
Orbacus
Version 4.3.5

JThreads/C++ Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2016. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2016-09-27

Contents

Preface v

The Orbacus Library v
Audience vi
Document Conventions vi

Chapter 1 Introduction to JThreads/C++ 1
Overview 2

Chapter 2 Hello World 5
Hello World in Java 6
Hello World in C++ 7
Hello World with Runnable 9

Chapter 3 Working With Threads 11
Synchronization 12

Thread Safe Version in Java 14
Thread Safe Version in C++ 16

Block Synchronization 18
Static Monitors 21
The Wait, Notify and NotifyAll Methods 24
The Stop and Suspend Methods 28
The Join and IsAlive Methods 32

Chapter 4 Memory Management 35
Reference Counting 36
Introducing Handles 37
The JTCHandleT Template 39
Rules of Thumb 40

Appendix A Class Reference 41
JTCInitialize 43
JTCAdoptCurrentThread 45
iii

CONTENTS
JTCThread 46
JTCRunnable 54
JTCThreadGroup 55
JTCHandleT 61
JTCMonitor 64
JTCMonitorT 66
JTCRecursiveMutex 68
JTCMutex 70
JTCRWMutex 72
JTCSynchronized 73
JTCSyncT 75
JTCReadLock 76
JTCWriteLock 77
JTCThreadId 78
JTCThreadKey 79
JTCTSS 80
JTCThreadDeath 82
JTCException 83
JTCInterruptedException 85
JTCIllegalThreadStateException 86
JTCIllegalMonitorStateException 87
JTCIllegalArgumentException 88
JTCSystemCallException 89
JTCUnknownThreadException 90
JTCOutOfMemoryError 91
JTCInitializeError 92

JThreads Bibliography 93
iv

Preface
The Orbacus Library
The Orbacus documentation library consists of the following books:

• Orbacus Guide

• FSSL for Orbacus Guide

• JThreads/C++ Guide (this book)

• Orbacus Notify Guide

Orbacus Guide

This manual describes how Orbacus implements the CORBA standard, and
describes how to develop and maintain code that uses the Orbacus ORB. This is
the primary developer’s guide and reference for Orbacus.

FSSL for Orbacus Guide

This manual describes the FSSL plug-in, which enables secure communications
using the Orbacus ORB in both Java and C++.

JThreads/C++ Guide

This manual describes JThreads/C++, which is a high-level thread abstraction
library that gives C++ programmers the look and feel of Java threads.

Orbacus Notify Guide

This manual describes Orbacus Notify, an implementation of the Object
Management Group’s Notification Service specification.
v

PREFACE
Audience
Manuals in the Orbacus library are written for intermediate to advanced level
programmers who are:

• Experienced with Java or C++ programming

• Familiar with the CORBA standard and its specifications

These manuals do not teach the CORBA specification or CORBA programming
in general, which are prerequisite skills. These manuals concentrate on how
Orbacus implements the CORBA standard.

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Keying conventions

This book uses the following keying conventions:

Fixed width Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must supply,
such as arguments to commands or path names for your
particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences dialog.
 vi

PREFACE
No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
vii

PREFACE
Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers
and addresses.

Further Information and Product
Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The Product Updates section of the Micro Focus
SupportLine Web site, where you can download fixes
and documentation updates.

• The Examples and Utilities section of the Micro Focus
SupportLine Web site, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your
browser to go to the Micro Focus home page, then click
Support.

Note:

Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus,
contact us as described on the Micro Focus Web site, http://
www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Also, visit:

• The Micro Focus Community Web site, where you can
browse the Knowledge Base, read articles and blogs,
find demonstration programs and examples, and
discuss this product with other users and Micro Focus
specialists.
 viii

http://www.microfocus.com

PREFACE
• The Micro Focus YouTube channel for videos related to
your product.

Information We Need
However you contact us, please try to include the
information below, if you have it. The more information you
can give, the better Micro Focus SupportLine can help you.
But if you don't know all the answers, or you think some are
irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of
any networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

• Your serial number. You can find this by either logging
into your order via the Electronic Product Distribution
email or via the invoice with the order.

Contact information
Our Web site gives up-to-date details of contact numbers
and addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the Product Updates section of the
Micro Focus SupportLine Web site, where you can download
fixes and documentation updates. To connect, enter http://
www.microfocus.com in your browser to go to the Micro
Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
ix

http://www.microfocus.com
http://www.microfocus.com

PREFACE
download it from our Web site or order it in printed form
from your sales representative. Support from Micro Focus
may be available only to customers who have maintenance
agreements.

You may want to check in particular:

https://supportline.microfocus.com/productdoc.aspx.
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/
infocus/newsletter-subscription.asp
 x

https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

CHAPTER 1

Introduction to
JThreads/C++
This chapter gives an overview of JThreads.

In this chapter This chapter contains the following section:

Overview page 2
1

CHAPTER 1 | Introduction to JThreads/C++
Overview

What is JThreads/C++? JThreads/C++ is the short-form of “Java-like Threads for C++”. JThreads/C++
is a high-level thread abstraction library that gives C++ programmers the look
and feel of Java threads.

Java supports multi-threaded programming using the classes java.lang.Thread
and java.lang.ThreadGroup, the interface java.lang.Runnable, and the
synchronized keyword together with the methods wait, notify and notifyAll
in java.lang.Object.

Let’s have a look how JThreads/C++ translates this to C++:

• The Java classes java.lang.Thread and java.lang.ThreadGroup are

directly translated into the C++ classes JTCThread and JTCThreadGroup.

The only difference is that the JThreads/C++ classes have JTC as a prefix

instead of the Java package java.lang. The Java interface

java.lang.Runnable is implemented as the abstract C++ class

JTCRunnable, which contains the pure virtual method run.

• Support for the synchronized keyword is slightly more difficult, since it is

not possible to add new keywords to C++. JThreads/C++ solves this using

the classes JTCMonitor and JTCSynchronized. Instances of

JTCSynchronized can be used as a replacement for the synchronized

keyword, provided that an instance of JTCMonitor was created for the

object to be synchronized. JTCMonitor also provides the methods wait,

notify and notifyAll.

There are some features of Java’s thread model that are not implemented in
JThreads/C++. These are:

• The security API. This is because some parts of the API simply can’t be

implemented in C++. In general, this issue is not as important as in Java,

since C++ is not used for Internet applications (applets) in the same way as

Java.

• The thread control primitives java.lang.Thread.stop,

java.lang.Thread.suspend, and java.lang.Thread.resume cannot be

implemented with the same semantics as the Java thread model in a

portable fashion. The WIN32 thread API supports primitives for these

operations, but the POSIX thread API does not. In general, it is not a good
2

Overview
idea to use these API primitives as they exist in the Java thread model, for

they can easily lead to deadlock situations.1 These primitives are

deprecated in JDK 1.2 [4], and therefore won’t be supported in upcoming

versions of Java.

About this document This manual is not a substitute for a good thread programming book. This
manual only describes how Java thread constructs translate to JThreads/C++.

There are excellent books available on Java thread programming, such as [2] and
[3]. We highly recommend use of these books while learning JThreads/C++
programming. With the help of this manual it is easy to translate the examples
provided there to JThreads/C++ programs.

1. In fact, the WIN32 programmers guide recommends against using
TerminateThread (the API call to stop a thread’s execution) since it can easily lead
to application misbehavior.
3

CHAPTER 1 | Introduction to JThreads/C++
4

CHAPTER 2

Hello World
We begin with the first program most programmers start with: a
program that displays the text Hello World and then exits.
However, our example is different from the typical Hello World
program in that it is multi-threaded. That is, our version starts a
new thread whose sole purpose is to print Hello World on the
display.

In this chapter This chapter contains the following sections:

Hello World in Java page 6

 Hello World in C++ page 7

 Hello World with Runnable page 9
5

CHAPTER 2 | Hello World
Hello World in Java
In Java, this program can be written as:

Line 1 A class HelloWorld is defined, extending the class java.lang.Thread.

Lines 3-6 A run method is defined, displaying “Hello World” on standard
output.

Lines 8-12 A static main method is defined which creates an object of type
HelloWorld. The start method is called which starts a new thread of execution.
This thread then invokes the run method of the HelloWorld object.

 1 public class HelloWorld extends Thread
 2 {
 3 public void run()
 4 {
 5 System.out.println("Hello World");
 6 }
 7
 8 static public void main(String args[])
 9 {
10 Thread t = new HelloWorld();
11 t.start();
12 }
13 }
6

Hello World in C++
Hello World in C++
Let’s convert the Java program to a JThreads/C++ program:

Line 1 All JThreads/C++ programs must include the header file JTC/JTC.h,
which contains (among other useful things) all of the necessary JThreads/C++
class definitions.

Line 3 Just like in the Java example, a class HelloWorld is defined. This class
is derived from JTCThread instead of the Java equivalent java.lang.Thread.

Lines 6-9 A run method is defined which prints “Hello World” on standard
output. System.out is replaced by the familiar C++ iostreams object cout.

 1 #include <JTC/JTC.h>
 2
 3 class HelloWorld : public JTCThread
 4 {
 5 public:
 6 virtual void run()
 7 {
 8 cout << "Hello World" << endl;
 9 }
10 };
11
12 int
13 main(int argc, char** argv)
14 {
15 JTCInitialize initialize;
16 JTCThread* t = new HelloWorld;
17 t -> start();
18 return 0;
19 }
7

CHAPTER 2 | Hello World
Lines 12-19 A main method is defined, not as a static class member as in the
Java example, but as the standard C++ global main function. main creates an
object of type HelloWorld and calls the start method which starts a new thread
of execution.

