
OpenFusion® TAO
Version 1.6

Services & Utilities Guide
�������	






OpenFusion
TAO
SERVICES & UTILITIES GUIDE
Part Number: OFTAO16-SERVG Doc Issue 17,  24 April 2008
PRISMTECH



Copyright Notice
© 2008 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part. 

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Services & Utilities Guide

�������	




CONTENTS



Ta b le  o f  Con ten ts
About the Services & Utilities Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Services & Utilities
Chapter 1 TAO IDL Compiler 3

1.1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1  Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2  Generated Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3  Environment Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4  Operation Demuxing Strategies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5  Collocation Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6  Compiler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Interface Repository Service 13
2.1  Running the Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1  IFR_Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2  Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1  tao_ifr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Naming Service 17
3.1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1  OMG Standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1.1  Naming Contexts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1.2  Name Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2  TAO Naming Service and Persistence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2  Running the Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1  Environment Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2  Persistence Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2.1  The -f Option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3  Implementation Policies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3.1  Destroying Binding Iterators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3.2  Orphaned Naming Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4  Bootstrapping the Naming Service from Clients. . . . . . . . . . . . . . . . . . . . . . 25
3.3  Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



3.3.0.1  nslist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.0.2  nsadd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.0.3  nsdel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4  Running as a Windows NT Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 4 Event Service 31
4.1  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2  Running the Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3  Event Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1  Run-time Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2  The Configuration File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3  Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.4  The Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 5 Utilities 37
5.1  Descriptions and Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.1  catior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2  ior-parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3  gperf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Index 43
v
Services & Utilities Guide

�������	




Table of Contents
vi
Services & Utilities Guide �������	




Preface
About the Services & Utilities Guide

The Services & Utilities Guide is included with OpenFusion TAO. The guide
describes how to use the command line tools, services, and utilities, including the
IDL compiler, provided with OpenFusion TAO.

Intended Audience
The Services & Utilities Guide is intended to be used by developers or those who
need to use the services and utilities provided with OpenFusion TAO.

Organisation
The Services & Utilities Guide is divided into the following sections:

• Chapter 1, TAO IDL Compiler, describes how to use the OpenFusion TAO IDL
compiler

• Chapter 2, Interface Repository Service, describes the Interface Respository

• Chapter 3, Naming Service, describes how to run the Naming Service from the
command line, as well as describing utilities which can be used to manage the
service

• Chapter 4, Event Service, describes how to run the Event Service from the
command line, as well as describing how to manage the service

• Chapter 5, Utilities, describes useful command line tools

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Services & Utilities Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.

i
WIN

UNIX

C
C++
Java
vii
Services & Utilities Guide

�������	




Preface
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page viii, are as hypertext links: click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold indicate new terms, or emphasise an item.
Arial Bold indicate Graphical User Interface (GUI) elements and commands, for
example, File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];
  
 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
viii
Services & Utilities Guide

�������	


http://www.prismtech.com
mailto: info@prismtech.com


SERVICES & UTILITIES



 



CHAPTER 

1 TAO IDL Compiler
1.1  Introduction

This section describes the TAO IDL compiler’s options and features. Users should
be familiar with standard OMG IDL before reading this section or using the TAO
IDL compiler. For information on the OMG IDL please refer to the IDL
documentation provided on the OMG’s web site (http://www.omg.org/).

1.1.1  Running
The TAO IDL compiler is run from the command line using:

where [options] are zero or more of the command line options described under
Section 1.6, Compiler Options, on page 5.

1.2  Generated Files
The IDL compiler generates a number of files from each .idl file. The generated
file names are obtained by taking the IDL basename and appending a letter to the
basename which signifies if the file is for a stub, skeleton, or skeleton template, then
appending an extension for its file type (interface (.i), header (.h), or definition
(.cpp). The complier provides options which enable different suffixes to be
generated if required:
• client stubs - *C.i, *C.h, and *C.cpp 
• server skeletons - *S.i, *S.h, and *S.cpp 
• server skeleton templates - *S_T.i, *S_T.h, and *S_T.cpp 

TAO's IDL compiler creates separate *.i and *S_T.* files to improve the
performance of the generated code. Note that only the client stubs declared in the
*C.h file and the skeletons in the *S.h file need to be #included in your code.

% tao_idl [options]

i

3
 Services & Utilities�������	


http://www.omg.org


  1.3  Environment Variables     
  
1.3  Environment Variables

Because the TAO IDL compiler does not contain code to implement a preprocessor,
it must use an external one. For convenience, it uses a built-in name for an external
preprocessor to call. During compilation, this is how that default is set:
1. If the macro TAO_IDL_PREPROCESSOR is defined, then it will use that.
2. Else if the macro ACE_CC_PREPROCESSOR is defined, then it will use that.
3. Otherwise, it will use "cc" 
The same behaviour occurs for the TAO_IDL_PREPROCESSOR_ARGS and
ACE_CC_PREPROCESSOR_ARGS macros.
Case 1 is used by the Makefile on most machines to specify the preprocessor. 
Case 2 is used on Windows and platforms that need special arguments passed to the
preprocessor (MVS, HPUX, etc.). 
Case 3 is not normally used, but is included as a default case.
Since the default preprocessor may not always work when tao_idl is moved to
another machine or used in cross-compilation, it can be overridden at runtime by
s e t t i n g  t h e  e n v i r o n m e n t  v a r i a b l e s  TAO_IDL_PREPROCESSOR  a n d
TAO_IDL_PREPROCESSOR_ARGS.
In previous versions,  the environment variables CPP_LOCATION  and
TAO_IDL_DEFAULT_CPP_FLAGS were used for this purpose. Both will still work,
but tao_idl will display a deprecation warning if it detects them. It is possible that
support for these variables will be removed in a future version of TAO.

Table 1 Environment Variable Descriptions 

Variable Usage
TAO_IDL_PREPROCESSOR Used to override the program name of the

preprocessor  tha t  the  TAO IDL compiler
(tao_idl) uses.

TAO_IDL_PREPROCESSOR_ARGS Used  to  over r ide  the  f lags  passed  to  the
preprocessor that tao_idl uses. This can be
used  to  a l t e r  the  de fau l t  op t ions  fo r  the
preprocessor and specify things like include
directories and how the preprocessor is invoked.
Two flags that will always be passed to the
preprocessor are -DIDL and -I.

TAO_ROOT Used to determine where orb.idl is located.
ACE_ROOT Used to determine where orb.idl is located.
4
Services & Utilities

�������	




  1.4  Operation Demuxing Strategies     
  
I f  TAO_ROOT  i s  de f in ed ,  t hen  tao_idl  w i l l  u se  i t  t o  i nc lude  t he
$(TAO_ROOT)/tao directory. This is to allow tao_idl to automatically find
<orb.idl> when it is included in an IDL file. tao_idl will display a warning
message when neither is defined.

