
JacORB 2.3.1.0 Programming Guide

The JacORB Team

April 18, 2014

Contributors in alphabetical order:

Alphonse Bendt
Gerald Brose
Nick Cross
Phil Mesnier
Nicolas Noffke
Steve Osselton
Simon McQueen
Francisco Reverbel
David Robison
André Spiegel

Contents

1 Introduction 9
1.1 A Brief CORBA introduction . 9
1.2 Project History . 10
1.3 Support . 11
1.4 Contributing — Donations . 11
1.5 Contributing — Development . 11
1.6 Limitations, Feedback . 11

1.6.1 Feedback, Bug reports . 12

2 Installing JacORB 13
2.1 Downloading JacORB . 13
2.2 Installation . 13

2.2.1 Requirements . 13
2.2.2 Dependencies . 13

3 Configuration 15
3.1 Configuration Mechanism . 15

3.1.1 Properties files . 15
3.1.2 Command-line properties . 18
3.1.3 Arguments to ORB.init() . 18

3.2 Configuration Options . 18
3.2.1 Initial references . 18
3.2.2 Logging . 19
3.2.3 Typecode Compaction . 23
3.2.4 Acceptor Exception Event Plugin . 23
3.2.5 Implname and CORBA Objects . 24
3.2.6 Network Event Logging . 26
3.2.7 IORMutator . 27
3.2.8 Network and Sockets . 28

3.3 Configuration Properties . 31
3.3.1 ORB Configuration . 31
3.3.2 Network Configuration . 40
3.3.3 Logging Configuration . 41
3.3.4 POA Configuration . 42
3.3.5 Security Configuration . 42

4 Contents

3.3.6 Name Service Configuration . 45

4 Getting Started 47
4.1 JacORB development: an overview . 47
4.2 IDL specifications . 47
4.3 Generating Java classes . 48
4.4 Implementing the interface . 49
4.5 Writing the Server . 50
4.6 Writing a client . 52

4.6.1 The Tie Approach . 54
4.6.2 Using Object. release . 56

5 The JacORB Name Service 57
5.1 Running the Name Server . 57
5.2 Accessing the Name Service . 58
5.3 Constructing Hierarchies of Name Spaces . 59
5.4 NameManager — A simple GUI front-end to the Naming Service 60

6 The Server side: POA, Threads 61
6.1 POA . 61
6.2 Threads . 62
6.3 Request Analyser Plugin . 62

7 Implementation Repository 67
7.1 Overview . 67
7.2 Using the JacORB Implementation Repository 68
7.3 Server migration . 70
7.4 A Note About Security . 71

8 Dynamic Management of Any Values 73
8.1 Overview . 73
8.2 Interfaces . 73
8.3 Usage Constraints . 74
8.4 Creating a DynAny Object . 74
8.5 Accessing the Value of a DynAny Object . 76
8.6 Traversing the Value of a DynAny Object . 76
8.7 Constructed Types . 78

8.7.1 DynFixed . 78
8.7.2 DynEnum . 78
8.7.3 DynStruct . 78
8.7.4 DynUnion . 78
8.7.5 DynSequence . 79
8.7.6 DynArray . 79

Contents 5

8.8 Converting between Any and DynAny Objects 79
8.9 Further Examples . 79

9 Objects By Value 81
9.1 Example . 81
9.2 Factories . 83

10 Interface Repository 85
10.1 Type Information in the IR . 85
10.2 Repository Design . 86
10.3 Using the IR . 87
10.4 Interaction between #pragma prefix and -i2jpackage 88

11 IIOP over SSL 91
11.1 Key stores . 91

11.1.1 Setting up a JSSE key store . 91
11.1.2 Step–By–Step certificate creation . 93

11.2 Configuring SSL properties . 93
11.2.1 Using the third-party JCE and JSSE providers 95
11.2.2 Protocols . 96
11.2.3 Client side and server side configuration 96

11.3 SecureRandom Plugin System . 98
11.4 Security and corbaloc . 98

12 MIOP 101
12.1 Enabling the MIOP Transport . 101
12.2 Configuring the MIOP Transport . 101
12.3 MIOP Example . 102

12.3.1 Two way requests and MIOP . 103

13 BiDirectional GIOP 105
13.1 Setting up Bidirectional GIOP . 105

13.1.1 Setting the ORBInitializer property . 105
13.1.2 Creating the BiDir Policy . 105

13.2 Verifying that BiDirectional GIOP is used . 106
13.3 TAO interoperability . 106

14 Portable Interceptors 107
14.1 Interceptor ForwardRequest Exceptions . 107

15 Asynchronous Method Invocation 109

16 Quality of Service 111
16.1 Sync Scope . 112

6 Contents

16.2 Timing Policies . 113

17 Connection Management and Connection Timeouts 119
17.1 Timeouts . 119
17.2 Connection Management . 119

17.2.1 Basics and Design . 120
17.2.2 Configuration . 121
17.2.3 Limitations . 121

18 Extensible Transport Framework 123
18.1 Implementing a new Transport . 123
18.2 Configuring Transport Usage . 124
18.3 Selecting Specific Profiles Using RT Policies 125

19 Security Attribute Service 127
19.1 Overview . 127
19.2 GSSUP Example . 128

19.2.1 GSSUP IDL Example . 128
19.2.2 GSSUP Client Example . 128
19.2.3 GSSUP Target Example . 129

19.3 Kerberos Example . 131
19.3.1 Kerberos IDL Example . 131
19.3.2 Kerberos Client Example . 131
19.3.3 Kerberos Target Example . 133

20 Fault Tolerant CORBA 137
20.1 Setting up FT support . 137

20.1.1 Setting the ORBInitializer property . 137
20.1.2 Enable the fault tolerant mechanisms 137

20.2 Configuration . 137
20.2.1 ORB initialization options . 138
20.2.2 ORB properties . 138

21 Using Java management Extentions (JMX) 139
21.1 MX4J and JMX over IIOP . 139

22 JacORB Utilities 141
22.1 idl . 141
22.2 ns . 146
22.3 nmg . 147
22.4 lsns . 147
22.5 dior . 148
22.6 pingo . 148
22.7 ir . 149

Contents 7

22.8 qir . 149
22.9 ks . 149
22.10fixior . 149

23 JacORB Threads 151

24 Classpath and Classloaders 157
24.1 Running applications . 157

24.1.1 ORBSingleton . 157
24.2 Interaction with Classloaders . 157

8 Contents

1 Introduction

This document gives an introduction to programming distributed applications with JacORB, a
free Java object request broker. JacORB comes with full source code, a couple of CORBA Object
Service implementations, and a number of example programs. The JacORB version described in
this document is JacORB 2.3.1.0.

1.1 A Brief CORBA introduction

CORBA models distributed resources as objects that provide a well-defined interface. CORBA
lets you invoke services through remote invocations (RPCs). Since the transfer syntax for send-
ing messages to objects is strictly defined, it is possible to exchange requests and replies between
processes running program written in arbitrary programming languages and hosted on arbitrary
hardware and operating systems. Target addresses are represented as Interoperable Object Ref-
erences (IORs), which contain transport addresses as well as identifiers needed to dispatch in-
coming messages to implementations.

Interfaces to remote objects are described declaratively in an programming language-
independent Interface Definition Language (IDL), which can be used to automatically generate
language-specific stub code.

It is important to stress that:

• CORBA objects as seen by clients are abstract entities. Their behavior is implemented
by artifacts in potentially arbitrary, even non-OO languages. These artifacts are called
servants in CORBA terminology. A servant is not the same as the object. Servants require
an ORB implementation to maintain the relationship to objects and to mediate requests
and responses.

• CORBA objects achieve location transparency, i.e., clients need not be (and generally are
not) aware of the actual target hosts where servants reside. However, complete distribution
transparency is not achieved in the sense that clients would not notice a difference between
a local function call and a remote CORBA invocation. This is due to factors such as
increased latency, network error conditions, and CORBA-specific initialization code in
applications, and data type mappings.

Please see [BVD01, Sie00, Vin97] for more information and additional details, and [HV99]
for advanced issues.

10 Introduction

1.2 Project History

JacORB originated in 1995 (was it 1996?) in the CS department at Freie Universität Berlin
(FUB). It evolved from a small Java RPC library and a stub compiler that would process Java in-
terfaces. This predecessor was written — most for fun and out of curiosity — by Boris Bokowski
and Gerald Brose because at that time no Java RMI was available. The two of us then realized
how close the Java interface syntax was to CORBA IDL, so we wrote an IDL grammar for our
parser generator and moved to GIOP and IIOP as the transport protocol. It was shortly before
Christmas 1996 when the first interoperable GIOP request was sent form a JacORB client to an
IONA Orbix server. For a long time, JacORB was the only free (in the GNU sense) Java/CORBA
implementation available, and it soon enjoyed widespread interest, at first mostly in academic
projects, but commercial use followed soon after.

For a while, Gerald developed JacORB as a one-man-project until a few student projects and
master theses started adding to it, most notably Reimo Tiedemann’s POA implementation, and
Nicolas Noffke’s Implementation Repository and Portable Interceptor implementations. Other
early contributors were Sebastian Müller, who wrote the Appligator, and Herbert Kiefer, who
added a policy domain service. The Appligator and the policy domain service are no longer part
of the JacORB distribution.

A more recent addition is Alphonse Bendt’s implementation of the CORBA Notification Ser-
vices as part of his master’s theses. Substantial additions to the JacORB core were made by
André Spiegel, who contributed OBV and AMI implementations. Other substantial contribu-
tions to JacORB have been added over time by the team at PrismTech UK (Steve Osselton, Nick
Cross, Simon McQueen, Jason Courage). Still other active contributors are Francisco Reverbel
of the JBoss team (RMI/IIOP), David Robison, who contributed CSIv2 and Phil Mesnier of OCI
(http://www.ociweb.com).

JacORB continues to be used for research at FUB, especially in the field of dis-
tributed object security. Even though a number of people from the core team have left
FUB; Gerald is with Projektron BCS (http://www.projektron.de), Reimo is with CoreMedia
(http://www.coremedia.com), Nico and Alphonse are with Xtradyne (http://www.xtradyne.com)
(now part of PrismTech (http://www.prismtech.com)) and André Spiegel is now a free-lance de-
veloper and consultant (http://www.free-software-consulting.com), the JacORB project is still
rooted at Freie Universität Berlin, which hosts the JacORB web and CVS server.

Due to the limited number of developers, the philosophy around the development has never
been to achieve feature-completeness beyond the core 90%, but standards compliance and qual-
ity. (e.g., JacORB 2.0 does not come with a PolicyManager). Brand-new and less widely-used
features had to wait until the specification had reached a minimum maturity — or until someone
offered project funding.

http://www.ociweb.com
http://www.projektron.de
http://www.coremedia.com
http://www.xtradyne.com
http://www.prismtech.com
http://www.free-software-consulting.com

1.3 Support 11

1.3 Support

The JacORB core team and the user community together provide best effort support over our
mailing lists.

For commercial support please contact support@prismtech.com.

1.4 Contributing — Donations

In essence, the early development years were entirely funded by public research. JacORB did
receive some sponsoring over the years, but not as much as would have been desirable. A few
development tasks that would otherwise not have been possible could be payed for, but more
would have been possible — and still is.

If you feel that returning some of the value created by the use of Open Source software in your
company is a wise investment in the future of that the software (maintenance, quality improve-
ments, further development) in the future, then you should contact us about donations.

Buying hardware and sending it to us is one option. It is also possible to directly donate money
to the JacORB project at Freie Universität Berlin. If approval for outright donations is difficult
to obtain at your company, we can send you an invoice for, e.g.., CORBA consulting.

1.5 Contributing — Development

If you want to contribute to the development of the software directly, you should do the following:

• download JacORB and run the software to gain some first-hand expertise first

• read this document and other sources of CORBA documentation, such as [BVD01], and
the OMG’s set of specifications (CORBA spec., IDL/Java language mapping)

• start reading the code

• subscribe to the jacorb-developer mailing list to share your expertise

• contact us to get subscribed to the core team’s mailing list and gain CVS access

• read the coding guide line

• contribute code and test cases

1.6 Limitations, Feedback

A few limitations and known bugs (list is incomplete):

12 Introduction

• the IDL compiler does not support

– the context construct

• the API documentation and this document are incomplete.

1.6.1 Feedback, Bug reports

For bug reporting, please use our Bugzilla bug tracking system available at
http://www.jacorb.org/bugzilla. Please send problems as well as criticism and experience
reports to our developer mailing list available from http://www.jacorb.org/contact.html.

http://www.jacorb.org/bugzilla
http://www.jacorb.org/contact.html

2 Installing JacORB

In this chapter we explain how to obtain and install JacORB, and give an overview of the package
contents.

2.1 Downloading JacORB

JacORB can be downloaded as a g-zipped tar–archive or as a zip–archive from the JacORB home
page at http://www.jacorb.org.

To install JacORB, first unzip and untar (or simply unzip) the archive somewhere.
This will result in a new directory JacORB2 3. After this follow the instructions in
JacORB2 3/doc/INSTALL.

2.2 Installation

2.2.1 Requirements

JacORB requires JDK 1.5 or above properly installed on your machine. To build JacORB (and
compile the examples) you need to have the XML–based make tool “Ant” (1.7.1 or later) installed
on your machine. Ant can be downloaded from http://jakarta.apache.org/ant. All make files
(build.xml) are written for this tool. To rebuild JacORB completely, just type ant in the
installation directory. Optionally, you might want to do a ant clean first.

For SSL, you need an implementation of the SSL protocol. We currently support Oracle’s
JSSE Reference implementation included in the JDK.

2.2.2 Dependencies

JacORB depends upon the following third party software

1. Apache Avalon Framework (Version 4.1.2 or 4.1.5)

2. Apache LogKit (Version 1.2)

These may be obtained from http://avalon.apache.org

http://www.jacorb.org
http://jakarta.apache.org/ant
http://avalon.apache.org

14 Installing JacORB

3 Configuration

This chapter explains the general mechanism for configuring JacORB and lists all configuration
properties. Note that ORB configuration has changed from version 2.1 to 2.2, in particular the
names and locations of the standard configuration files.

If you are upgrading from a previous version, please note that JacORB will still work
with the old files, but you will have to copy your existing jacorb.properties file to
JacORB HOME/etc/jacorb.properties, or rename it to orb.properties if you
want it loaded from your user home directory as before.

3.1 Configuration Mechanism

JacORB has a number of configuration options which can be set as Java properties. There are
three options for setting properties:

• in properties files

• as command line properties, and

• as properties passed as arguments to ORB.init() in the code of your applications.

In the case of a single JVM with multiple ORB instances, it may be required to either share
configuration options between ORBs, or to separate the individual configurations from each
other. We explain how properties can be set for sharing or for individual ORB instances.

3.1.1 Properties files

JacORB looks for a few standard properties files, a common file called orb.properties, and
an ORB-specific file called <orbid>.properties, where <orbid> is the name of an ORB
instance that was explicitly configured. Moreover, JacORB can load custom properties files from
arbitrary locations. We explain each of these files in turn.

The common properties file

The reason for having a common properties file is that a single JacORB installation may be
shared by a number of users with a set of common default properties. These may be refined by

16 Configuration

users in their own properties files but still provide reasonable defaults for the environment. Note
that it is not required to have a common properties file as all configuration options can also be
set in other files, on the commandline or in the code.

JacORB looks for the common properties file orb.properties in the following places:

1. in the lib directory of the JDK installation. (The JDK’s home directory denoted by the
system property ”java.home”).

2. in the user home directory. (This is denoted by the system property ”user.home”. On
Windows, this is c:\documents\username, on Unixes it’s ˜user. If in doubt where
your home directory is, write a small Java programm that prints out this property.

3. on the class path.

The common properties file is searched in the order presented above, so you may actually be
loading multiple files of this name. If a properties file is found it is loaded, and any property
values defined in this file will override values of the same property that were loaded earlier.
Loading properties files from the classpath is useful when distributing applications packaged in
JAR files.

The ORB properties file

Having ORB-specific properties files is necessary when multiple ORB instances live in the same
process, but need to have separate configurations, e.g., some ORBs use SSL and others don’t,
or some ORBs need to listen on separate but predefined ports. To let colocated ORBs use and
retrieve separate configurations, JacORB provides a lookup mechanisms based on a specific
property, the ORBid property. The default value for the ORBid is jacorb, ie. is the ORBid
is not explicitly set anywhere, it defaults to jacorb. Note that this ORBid is reserved, ie.,
you cannot explicitly set your ORBid to this value. To use different configurations for different
ORBs, you simply pass different ORBid values to your ORBs.

JacORB looks for ORB properties files in these places:

1. jacorb.config.dir/etc/orbid.properties., if that exists, or

2. jacorb.home/etc/orbid.properties., or

3. the current directory (’./orbid.properties.’)

4. on the class path.

The jacorb.config.dir and jacorb.home properties must be set for JacORB to be
able to use a preconfigured configuration directory. The jacorb.home property defaults to
‘‘.’’, if unset. Setting these properties can be done in the orb.properties file, or by
passing a property in on the commandline, like this:

$ jaco -Djacorb.config.dir=c:/ -DORBid=example test.Example

3.1 Configuration Mechanism 17

This commandline causes JacORB to look for a file called example.properties in
c:/etc. If the -DORBid=example had been ommitted, the name of the ORB properties
file that JacORB would try to load would have been jacorb.properties, because that is
the default value for the ORBid. A good starting point is to have a common properties file that
sets the jacorb.config.dir property, and then have put a jacorb.properties file in
that directory.

Note, however, that the added flexibility of using multiple configuration files may lead to
individual properties defined in multiple files. You must know the order in which your con-
figuration files are loaded to avoid confusion over property settings not having the expected
effect! For this reason, JacORB outputs log messages to the terminal that show the names of
the properties files as they are loaded. This log message always goes to the terminal because the
actual JacORB logging is not yet configured at this stage. It can be suppressed by setting the
jacorb.config.log.verbosity property to a value below 3.

Custom properties files

In addition to the standard JacORB properties files, a custom properties file can be loaded by
passing the name of that properties files the custom.props property to JacORB. This can be
handy for application-specific settings that you want to distribute with your code.

The value of this property is the path to a properties file, which contains the properties you
want to load. As an example, imagine that you usually use plain TCP/IP connections, but in
some cases want to use SSL (see section 11). The different ways of achieving this are

• Use just one properties file, but you will have to edit that file if you want to switch between
SSL and plaintext connections.

• Use commandline properties exclusively (cf. below), which may lead to very long com-
mands

• Use a command property file for all applications and different custom properties files for
each application.

For example, you could start a JacORB program like this:

$ jaco -Dcustom.props=c:/tmp/ns.props org.jacorb.naming.NameServer

In addition to loading any standard properties files found in the places listed above, JacORB
will now also load configuration properties from the file c:/tmp/ns.props, but this last file
will be loaded after the default properties files and its values will thus take precedence over
earlier settings.

18 Configuration

3.1.2 Command-line properties

In the same way as the custom.props property in the example above, arbitrary other Java
properties can be passed to JacORB programs using the -D<prop name>=<prop value>
command line syntax for the java interpreter, but can be used in the same way with the jaco
script. Note that the properties must precede the class name on the command line. For example
to override the ORB initial references for NameService the following may be used:

jaco -DORBInitRef.NameService=file:///usr/users/...../NameService.ior
Server

The ORB configuration mechanism will give configuration properties passed in this way precedence
over property values found in configuration files.

Anything that follows after the class name is interpreted (by java) as a command line argument to the
class and will be visible in the args parameter of the classes main method. For example

jaco Server
-ORBInitRef.NameService=file:///usr/users/..../NameService.ior

3.1.3 Arguments to ORB.init()

For more application–specific properties, you can pass a java.util.Properties object to
ORB.init() during application initialization. Properties set this way will override properties set by
a properties file. The following code snippet demonstrates how to pass in a Properties object (args
is the String array containing command line arguments):

java.util.Properties props = new java.util.Properties();
props.setProperty("jacorb.implname","StandardNS");
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

3.2 Configuration Options

We are now ready to have a look at the most basic JacORB configuration properties. As a starting point,
you should look at the file /etc/jacorb properties.template, which you can adapt to your
own needs.

3.2.1 Initial references

Initial references are object references that are available to CORBA application through the bootstrap
orb.resolve initial service() API call. This call takes a string argument as the name of an
initial reference and returns a CORBA object reference, e.g., to the initial name service.

3.2 Configuration Options 19

##
#
Initial references configuration
#
##

#
URLs where IORs are stored (used in orb.resolve_initial_service())
DO EDIT these! (Only those that you are planning to use,
of course ;-).
#
The ORBInitRef references are created on ORB startup time. In the
cases of the services themselves, this may lead to exceptions being
displayed (because the services aren’t up yet). These exceptions
are handled properly and cause no harm!

#ORBInitRef.NameService=corbaloc::160.45.110.41:38693/StandardNS/NameServer-POA/_root
#ORBInitRef.NameService=file://c:/NS_Ref
ORBInitRef.NameService=http://www.x.y.z/˜user/NS_Ref
#ORBInitRef.TradingService=http://www.x.y.z/˜user/TraderRef

The string value for ORBInitRef.NameService is a URL for a resource used to set up
the JacORB name server. This URL will be used by the ORB to locate the file used to store the
name server’s object reference (see also chapter 5).

3.2.2 Logging

JacORB uses external log kit implementations for writing logs. The default log kit is the
Apache LogKit implementation. To plug in another logger, a developer must implement the
org.jacorb.util.LoggerFactory interface and supply that class name as the value of
the jacorb.log.loggerFactory property.

20 Configuration

The interface is

package org.jacorb.util;
public interface LoggerFactory

String getLoggingBackendName();
Logger getNamedLogger(String name);
Logger getNamedRootLogger(String name);
Logger getNamedLogger(String name, String fileName, long maxFileSize)
void setDefaultLogFile(String fileName, long maxLogSize)

The new factory must return Loggers that implement
org.apache.avalon.framework.logger.Logger. An example is
provided (See org.jacorb.util.ConsoleLogger) which simply uses
org.apache.avalon.framework.logger.ConsoleLogger to output to the
terminal e.g.

public class ConsoleLoggerFactory implements LoggerFactory
public ConsoleLoggerFactory()
{

target = new ConsoleLogger();
}

...
public Logger getNamedLogger(String name)
{

return target;
}

...

Log levels and different log components

The JacORB logging mechanism can be fine-tuned to set different log levels for different com-
ponents of JacORB. It is still possible to rely only on one single, default log level. This log level
is specified like this (note that the properties have changed from previous JacORB versions!):

##################################
#
Default Logging configuration
#
##################################

Name of the factory class that plugs in a given log kit
The default value is JacORB’s own factory for the Apache
LogKit. Only edit (or uncomment) if you want a different
log kit.
#jacorb.log.loggerFactory=org.jacorb.util.LogKitLoggerFactory

3.2 Configuration Options 21

log levels:
#
0 = fatal errors only = "almost off" (FATAL ERRORS)
1 = non-fatal errors and exceptions (ERROR)
2 = important messages (WARN)
3 = informational messages and exceptions (INFO)
4 = debug-level output (DEBUG) (may confuse the unaware user :-)
jacorb.log.default.verbosity=3

For other components, the individual log levels are set using log properties specific to that
component, e.g.,

jacorb.naming.log.verbosity=0

will turn logging off for the naming service, but all other parts of the ORB will
still use the default log level. The general pattern for the log level property is
jacorb.<component>.log.verbosity. Currently available logging components
are

• activator

• jacorb.giop

• jacorb.giop.conn

• iiop.conn

• imr.locate

• imr.state

• naming

• orb

• orb.singleton

• orb.basic

• orb.factory

• orb.iiop

• orb.interceptors

• poa

• SAS

• SAS.CSS

• SAS.GSSUP

• SAS.TSS

• security

• security.jsse

• util.tpool

22 Configuration

Logging output to a file

The properties specific to file logging are the following:

where does output go? Terminal is default
jacorb.logfile=c:/tmp/jacorb.log

filename for logging from the singleton ORB
the file will be placed in the same directory
as jacorb.logfile
jacorb.logfile.singleton=orbsingleton

Append to an existing log file or overwrite? (Applies to
file logging only)
jacorb.logfile.append=on

If jacorb.logfile.append is on, set rolling log size in kilobytes.
A value of 0 implies no rolling log
jacorb.logfile.maxLogSize=0

If the jacorb.logfile property is not set, output will be sent to the terminal. If the
jacorb.logfile property is set to an explicity filename then output will be sent to that file.
Note that it is NOT recommended that multiple JVM processes send output to the same file
as this could lead to file corruption. Alternatively if the jacorb.logfile property ends in
$implname e.g.

jacorb.logfile=c:/tmp/$implname

and the jacorb.implname property has been set, output will be logged to a file with
the same name as the jacorb.implname property value. See section 3.2.5 for more infor-
mation on the jacorb.implname property. The jacorb.logfile.append value tells
the logger whether to overwrite existing log files or to append to the existing log file. The
jacorb.logfile.maxLogSize property, finally,determines how large a log file may be-
come before the logger automatically creates a new file. This value is in kilobytes. If it is
set to 0, log files may become arbitrarily large, no log file rotation is used. If the value of
jacorb.logfile ends with the special string $implname, this postfix will be replaced with
the current ImplName of the ORB that uses the logging. See 3.2.5 for more details about Im-
plName.

Note that the singleton ORB is treated in a special way. To enable filelogging for it, you need
to additionally set the property jacorb.logfile.singleton to a filename. If the property
jacorb.logfile includes a directoryname, the singleton ORB logfile will get this directory
prepended. Otherwise its plain value will be used. A timestamp will be appended so that logging
to the same directory won’t clash. Also the suffix .log will be appended.

The jacorb.poa.monitoring property determines whether the POA should bring up a
monitoring GUI for servers that let you examine the dynamic behavior of your POA, e.g. how

3.2 Configuration Options 23

long the request queue gets and whether your thread pool is big enough. Also, this tool lets you
change the state of a POA, e.g. from active to holding. Please see chapter 6 on the POA for more
details.

The singleton ORB will use the logging component jacorb.orb.singleton for logging.

3.2.3 Typecode Compaction

Using the proprty

jacorb.compactTypecodes=off

causes JacORB to strip off all optional information from Typecode’s before marshalling them.
This will remove all optional data from the typecode (essentially the equivilant of calling
get compact typecode). This produces smaller network packages and thereby can give a pos-
itive effect on performance.

Disadvantages of this are that the CORBA Notification Service relies on typecodes for com-
plex filter notation and this also may cause interoperability problems with other orbs during
typecode comparisons. For instance the comparison of Typecode’s that were received across the
net with local one’s (from a Helper class) using equal will fail.

That’s because the following holds (see OMG doc):

MyTypeHelper.id().equal(MyTypeHelper.id()) => TRUE
MyTypeHelper.id().equal(MyTypeHelper.id()

.get_compacted_typecode()) => FALSE

JacORB will (if compaction is enabled) always invoke get compacted typecode before mar-
shalling a typecode.

Note: it’s not necessary to compare TypeCode’s using equal. The method equivalent does a
less strict comparison that omits the optional information.

Note: For details of the MIOP configuration see 12.2

3.2.4 Acceptor Exception Event Plugin

This plugin is implemented by org.jacorb.orb.listener.AcceptorExceptionListener.

package org.jacorb.orb.listener;
public interface AcceptorExceptionListener extends EventListener

void exceptionCaught(AcceptorExceptionEvent ae);

The configuration property is

24 Configuration

jacorb.acceptor_exception_listener

If the server listener thread receives an exception while doing the ServerSocket.accept()
it will construct a org.jacorb.orb.listener.AcceptorExceptionEvent and no-
tify the configured implementation. The Event allows the following to be retrieved:

public ORB getORB()
public Throwable getException()

The default implementation, org.jacorb.orb.listener.DefaultAcceptor-
ExceptionListener, will simply shutdown the ORB on all Errors and for SSLExceptions
that are thrown before any socket connections have been made. If the developer wishes they
may plugin their own for more fine grained control.

