
Orbacus
Version 4.3.5

Orbacus Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2016. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2016-09-28

Contents

List of Tables xiii

List of Figures xv

Preface xvii

Chapter 1 Introduction to Orbacus 1
Overview 2

Chapter 2 Getting Started 5
The Hello World Example Application 6
Defining the Example in IDL 7
Implementing the Example in C++ 8

Implementing the Server 9
Writing the Server Program 11
Implementing the Client 15
Compiling and Linking 17
Running the Application 18

Implementing the Example in Java 19
Implementing the Server 20
Implementing the Client 25
Compiling 27
Running the Application 28

Summary 29
Where To Go From Here 30

Chapter 3 Generating Code with Orbacus 31
Orbacus Translators 32
Translating IDL to C++ 33
Translating IDL to Java 37
Translating IDL to HTML 39
Translating IDL to RTF 40
iii

CONTENTS
Generating C++ from an Interface Repository 42
The IDL-to-C++ Translator and the Interface Repository 43
Include Statements 44
Documenting IDL Files 45
Using javadoc 48

Chapter 4 ORB and Object Adapter Initialization 53
Initializing the C++ ORB 54
Initializing the Java ORB 55
Object Adapter Initialization 56
Configuring the ORB and Object Adapter 57

ORB Properties 58
OA Properties 65
Command-line Options 68
Using a Configuration File 70
Using the Windows Registry 71
Defining Properties 72
Precedence of Properties 74
Advanced Property Usage 75

Using POA Managers 77
The Root POA Manager 78
Anonymous POA Managers 79
The POA Manager Factory 80
Creating a POA Manager 81
POA Manager Policies 83
Endpoints 84
Command-line Options and Endpoints 85
Dispatching Requests 86
Callbacks 87

ORB Destruction 88
Server Event Loop 89

Chapter 5 CORBA Objects 91
Overview 92
Implementing Servants 94

Implementing Servants using Inheritance 95
Implementing Servants using Delegation 98

Creating Servants 103
iv

CONTENTS
Creating Servants using C++ 104
Creating Servants using Java 105

Activating Servants 107
Implicit Activation of Servants using C++ 108
Implicit Activation of Servants using Java 109
Explicit Activation of Servants using C++ 110
Explicit Activation of Servants using Java 111

Deactivating Servants 112
Factory Objects 114

Factory Objects using C++ 116
Factory Objects using Java 119
Caveats 120
Obtaining the POA for a Servant 121
Getting the POA for a Currently Executing Request 123

Chapter 6 Locating Objects 125
Obtaining Object References 126
Lifetime of Object References 130

Hostname 131
Port Number 132
Object Key 133

Stringified Object References 134
Using a File 135
Using a URL 137

Object Reference URLs 138
corbaloc: URLs 139
corbaname: URLs 140
file: URLs 141
relfile: URLs 142

The BootManager 143
BootManager Interface 144
How the BootManager Works 145
Using the BootManager 146

Initial Services 147
Resolving an Initial Service 148
Configuring the Initial Services 150
The Initial Service Locator 152

The IORDump utility 153
v

CONTENTS
Chapter 7 The Implementation Repository 155
Background 156
Information Managed by the IMR 157
IMR Security 160
Usage 161
Windows Native Service 163
Configuration Properties 165
Connecting to the Service 166
Utilities 167
Getting Started with the Implementation Repository 170
Programming Example 173

Chapter 8 The Implementation Repository Console 177
Usage 178
The Menus 179

Chapter 9 Orbacus Names 183
Usage 185
Windows Native Service 187
Configuration Properties 189
Persistence 190
Connecting to the Service 191
Using the Naming Service with the IMR 192
Bindings 193
Name Resolution 195
Programming Example 196

Initialization 197
Binding 199
Exceptions 202
The Event Loop 204
Releasing Resources 205

Chapter 10 Orbacus Names Console 207
Usage 208
Naming Service Lookup 209
The Menus 210

The File Menu 211
The Edit Menu 213
vi

CONTENTS
The View Menu 215
The Tools Menu 217
The Toolbar 219
The Popup Menu 220

Chapter 11 Orbacus Properties 221
Usage 222
Connecting to the Service 224
Using the Property Service with the IMR 225
Creating Properties 226
Querying for Properties 227
Deleting Properties 229
Programming Example 230

Chapter 12 Orbacus Events 233
Usage 234

Windows Native Service 235
Configuration Properties 237

Connecting to the Service 239
Using the Event Service with the IMR 240
Event Service Concepts 241

The Event Channel 242
Event Suppliers and Consumers 243
Event Channel Policies 245
Event Channel Factories 246

Programming Example 249

Chapter 13 The Interface Repository 253
Usage 254

Windows Native Service 255
Configuration Properties 257

Connecting to the Interface Repository 258
Configuration Issues 259
Interface Repository Utilities 260
Programming Example 261

Chapter 14 Orbacus Balancer 263
Basic Concepts 264
vii

CONTENTS
Load Balancing Strategies 265
Service Security 269
Usage 270

Windows Native Service 271
Configuration Properties 273
Built-in Load Balancing Strategies 274

Connecting to the Service 276
Load Balanced IMR-enabled Servers 277
Utilities 278

Service Administration 279
Making References 280
Utility Objects 281
Utility Object Configuration Properties 282

Programming Example 283
Non-adaptive Load Balancing 284
Adaptive Load Balancing 288
Running the Load Balanced Servers 292

Chapter 15 Orbacus Watson 295
Tracing Levels 296
Installing Watson in C++ 297
Installing Watson in Java 298
Configuration Properties 299

Sample Configuration File 300

Chapter 16 Using Policies 301
Overview 302
Supported Policies 303
Programming Examples 306

Connection Reuse Policy 307
Retry Policy 310
Timeout Policy 312
Interceptor Call Policy 313
CommunicationsConcurrencyPolicy 315
EndpointConfigurationPolicy 317
GIOPVersionPolicy 319
Bidirectional Policy 321
viii

CONTENTS
Chapter 17 Asynchronous Method Invocation 325
Introduction 326
AMI Router 327
Router Usage 328
Router Administration Properties 329
AMI Reply Handler Implementation 331
AMI Poller Implementation 335
Configuring Clients and Servers 337

Chapter 18 Concurrency Models 339
Concurrency Models 340
Single-Threaded Concurrency Model 342
Multi-Threaded Concurrency Models 345

Threaded Clients and Servers 346
Thread-per-Client Server 348
Thread-per-Request Server 349
Thread Pool Server 350
Leader_Follower 351

The Reactor 352
The X11 Reactor 353
The Windows Reactor 354

Chapter 19 The Open Communications Interface 355
Interface Summary 356

Class Diagram 358
OCI Reference 359

A Converter Class for Java 360
Getting Hostnames and Port Numbers 361
Determining a Client’s IP Address 363
Determining a Server’s IP Address 365

The IIOP OCI Plug-in 367
Endpoint Configuration 368
Command-line Options 370
Static Linking 371

The UDP OCI Plug-in 372
Client Installation 373
Server Installation 374
Endpoint Configuration 375
ix

CONTENTS
Static Linking 378
URL Support 379
Narrowing UDP Object References 380

The Bi-directional OCI Plug-in 381
How Does it Work? 382
Peers 383
Client Installation 384
Server Installation 385
Endpoint Configuration 386
Command-line Options 387
Configuration Properties 388
Static Linking 389
URL Support 390

Chapter 20 Exceptions and Error Messages 391
CORBA System Exceptions 392

INITIALIZE Minor Exception Code 395
UNKNOWN Minor Exception Code 396
BAD_PARAM Minor Exception Code 397
NO_MEMORY Minor Exception Code 399
IMP_LIMIT Minor Exception Code 400
COMM_FAILURE Minor Exception Code 401
MARSHAL Minor Exception Code 402
NO_IMPLEMENT Minor Exception Code 404
NO_RESOURCES Minor Exception Code 405
BAD_INV_ORDER Minor Exception Code 406
TRANSIENT Minor Exception Code 407
INTF_REPOS Minor Exception Code 408
OBJECT_NOT_EXIST Minor Exception Code 409
INV_POLICY Minor Exception Code 410

Non-Compliant Application Asserts 411

Appendix A Boot Manager Reference 415
Interface OB::BootManager 416
Interface OB::BootLocator 418

Appendix B Orbacus Policy Reference 419
Module OB 420
x

CONTENTS
Interface OB::ConnectTimeoutPolicy 422
Interface OB::ConnectionReusePolicy 423
Interface OB::InterceptorPolicy 424
Interface OB::LocateRequestPolicy 425
Interface OB::LocationTransparencyPolicy 426
Interface OB::ProtocolPolicy 427
Interface OB::RequestTimeoutPolicy 428
Interface OB::RetryPolicy 429
Interface OB::TimeoutPolicy 430

Module OBPortableServer 431
Interface OBPortableServer::InterceptorCallPolicy 432

BiDirPolicy 433

Appendix C Reactor Reference 435
Module OB 436

Interface OB::Reactor 437

Appendix D Logger Reference 439
Interface OB::Logger 440
Interface OB::WLogger 441

Appendix E Open Communications Interface Reference 443
Module OCI 444

Interface OCI::Buffer 448
Interface OCI::Plugin 450
Interface OCI::Transport 451
Interface OCI::TransportInfo 456
Interface OCI::CloseCB 458
Interface OCI::Connector 459
Interface OCI::ConnectorInfo 461
Interface OCI::ConnectCB 463
Interface OCI::ConFactory 464
Interface OCI::ConFactoryInfo 466
Interface OCI::ConFactoryRegistry 467
Interface OCI::Acceptor 468
Interface OCI::AcceptorInfo 471
Interface OCI::AcceptCB 473
Interface OCI::AccFactory 474
xi

CONTENTS
Interface OCI::AccFactoryInfo 476
Interface OCI::AccFactoryRegistry 477
Interface OCI::Current 478

Module OCI::IIOP 479
Interface OCI::IIOP::TransportInfo 480
Interface OCI::IIOP::ConnectorInfo 481
Interface OCI::IIOP::ConFactoryInfo 482
Interface OCI::IIOP::AcceptorInfo 483
Interface OCI::IIOP::AccFactoryInfo 484

Appendix F Orbacus Balancer Reference 485
Module LoadBalancing 486

Interface LoadBalancing::LoadAlert 491
Interface LoadBalancing::Strategy 492
Interface LoadBalancing::StrategyProxy 493
Interface LoadBalancing::Group 494
Interface LoadBalancing::GroupFactory 496

Module LoadBalancing::Util 497
Interface LoadBalancing::Util::LoadAlert 498
Interface LoadBalancing::Util::LoadCalculator 499
Interface LoadBalancing::Util::LoadUpdater 500

Orbacus Bibliography 501

Index 503
xii

List of Tables

Table 1: POA Managers’ Communications Concurrency Model 66

Table 2: Object Keys and Interface Types 239

Table 3: Object Keys and Interface Types for Event Channel Factories 239

Table 4: Orbacus Policies 303

Table 5: Default Concurrency Models 341
xiii

LIST OF TABLES
 xiv

List of Figures

Figure 1: Documentation Generated with IDL-to-HTML Translator 46

Figure 2: Servants, Proxies and the Object Adapter 92

Figure 3: Class Hierarchy for Delegation Implementation in C++ 99

Figure 4: Class Hierarchy for Inheritance and Delegation Implementation in Java 101

Figure 5: Entering an IOR 211

Figure 6: The Ping Window 217

Figure 7: Closer Look at the Toolbar 219

Figure 8: Popup Menu Offers Important Operations 220

Figure 9: Reactive Server 342

Figure 10: Reactive Client/Server 343

Figure 11: Threaded Server 346

Figure 12: Thread-per-Client Server 348

Figure 13: Thread-per-Request Server 349

Figure 14: Thread Pool Server 350

Figure 15: OCI Class Diagram 358

Figure 16: Connection Requirements 382
xv

LIST OF FIGURES
 xvi

Preface
The Orbacus Library
The Orbacus documentation library consists of the following books:

• Orbacus Guide (this book)

• FSSL for Orbacus Guide

• JThreads/C++ Guide

• Orbacus Notify Guide

Orbacus Guide

This manual describes how Orbacus implements the CORBA standard, and
describes how to develop and maintain code that uses the Orbacus ORB. This is
the primary developer’s guide and reference for Orbacus.

FSSL for Orbacus Guide

This manual describes the FSSL plug-in, which enables secure communications
using the Orbacus ORB in both Java and C++.

JThreads/C++ Guide

This manual describes JThreads/C++, which is a high-level thread abstraction
library that gives C++ programmers the look and feel of Java threads.

Orbacus Notify Guide

This manual describes Orbacus Notify, an implementation of the Object
Management Group’s Notification Service specification.
xvii

PREFACE
Audience
Manuals in the Orbacus library are written for intermediate to advanced level
programmers who are:

• Experienced with Java or C++ programming

• Familiar with the CORBA standard and its specifications

These manuals do not teach the CORBA specification or CORBA programming
in general, which are prerequisite skills. These manuals concentrate on how
Orbacus implements the CORBA standard.

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must supply,
such as arguments to commands or path names for your
particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences dialog.
 xviii

PREFACE
Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xix

PREFACE
Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers
and addresses.

Further Information and Product
Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The Product Updates section of the Micro Focus
SupportLine Web site, where you can download fixes
and documentation updates.

• The Examples and Utilities section of the Micro Focus
SupportLine Web site, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your
browser to go to the Micro Focus home page, then click
Support.

Note:

Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus,
contact us as described on the Micro Focus Web site, http://
www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Also, visit:

• The Micro Focus Community Web site, where you can
browse the Knowledge Base, read articles and blogs,
find demonstration programs and examples, and
discuss this product with other users and Micro Focus
specialists.
 xx

http://www.microfocus.com

PREFACE
• The Micro Focus YouTube channel for videos related to
your product.

Information We Need
However you contact us, please try to include the
information below, if you have it. The more information you
can give, the better Micro Focus SupportLine can help you.
But if you don't know all the answers, or you think some are
irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of
any networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

• Your serial number. You can find this by either logging
into your order via the Electronic Product Distribution
email or via the invoice with the order.

Contact information
Our Web site gives up-to-date details of contact numbers
and addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the Product Updates section of the
Micro Focus SupportLine Web site, where you can download
fixes and documentation updates. To connect, enter http://
www.microfocus.com in your browser to go to the Micro
Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
xxi

http://www.microfocus.com
http://www.microfocus.com

PREFACE
download it from our Web site or order it in printed form
from your sales representative. Support from Micro Focus
may be available only to customers who have maintenance
agreements.

You may want to check in particular:

https://supportline.microfocus.com/productdoc.aspx.
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/
infocus/newsletter-subscription.asp
 xxii

https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

CHAPTER 1

Introduction to
Orbacus
This chapter gives a short overview of Orbacus

In this chapter This chapter contains the following section:

Overview page 2
1

CHAPTER 1 | Introduction to Orbacus
Overview

What is Orbacus? Orbacus is an Object Request Broker (ORB) that is compliant with the Common
Object Request Broker Architecture (CORBA) specification as defined in “The
Common Object Request Broker: Architecture and Specification” [4], “C++
Language Mapping” [5], “IDL/Java Language Mapping” [6], and “Portable
Interceptors” [7].

The following sections highlight some of the features of Orbacus.

Ease of use Orbacus includes the following ease of use features:

• Configuration and bootstrapping is simple:

♦ Daemon-less servers

♦ Servers started automatically by the Implementation Repository

♦ URL-style object references

• Watson diagnostics and analysis: method tracing within the ORB

• Extensible Logging facility: output to multiple devices

• Documentation Tools: Translators (see “Orbacus Translators” on page 32)

♦ IDL to Hypertext Markup Language (HTML)

♦ IDL to Rich Text Format (RTF)

• JThreads/C++: Java-like threading for C++. (See the separate manual

JThreads/C++ Guide in the Orbacus documentation set.)

Qualities of service Orbacus includes the following qualities of service:

• Load Balancing: balance client requests across a set of replicated objects

and stateless servers.

• Fault Tolerance: transparent failover by implementing multiple profile

Interoperable Object References.

• Active Connection Management: reclaim idle connections automatically,

conserving threads, sockets, memory and other important system

resources.

• Security: FSSL plug-in provides secure authentication and encryption

facilities. (See the separate manual FSSL for Orbacus Guide.)
2

Overview
• Concurrency: Single and Multi-threaded models to exploit power of

multiprocessor hardware.

• Dynamic Loading Of Modules: transparently install extensions and

services such as transactions, interceptors, and protocol plug-ins.

• Flexibility through pluggable transport protocols. (See “The Open

Communications Interface” on page 355.)

CORBA features Orbacus includes the following CORBA features:

• CORBA 2.5 support.

• CORBA Services:

♦ Naming, Events and Property services are part of the Orbacus

product.

♦ Orbacus interoperates with the Orbix Notification, Orbix Trader and

Orbix Telecom Logging services.

• Portable Interceptors: provide a hook for adding code that is called upon

for each operation invocation.

• Portable Object Adapter: provides high scalability for servers that contain

very large numbers of objects.

• Objects by Value: reduce network traffic by turning a remote interaction

into a local invocation.

• Dynamic Invocation and Dynamic Skeleton Interface: send and receive

requests without compile-time knowledge of interface types and operation

signatures.

• Implementation Repository: start servers on demand and migrate servers to

different hosts without adversely affecting clients.

• Interface Repository: build IDL-to-anything translators easily

• Support for Local Interfaces: standard way to implement

locality-constrained objects

Platform support For the latest information on supported platforms, compilers, and Java versions,
see the Product Availability page.
3

https://supportline.microfocus.com/prodavail.aspx

CHAPTER 1 | Introduction to Orbacus
About this document With the exception of the Getting Started chapter, this manual is not a
replacement for a good CORBA book. This manual also does not contain the
exact specifications of the CORBA standard, which are freely available online.
A good grasp of the CORBA specifications in [4], [5], and [6] is absolutely
necessary to effectively use this manual. In particular, the chapters in [4],
covering CORBA IDL and the IDL-to-C++ mapping, should be studied
thoroughly.

For C++ users, we also highly recommend [3]. This book contains by far the
best treatment of CORBA programming with C++ to date.

What this manual does contain, however, is information on how Orbacus
implements the CORBA standard. A shortcoming of the current CORBA
specification is that it leaves a high degree of freedom to the CORBA
implementation. For example, the precise semantics of a oneway call are not
specified by the standard.

To make it easier to get started with Orbacus, this book contains a Getting
Started chapter, explaining some Orbacus basics with a very simple example.
4

CHAPTER 2

Getting Started
This chapter introduces you to Orbacus using a well-known
application: the Hello World! application is presented here in a
special client-server version.

In this chapter This chapter contains the following sections:

The Hello World Example Application page 6

Defining the Example in IDL page 7

Implementing the Example in C++ page 8

Implementing the Example in Java page 19

Summary page 29

Where To Go From Here page 30
5

CHAPTER 2 | Getting Started
The Hello World Example Application

C++ and Java applications Many books on programming start with this tiny demo program. In introductory
C++ books you'll probably find the following piece of code in the first chapter:

Or, in introductory Java books:

These applications simply print Hello World! to standard output and that is
exactly what this chapter is about: Printing Hello World! with a CORBA-based
client-server application. In other words, we will develop a client program that
invokes a say_hello operation on an object in a server program. The server
responds by printing “Hello World!” on its standard output.

// C++
#include <iostream.h>

int main(int, char*[])
{
 cout << "Hello World!" << endl;
 return 0;
}

// Java
public class Greeter
{
 public static void main(String args[])
 {
 System.out.println("Hello World!");
 }
}

6

Defining the Example in IDL
Defining the Example in IDL

CORBA-based program How do we write a CORBA-based Hello World! program? The first step is to
create a file containing our IDL definitions. Since our example application isn't a
complicated one, the IDL code needed for this example is simple.

Save the IDL code shown below to a file called Hello.idl.

Line 2 An interface with the name Hello is defined. An IDL interface is
conceptually equivalent to a pure abstract class in C++, or to an interface in Java.

Lines 4 The only operation defined is say_hello, which neither takes any
parameters nor returns any result.

1 // IDL
2 interface Hello
3 {
4 void say_hello();
5 }
7

CHAPTER 2 | Getting Started
Implementing the Example in C++

Generating C++ from IDL The next step is to translate the IDL code to C++ using the IDL-to-C++
translator.

Translate the code in Hello.idl to C++ using the following command:

idl Hello.idl

This command will create the files:

• Hello.h

• Hello.cpp

• Hello_skel.h

• Hello_skel.cpp

Now we will implement the server and client.

In this section This section discusses the following topics:

Implementing the Server page 9

Writing the Server Program page 11

Implementing the Client page 15

Compiling and Linking page 17

Running the Application page 18
8

Implementing the Example in C++
Implementing the Server

Overview To implement the server, we need to define an implementation class for the
Hello interface. To do this, we create a class Hello_impl that is derived from
the skeleton class POA_Hello, defined in the file Hello_skel.h.

Hello_impl definition Create a file Hello_impl.h and enter the class definition of Hello_impl shown
below:

Line 2 Since our implementation class derives from the skeleton class
POA_Hello, we must include the file Hello_skel.h.

Line 4 Here we define Hello_impl as a class derived from POA_Hello and
RefCountServantBase. RefCountServantBase is part of the PortableServer
namespace and provides reference counting.

Line 9 Our implementation class must implement all operations from the IDL
interface. In this case, this is just the operation say_hello.

 1 // C++
 2 #include <Hello_skel.h>
 3
 4 class Hello_impl : public POA_Hello, public
 5 PortableServer::RefCountServantBase
 6 {
 7 public:
 8
 9 virtual void say_hello()
10 throw(CORBA::SystemException);
11 };
9

CHAPTER 2 | Getting Started
Hello_impl implementation Create a file Hello_impl.cpp and enter the class implementation of Hello_impl
shown below:

Line 3 We must include OB/CORBA.h, which contains definitions for the
standard CORBA classes, as well as for other useful things.

Line 4 We must also include the Hello_impl class definition, contained in the
header file Hello_impl.h.

Lines 6-9 The say_hello function simply prints “Hello World!” on standard
output.

1 // C++
2 #include <iostream.h>
3 #include <OB/CORBA.h>
4 #include <Hello_impl.h>
5
6 void Hello_impl::say_hello() throw(CORBA::SystemException)
7 {
8 cout << "Hello World!" << endl;
9 }
10

Implementing the Example in C++
Writing the Server Program

Overview Now we will write the server program. To simplify exception handling and ORB
destruction, we will split the server into two functions: main() and run(), where
main() only creates the ORB, and calls run()

main() function Create a file with the name Server.cpp and enter the code for the main()
function shown below:

 1 // C++
 2 #include <OB/CORBA.h>
 3 #include <Hello_impl.h>
 4
 5 #include <fstream.h>
 6
 7 int run(CORBA::ORB_ptr);
 8
 9 int main(int argc, char* argv[])
10 {
11 int status = EXIT_SUCCESS;
12 CORBA::ORB_var orb;
13
14 try
15 {
16 orb = CORBA::ORB_init(argc, argv);
17 status = run(orb);
18 }
19 catch(const CORBA::Exception&)
20 {
21 status = EXIT_FAILURE;
22 }
23
11

CHAPTER 2 | Getting Started
Lines 2-5 Several header files are included. Of these, OB/CORBA.h provides the
standard CORBA definitions, and Hello_impl.h contains the definition of the
Hello_impl class.

Line 7 A forward declaration for the run() function.

Line 16 The first thing a CORBA program must do is initialize the ORB. This
operation expects the parameters with which the program was started. These
parameters may or may not be used by the ORB, depending on the CORBA
implementation. Orbacus recognizes certain options that will be explained later.

Line 17 The run() helper function is called.

Lines 19-22 This code catches and prints all CORBA exceptions raised by
ORB_init() or run().

Lines 24-34 If the ORB was successfully created, it is destroyed. This releases
the resources used by the ORB. If destroy() raises a CORBA exception, this
exception is caught and printed.

Line 36 The exit status is returned. If there was no error, EXIT_SUCCESS is
returned, or EXIT_FAILURE otherwise.

24 if(!CORBA::is_nil(orb))
25 {
26 try
27 {
28 orb -> destroy();
29 }
30 catch(const CORBA::Exception&)
31 {
32 status = EXIT_FAILURE;
33 }
34 }
35
36 return status;
37 }
12

Implementing the Example in C++
run() function Add the code for the run() function to Server.cpp:

Lines 4-7 Using the ORB reference, resolve_initial_references() is
invoked to obtain a reference to the Root POA.

Lines 9-10 The Root POA is used to obtain a reference to its POA Manager.

Lines 12-14 A servant of type Hello_impl is created and assigned to a
ServantBase_var variable. The servant is then used to incarnate a CORBA
object, using the _this() operation. ServantBase_var and Hello_var, like all
_var types, are smart pointers. That is, servant and hello will release their
assigned object automatically when they go out of scope.

 1 // C++
 2 int run(CORBA::ORB_ptr orb)
 3 {
 4 CORBA::Object_var poaObj =
 5 orb -> resolve_initial_references("RootPOA");
 6 PortableServer::POA_var rootPoa =
 7 PortableServer::POA::_narrow(poaObj);
 8
 9 PortableServer::POAManager_var manager =
10 rootPoa -> the_POAManager();
11
12 Hello_impl* helloImpl = new Hello_impl();
13 PortableServer::ServantBase_var servant = helloImpl;
14 Hello_var hello = helloImpl -> _this();
15
16 CORBA::String_var s = orb -> object_to_string(hello);
17 const char* refFile = "Hello.ref";
18 ofstream out(refFile);
19 out << s << endl;
20 out.close();
21
22 manager -> activate();
23 orb -> run();
24
25 return EXIT_SUCCESS;
25 }
13

CHAPTER 2 | Getting Started
Lines 16-20 The client must be able to access the implementation object. This
can be done by saving a stringified object reference to a file, which can then be
read by the client and converted back to the actual object reference.1 The
operation object_to_string() converts a CORBA object reference into its
string representation.

Lines 22-23 The server must activate the POA Manager to allow the Root POA
to start processing requests, and then inform the ORB that it is ready to accept
requests.

1. If your application contains more than one object, you do not need to save object
references for all objects. Usually you save the reference of one object which provides
operations that can subsequently return references to other objects.
14

Implementing the Example in C++
Implementing the Client

Overview In several respects, the client program is similar to the server program. The code
to initialize and destroy the ORB is the same.

Client code Save the following code in a file Client.cpp:

Line 3 In contrast to the server, the client does not need to include
Hello_impl.h. Only the generated file Hello.h is needed.

Lines 7-12 This code is the same as for the server.

 1 // C++
 2 #include <OB/CORBA.h>
 3 #include <Hello.h>
 4
 5 #include <fstream.h>
 6
 7 int run(CORBA::ORB_ptr);
 8
 9 int main(int argc, char* argv[])
{10
11 ... // Same as for the server
12 }
13
14 int run(CORBA::ORB_ptr orb)
15 {
16 const char* refFile = "Hello.ref";
17 ifstream in(refFile);
18 char s[2048];
19 in >> s;
20 CORBA::Object_var obj = orb -> string_to_object(s);
21
22 Hello_var hello = Hello::_narrow(obj);
23
24 hello -> say_hello();
25
26 return 0;
27 }
15

CHAPTER 2 | Getting Started
Lines 16-20 The stringified object reference written by the server is read and
converted to a CORBA::Object object reference. It’s not necessary to obtain a
reference to the Root POA or its POA Manager, because they are only needed by
server applications.

Line 22 The _narrow operation generates a Hello object reference from the
CORBA::Object object reference. Although _narrow for CORBA objects works
similar to dynamic_cast<> for plain C++ objects, dynamic_cast<> must not be
used for CORBA object references. That’s because in contrast to
dynamic_cast<>, _narrow might have to query the server for type information.

Line 24 The say_hello operation on the hello object reference is invoked,
causing the server to print “Hello World!”.
16

Implementing the Example in C++
Compiling and Linking

Overview Compiling Hello.cpp results in an object file with the following name:

• UNIX: Hello.o

• Windows: Hello.obj

You must link both the client and the server with the file for your platform.

The compiled Hello_skel.cpp and Hello_impl.cpp are only needed by the
server.

Dependencies Compiling and linking is to a large degree compiler- and platform-dependent.
Many compilers require unique options to generate correct code.

To build Orbacus programs, you must at least link with the Orbacus library for
your platform:

• UNIX: libOB.a

• Windows: ob.lib

Additional libraries are required on some systems, such as libsocket.a and
libnsl.a for Solaris or wsock32.lib for Windows.

For more details The Orbacus distribution includes various README files for different platforms
which give hints on the options needed for compiling and the libraries necessary
for linking. Please consult these README files for details.
17

CHAPTER 2 | Getting Started
Running the Application

Overview Our Hello World! application consists of two parts:

• The client program

• The server program

Start the server first, since it must create the file Hello.ref that the client needs
in order to connect to the server. As soon as the server is running, you can start
the client. If all goes well, the Hello World! message will appear on the screen.
18

Implementing the Example in Java
Implementing the Example in Java

Generating Java from IDL In order to implement this application in Java, the interface specified in IDL is
translated to Java classes similar to the way the C++ code was created.

Translate the code in Hello.idl to Java using the following command:

jidl --package hello Hello.idl

This command generates several Java source files on which the actual
implementation will be based:

• Hello.java

• HelloHelper.java

• HelloHolder.java

• HelloOperations.java

• HelloPOA.java

• _HelloStub.java

All these files are generated into a directory with the name hello.

In this section This section discusses the following topics:

Implementing the Server page 20

Implementing the Client page 25

Compiling page 27

Running the Application page 28
19

CHAPTER 2 | Getting Started
Implementing the Server

Implementation class Create a file Hello_impl.java in the directory hello and enter the following
code for the server's Hello implementation class:

Line 4 The implementation class Hello_impl must inherit from the generated
class HelloPOA.

Lines 6-8 As with the C++ implementation, the say_hello method simply
prints “Hello World!” on standard output.

 1 // Java
 2 package hello;
 3
 4 public class Hello_impl extends HelloPOA
 5 {
 6 public void say_hello()
 7 {
 8 System.out.println("Hello World!");
 9 }
10 }
20

Implementing the Example in Java
Server class main() method Create a file Server.java in the directory hello and enter the following
Server class code which holds the server's main() and run() methods:

 1 // Java
 2 package hello;
 3
 4 public class Server
 5 {
 6 public static void main(String args[])
 7 {
 8 java.util.Properties props = System.getProperties();
 9 props.put("org.omg.CORBA.ORBClass",
10 "com.ooc.OBServer.ORB");
11 props.put("org.omg.CORBA.ORBSingletonClass",
12 "com.ooc.CORBA.ORBSingleton");
13
14 int status = 0;
15 org.omg.CORBA.ORB orb = null;
16
17 try
18 {
19 orb = org.omg.CORBA.ORB.init(args, props);
20 status = run(orb);
21 }
22 catch(Exception ex)
23 {
24 ex.printStackTrace();
25 status = 1;
26 }
27
28 if(orb != null)
29 {
30 try
31 {
32 orb.destroy();
33 }
34 catch(Exception ex)
35 {
36 ex.printStackTrace();
37 status = 1;
38 }
39 }
40
41 System.exit(status);
42 }
21

CHAPTER 2 | Getting Started
Lines 8-12 These properties are necessary to use the Orbacus ORB instead of
the JDK’s ORB.

Line 19 The ORB must be initialized using ORB.init. The ORB class resides in
the package org.omg.CORBA. You must either import this package, or, as shown
in this example, you must use org.omg.CORBA explicitly.

Line 20 The run() helper function is called.

Lines 22-26 This code catches and prints all CORBA exceptions raised by
ORB.init() or run().

Lines 28-39 If the ORB was successfully created, it is destroyed. This releases
the resources used by the ORB. If destroy() raises a CORBA exception, this
exception is caught and printed.

Line 41 The exit status is returned. If there was no error, 0 is returned, or 1
otherwise.
22

Implementing the Example in Java
Server class run() method Add the run() method to Server.java:

Lines 5-10 A reference to the Root POA is obtained using the ORB reference,
and the Root POA is used to obtain a reference to its POA Manager.

Lines 12-23 A servant of type Hello_impl is created and is used to incarnate a
CORBA object. The CORBA object is released automatically when it is not used
anymore.

 1 // Java
 2 static int run(org.omg.CORBA.ORB orb)
 3 throws org.omg.CORBA.UserException
 4 {
 5 org.omg.PortableServer.POA rootPOA =
 6 org.omg.PortableServer.POAHelper.narrow(
 7 orb.resolve_initial_references("RootPOA"));
 8
 9 org.omg.PortableServer.POAManager manager =
10 rootPOA.the_POAManager();
11
12 Hello_impl helloImpl = new Hello_impl();
13 Hello hello = helloImpl._this(orb);
14
15 try
16 {
17 String ref = orb.object_to_string(hello);
18 String refFile = "Hello.ref";
19 java.io.PrintWriter out = new java.io.PrintWriter(
20 new java.io.FileOutputStream(refFile));
21 out.println(ref);
22 out.close();
23 }
24 catch(java.io.IOException ex)
25 {
26 ex.printStackTrace();
27 return 1;
28 }
29
30 manager.activate();
31 orb.run();
32 return 0;
33 }
34 }
23

CHAPTER 2 | Getting Started
Lines 15-28 The object reference is stringified and written to a file.

Lines 30-31 The server enters its event loop to receive incoming requests.
24

Implementing the Example in Java
Implementing the Client

Client.java Save this to a file with the name Client.java in the directory hello:

Lines 6-9 This code is the same as for the server.

Lines 14-26 The stringified object reference is read and converted to an object.

 1 // Java
 2 package hello;
 3
 4 public class Client
 5 {
 6 public static void main(String args[])
 7 {
 8 ... // Same as for the server
 9 }
10
11 static int run(org.omg.CORBA.ORB orb)
12 {
13 org.omg.CORBA.Object obj = null;
14 try
15 {
16 String refFile = "Hello.ref";
17 java.io.BufferedReader in = new

java.io.BufferedReader(
18 new java.io.FileReader(refFile));
19 String ref = in.readLine();
20 obj = orb.string_to_object(ref);
21 }
22 catch(java.io.IOException ex)
23 {
24 ex.printStackTrace();
25 return 1;
26 }
27
28 Hello hello = HelloHelper.narrow(obj);
29
30 hello.say_hello();
31
32 return 0;
33 }
34 }
25

CHAPTER 2 | Getting Started
Line 28 The object reference is narrowed to a reference to a Hello object. A
simple Java cast is not allowed here, because it is possible that the client will
need to ask the server whether the object is really of type Hello.

Line 30 The say_hello operation is invoked, causing the server to print “Hello
World!” on standard output.
26

Implementing the Example in Java
Compiling

Steps To compile the application:

1. Ensure that your CLASSPATH environment variable includes the current

working directory as well as the Orbacus for Java classes (i.e the OB.jar

file) as shown below:

Replace your_orbacus_directory with the name of the directory where

Orbacus is installed.

2. To compile the implementation classes and the classes generated by the

Orbacus IDL-to-Java translator, use javac (or the Java compiler of your

choice):

javac hello/*.java

Platform Command

UNIX CLASSPATH=.:your_orbacus_directory/lib/OB.jar:$CLASSPATH
export CLASSPATH

Windows set CLASSPATH=.;your_orbacus_directory\lib\OBE.jar;%CLASSPATH%
27

CHAPTER 2 | Getting Started
Running the Application

Steps To run the application, complete the following steps:

1. Start the Hello World Java server by entering the following command in a

command prompt:

java hello.Server

2. Start the Hello World Java client by entering the following command:

java hello.Client

Again, make sure that your CLASSPATH environment variable includes the

OBE.jar file.

You might also want to use a C++ server together with a Java client (or vice
versa). This is one of the primary advantages of using CORBA: if something is
defined in CORBA IDL, the programming language used for the implementation
is irrelevant. CORBA applications can talk to each other, regardless of the
language they are written in.
28

Summary
Summary

What have we learned? At this point, you might be inclined to think that this is the most complicated
method of printing a string that you have ever encountered in your career as a
programmer. At first glance, a CORBA-based approach may indeed seem
complicated. On the other hand, think of the benefits this kind of approach has to
offer. You can start the server and client applications on different machines with
exactly the same results.

Regarding the communication between the client and the server, you don't have
to worry about platform-specific methods or protocols at all, provided there is a
CORBA ORB available for the platform and programming language of your
choice. If possible, get some hands-on experience and start the server on one
machine, the client on another1. As you will see, CORBA-based applications run
interchangeably in both local and network environments.

One last point to note: you likely won't be using CORBA to develop systems as
simple as our Hello, World example. The more complex your applications
become (and today’s applications are complex), the more you will learn to
appreciate having a high-level abstraction of your applications' key interfaces
captured in CORBA IDL.

1. Note that after the startup of the server program, you must copy the stringified object
reference (that is, the file Hello.ref) to the machine where the client program is to
be run.
29

CHAPTER 2 | Getting Started
Where To Go From Here

Further reading To understand the remaining chapters of this manual, you must have read the
CORBA specifications in [4], [5], and [6]. You will not be able to understand the
chapters that follow without a good understanding of CORBA in general,
CORBA IDL and the IDL-to-C++ or IDL-to-Java mappings.
30

CHAPTER 3

Generating Code
with Orbacus
This chapter describes the Orbacus translators.

In this chapter This chapter contains the following sections:

Orbacus Translators page 32

Translating IDL to C++ page 33

Translating IDL to Java page 37

Translating IDL to HTML page 39

Translating IDL to RTF page 40

The IDL-to-C++ Translator and the Interface Repository page 43

Include Statements page 44

Documenting IDL Files page 45

Using javadoc page 48
31

CHAPTER 3 | Generating Code with Orbacus
Orbacus Translators

Overview Orbacus includes the following code generators, or translators:

idl Translates IDL to C++

jidl Translates IDL to Java

hidl Translates IDL to HTML

ridl Translates IDL to RTF

irgen Generates C++ from an Interface Repository
32

Translating IDL to C++
Translating IDL to C++

Synopsis idl [options] idl-files...

Description Translates IDL files into C++ files.

For each IDL file four C++ files are generated. For example,

idl MyFile.idl

produces the following files:

Options -h, --help

Show a short help message.

-v, --version

Show the Orbacus version number.

-d, --debug

Print diagnostic messages. This option is for Orbacus internal debugging

purposes only.

-DNAME

Defines NAME as 1. This option is directly passed to the preprocessor.

-DNAME=DEF

Defines NAME as DEF. This option is directly passed to the preprocessor.

-UNAME

Removes any definition for NAME. This option is directly passed to the

preprocessor.

-IDIR

MyFile.h Header file containing MyFile.idl’s translated data types and
interface stubs

MyFile.cpp Source file containing MyFile.idl’s translated data types and
interface stubs

MyFile_skel.h Header file containing skeletons for MyFile.idl’s interfaces

MyFile_skel.cpp Source file containing skeletons for MyFile.idl’s interfaces
33

CHAPTER 3 | Generating Code with Orbacus
Adds the directory DIR to the include file search path. This option is

directly passed to the preprocessor.

-E

Runs the source files through the preprocessor without generating code.

--no-skeletons

Don’t generate skeleton classes.

--no-type-codes

Don’t generate type codes and insertion and extraction functions for the

Any type. Use of this option will cause the translator to generate more

compact code.

--no-virtual-inheritance

Don't use virtual C++ inheritance. If you use this option, you cannot use

multiple interface inheritance in your IDL code, and you also cannot use

multiple C++ inheritance to implement your servant classes.

--tie

Generate tie classes for delegate-based interface implementations. Tie

classes depend on the corresponding skeleton classes. That is, you must not

use --no-skeletons in combination with --tie.

--fwd

Generate separate header files for forward declarations.

--impl

Generate example servant implementation classes. An input file Foo.idl

will generate the files Foo_impl.h and Foo_impl.cpp. These files will not

be overwritten, therefore you must first remove the existing files before

new ones can be generated. You must not use --no-skeletons in

combination with this option.

--impl-all

Similar to --impl, but function signatures are generated for all inherited

operations and attributes. You must not use --no-skeletons in

combination with this option.

--c-suffix SUFFIX

Use SUFFIX as the suffix for source files. The default value is .cpp.

--h-suffix SUFFIX

Use SUFFIX as the suffix for header files. The default value is .h.

--stub-suffix SUFFIX
34

Translating IDL to C++
Use SUFFIX as the suffix for stub files. The default value is an empty

suffix.

--skel-suffix SUFFIX

Use SUFFIX as the suffix for skeleton files. The default value is _skel.

--all

Generate code for included files instead of inserting #include statements.

See “Include Statements” on page 44.

--no-relative

When generating code, idl assumes that the same -I options that are used

with idl are also going to be used with the C++ compiler. Therefore idl

will try to make all #include statements relative to the directories

specified with -I. The option --no-relative suppresses this behavior, in

which case idl will not make #include statements for included files

relative to the paths specified with the -I option.

--header-dir DIR

This option can be used to make #include statements for header files

relative to the specified directory.

--this-header-dir DIR

Like the --header-dir option, this option can be used to make #include

statements for header files relative to the specified directory. However, this

option only applies to #include statements for the header files of this IDL

file.

--other-header-dir DIR

Like the --header-dir option, this option can be used to make #include

statements for header files relative to the specified directory. However, this

option only applies to #include statements for the header files

corresponding to IDL files that were included in this IDL file.

--output-dir DIR

Write generated files to directory DIR.

--file-list FILE

Write a list of all generated files to file FILE.

--dll-import DEF

Put DEF in front of every symbol that needs an explicit DLL import

statement.
35

CHAPTER 3 | Generating Code with Orbacus
--with-interceptor-args

Generate code with support for arguments, result and exception list values

for interceptors.

--no-local-copy

To ensure strict compliance with CORBA’s location transparency

semantics, the default behavior of the translator is to generate code that

copies valuetype argument and result values for collocated invocations.

Specify this option to disable strict compliance and generate more efficient

code.

--case-sensitive

The semantics of OMG IDL forbid identifiers in the same scope to differ

only in case. This option relaxes these semantics, but is only provided for

backward compatibility with non-compliant IDL.

--with-async

Generate code with support for Asynchronous Method Invocation (AMI).
36

Translating IDL to Java
Translating IDL to Java

Synopsis jidl [options] idl-files...

Description Translates IDL files into Java files.

For every construct in the IDL file that maps to a Java class or interface, a
separate class file is generated. Directories are automatically created for those
IDL constructs that map to a Java package (for example, a module).

jidl can also add comments from the IDL file starting with /** to the generated
Java files. This allows you to use the javadoc tool to produce documentation
from the generated Java files. See “Using javadoc” on page 48 for additional
information.

Options for jidl -h, --help
-v, --version
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
-E
--no-skeletons
--locality-constrained
--all
--tie
--file-list FILE
--no-local-copy
--case-sensitive
--with-async

These options are the same as for the idl command.

--no-comments

The default behavior of jidl is to add any comments from the IDL file

starting with /** to the generated Java files. Specify this option if you

don’t want these comments added to your Java files.

--package PKG

Specifies a package name for the generated Java classes. Each class will be

generated relative to this package.
37

CHAPTER 3 | Generating Code with Orbacus
--prefix-package PRE PKG

Specifies a package name for a particular prefix1. Each class with this

prefix will be generated relative to the specified package.