The only other change is that the JThreads/C++ thread library must be initialized
in main. This is done by creating an instance of the class JTCInitialize.

At first sight this application seems to indicate a problem. Can the application
terminate due to return from main before the thread gets a chance to run? The
answer is No, because the destructor for JTCInitialize doesn’t return until all
of the threads have terminated. The JTCInitialize destructor allows
JThreads/C++ applications to have the same behavior as multi-threaded Java
applications.

Note: You might think that the Hello World program has a memory leak
because the thread object is created with new but never deleted with delete,
but this is not the case. See “Reference Counting” on page 36 for more
information.
8

Hello World with Runnable
Hello World with Runnable
Java provides the Runnable interface, so that an application developer may use
threads without using inheritance. The JThreads/C++ equivalent of the
Runnable interface is the class JTCRunnable.

The Hello World example using Runnable in Java looks like this:

Line 1 A class HelloWorld is declared that implements the interface Runnable.

Line 10 A new thread is created with a Runnable object as the parameter, which
in this case is an instance of the HelloWorld class.

Line 11 The thread is started. Since the Thread object was created with a
Runnable object parameter, the run method of this Runnable is invoked.

 1 public class HelloWorld implements Runnable
 2 {
 3 public void run()
 4 {
 5 System.out.println("Hello World");
 6 }
 7
 8 static public void main(String[] args)
 9 {
10 Thread t = new Thread(new HelloWorld());
11 t.start();
12 }
13 }
9

CHAPTER 2 | Hello World
The Java version can be translated directly into a JThreads/C++ application as
follows:

Line 3 As in the Java example, the class HelloWorld inherits from the
JThreads/C++ class JTCRunnable.

Line 16 Create a new thread, using a new instance of the HelloWorld class as
the required JTCRunnable parameter.

Line 17]Start the new thread, which invokes the run method.

 1 #include <JTC/JTC.h>
 2
 3 class HelloWorld : public JTCRunnable
 4 {
 5 public:
 6 virtual void run()
 7 {
 8 cout << "Hello World" << endl;
 9 }
10 };
11
12 int
13 main(int argc, char** argv)
14 {
15 JTCInitialize initialize;
16 JTCThread* t = new JTCThread(new HelloWorld);
17 t -> start();
18 return 0;
19 }
10

CHAPTER 3

Working With
Threads
This chapter describes how JThreads/C++ implements Java
Monitors used in multithreading.

In this chapter This chapter contains the following sections:

Synchronization page 12

Block Synchronization page 18

Static Monitors page 21

The Wait, Notify and NotifyAll Methods page 24

The Stop and Suspend Methods page 28

The Join and IsAlive Methods page 32
11

CHAPTER 3 | Working With Threads
Synchronization

Example Let’s write a plain C++ class, which can be used for the buffering of characters.
This class defines the methods addChar and writeBuffer. addChar adds a
character to an internal character buffer and writeBuffer prints the buffer
contents on standard output:

 1 class CharacterBuffer
 2 {
 3 char* data_;
 4 int max_;
 5 int len_;
 6
 7 public:
 8
 9 CharacterBuffer()
10 : data_(0), len_(0), max_(0)
11 {
12 }
13
14 ~CharacterBuffer()
15 {
16 delete[] data_;
17 }
18
19 void addChar(char c)
20 {
21 if(len_ == max_)
22 {
23 char* newData = new char[len_ + 128];
24 memcpy(newData, data_, len_);
25 delete[] data_;
26 data_ = newData;
27 max_ += 128;
28 }
29 data_[len_++] = c;
30 }
31 void writeBuffer()
32 {
33 cout.write(data_, len_) << flush;
34 len_ = 0;
35 }
36 };
12

Synchronization
Lines 3-5 Several data members are defined:

• data_ is a character pointer to the buffered characters.

• max_ is the maximum length of the buffer pointed to by data_.

• len_ is the current length of the buffer (the number of valid characters in

the buffer pointed to by data_). len_ must be less than or equal to max_.

Line 10 The constructor initializes the class data members data_, max_ and
len_.

Line 14 The destructor deletes data_, freeing the buffer memory.

Lines 21-28 If the buffer is full (that is, if len_ is equal to max_), allocate more
memory. This is done by allocating a new, larger character buffer, copying the
existing buffer contents into the new buffer, deleting the old buffer and assigning
the pointer to the new buffer to data_. Finally max_ must be updated to reflect
the new buffer size.

Line 29 A character is added to the buffer and len_ is incremented by one.

Lines 32-36 The writeBuffer method prints len_ characters from the buffer
on standard output and then resets len_ to zero.

Milt-threading environment The above class works fine as long as there is only a single thread of execution,
but it will not work properly in a multi-threaded environment.

For example, if two threads execute addChar simultaneously, things can easily
go wrong. Let's assume that the first thread runs until after the delete[] data_
statement has been executed. At this point the operating system switches from
the execution of the first thread to the second. Since max_ has not yet been
incremented by the first thread, the second thread also enters the conditional and
accesses the data_ variable, which now points to memory already deleted by the
first thread. This will most likely crash the program.

Monitors To solve the above problem, Java uses a concept known as monitors. This is
described in the following sections.
13

CHAPTER 3 | Working With Threads
Thread Safe Version in Java

Thread-safe Java example A thread-safe Java version of the code in the previous section can be written as
follows:

Lines 3-4 Two data members are defined:

• data_ is a character array, which holds the buffered characters.

• len_ is the current length of the buffer (the number of valid characters in

the buffer pointed to by data_).

In contrast to the C++ version of this program, it’s not necessary to have a max_
data member, since data_.length can be used instead.

Lines 6-14 If no buffer has been created yet or if the buffer is full (that is, if
len_ is equal to data_.length) a new, larger buffer is allocated. This is similar
to the C++ version.

Line 15 A character is added to the buffer and len_ is incremented by one.

 1 public class CharacterBuffer
 2 {
 3 private char[] data_ = null;
 4 private int len_ = 0;
 5
 6 synchronized public void addChar(char c)
 7 {
 8 if(data_ == null || len_ == data_.length)
 9 {
10 byte[] newData = new byte[len_+128];
11 if (data_ != null)
12 System.arraycopy(data_, 0, newData, 0, len_);
13 data_ = newData;
14 }
15 data_[len_++] = c;
16 }
17
18 synchronized public void writeBuffer()
19 {
20 System.out.write(data_, 0, len_);
21 System.out.flush();
22 len_ = 0;
23 }
14

Synchronization
Lines 18-22 Like in the C++ example, the writeBuffer method prints len_
characters from the buffer on standard output and then resets len_ to zero.

What is different? The only conceptual change to make the program thread-safe was to add the
synchronized keyword to the definitions of addChar and writeBuffer. In Java
every object implicitly has an associated monitor. On entry to a synchronized
method, the monitor belonging to the object is locked, preventing other threads
from entering any other synchronized method of the object. On exit, the monitor
is unlocked, thus allowing access by other threads. This makes sure that the
scenario described above won’t ever arise, since it is impossible for two threads
to enter the addChar method simultaneously.
15

CHAPTER 3 | Working With Threads
Thread Safe Version in C++

Thread-safe C++ example JThreads/C++ supports monitors with two classes: JTCMonitor and
JTCSynchronized. The JTCSynchronized class uses the initialization is
acquisition concept to acquire the monitor’s lock. The associated monitor’s lock
is acquired on construction and released on destruction.

Here is the thread-safe C++ version of the example:

 1 class CharacterBuffer : public JTCMonitor
 2 {
 3 char* data_;
 4 int len_;
 5 int max_;
 6
 7 public:
 8
 9 CharacterBuffer()
10 : data_(0), len_(0), max_(0)
11 {
12 }
13
14 ~CharacterBuffer()
15 {
16 delete[] data_;
17 }
18
19 void addChar(char c)
20 {
21 JTCSynchronized synchronized(*this);
22 if (len_ >= max_)
23 {
24 char* newData = new char[len_+128];
25 memcpy(newData, data_, len_);
26 delete[] data_;
27 data_ = newData;
28 max_ += 128;
29 }
30 data_[len_++] = c;
31 }
32
16

Synchronization
Line 1 The class CharacterBuffer is now derived from JTCMonitor. In Java
this is not necessary, since all Java objects inherit implicitly from
java.lang.Object, which provides the monitor functionality.

Lines 21, 35 The addChar and writeBuffer methods are now thread safe.
Instead of declaring the operations as synchronized (as is done in Java), the
functions first create an instance of JTCSynchronized with the
CharacterBuffer’s monitor object as argument.

So all that has to be done to translate a thread-safe (that is, synchronized) Java
class to a thread-safe JThreads/C++ class is to:

• Derive the class from JTCMonitor.

• Replace synchronized methods by methods which contain

JTCSynchronized synchronized(*this) as the first statement in the

function body.

That’s quite easy, isn’t it?

33 void writeBuffer()
34 {
35 JTCSynchronized synchronized(*this);
36 cout.write(data_, len_) << flush;
37 len_ = 0;
38 }
39 };
17

CHAPTER 3 | Working With Threads
Block Synchronization

Code blocks Java not only supports synchronized methods, but also synchronized code
blocks.

For example, let’s assume that we want to write a thread class whose run
method puts a string into a CharacterBuffer object using addChar. In Java, this
could be written as follows.

Line 1 A Writer class is defined, which inherits from Thread.

Lines 6-10 The constructor initializes the buffer_ and str_ data members.

Lines 12-16 The thread’s run method puts the string str_ into the buffer,
character by character, using the buffer’s addChar method.