1.4  Operation Demuxing Strategies
The server skeleton can use different demuxing strategies to match the incoming
operation with the correct operation at the servant. TAO's IDL compiler supports
perfect hashing, binary search, and dynamic hashing demuxing strategies. By
default, TAO's IDL compiler tries to generate perfect hash functions, which is
generally the most efficient and predictable operation demuxing technique. To
generate perfect hash functions, TAO's IDL compiler uses gperf, a general-purpose
perfect hash function generator.
If you cannot use perfect hashing, then the next best operation demuxing strategy is
using binary search, which can be configured using TAO's IDL compiler options
(see Section 1.6, Compiler Options, below).

1.5  Collocation Strategies
tao_idl can generate collocated stubs using two different collocation strategies. It
also allows you to suppress and enable the generation of the stubs of a particular
strategy. You can generate stubs for both collocation strategies (using both -Gp and
-Gd flags at the same time) and defer the determination of collocation strategy until
run time. However, if you want to minimize the footprint of your program, then you
might want to pre-determine the collocation strategy you want and only generate the
right collocated stubs (or not generate any at all using both -Sp and -Sd flags at the
same time, provided it's a pure client.)

1.6  Compiler Options
TAO's IDL compiler invokes your C or C++ preprocessor to resolve included IDL
files. It takes the common options for preprocessors (such as -D or -I). The
compiler also takes other options that are specific to it. Table 2, Compiler Options,
shown following, describes each compiler option.

i

5
Services & Utilities�������	




6
Services &

 1.6  Compiler Options     
  

�������	


emarks
-u 

-V 

-Wb,op

ro_name right after each class or
ated skeleton code (S files,) this is
quires special directives to export
y the definition is just a space on

ode to include include_path at
ver header, this is usually a good
 export macro on Windows.
ro_name right after each class or
erated stub code: this is needed for
l directives to export symbols from
is just a space on unix platforms. 
ode to include include_path at
is is usually a good place to define

ct as issuing
o=macro_name -Wb,
cro_name. This option is useful
ing both stubs and skeletons.
 Utilities

Table 2 Compiler Options 

Option Description R
The compiler prints out the options that are given
below and exits clean 

 

The compiler printouts its version and exits  
tion_list Pass options to the TAO IDL compiler, as follows:  

skel_export_macro=macro_name The compiler will emit mac
extern keyword in the gener
needed for Windows that re
symbols from DLLs, usuall
unix platforms. 

skel_export_include=include_path The compiler will generate c
the top of the generated ser
place to define the server side

stub_export_macro=macro_name The compiler will emit mac
extern keyword in the gen
Windows that requires specia
DLLs, usually the definition 

stub_export_include=include_path The compiler will generate c
the top of the client header, th
the export macro.

export_macro=macro_name This option has the same effe
-Wb, skel_export_macr
stub_export_macro=ma
when building a DLL contain



7
Services &

 1.6  Compiler Options     
  

�������	


-Wb,op
(continu

e effec t  as  spec i fy ing  -Wb ,
=include_path. This option

on to build DLL containing both

ode to include include_path at
piler generated files. This can be
eader mechanism, such as those
ilder or MSVC++.
ate code to optimise access to base

ode to include include_path at
r file, before any other include
 ace/pre.h , which declares
rland C++ Builder and MSVC++
 manner in all IDL-generated files
BA services.

ode to include include_path at
r file. For example, ace/post.h,
ions for the Borland C++ Builder
s included in this manner in all
O libraries and CORBA services.

-E 

-d 

-Dmacr

-Umacr

-Iincl

emarks
 Utilities

tion_list
ed)

export_include=include_path Th is  opt ion  has  the  sam
stub_export_include
goes with the previous opti
stubs and skeletons.

pch_include=include_path The compiler will generate c
the top of all TAO IDL com
used with a pre-compiled h
provided by Borland C++ Bu

obv_opt_accessor The IDL compiler will gener
class data for value types.

pre_include=include_path The compiler will generate c
the top of the each heade
statements. For example,
compiler options for the Bo
compilers, is included in this
in the TAO libraries and COR

post_include=include_path The compiler will generate c
the bottom of the each heade
which restores compiler opt
and MSVC++ compilers, i
IDL-generated files in the TA

Only invoke the preprocessor  
Causes output of a dump of the AST  

o_definition Passed to the preprocessor  
o_name Passed to the preprocessor  
ude_path Passed to the preprocessor  

Table 2 Compiler Options (Continued)

Option Description R



8
Services &

 1.6  Compiler Options     
  

�������	


-Aasse

-Yp, p

-H, op

t uses perfect hashed operation
he default strategy. Perfect hashing
erate demuxing methods. 
t uses dynamic hashed operation

uses binary search based operation

uses linear search based operation
 this option is for testing purposes
d for production code since it's

-in 

-ic 

-g 

emarks
 Utilities

rtion Passed to the preprocessor  
ath Specifies the path for the C preprocessor  
tion_list Pass options to the TAO IDL compiler, as follows:

perfect_hash Generate skeleton code tha
demuxing strategy, which is t
uses gperf program, to gen

dynamic_hash Generate skeleton code tha
demuxing strategy. 

binary_search Generate skeleton code that 
demuxing strategy. 

linear_search Generate skeleton code that 
demuxing strategy. Note that
only and should not be use
inefficient. 

To generate #include statements with <>'s for
the standard include files (e.g. tao/corba.h)
indicating them as non-changing files 

 

To generate #include statements with ""s for
changing standard include files,
(e.g. tao/corba.h). 

 

To specify the path for the perfect hashing program
(gperf). The default is
$TAO_ROOT/bin/gperf. 

 

Table 2 Compiler Options (Continued)

Option Description R



9
Services &

 1.6  Compiler Options     
  

�������	


-o 

-hc 

-hs 

-hT 

-cs 

-ci 

-ss 

-sT 

-si 

-st 

-t vironment variable if defined, else

 environment variables, if defined,
ry.

-Cw as a nicety for dealing with legacy
CORBA rules for name resolution

emarks
 Utilities

To specify the output directory to IDL compiler as
to where all the IDL-compiler-generated files are to
be put. By default, all the files are put in the current
directory from where is called. 

 

Client's header file name ending. Default is "C.h".  
Server's header file name ending. Default is "S.h".  
Server's template header file name ending. Default
is "S_T.h". 

 

Client stub's file name ending. Default is "C.cpp".  
Client inline file name ending. Default is "C.i".  
Server skeleton file name ending. Default is
"S.cpp". 

 

Server template skeleton file name ending. Default
is "S_T.cpp". 

 

Server inline skeleton file name ending. Default is
"S.i". 

 

Server's template inline file name ending. Default
is "S_T.i". 

 

Temporary directory to be used by the IDL
compiler. 

UNIX: use the TEMPDIR en
use /tmp/. 
Windows: use TMP or TEMP
else use the Windows directo

Output a warning if two identifiers in the same
scope differ in spelling only by case (default is the
output of error message). 

This option has been added 
IDL files, written when the 
were not as stringent.

