents.xml Definitions

403

resetEventList

Removes all epochs (active and used) and their EFLs on the specified volume.

Request

<resetEventList/>

Reply

<resetEventList>
<result wvalue=" ">
<description/>
</result>
</resetEventList>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

404 NDK: Virtual File Services

setEFLNameSpacelD

Sets the name space for the specified EFL and determines the name space in which the EFL's full

path is represented.

Request

<setEFLNameSpaceID id=" "/>

Reply

<setEFLNameSpaceID>
<result value=" ">
<description/>
</result>
</setEFLNameSpacelD>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

FileEvents.xml Definitions

405

setlnactiveEpochinterval

Sets the inactive interval (in seconds) for the specified EFL.

Request

<setInactiveEpochInterval value=" "/>

Reply

<setInactiveEpochInterval>
<result value=" ">
<description/>
</result>
</setInactiveEpochInterval>

Elements

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

406 NDK: Virtual File Services

startEventEpoch

Starts a new active EFL epoch. All file changes (both metadata and user data) on the specific volume

that are made after this epoch is started result in an entry in this epoch's event file list.

Request

<startEventEpoch/>

Reply

<startEventEpoch>
<newEpoch value=" "/>
<result value=" ">
<description/>
</result>
</startEventEpoch>

Elements

newEpoch

Specifies the number of the new epoch.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

FileEvents.xml Definitions

407

stopEventEpoch

Stops an existing active EFL epoch. It keeps its file event list around but not adds any new entry.

Request

<stopEventEpoch epochNumber=" "/>

Reply

<stopEventEpoch>
<epoch value=" "/>
<result value=" ">
<description/>
</result>
</stopEventEpoch>

Elements
epoch
Specifies the number of the epoch.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

408 NDK: Virtual File Services

Inventory.xml Definitions

NetWare® Remote Manager (NRM) Storage Resource Managment (SRM) files track inventory
changes and uses the following files:

+ “NRMServerlnventory.xml” on page 410
¢ “Volume_Inventory.xml” on page 414

¢ “Volume_ Trustees.xml” on page 417
_admin:Novell\NRM\NRMServerInventory.xml

Reading the NRMServerInventory.xml file causes NRM to generate an inventory for each volume
and then combine each volume’s inventory into a server inventory.

By generating a server inventory, you cause XML inventory files to be generated for each volume
(see Volume Inventory.xml and Volume Trustees.xml). However, if an inventory was generated in
the last hour, that inventory is used (rather than generating a new inventory). With this functionality,
you can start an inventory and come back later to process that inventory’s data.

When you first read the data, the Inventory Status tags might indicate “Scanning,” which tells you
that NRM is currently generating the inventory. Keep trying until you receive a Done status. By
processing inventories in this manner, you can asynchronously inventory multiple servers without
having to wait for each inventory to complete (and without blocking any threads).

Inventory.xml Definitions

409

NRMServerinventory.xml

Generates an inventory for each volume and combines each volume's inventory into a server
inventory.

Syntax

<Server Inventory name=""/>
<Inventory Status/>
<Space Available/>
<Volume Count/>
<Space Used/>
<Directory Count/>
<File Count/>
<Space Change Last Day/>
<Space Change Last Week/>
<Space Change Last Month/>
<Estimated Months Left/>
<File Type Count/>
<File Owner Inventory>
<Owner Global DN="" Local ID="">
<Space Used/>
<File Count/>
</Owner>
</File Owner Inventory>
<File Type Inventory>
<Extension name="">
<Space Used/>
<File Count/>
</Extension>
</File Type Inventory>
<File Modified Inventory>
<Group range="">
<Space Used/>
<File Count/>
</Group>
</File Modified Inventory>
<File Access_Inventory>
<Group range="">
<Space Used/>
<File Count/>
</Group>
</File Access_Inventory>
<File Create Inventory>
<Group range="">
<Space Used/>
<File Count/>
</Group>
</File Create Inventory>
<File Size Inventory>
<Group range="">
<Space Used/>
<File Count/>

410 NDK: Virtual File Services

</Group>
</File Size Inventory>

Elements

Server_Inventory

Specifies the root element for NRM inventory requests.

Inventory_Status

Specifies the status of the inventory:

Done
Scanning

Space_Available

Specifies the amount of free space on the server.

Volume_Count

Specifies the number of volumes on the server (excluding the ADMIN volume).

Space_Used

Specifies the byte space in use by all files on the server.

Directory_Count

Specifies the number of subdirectories on the server.

File_Count
Specifies the number of files on the server.
Space_Change Last Day
Specifies the change in terms of available space (MB) for the last day, as a signed integer.

Space_Change Last Week

Specifies the change in terms of available space (MB) for the last week, as a signed integer.

Space_Change Last_Month

Specifies the change in terms of available space (MB) for the last month, as a signed integer.

Estimated_Months_Left

Specifies the number of months before the server will have a volume run out of available space
(in consideration of last month's rate).

File Type Count

Specifies the number of file types that are being tracked in the inventory. If the
Inventory Status is Scanning, it specifies the number of files that have been scanned thus far.

File_Owner_Inventory

Specifies information about the users that own files on the server.

Owner_Global DN
Specifies the full eDirectory Distinguished Name.

Inventory.xml Definitions 411

Space_Used

Specifies the amount of byte space in use.

File_Count

Specifies the number of files.

File Type Inventory
Specifies information about the different types of files that are stored on the server. This
element tracks only the first 2000 file types.

Extension
Specifies the space used and file count for all extensions that were not counted in the first 2000
file types. NRM tracks files that have no extensions and reports them under the No Extension
name.

File Modified Inventory

Specifies information about when the files were last modified.

Group
Specifies the data about the number of files and associated space that were fall within the
specified range.

File_Access_Inventory

Specifies information about when the files were last accessed.

File_Create Inventory

Specifies information about when the files were created.

File_Size Inventory

Specifies information about the size of the files.

Attributes

name

Specifies the name of the server.

Local_ID
Specifies the object ID (valid on the local server only).

range

Specifies the range to return information about:

Within Last Day

1 Day - 1 Week

1 Week - 2 Weeks

2 Weeks - 1 Month

1 Month - 2 Months
2 Months - 4 Months
4 Months - 6 Months

412 NDK: Virtual File Services

6 Months - 1 Year
1 Year - 2 Years
More than 2 Years

OR

Less than 1KB
1KB-4KB

4 KB - 16KB

16 KB - 64 KB
64 KB - 256 KB
256 KB - 1 MB

1 MB -4 MB
4MB - 16 MB
16 MB - 64 MB
64 MB - 256 MB
More than 256 MB

Remarks

Reading the preceding file causes NRM to generate an inventory for each volume and then combine
each volume's inventory into a server inventory. By generating a server inventory, you cause XML
inventory files to be generated for each volume (see Volume Inventory.xml and

Volume Trustees.xml). However, if an inventory was generated in the last hour, that inventory is
used (rather than generating a new inventory). With this functionality, you can start an inventory and
come back later to process that inventory's data.

When you first read the data, the Inventory Status tags might indicate “Scanning,” which tells you
that NRM is currently generating the inventory. Keep trying until you receive a “Done” status. By

processing inventories in this manner, you can asynchronously inventory multiple servers without

having to wait for each inventory to complete (and without blocking any threads).

Note that integer values are in base 10.

Inventory.xml Definitions

413

414

Volume_Inventory.xml

Contains information about the files located on the specified volume.

Syntax

<Volume Inventory name=""/>
<Space_ Used/>
<Directory Count/>
<File Count/>
<File Type Count/>
<File Owner Inventory>
<Owner Global DN="" Local ID="">
<Space Used/>
<File Count/>
</Owner>
</File Owner Inventory>
<File Type Inventory>
<Extension name="">
<Space Used/>
<File Count/>
</Extension>
</File Type Inventory>
<File Modified Inventory>
<Group range="">
<Space Used/>
<File Count/>
</Group>
</File Modified Inventory>
<File Access_Inventory>
<Group range="">
<Space Used/>
<File Count/>
</Group>
</File Access_Inventory>
<File Create Inventory>
<Group range="">
<Space Used/>
<File Count/>
</Group>
</File Create Inventory>
<File Size Inventory>
<Group range="">
<Space Used/>
<File Count/>
</Group>
</File Size Inventory>

Elements

Volume_Inventory

Specifies the root element for NRM inventory requests.

NDK: Virtual File Services

Space_Used

Specifies the byte space in use by all files on the volume.

Directory_Count

Specifies the number of subdirectories on the volume.

File_Count
Specifies the number of files on the volume.
File_Type Count

Specifies the number of file types that are being tracked in the inventory. If the
Inventory Status is Scanning, it specifies the number of files that have been scanned thus far.

File_ Owner_Inventory

Specifies information about the users that own files on the volume.

Owner_Global DN
Specifies the full eDirectory Distinguished Name.

Space_Used

Specifies the amount of byte space in use.

File_Count

Specifies the number of files.

File_Type_ Inventory
Specifies information about the different types of files that are stored on the server. This
element tracks only the first 2000 file types.

Extension

Specifies the space used and file count for all extensions that were not counted in the first 2000
file types. NRM tracks files that have no extensions and reports them under the No Extension
name.

File Modified Inventory

Specifies information about when the files were last modified.

Group

Specifies the data about the number of files and associated space that were fall within the
specified range.

File_Access_Inventory

Specifies information about when the files were last accessed.

File_Create_Inventory

Specifies information about when the files were created.

File_Size Inventory

Specifies information about the size of the files.

Inventory.xml Definitions 415

Attributes

name

Specifies the name of the server.

Local _ID
Specifies the object ID (valid on the local server only).

range

Specifies the range to return information about:

Within Last Day

1 Day - 1 Week

1 Week - 2 Weeks

2 Weeks - 1 Month

1 Month - 2 Months
2 Months - 4 Months
4 Months - 6 Months
6 Months - 1 Year

1 Year - 2 Years
More than 2 Years

OR

Less than 1KB

1 KB -4KB

4 KB - 16KB

16 KB - 64 KB
64 KB - 256 KB
256 KB - 1 MB

1 MB - 4 MB

4 MB - 16 MB
16 MB - 64 MB
64 MB - 256 MB
More than 256 MB

Remarks

This data file is placed at the root of a volume after an inventory is performed. The file contains data
that was created the last time a volume or server inventory was performed.

416 NDK: Virtual File Services

Volume_Trustees.xml

Contains information about the trustee assignments to file and directories on the specified volume.

Syntax
<Volume Trustee Report name=""> <!-- Root element. The root attribute
is the volume's name. -->
<Trustee List type=""> <!-- The type attribute is either
"subdirectory" or "file". A Trustee List
can contain one or more User elements. —-->
<Path> <!-- The full path to the entry from the
root of the volume. -->
<User rights=""> <!-- A character string with the following
posibilities: SRWCEMFA. Each position can
contain an underline or a letter for the right
to be assigned, according to the following list:
S Supervisor
R Read Files
W Write Files
C Create Entries
E Delete Entries
M Modify Entries
F File Scan
A Access Control -—>
</trustee>
</trustees>
Elements

Volume_Trustee_Report

Specifies the root element.

Trustee List

Specifies information about each user.

Path
Specifies the full path to the entry from the root of the volume.

User

Specifies a character string with the following possibilities: SRWCEMFA. Each position
contains an underline or a letter that represents the rights to be assigned.

Attributes

name

Specifies the volume's name.

type
Specifies the type of the trustee list:

Inventory.xml Definitions

417

subdirectory
file

rights
Specifies the rights to be assigned:

S Supervisor

R Read Files

W Write Files

C Create Entries
E Delete Entries
M Modify Entries
F File Scan

A Access Control

Remarks

This data is placed at the root of a volume after an inventory is performed. The file contains data that
was created the last time a volume or server inventory was performed.

418 NDK: Virtual File Services

Archive Definitions

NetWare® 6.5 Archive and Versioning Service (ArkManager) uses the following command files to
handle archived files:

¢ archiveAdmin.cmd (see Section 8.1, “archiveAdmin.cmd Definitions,” on page 420)

¢ archive.cmd (see Section 8.2, “archive.cmd Definitions,” on page 438)

Archive Definitions 419

8.1 archiveAdmin.cmd Definitions

This section contains the following archive and versioning commands:

+ “activateJob” on page 421

+ “deactivateJob” on page 422
+ “getInfo” on page 423

+ “getJobInfo” on page 425

+ “getLogTimeRange” on page 428
+ “listJobNames” on page 429
+ “queryLog” on page 430

+ “setInfo” on page 433

* “startJob” on page 435

* “stopJob” on page 436

+ “testFilter” on page 437

Every command is wrapped with either archiveAdminRequest or archiveAdminReply elements, as
shown in the following examples:

<archiveAdminRequest>
<arkConfigInfo>
<getInfo type=" ">
<jobName/>
</getInfo>
</arkConfigInfo>
</archiveAdminRequest>
<archiveAdminReply>
<arkConfigInfo>
<getInfo>
<arkConfig>
<basic/>
</arkConfig>
</getInfo>
</arkConfigInfo >
<result value="">
<description/>
</result>
</archiveAdminReply>

420 NDK: Virtual File Services

activateJob

Activates a job.

Request

<jobControl>
<activateJob>
<name/>
</activateJob>
</jobControl>

Reply

<jobControl>
<activateJob>
<result wvalue=" ">
<description/>
</result>
</activateJob>
</jobControl>

Elements

name

(Required) Specifies the job name.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Archive Definitions

421

deactivateJob

Deactivates a job.