In order to detect whether the exception has been thrown on the first attempt or any attempt
after that the developer may use the following function within their listener implementation.

public void exceptionCaught(AcceptorExceptionEvent ae) {
...

if (((org.jacorb.orb.iiop.IIOPListener.Acceptor)
ae.getSource()).getAcceptorSocketLoop()) {

...

getAcceptorSocketLoop returns false if the event has been thrown on the initial loop, or
true on any loop after that.

Note that if the default implementation is used it is possible that due to e.g. an SSLException
the listener will fail to accept on the server socket after the root POA is resolved which means that
the ORB will be shutdown. Therefore future calls on that POA will fail with a ’POA destroyed’
message.

3.2.5 Implname and CORBA Objects

A JacORB object key consists of <impl name>/<poa name>/<object oid>. The
lifespan of CORBA objects are defined by the POA policy LifespanPolicyValue.

Transient objects are those whose lifespans are bounded by the process in which they were
created. Once a transient object has been destroyed any clients still holding references to those
objects should receive a OBJECT NOT EXIST. This applies even if the transient object is recre-
ated as it is a new object reference. To achieve this JacORB replaces the implname portion of
the key with transient data.

Persistent objects are those that may live beyond the lifetime of the process that created them.
The implname property should be configured in this case. It should be set to a unique name to to
form part of the object identity. If it is not set, an exception will be thrown. This property may

3.2 Configuration Options 25

be configured in the jacorb.properties (where an example shows it set to StandardImplName) or
in the code of the server e.g.

/* create and set properties */
java.util.Properties props = new java.util.Properties();
props.setProperty("jacorb.use_imr","on");
props.setProperty("jacorb.implname","MyName");

/* init ORB */
orb = org.omg.CORBA.ORB.init(args, props);

The implname property allows a program to run with a different implementation name so that it will
not accept references created by another persistent POA with the same POA name. A common problem
is where the developer has two persistent servers running with the same implname and POA names when
one tries to contact the other. Rather than calling server x, server y performs local call. This is because
there is no way of distinguishing the two servers; the developer should have used different implnames
(e.g. UUIDs).

Corbaloc with JacORB Implname and CORBA Objects

Normally corbaloc is used to provide a shortcut to refer to CORBA objects. However the stringified key
portion corresponds to the octet sequence in the object key member of a GIOP Request or LocateRequest
header as defined in section 15.4 of CORBA 2.3. Further the key string uses the escape conventions
described in RFC 2396 to map away from octet values that cannot directly be part of a URL. This means
the key string might look like:

corbaloc:iiop:10.1.0.4:18000/FooBar/ServiceName/V_3%f1%1c%9b%11%db%b7%e9
%bdsnQ%ea%85qV_3%f0%1c%9b%11%db%b7%e9%bdsnQ%ea%85TA5%f0%1c%9b%11
%db%b7%e9%bdsnQ%ea%85

With JacORB, for persistent objects, the developer may configure the implname, poa name and object
key. This should mean that the corbaloc sequence should be more readable:

corbaloc:iiop:10.1.0.4:42811/imr_demo/ImRDemoServerPOA/imr_demo

With a transient object the key may look like:

corbaloc:iiop:10.1.0.4:42818/2649480905/%00%14%3e45%0d%0b!%10%3e

As it is not possible to construct a transient object with a readable key some developers may find
it useful to use the objectKeyMap facility within JacORB to refer to their transient objects. Note the
objectKey functionality may also be used with persistent objects.

This property provides more readable corbaloc URLs by mapping the actual object key to an ar-
bitrary string. The mapping below would permit clients of a name service to access it using cor-
baloc::ipaddress:portnum/NameService. The property also accepts the following mappings:

26 Configuration

• IOR, resource, jndi, URL (e.g. file, http)

Note that jacorb.orb.objectKeyMap.name is configurable both through the jacorb.properties file
and through the proprietary function

ORB::addObjectKey(String name, String)

Example usage

jacorb.orb.objectKeyMap.NameService=file:///home/rnc/NameSingleton.ior

This then allows the corbaloc key portion to simply be ’NameService’.

The JacORB utility dior may be used to decode IORs. This has an additional command line option
to output a corbaloc representation of an IOR. See chapter 22.

3.2.6 Network Event Logging

An enhancement has been added to JacORB that allows a developer to monitor TCP and SSL connec-
tions. Note that for both of these implementations full information may only retrieved with a successful
connection; e.g. if the connection could not be established there will be no certificates.

TCP Monitoring

To monitor TCP connections a developer should implement the following interface

package org.jacorb.orb.listener;
public interface TCPConnectionListener extends EventListener

void connectionOpened(TCPConnectionEvent e);
void connectionClosed(TCPConnectionEvent e);

The classname should then be specified in the property

jacorb.net.tcp_listener

The standard java event interface is followed; the developer’s code will receive the TCPConnection-
Event which allows the following information to be retrieved:

public String getLocalIP()
public int getLocalPort()
public String getRemoteIP()
public int getRemotePort()

Note that the TCPConnectionEvent extends java.util.EventObject and the EventObject.getSource opera-
tion will return the IIOPConnection of the TCP connection.

3.2 Configuration Options 27

SSL Monitoring

To monitor SSL sessions a developer should implement the following interface

package org.jacorb.orb.listener;
public interface SSLSessionListener extends EventListener

void sessionCreated(SSLSessionEvent e);
void handshakeException(SSLSessionEvent e);
void keyException(SSLSessionEvent e);
void peerUnverifiedException(SSLSessionEvent e);
void protocolException(SSLSessionEvent e);
void sslException(SSLSessionEvent e);

The classname should then be specified in the property

jacorb.security.ssl.ssl_listener

The standard java event interface is followed; the developer’s code will receive the SSLSessionEvent
which allows the following information to be retrieved:

public String getLocalIP()
public int getLocalPort()
public String getRemoteIP()
public int getRemotePort()
public String getRemoteDN()
public X509Certificate[] getPeerCertificateChain()

Note that getRemoteDN will simply return a concatenated string of the certificates. For that reason
it is deprecated; getPeerCertificateChain should be used instead as that allows a developer to extract
specific information from the certificate. In order to detect a succesful handshake the implementation
delegates to the JSSE javax.net.ssl.HandShakeCompletedListener. When using JDK1.3
JSSE the JSSE may not throw for instance a handshakeException but a sslException. Similar to above,
SSLSessionEvent extends java.util.EventObject. The EventObject.getSource operation will return the
source of the HandshakeCompletedEvent.

3.2.7 IORMutator

An enhancement has been added to JacORB that allows a developer to alter incoming and outgoing objects
at a very low level within the ORB. While the majority of the users would not require this ability, it is
useful within scenarios where for instance, a user is running with legacy network elements which have
multiple, identical IP addresses. This allows them to mutate the IORs as shown below.

This is a very powerful ability that must be used with caution. As it operates at the CDRStream
level it is easy to break the ORB and cause unpredictable behaviour

28 Configuration

Adding a Mutator

The developer should firstly extend the following abstract class.

package org.jacorb.orb.IORMutator;
public abstract class IORMutator

protected org.omg.ETF.Connection connection;

public abstract IOR mutateIncoming (IOR object);
public abstract IOR mutateOutgoing (IOR object);

The classname should then be specified in the property

jacorb.iormutator

The IORMutator class also has a org.omg.ETF.Connection connection variable. This vari-
able will be updated with the current transport information for the respective streams. Note, altering the
information within the transport is undefined. The mutateIncoming operation will be called for CDRIn-
putStream operations and the mutateOutgoing for CDROuputStream operations.

3.2.8 Network and Sockets

IP Addresses

On a multihomed machine the IOR will contain only one of the configured IP address (even if OAIAddr or
jacorb.ior proxy host is used). In order to add both IP addresses the developer could use an IORInterceptor
to either:

• add a second IIOPProfile with the alternate IP address and implement another ProfileSelector to
select this alternate address. See Chapter 18.

• add a TAG ALTERNATE IIOP ADDRESS component to the existing IIOPProfile and set network
connection timeouts correctly so client connection attempts to the wrong IP will eventually fail.

NAT and firewalls

Network Address Translation (NAT) frequently causes a lot of problems if internal CORBA objects need to
be accessed from outside the NAT network. Cause of these problems is that object IORs contains host’s IP
address but internal (inside the NAT) IPs are not accessible from outer network. Simplest solution is using
the jacorb.ior proxy host and DNS names instead of IP addresses. E.g. we have the 192.168.10.*
network managed by NAT. Its gateway has inner IP: 192.168.10.1 and outer IP: 10.30.102.67. Here are 2
cases:

• Client JacORB application. No additional adjustments need to be done for the client application
except firewall (if exists) configuration to allow passing the outgoing connection to the server ob-
ject(s).

3.2 Configuration Options 29

• Server or acting both client and server JacORB application. There is additional adjustments are
required.

To make server object behind the NAT accessible from outer network the following configuration steps
need to be done:

• Check that DNS name for the host is set. It should be mapped e.g. to the 192.168.10.128 IP inside
NAT and to 10.30.102.67 outside the NAT.

• Update the jacorb.properties file (host has ’server-host’ DNS name for example). Set fol-
lowing properties to:

jacorb.ior_proxy_host=server-host
jacorb.dns.enable=on

• Choose and define the server object’s port (this will allow to easy port mapping by NAT and fire-
wall). This could be done either by jacorb.properties file editing. e.g.:

OAPort=57998

where 57998 is pre-defined port number or by using the -DOAPort=57998 command line pa-
rameter. Note if OAPort parameter is defined in jacorb.properties it will be used for all
server objects that are using the same jacorb.properties file. Thus, for many server objects
command line parameter is more applicable. Also, remember that ports with numbers below the
1024 are treated as system ports and require root privileges for their creation.

• Setup port forwarding in NAT and firewall according to their configuration guides. Note that port
numbers should be the same, e,g. if server uses 15242 port it should have bound to the 15242
gateway port.

If Implementation repository is used the corresponding properties jacorb.imr.ior proxy host
and jacorb.imr.ior proxy port need to be defined similar to the jacorb.ior proxy host
and jacorb.ior proxy port.

Also, using the jacorb.ior proxy address property is more convenient but it should be defined
for each server object independently to prevent errors during ports creation.

Parameter jacorb.dns.force resolve allow to controlling host’s Fully Qualified Domain
Names (FQDN) resolution. If there is necessity to use only ”short” DNS names this parameter need
to be set to ’off’ value. Otherwise the canonical (full) hosts DNS names will be used in IORs by default.

Ports

JacORB provides a number of socket factories to allow control over the way sockets are created on both
the client and the server side.

On the server side JacORB uses jacorb.net.server socket factory and
jacorb.ssl.server socket factory to control the creation of sockets.
The default non-ssl implementation is org.jacorb.orb.factory.DefaultServerSocketFactory
which will pick any available port. Alternatively there is:

• org.jacorb.orb.factory.PortRangeServerSocketFactory which together with
the min and max values specifies a port range to use.

30 Configuration

The default ssl implementation is org.jacorb.security.ssl.sun jsse.SSLServerSocketFactory.
Note that it is also possible to override the port selection using OAPort or OASSLPort.

On the client side JacORB uses jacorb.net.socket factory and
jacorb.ssl.socket factory to control the creation of sockets.
The default non-ssl implementation is org.jacorb.orb.factory.DefaultSocketFactory
which will pick any available port. Alternatively there is:

• org.jacorb.orb.factory.FixedAddressSocketFactory which will pick a fixed
port.

• org.jacorb.orb.factory.PortRangeSocketFactory which together with the min
and max values specifies a port range to use.

The default ssl implementation is org.jacorb.security.ssl.sun jsse.SSLSocketFactory.

Custom socket factories

You may plug in custom socket factories that’ll be used by JacORB to create sockets and server sockets.
Each factory needs to implement a JacORB specific interface. To make your factory available to JacORB
you need to set the appropriate configuration property to the classname of your custom factory. See the
following sections for the available factories and their details. Please also see the javadoc documentation
of the specified interfaces for the contract your custom factories must adhere to. For convenience JacORB
also offers some abstract base classes that pre-implement some functionality and that you may choose to
subclass.

3.3 Configuration Properties 31

Socket Factory This factory is used by JacORB to create an outgoing non-SSL connection.

Table 3.1: Socket Factory Configuration
property jacorb.net.socket factory
implemented interface org.jacorb.orb.factory.SocketFactory
base class org.jacorb.orb.factory.AbstractSocketFactory

Server Socket factory This factory is used by JacORB to create a server socket for incoming non-SSL
connections.

Table 3.2: Server Socket Factory Configuration
property jacorb.net.server socket factory
implemented interface org.jacorb.orb.factory.ServerSocketFactory
base class org.jacorb.orb.factory.AbstractSocketFactory

SSL Socket Factory This factory is used by JacORB to create an outgoing SSL connection.

Table 3.3: SSL Socket Factory Configuration
property jacorb.ssl.socket factory
implemented interface org.jacorb.orb.factory.SocketFactory

SSL Server Socket factory This factory is used by JacORB to create a server socket for incoming SSL
connections.

Table 3.4: SSL Server Socket Factory Configuration
property jacorb.ssl.server socket factory
implemented interface org.jacorb.orb.factory.ServerSocketFactory

3.3 Configuration Properties

A comprehensive listing and description of the properties which are used to configure JacORB are given
in the following tables.

3.3.1 ORB Configuration

Table 3.5: ORB Configuration
Property Description Type Default

32 Configuration

Table 3.5: ORB Configuration
Property Description Type Default

ORBInitRef.<service> Properties of this form configure initial service
objects which can be resolved via the ORB re-
solve initial references. A variety of URL for-
mats are supported.

URL unset

org.omg.PortableInterc
eptor.ORBInitializerCl
ass.<name>

A portable interceptor initializer class instanti-
ated at ORB creation.

class unset

org.omg.PortableInterc
eptor.ORBInitializerCl
ass.standard_init

Standard portable interceptor. DO NOT RE-
MOVE.

class

org.omg.PortableInterc
eptor.ORBInitializerCl
ass.bidir_init

This portable interceptor must be configured to
support bi-directional GIOP

class unset

jacorb.orb.objectKeyMa
p.<name>

Maps an object key to an arbitrary string thereby
enabling better readability for corbaloc URLs.

string

jacorb.giop_minor_vers
ion

The GIOP minor version number to use for newly
created IORs

integer 2

jacorb.retries Number of retries if connection cannot directly
be established

integer 5

jacorb.retry_interval Time in milliseconds to wait between retries millisec. 500
jacorb.buffermanager.f
actory

This parameter allow to define buffer manager
factory. Here are 3 options already implemented:

1. org.jacorb.orb.DefaultBufferManagerFactory that will
create default buffer manager implemen-
tation

2. org.jacorb.orb.JDK15BufferManagerFactory that uses
JDK 1.5 (or above) buffer manager im-
plementation based on the soft references
(java.lang.ref.SoftReference).

3. org.jacorb.orb.NonCachingBufferManagerFactory that
uses simple buffer manager implementa-
tion without any caching.

Also, custom-made buffer manager facto-
ries allowed. They must implement the
org.jacorb.orb.BufferManagerFactory interface.

class org.jacorb.orb.

Default-

BufferMan-

agerFactory

3.3 Configuration Properties 33

Table 3.5: ORB Configuration
Property Description Type Default

jacorb.maxManagedBufSi
ze

This is NOT the maximum buffer size that can
be used, but just the largest size of buffers that
will be kept and managed. You only need to in-
crease this value if you are dealing with LOTS
of LARGE data structures. You may decrease it
to make the buffer manager release large buffers
immediately rather than keeping them for later
reuse. This value equates to 4MB

integer 22

jacorb.maxMessageBuffe
rSize

This is the maximum buffer size that can be used
for storing messages. Please don’t use this limit
unless you are really need it and know that all
messages sizes will be lower than limit. Default
value is 0 which means that message sizes are
unlimited

integer 0

jacorb.bufferManagerFl
ushMax

Whether to use an additional unlimited size
buffer cache for CDROutputStreams. If -1 then
off, if zero then this is feature is enabled, if
greater than zero then it is enabled and flushed
every x seconds

integer -1

jacorb.bufferManagerTh
reshold

Maximum number of buffers of the same size
held in pool.

integer 20.

34 Configuration

Table 3.5: ORB Configuration
Property Description Type Default

jacorb.buffermanager.e
xpansionpolicy

This parameter allow to define buffer manager
expansion policy. Here are 3 options already im-
plemented:

1. org.jacorb.orb.buffermanager.DefaultExpansionPolicy
that will return new buffer’s size that
bigger or equal to the requested. Sizes
calculation are performed by code:

double multiplier = scale - Math.log (requestedSize) / divider;
multiplier = (multiplier < 1.0) ? 1.0 : multiplier;
newSize = (int) Math.floor (multiplier * requestedSize);

where scale and divider parameters are
configurable (see description below).

2. org.jacorb.orb.buffermanager.LinearExpansionPolicy

that returns exactly requested size.

3. org.jacorb.orb.buffermanager.DoubleExpansionPolicy

that returns new size wich equals re-
quested size * 2.

Also, custom-made buffer manager expansion
policies are allowed. They must implement the
org.jacorb.orb.buffermanager.BufferManagerExpansionPolicy
interface. Please note that expansion policy sup-
port is implemented in the default buffer manager
implementation (org.jacorb.orb.BufferManager).
Custom-made buffer manager implementation
need to have their own expansion policy support
implementation.

class org.jacorb.orb.

bufferman-

ager.

DefaultEx-

pansionPol-

icy

jacorb.buffermanager.d
efaultexpansionpolicy.
scale

Scale parameter for the
org.jacorb.orb.buffermanager.DefaultExpansionPolicy
buffer sizes calculation (see the formula above).

float 4

jacorb.buffermanager.d
efaultexpansionpolicy.
divider

Divider parameter for the
org.jacorb.orb.buffermanager.DefaultExpansionPolicy
buffer sizes calculation (see the formula above).

float 6

3.3 Configuration Properties 35

Table 3.5: ORB Configuration
Property Description Type Default

jacorb.connection.del
ay_close

Normally, a jacorb server will close the TCP/IP
connection right after sending a CloseConnec-
tion message. However, it may occasionally
happen that the client sends a message into
the closed connection because it hasn’t han-
dled the CloseConnection yet. To avoid this
situation, closing of the TCP/IP connection
can be delayed (Delay time is controlled by
jacorb.connection.timeout after closeconnection
specified in msecs)

boolean off

jacorb.connection.cli
ent.connect_timeout

Initial timeout for establishing a connection. millisec 90000

jacorb.connection.clie
nt.pending_reply_timeo
ut

Wait the specified number of msecs for
a reply to a request. If exceeded, a
org.omg.CORBA.TIMEOUT exception will be
thrown. Not set by default

millisec. 0

jacorb.connection.clie
nt.idle_timeout

Client-side timeout. This is set to non-
zero in order to close the connection
after specified number of milliseconds
idle time. Only connections that don’t
have pending messages are closed, unless
jacorb.connection.client.timeout ignores pending messages
is turned on.

millisec. unset

jacorb.connection.clie
nt.timeout_ignores_pen
ding_messages

Controls if client-side idle timeouts take care
of pending messages or not. If ”on”, the
connection is closed regardless of any pend-
ing messages, and all pending messages are
cancelled (resulting in a COMM FAILURE, un-
less jacorb.connection.client.retry on failure is
turned on).

boolean off

jacorb.connection.clie
nt.retry_on_failure

Controls if network failures on existing connec-
tions should yield a COMM FAILURE or should
trigger a remarshaling of all pending messages.
Note that this should only be used with idempo-
tent operations because the client side ORB has
no way of knowing the processing state of the
lost request on the server.

boolean

jacorb.connection.clie
nt.ungraceful_shutdown

Allow to do ”ungraceful” client connections
shutdown which means that IIOP connection’s
connect cycle with retries will be interrupted and
connection will be available to usual close.

boolean false

36 Configuration

Table 3.5: ORB Configuration
Property Description Type Default

jacorb.connection.serv
er.timeout

Maximum time in milliseconds that a server
keeps a connection open if nothing happens

millisec. unset

jacorb.connection.serv
er.keepalive

Enable SO KEEPALIVE on server sockets. If
the OS keepalive detects a TCP/IP connection to
be broken, the effect is the same as if the TCP/IP
connection has been closed gracefully.

boolean false

jacorb.connection.clie
nt.keepalive

Enable SO KEEPALIVE on client sockets. If the
OS keepalive detects a TCP/IP connection to be
broken, the effect is the same as if the TCP/IP
connection has been closed gracefully.All pend-
ing replies will receive a COMM FAILURE.

boolean false

jacorb.connection.max
_server_connections

This property sets the maximum number of
TCP/IP connections that will be listened on by
the server–side ORB. Only effective in conjunc-
tion with the other connection management prop-
erties. Please see 17.2.

integer unlimited

jacorb.connection.wait
_for_idle_interval

This property sets the interval to wait until the
next try is made to find an idle connection to
close. Only effective in conjunction with the
other connection management properties. Please
see 17.2.

millisec 500

jacorb.connection.req
uest.write_timeout

Sets the maximum amount of time in millisec-
onds a client will spend waiting to write a re-
quest. Effective when using blocking I/O to en-
sure a hung peer will not lock up a the client. A
request that cannot be sent before the deadline
expires is discarded, the connection is closed,
and an exception is raised to the client applica-
tion.

millisec 0

jacorb.connection.rep
ly.write_timeout

Sets the maximum amount of time in millisec-
onds a server will spend waiting to write a re-
ply. Effective when using blocking I/O to ensure
a hung peer will not lock up a the server. A reply
that cannot be sent before the deadline expires is
discarded and the connection is closed.

millisec 0

jacorb.listener.server
_socket_timeout

Sets a timeout on the (SSL) server socket. This
is a workaround for JDK 1.3 on linux where
a thread blocked on accept() isn’t notified
when closing that socket. Default is 0, i.e. off.
See Java bug #4344135. NOTE: This is only use-
ful in conjunction with the SI&C SSL socket fac-
tories.

millisec 0

3.3 Configuration Properties 37

Table 3.5: ORB Configuration
Property Description Type Default

jacorb.connection.sele
ction_strategy_class

This property sets the SelectionStrategy.
Only effective in conjunction with the other con-
nection management properties. Please see 17.2.

class

jacorb.connection.stat
istics_provider_class

This property sets the Statistics-
Provider. Only effective in conjunction
with the other connection management proper-
ties. Please see 17.2.

class

jacorb.connection.del
ay_close

This property controls the behaviour after send-
ing a GIOP CloseConnection messsage. If set to
“on”, the TCP/IP connection won’t be closed di-
rectly. Instead, it is waited for the client to do so
first. Please see 17.2.

boolean off

jacorb.listener.server
_socket_timeout

Sets a timeout on the (SSL) server socket. This
is a workaround for JDK 1.3 on linux where
a thread blocked on accept() isn’t notified
when closing that socket. Default is 0, i.e. off.
See Java bug #4344135. NOTE: This is only use-
ful in conjunction with the SI&C SSL socket fac-
tories.

millisec 0

jacorb.transport.facto
ries

This property controls which transport plug-ins
are available to the ORB. The value is a list of
classes that implement the ETF Factories in-
terface.

comma-
separated
list of
classes

jacorb.transport.serve
r.listeners

Controls which transports should be offered by
JacORB on the server side. The value is a list
of numeric profile tags for each transport that
should be available on the server side.

comma-
separated
list of
integers

jacorb.transport.clien
t.selector

Name of a class that selects the trans-
port profile to use for communication on
the client side. The value is the fully
qualified name of a class that implements
org.jacorb.orb.ProfileSelector.

class

jacorb.reference_cachi
ng

Whether or not JacORB caches objects refer-
ences

boolean unset

38 Configuration

Table 3.5: ORB Configuration
Property Description Type Default

jacorb.hashtable_class The following property specifies the class which
is used for reference caching. WeakHashtable
uses WeakReferences, so entries get garbage col-
lected if only the Hashtable has a reference to
them. This is useful if you have many references
to short-living non-persistent CORBA objects. It
is only available for java 1.2 and above. On the
other hand the standard Hashtable keeps the ref-
erences until they are explicitly deleted by call-
ing release(). This is useful for persistent and
long-living CORBA objects

class Hashtable

jacorb.use_bom Use GIOP 1.2 byte order markers, since CORBA
2.4-5

boolean off

jacorb.giop.add_1_0_pr
ofiles

Add additional IIOP 1.0 profiles even if using
IIOP 1.2

boolean off

jacorb.dns.enable Use DNS names in IORs, rather than numeric IP
addresses

boolean off

jacorb.dns.eager_resolveresolve DNS names in IORs eagerly boolean on
jacorb.dns.force_lookup Forces FQDN host name reverse lookup. Turn

off if ”short” host name need to be used in IORs
boolean on

jacorb.compactTypecode
s

Whether to send compact typecodes. Options are
off or on (full compaction of all optional param-
eters). See 3.2.3

boolean off

jacorb.cacheTypecodes Whether to cache read typecodes boolean off
jacorb.cachePoaNames Whether to cache poa names as an optimisation

to save reparsing portions of the object key
boolean off

jacorb.orb_initializer
.fail_on_error

Control, if failing ORBInitializers should make
the complete ORB.init() fail.

boolean off

jacorb.acceptor_
exception_listener
_class

A class implementing interface
org.jacorb.orb.listener.AcceptorException-
Listener. The implementation will be no-
tified of any exception caught by the thread
doing the ServerSocket.accept() and
has the chance of taking appropriate action, e.g.
shutting down the ORB. The default implemen-
tation will shutdown the ORB on all Errors and
SSLExceptions.

String
(class-
name)

org.jacorb
.orb.listener.DefaultAcceptorExceptionListener

jacorb.interop.indirec
tion_encoding_disable

Turn off indirection encoding for repeated type-
codes. This fixes interoperability with certain
broken ORB’s eg. Orbix 2000

boolean off

3.3 Configuration Properties 39

Table 3.5: ORB Configuration
Property Description Type Default

jacorb.interop.comet Enable additional buffer length checking and
adjustment for interoperability with Comet
CORBA/COM bridge which can incorrectly en-
code buffer lengths

boolean off

jacorb.interop.lax_
boolean_encoding

Treat any non zero CDR encoded boolean value
as true (strictly should be 1 not non zero). This is
useful for ORBs such as VisiBroker and ORBa-
cus

boolean off

jacorb.net.tcp_listene
r

Defines a listener for TCP connection events. See
3.2.6.

string disabled

jacorb.enhanced_thread
_name

Temporarily adds connection endpoints and time
(in milliseconds) that the thread started to the
Thread name. To be used to correlate running
threads with entries in debug logs.

string off

jacorb.disableClientOr
bPolicies

Disable client side ORB policies for speed. boolean off

jacorb.disableServiceC
ontextNegotiation

Disable sending or processing extra service
contexts on initial negotiation which disables
JacORB’s optimised key handling.

boolean off

jacorb.key.cacheSize Default size of the cache for optimised key han-
dling. Only used if disableServiceContextNego-
tiation is not turned on.

integer 1000

jacorb.ipv6.hide_zoni
d

By default JacORB will remove the ZoneID so
IORs will work off-host.

boolean on

jacorb.enablleNullStri
ng

Whether to allow null strings to be marshalled or
unmarshalled.

boolean off

jacorb.native_char_cod
eset

Overrides the detection from the local environ-
ment for the codeset used to transmit characters.
Note that this property is only effective once per
JVM.

string off

jacorb.native_wchar_co
deset

Overrides the detection from the local environ-
ment for the codeset used to transmit wide char-
acters. ote that this property is only effective
once per JVM.

string off

jacorb.codeset Enabling this will do codeset translation on mar-
shalling. Disabling it will force JacORB to ig-
nore all codeset component info profiles and to
disable translation on marshalling.

boolean off

Note: The class org.jacorb.orb.giop.CodeSet provides a main method to aid debugging of
codeset issues. It will print out the current system encoding values. If the developer is running under
a Unix based system and passes the argument -a it will also print out the current locale and all known

40 Configuration

locales.