Table 2 Compiler Options (Continued)

Option Description R



10
Services &

 1.6  Compiler Options     
  

�������	


-Ce 

-GC 

-Ge fl

-Gp 

-Gd 

-Gsp 

-Gt 

-Gv 

-GI 

-GIh a

-GIs a

emarks
 Utilities

Output an error if two indentifiers in the same
scope differ in spelling only by case (default). 

 

Generate AMI stubs ("sendc_" methods, reply
handler stubs, etc) 

 

ag If the value of the flag is 0, tao_idl will generate
code that will use native C++ exceptions. If the
value of the flag is 1, tao_idl will generate code
that will  use the CORBA::Environment
variable for passing exceptions. 
If the value of the flag is 2, the C++ throw
k ey w o r d  w i l l  b e  u s e d  i n  p l a c e  o f
ACE_THROW_SPEC ,  ACE_THROW,  an d
ACE_RETRHOW (ACE_THROW_RETURN and
TAO_INTERCEPTOR_THROW will still be used). 

 

Generated collocated stubs that use Thru_POA
collocation strategy (default) 

 

Generated collocated stubs that use Direct
collocation strategy 

 

Generate client smart proxies  
Generate optimised TypeCodes  
Generate code that supports Object-by-Value  
G e n e r a t e  t e m p l a t e s  f i l e s  f o r  t he  s e r va n t
implementation 

 

rg Servant implementation header file name ending  
rg Servant implementation skeleton file name ending  

Table 2 Compiler Options (Continued)

Option Description R



11
Services &

 1.6  Compiler Options     
  

�������	


-GIb a

-GIe a

-GIc 

-GIa 

-Sa 

-Sp 

-Sd 

-St on of the Any operators, since the
 associated typecode.

-Sc 

-Sv 

emarks
 Utilities

rg Prefix to the implementation class names  
rg Suffix to the implementation class names  

Generate  copy constructors  in the  servant
implementation template files 

 

Generate assignment operators in the servant
implementation template files 

 

Suppress generation of the Any operators  
Suppress generation of collocated stubs that use
Thru_POA collocation strategy 

 

Suppress generation of collocated stubs that use
Direct collocation strategy (default) 

 

Suppress generation of the TypeCodes Also suppresses the generati
Any >>= operator needs the

Suppress generation of the tie classes, and the
*S_T.* files that contain them. 

 

Suppress value type support (default).  

Table 2 Compiler Options (Continued)

Option Description R



12
Services &

 1.6  Compiler Options     
  

�������	

 Utilities



CHAPTER 

2 Interface Repository Service
2.1  Running the Service

The Interface Repository makes all IDL declarations available.

2.1.1  IFR_Service
To run the Interface Repository you need to use the executable IFR_Service. This is
found in the bin directory of the OpenFusion TAO distribution.

Table 3 Interface Repository Command Line Options

Option Description
-a <base_address> This option only works when you also specify the -p option. The -a option

gives the base address for memory mapped persistence and may be specified in
decimal, octal (with a leading zero) or hexadecimal (with a leading 0x). If this
value is not specified and the Interface Repository is made persistent by using
the -p  option, then this base address defaults on most platforms to
0x80000000. 
When a persistence file is reloaded, the same base address must be specified as
when the persistence file was first created. A base address of zero may be
specified. This allows the computer to allocate the actual address, which it then
displays. This base address must then be used when the database is reloaded.
This option should be used along with the -s option to specify a reasonable
excess of free space.

-b <filename> Overrides the default filename used for persistent storage with filename. The
default filename is ifr_default_backing_store.

-f Use flat file persistence as an alternative to the memory mapped file persistence
(use this option instead of '-p'. For example,

IFR_Service -f -b my_flat_file.dat 

If the -f option is used in the absence of the -b option, then the IFR_Service
w i l l  c r e a t e  a n d  s t o r e  i t s  d a t a  i n  a  f i l e  c a l l e d
ifr_default_backing_store.

-m Enables read-write locking of IFR calls. If the IFR is started up with
multi-threading enabled, for example if a service configuration file is used that
specifies thread-per-connection, then this option should be used. Note that if
ACE_HAS_THREADS is not defined, then this option will be ignored.
13
 Services & Utilities�������	




  2.2  Administration     
  
2.2  Administration
2.2.1  tao_ifr

This is the executable that administers the IFR. Calling tao_ifr <filename> will
add the contents of the IDL file to the repository. 
Calling tao_ifr -r <filename> removes the contents of the IDL file from the
repository.
tao_ifr requires all the libraries that are required by the IFR service, plus the
IFR_Service executable itself.
tao_ifr can also handle the -ORBxxx parameters, where the xxx represents a
particular ORB parameter, for example:

-ORBInitRefInterfaceRepository=file://<filename> 
ORBInitRefInterfaceRepository enables the IFR service to be resolved by
getting its IOR from <filename>. 
By default, the IFR service stores its IOR in the file if_repo.ior, but that can be
modified by starting the IFR service using the -o option (see above).
All -ORBxxx options appear in the command line before any other options.

-o <filename> Overrides the default filename used for storing the Interface Repository IOR.
The default filename is if_repo.ior.

-p Makes the Interface Repository persistent.
-r Uses the Win32 registry for the database. Not available with persistence. The -r

option is ignored if the -p option is used. If the platform is not Win32, an error
message is output.

-s <initial_size> This option only works when you also specify the -p option. The -s option
allocates the amount of free space for the memory mapped persistent database to
grow in to. May be specified in decimal, octal (with a leading zero) or
hexadecimal (with a leading 0x). Only affects the initial size of the persistent
database files when this file is first created. When the free space already
allocated is exhausted, and attempt is made to allocate more space. This attempt
is not guaranteed to succeed.

Table 3 Interface Repository Command Line Options

Option Description
14
Services & Utilities

�������	




  2.2  Administration     
  
tao_ifr can process multiple IDL files in one execution. As long as the file names
come after any -ORB options that may be present, they may come mixed in any
order with the other command line options. The tao_ifr command line parser will
treat any option (or option pair) that doesn't begin with a hyphen ( - ) as a filename. 

Table 4 Legal tao_ifr Command Line Options

Option Description
-Cw Warning if identifier spellings differ only in case (default is error).
-Ce Error if identifier spellings differ only in case (default).
-d Outputs (to stdout) a dump of the AST.
-Dname[=value] Defines name for preprocessor.
-E Runs preprocessor only, prints on stdout.
-Idir Includes dir in search path for preprocessor.
-L Enables locking at the IDL file level.
-r Removes contents of IDL file(s) from repository.
-Si Suppresses processing of included IDL files.
-t Temporary directory to be used by the IDL compiler.
-Uname Undefines name for preprocessor.
-A... Local implementation-specific escape.
-u Prints usage message and exits.
-v Traces compilation stages.
-w Suppresses IDL compiler warning messages.
-Yp, path Defines the location of the preprocessor.
15
Services & Utilities�������	




  2.2  Administration     
  
16
Services & Utilities

�������	




CHAPTER 

3 Naming Service
3.1  Introduction

The Naming Service provides a straightforward way for application components to
find and using objects by associating meaningful names with them. The Naming
Service can then be used like a white pages telephone directory to find an object and
obtain its Object Reference, without complex programming or using proprietary
ORB mechanisms.