Request

<jobControl>
<deactivateJob>
<name/>
</deactivateJob>
</jobControl>

Reply

<jobControl>
<deactivateJob>
<result wvalue=" ">
<description/>
</result>
</deactivateJob>
</jobControl>

Elements

name

(Required) Specifies the job name.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

422 NDK: Virtual File Services

getinfo

Retrieves ArkManager's overall information.

Request

<arkConfigInfo>

<getInfo type=" ">

<jobName/>
</getInfo>
</arkConfigInfo>

Reply

<arkConfigInfo>
<getInfo>
<arkConfig>
<basic/>
<defaults/>
<job/>
</arkConfig>
</getInfo>
</arkConfigInfo>
<result value="">
<description/>
</result>

Elements

jobName

(Optional) Specifies the name of the job. You can pass the word “defaults” to this element.

Multiple jobName elements are acceptable. If no jobName is specified, all arkConfig
information (including information defined by the basic element) is returned.

basic

Specifies that jobName wasn't specified in the request, so all basic information is returned.

defaults

Specifies that defaults was passed as the value to jobName in the request, so all default

information is returned.

job

(Repeating) Specifies the job information for each requested job.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Archive Definitions

423

Attributes

type
(Optional) Specifies the type of information to return: full or simple. The default value is full. If
full is specified, information defined by the job and defaults elements is returned. If simple is
specified, only information defined by the job element is returned.

424 NDK: Virtual File Services

getJobinfo

Retrieves ArkManager's job control-related information (such as activate, deactivate, start or stop a

job).

Request

<jobControl>
<getJobInfo/>
</jobControl>

Reply

<jobControl>
<getJobInfo>
<job>
<name/>
<state>
<running/>
<scheduled/>
<stopped/>
</state>
<lastStartDate/>
<nextStartDate/>
<scheduledInterval/>
<dayOfWeek>
<days>
<monday/>
<tuesday/>
<wednesday/>
<thursday/>
<friday/>
<saturday/>
<sunday/>
</days>
<time>
</dayOfWeek>
<interval>
<unit>
<seconds/>
<minutes/>
<hours/>
<days/>
</unit>
<value/>
</interval>
</scheduledInterval>
<srcServer/>
<srcVol/>
</job>
<result value=" ">
<description/>

Archive Definitions

425

</result>
</getJobInfo>
</jobControl>

Elements
job
(Required) Specifies the job. Repeat for each defined job.

name

(Required) Specifies the name of the job.

state

(Required) Specifies the job state from the last time it ran. Either running, scheduled, or
stopped must be specified.

running

(Optional) Specifies that the job state is running.

scheduled
(Optional) Specifies that the job is scheduled to run in the future.

stopped
(Optional) Specifies that the job stopped.

lastStartDate

(Required) Specifies the generalized time, in YYYYMMDDHHMMSS format, of the last time
that the job ran. If this date is unknown, zeroes are passed back (00000000000000).

nextStartDate

(Required) Specifies the generalized time, in YYYYMMDDHHMMSS format, of the next start
time that the job runs. If this date is unknown, zeroes are passed back (00000000000000).

scheduledInterval

(Required) Specifies either the dayOfWeek element or the interval element.

dayOfWeek
(Optional) Specifies the day of the week and time of day that the job is scheduled to run.

days
(Optional) Specifies the days of the week.

monday

(Optional) Specifies that the job is scheduled to run on Monday.

tuesday
(Optional) Specifies that the job is scheduled to run on Tuesday.

wednesday

(Optional) Specifies that the job is scheduled to run on Wednesday.

426 NDK: Virtual File Services

thursday
(Optional) Specifies that the job is scheduled to run on Thursday.

friday
(Optional) Specifies that the job is scheduled to run on Friday.

saturday

(Optional) Specifies that the job is scheduled to run on Saturday.

sunday
(Optional) Specifies that the job is scheduled to run on Sunday.
time

(Optional) Specifies the time, in HHMMSS format, of the next scheduled time that the job
runs.

interval
(Optional) Specifies the unit interval when the job runs.
unit

(Optional) Specifies the unit in seconds, minutes, hours, and days. If interval is defined, unit
contains one of these elements.

seconds

(Optional) Specifies the seconds of the unit interval.

minutes

(Optional) Specifies the minutes of the unit interval.

hours

(Optional) Specifies the hours of the unit interval.
days

(Optional) Specifies the days of the unit interval.

value

(Optional) Specifies a number.

srcServer

(Required) Specifies the source server that the job is backing up.

srcVol

(Required) Specifies the source volume that the job is backing up.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Archive Definitions

427

getLogTimeRange

Returns the range of log time.

Request

<archivelog>
<getLogTimeRange/>
</archiveLog>

Reply

<archivelog>
<getLogTimeRange>
<newestTime/>
<oldestTiime/>
<result value=" ">
<description/>
</result>
</getLogTimeRange>
</archiveLog>

Elements

newestTime
(Required) Specifies the generalized time, in YYYYMMDDHHMMSS format, for the newest
log time.

oldestTime
(Required) Specifies the generalized time, in YYYYMMDDHHMMSS format, for the oldest
log time.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

428 NDK: Virtual File Services

listJobNames

Returns a list of job names.

Request

<archivelog>
<listJobNames/>
</archiveLog>

Reply

<archivelog>
<listJobNames>
<jobNames>
<name/>
</jobNames>

<result value="
<description/>

</result>
</listJobNames>
</archiveLog>

Elements

name

Specifies the job name. Repeat for each job.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Archive Definitions

429

querylLog

Queries log entries by specifying the date, job name, or severity.

Request

<archivelog>
<queryLog>
<jobName>
<name/>
</jobName>
<severity>
<normal/>
<warning/>
<error/>
</severity>
<direction>
<older/>
<newer/>
</direction>
<numOfEntries>
<startHere>
<oldest/>
<newest/>
<cookie/>
<startDate/>
</startHere>
</queryLog>
</archiveLog>

Reply

<archivelog>
<queryLog>
<logInfo>
<date/>
<jobName>
<name/>
</jobName>
<severity>
<normal/>
<warning/>
<error/>
</severity>
<message/>
</logInfo>
<startHere>
<cookie/>
</startHere>
<result value=" ">
<description/>
</result>

430 NDK: Virtual File Services

</queryLog>
</archiveLog>

Elements

jobName

(Optional) Specifies the name of the job. If this element does not exist, all jobs are returned.

name

Specifies the name of the job. Repeat for each selected job.

severity

(Required) Specifies one or more of the severity tags (normal, warning, and error).

normal

(Optional) Specifies a severity of normal.

warning

(Optional) Specifies a severity of warning.

error

(Optional) Specifies a severity of error.

direction

(Optional) Specifies the direction of log entries. If this element does not exist, an older
direction is assumed.

older

(Optional) Specifies to return older log entries.

newer

(Optional) Specifies to return newer log entries.

numOfEntries

(Required) Specifies how many entries to return.

startHere

(Optional) Specifies oldest, newest, the cookie, or a startDate. If this element does not exist,
newest is assumed.

oldest
(Optional) Specifies to return the oldest log entries.

newest

(Optional) Specifies to return the newest log entries.

cookie

(Optional) Specifies the cookie that was returned the last time queryLog was called.

Archive Definitions 431

startDate

(Optional) Specifies the date and time, in generalized time YYYYMMDDHHMMSS format, at
which to start the log entries.

logInfo

Specifies the log information. Repeat for each log.

date
Specifies the date, in generalized time YYYYMMDDHHMMSS format.

message

Specifies the log message.

startHere

(Required) Specifies the cookie element.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

432 NDK: Virtual File Services

setinfo

Modifies ArkManager's overall information.

Request

<arkConfigInfo>
<setInfo>
<arkConfig>
<basic/>
<defaults jobStatus=" "/>
<job jobStatus=" "/>
</arkConfig>
</setInfo>
</arkConfigInfo>

Reply

<arkConfigInfo>
<setInfo>
</arkConfigInfo >
<result value=" ">
<description/>
</result>

Elements

arkConfig

Specifies the archive configuration information to set.

basic

(Optional) Specifies to set all basic configuration information.

defaults

(Optional) Specifies how to change the configuration information. Whenever defaults is
modified, all jobs are modified accordingly.

job
(Optional) Specifies the job information for each requested job.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Attributes

jobStatus

(Optional) Specifies how to change the configuration information:

Archive Definitions 433

add
modify
delete

The default value is add. To add configuration information, no job with the same name should
exist. To modify and delete configuration information, a job with the same name should exist.

434 NDK: Virtual File Services

startJob

Starts a job.

Request

<jobControl>
<startJob>
<name/>
<now/>
<copyAll/>
</startJob>
</jobControl>

Reply

<jobControl>
<startJob>
<result value=" ">
<description/>
</result>
</startJob>
</jobControl>

Elements

name

(Required) Specifies the job name.

now

(Optional) Specifies that the job starts now. If this element does not exist, the job starts at the

next scheduled time.

copyAll

(Optional) Specifies that all of the files are copied. If this element does not exist, only modified

files are copied.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Archive Definitions

435

stopJob

Stops a job.

Request

<jobControl>

<stopJob>
<name/>
</stopJdob>
</jobControl>

Reply

<jobControl>
<stopJob>
<result value=" ">
<description/>
</result>
</stopJob>
</jobControl>

Elements

name

(Required) Specifies the job name.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

436 NDK: Virtual File Services

testFilter

Tests whether a particular path passes a job filter's definition (and will be archived).

Request

<testFilter>
<jobName/>
<path/>

</testFilter>

Reply

<testFilter>
<pass|fail/>
</testFilter>

Elements

jobName

Specifies the name of the job to be tested against.

path
Specifies the test path.
pass|fail

Specifies whether the path would pass the job's filter.

Archive Definitions

437

8.2 archive.cmd Definitions

Starting from NetWare 6.5 SP1, archive data is stored in a MySQL database. The following
commands support multiple jobs on the same volume:

*

“deleteFile” on page 439

+ “getContentVersions” on page 441
+ “getDirContents” on page 444

+ “getVersions” on page 446

+ “restoreFile” on page 449

+ “shutdown” on page 451
Multiple commands can be combined inside of one archiveRequest element.

All paths are root based and separated by a forward slash (/) unless otherwise specified for a
particular element.

438 NDK: Virtual File Services

deleteFile

Deletes a file and all of its archived content versions from the archive server.

Request

<archiveRequest version="2.0">
<deleteFile>
<serverIPAddress/>
<volume/>
<fileName/>
<archiveInfo>
<job>
<jobName/>
<fileKey/>
<metaDataKey/>
</job>
</archiveInfo>
</deleteFile>
</archiveRequest>

Reply

<archiveReply version="2.0">
<deleteFile>
<result value=" ">
<description/>
</result>
</deleteFile>
</archiveReply>

Elements

serverIPAddress

Specifies the server where the original file came from.

volume

Specifies the volume where the original file came from.

fileName

(Optional) Specifies the full path of the name of the file. Separate the path with forward slashes

(/), starting from the volume root. If archivelnfo isn't specified, the full path is evaluated.

Component names with only a current status are used when parsing the path. If archivelnfo is

specified, fileName can be omitted.

If fileName specifies a directory, all entries contained in the directory are deleted, except for
subfiles and subdirectories renamed to entries. If fileName specifies a file and metaDataKey or
archivelnfo isn't specified, all content versions are deleted. If fileName specifies a file and at
least one metaDataKey is specified, only the content versions specified in metaDataKey are

deleted.

Archive Definitions

439

archivelnfo

(Optional) Specifies the information returned from a previous query.
job

Specifies the job. Repeat for each job.

jobName

Specifies the name of the job as received from a directory content query or a version query.

fileKey

Specifies the file key as received from a directory content query or a version query.

metaDataKey

(Optional) Specifies the content version. Repeat for each target. If the target is a file, the
specific content version specified by this value is deleted.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

440 NDK: Virtual File Services

getContentVersions

Returns archive file versions.

Request

<archiveRequest version="2.0">
<getContentVersions maxReturnEntries="
<serverIPAddress/>
<volume/>
<fileName/>
<archiveInfo>
<job>
<jobName/>
<fileKey/>
</job>
</archiveInfo>
<startDate/>
<endDate/>
<startHere/>
</getContentVersions>
</archiveRequest>

Reply

<archiveReply version="2.0">
<getContentVersions>
<fileVersion>
<name/>
<date/>
<size/>
<modifyTime/>
<modifier/>
<archiveName>
<actualName/>
</archiveName>
<archiveInfo>
<server/>
<volume/>
<job>
<jobName/>
<fileKey/>
<metaDataKey/>
</job>
</archiveInfo>
</fileVersion>
<startHere/>
<ipAddress/>
</getContentVersions>
<result value=" ">
<description/>

UBN

Archive Definitions

441

</result>
</archiveReply>

Elements

serverIPAddress

Specifies the server where the original file came from.

volume

Specifies the volume where the original file came from.

fileName
(Optional if archivelnfo is specified) Specifies the full path of the file name to return versions
for. The path should be separated by forward slashes (/), starting from the volume root. If
archivelnfo isn't specified, the full path is evaluated. Only component names with a current
status are used when parsing the path.

archivelnfo
(Optional) Specifies the archived information received from a previous query.

job
Specifies the job. Repeat for each job.

jobName

Specifies the name of the job as received from a directory content query or a version query.

fileKey

Specifies the file key as received from a directory content query or a version query.

startDate
(Optional) Specifies the most recent date, in generalized time and date
YYYYMMDDHHMMSS format, to return.

endDate
(Optional) Specifies the oldest date, in generalized time and date YYYYMMDDHHMMSS
format, to return.

startHere
(Optional) Specifies where to start as returned from a previous query. If this element does not
exist, the search starts at the beginning.

fileVersion

Specifies the version of the file. Repeated for each file version entry.

date

Specifies the date, in generalized time and date YYYYMMDDHHMMSS format, the file was
archived.

