Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

Outline of the talk

An Empirical Analysis of CORBA and OS Support for Real-time Middleware

Sergio Flores-Gaitan sergio@cs.wustl.edu

Advisor: Douglas C. Schmidt < schmidt@cs.wustl.edu>

Washington University, St. Louis http://www.cs.wustl.edu/~sergio/RTOS-benchmark.ps.gz

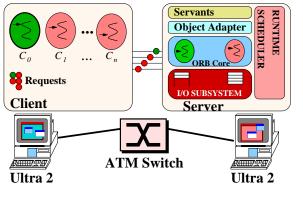
Sponsors Lucent, Motorola, and Sprint

- Motivation
- Benchmarking Environment
- Key Results
- Concluding Remarks

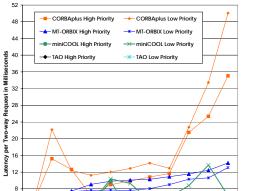
Washington University, St. Louis

1

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Previous Work


- Real-time results where we varied the ORBs tested www.cs.wustl.edu/~schmidt/RT-perf.ps.gz
 - ORBs on Sun Solaris on an UltraSPARC
 - * TAO for C++ version 0.0.42 (www.cs.wustl.edu/~schmidt/TAO.html)
 - * Chorus miniCOOL for C++ version r4.3 (www.chorus.com)
 - * IONA **MT-Orbix** version 2.2 (www.iona.com)
 - PowerBroker CORBAplus for C++ version 2.1.1 (www.expersoft.com)
 - ORBs on Sun ClassiX r3.1 RTOS on an MVME177
 - * TAO for C++ version 0.0.42 (www.cs.wustl.edu/~schmidt/TAO.html)
 - * Chorus miniCOOL for C++ version r4.3 (www.chorus.com)

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Motivation


- Increasing demand to extend CORBA to support real-time distributed applications
- Conventional ORBs not yet suited for real-time application development
- General purpose operating systems do not have support for applications with QoS requirements

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

Black-box Test Configuration on Solaris

- Vary ORBs, hold operating system constant
- Solaris real-time threads
- High priority client C_0 connects to servant S_0 with matching priorities
- Clients $C_1 \dots C_n$ have same lower priority
- Clients $C_1 \dots C_n$ connect to servant S_1
- Clients invoke twoway CORBA calls that cube a number on the servant and returns result

Sergio Flores-Gaitan

10

Washington University, St. Louis

5

20 25 30 35

Number of Low Priority Clients

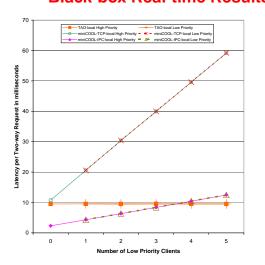
15

ORBs tested

An Empirical Analysis of CORBA and OS Support for Real-time Applications

Black-box Real-time Results on Solaris

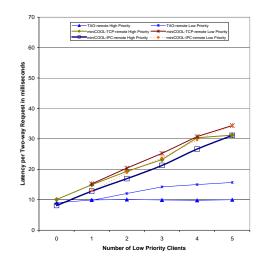
• As the number of low priority clients increase, the latency for **miniCOOL** increases


its performance worst of all

- Latency in high priority clients increase in a non-linear fashion
- Non-linear behavior of miniCOOL, makes it unsuitable for real-time applications

Washington University, St. Louis

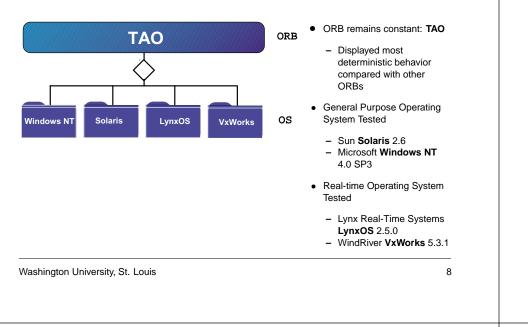
 Sergio Flores-Gaitan
 An Empirical Analysis of CORBA and OS Support for Real-time Applications