3.1.1  OMG Standard
The Naming Service associates meaningful names with objects. An association
between a name and an object’s Interoperable Object Reference (IOR) is called a
binding or name binding.
Name bindings are grouped in hierarchies called naming contexts. A naming context
is an object containing zero or more name bindings. Each name binding within a
naming context refers to either another naming context or a CORBA object.
There is no limit to the number of different names that can be bound to the same
object or naming context, or to the number of bindings that a naming context can
contain.
Resolving a name is the process of locating an object or naming context by reading a
name binding and retrieving the associated object reference.
Iteration is the process of retrieving a list of bindings from a naming context, and
looking at each binding in turn.

3.1.1.1  Naming Contexts
A naming context is a set of name bindings where each name is unique within that
context; the same name may, however, appear in other naming contexts. Naming
contexts can be bound to other naming contexts to create naming hierarchies.
A very simple hierarchy of naming contexts is shown in Figure 1. It illustrates the
fact that a given binding within a naming context can point to either an object or
another naming context, and that a single object can be referenced by more than one
name. These hierarchies are known as naming graphs.
17
 Services & Utilities�������	




  3.1  Introduction     
  
 

Figure 1  Simple Naming Graph
An object is referenced using an initial naming context, which is also referred to as
the root context. This is followed by a sequence of one or more name components.
Such a sequence is known as a compound name. Each name component resolves to
the next naming context in a chain until the last name component resolves to the
required object. In Figure 1, objects A, B and D are bound directly to the root
context, so their names have only one component (these are simple names); objects
C and E have names with three components. The full compound name for object C
can be represented like this:

NamingContext2/NamingContext4/ObjectC

Object E can be accessed via two different names.
The service specification also permits a naming context to contain a binding which
refers to a parent or grandparent further up the graph. For example, in Figure 1
Naming Context 4 could contain a binding to Naming Context 2. This kind of
reference is sometimes referred to as cyclic.
The root context is always implicit in a compound name; a special operation,
resolve_initial_references, is performed once to obtain the root context,
and all subsequent resolve operations depend on that.

Root
Naming
Context

Naming
Context 2

Naming
Context 3

Naming
Context 4

CORBA
object

B

CORBA
object

A

CORBA
object

C

CORBA
object

D CORBA
object

E

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3

.

.
name
18
Services & Utilities

�������	




  3.1  Introduction     
  
Although it is not a requirement of the service specification, it is convenient and
customary to have a single root naming context.

3.1.1.2  Name Components 
Each name component has id and kind fields (sometimes referred to as attributes),
represented by IDL strings. These strings are composed of ISO Latin-1 characters
(excluding the ASCII NUL, 00h) and the combined length can be up to 255
characters.
The Naming Service always matches names using both fields, so it is acceptable for
either field to be zero-length or to contain an empty string provided that uniqueness
within a naming context is maintained. Table 5 shows valid combinations of id and
kind values.

Note that although it is technically possible for both fields to contain empty strings,
this is not normally recommended, as it can be confusing to resolve to an empty
name.

3.1.2  TAO Naming Service and Persistence
The TAO Naming Service instance can be run in either a non-persistent or persistent
mode. The service runs in non-persistent mode by default. 
When the service is run in the non-persistent mode, the data which the instance uses
to associate names to objects is only retained in volatile memory: if the service
instance stops for any reason, then this data is lost. Applications which are using the
service instance’s name bindings for object resolution will then be unable to locate
the objects, with the expected unfortunate consequences.
When the service is run in persistent mode, the data which the service uses to
associate names to objects is saved to persistent storage. The service then is able to
re-establish the instance’s name bindings after the service been has stopped and
restarted. Applications which are using the service instance’s name bindings for
object resolution will continue to be able to locate objects using the existing name
bindings.

Table 5 Name Component Fields 

Id Kind
name1 <empty>
name2 kind1
<empty> <empty>
<empty> kind2
19
Services & Utilities�������	




  3.2  Running the Service     
  
3.2  Running the Service
The Naming Service can be started by running the Naming_Service program from
the command line. The Naming_Service’s command line options are listed in
Table 6, Naming_Service Command Line Options. The Naming_Service program
is located in the bin directory of the OpenFusion TAO distribution.
The Naming Service can also be run as an Windows NT service (see Section 3.4,
Running as a Windows NT Service, on page 27).

WIN
20
Services & Utilities

�������	




  3.2  Running the Service     
  
Table 6 Naming_Service Command Line Options 

Option Description
-b <base_address> This option should only be used with the -f option.

The -b option specifies a non-default virtual memory address
which is used to map the shared memory mapped file into
memory and This enables multiple name servers to be run on the
same machine, each using different shared memory mapped file
base addresses.
This option should be used consistently for any given persistent
store since it is not possible to relocate an existing persistent
store. 
The base addresses should be sufficiently far apart in order to
provide adequate memory for size of mapped files which might
be use.
The -u, -r or -v options are greatly preferred persistence mode
alternatives which should be considered instead of the -f and -b
option combination due to its complexity of usage and being
error prone.

-d Enables printing debug information to stdout.
This option is the equivalent using
-ORBDebugLevel 1.
The debug level is increased for each instance that -d is given on
the command line. For example, using “-d -d -d” will raise
the debug level to 3.

-f <persistent_file> Specifies that the server will run in persistence mode using a
s h a r e d  m e m o r y  m a p  s t o r e d  i n  t h e  f i l e
<persistent_file>. The server’s data and state is
persisted to <persistent_file>.
This option is not recommended. The -u, -r and -v options are
the preferred persistence mode alternatives.
This option can be used with the -b option to override the
default memory address which the persistence file is mapped to.
Note that the service’s internal memory structures are copied
directly to the file and subsequently are dependent on the
platform, software and build versions, and other critical factors.
21
Services & Utilities�������	




  3.2  Running the Service     
  
-m <0|1> The -m option enables or disables the Naming Service to
respond to multicast requests.
TAO uses a simple, non-standard method for clients to discover
the Naming Service’s initial reference. This can be inadequate
and cause unexpected results if, for example, there are multiple
naming services running on the network. 
The Naming Service’s default behaviour is not to respond to
multicast queries (use the Interoperable Naming Service
bootstrap options instead). The -m option enables the service to
respond to multicast requests.
1 = enable multicast responses, 0 = disable (default).

-ORBDebugLevel <level> Enables printing debug information to stdout. The debug level is
set to the value of <level>.
Using -ORBDebugLevel 1 is the equivalent of using the -d
option.

-ORBEndPoint <endpoint> Specifies where the Naming Service server will listen for
requests from clients, where <endpoint> is location specified
as iiop://tcp_hostname:port.