442 NDK: Virtual File Services

modifyTime

Specifies the modified time, in generalized time and date YYYYMMDDHHMMSS format,
from the file's metadata.

actualName

Specifies an opaque name from which the file can be directly accessed.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Attributes

maxReturnEntries

(Optional) Specifies the maximum number of entries to return. If this attribute is not specified,
the request handler decides how many entries to return.

Archive Definitions 443

getDirContents

Returns archived directory contents.

Request

<archiveRequest version="2.0">
<getDirContents maxReturnEntries=" ">
<serverIPAddress/>
<volume/>
<dirName/>
<archiveInfo>
<job>
<jobName/>
<fileKey/>
</job>
</archiveInfo>
<startHere/>
<ipAddress/>
</getDirContents>
</archiveRequest>

Reply

<archiveReply version="2.0">
<getDirContents>
<dirName>
<name/>
<archiveInfo>
<job>
<jobName/>
<fileKey/>
</job>
</archiveInfo>
</dirName>
<startHere/>
</getDirContents>
<result value=" ">
<description/>
</result>
</archiveReply>

Elements

serverIPAddress

Specifies the server where the original file came from.

volume

Specifies the volume where the original file came from.

444 NDK: Virtual File Services

dirName
(Optional if archivelnfo is specified) Specifies the full path of the directory name to return
versions for. The path should be separated by forward slashes (/), starting from the volume root.
If archivelnfo isn't specified, the full path is evaluated. Only component names with a current
status are used when parsing the path.

archivelnfo
(Optional) Specifies the archived information received from a previous query.

job
Specifies the job. Repeat for each job.

jobName

Specifies the name of the job as received from a directory content query or a version query.

fileKey

Specifies the file key as received from a directory content query or a version query.

startHere
(Optional) Specifies where to start as returned from a previous query. If this element does not
exist, the search starts at the beginning.

dirName

Specifies the directory element. Repeat for each entry.

name

Specifies the entry name.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Attributes

maxReturnEntries

(Optional) Specifies the maximum number of entries to return. If this attribute is not specified,
the request handler decides how many entries to return.

type
Specifies the type of object: directory, file, or unknown. If type is unknown, call getVersions
(page 446) to retrieve more information. The unknown designation is used only if the file status
is current and there's no other duplicated name.

Archive Definitions

445

446

getVersions

Returns archived directory versions.

Request

<archiveRequest version="2.0">
<getVersions maxReturnEntries="
<serverIPAddress/>
<volume/>
<dirName/>
<archiveInfo>
<job>
<jobName/>
<fileKey/>
</job>
</archiveInfo>
<startHere/>
</getVersions>
</archiveRequest>

Reply

<archiveReply version="2.0">
<getVersions>
<dirName>
<name/>
<status>
<current/>
<renamed/>
<deleted/>
<changeTime/>
</status>
<currentName/>
<archiveInfo>
<job>
<jobName/>
<fileKey/>
</job>
</archiveInfo>
</dirName>
<startHere/>
<ipAddress/>
</getVersions>
<result value=" ">
<description/>
</result>
</archiveReply>

NDK: Virtual File Services

UBN

Elements

serverIPAddress

Specifies the server where the original file came from.

volume

Specifies the volume where the original file came from.

dirName
(Optional if archivelnfo is specified) Specifies the full path of the directory name to return
versions for. The path should be separated by forward slashes (/), starting from the volume root.
Components with only a current status are used when parsing the path. If both archivelnfo and
dirName are specified, the last component name in dirName is used to get versions under the
parent directory that is specified in archivelnfo. If only archivelnfo is specified, the object
specified by fileKey is used to get versions.

archivelnfo
(Optional) Specifies the archived information received from a previous query.

job
Specifies the job. Repeat for each job.

jobName

Specifies the name of the job as received from a directory content query or a version query.

fileKey

Specifies the file key as received from a directory content query or a version query.

startHere

(Optional) Specifies where to start as returned from a previous query. If this element does not
exist, the search starts at the beginning.

dirName

Specifies the directory element. Repeat for each entry.

name

Specifies the entry name.

status

Specifies the status of the file or directory: current, renamed, or deleted.

current

Specifies that the file or directory is current.

renamed

Specifies that the file or directory is renamed.

deleted
Specifies that the file or directory is deleted.

Archive Definitions 447

changeTime
(Optional) Specifies the time, in YYYYMMDDHHMMSS format, when the status is changed.
Returned if the status is renamed or deleted.

currentName

Specifies the current name for the file or directory specified by dirName. This element is
returned if the status is renamed. The currentName is different from the name specified by
dirName.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Attributes

maxReturnEntries

(Optional) Specifies the maximum number of entries to return. If this attribute is not specified,
the request handler decides how many entries to return.

type
Specifies the type of object: directory or file.

448 NDK: Virtual File Services

restoreFile

Restores a file from the archive server to another server.

Request

<archiveRequest version="2.0">

<restoreFile>
<source>
<fileName>
<actualName/>
</fileName>
<archiveInfo>
<server/>
<volume/>
<job>
<jobName/>
<fileKey/>
<metaDataKey/>
</job>
</archiveInfo>
</source>
<destination>
<serverIPAddress/>
<fileName/>
<createDirs/>
<overwrite/>
</destination>
</restoreFile>
</archiveRequest>

Reply

<archiveReply version="2.0">
<restoreFile>
<result value=" ">
<description/>
</result>
</restoreFile>
</archiveReply>

Elements

actualName

Specifies the name, in the format sent from the archive server, of the file. It's the name received

from getContentVersions (page 441).

archivelnfo

(Optional) Specifies the archived information received from a previous query.

Archive Definitions

449

job
Specifies the job. Repeat for each job.
jobName

Specifies the name of the job as received from a directory content query or a version query.

fileKey

Specifies the file key as received from a directory content query or a version query.

fileName

Specifies the name of the file, including the volume name. Use forward slashes as separators.

createDirs

(Optional) Specifies that the destination directories should be created if they don't yet exist.

overwrite

(Optional) Specifies that the destination file should be overwritten if it exists.

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

450 NDK: Virtual File Services

shutdown

Shuts down the ArkManager process and stops all jobs.

Request

<archiveRequest>
<control>
<shutdown/>
</control>
</archiveRequest>

Reply

<archiveReply>
<control>
<result value=" ">
<description/>
</result>
</control>
</archiveReply>

Elements

result

Specifies an error value or zero (for no error).

description

Specifies a text description of the returned result.

Archive Definitions

451

452 NDK: Virtual File Services

Linux Definitions

Linux uses thefollowing commands that are defined in the /_admin/Manage NSS/linux.cmd file:

+ “activatePoolSnapshot (Linux)” on page 454
¢ “addPoolSnapshot (Linux)” on page 455

+ “deactivatePoolSnapshot (Linux)” on page 456
+ “getPoolSnapshotlnfo (Linux)” on page 457
+ “listEvmsVolumes” on page 459

+ “listPoolSnapshots (Linux)” on page 460

+ “poollIDToName” on page 462

+ “removePoolSnapshot (Linux)” on page 463
¢ “uidToEquivalentGUIDs” on page 464

+ “userIDToName” on page 465

+ “volumelDFileIDToPath” on page 466

¢ “volumelDToName” on page 468

Every command is wrapped with either linxRequest or linuxReply elements, as shown in the
following examples:

<linuxRequest>
<storage>
<volumeIDFileIDToPath>
<volumeID>aaaa-bbbb-cccc-dd-ee-nnnnnn</volumeID>
<filelID>
</volumeIDFileIDToPath>
</storage>
</linuxRequest>
<linuxReply>
<storage>
<volumeIDFileIDToPath>
<volumeName>POOLNAME</volumeName>
<path/>
<result value="0">
<description/>success</description>
</result>
</volumeIDFileIDToPath>
</storage>
<result value="0">
<description/>z0OK</description>
</result>
</linuxReply>

Linux Definitions

453

activatePoolSnapshot (Linux)

Mounts a pool snapshot.

Request

<activatePoolSnapshot>
<snapName/>
<shared/>

</activatePoolSnapshot>

Reply

<activatePoolSnapshot>
<result value=" ">
<description/>
</result>
</activatePoolSnapshot>

Elements

snapName

Specifies the name of the pool snapshot.

shared

(optional) Specifies whether the snapshot should be mounted with the shared flag.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

454 NDK: Virtual File Services

addPoolSnapshot (Linux)

Creates a snapshot (snapName) of a pool and designates another pool (snapPoolName) as a snapshot

data repository.

Request

<addPoolSnapshot>
<poolName/>
<freeSpacelID/>
<numSectors/>
<snapName/>

</addPoolSnapshot>

Reply

<addPoolSnapshot>
<result value=" ">
<description/>
</result>
</addPoolSnapshot>

Elements

poolName

Specifies the name of the pool to take a snapshot of.

freeSpacelD

Specifies the ID of the free space object to use to store the snapshot data.

snapName

Specifies the name of the pool snapshot.

numSectors

Specifies the number of sectors of the free space to use to store the snapshot data.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Linux Definitions

455

deactivatePoolSnapshot (Linux)

Dismounts a pool snapshot.

Request

<deactivatePoolSnapshot>
<snapName/>
</deactivatePoolSnapshot>

Reply

<deactivatePoolSnapshot>
<result value=" ">
<description/>
</result>
</deactivatePoolSnapshot>

Elements

snapName

Specifies the name of the pool snapshot.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

456 NDK: Virtual File Services

getPoolSnapshotinfo (Linux)

Returns information for a specified pool snapshot.

Request

<getPoolSnapshotInfo>
<snapName/>
</getPoolSnapshotInfo>

Reply

<listPoolSnapshots>
<poolSnapshotInfo>
<snapName/>
<poolName/>
<snapPoolName/>
<poolSize/>
<allocatedSize/>
<poolSize/>
<percentFull/>
<state/>
<mountPoint/>
<writeable/>
<result value="">
<description/>
</result>
</poolSnapshotInfo>
<result value="">
<description/>
</result>
</listPoolSnapshots>

Elements

snapName

Specifies the name of the pool snapshot.

poolName

Specifies the name of the pool of which to take a snapshot.

snapPoolName

Specifies the name of the segment or partition on which to store the snapshot data.

allocatedSize

Specifies the allocated size of the segment or partition on which to store the snapshot data.

poolSize

Specifies the size of the pool of which to take a snapshot.

Linux Definitions

457

percentFull

Specifies how full (as a percentage) the segment or partition on which to store the snapshot is.

state

Specifies the state of the pool:

active
deactive

mountPoint

Specifies the mount point of the snapshot.

writeable

Specifies that the snapshot is writeable.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

458 NDK: Virtual File Services

listEvmsVolumes

Lists the volumes in Evms that can be used to take a snap shot.

Request

<listEvmsVolumes/>

Reply

<listEvmsVolumes>
<volumeInfo>
<volumeName/>
<volumeState/>
</volumeInfo>
<result wvalue=" ">
<description/>
</result>
</listEvmsVolumes>

Elements

volumeName

Specifies the name of the volume.

volumeState

Specifies whether the state of the volume is shared (Yes or No).

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Linux Definitions

459

listPoolSnapshots (Linux)

Lists all existing pool snapshots and their related information.

Request

<listPoolSnapshots>
<details/>
<poolName/>

</listPoolSnapshots>

Reply

<listPoolSnapshots>
<poolSnapshotInfo>
<snapName/>
<poolName/>
<snapPoolName/>
<poolSize/>
<allocatedSize/>
<poolSize/>
<percentFull/>
<state/>
<mountPoint/>
<writeable/>
<result value="">
<description/>
</result>
</poolSnapshotInfo>
<result value="">
<description/>
</result>
</listPoolSnapshots>

Elements

details

(optional) Specifies whether to return all information. Otherwise, only the snapshot names are
returned.

poolName

(optional) Specifies to return only the snapshots of the specified pool.

snapName

Specifies the name of the pool snapshot.

poolName

Specifies the name of the pool of which to take a snapshot.

snapPoolName

Specifies the name of the segment or partition on which to store the snapshot data.

460 NDK: Virtual File Services

allocatedSize

Specifies the allocated size of the segment or partition on which to store the snapshot data.

poolSize

Specifies the size of the pool of which to take a snapshot.

percentFull

Specifies how full (as a percentage) the segment or partition on which to store the snapshot is.

state

Specifies the state of the pool:

active
deactive

mountPoint

Specifies the mount point of the snapshot.

writeable

Specifies that the snapshot is writeable.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Linux Definitions

461

poolIDToName

Returns a pool name from a pool GUID (for Linux only).

Request

<linuxRequest>
<storage>
<poolIDToName>
<poolID/>
</poolIDToName>
</storage>
</linuxRequest>

Reply

<linuxReply>
<storage>
<poolIDToName>
<poolName/>
<result value=" ">
<description/>
</result>
</poolIDToName>
</storage>
<result value=" ">
<description/>
</result>
</linuxReply>

Elements

poolID
Specifies the ID of the pool in the following format:

aaaaaaaa-bbbb-cccc-dd-ee-nnnnnnnn

poolName

Specifies the name of the pool.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

462 NDK: Virtual File Services

removePoolSnapshot (Linux)

Removes a specified pool snapshot.