This class does not work as we want it to, however. Suppose we start two new
threads, one to add “123” to the buffer and another one to add “abc”:

 1 class Writer extends Thread
 2 {
 3 private CharacterBuffer buffer_;
 4 private String str_;
 5
 6 public Writer(CharacterBuffer buffer, String str)
 7 {
 8 buffer_ = buffer;
 9 str_ = str;
10 }
11
12 public void run()
13 {
14 for(int i = 0 ; i < str.length() ; i++)
15 buffer_.addChar(str_.characterAt(i));
16 }
17 };

1 CharacterBuffer buffer = new CharacterBuffer();
2 JTCHandleT<Writer> w1 = new Writer(buffer, "123");
3 JTCHandleT<Writer> w2 = new Writer(buffer, "abc");
4 w1 -> start();
5 w2 -> start();
18

Block Synchronization
Line 1 A CharacterBuffer is created.

Lines 2, 3 Two Writer threads are created, one with “123” as argument, and
the other with “abc”. Both threads use the same CharacterBuffer object. The
JTCHandleT template is explained in “The JTCHandleT Template” on page 39.
It would be wrong to use just a plain C++ pointer Writer* here, but for now let’s
just assume that JTCHandleT<Writer> and Writer* are the same.

Lines 4, 5 The two Writer threads are started.

Now consider the following scenario: w1 runs first, but after writing “12” into
the buffer the operating system switches to the execution of w2, which writes
“abc”. After that w1 continues to write “3”. The result is that the buffer now
contains the character sequence “12abc3” instead of “123abc”.

We can easily avoid this by rewriting the run method to lock the monitor of the
CharacterBuffer object before starting to write into the buffer:

Lines 3-7 The for loop is now placed in a code block synchronized with the
CharacterBuffer’s monitor lock. This will make sure that the characters are put
into the buffer in the proper sequence.

1 public void run()
2 {
3 synchronized(buffer_)
4 {
5 for(int i = 0 ; i < str.length() ; i++)
6 buffer_.addChar(str_.characterAt(i));
7 }
8 }
19

CHAPTER 3 | Working With Threads
This is called a synchronized code block, in contrast to a synchronized method.
The example translates to JThreads/C++ as follows:

Lines 16-21 Instead of using *this, *buffer_ is used for synchronization.

 1 class Writer : public JTCThread
 2 {
 3 CharacterBuffer* buffer_;
 4 const char* str_;
 5
 6 public:
 7
 8 Writer(CharacterBuffer* buffer, const char* str)
 9 {
10 buffer_ = buffer;
11 str_ = str;
12 }
13
14 virtual void run()
15 {
16 {
17 JTCSynchronized synchronized(*buffer_);
18 int len = strlen(str_);
19 for(int i = 0 ; i < len ; i++)
20 buffer_ -> addChar(str_[i]);
21 }
22 }
23 };
20

Static Monitors
Static Monitors

Synchronized static monitors In Java it is possible to have static methods which are synchronized. Here is an
example:

This class allows global access to a protected counter. This class must be
synchronized because access to a long value in Java is not atomic.

It is not possible to inherit from JTCMonitor if static member functions need to
be synchronized, since the JTCSynchronized class requires *this as the
argument to its constructor (which is not available within static member
functions).

To solve this problem, a static data member of type JTCMonitor is used to
synchronize static member functions.

 1 public class StaticCounter
 2 {
 3 static long counter_;
 4
 5 public static synchronized void increment()
 6 {
 7 ++counter_;
 8 }
 9
10 public static synchronized void decrement()
11 {
12 --counter_;
13 }
14
15 public static synchronized long value()
16 {
17 return counter_;
18 }
19 };
21

CHAPTER 3 | Working With Threads
This is the Java example converted to C++.

Line 4 A static JTCMonitor instance variable is declared. This allows the class
to be synchronized.

Lines 10, 16, 22 The methods are synchronized. Instead of using *this, the
static variable mon_ is used.

Note that there are certain restrictions on the use of static monitors. It is not
correct to use1 a static monitor before an instance of JTCInitialize has been
created. Any use before initialization of JThreads/C++ will result in undefined
behavior. Additionally, the monitor class must not be used after the final
instance of the JTCInitialize object was destroyed.

 1 class StaticCounter
 2 {
 3 static long counter_;
 4 static JTCMonitor mon_;
 5
 6 public:
 7
 8 static void increment()
 9 {
10 JTCSynchronized sync(mon_);
11 ++counter_;
12 }
13
14 static void decrement()
15 {
16 JTCSynchronized sync(mon_);
17 --counter_;
18 }
19
20 static long value()
21 {
22 JTCSynchronized sync(mon_);
23 return counter_;
24 }
25 };
26
27 long StaticCounter::counter_ = 0;
28 JTCMonitor StaticCounter::mon_;

1. Construction and destruction of static monitors (which is out of the control of the
application programmer) is not using of monitors in this context.
22

Static Monitors
Note that the only JThreads/C++ classes that can be used as a static member are
the JTCMutex, JTCRecursiveMutex and JTCMonitor classes. All other classes
must not be used as static members.
23

CHAPTER 3 | Working With Threads
The Wait, Notify and NotifyAll Methods

Inter-thread communication Like in Java, JThreads/C++ offers the wait, notify and notifyAll methods for
inter-thread communication. As an example, let’s return to our previous example
involving the CharacterBuffer class. This time, we want the writeBuffer
operation to behave in a slightly different way: writeBuffer should only print
the buffer’s contents if there are at least 80 characters in the buffer.

Using Wait/Notify with Java Let’s start with rewriting the writeBuffer method in Java, using wait:

Line 1 The writeBuffer method must be declared synchronized. This makes
sure that the monitor lock is acquired on entry to the method.

Line 3 The while loop is executed until there are at least 80 characters
available.

Line 7 wait is called. This releases the monitor lock (which was acquired on
entry to the writeBuffer method) and waits for another thread to call either
notify or notifyAll on the monitor.

Lines 5, 9 It is possible that wait throws an InterruptedException. Therefore
this exception must be caught.

 1 synchronized void writeBuffer()
 2 {
 3 while(len_ < 80)
 4 {
 5 try
 6 {
 7 wait()
 8 }
 9 catch(InterruptedException ex)
10 {
11 }
12 }
13 System.out.write(data_, 0, len_);
14 System.out.flush();
15 len_ = 0;
15 }
24

The Wait, Notify and NotifyAll Methods
Now let’s change the addChar method so that it calls notify whenever there are
at least 80 characters in the buffer:

Line 1 Again, addChar is declared synchronized so that the monitor lock is
acquired. This is a requirement for using wait, notify or notifyAll.

LInes 11-12 If, after the addition of a new character, the number of characters
in the buffer is equal to or larger than 80, notify is called. This wakes exactly
one thread which is waiting using wait. Waking in this context means that the
wait call of the waiting thread returns and implicitly locks the monitor again,
making sure that only one thread at a time can run the synchronized method.

The difference between notify and notifyAll is that notify only wakes one
thread, while notifyAll wakes all waiting threads. If more than one thread is
waiting, and notify is used, a random thread is woken. If more than one thread
is waiting and notifyAll is used, then all threads are woken, but the order in
which the waiting threads return from their call to wait is random. Remember
that only one thread at a time can return from wait, since returning from wait
requires the monitor’s lock to be acquired. This is not possible if another thread
has previously returned from wait and has not yet released the monitors lock by
exiting the synchronized method.

For this example, notify is used as we know that there is going to be only one
waiting thread. However, it doesn’t matter whether notify or notifyAll is used
because if more than one thread is waiting, the number of characters is reset to
zero once a thread has returned from wait. When the other threads subsequently
return from wait, they will wait again because of the while loop.

 1 synchronized public void addChar(char c)
 2 {
 3 if(data_ == null || len_ >= data_.length)
 4 {
 5 byte[] newData = new byte[len_+128];
 6 if (data_ != null)
 7 System.arraycopy(data_, 0, newData, 0, len_);
 8 data_ = newData;
 9 }
10 data_[len_++] = c;
11 if(len_ >= 80)
12 notify();
13 }
25

CHAPTER 3 | Working With Threads
Using Wait/Notify with C++ Let’s see how this example translates to JThreads/C++:

Line 3 As in the Java example the writeBuffer method must be synchronized.
Calling wait, notify or notifyAll without having the monitor locked results
in the exception JTCIllegalMonitorStateException being thrown.

Line 4 Like in the Java example, the while loop is executed until there are at
least 80 characters available.

Line 8 wait is called just in the same way as in the Java example. This releases
the monitor lock (which was acquired with the synchronization through the
JTCSynchronize class) and waits for notification.

 1 void writeBuffer()
 2 {
 3 JTCSynchronized synchronized(*this);
 4 while(len_ < 80)
 5 {
 6 try
 7 {
 8 wait();
 9 }
10 catch(const JTCInterruptedException&)
11 {
12 }
13 }
14 cout.write(data_, len_) << flush;
15 len_ = 0;
16 }
26

The Wait, Notify and NotifyAll Methods
Lines 5-9 The equivalent to java.lang.InterruptedException is the
JThreads/C++ exception JTCInterruptedException.

Line 3 addChar is made synchronized.

Lines 12-13 notify is called if 80 characters are available, waking a waiting
thread.

As you can see, the semantics of wait, notify and notifyAll in JThreads/C++
are exactly the same as in Java.

 1 void addChar(char c)
 2 {
 3 JTCSynchronized synchronized(*this);
 4 if (len_ >= max_)
 5 {
 6 char* newData = new char[len_+128];
 7 memcpy(newData, data_, len_);
 8 delete[] data_;
 9 data_ = newData;
10 max_ += 128;
11 }
12 data_[len_++] = c;
13 if(len_ >= 80)
14 notify();
15 }
27

CHAPTER 3 | Working With Threads
The Stop and Suspend Methods

Terminating and suspending
execution of a thread

We have already introduced the start method of the JTCThread class. The
opposite of start is stop, which terminates the execution of a thread. Besides
stop, there is also a suspend method which suspends the execution of a thread
until resume is called.