-ORBNameServicePort <nsport> Specifies or overrides the Naming Service’s multicast network
port it will listen to for multicast requests.
This option is only used when multicast option is enabled with
-m 1.

-o <ior_file> Enables the root context’s IOR to be stored in the file
<ior_file>. Clients can use the IOR stored in the file to
locate the service’s root context.

-p <pid_file> Enables the service’s server process id (PID) to be stored in the
file <pid_file>. The stored PID can be used (on UNIX
systems) for stopping or killing the naming service server
daemon.

-s <context_size> This option is used to set the size of the hash table allocated for
the root context when a new root context is created. All contexts
created under the root will use the same size for their hash
tables. 
This option can be used for basic performance tuning with the
binding name look-up if the number of anticipated root entries is
known. This option does not limit the size of the persistent store
but will effect its size when the store is created.
The default value is 1024.

Table 6 Naming_Service Command Line Options (Continued)

Option Description
22
Services & Utilities

�������	




  3.2  Running the Service     
  
-r <directory_path> Specifies that the server should run in persistence mode using
flat file persistence. The server’s data will be stored in files
placed in the directory <directory_path>.
This option allows multiple running name services to share the
same persistent data files in order to achieve simple service
redundancy and replication.
Using this option incurs additional file locking overhead: if only
one name service instance is to be using the data set then the -u
option should be preferred.
This option is an alternative to using the -f, -u or -v
persistence options.

-t <time> Specifies that the service will terminate if a client request has
not been received by it within <time> seconds. If a request is
reviewed with the time interval, then the service will continue to
run.
The default behaviour if for the service to run indefinitely (i.e.
when -t is not used). 

-u <directory_path> Specifies that the server should run in persistence mode using
flat directory persistence. The server’s data will be stored in files
placed in the directory <directory_path>.
This option is an alternative to using the -f, -r or -v
persistence options.

-v <directory> Specifies that the server should run in persistence mode using
flat file persistence. Each entity in the naming graph is
repesented by an individual file stored in a directory tree, where
<directory> is the tree’s root directory.

-z <time> Sets the round trip timeout value (in seconds) for operations
using a federated naming context. If the time interval is
exceeded the “Cannot proceed” exception is thrown to the
client.
The default behaviour if for the service to not timeout (i.e. when
-z is not used). 

 This option relies on the use of file system soft links and
is accordingly not available on win32-based systems such as
Windoes NT or XP).

Table 6 Naming_Service Command Line Options (Continued)

Option Description
23
Services & Utilities�������	




  3.2  Running the Service     
  
Example  
This example starts the Naming Service, enables multicasting using port 1122 for
listening, and saves its IOR to a file called name.ior

3.2.1  Environment Variables
The NameServicePort environment variable is set to the multicast port used by
clients who want to bootstrap to a Naming Service using multicast. This
environment variable is used only when multicast responding is enabled (using the
command line option -m 1).

3.2.2  Persistence Options
The Naming Service’s persistence mode version is set using one, and only one, of
the persistence mode command-line options, -f, -r, -u, or -v, when starting the server.
Each option persists Naming Service’s data and state to one or more files, where.
• if the file(s) do not exist, the they are created
• if the file(s) exist, then the Naming Service’s state is set to the state stored in the

file(s). 
The behaviour of some of these options can be controlled using other command line
options, including using the
• the -b with the -f option to set the based virtual memory address
•  and the -s option to set hash table size for any of the persistent mode alternatives

3.2.2.1  The -f Option
The -f option maps the service’s internal memory, which contains the service’s
current state, to a file. A default memory address (ACE_DEFAULT_BASE_ADDR) is
used for mapping the file. Alternate mapping address can be specified at
compile-time by redefining TAO_NAMING_BASE_ADDR in tao/orbconf.h.
Alternate mapping address can also be specified at run-time with the -b
command-line option, which takes precedence over TAO_NAMING_BASE_ADDR
definition.
The Naming Service stores absolute pointers in its memory-mapped file. Therefore,
it is important to use the same mapping address on each run for the same persistence
file.

% Naming_Service -m 1 -ORBNameServicePort 1122 -o name.ior
24
Services & Utilities

�������	




  3.2  Running the Service     
  
3.2.3  Implementation Policies

3.2.3.1  Destroying Binding Iterators
A binding iterator is destroyed when client invokes the destroy operation either on
the iterator itself or on the naming context it is iterating over. In both cases,
subsequent calls on the binding iterator object will cause OBJECT_NOT_EXIST
exception.

3.2.3.2  Orphaned Naming Contexts
This implementation of the Naming Service does not remove or free resources
consumed by orphaned naming contexts when the service is running in an persistent
mode: it is the client’s responsibility to clean up and remove naming contexts and in
order to avoid leaking server resources.
However, when the service is running in non-persistent mode then resources,
including orphaned contexts, are released when the Naming Server is shutdown.

3.2.4  Bootstrapping the Naming Service from Clients
There are several methods which a client can use to connect to a Naming Service
server instance,  in other words,  there are several  mechanisms which
resolve_initial_references can use when asked for "NameService". In
order of predictable behaviour, they are:
1. Using command-line options

The -ORBInitRef NameService=IOR:... or environment variable
NameServiceIOR can be used on the client side to specify the object that the
call to should return to the client. (On the server side, -o option can be used to
get the IOR).

Example  (UNIX, same host):

On the first line, we start the Naming Service, and output its IOR to ior_file.
On  the  second  l ine ,  we  s t a r t  some  c l i en t ,  and  spec i fy  the  IOR
resolve_initial_references should return for the Naming Service in a
file format.

2. Using Multicast
When started with the respond to multicast queries option turned on (-m 1),
clients can use IP multicast to query for a naming service, and this instance will
respond. The Naming Server is listening for client multicast requests on a
specified port. On the client side, sends out a multicast request on the network,

% TAO_ROOT/orbsvcs/Naming_Service -o ior_file
% my_client -ORBInitRef NameService=file://ior_file
25
Services & Utilities�������	




  3.3  Administration     
  
trying to locate a Naming Service. When a Naming Server receives a multicast
request from a client, it replies to the sender with the IOR of its root naming
context.
The port used for this bootstrapping process, i.e., the multicast port, has nothing
to do with the ORB port used for CORBA communication. Other points worth
mentioning include:

 - A client and a server can communicate using the multicast protocol if they are
using the same multicast port. For both client and server
-ORBnameserviceport command-line option and NameServicePort
environment variable can be used to specify the multicast port to use. If none is
specified, the default port is used. (The ability to specify multicast ports can be
used to match certain clients with certain Naming Servers, when there are more
than one Naming Server running on the network).

 - If there are several naming servers running on the network, each listening on the
same port for multicast requests, each will send a reply to a client's request. The
client's orb will use the first response it receives, so the Naming Service will, in
fact, be selected at random.
Since this mechanism is proprietary to TAO (i.e., non-standard), it only works
when both client and server are written using TAO. There is no way to turn
multicasting off on the client side, but it is used only as a last resort, i.e., any of
the other options will override it.