--auto-package

Derives the package names for generated Java classes from the IDL

prefixes. The prefix ooc.com, for example, results in the package com.ooc.

--output-dir DIR

Specifies a directory where jidl will place the generated Java files.

Without this option the current directory is used.

--clone

Generates a clone method for struct, union, enum, exception, valuetype

and abstract interface types. For valuetypes, only an abstract method is

generated. The valuetype implementer must supply an implementation for

clone.

--impl

Generates example servant implementation classes. For IDL interface

types, a class is generated in the same package as the interface classes,

having the same name as the interface with the suffix _impl. The generated

class extends the POA class of the interface. For IDL valuetypes, a class is

generated in the same package as the valuetype with the suffix

ValueFactory_impl. You must not use --no-skeletons in combination

with this option.

--impl-tie

Similar to --impl, but implementation classes for interfaces implement the

Operations interface to facilitate the use of TIE classes. You must not use

--no-skeletons in combination with this option.

--with-interceptor-args

Generate code with support for arguments, result and exception list values

for interceptors. Note that use of this option will generate proprietary stubs

and skeletons which are not compatible with ORBs from other vendors.

1. Prefix refers to the value of the #pragma prefix statement in an IDL file. For
example, the statement #pragma prefix "ooc.com" defines ooc.com as the
prefix. The prefix is included in the Interface Repository identifiers for all types
defined in the IDL file.
38

Translating IDL to HTML
Translating IDL to HTML

Synopsis hidl [options] idl-files...

Description Creates HTML files from IDL files.

An HTML file is generated for each module and interface defined in an IDL file.
Comments in the IDL file are preserved and javadoc style keywords are
supported. The section “Documenting IDL Files” on page 45 provides more
information.

Options for hidl -h, --help
-v, --version
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
--all
--case-sensitive

These options are the same as for the idl command.

--no-sort

Don’t sort symbols alphabetically.

--ignore-case

Sort case-insensitive.

--use-tables

Use tables for indices.

--alt-indent

Use alternative indentation for argument lists. The alternative format

requires less horizontal space, which is in particular useful if the names of

the operation or arguments are long.

--output-dir DIR

Write HTML files to the directory DIR.
39

CHAPTER 3 | Generating Code with Orbacus
Translating IDL to RTF

Description ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is
generated for each module and interface defined in an IDL file. Comments in the
IDL file are preserved and javadoc style keywords are supported. The section
“Documenting IDL Files” on page 45 provides more information.

Options for ridl -h, --help
-v, --version
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
--all
--case-sensitive

These options are the same as for the idl command.

--no-sort
--ignore-case
--use-tables
--alt-indent

These options are the same as for the hidl command.

--output-dir DIR

Write RTF files to the directory DIR.

--single-file FILE

Create a single file called FILE.rtf.

--with-index

Create index entries.

--font PARA NAME
--font-size PARA SIZE

Specify the font name or size for a particular paragraph type. The paragraph
types and their default values are shown below.
40

Translating IDL to RTF
Type Font Size

body roman Times New Roman 12 pt

entry swiss Tahoma 12 pt

extra same as body 12 pt

heading swiss Arial 18 pt

index same as heading 15 pt

literal roman Courier New 10 pt

symbol roman Symbol 12 pt
41

CHAPTER 3 | Generating Code with Orbacus
Generating C++ from an Interface Repository

Synopsis irgen name-base

Description irgen generates C++ code directly from the contents of an Interface Repository.
See “The IDL-to-C++ Translator and the Interface Repository” on page 43 for
an example.

Options for irgen -h, --help
-v, --version
--no-skeletons
--no-type-codes
--locality-contrained
--no-virtual-inheritance
--tie
--impl
--impl-all
--c-suffix SUFFIX
--h-suffix SUFFIX
--skel-suffix SUFFIX
--header-dir DIR
--other-header-dir DIR
--output-dir DIR
--file-list FILE
--dll-import DEF
--with-interceptors-args
--no-local-copy

These options are the same as for the idl command.

The argument to irgen is the pathname to use as the base name of the

output filenames. For example, if the pathname you supply is output/

file, then irgen will produce output/file.cpp, output/file.h,

output/file_skel.cpp and output/file_skel.h.

Note that irgen will generate code for all of the type definitions contained

in the Interface Repository server.

See Chapter 13 for more information on the Interface Repository.
42

The IDL-to-C++ Translator and the Interface Repository
The IDL-to-C++ Translator and the Interface
Repository

Private versus global interface
Repositories

The Orbacus IDL-to-C++ and IDL-to-Java translators internally use the
Interface Repository for generating code. That is, these programs have their own
private Interface Repository that is fed with the specified IDL files. All code is
generated from that private Interface Repository.

However it is also possible to generate C++ code from a global Interface
Repository.

Steps To generate C++ code from a global Interface Repository:

1. Start the Interface Repository using the command irserv.

2. Feed the Interface Repository the IDL code, using the command irfeed.

3. Finally, use the irgen command to generate the C++ code.

Example For example:

irserv --ior > IntRep.ref &
irfeed -ORBrepository ‘cat IntRep.ref‘ file.idl
irgen -ORBrepository ‘cat IntRep.ref‘ file

By comparison, the IDL-to-C++ translator idl performs all these steps at once,
in a single process using a private Interface Repository. Thus, you only have to
run a single command:

idl file.idl

See Chapter 13 for more information on the Interface Repository.
43

CHAPTER 3 | Generating Code with Orbacus
Include Statements

Using #include statements If you use the #include statement in your IDL code, the Orbacus IDL-to-C++
translator idl does not create code for included IDL files. Instead, the translator
inserts the appropriate #include statements in the generated header files.

Restrictions There are several restrictions on where to place the #include statements in your
IDL files for this feature to work properly:

• #include may only appear at the beginning of your IDL files. All

#include statements must be placed before the rest of your IDL code.1

• Type definitions, such as interface or struct definitions, may not be

split among several IDL files. In other words, no #include statement may

appear within such definitions.

If you do not want these restrictions to be applied, you can use the translator
option --all with idl. With this option, the IDL-to-C++ translator treats code
from included files as if the code appeared in your IDL file at the position where
it is included. This means that the compiler will not place #include statements
in the automatically-generated header files, regardless of whether the code
comes directly from your IDL file or from files included by your IDL file.

Note that when generating code from an Interface Repository using irgen, the
translator behaves identically to idl with the --all option. In other words, the
irgen command does not place #include statements in the generated files, but
rather generates code for all IDL definitions in the Interface Repository.

1. Preprocessor statements like #define or #ifdef may be placed before your
#include statements.
44

Documenting IDL Files
Documenting IDL Files

Overview With the Orbacus IDL-to-HTML and IDL-to-RTF translators, hidl and ridl,
you can easily generate HTML and RTF files containing IDL interface
descriptions. The translators generate a nicely-formatted file for each IDL
module and interface.
45

CHAPTER 3 | Generating Code with Orbacus
Example Figure 1 shows an HTML example:

Syntax The formatting syntax supported by hidl and ridl is similar to that used by
javadoc. The following keywords are recognized:

@author author

Denotes the author of the interface.

Figure 1: Documentation Generated with IDL-to-HTML Translator
46

Documenting IDL Files
@exception exception-name description

Adds an exception description to the exception list of an operation.

@member member-name description

Adds a member description to the member list of a struct, union, enum or

exception type.

@param parameter-name description

Adds a parameter description to the parameter list of an operation.

@return description

Adds descriptive text for the return value of an operation.

@see reference

Adds a See also note.

@since since-text

Comment related to the availability of new features.

@version version

The interface’s version number.

Like javadoc, hidl and ridl use the first sentence in the documentation
comment as the summary sentence. This sentence ends at the first period that is
followed by a blank, tab or line terminator, or at the first @.

ridl understands most basic HTML tags and produces an equivalent format in
the generated RTF files. The following HTML tags are supported:

 <CODE> <DD> <DL> <DT> <HR> <I> <P> <TABLE>
<TD> <TR> <U>
47

CHAPTER 3 | Generating Code with Orbacus
Using javadoc

Adding IDL comments If not explicitly suppressed with the --no-comments option, the Orbacus
IDL-to-Java translator jidl adds IDL comments starting with /** to the
generated Java files, so that javadoc can be used to generate documentation (as
long as the comments are in a format compatible with javadoc).

Example Here is an example that shows how to include documentation in an IDL interface
description file. Let’s assume we have an interface I in a module M:

// IDL

module M
{

/**
 *
 * This is a comment related to interface I.
 *
 * @author Uwe Seimet
 *
 * @version 1.0
 *
 **/
interface I
{

 /**
 *
 * This comment describes exception E.
 *
 **/
 exception E { };
48

Using javadoc
When running jidl on this file, the comments are automatically added to the
generated Java files M/I.java and M/IPackage/E.java. For I.java, the
generated code looks as follows:

 /**
 *
 * The description for operation S.
 *
 * @param arg A dummy argument.
 *
 * @return A dummy string.
 *
 * @exception E Raised under certain circumstances.
 *
 **/
 string S(in long arg)
 raises(E);
};
};

// Java

package M;

//
// IDL:M/I:1.0
//
/**
 * This is a comment related to interface I.
 *
 * @author Uwe Seimet
 *
 * @version 1.0
 *
 **/
49

CHAPTER 3 | Generating Code with Orbacus
Note that jidl automatically inserts the fully-qualified Java name for the
exception E (M.IPackage.E in this case).

These are the contents of IPackage/E.java:

public interface I extends org.omg.CORBA.Object
{
 //
 // IDL:M/I/S:1.0
 //
 /**
 *
 * The description for operation S.
 *
 * @param arg A dummy argument.
 *
 * @return A dummy string.
 *
 * @exception M.IPackage.E Raised under certain

circumstances.
 *
 **/
 public String
 S(int arg)
 throws M.IPackage.E;
}

// Java

package M.IPackage;

//
// IDL:M/I/E:1.0
//
/**
 *
 * This comment describes exception E.
 *
 **/
final public class E extends org.omg.CORBA.UserException
{
 public
 E()
 {
 }
}

50

Using javadoc
Now you can use javadoc to extract the comments from the generated Java files
and produce nicely-formatted HTML documentation.

For additional information please refer to the javadoc documentation.
51

CHAPTER 3 | Generating Code with Orbacus
52

CHAPTER 4

ORB and Object
Adapter
Initialization
This chapter describes the initialization of client and server ORBs
in various languages.

In this chapter This chapter contains the following sections:

Initializing the C++ ORB page 54

Initializing the Java ORB page 55

Object Adapter Initialization page 56

Configuring the ORB and Object Adapter page 57

Using POA Managers page 77

ORB Destruction page 88

Server Event Loop page 89
53

CHAPTER 4 | ORB and Object Adapter Initialization
Initializing the C++ ORB
In C++, the ORB is initialized with CORBA::ORB_init(). For example:

The CORBA::ORB_init() call interprets arguments starting with -ORB and -OA.
All of these arguments, passed through the argc and argv parameters, are
automatically removed from the argument list.

// C++
int main(int argc, char* argv[])
{
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // ...
}

54

Initializing the Java ORB
Initializing the Java ORB
The ORB implementation included in JDK 1.3 and newer can be considered a
minimal ORB, suitable primarily for use in basic client-oriented tasks. In order
to use the Orbacus ORB instead of the JDK’s default ORB, you must start your
application with the following properties:

java -Dorg.omg.CORBA.ORBClass=com.ooc.CORBA.ORB \
-Dorg.omg.CORBA.ORBSingletonClass=com.ooc.CORBA.ORBSingleton \
MyApp

An alternative is to set these properties in your program before initializing the
ORB. For example:

The ORB.init() call interprets arguments starting with -ORB and -OA. Unlike the
C++ version, these arguments are not removed (see “Advanced Property Usage”
on page 75 for more information).

// Java
import org.omg.CORBA.*;
public static void main(String args[])
{
 java.util.Properties props = System.getProperties();
 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
 props.put("org.omg.CORBA.ORBSingletonClass",
 "com.ooc.CORBA.ORBSingleton");

 ORB orb = ORB.init(args, props);
 // ...
}

55

CHAPTER 4 | ORB and Object Adapter Initialization
Object Adapter Initialization
In Orbacus, the object adapter is not initialized until the Root POA is first
resolved. For example:

Upon completion, the ORB will have created the Root POA and its POA
Manager, and will have initialized the ORB’s server-side functionality.

// C++
CORBA::Object_var poaObj =
 orb -> resolve_initial_references("RootPOA");

// Java
org.omg.CORBA.Object poaObj =
 orb.resolve_initial_references("RootPOA");
56

Configuring the ORB and Object Adapter
Configuring the ORB and Object Adapter

Overview Orbacus applications can tailor the behavior of the ORB and object adapters
using a collection of properties. These properties can be defined in a number
ways:

• using the Windows Registry (Windows C++)

• using a configuration file

• using system properties (Java)

• using command-line options

• programmatically at run-time

The Orbacus configuration properties are described in the following sections.
Unless otherwise noted, every property can be used in both C++ and Java
applications.

In this section This section contains the following subsections:

Note: The properties described in this section have nothing to do with the
Property Service, as described in Appendix B.

ORB Properties page 58

OA Properties page 65

Command-line Options page 68

Using a Configuration File page 70

Using the Windows Registry page 71

Defining Properties page 72

Precedence of Properties page 74

Advanced Property Usage page 75
57

CHAPTER 4 | ORB and Object Adapter Initialization
ORB Properties

ooc.config Value: filename

Selects the default configuration file. This property is only available in Java
applications and is equivalent to the ORBACUS_CONFIG environment variable in
C++. See “Using a Configuration File” on page 70 for more information on
configuration files.

ooc.oci.client Value: string

Specifies a comma-separated list of client-side transport plug-ins to be installed.
The plug-ins are installed in the order they appear in the list. The default value is
iiop.

ooc.oci.server Value: string

Specifies a comma-separated list of server-side transport plug-ins to be installed.
The plug-ins are installed in the order they appear in the list. The default value is
iiop.

ooc.oci.plugin.name Value: string

Specifies a plug-in’s shared library (C++) or initialization class (Java). In most
cases this property is not necessary because the ORB attempts to locate the
library or class using a well-known name. In C++, the well-known name is
libOCI_name.so (UNIX), libOCI_name.sl (HP-UX) or OCI_name.dll
(Windows), where name is the plug-in name (for example, iiop). The ORB
searches for this shared library in the library search path. Similarly, in Java the
ORB searches the class path for a class named com.ooc.OCI.name.

ooc.orb.client_shutdown_timeout Value: timeout >= 0

If the client is not able to gracefully disconnect from the server in timeout
seconds, a connection shutdown is forced. If this property is set to zero, then the
client will not force a connection shutdown. If the property is not set, a default
timeout value of two seconds is used.
58

Configuring the ORB and Object Adapter
ooc.orb.client_timeout Value: timeout >= 0

The client actively closes a connection that has been idle for timeout seconds
once that connection has no more outstanding replies. Note that the application
must use the threaded client-side concurrency model if connection timeouts are
desired. If this property is set to zero, or not set at all, then the client does not
close idle connections. Note that a policy can also be set on the ORB or on
individual object references. See “OB::ACMTimeoutPolicy” on page 303 for
more information.

ooc.orb.conc_model Value: reactive, threaded

Selects the client-side concurrency model. The reactive concurrency model is
not currently available in Orbacus for Java. The default value is threaded for
both C++ and Java applications. See Chapter 18 for more information on
concurrency models.

ooc.orb.default_init_ref Value: URL

Specifies a partial URL. If an application calls the ORB operation
resolve_initial_references and no match is found, the ORB appends a slash
(‘/’) character and the service identifier to the specified URL and invokes
string_to_object to obtain the initial reference.

ooc.orb.default_wcs Value: string

Specifies the default wide character code set for the ORB. Note that the CORBA
specification states that a default wide character code set does not exist.
Therefore, this option should only be used when communicating with a broken
ORB that expects a particular wide character code set and does not correctly
support the negotiation of wide character code sets.

ooc.orb.extended_wchar Value: true,false

Enables transfers of wide characters (IDL types wchar and wstring) with IIOP
1.0, using Unicode as the code set. This proprietary extension is required in
order to exchange wide characters with Orbix/E, which only supports IIOP 1.0.
The default is false.
59

CHAPTER 4 | ORB and Object Adapter Initialization
ooc.orb.giop.max_message_size Value: max >= 0

Specifies the maximum GIOP message size in bytes. If set to 0, no maximum
message size will be used. If a message is sent or received that exceeds the
maximum size, the ORB will raise the IMP_LIMIT system exception.

ooc.orb.id Value: id

Specifies the identifier of the ORB to be used by the application.

ooc.orb.modules Value: string

Specifies a comma-separated list of modules to be loaded dynamically by the
ORB. The ORB locates the shared library for a module using a well-known
name: libname.so (UNIX), libname.sl (HP-UX) or name.dll (Windows),
where name is the module name. The ORB then invokes the initialization
function init_module_name in that shared library. The initialization function
takes no arguments and returns void. A module initialization function will
typically register an ORBInitializer, which allows interceptors and initial
references to be installed. This property is only supported in C++. In Java, the
standard mechanism for installing an ORBInitializer should be used. See [7] for
more information on ORBInitializers.

ooc.orb.module.name Value: string

Specifies the name of a module’s shared library or DLL. In most cases this
property is not necessary because the ORB attempts to locate the library using a
well-known name, as described above for the ooc.orb.modules property. The
value of this property can be a simple filename, in which case the ORB will
attempt to load the library using the search path, or it can be an absolute
pathname.

ooc.orb.native_cs Value: string

Specifies the native character code set for the ORB. The default is ISO 8859-1.
60

Configuring the ORB and Object Adapter
ooc.orb.native_wcs Value: string

Specifies the native wide character code set for the ORB. The default is UTF-16.

ooc.orb.policy.connect_timeout Value: timeout >= -1

Sets the OB::ConnectTimeoutPolicy at the ORB level. See Appendix B for
more information on this policy. The default value is -1.

ooc.orb.policy.connection_reuse Value: true,false

Sets the OB::ConnectionReusePolicy at the ORB level. See Appendix B for
more information on this policy. The default value is true.

ooc.orb.policy.interceptor Value: true,false

Sets the OB::InterceptorPolicy at the ORB level. See Appendix B for more
information on this policy. The default value is true.

ooc.orb.policy.locate_request Value: true,false

Sets the OB::LocateRequestPolicy at the ORB level. See Appendix B for more
information on this policy. The default value is false.

ooc.orb.policy.location_
transparency

Value: strict,relaxed

Sets the OB::LocationTransparencyPolicy at the ORB level. See Appendix B
for more information on this policy. The default value is relaxed.

ooc.orb.policy.protocol Value: string

Sets the OB::ProtocolPolicy at the ORB level. See Appendix B for more
information on this policy.

ooc.orb.policy.rebind Value: transparent,no_rebind,no_reconnect

Sets the Messaging::RebindPolicy at the ORB level. The default value is
transparent.
61

CHAPTER 4 | ORB and Object Adapter Initialization
ooc.orb.policy.request_timeout Value: timeout >= -1

Sets the OB::RequestTimeoutPolicy at the ORB level. See Appendix B for
more information on this policy. The default value is -1.

ooc.orb.policy.retry Value: never,strict,always

Sets the mode attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is strict.

ooc.orb.policy.retry.interval Value: timeout >= 0

Sets the interval attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is 0.

ooc.orb.policy.retry.max Value: timeout >= 0

Sets the max attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is 1.

ooc.orb.policy.retry.remote Value: true,false

Sets the remote attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is false.

ooc.orb.policy.sync_scope Value: none,transport,server,target

Sets the Messaging::SyncScopePolicy at the ORB level. The default value is
transport.

ooc.orb.policy.timeout Value: timeout >= -1

Sets the OB::TimeoutPolicy at the ORB level. See Appendix B for more
information on this policy. The default value is -1.
62

Configuring the ORB and Object Adapter
ooc.orb.raise_dii_exceptions Value: true, false

Determines whether system exceptions that occur during Dynamic Invocation
Interface (DII) operations are raised immediately or are stored only in the
CORBA::Environment object. This property is only available for Java
applications. The default value is true. Note that specifying a value of false
may result in unexpected behavior.

ooc.orb.server_name Value: string

Specifies the name of the server, as registered with the Implementation
Repository (IMR). Note that you should not put this property in a configuration
file that is shared by several IMR-enabled servers. Furthermore, this property
should not be specified for servers that are not registered with the IMR.

ooc.orb.server_shutdown_
timeout

Value: timeout >= 0

If the server is not able to gracefully disconnect from the client in timeout
seconds, a connection shutdown is forced. If this property is set to zero, then the
server will not force a connection shutdown. If the property is not set, a default
timeout value of two seconds is used.

ooc.orb.server_timeout Value: timeout >= 0

The server actively closes a connection that has been idle for timeout seconds
once that connection has no more outstanding replies. Note that the application
must use one of the threaded server-side concurrency model if connection
timeouts are desired. If this property is set to zero, or not set at all, then the
server does not close idle connections.

ooc.orb.use_type_code_cache Value: true, false

Determines whether the ORB caches TypeCodes. When the TypeCode cache is
disabled, the ORB creates a new TypeCode object for each TypeCode received
over the wire, including those associated with Any values. When the TypeCode
cache is enabled, only one TypeCode object is instantiated for each TypeCode
with a unique, non-empty repository id. The default value is true.

Note that there is one rare case where the cache may not work as expected: if an
application requires the received TypeCode to be equal to the one that was
transmitted, where equal implies a successful result from the
63

CHAPTER 4 | ORB and Object Adapter Initialization
TypeCode::equal() operation. Although TypeCodes with the same repository
id are always equivalent, they are not always equal because of TypeCode
compaction. However, if the cache is enabled, two TypeCode objects received
over the wire with the same repository id will always be equal. For more
information on the semantics of the equal() and equivalent() TypeCode
operations, see [3].

ooc.orb.service.name Value: ior

Adds an initial service to the ORB’s internal list. This list is consulted when the
application invokes the ORB operation resolve_initial_references. name is
the key that is associated with an IOR or URL. For example, the property
ooc.orb.service.NameService adds NameService to the list of initial services.
See “The BootManager” on page 143 for more information.

ooc.orb.trace.connections Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to connection establishment and closure. A level of 1 or higher produces
information about connection events, and a level of 2 or higher produces code
set exchange information. The default level is 0, which produces no output.

ooc.orb.trace.retry Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to transparent re-sending of failed messages. A level of 1 or higher
produces information about re-sending of messages, and a level of 2 or higher
also produces information about use of individual IOR profiles. The default level
is 0, which produces no output.
64

Configuring the ORB and Object Adapter
OA Properties

Overview Configuring an object adapter is achieved by setting properties on POA
Managers. These properties are grouped into two categories: global properties,
and properties specific to a particular POA Manager. Global properties have the
prefix ooc.orb.oa, while properties specific to a particular POA Manager have
the prefix ooc.orb.poamanager.name, where name is the name of the POA
Manager (see “Using POA Managers” on page 77).

Unless otherwise noted, a POA Manager will search for configuration properties
using the following algorithm:

• First, use properties defined specifically for that POA Manager

• Next, use global properties

• Finally, use default settings.

See “Using POA Managers” on page 77 for more information on POA
Managers.

ooc.orb.oa.conc_model Value: reactive, threaded, thread_per_client, thread_per_request,
thread_pool, leader_follower

Selects the server-side concurrency model. The default value is
thread_per_client. The reactive and leader_follower concurrency models
are only available in Orbacus for C++. See Chapter 18 for more information on
concurrency models.

If this property is set to thread_pool, then the property
ooc.orb.oa.thread_pool determines how many threads are in the pool.

If this property is set to leader_follower, then the property
ooc.orb.oa.leader_follower_pool determines how many threads are to be
used.
65

CHAPTER 4 | ORB and Object Adapter Initialization
This property is also used to determine the default value of the communications
concurrency model for POA Managers (see
ooc.orb.poamanager.manager.conc_model below). The following table
summarizes how the setting of this property determines the POA Manager
defaults:

ooc.orb.oa.endpoint Value: string

Specifies a comma-separated list of endpoints for the Root POA Manager. The
default value is iiop. See “Endpoints” on page 84 for more information.

ooc.orb.oa.leader_follower_pool Value: n > 0

Determines the number of threads in the pool used by the leader_follower
concurrency model. The default value is 10. This property is only effective when
the ooc.orb.oa.conc_model property has the value leader_follower.

ooc.orb.oa.thread_pool Value: n > 0

Determines the number of threads to reserve for servicing incoming requests.
The default value is 10. This property is only effective when the
ooc.orb.oa.conc_model property has the value thread_pool.

Table 1: POA Managers’ Communications Concurrency Model

Value of ooc.orb.oa.conc_model ooc.orb.poamanager.<manager>.con
c_model default

reactive reactive

leader_follower leader_follower

threaded threaded

thread_per_client threaded

thread_per_request threaded

thread_pool threaded
66

Configuring the ORB and Object Adapter
ooc.orb.oa.version Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references. The default value is
1.2. This option is useful for backward compatibility with older ORBs that
reject object references using a newer version of the protocol.

ooc.orb.poamanager.manager.
conc_model

Value: reactive, threaded

Specifies the communications concurrency model used by the POA Manager
with name manager. The default value is determined by
ooc.orb.oa.conc_model. See Chapter 18 for more information on concurrency
models.

ooc.orb.poamanager.manager.
endpoint

Value: string

Specifies a comma-separated list of endpoints for the POA Manager with name
manager. The default value is iiop. See “Endpoints” on page 84 for more
information.

ooc.orb.poamanager.manager.
leader_follower_pool

Value: n > 0

Determines the number of threads in the pool used by the leader_follower
concurrency model. The default value is 10. This property is only effective when
the ooc.orb.poamanager.manager.conc_model property has the value
leader_follower.

ooc.orb.poamanager.manager.
version

Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references generated by a
particular POA Manager. This option is useful for backward compatibility with
older ORBs that reject object references using a newer version of the protocol.
The default value is determined by the value of ooc.orb.oa.version.
67

CHAPTER 4 | ORB and Object Adapter Initialization
Command-line Options
There are equivalent command-line options for many of the Orbacus properties.
The options and their equivalent property settings are shown in the following
table. Refer to “ORB Properties” on page 58 for a description of the properties.

Option Property

-OAreactive ooc.orb.oa.conc_model=reactive

-OAthreaded ooc.orb.oa.conc_model=threaded

-OAthread_per_client ooc.orb.oa.conc_model=thread_per_client

-OAthread_per_request ooc.orb.oa.conc_model=thread_per_request

-OAthread_pool n ooc.orb.oa.conc_model=thread_pool

ooc.orb.oa.thread_pool=n

-OAleader_follower n ooc.orb.oa.conc_model=leader_follower

ooc.orb.oa.leader_follower_pool=n

-OAversion version ooc.orb.oa.version=version

-ORBDefaultInitRef URL ooc.orb.default_init_ref=URL

-ORBid id ooc.orb.id=id

-ORBInitRef name=ior ooc.orb.service.name=ior

-ORBnative_cs name ooc.orb.native_cs=name

-ORBnative_wcs name ooc.orb.native_wcs=name

-ORBnaming ior ooc.orb.service.NameService=ior

-ORBproperty name=value name=value

-ORBreactive ooc.orb.conc_model=reactive

-ORBrepository ior ooc.orb.service.InterfaceRepository=ior

-ORBServerId string ooc.orb.server_name=string

-ORBservice name ior ooc.orb.service.name=ior
68

Configuring the ORB and Object Adapter
A few additional command-line options are supported that do not have
equivalent properties. These options are described in the following table.

-ORBthreaded ooc.orb.conc_model=threaded

-ORBtrace_connections level ooc.orb.trace.connections=level

-ORBtrace_retry level ooc.orb.trace.retry=level

Option Property

Option Description

-ORBconfig filename Causes the ORB to load the configuration file
specified by filename.

-ORBversion Causes the ORB to print its version to standard output.
69

CHAPTER 4 | ORB and Object Adapter Initialization
Using a Configuration File
A convenient way to define a group of properties is to use a configuration file. A
sample configuration file is shown below:

Note that trailing blanks are not ignored but are a part of the property.

You can define the name of the configuration file1 using a command-line option,
an environment variable (C++), or a system property (Java):

• Command-line option:

-ORBconfig filename

• Environment variable:

ORBACUS_CONFIG=filename

• Java system property:

ooc.config=filename

When an ORB is initialized, it first checks for the presence of the environment
variable or system property. If present, the ORB loads the configuration file.
Next, the ORB loads the configuration file specified by the -ORBconfig option.
Therefore, the properties loaded from the file specified by -ORBconfig will
override any existing properties, including those loaded by a configuration file
specified in the environment variable or system property. See “Precedence of
Properties” on page 74 for more information.

Configuration files are only loaded during ORB initialization. Changes made to
a configuration file after an ORB has been initialized have no effect on that
ORB.

Concurrency models
ooc.orb.conc_model=threaded
ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=5

Initial services
ooc.orb.service.NameService=corbaloc::myhost:7000/NameService
ooc.orb.service.EventService=corbaloc::myhost:7001/

DefaultEventChannel
ooc.orb.service.TradingService=corbaloc::myhost:7002/

TradingService

1. Orbacus for Java also accepts a URL specification as the filename.
70

Configuring the ORB and Object Adapter
Using the Windows Registry
Another convenient mechanism for use with C++ applications under Windows is
to use the system registry1. Properties can be stored in the registry under the
following registry keys:

HKEY_LOCAL_MACHINE\Software\OOC\Properties
HKEY_CURRENT_USER\Software\OOC\Properties

Individual properties are defined as sub-keys of the base. For example, the
property ooc.orb.trace.connections=5 is stored in the registry as the
following key containing a value named connections with a REG_SZ data
member equal to 5:

Software\OOC\Properties\ooc\orb\trace

RegUpdate The Orbacus distribution includes a utility called RegUpdate. The tool first
removes all sub-keys defined under the specified registry key. Next, all values
defined in an Orbacus configuration file are transferred to the registry.

Synopsis RegUpdate HKEY_LOCAL_MACHINE|HKEY_CURRENT_USER config-file

Example: RegUpdate HKEY_LOCAL_MACHINE ob.conf

This command reads the properties defined in the file ob.conf and writes the
values under the following registry key:

HKEY_LOCAL_MACHINE\Software\OOC\Properties

1. Use caution when defining Orbacus properties in the registry, as they become global
properties that will be used in every Orbacus for C++ application. For example, subtle
errors can occur if the ooc.iiop.port property is defined on a global basis.
71

CHAPTER 4 | ORB and Object Adapter Initialization
Defining Properties

Properties in Java Java applications can use the standard Java mechanism for defining system
properties because Orbacus will also search the system properties during ORB
initialization.

For example:

Line 2 Obtain the system properties.

Lines 3-4 Define Orbacus properties.

Line 5 Initialize the ORB.

Java virtual machines typically allow you to define system properties on the
command line. For example, using Sun’s JVM you can do the following:

java -Dooc.orb.oa.thread_pool=20 MyServer

You can also use the java.util.Properties object that is passed to the
ORB.init() method to provide Orbacus property definitions:

Line 2 Create a java.util.Properties object to hold our properties.

Lines 3-4 Define Orbacus properties.

Line 5 Initialize the ORB using the java.util.Properties object.

1 // Java
2 java.util.Properties props = System.getProperties();
3 props.put("ooc.orb.oa.conc_model", "thread_pool");
4 props.put("ooc.orb.oa.thread_pool", "20");
5 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

1 // Java
2 java.util.Properties props = new java.util.Properties();
3 props.put("ooc.orb.oa.conc_model", "thread_pool");
4 props.put("ooc.orb.oa.thread_pool", "20");
5 org.omg.CORBA.ORB orb = orb.omg.CORBA.ORB.init(args, props);
72

Configuring the ORB and Object Adapter
Properties in C++ In C++, the Orbacus-specific class OB::Properties can be used to define
properties:

For example, to add the threaded concurrency model to a property set that is
used to initialize the ORB:

Lines 2-3 Create an OB::Properties object that is based on the default
properties. This is important because, unlike org.omg.CORBA.ORB.init,
OBCORBA::ORB_init does not read the default properties if the property
parameter is not null.

Line 4 Define Orbacus property.

Line 5 Initialize the ORB using the Orbacus-specific OBCORBA::ORB_init
operation.

// C++
class Properties
{
 // ...
public:
 Properties();
 Properties(Properties_ptr p);
 ~Properties();

 static Properties_ptr _duplicate(Properties_ptr p);
 static Properties_ptr _nil();

 static Properties_ptr getDefaultProperties();

 void setProperty(const char* key, const char* value);
 const char* getProperty(const char* key) const;
 // ...
};

1 // C++
2 OB::Properties_var dflt =

OB::Properties::getDefaultProperties();
3 OB::Properties_var props = new OB::Properties(dflt);
4 props -> setProperty("ooc.orb.conc_model", "threaded");
5 CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);
73

CHAPTER 4 | ORB and Object Adapter Initialization
Precedence of Properties
Given that properties can be defined in several ways, it’s important to establish
the order of precedence used by Orbacus when collecting and processing the
property definitions. The order of precedence is listed below, from highest to
lowest. Properties defined at a higher precedence override the same properties
defined at a lower precedence.

1. Command-line options

2. Configuration file specified at the command-line

3. User-supplied properties

4. Configuration file specified by the ORBACUS_CONFIG environment variable

(C++) or the ooc.config system property (Java)

5. System properties (Java only)

6. HKEY_CURRENT_USER\Software\OOC\Properties (Windows/C++ only)

7. HKEY_LOCAL_MACHINE\Software\OOC\Properties (Windows/C++ only)

For example, a property defined using a command-line option overrides the
same property defined in a configuration file.
74

Configuring the ORB and Object Adapter
Advanced Property Usage
With the methods for ORB initialization discussed in the previous sections, the
command-line arguments are not processed until a call to CORBA::ORB_init
(C++), OBCORBA::ORB_init (C++), or org.omg.CORBA.ORB.init (Java).
Hence, the set of properties that will be used by the ORB is not available until
after the ORB is initialized. This poses a problem if the properties need to be
validated prior to ORB initialization.

If you need access to an ORB’s property set before it is initialized, then you may
elect to use the Orbacus-specific operations OB::ParseArgs (C++) or
com.ooc.CORBA.ORB.ParseArgs (Java).

Examples The following examples check the value of the ooc.orb.conc_model property
to ensure that it is set to threaded. If not, the code chooses the threaded
concurrency model.

Lines 5-6 Create an OB::Properties object that is based on the default
properties.

Line 7 Initialize the properties for the ORB. After invoking OB::ParseArgs,
props contains the ORB properties and argv no longer contains any -ORB or -OA
command-line arguments. The OB::ParseArgs operation takes an optional

 1 // C++
 2 #include <OB/Logger.h>
 3 #include <OB/Properties.h>
 4 ...
 5 OB::Properties_var dflt =

OB::Properties::getDefaultProperties();
 6 OB::Properties_var props = new OB::Properties(dflt);
 7 OB::ParseArgs(argc, argv, props, OB::Logger::_nil());
 8 const char* orbModel = props ->

getProperty("ooc.orb.conc_model");
 9 if(strcmp(orbModel, "threaded") != 0)
10 {
11 props -> setProperty("ooc.orb.conc_model", "threaded");
12 }
13 CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);
75

CHAPTER 4 | ORB and Object Adapter Initialization
Logger object, which ParseArgs will use to display any warning or error
messages. In this example, a custom Logger object is not used, so the code
passes a nil value.

Lines 8-12 Retrieve the ooc.orb.conc_model property and set it to threaded if
its value is not valid.

Line 13 Initialize the ORB.

Line 2 Create a java.util.Properties object.

Line 3 Initialize the properties for the ORB. After invoking
com.ooc.CORBA.ORB.ParseArgs, props contains the ORB properties. The
return value of ParseArgs is a string array with all -ORB and -OA arguments
removed. As in the C++ example, a Logger object is not used.

Lines 4-8 Retrieve the ooc.orb.conc_model property and set it to threaded if
its value is not valid.

Line 9 Initialize the ORB.

1 // Java
2 java.util.Properties props = System.getProperties();
3 args = com.ooc.CORBA.ORB.ParseArgs(args, props, null);
4 String orbModel = props.get("ooc.orb.conc_model");
5 if(!orbModel.equals("threaded"))
6 {
7 props.put("ooc.orb.conc_model", "threaded");
8 }
9 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(arg, props);
76

Using POA Managers
Using POA Managers
The CORBA specification states that a POA Manager is used to control the flow
of requests to one or more POAs. In Orbacus, each POA Manager also
encapsulates a set of network endpoints on which a server listens for new
connections. This design provides applications with a great deal of flexibility:

• endpoints can be activated and deactivated on demand

• a group of endpoints can be controlled using a single POA Manager and

serviced by one or more POAs

In this section This section contains the following sections:

The Root POA Manager page 78

Anonymous POA Managers page 79

The POA Manager Factory page 80

Creating a POA Manager page 81

POA Manager Policies page 83

Endpoints page 84

Command-line Options and Endpoints page 85

Dispatching Requests page 86

Callbacks page 87
77

CHAPTER 4 | ORB and Object Adapter Initialization
The Root POA Manager
As its name suggests, the Root POA Manager is the POA Manager of the Root
POA. When the Root POA is first resolved using
resolve_initial_references, the Root POA Manager is automatically
created to manage the Root POA. For administrative purposes, the name of the
Root POA Manager is RootPOAManager.
78

Using POA Managers
Anonymous POA Managers
An application can implicitly create POA Managers by supplying a nil value for
the POA Manager argument to the create_POA operation. In fact, this is the only
portable means of creating POA Managers. This section refers to POA Managers
created in this way as anonymous POA Managers.

One limitation of anonymous POA Managers in Orbacus is that their endpoints
cannot be configured externally via properties, therefore anonymous POA
Managers always use the default endpoint configuration. Specifically, each
anonymous POA Manager will create a single IIOP endpoint on a port chosen by
the operating system. Consequently, object references created by POAs
managed by an anonymous POA Manager are inherently transient.1

Applications which require configurable POA Managers (in addition to the Root
POA Manager) can use the proprietary POA Manager factory, described in the
next section.

1. Unless of course an indirect persistence mechanism such as the Implementation
Repository is in use.
79

CHAPTER 4 | ORB and Object Adapter Initialization
The POA Manager Factory
To allow an application to easily configure POA Managers, Orbacus provides
the standard CORBA 3.0 factory interface for creating named POA Managers:

// IDL
 module PortableServer
 {

 local interface POAManagerFactory
 {
 typedef sequence< POAManager > POAManagerSeq;

 exception ManagerAlreadyExists
 {
 };

 POAManager create_POAManager(in string id,
 in CORBA::PolicyList policies)
 raises(ManagerAlreadyExists,
 CORBA::PolicyError);

 POAManagerSeq list();

 POAManager find(in string id);
 };

 ...

 local interface POA
 {
 ...

 readonly attribute POAManagerFactory the_POAManagerFactory;

 ...
 };
 ...
 };
80

Using POA Managers
Creating a POA Manager
The example below illustrates how to create a new POA Manager using the POA
Manager Factory. For this example, an empty policy list is used.

Here is an example in C++:

Lines 2-6 Resolve the POA Manager Factory.

Lines 7-16 Create a new POA Manager with the name MyPOAManager.

 1 // C++
 2 CORBA::Object_var poaObj =
 3 orb -> resolve_initial_references("RootPOA");
 4 OBPortableServer::POA_var rootPOA =
 5 OBPortableServer::POA::_narrow(poaObj);
 6 POAManagerFactory_var factory = rootPOA ->
 7 the_POAManagerFactory();
 8 OBPortableServer::POAManagerFactory_var pmFactory =
 9 OBPortableServer::POAManagerFactory::_narrow(factory);
10 POAManager_var myPOAManager;
11 PolicyList pl;
12 try
13 {
14 myPOAManager = pmFactory ->
15 create_POAManager("MyPOAManager", pl);
16 }
17 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
18 {
19 // do something
20 }
81

CHAPTER 4 | ORB and Object Adapter Initialization
And in Java:

Lines 2-9 Resolve the POA Manager Factory.

Lines 10-17 Create a new POA Manager with the name MyPOAManager.

The ORB processes any configuration properties that were defined for the POA
Manager, and may raise the OCI::InvalidParam exception if an error was found
in the POA Manager’s endpoint configuration.

 1 // Java
 2 org.omg.CORBA.Object obj =
 3 orb.resolve_initial_references("RootPOA");
 4 org.omg.PortableServer.POA rootPOA =
 5 org.omg.PortableServer.POAHelper.narrow(obj)
 6 org.omg.PortableServer.POAManagerFactory factory =
 7 rootPOA.the_the_POAManagerFactory();
 8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
 9

com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(facto
ry);

10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[0];
12 try
13 {
14 myPOAManager =
15 pmFactory.create_POAManager("MyPOAManager", pl);
16 }
17

catch(org.omg.PortableServer.POAManagerFactoryPackage.Manager
AlreadyExists ex)

18 {
19 // do something
20 }
21 catch(org.omg.CORBA.PolicyError ex)
22 {
23 // do something
24 }
82

Using POA Managers
POA Manager Policies

The POA Manager Factory interface allows a set of vendor-specific policies to
be used to configure the new POA Manager. For Orbacus, the proprietary
policies are:

These policies map to the POA Manager specific configuration properties
(ooc.orb.poamanager.manager.) endpoint, conc_model, and version (see
“OA Properties” on page 65). For examples of how to use these policies, refer to
“Using Policies” on page 301.

// IDL
 module OBPortableServer
 {
 local interface POAManagerFactory :

PortableServer::POAManagerFactory
 {
 EndpointConfigurationPolicy

create_endpoint_configuration_policy(
 in string value)
 raises(CORBA::PolicyError);

 CommunicationsConcurrencyPolicy
create_communications_concurrency_policy(

 in short value)
 raises(CORBA::PolicyError);

 GIOPVersionPolicy create_giop_version_policy(
 in short value)
 raises(CORBA::PolicyError);
 };
 ...

 };
83

CHAPTER 4 | ORB and Object Adapter Initialization
Endpoints
Orbacus supports a flexible mechanism for configuring a POA Manager’s
endpoints via properties. A single property is used to configure the endpoints for
a particular POA Manager. The property value consists of a comma-separated
list of endpoints, with the following syntax:

plugin-id [options] [, plugin-id [options]...]

For example:

ooc.orb.oa.endpoint=iiop --port 9998, iiop --port 9999
ooc.orb.poamanager.MyManager.endpoint=iiop

This configuration creates two IIOP endpoints for the Root POA Manager on
specific ports, and one IIOP endpoint for the POA Manager named
‘MyManager’ on an arbitrary port. Technically, the second property isn’t
necessary, because this is the default configuration if no endpoints are specified
for a POA Manager.

It is important to note that only those transport plug-ins which were installed via
the ooc.oci.server property can be used in endpoint configuration.

When experimenting with various endpoint configurations, it can be very useful
to enable connection tracing diagnostics. With diagnostics enabled, the ORB
will display its endpoint information, allowing you to confirm that the
application’s endpoints are configured correctly. Diagnostics can be enabled
using the -ORBtrace_connections command-line option, or using the
equivalent property ooc.orb.trace.connections.