3.3.2 Network Configuration

Table 3.6: Network Configuration
Property Description Type Default

jacorb.ior_proxy_addre
ss

Used to supply an alternative endpoint in lo-
cally created object references. This is intended
for servers that export IORs for access from
outside a firewall. The general form of the
value is <protocol>://<address>. The
protocol name in the value must match the
protocol(s) used by the server. For example:
iiop://myhost:1234. The given address is
inserted into every IOR that the local ORB pro-
duces, without any check whether the address is
valid, except that the protocol must be supported
by the ORB, and the address must be parsable
for that protocol. This property supercedes
jacorb.ior proxy host and jacorb.ior proxy port.

string unset

jacorb.ior_proxy_host The properties jacorb.ior proxy host and
jacorb.ior proxy port have been superceded by
jacorb.ior proxy address (see above), which is
a protocol-independent way of specifying end-
point addresses. The host/port properties are still
recognized, but if jacorb.ior proxy address is
specified, it overrides these properties. Note that
the value that ends up in the IOR also is affected
by the setting of the property jacorb.dns.enable.

node unset

jacorb.ior_proxy_port See jacorb.ior proxy host and
jacorb.ior proxy address above

port unset

OAAddress Used to supply an explicit listener protocol
and address for servers. The general form
of the value is <protocol>://<address>.
The protocol name must match the proto-
col(s) used by the server. For example:
iiop://myhost:1234. This property su-
percedes OAIAddr and OAPort.

string unset

3.3 Configuration Properties 41

Table 3.6: Network Configuration
Property Description Type Default

OAIAddr The Object Adapter Internet Address: IP address
on multi-homed host (this gets encoded in object
references).

• Addresses like 127.0.0.X will only be ac-
cessible from the same machine!

• If OAIAddr is not set on a multi-homed
host it is operating system/JVM dependant
which IP address is selected.

• If the developer is trying to use callbacks
(not bidirectional GIOP) on a multihomed
host the client will also require OAIAddr
set as it is acting as a server.

node unset

OAPort See OAIAddr above (ignored if OAAddress is
set)

port unset

jacorb.net.socket_fact
ory

Sets or defines the socket factory. See section
3.2.8 for details.

class

jacorb.net.server_sock
et_factory

Sets or defines the server socket factory. See sec-
tion 3.2.8 for details.

class

jacorb.net.socket_fact
ory.port.min

Sets the minimum port number that can be
used for an additional supported socket fac-
tory. This property is used in conjunction with
the jacorb.net.socket factory.port.max property.
These properties enable the factory to traverse
firewalls through a fixed port range

integer unset
(dis-
abled)

jacorb.net.socket_fact
ory.port.max

Sets the maximum port number that can be used
for the additional supported socket factory. Refer
to jacorb.net.socket factory.port.min above

integer disabled

3.3.3 Logging Configuration

Table 3.7: Logging Configuration
Property Description Type Default

jacorb.orb.print_versi
on

If enabled, the ORB’s version number is printed
whenever the ORB is initialized.

boolean on

jacorb.log.logger Name of the logger factory class, can be used class org.jacorb.util

LogFactory to plug in different log implementations LogKitLoggerFactory

42 Configuration

Table 3.7: Logging Configuration
Property Description Type Default

jacorb.log.default.
verbosity

Log levels: 0 = fatal errors, 1 = error, 2 = warn-
ing, 3 = info, 4 = debug

integer 0

jacorb.logfile Output destination for diagnostic log file. If not
set, diagnostics are sent to standard error.

filename unset

jacorb.logfile.append Whether to append to existing log file or over-
write (if file logging)

boolean off

jacorb.logfile.maxLogS
ize

If appending to a file sets the size in kilobytes at
which the file is rolled over

integer 0

jacorb.debug.dump_outg
oing_messages

Hex dump outgoing messages boolean off

jacorb.debug.dump_inco
ming_messages

Hex dump incoming messages boolean off

3.3.4 POA Configuration

Table 3.8: POA Configuration
Property Description Type

jacorb.poa.monitoring Displays a GUI monitoring tool for servers. Default is off. boolean
jacorb.poa.thread_pool
_max

Maximum thread pool configuration for request processing integer

jacorb.poa.thread_pool
_min

Minimum thread pool configuration for request processing integer

jacorb.poa.thread_pool
_shared

If set use shared thread pool between all POAs. Only with
ORB CTRL MODEL. Default is off.

boolean

jacorb.poa.thread_prio
rity

If set, request processing threads in the POA will run at
this priority. If not set or invalid, MAX PRIORITY will be
used. Not set by default.

integer

jacorb.poa.queue_wait Specifies whether the POA should block when the request
queue is full (On), or throw TRANSIENT exceptions (Off).
Default is Off.

boolean

jacorb.poa.queue_max The maximum length of the request queue. If this
length has been reached, and further requests arrive,
jacorb.poa.queue wait specifies what to do. Default is 100.

integer

jacorb.poa.queue_min If jacorb.poa.queue wait is On, and the request queue gets
full, then the POA blocks until the queue contains no more
than queue min requests. Default is 10.

integer

3.3.5 Security Configuration

3.3 Configuration Properties 43

Table 3.9: Security Configuration
Property Description Type

jacorb.security.suppor
t_ssl

Whether SSL security is supported. Default is off. boolean

OASSLPort The port number used by SSL, will be dynamically as-
signed by default.

port

org.omg.PortableInterc
eptor.ORBInitializerCl
ass.ForwardInit

Portable interceptor required to support SSL. This inter-
ceptor must be set if programs need access to certificates
using the CORBA Security API, SSL works also with-
out this interceptor. Not set by default and may be set to
org.jacorb.security.ssl..sun jsse.SecurityServiceInitializer.

class

jacorb.ssl.socket_fact
ory

The qualified classname of the SSL socket factory class.
See section 3.2.8 for details.

class

jacorb.ssl.server_sock
et_factory

The qualified classname of the SSL server socket factory
class. See section 3.2.8 for details.

class

jacorb.security.ssl.cl
ient.supported_options

SSL client supported options - IIOP/SSL parameters (num-
bers are hex values, without the leading 0x):

1. NoProtection = 1

2. EstablishTrustInClient = 40

3. EstablishTrustInTarget = 20

4. Mutual authentication = 60

Default is 0. Please see the programming guide for more
explanation.

integer

jacorb.security.ssl.cl
ient.required_options

SSL client required options (See IIOP/SSL parameters
above). Default is 0.

integer

jacorb.security.ssl.se
rver.supported_options

SSL server supported options (See IIOP/SSL parameters
above). Default is 0.

integer

jacorb.security.ssl.se
rver.required_options

SSL server required options (See IIOP/SSL parameters
above). Default is 0.

integer

jacorb.security.ssl.co
rbaloc_ssliop.supporte
d_options

Used in conjunction with
jacorb.security.ssl.corbaloc ssliop.required options. If
these properties are set, then two values will be placed
in the IOR, ”corbaloc:ssliop” and ”ssliop”. If not set,
only EstablishTrustInTarget is used for both supported and
required options.

integer

jacorb.security.ssl.co
rbaloc_ssliop.required
_options

Default is 0. integer

44 Configuration

Table 3.9: Security Configuration
Property Description Type

jacorb.security.keysto
re

The name and location of the keystore. This may be ab-
solute or relative to the home directory. NOTE (for Sun
JSSE users): The javax.net.ssl.trustStore [Password] prop-
erties doesn’t seem to take effect, so you may want to add
trusted certificates to normal keystores. In this case, please
set the property jacorb.security.jsse.trustees from ks to on,
so trusted certificates are taken from the keystore instead
of a dedicated truststore.

file

jacorb.security.keysto
re_password

The keystore password. string

jacorb.security.jsse.c
lient.trust_manager

A user defined javax.net.ssl.TrustManager implemementa-
tion class name. Will be used to intialise the SSLContext.
See JSSE docs for javax.net.ssl.SSLContext#init(). Must
be capable of instantiation via a no arg constructor.

string

jacorb.security.jsse.s
erver.trust_manager

A user defined javax.net.ssl.TrustManager implemementa-
tion class name. Will be used to intialise the SSLContext.
See JSSE docs for javax.net.ssl.SSLContext#init(). Must
be capable of instantiation via a no arg constructor.

string

jacorb.security.keysto
re_type

The SSL keystore type. Defaults to JKS. string

jacorb.security.jsse.s
erver.key_manager_a
lgorithm

The algorithm used to initialise the SSL socket factories.
Defaults to SunX509. Change to IbmX509 for IBM JDKs.

string

jacorb.security.jsse.s
erver.trust_manager_a
lgorithm

The algorithm used to initialise the SSL socket factories.
Defaults to SunX509. Change to IbmX509 for IBM JDKs.

string

jacorb.security.jsse.c
lient.key_manager_a
lgorithm

The algorithm used to initialise the SSL socket factories.
Defaults to SunX509. Change to IbmX509 for IBM JDKs.

string

jacorb.security.jsse.c
lient.trust_manager_a
lgorithm

The algorithm used to initialise the SSL socket factories.
Defaults to SunX509. Change to IbmX509 for IBM JDKs.

string

jacorb.security.jsse.t
rustees_from_ks

Sun JSSE specific settings: Use the keystore to take trusted
certificates from. Default is off.

boolean

jacorb.security.ssl.se
rver.cipher_suites

A comma-separated list of cipher suite names which must
NOT contain whitespaces. See the JSSE documents on
how to obtain the correct cipher suite strings.

string

jacorb.security.ssl.cl
ient.cipher_suites

See jacorb.security.ssl.server.cipher suites above. string

jacorb.security.ssl.cl
ient.protocols

Sun JSSE specific settings: Comma separated list of names
of protocols to be set. See the JSSE documentation for
javax.net.ssl.SSLSocket#setEnabledProtocols().

string

3.3 Configuration Properties 45

Table 3.9: Security Configuration
Property Description Type

jacorb.security.ssl.se
rver.protocols

Sun JSSE specific settings: Comma separated list of names
of protocols to be set. See the JSSE documentation for
javax.net.ssl.SSLSocket#setEnabledProtocols().

string

jacorb.security.random
classPlugin

Classname for secure random plugin. See 11.3 string

jacorb.security.ssl.ss
l_listener

Defines a listener for SSL connection events. See 3.2.6. string

jacorb.security.ssl.al
ways_open_unsecured_en
dpoint

Default is FALSE. The secure interoperabilty spec states
that targets that require SSL shall not open (or publicise in
their IORs) an unsecured listen port. Some ORBs (we’re
looking at you, MICO) apparently don’t like this. Setting
this switch to TRUE will override the correct behaviour
for interoperability. Attempts to access the unsecured port
should be met with a NO PERMISSION exception.

boolean

Table 3.10: Security Attribute Service (SAS) Configuration
Property Description Type

jacorb.security.sas
contextClass

Defines the specific SAS context generator/validator. Cur-
rently supported contexts include:

1. NullContext - Sends a NULL SAS Context

2. GssUpContext - Uses GSSUP security

3. KerberosContext - uses Kerberos security

At least one context must be selected for SAS support

string

rg.omg.PortableInterc
eptor.ORBInitializerC
lass.SAS

This initializer installs the SAS interceptors. string

rg.omg.PortableInterc
eptor.ORBInitializerC
lass.GSSUPProvider

This option is used for GSSUP security and sets up the
GSS Provider.

string

jacorb.security.sas
.stateful

Whether to support stateful contexts. Default true. boolean

jacorb.security.sas
.tss.requires_sas

Whether SSL connection is required. Default false. boolean

3.3.6 Name Service Configuration

46 Configuration

Table 3.11: Name service Configuration
Property Description Type

jacorb.naming.log. The log level for the name
verbosity service. Defaults to jacorb.log.default.verbosity 0-4
jacorb.naming.purge Whether non-active references are purged from name ser-

vice when list operation is invoked. Default is off
on or off

jacorb.naming.noping Whether resolve should return references without trying to
ping them to see if they’re still alive first. Default is ping
(off)

on or off

jacorb.naming. The file where the name server string
ior_filename drops its IOR (default unset)

4 Getting Started

Before we explain an example in detail, we look at the general process of developing CORBA applications
with JacORB. We’ll follow this roadmap when working through the example. The example can be found
in demo/grid which also contains a build file so that the development steps do not have to be carried
out manually every time. Still, you should know what is going on.

As this document gives only a short introduction to JacORB programming and does not cover all the
details of CORBA IDL, we recommend that you also look at the other examples in the demo/ directory.
These are organized so as to show how the different aspects of CORBA IDL can be used with JacORB.

4.1 JacORB development: an overview

The steps we will generally have to take are:

1. write an IDL specification.

2. compile this specification with the IDL compiler to generate Java classes (Java interfaces, helper
and holder classes, as well as stubs and skeletons).

3. write an implementation for the Java interface generated in step 2

4. write a “Main” class that instantiates the server implementation and registers it with the ORB

5. write a client class that retrieves a reference to the server object and makes remote invocations, i.e.
CORBA calls.

4.2 IDL specifications

Our example uses a simple server the definition of which should be clear if you know IDL. Its interface is
given in server.idl. All the source code for this example can be found in JacORB2 3/demo/grid.

// server.idl
// IDL definition of a 2-D grid:
module demo
{

module grid
{

interface MyServer
{

48 Getting Started

typedef fixed <5,2> fixedT;

readonly attribute short height; // height of the grid
readonly attribute short width; // width of the grid

// set the element [n,m] of the grid, to value:
void set(in short n, in short m, in fixedT value);

// return element [n,m] of the grid:
fixedT get(in short n, in short m);

exception MyException
{

string why;
};

short opWithException() raises(MyException);
};

};
};

4.3 Generating Java classes

Feeding this file into the IDL compiler

$ idl -d ./generated server.idl

produces a number of Java classes that represent the IDL definitions. This is done according to a set of
rules known as the IDL-to-Java language mapping as standardized by the OMG. If you are interested in
the details of the language mapping, i.e. which IDL language construct is mapped to which Java language
construct, please consult the specifications available from http://www.omg.org. The language map-
ping used by the JacORB IDL compiler is the one defined in CORBA 2.3 and is explained in detail in
[BVD01]. For practical usage, please consult the examples in the demo directory.

The most important Java classes generated by the IDL compiler are the interfaces MyServer and
MyServerOperations, and the stub and skeleton files MyServerStub, MyServerPOA and
MyServerPOATie. We will use these classes in the client and server as well as in the implementa-
tion of the grid’s functionality and explain each in turn.

Note that the IDL compiler will produce a directory structure for the generated code that corresponds to
the module structure in the IDL file, so it would have produced a subdirectory demo/grid in the current
directory had we not directed it to put this directory structure to ./generated by using the compiler’s
-d switch. Where to put the source files for generated classes is a matter of taste. Some people prefer
to have everything in one place (as using the -d option in this way achieves), others like to have one
subdirectory for the generated source code and another for the output of the Java compiler, i.e. for the
.class files.

4.4 Implementing the interface 49

4.4 Implementing the interface

Let’s try to actually provide an implementation of the functionality promised by the interface. The class
which implements that interface is called gridImpl. Apart from providing a Java implementation for
the operations listed in the IDL interface, it has to inherit from a generated class that both defines the Java
type that represents the IDL type MyServer and contains the code needed to receive remote invocations
and return results to remote callers. This class is MyServerPOA.

You might have noticed that this approach is impractical in situations where your implementation class
needs to inherit from other classes. As Java only has single inheritance for implementations, you would
have to use an alternative approach — the “tie”–approach — here. The tie approach will be explained
later.

Here is the Java code for the grid implementation. It uses the Java library class
java.math.BigDecimal for values of the IDL fixed–point type fixedT:

package demo.grid;

/**
* A very simple implementation of a 2-D grid

*/

import demo.grid.MyServerPackage.MyException;

public class gridImpl
extends MyServerPOA

{
protected short height = 31;
protected short width = 14;
protected java.math.BigDecimal[][] mygrid;

public gridImpl()
{

mygrid = new java.math.BigDecimal[height][width];
for(short h = 0; h < height; h++)
{

for(short w = 0; w < width; w++)
{

mygrid[h][w] = new java.math.BigDecimal("0.21");
}

}
}

public java.math.BigDecimal get(short n, short m)
{

if((n <= height) && (m <= width))

50 Getting Started

return mygrid[n][m];
else

return new java.math.BigDecimal("0.01");
}

public short height()
{

return height;
}

public void set(short n, short m, java.math.BigDecimal value)
{

if((n <= height) && (m <= width))
mygrid[n][m] = value;

}

public short width()
{

return width;
}

public short opWithException()
throws demo.grid.MyServerPackage.MyException

{
throw new demo.grid.MyServerPackage.MyException("This is only a test exception, no harm done :-)");

}
}

4.5 Writing the Server

To actually instantiate a gridImpl object which can be accessed remotely as a CORBA object of type
MyServer, you have to instantiate it in a main method of some other class and register it with a compo-
nent of the CORBA architecture known as the Object Adapter. Here is the class Server which does all
that is necessary to activate a CORBA object of type MyServer from a Java gridImpl object:

package demo.grid;

import java.io.*;
import org.omg.CosNaming.*;

public class Server
{

public static void main(String[] args)
{

4.5 Writing the Server 51

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
try
{

org.omg.PortableServer.POA poa =
org.omg.PortableServer.POAHelper.narrow(

orb.resolve_initial_references("RootPOA"));

poa.the_POAManager().activate();

org.omg.CORBA.Object o = poa.servant_to_reference(new gridImpl());

if(args.length == 1)
{

// write the object reference to args[0]

PrintWriter ps = new PrintWriter(
new FileOutputStream(

new File(args[0])));
ps.println(orb.object_to_string(o));
ps.close();

}
else
{

// register with the naming service

NamingContextExt nc =
NamingContextExtHelper.narrow(

orb.resolve_initial_references("NameService"));
nc.bind(nc.to_name("grid.example"), o);

}
}
catch (Exception e)
{

e.printStackTrace();
}
orb.run();

}
}

After initializing the ORB we need to obtain a reference to the object adapter — the POA — by asking
the ORB for it. The ORB knows about a few initial references that can be retrieved using simple names
like “RootPOA”. The returned object is an untyped reference of type CORBA.Object and thus needs
to be narrowed to the correct type using a static method narrow() in the helper class for the type in
question. We now have to activate the POA because any POA is created in “holding” state in which it
does not process incoming requests. After calling activate() on the POA’s POAManager object, the

52 Getting Started

POA is in an active state and can now be asked to create a CORBA object reference from a Java object
also know as a Servant.

In order to make the newly created CORBA object accessible, we have to make its object reference
available. This is done using a publicly accessible directory service, the naming server. A reference to the
naming service is obtained by calling orb.resolve initial references("NameService")
on the ORB and narrowing the reference using the narrow() method found in class
org.omg.CosNaming.NamingContextExtHelper. Having done this, you should call the
bind() operation on the name server. The name for the object which has to be supplied as
an argument to bind() is not simply a string. Rather, you need to provide a sequence of
CosNaming.NameComponents that represent the name. In the example, we chose to use an ex-
tended Name Server interface that provides us with a more convenient conversion operation from strings
to Names.

4.6 Writing a client

Finally, let’s have a look at the client class which invokes the server operations:

package demo.grid;

import org.omg.CosNaming.*;

public class Client
{

public static void main(String args[])
{

try
{

MyServer grid;
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

if(args.length==1)
{

// args[0] is an IOR-string
grid = MyServerHelper.narrow(orb.string_to_object(args[0]));

}
else
{

NamingContextExt nc =
NamingContextExtHelper.narrow(

orb.resolve_initial_references("NameService"));

grid = MyServerHelper.narrow(
nc.resolve(nc.to_name("grid.example")));

4.6 Writing a client 53

}

short x = grid.height();
System.out.println("Height = " + x);

short y = grid.width();
System.out.println("Width = " + y);

x -= 1;
y -= 1;

System.out.println("Old value at (" + x + "," + y +"): " +
grid.get(x,y));

System.out.println("Setting (" + x + "," + y +") to 470.11");

grid.set(x, y, new java.math.BigDecimal("470.11"));

System.out.println("New value at (" + x + "," + y +"): " +
grid.get(x,y));

try
{

grid.opWithException();
}
catch (jacorb.demo.grid.MyServerPackage.MyException ex)
{

System.out.println("MyException, reason: " + ex.why);
}

}
catch (Exception e)
{

e.printStackTrace();
}

}
}

After initializing the ORB, the client obtains a reference to the “grid” service by locating the reference
using the name service. Again, resolving the name is done by getting a reference to the naming service by
calling orb.resolve initial references("NameService") and querying the name server
for the "grid" object by calling resolve(). The argument to the resolve operation is, again, a string
that is converted to a Name. The result is an object reference of type org.omg.CORBA.Object which
has to be narrowed to the type we are expecting, i.e. MyServer.

After compiling everything we’re now ready to actually run the server and the client on different (vir-
tual) machines. Make sure the name server is running before starting either the server or the client.

54 Getting Started

You can now launch the server:

$ jaco demo.grid.Server

The client can be invoked on any machine you like:

$ jaco demo.grid.Client

Running the client after starting the server produces the following output on your terminal:

Height = 31
Width = 14
Old value at (30,13): 0.21
Setting (30,13) to 470.11
New value at (30,13): 470.11
MyException, reason: This is only a test exception, no harm done :-)
done.

4.6.1 The Tie Approach

If your implementation class cannot inherit from the generated servant class MyServerPOA because,
e.g., you need to inherit from another base class, you can use the tie approach. Put simply, it replaces
inheritance by delegation. Instead of inheriting from the generated base class, your implementation needs
to implement the generated operations interface MyServerOperations:

package demo.grid;

import demo.grid.MyServerPackage.MyException;

public class gridOperationsImpl
implements MyServerOperations

{
...
}

Your server is then written as follows:

package demo.grid;

import java.io.*;
import org.omg.CosNaming.*;

public class TieServer
{

public static void main(String[] args)
{

4.6 Writing a client 55

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(args, null);

try
{

org.omg.PortableServer.POA poa =
org.omg.PortableServer.POAHelper.narrow(

orb.resolve_initial_references("RootPOA"));

// use the operations implementation and wrap it in
// a tie object

org.omg.CORBA.Object o =
poa.servant_to_reference(

new MyServerPOATie(new gridOperationsImpl()));

poa.the_POAManager().activate();

if(args.length == 1)
{

// write the object reference to args[0]

PrintWriter ps = new PrintWriter(
new FileOutputStream(new File(args[0])));

ps.println(orb.object_to_string(o));
ps.close();

}
else
{

NamingContextExt nc =
NamingContextExtHelper.narrow(

orb.resolve_initial_references("NameService"));
NameComponent [] name = new NameComponent[1];
name[0] = new NameComponent("grid", "whatever");
nc.bind(name, o);

}
}
catch (Exception e)
{

e.printStackTrace();
}
orb.run();

}
}

56 Getting Started

4.6.2 Using Object. release

Previously org.jacorb.orb.Delegate overrode java.lang.Object::finalize in order to
call release when a client-side stub was garbage collected. In effect it caused the Delegate to unregister
itself from the underlying GIOPConnection and if there were no other Delegates using that connection, it
was closed and disposed of altogether.

However, as this has performance and scalability issues the finalize was removed. This moves the re-
sponsiblity to the developer whom is now responsible for calling the CORBA. release method themselves.

5 The JacORB Name Service

Name servers are used to locate objects using a human–readable reference (their name) rather than a
machine or network address. If objects providing a certain service are looked up using the service name,
their clients are decoupled from the actual locations of the objects that provide this service. The binding
from name to service can be changed without the clients needing to know.

JacORB provides an implementation of the OMG’s Interoperable Naming Service (INS) which sup-
ports binding names to object references and to lookup object references using these names. It also allows
clients to easily convert names to strings and vice versa. The JacORB name service comprises two com-
ponents: the name server program, and a set of interfaces and classes used to access the service.

One word of caution about using JDK 1.2 with the JacORB naming service: JDK 1.2 comes with a
couple of outdated and apparently buggy naming service classes that do not work properly with JacORB.
To avoid having these classes loaded and used inadvertently, please make sure that you always use the
NamingContextExt interface rather than the plain NamingContext interface in your code. Other-
wise, you will see your application receive null pointer or other exceptions.

5.1 Running the Name Server

The JacORB name server is a process that needs to be started before the name service can be accessed by
programs. Starting the name server is done by typing on the command line either simply

$ ns [-Djacorb.naming.ior filename=<filename>] [-DOAPort=port]
[-Djacorb.naming.time out=<timeout>]

You can also start the Java interpreter explicitly by typing

$ jaco jacorb.naming.NameServer [-Djacorb.naming.ior filename=<filename>]
[-DOAPort=port] [-Djacorb.naming.time out=<timeout>]

In the example

$ ns -Djacorb.naming.ior filename=/home/me/public html/NS Ref

we direct the name server process to write location information (its own object reference) to the file
/home/me/public html/NS Ref. A client–side ORB uses this file to locate the name server pro-
cess. The client–side ORB does not, however, need to be able to access the file through a local or shared
file system because the file is read as a resource by using a URL pointing to it. This implies that the name
server log file is accessible through a URL in the first place, i.e., that you know of a web server in your
domain which can answer HTTP request to read the file.

The advantage of this approach is that clients do not need to rely on a hard–coded well known port and

58 The JacORB Name Service

that the name server is immediately available world–wide if the URL uses HTTP. If you want to restrict
name server visibility to your domain (assuming that the log file is on a shared file system accessible
throughout your domain) or you do not have access to a web server, you can use file URLs rather than
HTTP URLs, i.e. the URL pointing to your name server log file would looks like

file:/home/brose/public html/NS Ref

rather than

http://www.inf.fu-berlin.de/˜brose/NS_Ref

Specifying file URLs is also useful is clients and servers are run on a single machine that may have no
network connection at all. Please note that the overhead of using HTTP is only incurred once — when the
clients first locate the name server. Subsequent requests will use standard CORBA operation invocations
which means they will be IIOP requests (over TCP). In JacORB 1.4, the file name argument was made
optional because the JacORB 1.4 name server also answers requests that are made using simplified cor-
baloc: URLs of the form corbaloc::ip-address:port/NameService. This means that all you
need to know to construct an object reference to your name service is the IP address of the machine and
the port number the server process is listening on (the one specified using -DOAPort=<port>).

The name server stores its internal state, i.e., the name bindings in its context, in files in the current
directory unless the property jacorb.naming.db dir is set to a different directory name. This saving
is done when the server goes down regularly, i.e. killing the server with CTRL-C will result in loss of
data. The server will restore state from its files if any files exist and are non–empty.

The second parameter is a port number on which you want the name service to listen for incoming
requests. If this parameter is not set, the name server will come up on the first free port it is provided with
by the operating system. The port number can also be set using specific properties in the properties file,
but the -DOAPort=¡port¿ switch was added merely for convenience.

The last parameter is a time–out value in msecs. If this value is set, the name server will shut down
after the specified amount of time and save its state. This is useful if the name server is registered with the
Implementation Repository and can thus be restarted on demand.

Configuring a Default Context

Configuring a naming context (i.e. a name server) as the ORB’s default or root context is done by simply
writing the URL that points to this server’s bootstrap file to the properties file .jacorb properties.
Alternatively, you can set this file name in the property ORBInitRef.NameService either on
the command line or within the application as described in 2.2. After the default context has thus
been configured, all operations on the NamingContextExt object that was retrieved by a call to
orb.resolve initial references("NameService") will go to that server — provided it’s
running or can be started using the Implementation Repository.

5.2 Accessing the Name Service

The JacORB name service is accessed using the standard CORBA defined interface:

5.3 Constructing Hierarchies of Name Spaces 59

// get a reference to the naming service
ORB orb = ORB.init(args, null);
org.omg.CORBA.Object o = orb.resolve_initial_references("NameService")
NamingContextExt nc = NamingContextExtHelper.narrow(o);

// look up an object
server s = serverHelper.narrow(nc.resolve(nc.to_name("server.service")));

Before an object can be looked up, you need a reference to the ORB’s name service. The standard way
of obtaining this reference is to call orb.resolve initial references("NameService").
In calls using the standard, extended name service interface, object names are represented as arrays of
NameComponents rather than as strings in order to allow for structured names. Therefore, you have
to construct such an array and specify that the name’s name is ”server” and that it is of kind “service”
(rather than “context”). Alternatively, you can convert a string “server.service” to a name by calling the
NamingContextExt interface’s to name() operation, as shown above.