3.3  Administration
The following command line utilities can be used administer objects which are, or
need to be, registered with the Naming.

3.3.0.1  nslist
nslist displays a formatted list of current Naming Service entries and is run from
the command line as follows:

where 
nslist displays the contents of the default "NameService" (including the
p ro toco l  and  end  po in t  o f  e a ch  o b j e c t  r e f e r e n c e )  r e t u r n e d  b y
resolve_initial_references()
--ior is an optional switch which displays the contents of the NameService,
including the IOR of each reference entry and the IOR of the NameService itself

i

% nslist [ --ior | --nsior ]
26
Services & Utilities

�������	




  3.4  Running as a Windows NT Service     
  
--nsior is an optional switch which displays only the IOR of the NameService
itself, with no other text. This switch can be used to locate the TAO
NameService for non-TAO applications.

3.3.0.2  nsadd
nsadd can be used to add objects into the Name Service and is run as follows:

where 
--name obj_name adds an object identified by obj_name (required)
--ior ior supplies the object’s IOR contained in the file identified by ior
(required)
--rebind optionally rebinds the object (as per the Naming Service’s rebind
method)

3.3.0.3  nsdel
nsdel deletes objects from the Name Service. It is run from the command line
using:

where
--name obj_name specifies the object identified by obj_name to be removed
(required)

3.4  Running as a Windows NT Service
The Naming Service can be run as a Windows NT service by running
NT_Naming_Service.exe from the DOS command line. NT_Naming_Service
must be run using the command line options described in Table 7. 
The command line options listed in Table 6 can not be used as a command line
option with NT_Naming_Service. The options listed in Table 6 are specified using
Windows Registry Keys, described in Step 2:.
The NT_Naming_Service.exe utility is provided with the OpenFusion TAO
Naming Service distribution.

Step 1: Install the service to NT by running NT_Naming_Service with the -i option: 

Step 2: Add the Naming Service’s start-up options to Windows Registry.

% nsadd < --name obj_name > < --ior ior > [ --rebind ]

% nsdel < --name obj_name >

WIN

> NT_Naming_Service -i
27
Services & Utilities�������	




  3.4  Running as a Windows NT Service     
  
The start-up options that are specified for the standard Naming_Service command
line must be set in Windows Registry before the NT_Naming_Service is started.
These command line options take affect whenever NT_Naming_Service is run,
unless the settings are deleted or modified. Create the registry key described below
to set the Naming Service’s command line options. The Windows Registry is edited
using Windows’ Registry Editor, regedit. regedit can be run by entering
regedit into Windows’ Start | Run dialog or by running it directly from a
Windows command line prompt.
Add the following registry key using the Registry Editor:

Path: My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\ACE\TAO
Key: TaoNamingServiceOptions
Type: REG_SZ (Zero terminated String)
Va l ue :  -ORBEndPoint iiop://213.48.91.6:10005 -o
c:\temp\name.ior -f c:\temp\naming_service.dat (Note: this is an
example. You should provide the actual values specific to your installation)

If this key is not in the Registry, then NT_Naming_Service will run as if no
command line options were given.

Step 3: Start the service by running NT_Naming_Service with the -s option. Note that the
service must be started in order to operate. 

To stop the service run NT_Naming_Service with the -k option. The service can
be restarted by re-running NT_Naming_Service with the -s option.

All of the available NT_Naming_Service command line options are listed in Table
7. The service can be controlled using the Windows NT Services Control Panel after
installation (this is the recommended method).

> NT_Naming_Service -s

> NT_Naming_Service -k
28
Services & Utilities

�������	




  3.4  Running as a Windows NT Service     
  
Table 7 NT_Naming_Service Command Line Options

-i Install the Naming Service as a Windows NT 
Service.

-s Starts the service using the standard Naming 
Service options as specified in the Windows 
Registry. See Step 2: on page 27.

-t [value] Sets the service’s Windows NT start-up type 
behaviour (Manual, Automatic or Disabled).
Values are:
   Automatic  - 2
   Manual      - 3
   Disabled     - 4

-r Remove the service. Ensure the service has been 
stopped before removing.

-k Stop (or kill) the service (the service remains 
installed).
29
Services & Utilities�������	




  3.4  Running as a Windows NT Service     
  
30
Services & Utilities

�������	




CHAPTER 

4 Event Service
4.1  Introduction

The OMG Event Service is a service for decoupling the suppliers of events from the
consumers. For many applications, this approach provides a much more appropriate
model than the synchronous invocation mechanism of CORBA.

4.2  Running the Service
The Event Service is started with the CosEvent_Service command, optionally
followed by any of the options listed in Table 8, CosEvent_Service Command-line
Options.

The CosEvent_Service server supplies the capability to start a single event
channel in its own process. It can bind the created event channel to a supplied name
in the root naming context of the Naming Service. The Naming Service must be
running before the CosEvent_Service server is started, unless the -x
command-line option is used. The created event channel implements the
CosEventChannelAdmin::EventChannel interface.

Table 8 CosEvent_Service Command-line Options

Option Description Default
-n COS_EC_name Specifies the name with which to 

bind the event channel (in the root 
naming context of the Naming 
Service). Ignored if the -x option is 
used.

CosEventService

-r Use the rebind() operation to bind 
the event channel in the Naming 
Service. If the name is already bound 
and this flag is not passed, the process 
exits with an Already Bound 
exception. Ignored if the -x option is 
used.

The bind() operation is used.

-x Do not use the Naming Service. This 
simply creates an event channel.

Bind the event channel in the 
Naming Service.
31
 Services & Utilities�������	




  4.3  Event Channel Configuration     
  
When the destroy() operation of the event channel is called, the process exits and
the event channel is unbound from the naming service.

4.3  Event Channel Configuration
4.3.1  Run-time Configuration

The new implementation of the COS Event Service uses a factory to build all the
objects and strategies it requires. The factory can be dynamically loaded using ACE
Service Configurator. This is extremely convenient because the factory can also
parse options in the Service Configurator script file. 
The current implementation provides a default implementation for this factory This
document describes the options used by this default implementation. Users can
define their own implementation with new ad-hoc strategies or with pre-selected
strategies. 

4.3.2  The Configuration File
The COS channel uses the same service configurator file that the ORB uses. The
default name for this file is svc.conf but the ORB option -ORBSvcConf can be
used to override this. The format of the file is described in detail in the service
configurator documentation but the relevant section for the event channel looks like
this: 

All the event service factory options start with -CEC

4.3.3  Options

# Comments go here...
# More comments if you want to...
static CEC_Factory "-CECDispatching reactive ....."

Table 9 Event Channel Configuration Options 

Option Description
-CECDispatching 
dispatching_strategy 

Select the dispatching strategy used by the COS event 
service. A reactive strategy will use the same thread that 
received the event from the supplier to push the event to all 
the consumers. The mt strategy will also use a pool of 
threads, but the thread to dispatch is randomly selected. 