Request

<removePoolSnapshot>
<snapName/>
</removePoolSnapshot>

Reply

<removePoolSnapshot>
<result value=" ">
<description/>
</result>
</removePoolSnapshot>

Elements

snapName

Specifies the name of the pool's snapshot.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Linux Definitions 463

uidToEquivalentGUIDs

Returns the eDirectory GUIDs for the equivalent users and groups of a Linux UID.

Request

<linuxRequest>
<storage>
<uidToEquivalentGUIDs>
<uid/>
</uidToEquivalentGUIDs>
</storage>
</linuxRequest>

Reply

<linuxReply>
<storage>
<uidToEquivalentGUIDs>
<equivalentID/>
<userID/>
<userID/>

</equivalentID>
<result value=" ">
<description/>
</result>
</uidToEquivalentGUIDs>
</storage>
<result value=" ">
<description/>
</result>
</linuxReply>

Elements
uid
Specifies the UID that you want the equivalent eDirectory GUID for.

userID

Returns the equivalent GUID. For example

<userID>f0624d95-5578-4b71-7c-af-954d62£f07855</userID>
<userID>f8855fe2-860e-4bbf-a2-96-e25£f85f80e86</userID>

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

464 NDK: Virtual File Services

userIDToName

Returns a user name from a user GUID (for Linux only).

Request

<linuxRequest>
<storage>
<userIDToName>
<userID/>
</userIDToName>
</storage>
</linuxRequest>

Reply

<linuxReply>
<storage>
<userIDToName>
<userName/>
<result value=" ">
<description/>
</result>
</userIDToName>
</storage>
<result wvalue=" ">
<description/>
</result>
</linuxReply>

Elements

userID

Specifies the ID of the user in the following format:

aaaaaaaa-bbbb-cccc-dd-ee-nnnnnnnn

userName

Specifies the name of the user.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

Linux Definitions

465

volumelDFilelIDToPath

Returns a path from a volume ID to a zID.

Request

<linuxRequest>
<storage>
<volumeIDFileIDToPath>
<volumeID/>
<fileID/>
</volumeIDFileIDToPath>
</storage>
</linuxRequest>

Reply

<linuxReply>
<storage>
<volumeIDFileIDToPath>
<volumeName/>
<path/>
<result value="">
<description/>
</result>
</volumeIDFileIDToPath>
</storage>
<result value="">
<description/>
</result>
</linuxReply>

Elements

volumelD

Specifies the ID of the volume in the following format:
aaaaaaaa-bbbb-cccc-dd-ee-nnnnnnnn

fileID
Specifies the ID (zID) of a file on the volume.

volumeName

Specifies the name of the volume.

path

Specifies a Linux namespace path.

result

Specifies an error value or 0 (for no error).

466 NDK: Virtual File Services

description

Specifies a text description of the result.

Linux Definitions 467

volumelDToName

Returns a volume name from a volume GUID (for Linux only).

Request

<linuxRequest>
<storage>
<volumeIDToName>
<volumeID/>
</volumeIDToName>
</storage>
</linuxRequest>

Reply

<linuxReply>
<storage>
<volumeIDToName>
<volumeName/>
<result value=" ">
<description/>
</result>
</volumeIDToName>
</storage>
<result wvalue=" ">
<description/>
</result>
</linuxReply>

Elements

volumelD

Specifies the ID of the volume in the following format:

aaaaaaaa-bbbb-cccc-dd-ee-nnnnnnnn

volumeName

Specifies the name of the volume.

result

Specifies an error value or 0 (for no error).

description

Specifies a text description of the result.

468 NDK: Virtual File Services

Advanced Concepts

In addition to the predefined commands, Virtual File Services (VFS) can also be used to implement
much more complex interfaces by allowing write operations to be sent to user-defined functions and
then returning the results of those functions to subsequent read operations. VFS allows any program
that can handle file I/O to interact with functions in the file system, which allows you to implement
your own interfaces using any tool that has file system access.

For example, scripting languages (like PERL) can be used to manage system functionality using
standard file system functions. The current NSS ConsoleOne interface is implemented as commands
written to the manage.cmd and nds.cmd command files in the admin volume.

This section covers the following concepts:

¢ Section 10.1, “Transformation Templates,” on page 469

¢ Section 10.2, “Virtual I/O Commands,” on page 472

10.1 Transformation Templates

Transformation Templates are the instructions that set up the behavior definition for a virtual file.
They are contained in XML and describe how the information on the system (such as the contents of
a memory location) is transformed for read and write file operations.

A transformation template can also identify multiple datastreams (see “Datastreams” on page 471)
for the virtual file. If a datastream has no name, it is used to satisfy requests that are not directed to a
specific datastream.

All virtual files require a transformation template to function correctly. No read or write operations
on a file will work until a virtual I/O command has been written that defines the behavior of the file
to be accessed.

To define a virtual /O command, write the following to the file followed immediately by the
transformation template:
<virtualIO>
<define>
</virtualIO>

The template identifies each of the datastreams and how it should be rendered.

The following is the DTD for the XML that is used to define the transformation template:

<!ELEMENT transform (datastream+)>
<!ELEMENT datastream (data | location | function)>
<!ATTLIST datastream

name CDATA #IMPLIED>

<!ELEMENT data (#PCDATA)>
<!ELEMENT location (readloc?, writeloc?)>
<!ATTLIST location

symname CDATA #REQUIRED
offset CDATA #IMPLIED>

Advanced Concepts

469

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

signed
<!ELEMENT
<!ATTLIST

signed
<!ELEMENT
<!ATTLIST

signed
<!ELEMENT
<!ATTLIST

signed
<!ELEMENT
<!ATTLIST

length
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ATTLIST

readloc (format, leadingtext?,
(format) >
(byte | word |

EMPTY>

trailingtext?) >
writeloc
format
byte
byte
(yes | no)

word EMPTY>

long | quad | raw)>

#IMPLIED>

word

(yes | no)
long EMPTY>
long

(yes | no)
quad EMPTY>
quad

(yes | no)
raw EMPTY>
raw

CDATA #REQUIRED>
leadingtext (#PCDATA) >
trailingtext (#PCDATA)>

#IMPLIED>

#IMPLIED>

#IMPLIED>

function (readfunc, writefunc?)>

readfunc (#PCDATA)>

readfunc

symname CDATA #REQUIRED

cookie (yes | no) #IMPLIED>
<!ELEMENT writefunc (#PCDATA) >
<!ATTLIST writefunc

symname CDATA #REQUIRED>

The transformation tags are interpreted as follows:

transform

datastream

data

location

Main transformation template element. It contains one or more datastream elements.

Identifies and defines a datastream. The only attribute, name, is optional. If the name
attribute is not used, the datastream is used as the default datastream. If more than one
datastream has no name or has the same name, the first one encountered in the
template is used. The name must be less than or equal to
VIRT_DATASTREAM_NAME_SIZE (currently 63 bytes). The datastream element must
contain a data, location, or function element.

Indicates that the content of the datastream is contained in the data element itself. The
data element holds the data that is to be returned for a read operation or changed for a
write operation. This tag is useful for defining help text for the file.

Defines a memory location that will be used as the target of read and write operations.
The tag has one required (symname) and one optional (offset) attribute. Symname
defines a symbolic name that can be dynamically imported. Offset defines a numeric
value that indicates how many bytes the memory location is from the specified
symname. The location element must contain a readloc element and can optionally
contain a writeloc element. If no writeloc element is defined, the location cannot be
written to.

470 NDK: Virtual File Services

readloc

format

byte

word

long

quad

raw

leadingtext

trailingtext

writeloc

function

readfunc

writefunc

Defines the format of the result and tells VFS how to interpret the data at the given
memory location. It also includes any text that will be used with the data from the
memory location. The format element is required. The leadingtext and trailing text
elements are optional and define the text to be used both in front of and behind the value
retrieved from memory, respectively.

Contains one of the following five elements: byte, word, long, quad, or row. The first four
of these elements define the size of the memory location being examined and imply that
the result generated will be an ASCII representation of the decimal value. The raw
element does not perform any conversion.

Indicates that a single byte will be converted to its ASCII decimal value. The optional
attribute, signed, indicates whether the conversion should be to a signed value. This
attribute should be assigned either a "yes" or "no" value. If the attribute is not specified or
if its value is not "yes" or "no," it default to "yes."

Indicates that a single word will be converted to its ASCII decimal value. The optional
attribute, signed, indicates whether the conversion should be to a signed value. This
attribute should be assigned either a "yes" or "no" value. If the attribute is not specified or
if its value is not "yes" or "no," it default to "yes."

Indicates that a four-byte memory location will be converted to its ASCII decimal value.
The optional attribute, signed, indicates whether the conversion should be to a signed
value. This attribute should be assigned either a "yes" or "no" value. If the attribute is not
specified or if its value is not "yes" or "no," it default to "yes."

Indicates that an eight-byte memory location will be converted to its ASCIl decimal value.
The optional attribute, signed, indicates whether the conversion should be to a signed
value. This attribute should be assigned either a "yes" or "no" value. If the attribute is not
specified or if its value is not "yes" or "no," it default to "yes."

Indicates that the unconverted value at the previously specified memory location should
be used as the virtual data. The attribute, length, is required and indicates how many
bytes are retrieved for a read operation and how many bytes can be written for a write
operation.

Contains any text that should be put in the result buffer in front of the data being
rendered by the formal element.

Contains any text that should be put in the result buffer behind the data being rendered
by the formal element.

Contains only a format element.

Contains a readfunc and, optionally, a writefunc element. If no writefunc element is
included, you cannot write to the datastream.

Defines a function that will be used as the target of read operations. The tag has one
required attribute, symname, which gives a symbolic name that can be dynamically
imported.

Defines a function that will be used as the target of write operations. The tag has one
required attribute, symname, which gives a symbolic name that can be dynamically
imported.

10.1.1 Datastreams

Each datastream has one of the following types that identifies how the data for that datastream is

rendered:

Advanced Concepts

471

Data in the template

One source of virtual data is the template itself, which is useful for descriptive text. For
example, one datastream in a virtual file might return the contents of the memory location that
contains the size of the file cache. Another datastream in the same file could be of the data type
and contain help text that describes what the file cache size represents and how changing it may
affect a system's performance.

Contents of a memory location

This datastream type renders its information from a memory location on a server. The template
designates where the memory location is, how long the data is, and whether is should be
converted to ASCII or returned as "raw" data.

Information rendered by a function

This type of datastream specifies two functions: one for accepting data written to the file and
the other to generate data to be read from the file. This functionality gives great flexibility as to
the type of virtual data that can be handled since the format of the data is determined by the
function that is being called.

The functions to be used must be exported. VFS imports the symbol the first time it is
encountered after the virtual file is created. It remains in an imported state until the file is
deleted. Note that delete is an asynchronous operation and unimporting the symbol can occur
after the return from a call to delete the file. In such cases, you should check the return code
from the unexport function to ensure it successfully succeeded. The function can fail if the
unimport has not yet occurred in VFS.

10.2 Virtual /O Commands

A virtual file can contain a default datastream that is read or written if a normal read or write
operation is posted against the file and no virtual I/O command has been received. All other read and
write operations must be preceded by a virtual I/O command, which allows the requester to target
either the transformation template of the file or a named datastream that has been defined for the
file.

The following is the DTD for the XML used in virtual I/O commands:

<!ELEMENT virtualIO (datastream) |define|link)>
<!ELEMENT datastream EMPTY>
<!ATTLIST datastream
name CDATA "default">
<!ELEMENT define EMPTY>
<>

The virtual I/O tags are interpreted as follows:

virtuallO The main element. It must contain either a datastream or a define element.

define Used when you wish to view or change the transformation template of a file through
subsequent read and write operations.

472 NDK: Virtual File Services

datastream Specifies that subsequent read and write operations will be on a virtual datastream. It
has one optional attribute, name, which gives the name of the target datastream. The
name must correspond to the name of one of the datastreams that is defined in the
transformation template of the target file. If the name is not specified, the default
datastream is used (the one in the transformation template that has no name), which is
the same as if there is no virtual I/O command.

Advanced Concepts 473

474 NDK: Virtual File Services

Values

This section lists the following common values associated with Virtual File Services:

¢ Section 11.1, “Device Types,” on page 475

¢ Section 11.2, “Enabled Attributes Bits,” on page 475
¢ Section 11.3, “Job Types,” on page 476

¢ Section 11.4, “Mirror Group Statuses,” on page 476
¢ Section 11.5, “NSS Volume States,” on page 476

¢ Section 11.6, “Pool States,” on page 477

¢ Section 11.7, “Pool Types,” on page 477

¢ Section 11.8, “State Values,” on page 477

¢ Section 11.9, “Traditional Volume States,” on page 478
¢ Section 11.10, “Volume States,” on page 479

¢ Section 11.11, “Volume Types,” on page 479

11.1 Device Types

The deviceType element can have the following values:

0 MM_DIRECT _ACCESS_DEVICE
1 MM_SEQUENTIAL ACCESS DEVICE
2 MM_PRINTER DEVICE

3 MM_PROCESSOR_DEVICE
4MM_WORM DEVICE

5MM_CD_ROM DEVICE

6 MM_SCANNER_DEVICE
7MM_MO_DEVICE

8 MM_MEDIA CHANGER DEVICE

9 MM_COMMUNICATION DEVICE

11.2 Enabled Attributes Bits

The enabledAttributesBits element can have the following values:

zPOOL_FEATURE_PERSISTENT_FEATURES (0x01)

The pool's enabled features are stored persistently.

zPOOL_FEATURE_SHARED_CLUSTER (0x02)
The pool is part of a cluster.

zPOOL_FEATURE_READ_ONLY (0x04)
The pool is read only.