 Black-box Real-time Results on ClassiX (local)

- As the number of low priority clients increase, the latency for COOL increases
- Latency in TAOs high priority client remains relatively stable as compared to COOL which increases in a linear fashion
- Unpredictable latency behavior of COOL, makes it unsuitable for real-time applications

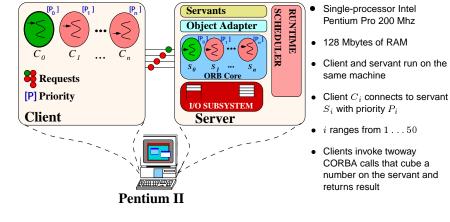
Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Black-box Real-time Results on ClassiX (remote)

40 45 50



- As the number of low priority clients increase, the latency for **COOL** increases
- Latency in TAOs high priority client remains relatively stable as compared to COOL which increases in a linear fashion
- Unpredictable latency behavior of COOL, makes it unsuitable for real-time applications

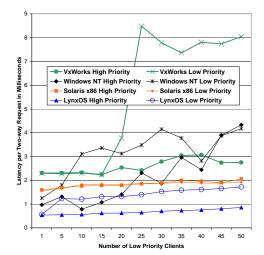
5


Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

Black-box Test Configuration for TAO

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

Black-box Test Configuration for TAO (cont)

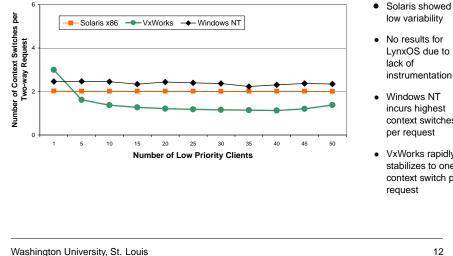


Washington University, St. Louis

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Benchmark Environment

- Operating System Benchmarks
 - Number of Context Switches
 - Context Switch overhead
- ORB Benchmarks
 - CPU processing overhead
 - Priority Inversion
 - Latency

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Black-box Real-time Latency Results for TAO



- LynxOS yielded very good latency and deterministic behavior
- Erratic behavior and high latency are a problem for Windows NT
- Windows NT also showed priority inversion at 50 low priority clients
- VxWorks performs surprisingly erratic
- Solaris' latency is high but predictable

9

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

Black-box Context Switch Results for TAO

- No results for LynxOS due to instrumentation
- Windows NT incurs highest context switches

 VxWorks rapidly stabilizes to one context switch per

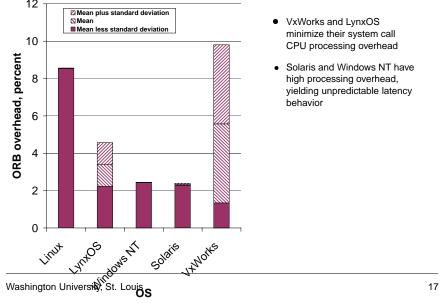
Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

Black-box Context Switch Time Results for TAO

• Solaris showed low variability

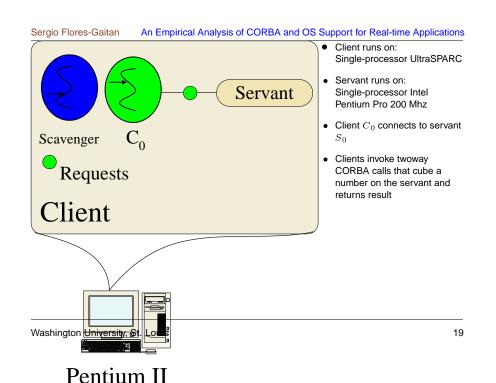
		 No results for 	or LynxOS due to
OS	Context Switch Tim e ackeof tools mean (std dev)		
	Suspend- Resume Test	Yield Test ₩indSwsh1	st indurs highest ches per request
Solaris	46 (N/A)	17.8 (0.837) 128 (N/	(A) ' '
VxWorks	15.4 (0.294)	40 (NA)/*WorkStar	bidly stabilizes to
LynxOS	N/A	3.72 (0.043) 5.45 (0.07	switch per
Linux	N/A	6.52 (0.117) 18.2 (0.26	(4)
NT	3.45 (0.059)	5.76 (0.449) ^{requ} 7.02 (0.11	3)