Control points stop and suspend do not terminate or suspend a thread immediately, because
this is not supported by every underlying low-level thread API (for example,
POSIX threads). Instead, the JThreads/C++ library uses the concept of control
points to implement the suspend and stop methods. This is similar to the
cancellation points concept used in the POSIX threads library. If suspend or
stop is called from outside the thread that is to be suspended or stopped, the
thread is marked as control-pending. When this thread calls a method which is a
control point the thread is stopped or suspended, respectively.

Once a thread has been suspended, execution for that thread is halted until it is
resumed. If a thread has been stopped, the exception JTCThreadDeath is raised.
If this exception is caught by user code, it must be re-thrown to ensure the proper
termination of the thread.

The control points in the JThreads/C++ library are:

• JTCThread::suspend()

• JTCThread::join()

• JTCThread::sleep()

• JTCThread::yield()

• JTCSynchronized::JTCSyncronized()

• JTCSynchronized::~JTCSyncronized()

• JTCMonitor::wait()
28

The Stop and Suspend Methods
Implementing a thread
termination method

The Java versions of stop, resume and suspend are deprecated [4]. The reason
is that under very rare circumstances, these methods can lead to a deadlock of
the Java Virtual Machine.

The JThreads/C++ implementation of stop, resume and suspend is completely
portable and does not suffer from the same shortcomings as the Java counterpart.
However, in order to keep your source code compatible with Java, we
recommend that you provide your own termination method for your thread
classes. As an example, let’s visit our CharacterBuffer class once more. We
now want to have a separate thread, which waits for 80 characters to become
available. It then prints these 80 characters on standard output, resets the buffer’s
contents and starts over again. The thread should only stop if a terminate
method is called on the CharacterBuffer class. We can write this class as
follows:

 1 class CharacterBuffer : public JTCMonitor, public JTCThread
 2 {
 3 char* data_;
 4 int max_;
 5 int len_;
 6 bool done_;
 7
 8 public:
 9
10 CharacterBuffer()
11 : data_(0), len_(0), max_(0), done_(false)
12 {
13 }
14
15 ~CharacterBuffer()
16 {
17 delete[] data_;
18 }
19
29

CHAPTER 3 | Working With Threads
20 void addChar(char c)
21 {
22 JTCSynchronized synchronized(*this);
23 if (len_ >= max_)
24 {
25 char* newData = new char[len_+128];
26 memcpy(newData, data_, len_);
27 delete[] data_;
28 data_ = newData;
29 max_ += 128;
30 }
31 data_[len_++] = c;
32 if(len_ >= 80)
33 notify();
34 }
35
36 virtual void run()
37 {
38 JTCSynchronized synchronized(*this);
39 while(true)
40 {
41 while(!done_ && len_ < 80)
42 {
43 try
44 {
45 wait();
46 }
47 catch(const JTCInterruptedException&)
48 {
49 }
50 }
51 if(done_)
52 break;
53 cout.write(data_ , len_) << flush;
54 len_ = 0;
55 }
56 }
57
58 void terminate()
59 {
60 JTCSynchronized synchronized(*this);
61 done_ = true;
62 notify();
63 }
64 };
30

The Stop and Suspend Methods
Line 1 The CharacterBuffer class is now also derived from JTCThread in
order to provide the separate thread for printing the buffer’s contents.

Lines 6, 11 We added a done_ flag, initially set to false in the constructor.

Lines 20-34 Nothing has changed in the addChar method. The implementation
is the same as in section [TBD].

Lines 36-56 The writeBuffer method is obsolete. We now have a run method
instead, which prints the buffer’s contents in an endless loop.

Lines 41-50 This is similar to the implementation shown in section [TBD].
However, the while loop now not only checks whether 80 characters are
available, but also whether the done_ flag is set to true.

Lines 50-51 If the inner while loop was terminated because done_ was set to
true, break is called. This causes the thread to exit the outer while loop, to
return from the run method and to terminate.

Lines 53-54 If the inner while loop was terminated for any other reason, there
are 80 characters available now, which are printed on standard output.

Lines 58-63 The terminate method serves as a replacement for stop. It first
acquires the monitor’s lock with an instance of JTCSynchronize, then sets the
done_ flag to true and notifies the waiting thread.
31

CHAPTER 3 | Working With Threads
The Join and IsAlive Methods

Waiting for threads to terminate In some applications it is necessary to explicitly wait for threads to terminate.
For instance, if a set of threads is performing a complex parallel calculation, the
application may have to wait for the calculation to be completed before
continuing.

As an example, let’s assume that we want the main function of our Hello World
program from Chapter 2 to wait for the HelloWorld thread to terminate. One
way this can be done is as follows:

Line 5 It is absolutely necessary to use JTCThreadHandle instead of
JTCThread* here. See “Introducing Handles” on page 37 for more information.
For now, let’s just think of a JTCThreadHandle as if it would be a typedef for
JTCThread*.

Lines 7, 8 The isAlive method is used to wait for the thread to terminate.
isAlive returns true if the thread is alive (that is, if it was started and not yet
terminated), or false otherwise.

 1 int
 2 main(int argc, char** argv)
 3 {
 4 JTCInitialize initialize;
 5 JTCThreadHandle t = new HelloWorld;
 6 t -> start();
 7 while(t -> isAlive())
 8 ;
 9 return 0;
10 }
32

The Join and IsAlive Methods
The code above has the obvious problem of busy-looping, which should be
avoided at all costs. Fortunately there is alternative approach: join can be used
for this purpose. This method waits for the thread to terminate and then returns.

Line 7 The join method is used to wait for the thread to die.

However, this example has a bug. The join method can throw the exception
JTCInterruptedException. Therefore this example should be re-written as
follows:

Lines 9-15 join is called on the thread, which should wait until the thread has
terminated. However, if JTCInterruptedException is thrown we ignore it.

 1 int
 2 main(int argc, char** argv)
 3 {
 4 JTCInitialize initialize;
 5 JTCThreadHandle t = new HelloWorld;
 6 t -> start();
 7 t -> join();
 8 return 0;
 9 }

 1 int
 2 main(int argc, char** argv)
 3 {
 4 JTCInitialize initialize;
 5 JTCThreadHandle t = new HelloWorld;
 6 t -> start();
 7 do
 8 {
 9 try
10 {
11 t -> join();
12 }
13 catch(const JTCInterruptedException&)
14 {
15 }
16 }
17 while(t -> isAlive());
18 return 0;
19 }
33

CHAPTER 3 | Working With Threads
Line 17 This makes sure that the loop is only terminated if no
JTCInterruptedException was thrown, that is, if the thread is not alive
anymore.
34

CHAPTER 4

Memory
Management
This chapter discusses the memory management features
JThreads/C++ such as reference counting and handle classes.

In this chapter This chapter contains the following sections:

Reference Counting page 36

Introducing Handles page 37

The JTCHandleT Template page 39

Rules of Thumb page 40
35

CHAPTER 4 | Memory Management
Reference Counting

Avoiding memory leaks You may have thought that the Hello World examples from Chapter 2 all have
memory leaks, since the thread objects are created with new but never deleted
with delete. However, you would be wrong. Why? The magic comes in the
form of reference counting.

Every JTCThread object (and also JTCThreadGroup and JTCRunnable objects)
has a reference counter. When a new thread object is created, this counter is set
to 1. When the thread terminates (that is, the run method returns), the counter is
decremented by 1. Whenever the counter’s value drops to 0, the thread object is
deleted with delete.

Since in our Hello World example the reference count is never incremented, the
reference count drops to 0 as soon as run returns, meaning that the thread object
is deleted upon thread termination - so there is no memory leak.

One drawback of using reference counting is that it is not possible to allocate
reference counted objects on the stack. It is only possible to allocate them with
new (on the heap), since they will be deleted with delete as soon as the
reference count becomes 0.
36

Introducing Handles
Introducing Handles

Smart pointers You might think that reference counting is pretty complicated, because you now
have to remember when to increment or to decrement the counter of a reference
counted object. However, this is not the case. JThreads/C++ provides handle
classes (sometimes also called smart pointers) that take care of incrementing and
decrementing the reference counter for you.

Let’s go back to the example from “The Join and IsAlive Methods” on page 32.
There we told you that it is absolutely necessary to use JTCThreadHandle
instead of JTCThread*. Now we will reveal the secret behind it.

Consider how we would have written the example without JTCThreadHandle:

This example is wrong and the program will most certainly crash. When the
thread terminates, its reference count is decremented from 1 to 0 and thus the
thread object is deleted with delete. However, we are still trying to join with
the thread and check whether it’s still alive using isAlive even though the
thread object has already been deleted.

// Wrong example!
int
main(int argc, char** argv)
{
 JTCInitialize initialize;
 // Don’t do this! Use JTCThreadHandle instead of JTCThread*
 JTCThread* t = new HelloWorld;
 t -> start();
 do
 {
 try
 {
 t -> join();
 }
 catch(const JTCInterruptedException&)
 {
 }
 }
 while(t -> isAlive());
 return 0;
}

37

CHAPTER 4 | Memory Management
So what we would have to do is increase the reference count by 1 after the new
and to decrement it by 1 after the while loop. This would make sure that the
reference count drops to 0 after the join and isAlive methods were called.