See “Configuring the ORB and Object Adapter” on page 57 for more
information on configuration properties.

For a complete description of the available transport plug-ins and their options,
see Chapter 19.
84

Using POA Managers
Command-line Options and Endpoints
Transport plug-ins may support command-line options, and it is important to
understand the effects of using those options. They can be summarized as
follows:

• Using a plug-in’s command-line options will always add a new endpoint

configuration. That is, command-line options do not override an existing

endpoint configuration.

• Command-line options only configure endpoints for the Root POA

Manager.

The first item is the most significant. Let’s consider some examples which will
serve to explain this issue. First, assume that there is no endpoint configuration
property for the Root POA Manager, and that we use the following
command-line options:

-IIOPhost host.abc.com -IIOPport 1234

The IIOP plug-in will convert these command-line options into the following
configuration property:

ooc.orb.oa.endpoint=iiop --host host.abc.com --port 1234

Now let’s consider a more complicated example. Suppose that we have an
existing endpoint configuration property defined, and we also use command-line
options. The existing endpoint configuration is

ooc.orb.oa.endpoint=iiop --port 5555

And the command-line options are

-IIOPport 5556

After the command-line options are processed by the IIOP plug-in, the endpoint
configuration property will be

ooc.orb.oa.endpoint=iiop --port 5555, iiop --port 5556

Note that there are now two endpoints; the command-line options resulted in an
additional endpoint being appended to the existing property value.
85

CHAPTER 4 | ORB and Object Adapter Initialization
Dispatching Requests
As explained in [4], a POA Manager is initially in the holding state, where
incoming requests on the POA Manager’s endpoints are queued. To dispatch
requests, the POA Manager must be activated using the activate() operation.
86

Using POA Managers
Callbacks
In mixed client/server applications in which callbacks occur, it is important to
remember that callbacks will not be dispatched until the POA Manager has been
activated. If the POA Manager has not been activated, the application will likely
hang. In general, applications should activate the POA Manager prior to making
any request that might result in a callback.
87

CHAPTER 4 | ORB and Object Adapter Initialization
ORB Destruction
Applications must destroy the ORB before returning from main so that resources
used by the ORB are properly released.

To destroy the ORB in C++, invoke destroy on the ORB:

And in Java:

// C++
CORBA::ORB_var orb = // Initialize the orb
// ...
orb -> destroy();

// Java
org.omg.CORBA.ORB orb = // Initialize the orb
// ...
orb.destroy();
88

Server Event Loop
Server Event Loop
A server’s event loop is entered by calling POAManager::activate on each
POA Manager, and then calling ORB::run.

For example, in Java:

And in C++:

You can deactivate a server by calling ORB::shutdown, which causes ORB::run
to return. For example, consider a server that can be shut down by a client by
calling a deactivate operation on one of the server’s objects.

First the IDL code:

// Java
org.omg.CORBA.ORB orb = ... // Initialize the orb
org.omg.PortableServer.POAManager manager = ... // Get Root POA

manager
manager.activate();
orb.run();

// C++
CORBA::ORB_var orb = ... // Initialize the orb
PortableServer::POAManager_var manager = ... // Get the Root POA

manager
manager -> activate();
orb -> run();

// IDL
interface ShutdownObject
{
 void deactivate();
};
89

CHAPTER 4 | ORB and Object Adapter Initialization
On the server side, ShutdownObject can be implemented like this:

Lines 2-3 A servant class for ShutdownObject is defined. For more information
on how to implement servant classes, see Chapter 5.

Line 5 An ORB is needed to call shutdown.

Lines 9-12 The constructor initializes the ORB member.

Lines 14-17 deactivate calls shutdown on the ORB. Note that shutdown is
called with the argument false to avoid a deadlock. A false argument instructs
shutdown to terminate request processing without waiting for executing
operations to complete. A true argument instructs shutdown to return only once
all operations have completed. If shutdown were called with a true argument in
this example, it would deadlock. That is because shutdown(true) would be
invoked from within an operation and, therefore, could not ever return.

The client can use the deactivate call as shown below:

 1 // C++
 2 class ShutdownObject_impl :
 3 public POA_ShutdownObject,
 4 public PortableServer::RefCountServantBase
 5 {
 6 CORBA::ORB_var orb_;
 7
 8 public:
 9
10 ShutdownObject_impl(CORBA::ORB_ptr orb)
11 : orb_(CORBA::ORB::_duplicate(orb))
12 {
13 }
14
15 virtual void deactivate() throw(CORBA::SystemException)
16 {
17 orb_ -> shutdown(false);
18 }
19 }

// C++
ShutdownObject_var shutdownObj = ... // Get a reference somehow
shutdownObj -> deactivate();
90

CHAPTER 5

CORBA Objects
This chapter describes how to create and use CORBA servant
objects.

In this chapter This chapter contains the following sections:

Overview page 92

Implementing Servants page 94

Creating Servants page 103

Activating Servants page 107

Deactivating Servants page 112

Factory Objects page 114
91

CHAPTER 5 | CORBA Objects
Overview
A CORBA object is an object with an interface defined in CORBA IDL.
CORBA objects have different representations in clients and servers.

• A server implements a CORBA object in a concrete programming

language, for example in C++ or Java. This is done by writing an

implementation class for the CORBA object and by instantiating this class.

The resulting implementation object is called a servant.

• A client that wants to make use of an object implemented by a server

creates an object that delegates all operation calls to the servant via the

ORB. Such an object is called a proxy.

When a client invokes a method on the local proxy object, the ORB packs the
input parameters and sends them to the server, which in turn unpacks these
parameters and invokes the actual method on the servant. Output parameters and
return values, if any, follow the reverse path back to the client. From the client’s
perspective, the proxy acts just like the remote object since it hides all the
communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can invoke
a method on the servant when a request is received from a client. This
connection is handled by the Portable Object Adapter (POA), as shown in
Figure 2.

Figure 2: Servants, Proxies and the Object Adapter

Proxy

Servant

POA
ORB

Client Server
92

Overview
The Portable Object Adapter in Orbacus replaces the deprecated Basic Object
Adapter (BOA). (The BOA was deprecated by the OMG because it had a
number of serious deficiencies and was under-specified.) The POA is a far more
flexible and powerful object adapter than the BOA. The POA not only allows
you to write code that is portable among ORBs from different vendors, it also
provides a number of features that are essential for building high-performance
and scalable servers.
93

CHAPTER 5 | CORBA Objects
Implementing Servants
In this section, we will implement servant classes (or implementation classes)
for the IDL interfaces defined below:

Lines 2-5 An interface A is defined with the operation op_a.

Lines 7-10 An interface B is defined with the operation op_b.

Lines 12-15 Interface I is defined, which is derived from A and B. It also defines
a new operation op_i.

 1 // IDL
 2 interface A
 3 {
 4 void op_a();
 5 };
 6
 7 interface B
 8 {
 9 void op_b();
10 };
11
12 interface I : A, B
13 {
14 void op_i();
15 };
94

Implementing Servants
Implementing Servants using Inheritance

Overview Orbacus for C++ and Orbacus for Java both support the use of inheritance for
interface implementation. To implement an interface using inheritance, you
write a servant class that inherits from a skeleton class generated by the IDL
translator. By convention, the name of the servant class should be the name of
the interface with the suffix _impl. For example, for an interface I, the
implementation class is named I_impl.1

Inheritance using C++ In C++, I_impl must inherit from the skeleton class POA_I that was generated by
the IDL-to-C++ translator. If I inherits from other interfaces, for example from
the interfaces A and B, then I_impl must also inherit from the corresponding
implementation classes A_impl and B_impl.

Lines 2-6 The servant class A_impl is defined, inheriting from the skeleton
class POA_A. If op_a had any parameters, these parameters would be mapped
according to the standard IDL-to-C++ mapping rules [4].

Lines 8-13 This is the servant class for B_impl.
1. These naming rules are a recommendation, and are not mandatory.

 1 // C++
 2 class A_impl : virtual public POA_A
 3 {
 4 public:
 5 virtual void op_a() throw(CORBA::SystemException);
 6 };
 7
 8 class B_impl : virtual public POA_B
 9 {
10 public:
11 virtual void op_b() throw(CORBA::SystemException);
12 };
13
14 class I_impl : virtual public POA_I,
15 virtual public A_impl,
16 virtual public B_impl
17 {
18 public:
19 virtual void op_i() throw(CORBA::SystemException);
20 };
95

CHAPTER 5 | CORBA Objects
Lines 14-20 The servant class for I_impl is not only derived from POA_I, but
also from the servant classes A_impl and B_impl.

Note that virtual public inheritance must be used. The only situation in which
the keyword virtual is not necessary is for an interface I which does not inherit
from any other interface and from which no other interface inherits. This means
that the implementation class I_impl only inherits from the skeleton class POA_I
and no implementation class inherits from I_impl.

It is not strictly necessary to have an implementation class for every interface.
For example, it is sufficient to only have the class I_impl as long as I_impl
implements all interface operations, including the operations of the base
interfaces:

Line 2 Now I_impl is only derived from POA_I, but not from the other servant
classes.

Lines 5-7 I_impl must implement all operations from the interface I as well as
the operations of all interfaces from which I is derived.

Inheritance using Java Several files are generated by the Orbacus IDL-to-Java translator for an interface
I, including:

• I.java, which defines a Java interface I containing public methods for the

operations and attributes of I, and

• IPOA.java, which is an abstract skeleton class that serves as the base class

for servant classes.

In contrast to C++, Java’s lack of multiple inheritance currently makes it
impossible for a servant class to inherit operation implementations from other
servant classes, except when using delegation-based implementation. For our

1 // C++
2 class I_impl : virtual public POA_I
3 {
4 public:
5 virtual void op_a() throw(CORBA::SystemException);
6 virtual void op_b() throw(CORBA::SystemException);
7 virtual void op_i() throw(CORBA::SystemException);
8 };
96

Implementing Servants
interface I it is therefore necessary to implement all operations in a single
servant class I_impl, regardless of whether those operations are defined in I or
in an interface from which I is derived.

The servant class I_impl is defined, which implements op_i, as well as the
inherited operations op_a and op_b.

// Java
public class I_impl extends IPOA
{

public void op_a()
{
}

public void op_b()
{
}

public void op_i()
{
}

}

97

CHAPTER 5 | CORBA Objects
Implementing Servants using Delegation
Sometimes it is not desirable to use an inheritance-based approach for
implementing an interface. This is especially true if the use of inheritance would
result in overly complex inheritance hierarchies (for example, because of use of
an existing class library that requires extensive use of inheritance). Therefore,
another alternative is available for implementing servants which does not use
inheritance. A special class, known as a tie class, can be used to delegate the
implementation of an interface to another class.1

Delegation using C++ The Orbacus IDL-to-C++ translator can automatically generate a tie class for an
interface in the form of a template class. A tie template class is derived from the
corresponding skeleton class and has the same name as the skeleton, with the
suffix _tie appended.

For the interface I from the C++ example above, the template POA_I_tie is
generated and must be instantiated with a class that implements all operations of
I. By convention, the name of this class should be the name of the interface with
_impl_tie appended.2

1. Note that tie classes are rarely necessary. Not only is the inheritance implementation
less complex, but it also avoids a number of problems that arise with the life cycle of
objects, particularly in threaded servers. We suggest that you use the tie approach only
if you have no other option.

2. Again, you are free to choose whatever name you like. This is just a recommendation.
98

Implementing Servants
In contrast to the inheritance-based approach, it is not necessary for the class
implementing I’s operations, I_impl_tie, to be derived from a skeleton class.
Instead, an instance of POA_I_tie delegates all operation calls to I_impl_tie, as
shown in Figure 3.

Here is our definition of I_impl_tie:

Line 2 I_impl_tie is defined and not derived from any other class.

Lines 5-7 I_impl_tie must implement all of I’s operations, including inherited
operations.

A servant class for I can then be defined using the I_skel_tie template:

The servant class I_impl is defined as a template instance of POA_I_tie,
parameterized with I_impl_tie.

Figure 3: Class Hierarchy for Delegation Implementation in C++

POA_I_tie

T

delegates to

POA_I

I_impl_tie

// C++
class I_impl_tie
{
public:
virtual void op_a() throw(CORBA::SystemException);
virtual void op_b() throw(CORBA::SystemException);
virtual void op_i() throw(CORBA::SystemException);
};

// C++
typedef POA_I_tie< I_impl_tie > I_impl;
99

CHAPTER 5 | CORBA Objects
The tie template generated by the IDL compiler contains functions that permit
you change the instance denoted by the tie:

Lines 7-9 The _tied_object function permits you to retrieve and change the
implementation instance that is currently associated with the tie. The first
modifier function calls delete on the current tied instance before accepting the
new tied instance if the release flag is currently true; the release flag for the
new tied instance is set to false. The second modifier function also calls delete
on the current tied instance before accepting the new instance but sets the
release flag to the passed value.

Delegation using Java For every IDL interface, the IDL-to-Java mapping generates an operations
interface containing methods for the IDL attributes and operations. This
operations interface is also used to support delegation-based servant
implementation. For an interface I, the following additional class is generated:

• IPOATie.java, the tie class that inherits from IPOA and delegates all

requests to an instance of IOperations.

 1 // C++
 2 template<class T>
 3 class POA_I_tie : public POA_I
 4 {
 5 public:
 6 // ...
 7 T* _tied_object();
 8 void _tied_object(T& obj);
 9 void _tied_object(T* obj, CORBA::Boolean release = true);
10 // ...
11 }
100

Implementing Servants
To implement our servant class using delegation, we need to write a class that
implements the IOperations interface:

Line 2 The servant class I_impl_tie is defined to implement the IOperations
interface.

Lines 4-14 I_impl_tie must implement all of I’s operations, including
inherited operations.

Figure 4 illustrates the relationship between the classes generated by the
IDL-to-Java translator and the servant implementation classes.

 1 // Java
 2 public class I_impl_tie implements IOperations
 3 {
 4 public void op_a()
 5 {
 6 }
 7
 8 public void op_b()
 9 {
10 }
11
12 public void op_i()
13 {
14 }
15 }

Figure 4: Class Hierarchy for Inheritance and Delegation Implementation in
Java

IPOATie
delegates to

IPOA

I_impl IOperations

I_impl_tie
101

CHAPTER 5 | CORBA Objects
As noted earlier, Java’s lack of multiple inheritance makes it impossible to
inherit an implementation from another servant class. Using tie classes,
however, does allow implementation inheritance, but only in certain situations.

For example, let’s implement each of our sample interfaces using delegation.

Lines 2-7 Class A_impl is defined as implementing AOperations.

Lines 9-14 Class B_impl is defined as implementing BOperations.

Lines 16-21 Class I_impl inherits the implementation of op_b from B_impl,
and provides an implementation of op_a and op_i. Since a Java class can only
extend one class, it’s not possible for I_impl to inherit the implementations of
both op_a and op_b.

 1 // Java
 2 public class A_impl implements AOperations
 3 {
 4 public void op_a()
 5 {
 6 }
 7 }
 8
 9 public class B_impl implements BOperations
10 {
11 public void op_b()
12 {
13 }
14 }
15
16 public class I_impl extends B_impl implements IOperations
17 {
18 public void op_a()
19 {
20 }
21
22 public void op_i()
23 {
24 }
25 }
102

Creating Servants
Creating Servants
Servants are created the same way in both C++ and Java: once your servant class
is written, you simply instantiate a servant with new.1

1. You can also instantiate servants on the stack. However, this only works only for some
POA policies, so servants are usually instantiated on the heap.
103

CHAPTER 5 | CORBA Objects
Creating Servants using C++
Here is how to create servants using C++:

Two servants are created with new. Note that this merely instantiates the servants
but does not inform the ORB that these servants exist yet. The ORB server-side
run time only learns of the existence of the servants once you activate them.

In case the servant class was written using the delegation approach, an object of
the class implementing I’s operations must be passed to the servant’s
constructor:

Line 2 A new I_impl_tie is created with new.

Lines 3-4 An instance of POA_I_tie parameterized with I_impl_tie is created,
taking impl as a parameter. All operation calls to tie will then be delegated to
impl.

In this example, the lifetime of impl is coupled to the lifetime of the servant tie.
That is, when the tie is destroyed, delete impl is called by the tie’s destructor.
In case you don’t want the lifetime of impl to be coupled to the lifetime of the
tie, for example, because you want to create a servant on the stack and not on the
heap (making it illegal to call delete on the tie), use the following code:

Line 2 A new I_impl_tie is created, this time on the stack, not on the heap.

Lines 3-4 An instance of POA_I_tie is created. The false parameter tells tie
not to call delete on impl.

// C++
I_impl* servant_pointer = new I_impl;
I_impl* another_servant_pointer = new I_impl;

1 // C++
2 I_impl_tie* impl = new I_impl_tie;
3 POA_I_tie< I_impl_tie >* tie_pointer =
4 new POA_I_tie< I_impl_tie >(impl);

1 // C++
2 I_impl_tie impl;
3 POA_I_tie< I_impl_tie >* tie =
4 new POA_I_tie< I_impl_tie >(&impl, false);
104

Creating Servants
Creating Servants using Java
Every tie class generated by the IDL-to-Java translator has two constructors:

The second constructor allows a POA instance to be supplied, which will be
used as the return value for the tie’s _default_POA method. If the POA instance
is not supplied, the _default_POA method will return the root POA of the ORB
with which the tie has been associated.

This example demonstrates how to create servants using Java:

Two servants, impl and anotherImpl, are created with new.

In case the servant class was written using the delegation approach, an object
implementing the IOperations interface must be passed to the tie’s constructor:

Line 2 A new I_impl_tie is created.

Line 3 An instance of IPOATie is created, taking impl as a parameter. All
operation calls to tie will then be delegated to impl.

// Java
public class IPOATie extends IPOA
{
 public IPOATie(IOperations delegate) { ... }
 public IPOATie(IOperations delegate, POA poa) { ... }
 ...
}

// Java
I_impl impl = new I_impl();
I_impl anotherImpl = new I_impl();

1 // Java
2 I_impl_tie impl = new I_impl_tie();
3 IPOATie tie = new IPOATie(impl);
105

CHAPTER 5 | CORBA Objects
The tie class also provides methods for accessing and changing the
implementation object:

Line 5 This method returns the current delegate (that is, implementation)
object.

Line 6 This method changes the delegate object.

1 // Java
2 public class IPOATie extends IPOA
3 {
4 ...
5 public IOperations _delegate() { ... }
6 public void _delegate(IOperations delegate) { ... }
7 ...
8 }
106

Activating Servants
Activating Servants
Servants must be activated in order to receive requests from clients. Servant
activation informs the ORB run time which particular servant represents (or
incarnates) a particular CORBA object. Activation of a servant assigns an object
identifier to the servant. That object identifier is also embedded in every object
reference that is created for an object and serves to link the object reference with
its servant.

The POA’s IdAssignmentPolicy value controls whether object IDs are
assigned by the POA or the server application code. The SYSTEM_ID policy value
directs the ORB to assign a unique object identifier to the CORBA object
represented by the servant; the USER_ID policy value requires the server
application code to supply an ID that must be unique within the servant’s POA.

Servants can be activated implicitly or explicitly. Implicit activation takes place
when you create the first object reference for a servant. Explicit activation
requires a separate API call. Typically, you will use implicit activation for
transient objects and explicit activation for persistent objects. The
ImplicitActivationPolicy controls whether explicit or implicit is in effect.
Explicit activation requires the NO_IMPLICIT_ACTIVATION policy value on the
servant’s POA, whereas implicit activation requires the IMPLICIT_ACTIVATION
policy value.
107

CHAPTER 5 | CORBA Objects
Implicit Activation of Servants using C++
The following code shows how to implicitly activate a servant:

Line 2 A new servant impl is created.

Line 3 The new servant is activated implicitly by calling _this.

Note that implicit activation as shown requires the RETAIN,
IMPLICIT_ACTIVATION, and SYSTEM_ID policies on the servant’s POA. The
servant is activated with the POA that is returned by the servant’s _default_POA
member function. (The default implementation of _default_POA returns the
Root POA; if you want servants activated on a different POA, you must override
_default_POA in the implementation class to return the POA you want to use.)

1 // C++
2 I_impl impl;
3 I_var iv = impl -> _this();
108

Activating Servants
Implicit Activation of Servants using Java
This is how Java servants are implicitly activated:

Line 2 To activate a servant, we need the ORB.

Line 3 A new servant impl is created.

Line 4 The new servant is activated (using the POA returned by the servant’s
_default_POA operation).

As shown above, a servant in Java must be associated with an ORB, and cannot
be associated with multiple ORBs. The first call to _this() must supply the
ORB reference; subsequent calls to _this() for the same servant can omit the
ORB reference.

An alternative way to associate a servant with an ORB is to call the
set_delegate method defined in org.omg.CORBA_2_3.ORB.

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB

somehow
3 I_impl impl = new I_impl();
4 I Iref = impl._this(orb);

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
((org.omg.CORBA_2_3.ORB)orb).set_delegate(impl);
109

CHAPTER 5 | CORBA Objects
Explicit Activation of Servants using C++
If NO_IMPLICIT_ACTIVATION and SYSTEM_ID are in effect for a servant’s POA,
you activate the servant by calling activate_object:

Line 1 The code instantiates a servant.

Line 2 To activate a servant, we need the servant’s POA.

Line 3 activate_object creates a unique ID for the servant.

Once a servant is activated, calls to _this on the servant return an object
reference that contains the ORB-assigned ID for the object.

If NO_IMPLICIT_ACTIVATION and USER_ID are in effect for servant’s POA, you
activate the servant by supplying the ID value as an octet sequence to
activate_object_with_id:

Lines 3-4 The string_to_ObjectId helper function converts a string into an
octet sequence.

Line 5 activate_object_with_id uses the octet sequence as the object ID for
the servant.

You can use any suitable key value as an object ID. Typically, the key will be
part of the object’s state, such as a social security number. However, you can
also use keys that are not directly related to object state, such as database record
identifiers. Once the servant is activated, calls to _this on the servant return an
object reference that contains the ID you assigned to the object.

1 I_impl impl;
2 PortableServer::POA_var poa = impl._default_POA();
3 poa -> activate_object(&impl);

1 I_impl impl;
2 PortableServer::POA_var poa = impl._default_POA();
3 PortableServer::ObjectId_var oid =
4 PortableServer::string_to_ObjectId("MyObjectName");
5 poa -> activate_object_with_id(oid, &impl);
110

Activating Servants
Explicit Activation of Servants using Java
Servant activation in Java also uses activate_object (for SYSTEM_ID) and
activate_object_with_id (for USER_ID). With SYSTEM_ID, the code looks as
follows:

For USER_ID, you must provide the Object ID:

I_impl impl = new I_impl();
orb.omg.PortableServer.POA poa = impl._default_POA();
poa.activate_object(impl);

I_impl impl = new I_impl();
org.omg.PortableServer.POA poa = impl._default_POA();
byte[] id = "MyObjectName".getBytes();
poa.activate_object_with_id(id, impl);
111

CHAPTER 5 | CORBA Objects
Deactivating Servants

Deactivation of servants using
C++

A servant can be deactivated. Deactivating a servant breaks the association
between the CORBA object and the servant; requests that arrive from clients
thereafter result in an OBJECT_NOT_EXIST exception (or a TRANSIENT exception,
if the server is down at the time a request is made).

To deactivate a servant, call the deactivate_object member function on the
servant’s POA:

Line 2 The code obtains a reference to the servant’s POA by calling
_default_POA. (This assumes that _default_POA is correctly overridden to
return the appropriate POA if the servant is not activated with the Root POA.)

Line 3 The call to servant_to_id on the servant’s POA returns the object ID
with which the servant is activated.

Line 4 The call to deactivate_object breaks the association between the
CORBA object and the servant.

Note that deactivate_object returns immediately, even though the servant
may still be executing requests, possibly in a number of different threads.

Deactivation of servants using
Java

Deactivation of a servant in Java is analogous to C++:

Transient and persistent objects A POA has either the TRANSIENT or the PERSISTENT policy value. A transient
POA generates transient object references. A transient object reference remains
functional only for as long as its POA remains in existence. Once the POA for a

1 // C++
2 PortableServer::POA_var poa = impl._default_POA();
3 PortableServer::ObjectId_var id = poa -> servant_to_id(&impl);
4 poa -> deactivate_object(id);

// Java
org.omg.PortableServer.POA poa = impl._default_POA();
byte[] id = poa.servant_to_id(impl);
poa.deactivate_object(id);
112

Deactivating Servants
transient reference is destroyed, the reference becomes permanently
non-functional and client requests on such a reference raise either
OBJECT_NOT_EXIST or TRANSIENT (depending on whether or not the server is
running at the time the request is sent). Transient references remain
non-functional even if you restart the server and re-create a transient POA with
the same name as was used previously. Transient POAs almost always use the
SYSTEM_ID policy as a matter of convenience (although the combination of
TRANSIENT and USER_ID is legal).

Object references created on a persistent POA continue to be valid beyond the
POA’s life time. That is, if you create a persistent reference on a POA, destroy
the POA, and then recreate that POA again (with the same POA name), the
original reference continues to denote the same CORBA object (even if the
server was shut down and restarted). Persistent references require the same POA
name and object ID to be used to denote the same object. This means that
persistent references rely on the combination of PERSISTENT and USER_ID.
USER_ID must be used in conjunction with NO_IMPLICIT_ACTIVATION, so
servants for persistent references are always activated explicitly.
113

CHAPTER 5 | CORBA Objects
Factory Objects
It is quite common to use the Factory [2] design pattern in CORBA applications.
In short, a factory object provides access to one or more additional objects. In
CORBA applications, a factory object can represent a focal point for clients. In
other words, the object reference of the factory object can be published in a
well-known location, and clients know that they only need to obtain this object
reference in order to gain access to other objects in the system, thereby
minimizing the number of object references that need to be published.

The Factory pattern can be applied in a wide variety of situations, including the
following:

• Security - A client is required to provide security information before the

factory object will allow the client to have access to another object.

• Load-balancing - The factory object manages a pool of objects, often

representing some limited resource, and assigns them to clients based on

some utilization algorithm.

• Polymorphism - A factory object enables the use of polymorphism by

returning object references to different implementations depending on the

criteria specified by a client.

These are only a few examples of the potential applications of the Factory
pattern. The examples listed above can also be used in any combination,
depending on the requirements of the system being designed. Note that the
factory pattern applies equally to persistent and transient objects.

A simple application of the Factory pattern, in which a new object is created for
each client, is illustrated below. The implementation uses the following interface
definitions:

 1 // IDL
 2 interface Product
 3 {
 4 void destroy();
 5 };
 6
 7 interface Factory
 8 {
 9 Product createProduct();
10 };
114

Factory Objects
Lines 2-5 The Product interface is defined. The destroy operation allows a
client to destroy the object when it is no longer needed.

Lines 7-10 The Factory interface is defined. The createProduct operation
returns the object reference of a new Product.
115

CHAPTER 5 | CORBA Objects
Factory Objects using C++
First, we’ll implement the Product interface:

Lines 2-4 The servant class Product_impl is defined as an implementation of
the Product interface. In addition, Product_impl inherits from
RefCountServantBase, which makes the servant reference counted.

Lines 8-13 The destroy() operation deactivates the servant with the POA. As
a result, the POA will release all references it maintains to the servant. Since
there are no other references to the servant left, the servant’s reference count will
drop to zero, and thus the servant is destroyed.

 1 // C++
 2 class Product_impl :
 3 public virtual POA_Product,
 4 public virtual PortableServer::RefCountServantBase
 5 {
 6 public:
 7
 8 virtual void destroy() throw(CORBA::SystemException)
 9 {
10 PortableServer::POA_var poa = _default_POA();
11 PortableServer::ObjectId_var id = poa ->

servant_to_id(this);
12 poa -> deactivate_object(id);
13 }
14 };
116

Factory Objects
Next, we’ll implement the factory:

Line 2 The servant class Factory_impl is defined as an implementation of the
Factory interface.

Lines 9-10 A new reference counted Product servant is instantiated. The
servant is assigned to a ServantBase_var, which decrements the servant’s
reference count when it goes out of scope.

Lines 11-14 Activates the servant and returns an object reference to the client.

It is important to understand how the servant is eventually destroyed. The
RefCountServantBase class from which the servant inherits implements a
reference count. When the servant is instantiated, the RefCountServantBase
constructor sets this reference count to 1. When the servant is activated with the
POA, the POA increases the reference count by at least 1. When the
ServantBase_var we assigned the servant to goes out of scope, the reference
count is decremented by 1. This means that when createProduct() returns,
only the POA is holding a reference to the servant. Later, when the servant is
deactivated in destroy(), the POA decrements the reference count by exactly
the same number it used to increment the reference count upon activation. This
causes the reference count to drop to zero, in which case the servant will be
implicitly deleted.

 1 // C++
 2 class Factory_impl : public virtual POA_Factory
 3 {
 4 public:
 5
 6 virtual Product_ptr
 7 createProduct() throw(CORBA::SystemException)
 8 {
 9 Product_impl* impl = new Product_impl(orb_);
10 PortableServer::ServantBase_var servant = impl;
11 PortableServer::POA_var poa = ... // Get servant’s POA
12 PortableServer::ObjectId_var id = ... // Assign an ID
13 poa -> activate_object_with_id(id, impl);
14 return impl -> _this();
15 }
16 };
117

CHAPTER 5 | CORBA Objects
Note that whenever the ORB starts to dispatch a request on the servant, the
reference count is incremented. After request dispatching is finished, the count is
decremented by the same amount. This ensures that a reference counted servant
cannot be deleted while a request is executing.
118

Factory Objects
Factory Objects using Java
Here is our Java implementation of the Product interface:

Line 2 Servant class Product_impl is defined as an implementation of the
Product interface.

Lines 6-7 The destroy operation deactivates the servant with the POA. As long
as no other references to the servant are held in the server, the object will be
eligible for garbage collection.

Here’s our implementation of the factory:

Line 2 Servant class Factory_impl is defined as an implementation of the
Factory interface.

Lines 4-11 The createProduct operation instantiates a new Product servant,
activates it with the POA, and returns an object reference to the client.

1 // Java
2 public class Product_impl extends ProductPOA
3 {
4 public void destroy()
5 {
6 byte[] id = _default_POA().servant_to_id(this);
7 _default_POA().deactivate_object(id);
8 }
9 }

 1 // Java
 2 public class Factory_impl extends FactoryPOA
 3 {
 4 public Product createProduct()
 5 {
 6 Product_impl result = new Product_impl(orb_);
 7 org.omg.PortableServer.POA poa = ... // Get servant’s

POA
 8 byte[] id = ... // Assign an ID
 9 poa.activate_object_with_id(id, result);
10 return result._this(orb_);
11 }
12 }
119

CHAPTER 5 | CORBA Objects
Caveats
In these simple examples, the factory objects do not maintain any references to
the Product servants they create; it is the responsibility of the client to ensure
that it destroys a Product object when it is no longer needed. This design has a
significant potential for resource leaks in the server, as it is quite possible that a
client will not destroy its Product objects, either because the programmer who
wrote the client forgot to invoke destroy, or because the client program crashed
before it had a chance to clean up. You should keep these issues in mind when
designing your own factory objects.1

1. Two possible strategies for handling this issue include: time-outs, in which a servant
that has not been used for some length of time is automatically released; and
expiration, in which an object reference is only valid for a certain length of time, after
which a client must obtain a new reference. The implementation of these solutions is
beyond the scope of this manual.
120

Factory Objects
Obtaining the POA for a Servant
As mentioned in the previous sections, every servant inherits a _default_POA
function from its skeleton class. The default implementation of this function
returns the Root POA. If you instantiate servants on anything but the Root POA,
you must override the function in the servant; otherwise, calls to _this will
create incorrect object references. Usually, this involves remembering the POA
reference for a servant in a private member variable and returning that reference
from a call to _default_POA. (If all servants for objects of a particular interface
type use the same POA, you can use a static member variable.)

In C++, you can use an approach similar to the following:

Lines 9-12 The constructor accepts a POA reference and remembers that
reference in a private member variable.

Lines 14-17 The _default_POA function returns the servant’s POA.

 1 // C++
 2 class Product_impl :
 3 public virtual POA_Product,
 4 public virtual PortableServer::RefCountServantBase
 5 {
 6 PortableServer::POA_var poa_;
 7
 8 public:
 9 void Product_impl(PortableServer::POA_ptr poa)
10 : poa_(PortableServer::POA::_duplicate(poa))
11 {
12 }
13
14 virtual PortableServer::POA_ptr _default_POA()
15 {
16 return PortableServer::POA::_duplicate(poa_)
17 }
18 };
121

CHAPTER 5 | CORBA Objects
In Java, the approach is very similar:

// Java
public class Product_impl extends ProductPOA
{
private org.omg.PortableServer.POA poa_;

public Product_impl(org.omg.PortableServer.POA poa)
{
poa_ = poa;
}

public org.omg.PortableServer.POA
_default_POA()
 {
 return poa_;
 }
}

122

Factory Objects
Getting the POA for a Currently Executing Request
The ORB provides access to an object of type PortableServer::Current:

This interface provides access to the POA and the object ID for an executing
request. Note that these operations must be invoked only from within the context
of an executing operation inside a servant; otherwise, they raise NoContext. The
Current object provides a useful way to obtain access to a servant’s POA and
object ID without having to store the POA reference in a member variable, at the
cost of being accessible only from within an operation implementation. You can
obtain a reference to the Current object from resolve_initial_references.
In C++, the code looks something like this:// C++

You can keep the reference to the Current object in a variable and use it from
within any executing operation in a servant. There is no need to refresh the
Current reference for the current operation, not even for threaded servers. The
ORB takes care of ensuring that operation invocations on the Current object
return the correct data.

// IDL
module PortableServer
{
 interface Current : CORBA::Current
 {
 exception NoContext { };
 POA get_POA() raises(NoContext);
 ObjectId get_object_id() raises(NoContext);
 };
};

// C++
CORBA::ORB_var orb = ... // Get the ORB somehow
CORBA::Object_var obj =
 orb -> resolve_initial_references("POACurrent");
PortableServer::Current_var current =
 PortableServer::Current::_narrow(obj);
if(!CORBA::is_nil(current))
 ... // Got Current object OK
123

CHAPTER 5 | CORBA Objects
In Java, the code to obtain the Current reference looks like this:

// Java
org.omg.CORBA.ORB orb = ... // Get the ORB somehow
org.omg.CORBA.Object obj =
 orb.resolve_initial_references("POACurrent");
org.omg.PortableServer.Current current =
 org.omg.PortableServer.CurrentHelper.narrow(obj);
if(current != null)
 ... // Got Current object OK
124

CHAPTER 6

Locating Objects
This chapter describes how to locate CORBA servant objects.

In this chapter This chapter contains the following sections:

Obtaining Object References page 126

Lifetime of Object References page 130

Stringified Object References page 134

Object Reference URLs page 138

The BootManager page 143

Initial Services page 147

The IORDump utility page 153
125

CHAPTER 6 | Locating Objects
Obtaining Object References
Using CORBA, an object can obtain a reference to another object in a multitude
of ways. One of the most common ways is by receiving an object reference as
the result of an operation, as demonstrated by the following example:

Lines 2-4 An interface A is defined.

Lines 6-9 An interface B is defined with an operation returning an object
reference to an A.

1 // IDL
2 interface A
3 {
4 };
5
6 interface B
7 {
8 A getA();
9 };
126

Obtaining Object References
On the server side, A and B can be implemented in C++ as follows:

Lines 2-5 The servant class A_impl is defined, which inherits from the skeleton
class POA_A and the class RefCountServantBase which provides a reference
counting implementation.

Lines 7-28 The servant class B_impl inherits from the skeleton class POA_B and
the reference counting class RefCountServantBase.

Lines 14-17 An instance of the servant class A_impl is created in the
constructor for B_impl.

Lines 19-22 In the destructor for B_impl, the reference count for the servant
A_impl is decremented, which leads to the destruction of the servant.

 1 // C++
 2 class A_impl : public POA_A,
 3 public PortableServer::RefCountServantBase
 4 {
 5 };
 6
 7 class B_impl : public POA_B,
 8 public PortableServer::RefCountServantBase
 9 {
10 A_impl* a_;
11
12 public:
13
14 B_impl()
15 {
16 a_ = new A_impl();
17 }
18
19 ~B_impl()
20 {
21 a_ -> _remove_ref();
22 }
23
23 virtual A_ptr getA() throw(CORBA::SystemException)
24 {
25 return a_ -> _this();
26 }
27 };
127

CHAPTER 6 | Locating Objects
Lines 24-27 getA returns an object reference to the A_impl servant (implicitly
creating and activating the CORBA object if necessary).

In Java, the interfaces can be implemented like this:

Lines 2-4 The servant class A_impl is defined, which inherits from the skeleton
class APOA.

Lines 6-21 The servant class B_impl is defined, which inherits from the
skeleton class BPOA.

Lines 11-15 B_impl’s constructor stores a reference to the orb and creates a
new A_impl servant.

Lines 17-20 getA returns an object reference to the A_impl servant (implicitly
creating and activating the CORBA object if necessary).

A client written in C++ could use code like the following to get references to A:

 1 // Java
 2 public class A_impl extends APOA
 3 {
 4 }
 5
 6 public class B_impl extends BPOA
 7 {
 8 org.omg.CORBA.ORB orb_;
 9 A_impl a_;
10
11 public B_impl(org.omg.CORBA.ORB orb)
12 {
13 orb_ = orb;
14 a_ = new A_impl();
15 }
16
17 A getA()
18 {
19 return a_._this(orb_);
20 }
21 }

// C++
B_var b = ... // Get a B object reference somehow
A_var a = b -> getA();
128

Obtaining Object References
And in Java:

In this example, once your application has a reference to a B object, it can obtain
a reference to an A object using getA. The question that arises, however, is How
do I obtain a reference to a B object? This chapter answers that question by
describing a number of ways an application can bootstrap its first object
reference.

// Java
B b = ... // Get a B object reference somehow
A a = b.getA();
129

CHAPTER 6 | Locating Objects
Lifetime of Object References
All of the strategies described in this chapter involve the publication of an object
reference in some form. A common source of problems for newcomers to
CORBA is the lifetime and validity of object references. Using IIOP, an object
reference can be thought of as encapsulating several pieces of information:

• hostname

• port number

• object key

If any of these items were to change, any published object references containing
the old information would likely become invalid and its use might result in a
TRANSIENT or OBJECT_NOT_EXIST exception. The sections that follow discuss
each of these components and describe the steps you can take to ensure that a
published object reference remains valid.
130

Lifetime of Object References
Hostname
By default, the hostname in an object reference is the canonical hostname of the
host on which the server is running. Therefore, running the server on a new host
invalidates any previously published object references for the old host.

Orbacus provides the -IIOPhost option to allow you to override the hostname in
any object references published by the server. This option can be especially
helpful when used in conjunction with the Domain Name System (DNS), in
which the -IIOPhost option specifies a hostname alias that is mapped by DNS
to the canonical hostname.

See “Command-line Options and Endpoints” on page 85 for more information
on the -IIOPhost option.
131

CHAPTER 6 | Locating Objects
Port Number
Each time a server is executed, the Root POA manager selects a new port
number on which to listen for incoming requests. Since the port number is
included in published object references, subsequent executions of the server
could invalidate existing object references.

To overcome this problem, Orbacus provides the -IIOPport option that causes
the Root POA manager to use the specified port number. You will need to select
an unused port number on your host, and use that port number every time the
server is started.

See “Command-line Options and Endpoints” on page 85 for more information
on the -IIOPport option.
132

Lifetime of Object References
Object Key
Each object created by a server is assigned a unique key that is included in object
references published for the object. Furthermore, the order in which your server
creates its objects may affect the keys assigned to those objects.

To ensure that your objects always have the same keys, activate your objects
using POAs with the PERSISTENT life span policy and the USER_ID object
identification policy.
133

CHAPTER 6 | Locating Objects
Stringified Object References
The CORBA specification defines two operations on the ORB interface for
converting object references to and from strings.

Using stringified object references is the simplest way of bootstrapping your
first object reference. In short, the server must create a stringified object
reference for an object and make the string available to clients. A client obtains
the string and converts it back into an object reference, and can then invoke on
the object.

The examples discussed in the sections below are based on the IDL definitions
presented at the beginning of this chapter.

// IDL
module CORBA
{
 interface ORB
 {
 string object_to_string(in Object obj);
 Object string_to_object(in string ref);
 };
};
134

Stringified Object References
Using a File
One way to publish a stringified object reference is for the server to create the
string using object_to_string and then write it to a well-known file.
Subsequently, the client can read the string from the file and use it as the
argument to string_to_object. This method is shown in the following C++
and Java examples.

First, we’ll look at the relevant server code:

Lines 3-5 A servant for the interface B is created and is used to incarnate a
CORBA object.

Line 6 The object reference of the servant is stringified.

Lines 7-9 The stringified object reference is written to a file.

In Java, the server code looks like this:

Lines 3-4 A servant for the interface B is created and is used to incarnate a
CORBA object.

Line 5 The object reference of the servant is stringified.

1 // C++
2 CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
3 B_impl* bImlp = new B_impl();
4 PortableServer::ServantBase_var servant = bImpl;
5 B_var b = bImpl -> _this();
6 CORBA::String_var s = orb -> object_to_string(b);
7 ofstream out("object.ref")
8 out << s << endl;
9 out.close();

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB

somehow
3 B_impl bImpl = new B_impl();
4 B b = bImpl._this(orb);
5 String ref = orb.object_to_string(b);
6 java.io.PrintWriter out = new java.io.PrintWriter(
7 new java.io.FileOutputStream("object.ref"));
8 out.println(ref);
9 out.close();
135

CHAPTER 6 | Locating Objects
Lines 6-9 The stringified object reference is written to a file.

Now that the stringified object reference resides in a file, our clients can read the
file and convert the string to an object reference:

Lines 3-5 The stringified object reference is read.

Line 6 string_to_object creates an object reference from the string.

Line 7 Since the return value of string_to_object is of type
CORBA::Object_ptr, B::_narrow must be used to get a B_ptr (which is
assigned to a self-managed B_var in this example).

Lines 3-5 The stringified object reference is read.

Line 6 string_to_object creates an object reference from the string.

Line 7 Use BHelper.narrow to narrow the return value of string_to_object
to B.

1 // C++
2 CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
3 ifstream in("object.ref");
4 string s;
5 in >> s;
6 CORBA::Object_var obj = orb -> string_to_object(s.c_str());
7 B_var b = B::_narrow(obj);

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
java.io.BufferedReader in = new java.io.BufferedReader(
 new java.io.FileReader("object.ref"));
String ref = in.readLine();
org.omg.CORBA.Object obj = orb.string_to_object(ref);
B b = BHelper.narrow(obj);
136

Stringified Object References
Using a URL
It is sometimes inconvenient or impossible for clients to have access to the same
filesystem as the server in order to read a stringified object reference from a file.
A more flexible method is to publish the reference in a file that is accessible by
clients as a URL. Your clients can then use HTTP or FTP to obtain the contents
of the file, freeing them from any local filesystem requirements. This strategy
only requires that your clients know the appropriate URL, and is especially
suited for use in applets.