Now, we can look up the object by calling resolve() on the naming context, supplying the array as
an argument.

5.3 Constructing Hierarchies of Name Spaces

Like directories in a file system, name spaces or contexts can contain other contexts to allow hierarchical
structuring instead of a simple flat name space. The components of a structured name for an object thus
form a path of names, with the innermost name space directly containing the name binding for the object.
This can very easily be done using NameManager but can also be explicitly coded.

A new naming context within an enclosing context can be created using either new context() or
bind new context(). The following code snippet requests a naming context to create an inner or
subcontext using a given name and return a reference to it:

// get a reference to the naming service
ORB orb = ORB.init();
org.omg.CORBA.Object o =

orb.resolve_initial_references("NameService");
NamingContextExt rootContext =

NamingContextExtHelper.narrow(o);

// look up an object
NameComponent[] name = new NameComponent[1];
name[0] = new NameComponent("sub","context");
NamingContextExt subContext =

NamingContextExtHelper.narrow(rootContext.bind_new_context(name));

Please note that the JacORB naming service always uses NamingContextExt objects internally,
even if the operation signature indicates NamingContext objects. This is necessary because of the
limitations with JDK 1.2 as explained at the beginning of this section.

60 The JacORB Name Service

5.4 NameManager — A simple GUI front-end to the
Naming Service

The graphical front-end to the name service can be started by calling

$ nmg

The GUI front-end will simply look up the default context and display its contents. Figure 5.1 gives a
screen shot.

Figure 5.1: NameManager Screenshot

NameManager has menus that let you bind and unbind names, and create or delete naming contexts
within the root context. Creating a nested name space, e.g., can be done by selecting the RootContext
and bringing up a context by clicking the right mouse button. After selecting “new context” from that
menu, you will be prompted to enter a name for the new, nested context.

6 The Server side: POA, Threads

This chapter describes the facilities offered by JacORB for controlling how servers are started and exe-
cuted. These include an activation daemon, the Portable Object Adapter (POA), and threading.

This chapter gives only a very superficial introduction to the POA. A thorough explanation of how the
POA can be used in different settings and of the different policies and strategies it offers is beyond our
scope here, but can be found in [BVD01]. Other references that explain the POA are [HV99, Vin98]. More
in–depth treatment in C++ can be found in the various C++-Report Columns on the POA by Doug Schmidt
and Steve Vinoski. These articles are available at http://www.cs.wustl.edu/ schmidt/report-doc.html. The
ultimate reference, of course, is the CORBA specification.

6.1 POA

The POA provides a comprehensive set of interfaces for managing object references and servants. The
code written using the POA interfaces is now portable across ORB implementations and has the same
semantics in every ORB that is compliant to CORBA 2.2 or above.

The POA defines standard interfaces to do the following:

• Map an object reference to a servant that implements that object

• Allow transparent activation of objects

• Associate policy information with objects

• Make a CORBA object persistent over several server process lifetimes

In the POA specification, the use of pseudo-IDL has been deprecated in favor of an approach that uses
ordinary IDL, which is mapped into programming languages using the standard language mappings, but
which is locality constrained. This means that references to objects of these types may not be passed
outside of a server’s address space. The POA interface itself is one example of a locality–constrained
interface.

The object adapter is that part of CORBA that is responsible for creating CORBA objects and object
references and — with a little help from skeletons — dispatching operation requests to actual object
implementations. In cooperation with the Implementation Repository it can also activate objects, i.e. start
processes with programs that provide implementations for CORBA objects.

http://www.cs.wustl.edu/~schmidt/report-doc.html

62 The Server side: POA, Threads

6.2 Threads

JacORB currently offers one server–side thread model. The POA responsible for a given request
will obtain a request processor thread from a central thread pool. The pool has a certain size
which is always between the maximum and minimum value configure by setting the properties
jacorb.poa.thread pool max and jacorb.poa.thread pool min.

When a request arrives and the pool is found to contain no threads because all exist-
ing threads are active, new threads may be started until the total number of threads reaches
jacorb.poa.thread pool max. Otherwise, request processing is blocked until a thread is returned
to the pool. Upon returning threads that have finished processing a request to the pool, it must be decided
whether the thread should actually remain in the pool or be destroyed. If the current pool size is above
the minimum, a processor thread will not be out into the pool again. Thus, the pool size always oscillates
between max and min.

Setting min to a value greater than one means keeping a certain number of threads ready to service
incoming requests without delay. This is especially useful if you now that requests are likely to come in in
a bursty fashion. Limiting the pool size to a certain maximum is done to prevent servers from occupying
all available resources.

Request processor threads usually run at the highest thread priority. It is possible to influence
thread priorities by setting the property jacorb.poa.thread priority to a value between Java’s
Thread.MIN PRIORITY and Thread.MAX PRIORITY. If the configured priority value is invalid JacORB
will assign maximum priority to request processing threads.

6.3 Request Analyser Plugin

To extend JacORB’s default RequestProcessor handling an extension system has been provided. A user
may implement the following interface:

interface RequestAnalyser
{

void analyse (ServerRequest s);
}

The ServerRequest object provides an integer field which a developer may use to ’tag’ the
ServerRequest during analysis to be processed by the RequestAnalyserProcessor. The functions
setAnalyser (int x) and getAnalyser() are used for this. This is configured by
jacorb.poa.requestanalyser.

Reply sequencing

Via the property jacorb.poa.checkRequestIDs (default: off) it is possible to make JacORB return
replies in the order that the requests were received. The RequestID field is used for this. This property

6.3 Request Analyser Plugin 63

is meant to be used in conjuntion with the RequestAnalyser plugin and will only act upon those requests
that have been tagged.

64 The Server side: POA, Threads

RequestAnalyserProcessor

A corresponding RequestProcessorAnalyser abstract class processes the analysed request. This may be
extended or the default implementation may be used.

public abstract class RequestAnalyserProcessor
{

/**
* <code>process</code> should contain the actual logic

* for handling the Request.

*
* @param pa a <code>ProcessorArgs</code> value

*/
public abstract void process (ProcessorArgs pa);

/**
* <code>verify</code> is a callback to tell the RequestController whether

* to run this AnalyserProcessor for a given ServerRequest.

*
* @param dsi a <code>ServerRequest</code> value

* @return a <code>boolean</code> value

*/
public abstract boolean verify (ServerRequest dsi);

/**
* <code>shutdown</code> is an optional callback which the POA will use to

* cleanly shutdown this plugin.

*/
public void shutdown () {};

/**
* ProcessorArgs is a simple holder struct used to contain the data used

* when initialising the request processors.

*/
public static class ProcessorArgs
{

protected RequestController r;
protected ServerRequest sr;
protected Servant s;
protected ServantManager sm;
...

}
}

This is configured by jacorb.poa.requestanalyserprocessor. Two default implementations
are available which are described below. Note that this property does NOT now have a default value as

6.3 Request Analyser Plugin 65

both this or the checkRequestIDs may be used with the AnalyserPlugin.

RequestAnalyserProcessor Supplied Implementations

Two processor implementations are supplied that a user may configure
jacorb.poa.requestanalyser with:

org.jacorb.poa.SingleThreadRequestAnalyserProcessor

org.jacorb.poa.DefaultRequestProcessorAnalyser

The first simply processes incoming server requests on a single thread in a strict sequential order.
The second, which is the default, implements a thread-per-connection style policy. It will process requests
from different connections on different thread. Requests from the same connection will still be processed
in a strict sequential order on a single RequestProcessor thread.

To use this implementation an example analyser might examine the incoming operation name to tag the
ServerRequest e.g. from org.jacorb.test.bugs.bugjac751.AnalyserImpl:

public class AnalyserImpl implements RequestAnalyser {
public void analyse (ServerRequest s) {

if (s.operation ().equals ("operation")) {
// Set the request analyser ’tag’ to 1 to signify this
// request should be handled specially.
s.setAnalyser (1);

}
}

}

66 The Server side: POA, Threads

7 Implementation Repository

“... it is very easy to be blinded to the essential uselessness of them by the sense of achieve-
ment you get from getting it to work at all. In other words — and that is a rock-solid
principle on which the whole of the Corporation’s Galaxywide success is founded — their
fundamental design flaws are completely hidden by their superficial design flaws.”

D. Adams: So Long and Thanks for all the Fish

The Implementation Repository is not, as its name suggests, a database of implementations. Rather,
it contains information about where requests to specific CORBA objects have to be redirected and how
implementations can be transparently instantiated if, for a given request to an object, none is reachable.
“Instantiating an implementation” means starting a server program that hosts the target object. In this
chapter we give a brief overview and a short introduction on how to use the Implementation Repository.
For more details please see [HV99].

7.1 Overview

Basically, the Implementation Repository (ImR) is an indirection for requests using persistent object ref-
erences. A persistent object reference is one that was created by a POA with a PERSISTENT lifespan
policy. This means that the lifetime of the object is longer than that of its creating POA. Using the Im-
plementation Repository for objects the lifetime of which does not exceed the life time of its POA does
not make sense as the main function of the Implementation Repository is to take care that such a process
exists when requests are made — and to start one if necessary.

To fulfill this function, the ImR has to be involved in every request to “persistent objects”. This is
achieved by rewriting persistent object references to contain not the address of its server process but the
address of the ImR. Thus, requests will initially reach the ImR and not the actual server — which may not
exist at the time of the request. If such a request arrives at the ImR, it looks up the server information in its
internal tables to determine if the target object is reachable or not. In the latter case, the ImR has to have
information about how an appropriate server process can be started. After starting this server, the client
receives a LOCATION FORWARD exception from the ImR. This exception, which contains a new object
reference to the actual server process now, is handled by its runtime system transparently. As a result, the
client will automatically reissue its request using the new reference, now addressing the target directly.

68 Implementation Repository

7.2 Using the JacORB Implementation Repository

The JacORB Implementation Repository consists of two separate components: a repository process which
need only exist once in a domain, and process startup daemons, which must be present on every host that
is to start processes. Note that none of this machinery is necessary for processes that host objects with a
TRANSIENT life time, such as used by the RootPOA.

First of all, the central repository process (which we will call ImR in the following) must be started:

$ imr [-n] [-p <port>] [-i <ior file>][-f <file>][-b <file>] [-a]

The ImR is located using the configuration property ORBInitRef.ImplementationRepository.
This property must be set such that a http connection can be made and the ImR’s IOR can be read. Next,
startup daemons must be created on selected hosts. To do this, the following command must is issued on
each host:

$ imr ssd

When a startup daemon is created, it contacts the central ImR.

To register a program such that the ImR can start it, the following command is used (on any machine
that can reach the ImR):

$ imr mg add "AServerName" -c "jaco MyServer"

The imr mg command is the generic way of telling the ImR to do something. It needs another com-
mand parameter, such as add in this case. To add a server to the ImR, an implementation name is needed.
Here, it is "AServerName". If the host were the server should be restarted is not the local one, use
the -h hostname option. Finally, the ImR needs to know how to start the server. The string "jaco
MyServer" tells it how. The format of this string is simply such that the server daemon can execute it
(using the Java API call exec()), i.e. it must be intelligible to the target host’s operating system. For
a Windows machine, this could, e.g. be "start jaco MyServer" to have the server run in its own
terminal window, under Unix the same can be achieved with "xterm -e jaco MyServer".

The startup command is a string that is passed as the single argument to javas Runtime.exec()
method, without interpreting it or adding anything. Since Runtime.exec() has system–dependent
behaviour, the startup string has to reflect that. While for most unix systems it is sufficient to avoid shell–
expansions like * and ˜, windows–based systems do not pass the string to a commandline interpreter so a
simple jaco MyServer will fail even if it works if directly typed in at the dos prompt. Therefore you
have to “wrap” the core startup command in a call to a commandline interpreter. On NT the following
startup command will do the job: cmd /c "jaco MyServer". Please keep in mind that if you use
the imr mg command to set the startup command, you have to escape the quotes so they appear inside of
the resulting string.

If you don’t intend to have your server automatically started by the ImR you can also set the property
“jacorb.imr.allow auto register” or use the -a switch of the ImR process. If this property
is set, the ImR will automatically create a new entry for a server on POA activation, if the server has not
been registered previously. In this case you don’t have to use the ImR Manager to register your server.

For a client program to be able to issue requests, it needs an object reference. Up to this point, we
haven’t said anything about how persistent object references come into existence. Reference creation

7.2 Using the JacORB Implementation Repository 69

happens as usual, i.e. in the server application one of the respective operations on a POA is called. For
a reference to be created as “persistent”, the POA must have been created with a PERSISTENT lifespan
policy. This is done as in the following code snippet:

/* init ORB and root POA */
orb = org.omg.CORBA.ORB.init(args, props);
org.omg.PortableServer.POA rootPOA =

org.omg.PortableServer.POAHelper.narrow(
orb.resolve_initial_references("RootPOA"));

/* create policies */

org.omg.CORBA.Policy [] policies = new org.omg.CORBA.Policy[2];
policies[0] = rootPOA.create_id_assignment_policy(

IdAssignmentPolicyValue.USER_ID);
policies[1] = rootPOA.create_lifespan_policy(

LifespanPolicyValue.PERSISTENT);

/* create POA */

POA myPOA = rootPOA.create_POA("XYZPOA",
rootPOA.the_POAManager(), policies);

/* activate POAs */
poa.the_POAManager().activate();

(Note that in general the id assignment policy will be USER ID for a POA with persistent object
references because this id will often be a key into a database where the object state is stored). If a POA
is created with this lifespan policy and the ORB property “use imr” is set, the ORB will try to notify
the ImR about this fact so the ImR knows it doesn’t need to start a new process for requests that target
objects on this POA. To set the ORB policy, simply set the property jacorb.use imr=on. The ORB
uses another property, jacorb.implname, as a parameter for the notification, i.e. it tells the ImR that
a process using this property’s value as its implementation name is present. If the server is registered with
the ImR, this property value has to match the implementation name that is used when registering.

The application can set these properties on the command line using java
-Djacorb.implname=MyName, or in the code like this:

/* create and set properties */
java.util.Properties props = new java.util.Properties();
props.setProperty("jacorb.use_imr","on");
props.setProperty("jacorb.implname","MyName");

/* init ORB */
orb = org.omg.CORBA.ORB.init(args, props);

70 Implementation Repository

There are a few things you have to consider especially when restoring object state at startup time or
saving the state of your objects on shutdown. It is important that, at startup time, object initialization
is complete when the object is activated because from this instant on operation calls may come in. The
repository knows about the server when the first POA with a PERSISTENT lifespan policy registers, but
does not forward object references to clients before the object is actually reachable. (Another, unreliable
way to handle this problem is to increase the jacorb.imr.object activation sleep property,
so the repository waits longer for the object to become ready again.)

When the server shuts down, it is equally important that object state is saved by the time the last POA
in the server goes down because from this moment the Implementation Repository regards the server as
down and will start a new one upon requests. Thus, a server implementor is responsible for avoiding
reader/writer problems between servers trying to store and restore the object state. (One way of doing this
is to use POA managers to set a POA to holding while saving state and to inactive when done.)

Please keep in mind that even if you don’t have to save the state of your objects on server shutdown you
must deactivate your POAs prior to exiting your process (or at least use orb.shutdown(...) which
includes POA deactivation). Otherwise the ImR keeps the server as active and will return invalid IORs. In
case of a server crash you can either notify the ImR manually by using the command imr mg setdown
AServerName or allow the ImR to detect the crashed server and restart it if necessary.

7.3 Server migration

The implementation repository offers another useful possibility: server migration. Imagine the following
scenario: You have written your server with persistent POAs, but after a certain time your machine seems
to be too slow to serve all those incoming requests. Migrating your server to a more powerful machine
is the obvious solution. Using the implementation repository, client references do not contain addressing
information for the slow machine, so server migration can be done transparently to client.

Assuming that you added your server to the repository, and it is running correctly.

$ imr mg add AServerName -h a slow machine -c "jaco MyServer"

The first step is to hold the server, that means the repository delays all requests for that server until it is
released again.

$ imr mg hold AServerName

Now your server will not receive any requests for its registered POAs. If you can’t shut your server
down such that it sets itself down at the repository, i.e. your POAs are set to inactive prior to terminating
the process, you can use

$ imr mg setdown AServerName

to do that. Otherwise your POAs can’t be reactivated at the repository because they are still logged as
active.

If you want your server to be restarted automatically, you have to tell the repository the new host and
maybe a new startup command.

$ imr mg edit AServerName -h the fastest available machine

7.4 A Note About Security 71

-c "jaco MyServer"

If your server can be restarted automatically, you now don’t even have to start it manually, but it is
instead restarted by the next incoming request. Otherwise start it manually on the desired machine now.

The last step is to release the server, i.e. let all delayed requests continue.

$ imr mg release AServerName

By now your server should be running on another machine, without the clients noticing.

7.4 A Note About Security

Using the imr can pose a major security threat to your system. Imagine the following standard setup: an
imr is running on a machine, its IOR file is placed in a directory where it can be read by the web server, and
several imr ssds are running on other machines. An attacker can now execute processes on the machines
the ssds are running on by taking the following steps:

1. Setting the ORBInitRef.ImplementationRepository property to the IOR file on your
server.

2. Creating a new logical server with the desired command to execute as startup command on the
desired host (where a ssd is running). This is the crucial point. The ssd calls Runtime.exec()
with the supplied string, and there is no way to check if the command does what it is supposed to
do, i.e. start a server.

3. Start the server with the imr mg. The startup command of the server will be exec’d on the specified
host.

Now this should not generally discourage you to use the imr but show you that there are risks, which
can be reduced significantly nonetheless. There are several ways to encounter this threat and we don’t
consider this list to be complete:

1. Try to control the distribution of the IOR file. Hiding it should not be considered here, because
security by obscurity is generally a bad approach. Try to make use of file system mechanisms like
groups and ACLs.

2. Use a firewall which blocks of incoming traffic. Keep in mind that if the attacker is inside of your
protection domain, the firewall won’t help. It is also not that hard to write a Trojan that can tunnel
those firewalls that block incoming traffic.

3. Enforce SSL connections to the imr. This blocks all client connections that don’t have a certificate
signed by a CA of your choice. See chapter 11 for more information.

72 Implementation Repository

8 Dynamic Management of Any Values

by Jason Courage

The purpose of this chapter is to describe the DynAny specification, which is the specification for
the dynamic management of Any values. This chapter only describes the main features of the DynAny
specification; for the complete specification consult the appropriate chapter of the CORBA specification
available from the OMG.

8.1 Overview

DynAny objects are used to dynamically construct and traverse Any values. A DynAny can represent a
value of a basic type, such as boolean or long, or a constructed type, such as enum or struct.

8.2 Interfaces

The UML diagram below shows the relationship between the interfaces in the org.omg.DynamicAny
module.

DynAny

DynFixed DynEnum DynStruct DynUnion DynSequence DynArray DynValueCommon

DynValue DynValueBox

Figure 8.1: DynAny Relationships

The DynAny interface is the base interface that represents values of the basic types. For each con-
structed type there is a corresponding interface that extends the DynAny interface and defines operations

74 Dynamic Management of Any Values

specific to the constructed type. The table below lists the interfaces in the DynamicAny module and the
types they represent.

Interface Type
DynAny basic types (boolean, long, etc.)
DynFixed fixed
DynEnum enum
DynStruct struct
DynUnion union
DynSequence sequence
DynArray array
DynValue* non-boxed valuetype
DynValueBox* boxed valuetype

* Not currently implemented by JacORB.

8.3 Usage Constraints

Objects that implement interfaces in the DynamicAny module are intended to be local to the process that
constructs and uses them. As a result, references to these objects cannot be exported to other processes or
externalized using ORB::object to string; an operation that attempts to do so will throw the MARSHAL
system exception.

8.4 Creating a DynAny Object

The DynAnyFactory interface is used to create a DynAny object. There are two operations for creating a
DynAny object; these are listed in the table below.

Operation Description
create_dyn_any Constructs a DynAny object from an Any

value
create_dyn_any_from_ty
pe_code

Constructs a DynAny object from a
TypeCode

The example below illustrates how to obtain a reference to the DynAnyFacory object and then use it to
construct a DynAny object with each of the create operations. Exception handling is omitted for brevity.

The following line of code imports the classes in the DynamicAny package.

import org.omg.DynamicAny.*;

The following code segment obtains a reference to the DynAnyFacory object.

8.4 Creating a DynAny Object 75

DynAnyFactory factory = null;
DynAny DynAny = null;
DynAny DynAny2 = null;
org.omg.CORBA.Any any = null;
org.omg.CORBA.TypeCode tc = null;
org.omg.CORBA.Object obj = null;

// obtain a reference to the DynAnyFactory
obj = orb.resolve_initial_references ("DynAnyFactory");

// narrow the reference to the correct type
factory = DynAnyFactoryHelper.narrow (obj);

The following code segment creates a DynAny with each of the create operations.

// create a DynAny object from an Any
any = orb.create_any ();
any.insert_long (1);
DynAny = factory.create_dyn_any (any);

// create a DynAny object from a TypeCode
tc = orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_long);
DynAny2 = factory.create_dyn_any_from_type_code (tc);

If the Any value or TypeCode represents a constructed type then the DynAny can be narrowed to the
appropriate subtype, as illustrated below.

The following IDL defines a struct type.

// example struct type
struct StructType
{

long field1;
string field2;

};

The following code segment illustrates the creation of a DynStruct object that represents a value of type
StructType.

StructType type = null;
DynStruct dynStruct = null;

76 Dynamic Management of Any Values

// create an Any that contains an object of type StructType
type = new StructType (999, "Hello");
any = orb.create_any ();
StructTypeHelper.insert (any, type);

// construct a DynAny from an Any and narrow it to a DynStruct
dynStruct = (DynStruct) factory.create_dyn_any (any);

8.5 Accessing the Value of a DynAny Object

The DynAny interface defines a set of operations for accessing the value of a basic type represented
by a DynAny object. The operation to get a value of basic type <type> from a DynAny has the form
get <type>. The operation to insert a value of basic type <type> into a DynAny has the form in-
sert <type>. A TypeMismatch exception is thrown if the type of the operation used to get/insert a value
into a DynAny object does not match the type of the DynAny.

The operations for accessing the value of a constructed type represented by a DynAny are defined in
the interface specific to the constructed type. For example, the DynStruct interface defines the operation
get members, which returns a sequence of name/value pairs representing the members of the struct or
exception represented by a DynStruct object.

8.6 Traversing the Value of a DynAny Object

DynAny objects can be viewed as an ordered collection of component DynAnys. For example, in a Dyn-
Struct object the ordered collection of component DynAnys is the members of the struct or exception it
represents. For DynAny objects representing basic types or constructed types that do not have compo-
nents, the collection of component DynAnys is empty.

All DynAny objects have a current position. For DynAnys representing constructed types that have
components, the current position is the index of the component DynAny that would be obtained by a call
to the current component operation (described in the table below). The component DynAnys of a DynAny
object are indexed from 0 to n-1, where n is the number of components. For DynAnys representing basic
types, or constructed types that do not have components, the current position is fixed at the value -1.

The operations for traversing the component DynAnys of a DynAny object are common to all DynAny
subtypes, hence they are defined in the DynAny base interface. The table below lists the operations
available for traversing a DynAny object.

Operation Description
seek Sets the current position to the

specified index

8.6 Traversing the Value of a DynAny Object 77

Operation Description
rewind Sets the current position to the first

component (index 0)
next Advances the current position to the

next component
component_count Returns the number of components
current_component Returns the component at the current

position

The following code segment illustrates one way of traversing the component DynAnys of a DynStruct
object. As the DynStruct is traversed, the value of each component is obtained and printed. Exception
handling is omitted for brevity.

DynAny curComp = null;

// print the value of the first component
curComp = dynStruct.current_component ();
System.out.println ("field1 = " + curComp.get_long ());

// advance to the next component
dynStruct.next ();

// print the value of the second component
curComp = dynStruct.current_component ();
System.out.println ("field2 = " + curComp.get_string ());

The next code segment illustrates another way to perform the same task.

// go back to the first component
dynStruct.rewind (); // same as calling seek (0)

// print the value of the first component
System.out.println ("field1 = " + dynStruct.get_long ());

// advance to the next component
dynStruct.seek (1);

// print the value of the second component
System.out.println ("field2 = " + dynStruct.get_string ());

As the second code segment illustrates, if the component DynAny represents a basic type, its value can
be extracted (or inserted) by calling the accessor operation on the parent DynAny directly, rather than first
obtaining the component using the current component operation.

78 Dynamic Management of Any Values

8.7 Constructed Types

This section describes the interfaces in the DynamicAny module that represent the constructed types
supported by JacORB. Each of these interfaces extends the DynAny interface.

8.7.1 DynFixed

A DynFixed object represents a fixed value. Since IDL does not have a generic type to represent a fixed
type, the operations in this interface use the IDL string type. The value represented by a DynFixed object
can be accessed (as a string) using the get value and set value operations.

A DynFixed object has no components.

8.7.2 DynEnum

A DynEnum object represents a single enumerated value. The integer (ordinal) value of the enumerated
value can be accessed with the get as ulong and set as ulong operations. The string (IDL identifier) value
of the enumerated value can be accessed with the get as string and set as string operations.

A DynEnum object has no components.

8.7.3 DynStruct

A DynStruct object represents a struct value or an exception value. The current member name and cur-
rent member kind operations return the name and TCKind value of the TypeCode of the member at the
current position of the DynStruct. The members of the DynStruct can be accessed with the get members
and set members operations.

The component DynAnys of a DynStruct object are the members of the struct or exception. A DynStruct
representing an empty exception has no components.

8.7.4 DynUnion

A DynUnion object represents a union value. The value of the discriminator can be accessed using the
get discriminator and set discriminator operations.

If the discriminator is set to a value that names a member of the union then that member becomes active.
Otherwise, if the value of the discriminator does not name a member of the union then there is no active
member.

If there is an active member, the member operation returns its value as a DynAny object, and the
member name and member kind operations return its name and the TCKind value of its TypeCode. These
operations throw an InvalidValue exception if the union has no active member.

8.8 Converting between Any and DynAny Objects 79

A DynUnion object can have either one or two components. The first component is always the discrim-
inator value. The second component is the value of the active member, if one exists.

8.7.5 DynSequence

A DynSequence object represents a sequence. The length of the sequence can be accessed using the
get length and set length operations. The elements of the sequence can be accessed using the get elements
and set elements operations.

The component DynAnys of a DynSequence object are the elements of the sequence.

8.7.6 DynArray

A DynArray object represents an array. The elements of the array can be accessed using the get elements
and set elements operations.

The component DynAnys of a DynArray object are the elements of the array.

8.8 Converting between Any and DynAny Objects

The DynAny interface defines operations for converting between Any objects and DynAny objects. The
from any operation initialises the value of a DynAny with the value of a specified Any. A TypeMismatch
exception is thrown if the type of the Any does not match the type of the DynAny. The to any operation
creates an Any from a DynAny.

As an example of how these operations might be useful, suppose one wants to dynamically modify the
contents of some constructed type, such as a struct, which is represented as an Any. The following steps
will accomplish this task:

1. A DynStruct object is constructed from the TypeCode of the struct using the DynAnyFac-
tory::create dyn any from type code operation.

2. The DynAny::from any operation is used to initialise the value of the DynStruct with the value of
the Any.

3. The contents of the DynStruct can now be traversed and modified.

4. A new Any can be created to represent the modified struct using the DynAny::to any operation.

8.9 Further Examples

The demo/dynany directory of the JacORB repository contains example code illustrating the use of Dy-
nAny objects. Further code can be found in the org.jacorb.test.orb.dynany package of the JacORB-Test
repository.

80 Dynamic Management of Any Values

9 Objects By Value

Until CORBA 2.3, objects could only be passed using reference semantics: there was no way to specify
that object state should be copied along with an object reference. A further restriction of the earlier
CORBA versions was that all non-object types (structs, unions, sequences, etc.) were values, so you
could not use, e.g. a reference-to-struct to construct a graph of structure values that contained shared
nodes. Finally, there was no inheritance between structs.