This is exactly what handles are doing for you. Whenever you assign a thread
object to a handle, it increases the reference count of the thread object by 1. The
same is true if you assign a handle to another handle. Whenever a handle is
destroyed, the destructor of the handle decrements the reference count of the
thread object it points to by 1.

For the example above, this means that if you replace JTCThread* by
JTCThreadHandle, the reference count of the thread object will be 2 instead of 1
after the new, because the handle increased the counter by 1. After the thread has
terminated, the counter is still 1, and thus the thread object is not deleted, so that
it is safe to use operations like isAlive or join on the thread object. When the
handle is destroyed at the end of the main function, the handle’s destructor
decrements the thread object’s counter by 1, so that the thread object is then also
deleted.
38

The JTCHandleT Template
The JTCHandleT Template

Handle classes JThreads/C++ provides the following handle classes:

• JTCThreadHandle as a replacement for JTCThread*.

• JTCRunnableHandle as a replacement for JTCRunnable*.

• JTCThreadGroupHandle as a replacement for JTCThreadGroup*.

These classes are all typedefs for a more general handle type written as a C++
template:

In case you want to access methods from classes derived from JTCThread (or
from JTCRunnable) you must define your own handle type. As an example, let’s
go back to “Implementing a thread termination method” on page 29, in which
we defined a terminate method. In case we actually want to call this method,
we cannot use JTCThreadHandle as shown below:

Just as you cannot use JTCThread* to access methods from classes derived from
JTCThread, you cannot use JTCThreadHandle for this either. You must use the
handle class for CharacterBuffer*. This can be done by using the JTCHandleT
template:

typedef JTCHandleT<JTCThread> JTCThreadHandle;
typedef JTCHandleT<JTCRunnable> JTCRunnableHandle;
typedef JTCHandleT<JTCThreadGroup> JTCThreadGroupHandle;

JTCThreadHandle t = new CharacterBuffer;
... // Do something with the CharacterBuffer
t -> terminate(); // This does not work, compiler will complain

typedef JTCHandleT<CharacterBuffer> CharacterBufferHandle;
CharacterBufferHandle t = new CharacterBuffer;
... // Do something with the CharacterBuffer
t -> terminate(); // This works
39

CHAPTER 4 | Memory Management
Rules of Thumb

Rules Keep the following rules in mind when using JThreads/C++:

• Always use handle types instead of plain C++ pointers. The only exception

can be made if it is absolutely certain that after start is called on the

thread object the C++ pointer is not used anymore.

• Never allocate thread objects, runnable objects or thread group objects on

the stack. Always use new.

• Never attempt to delete thread objects, runnable objects or thread group

objects with delete. They will be deleted automatically.

• Define your own handle types by using the JTCHandleT template whenever

you must access methods of classes derived from JTCThread,

JTCThreadGroup or JTCRunnable.

As long as you follow these basic rules, memory management in JThreads/C++
is virtually automatic.

The nice thing about reference counting and handle classes is that it makes
JThreads/C++ even more Java-like. Reference counting emulates the Java
garbage collector, and handles emulate Java references.
40

APPENDIX A

Class Reference
This chapter provides a reference to the classes in the
JThreads/C++ library.

In this appendix This appendix contains the following sections:

JTCInitialize page 43

JTCAdoptCurrentThread page 45

JTCThread page 46

JTCRunnable page 54

JTCThreadGroup page 55

JTCHandleT page 61

JTCMonitor page 64

JTCMonitorT page 66

JTCRecursiveMutex page 68

JTCMutex page 70

JTCRWMutex page 72

JTCSynchronized page 73

JTCSyncT page 75

JTCReadLock page 76
41

APPENDIX A | Class Reference
JTCWriteLock page 77

JTCThreadId page 78

JTCThreadKey page 79

JTCTSS page 80

JTCThreadDeath page 82

JTCException page 83

JTCInterruptedException page 85

JTCIllegalThreadStateException page 86

JTCIllegalMonitorStateException page 87

JTCIllegalArgumentException page 88

JTCSystemCallException page 89

JTCUnknownThreadException page 90

JTCOutOfMemoryError page 91

JTCInitializeError page 92
42

JTCInitialize
JTCInitialize

Overview An instance of this class must be instantiated before JThreads/C++ is used. If no
instance of this class is created, the JThreads/C++ library will not work properly.

JTCInitialize can be instantiated multiple times. However, only the first
instantiation has any effect. When the last JTCInitialize instance is destroyed,
the destructor will wait for all running threads to terminate.

JTCInitialize interprets arguments starting with -JTC. All of these arguments,
passed through the argc and argv parameters, are automatically removed from
the argument list.

JTCOptions The following JThreads/C++ options can be used:

-JTCversion

Shows the JThreads/C++ version number.

-JTCss stack-size

This option sets the thread stack size to stack-size kilobytes.

Constructors JTCInitialize

JTCInitialize()

Initializes the JThreads/C++ library.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCInitialize

JTCInitialize(int& argc, char** argv)

Initializes the JThreads/C++ library and interprets arguments starting with

-JTC.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCInitializeError - Indicates a that an invalid option or option

argument was specified.
43

APPENDIX A | Class Reference
Member functions waitTermination

void waitTermination()

Waits for all threads to terminate.

initialized

static bool initialized()

Determines if the JThreads/C++ library has been initialized.

Returns:

true if JThreads/C++ has been initialized and false otherwise.
44

JTCAdoptCurrentThread
JTCAdoptCurrentThread

Overview When integrating with third-party libraries, it is often necessary to call
JThreads/C++ methods from a thread that was not created using JThreads/C++.
In this situation, the thread must create an instance of JTCAdoptCurrentThread
prior to using any other JThreads/C++ classes. Failure to instantiate
JTCAdoptCurrentThread will result in undefined behavior.

Constructors JTCAdoptCurrentThread

JTCAdoptCurrentThread()

Informs the JThreads/C++ library about the existence of this thread.

Throws:

JTCSystemCallException - Indicates a failed system call.
45

APPENDIX A | Class Reference
JTCThread

Overview This class is used to create a new thread of execution. The thread functionality
can be added by either deriving a class from JTCThread and overriding the run
method, or by passing an object of a class derived from JTCRunnable to the
JTCThread constructor.

Constructors JTCThread

JTCThread(JTCRunnableHandle target, const char* name = 0)

Create a new thread object with a target object and a name.

Parameters:

target - The object whose run method is invoked when start is called. If

no object is specified, the run method of the thread object must be

overridden in a derived class.

name - The name of the thread. If no name is specified, a default name is

used. This default name is the string "thread-" concatenated with the

thread id. A thread id is a system-specific identifier generated by the

operating system when a new thread is created. Application developers are

encouraged to use the JTCThreadId class to refer to thread ids.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCThread

JTCThread(const char* name)

Create a new thread object with a name.

Parameters:

name - The name of the thread.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCThread

JTCThread(JTCThreadGroupHandle& group, JTCRunnableHandle
target, const char* name = 0)
46

JTCThread
Create a new thread object belonging to a group, with a target object and a

name.

Parameters:

group - The thread group.

target - The object whose run method is invoked when start is called. If

no target object is specified, the run method of the thread object must be

overridden in a derived class.

name - The name of the thread. If no name is specified, a default name is

used. This default name is the string "thread-" concatenated with the

thread id. A thread id is a system-specific identifier generated by the

operating system when a new thread is created. Application developers are

encouraged to use the JTCThreadId class to refer to thread ids.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCThread

JTCThread(JTCThreadGroupHandle& group, const char* name = 0)

Create a new thread object belonging to a group, with a name.

Parameters:

group - The thread group.

name - The name of the thread. If no name is specified, a default name is

used. This default name is the string "thread-" concatenated with the

thread id. A thread id is a system-specific identifier generated by the

operating system when a new thread is created. Application developers are

encouraged to use the JTCThreadId class to refer to thread ids.

Throws:

JTCSystemCallException - Indicates a failed system call.
47

APPENDIX A | Class Reference
Member functions getThreadGroup

JTCThreadGroupHandle getThreadGroup()

Returns a thread group handle for the thread group object to which this

thread object belongs.

Returns:

A handle for the thread group object.

setName

void setName(const char* name)

Sets the name of the thread object.

Parameters:

name - The new name for the thread object. If a null pointer is used, a

default name is used. This default name is the string "thread-"

concatenated with the thread id. A thread id is a system-specific identifier

generated by the operating system when a new thread is created.

Application developers are encouraged to use the JTCThreadId class to

refer to thread ids.

getName

const char* getName() const

Returns the name of the thread object.

Returns:

The thread object name.

start

void start()

Starts execution of the thread. If the thread was created with a target object

(that is, with an object of a class derived from JTCRunnable), the run

method of the target object is invoked. If there is no target object, the run

method of the thread object itself is invoked. In this case, a class derived

from JTCThread with an overridden run method should be used.
48

JTCThread
Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalStateException - Thrown if the thread has already been

started.

run

virtual void run()

This method is called when start is invoked. If the thread object has been

constructed with an associated target JTCRunnable object, the target’s run

method is invoked. Otherwise, the run method should be overridden in a

class derived from JTCThread. If run terminates due to an uncaught

exception, then the thread’s thread group method uncaughtException is

called.

isAlive

bool isAlive() const

This method determines whether the thread is alive.

Returns:

true if the thread is alive, false otherwise.

join

void join()

Waits for the thread to terminate.

Throws:

JTCSystemCallException - Indicates a failed system call.

join

void join(long millis)

Waits for the thread to terminate for at most millis milliseconds.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalArgumentException - Thrown if the value of millis is

negative.

join

void join(long millis, int nanos)

Waits for the thread to terminate for at most millis milliseconds and

nanos nanoseconds.
49

APPENDIX A | Class Reference
Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalArgumentException - Thrown if the value of millis is

negative, or if the value of nanos is not in the range 0 - 999999.

setPriority

void setPriority(int newPri)

Sets the thread priority to a new value.