Note: This example is shown only in Java because of Java’s built-in support for
URLs, but the strategy can also be used in C++.

Line 5 location is the URL of the file containing the stringified object
reference.

Lines 8-13 Read the string from the URL connection.

Line 15 Convert the string to an object reference.

Line 16 Narrow the reference to a B object.

 1 // Java
 2 import java.io.*;
 3 import java.net.*;
 4
 5 String location = "http://www.mywebserver/object.ref";
 6 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB

somehow
 7
 8 URL url = new URL(location);
 9 URLConnection conn = url.openConnection();
10 BufferedReader in = new BufferedReader(
11 new InputStreamReader(conn.getInputStream()));
12 String ref = in.readLine();
13 in.close();
14
15 org.omg.CORBA.Object object = orb.string_to_object(ref);
16 B b = BHelper.narrow(object);
137

CHAPTER 6 | Locating Objects
Object Reference URLs
Prior to the adoption of the Interoperable Naming Service (INS) [10], the only
standard format for stringified object references was the cumbersome IOR:
format. The INS introduced two new, more readable formats for object
references that use a URL-like syntax. Object reference URLs can be passed to
string_to_object, just like IOR: references. The two new URL formats are
described in detail in the specification, but will be briefly discussed here. The
optional file: URL format is also discussed, as well as the proprietary
relfile: URL format.
138

Object Reference URLs
corbaloc: URLs
The corbaloc: URL supports any number of protocols; the format of the URL
depends on the protocol in use. The general format of a corbaloc: URL is shown
below:

corbaloc:[protocol]:<protocol-specific>

Orbacus supports two standard protocols, iiop and rir, but additional protocols
may be supported via transport plug-ins.

The corbaloc: URL for the iiop protocol has the following structure:

corbaloc:[iiop]:[version@]host[:port]/object-key

The components of the URL are as follows:

• iiop - This is the default protocol for corbaloc: URLs, and therefore is

optional.

• version - The IIOP version number in major.minor format. The default is

1.0.

• host - The hostname of the server.

• port - The port on which the server is listening. The default is 2089.

• object-key - A stringified object key.

The specification allows a URL to contain multiple addresses, but the semantics
are vendor-specific. In Orbacus, each address is used in turn until one is found
that works or until the ORB has tried them all and failed to contact the object.

The rir protocol is a shortcut for the ORB operation
resolve_initial_references. The corbaloc: URL for the rir protocol has
the following structure:

corbaloc:rir:[/id]

The components of the URL are as follows:

• rir - The protocol.

• id - The identifier of the service to be resolved. The identifier

NameService is used if id is not supplied.

Some examples of corbaloc: URLs are:

corbaloc::nshost:10000/NameService
corbaloc::myhost:10000/MyObjectId
corbaloc:rir:/NameService

See “The BootManager” on page 143 for information on how a server can
support corbaloc: URLs.
139

CHAPTER 6 | Locating Objects
corbaname: URLs
A corbaname: URL provides additional flexibility by incorporating use of the
Naming Service in the string_to_object operation. The corbaname: URL
extends the capabilities of the corbaloc: URL to allow the object-key to
identify a binding in a Naming Service. For example, consider this URL:

corbaname::ns1:5001/NameService#ctx/MyObject

When the ORB interprets this URL, it attempts to resolve a naming context
object located at host ns1 on port 5001 and having the object key NameService.
Once the naming context has been resolved, the ORB attempts to lookup the
binding named MyObject in the naming context ctx. If successful, the result of
string_to_object is the object reference associated with the binding.
140

Object Reference URLs
file: URLs
A file: URL provides a convenient way to obtain object references using an
IOR or URL reference that is in a file. The format of a file: URL is:

file:/<absolute file name>

Using the file: URL and given that the file object.ref is located in the /tmp
directory, the client side example of on page 135 may be simplified as follows:

// C++
CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
CORBA::Object_var obj
 = orb -> string_to_object("file:/tmp/object.ref");
B_var b = B::_narrow(obj);

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
org.omg.CORBA.Object obj =
 orb.string_to_object("file:/tmp/object.ref");
B b = BHelper.narrow(obj);
141

CHAPTER 6 | Locating Objects
relfile: URLs
Orbacus also provides the proprietary relfile: URL. This URL is the same as
the file: URL except that it takes a relative file name instead of an absolute file
name.
142

The BootManager
The BootManager
Consider the following corbaloc: URL:

corbaloc::myhost:10000/MyObjectId

In this example, MyObjectId is the complete object key. Normally, object keys
require more information than a simple name to uniquely identify a POA and a
servant within the POA. The CORBA specification does not standardize how a
server can configure these simple object keys, therefore each ORB
implementation must provide a proprietary solution. In Orbacus, the
BootManager provides the mapping from a simple object key to a complete
object reference.
143

CHAPTER 6 | Locating Objects
BootManager Interface
Here is the IDL interface for the BootManager:

For the complete IDL description, please see Appendix A.

module OB
{
local interface BootManager
{
exception NotFound {};
exception AlreadyExists {};

void add_binding(in PortableServer::ObjectId oid, in Object obj)
 raises(AlreadyExists);

void remove_binding(in PortableServer::ObjectId oid)
 raises(NotFound);
};
};
144

The BootManager
How the BootManager Works
When an Orbacus server receives a request, the ORB verifies that the key has the
ORB’s internal format. If not, the ORB will ask the BootManager if it has a
mapping for the foreign key. If a match is found, the ORB will return a location
forward reply, redirecting the client to the object reference supplied by the
BootManager.
145

CHAPTER 6 | Locating Objects
Using the BootManager
The BootManager::add_binding operation binds an object id to an object
reference. The BootManager::remove_binding operation removes an existing
binding. The following example illustrates how a server can add a binding for
the object id MyObjectId.

Lines 3-6 Get a reference to the BootManager object by invoking
resolve_initial_references on the ORB.

Lines 7-8 Create the object id.

Line 9 Create the new binding.

And in Java:

Lines 3-6 Get a reference to the BootManager object by invoking
resolve_initial_references on the ORB.

Line 7 Create the object id.

Line 8 Create the new binding.

1 // C++
2 CORBA::Object_var obj = // ... Get a reference
3 CORBA::Object_var bmgrObj =
4 orb -> resolve_initial_references("BootManager");
5 OB::BootManager_var bootManager =
6 OB::BootManager::_narrow(bmgrObj);
7 PortableServer::ObjectId_var objId =
8 PortableServer::string_to_ObjectId("MyObjectId");
9 bootManager -> add_binding(objId, obj);

// Java
org.omg.CORBA.Object obj = // ... Get a reference
org.omg.CORBA.Object bmgrObj =
 orb.resolve_initial_references("BootManager");
com.ooc.OB.BootManager_var bootManager =
 com.ooc.OB.BootManagerHelper.narrow(bmgrObj);
byte[] objId = "MyObjectId".getBytes();
bootManager.add_binding(objId, obj);
146

Initial Services
Initial Services
The CORBA specification provides a standard way to bootstrap an object
reference through the use of initial services, which denote a set of unique
services whose object references, if available, can be obtained using the ORB
operation resolve_initial_references, which is defined as follows:

Initial services are intended to have well-known names, and the OMG has
standardized the names for some of the CORBA services [9]. For example, the
Naming Service has the name NameService, and the Trading Service has the
name TradingService.

// IDL
module CORBA
{
 interface ORB
 {
 typedef string ObjectId;
 exception InvalidName {};

 Object resolve_initial_references(in ObjectId identifier)
 raises(InvalidName);
 };
};
147

CHAPTER 6 | Locating Objects
Resolving an Initial Service
An example in which the ORB is queried for a Naming Service object reference
will demonstrate how to use resolve_initial_references. The example
assumes that the ORB has already been initialized as usual. First the Java
version:

Lines 5-12 Try to resolve the name of a particular service. If a service of the
specified name is not known to the ORB, an InvalidName exception is thrown.

Lines 19-26 The service type was known. Now the object reference has to be
narrowed to the particular service type. If this fails, the service is not available.

And here’s the C++ equivalent to the Java version above:

 1 // Java
 2 org.omg.CORBA.Object obj = null;
 3 org.omg.CosNaming.NamingContext ctx = null;
 4
 5 try
 6 {
 7 obj = orb.resolve_initial_references("NameService");
 8 }
 9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
10 {
11 ... // An error occured, service is not available
12 }
13
14 if(obj == null)
15 {
16 ... // The object reference is invalid
17 }
18
19 try
20 {
21 ctx = org.omg.CosNaming.NamingContextHelper.narrow(obj);
22 }
23 catch(org.omg.CORBA.BAD_PARAM ex)
24 {
25 ... // This object does not implement a NamingContext
26 }
148

Initial Services
// C++
CORBA::Object_var obj;
CosNaming::NamingContext_var ctx;

try
{
 obj = orb -> resolve_initial_references("NameService");
}
catch(CORBA::ORB::InvalidName&)
{
 ... // An error occured, service is not available
}

if(CORBA::is_nil(obj))
{
 ... // The object reference is invalid
}

ctx = CosNaming::NamingContext::_narrow(obj);
if(CORBA::is_nil(ctx))
{
 ... // This object does not implement NamingContext
}

149

CHAPTER 6 | Locating Objects
Configuring the Initial Services
When an application uses initial services that are not locality-constrained, the
application must register the object references for these objects with the ORB.
Orbacus supports the standard -ORBInitRef and -ORBDefaultInitRef
command-line options for registering initial service object references:

-ORBInitRef name=URL
-ORBDefaultInitRef URL

For example, starting an application as shown below will enable the client to
resolve the NameService initial reference:

myclient -ORBInitRef NameService=corbaloc::nshost:10000/
NameService

The -ORBconfig option is an alternative method for defining a list of initial
services, and is often preferable when a number of services must be defined.

See “Configuring the ORB and Object Adapter” on page 57 for more
information on these command-line options. Also refer to the INS specification
[10] for detailed information on the standard options -ORBInitRef and
-ORBDefaultInitRef.

In addition to using command-line parameters, a program can add to the list of
initial services using the ORB operation register_initial_reference1:

For example, in C++:

1. This will become part of the ORB interface when the Portable Interceptor specification
is adopted.

// IDL
module CORBA
{
 interface ORB
 {
 void register_initial_reference(in ObjectId id, in Object

obj)
 raises(InvalidName);
 };
};

1 // C++
2 CORBA::Object_var obj = ... // Get a name service reference

somehow
3 orb -> register_initial_reference("NameService", obj);
150

Initial Services
LIne 2 Get a reference to the naming service, for example by reading a
stringified object reference and converting it with string_to_object, or by any
other means.

Line 3 Add the reference to the ORB’s list of initial references.

Or in Java:

This is the same as the C++ version above.

// Java
org.omg.CORBA.Object obj = ...// Get a name service reference

somehow
orb.register_initial_reference("NameService", obj);
151

CHAPTER 6 | Locating Objects
The Initial Service Locator
In addition to providing the Orbacus Implementation Repository, the IMR server
(see Chapter 7) acts as an initial service locator. That is, assuming that the IMR
server is properly configured, the name of the host running the IMR server is the
only information needed to find a particular initial service.

To locate an initial service with name foo, the IMR server must first be
configured with the initial reference of this service. This may be done with the
-ORBInitRef command-line option or the ooc.orb.service configuration
property (see Chapter 4 for details). Next, the client that wishes to connect to
foo must be configured with the default initial reference specifying the host
running the IMR server. The -ORBDefaultInitRef command-line option or the
ooc.orb.default_init_ref configuration property may be used to configure
the default initial reference. For example, given that the IMR server is running
on imr-host, then the client can be started with the option:

-ORBDefaultInitRef=corbaloc::imr-host

When the client is configured with this default initial reference it may invoke
resolve_initial_references("foo") on the ORB to obtain a reference to
foo.
152

The IORDump utility
The IORDump utility

Overview Orbacus provides the iordump utility to decode stringified IORs and to print out
their components in human readable format. It is available in a C++ and a Java
version.

Its usage is shown below. For C++:

For Java:

The Java version is available in OB.jar.

Sample output for the demo/hello
example

The following command:

iordump -f Hello.ref

iordump [options] [-f FILE ... | IOR ...]

com.ooc.OB.IORDump [options] [-f FILE ... | IOR ...]

-h, --help Show available options.

-v, --version Show Orbacus version.

-f FILE... Read IORs from file instead of command line.

IOR... List of IORs.
153

CHAPTER 6 | Locating Objects
prints:

IOR #1:
byteorder: little endian
type_id: IDL:Hello:1.0
Profile #1: iiop
iiop_version: 1.2
host: 192.168.0.1
port: 17000
object_key: (37)
171 172 171 49 49 48 50 48 "...11020"
 55 55 53 54 56 48 0 95 "775680._"
 82 111 111 116 80 79 65 0 "RootPOA."
 0 202 254 186 190 60 215 205 "..¦¦¥<Î."
 0 0 0 0 0 "....."
Native char codeset:
 "ISO 8859-1:1987; Latin Alphabet No. 1"
Char conversion codesets:
 "ISO 646:1991 IRV (International Reference Version)"
 "X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"
Native wchar codeset:
 "ISO/IEC 10646-1:1993; UCS-2, Level 1"
Wchar conversion codesets:
 "ISO/IEC 10646-1:1993; UTF-16, UCS Transformation Format 16-bit form"
154

CHAPTER 7

The
Implementation
Repository
This chapter describes how the Orbacus Implementation
Repository (IMR) works and how to use it.

In this chapter This chapter contains the following sections:

Background page 156

Information Managed by the IMR page 157

IMR Security page 160

Usage page 161

Windows Native Service page 163

Configuration Properties page 165

Connecting to the Service page 166

Utilities page 167

Getting Started with the Implementation Repository page 170

Programming Example page 173
155

CHAPTER 7 | The Implementation Repository
Background

Overview The Orbacus Implementation Repository (IMR) provides support for the indirect
binding1 of persistent object references. The key advantage of indirect binding is
that it loosens the coupling between clients and servers so that the location of the
server can change without affecting the client. In practical terms, this is
accomplished by providing the client with an IOR that actually refers to the
IMR, rather than to the server itself. The IMR also provides the ability to start
servers on demand using the Object Activation Daemon (OAD).

The CORBA specification does not standardize how servers and the IMR
interact, it only suggests functionality for vendors to implement. Hence, the
interface between servers and the IMR is strictly proprietary. Due to the
proprietary interface between servers and the IMR, servers using the IMR must
be developed using Orbacus for C++ or Java. However, the interaction between
clients and the IMR is strictly specified by the GIOP specification, so any client
that is CORBA compliant may interact with the IMR.

How it all works When a server is using the IMR, object references created by one of its persistent
POAs refer to the IMR rather than to the server itself. When the client makes a
request using this reference, the IMR receives the request, activates the server (if
necessary) using the OAD, and returns a new object reference to the client that
identifies the server at its current host and port. The client then establishes a
connection with the server using the new object reference and communicates
directly with the server, without the intervention of the IMR. However, should
the server fail, a well-behaved client will contact the IMR again, which may
restart the server and allow the client to resume its activities.

1. Binding refers to the process of opening a connection and associating an object
reference with its servant.
156

Information Managed by the IMR
Information Managed by the IMR
The IMR provides support for the indirect binding and automatic activation of
servers within a given domain. In order to provide this support, the IMR
manages three types of entities: OADs, servers, and POAs.

OADs An OAD is responsible for the activation of servers on a given host. Each OAD
is registered in the IMR using a host name. The IMR also maintains the status of
each OAD. If the OAD is running and in a ready state it will have a status of up,
otherwise, its status will be down.

Servers Servers are registered with a name that is unique within the domain and the host
corresponding to the OAD that is responsible for the server. Since the name is
unique within the domain, it is not currently possible to register the same server
with multiple OADs. The server name that is registered in the IMR can be any
string, but it must be the same as the name used by the server (that is, the name
specified by the -ORBServerId option, or equivalent property). The attributes of
a server that are stored by the IMR are summarized below:

host The host corresponding to the OAD that is responsible
for the server.

exec The path of server executable (the .exe extension must
be included on Windows platforms). If this attribute is
not set, then the IMR will not activate the server.

args The arguments to be supplied when starting the server
executable. Note that -ORBServerId server-id is
automatically appended to the arguments before the
server process is started.

rundir The directory that the server process will be started
from. If this attribute is not set, then the server process
will be started from the root directory. For Windows
platforms, the full path must be specified in the exec
attribute even if this attribute is set.
157

CHAPTER 7 | The Implementation Repository
The IMR also maintains various state information for each server:

• The internal ID of the server.

• The status of the server process. The valid values are forked, starting,

running, stopping, and stopped.

• Whether or not the server was started manually.

• The number of times that the server process has been spawned.

Server processes inherit environment settings from the environment in which the
OAD was started. Hence, path, library path, and class path environment
variables can be used by the server application. This is especially useful in the
case of shared library and class path settings. (Note that the class path may also
be set in the args attribute.)

On Windows platforms, the exec attribute may refer to an executable or batch
file. Make sure that the first line of the batch file contains:

@echo off

On UNIX platforms, the exec attribute may refer to an executable or a shell
script with

#! interpreter

as its first line.

However, if a batch file or shell script is used, then it should accept the
-ORBServerId option since it is automatically appended to the args attribute by
the IMR.

mode The activation mode. The possible values are: shared,
only one server process is created which is used by all
clients, and persistent, the server process is started
when the IMR starts and is used by all clients.

activate-poas If this attribute is set to true (default), then all
persistent POAs will be registered automatically. If set
to false, then persistent POAs are not registered
automatically.

update-timeout The amount of time (in milliseconds) to wait for server
status updates.

failure-timeout The amount of time (in seconds) to wait for the server
to start.

max-spawns The maximum number of tries to start the server.
158

Information Managed by the IMR
In the case of Java servers, a batch file or shell script should be created to start
the server. An alternative is to set the exec attribute to the Java interpreter and to
use the args attribute to specify the class implementing the server.

POAs The IMR allows implicit registration of POAs when the server is started. This
can be enabled or disabled for each server using the activate_poas server
attribute. If implicit registration is enabled, then the user does not have to
register any of the POAs; instead, the server transparently notifies the IMR
whenever a call to create_POA is made by the application code.

If the user disables implicit registration, then the user must register all persistent
POAs (that is, POAs with the PERSISTENT life span policy). POAs are registered
using the name of its server and the name of the POA. Note that any transient
POAs (POAs with the TRANSIENT life span policy) created by the server are not
registered with the IMR.

The IMR also maintains the status for each POA, which indicates the state of its
POA Manager. The valid values are inactive, active, holding, and
discarding.
159

CHAPTER 7 | The Implementation Repository
IMR Security
It is very important that only the IMR’s public endpoint (also referred to as its
forward endpoint) be accessible outside of the network firewall. Otherwise,
anyone can mimic the IMR and cause an OAD to run any command they decide.

For additional security, the information managed by the IMR may only be
modified when the IMR is running in administrative mode. That is:

• OAD registration and removal,

• server registration and removal,

• modification of server attributes, and

• POA registration and removal

are only possible when the IMR is running in administrative mode. An attempt
to modify the information managed by the IMR when it is not running in
administration mode will result in a CORBA::NO_PERMISSION exception.
160

Usage
Usage
The IMR and OAD are currently implemented using Orbacus for C++, but
Orbacus for Java servers can also be launched by the IMR. Both the IMR and
OAD are contained in the IMR server, which may be started in one of three
modes:

Command-line usage is as follows:

master Start only the IMR.

slave Start only the OAD.

dual Start both the IMR and OAD.

imr
 [-h,--help] [-v,--version] [-m,--master] [-s,--slave]
 [-a,--administrative] [-d,--database][-A,--admin-endpoint]
 [-F,--forward-endpoint] [-S,--slave-endpoint]
 [-L, --locator-endpoint]

-h
--help

Display the command-line options supported by the
server.

-v
--version

Display the version of the server.

-m
--master

Run the server in master mode.a

-s
--slave

Run the server in slave mode.a

-a
--administrative

Run the IMR in administrative mode. The IMR will run
in non-administrative mode by default.

-d DIRECTORY
--database DIRECTORY

Specifies the directory in which the IMR maintains its
database files. If not specified, the current working
directory is used.
161

CHAPTER 7 | The Implementation Repository
-A INFO
--admin-endpoint INFO

Specifies the IMR's administrative endpoint settings.
This is the endpoint that the OADs and IMR-enabled
servers use to communicate with the IMR. For security
reasons, access to this endpoint can be restricted. If not
specified, iiop --port 9999 is used.

-F INFO
--forward-endpoint INFO

Specifies the IMR's public endpoint, which is used by
clients for server requests. If not specified, iiop
--port 9998 is used.

-S INFO
--slave-endpoint INFO

Specifies the endpoint used by the OAD. Note that all
of the OADs in a domain must use the same endpoint.
If not specified, iiop --port 9997 is used.

-L INFO
--locator-endpoint INFO

Specifies the endpoint used by the Initial Service
Locator (see “The Initial Service Locator” on
page 152). If not specified, iiop --port 2809 is used.

a. Note that only one of the -m or -s options may be specified. Also, if neither the -m or -s option
is specified, then the server is started in dual mode.
162

Windows Native Service
Windows Native Service
The IMR server is also available as a native Windows service.

In order to use the IMR server as a native Windows service, first add the desired
configuration properties to the HKEY_LOCAL_MACHINE NT registry key (see
“Using the Windows Registry” on page 71 for more details). For example, add
the ooc.imr.admin_endpoint, ooc.imr.forward_endpoint, and
ooc.imr.slave_endpoint properties so that the IMR and OAD will use
non-default endpoint settings.

Next the service should be installed with:

ntimrservice -i

This adds the Orbacus Implementation Repository entry to the Services
dialog in the Control Panel. To start the service, select the Orbacus
Implementation Repository entry, and press Start. If the service is to be
started automatically when the machine is booted, select the Orbacus
Implementation Repository entry, then click Startup. Next select Startup
Type - Automatic, and press OK. Alternatively, the service could have been
installed using the -s option, which configures the service for automatic
start-up:

ntimrservice -s

ntimrservice
 [-h,--help] [-i,--install] [-s,--start-install]
 [-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the
service.

-i
--install

Install the service. The service must be started
manually.

-s
--start-install

Install and start the service.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.
163

CHAPTER 7 | The Implementation Repository
If you want to remove the service, run:

ntimrservice -u

Note: If the executable for the service is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is be placed in the Windows
Event Viewer with the title IMRService. To enable tracing information, add the
desired trace configuration property (that is, one of the ooc.imr.trace
properties or one of the ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE
NT registry key with a REG_SZ value of at least 1.
164

Configuration Properties
Configuration Properties
In addition to the standard configuration properties described in Chapter 4, the
IMR also supports the following properties:

Property Value Description

ooc.imr.mode master, slave, dual Specifies the mode in which the imr server
will be started.

ooc.imr.administrative true, false If set to true, then run the IMR in
administrative mode. For details refer to the
-a command-line option.

ooc.imr.dbdir directory Equivalent to the -d command-line option.

ooc.imr.admin_endpoint info Equivalent to the -A command-line option.

ooc.imr.forward_endpoint info Equivalent to the -F command-line option.

ooc.imr.slave_endpoint info Equivalent to the -S command-line option.

ooc.imr.locator_endpoint info Equivalent to the -L command-line option.

ooc.imr.trace.peer_status level >= 0 Defines the output level for IMR diagnostic
messages related to communications with the
OADs. The default level is 0, which produces
no output.

ooc.imr.trace.process_control level >= 0 Defines the output level for IMR diagnostic
messages related to the forking and death of
server processes. The default level is 0, which
produces no output.

ooc.imr.trace.server_status level >= 0 Defines the output level for IMR diagnostic
messages related to the status of servers and
POAs. The default level is 0, which produces
no output.
165

CHAPTER 7 | The Implementation Repository
Connecting to the Service
Servers that use the IMR must be configured with the IMR initial reference. The
object key of the IMR is IMR, hence, a URL-style object reference of the IMR
service running on host imrhost at port 10000 would be:

corbaloc::imrhost:10000/IMR

Using this object reference, a server can configure the IMR initial reference with
the property:

ooc.orb.service.IMR=corbaloc::imrhost:10000/IMR

An alternative to using the above property is to use the -ORBInitRef
command-line option. Refer to Chapter 6 for more information on URLs and
configuring initial services.
166

Utilities
Utilities

IMR administration The imradmin utility provides complete control over the IMR, OADs and
servers in a domain. Its command interface is shown below:

-h, --help Display this information.

--add-oad [host] Register an OAD for the specified host.

--add-server server-name [exec [host]] Register a server under the OAD
specified by host with the given exec
attribute.

--add-poa server-name poa-name Register a POA for the specified server.

--remove-oad [host] Unregister an OAD.

--remove-server server-name Unregister a server.

--remove-poa server-name poa-name Unregister a POA.

--get-oad-status [host] Get the status of an OAD.

--get-server-info server-name Get the attributes and state information
for a server.

--get-poa-status server-name poa-name Get the status of a POA.

--list-oads List all OADs.

--list-servers List all servers.

--list-poas server-name List all POAs.

--tree Display all OADs, servers and POAs in a
tree like format.

--tree-oad [host] Display an OAD and its associated
servers and POAs in a tree like format.

--tree-server server-name Display a server and its associated POAs
in a tree like format.
167

CHAPTER 7 | The Implementation Repository
Note that the imradmin utility also needs to be configured with the IMR initial
reference (see “Connecting to the Service” on page 166).

The host argument is optional. If host is not specified the local host name is
used. The server-name argument refers to the name of the server. The format of
the poa-name argument is poa1/poa2/poa3, where poa1 is a child of the Root
POA, poa2 is a child of poa1, and poa3 is a child of poa2. Refer to “Information
Managed by the IMR” on page 157 for further details.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to manually
reset the state of the server using the --reset-server command. It is also
necessary to use this command if the server continually crashes on startup and
has reached the maximum number of retries specified by its max_spawns
attribute. This prevents the OAD from continually starting the same broken
server.

Making references The mkref utility creates IMR-based object references for use by clients. Since
the Object ID is required to create a reference, this utility can only be used to
create references for objects created by POAs using the USER_ID object
identification policy. Its usage is shown below.

mkref [-H host] [-P port] server-name object-id poa1/poa2/
.../poan

--set-server server-name {exec|host|

args|rundir|mode|activate_poas|

update_timeout|failure_timeout|

max_spawns} value

Set an attribute of a server. For example,
--set-server srv max_spawns 2 sets
the max_spawns attribute for the server
srv to 2.

--start-server server-name Start a server.

--stop-server server-name Stop a server.

--reset-server server-name Reset a server.

host The host that the imr server is running on. The default
value is the canonical hostname of the machine in which
mkref is executed.
168

Utilities
Upgrading the IMR database The imrdbupgrade utility is used to upgrade an earlier version of the IMR
database. Command-line usage is as follows:

imrdbupgrade database-directory

The database-directory parameter is used to specify the IMR database directory.

port The forward port of the imr server. If not set, then mkref
will use 9998.

server-name The name of the server as registered in the IMR.

object-id The Object ID used by the object.

poa1/poa2/.../poan The POA which creates the object, where poa1 is a child
of the Root POA, poa2 is a child of poa1, and so on.
169

CHAPTER 7 | The Implementation Repository
Getting Started with the Implementation
Repository

To use the IMR, several steps must be taken. These steps are presented below
and are explained by way of example. In this example we assume that Orbacus
has been installed in the directory /usr/local/Orbacus and the executables
imr, imradmin and mkref all exist in a directory that is in the search path.

1. Determine the physical architecture.

In this example, we have a network with three hosts: master, slave1 and

slave2. The host master is used to run only the IMR. The hosts slave1

and slave2 are used to run individual CORBA servers.

2. Create a configuration file for the IMR and OADs.

First, create a configuration file for the IMR containing the following:

This file is placed in the /usr/local/Orbacus/etc directory on host

master.

Second, create a configuration file for the OADs containing the following:

This files is placed in the /usr/local/Orbacus/etc directory on hosts

slave1 and slave2.

3. Start the IMR in administrative mode.

On host master, run:

imr -ORBconfig /usr/local/Orbacus/etc/imr.conf
--administrative

imr.conf
ooc.imr.admin_endpoint=iiop --port 10000
ooc.imr.forward_endpoint=iiop --port 10001
ooc.imr.slave_endpoint=iiop --port 10002
ooc.imr.mode=master
ooc.imr.dbdir=/usr/local/Orbacus/db

oad.conf
ooc.orb.service.IMR=corbaloc::master:10000/IMR
ooc.imr.slave_endpoint=iiop --port 10002
ooc.imr.mode=slave
ooc.imr.dbdir=/usr/local/Orbacus/db
170

Getting Started with the Implementation Repository
4. Start the OADs.

On host slave1, run:

imr -ORBconfig /usr/local/Orbacus/etc/oad.conf

On host slave2, run:

imr -ORBconfig /usr/local/Orbacus/etc/oad.conf

Each OAD automatically registers itself with the IMR. Note that an OAD

can also be registered manually using the imradmin utility. For example, to

register the OAD on host slave1, run:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--add-oad slave1

5. Add each server to the IMR.

In our example, we will run one server on each OAD. The server names are

Server1 and Server2 and are located in /usr/local/bin on their

respective hosts.

First, we register the servers using the imradmin utility:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--add-server Server1 "/usr/local/bin/server1" slave1

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--add-server Server2 "/usr/local/bin/server2" slave2

Next, we set the server arguments:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--set-server Server1 args \
"-ORBInitRef IMR=corbaloc::master:10000/IMR"

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--set-server Server2 args \
"-ORBInitRef IMR=corbaloc::master:10000/IMR"

A C++ server can automatically register itself with the IMR using the

-ORBregister command-line option. For example, to registered Server1,

run the following on slave1:

/usr/local/bin/server1 -ORBregister Server1 \
-ORBInitRef IMR=corbaloc::master:10000/IMR

If the server requires command-line options, then these options must be

added using the imradmin utility.

6. Add each POA to the IMR.

In this example, the servers are registered without setting the

activate_poas attribute, so the attribute defaults to true. Hence, all

persistent POAs will be registered automatically. If this were not the case,

the POAs would have to be registered manually.
171

CHAPTER 7 | The Implementation Repository
7. Configure your servers to use the IMR.

There are three ways to configure a server to use the IMR:

i. Use the -ORBregister command-line option (only available for C++

servers). This option is used for server registration and can only be

used when starting the server for the first time.

ii. Use the -ORBServerId command-line option.

iii. Use the ooc.orb.server_name configuration property. This

configuration property is equivalent to the -ORBServerId

command-line option and may be set in a configuration file or

programmatically prior to initializing the ORB in a server.

In this example, the IMR is responsible for starting the servers. Hence,

when the server is started, the -ORBServerId option is automatically added

to the argument list.

8. Create object references for use by the clients.

A server can always be used to create references for its objects. However,

if an object is created by a POA that uses the USER_ID object identification

policy, then the mkref utility can also be used to create a reference for the

object. Using the mkref utility is discussed below.

Assume each server has a single primary object. Server1 uses Object1 for

its Object ID and Server2 uses Object2. Also, each server creates a

persistent POA called Main to hold its objects. To create object references

for these objects, run the following on master:

mkref -P 10001 Server1 Object1 Main > Object1.ref

mkref -P 10001 Server2 Object2 Main > Object2.ref

After all OADs, servers and POAs are registered, it is recommended to restart
the IMR in non-administrative mode. This will prevent any accidental (or
unauthorized) modifications.
172

Programming Example
Programming Example
In this section, we will show how to modify the C++ version of the Hello World
server (see Chapter 2) to use a persistent object reference. This will allow the
server to use the IMR for indirect binding. Modifications to the Java version of
the server are similar. The code for both the C++ and Java persistent Hello
World servers may be found in the demo/hello_imr directories of the Orbacus
for C++ and Java distributions.

The Hello World server presented in Chapter uses the Root POA to activate its
Hello servant. Since the Root POA uses the TRANSIENT life span policy, the
object reference it creates will not be persistent. Hence, the Hello World server
must be modified so that the Hello servant is activated using a child POA with
the PERSISTENT life span policy. The new child POA will also use the USER_ID
object identification policy so that the mkref utility may be used. Further, the
Hello servant is no longer activated under the Root POA, so it becomes
necessary for it to override the _default_POA method. The modified servant’s
class declaration is shown below:

Line 8 Private member to store the servant’s default POA.

Line 12 A constructor must be defined to allow the assignment of the servant’s
default POA.

 1 // C++
 2
 3 #include <Hello_skel.h>
 4
 5 class Hello_impl : public POA_Hello,
 6 public PortableServer::RefCountServantBase
 7 {
 8 PortableServer::POA_var poa_;
 9
10 public:
11
12 Hello_impl(PortableServer::POA_ptr);
13
14 virtual void say_hello() throw(CORBA::SystemException);
15
16 virtual PortableServer::POA_ptr _default_POA();
17 };
173

CHAPTER 7 | The Implementation Repository
Line 16 Declaration of the _default_POA method.

The remainder of the class declaration is unchanged. The definition of the
constructor and _default_POA method follow:

// C++

Hello_impl::Hello_impl(PortableServer::POA_ptr poa)
: poa_(PortableServer::POA::_duplicate(poa)
{
}

PortableServer::POA_ptr Hello_impl::_default_POA()
{
return PortableServer::POA::_duplicate(poa_);
}

174

Programming Example
The modified portion of the server program is shown below:

Lines 14-22 Create a new POA using PERSISTENT life span policy and the
USER_ID object identification policy.

 1 // C++
 2
 3 int
 4 run(CORBA::ORB_ptr orb, int argc)
 5 {
 6 CORBA::Object_var poaObj =
 7 orb -> resolve_initial_references("RootPOA");
 8 PortableServer::POA_var rootPoa =
 9 PortableServer::POA::_narrow(poaObj);
10
11 PortableServer::POAManager_var manager =
12 rootPoa -> the_POAManager();
13
14 CORBA::PolicyList pl(2);
15 pl.length(2);
16 pl[0] = rootPOA -> create_lifespan_policy(
17 PortableServer::PERSISTENT);
18 pl[1] = rootPOA -> create_id_assignment_policy(
19 PortableServer::USER_ID);
20
21 PortableServer::POA_var helloPOA =
22 rootPOA -> create_POA("hello", manager, pl);
23
24 Hello_impl* helloImpl = new Hello_impl(helloPOA);
25 PortableServer::ServantBase_var servant = helloImpl;
26 PortableServer::ObjectId_var oid =
27 PortableServer::string_to_ObjectId("hello");
28 helloPOA -> activate_object_with_id(oid, servant);
29 Hello_var hello = helloImpl -> _this();
30
31 CORBA::String_var s = orb -> object_to_string(hello);
32 ofstream out("Hello.ref");
33 out << s << endl;
33 out.close();
34
35 manager -> activate();
36 orb -> run();
37
38 return 0;
39 }
175

CHAPTER 7 | The Implementation Repository
Lines 24-25 Create the Hello servant.

Lines 26-27 Using the string "hello", create an object id.

Line 28 Activate the servant with the new POA.

The remainder of the code is unchanged.
176

CHAPTER 8

The
Implementation
Repository Console
The Orbacus Implementation Repository (IMR) includes a
graphical client for administering the service called the Orbacus
IMR Console. The Orbacus IMR Console provides complete
control over the IMR, OADs and servers in a domain.

In this chapter This chapter contains the following sections:

Usage page 178

The Menus page 179
177

CHAPTER 8 | The Implementation Repository Console
Usage

Syntax Use the IMR console as follows:

CLASSPATH requirements The Orbacus IMR Console requires the classes in OB.jar, OBIMR.jar and
OBUtil.jar.

IMR service lookup In order to locate an IMR Service, the application uses the initial IMR Service,
as provided to the ORB with options such as -ORBservice or -ORBconfig. If the
service is not found, an error is displayed and the IMR Console exits.

com.ooc.IMRConsole.Main
[--look CLASS] [--windows] [--motif] [--mac] [-h,--help]

--look CLASS Use the specified look and feel class.

--windows Use the Microsoft Windows look and feel (if
available).

--motif Use the Motif look and feel (if available).

--mac Use the Macintosh look and feel (if available).

-h
--help

Display the command-line options supported by the
program.
178

The Menus
The Menus
The menus provide access to all of the features of the application. In addition,
the most common actions are also available in the toolbar, as well as in a popup
menu that is displayed when pressing the right mouse button over an item in the
binding table or context tree.

The File menu The File menu contains the Exit menu item, which is used to exit the Orbacus
IMR Console.

The Edit menu The operations in the Edit menu provide the means for manipulating OADs,
servers and POAs.

The Create menu item creates a child object under the selected object. OADs
are created under the IMR Domain root object, servers are created under OADs,
and POAs are created under servers.

The Modify menu item applies to all objects. However, servers are currently the
only objects that have attributes that can be modified.

To delete an object, the Delete menu item is used. This operation recursively
deletes all children under the selected item.

Create Create a new OAD, server, or POA.

Modify Modify the selected object.

Delete Delete the selected object.

Cut Move the selected server to the clipboard.

Paste Insert the server contained in the clipboard under the
selected OAD.

Start Start the selected server.

Stop Stop the selected server.

Reset Reset the state of the selected server.
179

CHAPTER 8 | The Implementation Repository Console
The Cut and Paste menu items only apply to servers and are used to move
servers to different hosts. Note that OAD for the desired host must be selected
when using Paste.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to manually
reset the state of the server using the Reset menu item. It also necessary to use
this item if the server continually crashes on startup and has reached the
maximum number of retries specified by its max_spawns attribute. This prevents
the OAD from continually starting the same broken server.

The View menu The View menu contains the Refresh menu item. The Refresh menu item is
used to update the console when the contents of the IMR have been changed
from outside the console. Note that clicking or expanding an item will refresh
the item.

The toolbar and the popup menu In addition to the operations offered by the menu bar, some frequently needed
functions are available by icons located in the toolbar. The toolbar contains all of
the items of the Edit menu and the Refresh item of the View menu. The toolbar
is shown below.
180

The Menus
When selecting an OAD, server or POA with the right mouse button, a popup
menu with a choice of operations will be displayed as shown below. This popup
menu provides the same operations as the toolbar.
181

CHAPTER 8 | The Implementation Repository Console
182

CHAPTER 9

Orbacus Names
A CORBA object is often represented by an object reference in the
form of a stringified IOR, a lengthy string that is difficult to read
and cumbersome to use. It is much more natural to think of an object
in terms of its name, which is a core feature of the CORBA Naming
Service. In the Naming Service, objects are registered with a unique
name, which can later be used to resolve their associated object
references.

Orbacus Names is compliant with [10]. This chapter does not
provide a complete description of the service. It only provides an
overview, suitable to get you started. For more information, please
refer to the specification.

In this chapter This chapter contains the following sections:

Usage page 185

Windows Native Service page 187

Configuration Properties page 189

Persistence page 190

Connecting to the Service page 191

Using the Naming Service with the IMR page 192

Bindings page 193
183

CHAPTER 9 | Orbacus Names
Name Resolution page 195

Programming Example page 196
184

Usage
Usage
Orbacus includes functionally equivalent implementations of the Naming
Service in C++ and Java.

Syntax For C++:

For Java:

Options The options in the following table apply to both C++ and Java versions.

nameserv
 [-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
 [-s,--start] [-d,--database FILE] [-l, --limit COUNT]
 [-t,--timeout MINS] [-c, --callback-timeout SECS]

com.ooc.CosNaming.Server
 [-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
 [-s,--start] [-d,--database FILE] [-l, --limit COUNT]
 [-t,--timeout MINS] [-c, --callback-timeout SECS]

-h
--help

Display the command-line options supported by the
server.

-v
--version

Display the version of the server.

-i
--ior

Prints the stringified IOR of the server to standard
output.

-n
--no-updates

Disables automatic updates. That is, callbacks that
notify interested clients of changes to the naming
service.

-s
--start

Use this option only when starting a persistent server
using a new database.
185

CHAPTER 9 | Orbacus Names
CLASSPATH requirements Orbacus Names for Java requires the classes in OB.jar and OBNaming.jar.

-d FILE
--database FILE

Enables persistence for the server. All of the bindings
created by the server will be saved to the specified file.
If you are starting the server for the first time using this
database, you must also use the -s command-line
option.

-l COUNT
--limit COUNT

Limits the number of bindings returned in the binding
list by a call to list() to COUNT bindings. Using this
option can reduce the memory requirements of the
server.

-t MINS
--timeout MINS

Specifies the timeout in minutes after which a persistent
server automatically compacts its database. The default
timeout is five minutes.

-c SECS
--callback-timeout SECS

Specifies the timeout in seconds to be used for the
Orbacus timeout policy (OB::TimeoutPolicy). The
default timeout is five seconds. See Chapter 16 for more
information.
186

Windows Native Service
Windows Native Service
The C++ version of Orbacus Names is also available as a native Windows
service.

In order to use the Naming Service as a native Windows service, it is first
necessary to add the ooc.naming.endpoint configuration property to the
HKEY_LOCAL_MACHINE NT registry key (see “Using the Windows Registry” on
page 71 for more details). If the service is to be persistent, the path to the
database file must be stored in the following property:1

HKEY_LOCAL_MACHINE\Software\OOC\Properties\ooc\naming\database

Next the service should be installed with:

ntnameservice -i

This adds the Orbacus Naming Service entry to the Services dialog in the
Control Panel. To start the naming service, select the Orbacus Naming Service
entry, and press Start. If the service is to be started automatically when the
machine is booted, select the Orbacus Naming Service entry, then click

ntnameservice
 [-h,--help] [-i,--install] [-s,--start-install]
 [-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the
server.

-i
--install

Install the service. The service must be started
manually.

-s
--start-install

Install the service. The service will be started
automatically.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.

1. Please note that services do not have access to network drives, so the path to the
database must be on a local hard drive.
187

CHAPTER 9 | Orbacus Names
Startup. Next select Startup Type - Automatic, and press OK. Alternatively,
the service could have been installed using the -s option, which configures the
service for automatic start-up:

ntnameservice -s

If you want to remove the service, run:

ntnameservice -u

Note: If the executable for the Naming Service is moved, it must be uninstalled
and re-installed.

Any trace information provided by the service will be placed in the Windows
Event Viewer with the title NamingService. To enable tracing information, add
the desired trace configuration property (that is, the ooc.naming.trace_level
property or one of the ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE
NT registry key with a REG_SZ value of at least 1.
188

Configuration Properties
Configuration Properties
In addition to the standard configuration properties described in Chapter 4,
Orbacus Names also supports the following properties:

ooc.naming.callback_timeout=SECS Equivalent to the -c command-line option.

ooc.naming.database=FILE Equivalent to the -d command-line option.

ooc.naming.no_updates Equivalent to the -n command-line option.

ooc.naming.endpoint=ENDPOINT Specifies the endpoint configuration for the
service. Note that this property is only used if the
ooc.orb.oa.endpoint property is not set.

ooc.naming.timeout=MINS Equivalent to the -t command-line option.

ooc.naming.trace_level=LEVEL Defines the output level for diagnostic messages
printed by Orbacus Names. The default level is 0,
which produces no output. A level of 1 or higher
produces messages related to database operations,
a level of 2 or higher produces messages related to
adding and removing listeners, and a level of 3 or
higher produces messages related to binding
operations.
189

CHAPTER 9 | Orbacus Names
Persistence
Orbacus Names can optionally be used in a persistent mode, in which all data
managed by the service is saved in a file. If you do not run the service in its
persistent mode, all of the data will be lost when the service terminates.