All these shortcomings are addressed by the objects-by-value (OBV) chapters of the CORBA specifi-
cation: the addition of stateful value types supports copy semantics for objects and inheritance for structs,
boxed value types introduce reference semantics for base types, and abstract interfaces determine whether
an argument is sent by-value or by-reference by the argument’s runtime type. The introduction of OBV
into CORBA presented a major shift in the CORBA philosophy, which had been to strictly avoid any
dependence on implementation details (state, in particular). It also added a considerable amount of mar-
shaling complexity and interoperability problems. (As a personal note: Even in CORBA 2.6, the OBV
marshaling sections are still not particularly precise...)

JacORB 2.0 implements most of the OBV specification. Boxed value types and regular value types
work as prescribed in the standard (including value type inheritance, recursive value types, and factories).
Still missing in the current implementation is run-time support for abstract value types (although the
compiler does accept the corresponding IDL syntax), and the marshaling of truncatable value types does
not yet meet all the standard’s requirements (and should thus be called “beta”).

9.1 Example

To illustrate the use of various kinds of value types, here’s an example which is also part of the demo
programs in the JacORB distribution. The demo shows the use of boxed value types and a recursive
stateful value type. Here’s the IDL definition from demo/value/server.idl:

module demo {
module value {

valuetype boxedLong long;
valuetype boxedString string;

valuetype Node {
public long id;
public Node next;

};

82 Objects By Value

interface ValueServer {
string receive_long (in boxedLong p1, in boxedLong p2);
string receive_string (in boxedString s1, in boxedString s2);
string receive_list (in Node node);

};
};

};

From the definition of the boxed value type boxedLong and boxedString, the IDL generates the
following Java class, which is simply a holder for the long value. No mapped class is generated for the
boxed string value type.

package demo.value;

public class boxedLong
implements org.omg.CORBA.portable.ValueBase

{
public int value;
private static String[] _ids = { boxedLongHelper.id() };

public boxedLong(int initial)
{

value = initial;
}
public String[] _truncatable_ids()
{

return _ids;
}

}

The boxed value definitions in IDL above permit uses of non-object types that are not possible with
IDL primitive types. In particular, it is possible to pass Java null references where a value of a boxed
value type is expected. For example, we can call the operation receive long and pass one initialized
boxedLong value and a null reference, as show in the following snippet from the client code:

ValueServer s = ValueServerHelper.narrow(obj);
boxedLong boxL = new boxedLong (774);

System.out.println ("Passing two integers: "
+ s.receive_long (boxL , null));

With a regular long parameter, a null reference would have resulted in a BAD PARAM exception.
With boxed value types, this usage is entirely legal and the result string returned from the ValueServer
object is ‘‘one or two null values’’.

9.2 Factories 83

A second new possibility of the reference semantics that can be achieved by “boxing” primitive IDL
types is sharing of values. With primitive values, two variables can have copies of the same value, but
they cannot both refer to the same value. This means that when one of the variables is changed, the other
one retains its orignal value. With shared values that are referenced, both variables would always point to
the same value.

The stateful value type Node is implemented by the programmer in a class NodeImpl (see the
JacORB distribution for the actual code). The relationship between this implementation class and the
corresponding IDL definition is not entirely trivial, and we will discuss it in detail below.

9.2 Factories

When an instance of a (regular) value type is marshaled over the wire and arrives at a server, a class that
implements this value type must be found, so that a Java object can be created to hold the state information.
For interface types, which are only passed by reference, something similar is accomplished by the POA,
which accepts remote calls to the interface and delivers them to a local implementation class (the servant).
For value type instances, there is no such thing as a POA, because they cannot be called remotely. Thus,
the ORB needs a different mechanism to know which Java implementation class corresponds to a given
IDL value type.

The CORBA standard introduces value factories to achieve this. Getting your value factories right can
be anywhere from trivial to tricky (we will cover the details in a minute), and so the standard suggests
that ORBs also provide convenience mechanisms to relieve programmers from writing value factories if
possible. JacORB’s convenience mechanism is straightforward:

If the implementation class for an IDL value type A is named AImpl, resides in the same
package as A, and has a no-argument constructor, then no value factory is needed for that
type.

In other words, if your implementation class follows the common naming convention (“...Impl”), and
it provides a no-arg constructor so that the ORB can instantiate it, then the ORB has all that it needs
to (a) find the implementation class, and (b) create an instance of it (which is then initialized with the
unmarshaled state from the wire).

This mechanism ought to save you from having to write a value factory 99% of the time. It works for
all kinds of regular value types, including those with inheritance, and recursive types (where a type has
members of its own type).

If you do need more control over the instance creation process, or the unmarshaling from
the wire, you can write your own value factory class and register it with the ORB using
ORB.register value factory(repository id, factory). The factory object needs to implement
the interface org.omg.CORBA.portable.ValueFactory, which requires a single method:

public Serializable read_value (InputStream is);

When an instance of type repository id arrives over the wire, the ORB calls the read value()

84 Objects By Value

method, which must unmarshal the data from the input stream, create an instance of the appropriate
implementation class from it, and return that.

The easiest way to implement this method is to create an instance of the implementation class, and pass
it to the read value() method of the given InputStream:

public Serializable read_value (InputStream is) {
A result = new AImpl();
return is.read_value(result);

}

The InputStream.read value() method registers the newly created instance in the stream’s
indirection table, and then reads the data from the stream and initializes the given value instance from
it.

The value factory must be registered with the ORB using register value factory(). As a
special convenience (defined in the CORBA standard), if the value factory class for type A is called
ADefaultFactory, then the ORB will find it automatically and use it, unless a different factory has
been explicitly registered.

It sometimes causes confusion that you can also define factory methods in a value type’s IDL. These
factory methods are completely unrelated to the unmarshaling mechanism discussed above; they are sim-
ply a portable means to declare what kinds of “constructors” a value type implementation should have.
They are purely for local use, but since they are “factories”, the corresponding methods must also be
implemented in the type’s ValueFactory implementation.

10 Interface Repository

Run–time type information in CORBA is managed by the ORB’s Interface Repository (IR) component. It
allows to request, inspect and modify IDL type information dynamically, e.g., to find out which operations
an object supports. Some ORBs may also need the IR to find out whether a given object’s type is a subtype
of another, but most ORBs can do without the IR by encoding this kind of type information in the helper
classes generated by the IDL compiler.

In essence, the IR is just another remotely accessible CORBA object that offers operations to retrieve
(and in theory also modify) type information.

10.1 Type Information in the IR

The IR manages type information in a hierarchical containment structure that corresponds to the structure
of scoping constructs in IDL specifications: modules contain definitions of interfaces, structures, constants
etc. Interfaces in turn contain definitions of exceptions, operations, attributes and constants. Figure 10.1
illustrates this hierarchy.

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
ModuleDef

InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Repository

ModuleDef

Figure 10.1: Containers in the Interface Repository

The descriptions inside the IR can be identified in different ways. Every element of the repository has
a unique, qualified name which corresponds to the structure of name scopes in the IDL specification. An

86 Interface Repository

interface I1 which was declared inside module M2 which in turn was declared inside module M1 thus
has a qualified name M1::M2::I1. The IR also provides another, much more flexible way of naming
IDL constructs using Repository Ids. There are a number of different formats for RepositoryIds but every
Repository must be able to handle the following format, which is marked by the prefix "IDL:" and
also carries a suffix with a version number, as in, e.g., ”IDL:jacorb/demo/grid:1.0”. The name
component between the colons can be set freely using the IDL compiler directives #pragma prefix
and #pragma ID. If no such directive is used, it corresponds to the qualified name as above.

10.2 Repository Design

When designing the Interface Repository, our goal was to exploit the Java reflection API’s functionality
to avoid having to implement an additional data base for IDL type descriptions. An alternative design is
to use the IR as a back-end to the IDL compiler, but we did not want to introduce such a dependency and
preferred to a have a rather “light–weight” repository server. As it turned out, this design was possible
because the similarities between the Java and CORBA object models allow us to derive the required IDL
information at run time. As a consequence, we can even do without any IDL at compile time. In addition
to this simplification, the main advantage of our approach lies in avoiding redundant data and possible
inconsistencies between persistent IDL descriptions and their Java representations, because Java classes
have to be generated and stored anyway.

Thus, the Repository has to load Java classes, interpret them using reflection and translate them into
the appropriate IDL meta information. To this end, the repository realizes a reverse mapping from Java to
IDL. Figure 10.2 illustrates this functionality, where f−1 denotes the reverse mapping, or the inverse of
the language mapping.

Java classes

IR-Process

IDL-Meta data

-1f

Figure 10.2: The JacORB Interface Repository

10.3 Using the IR 87

10.3 Using the IR

For the ORB to be able to contact the IR, the IR server process must be running. To start it, simply type
the ir command and provide the required arguments:

$ ir /home/brose/classes /home/brose/public html/IR Ref

The first argument is a path to a directory containing .class files and packages. The IR loads these
classes and tries to interpret them as IDL compiler–generated classes. If it succeeds, it creates internal
representations of the adequate IDL constructs. See below for instructions on generating classes with IR
information. The second argument on the command line above is simply the name of the file where the
IR stores its object reference for ORB bootstrapping.

To view the contents of the repository, you can use the GUI IRBrowser tool or the query command.
First, let’s query the IR for a particular repository ID. JacORB provides the command qir (“query IR”)
for this purpose:

$ qir IDL:raccoon/test/cyberchair/Paper:1.0

As result, the IR returns an InterfaceDef object, and qir parses this and prints out:

interface Paper
{

void read(out string arg_0);
raccoon::test::cyberchair::Review getReview(in long arg_0);
raccoon::test::cyberchair::Review submitReview(

in string arg_0, in long a rg_1);
void listReviews(out string arg_0);

};

To start the IRBrowser, simply type

$ irbrowser [-i <IOR-string> | -f <filename>]

e.g.

$ irbrowser

Note that if no arguments are supplied it will default to using resolve initial references.

Figure 10.3 gives a screen shot of the IR browser.

The Java classes generated by the IDL compiler using the standard OMG IDL/Java language mapping
do not contain enough information to rebuild all of the information contained in the original IDL file.
For example, determining whether an attribute in an interface was readonly or not is not possible, or
telling the difference between in and inout parameter passing modes. Moreover, IDL modules are not
explicitly represented in Java, so telling whether a directory in the class path represents an IDL module is
not easily possible. For these reasons, the JacORB IDL compiler generates a few additional classes that
hold the required extra information if the compiler switch -ir is used when compiling IDL files:

$ idl -ir myIdlFile.idl

88 Interface Repository

The additional files generated by the compiler are:

• a XModule.java class file for any IDL module X

• a YIRHelper.java class file for any interface Y.

If no .class files that are compiled from these extra classes are found in the class path passed
to the IR server process, the IR will not be able to derive any representations. Note that the IDL
compiler does not make any non–compliant modifications to any of the standard files that are defined in
the Java language mapping — there is only additional information.

One more caveat about these extra classes: The compiler generates the XModule.java class only
for genuine modules. Java package scopes created by applying the -d switch to the IDL compiler do not
represent proper modules and thus do not generate this class. Thus, the contents of these directories will
not be considered by the IR.

When an object’s client calls the get interface() operation, the ORB consults the IR and returns
an InterfaceDef object that describes the object’s interface. Using InterfaceDef operations on
this description object, further description objects can be obtained, such as descriptions for operations or
attributes of the interface under consideration.

The IR can also be called like any other CORBA object and provides lookup() or lookup name()
operations to clients so that definitions can be searched for, given a qualified name. Moreover, the com-
plete contents of individual containers (modules or interfaces) can be listed.

Interface Repository meta objects provide further description operations. For a given InterfaceDef
object, we can inspect the different meta objects contained in this object (e.g., OperationDef
objects). It is also possible to obtain descriptions in form of a simple structure of type
InterfaceDescription or FullInterfaceDescription. Since structures are passed by
value and a FullInterfaceDescription fully provides all contained descriptions, no further —
possibly remote — invocations are necessary for searching the structure.

10.4 Interaction between #pragma prefix and
-i2jpackage

Generally any use of #pragma prefix or -i2jpackage should be avoided if you intend to use an IDL file
with the Interface Repository. If there is no other option there is a property that allows you to circumvent
that restriction in some cases. Note however that this is a non-standard extension.

If, for example you have the following IDL file:

#pragma prefix "org.jacorb.test"

module ir
{

typedef string StringAlias;
typedef sequence<StringAlias> StringAliasList;

10.4 Interaction between #pragma prefix and -i2jpackage 89

struct TestStruct
{

StringAliasList stringList;
};

};

As you want your generated java files to reside in the package org.jacorb.test.ir you
need to add -i2jpackage as an argument to the idl command. $ idl -ir -i2jpackage
ir:org.jacorb.test.ir myIdlFile.idl Now the generated files are in the directory
org/jacorb/test/ir.

As the IR starts it reads in the generated classes and implicitely creates their Repository
ID’s solely based on the directory structure. e.g. the struct TestStruct will get the Reposi-
tory ID IDL:org/jacorb/test/ir/TestStruct:1.0 however the correct Repository ID is
IDL:org.jacorb.test/ir/TestStruct:1.0.

This will make it impossible for you to lookup the correct Repository ID successfully. starting of the
IR will fail if the IR itself needs to look up a Repository ID during start.

As a workaround you can specify the property jacorb.ir.patch pragma prefix=on to the IR server. this
property will cause the IR to change the first component of a requested Repository ID (Repository ID’s
consists of multiple components delimited with ’/’ so its org.jacorb.test in this case). If the first component
looks like a pragma prefix (contains multiple ’.’) the ’.’ will be changed to ’/’.

So the incoming request for IDL:org.jacorb.test/ir/TestStruct:1.0 will be changed to
a request for IDL:org/jacorb/test/ir/TestStruct:1.0 so that the IR will be able to resolve
that.

90 Interface Repository

Figure 10.3: IRBrowser Screenshot

11 IIOP over SSL

Using SSL to authenticate clients and to protect the communication between client and target requires no
changes in your source code. The only notable effect is that SSL/TLS type sockets are used for transport
connections instead of plain TCP sockets — and that connection setup takes a bit longer.

The only prerequisites are that set up a key store file that holds your cryptographic keys, and to configure
SSL by setting a few properties. All of this is described in this chapter.

Note: unlike previous versions of JacORB, as the minimum JDK is 1.4, SSL is enabled by default.

11.1 Key stores

SSL relies on public key certificates in the standard X.509 format. These certificates are presented in the
authentication phase of the SSL handshake and used to compute and exchange session keys.

The Java 2 security API provides interfaces that access a persistent data structure called KeyStore. A
key store is simply a file that contains public key certificates and the corresponding private keys. It also
contains other certificates that can be used to verify public key certificates. All cryptographic data is
protected using passwords and accessed using names called aliases.

The following section explain how to create key stores for Sun JSSE.

11.1.1 Setting up a JSSE key store

To set up key stores with JSSE you can use Java’s keytool. In order to generate a simple public key
infrastructure you can perform the following steps:

1. Create a new key store containing a new public/private key pair with keytool. The public key
will be wrapped into a self-signed certificate.

2. Export the self-signed certificate from the key store into a file.

3. Import the self-signed certificate into a trust store (or configure that trustees shall be read from key
store, see below).

To create a new key store containing a new public/private key pair type:

keytool -genkey -alias <alias> -keystore <keystore>

If you don’t give a key store name keytool will create a key store with the name .keystore in the
user’s home directory. The command given above will ask for the following input:

92 IIOP over SSL

Enter keystore password: changeit
What is your first and last name?

[Unknown]: Developer
What is the name of your organizational unit?

[Unknown]: cs
What is the name of your organization?

[Unknown]: PrismTech
What is the name of your City or Locality?

[Unknown]: Berlin
What is the name of your State or Province?

[Unknown]: Berlin
What is the two-letter country code for this unit?

[Unknown]: Germany
Is CN=Developer, OU=cs, O=PrismTech, L=Berlin, ST=Berlin,

C=Germany correct?
[no]: yes

Enter key password for <testkey>
(RETURN if same as keystore password): testkey

You can view the entries of the newly created keystore by typing:

keytool -keystore <keystore> -list -storepass <password>

The output will read for example like this:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

testkey, Dec 1, 2004, keyEntry,
Certificate fingerprint (MD5): C4:9B:11:97:FF:CD:4C:C9:B3:02:BB:
9A:46:D8:C3:11

Now you have a public key certificate that you can present for authentication. The public key contained
in the key store is wrapped into a self-signed certificate. This self-signed certificate has to be added to the
Java trust store. To do this export the certificate from the key store and import it into the Java trust store
located in <java home>/jre/lib/security/cacerts.

To export the self-signed certificate into a file type:

keytool -export -keystore <keystore> -alias <alias> -file <filename>

To import the certificate into the trust store type:

11.2 Configuring SSL properties 93

keytool -import -keystore <truststore> -alias <alias> -file <filename>

More documentation on key stores can be found in the Java tool documentation for the keytool
command. Note that if you care for “real” security, be advised that setting up and managing (or finding) a
properly administered CA is essential for the overall security of your system.

11.1.2 Step–By–Step certificate creation

In order to generate a simple public key infrastructure you can perform the following steps:

1. Create new key stores (File/new) and keypairs (Keys/new) for the CA and for the user.

2. Open the user keys tore (File/open), select the key entry and export the self-signed certificate (Cer-
tificates/Export).

3. Open the CA key store and add the user certificate as a Trustee (Trustees/add. . .).

4. Select the trusted user certificate and create a signed public key certificate (Certificates/Create).
Leave the role name field empty, enter the CAs private key password and save the new certificate
by clicking OK.

5. Export the CAs self-signed certificate to a file (as explained above). Delete the trusted certificate
from the CA key store (Trustees/Delete).

6. Open the user key store again. Select the key entry, the import the CA-signed user cert (Certifi-
cates/Import), and the self-signed CA cert.

7. Add the self-signed CA cert as a trustee. This is only needed for verifying the chain, therefor
the key store can be deployed without it. Please note that a failed verification might result in a
SignatureException.

11.2 Configuring SSL properties

When the ORB is initialized by the application, a couple of properties are read from files and the command
line. To turn on SSL support, you have to set the following property to “on”:

jacorb.security.support_ssl=on

This will just load the SSL classes on startup. The configuration of the various aspects of SSL is done
via additional properties.

Configure which SSL socket factory and SSL server socket factory shall be used with the properties:

jacorb.ssl.socket_factory=qualified classname
jacorb.ssl.server_socket_factory=qualified classname

If you want to use JSSE, then configure the following as qualified classname of SSL Socket Factory
and SSL server socket factory:

94 IIOP over SSL

org.jacorb.security.ssl.sun_jsse.SSLSocketFactory
org.jacorb.security.ssl.sun_jsse.SSLServerSocketFactory

As explained in the previous section, cryptographic data (key pairs and certificates) is stored in a key
store file. To configure the file name of the key store file, you need to define the following property:

jacorb.security.keystore=AKeystoreFileName

The key store file name can either be an absolute path or relative to the home directory. Key stores are
searched in this order, and the first one found is taken. If this property is not set, the user will be prompted
to enter a key store location on ORB startup.

The password for the key store file can be specified by using the property
jacorb.security.keystore password.

jacorb.security.keystore_password=secret

By default the KeyStore type uses JKS; to change this alter the property
jacorb.security.keystore type.

The SSL socket factory algorithms are initialised by default to SunX509. On other JDK implementa-
tions (e.g. IBM) this can be changed (to e.g. IbmX509) by altering the following properties:

jacorb.security.jsse.server.key_manager_algorithm=SunX509
jacorb.security.jsse.server.trust_manager_algorithm=SunX509
jacorb.security.jsse.client.key_manager_algorithm=SunX509
jacorb.security.jsse.client.trust_manager_algorithm=SunX509

Note that when using Sun JSSE: The javax.net.ssl.trustStore[Password] properties
doesn’t seem to take effect, so you may want to add trusted certificates to ”normal” key stores. In this case
configure JacORB to read certificates from the key store rather than from a dedicated trust store, please
set the property

jacorb.security.jsse.trustees_from_ks=on

SSL settings can be further refined using security options as in the following property definitions:

jacorb.security.ssl.client.supported_options=0
jacorb.security.ssl.client.required_options=0

jacorb.security.ssl.server.supported_options=0
jacorb.security.ssl.server.required_options=0

11.2 Configuring SSL properties 95

The value of these security options is a bit mask coded as a hexadecimal integer. The meanings of
the individual bits is defined in the CORBA Security Service Specification and reproduced here from the
Security.idl file:

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
const AssociationOptions NoDelegation = 128;
const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;

11.2.1 Using the third-party JCE and JSSE providers

JacORB has possibility to use third-party JCE and JSSE provider. It could be useful when built-in JCE
and JSSE providers don’t support key store formats, algorithms or protocols required for the application.
In this case third-party providers like Bouncy Castle (JCE) and/or Jessie (JSSE) could be used. JacORB
has the set of configuration paramters that allow to define this parameters:

jacorb.security.keystore_provider=<JCE provider name/ID for the key store>
jacorb.security.keystore_provider_impl=<JCE provider implementation class name for the key store>
jacorb.security.truststore_provider=<JCE provider Name/ID for the trust store>
jacorb.security.truststore_provider_impl=<JCE provider implementation class name for the trust store>
jacorb.security.jsse.provider=<JSSE provider name/ID>
jacorb.security.jsse.provider_impl=<JSSE provider implementation class name>

For example, we need key storage support that provided by Bounce Castle. Also, we need JSSE func-
tionality that is implemented by Jessie because for some implementation restriction we cannot use default
JSSE implementation. Thus, we need to set following values for the mentioned configuration parameters:

jacorb.security.keystore_provider=BC
jacorb.security.keystore_provider_impl=org.bouncycastle.jce.provider.BouncyCastleProvider
jacorb.security.truststore_provider=BC
jacorb.security.truststore_provider_impl=org.bouncycastle.jce.provider.BouncyCastleProvider
jacorb.security.jsse.provider=Jessie
jacorb.security.jsse.provider_impl=org.metastatic.jessie.provider.Jessie

and add providers’ implementation jars into application classpath. Now JacORB will use specified
providers for key store (JCE) processing, key managers and SSL socket creation (JSSE).

96 IIOP over SSL

11.2.2 Protocols

The JSSE is capable of supporting SSL versions 2.0 and 3.0 and Transport Layer Security (TLS) 1.0. To
enable different protocols in the JSSE layer use the below properties.

jacorb.security.ssl.client.protocols
jacorb.security.ssl.server.protocols

Refer to the JSSE documentation for valid SSLSocket/SSLContext protocol values.

11.2.3 Client side and server side configuration

On both the client side and the server side supported and required options can be configured. The following
tables explain the settings for supported and required options for client and server.

Table 11.1: Client side supported options
Property with value Description
jacorb.security.ssl.
client.supported_options=20
// EstablishTrustInTarget

This value indicates that the client can
use SSL. Actually, this is default SSL be-
haviour and must always be supported by
the client.

jacorb.security.ssl.
client.supported_options=40
// EstablishTrustInClient

This makes the client load it’s own
key/certificate from it’s key store, to en-
able it to authenticate to the server.

Table 11.2: Client side required options
Property with value Description
jacorb.security.ssl.
client.required_options=20
// EstablishTrustInTarget

This enforces SSL to be used.

jacorb.security.ssl.
client.required_options=40
// EstablishTrustInClient

This enforces SSL to be used. Actu-
ally, this is no meaningfuly value, since
in SSL, the client can’t force it’s own au-
thentication to the server.

11.2 Configuring SSL properties 97

Table 11.3: Server side supported options
Property with value Description
jacorb.security.ssl.
server.supported_options=1
// NoProtection

This tells the clients that the server also
supports unprotected connections. If No-
Protection is set, no required options
should be set as well, because they over-
ride this value.

jacorb.security.ssl.
server.supported_options=20
// EstablishTrustInTarget

This value indicates that the server sup-
ports SSL. Actually, this is default SSL
behaviour and must always be supported
by the server. This also makes the server
load it’s key/certificate from the key store.

jacorb.security.ssl.
server.supported_options=40
// EstablishTrustInClient

This value is ignored, because authenti-
cating the client is either required, or not
done at all (the client can’t force its own
authentication).

Table 11.4: Server side required options
Property with value Description
jacorb.security.ssl.
server.required_options=20
// EstablishTrustInTarget

This enforces SSL to be used.

jacorb.security.ssl.
server.required_options=40
// EstablishTrustInClient

This enforces SSL to be used, and will
request the client to authenticate. It also
will load trusted certificates for the au-
thentication process.

98 IIOP over SSL

11.3 SecureRandom Plugin System

Under certain platforms (e.g. J2ME CDC platforms) when the JSSE initializes its random number gener-
ator it may spawn a large number of threads and/or have a significant start-up time. This overhead may be
unacceptable.

In order to allow developers to provide their own initialization routines for SecureRandom a plugin
class may be provided. A developer should implement the following interface.

package org.jacorb.security.ssl.sun_jsse;

public interface JSRandom
{

SecureRandom getSecureRandom ();
}

The classname should then be specified in the property

jacorb.security.randomClassPlugin

which will be instantiated at runtime. If this property has been specified the SSLSocket factories will call
getSecureRandom to pass through to the SSLContext. Otherwise, the JSSE will use its default values.

Two example implementations; JSRandomImpl and JSRandomImplThread are provided.
JSRandomImpl explicitly initializes a SecureRandom with a fixed seed value. Note that the seed is
a hardcoded value (4711). As using such a seed is a security risk it is not recommended that this code be
used in a production system. The second, using initSecureRandom (see below)

public class JSRandomImplThread implements JSRandom {

public static void initSecureRandom() { ... }
}

allows the developer to initialize a single static SecureRandom in a separate thread at the start of their
main before any ORB calls are done.

11.4 Security and corbaloc

If you want to put together a corbaloc that points to your SSL enabled server object the following needs
to be ensured:

normally an IOR string contains additional components that describe the exact SSL setup for a given
server object. However this additional information cannot be attached to a corbaloc. JacORB provides an
extensions to address that shortcoming.

11.4 Security and corbaloc 99

By using the JacORB specific protocol extension ssliop you can tell ORB that the corbaloc points to a
SSL enabled target. When the corbaloc is resolved with orb.string to object() and the protocol extension
is set, JacORB will act as the target had the SSL specific tagged components set1.

By default the SSL option EstablishTrustInTarget will be used both for supported and required SSL
options of the created stub. Using the property jacorb.security.ssl.corbaloc ssliop.supported options this
can be further customized. Have a look at the configuration chapter for more details.

Example of a corbaloc

corbaloc:ssliop:1.2@hostname:port/object_key

1you need to ensure that the corbaloc used GIOP v1.2 as otherwise tagged components are not supported

100 IIOP over SSL

12 MIOP

JacORB has an implementation of MIOP written as an ETF plugin. This conforms to version 01-11-08 of
the Unreliable Multicast Inter-ORB Protocol specification.

12.1 Enabling the MIOP Transport

In order to enable the ETF transport plugin the following configuration properties must be altered.

jacorb.transport.factories
jacorb.transport.client.selector

By default these properties are configured to use the IIOP transport. For example to select both IIOP and
MIOP transports:

jacorb.transport.factories=org.jacorb.orb.iiop.IIOPFactories,
org.jacorb.orb.miop.MIOPFactories

jacorb.transport.client.selector=
org.jacorb.orb.miop.MIOPProfileSelector

12.2 Configuring the MIOP Transport

A number of extra configuration properties have been added for the transport.

Table 12.1: MIOP Configuration
Property Description Type

jacorb.miop.timeout Timeout used in MIOP requests. Default is 100. integer
jacorb.miop.time_to_
live

TTL used for multicast UDP packets. Default is 5 seconds. integer

jacorb.miop.incomplete_
messages_threshold

Maximum number of incomplete messages allowed. De-
fault 5.

integer

jacorb.miop.message_
completion_timeout

Timeout for packet collection to be completed. Default
500ms.

integer

102 MIOP

Table 12.1: MIOP Configuration
Property Description Type

jacorb.miop.packet_
max_size

This is the maximum size of the frame buffer. This de-
faults to 1500 bytes which is the typical value for most
network interfaces. From this the IP, UDP and UMIOP
headers will be deducted which will leave 1412 bytes for
the MIOP packet.

integer

12.3 MIOP Example

A new demo has been included within <JacORB>/demo/miop. This section will describe how to run
this demo including its use of MIOP corbaloc strings.