Parameters:

newPri - The new thread priority.

Throws:

JTCSystemCallException - Indicates a failed system call.

getPriority

int getPriority() const

Returns the priority of the thread.

Returns:

The thread priority.

Throws:

JTCSystemCallException - Indicates a failed system call.

enumerate

static int enumerate(JTCThreadHandle* list, int len)

Copies each active thread from this thread’s thread group and subgroups

into the array list. If more than len items are present, the list is truncated.

Parameters:

list - The array into which all threads from this thread’s group and

subgroups are copied.

len - The number of JTCThreadHandle* elements in list.

Returns:

The number of threads returned in list.

currentThread

static JTCThread* currentThread()

Returns a pointer to the currently executing thread object.
50

JTCThread
Returns:

The currently executing thread object.

sleep

static void sleep(long millis, int nanos = 0)

Suspends execution of this thread for millis milliseconds, and nanos

nanoseconds.

Parameters:

millis - The number of milliseconds to sleep.

nanos - The number of nanoseconds to sleep.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalArgumentException - Thrown if the value of millis is

negative, or if the value of nanos is not in the range 0 - 999999.

JTCInterruptedException - Thrown if the sleep call is interrupted.

yield

static void yield()

Gives up the thread’s current timeslice. This can be called if you want to

manually give other threads an opportunity to execute.

activeCount

static int activeCount()

Returns the number of active threads in this thread’s thread group and

subgroups.

Returns:

The number of active threads in this thread’s group and subgroups.

getId

JTCThreadId getId() const

Returns the id of the thread.

Returns:

The thread id of the thread.

setAttrHook

typedef void (*JTCAttrHook)(pthread_attr_t*)
51

APPENDIX A | Class Reference
static void setAttrHook(JTCAttrHook hook, JTCAttrHook*
oldHook = 0)

Sets/gets a hook that will be used to initialize custom POSIX thread

attributes. Note: this method is only available for systems using POSIX

threads.

Parameters:

hook - The function that will be called to retrieve the custom POSIX thread

attributes before the creation of each thread.

oldHook - Optional parameter in which the previously set hook is returned.

Applications should call this function within the new hook. In essence,

hooks may be chained.

setRunHook

typedef void (*JTCRunHook)(JTCThread*)

static void setRunHook(JTCRunHook hook, JTCRunHook* oldHook =
0)

Sets/gets a run hook which may be used to setup any application specific

information during thread creation. The hook function must call thread ->

run() to actually run the thread.

Parameters:

hook - The function that will be called on creation of the thread.

oldHook - Optional parameter in which the previously set hook is returned.

Applications should call this function from within the new hook. In

essence, hooks may be chained.

setStartHook

typedef void (*JTCStartHook)()

static void setStartHook(JTCStartHook hook, JTCStartHook*
oldHook = 0)

Sets/gets a start hook which may be used to setup any thread specific

information.

Parameters:

hook - The function that will be called on creation of the thread.

oldHook - Optional parameter in which the previously set hook is returned.

Applications should call this function from within the new hook. In

essence, hooks may be chained.
52

JTCThread
Data members JTC_MIN_PRIORITY

const int JTC_MIN_PRIORITY

A constant for the minimum priority a thread can have.

JTC_NORM_PRIORITY

const int JTC_NORM_PRIORITY

A constant for the default priority of a thread.

JTC_MAX_PRIORITY

const int JTC_MAX_PRIORITY

A constant for the maximum priority a thread can have.

Related functions operator<<

ostream& operator<<(ostream& os, const JTCThread& thr)

Print the thread id to the output stream os. The output format of the

thread-id field is platform-specific.

Parameters:

os - Output stream in which to insert the thread id.

thr - Reference to the thread.

Returns:

The output stream os.
53

APPENDIX A | Class Reference
JTCRunnable

Overview This class is provided as an alternative method of providing functionality in a
thread. In order to use this class, you must write a subclass and provide a
definition for the run method. An instance of this class should then be provided
as an argument to the JTCThread constructor. When the thread is started, the run
method of that instance will be invoked.

Member functions run

virtual void run()

Called when the start method is called on the associated thread object.
54

JTCThreadGroup
JTCThreadGroup

Overview This class represents a collection of threads, and other thread groups. The thread
groups form a tree, rooted at the system thread group. New threads by default
belong to the thread group of their parent thread. A thread group can optionally
be a daemon thread group, which automatically destroys itself after all threads
have terminated and all sub-groups are destroyed. A newly created thread group
inherits its parent’s daemon status. The root thread group is a non-daemon thread
group.

Constructors JTCThreadGroup

JTCThreadGroup(const char* name)

Creates a new thread group with the provided name. The new thread

group’s parent is that of the current thread.

Parameters:

name - The name of the thread group.

Throws:

JTCIllegalThreadStateException - Thrown if the parent thread group

has been destroyed..

JTCThreadGroup

JTCThreadGroup(JTCThreadGroup* group, const char* name)

Creates a new thread group with the provided name and parent thread

group.

Parameters:

group - The parent of the thread group.

name - The name of the thread group.

Throws:

JTCIllegalThreadStateException - Thrown if the parent thread group

has been destroyed..
55

APPENDIX A | Class Reference
Member functions getName()

const char* getName() const

Returns the name of the thread group.

Returns:

The name of the thread group.

getParent

JTCThreadGroupHandle getParent() const

Returns the parent of the thread group. If the thread group is the root thread

group, the handle contains a null pointer.

Returns:

The parent of the thread group.

isDaemon

bool isDaemon() const

Returns the daemon flag for this thread group. If the daemon flag is true,

the thread group is destroyed once all threads are terminated and

sub-groups are empty.

Returns:

The value of the daemon flag.

setDaemon

void setDaemon(bool daemon)

Sets the daemon flag for this thread group. If the daemon flag is true, the

thread group is destroyed once all threads are terminated and sub-groups

are empty.

Parameters:

daemon - The new value for the daemon flag.

uncaughtException

virtual void uncaughtException(JTCThreadHandle t, const
JTCException& e)

This method is called if a JTCThread::run() exits because of an uncaught

JTCException. By default, if the thread group has a parent this method

invokes the parent’s uncaughtException method, otherwise it displays the

exception to stderr.
56

JTCThreadGroup
Parameters:

t - The thread that threw the JTCException.

e - The uncaught exception.

uncaughtException

virtual void uncaughtException(JTCThreadHandle t)

This method is called if a JTCThread::run() exits because of an uncaught

exception. By default, if the thread group has a parent this method invokes

the parent’s uncaughtException method, otherwise it displays the text

“uncaught exception” to stderr.

Parameters:

t - The thread that threw the JTCException.

getMaxPriority

int getMaxPriority() const

Returns the maximum priority permitted for threads in this thread group.

Returns:

The maximum priority of this thread group.

isDestroyed

bool isDestroyed() const

Determines if the thread group has been destroyed. A thread group is

destroyed once all threads have terminated in the thread group and all

subgroups.

Returns:

true if the thread group has been destroyed, false otherwise.

destroy

void destroy()

Destroys this thread group and all of its subgroups. The thread group must

not contain any active threads.

Throws:

JTCIllegalThreadStateException - If the thread group has active

threads, or has already been destroyed.
57

APPENDIX A | Class Reference
setMaxPriority

void setMaxPriority(int pri)

Sets the maximum priority that threads in the thread group and its

subgroups may have. Threads in the thread group that have higher priority

are not affected. That is, their priorities are not lowered.

parentOf

bool parentOf(JTCThreadGroupHandle g)

Returns true if the thread group is the parent of thread group g.

Returns:

true if this thread is a parent of g, false otherwise.

activeCount

int activeCount() const

Returns the number of active threads in this thread group, and all of its

subgroups.

Returns:

The number of active threads.

activeGroupCount

int activeGroupCount() const

Returns the number of active thread groups in this thread group.

Returns:

The number of active thread groups.

enumerate

int enumerate(JTCThreadHandle* list, int len, bool recurse =
true) const

Copies pointers to each active thread in this thread group to the array list.

activeCount can be used to get an estimate of how big the array should be.

If more than len active threads are present, the remaining threads are

silently ignored. The reason that the developer cannot determine precisely

the number of threads is that threads can be added and removed from the

thread group at the same time as they are enumerated.
58

JTCThreadGroup
Parameters:

list - The array into which the set of active threads should be copied.

len - The length of the array list.

recurse - If set to true, active threads from subgroups are also

enumerated.

Returns:

The number of active threads copied to the array.

enumerate

int enumerate(JTCThreadGroupHandle* list, int len, bool
recurse = true) const

Copies handles for every active subgroup of this thread group into the

array list. activeGroupCount can be used to determine how big the array

must be. If more than len active subgroups are present, the remaining

subgroups are silently ignored.

Parameters:

list - The array in which to copy the thread group handles.

len - The length of the array.

recurse - If set to true, child subgroups are also enumerated.

Returns:

The number of handles copied to list.

list

void list()

Outputs to the stream cout the set of threads and subgroups.

list

void list(ostream& os, int indent)

Outputs to the stream os the set of threads and subgroups. Use indent

spaces for indentation.
59

APPENDIX A | Class Reference
Related Functions operator<<

ostream& operator<<(ostream& os, const JTCThreadGroup& g)

Prints a string representation of the thread group to the output stream os.

This calls g.list(os, 4).

Parameters:

os - Output stream in which to insert the thread id.

g - Reference to the thread group.