Values 475

zPOOL_FEATURE_VERIFY (0x08)

The pool supports a verify operation.

zPOOL_FEATURE_REBUILD (0x10)

The pool supports a rebuild operation.

zPOOL_FEATURE_MUTLIPLE_VOLUMES (0x20)

The pool can support multiple logical volumes.

zPOOL_FEATURE_SNAPSHOT (0x40)

The pool is a snapshot of another pool.

11.3 Job Types

The jobType element can have the following values:

Move
Split

Copy
Unknown

11.4 Mirror Group Statuses

The mirrorGroupStatus element can have the following values:
MM_MIRROR_GROUP_IN_SYNC (0x00000001)

If this bit is set, the mirror group is fully synchronized.
MM_MIRROR_ALL_PRESENT (0x00000002)

If this bit is set, all partitions which belong to the mirror group are present.

MM_MIRROR_OPERATIONAL (0x00000004)

If this bit is set, the mirror group is operational.

MM_MIRROR_PARTIAL_SYNC (0x00000010)

If this bit is set, the mirror group is only partially synchronized.

MM_MIRROR_REMIRRORING (0x00000040)

If this bit is set, the mirror group is in the process of remirroring.

MM_MIRROR_OBJECT_ORPHANED (0x00000080)

If this bit is set, this mirror ID has been removed from the mirror group to which it once
belonged, leaving it in an orphaned state.

11.5 NSS Volume States

For traditional volume states, see Section 11.9, “Traditional Volume States,” on page 478.

For NSS logical volumes, the volumeState element can have the following values:

476 NDK: Virtual File Services

Table 11-1 volumeState values for NSS logical volumes

Value Description

mounted Move this volume to a mounted state. If necessary, activate it as well.

dismounted Move this volume to an active but not mounted state. If the volume is deactive, move it to
an active state. The effect of this value is the same as the "active" value.

active Move this volume to an active but not mounted state. If it is currently mounted, dismount
the volume. If the volume is deactive, move it to an active state. The effect of this value is
the same as the "dismounted" value.

deactive Move this volume to a not active and not mounted state.

11.6 Pool States

The poolState element can have the following values:

0 Unknown: Pool is in an unknown state

2 Deactive: Pool is not activated

3 Maintenance: Pool is in maintenance mode

6 Active: Pool is activated

11.7 Pool Types

The type attribute of the getPoollnfo element can have the following values:

all Returns all available information

basic Returns only the basicInfo element

salvage Returns only the salvageInfo element

attributes Returns only the attributeInfo element

volumes Returns only the volumelnfo element

deletedVolumes Returns only the deleted Volumelnfo element

11.8 State Values

The state element can have the following values:

Invalid
Running
Completed
Scanning
Cancelled
Paused
Scheduled
Updating
NameSelect
Renaming
CreateJunc

Values 477

Cleanup
ReplayingLog
RenameLogfile
NewLogfile
MoveTrustees
NewEFL
ReplayingEFL
Starting

Cancelling

Pausing

Suspending
RetryUpdating
RetryNameSelect
RetryRenaming
RetryCreateJunc
RetryCleanup
RetryReplay
RetryRenameLogfile
RetryNewLogfile
RetryMoveTrustees
RetryNewEFL
RetryReplayEFL
FilesSkipped
CleanupFailed
Failed
FailedFileRead
FailedFileRestore
FailedBeginBackup
FailedLogin
FailedTargetVersion
FailedNoManagementContext
FailedNotSameManagementContext
FailedLogFile
Unknown

11.9 Traditional Volume States

For NSS logical volume states, see “NSS Volume States” on page 476.

For traditional NetWare volumes, the volumeState element for the modifyState command can have
the following values:

mounted Move this volume to a mounted state
dismounted Move this volume to a not mounted state

478 NDK: Virtual File Services

11.10 Volume States

The poolState element and volumeState element (for NSS logical volumes) can have the following

values:

deactive The volume is not currently activated

active The volume is currently activated but not mounted
mounted The volume is currently activated and mounted
maintenance The volume is in need of repair or is being repaired
unknown The volume is in an unknown state

11.11 Volume Types

The type attribute of the getVolumelnfo element can have the following values:

"all" Returns all available information

"basic" Returns only the basicInfo element

"salvage" Returns only the salvagelnfo element

"attributes" Returns only the attributeInfo element
"compression" Returns only the compressionInfo element
"deletedVolumes" Returns only the deleted Volumelnfo element

Values 479

480 NDK: Virtual File Services

Functions

The actual file system functions used by VFS are standard create, delete, open, close, read, and write

functions.

This section describes the following virtual /O commands and transformation templates and the

DTD and XML tag definitions for each command:

*

*

*

*

“MGMT FindFirstElement” on page 482

“MGMT _ MakeCommand VirtualFile” on page 483
“MGMT_ MakeCommandVirtualFileWithHelp” on page 484

“MGMT_ MakeFunctionVirtualFile” on page 485
“VIRT AddResultData” on page 486

“VIRT AddResultElement” on page 487

“VIRT AddResultTag” on page 488

“VIRT MakeResultsImportant” on page 489
“VIRT MakeResultsNormal” on page 490
“VIRT ResetResult” on page 491
“XML_BackwardFindEndTag” on page 492
“XML_findEndOfNonWhiteSpace” on page 493
“XML_ForwardFindTag” on page 494
“XML_GetNextTag” on page 495
“XML_GetTagElement” on page 496

Functions

481

MGMT _FindFirstElement

Determines if the complete main XML element has been received in a write operation. This function
builds up an internal buffer that holds the entire XML stream until the main element is closed.

Service: VFS

Syntax

#include <nssPubs.h>

STATUS MGMT FindFirstElement (

VirtInfo_s *virtInfo,
utf8 t *tagName,

NINT bufferLength,
BYTE *buffer,

NINT offset,

XML ElementInfo s *element);

Parameters

virtInfo

Points to a structure that is unique for each open instance of the virtual file. It contains
information about the state of the file, as well as the results buffer. Usually, you will not change
the contents of this structure but simply pass it to other functions.

tagName

Points to the name of the main element of the XML that is to be parsed.

bufferLength
Specifies the length of the data that is being passed to the write function.

buffer

Points to the data that is being passed to the write function.

offset
Specifies the offset of the write.

element

Points to a structure that contains the results of the XML element parsing. It includes a pionter
to the start of the element's data and to the end of the element's data.

Return Values

The return status should either be zOK or a valid NSS error code.

482 NDK: Virtual File Services

MGMT_MakeCommandVirtualFile

Defines a virtual file that has a write function for the default datastream. The write function
generates a response that can be read from the results buffer.

Service: VFS

Syntax
#include <nssPubs.h>

STATUS MGMT MakeCommandVirtualFile (
Key t key,
utf8 t “*writeRoutine,
utf8 t “*writeParm);

Parameters

key

Specifies the key returned from zCreate or zOpen in File System Services (64-Bit) (http://
developer.novell.com/wiki/index.php/File System_Services %2864-Bit%29).

writeRoutine

Points to the NULL-terminated name of the public symbol for the write function.

writeParm

Points to the string that is passed as the parm parameter to the write function.

Return Values

The return status should either be zOK or a valid NSS error code.

Functions 483

http://developer.novell.com/wiki/index.php/File_System_Services_%2864-Bit%29

MGMT_MakeCommandVirtualFileWithHelp

Defines a virutal file (similar to MGMT MakeCommandVirtualFile (page 483)) This function
allows you to define a help string that is read from the file by default. The specified write function is
put in a datastream named "command" and must be accessed using that datastream.

Service: VFS

Syntax

#include <nssPubs.h>

STATUS MGMT MakeCommandVirtualFileWithHelp (
Key t key,
utf8 t help,
utf8 t “*writeRoutine,
utf8 t “*writeParm);

Parameters

key

Specifies the key returned from zCreate or zOpen in File System Services (64-Bit) (http://
developer.novell.com/wiki/index.php/File System_Services %2864-Bit%29).

help

Specifies a NULL-terminated string that is returned on the default datastream from a read
operation.

writeRoutine

Points to the NULL-terminated name of the public symbol for the write function.

writeParm

Points to the string that is passed as the parm parameter to the write function.

Return Values

The return status should either be zOK or a valid NSS error code.

484 NDK: Virtual File Services

http://developer.novell.com/wiki/index.php/File_System_Services_%2864-Bit%29

MGMT_MakeFunctionVirtualFile

Defines a virtual file that uses functions to satisfy read and write operations for the default

datastream.

Service: VFS

Syntax

#include <nssPubs.h>

STATUS MGMT MakeFunctionVirtualFile

Key t key,
utf8 t *readRoutine,
utf8 t “*readParm,
utf8 t “*writeRoutine,
utf8 t “*writeParm,
BOOL withCookie) ;
Parameters
key

Specifies the key returned from zCreate or zOpen in File System Services (64-Bit) (http://
developer.novell.com/wiki/index.php/File System_Services %2864-Bit%29).

readRoutine

Points to the NULL-terminated name of the public symbol for the read function.

readParm

Points to the string that is passed as the parm parameter to the read function.

writeRoutine

Points to the NULL-terminated name of the public symbol for the write function.

writeParm

Points to the string that is passed as the parm parameter to the write function.

withCookie

Specifies if you want this function to be a cookie type read function. If set to TRUE, the virtual
file system assumes that each read operation calls the read function and is never satisfied from

the results buffer.

Return Values

The return status should either be zOK or a valid NSS error code.

(

Functions 485

http://developer.novell.com/wiki/index.php/File_System_Services_%2864-Bit%29

VIRT_AddResultData

Adds the specified string to the result buffer. (If needed, this function also extends the buffer.)

Service: VFS

Syntax
#include <nssPubs.h>
STATUS VIRT_AddResultData (

VirtInfo s *virtInfo,
utf8 t *data) ;

Parameters

virtInfo

Points to the structure that is passed in and updated.

data
Points to a NULL-terminated string that will be added to the result buffer.

Return Values

The return status should either be zOK or a valid NSS error code.

486 NDK: Virtual File Services

VIRT_AddResultElement

Adds a complete element to the result buffer.

Service: VFS

Syntax
#include <nssPubs.h>

STATUS VIRT_AddResultElement (
VirtInfo s *virtInfo,

utf8 t *tagName,
utf8 t *data,
BOOL newlLine) ;
Parameters
virtInfo

Points to the structure that is passed in and updated.

tagName

Points to the NULL-terminated tag name that is to be used for both the beginning and ending
tags of the element.

data

Points to a NULL-terminated string that contains the contents of the element.

newLine

Specifies if a new line character should be added to the result buffer:

TRUE Add a new line character
FALSE Do not add a new line character

Return Values

The return status should either be zOK or a valid NSS error code.

Functions 487

VIRT_AddResultTag

Adds the specified tag to the results buffer. (This function also adds the angle brackets, an optional
end tag indicator, and new line characters).

Service: VFS

Syntax
#include <nssPubs.h>

STATUS VIRT_AddResultTag (
VirtInfo s *virtInfo,

utf8 t *tagName,
BOOL endTag,
BOOL newlLine) ;
Parameters
virtInfo

Points to the structure that is passed in and updated.

tagName
Points to the NULL-terminated tag name to be added.

endTag
Specifies if the end tag slash should be added to the tag:

TRUE Add the end tag slash
FALSE Do not add the end tag slash

newLine

Specifies if a new line character should be added to the result buffer:

TRUE Add a new line character
FALSE Do not add a new line character

Return Values

The return status should either be zOK or a valid NSS error code.

488 NDK: Virtual File Services

VIRT_MakeResultsimportant

Marks the result buffer as needing to be read, which assures that all reads coming back from the
results buffer until the results are set back to normal.

Service: VFS

Syntax

#include <nssPubs.h>

void VIRT MakeResultsImportant (
VirtInfo s *virtInfo);

Parameters

virtInfo

Points to the structure that is passed in and then updated.

Functions 489

VIRT_MakeResultsNormal

Marks the result buffer as being normal. This function is called after calling
VIRT MakeResultsImportant (page 489) to cause the result buffer to be treated in a normal manner.

Service: VFS

Syntax

#include <nssPubs.h>

void VIRT MakeResultsNormal (
VirtInfo s *virtInfo);

Parameters

virtInfo

Points to the structure that is passed in and then updated.

490 NDK: Virtual File Services

VIRT_ResetResult

Resets the results buffer to have no content.

Service: VFS

Syntax

#include <nssPubs.h>

void VIRT ResetResult (
VirtInfo s *virtInfo);

Parameters

virtInfo

Points to the structure that is passed in and then updated.

Functions 491

XML_BackwardFindEndTag

Searches backwards from the cursor to the start of the buffer to find the specified tag as an end tag.

Service: VFS

Syntax

#include <xmlnss.h>

STATUS XML BackwardFindEndTag (
utf8 t “*tag,
utf8 t “*cursor,
utf8 t “*bufferStart,
utf8 t “**startOfTag);

Parameters
tag
Points to the name of the tag (NULL-terminated string) to search for.

cursor

Points to the starting search position. The search works backwards from this position.

bufferStart
Points to the start of the buffer (the last position to be searched).

startOfTag
Points to the position of the first angle bracket in the end tag.