Assuming the developer has installed Ant version 1.7.1 or above then the example may be com-
piled by typing ant within the <JacORB>/demo/miop directory. The classes will be compiled to
<JacORB>/classes which may need to be added to the classpath.

To run the server:

jaco demo.miop.Server

To run the client:

jaco demo.miop.Client

This is the simplest configuration and will simply send two oneway requests via UDP to the server. By
default the Server will write out a miop.ior file containing the following corbaloc:

corbaloc:miop:1.0@1.0-TestDomain-1/224.1.239.2:1234;
iiop:1.2@10.1.0.4:38148/4222541922/%00%16%0F%205=%25%02%01I%0C

The Group IIOP Profile key string will not remain constant. The server takes a single optional argument:

-noGroupProfile Don’t write IIOP Group Profile request.

This will create a corbaloc as shown below and is useful for interoperating with ORBs that do not support
the Group Profile.

corbaloc:miop:1.0@1.0-TestDomain-1/224.1.239.2:1234

The Client takes two optional arguments:

12.3 MIOP Example 103

-fragment Trigger fragmentation by sending a larger request.
[IOR—Corbaloc] Don’t use miop.ior but this supplied IOR or Corbaloc.

The second optional argument is useful if interoperating with another ORB.

12.3.1 Two way requests and MIOP

The demo client does an unchecked narrow on the supplied corbaloc/URL. This is because a MIOP URL
does not normally support a two-way is a request unless a Group IIOP profile has also been encoded into
the corbaloc. By default the JacORB demo server will create the Group IIOP profile as well:

corbaloc:miop:1.0@1.0-TestDomain-1/224.1.239.2:1234;
iiop:1.0@10.1.0.4:36840/7150661784/%00%16%0F%1B*@2%02,%1A

It is not guaranteed that other ORBs (e.g. TAO) will create the Group IIOP profile.

104 MIOP

13 BiDirectional GIOP

BiDirectional GIOP has its main use in configurations involving callbacks with applets or firewalls where
it sometimes isn’t possible to open a direct connection to the desired target. As a small example, imagine
that you want to monitor the activities of a server via an applet. This would normally be done via a callback
object that the applet registers at the server, so the applet doesn’t have to poll the server for events. To
accomplish this without BiDirectional GIOP, the server would have to open a new connection to the client
which will not work because applets usually arent allowed to act as servers, i.e. open ServerSockets. At
this point BiDirectional GIOP can help because it allows to reuse the connection the applet opened to the
server for GIOP requests from the server to the applet (which isn’t allowed in “standard” GIOP).

13.1 Setting up Bidirectional GIOP

Setting up BiDirectional GIOP consists of two steps:

1. Setting an ORBInitializer property and creating the BiDir policy

2. Adding this policy to the servant’s POA.

13.1.1 Setting the ORBInitializer property

The first thing that is necessary for BiDirectional GIOP to be available is the presence of the following
property, which can be added by the usual ways (see chapter 3):

org.omg.PortableInterceptor.ORBInitializerClass.bidir_init=
org.jacorb.orb.giop.BiDirConnectionInitializer

If this property is present on ORB startup, the corresponding policy factory and interceptors will be
loaded.

13.1.2 Creating the BiDir Policy

Creating the necessary BiDir Policy is done via a policy factory hidden in the ORB.

import org.omg.BiDirPolicy.*;
import org.omg.CORBA.*;

106 BiDirectional GIOP

[...]

Any any = orb.create_any();
BidirectionalPolicyValueHelper.insert(any, BOTH.value);

Policy p = orb.create_policy(BIDIRECTIONAL_POLICY_TYPE.value,
any);

The value of the new policy is passed to the factory inside of an any. The ORB is the told to create a
policy of the specified type with the specified value. The newly created policy is then used to create a user
POA. Please note that if any POA of has this policy set, all connections will be enabled for BiDirectional
GIOP, that is even those targeted at object of POAs that don’t have this policy set. For the full source code,
please have a look at the bidir demo in the demo directory.

13.2 Verifying that BiDirectional GIOP is used

From inside of your application, it is impossible to tell whether requests arrived over a unidirectional or
BiDirectional connection. Therefore, to check if connections are used in both directions, you can either
use a network monitoring tool or take a look at JacORBs output to tell you if your server created a new
connection to the client, or if the existing one is being reused.

If the debug level is set to 2 or larger, the following output on the server side will tell you that a
connection is being reused:

[ConnectionManager: found conn to target <my IP>:<my port>]

If, on the other hand, the connection is not being reused, the client will show the following output:

[Opened new server-side TCP/IP transport to <my host>:<my port>]

13.3 TAO interoperability

There is one problem that may prevent TAO and JacORB to interoperate using BiDirectional GIOP: If
JacORB uses IP addresses as host names (JacORBs default) and TAO uses DNS names as host names
(TAOs default), connections from JacORB clients to TAO servers will not be reused. If, on the other hand,
both use the same “format” for host addresses, interoperability will be successful. There are two ways to
solve this problem:

1. Use ‘‘-ORBdotteddecimaladdresses 1’’ as an command line argument to the TAO
server.

2. Recompile JacORB with DNS support (See the INSTALL file for more information).

14 Portable Interceptors

Since revision 1.1 JacORB provides support for Portable Interceptors These interceptors are compliant to
the standard CORBA specification. Therefore we don’t provide any documentation on how to program
interceptors but supply a few (hopefully helpful) hints and tips on JacORB specific solutions.

The first step to have an interceptor integrated into the ORB is to register an ORBInitializer. This is
done by setting a property the following way:

org.omg.PortableInterceptor.ORBInitializerClass.<any_suffix>=
<orb initializer classname>

For compatibility reasons with the spec, the properties format may also be like this:

org.omg.PortableInterceptor.ORBInitializerClass.<orb initializer classname>

The suffix is just to distinguish between different initializers and doesn’t have to have any meaningful
value. The value of the property however has to be the fully qualified classname of the initializer. If the
verbosity is set to≥ 2 JacORB will display a ClassNotFoundException in case the initializers class
is not in the class path.

An example line might look like:

org.omg.PortableInterceptor.ORBInitializerClass.my_init=
test.MyInterceptorInitializer

Unfortunately the interfaces of the specification don’t provide any access to the ORB. If you need
access to the ORB from out of the initializer you can cast the ORBInitInfo object to jacorb.
orb.portableInterceptor.ORBInitInfoImpl and call getORB() to get a reference to the
ORB that instantiated the initializer.

When working with service contexts please make sure that you don’t use 0x4A414301 as an id be-
cause a service context with that id is used internally. Otherwise you will end up with either your data not
transfered or unexpected internal exceptions.

14.1 Interceptor ForwardRequest Exceptions

Several of the interceptor types may throw a ForwardException such as
ClientRequestInterceptor send request. A developer may wish to do this if, for in-
stance, a new policy is being applied to the object to switch to a SSL connection type as suggested within
chapter 18.

108 Portable Interceptors

A current limitation of the specification (CORBA 3; 02-06-33) is that it is impossible to detect whether
the call has previously been thrown for the same client request. Thus it is possible to enter an infinite loop
throwing ForwardRequest at this point. This issue was first submitted to the OMG in May 2002 under
number 5266.

In order to allow developers more flexibility when writing their interceptors PrismTech have enhanced
the exception handling as follows. We have chosen one of the solutions proposed within issue 5266;
namely to allow forward reference() to be accessed in send request() as well as in receive other(). i.e.
returning the object from the previous ForwardRequest if that has been thrown and null otherwise.

A typical use of this might be

public void send_request(ClientRequestInfo ri)
{

if (ri.effective_profile().tag == TAG_INTERNET_IOP.value &&
ri.forward_reference() == null)

{
// Do some processing, throw a forward request.

}
}

This allows the developer to conditionally throw a forward request while using forward reference() to
prevent infinite loops.

15 Asynchronous Method Invocation

JacORB allows you to invoke objects asynchronously, as defined in the Messaging chapter of the CORBA
specification (chapter 22 in CORBA 3.0). Only the callback model is implemented at this time; there is
no support for polling yet.

Asynchronous Method Invocation (AMI) means that when you invoke a method on an object, control
returns to the caller immediately; it does not block until the reply has been received from the remote
object. The results of the invocation are delivered later, as soon as they are received by the client ORB.
Asynchronous Invocation is entirely a client-side feature. The server is never aware whether it is invoked
synchronously or asynchronously.

In the callback model, replies are delivered to a special ReplyHandler object that is registered at the
client side when the asynchronous invocation is started. Here is a brief example for this (see the Messaging
specification for further details). Suppose you have a Server object, defined in a file server.idl.

interface Server
{

long operation (in long p1, inout long p2);
};

The first step is to compile this IDL definition with the “ami callback” compiler switch:

idl -ami_callback server.idl

This lets the compiler generate an additional ReplyHandler class, named AMI ServerHandler. For each
operation of the Server interface, this class has an operation with the same name that receives the return
value and out parameters of the original operation. There is an additional method named operation excep
that is called if the invocation raises an exception. If it were defined in IDL, the ReplyHandler class for
the above Server would look like this:

interface AMI_ServerHandler : Messaging::ReplyHandler
{

void operation (in long ami_return_val, in long p2);
void operation_excep (in Messaging::ExceptionHolder excep_holder);

};

To implement this interface, extend the corresponding POA class (or use the tie approach), as with any
CORBA object:

110 Asynchronous Method Invocation

public class AMI_ServerHandlerImpl extends AMI_ServerHandlerPOA
{

public void operation (int ami_return_val, int p2)
{

System.out.println ("operation reply received");
}

public void operation_excep
(org.omg.Messaging.ExceptionHolder excep_holder)

{
System.out.println ("received an exception");

}

}

For each method m of the original Server interface, the IDL compiler generates a special method
sendc m into the stub class if the “ami callback” switch is on. The parameters of this method are (1) a
reference to a ReplyHandler object, and (2) all in or inout parameters of the original operation, with their
mode changed to in (out parameters are omitted from this operation). The sendc operation does not have
a return value.

To actually make an asynchronous invocation, an instance of the ReplyHandler needs to be created,
registered with the ORB, and passed to the sendc method. The code for this might look as follows:

ORB orb = ...
Server s = ...

// create handler and obtain a CORBA reference to it
AMI_ServerHandler h = new AMI_ServerHandlerImpl()._this (orb);

// invoke sendc
((_ServerStub)s).sendc_operation (h, 4, 5);

Note that the sendc operation is only defined in the stub, and therefore the cast is necessary to invoke
it. There is not yet any consensus in the OMG whether the sendc operation should also be declared in any
of the Java interfaces that make up the Server type. Thus, the fact that you need to make a cast to the stub
class may change in a future version of JacORB.

If you want to try asynchronous invocations with code such as above, make sure that your client process
does something else or at least waits after the invocation has been made, otherwise it will likely exit before
the reply can be delivered to the handler.

The Messaging specification also defines a number of CORBA policies that allow you to control the
timing of asynchronous invocations. Since these policies are applicable to both synchronous and asyn-
chronous invocations, we describe them in a separate section (see chapter 16).

16 Quality of Service

JacORB implements a subset of the QoS policies defined in chapter 22.2 of the CORBA 3.0 specification.
In the following, we describe each of the policies we have currently implemented, along with notes on
particular JacORB issues concerning each policy. Policies not listed in the following are not yet imple-
mented.

As of yet, all policies described in this chapter are client-side override policies. The CORBA specifi-
cation uses the term for any policy that is explicitly set and thus overrides system defaults. Policies can
be set at different scopes: per object, per thread, or per ORB. The current JacORB implementation only
supports object and ORB scopes. In general, the following steps are necessary:

Step 1. Get an any from the ORB and put the value for the policy into it.

Step 2. Get a Policy object from the ORB which encapsulates the desired value (the any value from the
previous step).

Step 3. Apply the policy to a particular object using the set policy override() operation on the
object reference.

Step 3. alternatively: set the policy ORB-wide using the set policy overrides() operation on
the ORB’s PolicyManager object.

Note: The set policy overrides operation returns a new object reference with the new policies associ-
ated with it.

Below is the code that corresponds to the steps listed above, using the SyncScopePolicy (described in
the following section) as an example. Also, have a look at the demo program in demo/policies:

SomeCorbaType server = ...
SomeCorbaType serverNew = ...
org.omg.CORBA.ORB orb = ...
org.omg.CORBA.Any a = orb.create_any();

a.insert_short(SYNC_WITH_SERVER.value); // the value for that policy
try
{

Policy p = orb.create_policy(SYNC_SCOPE_POLICY_TYPE.value, a);
org.omg.CORBA.Object r =

server._set_policy_override (new Policy[]{ p },
SetOverrideType.ADD_OVERRIDE);

serverNew = SomeCorbaTypeHelper.narrow (r);

112 Quality of Service

// get the ORB’s policy manager
PolicyManager policyManager =

PolicyManagerHelper.narrow(
orb.resolve_initial_references("ORBPolicyManager"));

// set an ORB-wide policy
policyManager.set_policy_overrides(new Policy[]{ p },

SetOverrideType.ADD_OVERRIDE);
}
catch (PolicyError e)
{

throw new RuntimeException ("policy error: " + e);
}

The above is portable code that relies only on standardized CORBA APIs to create and set policies.
Because this code is somewhat cumbersome to write, JacORB also allows you to simplify it by creating
the Policy object directly via its constructor, as shown below. Note that this is non-portable code:

SomeCorbaType server = ...
SomeCorbaType serverNew = ...

Policy p = new org.jacorb.orb.policies.SyncScopePolicy
(SYNC_WITH_TARGET.value);

org.omg.CORBA.Object r =
server._set_policy_override (new Policy[]{ p },

SetOverrideType.ADD_OVERRIDE);
serverNew = SomeCorbaTypeHelper.narrow (r);

See the package org.jacorb.orb.policies to find out which constructors are defined for the individual
policy types.

16.1 Sync Scope

The SyncScopePolicy specifies at which point a oneway invocation returns to the caller. (The policy is
ignored for non-oneway invocations.) There are four possible values:

SYNC NONE The invocation returns immediately.

SYNC WITH TRANSPORT The invocation returns after the request has been passed to the transport
layer.

SYNC WITH SERVER The server sends an acknowledgement back to the client when it has received
the request, but before actually invoking the target. The client-side call blocks until this acknowl-
edgement has been received.

16.2 Timing Policies 113

SYNC WITH TARGET An ordinary reply is sent back by the server, after the target invocation has
completed. The client-side call blocks until this reply has been received.

The default mechanism in JacORB is SYNC WITH TRANSPORT, since the call to the socket layer is
a synchronous one. In order to implement SYNC NONE, an additional thread is created on the fly which
in turn calls the socket layer, while the client-side invocation returns after this thread has been created.
Given this additional overhead, it is unlikely that SYNC NONE yields a significant performance gain for
the client, not even on a multiprocessor machine.

16.2 Timing Policies

For each CORBA request four different points in time can be specified:

Request Start Time the time after which the request may be delivered to its target

Request End Time the time after which the request may no longer be delivered to its target

Reply Start Time the time after which the reply may be delivered to the client

Reply End Time the time after which the reply may no longer be delivered to the client

Each of these points in time can be specified on a per-object level as a client-side override policy:
RequestStartTimePolicy, RequestEndTimePolicy, ReplyStartTimePolicy, and ReplyEndTimePolicy (see be-
low for concrete code examples).

Each of these policies specifies an absolute time, which means that they will usually have to be set again
for each individual request. As a convenience, there are two additional policies that allow you to specify
a relative time for Request End Time and Reply End Time; they are called RelativeRequestTimeoutPolicy
and RelativeRoundtripTimeoutPolicy, respectively. These timeouts are simply more convenient ways for
expressing these two times; before each individual invocation, the ORB computes absolute times from
them (measured from the start of the invocation at the client side) and handles them just as if an absolute
Request End Time or Reply End Time had been specified. We will therefore only discuss the four absolute
timing policies below.

All of these policies apply to synchronous and asynchronous invocations alike.

Figure 16.1 shows how JacORB interprets the timing policies in the course of a single request.

• As soon as the ORB receives control (prior to marshaling), it converts any RelativeRequestTime-
outPolicy or RelativeRoundtripTimeoutPolicy to an absolute value, by adding the relative value to
the current system time.

• The ORB then checks whether Request End Time or Reply End Time have already elapsed. If so,
no invocation is made, and an org.omg.CORBA.TIMEOUT is thrown to the client.

• After the ORB has sent the request, it waits for a reply until Reply End Time has elapsed. If
it receives no reply before that, the request is discarded and an org.omg.CORBA.TIMEOUT
thrown to the client. (JacORB does not currently cancel the outstanding request, it simply discards
the reply, should one arrive after the timeout has elapsed.)1

1Note that if there is no connection to the server yet, other timeouts are applied first, configured by the properties

114 Quality of Service

Target

Client

Client ORB Server ORB

check:

wait:

check:

wait:

check:

timeout:

RequestEndTime
ReplyEndTime

RequestEndTime
ReplyEndTime*

RequestStartTime

ReplyEndTime*ReplyStartTime

ReplyEndTime

* = optional check

Figure 16.1: Timing Policies in JacORB

• On the server side (before demarshaling), the ORB checks whether the Request End Time has al-
ready elapsed. If so, the request is not delivered to the target, and an org.omg.CORBA.TIMEOUT
is thrown back to the client.

• Optionally, the server-side ORB may also check at this point whether the Reply End Time
has already elapsed, and not actually invoke the target in this case (throwing back an
org.omg.CORBA.TIMEOUT to the client as well). Since the Reply End Time would then be
checked both on the client and the server side, this requires that the clocks on both machines are
synchronized at least to the same order of magnitude as the timeout itself. This check is therefore off
by default, and may be enabled by setting the property jacorb.poa.check reply end time
to “on”.

• If the request proceeds, the ORB waits until the Request Start Time has been reached, if one was
specified, and has not already elapsed. After that, the request is delivered to the target.

• After the target invocation has returned, the ORB may optionally check whether the Reply End Time
has now elapsed. Similar to the check prior to the target invocation, this check is also optional and
controlled by the property jacorb.poa.check reply end time (see discussion above). If
the check is enabled, and the Reply End Time is found to have elapsed at this point, the ORB sends
an org.omg.CORBA.TIMEOUT back to the client, rather than the actual reply.

• If the reply arrives at the client before Reply End Time has elapsed, the ORB waits until Reply Start
Time has been reached, if one was specified, and has not already elapsed. After that, the reply is
delivered back to the client.

jacorb.connection.client.connect timeout and jacorb.retries. If connection establish-
ment fails, control does not return to the client until these timeouts have expired, even if this is later than Reply
End Time.

16.2 Timing Policies 115

The bottom line of this is that for a simple, per-invocation timeout, you should specify a
RelativeRoundtripTimeoutPolicy.

116 Quality of Service

Programming

In CORBA, points of time are specified to an accuracy of 100 nanoseconds, using values of struct
TimeBase::UtcT. To allow easy manipulation of such values from Java, JacORB provides a num-
ber of static methods in org.jacorb.util.Time. For example, to convert the current Java time into
a UtcT value, write

UtcT currentTime = org.jacorb.util.Time.corbaTime();

To create a UtcT value that specifies a time n milliseconds in the future, you can write

UtcT time = org.jacorb.util.Time.corbaFuture (10000 * n);

(The argument to corbaFuture() is in CORBA time units of 100 ns; we multiply n by 10000 here
to convert it from Java time units (milliseconds).)

The following shows how to set a timing policy for an object using the standard mechanism (see the
beginning of this chapter for an explanation). In this example, we set a Reply End Time that lies one
second in the future:

import org.omg.CORBA.*;

SomeCorbaType server = ... // the object for which we want to set
// a timing policy

SomeCorbaType serverNew = ... // new object which will have timing
// set

org.omg.CORBA.ORB orb = ...
org.omg.CORBA.Any a = orb.create_any();

org.omg.TimeBase.UtcT replyEndTime
= org.jacorb.util.Time.corbaFuture (1000 * 10000); // one second

org.omg.TimeBase.UtcTHelper.insert (a, replyEndTime);

try
{

Policy p =
orb.create_policy (REPLY_END_TIME_POLICY_TYPE.value, a);

org.omg.CORBA.Object r =
server._set_policy_override (new Policy[]{ p },

SetOverrideType.ADD_OVERRIDE);
serverNew = SomeCorbaTypeHelper.narrow (r);

}
catch (PolicyError e)
{

16.2 Timing Policies 117

...
}

118 Quality of Service

Using the constructors of JacORB’s implementations of policy values, this becomes less verbose:

SomeCorbaType server = ...
SomeCorbaType serverNew = ...

Policy p = new org.jacorb.orb.policies.ReplyEndTimePolicy
(org.jacorb.util.Time.corbaFuture (1000 * 10000));

org.omg.CORBA.Object r =
server._set_policy_override (new Policy[]{ p },

SetOverrideType.ADD_OVERRIDE);
serverNew = SomeCorbaTypeHelper.narrow (r);

Likewise, to set a Relative Roundtrip Timeout of one second, write:

SomeCorbaType server = ...
SomeCorbaType serverNew = ...

Policy p =
new org.jacorb.orb.policies.RelativeRoundtripTimeoutPolicy

(1000 * 10000);
org.omg.CORBA.Object r =

server._set_policy_override (new Policy[]{ p },
SetOverrideType.ADD_OVERRIDE);

serverNew = SomeCorbaTypeHelper.narrow (r);

The difference between this and the example before, where a Reply End Time was used, is that the
latter specifies a relative time to CORBA. The policy will therefore be valid for all subsequent invocations,
because the absolute deadline will be recomputed before each invocation. In the first example, the deadline
will no longer make sense for any subsequent invocations, since only an absolute time was specified to the
ORB.

17 Connection Management and
Connection Timeouts

JacORB offers a certain level of control over connections and timeouts. You can

• set connection idle timeouts.

• set request timing.

• set the maximum number of accepted TCP/IP connections on the server.

17.1 Timeouts

Connection idle timeouts can be set individually for the client and the server. They con-
trol how long an idle connection, i.e. a connection that has no pending replies, will stay
open. The corresponding properties are jacorb.connection.client.idle timeout and
jacorb.connection.server.timeout and take their values as milliseconds. If not set, con-
nections will stay open indefinitely (or until the OS decides to close them).

Request timing controls how long an individual request may take to complete. The programmer can
specify this using QoS policies, discussed in chapter 16.

17.2 Connection Management

When a client wants to invoke a remote object, it needs to send the request over a connection to the server.
If the connection isn’t present, it has to be created. In JacORB, this will only happen once for every
combination of host name and port. Once the connection is established, all requests and replies between
client and server will use the same connection. This saves resources while adding a thin layer of necessary
synchronization, and is the recommended approach of the OMG. Occasionally people have requested to
allow for multiple connections to the same server, but nobody has yet presented a good argument that
more connections would speed up things considerably.

On the server side, the property jacorb.connection.max server connection allows to set
the maximum number of TCP/IP connections that will be listened on for requests. When using a network
sniffer or tools like netstat, more inbound TCP/IP connections than the configured number may be dis-
played. This is for the following reason: Whenever the connection limit is reached, JacORB tries to close
existing idle connections (see the subsection below). This is done on the thread that accepts the new con-
nections, so JacORB will not actively accept more connections. However, the ServerSocket is initialized

120 Connection Management and Connection Timeouts

with a backlog of 20. This means that 20 more connections will be quasi-accepted by the OS. Only the
21st will be rejected right away.

17.2.1 Basics and Design

Whenever there is the need to close an existing connection because of the connection limit, the ques-
tion arises on which of the connection to close. To allow for maximum flexibility, JacORB provides
the interface SelectionStrategy that allows for a custom way to select a connection to close.
Because selecting a connection usually requires some sort of statistical data about it, the interface
StatisticsProvider allows to implement a class that collects statistical data.

package org.jacorb.orb.giop;

public interface SelectionStrategy
{

public ServerGIOPConnection
selectForClose(java.util.List connections);

}

public interface StatisticsProvider
{

public void messageChunkSent(int size);
public void flushed();
public void messageReceived(int size);

}

The interface SelectionStrategy has only the single method of selectForClose(). This
is called by the class GIOPConnectionManager when a connection needs to be closed. The ar-
gument is a List containing objects of type ServerGIOPConnection. The call itself is syn-
chronized in the GIOPConnectionManager, so no additional synchronization has to be done by
the implementor of SelectionStrategy. When examining the connections, the strategy can get
hold of the StatisticsProvider via the method getStatisticsProvider() of the class
GIOPConnection. The strategy implementor should take care only to return idle connections. While
the connection state is checked anyway while closing (it may have changed in the meantime), it seems
to be more efficient to avoid cycling through the connections. When no suitable connection is available,
the strategy may return null. The GIOPConnectionManager will then wait for a configurable time,
and try again. This goes on until a connection can be closed.

The interface StatisticsProvider is used to collect statistical data about a connection
and provide it to the SelectionStrategy. Because the nature of this data may vary, there
is no standard access to the data via the interface. Therefore, StatisticsProvider and
SelectionStrategy usually need to be implemented together. Whenever a new connection is cre-

17.2 Connection Management 121

ated1, a new StatisticsProvider object is instanciated and stored with the GIOPConnection2.
The StatisticsProvider interface is oriented along the mode of use of the GIOPConnection.
For efficiency reasons, messages are not sent as one big byte array. Instead, they are sent piecewise
over the wire. When such a chunk is sent, the method messageChunkSent(int size) will be
called. After the message has been completely sent, method flush() is called. This whole process
is synchronized, so all consecutive messageChunkSents until a flush() form a single message.
Therefore, no synchronization on this level is necessary. However, access to gathered statistical data
by the SelectionStrategy is concurrent, so care has to be taken. Receiving messages is done
only on the whole, so there exists only one method, messageReceived(int size), to notify the
StatisticsProvider of such an event.

JacORB comes with two pre-implemented strategies: least frequently used and least recently used.
LFU and LRU are implemented by the classes org.jacorb.orb.giop.L[F|R]USelection-
StrategyImpl and org.jacorb.orb.giop. L[F|R]UStatisticsProviderImpl.

17.2.2 Configuration

To configure connection management, the following properties are provided:

jacorb.connection.max server connections This property sets the maximum number of
TCP/IP connections that will be listened on by the server–side ORB.

jacorb.connection.wait for idle interval This property sets the interval to wait until the
next try is made to find an idle connection to close. Value is in microseconds.

jacorb.connection.selection strategy class This property sets the Selection-
Strategy.

jacorb.connection.statistics provider class This property sets the Statistics-
Provider.

jacorb.connection.delay close If turned on, JacORB will delay closing of TCP/IP connec-
tions to avoid certain situations, where message loss can occur. See also section 17.2.3.

17.2.3 Limitations

When trying to close a connection, it is first checked that the connection is idle, i.e. has no pending
messages. If this is the case, a GIOP CloseConnection message is sent, and the TCP/IP connection is
closed. Under high load, this can lead to the following situation:

1. Server sends the CloseConnection message.

2. Server closes the TCP/IP connection.

3. The client sends a new request into the connection, because it hasn’t yet read and acted on the
CloseConnection message.

1Currently, connection management is only implemented for the server side. Therefore, only accepted
ServerGIOPConnectionss will get a StatisticsProvider

2This is actually only done when a StatisticsProvider is configured

122 Connection Management and Connection Timeouts

4. The server–side OS will send a TCP RST, which cancels out the CloseConnection message.

5. The client finds the connection closed and must consider the request lost.

To get by this situation, JacORB takes the following approach. Instead of closing the connection
right after sending the CloseConnection message, we delay closing and wait for the client to close
the connection. This behaviour is turned off by default, but can be enabled by setting the property
jacorb.connection.delay close to “yes”. When non-JacORB clients are used care has to be
taken that these ORBs do actively close the connection upon receiving a CloseConnection message.