Returns:

The output stream os.
60

JTCHandleT
JTCHandleT

Overview The JThreads/C++ library cannot know when to delete instances of JTCThread,
JTCRunnable, and JTCThreadGroup. One solution to this dilemma is to force
application developers to delete instances of these classes when they are sure the
instances are no longer useful. However, this is error prone. Fortunately there is
a well-known solution to this problem: reference counting (see [4], p. 782). This
isn’t necessary in Java since it provides garbage collection. The basic idea is to
count the number of references to the object, and delete the object when the
reference count drops to zero. To ease the counting of references, a handle class
is used that increments the reference count when constructed, and decrements
the reference count when destructed.

The JTCHandleT is a smart pointer to a reference-counted object. A regular
pointer to instances of these classes should never be stored.

The classes JTCThreadGroupHandle, JTCThreadHandle, and
JTCRunnableHandle are all convenience typedefs of this template class.

Constructors JTCHandleT

JTCHandleT(T* tg = 0)

Creates a handle that refers to the object tg.

Parameters:

tg - The object to reference.

 JTCHandleT

JTCHandleT(const JTCHandleT<T>& rhs)

Creates a handle that refers to the object referred to by rhs.

Parameters:

rhs - The handle from which to retrieve the object.
61

APPENDIX A | Class Reference
Member functions operator=

JTCHandle<T>& operator=(const JTCHandleT<T>& rhs)

Creates a handle that refers to the object referenced by rhs.

Parameters:

rhs - The handle from which to retrieve the object.

Returns:

A reference to the handle.

operator==

bool operator==(const JTCHandleT<T>& rhs) const

Returns true if rhs references the same object as this object.

Parameters:

rhs - The handle to compare with.

Returns:

true if the objects are equivalent, false otherwise.

operator!=

bool operator!=(const JTCHandleT<T>& rhs) const

Returns true if rhs references a different object as this.

Parameters:

rhs - The handle to compare with.

Returns:

true if the objects are not equivalent, false otherwise.

operator!

bool operator!() const

Determines whether the object referenced by the handle is not valid (that it

is nil).

Returns:

true if the object is not valid, false otherwise.

operator bool

operator bool () const

Determines whether the object referenced by the handle is valid (that it is

not nil).
62

JTCHandleT
Returns:

true if the object is valid, false otherwise.

operator->

T* operator->() const

Invokes a method on the referenced object.

Returns:

A pointer to the referenced object.

get

T* get() const

Gets a pointer to the referenced object.

Returns:

A pointer to the referenced object.

operator*

T& operator*()

Retrieve a C++ reference to the referenced object.

Returns:

A C++ reference to the object.
63

APPENDIX A | Class Reference
JTCMonitor

Overview This class provides the functionality of Java monitors. In order to implement
synchronized methods, the monitor’s lock must be acquired, for example by
creating an instance of the JTCSynchronized class at the top of the synchronized
method, with the monitor as the argument to the constructor.

The monitor’s wait method can be used to release the monitor’s lock and to wait
for notifications. The notify and notifyAll methods can be used to wake one
or all waiting monitors, respectively.

Methods wait

void wait()

Waits for notification by another thread. The calling thread must own the

monitor’s lock. The monitor’s lock is released and the thread waits for

notification by another thread via a call to either notify or notifyAll. The

thread then waits until it can regain ownership of the monitor’s lock and

then resumes execution.

Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by the

calling thread.

JTCSystemCallException - Indicates a failed system call.

wait

wait(long timeout)

Waits for notification by another thread. The calling thread must own the

monitor’s lock. The monitor’s lock is released and the thread waits for

notification by another thread via a call to either notify or notifyAll, or

until timeout milliseconds have passed. The thread then waits until it can

regain ownership of the monitor’s lock and then resumes execution.

Parameters:

timeout - The maximum number of milliseconds to wait for notification.
64

JTCMonitor
Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by the

calling thread.

JTCSystemCallException - Indicates a failed system call.

notify

void notify()

Wakes a single thread waiting on the monitor. The calling thread must own

the monitor’s lock.

notifyAll()

void notifyAll()

Wakes all threads waiting on the monitor. The calling thread must own the

monitor’s lock.
65

APPENDIX A | Class Reference
JTCMonitorT

Overview This is a template class that allows creation of synchronized classes without
altering the implementation.

Member functions wait

void wait()

Waits for notification by another thread. The calling thread must own the

monitor’s lock. The monitor’s lock is released and the thread waits for

notification by another thread via a call to either notify or notifyAll. The

thread then waits until it can regain ownership of the monitor’s lock and

then resumes execution.

Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by the

calling thread.

JTCSystemCallException - Indicates a failed system call.

wait

wait(long timeout)

Waits for notification by another thread. The calling thread must own the

monitor’s lock. The monitor’s lock is released and the thread waits for

notification by another thread via a call to either notify or notifyAll, or

until timeout milliseconds have passed. The thread then waits until it can

regain ownership of the monitor’s lock and then resumes execution.

Parameters:

timeout - The maximum number of milliseconds to wait for notification.

Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by the

calling thread.

JTCSystemCallException - Indicates a failed system call.
66

JTCMonitorT
notify

void notify()

Wakes a single thread waiting on the monitor. The calling thread must own

the monitor’s lock.

notifyAll()

void notifyAll()

Wakes all threads waiting on the monitor. The calling thread must own the

monitor’s lock.
67

APPENDIX A | Class Reference
JTCRecursiveMutex

Overview This class can be used to establish a critical section. This class has no direct
equivalent in Java, and is provided for performance reasons only. An instance of
JTCRecursiveMutex can be locked multiple times by the same thread, and
therefore may not be as efficient as the JTCMutex class. The developer is
responsible for ensuring that each mutex lock has a corresponding unlock.

Member functions lock

bool lock() const

Lock the mutex. If the mutex is already locked, the calling thread blocks

until the mutex is unlocked. If the current owner of the mutex attempts to

re-lock the mutex, a deadlock will not result.

Returns:

true, if the mutex is locked for the first time, false, otherwise.

unlock

bool unlock() const

This method is called by the owner of the mutex to release it. The mutex

must be locked and the calling thread must be the one that last locked the

mutex. If these conditions are not met, undefined behavior will result.

Returns:

true, if the mutex is available for locking by some other thread, false

otherwise.

trylock

bool trylock() const

This method is identical to lock except that if the mutex is already locked,

then false is returned.

Returns:

true, if the mutex was locked, false otherwise.

get_owner

JTCThreadId get_owner() const

Return the thread id of the owning thread.
68

JTCRecursiveMutex
Returns:

The thread id of the owning thread.
69

APPENDIX A | Class Reference
JTCMutex

Overview This class can be used to establish a critical section. This class has no direct
equivalent in Java. It is provided for performance reasons only. Unlike
JTCMonitor or JTCRecursiveMutex, this class not does guarantee recursive
locking semantics. If the mutex is locked more than once by the same thread, a
deadlock may result.1

Member functions lock

bool lock() const

Lock the mutex. If the mutex is already locked, the calling thread blocks

until the mutex is unlocked. If the current owner of the mutex attempts to

re-lock the mutex, a deadlock may result.

Returns:

This method always returns true.

unlock

bool unlock() const

This method is called by the owner of the mutex to release it. The mutex

must be locked and the calling thread must be the one that last locked the

mutex. If these conditions are not met, undefined behavior will result.

Returns:

This method always returns true.

trylock

bool trylock() const

This method is identical to lock except that if the mutex is already locked,

then false is returned.

Returns:

true, if the mutex was locked, false otherwise.

get_owner

JTCThreadId get_owner() const

1. Under Windows, JTCMutex allows recursive locking, while a pthreads
implementation (for example, under UNIX) does not.
70

JTCMutex
Return the thread id of the owning thread.

Returns:

The thread id of the owning thread.
71

APPENDIX A | Class Reference
JTCRWMutex

Overview This class can be used to create read-write locks. This class has no direct
equivalent in Java. It is provided for performance reasons only. Like JTCMutex,
this class not does guarantee recursive locking semantics. If the mutex is locked
more than once by the same thread, a deadlock may result.

Member functions read_lock

void read_lock() const

Lock the mutex for reading. If the mutex is locked for writing or writers are

waiting for a write lock, the calling thread blocks until the mutex is

unlocked. If the current owner of the mutex attempts to re-lock the mutex,

a deadlock may result.

write_lock

void write_lock() const

Lock the mutex for writing. If the mutex is locked for reading or writing,

the calling thread blocks until the mutex is unlocked. If the current owner

of the mutex attempts to re-lock the mutex, a deadlock may result.

unlock

void unlock() const

This method is called by the owner of the mutex to release it. The mutex

must be locked and the calling thread must be the one that last locked the

mutex. If these conditions are not met, undefined behavior will result.
72

JTCSynchronized
JTCSynchronized

Overview This class is used to acquire and release a monitor’s lock. To create a
synchronized method, an instance of this class should be created with the
monitor as the constructor argument. The constructor acquires the lock and the
destructor releases the lock. This class may also be used with the classes
JTCMutex, JTCRecursiveMutex and JTCRWMutex.