It is also important to note that when using the service in its persistent mode, you
should always start the service on the same port (see Chapter 4 for more
information).
190

Connecting to the Service
Connecting to the Service
The object key of the Naming Service is NameService, which identifies an
object of type CosNaming::OBNamingContext. The OBNamingContext interface
is derived from the standard interface CosNaming::NamingContextExt and
provides additional Orbacus-specific functionality. For a description of the
OBNamingContext interface, please refer to the documented IDL file naming/
idl/OBNaming.idl.

The object key can be used when composing URL-style object references. For
example, the following URL identifies the naming service running on host
nshost at port 10000:

corbaloc::nshost:10000/NameService

Refer to Chapter 6 for more information on URLs and configuring initial
services.
191

CHAPTER 9 | Orbacus Names
Using the Naming Service with the IMR
The Naming Service may be used with the Implementation Repository (IMR).
However, if used with the IMR, it is important to note that the corbaloc
URL-style object reference described in the previous section cannot be used. If
the IMR is used, then the object reference for the Naming Service must be
created using one of the following methods (where NamingServer refers to the
server name configured with the IMR):

• Start the Naming Service with the options:

--ior -ORBServerId NamingServer

causing the Naming Service to print its reference to standard output.

• Use the mkref utility:

mkref NamingServer NameService RootContextPOA

When using the Naming Service with the IMR, the service must be started with
the option -ORBServerId NamingServer, where NamingServer refers to the
server name configured with the IMR. When the IMR is configured to start the
Naming Service, this option is automatically added to the service’s arguments.
However, when the Naming Service is started manually, the option must be
present. For further information on configuring a service with the IMR, refer to
“Getting Started with the Implementation Repository” on page 170.
192

Bindings
Bindings
Object references registered with the Naming Service are maintained in a
hierarchical structure similar to a filesystem. A file in a filesystem is analogous
to an object binding in the Naming Service. The equivalent for a folder in a
filesystem is a naming context in Naming Service terms. The pieces of
information stored in a Naming Service are called bindings. A binding consists
of an object’s name and its type, as defined in the CosNaming module:

As you can see, each name consists of one or more components, like a file is
fully specified by its path in a filesystem. Each name component consists of two
strings, id and kind, which could be likened to a file’s name and its extension.
Generally, the filesystem analogy works very well when describing the Naming
Service structures.

// IDL
typedef string Istring;

struct NameComponent
{
 Istring id;
 Istring kind;
};

typedef sequence<NameComponent> Name;

enum BindingType
{
 nobject,
 ncontext
};

struct Binding
{
 Name binding_name;
 BindingType binding_type;
};
193

CHAPTER 9 | Orbacus Names
A new Naming Service entry (a binding) is created with the following
operations:

bind registers a new object with the Naming Service, whereas a new context is
registered with bind_context. For each operation, an object reference and a
Name are expected as parameters. New naming context objects are created with
new_context or bind_new_context. bind_context and bind_new_context
throw an AlreadyBound exception if the name is already in use in the target
context.

To create a new binding without being concerned if the specified binding
already exists, use the following operations:

Use the unbind operation to delete a particular binding:

// IDL
void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

NamingContext new_context();

NamingContext bind_new_context(in Name n)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

// IDL
void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);

void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);

// IDL
void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
194

Name Resolution
Name Resolution
Besides registering objects, an equally important task of the Naming Service is
name resolution. A name is passed to the resolve or resolve_str operation
and an object reference is returned if the name exists.

The resolve and resolve_str operations are only useful when a particular
name is known in advance. Sometimes it is necessary to ask for a list of all
bindings registered with a particular naming context. The list operation returns
a list of bindings.

If the number of bindings is especially large, the BindingIterator interface is
provided so that you don’t have to query for all available bindings at once.
Simply get a certain number of bindings specified with how_many, and get the
rest, if any, using the BindingIterator.

Make sure that you destroy the iterator object when it is no longer needed.

// IDL
Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);
Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName);

// IDL
typedef sequence<Binding> BindingList;

void list(in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

// IDL
interface BindingIterator
{
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many, out BindingList

bl);
 void destroy();
};
195

CHAPTER 9 | Orbacus Names
Programming Example
Orbacus includes simple C++ and Java examples that demonstrate how to use
the CORBA Naming Service. These examples are located in the folder naming/
demo. We will concentrate on the Java example, but the C++ example works
similarly. The example expects a Naming Service server to be already running
and that the server’s initial reference can be resolved by the ORB. Because of its
volume we have split the code into several parts for the discussion below.
196

Programming Example
Initialization
The first code fragment deals with initializing the ORB.

 1 // Java
 2 java.util.Properties props = System.getProperties();
 3 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
 4 props.put("org.omg.CORBA.ORBSingletonClass",
 5 "com.ooc.CORBA.ORBSingleton");
 6
 7 org.omg.CORBA.ORB orb = null;
 8 try
 9 {
10 orb = ORB.init(args, props);
11
12 org.omg.CORBA.Object poaObj = null;
13 try
14 {
15 poaObj = orb.resolve_initial_references("RootPOA");
16 }
17 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
18 {
19 throw new RuntimeException();
20 }
21 POA rootPOA = POAHelper.narrow(poaObj);
22 POAManager manager = rootPOA.the_POAManager();
23
24 org.omg.CORBA.Object obj = null;
25 try
26 {
27 obj = orb.resolve_initial_references("NameService");
28 }
29 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
30 {
31 throw new RuntimeException();
32 }
33
34 if(obj == null)
35 {
36 throw new RuntimeException();
37 }
197

CHAPTER 9 | Orbacus Names
Lines 10-22 Usually the application is initialized in the main method. For more
information on ORB initialization see Chapter 4.

Lines 24-32 In the next step we try to connect to the Naming Service by
supplying NameService to resolve_initial_references. If InvalidName is
thrown, there is no Naming Service available because the ORB doesn’t know
anything about this service.

Lines 34-47 If calling resolve_initial_references was successful, the
object reference is checked and narrowed in order to verify that it supports the
interface CosNaming::NamingContextExt. If the narrow operation raises
CORBA::BAD_PARAM, the object does not support the interface. This is considered
to be an error because we explicitly asked for a Naming Service instance.

38
39 NamingContextExt nc = null;
40 try
41 {
42 nc = NamingContextExtHelper.narrow(obj);
43 }
44 catch(org.omg.CORBA.BAD_PARAM ex)
45 {
46 throw new RuntimeException();
47 }
198

Programming Example
Binding
In the next step some sample bindings are created and bound to the Naming
Service.

 1 // Java
 2 Named_impl implA = new Named_impl();
 3 Named_impl implA1 = new Named_impl();
 4 Named_impl implA2 = new Named_impl();
 5 Named_impl implA3 = new Named_impl();
 6 Named_impl implR = new Named_impl();
 7 Named_impl implC = new Named_impl();
 8 Named a = implA._this(orb);
 9 Named a1 = implA1._this(orb);
10 Named a2 = implA2._this(orb);
11 Named a3 = implA3._this(orb);
12 Named b = implB._this(orb);
13 Named c = implC._this(orb);
14
15 try
16 {
17 NameComponent[] nc1Name = new NameComponent[1];
18 nc1Name[0] = new NameComponent();
19 nc1Name[0].id = "nc1";
20 nc1Name[0].kind = "";
21 NamingContext nc1 = nc.bind_new_context(nc1Name);
22
23 NameComponent[] nc2Name = new NameComponent[2];
24 nc2Name[0] = new NameComponent();
25 nc2Name[0].id = "nc1";
26 nc2Name[0].kind = "";
27 nc2Name[1] = new NameComponent();
28 nc2Name[1].id = "nc2";
29 nc2Name[1].kind = "";
30 NamingContext nc2 = nc.bind_new_context(nc2Name);
31
32 NameComponent[] aName = new NameComponent[1];
33 aName[0] = new NameComponent();
34 aName[0].id = "a";
35 aName[0].kind = "";
36 nc.bind(aName, a);
199

CHAPTER 9 | Orbacus Names
Lines 2-13 Several sample objects are created that will later be bound to our
Naming Service. These objects implement an interface called Named. In this
example, the details of this interface are not important. Named might even be an
interface without any operations defined in it.

37
38 NameComponent[] a1Name = new NameComponent[1];
39 a1Name[0] = new NameComponent();
40 a1Name[0].id = "a1";
41 a1Name[0].kind = "";
42 nc.bind(a1Name, a1);
43
44 NameComponent[] a2Name = new NameComponent[1];
45 a2Name[0] = new NameComponent();
46 a2Name[0].id = "a2";
47 a2Name[0].kind = "";
48 nc.bind(a2Name, a2);
49
50 NameComponent[] a3Name = new NameComponent[1];
51 a3Name[0] = new NameComponent();
52 a3Name[0].id = "a3";
53 a3Name[0].kind = "";
54 nc.bind(a3Name, a3);
55
56 NameComponent[] bName = new NameComponent[2];
57 bName[0] = new NameComponent();
58 bName[0].id = "nc1";
59 bName[0].kind = "";
60 bName[1] = new NameComponent();
61 bName[1].id = "b";
62 bName[1].kind = "";
63 nc.bind(bName, b);
64
65 NameComponent[] cName = new NameComponent[3];
66 cName[0] = new NameComponent();
67 cName[0].id = "nc1";
68 cName[0].kind = "";
69 cName[1] = new NameComponent();
70 cName[1].id = "nc2";
71 cName[1].kind = "";
72 cName[2] = new NameComponent();
73 cName[2].id = "c";
74 cName[2].kind = "";
75 nc.bind(cName, c);
76 }
200

Programming Example
Lines 17-75 Create and bind some new contexts and bind the sample objects to
these contexts. Each binding name consists of several NameComponents that are
similar to the path components of a file located somewhere in a filesystem.
Objects are bound with the Naming Service’s bind operation; for contexts, the
corresponding operation bind_context is used. In addition to the object’s IOR,
both operations expect a unique binding name. If a name already exists, an
AlreadyBound exception is thrown. There are also other exceptions you might
encounter at this stage, for example, IllegalName if an empty string was
provided as part of a NameComponent.
201

CHAPTER 9 | Orbacus Names
Exceptions
This code fragment deals with exceptions that may be thrown by the Naming
Service operations.

// Java
 catch(NotFound ex)
 {
 System.err.print("Got a ‘NotFound’ exception (");
 switch(ex.why.value())
 {
 case NotFoundReason._missing_node:
 System.err.print("missing node");
 break;

 case NotFoundReason._not_context:
 System.err.print("not context");
 break;

 case NotFoundReason._not_object:
 System.err.print("not object");
 break;
 }

 System.err.println(")");
 ex.printStackTrace();
 throw new SystemException();
 }
 catch(CannotProceed ex)
 {
 System.err.println("Got a ‘CannotProceed’ exception");
 ex.printStackTrace();
 throw new SystemException();
 }
 catch(InvalidName ex)
 {
 System.err.println("Got an ‘InvalidName’ exception");
 ex.printStackTrace();
 throw new SystemException();
 }
202

Programming Example
Catch exceptions. Don’t ever forget to do this. It can be useful to call
printStackTrace on the exception object in order to get detailed information
about the program flow causing the exception.

 catch(AlreadyBound ex)
 {
 System.err.println("Got an ‘AlreadyBound’ exception");
 ex.printStackTrace();
 throw new SystemException();
 }
203

CHAPTER 9 | Orbacus Names
The Event Loop
Next we start listening for requests.

Everything is ready now, so we can listen for requests by calling actiavate on
the POA Manager and run on the ORB.

// Java
 try
 {
 manager.activate();
 }
catch(org.omg.PortableServer.POAManagerPackage.AdapterInactive

ex)
 {
 throw new RuntimeException();
 }
 orb.run();
204

Programming Example
Releasing Resources
Some cleanup work should be done before exiting the program. Every binding
must be properly unbound and the ORB must be destroyed.

Lines 2-9 All bindings are unbound.

Lines 16-26 destroy is called on the ORB. This releases the resources used by
the ORB.

The complete example can be found in the folder naming/demo included with
the Orbacus distribution.

 1 // Java
 2 nc.unbind(cName);
 3 nc.unbind(bName);
 4 nc.unbind(aName);
 5 nc.unbind(a1Name);
 6 nc.unbind(a2Name);
 7 nc.unbind(a3Name);
 8 nc.unbind(nc2Name);
 9 nc.unbind(nc1Name);
10 }
11 catch(RuntimeException ex)
12 {
13 status = 1;
14 }
15
16 if (orb != null)
17 {
18 try
19 {
20 orb.destroy();
21 }
22 catch(const RuntimeException ex)
23 {
24 status = 1;
25 }
26 }
27
28 System.exit(status);
205

CHAPTER 9 | Orbacus Names
206

CHAPTER 10

Orbacus Names
Console
Orbacus Names includes a graphical client for administering the
service called the Orbacus Names Console. The application can
manage any CORBA-compliant Naming Service, but additional
features are provided when used with Orbacus Names.

In this chapter This chapter contains the following sections:

Usage page 208

Naming Service Lookup page 209

The Menus page 210
207

CHAPTER 10 | Orbacus Names Console
Usage

Syntax Use the Orbacus Names Console as follows:

CLASSPATH requirements The Orbacus Names Console requires the classes in OB.jar, OBNaming.jar and
OBUtil.jar.

com.ooc.CosNamingConsole.Main
 [-f,--file FILE] [-i,--ior] [-n,--no-updates] [--look CLASS]
 [--windows] [--motif] [--mac] [-h,--help] [-v, --version]

-f FILE
--file FILE

Read the Naming Service IOR from FILE.

-i
--ior

Print the stringified IOR of the Naming Service to
standard output.

-n
--no-updates

Disables automatic updates. That is, callbacks that
notify interested clients of changes to the naming
service.

--look CLASS Use the specified Look & Feel class.

--windows Use the Windows Look & Feel (if available).

--motif Use the Motif Look & Feel (if available).

--mac Use the Macintosh Look & Feel (if available).

-h
--help

Display the command-line options supported by the
program.
208

Naming Service Lookup
Naming Service Lookup
In order to locate a Naming Service, the application takes the following steps on
start-up:

• First it checks whether a Naming Service reference was given with the -f

option.

• If this is not the case, then the initial Naming Service is used, as provided

to the ORB with options like -ORBservice or -ORBconfig.

If both of the above steps fail, an error window is displayed and the Names
console exits.
209

CHAPTER 10 | Orbacus Names Console
The Menus
The menus provide access to all of the features of the application. In addition,
the most common actions are also available in the toolbar, as well as in a popup
menu that is displayed when pressing the right mouse button over an item in the
binding table or context tree.

This section includes the following:

The File Menu page 211

The Edit Menu page 213

The View Menu page 215

The Tools Menu page 217

The Toolbar page 219

The Popup Menu page 220
210

The Menus
The File Menu
This menu contains operations that create bindings and define the current root
context.

After starting the application, the current root context is the naming context
corresponding to the IOR specified on the command line or the initial Naming
Service, as provided to the ORB with options like -ORBservice or
-ORBconfigby. You can make another naming context the root context using
Switch Root Context. The new root context’s IOR is specified in the Enter
IOR dialog window, as shown in Figure 5.

New Window Opens an additional control window.

Switch Root Context Selects a new root naming context.

Load Context Recursively loads a naming context from a file.

Save Context As Recursively saves the selected naming context to
a file.

Save IOR to File Saves the stringified IOR of the currently
selected item to a file.

Close Window Closes the current window.

Exit Quits the Orbacus Names Console.

Figure 5: Entering an IOR
211

CHAPTER 10 | Orbacus Names Console
The IOR can be entered directly or can be read from a file. If an IOR is entered
manually you usually either use the URL-style notation as described in
Chapter 6 on page 125, or you copy a stringified object reference into the dialog
box using copy and paste. After selecting Browse a file containing an IOR can
be selected.

Sometimes it is not desirable to completely replace the currently visible root
context by another root context. For example, you may need to copy bindings
from one context to another. If this is the case, simply open an additional
window for the new root context using New Window. You can then switch the
root context in only one window without affecting the information displayed in
the other one. Using two windows, you can easily transfer bindings from one
context to another using copy and paste.

Complete naming contexts can be loaded from a special file with naming context
information. Such a file, which was previously created with Save Context As, is
loaded with Load Context. The bindings saved to this file are added to the
current naming context.

When saving a naming context, the console checks each context for
accessibility. If a context cannot be accessed — that is, if its contents cannot be
saved — a message is displayed in the error window. You also get an error
message if the console detects a recursion. The bindings contained in the naming
context leading to the recursion is not saved.

Use Save IOR to File in order to create a file that contains the stringified IOR of
the currently selected binding or context.

With Close Window the current window is closed. Closing the last window
causes the application to terminate. Exit can be used to terminate the application
regardless of how many windows are open.
212

The Menus
The Edit Menu
The operations in this menu provide the means for creating and deleting objects
and for changing the Naming Service structure.

New contexts and bindings are created with the operations New Context and
New Binding, respectively. If one of these functions is selected, a new context
or object binding with a unique name is added to the current context. For new
object bindings an IOR can be specified.

Use Delete to remove the selected items from a naming context. Deleting
Naming Service entries removes all selected bindings from their parent context.
The objects belonging to these bindings are not affected. Destroying Naming
Service information only affects the actual Naming Service data, not the objects
themselves.

Use Link to create a new binding for an existing naming context, where the
naming context is specified by an IOR. The operation Unlink unbinds the
selected items. For objects, Unlink is equivalent to Delete, but for contexts,
Unlink differs in that the context is not destroyed. Since a context is not
destroyed using Unlink, it should only be used when there are multiple bindings
to a context in order to avoid orphaned contexts.

New Context Creates a new naming context.

New Binding Creates a new binding for an object.

Delete Deletes the selected items.

Link Creates a new binding for an existing naming context.

Unlink Unbinds the selected items.

Cut Moves the selected items to the clipboard.

Copy Copies the selected items to the clipboard.

Paste Inserts the clipboard contents.

Change ID Edits the ID field of the selected item.

Change Kind Edits the Kind field of the selected item.

Change IOR Edits the IOR of the selected item.

Select all Selects all items in the object table.

Invert Selection Inverts the current selection.
213

CHAPTER 10 | Orbacus Names Console
The console supports a clipboard that you can use to move bindings between
different contexts. Data is transferred to the clipboard using the Cut or Copy
commands. Cut moves the currently selected items to the clipboard and deletes
the original entries, whereas Copy simply creates a copy in the clipboard but
keeps the source entry unchanged. When new data is transferred to the
clipboard, the old clipboard contents are replaced. Using Paste, you can add the
clipboard data into a naming context. The clipboard contents are not changed by
this operation. That is, you can Paste the same items several times. Note that if
naming contexts are transferred to the clipboard, their contents are not evaluated
before they are pasted. It is during the Paste operation that the bindings of a
context are duplicated. This means that if new bindings are added to a context
after a Cut or Copy operation, these bindings will be present after pasting this
context.

An item registered with the Naming Service has three modifiable attributes: its
ID, its Kind and its IOR. The ID and Kind attributes can be edited by simply
double-clicking the ID or Kind field in the table. You can also change binding
attributes with the corresponding menu operations Change ID, Change Kind
and Change IOR. Entering a new IOR for an existing name effectively replaces
an object registered with the Naming Service by another object with the same
name.

Use Select all to select all of the entries in the binding table. The current table
selection can be inverted using Invert Selection.
214

The Menus
The View Menu
The operations in this menu control the appearance of the console window as
well as the presentation of the Naming Service data.

A toolbar that gives access to frequently needed operations is normally present
below the menu. If you don’t have a need for this toolbar or if you just want to
save space on the screen, you can switch it off with the Toolbar toggle button.
The same applies to the status bar where information about the currently selected
item is displayed. The status bar displays an object’s repository ID, the host
where this object is located and the port it is bound to. If an item with a nil object
reference is selected or if multiple items are selected, the status bar is empty.

If an error occurs while editing bindings, the console automatically displays a
new window with information about what went wrong. Usually this information
consists of exception data. The visibility of this window can be explicitly
controlled with the Error Window toggle button.

If the console is connected to Orbacus Names, as described in Chapter 9, the
console can display timestamp information for each binding by making use of
proprietary features of Orbacus Names. This information is shown in the binding
table if the Details display mode instead of the Simple List mode is active.

Toolbar Toggles the toolbar visibility.

Status Bar Toggles the statusbar visibility.

Error Window Toggles the error message window visibility.

Simple List Displays minimum object information.

Details Displays additional object information.

Sort Sets sorting mode for object list.

Refresh Updates the complete window contents
215

CHAPTER 10 | Orbacus Names Console
Usually the console sorts the items in the binding table in ascending alphabetical
order, with naming contexts being listed at the top. You can change this order
with the options available in the Sort menu. Bindings can be sorted by their ID
or Kind fields. If the extended attributes are displayed, items can also be sorted
by date and time. You can reverse the sort order by selecting the current sorting
mode a second time in the View menu or by clicking on the table header cells. In
this case, the display switches from ascending to descending order and vice
versa.

If the contents of a naming context have been changed by a third party and you
want to update the information displayed in the console window, selecting
Refresh updates the display. If the console is connected to Orbacus Names, a
refresh is done automatically each time a change occurs.
216

The Menus
The Tools Menu
The operations available in this menu are meant as tools for your everyday work.

Sometimes it is useful to check if an object bound to a name still exists or if the
object reference associated with it has become invalid, for example, because of a
server crash. To perform such a check, select all the objects you want to check
and start the Ping operation. The console tries to contact each of the selected
objects and displays the time it took to get a connection to them in a separate
window.

Ping Checks the accessibility of the selected items.

Clean up Unbinds inaccessible objects from the current context.

Figure 6: The Ping Window
217

CHAPTER 10 | Orbacus Names Console
This is very similar to the Windows or Unix ping command for an IP address or
a host name. If there is a time-out while trying to contact an object, this
information is displayed in the Ping Window and the console continues with the
next object.

If you want objects that cannot be contacted, for example because of a server
breakdown, to be unbound from the current context, Clean up does the job.
Clean up non-recursively tries to connect to the selected objects. If there is a
communication failure or the _non_existent() operation returns true for a
particular object, the corresponding binding is automatically removed. Clean up
should be used with care.
218

The Menus
The Toolbar
In addition to the operations offered by the menu bar, some frequently needed
functions are available by icons located in the toolbar, as shown in Figure 7.

The icon on the toolbar’s left is the Upwards icon which changes the naming
context to the parent of the context currently being displayed. The next five
icons correspond to the New Context, New Binding, Cut, Copy, Paste and
Delete items as described in “The Edit Menu” on page 213.

The Simple List and Details items from the View menu are the next two icons
in the toolbar. They determine whether the binding table displays only the ID
and Kind fields, or, if Orbacus Names is available, also the date and time the
binding was last modified.

The last item in the menubar corresponds to the Refresh operation from the
View menu.

Figure 7: Closer Look at the Toolbar
219

CHAPTER 10 | Orbacus Names Console
The Popup Menu
When selecting an item in the binding table or a tree node with the right mouse
button, a popup menu with a choice of operations is displayed as shown in
Figure 8.

This is another convenient alternative for executing frequently used operations.

Figure 8: Popup Menu Offers Important Operations
220

CHAPTER 11

Orbacus Properties
The CORBA Property Service permits you to annotate an object
with extra attributes (called properties) that were not defined by the
object’s IDL interface. Properties can represent any value because
they make use of the CORBA Any data type.

Orbacus Properties is compliant with [10]. This chapter does not
provide a complete description of the service. It only provides an
overview, suitable to get you started. For more information, please
refer to the specification.

In this chapter This chapter contains the following sections:

Usage page 222

Connecting to the Service page 224

Using the Property Service with the IMR page 225

Creating Properties page 226

Querying for Properties page 227

Deleting Properties page 229

Programming Example page 230
221

CHAPTER 11 | Orbacus Properties
Usage
Orbacus includes functionally equivalent implementations of the Property
Service in C++ and Java.

Syntax For C++:

For Java:

Options The options in the following table apply to both C++ and Java versions.

Configuration properties In addition to the standard configuration properties described in Chapter 4,
Orbacus Properties also supports the following properties:

Note: The Property Service has nothing to do with the properties used for
configuration purposes. Configuration properties are described in “ORB
Properties” on page 58.

propserv
 [-h,--help] [-v,--version] [-i,--ior]

om.ooc.CosPropertyService.Server
 [-h,--help] [-v,--version] [-i,--ior]

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-i

--ior

Prints the stringified IOR of the server to standard output.

ooc.property.endpoint=ENDPOINT Specifies the endpoint configuration for the
service. Note that this property is only used if
the ooc.orb.oa.endpoint property is not set.
222

Usage
CLASSPATH requirements Orbacus Properties for Java requires the classes in OB.jar and OBProperty.jar.
223

CHAPTER 11 | Orbacus Properties
Connecting to the Service
The object key of the Property Service is PropertyService, which identifies an
object of type CosPropertyService::PropertySetDefFactory.

The object key can be used when composing URL-style object references. For
example, the following URL identifies the Property Service running on host
prophost at port 10000:

corbaloc::prophost:10000/PropertyService

Refer to Chapter 6 for more information on URLs and configuring initial
services.
224

Using the Property Service with the IMR
Using the Property Service with the IMR
The Property Service may be used with the Implementation Repository (IMR).
However, if used with the IMR, it is important to note that the corbaloc
URL-style object reference described in the previous section cannot be used. If
the IMR is used, then the object reference for the Property Service must be
created using one of the following methods (where PropertyServer refers to
the server name configured with the IMR):

• Start the Property Service with the options:

--ior -ORBServerId PropertyServer

causing the Property Service to print its reference to standard output.

• Use the mkref utility:

mkref PropertyServer PropertyService PropertyServicePOA

When using the Property Service with the IMR, the service must be started with
the option -ORBServerId PropertyServer, where PropertyServer refers to
the server name configured with the IMR. When the IMR is configured to start
the Property Service, this option is automatically added to the service’s
arguments. However, when the Property Service is started manually, the option
must be present. For further information on configuring a service with the IMR,
refer to “Getting Started with the Implementation Repository” on page 170.
225

CHAPTER 11 | Orbacus Properties
Creating Properties
A property handled by the CORBA Property Service consists of two
components: the property’s name and its value. The name is a CORBA string
and the associated value is represented by a CORBA Any:

New properties are created using a factory object implementing the
PropertySet interface. A new property is created using the define_property
operation:

As a property consists of a name–value pair, both the name and the value are the
parameters to this operation.

// IDL
typedef string PropertyName;

struct Property
{
 PropertyName property_name;
 any property_value;
};

// IDL
void define_property(in PropertyName, in any property_value)
 raises(InvalidPropertyName, ConflictingProperty,

UnsupportedTypeCode, UnsupportedProperty, ReadOnlyProperty);
226

Querying for Properties
Querying for Properties
As soon as a property is defined, the PropertySet can be queried for the
property’s value with the get_property_value operation:

For a particular property name, this call either returns the Any associated with
that name or throws an exception if a property with the name does not exist.

You can not only query for a particular property value, but also for a list of all
the properties defined within a PropertySet. The get_all_properties
operation serves this purpose:

This operation works similar to the list call offered by the Naming Service. In
both cases the maximum number of items to be returned at once is specified. An
iterator implementing the PropertiesIterator interface gives access to the
remaining items, if any.

// IDL
any get_property_value(in PropertyName property_name)
 raises(PropertyNotFound, InvalidPropertyName);

// IDL
void get_all_properties(in unsigned long how_many,
 out Properties nproperties, out PropertiesIterator rest);

// IDL
interface PropertiesIterator
{
 void reset();

 boolean next_one(out Property aproperty);

 boolean next_n(in unsigned long how_many,
out Properties nproperties);

 void destroy();
};
227

CHAPTER 11 | Orbacus Properties
If you are only interested in a list of property names you can get this list by
calling get_all_property_names:

As with get_all_properties a list of names as well as an iterator is returned.
This iterator implements the PropertyNamesIterator interface:

The iterators should always be destroyed when they are no longer needed.

Sometimes it is useful to know of how many properties a PropertySet consists
of. This information is provided by get_number_of_properties:

Note that you have to be careful if you intend to use the return value of
get_number_of_properties as the input value for the how_many parameter of
get_all_properties in order to get a complete property list. You always have
to check the PropertiesIterator for properties that were not returned as part
of the Properties sequence returned by get_all_properties, otherwise you
might miss a property that was defined by another process between your calls to
get_number_of_properties and get_all_properties.

// IDL
void get_all_property_names(in unsigned long how_many,
 out PropertyNames property_names,
 out PropertyNamesIterator rest);

// IDL
interface PropertyNamesIterator
{
 void reset();

 boolean next_one(out PropertyName property_name);

 boolean next_n(in unsigned long how_many,
out PropertyNames property_names);

 void destroy();
};

// IDL
unsigned long get_number_of_properties();
228

Deleting Properties
Deleting Properties
If a property has become obsolete it can be deleted from the PropertySet with
delete_property:

As you might have guessed by this operation’s signature, there are properties
that cannot be deleted at all. This kind of property is called a FixedProperty.
The Property Service defines several other special property types, such as
read-only properties. Please refer to the OMG Property Service [9] specification
for details.

// IDL
void delete_property(in PropertyName property_name)
raises(PropertyNotFound, InvalidProperty, FixedProperty);
229

CHAPTER 11 | Orbacus Properties
Programming Example
The Property Service test suite, which is part of the Orbacus distribution,
provides a good example of how to create properties and query for their values.
The code below is based on excerpts of this test suite, which is located in the
directory property/test. We will concentrate on an example in Java here. As
with the previous examples, the Java code is very similar to what is necessary in
C++. The example demonstrates how to create properties and how to get a list of
all the properties defined within a PropertySet.

 1 // Java
 2
 3 org.omg.CORBA.Object obj = null;
 4
 5 try
 6 {
 7 obj = orb.resolve_initial_references("PropertyService");
 8 }
 9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
10 {
11 // An error occurred, Property Service is not available
12 }
13
14 if(obj == null)
15 {
16 // The object reference is invalid
17 }
18
19 PropertySetDefFactory factory = null;
20 try
21 {
22 factory = PropertySetDefFactoryHelper.narrow(obj);
23 }
24 catch(org.omg.CORBA.BAD_PARAM ex)
25 {
26 // This object does not implement the Property Service
27 }
28
29 PropertySetDef set = factory.create_propertysetdef();
30
230

Programming Example
Lines 5-27 Get a Property Service reference and check for errors.

31 Any anyLong = orb.create_any();
32 Any AnyString = orb.create_any();
33 Any anyShort = orb.create_any();
34 anyLong.insert_long(12345L);
35 anyString.insert_string("Foo");
36 anyShort.insert_short((short)0);
37
38 try
39 {
40 set.define_property("LongProperty", anyLong);
41 set.define_property("StringProperty", anyString);
42 set.define_property("ShortProperty", anyShort);
43 }
44 catch(ReadOnlyProperty ex)
45 {
46 // An error occurred
47 }
48 catch(ConflictingProperty ex)
49 {
50 // An error occurred
51 }
52 catch(UnsupportedProperty ex)
53 {
54 // An error occurred
55 }
56 catch(UnsupportedTypeCode ex)
57 {
58 // An error occurred
59 }
60 catch(InvalidPropertyName ex)
61 {
62 // An error occurred
63 }
64
65 PropertiesHolder ph = new PropertiesHolder();
66 PropertiesIteratorHolder ih = new PropertiesIteratorHolder();
67 set.get_all_properties(0, ph, ih);
68
69 PropertyHolder h = new PropertyHolder();
70 while(ih.value.next_one(h))
71 {
72 // The next property is now stored in h.value
73
74 ih.value.destroy();
231

CHAPTER 11 | Orbacus Properties
Line 29 The PropertySetDefFactory object is used to create a
PropertySetDef instance. Note that PropertySetDef is a subclass of
PropertySet.

Lines 31-36 Each property consists of a name and a value in the form of a
CORBA Any.

Lines 38-63 Three properties are defined. The first has the name LongProperty
and stores a long value. The second one is called StringProperty and stores a
string. The remaining property represents a short value. If for some reason a
property cannot be created, an exception is thrown.

Lines 65-73 Now we try to get a list of all the properties that were previously
defined. With get_all_properties the PropertySetDef returns its properties.
As we have set the how_many parameter to 0, we have to use the
PropertiesIterator for each item. An application would normally provide a
positive integer for how_many.

Line 74 The iterator has fulfilled its duty and can now be destroyed.
232

CHAPTER 12

Orbacus Events
Some applications need to exchange information without explicitly
knowing about each other. Often a server isn’t even aware of the
nature and number of clients that are interested in the data the
server has to offer. A special mechanism is required that provides
decoupled data transfer between servers and clients. This
requirement is addressed by the CORBA Event Service.

Orbacus Events is compliant with [9]. This chapter does not provide
a complete description of the service. It only provides an overview,
suitable to get you started. For more information, please refer to
the specification.

In this chapter This chapter contains the following sections:

Usage page 234

Connecting to the Service page 239

Using the Event Service with the IMR page 240

Event Service Concepts page 241

Programming Example page 249
233

CHAPTER 12 | Orbacus Events
Usage
Orbacus includes functionally equivalent implementations of the Event Service
in C++:

and Java:

Options The options in the following table apply to both C++ and Java versions.

eventserv
 [-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
 [-u,--untyped-service]

com.ooc.CosEvent.Server
 [-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
 [-u,--untyped-service]

-h
--help

Display the command-line options supported by the
server.

-v
--version

Display the version of the server.

-i

--ior

Print the stringified IOR of the server to standard
output.

-t
--typed-service

Run a typed event service.

-u
--untyped-service

Run an untyped event service. This is the default
behavior.
234

Usage
Windows Native Service
The C++ version of Orbacus Events is also available as a native Windows
service.

In order to use the Event Service as a native Windows service, it is first
necessary to add the ooc.event.endpoint property to the HKEY_LOCAL_MACHINE
NT registry key (see “Using the Windows Registry” on page 71 for more
details).

Next the service should be installed with:

nteventservice -i

This adds the Orbacus Event Service entry to the Services dialog in the
Control Panel. To start the event service, select the Orbacus Event Service
entry, and press Start. If the service is to be started automatically when the
machine is booted, select the Orbacus Event Service entry, then click
Startup. Next select Startup Type - Automatic, and press OK. Alternatively,
the service could have been installed using the -s option, which configures the
service for automatic start-up:

nteventservice -s

nteventservice
 [-h,--help] [-i,--install] [-s,--start-install]
 [-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the
server.

-i
--install

Install the service. The service must be started
manually.

-s
--start-install

Install and start the service.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.
235

CHAPTER 12 | Orbacus Events
If you want to remove the service, run:

nteventservice -u

Any trace information provided by the service is be placed in the Windows
Event Viewer with the title EventService. To enable tracing information, add
the desired trace configuration property (that is, one of the ooc.event.trace
properties or one of the ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE
NT registry key with a REG_SZ value of at least 1.

Note: If the executable for the Event Service is moved, it must be uninstalled
and re-installed.
236

Usage
Configuration Properties
In addition to the standard configuration properties described in Chapter 4,
Orbacus Events also supports the following properties:

ooc.event.inactivity_timeout=SEC Proxies that are inactive for the specified
number of seconds will be reaped. The
default value is four hours.

ooc.event.max_events=N The maximum number of events in each
event queue. If this limit is reached and
another event is received, the oldest event is
discarded.The default value is 10.

ooc.event.max_retries=N The maximum number of times to retry
before giving up and disconnecting the
proxy. The default value is 10.

ooc.event.endpoint=ENDPOINT Specifies the endpoint configuration for the
service. Note that this property is only used
if the ooc.orb.oa.endpoint property is not
set.

ooc.event.pull_interval=MSEC This specifies the number of milliseconds
between successive calls to pull on
PullSupplier. Default value is 0.

ooc.event.reap_frequency=SEC This specifies the frequency (in seconds) in
which inactive proxies will be reaped. The
default value is thirty minutes. Setting this
property to 0 disables the reaping of proxies.

ooc.event.retry_timeout=MSEC Specifies the initial amount of time in
milliseconds that the service waits between
successive retries.The default value is 1000.

ooc.event.retry_multiplier=N A double that defines the factor by which
the retry_timeout property should be
multiplied for each successive retry.

ooc.event.request_timeout=MSEC The amount of time permitted for a blocking
request on a client to return before a timeout.
The default value is 5 seconds.
237

CHAPTER 12 | Orbacus Events
CLASSPATH requirements Orbacus Events for Java requires the classes in OB.jar and OBEvent.jar.

ooc.event.trace.events=LEVEL Defines the output level for event diagnostic
messages printed by Orbacus Events. The
default level is 0, which produces no output.
A level of 1 or higher produces event
processing information and a level of 2 or
higher produces event creation and
destruction information.

ooc.event.trace.lifecycle=LEVEL Defines the output level for lifecycle
diagnostic messages printed by Orbacus
Events. The default level is 0, which
produces no output. A level of 1 or higher
produces lifecycle information (for example,
creation and destruction of Suppliers and
Consumers).

ooc.event.typed_service=true|false Equivalent to the -t command-line option.
238

Connecting to the Service
Connecting to the Service
The object key of the Event Service depends on whether it is running as a typed
or untyped service. The object keys and corresponding interface types are shown
in Table 2.

The object key can be used when composing URL-style object references. For
example, the following URL identifies the untyped event service running on host
evhost at port 10000:

corbaloc::evhost:10000/DefaultEventChannel

Refer to Chapter 6 for more information on URLs and configuring initial
services.

Orbacus Events also provides proprietary factory interfaces which allow
construction and administration of multiple event channels in a single service.
The object keys and corresponding interface types of the factories are shown in
Table 3.

For a description of the factory interfaces, please refer to the documented IDL
files event/idl/OBEventChannelFactory.idl and event/idl/
OBTypedEventChannelFactory.idl.

Table 2: Object Keys and Interface Types

Object Key Interface Type

Event Service DefaultEventChannel CosEventChannelAdmin::EventChannel

Typed Event
Service

DefaultTypedEventChannel CosTypedEventChannelAdmin::
TypedEventChannel

Table 3: Object Keys and Interface Types for Event Channel Factories

Object Key Interface Type

Event Channel
Factory

DefaultEventChannelFactory OBEventChannelFactory::
EventChannelFactory

Typed Event
Channel
Factory

DefaultTypedEventChannelFactory OBTypedEventChannelFactory::
TypedEventChannelFactory
239

CHAPTER 12 | Orbacus Events
Using the Event Service with the IMR
The Event Service may be used with the Implementation Repository (IMR).
However, if used with the IMR, it is important to note that the corbaloc
URL-style object reference described in the previous section cannot be used. If
the IMR is used, then the object reference for the untyped Event Service must be
created using one of the following methods (where EventServer refers to the
server name configured with the IMR):

• Start the Event Service with the options:

-ORBServerId EventServer --ior

causing the Event Service to print its reference to standard output.

• Use the mkref utility:

mkref EventServer DefaultEventChannel EventServicePOA

For the typed Event Service, the object reference must be created using one of
the following methods:

• Start the Event Service with the options:

-ORBServerId EventServer --typed-service --ior

causing the Event Service to print its reference to standard output.

• Use the mkref utility:

mkref EventServer DefaultTypedEventChannel EventServicePOA

Object references for the Orbacus proprietary factory objects can be created
using the following commands:

mkref EventServer DefaultEventChannelFactory EventServicePOA
mkref EventServer DefaultTypedEventChannelFactory

EventServicePOA

When using the Event Service with the IMR, the service must be started with the
option -ORBServerId EventServer, where EventServer refers to the server
name configured with the IMR. When the IMR is configured to start the Event
Service, this option is automatically added to the service’s arguments. However,
when the Event Service is started manually, the option must be present. For
further information on configuring a service with the IMR, refer to “Getting
Started with the Implementation Repository” on page 170.
240

Event Service Concepts
Event Service Concepts

In this section This section contains the following topics:

The Event Channel page 242

Event Suppliers and Consumers page 243

Event Channel Policies page 245

Event Channel Factories page 246
241

CHAPTER 12 | Orbacus Events
The Event Channel
The Event Service distributes data in the form of events. The term event in this
context refers to a piece of information that is contributed by an event source.
An event channel instance accepts this information and distributes it to a list of
objects that previously have connected to the channel and are listening for
events.

The Event Service specification defines two distinct kinds of event channels:
untyped and typed. Whereas an untyped event channel forwards every event to
each of the registered clients in the form of a CORBA Any, a typed event channel
works more selectively by supporting strongly-typed events which allow for
data filtering. We will only discuss the untyped event channel here. For
information on typed event channels, and more details on the Event Service in
general, please refer to the official Event Service specification [9].
242

Event Service Concepts
Event Suppliers and Consumers
Applications participating in generating and accepting events are called
suppliers and consumers, respectively. Suppliers and consumers each come in
two different versions, namely, push suppliers and pull suppliers, and push
consumers and pull consumers.

What’s the difference between pushing events and pulling events? Let’s have a
look at the consumer side first. Some consumers must be immediately informed
when new events become available on an event channel. Such consumers
usually act as push consumers. They implement the PushConsumer interface
which ensures that the event channel actively forwards events to them using the
push() operation:.

Push consumers are passive, that is, are servers. Conversely, pull consumers are
active, that is, are clients. Pull consumers poll an event channel for new events.
As events may arrive at a greater rate than they are polled for by a pull consumer
or accepted and processed by a push consumer, some events might get lost. A
buffering policy implemented by the event channel determines whether events
are buffered and what happens in case of an event queue overflow.

Like consumers, suppliers can also use push or pull behavior. Push suppliers are
the more common type, in which the supplier directly forwards data to the event
channel and thus plays the client role in the link to the channel. Pull suppliers, on
the other hand, are polled by the event channel and supply an event in response,
if a new event is available. Polling is done by the try_pull() operation if it is to
be non-blocking or by the blocking pull() call:

// IDL
interface PushConsumer
{
 void push(in any data)
 raises(Disconnected);

 void disconnect_push_consumer();
};
243

CHAPTER 12 | Orbacus Events
// IDL
interface PullSupplier
{
 any pull()
 raises(Disconnected);

 any try_pull(out boolean has_event)
 raises(Disconnected);

 void disconnect_pull_supplier();
};
244

Event Service Concepts
Event Channel Policies
The untyped event channel implementation included in the Orbacus distribution
features a simple event queue policy. Events are buffered in the form of a queue:
a certain number of events are stored and, in case of a buffer overflow, the oldest
events are discarded.
245

CHAPTER 12 | Orbacus Events
Event Channel Factories
The standard CORBA Event Service provides no support for managing the
lifecycle of event channels; as a result, applications requiring multiple channels
are often forced to run a separate instance of the Event Service for each channel.
To remedy this situation, Orbacus Events provides optional, proprietary
interfaces for event channel administration.