-CECDispatchingThreads 
number_of_threads 

Select the number of threads used by the mt dispatching 
strategy. 

-CECProxyConsumerLock 
lock_type 

Select the lock type (null, thread or recursive) to 
synchronize access to the ProxyPushConsumer state. 
32
Services & Utilities

�������	




  4.3  Event Channel Configuration     
  
-CECProxySupplierLock 
lock_type 

Select the lock type (null, thread or recursive) to 
synchronize access to the ProxyPushSupplier state. 

-CECUseORBId orbid Set the name of the ORB used by the event service. Only 
useful in applications that create multiple ORBs and activate 
the event service in one of them. 

-CECConsumerControl policy Select the consumer control policy (null or reactive) to 
detect and discard broken consumers. 

-CECSupplierControl policy Select the supplier control policy (null or reactive) to detect 
and discard broken suppliers. 

-CECConsumerControlPeriod 
period 

Set the period (in microseconds) used by the reactive 
consumer control policy to poll the state of the consumers. 

-CECSupplierControlPeriod 
period 

Set the period (in microseconds) used by the reactive 
supplier control policy to poll the state of the suppliers. 

-CECConsumerControlTimeout 
timeout 

Set the timeout period (in microseconds) used by the 
reactive consumer control policy to detect a timeout when 
polling the state of the consumers. 

-CECSupplierControlTimeout 
timeout 

Set the timeout period (in microseconds) used by the 
reactive supplier control policy to detect a timeout when 
polling the state of the suppliers. 

-CECReactivePullingPeriod 
period 

Set the period (in microseconds) used by the reactive pulling 
strategy to poll all the PullSuppliers for an event. 

-CECProxyConsumerCollection 
flag[:flags] 

Configure the data structure and strategies used to 
implement collections of ProxyPushConsumers and 
ProxyPullConsumers. The argument is a colon separated 
list of flags, described in Table 10, Proxy Collection Flags.

-CECProxySupplierCollection 
flag[:flags] 

Configure the data structure and strategies used to 
implement collections of ProxyPushSupplier and 
ProxyPullSupplier objects. The argument is a colon 
separated list of flags, described in Table 10, Proxy 
Collection Flags.

Table 9 Event Channel Configuration Options (Continued)

Option Description
33
Services & Utilities�������	




  4.3  Event Channel Configuration     
  
Table 10 Proxy Collection Flags

Flag Description
MT Use regular mutexes and/or condition variables for 

serialization. 
ST Use null mutexes and/or condition variables for serialization. 
LIST Implement the collection using an ordered list, fast for 

iteration (i.e. during event dispatching), but slow for insertion 
and removal (i.e. when clients connect and disconnect from 
the EC). 

RB_TREE Implement the collection using a Red-Black tree, slow for 
iteration (i.e. during event dispatching), but fast for insertion 
and removal (i.e. when clients connect and disconnect from 
the EC). 

IMMEDIATE Threads block until they can execute a change on the data 
structure, the system must use other approaches to guarantee 
that the iterators are not invalidated during event dispatching. 
For example, use a separate dispatching thread. Using this 
option with the reactive values for any of the 
-CECSupplierControl, -CECConsumerControl, or 
-CECDispatching options may cause deadlocks. 

COPY_ON_READ Before initiating an iteration to dispatch events (or similar 
tasks) a copy of the complete collection is performed. This 
solves most of the synchronization problems, but introduces 
a significant source of overhead and priority inversions on 
the critical path. 

COPY_ON_WRITE Similar to the previous one, but the copy is only performed 
when needed. 

DELAYED Threads that need to change the collection can detect if that 
change will invalidate iterators used by other threads. If so, 
the thread posts the change on a queue that is executed once 
the collection is no longer in use. 
34
Services & Utilities

�������	




  4.3  Event Channel Configuration     
  
4.3.4  The Constructor
The  TAO_CEC_EventChannel  c l a s s  i mp le men t s  t h e
CosEventChannelAdmin::EventChannel interface. This class takes one
mandatory and two optional parameters in its constructor:

The factory is an optional parameter to override the default strategy factory used
by the event channel. The event channel will destroy the factory if the
own_factory argument is true. 
The attributes parameter can be used to fine tune some of the algorithms and
strategies used by the event channel. The default values are probably OK for most
applications. Notice that the attributes include the POA used to activate the
ConsumerAdmin, SupplierAdmin, ProxyPushConsumer, ProxyPushSupplier,
ProxyPullConsumer and the ProxyPullSupplier objects. These POAs must have the
IMPLICIT_ACTIVATION and the SYSTEM_ID policies (as the RootPOA does). See
Table 11, Constructor Attributes for a list of allowed attributes.

TAO_CEC_EventChannel (const TAO_CEC_EventChannel_Attributes& 
attributes,                        
                   TAO_CEC_Factory* factory = 0,
                   int own_factory = 0);

Table 11 Constructor Attributes

Attribute Description
consumer_reconnect If the attribute is not zero then the same consumer can call 

connect_push_consumer on its ProxyPushSupplier 
multiple times to change its subscriptions. This is usually 
more efficient that disconnecting and connecting again. 

supplier_reconnect If the attribute is not zero then the same supplier can call 
connect_push_supplier on its ProxyPushConsumer 
multiple times to change its publications. This is usually 
more efficient that disconnecting and connecting again. 

disconnect_callbacks It not zero the event channel will send disconnect callbacks 
when a disconnect method is called on a Proxy. In other 
words, if a consumer calls 
disconnect_push_supplier() on its proxy the event 
channel will invoke disconnect_push_consumer() on 
the consumer. A similar thing is done for suppliers.

busy_hwm When the delayed flag is set on proxy collections, this flag 
controls the maximum number of threads that can 
simultaneously iterate over the collection before blocking. It 
can be used to avoid starvation in delayed updates on the 
collection. 
35
Services & Utilities�������	




  4.3  Event Channel Configuration     
  
max_write_delay When the delayed flag is set on proxy collections, this flag 
controls the maximum number of threads that will initiate 
dispatching after a change has been posted. Any thread after 
that is blocked until the operations are performed. It can be 
used to completely stop starvation of delayed updates on the 
collection. 

supplier_poa The POA used by the event channel to activate 
SupplierAdmin and SupplierProxy objects. 

consumer_poa The POA used by the event channel to activate 
ConsumerAdmin and ConsumerProxy objects. 

Table 11 Constructor Attributes

Attribute Description
36
Services & Utilities

�������	




CHAPTER 

5 Utilities
5.1  Descriptions and Usage

The following utilities can be used to perform tasks which can help users manage
and use TAO more easily.

5.1.1  catior
catior reads the IOR stored in file (a stringified IOR), decodes it and sends the
contents to stdout using:

where 
-f filename reads the file identified by filename (containing the IOR).

Example  
This example shows catior being used to display the IOR which is stored in the
NotificationSingleton.ior file of the current directory.

The output IOR is shown below.

