Dynamic Scheduling in TAO

Chris Gill

Terminology: Operation Characteristics

Dynamic Scheduling in TAO

Chris Gill

Distributed Object Computing Group Computer Science Department, Washington University, St. Louis

cdgill@cs.wustl.edu http://www.cs.wustl.edu/~cdgill/dynsched_DOVE.ps.gz

- Criticality is an application defined significance of the operation missing its deadline
- *Period* is the time interval between arrivals of dispatch requests for the operation
- *Execution time* is the longest time used by one execution of the operation
- *Importance* is a weaker secondary indication of the operation's significance

Chris Gill

Dynamic Scheduling in TAO

Limitations of Static Scheduling

Reduced Utilization

Cannot Recycle

Unused Time

TIME AXIS ----

DISPATCHES OF OPERATION A DISPATCHES OF OPERATION B

- Assigning priority by period limits achievable utilization
- Time cannot be reassigned if an operation is not called, or does not use its worst case computation time
- Goal: higher utilization
- Hypothesis: with dynamic scheduling techniques we can achieve this goal without undue overhead or instability of the schedule under load

Chris Gill

1

Dynamic Scheduling in TAO

Requirements for Hard Real-Time Dynamic Scheduling

- CRITICAL HIGH UTILIZATION vs NON-CRITICAL $\overline{}$ ISOLATE MISSED DEADLINES NOT SCHEDULED vs DEADLIN TIME AXIS ADAPTATION TO APPLICATION CHARACTERISTICS Е FIRST APPLICATION SECOND APPLICATION
- Achieve higher utilization
 - Schedule more unused time
- Preserve *stability* of the schedule under load
 - Isolate missed deadlines to non-critical operations
- Adapt to application specified characteristics

Dynamic Scheduling in TAO

Generalizing Priority Assignment

- Priority assignment is a *mapping* from operation characteristics into urgency
- Each scheduling strategy provides a distinct mapping
 - Maximum Urgency First (MUF)
 - Minimum Laxity First (MLF)
 Earliest Deadline First
 - (EDF)
 - Rate Monotonic Scheduling (RMS)

Chris Gill

TAO Strategized Scheduling Architecture

- Scheduler performs on-line and off-line activities
- Scheduler provides configuration for QoS enforcement
- 5

Chris Gill

4

Dynamic Scheduling in TAO

Scheduler Effectiveness Demonstration

• Metrics

- Simulation: Missed deadlines, Latency, Latency jitter, CPU utilization Scheduling overhead
- Measured: Latency, Latency jitter
- Can be run on different platforms: NT, Solaris, etc.

Chris Gill

Dynamic Scheduling in TAO

Conclusions

- Hybrid static-dynamic strategies can be implemented without excessive overhead
 - Empirical end-to-end results using MUF in EC_Multiple
 - Empirical results for deadline and laxity based dispatching queues
- Hybrid strategies can preserve the schedulability of the critical set
 - Maximum Urgency First
- Visualization of scheduling behavior is useful
 - Simulations to explore alternative strategies
 - Measurements to benchmark performance

6