Return Values

Returns zOK if the tag is found. Otherwise, it returns zFAILURE.

492 NDK: Virtual File Services

XML _findEndOfNonWhiteSpace

Moves the cursor to the address of the last non-white space character.

Service: VFS

Syntax

#include <xmlnss.h>

void XML findEndOfNonWhiteSpace (
utf8 t “**ptr,
utf8 t *endptr) ;

Parameters

ptr

Points to the current cursor location on input. On output, it points to the position of the last non-
white space character.

endptr

Points to the last valid character to be searched.

Functions 493

XML_ForwardFindTag

Searches forward from the given cursor position to the end of the buffer to find the specified tag.
Note: This function currently assumes that the tag has no attributes.

Service: VFS

Syntax

#include <xmlnss.h>

STATUS XML ForwardFindTag (
utf8 t *tag,
NINT taglen,
utf8 t *cursor,
utf8 t *bufferkEnd,
utf8 t **endOfTagqg);

Parameters
tag
Points to the name of the tag to be searched for.

tagLen
Specifies the length of the tag name.

cursor

Points to the starting position of the search.

bufferEnd
Points to the end of the buffer to search.

endOfTag
Points to the closing angle brack of the tag.

Return Values

The return status should either be zOK or a valid NSS error code.

494 NDK: Virtual File Services

XML_GetNextTag

Returns the next tag that is found in the specified buffer. The function also updates the element

information for the found element.

Service: VFS

Syntax
#include <xmlnss.h>

STATUS XML GetNextTag (

utf8 t *bufferstart,
utf8 t *bufferknd,
XML ElementInfo s *elementInfo,
utf8 t **tagName,
NINT *taglLen) ;
Parameters
bufferStart

Points to the starting position for the search.

bufferEnd

Points to the ending position for the search.

elementInfo

Points to the structure that is updated to show where the element starts and ends.

tagName

Points to the beginning of the tag name in the buffer.

tagLen
Points to the length of the tag name.

Return Values

Returns zOK if the tag is found. Otherwise, it returns zFAILURE.

Remarks

Functions 495

XML_GetTagElement

Finds the entire element for a given tag. The function searches between the given start and end
pointers and returns an updated element structure.

Service: VFS

Syntax
#include <xmlnss.h>

STATUS XML GetTagElement (

utf8 t *tag,
utf8 t *bufferstart,
utf8 t *bufferknd,

XML ElementInfo s *elementInfo);

Parameters
tag
Points to the NULL-terminated tag name for the element to be found.

bufferStart

Points to the starting position of the search.

bufferEnd

Points to the ending position of the search.

elementInfo

Points to the structure that is updated to show where the given element starts and ends.

Return Values

Returns zOK if the tag is found. Otherwise, it returns zFAILURE.

496 NDK: Virtual File Services

Examples

This section describes how to use VFS to access and control a hypothetical toaster object and
contains the following sections:

¢ Section 13.1, “Creating a Virtual File,” on page 497
¢ Section 13.2, “Accessing a Virtual File with Perl,” on page 499

TIP: Note that since virtual files rely only on standard file system functions, almost any scripting
language can be used—as long as it allows for direct control of the data being read and written so
that extra formatting is not introduced.

13.1 Creating a Virtual File

The following are the necessary steps (as well as some example code) for creating a virtual file.

1. Create a file.

2. Write a virtual I/O command to the file, which tells the system that you want to access the
actual contents of the file.

3. Write the transformation template to the file.

The following example contains some of the text to write to a transformation template for a virtual
file. It contains the template for accessing portions of our hypothetical toaster object and begins with
a virtual I/O command that tells the file system to work on the actual file contents. This template can
be cut and pasted into a text file and copied to a virtual file, which will result in the virtual file
containing a transformation template.

<virtualIO><define></virtualIO><?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE transform SYSTEM "virtualTemplate.dtd">
<transform>

<!-- The following datastream has no name and will be used as the
default for read and write requests that have no virtual I/0 command
preceding them. It takes a long value from eight bytes past toasterObj
and converts it to ASCII, then combines it with leadingtext and
trailingtext. When this datastream is read, it will return "The current
toast temperature is set to 125 degrees Fahrenheit," assuming that the
value is 125. A write operation will change the long to the value in
the write operation (and must be a number in ASCII).
-——>
<datastream>
<location symname="toasterObj" offset="8">
<readloc>
<format><long signed="vyes"></format>
<leadingtext>The current toast temperature is set to
</leadingtext>
<trailingtext>] degrees Fahrenheit.</trailingtext>
</readloc>
<writeloc>
<format><long></format>

Examples

497

498

</writeloc>
</location>
</datastream>

<!-- The following toastTemp datastream is similar to the default
datastream except that it has no leading and trailing text elements.
-—>
<datastream name="toastTemp">
<location symname="toasterObj" offset="8">
<readloc>
<format><long signed="yes"></format>
</readloc>
<writeloc>
<format><long></format>
</writeloc>
</location>
</datastream>

<!-- The following toasterStructure datastream returns 24 bytes of raw
data that represents a structure of toaster data. A write operation
will write up to 24 bytes of binary data into memory, starting at
toasterObj.
-—>
<datastream name="toasterStructure">
<location symname="toasterObj">
<readloc>
<format><raw length="24"></format>
</readloc>
<writeloc>
<format><raw length="24"></format>
</writeloc>
</location>
</datastream>

<!-- The following toasterAccess datastream uses user-written
functions (ReadToasterVariable and WriterToasterVariable) to read and
write the virtual contents of the file. The value contained in the
readfunc and writefunc tags ("temperature") is passed to the function
as well as a buffer for the read and write operations.
-—>
<datastream name="toasterAccess">
<function>
<readfunc symname="ReadToasterVariable">temperature</readfunc>
<writefunc symname="WriteToasterVariable">temperature
</writefunc>
</function>
</datastream>

<!-- The following toasterStatus datastream allows a command with a
response to be sent to the function ProcessToasterCommand. The write
operations are taken to be commands and the read operations read the
response.
-—>

<datastream name="toasterStatus">

NDK: Virtual File Services

<function>
<writefunc symname="ProcessToasterCommand">full</writefunc>

</function>

</datastream>

<!-- These last two datastreams represent data taken directly from the
template. In this example, a read operation will result in a help
message.
-—>
<datastream name="shorthelp">
<data>Information about the toaster</data>
</datastream>

<datastream name="help">
<data>This file contains information dealing with the toaster

object.
The datastreams are as follows:
default: The toast temperature with text.
toastTemp: The toast temperation (with no additional
text) .
toasterStructure: The raw data from the toasterStructure.
toasterAccess: A function that can allow access to any field
in the toaster object.
toasterStatus: Returns the contents of all fields in the
toaster object.
</data>
</datastream>
</transform>

13.2 Accessing a Virtual File with Perl

Now that we have created a virtual file with a transformation template, accessing it is as simple as
using basic open, close, read, and write functions.

Using the Perl script examples in the following sections, you can accomplish the following tasks:

¢ Section 13.2.1, “Reading a Datastream,” on page 499
¢ Section 13.2.2, “Writing a Datastream,” on page 500
¢ Section 13.2.3, “Writing a Command,” on page 501

13.2.1 Reading a Datastream

The following is a Perl script that will read a datastream:

Perl script that reads a datastream from a virtual file

This script takes the name of the virtual file as the first parameter
and an optional datastream name as the second parameter. If the
datastream is not specified, the actual contents of the file are
read, which means that this script cannot be used to read the default
datastream. However, a simple type command reads the default
datastream with no problem. When using Perl, if you do not use the

T

Examples

499

sysread and syswrite functions for reading and writing,
the buffering can cause inconsistent results.

if ((S#ARGV > 1) or (S#ARGV == -1))

{
die "USAGE: readVirt.pl filename [datastream]\n";

open (FILE, "+<".$ARGV[0]) or die "Error opening S$SARGVI[O0]";

if (S#ARGV == 0)
{
Scommand = "<virtuallIO><define></virtualIO>";
}
else
{
Scommand = "<virtualIO><datastream name=\"".S$SARGV[1]."\"></

virtualIO>";

}

syswrite FILE, S$command, length ($command) ;

$len = 999;

while ($len > 0)

{
$len = sysread FILE, $buf, 1000;
print ("$buf") ;

}

close (FILE) ;

13.2.2 Writing a Datastream

Writing a datastream is similar to reading a datastream. The following is a Perl script that will read a

datastream:

#

Perl script to write to a datastream in a virtual file

#

This script takes as parameters the virtual file to be written to, a
file ontaining the data to write, and an optional datastream. If the
datastream is not given, the default datastream is used. Note the

same restrictions as with Reading a Datastream on the use of sysread
and syswrite.

if ((S$#ARGV > 2) or (S#ARGV < 1))
{
die "USAGE: writeVirt.pl virtfile inputfile [datastream]\n";

}
open (VIRTFILE, "+<".S$ARGV[0]) or die "Error opening SARGV[0]";
open (INFILE, "<".SARGV[1l]) or die "Error opening SARGV[1]";

if (S#ARGV == 2)
{

Scommand = "<virtualIO><datastream name=\"".SARGV[2]."\"></
virtualIO>";

500 NDK: Virtual File Services

syswrite VIRTFILE, $command, length ($Scommand) ;

Slen = 999;

while ($len > 0)

{
$len = sysread INFILE, $buf, 1000;
print ("Sbuf");
syswrite VIRTFILE, S$buf, length ($buf)

close (INFILE) ;
close (VIRTFILE) ;

13.2.3 Writing a Command

The following is a Perl script that writes a command to a datastream:

Perl script to write a command to datastream in a virtual file

#
#
#
The difference between the command and the normal read operation is
that the read operation returns a result generated by completing the
write operation.

if ((S#ARGV > 2) or (S#ARGV < 1))

{
die "USAGE: cmdVirt.pl virtfile [datastream]\n";

open (VIRTFILE, "+<".$ARGV[0]) or die "Error opening $ARGV[O0]";

if (S#ARGV == 1)
{

$Scommand = "<virtualIO><datastream name=\"".$ARGV[1]."\"></
virtualIO>";

syswrite VIRTFILE, $command, length ($Scommand) ;

print ("Enter command: ");

Sbuf = <STDIN>;

chomp (Sbuf) ;

syswrite VIRTFILE, $buf, length (Sbuf);
sysread VIRTFILE, $result, 1000;

print ("$result");

close (VIRTFILE) ;

Examples 501

502 NDK: Virtual File Services

Revision History

This section outlines all the changes that have been made to the Virtual File Services documentation
(in reverse chronological order).

October 17, 2007 Added links in the Preface to the “Archive Definitions” on page 419 and “Linux
Definitions” on page 453 sections.

Added a tip to Chapter 1, “Basic Concepts,” on page 15 that the CDATA element can
be used to pass strings containing special characters.

Updated the description of the allocatedSize element of listPoolSnapshots
(page 205).

June 27, 2007 Added the poolName and details elements to the Request of listPoolSnapshots
(page 205).

Changed the Request and Reply formats of setUserSpaceRestriction (page 254).

February 28, 2007 Added the activatePoolSnapshot (page 176), addPoolSnapshot (page 182),
deactivatePoolSnapshot (page 183), getPoolSnapshotinfo (page 198),
listEvmsVolumes (page 459), listPoolSnapshots (page 205), removePoolSnapshot
(page 223), and uidToEquivalentGUIDs (page 464) commands.

Added an example to addUser (page 357) and to the context element.

Changed the beginning and ending tags to ndsRequest and ndsReply for Chapter 4,
“nds.cmd Definitions,” on page 343.

Marked getAdapterinfo (page 33), listAdapters (page 35), and getLSSInfo
(page 140) and a few commands listed in Section 2.12, “Pool,” on page 175 as being
implemented only on NetWare and not on Linux.

October 11, 2006 Added a note about the tree name needing to be included in the context element and
an example to addTrustee (page 37). Also, added the values for the rights element.

Added explanation of the type element to listPartitions (Server) (page 245).
Added the values for the type element to listVolumes (page 314).

Added an example to addTrustee (page 363), getFilelnfo (page 368),
modifylnheritedRightsFilter (page 374), and scanSalvageableFiles (page 383).

Updated the links at the start of Chapter 8, “Archive Definitions,” on page 419.

June 21, 2006 Changed the listPartitions command to listPartitions (Server) (page 245). Also
changed the opening tag from partition to partitioninfo.

March 1, 2006 Added navigational links.

October 5, 2005 Added information about what's returned when there's a missing segment in a mirror
device to getDevicelnfo2 (page 94).

Changed the sub-element names of the timelnfo element of setFilelnfo (page 390).

Transitioned to revised Novell documentation standards.

Revision History 503

June 1, 2005

March 2, 2005

October 6, 2004

Added the id element to browseUserSpaceRestrictions (page 250),
getUserSpaceRestriction (page 252), and setUserSpaceRestriction (page 254).

Added the mountPoint, mountPointRename, and nameSpace elements to
modifyVVolumelnfo (page 317).

Made minor edits.

Added Chapter 9, “Linux Definitions,” on page 453 and the following Linux
commands: poollIDToName (page 462), userIDToName (page 465),
volumelDFilelIDToPath (page 466), and volumelDToName (page 468).

Added addQuota (page 362) and scanSalvageableFiles (page 383). Obsoleted the
former addQuota (obsolete) (page 133) function.

Updated the elements and their descriptions for purgeDeletedFile (page 376),
salvageDeletedFile (page 380), and setFilelnfo (page 390).