The OBEventChannelFactory::EventChannelFactory interface describes the
factory for untyped event channels:

// IDL
module OBEventChannelFactory
{
typedef string ChannelId;
typedef sequence<ChannelId> ChannelIdSeq;

exception ChannelAlreadyExists {};
exception ChannelNotAvailable {};

interface EventChannelFactory
{
 CosEventChannelAdmin::EventChannel
 create_channel(in ChannelId id)
 raises(ChannelAlreadyExists);

 CosEventChannelAdmin::EventChannel
 get_channel_by_id(in ChannelId id)
 raises(ChannelNotAvailable);

 ChannelIdSeq get_channels();

 void shutdown();
};
};
246

Event Service Concepts
The OBTypedEventChannelFactory::TypedEventChannelFactory interface
describes the factory for typed event channels:

At start-up, the untyped Event Service creates a single channel having the
identifier DefaultEventChannel, and the typed Event Service creates a single
channel having the identifier DefaultTypedEventChannel. A channel’s
identifier also serves as its object key; therefore, a channel can be located using a
corbaloc: URL (see “corbaloc: URLs” on page 139). For example, a channel
with the identifier TelemetryData can be located on the host myhost at port
2098 using the following URL:

corbaloc::myhost:2098/TelemetryData

To obtain the object reference of a channel factory, use a corbaloc: URL with
the object key as shown in Table 2 on page 239. For example, assuming the
untyped Event Service is running on host myhost at port 2098, here is how a
C++ application can obtain the object reference of the channel factory and create

a channel with the identifier TelemetryData:

// IDL
module OBTypedEventChannelFactory
{
interface TypedEventChannelFactory
{
 CosTypedEventChannelAdmin::TypedEventChannel
 create_channel(in OBEventChannelFactory::ChannelId id)
 raises(OBEventChannelFactory::ChannelAlreadyExists);

 CosTypedEventChannelAdmin::TypedEventChannel
 get_channel_by_id(in OBEventChannelFactory::ChannelId id)
 raises(OBEventChannelFactory::ChannelNotAvailable);

 OBEventChannelFactory::ChannelIdSeq get_channels();

 void shutdown();
};
};

// C++
CORBA::Object_var obj = orb -> string_to_object(
 "corbaloc::myhost:2098/DefaultEventChannelFactory");
OBEventChannelFactory::EventChannelFactory_var factory =
 OBEventChannelFactory::EventChannelFactory::_narrow(obj);
CosEventChannelAdmin::EventChannel_var channel =
 factory -> create_channel("TelemetryData");
247

CHAPTER 12 | Orbacus Events
Here is the same example in Java:

// Java
org.omg.CORBA.Object obj = orb.string_to_object(
 "corbaloc::myhost:2098/DefaultEventChannelFactory");
com.ooc.OBEventChannelFactory.EventChannelFactory factory =
 com.ooc.OBEventChannelFactory.EventChannelFactoryHelper.
 narrow(obj);
org.omg.CosEventChannelAdmin.EventChannel channel =
 factory.create_channel("TelemetryData");
248

Programming Example
Programming Example
In the Event Service example that comes with Orbacus, two supplier and two
consumer clients demonstrate how to use an untyped event channel to propagate
information. The pieces of information transferred by this example are strings
containing the current date and time. After starting the Event Service server, you
can start these clients in any order. The demo applications obtain the initial
Event Service reference as already demonstrated, by calling
resolve_initial_references. When started, each supplier provides
information about the current date and time and each client displays the event
data in its console window.

This is the push supplier’s main loop:

Lines 4-8 The current date and time is inserted into the Any.

 1 // Java
 2 while(consumer_ != null)
 3 {
 4 java.util.Date date = new java.util.Date();
 5 String s = "PushSupplier says: " + date.toString();
 6
 7 Any any = orb_.create_any();
 8 any.insert_string(s);
 9
10 try
11 {
12 consumer_.push(any);
13 }
14 catch(Disconnected ex)
15 {
16 // Supplier was disconnected from event channel
17 }
18
19 try
20 {
21 Thread.sleep(1000);
22 }
23 catch(InterruptedException ex)
23 {
24 }
25 }
249

CHAPTER 12 | Orbacus Events
Lines 10-17 The event data, in this example date and time, are pushed to the
event channel. From the push supplier’s view the event channel is just a
consumer implementing the PushConsumer interface.

Lines 19-25 After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that the
event channel explicitly polls the supplier for new events. This is done by either
pull() or try_pull(). The pull supplier doesn’t see anything from the event
channel but an object implementing the PullConsumer interface. The following
example shows the basic layout of a pull supplier:

Lines 4-8 Date and time are inserted into the Any.

Lines 13-19 In this example new event data can be provided at any time, so
try_pull() always sets has_event to true in order to signal that an event is
available. It then returns the actual event data.

 1 // Java
 2 public Any pull()
 3 {
 4 java.util.Date date = new java.util.Date();
 5 String s = "PullSupplier says: " + date.toString();
 6
 7 Any any = orb.create_any();
 8 any.insert_string(s);
 9
10 return any;
11 }
12
13 public Any
14 try_pull(BooleanHolder has_event)
15 {
16 has_event.value = true;
17
18 return pull();
19 }
250

Programming Example
After examining the most important aspects of the event suppliers’ code, we are
now going to analyze the consumers’ code. The push consumer with its push()
operation is shown first:

The push consumer’s push() operation is called with the event wrapped in a
CORBA Any. In this code fragment it is assumed that the Any contains a string
with date and time information. In case the Any contains another data type a
MARSHAL exception is thrown.This exception can be ignored here because other
events aren’t of interest. After extracting the string it is displayed in the console
window.

// Java
public void push(Any any)
{
 try
 {
 String s = any.extract_string();
 System.out.println(s);
 }
 catch(MARSHAL ex)
 {
 // Ignore unknown event data
 }
}

251

CHAPTER 12 | Orbacus Events
In contrast to the push consumer, the pull consumer has to actively query the
event channel for new events. This is how the pull consumer loop looks:

Line 4 A CORBA Any is prepared for later use.

Lines 6-13 Using pull(), the consumer polls the event channel for new events.
The event channel acts as a pull supplier in this case. The pull() operation
blocks until a new event is available.

Lines 15-23 The consumer expects a string wrapped in a CORBA Any. The
string value is extracted and displayed. If an exception is raised the Any
contained some other data type which is simply ignored.

In all of these examples the event channel acts either as a consumer (if the clients
are suppliers) or a supplier (if the clients are consumers) of events. Actually each
client is not directly connected to the event channel but to a proxy that receives
or sends events on behalf of the channel. For more information on the Event
Service and for the complete definitions of the IDL interfaces, please refer to the
official Event Service specification.

 1 // Java
 2 while(supplier_ != null)
 3 {
 4 Any any = null;
 5
 6 try
 7 {
 8 any = supplier_.pull();
 9 }
10 catch(Disconnected ex)
11 {
12 // Supplier was diconnected from event channel
13 }
14
15 try
16 {
17 String s = any.extract_string();
18 System.out.println(s);
19 }
20 catch(MARSHAL ex)
21 {
22 // Ignore unknown event data
23 }
24 }
252

CHAPTER 13

The Interface
Repository
A CORBA Interface Repository (IFR) is essential for applications
using the dynamic features of CORBA, such as the Dynamic
Invocation Interface and DynAny. The IFR holds IDL type
definitions and can be queried and traversed by applications.

The Orbacus Interface Repository is compliant with [4]. This
chapter does not provide a complete description of the IFR. For
more information, please refer to the specification.

In this chapter This chapter contains the following sections:

Usage page 254

Connecting to the Interface Repository page 258

Configuration Issues page 259

Interface Repository Utilities page 260

Programming Example page 261
253

CHAPTER 13 | The Interface Repository
Usage
The Orbacus Interface Repository is currently only provided with Orbacus for
C++, using this syntax:

irserv
 [-h,--help] [-v,--version] [-d,--debug] [-i,--ior]
 [-DNAME] [-DNAME=DEF] [-UNAME] [-IDIR]
 [--case-sensitive] [FILE ...]

-h
--help

Display the command-line options supported by the
server.

-v
--version

Display the version of the server.

-d
--debug

Print diagnostic messages. This option is for Orbacus
internal debugging purposes only.

-i

--ior

Print the stringified IOR of the server to standard
output.

-DNAME
-DNAME=DEF

Defines NAME as DEF, or 1 if DEF is not provided. This
option is passed directly to the preprocessor.

-UNAME Removes any definition for NAME. This option is
passed directly to the preprocessor.

-IDIR Adds DIR to the include file search path. This option
is passed directly to the preprocessor.

--case-sensitive The semantics of OMG IDL forbid identifiers in the
same scope to differ only in case. This option relaxes
these semantics, but is only provided for backward
compatibility with non-compliant IDL.

FILE ... IDL files to be loaded into the repository.
254

Usage
Windows Native Service

Syntax Use the Windows Native Service as follows:

In order to use the IFR as a native Windows service, it is first necessary to add
the ooc.ifr.endpoint configuration property to the HKEY_LOCAL_MACHINE NT
registry key (see “Using the Windows Registry” on page 71 for more details).

Next the service should be installed with:

ntirservice -i

This adds the Orbacus Interface Repository Service entry to the Services
dialog in the Control Panel. To start the naming service, select the Orbacus
Interface Repository Service entry, and press Start. If the service is to be
started automatically when the machine is booted, select the Orbacus
Interface Repository Service entry, then click Startup. Next select
Startup Type - Automatic, and press OK. Alternatively, the service could have
been installed using the -s option, which configures the service for automatic
start-up:

ntirservice -s

If you want to remove the service, run:

ntirservice
 [-h,--help] [-i,--install] [-s,--start-install]
 [-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the
server.

-i

--install

Install the service. The service must be started
manually.

-s

--start-install

Install the service and start it.

-u

--uninstall

Uninstall the service.

-d

--debug

Run the service in debug mode.
255

CHAPTER 13 | The Interface Repository
ntirservice -u

Any trace information provided by the service is placed in the Windows Event
Viewer with the title IRService. To enable tracing information, add the desired
trace configuration property (that is, one of the ooc.orb.trace properties) to the
HKEY_LOCAL_MACHINE NT registry key with a REG_SZ value of at least 1.

Note: If the executable for the Interface Repository is moved, it must be
uninstalled and re-installed.
256

Usage
Configuration Properties
In addition to the standard configuration properties described in Chapter 4, the
Orbacus Interface Repository also supports the following properties:

ooc.ifr.options=OPTS Allows command-line options to be
passed to the Windows Native service at
start-up. Note that absolute path names
should be used when specifying include
directives, IDL files, etc.

ooc.ifr.endpoint=ENDPOINT Specifies the endpoint configuration for
the service. Note that this property is only
used if the ooc.orb.oa.endpoint
property is not set.
257

CHAPTER 13 | The Interface Repository
Connecting to the Interface Repository
The object key of the IFR is DefaultRepository, which identifies an object of
type CORBA::Repository.

The object key can be used when composing URL-style object references. For
example, the following URL identifies the IFR running on host ifrhost at port
10000:

corbaloc::ifrhost:10000/DefaultRepository

Refer to Chapter 6 for more information on URLs and configuring initial
services.
258

Configuration Issues
Configuration Issues
Although applications can interact with the IFR as with any other CORBA
server, it does have special status within the ORB. Specifically, use of the
standard operation Object::get_interface() requires the presence of an IFR:

The exact semantics of get_interface can be a source of confusion. In
Orbacus, as with most other ORBs, the get_interface operation is a remote
operation. That is, when a client invokes get_interface on an object reference,
the request is sent to the server. The server knows the interface type of the object
reference and interacts with the IFR to locate the appropriate
CORBA::InterfaceDef object to return to the client. Therefore, the server must
be configured for the IFR. It is not necessary to configure the client for the IFR if
the client’s only interaction with the IFR is via get_interface.

// PIDL
interface Object
{
 ...
 InterfaceDef get_interface();
 ...
};
259

CHAPTER 13 | The Interface Repository
Interface Repository Utilities

irfeed IDL files can be loaded into the IFR at runtime using irfeed. See the description
of the irserv command for more information on the command-line options.

irdel Type definitions can be removed from the IFR using irdel. See the description
of the irserv command for more information on the command-line options.

The name argument represents the scoped name of the type to be removed. A
scoped name has the form X::Y::Z. For example, an interface I defined in a
module M can be identified by the scoped name M::I.

irfeed
 [-h,--help] [-v,--version] [-d,--debug]
 [-DNAME] [-DNAME=DEF] [-UNAME] [-IDIR] FILE ...

irdel
 [-h,--help] [-v,--version] name ...
260

Programming Example
Programming Example
Below is a simple example in Java that demonstrates how to obtain an
InterfaceDef object and display its contents:

 1 // Java
 2 import org.omg.CORBA.*;
 3 ...
 4
 5 org.omg.CORBA.ORB = ... // initialize the ORB
 6 org.omg.CORBA.Object obj = ... // get object reference somehow
 7
 8 org.omg.CORBA.Object defObj = obj._get_interface_def();
 9 if(defObj == null)
10 {
11 System.err.println("No Interface Repository available");
12 System.exit(1);
13 }
14
15 InterfaceDef def = InterfaceDefHelper.narrow(defObj);
16 org.omg.CORBA.InterfaceDefPackage.FullInterfaceDescription

desc = def.describe_interface();
17
18 int i;
19 System.out.println("name = " + desc.name);
20 System.out.println("id = " + desc.id);
21 System.out.println("defined_in = " + desc.defined_in);
22 System.out.println("version = " + desc.version);
23 System.out.println("operations:");
24 for(i = 0 ; i < desc.operations.length ; i++)
25 {
26 System.out.println(i + ": " + desc.operations[i].name);
27 }
28 System.out.println("attributes:");
29 for(i = 0 ; i < desc.attributes.length ; i++)
30 {
31 System.out.println(i + ": " + desc.attributes[i].name);
32 }
33 System.out.println("base_interfaces:");
34 for(i = 0 ; i < desc.base_interfaces.length ; i++)
35 {
36 System.out.println(i + ": " + desc.base_interfaces[i]);
37 }
261

CHAPTER 13 | The Interface Repository
Lines 5-8 After initializing the ORB and obtaining an object reference, we
invoke _get_interface_def1 on the object.

Lines 9-13 If no interface definition could be found, _get_interface_def
returns nil.

Line 15 Narrow the object reference to InterfaceDef. We now have a
reference to an object in the IFR that describes the most-derived type of our
object reference.

Line 16 Request a complete description of the interface.

Lines 19-37 Print information about the interface, including the names of its
operations and attributes.

A complete example of how to use the IFR can be found in the ob/demo/
repository subdirectory.

1. Recent versions of the IDL-to-Java mapping introduced the _get_interface_def
operation, which returns org.omg.CORBA.Object instead of
org.omg.CORBA.InterfaceDef. Portable Java applications should use
_get_interface_def. In C++, the operation is _get_interface.
262

CHAPTER 14

Orbacus Balancer
Orbacus Balancer provides load balancing of client connections
across a group of replicated objects. The load balancing service
provided by Orbacus Balancer is transparent and interoperable
with any CORBA client. However, the interface between the servers
and the service is strictly proprietary.

In this chapter This chapter contains the following sections:

Basic Concepts page 264

Load Balancing Strategies page 265

Service Security page 269

Usage page 270

Connecting to the Service page 276

Load Balanced IMR-enabled Servers page 277

Utilities page 278

Programming Example page 283
263

CHAPTER 14 | Orbacus Balancer
Basic Concepts
Let us assume that we wish to provide a library service that is made available
through a set of objects. These objects being a set of book objects and a library
object that manages the book objects. Furthermore, it is desired that connections
made with each of these objects be load balanced. The replicated objects for
each book and the replicated library objects are managed in the service by a
single entity that is called a load balanced group. Each member of the load
balanced group must provide a replica of each object — for the library service,
each member must provide a replica of each book object and a replica of the
library object.

All of the replicas provided by a member must be activated on a single POA
with a member policy (which uniquely identifies the member within the service),
the USER_ID ID assignment policy value, and the PERSISTENT lifespan policy
value. Such a POA will be referred to as a member POA and the corresponding
server will be referred to a load balanced server. Object references created by a
member POA will refer to the service instead of the member POA within the
load balanced server.

When a client makes a request on an object using a reference create by a member
POA, the service:

• receives the request,

• determines the load balanced group,

• selects a member of this group, and

• returns a new reference to the client that refers to the replica of the object

that is provided by this member.

The client then establishes a connection with the server using the new object
reference and communicates directly with the server, without the intervention of
the service.
264

Load Balancing Strategies
Load Balancing Strategies
Each load balanced group within the service has an associated load balancing
strategy. The load balancing strategy determines which member will be used to
service the next client connection. The strategy is also responsible for load
re-balancing. Load re-balancing is done by issuing load alerts to overload
members. When a member receives a load alert, it forwards the next client
request back to the service.

There are two types of strategies: adaptive and non-adaptive. When using an
adaptive strategy, a load balanced group must receive load updates from the
members. These loads are then used by the strategy to determine the next
member to be used for a client connection. Adaptive strategies can also provide
load re-balancing. When using non-adaptive strategies, the service does not
require load updates from the members and load re-balancing is not possible.

Member selection and load re-balancing are discussed in the following sections.
The advantages and disadvantages of the different types of load balancing
strategies is also presented.

Member selection Non-adaptive member selection does not use load information from the
members. Hence, non-adaptive member selection will only correctly balance
connections under a certain set of conditions. These conditions are as follows:

• Dedicated hosts

• Homogeneous hosts

• Clients generate the same load and are connected for the same amount of

time – or –clients are connected for short periods of time
265

CHAPTER 14 | Orbacus Balancer
While adaptive member selection can be used in more situations than
non-adaptive member selection, it is not without problems. The problems with
adaptive member selection are highlighted below:

1. Using a polling technique to retrieve member loads does not scale. Hence,

it is decided that loads will be reported to the load balanced group at

regular intervals by each member. However, this implies that when making

a load balancing decision, loads do not necessarily represent the current

loads of the members, but instead past loads. This is a source of error.

These errors will be large when many clients connect in a short period of

time. This is because the actual load of members will increase dramatically

before the loads can be updated.

Increasing the frequency of load updates will decrease the error, but then

the overhead of load balancing is increased due the extra network traffic.

Hence, an optimum value must be discovered for each installation.

2. Another source of error is that spikes in the load of a member may cause

bad load balancing decisions.

3. Yet another problem with load balancing is that, in most cases, it is

difficult to estimate the load that a new client connection will impose on a

member. This becomes a bigger problem on a heavily loaded system since

a load balancing decision may cause a members load to increase well past

the critical level.

Errors of this type can be alleviated by using load re-balancing. However, load
re-balancing will introduce other sources of errors, as discussed in the next
section.

Load re-balancing Load re-balancing is the transfer of a client connection from the replica of one
member to the replica of another. This is achieved by getting a member to
forward the next client request back to the service. Load re-balancing is useful
when the loads of the members become imbalanced. Through load re-balancing
these imbalances can be corrected, resulting in a higher average throughput.
Several factors may contribute to a load imbalance:

• Clients not generating a consistent load while connected

• Clients not connected for the same amount of time

• Heterogeneous hosts

• Non-dedicated hosts
266

Load Balancing Strategies
• Member selection errors

For effective load re-balancing, we must be able track client connections and the
load generated by each connection. However, the concept of a connection is
hidden from the CORBA developer, so in general, all that is available is the load
for each member of the load balanced group. Hence, we must make certain
approximations when making load re-balancing decisions. For these
approximations to hold, the following assumptions must made:

• The average load created by a client can be reliably estimated

• The load created by a client does not deviate much from the average load

• Dedicated hosts

• Homogeneous hosts

Since load re-balancing decisions are based on approximations that will only be
reasonable when certain conditions are meant, there is always the chance of a
load re-balancing error. Let us say that a load re-balancing error occurs when the
load that is transferred from the replica of one member to the replica of another
causes the target member to become overloaded. This situation is what we will
call system instability. In some cases the system may remain instable
indefinitely. For example, if a single client is solely responsible for causing a
high load, then the client will likely be bounced from member to member. Yet
another source of load re-balancing errors comes from the fact that a member
cannot redirect a client until it receives a request. When this occurs, the member
may no longer be overloaded. This can be alleviated by associating an expire
time with a load alert.

Choosing a load balancing
strategy

Some important things to note when choosing between adaptive and
non-adaptive load balancing strategies are:

• Non-adaptive strategies impose very little overhead compared to adaptive

strategies.

• Adaptive strategies will produce a more balanced system when the

assumptions for the non-adaptive strategies are not satisfied.

Under certain conditions, load re-balancing will be error-prone. In such a case,
adaptive strategies which take an aggressive approach to re-balancing may result
in many load re-balancing errors. Furthermore, load re-balancing can be an
expensive operation, making these errors even more severe. On the other hand, if
the system is such that load re-balancing errors seldom occur and the expense of
267

CHAPTER 14 | Orbacus Balancer
re-balancing is minimal, then adaptive strategies that take an aggressive
approach to load re-balancing should result in a higher average throughput due
to a more balanced system.
268

Service Security
Service Security
It is very important that only Orbacus Balancer’s public port (also referred to as
its forward port) be accessible outside of the network firewall. Otherwise,
anyone can mimic the members of a load balanced group causing a denial of
service.

For additional security, many of the operations on the service are only allowed
when the service is running in administrative mode. That is:

• creating and destroying load balanced groups,

• setting the load balancing strategy, and

• adding or removing members

are only possible when the service is running in administrative mode. An attempt
to perform these operations when it is not running in administration mode will
result in a CORBA::NO_PERMISSION exception.
269

CHAPTER 14 | Orbacus Balancer
Usage
Orbacus Balancer is currently only implemented using Orbacus for C++, but
Orbacus for Java servers can also be load balanced. Orbacus Balancer command
line usage is as follows:

balancer
 [-h,--help] [-v,--version] [-a,--administrative]
 [-d,--database] [-A,--admin-endpoint]
 [-F,--forward-endpoint]

-h, --help Display the command-line options supported
by the server.

-v, --version Display the version of the server.

-a, --administrative Run the service in administrative mode. The
service will run in non-administrative mode
by default.

-d DIRECTORY,
--database DIRECTORY

Specifies the directory in which the service
maintains its database files. If not specified,
then the current working directory is used.

-A INFO,
--admin-endpoint INFO

Specifies the service’s administrative public
endpoint settings. This is the endpoint that the
load balanced servers use to communicate
with the service. For security reasons, access
to this endpoint can be restricted.

-F INFO,
--forward-endpoint INFO

Specifies the services's public endpoint
settings, which is used by clients for server
requests.
270

Usage
Windows Native Service
The balancer server is also available as a native Windows service.

In order to use Orbacus Balancer as a native Windows service, first add the
desired configuration properties to the HKEY_LOCAL_MACHINE NT registry key
(see “Using the Windows Registry” on page 71 for more details). For example,
add the ooc.balancer.admin_endpoint and
ooc.balancer.forward_endpoint properties so that the service will use
non-default ports.

Next the service should be installed with:

ntbalancerservice -i

This adds the Orbacus Balancer entry to the Services dialog in the Control
Panel. To start the service, select the Orbacus Balancer entry, and press Start.
If the service is to be started automatically when the machine is booted, select
the Orbacus Balancer entry, then click Startup. Next select Automatic for the
Startup Type and press OK. Alternatively, the service could have been installed
using the -s option, which configures the service for automatic start-up:

ntbalancerservice -s

If you want to remove the service, run:

ntbalancerservice
 [-h,--help] [-i,--install] [-s,--start-install]
 [-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the
service.

-i
--install

Install the service. The service must be started
manually.

-s
--start-install

Install and start the service.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.
271

CHAPTER 14 | Orbacus Balancer
ntbalancerservice -u

Any trace information provided by the service is be placed in the Windows
Event Viewer with the title Balancer. To enable tracing information, add the
desired trace configuration property (that is, one of the ooc.balancer.trace
properties or one of the ooc.orb.trace properties) to the HKEY_LOCAL_MACHINE
NT registry key with a REG_SZ value of at least 1.

Note: If the executable for the service is moved, it must be uninstalled and
re-installed.
272

Usage
Configuration Properties
In addition to the standard configuration properties described in Chapter ,
Orbacus Balancer also supports the following properties:

ooc.balancer.administrative Value: true, false

If set to true, then run the service in administrative mode. For details refer to the
-a command-line option.

ooc.balancer.dbdir Value: directory

Equivalent to the -d command-line option.

ooc.balancer.admin_endpoint Value: info

Equivalent to the -A command-line option.

ooc.balancer.forward_endpoint Value: info

Equivalent to the -F command-line option.

ooc.balancer.trace.database Value: level >= 0

Defines the output level for database diagnostic messages printed by the service.
The default level is 0, which produces no output. A level of 1 or higher produces
database information (for example, loading, adding and removing group records
in the database).

ooc.balancer.trace.lifecycle Value: level >= 0

Defines the output level for lifecycle diagnostic messages printed by the service.
The default level is 0, which produces no output. A level of 1 or higher produces
lifecycle information (for example, creation and destruction of load balanced
groups, adding and removing members, and setting load balancing strategies).

ooc.balancer.trace.load_balance Value: level >= 0

Defines the output level for diagnostic messages related to the load balancing of
members. The default level is 0, which produces no output. Levels greater than 0
produce different degrees of output.
273

CHAPTER 14 | Orbacus Balancer
Built-in Load Balancing Strategies
In this section we present the load balancing strategies that are provided with
Orbacus Balancer. Note that the default strategy is the round-robin strategy.

random Non-adaptive strategy where members are selected at random. There are no
configuration properties for this strategy.

round-robin Non-adaptive strategy where members are selected in round-robin order. There
are no configuration properties for this strategy.

least-load Adaptive strategy where the least loaded members are chosen in round-robin
order. The configuration properties for this strategy are as follows:

tolerance Type: CORBA::ULong

Members with a load difference that is less than tolerance are considered to
have the same load. The default value for this property is 0.

This alleviates the member selection problem 1. on page 266.

load-per-client Type: CORBA::ULong

The load-per-client property is an estimate of the load for a given client
connection. It is used so that a member's load can be adjusted without having to
wait for the next load update. It is also used to estimate the effect of load
re-balancing. The default value for this property is 0.

This alleviates the member selection problem 1. on page 266.

critical-load Type: CORBA::ULong

A member with a load greater than critical-load is re-balanced if there exists
a member with a load that is less than critical-load minus load-per-client.
This property has a default value of 0, which disables load re-balancing.

This alleviates the member selection problem 3. on page 266.
274

Usage
reject-load Type: CORBA::ULong

A connection request will be rejected if all members have a load greater than the
reject-load property. This property has a default value of 0, which means that
connections will never be rejected.

dampening-multiplier Type: CORBA::Float

A dampening technique is used to smooth out spikes that may occur in the
reported loads of members. The load of a member is calculated using the
dampening-multiplier property as follows:

load = mult * old_load + (1 - mult) * new_load

where mult is the value of the dampening-multiplier property. This property
must be greater than or equal to 0 and less than 1. The default value of 0, which
disables dampening.

This alleviates member selection problems 1. on page 266 and 2. on page 266.

min-dispersion Adaptive strategy which attempts to keep the member loads within a given
tolerance. This strategy takes an aggressive approach to load re-balancing. The
configuration properties for this strategy are as follows:

tolerance Type: CORBA::ULong

Members with loads less than the average minus the tolerance are selected in
round-robin order. Members with loads greater than the average plus the
tolerance are re-balanced. If there are no members with loads less than the
average minus the tolerance, then members with loads within tolerance of
the average are selected in round-robin order. The default value for this property
is 0.

This alleviates the member selection problem 1. on page 266 and 3. on page 266.

load-per-client See “load-per-client” on page 274.

reject-load See “reject-load” on page 275.

dampening-multiplier See “dampening-multiplier” on page 275.
275

CHAPTER 14 | Orbacus Balancer
Connecting to the Service
Servers that use Orbacus Balancer must be configured with the service’s initial
reference. The object key of the service is Balancer, hence, a URL-style object
reference of the service running on host lbhost at port 10000 would be:

corbaloc::lbhost:10000/Balancer

Using this object reference, a server can configure the Orbacus Balancer initial
reference with the property:

ooc.orb.service.Balancer=corbaloc::lbhost:10000/Balancer

An alternative to using the above property is to use the -ORBInitRef
command-line option. Refer to Chapter 6 for more information on URLs and
configuring initial services.
276

Load Balanced IMR-enabled Servers
Load Balanced IMR-enabled Servers
Load balanced servers may also be IMR-enabled servers. For information on
using the IMR, refer to Chapter 7. Note that Orbacus Balancer and the IMR need
no additional configuration.

Object references created by a member POA of an IMR-enabled server will still
refer to the associated load balanced group within Orbacus Balancer. However,
when Orbacus Balancer selects a member implemented by a IMR-enabled server
to service a new connection, the reference returned to the client will actually
refer to the IMR instead of the member's server. When the client makes a request
using this reference, the IMR receives the request, activates the member's server
(if necessary) using the OAD, and returns a new object reference to the client
that refers the server.
277

CHAPTER 14 | Orbacus Balancer
Utilities

In this section This section describes various load balancing utilities:

Service Administration page 279

Making References page 280

Utility Objects page 281

Utility Object Configuration Properties page 282
278

Utilities
Service Administration
The lbadmin utility provides complete control over Orbacus Balancer. Its
command interface is shown below:

Where <strategy> can be random, round-robin, least-load, or
min-dispersion. The least-load strategy has the options:

--tolerance tolerance
--load-per-client load_per_client
--critical-load critical_load
--reject-load reject_load
--dampening-multiplier dampening_multiplier

The min-dispersion strategy has the options:

--tolerance tolerance
--load-per-client load_per_client
--reject-load reject_load
--dampening-multiplier dampening_multiplier

-h, --help Display this information.

--list-groups List the load balanced groups.

--create-group group-id Create a load balanced group.

--destroy-group group-id Destroy a load balanced group.

--get-group-info group-id Get the attributes of a group.

--get-group-ior group-id repository-id object-id Get the IOR for use by a client.

--set-strategy group-id <strategy> Use the specified built-in strategy.

--set-custom-strategy group-id ior Use the given custom strategy.

--list-members group-id Enumerate the members of the group.

--add-member group-id member-id Add a member to the group.

--remove-member group-id member-id Remove a member from the group.

--shutdown Shutdown the service.
279

CHAPTER 14 | Orbacus Balancer
Making References
The lbmkref utility creates object references for use by clients of Orbacus
Balancer. Note that this can only be used to create object references when the
service is configured to use the IIOP. Its usage is shown below.

lbmkref [-H host] port group-id repository-id object-id

host The host that the balancer server is running on. The
default value is the canonical hostname of the machine
in which lbmkref is executed.

port The forward port of the service.

group-id The ID of the load balanced group.

repository-id The Repository ID of the new object reference.

object-id The Object ID of the new object reference.
280

Utilities
Utility Objects
To take advantage of the features of the adaptive load balancing strategies, a
load balanced server must send load updates to the appropriate load balanced
groups and respond to load alerts. Orbacus Balancer provides utility objects that
the developer may use to help implement this functionality.

The utility objects provided by Orbacus Balancer are part of the
LoadBalancing::Util module and are provided as initial services (see “The
BootManager” on page 143). Each utility object is described below. For further
detail, refer to Appendix F, and for an example refer to “Adaptive Load
Balancing” on page 288.

LoadAlert The LoadAlert object is used to manage load alerts sent by the service. The
name of the LoadAlert initial service is LoadAlert.

LoadCalculator The LoadCalculator object is used by the LoadUpdater object (see below) to
calculate the current load of the server (which will be used as the load of each
member registered with the LoadUpdater object). The implementation provided
by the service calculates the load based on the number of active requests.

LoadUpdater The LoadUpdater object is used to manage load updates sent to the Balancer. At
regular intervals the LoadUpdater object gets the load from the LoadCalculator
object and pushes it to the load balanced group of each registered member.
281

CHAPTER 14 | Orbacus Balancer
Utility Object Configuration Properties
The Orbacus Balancer utility objects support the following properties:

ooc.balancer.util.create_alert Value: true, false

If set to true, then the LoadAlert object will be created and will be available as
an initial service. The default value is true.

ooc.balancer.util.create_
calculator

Value: true, false

If set to true, then the LoadCalculator object will be created and will be available
as an initial service. The default value is true.

ooc.balancer.util.create_updater Value: true, false

If set to true, then the LoadUpdater object will be created and will be available
as an initial service. The default value is true. If the LoadCalculator object is also
created, then this object does not have to be set in the LoadUpdater object.

ooc.balancer.trace.alert_expire Value: timeout >= 0

Specifies the expiry time for a load alert in milliseconds. The default is 1000 (1
second). A value of 0 means that load alerts never expire.

ooc.balancer.trace.load_update Value: frequency >= 0

Specifies the load update frequency for the LoadUpdater object in milliseconds.
The default is 1000 (1 second). A value of 0 means that no load updates will be
sent to the service.
282

Programming Example
Programming Example

Implementing a load balanced
server

In this section, we will show how to modify the C++ version of the Hello World
server (see Chapter 2) for load balancing. First we will present the modifications
necessary for non-adaptive load balancing, then the necessary modifications for
adaptive load balancing will be presented. This is followed by a description of
the steps necessary to configure the service for the load balanced Hello World
servers.

In this section This section covers the following topics:

Non-adaptive Load Balancing page 284

Adaptive Load Balancing page 288

Running the Load Balanced Servers page 292
283

CHAPTER 14 | Orbacus Balancer
Non-adaptive Load Balancing
The Hello World server presented in Chapter uses the Root POA to activate its
Hello servant. However, a member POA must have a member policy, the
USER_ID ID assignment policy value and the PERSISTENT lifespan policy value.
Hence, the Hello World server must be modified so that the Hello servant is
activated using a POA with the above policies. Furthermore, the Hello servant is
no longer activated under the Root POA, so it becomes necessary for it to
override the _default_POA method. The modified servant’s class declaration is
shown below:

Line 7 Private member to store the servant’s default POA.

Line 11 A constructor must be defined to allow the assignment of the servant’s
default POA.

Line 15 Declaration of the _default_POA method.

 1 // C++
 2 #include <Hello_skel.h>
 3
 4 class Hello_impl : public POA_Hello,
 5 public PortableServer::RefCountServantBase
 6 {
 7 PortableServer::POA_var poa_;
 8
 9 public:
10
11 Hello_impl(PortableServer::POA_ptr);
12
13 virtual void say_hello() throw(CORBA::SystemException);
14
15 virtual PortableServer::POA_ptr _default_POA();
16 };
284

Programming Example
The remainder of the class declaration is unchanged. The definition of the
constructor and _default_POA method follow:

The modified server program is shown below :

// C++
Hello_impl::Hello_impl(PortableServer::POA_ptr poa)
 : poa_(PortableServer::POA::_duplicate(poa)
{
}

PortableServer::POA_ptr Hello_impl::_default_POA()
{
 return PortableServer::POA::_duplicate(poa_);
}

 1 // C++
 2 #include <OB/CORBA.h>
 3 #include <OB/Balancer_init.h>
 4 #include <Hello_impl.h>
 5
 6 int run(CORBA::ORB_ptr, int, char*[]);
 7
 8 int main(int argc, char* argv[])
 9 {
10 int status = EXIT_SUCCESS;
11 CORBA::ORB_var orb;
12
13 try
14 {
15 LoadBalancing::LB_init();
16 orb = CORBA::ORB_init(argc, argv);
17 status = run(orb, argc, argv);
18 }
19 catch(const CORBA::Exception&)
20 {
21 status = EXIT_FAILURE;
22 }
23
24 if(!CORBA::is_nil(orb))
25 {
26 try
27 {
28 orb -> destroy();
29 }
285

CHAPTER 14 | Orbacus Balancer
Line 3 Include the header file that declares the Orbacus Balancer initialization
function. This header file also includes the header files OB/Balancer.h and OB/
BalancerPolicyTypes.h, which contain the definitions necessary for
non-adaptive load balancing.

Line 15 Invoke LoadBalancing::LB_init(). This function initializes the
server for load balancing and must be called before initializing the ORB.

The remainder of the main() function is similar to the one shown in Chapter 2 on
page 5. Now we write the run() function:

30 catch(const CORBA::Exception&)
31 {
32 status = EXIT_FAILURE;
33 }
34 }
35
36 return status;
37 }

 1 // C++
 2 int run(CORBA::ORB_ptr orb, int argc, char* argv[])
 3 {
 4 if(argc != 2)
 5 return EXIT_FAILURE;
 6 const char* memberId = argv[1];
 7
 8 CORBA::Object_var poaObj =
 9 orb -> resolve_initial_references("RootPOA");
10 PortableServer::POA_var rootPoa =
11 PortableServer::POA::_narrow(poaObj);
12
13 PortableServer::POAManager_var manager =
14 rootPoa -> the_POAManager();
15
16 LoadBalancing::MemberPolicyValue_var value =
17 new LoadBalancing::MemberPolicyValue();
18 value -> group_id = CORBA::string_dup("Hello");
19 value -> member_id = CORBA::string_dup(memberId);
20 CORBA::Any any;
21 any <<= value._retn();
22 CORBA::Policy_var memberPolicy =
23 orb -> create_policy(LoadBalancing::MEMBER_POLICY_ID, any);
24
286

Programming Example
Lines 4-6 Check the arguments for the member ID.

Lines 16-23 Create the member policy. The group ID will be Hello and the
member ID is an argument of the program.

Lines 25-33 Create the member POA.

Lines 35-40 Create the Hello servant and activate it on the member POA.

The remainder of the run() function is similar to that of Chapter 2 on page 5.

25 CORBA::PolicyList pl(3);
26 pl.length(3);
27 pl[0] = rootPOA -> create_lifespan_policy(
28 PortableServer::PERSISTENT);
29 pl[1] = rootPOA -> create_id_assignment_policy(
30 PortableServer::USER_ID);
31 pl[3] = memberPolicy;
32 PortableServer::POA_var helloPOA =
33 rootPOA -> create_POA("hello", manager, pl);
34
35 Hello_impl* helloImpl = new Hello_impl(helloPOA);
36 PortableServer::ServantBase_var servant = helloImpl;
37 PortableServer::ObjectId_var oid =
38 PortableServer::string_to_ObjectId("hello");
39 helloPOA -> activate_object_with_id(oid, servant);
40 Hello_var hello = helloImpl -> _this();
41
42 manager -> activate();
43 orb -> run();
44
45 return EXIT_SUCCESS;
46 }
287

CHAPTER 14 | Orbacus Balancer
Adaptive Load Balancing
To use adaptive load balancing, the Hello server must send load updates to the
service and react to load alerts. The Orbacus Balancer utility objects will be used
to help implement this functionality. The modified server program is shown
below:

 1 // C++
 2 #include <OB/CORBA.h>
 3 #include <OB/Balancer_init.h>
 4 #include <OB/BalancerUtil_init.h>
 5 #include <OB/Balancer_skel.h>
 6 #include <Hello_impl.h>
 7
 8 class LoadAlert_impl :
 9 virtual public POA_LoadBalancing::LoadAlert,
10 virtual public PortableServer::RefCountServantBase
11 {
12 LoadBalancing::Util::LoadAlert_var alert_;
13
14 public:
15 LoadAlert_impl(LoadBalancing::Util::LoadAlert_ptr alert)
16 :

alert_(LoadBalancing::Util::LoadAlert::_duplicate(alert))
17 {
18 }
19
20 virtual void alert()
21 throw(CORBA::SystemException)
22 {
23 alert_ -> alert();
24 }
25 };
26
27 int run(CORBA::ORB_ptr, int, char*[]);
28
29 int main(int argc, char* argv[])
30 {
31 int status = EXIT_SUCCESS;
32 CORBA::ORB_var orb;
33
288

Programming Example
Line 4 Include the header file that declares the Orbacus Balancer utility
initialization function. This header file also includes the header file OB/
BalancerUtil.h, which contain the definitions of the utility objects.

Line 5 The header file OB/Balancer_skel.h must be included for the
implementation of the LoadBalancing::LoadAlert interface.

Lines 8-25 An implementation of the LoadBalancing::LoadAlert interface
that delegates to the LoadAlert utility object.

Line 37 Invoke LoadBalancing::Util::LBUtil_init(). This function
initializes the utility objects and must be called before initializing the ORB.

34 try
35 {
36 LoadBalancing::LB_init();
37 LoadBalancing::Util::LBUtil_init();
38 orb = CORBA::ORB_init(argc, argv);
39 status = run(orb, argc, argv);
40 }
41 catch(const CORBA::Exception&)
42 {
43 status = EXIT_FAILURE;
44 }
45
46 if(!CORBA::is_nil(orb))
47 {
48 try
49 {
50 orb -> destroy();
51 }
52 catch(const CORBA::Exception&)
53 {
54 status = EXIT_FAILURE;
55 }
56 }
57
58 return status;
59 }
289

CHAPTER 14 | Orbacus Balancer
The remainder of the main() function is the same as in section “Non-adaptive
Load Balancing” on page 284. Now we write the run() function:

 1 // C++
 2 int run(CORBA::ORB_ptr orb, int argc, char* argv[])
 3 {
 4 if(argc != 2)
 5 return EXIT_FAILURE;
 6 const char* memberId = argv[1];
 7
 8 CORBA::Object_var poaObj =
 9 orb -> resolve_initial_references("RootPOA");
10 PortableServer::POA_var rootPoa =
11 PortableServer::POA::_narrow(poaObj);
12
13 PortableServer::POAManager_var manager =
14 rootPoa -> the_POAManager();
15
16 LoadBalancing::MemberPolicyValue_var value =
17 new LoadBalancing::MemberPolicyValue();
18 value -> group_id = CORBA::string_dup("Hello");
19 value -> member_id = CORBA::string_dup(memberId);
20 CORBA::Any any;
21 any <<= value._retn();
22 CORBA::Policy_var memberPolicy =
23 orb -> create_policy(LoadBalancing::MEMBER_POLICY_ID,

any);
24
25 CORBA::PolicyList pl(3);
26 pl.length(3);
27 pl[0] = rootPOA -> create_lifespan_policy(
28 PortableServer::PERSISTENT);
29 pl[1] = rootPOA -> create_id_assignment_policy(
30 PortableServer::USER_ID);
31 pl[3] = memberPolicy;
32 PortableServer::POA_var helloPOA =
33 rootPOA -> create_POA("hello", manager, pl);
34
35 Hello_impl* helloImpl = new Hello_impl(helloPOA);
36 PortableServer::ServantBase_var servant = helloImpl;
37 PortableServer::ObjectId_var oid =
38 PortableServer::string_to_ObjectId("hello");
39 helloPOA -> activate_object_with_id(oid, servant);
40 Hello_var hello = helloImpl -> _this();
41
290

Programming Example
Lines 25-33 Create the member POA.

Lines 42-53 Get the GroupFactory and the LoadUpdater and LoadAlert utility
objects.

Lines 55-58 Create the LoadAlert servant and activate it on the root POA.

Lines 62-63 Set the member’s LoadAlert object. Note that this should be done
after activating the POA manager since it may result in a request to this server.

Line 65 Register the member with the LoadUpdater.

The remainder of the run() function is the same as in section “Non-adaptive
Load Balancing” on page 284.