Constructor JTCSynchronized

JTCSynchronized(const JTCMonitor& mon)

Acquires the monitor’s lock. The destructor releases the monitor’s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCSynchronized

JTCSynchronized(const JTCMutex& mon)

Acquires the mutex’s lock. The destructor releases the mutex’s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCSynchronized

JTCSynchronized(const JTCRecursiveMutex& mon)

Acquires the mutex’s lock. The destructor releases the mutex’s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCSynchronized

enum ReadWriteLockType
{

read_lock,
write_lock

};

JTCSynchronized(const JTCRWMutex& mon, ReadWriteLockType
type)

Acquires the mutex’s lock. The destructor releases the mutex’s lock.
73

APPENDIX A | Class Reference
Throws:

JTCSystemCallException - Indicates a failed system call.
74

JTCSyncT
JTCSyncT

Overview This class is a template version of the JTCSynchronized class. The JTCSyncT
template is more efficient than the JTCSynchronized class, however it is more
difficult to use. The template’s constructor invokes the lock method on the
parameter class, and the destructor invokes the unlock method. This template
may also be instantiated with the classes JTCMonitor, JTCMutex and
JTCRecursiveMutex.

Constructor JTCSyncT

JTCSyncT(const T& mon)

Acquires the monitor’s lock. The destructor releases the monitor’s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.
75

APPENDIX A | Class Reference
JTCReadLock

Overview This class is used to acquire and release a read lock. To create a synchronized
method, an instance of this class should be created with the JTCRWMutex as the
constructor argument. The constructor acquires the lock and the destructor
releases the lock.

Constructor JTCReadLock

JTCReadLock(const JTCRWMutex& mon)

Acquires the mutex’s lock for reading. The destructor releases the mutex’s

lock.

Throws:

JTCSystemCallException - Indicates a failed system call.
76

JTCWriteLock
JTCWriteLock

Overview This class is used to acquire and release a write lock. To create a synchronized
method, an instance of this class should be created with the JTCRWMutex as the
constructor argument. The constructor acquires the lock and the destructor
releases the lock.

Constructor JTCWriteLock

JTCWriteLock(const JTCRWMutex& mon)

Acquires the mutex’s lock for writing. The destructor releases the mutex’s

lock.

Throws:

JTCSystemCallException - Indicates a failed system call.
77

APPENDIX A | Class Reference
JTCThreadId
This class represents a thread id. The only operations that should be used

are equality and inequality. Two thread objects may be considered to be

equal if their thread ids are equivalent. A user should not directly construct

instances of this class.

Member functions operator==

bool operator==(const JTCThreadId& rhs)

Compares for equality.

Parameters:

rhs - The thread id with which to compare.

Returns:

true if the thread ids are equivalent, false otherwise.

operator!=

bool operator!=(const JTCThreadId& rhs) const

Compares for inequality.

Parameters:

rhs - The thread id with which to compare.

Returns:

true if the thread ids are not equivalent, false otherwise.
78

JTCThreadKey
JTCThreadKey

Overview This type represents a thread specific storage key. JTCThreadKey should be used
as an opaque type.
79

APPENDIX A | Class Reference
JTCTSS

Overview This class is used to manage thread-specific storage, which is an extremely
useful method of managing data that is associated with each thread, while
avoiding the overhead of a mutex. Using thread-specific storage, each thread
associates data with a key. Because each thread has its own data, there is no
contention for the data among multiple threads.

Member functions allocate

static JTCThreadKey allocate()

Creates a new thread-specific storage key.

Returns:

A new thread-specific storage key.

Throws:

JTCSystemCallException - Indicates a failed system call.

allocate

static JTCThreadKey allocate(void (*)(void*))

Creates a new thread-specific storage key with an associated cleanup

function. Upon thread termination, the registered cleanup function is called

with an argument that contains the value associated with the

thread-specific storage key.

Returns:

A new thread-specific storage key.

Throws:

JTCSystemCallException - Indicates a failed system call.

release

static void release(JTCThreadKey key)

Releases a thread-specific storage key. The developer is responsible for

freeing any associated storage before releasing the key. Any associated

cleanup function is not called.
80

JTCTSS
Parameters:

key - The thread-specific storage key to release.

Throws:

JTCSystemCallException - Indicates a failed system call.

get

static void* get(JTCThreadKey key)

Gets the data associated with a thread-specific storage key.

Parameters:

key - The thread-specific storage key.

Returns:

The data associated with the thread-specific storage key.

Throws:

JTCSystemCallException - Indicates a failed system call.

set

static void set(JTCThreadKey key, void* data)

Associates data with a thread-specific storage key.

Parameters:

key - The thread-specific storage key.

data - The data to associate with the key.

Throws:

JTCSystemCallException - Indicates a failed system call.
81

APPENDIX A | Class Reference
JTCThreadDeath

Overview This exception is thrown when a thread is terminated by JTCThread::stop. If
this exception is caught, it must be re-thrown to ensure correct termination of the
thread.
82

JTCException
JTCException

Overview With the exception of JTCThreadDeath, JTCException is the base class of all
JThreads/C++ exception classes.

Constructors JTCException

JTCException(const char* note = "", long error = 0)

Constructs a JTCException with the message in note, and the error type in

error.

Parameters:

note - A description of the error.

error - An exception-specific error code.

Member functions getError

long getError() const

Returns the exception-specific error code. Currently only

JTCSystemCallException has a specific error code.

Returns:

The error code.

getType

virtual const char* getType() const

Returns a string representation of the exception type. This is the name of

the exception class. This member is not available in Java.

Returns:

The class name.

getMessage

const char* getMessage() const

Returns a description of the exception. This is the note parameter provided

in the constructor.

Returns:

A description of the exception.
83

APPENDIX A | Class Reference
Related functions operator<<

ostream& operator<<(ostream& os, const JTCException& e)

Inserts a description of the error to the output stream os.

Parameters:

os - The output stream in which to insert the thread id.

e - The reference to the exception.

Returns:

The output stream os.
84

JTCInterruptedException
JTCInterruptedException

Overview This exception is thrown if a system call is interrupted. Currently
JTCMonitor::wait() and JTCThread::sleep() can throw this exception. The
semantics differ from Java in this respect. An InterruptedException in Java is
thrown if a thread is interrupted by java.lang.Thread.interrupt.
Unfortunately, it is impossible to implement this method in a portable fashion
using the POSIX and WIN32 threading models.
85

APPENDIX A | Class Reference
JTCIllegalThreadStateException

Overview This exception is thrown if a member function is called while the object is in an
illegal state. Currently JTCThread::start(), the
JTCThreadGroup::JTCThreadGroup() constructors and
JTCThreadGroup::destroy() can throw this exception.
86

JTCIllegalMonitorStateException
JTCIllegalMonitorStateException

Overview This exception is thrown by JTCMonitor::wait(), JTCMonitor::notify() or
JTCMonitor::notifyAll() if the monitor’s lock has not been acquired by the
calling thread.
87

APPENDIX A | Class Reference
JTCIllegalArgumentException

Overview This exception is thrown when an illegal argument is passed to a JThreads/C++
method. The methods JTCMonitor::wait() (with a timeout argument),
JTCThread::setPriority(), and JTCThread::sleep() can throw this
exception.
88

JTCSystemCallException
JTCSystemCallException

Overview This exception indicates a failed system call. Most JThreads/C++ methods can
generate this exception. The JTCException::getError() method returns the
error value. Under UNIX this is the value of errno, under WIN32 this is the
value of getLastError(). There is no application method of determining which
operation caused the error. However, the exception message contains a
description of the operation, and all arguments to assist in debugging.
89

APPENDIX A | Class Reference
JTCUnknownThreadException

Overview This exception is generated from the JTCThread::currentThread method when
the current thread is not known.
90

JTCOutOfMemoryError
JTCOutOfMemoryError

Overview This exception is generated from the JTCThread constructors on an out of
memory condition.
91

APPENDIX A | Class Reference
JTCInitializeError

Overview This exception is generated from the JTCInitialize(int&, char**)
constructor when an invalid option or option argument is specified.
92

93

JThreads
Bibliography
[1] Scott Oaks & Henry Wong, Java Threads, O’Reilly & Associates,

Inc., 1997.

[2] Doug Lea, Concurrent Programming in Java, Addison-Wesley
Longman, Inc., 1997.

[3] Why JavaSoft is Deprecating Thread.stop, Thread.suspend and
Thread.resume, Sun Microsystems, Inc.1

[4] Bjarne Stroupstrup, The C++ Programming Language, Third Edition,
Addison-Wesley Longman, Inc., 1997.

1. Available from
http://java.sun.com/products/jdk/1.2/docs/guide/misc/threadPrimitiveDeprecation.ht
ml.

http://java.sun.com/products/jdk/1.2/docs/guide/misc/threadPrimitiveDeprecation.html

	Preface
	The Orbacus Library
	Audience
	Document Conventions

	Introduction to JThreads/C++
	Overview

	Hello World
	Hello World in Java
	Hello World in C++
	Hello World with Runnable

	Working With Threads
	Synchronization
	Thread Safe Version in Java
	Thread Safe Version in C++

	Block Synchronization
	Static Monitors
	The Wait, Notify and NotifyAll Methods
	The Stop and Suspend Methods
	The Join and IsAlive Methods

	Memory Management
	Reference Counting
	Introducing Handles
	The JTCHandleT Template
	Rules of Thumb

	Class Reference
	JTCInitialize
	JTCAdoptCurrentThread
	JTCThread
	JTCRunnable
	JTCThreadGroup
	JTCHandleT
	JTCMonitor
	JTCMonitorT
	JTCRecursiveMutex
	JTCMutex
	JTCRWMutex
	JTCSynchronized
	JTCSyncT
	JTCReadLock
	JTCWriteLock
	JTCThreadId
	JTCThreadKey
	JTCTSS
	JTCThreadDeath
	JTCException
	JTCInterruptedException
	JTCIllegalThreadStateException
	JTCIllegalMonitorStateException
	JTCIllegalArgumentException
	JTCSystemCallException
	JTCUnknownThreadException
	JTCOutOfMemoryError
	JTCInitializeError

	JThreads Bibliography