Added the volumeName element and its description to getFilelnfo (page 368).
Added the dstParentFullPath element and its description to salvageDeletedFile
(page 380). Added the parentFullPath and volumeName elements and their
descriptions to scanSalvageableFiles (page 383).

Added segmentID, majorVersion, minorVersion, partitionType, mountPoint, hasSYS,
bootable, restripeEnabled, remirrorEnabled, mirrorActive, and mirrorStatus to
getDevicelnfo2 (page 94).

Added the name and id elements to scanSalvageableFiles (page 383).

Updated the directoryQuota element and added a description for the effectiveRights
element to getFilelnfo (page 368).

Updated the examples in getUserSpaceRestriction (page 252) and
setUserSpaceRestriction (page 254).

Made multiple changes for Linux users.

Added the “Archive Definitions” on page 419 and Section 1.4.1, “eDirectory Name
Formats,” on page 17 sections.

Added addPartition2 (page 155), listPartitions (page 162), and modifyPartition
(page 167).

Added the volumeReadAhead element to getVolumelnfo (page 304) and
modifyVolumelnfo (page 317), added maintenance as a possible returned state to
getState (page 200), and added the type attribute to listDevices (Server) (page 244).

Changed listAdapter to listAdapters (page 35).
Updated the reply information of listMultiPaths (page 107).

Rewrote the Preface section to include where to find additional information about
Virtual File Services.

504 NDK: Virtual File Services

June 9, 2004

Added the volumePassword element to addVolume (page 293) and the
volumeEncrypted element to getVolumelnfo (page 304). Added the noDFSGUID to
addTraditionalVolume (page 289) and addVolume (page 293). Also, added the
following information on encrypted volumes:

* Section 1.7.1, “Encrypted Volumes,” on page 22
+ Section 1.7.2, “EVS Tests,” on page 23

+ Section 1.7.3, “Console Commands,” on page 24

Added Section 1.8, “Junctions,” on page 24 and the following related functions:
createLink (page 118), deleteLink (page 121), modifyLink (page 125), and readLink
(page 128).

Added Section 2.18, “Volume MN Operations,” on page 326, changeJobState
(page 327), createJob (page 328), getJobList (page 330), getJobStatus (page 331),
and listSkippedFiles (page 333).

Added lookup (page 272), added user and password elements to startRepair
(page 283), and added lots of example responses to getVLDBInfo (page 263) in
Section 2.16, “VLDB,” on page 256.

Added getDevicelnfo2 (page 94) and listDevicePartitions (page 105) in Section 2.6,
“Device,” on page 90, getPartitionInfo (page 158) to Section 2.11, “Partition,” on
page 149, removeRAID2 (page 237) in Section 2.13, “RAID,” on page 227,
removePool2 (page 222) and renamePoolSnapshot (page 226) in Section 2.12,
“Pool,” on page 175, initDFSGUIDs (page 124) in Section 2.7, “DFS,” on page 117,
and getServerConfiguration (AFP) (page 30) and setServerConfiguration (AFP)
(page 31) in Section 2.1, “AFP,” on page 29.

Added addContext (page 40), addDomainACL (page 41), addShare (page 43),
createContextlList (page 44), createDomain (page 45), deleteDomain (page 47),
findContext (page 49), getCreateContextListStatus (page 50),
getDomainConfiguration (page 51), getimportWindowsUsersStatus (page 53),
getServerConfiguration (page 54), getShareProperties (page 57),
importWindowsUsers (page 59), joinDomain (page 60), leaveDomain (page 62),
listContexts (page 64), listDomainControllers (page 65), listimportedUsers
(page 67), listShares (page 68), modifyContextList (page 70), modifyShare
(page 71), removeContext (page 73), removeShare (page 74),
setDomainConfiguration (page 75), and setServerConfiguration (page 77) in
Section 2.4, “CIFS,” on page 39.

Updated createNewService (page 259) to include new elements and added
deleteService (page 261).

Added the object|D and name elements to renameDevice (page 115).

Added the immediatePurge element to the attributes section of the getFilelnfo
(page 368) response. Also, changed the name of the compressimmediatePurge
element to compressimmediate.

Revision History

505

506

February 18, 2004 In response to customer feedback, added the Section 1.6.1, “Freeze and Thaw

June 2003

March 2003

September 2002

May 2002
February 2002

September 2001

Functionality,” on page 21 section and subsections on the Freeze and Thaw events.
Also, added the Remarks section to poolFreeze (page 211).

Added volume and server inventory information in Chapter 7, “Inventory.xml
Definitions,” on page 409.

Added browseUserSpaceRestrictions (page 250), getUserSpaceRestriction
(page 252), setUserSpaceRestriction (page 254), getAllEffectiveRights (page 365),
and removeAllTrustees (page 377).

Updated getFilelnfo (page 368) to add the directoryQuota and
getEffectiveRightsByUser information.

Added documentation for salvageDeletedFile (page 380) and purgeDeletedFile
(page 376).

Added the removable element to the nssReply of listDevices (page 102) and added
the updateVLDB element to the nssRequest of addVolume (page 293),
addTraditionalVolume (page 289), removeVolume (page 323), renameVolume
(page 325), and salvageVolume (page 87).

Added EFL XML commands in Chapter 6, “FileEvents.xml Definitions,” on page 395.

Added the following new commands: activatePoolSnapshot (page 176), addPool2
(page 180), addPoolSnapshot (page 182), addRAID2 (page 231),
deactivatePoolSnapshot (page 183), expandPool2 (page 186), getAdapterinfo
(page 33), getDevicelnfo (page 91), getLSSVolumelnfo (page 146), getNDSName
(Volume) (page 298), getPathinfo (page 98), getPoolDevices (page 191),
getPoolSnapshotinfo (page 198), getServerFreeSpace (page 242), listAdapters
(page 35), listDevices (page 102), listDevicePools (page 106), listMultiPaths
(page 107), listPoolSnapshots (page 205), listPools (page 248),
removePoolSnapshot (page 223), renameDevice (page 115), and renameRAID
(page 238).

Added the following freeze/thaw commands: poolFreeze (page 211),
poolFreezeStatus (page 213), and poolThaw (page 218).

Updated the description of the ignoreShareState element in the Request for Pools'
modifyState (page 209) and added a new pool type (segments) to getPoollnfo

(page 192).

Updated getPoollnfo (page 192) , listVolumes (page 314), and
getTraditionalVolumelnfo (page 301).

Added more complete element descriptions and command examples.

Added commands for clustering operations, see addPool (page 177) and
getDefaultClusterNames (page 187).

Added example to Section 1.2, “VFS vs Traditional File System Access,” on
page 16.

Rewrote Chapter 2, “manage.cmd Definitions,” on page 27 to include closing XML
tags and coordinating request and reply commands within the same section.

Added as a new NDK component.

NDK: Virtual File Services

	NDK: Virtual File Services
	About This Guide
	1 Basic Concepts
	1.1 Overview
	1.2 VFS vs Traditional File System Access
	1.3 Virtual File Composition
	1.4 Cautions
	1.4.1 eDirectory Name Formats
	1.4.2 Multiple Readers and Writers
	1.4.3 Maximum Lengths
	1.4.4 Read and Write Offsets
	1.4.5 Client-Side Caching
	1.4.6 Device Sharing

	1.5 Partitions
	1.5.1 Number of Partitions
	1.5.2 Partition Types
	1.5.3 Partition IDs and Media Manager Objects
	1.5.4 Mirrored Partitions
	1.5.5 Shared Clustering Partitions

	1.6 Pools
	1.6.1 Freeze and Thaw Functionality

	1.7 Volumes
	1.7.1 Encrypted Volumes
	1.7.2 EVS Tests
	1.7.3 Console Commands

	1.8 Junctions
	1.9 Command Definitions

	2 manage.cmd Definitions
	2.1 AFP
	getServerConfiguration (AFP)Returns AFP configuration information for the server.
	setServerConfiguration (AFP)Adds a trustee with the specified rights.

	2.2 Adapter
	getAdapterInfoReturns information about the adapter that was passed in. This command is implemented only on NetWare and not on Linux.
	listAdaptersReturns a list of all of a server's adapters. This command is implemented only on NetWare and not on Linux.

	2.3 Authorize System
	addTrustee

	2.4 CIFS
	addContextAdds an eDirectory context to the CIFS user context search list.
	addDomainACLAdds an eDirectory ACL for the specified domain at the specified context. This ACL gives rights to the domain's controller group...
	addShareCreates a CIFS share on the server.
	createContextListBegins the process of automatically generating the CIFS user context search list.
	createDomainCreates a new CIFS PDC domain in the eDirectory tree and designates the specified server as the starting PDC.
	deleteDomainCreates a new CIFS PDC domain in the eDirectory tree and designates the specified server as the starting PDC.
	findContextFinds a context in the CIFS user context search list.
	getCreateContextListStatus
	getDomainConfigurationReturns the CIFS configuration information for the domain.
	getImportWindowsUsersStatusReturns the status of the ImportWindowsUsers command.
	getServerConfigurationReturns CIFS configuration information for the server.
	getSharePropertiesReturns CIFS configuration information for the server.
	importWindowsUsersBegins the process of importing Windows users from a Primary Domain Controller from a company other than Novell.
	joinDomainJoins the specified server into the existing domain identified by the domain distinguished name.
	leaveDomainLeaves the specified domain that is identified by the domain distinguished name. This command must be issued to the physical ser...
	listContextsReturns all or a portion of the CIFS user context search list.
	listDomainControllersReturns all or a portion of a domain's domain controller list.
	listImportedUsersReturns all or a portion of the imported Windows user list.
	listSharesReturns share information for all shares on the server.
	modifyContextListModifies all or a portion of the CIFS user context search list.
	modifyShareModifies all or a portion of the CIFS user context search list.
	removeContextRemoves a context from the CIFS user context search list.
	removeShareRemoves a CIFS share on the server.
	setDomainConfigurationUpdates CIFS configuration information for the domain. If this command is used to set a new PDC for the domain, the new PDC must already be a domain controller that is participating in the domain.
	setServerConfigurationUpdated CIFS configuration information for the server.

	2.5 Deleted Volume
	continueStateContinues the current state of the deleted logical volume. If the current state is purging paused, it changes the state back to ...
	pauseStatePauses the current state of a deleted logical volume. If the current state is salvageable, it has the effect of preventing the volume from being auto purged. If the current state is purging, it pauses the purge process.
	purgeVolumePurges a deleted NSS logical volume.
	salvageVolumeSalvages or undeletes a deleted NSS logical volume. salvageVolume can also optionally re-add the eDirectory volume object for the undeleted volume.

	2.6 Device
	getDeviceInfoReturns information about the passed in object ID, which can be a physical device, a RAID device, or a mirror virtual device.
	getDeviceInfo2Returns information about the passed in object ID, which can be a physical device or a RAID device (RAID 0, RAID 1, RAID 5).
	getPathInfoReturns information about a multipath.
	initializeDeviceRe-initializes a device. Use this command with extreme caution because it destroys all data on the device. It also destroys all ...
	listDevices Obtains a detailed list of all devices on the server.
	listDevicePartitions Returns a list of partitions for a device.
	listDevicePools Returns the pool list on a device.
	listMultiPaths Returns a list of multipaths for a device.
	modifyDeviceModifies the "shared" state of the device. The shared state is a manually set flag that should be set by the user on all devices...
	multiPathAllows the user to control the behavior of multiple adaptors that are connected to the same device(s). The controllable behavior...
	renameDeviceRenames a device.
	scanDevicesRequests that the media manager re-scan the server to look for any new devices.

	2.7 DFS
	createLinkCreates a link to a junction.
	deleteLinkDeletes a link to a junction.
	getDfsGUIDRetrieves the currently assigned DFS GUID for a volume.
	initDFSGUIDsAssigns a DFS GUID if the volume does not already have a GUID assigned (for all mounted volumes) and adds the volume to the VLDB if there is a management context defined and the volume is not already included in the VLDB.
	modifyLinkRenames or changes the contents of a link file. The newName element is optional and allows the file to be renamed. If a file is ...
	readLinkReads a junction link and returns a list of physical volume instances. Note that there can be multiple volumeInfo elements in the response.
	setDfsGUIDAssigns a DFS GUID to a volume. If you specify an exact DFS GUID, it is stored as specified. Otherwise, if you specify the dfsGUID element with no content, a DFS GUID is generated for you by setDfsGUID.

	2.8 Directory Quota
	addQuota (obsolete)

	2.9 Junction
	createJunctionCreates a file system junction.
	deleteJunctionDeletes a file system junction.

	2.10 LSS
	getLSSInfoReturns information about the Loadable Storage Systems on a server. This command is implemented only on NetWare and not on Linux.
	getLSSVolumeInfoReturns the supported, default, and chageable LSS features for the specified LSS type.

	2.11 Partition
	addPartitionCreates a new partition on a device.
	addPartition2Creates a new partition on a device.
	addPartitionToMirrorAdds one or more partitions to another existing mirror group. In order to add a partition to a mirror group, the partition must ...
	getPartitionInfoReturns information about the specified partition.
	getPartitionMirrorStatsReturns statistics for the specified mirror group.
	listPartitionsObtains a detailed list of all partitions. listPartitions can be used to list either all of the partitions on the entire server or all the partitions that exist on a single device.
	modifyPartitionModifies the partition label and size.
	removePartitionDeletes an existing partition on a device. If the partition being deleted contains a portion of NSS pools or traditional NetWare...
	removePartitionFromMirrorRemoves a partition from another existing mirror group. Use removePartitionFromMirror only if the mirror group contains more than one partition. If the partition is the only partition in the group, there is no need to remove it.
	resyncPartitionMirrorCauses a mirror group to resynchronize.