42 CORBA::Object_var obj =
43 orb -> resolve_initial_references("Balancer");
44 LoadBalancing::GroupFactory_var factory =
45 LoadBalancing::GroupFactory::_narrow(obj);
46
47 obj = orb -> resolve_initial_references("LoadUpdater");
48 LoadBalancing::Util::LoadUpdater_var updater =
49 LoadBalancing::Util::LoadUpdater::_narrow(obj);
50
51 obj = orb -> resolve_initial_references("LoadAlert");
52 LoadBalancing::Util::LoadAlert_var alert =
53 LoadBalancing::Util::LoadAlert::_narrow(obj);
54
55 LoadAlert_impl* loadAlertImpl = new LoadAlert_impl(alert);
56 PortableServer::ServantBase_var alertServant =

loadAlertImpl;
57 LoadBalancing::LoadAlert_var loadAlert =
58 loadAlertImpl -> _this();
59
60 manager -> activate();
61
62 LoadBalancing::Group_var group = factory -> get("Hello");
63 group -> set_load_alert(memberId, loadAlert);
64
65 updater -> register_member(memberId, "Hello");
66
67 orb -> run();
68
69 return EXIT_SUCCESS;
70 }
291

CHAPTER 14 | Orbacus Balancer
Running the Load Balanced Servers
In this section we present the step required to set up the Orbacus Balancer for the
Hello World load balanced servers. We will assume that Orbacus has been
installed in the directory /usr/local/Orbacus and the executables balancer,
lbadmin and lbmkref all exist in a directory that is in the search path. The steps
are as follows:

1. Create a configuration file for Orbacus Balancer containing the following:

balancer.conf
ooc.balancer.admin_endpoint=iiop --port 10000
ooc.balancer.forward_endpoint=iiop --port 10001
ooc.balancer.dbdir=/usr/local/Orbacus/db

This file is placed in the /usr/local/Orbacus/etc directory.

2. Start the service in administrative mode:

balancer -ORBconfig /usr/local/Orbacus/etc/balancer.conf \
--administrative

3. Create the load balanced group.

Before starting the load balanced servers, the associated load balanced

group must be created. This can be done using the lbadmin utility as

follows:

lbadmin -ORBInitRef Balancer=corbaloc::lbhost:10000/Balancer\
--create-group Hello

Where lbhost is the host running the service.

4. Add the members.

The members can be added to the group explicitly using the --add-member

command of the lbadmin utility or they can be added automatically when

the load balanced servers are started.

Note that members cannot be added automatically by the load balanced

servers if the service is not running in administrative mode.

5. Configure the load balancing strategy.

The --set-strategy or --set-custom-strategy commands of the

lbadmin utility may be used to configure the group’s load balancing

strategy, For example, to use the least-load strategy:

lbadmin -ORBInitRef Balancer=corbaloc::lbhost:10000/Balancer\
--set-strategy least-load \
--tolerance 5 --load-per-client 5
292

Programming Example
Note that the strategy may also be changed after the load balanced servers

are started.

6. Start the load balanced servers. For example, to start a server for the

member with ID member1, run:

server -ORBInitRef Balancer=corbaloc::lbhost:10000/Balancer \
member1

7. Create object references for use by the clients.

To create an object reference run:

lbmkref -H lbhost 10001 Hello IDL:Hello:1.0 Hello > Hello.ref

Note that the object references created by the load balanced servers can

also be used by the clients.

After all members have been registered and the load balancing strategy is
configured, it is recommended to restart the service in non-administrative mode.
This will prevent any accidental (or unauthorized) modifications.
293

CHAPTER 14 | Orbacus Balancer
294

CHAPTER 15

Orbacus Watson
Orbacus Watson is a loadable module that provides request tracing
capabilities based on Portable Interceptors. Method names,
parameter and return values, exceptions and a call stack can be
visualized. The module can be loaded dynamically at application
startup (when shared libraries are used) or linked statically to an
application.

In this chapter This chapter contains the following sections:

Tracing Levels page 296

Installing Watson in C++ page 297

Installing Watson in Java page 298

Configuration Properties page 299
295

CHAPTER 15 | Orbacus Watson
Tracing Levels
The level of request tracing is controlled by the properties described in the next
section. The default value for all tracing levels is 0.

The tracing levels are cumulative; that is, the higher levels include the output
generated by the lower levels. In order to make request parameters, results and
exceptions available for tracing the option --with-interceptor-args has to be
specified to the IDL compiler.

0 no tracing

1 displays name, request id, return/exception status of operation

2 displays parameters and return values

3 displays the call stack

4 displays object id, adapter id, effective profile
296

Installing Watson in C++
Installing Watson in C++
If Orbacus was built with shared libraries or DLLs, Orbacus Watson can be
installed dynamically by defining the following configuration properties:

ooc.orb.modules=watson
ooc.orb.module.watson=<library-name>

Please refer to Chapter 4 for more information on these properties.

If Orbacus was built statically, the module initialization function has to be called
directly from the application code:

Lines 2-4 Include OB/watson.h only when building statically.

Lines 10-16 Explicitly install the Watson module prior to initializing the ORB.

Specifying the configuration property ooc.orb.modules=watson will result in
an (informative) error message from the ORBs ModuleManager upon
application startup if the module was linked statically.

 1 // C++
 2 #if !defined(HAVE_SHARED) && !defined(OB_DLL)
 3 #include <OB/watson.h>
 4 #endif
 5
 6 int main(int argc, char* argv[])
 7 {
 8 CORBA::ORB_var orb;
 9 ...
10 #if !defined(HAVE_SHARED) && !defined(OB_DLL)
11 //
12 // When linking statically, we need to explicitly

initialize
13 // Watson
14 //
15 init_module_watson();
16 #endif
17
18 orb = CORBA::ORB_init(argc, argv);
19 ...
20 }
297

CHAPTER 15 | Orbacus Watson
Installing Watson in Java
Since Orbacus Watson is based on Portable Interceptors, it is installed using the
standard mechanism for installing interceptors. Specifically, a property is
defined which specifies the name of a class to be loaded:

org.omg.PortableInterceptor.ORBInitializerClass.com.ooc.watson.RI
ORBInitializer_impl

Note that the property has no associated value, as the name of the class to be
loaded is part of the property name.
298

Configuration Properties
Configuration Properties
The behavior of the Orbacus Watson module is controlled by the following
properties.

The information displayed in the in and out directions differ for the different
roles an application takes in CORBA. For a client application making a CORBA
request, the out direction corresponds to the request sending direction and the
results are received in the in direction. For a server application, requests from
clients are coming in and replies with results or exceptions are sent out.

Setting one of the more specific properties (ooc.watson.trace.requests.in
and ooc.watson.trace.requests.out) overrides the corresponding value for
this direction set by ooc.watson.trace.requests.

Property Description

ooc.watson.trace.requests=<level> This property sets the
indicated tracing level for
the in and out direction.
The default value is 0.

ooc.watson.trace.requests.in=<level> This property sets the
indicated tracing level only
for the in direction. The
default value is 0.

ooc.watson.trace.requests.out=<level> This property sets the
indicated tracing level only
for the out direction. The
default value is 0.
299

CHAPTER 15 | Orbacus Watson
Sample Configuration File
Applications using Orbacus Watson can simply be started by specifying a
configuration file with appropriate property settings with the -ORBconfig
command-line option:

server -ORBconfig watson.cfg

The following example file shows how to set properties for C++ and Java
applications:

#
Register ORB initializer for watson (Orbacus/Java)
#
org.omg.PortableInterceptor.ORBInitializerClass.com.ooc.watson.R

IORBInitializer_impl

#
Load module watson (Orbacus/C++)
#
Disable if module was build statically to avoid

error message from the ORBs ModuleManager
#
ooc.orb.modules=watson

#
On Windows, enable one of the following properties
if you built with DLLs
#
For debug builds:
#
#ooc.orb.module.watson=watson412d.dll
#
For non-debug builds:
#
#ooc.orb.module.watson=watson412.dll

#
Set request tracing levels
- more specific settings (.in and .out) override the
general setting in the first of these lines
#
ooc.watson.trace.requests=3
ooc.watson.trace.requests.in=1
ooc.watson.trace.requests.out=2
300

CHAPTER 16

Using Policies
This chapter describes the policies used to configure the ORB and
to create a new POA. These policies are derived from the interface
CORBA::Policy.

In this chapter This chapter contains the following sections:

Overview page 302

Supported Policies page 303

Programming Examples page 306
301

CHAPTER 16 | Using Policies
Overview
The ORB and its services may allow the application developer to configure the
semantics of its operations. This configuration is accomplished in a structured
manner through interfaces derived from the interface CORBA::Policy.

There are two basic types of policies: those used to configure the ORB and those
used to create a new POA. Furthermore, the configuration of ORB policy objects
is accomplished at two levels:

• ORB Level: These policies override the system defaults. The ORB has an

initial reference ORBPolicyManager. A PolicyManager has a set of

operations through which the current set of overriding policies can be

obtained, and new policies can be applied.

• Object Level: The object interface contains operations to retrieve and set

policies for itself. Policies applied at the object level override those applied

at the thread level, or the ORB level.

For more information on Policies, the PolicyManager interface and the
CORBA::Object policy operations see [8] and [4].
302

Supported Policies
Supported Policies
The following is a brief description of the Orbacus-specific policies that are
currently supported. For a detailed description, please refer to Appendix B. For
standard policies, please refer to [4].

Table 4: Orbacus Policies

Policy Description

BiDirPolicy::BidirectionalPolicy This policy is used to enable CORBA 3 compliant BiDir
GIOP functionality on both the Object and POA levels.
Enabling this policy with a value of BiDirPolicy::BOTH
on both levels will result in connection reuse when the
server is required to make requests to the client.

The default value is BiDirPolicy::NORMAL (disabled
BiDir functionality). Both the client object and server POA
needs this policy set to BOTH for BiDir communication to
take place.

OB::ACMTimeoutPolicy This policy determines whether the ORB performs active
connection management (ACM) on the connection
associated with an object reference. The policy specifies a
time after which idle connections are shutdown. A value of
0 means no timeout. The default for this policy is the value
of the ooc.orb.client_timeout property (see
“ooc.orb.client_timeout” on page 59).

OB::ConnectionReusePolicy This policy determines whether the ORB is permitted to
reuse a communications channel between peers. If this
policy is false then each object will have a new
communications channel to its peer. The default for this
policy is true.

OB::ConnectTimeoutPolicy If an object has this policy and a connection cannot be
established after value milliseconds, a
CORBA::NO_RESPONSE exception is raised.
303

CHAPTER 16 | Using Policies
OB::InterceptorPolicy This policy determines whether client-side interceptors
will be called. Client-side interceptors are enabled by
default. To disable client-side interceptors, this policy can
be set on an ORB or object reference with a value of
false.

OB::LocateRequestPolicy This policy determines whether the ORB sends GIOP
LocateRequest messages. This policy exists to avoid an
interoperability issue regarding the formatting of GIOP 1.2
LocateReply messages. Orbacus uses the correct
formatting as of version 4.1. Unfortunately, all versions of
Orbacus 4.0.x use the incorrect formatting, as do some
other ORB implementations. As a result, the default value
of this policy is false, which means the ORB will not
send LocateRequest messages, and therefore will not
receive improperly formatted replies.

OB::LocationTransparencyPolicy This policy determines how strictly the ORB will enforce
location transparency. The default behavior is relaxed. An
application may wish to sacrifice performances to have
strict CORBA compliance for local invocations.

OB::ProtocolPolicy This policy allows an application to influence how the
ORB orders and filters the profiles of an object reference.
The value of the policy is a list of transport plug-in
identifiers which determine the preferred order in which
the ORB should attempt to establish connections. Only
those profiles which match an entry in the list will be used.
If no profile from the object reference matches a transport
in the list, or the ORB was unable to establish a
connection, then a TRANSIENT exception is raised.

OB::RequestTimeoutPolicy If an object has this policy and no response is available for
a request after value milliseconds, a
CORBA::NO_RESPONSE exception is raised.

Table 4: Orbacus Policies

Policy Description
304

Supported Policies
OB::RetryPolicy This policy is used to specify retry behavior after
communication failures. Namely,

• the types of failures for which retries are allowed,

• the time between successive retries, and

• the maximum number of retries.

OB::TimeoutPolicy If an object has this policy and a connection cannot be
established or no response is available for a request after
value milliseconds, a CORBA::NO_RESPONSE exception is
raised. If an object has OB::ConnectTimeoutPolicy or
OB::RequestTimeoutPolicy set, those policies have
precedence.

OBPortableServer::InterceptorCallP
olicy

This policy determines whether server-side interceptors
will be called for requests on a POA. Server-side
interceptors are enabled by default. To disable server-side
interceptors for a POA, create the POA using this policy
with a value of false.

OBPortableServer::Communications
ConcurrencyPolicy

See “ooc.orb.oa.conc_model” on page 65 and
“ooc.orb.poamanager.manager. conc_model” on page 67

OBPortableServer::EndpointConfig
urationPolicy

See “ooc.orb.poamanager.manager. endpoint” on page 67

OBPortableServer::GIOPVersionPol
icy

See “ooc.orb.poamanager.manager. version” on page 67

Table 4: Orbacus Policies

Policy Description
305

CHAPTER 16 | Using Policies
Programming Examples
This section provides several examples of setting policies programmatically.
Please note however that policies used to configure the ORB can easily be set at
the ORB level, without requiring changes to the application, through the use of
configuration properties. See “ORB Properties” on page 58 for more
information.

For the sake of clarity, the pseudo-code examples in this section lack exception
handling.

In this section This section contains the following examples:

Connection Reuse Policy page 307

Retry Policy page 310

Timeout Policy page 312

Interceptor Call Policy page 313

CommunicationsConcurrencyPolicy page 315

EndpointConfigurationPolicy page 317

GIOPVersionPolicy page 319

Bidirectional Policy page 321
306

Programming Examples
Connection Reuse Policy
The following examples demonstrate how to set OB::ConnectionReusePolicy
at both the ORB level and the object level in C++ and Java. Setting a policy at
the ORB level means that the ORB will honor this policy for all newly created
objects. Existing objects maintain their current set of policies. Setting a policy at
the object level overrides any ORB level policies applied to that object.

Setting the connection reuse policy to false at the ORB level means that the
ORB will create a new connection from the client to the server for each new
proxy object instead of reusing existing ones. Setting the connection reuse policy
to false at the object level means that the client does not reuse connections to
the server only for a particular proxy object.

If the connection reuse policy is set to true at some later point, communications
channels that were previously created with a connection reuse policy set to
false will not be reused. That is, the connection reuse policy is sticky, in the
sense that the reuse policy that was in effect at the time that a communications
channel is created stays with it. Setting the reuse policy at the object level means
that for a client the ORB will not reuse the communications channel that is
associated with the proxy object.

Connection reuse policy at ORB
level

Our first example shows how the connection reuse policy can be set at the ORB
level. First in C++:

Lines 2-3 Create an any and insert the value 0 (false).

Lines 4-5 Create a sequence containing one policy object.

 1 // C++
 2 CORBA::Any boolAny;
 3 boolAny <<= CORBA::Any::from_boolean(0);
 4 CORBA::PolicyList policies;
 5 policies.length(1);
 6 policies[0] = orb -> create_policy(
 7 OB::CONNECTION_REUSE_POLICY_ID, boolAny);
 8 CORBA::Object_var pmObj =
 9 orb -> resolve_initial_references("ORBPolicyManager");
10 CORBA::PolicyManager_var pm =
11 CORBA::PolicyManager::_narrow(pmObj);
12 pm -> set_policy_overrides(policies, CORBA::ADD_OVERRIDE);
307

CHAPTER 16 | Using Policies
Lines 6-7 Ask the ORB to create a connection reuse policy. Pass the any that
contains the value for this policy.

Lines 8-10 Obtain the ORB level policy manager object.

Line 12 Add the policies to the ORB level policy manager.

And here is the same example in Java:

This is equivalent to the C++ version.

Connection reuse policy at object
level

And now the same example, but at the object level. C++ first:

This is the same as in the example for the ORB level.

Set the policy on the object by using the _set_policy_overrides method. This
method returns a new object that has the set of policies applied.

// Java
org.omg.CORBA.Any boolAny = orb.create_any();
boolAny.insert_boolean(false);
org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
policies[0] = orb.create_policy(
 com.ooc.OB.CONNECTION_REUSE_POLICY_ID.value, boolAny);
org.omg.CORBA.PolicyManager pm =
 org.omg.CORBA.PolicyManagerHelper.narrow(
 orb.resolve_initial_references("ORBPolicyManager"));
pm.set_policy_overrides(policies,

 SetOverrideType.ADD_OVERRIDE);

// C++
CORBA::Any boolAny;
boolAny <<= CORBA::Any::from_boolean(0);
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = orb -> create_policy(
 OB::CONNECTION_REUSE_POLICY_ID, boolAny);
CORBA::Object_var newObj =
 obj -> _set_policy_overrides(policies, CORBA::ADD_OVERRIDE);
308

Programming Examples
And here is the same example in Java:

This is equivalent to the C++ version.

// Java
org.omg.CORBA.Any boolAny = orb.create_any();
boolAny.insert_boolean(false);
org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
policies[0] =
 orb.create_policy(com.ooc.OB.CONNECTION_REUSE_POLICY_ID.value,
 boolAny);
org.omg.CORBA.Object newObj =
 obj._set_policy_override(policies,
 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
309

CHAPTER 16 | Using Policies
Retry Policy
This example shows how to configure retries at the object level. The C++
version is presented first, followed by the Java version:

Line 3 Use the RETRY_STRICT mode, that is, retry only if the exception
completion status is COMPLETED_NO.

Line 4 Wait 500 milliseconds between successive retries.

Line 5 Retry a maximum of 5 times.

Line 6 Allow retries on exceptions that are generated remotely (in addition to
locally generated exceptions).

Lines 13-14 Set the policy on the object by using the _set_policy_overrides
method. This method returns a new object that has the set of policies applied.

 1 // C++
 2 OB::RetryAttributes attrib;
 3 attrib.mode = OB::RETRY_STRICT;
 4 attrib.interval = 500;
 5 attrib.max = 5;
 6 attrib.remote = true;
 7
 8 CORBA::Any any;
 9 any <<= attrib;
10 CORBA::PolicyList policies(1);
11 policies.length(1);
12 policies[0] = orb -> create_policy(OB::RETRY_POLICY_ID, any);
13 CORBA::Object_var newObj =
14 obj -> _set_policy_overrides(policies,

CORBA::ADD_OVERRIDE);
310

Programming Examples
And now the same example in Java:

This is equivalent to the C++ version.

Note that you can also set the retry policy at the ORB level.

 1 // Java
 2 com.ooc.OB.RetryAttributes attrib =
 3 new com.ooc.OB.RetryAttributes();
 4 attrib.mode = com.ooc.OB.RETRY_STRICT.value;
 5 attrib.interval = 500;
 6 attrib.max = 5;
 7 attrib.remote = true;
 8
 9 org.omg.CORBA.Any any = orb.create_any();
10 com.ooc.OB.RetryAttributesHelper.insert(any, attrib);
11 org.omg.CORBA.Policy[] policies = new

org.omg.CORBA.Policy[1];
12 policies[0] =
13 orb.create_policy(com.ooc.OB.RETRY_POLICY_ID.value, any);
14 org.omg.CORBA.Object newObj =
15 obj._set_policy_override(policies,
16 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
311

CHAPTER 16 | Using Policies
Timeout Policy
This example shows how to configure timeouts at the object level. As usual, the
C++ version is presented first, followed by the Java version:

Lines 2-6 We want to set the timeout to a value of 1000 milliseconds.

Lines 7-8 Set the policy on the object by using the _set_policy_overrides
method. This method returns a new object that has the set of policies applied.

And now the same example in Java:

This is equivalent to the C++ version.

Note that you can also set the timeout policy at the ORB level.

 1 // C++
 2 CORBA::Any ULongAny;
 3 ULongAny <<= (CORBA::ULong)1000;
 4 CORBA::PolicyList policies(1);
 5 policies.length(1);
 6 policies[0] = orb -> create_policy(OB::TIMEOUT_POLICY_ID,

ULongAny);
 7 CORBA::Object_var newObj =
 8 obj -> _set_policy_overrides(policies,

CORBA::ADD_OVERRIDE);

 1 // Java
 2 org.omg.CORBA.Any ULongAny = orb.create_any();
 3 ULongAny.insert_ulong(1000);
 4 org.omg.CORBA.Policy[] policies = new

org.omg.CORBA.Policy[1];
 5 policies[0] =
 6 orb.create_policy(com.ooc.OB.TIMEOUT_POLICY_ID.value,
 7 ULongAny);
 8 org.omg.CORBA.Object newObj =
 9 obj._set_policy_override(policies,
10 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
312

Programming Examples
Interceptor Call Policy
This example shows how to create a new POA with server-side interceptors
disabled. The C++ version is presented first, followed by the Java version:

Lines 2-7 Obtain references to the root POA and its POA manager.

Lines 9-15 Create a policy set consisting of the
OBPortableServer::InterceptorCallPolicy policy. The
OBPortableServer::InterceptorCallPolicy policy is given a value of false
so that server-side interceptors will be disabled.

Lines 17-18 Create a new POA using the policy set created above.

 1 // C++
 2 CORBA::Object_var obj =
 3 orb -> resolve_initial_references("RootPOA");
 4 PortableServer::POA_var rootPOA =
 5 PortableServer::POA::_narrow(obj);
 6 PortableServer::POAManager_var manager =
 7 rootPOA -> the_POAManager();
 8
 9 CORBA::Any any;
10 CORBA::PolicyList policies(1);
11 policies.length(1);
12 any <<= CORBA::Any::from_boolean(false);
13 policies[0] =
14 orb -> create_policy(
15 OBPortableServer::INTERCEPTOR_CALL_POLICY_ID, any);
16
17 PortableServer::POA_var myPOA =
18 rootPOA -> create_POA("MyPOA", manager, policies)
313

CHAPTER 16 | Using Policies
And now the same example in Java:

This is equivalent to the C++ version.

 1 // Java
 2 org.omg.CORBA.Object obj =
 3 orb.resolve_initial_references("RootPOA");
 4 org.omg.PortableServer.POA rootPOA =
 5 org.omg.PortableServer.POAHelper.narrow(obj);
 6 org.omg.PortableServer.POAManager manager =
 7 rootPOA.the_POAManager();
 8
 9 org.omg.CORBA.Any any = orb.create_any();
10 org.omg.CORBA.Policy[] policies = new

org.omg.CORBA.Policy[1];
11 any.insert_boolean(false);
12 policies[0] = orb.create_policy(
 com.ooc.OBPortableServer.INTERCEPTOR_CALL_POLICY_ID.value,

any);
13
14 org.omg.PortableServer.POA myPOA =
15 rootPOA.create_POA("MyPOA", manager, policies);
314

Programming Examples
CommunicationsConcurrencyPolicy
This example shows how to create a new POA Manager with the concurrency
model set to threaded. The C++ version is presented first, followed by the Java
version.

And now the same example in Java:

 1 // C++
 2 CORBA::Object_var poaObj =
 3 orb -> resolve_initial_references("RootPOA");
 4 OBPortableServer::POA_var rootPOA =
 5 OBPortableServer::POA::_narrow(poaObj);
 6 POAManagerFactory_var factory = rootPOA ->

the_POAManagerFactory();
 7 OBPortableServer::POAManagerFactory_var pmFactory =
 8 OBPortableServer::POAManagerFactory::_narrow(factory);
 9 POAManager_var myPOAManager;
10 PolicyList pl;
11 pl.length(1);
12 pl[0] = pmFactory ->

create_communications_concurrency_policy(
13 OBPortableServer::

 COMMUNICATIONS_CONCURRENCY_POLICY_THREADED);
14 try
15 {
16 myPOAManager = create_POAManager("MyPOAManager", pl);
17 }
18 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
19 {
20 // do something
21 }
315

CHAPTER 16 | Using Policies
 1 // Java
 2 org.omg.CORBA.Object obj =
 3 orb.resolve_initial_references("RootPOA");
 4 org.omg.PortableServer.POA rootPOA =
 5 org.omg.PortableServer.POAHelper.narrow(obj)
 6 org.omg.PortableServer.POAManagerFactory factory =
 7 rootPOA.the_the_POAManagerFactory();
 8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
 9

com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(facto
ry);

10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[1];
12 pl[0] = pmFactory.create_communications_concurrency_policy(
13

com.ooc.OBPortableServer.COMMUNICATIONS_CONCURRENCY_POLICY_TH
READED.value);

14 try
15 {
16 myPOAManager = pmFactory.create_POAManager("MyPOAManager",

pl);
17 }
18

catch(org.omg.PortableServer.POAManagerFactoryPackage.Manager
AlreadyExists ex)

19 {
20 // do something
21 }
22 catch(org.omg.CORBA.PolicyError ex)
23 {
24 // do something
25 }
316

Programming Examples
EndpointConfigurationPolicy
This example shows how to create a new POA Manager with a list of endpoints
for the Root POA Manager.

The C++ version is presented first, followed by the Java version:

And now the same example in Java:

 1 // C++
 2 CORBA::Object_var poaObj =
 3 orb -> resolve_initial_references("RootPOA");
 4 OBPortableServer::POA_var rootPOA =
 5 OBPortableServer::POA::_narrow(poaObj);
 6 POAManagerFactory_var factory = rootPOA ->

the_POAManagerFactory();
 7 OBPortableServer::POAManagerFactory_var pmFactory =
 8 OBPortableServer::POAManagerFactory::_narrow(factory);
 9 POAManager_var myPOAManager;
10 PolicyList pl;
11 String_var config =
12 CORBA::string_dup("iiop --host localhost --port 5555

--bind localhost");
13 pl.length(1);
14 pl[0] = pmFactory ->

create_endpoint_configuration_policy(config.in());
15 try
16 {
17 myPOAManager = create_POAManager("MyPOAManager", pl);
18 }
19 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
20 {
21 // do something
22 }
317

CHAPTER 16 | Using Policies
 1 // Java
 2 org.omg.CORBA.Object obj =
 3 orb.resolve_initial_references("RootPOA");
 4 org.omg.PortableServer.POA rootPOA =
 5 org.omg.PortableServer.POAHelper.narrow(obj)
 6 org.omg.PortableServer.POAManagerFactory factory =
 7 rootPOA.the_the_POAManagerFactory();
 8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
 9 com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(factory);
10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[1];
12 String config = "iiop --host localhost --port 10999 --bind

localhost";
13 pl[0] = pmFactory.create_endpoint_configuration_policy(config);
14 try
15 {
16 myPOAManager = pmFactory.create_POAManager("MyPOAManager", pl);
17 }
18

catch(org.omg.PortableServer.POAManagerFactoryPackage.ManagerAlrea
dyExists ex)

19 {
20 // do something
21 }
22 catch(org.omg.CORBA.PolicyError ex)
23 {
24 // do something
25 }
318

Programming Examples
GIOPVersionPolicy
This example shows how to create a new POA Manager with a specific GIOP
version to be used in object references generated by that POA Manager.

This option is useful for backward compatibility with older ORBs that reject
object references using a newer version of the protocol. In the example below
the GIOP version is set to 1.2.

The C++ version is presented first, followed by the Java version:

And now the same example in Java:

 1 // C++
 2 CORBA::Object_var poaObj =
 3 orb -> resolve_initial_references("RootPOA");
 4 OBPortableServer::POA_var rootPOA =
 5 OBPortableServer::POA::_narrow(poaObj);
 6 POAManagerFactory_var factory = rootPOA ->

the_POAManagerFactory();
 7 OBPortableServer::POAManagerFactory_var pmFactory =
 8 OBPortableServer::POAManagerFactory::_narrow(factory);
 9 POAManager_var myPOAManager;
10 PolicyList pl;
11 pl.length(1);
12 pl[0] = pmFactory -> create_giop_version_policy(
13 OBPortableServer::GIOP_VERSION_POLICY_1_2);
14 try
15 {
16 myPOAManager = create_POAManager("MyPOAManager", pl);
17 }
18 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
19 {
20 // do something
21 }
319

CHAPTER 16 | Using Policies
 1 // Java
 2 org.omg.CORBA.Object obj =
 3 orb.resolve_initial_references("RootPOA");
 4 org.omg.PortableServer.POA rootPOA =
 5 org.omg.PortableServer.POAHelper.narrow(obj)
 6 org.omg.PortableServer.POAManagerFactory factory =
 7 rootPOA.the_the_POAManagerFactory();
 8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
 9 com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow

(factory);
10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[1];
12 pl[0] = pmFactory.create_giop_version_policy(
13 com.ooc.OBPortableServer.GIOP_VERSION_POLICY_1_2.value);
14 try
15 {
16 myPOAManager = pmFactory.create_POAManager("MyPOAManager",

pl);
17 }
18

catch(org.omg.PortableServer.POAManagerFactoryPackage.Manager
AlreadyExists ex)

19 {
20 // do something
21 }
22 catch(org.omg.CORBA.PolicyError ex)
23 {
24 // do something
25 }
320

Programming Examples
Bidirectional Policy

BidirectionalPolicy server
implementation

This example shows how to create a new POA with the BidirectionalPolicy
enabled to allow negotiation of Bidirectional connection reuse. The C++
example is presented first followed by the Java version:

Lines 2-7 Obtain the reference to the RootPOA and RootPOAManager

Lines 9-14 Create a new BidirectionalPolicy containing the value of
BiDirPolicy::BOTH (to enable Bidirectional connection reuse negotiation).

Lines 16-17 Create the new POA with this policy to enable BiDir negotiation
on requests destined for this POA.

 1 // C++
 2 CORBA::Object_var obj =
 3 orb -> resolve_initial_references("RootPOA");
 4 PortableServer::POA_var rootPOA =
 5 PortableServer::POA::_narrow(obj);
 6 PortableServer::POAManager_var manager =
 7 rootPOA -> the_POAManager();
 8
 9 CORBA::Any any;
10 CORBA::PolicyList policies(1);
11 policies.length(1);
12 any <<= BiDirPolicy::BOTH;
13 policies[0] = orb -> create_policy(
14 BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE, any);
15
16 PortableServer::POA_var myPOA =
17 rootPOA -> create_POA("MyPOA", manager, policies)
321

CHAPTER 16 | Using Policies
And now the same example in Java:

This is equivalent to the C++ version.

BidirectionalPolicy client
implementation

This example shows how to create an object reference with the
BidirectionalPolicy enabled to signal connection reuse is allowed over
connections established with this object reference. The C++ example is
presented first followed by the Java version:

 1 // Java
 2 org.omg.CORBA.Object obj =
 3 orb.resolve_initial_references("RootPOA");
 4 org.omg.PortableServer.POA rootPOA =
 5 org.omg.PortableServer.POAHelper.narrow(obj);
 6 org.omg.PortableServer.POAManager manager =
 7 rootPOA.the_POAManager();
 8
 9 org.omg.CORBA.Any any = orb.create_any();
10 org.omg.CORBA.Policy[] policies = new

org.omg.CORBA.Policy[1];
11 org.omg.BiDirPolicy.BidirectionalPolicyValueHelper.insert(
12 any, org.omg.BiDirPolicy.BOTH.value);
13 policies[0] = orb.create_policy(
14 org.omg.BiDirPolicy.BIDIRECTIONAL_POLICY_TYPE.value,
15 any);
16
17 org.omg.PortableServer.POA myPOA =
18 rootPOA.create_POA("MyPOA", manager, policies);

 1 // C++
 2 CORBA::Object_var obj =
 3 orb -> string_to_object("relfile:/Hello.ref");
 4
 5 CORBA::PolicyList policies(1);
 6 policies.length(1);
 7 CORBA::Any any;
 8 any <<= BiDirPolicy::BOTH;
 9 policies[0] = orb -> create_policy(
10 BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE,
11 any);
12
13 obj = obj -> _set_policy_overrides(
14 policies, CORBA::ADD_OVERRIDE);
15
16 Hello_var hello = Hello::_narrow(obj);
322

Programming Examples
Lines 2-3 Obtain the object reference from some means (here using a file)

Lines 5-11 Create the BidirectionalPolicy with a value of BOTH to enable
BiDir.

Lines 13-14 Add the Bidirectional Policy to the object and make sure to catch
the return object reference.

Line 16 Narrow the object to the specific type for method invocation.

And now the Java version:

This is equivalent to the C++ version.

 1 // Java
 2 org.omg.CORBA.Object obj =
 3 orb.string_to_object("relfile:/Hello.ref");
 4
 5 org.omg.CORBA.Any any = orb.create_any();
 6 org.omg.BiDirPolicy.BidirectionalPolicyValueHelper.
 7 insert(any, org.omg.BiDirPolicy.BOTH.value);
 8 org.omg.CORBA.Policy[] policies =
 9 new org.omg.CORBA.Policy[1];
10 policies[0] = orb.create_policy(
11 org.omg.BiDirPolicy.BIDIRECTIONAL_POLICY_TYPE.value, any);
12
13 obj = obj._set_policy_override(policies,
14 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
15
16 Hello hello = HelloHelper.narrow(obj);
323

CHAPTER 16 | Using Policies
324

CHAPTER 17

Asynchronous
Method Invocation
This chapter describes how to design asynchronous non-blocking
clients.

In this chapter This chapter contains the following sections:

Introduction page 326

AMI Router page 327

Router Usage page 328

Router Administration Properties page 329

AMI Reply Handler Implementation page 331

AMI Poller Implementation page 335

Configuring Clients and Servers page 337
325

CHAPTER 17 | Asynchronous Method Invocation
Introduction

Overview Asynchronous Method Invocation (AMI) allows the design of asynchronous,
non-blocking clients without change to server-side design. This allows a client to
invoke a request on a server and immediately return, without waiting for the
request to be serviced. The response will be delivered to the client at a later time
through either a callback mechanism, initiated by the ORB (AMI Reply Handler
implementation), or a polling mechanism, initiated by the client (AMI Polling
implementation).

The Orbacus 4.3 AMI implementation is based on the OMG CORBA 3.0.2
specification (specifically Chapter 22: CORBA Messaging; Section II:
Messaging Programming Model.) for the client-side code generation, while the
message delivery is done through an AMI Router. Quality of Service (QoS)
policies are not currently supported, though they will be incorporated into a
future release of the product when the routing capability is enhanced.

The AMI-enabled client code is generated by using the --with-async option for
the Orbacus code generators. Also, the target IDL file must include the AMI.idl
file.

Modifying an application's client code to use AMI is discussed in the following
sections. The AMI "echo" demos, located in the directory ob/demo/AMI/, will be
used as the basis for this discussion.

In this section This section contains the following topics:

AMI Router page 327

Router Usage page 328

Router Administration Properties page 329

AMI Reply Handler Implementation page 331

AMI Poller Implementation page 335

Configuring Clients and Servers page 337
326

AMI Router
AMI Router
The AMI Router allows users to configure their systems so that servers that have
the potential to go offline on a regular basis can have an associated set of AMI
Routers specified as an alternative, fallback destination for their requests. Rather
than encumbering the client application with retry logic, the AMI Router allows
the client application to send a message as though the server were available, and
continue processing. The message will actually be delivered to a router that can
then worry about delivering the message to the server when it becomes
available. The client application can then handle the expected response from the
asynchronous invocation when necessary.
327

CHAPTER 17 | Asynchronous Method Invocation
Router Usage
The AMI Router is currently implemented using Orbacus for C++, but can be
used with C++ and Java clients and servers. Command-line usage is as follows:

Options

amirouter
 [-h,--help] [-v,--version] [-i,--ior]
 [-p,--persistent] [-w,--workers WORKERS]

-h
--help

Display the command-line options supported by the
router.

-v
--version

Display the version of the router.

-i
--ior

Prints the stringified IOR of the router to standard
output.

-p
--persistent

Starts a persistent request router for use with the
AMI polling model.

-w
--workers WORKERS

Sets the number of worker threads for processing
requests. The value of WORKERS should be
between 1 and 255.
328

Router Administration Properties
Router Administration Properties
In addition to the standard configuration properties described in Chapter 4, the
Orbacus AMI Router also supports the following properties for configuring
router administration functionality:

ooc.router.retry_policy Values: immediate_suspend, unlimited_ping, limited_ping

Default: unlimited_ping

Specifies the retry policy to use for the router. If a router has a retry policy of
immediate_suspend, its state is set to SUSPENDED as soon as a message fails to
be delivered to it. Otherwise, retry attempts are governed by additional
configuration parameters, given below.

ooc.router.retry_policy.base_
interval

Value: Integer n > 0

Default: 5

This is the base number of seconds to wait between retry attempts. This property
is used for both the unlimited_ping and the limited_ping retry policies.

ooc.router.retry_policy.backoff_
factor

Value: Decimal n > 0

Default: 2

The time between retry attempts is the product of the value of the
base_interval multiplied by the value of the backoff_factor. After the first
retry attempt, which is based solely on the base interval, each subsequent retry is
multiplied by the backoff_factor. This property is used for both the
unlimited_ping and the limited_ping retry policies.

ooc.router.retry_policy.
max_backoffs

Value: Integer n > 0

Default: 6

The maximum number of times the backoff factor is applied to the base retry
interval. This property is used for both the unlimited_ping and the
limited_ping retry policies.
329

CHAPTER 17 | Asynchronous Method Invocation
ooc.router.retry_policy.interval_
limit

Value: Integer n > 0

The maximum number of retry attempts made. This property is used for
limited_ping retry policy only.

ooc.router.decay_policy.decay_
seconds

Value: Integer n >= 0

Default: 0

The time (in seconds) for which a destination registration is valid. If this is set to
zero (0), the registration remains valid until the destination explicitly unregisters
itself with a call to unregister_destination.

ooc.router.resume_policy.resume
_seconds

Value: Integer n >= 0

Default: 1200 (20 minutes)

The time (in seconds) after which a suspended destination should be resumed. If
this is set to zero (0), the registered destination can only be resumed with an
explicit call to resume_destination.

Note: Orbacus 4.3.1 does not allow this value to be set to zero (0). This is
required due to the lack of persistence in the AMI Router in the 4.3.1 version
of Orbacus.
330

AMI Reply Handler Implementation
AMI Reply Handler Implementation
In the reply handler implementation, the user must instantiate a callback object
and pass it to the ORB in the deferred AMI request (or sendc_ call). The ORB
can then use this callback object to inform the client application that the request
has completed. This callback object must be derived from the generated
AMI_EchoHandler class. This is shown in the C++ and Java code examples that
follow.

C++ The following code snippet shows the client application making the AMI
deferred call for the Reply Handler implementation. The EchoHandler_impl
class must be implemented by the user. For a complete example, please see the
code in the ob/demo/AMI/echo_reply_router/ directory of the Orbacus for
C++ distribution.

Lines 1-5 Create a persistent POA for the reply handler. This is important as it
allows the router to deliver the reply in the event that the client goes down and
comes back up. Servers should also use persistent POAs for the same reason.

 1 CORBA::PolicyList policies;
 2 policies.length(2);
 3 policies[0] = rootPOA ->

create_id_assignment_policy(PortableServer::USER_ID);
 4 policies[1] = rootPOA ->

create_lifespan_policy(PortableServer::PERSISTENT);
 5 PortableServer::POA_var handlerPOA =
 rootPOA -> create_POA("myHandlerPOA", manager, policies);
 6 CORBA::Object_var obj = orb -> string_to_object("relfile:/

Echo.ref");
 7 Echo_var echo = Echo::_narrow(obj);
 8 EchoHandler_impl* handler = new EchoHandler_impl(handlerPOA);
 9 PortableServer::ServantBase_var servant = handler;
10 PortableServer::ObjectId_var id =

PortableServer::string_to_ObjectId("myHandlerServant");
11 handlerPOA -> activate_object_with_id(id, servant);
12 AMI_EchoHandler_var handlerRef = handler -> _this();

13 echo -> sendc_echo_message(handlerRef, "Hello");

14 while(handler -> receptions() < 1)
15 orb -> perform_work();
331

CHAPTER 17 | Asynchronous Method Invocation
Lines 6-7 Create the Echo object based on the IOR in the Echo.ref file.

Lines 8-12 Instantiate a new EchoHandler_impl object using the new persistent
POA. This class must be created by the user and derived from the generated
POA_AMI_EchoHandler. Sample code for an EchoHandler_impl can be found in
the Echo_impl.cpp file located in the ob/demo/AMI/ech_reply_router/ demo
folder.

Line 13 Make the deferred call, passing the handler as the first parameter.

Lines 14-15 Wait for the response to come back. This is simply how this demo
was implemented. How the callback is handled is application dependent.
332

AMI Reply Handler Implementation
Java The following code snippet shows the client application making the AMI
deferred call for the Reply Handler implementation. The AsyncEchoHandler
class must be implemented by the user. For a complete example, please see the
code in the ob/demo/AMI/echo_reply_router/ directory of the Orbacus for
Java distribution.

1 org.omg.PortableServer.POA rootPOA =
org.omg.PortableServer.POAHelper.narrow(
orb.resolve_initial_references("RootPOA"));

2 org.omg.PortableServer.POAManager manager =
rootPOA.the_POAManager();

3 org.omg.PortableServer.POA persistentPOA = null;
4 try
 {
5 org.omg.CORBA.Policy[] policies = new

org.omg.CORBA.Policy[2];
6 policies[0] = rootPOA.create_lifespan_policy(

org.omg.PortableServer.LifespanPolicyValue.PERSISTENT);
7 policies[1] = rootPOA.create_id_assignment_policy(

org.omg.PortableServer.IdAssignmentPolicyValue.USER_ID);
8 persistentPOA = rootPOA.create_POA("PersistentPOA", manager,

policies);
 }
9 catch(org.omg.PortableServer.POAPackage.AdapterAlreadyExists

ex)
 {
10 ex.printStackTrace();
11 throw new RuntimeException();
 }
12 catch(org.omg.PortableServer.POAPackage.InvalidPolicy ex)
 {
13 ex.printStackTrace();
14 throw new RuntimeException();
 }

15 AsyncEchoHandler asyncHandler = new
 AsyncEchoHandler(rootPOA);
16 echo.AMI_EchoHandler handler = asyncHandler._this(orb);

17 org.omg.CORBA.Object obj = orb.string_to_object("relfile:/
Echo.ref");

18 echo.Echo ec = echo.EchoHelper.narrow(obj);

19 ec.sendc_echo_message(handler, "Hello");
333

CHAPTER 17 | Asynchronous Method Invocation
Lines 1-14 Create a persistent POA for the reply handler. This is important as it
allows the router to deliver the reply in the event that the client goes down and
comes back up. Servers should also use persistent POAs for the same reason.

Lines 15-16 Instantiate a new AsyncEchoHandler object using our new
persistent POA. This class must be created by the user and derived from the
generated AMI_EchoHandlerPOA. Sample code for an AsyncEchoHandler can be
found in the AsyncEchoHandler.java file located in the ob/demo/AMI/
echo_reply_router/ demo folder.

Lines 17-18 Create the Echo object based on the IOR in the Echo.ref file.

Line 19 Make the deferred call, passing the handler as the first parameter.
334

AMI Poller Implementation
AMI Poller Implementation

Overview In the poller implementation, the user is returned a poller object from the
deferred AMI request (or sendp_ call). The user can then query this poller object
to find out when a request has completed. This is shown in the C++ and Java
code examples that follow.