% catior -f filename

% catior -f NotificationSingleton.ior

IOR:000000000000004B49444C3A707269736D742E636F6D2F636F732F436F734E6F7469666
9636174696F6E2F4E6F74696669636174696F6E457874656E73696F6E732F51756575654D61
6E616765723A312E3000000000000200000000000000B4000102000000000E3231332E34382
E39312E3230360004C70000005F4F70656E467573696F6E2E4E6F74696669636174696F6E53
6572766963652F4F70656E467573696F6E2E4E6F74696669636174696F6E536572766963652
F218D4798E0DE1811D7A75ABC571A2C16BF8A426F30DE1811D7A75ABC571A2C16BF00000000
020000000000000008000000004A414300000000010000001C0000000005010001000000010
5010001000101090000000105010001000000010000002C0000000000000001000000010000
001C00000000050100010000000105010001000101090000000105010001

decoding an IOR:

The Byte Order: Big Endian

The Type Id:    
"IDL:prismt.com/cos/CosNotification/NotificationExtensions/Queue
37
 Services & Utilities�������	




  5.1  Descriptions and Usage     
  
Manager:1.0"

Number of Profiles in IOR:      2

Profile number: 1

IIOP Version:   1.2

    Host Name:  213.48.91.206

    Port Number:        1223

    Object Key len:     95

    Object Key as hex:

    4f 70 65 6e 46 75 73 69 6f 6e 2e 4e 6f 74 69 66  69 63 61 74 69 6f 6e 53 
65 72 76 69 63 65 2f 4f    70 65 6e 46 75 73 69 6f 6e 2e 4e 6f 74 69 66 69 63 
61 74 69 6f 6e 53 65 72 76 69 63 65 2f 21 8d    47 98 e0 de 18 11 d7 a7 5a bc 
57 1a 2c 16 bf 8a 42 6f 30 de 18 11 d7 a7 5a bc 57 1a 2c 16 bf

    The Object Key as string:

OpenFusion.NotificationService/OpenFusion.NotificationService/!.G.......Z.W
.,...Bo0.....Z.W.,..

    The component <1> ID is 0 (TAG_ORB_TYPE)

          ORB Type: 1245790976

    The component <2> ID is 1 (TAG_CODE_SETS)

          Component Value len:  28

          Component Value as hex:

          00 00 00 00 05 01 00 01 00 00 00 01 05 01 00 01 00 01 01 09 00 00 
00 01 05 01 00 01

          The Component Value as string:

          ............................

Profile number: 2

    Profile tag = 1 (unknown protocol)

    Profile body len:   44

    Profile body as hex:
38
Services & Utilities

�������	




  5.1  Descriptions and Usage     
  
5.1.2  ior-parser
The ior-parser utility parses IORs generated by most ORBs. It has been tested
with Orbix, VisiBroker and TAO. ior-parser is used as follows:

5.1.3  gperf
gperf is a GNU perfect hash function generator which is used by TAO's IDL
compiler to generate perfect hash functions (which is generally the most efficient
and predictable operation demuxing technique). 
A complete description of gperf and how to use it, along with its GNU Licensing
Terms & Conditions, is provided in gperf.pdf which is located in the
docs/release/pdf directory of the OpenFusion TAO distribution.

    00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 1c 00 00 00 00 05 01 00 01 
00 00 00 01 05 01 00 01 00 01 01 09 00 00 00 01 05 01 00 01

    The Profile body as string:

    ............................................

% catior returned true

% ior-parser <IOR filename>
39
Services & Utilities�������	




  5.1  Descriptions and Usage     
  
40
Services & Utilities

�������	




INDEX





Index

A
Adminstration . . . . . . . . . . . . . . . . . . . . . . . . 14, 26

B
Bootstraping the Naming Service from Clients . 25

C
catior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Collocation Strategies. . . . . . . . . . . . . . . . . . . . . . 5

Compiler Options . . . . . . . . . . . . . . . . . . . . . . . . 6
CosEvent_Service  . . . . . . . . . . . . . . . . . . . . . . . 31

D
Destroying Binding Iterators  . . . . . . . . . . . . . . . 25

E
Environment Variable Descriptions . . . . . . . . . . 4
Environment Variables. . . . . . . . . . . . . . . . . . 4, 24
Event Channel Configuration . . . . . . . . . . . . . . . 32

Event Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Event Service Command-line Options. . . . . . . . 31

G
Generated Files. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 gperf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

I
IFR_Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Implementation Policies . . . . . . . . . . . . . . . . . . . 25
Interface Repository Command Line Options . . 13

Interface Repository Service  . . . . . . . . . . . . . . . 13
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ior-parser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

L
Legal tao_ifr Command Line Options . . . . . . . . 15

N
Name Components . . . . . . . . . . . . . . . . . . . . . . . 19
Naming Service  . . . . . . . . . . . . . . . . . . . . . . . . . 17
Naming_Service Command Line Options . . . . . 21

nsadd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
nsdel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
nslist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
43
Services & Utilities Guide�������	




 Index
O
Operation Demuxing Strategies  . . . . . . . . . . . . . 5 Orphaned Naming Contexts . . . . . . . . . . . . . . . 25

R
Running the Service  . . . . . . . . . . . . . . . 13, 20, 31

T
TAO IDL Compiler . . . . . . . . . . . . . . . . . . . . . . . 3 tao_ifr  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

U
Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

V
Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
44
Services & Utilities Guide

�������	



	OpenFusion® TAO
	Preface
	About the Services & Utilities Guide
	Contacts

	Services & Utilities
	1 TAO IDL Compiler
	1.1 Introduction
	1.1.1 Running

	1.2 Generated Files
	1.3 Environment Variables
	1.4 Operation Demuxing Strategies
	1.5 Collocation Strategies
	1.6 Compiler Options

	2 Interface Repository Service
	2.1 Running the Service
	2.1.1 IFR_Service

	2.2 Administration
	2.2.1 tao_ifr


	3 Naming Service
	3.1 Introduction
	3.1.1 OMG Standard
	3.1.1.1 Naming Contexts
	3.1.1.2 Name Components

	3.1.2 TAO Naming Service and Persistence

	3.2 Running the Service
	3.2.1 Environment Variables
	3.2.2 Persistence Options
	3.2.2.1 The -f Option

	3.2.3 Implementation Policies
	3.2.3.1 Destroying Binding Iterators
	3.2.3.2 Orphaned Naming Contexts

	3.2.4 Bootstrapping the Naming Service from Clients

	3.3 Administration
	3.3.0.1 nslist
	3.3.0.2 nsadd
	3.3.0.3 nsdel

	3.4 Running as a Windows NT Service

	4 Event Service
	4.1 Introduction
	4.2 Running the Service
	4.3 Event Channel Configuration
	4.3.1 Run-time Configuration
	4.3.2 The Configuration File
	4.3.3 Options
	4.3.4 The Constructor


	5 Utilities
	5.1 Descriptions and Usage
	5.1.1 catior
	5.1.2 ior-parser
	5.1.3 gperf



	Index