	2.12 Pool
	activatePoolSnapshotActivates a pool snapshot.
	addPoolCreates an NSS storage pool on the server. This command is implemented only on NetWare and not on Linux.
	addPool2Creates an NSS storage pool on the server.
	addPoolSnapshotCreates a snapshot (snapName) of a pool and designates another pool (snapPoolName) as a snapshot data repository.
	deactivatePoolSnapshotDeactivates a pool snapshot.
	expandPoolExpands the size of (adds additional partitions to) an NSS storage pool. This command is implemented only on NetWare and not on Linux.
	expandPool2Expands the size of (adds additional partitions to) an NSS storage pool.
	getDefaultClusterNames
	getNDSNameReturns what the eDirectory name is for an existing NSS storage pool.
	getPoolDevicesReturns the device occupied by the specified pool.
	getPoolInfoReturns detailed information about an existing NSS storage pool on the server. Also returns the pool's segment information.
	getPoolSnapshotInfoReturns information for a specified pool snapshot.
	getStateRetrieves the current state of an existing NSS storage pool. This command is implemented only on NetWare and not on Linux.
	listPoolsLists basic information about all of the NSS storage pools residing on the server. This command is implemented only on NetWare and not on Linux.
	listPoolSnapshotsLists all existing pool snapshots and their related information.
	modifyPoolInfoModifies the properties of an existing NSS storage pool on the server. Note that no properties can currently be modified with mo...
	modifyStateActivates or deactivates an existing NSS storage pool.
	poolFreeze
	poolFreezeStatusReturns the status of a freeze request. This command is implemented only on NetWare and not on Linux.
	poolThaw
	removePoolDeletes an NSS storage pool on the server. Unless instructed not to, removePool also deletes the eDirectory object for the pool....
	removePool2Deletes the specified pool.
	removePoolSnapshotRemoves a specified pool snapshot.
	renamePoolRenames an NSS storage pool on the server (and optionally renames the corresponding eDirectory pool object).
	renamePoolSnapshotRenames a pool snapshot. This command is implemented only on NetWare and not on Linux.

	2.13 RAID
	addRAIDCreates a software RAID device form one or more free spaces. Currently, only RAID type 0 is supported. However, other RAID types will be supported in the future. Note that all segments in a software RAID device must be exactly the same size.
	addRAID2Creates a RAID 0, RAID 1 mirror group, or a RAID 5 device.
	expandRAIDAdds additional segments to a software RAID device.
	removeRAIDDeletes a software RAID device.
	removeRAID2Deletes the specified RAID and deletes all of the partitions in the RAID, including any pool and volume that resides on the RAID.
	renameRAIDRenames a RAID 0, RAID 1 - mirror group, or a RAID 5 device.
	restripeRAIDInitiates a restripe command on a software RAID device.

	2.14 Server
	getServerFreeSpaceReturns all of a server's available free space (returned by disk device as a byte value). It also returns mirror groups (the mirror ID and the available space in bytes) and virtual RAID devices (device ID and the available free space i
	listDevices (Server)
	listPartitions (Server)Lists all partitions on a server.
	listPools Returns the pool list on a server.

	2.15 User Space Restriction
	browseUserSpaceRestrictionsReturns the list of users with space restrictions on a specified volume and the quotas for those users.
	getUserSpaceRestrictionReturns the user space restriction for a supplied user on a specified volume.
	setUserSpaceRestrictionAdds the user space restriction for a supplied user DN to a specified volume.

	2.16 VLDB
	addVolumeToVLDBAdds a volume to a VLDB.
	createNewServiceCreates a new VLDB service on a server.
	deleteServiceRemoves the VLDB service from the server and updates eDirectory. If the last (or only) VLDB server is removed from a management context, the management context is automatically deleted.
	getVLDBInfoReturns detailed information about a VLDB.
	loadVLDBLoads and starts up the VLDB software on a server where the VLDB resides.
	lookupReturns the physical volume mapping for a DFS GUID as returned by a read link request. As an administrator, don't worry about what GUID a junction references; but note what volume on which server the junction is pointing to.
	removeVolumeFromVLDBRemoves a volume from a VLDB.
	replicaAddedToVLDBInforms a VLDB server that another VLDB replica server has been added.
	replicaRemovedFromVLDBInforms a VLDB server that another VLDB replica server has been removed.
	setVLDBConfigurationSets the configuration parameters for a VLDB.
	shutdownVLDBShuts down and unloads the VLDB software on a server where the VLDB resides.
	startRepairStarts a repair command on the VLDB.
	startServiceStarts the VLDB service on a server.
	stopRepairStops a repair command on the VLDB.
	stopServiceStops the VLDB service on a server.

	2.17 Volume Operations
	addTraditionalVolumeCreates a traditional NetWare volume on the server.
	addVolume
	expandTraditionalVolume
	getNDSName (Volume)Returns the eDirectory name for an existing volume.
	getStateReturns the state of either an NSS logical volume or a traditional NetWare volume.
	getTraditionalVolumeInfo
	getVolumeInfo
	listVolumesLists the volumes of a specified type.
	modifyStateModifies the state of either an NSS logical volume or a traditional NetWare volume.
	modifyVolumeInfoModifies the quota or enabled attributes on an NSS logical volume.
	removeUserRemoves a user from the NSS user ID database.
	removeVolumeDeletes either an NSS logical volume or a traditional NetWare volume. When a traditional NetWare volume is deleted, it is immedi...
	renameVolumeRenames either a NSS logical volume or a traditional NetWare volume.

	2.18 Volume MN Operations
	changeJobStateModifies the state of a job.
	createJobReturns a list of jobs.
	getJobListReturns a list of jobs.
	getJobStatusReturns the status for a specified job.
	listSkippedFilesReturns a list of files that are in the FILES_SKIPPED state.

	3 User Commands
	browseUserSpaceRestrictions (user)Returns the list of users with space restrictions on a specified volume and the quotas for those users.
	getUserSpaceRestriction (user)Returns the user space restriction for a supplied user on a specified volume.
	setUserSpaceRestriction (user)Adds the user space restriction for a supplied user DN to a specified volume.

	4 nds.cmd Definitions
	4.1 Object Operations
	getAttributeReturns the value of a specific attribute that belongs to a specific eDirectory object.

	4.2 Pool Operations
	addPoolCreates an eDirectory pool object for an already existing NSS storage pool.
	removePoolRemoves an eDirectory pool object.

	4.3 Volume Operations
	addVolumeCreates an eDirectory pool object for an already existing NSS storage pool.
	removeVolumeRemoves an eDirectory volume object.

	4.4 User Operations
	addUserAdds a user.
	removeUserRemoves a user.

	5 files.cmd Definitions
	addQuotaAdds a directory quota.
	addTrusteeAdds a trustee to a file or directory.
	getAllEffectiveRightsReturns all effective rights assigned to a file or directory.
	getFileInfoReturns the information (properties of a file).
	modifyInheritedRightsFilterSets the inherited rights filter on a file or directory.
	purgeDeletedFilePermanently removes a deleted file from the salvage directory.
	removeAllTrusteesRemoves all trustee from a file or directory.
	removeTrusteeRemoves a trustee from a file or directory.
	salvageDeletedFileRestores a deleted file.
	scanSalvageableFilesChecks for files that can be salvaged.
	setFileInfoModifies a file's information (properties).

	6 FileEvents.xml Definitions
	changeEventEpochStops an existing active EFL epoch and starts a new active epoch.
	getEFLNameSpaceIDReturns the name space for the specified EFL. The returned value represents the name space in which the EFL's full path is represented (default is 4, zNSPACE_LONG).
	getInactiveEpochIntervalReturns the inactive interval (in seconds) for the specified EFL. The returned value determines whether the epoch stays inactive...
	listAllFilesEnumerates all files on the specified volume, gives out their full path name and ID, and indicates whether each is a directory.
	listEpochsLists all EFL epochs on a specific volume and indicates whether they are active or stopped (used).
	listFileEventsEnumerates the EFL of a specific epoch.
	pingEpochPings a specific EFL epoch and prevents the epoch from removal during the period of time specifed by the EFL epoch inactive interval.
	removeEventEpochRemoves an EFL epoch and its file event list.
	resetEventListRemoves all epochs (active and used) and their EFLs on the specified volume.
	setEFLNameSpaceIDSets the name space for the specified EFL and determines the name space in which the EFL's full path is represented.
	setInactiveEpochIntervalSets the inactive interval (in seconds) for the specified EFL.
	startEventEpochStarts a new active EFL epoch. All file changes (both metadata and user data) on the specific volume that are made after this epoch is started result in an entry in this epoch's event file list.
	stopEventEpochStops an existing active EFL epoch. It keeps its file event list around but not adds any new entry.

	7 Inventory.xml Definitions
	NRMServerInventory.xmlGenerates an inventory for each volume and combines each volume's inventory into a server inventory.
	Volume_Inventory.xmlContains information about the files located on the specified volume.
	Volume_Trustees.xmlContains information about the trustee assignments to file and directories on the specified volume.

	8 Archive Definitions
	8.1 archiveAdmin.cmd Definitions
	activateJobActivates a job.
	deactivateJobDeactivates a job.
	getInfoRetrieves ArkManager's overall information.
	getJobInfoRetrieves ArkManager's job control-related information (such as activate, deactivate, start or stop a job).
	getLogTimeRangeReturns the range of log time.
	listJobNamesReturns a list of job names.
	queryLogQueries log entries by specifying the date, job name, or severity.
	setInfoModifies ArkManager's overall information.
	startJobStarts a job.
	stopJobStops a job.
	testFilterTests whether a particular path passes a job filter's definition (and will be archived).

	8.2 archive.cmd Definitions
	deleteFileDeletes a file and all of its archived content versions from the archive server.
	getContentVersionsReturns archive file versions.
	getDirContentsReturns archived directory contents.
	getVersionsReturns archived directory versions.
	restoreFileRestores a file from the archive server to another server.
	shutdownShuts down the ArkManager process and stops all jobs.

	9 Linux Definitions
	activatePoolSnapshot (Linux)Mounts a pool snapshot.
	addPoolSnapshot (Linux)Creates a snapshot (snapName) of a pool and designates another pool (snapPoolName) as a snapshot data repository.
	deactivatePoolSnapshot (Linux)Dismounts a pool snapshot.
	getPoolSnapshotInfo (Linux)Returns information for a specified pool snapshot.
	listEvmsVolumesLists the volumes in Evms that can be used to take a snap shot.
	listPoolSnapshots (Linux)Lists all existing pool snapshots and their related information.
	poolIDToNameReturns a pool name from a pool GUID (for Linux only).
	removePoolSnapshot (Linux)Removes a specified pool snapshot.
	uidToEquivalentGUIDsReturns the eDirectory GUIDs for the equivalent users and groups of a Linux UID.
	userIDToNameReturns a user name from a user GUID (for Linux only).
	volumeIDFileIDToPathReturns a path from a volume ID to a zID.
	volumeIDToNameReturns a volume name from a volume GUID (for Linux only).

	10 Advanced Concepts
	10.1 Transformation Templates
	10.1.1 Datastreams

	10.2 Virtual I/O Commands

	11 Values
	11.1 Device Types
	11.2 Enabled Attributes Bits
	11.3 Job Types
	11.4 Mirror Group Statuses
	11.5 NSS Volume States
	11.6 Pool States
	11.7 Pool Types
	11.8 State Values
	11.9 Traditional Volume States
	11.10 Volume States
	11.11 Volume Types

	12 Functions
	MGMT_FindFirstElementDetermines if the complete main XML element has been received in a write operation. This function builds up an internal buffer that holds the entire XML stream until the main element is closed.
	MGMT_MakeCommandVirtualFileDefines a virtual file that has a write function for the default datastream. The write function generates a response that can be read from the results buffer.
	MGMT_MakeCommandVirtualFileWithHelp
	MGMT_MakeFunctionVirtualFileDefines a virtual file that uses functions to satisfy read and write operations for the default datastream.
	VIRT_AddResultDataAdds the specified string to the result buffer. (If needed, this function also extends the buffer.)
	VIRT_AddResultElementAdds a complete element to the result buffer.
	VIRT_AddResultTagAdds the specified tag to the results buffer. (This function also adds the angle brackets, an optional end tag indicator, and new line characters).
	VIRT_MakeResultsImportantMarks the result buffer as needing to be read, which assures that all reads coming back from the results buffer until the results are set back to normal.
	VIRT_MakeResultsNormal
	VIRT_ResetResultResets the results buffer to have no content.
	XML_BackwardFindEndTagSearches backwards from the cursor to the start of the buffer to find the specified tag as an end tag.
	XML_findEndOfNonWhiteSpaceMoves the cursor to the address of the last non-white space character.
	XML_ForwardFindTagSearches forward from the given cursor position to the end of the buffer to find the specified tag. Note: This function currently assumes that the tag has no attributes.
	XML_GetNextTagReturns the next tag that is found in the specified buffer. The function also updates the element information for the found element.
	XML_GetTagElementFinds the entire element for a given tag. The function searches between the given start and end pointers and returns an updated element structure.

	13 Examples
	13.1 Creating a Virtual File
	13.2 Accessing a Virtual File with Perl
	13.2.1 Reading a Datastream
	13.2.2 Writing a Datastream
	13.2.3 Writing a Command

	A Revision History