Washington University, St. Louis

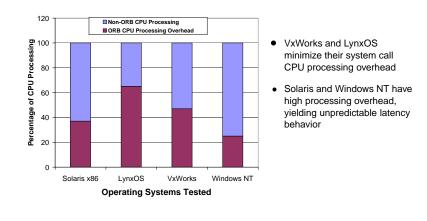

13

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications **Black-box Client CPU Processing Test Configuration**

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Vary operating system, hold Servant ORB constant SCHEDULER Object Adapter RUNTIME Client runs on: Single-processor Intel Pentium Pro 200 Mhz ORB Core Scavenger C₀ Servant runs on: S Requests Single-processor UltraSPARC Client C₀ connects to servant • Client S_0 **O** Subsystem Clients invoke twoway CORBA calls that cube a number on the servant and returns result Pentium II


rgio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

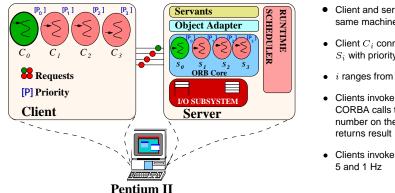
Washington University, St. Louis


16

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Black-box Server CPU Processing Test Configuration

Washington University, St. Louis

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Black-box Real-time Server CPU Processing Overhead **Results for TAO**

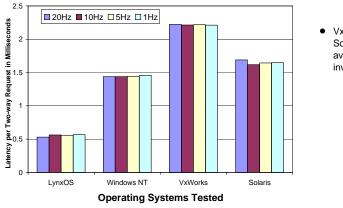


Washington University, St. Louis

20

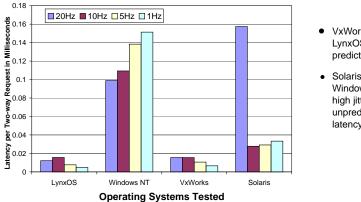
Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications

Black-box Priority Inversion Test Configuration



- Client and servant run on the same machine
- Client C_i connects to servant S_i with priority P_i
- *i* ranges from 1...4
- · Clients invoke twoway CORBA calls that cube a number on the servant and
- Clients invoke calls at 20, 10.

Washington University, St. Louis


21

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications **Black-box Priority Inversion Results for TAO**

VxWorks and Solaris show average priority inversion

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications **Black-box Priority Inversion Jitter Results for TAO**

· Solaris and Windows NT have high jitter, yielding unpredictable latency behavior

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Concluding Remarks

- Recommendations for operating systems that support applications with QoS requirements
 - Integrate I/O subsystem with CORBA middleware architecture
 - Provide deterministic context switch overhead
 - Optimize system calls and protocol processing
 - Provide QoS specification and enforcement
 - Provide better tool support to precisely determine sources of overhead
 - Adopt standard measurement-driven methodologies
 - Provide deterministic latency behavior
- Benchmarking is REALLY hard on platforms that do not have enough tool support, *e.g.*, VxWorks

24

Sergio Flores-Gaitan An Empirical Analysis of CORBA and OS Support for Real-time Applications Acknowledgments

- David Levine for developing the context switch time test
- Irfan Pyarali for his continuous support
- Sumedh Mungee and Dr. Gokhale for their comments on the paper
- Entire DOC group

Washington University, St. Louis

• Dr. Schmidt

25