18 Extensible Transport Framework

The Extensible Transport Framework (ETF), which JacORB implements, allows you to plug in other
transport layers besides the standard IIOP (TCP/IP) protocol1.

To use an alternative transport, you need to (a) implement it as a set of Java classes following the ETF
specification, and (b) tell JacORB to use the new transport instead of (or alongside with) the standard IIOP
transport. We cover both steps below.

18.1 Implementing a new Transport

The interfaces that an ETF-compliant transport must implement are described in the ETF specification,
and there is thus no need to repeat that information here. JacORB’s default IIOP transport, which is
realized in the package org.jacorb.orb.iiop, can also serve as a starting point for implementing
your own transports.

For each transport, the following interfaces must be implemented (defined in ETF.idl, the package
is org.omg.ETF):

Profile encapsulates addressing information for this transport

Listener server-side communication endpoint, waits for incoming connections and passes them up to
the ORB

Connection an actual communication channel for this transport

Factories contains factory methods for the above interfaces

The Handle interface from the ETF package is implemented in the ORB (by the class
org.jacorb.orb.BasicAdapter), not by individual transports. There is currently no support in
JacORB for the optional zero-copy mechanism; the interface ConnectionZeroCopy therefore needn’t
be implemented.

On the server side, the Listener must pass incoming connections up to the ORB using the “Handle”
mechanism; the accept() method needn’t be implemented. Once a Connection has been passed up
to the ORB, it will never be “returned” to the Listener again. The method completed data() in
the Listener interface therefore needn’t be implemented, and neither should the Listener ever call
Handle.signal data available() or Handle.closed by peer() (these methods throw a
NO IMPLEMENT exception in JacORB).

At the time of this writing (July 2003), there is still uncertainty in ETF about how server-specific
Profiles (as returned by Listener.endpoint(), for example) should be turned into object-specific

1At the time of this writing (July 2003), ETF is still a draft standard (OMG TC document mars/2003-02-01).

124 Extensible Transport Framework

ones for inclusion into IORs. We have currently added three new operations to the Profile interface to
resolve this issue, see JacORB’s version of ETF.idl for details.

18.2 Configuring Transport Usage

You tell JacORB which transports it should use by listing the names of their Factories classes in the
property jacorb.transport.factories. In the standard configuration, this property contains only
org.jacorb.orb.iiop.IIOPFactories, the Factories class for the standard IIOP transport.
The property’s value is a comma-separated list of fully qualified Java class names; each of these classes
must be found somewhere on the CLASSPATH that JacORB is started with. For example:

jacorb.transport.factories = my.transport.Factories, org.jacorb.orb.iiop.IIOPFactories

By default, a JacORB server creates listeners for each transport listed in the above property, and pub-
lishes profiles for each of these transports in any IOR it creates. The order of profiles within an IOR is the
same as that of the transports in the property.

If you don’t want your servers to listen on each of these transports (e.g. because you want some of
your transports only to be used for client-side connections), you can specify the set of actual listeners in
the property jacorb.transport.server.listeners. The value of this property is a comma-
separated list of numeric profile tags, one for each transport that you want listeners for, and which you
want published in IOR profiles. The numeric value of a transport’s profile tag is the value returned by the
implementation of Factories.profile tag() for that transport. Standard IIOP has profile tag 0
(TAG INTERNET IOP). Naturally, you can only specify profile tag numbers here for which you have a
corresponding entry in jacorb.transport.factories.

So, to restrict your server-side transports to standard IIOP, you would write:

jacorb.transport.server.listeners = 0

On the client side, the ORB must decide which of potentially many transports it should use to contact a
given server. The default strategy is that for each IOR, the client selects the first profile for which there is a
transport implementation available at the client side (specified in jacorb.transport.factories).
Profiles for which the client has no transport implementation are skipped.

Note that this is a purely static decision, based on availability of an implementation. JacORB does not
attempt to actually establish a transport connection in order to find out which transport can be used. Also,
should the selected transport fail, JacORB does not “fall back” to the next transport in the list. (This is
because JacORB opens connections lazily, only when the first actual data is being sent.)

You can customize this strategy by providing your own implementation of
org.jacorb.orb.ProfileSelector, and specifying it in the property
jacorb.transport.client.selector. The interface ProfileSelector requires the
following methods:

18.3 Selecting Specific Profiles Using RT Policies 125

Profile selectProfile(List profiles,
ClientConnectionManager ccm,
Map cookie);

boolean selectNext(Map cookie);

For each IOR, the method selectProfile receives a list of all profiles from the IOR for which the client
has a transport implementation, in the order in which they appear in the IOR. The method should select
one profile from this list and return it; this profile will then be used for communication with the server.

To help with the decision, JacORB’s ClientConnectionManager is passed as an additional pa-
rameter. The method implementation can use it to check whether connections with a given transport, or
to a given server, have already been made; it can also try and pre-establish a connection using a given
transport and store it in the ClientConnectionManager for later use. (See the JacORB source code
to find out how to deal with the ClientConnectionManager.)

The passed in Map might be used to store IOR specific information across several invocations of the
ProfileSelector. The default implementation does not use the Map.

The default ProfileSelector does not use the ClientConnectionManager, it simply re-
turns the first profile from the list, unconditionally. To let JacORB use your own implementation of the
ProfileSelector interface, specify the fully qualified classname in the property:

jacorb.transport.client.selector=my.pkg.MyProfileSelector

The method selectNext might be invoked by the ORB to notify the ProfileSelector that the
currently selected profile failed. If possible the ProfileSelector can select the next available profile
that should then be returned by the next call to selectProfile.

18.3 Selecting Specific Profiles Using RT Policies

JacORB has a implementation of the standard Real Time CORBA ClientProtocolPolicy policy which it
uses to allow a developer to select between IIOP profiles that either support or do not support an SSL
component. When applied to a bind (implicit or explicit), the ClientProtocolPolicy indicates the protocols
that may be used to make a connection to the specified object.

The only non-standard proprietary component of this is the definition of two profile IDs
that are used to distinguish between IIOP/SSL, IIOP/NOSSL and IIOP profiles. The three
org.omg.RTCORBA.Protocol types are:

• JAC SSL PROFILE ID

• NOSSL PROFILE ID

• org.omg.IOP.TAG INTERNET IOP

126 Extensible Transport Framework

The former two are defined within org.jacorb.orb.ORBConstants. To apply this the devel-
oper may use, for example, a ClientRequestInterceptor that applies the policy to the object and throws a
ForwardRequest, or may simply apply the policy to the object as shown below.

org.omg.RTCORBA.Protocol protocol = new org.omg.RTCORBA.Protocol();
org.omg.RTCORBA.Protocol protocols[] = new org.omg.RTCORBA.Protocol[1];
org.omg.CORBA.Policy policies[] = new org.omg.CORBA.Policy[1];

protocol.protocol_type = ORBConstants.JAC_SSL_PROFILE_ID;
protocols[0] = protocol;

rtorb = org.omg.RTCORBA.RTORBHelper.narrow
(orb.resolve_initial_references ("RTORB"));

org.omg.RTCORBA.ClientProtocolPolicy cpp =
rtorb.create_client_protocol_policy (protocols);

policies[0] = cpp;

org.omg.CORBA.Object r = <mycorbaobject>._set_policy_override
(policies, SetOverrideType.SET_OVERRIDE);

<mynewcorbaobject> = <mycorbaobjecthelper>.narrow (r);

19 Security Attribute Service

The Security Attribute Service (SAS) is part of the Common Secure Interoperability Specification, Version
2 (CSIv2) CORBA specification. It is defined in the Secure Interoperability chapter (chapter 24) of the
CORBA 3.0.2 Specification.

19.1 Overview

The SAS specification defines the interchange between a Client Security Service (CSS) and a Target
Security Service (TSS) for the exchange of security authentication and authorization elements. This in-
formation is exchanged in the Service Context of the GIOP request and reply messages. The SAS may be
used in conjunction with SSL to provide privacy of the messages being sent and received.

The SAS service is implemented as a series of standard CORBA interceptors, one for the CSS and one
for the TSS. The service also uses a user specified SAS context class to support different authentication
mechanisms, such as GSSUP and Kerberos.

The SAS service is activated based on entries in the JacORB properties file and CORBA Properties
assigned to the POA.

The following is a part of the JacORB properties file that is used by the SAS.

##
#
SAS configuration
#
##

Logger configuration
#jacorb.security.sas.log.verbosity=3
#jacorb.security.sas.GSSUP.log.verbosity=3
#jacorb.security.sas.TSS.log.verbosity=3
#jacorb.security.sas.CSS.log.verbosity=3
#jacorb.security.sas.Kerberos.log.verbosity=3

This option defines the specific SAS context generator/validator
Currently supported contexts include:
GssUpContext - Uses GSSUP security
KerberosContext - uses Kerberos security
At least one context must be selected for SAS support
#jacorb.security.sas.contextClass=org.jacorb.security.sas.NullContext
jacorb.security.sas.contextClass=org.jacorb.security.sas.GssUpContext
#jacorb.security.sas.contextClass=org.jacorb.security.sas.KerberosContext

This initializer installs the SAS interceptors
Comment out this line if you do not want SAS support

128 Security Attribute Service

org.omg.PortableInterceptor.ORBInitializerClass.SAS=org.jacorb.security.sas.SASInitializer

This option is used for GSSUP security and sets up the GSS Provider
Comment out this line if you are not using GSS UP authentication
org.omg.PortableInterceptor.ORBInitializerClass.GSSUPProvider=org.jacorb.security.sas.GSSUPProviderInitializer

Whether to support stateful contexts
jacorb.security.sas.stateful=true

Whether SSL is required.
#jacorb.security.sas.tss.requires_sas=false

19.2 GSSUP Example

The GSSUP (GSS Username/Password) example demonstrates the simplest usage of the SAS service.
In this example, username and password pairs are send via the SAS service. The client registers its
username and password with the GSSUP Context which is later used CSS interceptor to generate the
user’s authentication information. The TSS retrieves the username and password without validating them.
It is assumed by the TSS that the username and password are correct and/or will be further validated by a
later interceptor or application code.

The following describes a SAS example using GSSUP.

19.2.1 GSSUP IDL Example

module demo{
module sas{

interface SASDemo{
void printSAS();

};
};

};

The IDL contains a single interface. This interface is used to print out the user principal sent and
received by the SAS service.

19.2.2 GSSUP Client Example

The following is a sample GSSUP client.

package demo.sas;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;

import org.jacorb.security.sas.GssUpContext;
import org.omg.CORBA.ORB;

public class GssUpClient {

19.2 GSSUP Example 129

public static void main(String args[]) {
if (args.length != 3) {

System.out.println("Usage: java demo.sas.GssUpClient <ior_file> <username> <password>");
System.exit(1);

}

try {
// set security credentials
GssUpContext.setUsernamePassword(args[1], args[2]);

// initialize the ORB.
ORB orb = ORB.init(args, null);

// get the server
File f = new File(args[0]);
if (!f.exists()) {

System.out.println("File " + args[0] + " does not exist.");
System.exit(-1);

}
if (f.isDirectory()) {

System.out.println("File " + args[0] + " is a directory.");
System.exit(-1);

}
BufferedReader br = new BufferedReader(new FileReader(f));
org.omg.CORBA.Object obj = orb.string_to_object(br.readLine());
br.close();
SASDemo demo = SASDemoHelper.narrow(obj);

//call single operation
demo.printSAS();
demo.printSAS();
demo.printSAS();

System.out.println("Call to server succeeded");
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

The key to the client is the call to:

GssUpContext.setUsernamePassword(args[1], args[2]);

This call registers the client’s username and password with the GSSUP context. This information will
then later be used by the CSS interceptor as the user’s authentication information.

19.2.3 GSSUP Target Example

The following is a sample GSSUP target.

package demo.sas;

import java.io.FileWriter;
import java.io.PrintWriter;

import org.jacorb.sasPolicy.SASPolicyValues;
import org.jacorb.sasPolicy.SAS_POLICY_TYPE;

130 Security Attribute Service

import org.jacorb.sasPolicy.SASPolicyValuesHelper;
import org.omg.PortableServer.IdAssignmentPolicyValue;
import org.omg.PortableServer.LifespanPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Any;
import org.omg.CSIIOP.EstablishTrustInClient;

public class GssUpServer extends SASDemoPOA {

private ORB orb;

public GssUpServer(ORB orb) {
this.orb = orb;

}

public void printSAS() {
try {

org.omg.PortableInterceptor.Current current = (org.omg.PortableInterceptor.Current)orb.resolve_initial_references("PICurrent");
org.omg.CORBA.Any anyName = current.get_slot(org.jacorb.security.sas.SASInitializer.sasPrincipalNamePIC);
if(anyName.type().kind().value() == org.omg.CORBA.TCKind._tk_null) {

System.out.println("Null Name");
} else {

String name = anyName.extract_string();
System.out.println("printSAS for user " + name);

}
} catch (Exception e) {

System.out.println("printSAS Error: " + e);
}

}

public static void main(String[] args) {
if (args.length != 1) {

System.out.println("Usage: java demo.sas.GssUpServer <ior_file>");
System.exit(-1);

}

try {
// initialize the ORB and POA.
ORB orb = ORB.init(args, null);
POA rootPOA = (POA) orb.resolve_initial_references("RootPOA");
org.omg.CORBA.Policy [] policies = new org.omg.CORBA.Policy[3];
policies[0] = rootPOA.create_id_assignment_policy(IdAssignmentPolicyValue.USER_ID);
policies[1] = rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);
Any sasAny = orb.create_any();
SASPolicyValuesHelper.insert(sasAny, new SASPolicyValues(EstablishTrustInClient.value, EstablishTrustInClient.value, true));
policies[2] = orb.create_policy(SAS_POLICY_TYPE.value, sasAny);
POA securePOA = rootPOA.create_POA("SecurePOA", rootPOA.the_POAManager(), policies);
rootPOA.the_POAManager().activate();

// create object and write out IOR
GssUpServer server = new GssUpServer(orb);
securePOA.activate_object_with_id("SecureObject".getBytes(), server);
org.omg.CORBA.Object demo = securePOA.servant_to_reference(server);
PrintWriter pw = new PrintWriter(new FileWriter(args[0]));
pw.println(orb.object_to_string(demo));
pw.flush();
pw.close();

// run the ORB
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

19.3 Kerberos Example 131

}

19.3 Kerberos Example

The Kerberos example demonstrates how to integrate the use of a kerberos service to provide authenti-
cation credentials to the SAS service. In this example, the Java(TM) Authentication and Authorization
Service (JAAS) is used to perform the Kerberos login and to return the principal and Kerberos ticket. The
actual username and password may either be entered by the user or derived from the current user’s Ker-
beros login session. For Windows 2000 Active Directory networks, this means that the user’s credentials
can be automatically obtained from the Windows login.

The following describes a SAS example using Kerberos.

19.3.1 Kerberos IDL Example

module demo{
module sas{

interface SASDemo{
void printSAS();

};
};

};

The IDL contains a single interface. This interface is used to print out the user principal sent and
received by the SAS service.

19.3.2 Kerberos Client Example

The following is a sample Kerberos client.

package demo.sas;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.security.Principal;
import java.security.PrivilegedAction;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import org.omg.CORBA.ORB;

public class KerberosClient {
private static Principal myPrincipal = null;
private static Subject mySubject = null;
private static ORB orb = null;

public KerberosClient(String args[]) {

132 Security Attribute Service

try {
// initialize the ORB.
orb = ORB.init(args, null);

// get the server
File f = new File(args[0]);
if (!f.exists()) {

System.out.println("File " + args[0] + " does not exist.");
System.exit(-1);

}
if (f.isDirectory()) {

System.out.println("File " + args[0] + " is a directory.");
System.exit(-1);

}
BufferedReader br = new BufferedReader(new FileReader(f));
org.omg.CORBA.Object obj = orb.string_to_object(br.readLine());
br.close();
SASDemo demo = SASDemoHelper.narrow(obj);

//call single operation
demo.printSAS();
demo.printSAS();
demo.printSAS();

System.out.println("Call to server succeeded");
} catch (Exception ex) {

ex.printStackTrace();
}

}

public static void main(String args[]) {
if (args.length != 3) {

System.out.println("Usage: java demo.sas.KerberosClient <ior_file> <username> <password>");
System.exit(1);

}

// login - with Kerberos
LoginContext loginContext = null;
try {

JaasTxtCalbackHandler txtHandler = new JaasTxtCalbackHandler();
txtHandler.setMyUsername(args[1]);
txtHandler.setMyPassword(args[2].toCharArray());
loginContext = new LoginContext("KerberosClient", txtHandler);
loginContext.login();

} catch (LoginException le) {
System.out.println("Login error: " + le);
System.exit(1);

}
mySubject = loginContext.getSubject();
myPrincipal = (Principal) mySubject.getPrincipals().iterator().next();
System.out.println("Found principal " + myPrincipal.getName());

// run in privileged mode
final String[] finalArgs = args;
try {

Subject.doAs(mySubject, new PrivilegedAction() {
public Object run() {

try {
KerberosClient client = new KerberosClient(finalArgs);
orb.run();

} catch (Exception e) {
System.out.println("Error running program: "+e);

}
System.out.println("Exiting privileged operation");

19.3 Kerberos Example 133

return null;
}

});
} catch (Exception e) {

System.out.println("Error running privileged: "+e);
}

}
}

The CSS uses JAAS to logon and return the user’s Kerberos credentials. The CSS must then run the rest
of the application as a PrivilegedAction using the logged on credentials. This allows the CSS interceptor
to retrieve the Kerberos ticket from the logon session.

The following is the JAAS logon configuration for the CSS:

KerberosClient
{

com.sun.security.auth.module.Krb5LoginModule required storeKey=true useTicketCache=true debug=true;
};

19.3.3 Kerberos Target Example

The following is a sample Kerberos target.

package demo.sas;

import java.io.FileWriter;
import java.io.PrintWriter;
import java.security.Principal;
import java.security.PrivilegedAction;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import org.jacorb.sasPolicy.SASPolicyValues;
import org.jacorb.sasPolicy.SAS_POLICY_TYPE;
import org.jacorb.sasPolicy.SASPolicyValuesHelper;
import org.omg.PortableServer.IdAssignmentPolicyValue;
import org.omg.PortableServer.LifespanPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Any;
import org.omg.CSIIOP.EstablishTrustInClient;

public class KerberosServer extends SASDemoPOA {
private static Principal myPrincipal = null;
private static Subject mySubject = null;
private ORB orb;

public KerberosServer(ORB orb) {
this.orb = orb;

}

public void printSAS() {
try {

org.omg.PortableInterceptor.Current current = (org.omg.PortableInterceptor.Current) orb.resolve_initial_references("PICurrent");
org.omg.CORBA.Any anyName = current.get_slot(org.jacorb.security.sas.SASInitializer.sasPrincipalNamePIC);

134 Security Attribute Service

String name = anyName.extract_string();
System.out.println("printSAS for user " + name);

} catch (Exception e) {
System.out.println("printSAS Error: " + e);

}
}

public KerberosServer(String[] args) {
try {

// initialize the ORB and POA.
orb = ORB.init(args, null);
POA rootPOA = (POA) orb.resolve_initial_references("RootPOA");
org.omg.CORBA.Policy [] policies = new org.omg.CORBA.Policy[3];
policies[0] = rootPOA.create_id_assignment_policy(IdAssignmentPolicyValue.USER_ID);
policies[1] = rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);
Any sasAny = orb.create_any();
SASPolicyValuesHelper.insert(sasAny, new SASPolicyValues(EstablishTrustInClient.value, EstablishTrustInClient.value, true));
policies[2] = orb.create_policy(SAS_POLICY_TYPE.value, sasAny);
POA securePOA = rootPOA.create_POA("SecurePOA", rootPOA.the_POAManager(), policies);
rootPOA.the_POAManager().activate();

// create object and write out IOR
securePOA.activate_object_with_id("SecureObject".getBytes(), this);
org.omg.CORBA.Object demo = securePOA.servant_to_reference(this);
PrintWriter pw = new PrintWriter(new FileWriter(args[0]));
pw.println(orb.object_to_string(demo));
pw.flush();
pw.close();

} catch (Exception e) {
e.printStackTrace();

}
}

public static void main(String[] args) {
if (args.length != 2) {

System.out.println("Usage: java demo.sas.KerberosServer <ior_file> <password>");
System.exit(-1);

}

// login - with Kerberos
LoginContext loginContext = null;
try {

JaasTxtCalbackHandler cbHandler = new JaasTxtCalbackHandler();
cbHandler.setMyPassword(args[1].toCharArray());
loginContext = new LoginContext("KerberosService", cbHandler);
loginContext.login();

} catch (LoginException le) {
System.out.println("Login error: " + le);
System.exit(1);

}
mySubject = loginContext.getSubject();
myPrincipal = (Principal) mySubject.getPrincipals().iterator().next();
System.out.println("Found principal " + myPrincipal.getName());

// run in privileged mode
final String[] finalArgs = args;
try {

Subject.doAs(mySubject, new PrivilegedAction() {
public Object run() {

try {
// create application
KerberosServer app = new KerberosServer(finalArgs);
app.orb.run();

} catch (Exception e) {
System.out.println("Error running program: "+e);

19.3 Kerberos Example 135

}
return null;

}
});

} catch (Exception e) {
System.out.println("Error running privileged: "+e);

}
}

}

The TSS uses JAAS to logon and return the user’s Kerberos credentials. The logon principal to use
is defined in the JAAS login configuration file. The TSS must then run the rest of the application as a
PrivilegedAction using the logged on credentials. This allows the TSS interceptor to retrieve the Kerberos
ticket from the logon session.

The following is the JAAS logon configuration for the TSS:

KerberosService
{

com.sun.security.auth.module.Krb5LoginModule required storeKey=true principal="testService@OPENROADSCONSULTING.COM" debug=true;
};

136 Security Attribute Service

20 Fault Tolerant CORBA

JacORB supports client side fault tolerance features only. See chapter 23 of the CORBA spec [OMG04]
for a detailed description.

20.1 Setting up FT support

Setting up the fault tolerance mechanisms consists of two steps:

1. Setting an ORBInitializer property to add a client request interceptor.

2. Adding a configuration option to enable the fault tolerant mechanisms in the ORB.

Both steps require the presence of specific properties, which can be added in the usual ways (see chapter
3).

20.1.1 Setting the ORBInitializer property

org.omg.PortableInterceptor.ORBInitializerClass.ft_init=
org.jacorb.orb.ft.FaultTolerantClientORBInit

If this property is present on ORB startup, the corresponding policy factory and interceptors will be
loaded.

20.1.2 Enable the fault tolerant mechanisms

jacorb.ft.iogr_validator=
org.jacorb.orb.ft.DefaultIOGRValidator

If this property is present fault tolerant mechanisms are enabled in the ORB.

20.2 Configuration

There are various options to configure the behaviour of JacORB’s FT implementation.

138 Fault Tolerant CORBA

20.2.1 ORB initialization options

-ORBFTSendFullGroupTC

When FT support is enabled this command line switch controls the format of data transmitted in the
IOP::FT GROUP VERSION service context in GIOP messages to IOGRs. The value ’off’ (this is the
default value if the option is not supplied) transmits the group version only as per the CORBA spec (i.e.
as defined in the IDL for FT::FTGroupVersionServiceContext). The value ’on’ transmits the
whole data found in the server IOGR’s FT::TagFTGroupTaggedComponent tagged component.

Alternatively it is possible to achieve the same result by specifying a property with the same name.

[...]
ORBFTSendFullGroupTC=on
[...]

20.2.2 ORB properties

See Chapter 3 for the various possibilities to pass properties to the ORB.

Table 20.1: FT Properties
Property Description Type Default

ORBFTSendFullGroupTC see section 20.2.1 boolean off
request_
duration_policy
.default 1

The Request Duration Policy
(FT::REQUEST DURATION POLICY) deter-
mines how long a request, and the corresponding
reply, should be retained by a server to handle
reinvocations of the request under fault condi-
tions. This property defines the default value
that will be used if no other overriding value is
defined elsewhere (e.g. using PolicyManager).

time
interval
(corba
timeu-
nits)

15000000
(≡ 1500
ms)

1All FT properties, except ORBFTSendFullGroupTC, share the common prefix jacorb.ft which is omitted here for
brevity

21 Using Java management
Extentions (JMX)

This section describes how to use the Java Management Extention API along with JacORB to instrument
both the orb and application that use JacORB.

21.1 MX4J and JMX over IIOP

This section describes how to instrument a JacORB application using the MX4J JMX implementation.
MX4J is an open source JMX implementation available at http://mx4j.sourceforge.net. This section also
shows how to use JMX over IIOP. This allows JMX to use an existing JacORB ORB for RMI communi-
cations and the JacORB Naming Service to register you JMX MBeanServer.

To setup the JVM environment, three system defines are neccessary:

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
-Djava.naming.provider.url=corbaloc:iiop:localhost:9101/StandardNS/NameServer-POA/_root
-Djavax.rmi.CORBA.PortableRemoteObjectClass=org.jacorb.orb.rmi.PortableRemoteObjectDelegateImpl

The first system property tells the Java JNDI subsystem to use the CORBA Naming Service for its
naming repository. The second property is a pointer to the JacORB Naming Service instance. The third
property tells the Java Remote object system to use JacORB’s Portable Remote Object implementation.
This is required so that JacORB can associate an RMI object with a CORBA object on one of its POAs.

The sample code for creating a MBeanServer is shown below

// The MBeanServer to which the JMXConnectorServer will be registered in
jmxServer = MBeanServerFactory.createMBeanServer();

// The address of the connector
HashMap environment = new HashMap();
org.jacorb.orb.rmi.PortableRemoteObjectDelegateImpl.setORB(orb);
JMXServiceURL address = new JMXServiceURL("service:jmx:iiop://localhost/jndi/jmxSnmpTrapNotify");
JMXConnectorServer cntorServer = JMXConnectorServerFactory.newJMXConnectorServer(address, environment, jmxServer);

// Add MBeans
jmxServer.registerMBean(trapReceiver, new ObjectName("TrapReceiver:counts=default"));

// Start the JMXConnectorServer
cntorServer.start();

The first line creates the MBeanServer. The next 4 lines creates the remote JMX connection. The
”‘setORB()”’ call assignes a previously initialized ORB to the Remote Object delegate. All RMI over

140 Using Java management Extentions (JMX)

IIOP communications will occure via this ORB. The ”‘address”’ is the name of the MBeanServer as
known in the Naming service. The portion after ”‘/jndi/”’ is the Naming Service name. The next line
registers a MBean with the MBeanServer. The last line starts the MBeanServer.

A JMX console may then be used to monitor the JacORB application. For example, MC4J
(http://mc4j.sourceforge.net) may be used. When setting up a mc4j connection, use the connection type
JSR160 and set the server URL to the name as registered in the JacORB naming service, such as ”‘ser-
vice:jmx:iiop://localhost/jndi/jmxSnmpTrapNotify”’.

22 JacORB Utilities

In this chapter we briefly explain the executables that come with JacORB. These include the IDL-compiler,
a utility to decode IORs and print their components, the JacORB name server, a utility to test a remote
object’s liveness, etc.

22.1 idl

The IDL compiler parses IDL files and maps type definitions to Java classes as specified by the OMG
IDL/Java language mapping. For example, IDL interfaces are translated into Java interfaces, and typedefs,
structs, const declarations etc. are mapped onto corresponding Java classes. Additionally, stubs and
skeletons for all interface types in the IDL specification are generated.

(The IDL parser was generated with Scott Hudson’s CUP parser generator. The LALR grammar for
the CORBA IDL is in the file org/jacorb/idl/parser.cup.)

Compiler Options

-h | help print help on compiler options
-v | version print compiler version information
-d dir root of directory tree for output (default: current directory)
-syntax syntax check only, no code generation
-Dx define preprocessor symbol x with value 1
-Dx=y define preprocessor symbol x with value y
-Idir set include path for idl files
-Usymbol undefine preprocessor symbol
-W [1..4] debug output level (default is 1)
-all generate code for all IDL files, even included ones (default is off)

If you want to make sure that for a given IDL no code will
be generated even if this option is set, use the (proprietary) preprocessor
directive #pragma inhibit code generation.

-forceOverwrite generate Java code even if the IDL files have not
changed since the last compiler run (default is off)

-ami callback generate AMI reply handlers and sendc methods (default is off). See chapter 15
-ami polling generate AMI poller and sendp methods (default is off). See chapter 15
-backend classname use classname as compiler (code generator) backend. The default code generator

class is org.jacorb.idl.javamapping.JavaMappingGeneratingVisitor

142 JacORB Utilities

(c.f. API documentation). Custom generators must implement the interface
org.jacorb.idl.IDLTreeVisitor

-i2jpackage x:a.b.c replace IDL package name x by a.b.c in generated Java code
(e.g. CORBA:org.omg.CORBA)

-i2jpackagefile filenamereplace IDL package names using list from ¡filename¿.
Format as above.

-ir generate extra information required by the JacORB Interface Repository
(One extra file for each IDL module, and another additional file per IDL interface.)
(default is off)

-cldc10 Generate J2ME/CLDC1.0 compliant stubs
-genEnhanced Generate stubs with toString/equals (only StructType)
-nofinal generated Java code will contain no final class definitions, which

is the default to allow for compiler optimizations.
-unchecked narrow use unchecked narrow in generated code for IOR parameters in operations

(default is off). Generated helper classes contain marshalling code which, by default,
will try to narrow any object references to statically known interface type. This
may involve remote invocations to test a remote object’s type, thus incurring
runtime overhead to achieve static type safety. The -unchecked narrow option
generates code that will not by statically type safe, but avoids remote tests
of an object’s type. If the type is not as expected, clients will experience
CORBA.BAD OPERATION exceptions at invocation time.

-noskel disables generation of POA skeletons (e.g., for client-side use)
-nostub disables generation of client stubs (for server-side use)
-diistub generate DII-based client stubs

(default is off)
-sloppy forward allow forward declarations without later definitions

(useful only for separate compilation).
-sloppy names less strict checking of module name scoping (default: off)

CORBA IDL has a number of name resolution rules that are stricter than
necessary for Java (e.g., a struct member’s name identifier must not
equal the type name). The -sloppy names option relaxes checking of these
rules. Note that IDL accepted with this option will be rejected by other, conformant
IDL compilers!

-sloppy identifiers permit illegal identifiers that differ in case (04-03-12:3.3.2) (default: off)
-permissive rmic tolerate dubious and buggy IDL generated by JDK’s rmic stub generator

(e.g., incorrectly empty inheritance clauses), includes -sloppy names.
-generate helper compatibilty

controls the compatibilty level of the generated helper code. Valid values are:
deprecated uses CORBA 2.3 API. this API version is part of the JDK.
portable uses CORBA 2.4 API. the usage of this option mandates the use
of the JacORB provided org.omg.* classes on the bootclasspath. This is the default.
jacorb uses JacORB API. The generated helper code will contain references
to JacORB classes. The helpers will use the CORBA 2.4 API but won’t be portable
anymore. There’s no need to put the org.omg.* classes provided by JacORB
on the bootclasspath.

22.1 idl 143

i2jpackage

The -i2jpackage switch can be used to flexibly redirect generated Java classes into packages. Us-
ing this option, any IDL scope x can be replaced by one (or more) Java packages y. Specifying
-i2jpackage X:a.b.c will thus cause code generated for IDL definitions within a scope x to end up
in a Java package a.b.c, e.g. an IDL identifier X::Y::ident will be mapped to a.b.c.y.ident
in Java. It is also possible to specify a file containing these mappings using the -i2jpackagefile
switch.

Example 1

given the following IDL definition

struct MyStruct
{

long value;
};

Invoking idl without the i2jpackage option will generate (along with other files) the java file MyStruct.java

/**
* Generated from IDL struct "MyStruct".

*
* @author JacORB IDL compiler V 2.3, 18-Aug-2006

* @version generated at 07.12.2006 11:46:28

*/

public final class MyStruct
implements org.omg.CORBA.portable.IDLEntity

{
[...]

}

Note that the class does not contain a package definition.

The option -i2jpackage :com.acme will place any identifier without scope into the java package
com.acme. Thus we get:

package com.acme;

/**
* Generated from IDL struct "MyStruct".

*
* @author JacORB IDL compiler V 2.3, 18-Aug-2006

144 JacORB Utilities

* @version generated at 07.12.2006 11:46:28

*/

public final class MyStruct
implements org.omg.CORBA.portable.IDLEntity

{
[...]

}

Example 2

module outer
{

struct OuterStruct
{

long value;
};

module inner
{

struct InnerStruct
{

long value;
};

};
};

If you’re not using the i2jpackage option, the IDL compiler will generate the classes outer.OuterStruct
and outer.inner.InnerStruct.

Again using the i2jpackage it’s possible to map IDL modules to different java packages. $ idl
-i2jpackage outer:com.acme.outerwill generate the classes com.acme.outer.OuterStruct and
com.acme.outer.inner.InnerStruct.

$ idl -idjpackage inner:com.acme.inner will generate the classes outer.OuterStruct and
outer.com.acme.inner.InnerStruct.

Note: See Section 10.4 if you intend to use the i2jpackage option in conjunction with the JacORB IfR
and are using #pragma prefix statements in your IDL.

Compiler Options

If one is building from Ant it is possible to invoke the compiler directly using the supplied Ant task,
JacIDL. To add the taskdef add the following to the ant script:

<taskdef name="jacidl" classname="org.jacorb.idl.JacIDL"/>

22.1 idl 145

The task supports all of the options of the IDL compiler.

Table 22.1: JacIDL Configuration
Attribute Description Required Default

srcdir Location of the IDL files Yes
destdir Location of the generated java files Yes
includes Comma-separated list of patterns of files that must be

included; all files are included when omitted.
No

includesfile The name of a file that contains include patterns. No
excludes Comma-separated list of patterns of files that must be

excluded; files are excluded when omitted.
No

excludesfile The name of a file that contains include patterns. No
defaultexcludes Indicates whether default excludes should be used (yes

— no); default excludes are used when omitted.
No

includepath The path the idl compiler will use to search for included
files.

No

parseonly Only perform syntax check without generating code. No False
noskel Disables generation of POA skeletons No False
nostub Disables generation of client stubs No False
diistub Generate DII-based client stubs No False
sloppyforward Allow forward declarations without later definitions No False
sloppynames Less strict checking of names for backward compatibil-

ity
No False

generateir Generate information required by the Interface Reposi-
tory

No False

all Generate code for all IDL files, even included ones No False
nofinal Generate class definitions that are not final No False
forceoverwrite Generate code even if IDL has not changed. No False
uncheckedNarrow Use unchecked narrow in generated code for IOR pa-

rameters in operations.
No False

ami Generate ami callbacks. No False
debuglevel Set the debug level from 0 to 4. No 0
helpercompat control the portability of the generated helper code. No portable

Nested Elements

Several elements may be specified as nested elements. These are <define>, <undefine>,
<include>, <exclude>, <patternset> and <i2jpackage>. The format of <i2jpackage>
is <i2jpackage names="x:y">

146 JacORB Utilities

Examples

The task command

<jacidl destdir="${generate}"
srcdir="${idl}"

/>

compiles all *.idl files under the $idl directory and stores the .java files in the $generate directory.

<jacidl destdir="${generate}" srcdir="${idl}">
<define key="GIOP_1_1" value="1"/>

</jacidl>

like above, but additionaly defines the symbol GIOP 1 1 and sets its (optional) value to 1.

<jacidl destdir="${generate}"
srcdir="${idl}"
excludes="**/*foo.idl"

/>

like the first example, but exclude all files which end with foo.idl.

22.2 ns

JacORB provides a service for mapping names to network references. The name server itself is written in
Java like the rest of the package and is a straightforward implementation of the CORBA “Naming Service”
from Common Object Services Spec., Vol.1 [OMG97]. The IDL interfaces are mapped to Java according
to our Java mapping.

Usage

$ ns <filename> [<timeout>]

or

$ jaco jacorb.Naming.NameServer <filename> [<timeout>]

Example

$ ns /̃public html/NS Ref

22.3 nmg 147

The name server does not use a well known port for its service. Since clients cannot (and need not)
know in advance where the name service will be provided, we use a bootstrap file in which the name server
records an object reference to itself (its Interoperable Object Reference or IOR). The name of this bootstrap
file has to be given as an argument to the ns command. This bootstrap file has to be available to clients
network-wide, so we demand that it be reachable via a URL — that is, there must be an appropriately
configured HTTP server in your network domain which allows read access to the bootstrap file over a
HTTP connection. (This implies that the file must have its read permissions set appropriately. If the
binding to the name service fails, please check that this is the case.) After locating the name service
through this mechanism, clients will connect to the name server directly, so the only HTTP overhead is in
the first lookup of the server.

The name bindings in the server’s database are stored in and retrieved from a file that is found in the
current directory unless the property jacorb.naming.db dir is set to a different directory name.
When the server starts up, it tries to read this file’s contents. If the file is empty or corrupt, it will be
ignored (but overridden on exit). The name server can only save its state when it goes down after a
specified timeout. If the server is interrupted (with CTRL-C), state information is lost and the file will not
contain any usable data.

If no timeout is specified, the name server will simply stay up until it is killed. Timeouts are specified
in milliseconds.

22.3 nmg

The JacORB NameManager, a GUI for the name service, can be started using the nmg command. The
NameManager then tries to connect to an existing name service.

Usage

$ nmg

22.4 lsns

This utility lists the contents of the default naming context. Only currently active servers that have reg-
istered are listed. The -r option recursively lists the contents of naming contexts contained in the root
context. If the graph of naming contexts contains cycles, trying to list the entire contents recursively will
not return...

Usage

$ lsns [-r]

148 JacORB Utilities

Example

$ lsns
/grid.service

when only the server for the grid example is running and registered with the name server.

22.5 dior

JacORB comes with a simple utility to decode an interoperable object reference (IOR) in string form into
a more readable representation.

Usage

$ dior -i <IOR-string> | -f <filename>

Example

In the following example we use it to print out the contents of the IOR that the JacORB name server writes
to its file:

$ dior -f /̃public html/NS Ref

------IOR components-----
TypeId : IDL:omg.org/CosNaming/NamingContextExt:1.0
Profile Id : TAG_INTERNET_IOP
IIOP Version : 1.0
Host : 160.45.110.41
Port : 49435
Object key : 0x52 6F 6F 74 50 4F 41 3A 3A 30 D7 D1 91 E1 70 95 04

22.6 pingo

“Ping” an object using its stringified IOR. Pingo will call non existent() on the object’s reference
to determine whether the object is alive or not.

Usage

$ pingo -i <IOR-string> | -f <filename>

22.7 ir 149

22.7 ir

This command starts the JacORB Interface Repository, which is explained in chapter 10.

Usage

$ ir <reppository class path> <IOR filename>

22.8 qir

This command queries the JacORB Interface Repository and prints out re–generated IDL for the repository
item denoted by the argument repository ID.

Usage

$ qir <reppository Id>

22.9 ks

This command starts the JacORB KeyStoreManager, which is explained in chapter 11

Usage

$ ks

22.10 fixior

This command patches host and port information into an IOR file.

Usage

$ fixior <host> <port> <ior file>

150 JacORB Utilities

23 JacORB Threads

Threads that are created and used by JacORB are described below.

Long–lived threads

RequestProcessor

The RequestProcessor thread invokes servant code when the thread is assigned a request from the Re-
questController. This thread invokes firstly the server request interceptors, then the servant manager, and
then the servant code. Finally, the RequestProcessor invokes interceptors and servant managers and writes
results to the socket when the servant returns the control flow.

The number of RequestProcessor threads which can run is between
jacorb.poa.thread pool min and jacorb.poa.thread pool max times the number
of POAs, or just between those two bounds when jacorb.poa.thread pool shared is set
to “on”. RequestProcessor threads will terminate when the POA is destroyed (in other words when
the property is set to “off” and when every POA has it’s own pool of RequestProcessors) or when
ORB.shutdown() is called, subject to the value of the jacorb.poa.thread pool shared
property.

The RequestProcessor thread is implemented in org/jacorb/poa/RequestProcessor.java.
Thread instances are pooled in org/jacorb/poa/RPPoolManager.java.

RequestController

The RequestController assigns requests to RequestProcessors and keeps track of active requests, object
and POA state. The POA state is checked when the ServerMessageReceptor reads a request from the
socket. Request processing can continue if the POA state is active. However, if the POA is inactive or if
it is being shut down, then the request is rejected. If the target object is present and not being deactivated,
then a RequestProcessor thread is allocated from the pool and the request is handed over to the that thread.
One RequestController thread is always provided for each POA: the thread is terminated when the POA
is destroyed.

The RequestController thread is implemented in org/jacorb/poa/RequestController.java.
A reference to the thread is retained by org/jacorb/poa/POA.java.

152 JacORB Threads

ServerSocketListener, SSLServerSocketListener

These two threads listen on their respective server sockets and accept new connections. Accepted connec-
tions are handed to a thread pool. The ServerMessageReceptor uses the thread pool to listen on connec-
tions for individual messages.

There can be a maximum of one ServerSocketListener and one SSLServerSocketListener per ORB,
depending on the configuration. These threads will terminate when ORB.shutdown() is called.

The ServerSocketListener and SSLServerSocketListener threads are implemented in the inner classes
Acceptor and SSLAcceptor in org/jacorb/ orb/iiop/IIOPListener.java: a refer-
ence is retained by the class.

ServerMessageReceptor

ServerMessageReceptor threads listen on established connections and read new requests from them. The
request’s message header is decoded and the POA name is retrieved from the object key after basic checks
are made. The request is then handed to the POA for scheduling by the RequestController.

The number of ServerMessageReceptor threads is between 0 and the value of
jacorb.connection.server .max receptor threads. This upper bound
also indicates the maximum number of connections that can be serviced si-
multaneously. The maximum number of idle threads can be configured using
jacorb.connection.server.max idle receptor threads.

ServerMessageReceptor threads terminate when either ORB.shutdown() is
called or when the number of idle threads exceeds the maximum specified by
jacorb.connection.server.max idle receptor threads.

The ServerMessageReceptor thread is implemented in org/jacorb/orb/giop/MessageReceptor.java:
instances are pooled in org/jacorb/orb/giop/MessageReceptorPool.java.
Both these classes rely on and implement interfaces from JacORB’s generic thread pool in
org/jacorb/util/threadpool.

ClientMessageReceptor

ClientMessageReceptor threads listen on established connections and read new replies recieved
from them. The request’s message header is decoded and the reply is handed back to
the thread that sent the original request after basic checks are performed. The number of
threads which are allowed is between 0 and the value of jacorb.connection.client
.max receptor threads. This upper bound also indicates the maximum number of connections
that can be serviced simultaneously. The maximum number of idle threads allowed can be set using
jacorb.connection.client.max idle receptor threads.

ClientMessageReceptor threads terminate when either ORB.shutdown() is
called or when the number of idle threads exceeds the maximum specified by
jacorb.connection.client.max idle receptor threads.

JacORB Threads 153

This thread is implemented in org/jacorb/orb/giop/MessageReceptor.java and
its instances are pooled in org/jacorb/orb/giop/MessageReceptorPool.java.
Both these classes rely on and implement interfaces from JacORB’s generic thread pool in
org/jacorb/util/threadpool.

BufferManagerReaper

The BufferManagerReaper thread ensures that the extra-large buffer cache entry will not live longer than
the time specified by jacorb.bufferManagerMaxFlush. The BufferManagerReaper thread exits
when ORB.shutdown() is called.

This thread is implemented as inner class Reaper in org/jacorb/orb/BufferManager.java
and a reference is kept by the class.

AOMRemoval

These threads are used to ensure that calls to deactivate object return immediately. One AOM thread is
created per POA. When an object is removed it is placed on a java.util.concurrent.LinkedBlockingQueue
which this thread processes to finish deactivation of the objects. This thread is a daemon thread and will
finish when the POA is destroyed.

Short–lived threads

POAChangeToActive

The POAChangeToActive thread asynchronously sets the state of those POAs controlled by a POAMan-
ager to active. A new thread will be created whenever POAManager.activate() is called. The
thread terminates when all POAs have been activated.

The POAChangeToActive thread is implemented as an anonymous inner class in
org/jacorb/poa/POAManager.java.

POAChangeToInactive

The POAChangeToInactive thread asynchronously sets the state of the POAs controlled by a POAManager
to inactive. A new thread will be created whenever POAManager.deactivate() is called. The
thread terminates when all POAs have been deactivated.

The POAChangeToInactive thread is implemented as an anonymous inner class in
org/jacorb/poa/POAManager.java.

154 JacORB Threads

POAChangeToDiscarding

The POAChangeToDiscarding thread asynchronously sets the state of those POAs controlled by a POA-
Manager to discarding. A new thread is created whenever POAManager.discard requests() is
called. This thread terminates when all POAs have been set to discarding.

The POAChangeToDiscarding thread is implemented as an anonymous inner class in
org/jacorb/poa/POAManager.java.

POAChangeToHolding

The POAChangeToHolding thread asynchronously sets the state of those POAs controlled by a POAMan-
ager to holding. A new thread is created whenever POAManager.hold requests() is called. This
thread when all POAs have been set to holding.

The POAChangeToHolding thread is implemented as an anonymous inner class in
org/jacorb/poa/POAManager.java.

POADestructor

The POADestructor thread allows asynchronous destruction of a POA. This thread initially synchronizes
with the RequestController which waits until all active requests have been finished. Then, all unprocessed
requests are discarded by the RequestController thread and destruction of the POA is completed. The
thread will then exit.

One POADestructor thread is created whenever POA.destroy() is called. Note that destroying a
POA will destroy all child POAs. Accordingly, there will be many threads as there are POAs, including
child POAs, which are to be destroyed.

The POADestructor thread is implemented as an anonymous inner class in
org/jacorb/poa/POA.java.

PassToTransport

The PassToTransport thread is created and performs the network send task whenever a request is sent with
the sync scope set to SYNC NONE. The thread exits when it is finished sending and allows the client thread
to return immediately.

The PassToTransport thread is implemented as an anonymous inner class in
org/jacorb/orb/Delegate.java.

ReplyReceiverTimer

The ReplyReceiverTimer thread manages the termination point for reply timeouts. The thread is created
for each anticipated reply when the ReplyEndTime policy is set. The thread exits when the timeout expires

JacORB Threads 155

or the anticipated reply is received before timeout expires.

The ReplyReceiverTimer thread is implemented as inner class Timer in
org/jacorb/orb/ReplyReceiver.java and a reference is kept by the class.

SocketConnectorThread

The SocketConnectorThread thread connects to the socket for every new connection to the server when
jacorb.connection.client.connect timeout is set to a value greater than zero (0). The
SocketConnectorThread thread provides timeout control which is not available in older JDK versions

The thread exits when either the connection is successfully established or when the timeout expires.

The ReplyReceiverTimer thread is implemented as an anonymous inner class in
org/jacorb/orb/ClientIIOPConnection.java.

156 JacORB Threads

24 Classpath and Classloaders

This chapter explains some of the problems that may be encountered with classpath and classloaders.

24.1 Running applications

By default JacORB is shipped with runtime scripts to simplify running an application. These scripts use
the Java Endorsed Standards Override Mechanism in order to ensure that the JacORB implementation
classes and the supplied OMG classes are found in preference to any bundled within the JVM. This
mechanism is documented here http://java.sun.com/j2se/1.5.0/docs/guide/standards

The mechanism utilises the Xbootclasspath to place the classes first. If this is not used then the Sun
OMG classes may be found first. The issue that may be encountered here is if JacORB is released with
newer versions of the OMG classes than is distributed within the JVM. Therefore the JacORB classes
should be used in preference.

24.1.1 ORBSingleton

Unlike an ORB.init(args,props) where a developer may pass arguments initialising an ORBSingleton with
ORB.init() does not. This means that unless the developer has either

• Started the JVM supplying ORBSingletonClass and ORBClass properties

• Overridden System properties prior to calling ORBInit with ORBSingletonClass and ORBClass
properties

the OMG ORB class will initialise the wrong ORBSingleton if endorsed directories are not being used.
If endorsed directories are being used the JacORB OMG ORB class will automatically load the correct
Singleton.

24.2 Interaction with Classloaders

The endorsed directory mechanism means that the JacORB classes will be loaded into the bootstrap class-
loader. If the developer has chosen to instantiate their own child classloader and load the JacORB classes
within this (e.g. via URLClassLoader downloading the classes over the network) several problems may
be encountered:

158 Classpath and Classloaders

Garbage Collection

The Sun JVM will load its OMG ORB classes in preference to those within the child classloader. This
means that it will retain a static link to the JacORB ORBSingleton implementation within the child class-
loader. Therefore the classes cannot be fully garbage collected once the classloader is disposed of.

Class Conflict

As described above the Sun OMG ORB class matains a static ORBSingleton reference. If a second class
loader is instantiated, as a ORBSingleton already exists in the parent bootclassloader it will not be created.
However when the JacORB code checks that

ORB.init () instanceof org.jacorb.orb.ORBSingleton

it will fail. This is because the ORBSingleton class created in the first
classloader is different to the ORBSingleton class created in the second class-
loader. This behaviour is documented within the Java Language Specification here
http://java.sun.com/docs/books/jls/third edition/html/execution.html#12.1.1 and a paper describing
the behaviour may be found here http://www.tedneward.com/files/Papers/JavaStatics/JavaStatics.pdf

Solving the Problem

The above problem occurs as java.net.URLClassLoader uses the parent-first class-loader delegation
model. To solve the issue, the simplest and most effective solution is to use child-first class-loader dele-
gation model. An example of this may be found here http://www.qos.ch/logging/classloader.jsp

This model ensures that parent delegation occurs only after an unsuccessful attempt to load a class
from the child. Therefore the org.omg.CORBA.* classes supplied with JacORB would be found and used
in preference to the OMG classes supplied by Sun in the bootclassloader. The ORBSingleton would be
created entirely within the child classloader with no external references. This means the second classloader
would also create its own, entirely isolated Singleton class.

Bibliography

[BVD01] Gerald Brose, Andreas Vogel, and Keith Duddy. Java Programming with CORBA. John Wiley
& Sons, 3rd edition, 2001.

[HV99] Michi Henning and Steve Vinoski. Advanced CORBA Programming with C++. Addison–
Wesley, 1999.

[OMG97] OMG. CORBAservices: Common Object Services Specification, November 1997.

[OMG04] OMG. Common Object Request Broker Architecture: Core Specification, march 2004.

[Sie00] Jon Siegel. CORBA 3 Fundamentals and Programming. Wiley, 2nd edition, 2000.

[Vin97] Steve Vinoski. Corba: Integrating diverse applications within distributed heterogeneous envi-
ronments. IEEE Communications Magazine, 14(2), February 1997.

[Vin98] Steve Vinoski. New features for corba 3.0. CACM, 41(10):44–52, October 1998.

	1 Introduction
	1.1 A Brief CORBA introduction
	1.2 Project History
	1.3 Support
	1.4 Contributing --- Donations
	1.5 Contributing --- Development
	1.6 Limitations, Feedback
	1.6.1 Feedback, Bug reports

	2 Installing JacORB
	2.1 Downloading JacORB
	2.2 Installation
	2.2.1 Requirements
	2.2.2 Dependencies

	3 Configuration
	3.1 Configuration Mechanism
	3.1.1 Properties files
	3.1.2 Command-line properties
	3.1.3 Arguments to ORB.init()

	3.2 Configuration Options
	3.2.1 Initial references
	3.2.2 Logging
	3.2.3 Typecode Compaction
	3.2.4 Acceptor Exception Event Plugin
	3.2.5 Implname and CORBA Objects
	3.2.6 Network Event Logging
	3.2.7 IORMutator
	3.2.8 Network and Sockets

	3.3 Configuration Properties
	3.3.1 ORB Configuration
	3.3.2 Network Configuration
	3.3.3 Logging Configuration
	3.3.4 POA Configuration
	3.3.5 Security Configuration
	3.3.6 Name Service Configuration

	4 Getting Started
	4.1 JacORB development: an overview
	4.2 IDL specifications
	4.3 Generating Java classes
	4.4 Implementing the interface
	4.5 Writing the Server
	4.6 Writing a client
	4.6.1 The Tie Approach
	4.6.2 Using Object._release

	5 The JacORB Name Service
	5.1 Running the Name Server
	5.2 Accessing the Name Service
	5.3 Constructing Hierarchies of Name Spaces
	5.4 NameManager --- A simple GUI front-end to the Naming Service

	6 The Server side: POA, Threads
	6.1 POA
	6.2 Threads
	6.3 Request Analyser Plugin

	7 Implementation Repository
	7.1 Overview
	7.2 Using the JacORB Implementation Repository
	7.3 Server migration
	7.4 A Note About Security

	8 Dynamic Management of Any Values
	8.1 Overview
	8.2 Interfaces
	8.3 Usage Constraints
	8.4 Creating a DynAny Object
	8.5 Accessing the Value of a DynAny Object
	8.6 Traversing the Value of a DynAny Object
	8.7 Constructed Types
	8.7.1 DynFixed
	8.7.2 DynEnum
	8.7.3 DynStruct
	8.7.4 DynUnion
	8.7.5 DynSequence
	8.7.6 DynArray

	8.8 Converting between Any and DynAny Objects
	8.9 Further Examples

	9 Objects By Value
	9.1 Example
	9.2 Factories

	10 Interface Repository
	10.1 Type Information in the IR
	10.2 Repository Design
	10.3 Using the IR
	10.4 Interaction between #pragma prefix and -i2jpackage

	11 IIOP over SSL
	11.1 Key stores
	11.1.1 Setting up a JSSE key store
	11.1.2 Step--By--Step certificate creation

	11.2 Configuring SSL properties
	11.2.1 Using the third-party JCE and JSSE providers
	11.2.2 Protocols
	11.2.3 Client side and server side configuration

	11.3 SecureRandom Plugin System
	11.4 Security and corbaloc

	12 MIOP
	12.1 Enabling the MIOP Transport
	12.2 Configuring the MIOP Transport
	12.3 MIOP Example
	12.3.1 Two way requests and MIOP

	13 BiDirectional GIOP
	13.1 Setting up Bidirectional GIOP
	13.1.1 Setting the ORBInitializer property
	13.1.2 Creating the BiDir Policy

	13.2 Verifying that BiDirectional GIOP is used
	13.3 TAO interoperability

	14 Portable Interceptors
	14.1 Interceptor ForwardRequest Exceptions

	15 Asynchronous Method Invocation
	16 Quality of Service
	16.1 Sync Scope
	16.2 Timing Policies

	17 Connection Management and Connection Timeouts
	17.1 Timeouts
	17.2 Connection Management
	17.2.1 Basics and Design
	17.2.2 Configuration
	17.2.3 Limitations

	18 Extensible Transport Framework
	18.1 Implementing a new Transport
	18.2 Configuring Transport Usage
	18.3 Selecting Specific Profiles Using RT Policies

	19 Security Attribute Service
	19.1 Overview
	19.2 GSSUP Example
	19.2.1 GSSUP IDL Example
	19.2.2 GSSUP Client Example
	19.2.3 GSSUP Target Example

	19.3 Kerberos Example
	19.3.1 Kerberos IDL Example
	19.3.2 Kerberos Client Example
	19.3.3 Kerberos Target Example

	20 Fault Tolerant CORBA
	20.1 Setting up FT support
	20.1.1 Setting the ORBInitializer property
	20.1.2 Enable the fault tolerant mechanisms

	20.2 Configuration
	20.2.1 ORB initialization options
	20.2.2 ORB properties

	21 Using Java management Extentions (JMX)
	21.1 MX4J and JMX over IIOP

	22 JacORB Utilities
	22.1 idl
	22.2 ns
	22.3 nmg
	22.4 lsns
	22.5 dior
	22.6 pingo
	22.7 ir
	22.8 qir
	22.9 ks
	22.10 fixior

	23 JacORB Threads
	24 Classpath and Classloaders
	24.1 Running applications
	24.1.1 ORBSingleton

	24.2 Interaction with Classloaders