C++ For complete code, please see the EchoClient.cpp file in the ob/demo/AMI/
echo_poll_router/ directory of the Orbacus for C++ distribution.

Lines 1-2 Create the Echo object based on the IOR in the Echo.ref file

Line 3 Make the deferred call, which returns an AMI_EchoPoller object based
on the generated class. Note that the user does not have to override this class, as
must be done for the Reply Handler implementation.

Lines 4-5 Set up the parameters that will be passed to the poller function.

Line 6 Check the poller for the status of the deferred call. This function will
update any parameters with data that was expected from the deferred call.

Note that a timeout value of -1 will cause the client code to wait forever.

1 CORBA::Object_var obj = orb -> string_to_object("relfile:/
Echo.ref");

2 Echo_var echo = Echo::_narrow(obj);
3 AMI_EchoPoller_var poller = echo ->

sendp_echo_message(L"Hello!");
4 CORBA::WString_var reply;
5 CORBA::ULong max_timeout = (CORBA::ULong)-1;
6 poller -> echo_message(max_timeout, reply);
335

CHAPTER 17 | Asynchronous Method Invocation
Java For complete code, please see the EchoClient.java file in the ob/demo/AMI/
echo_poll_router/ directory of the Orbacus for Java distribution.

Lines 1-2 Create the Echo object based on the IOR in the Echo.ref file.

Line 3 Make the deferred call, which returns an AMI_EchoPoller object based
on the generated class. Note that the user does not have to override this class, as
must be done for the Reply Handler implementation.

Line 4 Set up the parameters that will be passed to the poller function.

Line 5 Check the poller for the status of the deferred call. This function will
update any parameters with data that was expected from the deferred call.

Note that a timeout value of -1 will cause the client code to wait forever.

1 org.omg.CORBA.Object obj = orb.string_to_object("relfile:/
Echo.ref");

2 echo.Echo ec = echo.EchoHelper.narrow(obj);
3 echo.AMI_EchoPoller poller =

ec.sendp_echo_message("Hello!");
4 org.omg.CORBA.StringHolder reply = new

org.omg.CORBA.StringHolder();
5 poller.echo_message(-1, reply);
336

Configuring Clients and Servers
Configuring Clients and Servers

Configuring router lists Clients and servers can specify any routers they want to use for the routing of
requests and replies to them via the configuration file property
ooc.ami.router.#, where # is a unique integer that differentiates the router
from other routers in the list. When the list of router property keys is sorted in
increasing order, which is done automatically by the client or server, routers that
appear later in the list are given preference when routing request/replies over
routers that appear earlier in the list.

The value for the ooc.ami.router property is a string that represents an object
reference or location to be used for contacting the router. These can be specified
in one of the following four formats:

1. An object reference file (for example, router1.ref)

ooc.ami.router.1=relfile:/router1.ref

2. A stringified IOR object reference

ooc.ami.router.2=IOR:013074b70d00000049444c3a4563686f3a3...

3. A corbaloc address

ooc.ami.router.3=corbaloc::localhost:20000/AMIRouter

The Orbacus AMI router uses the stringified object key AMIRouter.

4. A host/port combination in the format <host>:<port>

ooc.ami.router.4=localhost:20000

Note: Using corbalocs or host/port combinations limits the functionality of
the router administration, as these methods provide incomplete object
references that prevent the router administration from doing proper object
comparisons.
337

CHAPTER 17 | Asynchronous Method Invocation
Sample configuration file The following is a sample configuration file that specifies the endpoint for the
application along with three routers that can be used for routing request/replies:

This configuration file defines three routers for routing request/replies to an
application using the file, with router 3 given first preference, then router 2, and
finally router 1.

Applications using AMI polling
model

Applications using the AMI polling model should start a single persistent AMI
request router instead of the usual list of routers. This can be done through the
configuration property ooc.ami.persistent_router and is placed in the
configuration for the application making the polling requests. The value for this
property is again a string that represents an object reference or location to be
used for contacting the router. These object references or locations can be
specified using one of the four methods listed for the ooc.ami.router
configuration property. For example:

Application development
considerations

Applications that can potentially receive requests or, in the case of applications
using the AMI callback model, replies from AMI routers should be implemented
using persistent POAs. This allows routers to deliver requests and/or replies in
the event that an application is terminated and restarted at a later time.
Applications that do not use persistent POAs will generate a different object
reference when restarted and the router will be unable to deliver the request and/
or reply.

#
Persistent handlers require a persistent port
#
ooc.orb.oa.endpoint=iiop --port 20000

#
List of routers to use for routing requests
#
ooc.ami.router.1=relfile:/router1.ref
ooc.ami.router.2=relfile:/router2.ref
ooc.ami.router.3=corbaloc::localhost:30000/AMIRouter

#
AMI Persistent Router
#
ooc.ami.persistent_router=relfile:/p_router.ref
338

CHAPTER 18

Concurrency
Models
This chapter describes how an Object Request Broker handles
communication and request execution using single- and
multi-threaded concurrency models.

In this chapter This chapter contains the following sections:

Concurrency Models page 340

Single-Threaded Concurrency Model page 342

Multi-Threaded Concurrency Models page 345

The Reactor page 352
339

CHAPTER 18 | Concurrency Models
Concurrency Models

What is a concurrency model? A concurrency model describes how an Object Request Broker (ORB) handles
communication and request execution. There are two main categories of
concurrency models, single-threaded concurrency models and multi-threaded
concurrency models.

Single-threaded concurrency models describe how an ORB behaves while a
request is sent or received in a single-threaded environment. For example, one
model is to simply let the ORB block while sending and receiving messages.
Another model is to let the ORB do some work while sending and receiving
messages, for example to receive user input through a keyboard or a GUI, or to
simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of
multiple threads, for example to send and receive messages in the background.
Multi-threaded concurrency models also describe how several threads can be
active in the user code and the strategy the ORB employs to create these threads.

Why different concurrency
models?

There is no one size fits all approach with respect to concurrency models. Each
concurrency model provides a unique set of properties, each having advantages
and disadvantages. For example, applications using callbacks must have a
concurrency model that allows nested method invocations to avoid deadlocks.
Other applications must be optimized for speed, in which case a concurrency
model with the least overhead will be chosen.

Some ORBs are highly specialized, providing only the most frequently used
concurrency models for a specific domain. Orbacus takes a different approach
by supporting several concurrency models.

Orbacus concurrency models Orbacus allows different concurrency models to be established for the client and
server activities of an application. The client-side concurrency models are
Reactive and Threaded. The server-side concurrency models are Reactive,
Threaded, Thread-per-Client, Thread-per-Request and Thread Pool.

Selecting concurrency models Concurrency models can be selected either by properties or command-line
parameters (see Chapter 4). The default concurrency models are shown in
Table 5.
340

Concurrency Models
Table 5: Default Concurrency Models

Client Server

Java Threaded Threaded

C++ Threaded Reactive
341

CHAPTER 18 | Concurrency Models
Single-Threaded Concurrency Model
Orbacus supports one single-threaded concurrency model: reactive.

Reactive servers use calls to operations like select in order to simultaneously
accept incoming connection requests, to receive requests from multiple clients
and to send back replies. This is shown in Figure 9.

Reactive clients also use operations like select to avoid blocking. This means
that while a request to a server is sent or a reply from that server is received, the
client can simultaneously send buffered requests to other servers or receive and
buffer replies.

Figure 9: Reactive Server

Client A Server Client B

connect

disconnect

connect

disconnect

accept

accept

close

close

f()

f()

dispatch

dispatch
342

Single-Threaded Concurrency Model
This is very useful for oneway operations or the Dynamic Invocation Interface
(DII) operation send_deferred in combination with get_response or
poll_response.

However, the main advantage of a reactive client becomes apparent if it is used
together with a reactive server in mixed client/server applications. A mixed
client/server application is a program that is both a client and server at the same
time. Without the reactive concurrency model it is not possible to use nested
method calls in single-threaded applications, which are absolutely necessary for
most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First A
tries to call a method f on B. Before this method returns, B calls back A by
invoking method g. This scenario is quite common, and for example is used in
the popular Model-View-Controller pattern [1]. Using the reactive concurrency
model for the client, A can dispatch incoming requests while waiting for B’s
reply for f. This is shown in Figure 10.

Note: For more information on send_deferred, get_response and
poll_response, see the chapter “The Dynamic Invocation Interface” in [4].

Figure 10: Reactive Client/Server

Client/Server Client/Server

f()

g()
dispatch

dispatch
343

CHAPTER 18 | Concurrency Models
The reactive concurrency models are also very fast. There is no overhead for
thread creation or context switching. Only an additional call to an operation like
select is needed before operations such as send, recv or accept can be used by
the ORB.

The maximum nesting level for the reactive concurrency model is usually much
higher than for threaded concurrency models. The reason is that the maximum
nesting level for threaded models is determined by the maximum number of
threads allowed per process, whereas the reactive concurrency model is only
limited by the maximum stack size per process.

Note: Instead of directly using operations like select, Orbacus uses a Reactor
to provide for flexible integration with existing event loops and to allow the
installation of user supplied event handlers. See “The Reactor” on page 352 for
more information.
344

Multi-Threaded Concurrency Models
Multi-Threaded Concurrency Models

In this section This section covers the following concurrency models:

Threaded Clients and Servers page 346

Thread-per-Client Server page 348

Thread-per-Request Server page 349

Thread Pool Server page 350

Leader_Follower page 351
345

CHAPTER 18 | Concurrency Models
Threaded Clients and Servers
For a threaded client, outgoing requests are sent by the user thread, but a
separate receiver thread for handling replies is allocated for each connection to a
server. The separate receiver thread allows messages to be received and buffered
for later retrieval by the user thread with DII operations such as get_response
or poll_response.

Like a threaded client, a threaded server uses a separate thread for receiving
requests from clients, but sends replies in the dispatch thread. Additionally, there
is a separate thread dedicated to accepting incoming connection requests, so that
a threaded server can serve more than one client at a time.

Orbacus’s threaded server concurrency model allows only one active thread in
the user code. This means that even though many requests can be received
simultaneously, the execution of these requests is serialized. This is shown in
Figure 11. (For simplicity, the dispatch arrows and the corresponding return
arrows are omitted in this and all following diagrams.)

In the example, the threaded server has two clients connected to it and thus two
receiver threads. First A calls f on the server. If, before f returns, B tries to call
another operation g, this request is delayed until f returns. The same is true for
A’s call to h, which must wait until g returns.

Figure 11: Threaded Server

Client A Threaded Server

f()

h()

g()

Client B
346

Multi-Threaded Concurrency Models
Allowing only one active thread in user code has the advantage of the user code
not having to take care of any kind of thread synchronization. This means that
the user code can be written as if for a single threaded system, but without losing
the advantage of the ORB optimizing its operation by using multiple threads
internally.

The threaded concurrency model is still fast. No calls to operations like select
are required. Time consuming thread creation is only necessary when a new
client is connecting, but not for each request. However, thread context switching
makes this approach slower than the reactive concurrency model, at least on a
single-processor computer.
347

CHAPTER 18 | Concurrency Models
Thread-per-Client Server
The thread-per-client server concurrency model is very similar to the threaded
server concurrency model, except that the ORB allows one active
thread-per-client in the user code. This is shown in Figure 12.

A’s call to f and B’s call to g are carried out simultaneously, each in its own
thread. However, if A tries to call another operation h (for example by sending
requests from different threads in a multi-threaded client or by using the DII
operation send_deferred in a single-threaded client) as long as f has not
finished yet, the execution of h is delayed until f returns.

The thread-per-client model is still efficient. Like with the threaded concurrency
model, no threads need to be created, except when new connections are
accepted.

Figure 12: Thread-per-Client Server

Client A Thread-per-Client

Server

f()

h()

g()

Client B
348

Multi-Threaded Concurrency Models
Thread-per-Request Server
If the thread-per-request server concurrency model is chosen, the ORB creates a
new thread for each request. This is shown in Figure 13.

(For simplicity there are no separate arrows for dispatch and thread creation in
the diagram.) With the thread-per-request model, requests are never delayed.
When they arrive, a new thread is created and the request is executed in the user
code using this thread. On return, the thread is destroyed.

Besides using a reactive client together with a reactive server, the
thread-per-request server in combination with a threaded client is the only other
model that allows nested method calls with an unlimited nesting level. The
thread pool model also allows nested method calls, but the nesting level is
limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem
results from the overhead involved in creating new threads, namely one for each
request.

Figure 13: Thread-per-Request Server

Client A Thread-per-Request

Server

f()

h()

g()

Client B
349

CHAPTER 18 | Concurrency Models
Thread Pool Server
The thread pool model uses threads from a pool to carry out requests, so that
threads have to be created only once and can then be reused for other requests.
Figure 14 shows an example with one client and a thread pool server with three
threads in the pool. (Sender and receiver threads are not shown.)

The first three operation calls f, g and h can be carried out immediately, since
there are three threads in the pool. However, the fourth request i is delayed until
at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool concurrency
model performs better than the thread-per-request model. The thread pool is a
good trade-off if on the one hand frequent thread creation and destruction result
in unacceptable performance, but on the other hand delaying the execution of
concurrent method calls is also not desired.

Figure 14: Thread Pool Server

Client Thread Pool Server

g()

h()

f()

i()
350

Multi-Threaded Concurrency Models
Leader_Follower

In the Leader-Follower concurrency model, each thread from the thread pool
will transition between the following states:

• leader

• processing

• follower

The leader thread, of which there can only be one at any given time, waits for
incoming requests. When a request is received, the leader thread will promote a
new leader while it goes into the processing state to handle the received requests.
Once processing is complete, the thread is absorbed back into the pool, where it
waits to be promoted again. While in the waiting state, the thread is said to be a
follower.

In this model, it is possible to have multiple threads in the processing state at the
same time. However, as stated above, there can only ever be one leader.

The main advantage of this model is scalablilty. It allows tight control over the
number of threads used by each POAManager.
351

CHAPTER 18 | Concurrency Models
The Reactor

What is a reactor? In reactive mode (see “Single-Threaded Concurrency Model” on page 342),
Orbacus uses a so-called Reactor for event dispatching [11]. Simply speaking,
the Reactor is an instance in Orbacus (a singleton) where special objects —
so-called event handlers — can register if they are interested in specific events.
These events can be network events, such as an event signaling that data are
ready to be read from a network connection.

Again, this chapter only applies to Orbacus when used with reactive concurrency
models. If you use Orbacus with any other concurrency model, for example any
of the multi-threaded models, the following examples are not applicable. Also,
since Orbacus for Java currently doesn’t support the reactive model at all, the
following only applies to Orbacus for C++.

Available reactors Currently there are three Reactors supported by Orbacus:

• The standard select Reactor which relies on the Berkeley Sockets select

function.

• A special Reactor for use with the X11 Window System. This Reactor

handles X11 events (which for example can trigger X11 callbacks) and

CORBA network events simultaneously. See “The X11 Reactor” on

page 353.

• A special Reactor for use with Microsoft Windows 95/98/NT/2000. This

Reactor handles Windows messages and CORBA network events

simultaneously. See “The Windows Reactor” on page 354.

The default Reactor is the select Reactor. If one of the other Reactors is to be
used, it must be initialized explicitly.
352

The Reactor
The X11 Reactor
An application that wants to use the X11 Reactor can obtain a special X11
Reactor using OB::GetX11Reactor(), which it must pass to
OBCORBA::ORB_init():

Lines 1-7 Include header files.

Lines 11-13 Initialize the X11 application.

Line 15 Use the X11 application context to obtain a X11 Reactor.

Line 17 Initialize the ORB using the Orbacus-specific OBCORBA::ORB_init().

Line 22 Enter the CORBA event loop. This loop will also dispatch X11 events.
Alternatively, the standard X11 event loop may be called, which will also
dispatch CORBA events.

 1 // C++
 2 #include <X11/Intrinsic.h>
 3
 4 #include <OB/CORBA.h>
 5 #include <OB/Logger.h>
 6 #include <OB/Properties.h>
 7 #include <OB/X11.h>
 8
 9 int main(int argc, char* argv[])
10 {
11 XtAppContext appContext;
12 Widget topLevel = XtAppInitialize(&appContext,
13 "MyApplication", 0, 0, &argc, argv, 0, 0, 0);
14
15 OB::Reactor_var reactor = OB::GetX11Reactor(appContext);
16
17 CORBA::ORB_var = OBCORBA::ORB_init(argc, argv,
18 OB::Properties::_nil(), OB::Logger::_nil(), reactor);
19
20 ... // POA initialization not shown
21
22 orb -> run();
23
24 ... // Cleanup not shown
25 }
353

CHAPTER 18 | Concurrency Models
The Windows Reactor
Using a Windows Reactor is very similar to using a X11 Reactor:

Lines 2-7 Include header files.

Line 13 Use the Windows application instance to get a Windows Reactor.

Lines 15-16 Initialize the ORB using the Orbacus-specific
OBCORBA::ORB_init().

Line 20 Enter the CORBA event loop, which now also dispatches Windows
events. The standard Windows event loop may also be called, which will then
also dispatch CORBA events.

 1 // C++
 2 #include <Windows.h>
 3
 4 #include <OB/CORBA.h>
 5 #include <OB/Logger.h>
 6 #include <OB/Properties.h>
 7 #include <OB/OBWindows.h>
 8
 9 int main(int argc, char* argv[])
10 {
11 HINSTANCE hInstance = GetModuleHandle(0);
12
13 OB::Reactor_var reactor = OB::GetWindowsReactor(hInstance);
14
15 CORBA::ORB_var = OBCORBA::ORB_init(argc, argv,
16 OB::Properties::_nil(), OB::Logger::_nil(), reactor);
17
18 ... // POA initialization not shown
19
20 orb -> run();
21
22 ... // Cleanup not shown
23 }
354

CHAPTER 19

The Open
Communications
Interface
The Open Communications Interface (OCI) defines common
interfaces for pluggable protocols. TCP/IP is one possible
candidate for an OCI plug-in. Since Orbacus uses GIOP, such a
plug-in then implements the IIOP protocol. Other candidates are
SCCP (Signaling Connection Control Part, part of SS.7) or SAAL
(Signaling ATM Adaptation Layer).

In this chapter This chapter contains the following sections:

Interface Summary page 356

OCI Reference page 359

The IIOP OCI Plug-in page 367

The UDP OCI Plug-in page 372

The Bi-directional OCI Plug-in page 381
355

CHAPTER 19 | The Open Communications Interface
Interface Summary

Buffer An interface for a buffer. A buffer can be viewed as an object holding an array of
octets and a position counter, which determines how many octets have already
been sent or received.

Transport The Transport interface allows the sending and receiving of octet streams in the
form of Buffer objects. There are blocking and non-blocking send/receive
operations available, as well as operations that handle time-outs and detection of
connection loss.

Acceptor and connector Acceptors and Connectors are Factories [2] for Transport objects. A Connector
is used to connect clients to servers. An Acceptor is used by a server to accept
client connection requests.

Acceptors and Connectors also provide operations to manage protocol-specific
IOR profiles. This includes operations for comparing profiles, adding profiles to
IORs or extracting object keys from profiles.

Acceptor and connector factories Acceptor and Connector Factories are used by clients to create Acceptors and
Connectors. Acceptors are created infrequently, usually only when POA
Managers are created. Connectors, however, need to be created by clients
whenever a new connection to a server has to be established.

The only component of the OCI that is configurable by applications is the
Acceptor. When creating a new Acceptor, an Acceptor Factory takes a sequence
of protocol-specific parameters which are used to configure the Acceptor. Each
plug-in implementation should document these configuration parameters. The
configuration parameters for the plug-ins included with Orbacus are described
later in this chapter.
356

Interface Summary
Registries The ORB provides Acceptor and Connector Factory Registries. These registries
allow the plugging-in of new protocols. Transport, Connector, Connector
Factory, Acceptor Factory and Acceptor must be written by the plug-in
implementers. The Connector Factory must then be registered with the ORB’s
Connector Factory Registry and the Acceptor Factory must be registered with
the ORB’s Acceptor Factory Registry.

Info objects Info objects provide information on Transports, Acceptors and Connectors. A
Transport Info provides information on a Transport, an Acceptor Info on an
Acceptor and a Connector Info on a Connector. To get information for a
concrete protocol, these info objects must be narrow’d to an info object for this
protocol, for example, in the case of an IIOP plug-in, a OCI::TransportInfo
must be narrow’d to OCI::IIOP::TransportInfo.
357

CHAPTER 19 | The Open Communications Interface
Class Diagram
Figure 15 shows the classes and interfaces of the OCI (except for the Buffer and
Info interfaces).

Orbacus provides abstract base classes for the interfaces Connector Factory,
Connector, Transport, Acceptor Factory and Acceptor. The protocol plug-in
must inherit from these classes in order to provide concrete implementations for
a specific protocol. Orbacus also provides concrete classes for the interfaces
Buffer, Connector Factory Registry and Acceptor Factory Registry. Instances of
Connector Factory Registry and Acceptor Factory Registry can be obtained via
the ORB operation resolve_initial_references, using the identifiers
OCIConFactoryRegistry and OCIAccFactoryRegistry, respectively. Concrete
implementations of Connector Factory must be registered with the Connector
Factory Registry, and concrete implementations of Acceptor Factory must be
registered with the Acceptor Factory Registry.

Figure 15: OCI Class Diagram

Connector
Factory Connector Transport Acceptor

Protocol-
Specific

Connector
Factory

Protocol-
Specific

Connector

Protocol-
Specific

Transport

Protocol-
Specific
Acceptor

Connector
Factory
Registry

n

ORB OA1 1

creates createscreates

Acceptor
Factory
Registry

Acceptor

Protocol-
Specific
Acceptor

n

Factory

creates

Factory
358

OCI Reference
OCI Reference
This chapter does not contain a complete reference of the OCI. It only explains
OCI basics and, in the remainder of this chapter, how it is used from the
application programmer’s point of view for the most common tasks. For more
information on how to use the OCI to write your own protocol plug-ins, and for
a complete reference, please refer to Appendix E.

OCI for the application
programmer

The following sections only apply to the standard Orbacus IIOP plug-in. For
other plug-ins, please refer to the plug-in’s documentation.

A Converter Class for Java page 360

Getting Hostnames and Port Numbers page 361

Determining a Server’s IP Address page 365
359

CHAPTER 19 | The Open Communications Interface
A Converter Class for Java
As you will see in the following examples, the OCI info objects return port
numbers as IDL unsigned short values and IP addresses as an array of 4 IDL
unsigned octet values. This works fine for C++, but in Java this causes a
problem, because there are no unsigned types in Java. The Java mapping simply
maps unsigned types to signed types. Consider for example the IP address
126.127.128.129. In Java, the OCI will return this as 126.127.-128.-127, because
128 and 129, if bit-wise mapped to the Java byte type, are -128 and -127.

To avoid this problem, we will use a helper class which converts port numbers
and IP addresses to Java int types. This helper class looks as follows:

Lines 4-10 Converts short port numbers to int.

Lines 12-22 Converts byte[] IP addresses to int[].

The converter class is used throughout the examples in the sections below.

 1 // Java
 2 final class Converter
 3 {
 4 static int port(short s)
 5 {
 6 if(s < 0)
 7 return 0xffff + (int)s + 1;
 8 else
 9 return (int)s;
10 }
11
12 static int[] addr(byte[] bArray)
13 {
14 int[] iArray = new int[4];
15 for(int i = 0 ; i < 4 ; i++)
16 if(bArray[i] < 0)
17 iArray[i] = 0xff + (int)bArray[i] + 1;
18 else
19 iArray[i] = (int)bArray[i];
20
21 return iArray;
22 }
23 };
360

OCI Reference
Getting Hostnames and Port Numbers
The following code fragments show how it is possible to find out on what
hostnames and port numbers a server is listening. First the C++ version:

Line 2 The list of registered acceptors is requested from the POA Manager.

Line 4 The for loop iterates over all acceptors.

Lines 6-8 The info object for the acceptor is requested and narrowed to an IIOP
acceptor info object.

Line 10 The if block is only entered in case the info object really belongs to an
IIOP plug-in.

Lines 12-16 The hostname and port number are requested from the IIOP
acceptor info object and printed on standard output.

 1 // C++
 2 OCI::AcceptorSeq_var acceptors = poaManager ->

get_acceptors();
 3
 4 for(CORBA::ULong i = 0 ; i < acceptors -> length() ; i++)
 5 {
 6 OCI::AcceptorInfo_var info = acceptors[i] -> get_info();
 7 OCI::IIOP::AcceptorInfo_var iiopInfo =
 8 OCI::IIOP::AcceptorInfo::_narrow(info);
 9
10 if(!CORBA::is_nil(iiopInfo))
11 {
12 CORBA::StringSeq_var hosts = iiopInfo -> hosts();
13 CORBA::UShort port = iiopInfo -> port();
14
15 cout << "host: " << host[0] << endl;
16 cout << "port: " << port << endl;
17 }
18 }
361

CHAPTER 19 | The Open Communications Interface
The Java version is basically equivalent to the C++ code and looks as follows:

Lines 2-12 This is equivalent to the C++ version.

Line 13 The converter class is used to get a port number in int format.

Lines 15-16 Like in the C++ version, the hostname and port number are printed
on standard output.

 1 // Java
 2 com.ooc.OCI.Acceptor[] acceptors =

poaManager.get_acceptors();
 3
 4 for(int i = 0 ; i < acceptors.length ; i++)
 5 {
 6 com.ooc.OCI.AcceptorInfo info = acceptors[i].get_info();
 7 com.ooc.OCI.IIOP.AcceptorInfo iiopInfo =
 8 com.ooc.OCI.IIOP.AcceptorInfoHelper.narrow(info);
 9
10 if(iiopInfo != null)
11 {
12 String[] hosts = iiopInfo.hosts();
13 short port = Converter.port(iiopInfo.port());
14
15 System.out.println("host: " + host[0]);
16 System.out.println("port: " + port);
17 }
18 }
362

OCI Reference
Determining a Client’s IP Address
To determine the IP address of a client within a server method, the following
code can be used in a servant class method implementation:

Lines 2-4 The OCI current object is requested and narrow’d to the correct
OCI::Current type.

Lines 6-8 The info object for the transport is requested and narrow’d to an IIOP
transport info object.

Line 10 The remainder of the example code is only executed if this was really
an IIOP transport info object.

Lines 12-18 The address and the port of the client calling this operation are
obtained and printed on standard output.

 1 // C++
 2 CORBA::Object_var baseCurrent =
 3 orb -> resolve_initial_references("OCICurrent");
 4 OCI::Current_var current =

OCI::Current::_narrow(baseCurrent);
 5
 6 OCI::TransportInfo_var info = current ->

get_oci_transport_info();
 7 OCI::IIOP::TransportInfo_var iiopInfo =
 8 OCI::IIOP::TransportInfo::_narrow(info);
 9
10 if(!CORBA::is_nil(iiopInfo))
11 {
12 OCI::IIOP::InetAddr remoteAddr = iiopInfo ->

remote_addr();
13 CORBA::UShort remotePort = iiopInfo -> remote_port();
14
15 cout << "Call from: "
16 << remoteAddr[0] << '.' << remoteAddr[1] << '.'
17 << remoteAddr[2] << '.' << remoteAddr[3]
18 << ":" << remotePort << endl;
19 }
363

CHAPTER 19 | The Open Communications Interface
The Java version looks as follows:

Lines 2-11 This code is equivalent to the C++ version.

Lines 13-14 Again, the port number must be converted from short to int.

Lines 16-20 This is also equivalent to the C++ version.

 1 // Java
 2 org.omg.CORBA.Object baseCurrent =
 3 orb.resolve_initial_references("OCICurrent");
 4 com.ooc.OCI.Current current =
 5 com.ooc.OCI.CurrentHelper.narrow(baseCurrent);
 6
 7 com.ooc.OCI.TransportInfo info =

current.get_oci_transport_info();
 8 com.ooc.OCI.IIOP.TransportInfo iiopInfo =
 9 com.ooc.OCI.IIOP.TransportInfoHelper.narrow(baseInfo);
10
11 if(iiopInfo != null)
12 {
13 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
14 int remotePort = Converter.port(iiopInfo.remote_port());
15
16 System.out.println("Call from: " +
17 remoteAddr[0] + "." +
18 remoteAddr[1] + "." +
19 remoteAddr[2] + "." +
20 remoteAddr[3] + ":" + remotePort);
21 }
364

OCI Reference
Determining a Server’s IP Address
To determine the server’s IP address and port that an object will attempt to
connect to, the following code can be used:

Lines 4-6 Get the OCI connector info and narrow to an IIOP connector info

Line 8 The if block is only executed if this really was an IIOP connector info.

Lines 10-16 The address and port are obtained and displayed on standard
output.

 1 // C++
 2 CORBA::Object_var obj = ... // Get an object reference somehow
 3
 4 OCI::ConnectorInfo_var info = obj -> get_oci_connector_info();
 5 OCI::IIOP::ConnectorInfo_var iiopInfo =
 6 OCI::IIOP::ConnectorInfo::_narrow(info);
 7
 8 if(!CORBA::is_nil(iiopInfo))
 9 {
10 OCI::IIOP::InetAddr_var remoteAddr = iiopInfo ->

remoteAddr();
11 CORBA::UShort remotePort = iiopInfo -> remote_port();
12
13 cout << "Will connect to: "
14 << remoteAddr[0] << '.' << remoteAddr[2] << '.'
15 << remoteAddr[2] << '.' << remoteAddr[3]
16 << ":" << remotePort << endl;
17 }
365

CHAPTER 19 | The Open Communications Interface
The Java version looks as follows:

Lines 4-7 We need to retrieve the Orbacus-specific Delegate object so that we
can get the connector info.

Lines 9-12 Get the OCI connector info and narrow to an IIOP connector info.

Line 14 The if block is only entered if this really was an IIOP connector info.

Lines 16-23 The address and port are obtained and displayed on standard
output.

 1 // Java
 2 org.omg.CORBA.Object obj = ... // Get an object reference

somehow
 3
 4 org.omg.CORBA.portable.ObjectImpl objImpl =
 5 (org.omg.CORBA.portable.ObjectImpl)obj;
 6 com.ooc.CORBA.Delegate objDelegate =
 7 (com.ooc.CORBA.Delegate)objImpl._get_delegate();
 8
 9 com.ooc.OCI.ConnectorInfo info =
10 objDelegate.get_oci_connector_info();
11 com.ooc.OCI.IIOP.ConnectorInfo iiopInfo =
12 com.ooc.OCI.IIOP.ConnectorInfoHelper.narrow(info);
13
14 if(iiopInfo != null)
15 {
16 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
17 int remotePort = Converter.port(iiopInfo.remote_port());
18
19 System.out.println("Will connect to: " +
20 remoteAddr[0] + "." +
21 remoteAddr[1] + "." +
22 remoteAddr[2] + "." +
23 remoteAddr[3] + ":" + remotePort);
24 }
366

The IIOP OCI Plug-in
The IIOP OCI Plug-in
The IIOP plug-in implements the Internet Inter-ORB Protocol as described in
[4]. By default, the ORB automatically installs the client and server (that is,
Connector Factory and Acceptor Factory) components of the IIOP plug-in, and
IIOP is the default protocol used by the ORB.

For configuration purposes, the identifier of the IIOP plug-in is iiop.

Client installation The client-side IIOP plug-in is installed as shown below:

ooc.oci.client=iiop [--no-keepalive]

The following options are supported:

Server installation The server-side IIOP plug-in is installed as shown below:

ooc.oci.server=iiop

In this section This sections covers the following topics:

--no-keepalive Disable the use of TCP keepalives.

Endpoint Configuration page 368

Command-line Options page 370

Static Linking page 371
367

CHAPTER 19 | The Open Communications Interface
Endpoint Configuration
The configuration options for an IIOP endpoint are shown below:

iiop [--backlog N] [--bind ADDR] [--host ADDR[,ADDR,...]]
 [--multi-profile] [--no-keepalive] [--numeric] [--port N]

--backlog N Specifies the maximum length of the listen backlog queue.
Note that the operating system may have a smaller limit which
will override this value. If not specified, a default value of 50 is
used in Java, and 5 in C++.

--bind ADDR Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not specified,
the socket will be bound to all available interfaces. This option
is useful in situations where a host has several network
interfaces, but the server should only listen for connections on a
particular interface.

--host ADDR[,ADDR,...] Specifies a list of one or more hostnames and/or dotted decimal
addresses representing the addresses that should be advertised
in IORs. Using IIOP 1.0 or 1.1, multiple addresses are
represented as multiple tagged profiles. Using IIOP 1.2,
multiple addresses can be represented as either multiple tagged
profiles, or as a single tagged profile with a tagged component
for each additional address. The --multi-profile option
determines how multiple addresses are represented in IIOP 1.2.
If --host is not specified, the canonical hostname is used.

--multi-profile If set, multiple addresses in the --host option are represented
as multiple tagged profiles in an IOR. By default, multiple
addresses are represented as a single tagged profile (using the
first address in the --host list as the primary address), with all
additional addresses represented as alternate addresses in
tagged components. If IIOP 1.0 or 1.1 is in use, multiple
addresses are always represented as multiple tagged profiles.

--no-keepalive Disable the use of TCP keepalives.
368

The IIOP OCI Plug-in
--numeric If set, and if --host is not specified, then the canonical dotted
decimal address is advertised in IORs. The default behavior is
to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If no
port is specified, an unused one will be selected automatically
by the operating system. Use this option if you plan to publish
an IOR (for example, in a file, a naming service, etc.) and you
want that IOR to remain valid across executions of your server.
Without this option, your server is likely to use a different port
number each time the server is executed. See Chapter 6 for
more information.
369

CHAPTER 19 | The Open Communications Interface
Command-line Options
The IIOP plug-in supports the following command-line options:

See “Command-line Options and Endpoints” on page 85 for more information
on the behavior of command-line options.

-IIOPbacklog N Equivalent to the --backlog endpoint option.

-IIOPbind ADDR Equivalent to the --bind endpoint option.

-IIOPhost ADDR[,ADDR,...] Equivalent to the --host endpoint option.

-IIOPnumeric Equivalent to the --numeric endpoint option.

-IIOPport N Equivalent to the --port endpoint option.
370

The IIOP OCI Plug-in
Static Linking
There are no special requirements for linking the IIOP plug-in statically in C++,
since the plug-in is part of the Orbacus core library.

URL support The IIOP plug-in supports the standard iiop format for corbaloc URLs, as
described in “corbaloc: URLs” on page 139.
371

CHAPTER 19 | The Open Communications Interface
The UDP OCI Plug-in
The UDP plug-in provides unreliable unicast and multicast functionality,
suitable for applications which can tolerate the potential for lost messages. Only
oneway operations are supported.

For configuration purposes, the identifier of the UDP plug-in is udp.

In this section This sections covers the following topics:

Client Installation page 373

Server Installation page 374

Static Linking page 378

URL Support page 379

Narrowing UDP Object References page 380
372

The UDP OCI Plug-in
Client Installation
The client-side UDP plug-in is installed as shown below:

The following options are supported:

ooc.oci.client=udp [--buffer-size N] [--packet-delay MSEC]
 [--packet-size N] [--no-loopback] [--ttl N] [--trace N]

--buffer-size N Sets the size of the socket’s send buffer. Note that this is only
a hint to the operating system. To determine the actual size,
use the --trace option. The default value is
operating-system dependent.

--packet-delay MSEC Specifies the delay in milliseconds between packets. In some
cases, sending packets too quickly can cause more packets to
be dropped. The default value is 0.

--packet-size N Sets the size of a packet in bytes. If necessary, the plug-in
splits a single request into multiple packets of the specified
size and reassembles them on the server. Note that there are
hard operating system limits on the size of a datagram. The
default size is 1472, which is the largest portable size.

--no-loopback Specifies that loopback mode of the socket shall be disabled
for multicast communication. This prevents sending
multicast packets back to the local socket. For Java this
functionality is only available from JDK 1.4.0 on.

--ttl N Specifies the time-to-live value (0..255) of multicast packets
sent. System defaults apply if not specified.

--trace N Sets the level of diagnostic output. The default value is 0.

Note: The --no-loopback option for multicast communication is to be
specified on the client side for Unix systems and on the server side for
Windows systems.
373

CHAPTER 19 | The Open Communications Interface
Server Installation
The server-side UDP plug-in is installed as shown below:

The following options are supported:

ooc.oci.server=udp [--trace N]

--trace N Sets the level of diagnostic output. The default
value is 0.
374

The UDP OCI Plug-in
Endpoint Configuration
The configuration options for a UDP endpoint are shown below:

udp [--bind ADDR] [--buffer-size N] [--host ADDR[,ADDR,...]]
 [--message-timeout SEC] [--multicast] [--no-loopback]
 [--ttl N] [--numeric] [--port N] [--transport-timeout SEC]

--bind ADDR Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not
specified, the socket will be bound to all available interfaces.
This option is useful in situations where a host has several
network interfaces, but the server should only listen for
connections on a particular interface.

--buffer-size N Sets the size of the socket’s receive buffer. Note that this is
only a hint to the operating system. To determine the actual
size, use the --trace option when installing the plug-in. The
default value is operating-system dependent.

--host ADDR[,ADDR,...] Specifies a list of one or more hostnames and/or dotted
decimal addresses representing the addresses that should be
advertised in IORs. Multiple addresses are represented as
multiple tagged profiles. If --host is not specified, the
canonical hostname is used. This option must be specified if
multicast is used.

--message-timeout SEC Specifies the expiration time in seconds for incomplete
messages. Because the plug-in may fragment a request into
multiple packets, it is possible for some packets to be lost. If
no more packets have arrived for an incomplete message after
the specified timeout, the message is discarded. The default
value is 15 seconds.

--multicast Specifies that multicast should be used. If this option is set,
the --host and --port options must also be specified, and
the host must be an IP address in the multicast range
(224.0.0.0 through 239.255.255.255). By default, multicast is
not used.
375

CHAPTER 19 | The Open Communications Interface
--no-loopback Specifies that loopback mode of the socket shall be disabled
in multicast mode. This prevents sending multicast packets
back to the local socket. For Java this functionality is only
available from JDK 1.4.0 on.

--ttl N Specifies the time-to-live value (0..255) of multicast packets
sent. System defaults apply if not specified.

--numeric If set, and if --host is not specified, then the canonical dotted
decimal address is advertised in IORs. The default behavior
is to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If no
port is specified, an unused one will be selected automatically
by the operating system. Use this option if you plan to
publish an IOR (for example, in a file, a naming service, etc.)
and you want that IOR to remain valid across executions of
your server. Without this option, your server is likely to use a
different port number each time the server is executed. This
option must be specified if multicast is used.

--transport-timeout N Specifies the time in seconds after which inactive
connections are reaped. The default value is 60 seconds.

Note: When using multicast, all servers which belong to the same multicast
group must specify the same host address and port. The --no-loopback option
for multicast communication is to be specified on the client side for Unix
systems and on the server side for Windows systems.
376

The UDP OCI Plug-in
Command-line options The UDP plug-in supports the following command-line options:

See “Command-line Options and Endpoints” on page 85 for more information
on the behavior of command-line options.

-UDPbind ADDR Equivalent to the --bind endpoint option.

-UDPhost ADDR[,ADDR,...] Equivalent to the --host endpoint option.

-UDPmulticast Equivalent to the --multicast endpoint option.

-UDPnumeric Equivalent to the --numeric endpoint option.

-UDPport N Equivalent to the --port endpoint option.
377

CHAPTER 19 | The Open Communications Interface
Static Linking
When statically a C++ application, an explicit reference must be made to the
UDP plug-in in order to include the plug-in’s modules. Shown below is the
technique used by the sample programs in the udp/demo subdirectory. Note that
the code below is enclosed in guard macros that are only activated when
statically linking. These macros are appropriate for both Unix and Windows.
First, extra include files are necessary:

Next, the plug-in must be registered prior to calling ORB_init():

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
#include <OB/OCI_init.h>
#include <OB/OCI_UDP_init.h>
#endif

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
 //
 // When linking statically, we need to explicitly register
 // the plug-in prior to ORB initialization
 //
 OCI::register_plugin("udp", OCI_init_udp);
#endif
378

The UDP OCI Plug-in
URL Support
The UDP plug-in supports corbaloc URLs with the following protocol syntax:

corbaloc:udp:host:port/object-key

The components of the URL are as follows:

• udp - This selects the UDP plug-in.

• host - The hostname or IP address of the server.

• port - The port on which the server is listening.

• object-key - A stringified object key.
379

CHAPTER 19 | The Open Communications Interface
Narrowing UDP Object References
When an application calls narrow(), it may result in the ORB making a twoway
call to the _is_a() operation to determine whether narrow() should succeed.
However, twoway operations cannot be invoked on UDP object references,
therefore the application must take extra precautions.

It is only safe to use narrow() when:

• the object reference has a non-empty repository ID1, and

• the repository ID matches the type being narrowed.

In all other cases, the ORB will attempt to invoke _is_a().

Therefore, if an application cannot be sure that narrow() will succeed without
invoking_is_a(), it should use the standard operation unchecked_narrow()
instead. This operation assumes that the application is operating correctly and
allows the narrow to succeed without using _is_a().

1. Object references created from corbaloc URLs always have empty repository IDs.
380

The Bi-directional OCI Plug-in
The Bi-directional OCI Plug-in

Overview The Orbacus Bi-directional plug-in offers a solution for distributed systems
where security restrictions interfere with a client's ability to receive callbacks.

This capability is especially useful in two common situations:

• Firewalls prevent the server from establishing a separate connection back

to the client

• Browser restrictions prevent an applet from accepting connections

In this section This sections covers the following topics:

Note: This Bidir implementation is deprecated with the addition of the
CORBA 3 compliant version of BiDir GIOP. New users requiring BiDir
functionality should use the new BiDir GIOP interface as described in
Chapter 16.

Note: This plug-in does not implement the Bi-directional IIOP standard
defined by CORBA 2.3. This plug-in uses a proprietary protocol that is not
interoperable with other ORBs.

How Does it Work? page 382

Peers page 383

Client Installation page 384

Server Installation page 385

Endpoint Configuration page 386

Command-line Options page 387

Configuration Properties page 388

Static Linking page 389

URL Support page 390
381

CHAPTER 19 | The Open Communications Interface
How Does it Work?
The Bi-directional plug-in uses a layered design that theoretically enables any
connection-oriented OCI plug-in to support bi-directional functionality. Initially
however, only bi-directional IIOP is supported.

In Figure 16, a server is shown that is capable of receiving both bi-directional
IIOP connections and regular IIOP connections.

Any callback requests from the Server to Client A will travel down the existing
connection already established by the client. On the other hand, any callback
requests from the Server to Client B require a new IIOP connection to be
established from the server to the client.

Figure 16: Connection Requirements

Server

OCI
Bi-dir

OCI
IIOP

OCI
IIOP

OCI
IIOP

OCI
Bi-dir

Client A

OCI
IIOP

Client B

Requests &
Callbacks

Requests Callbacks
382

The Bi-directional OCI Plug-in
Peers
The Bi-directional plug-in requires each peer in a bi-directional connection to
have a unique identifier, called the peer ID. Currently, this identifier is just a
simple ISO-LATIN1 string. In IIOP terms, a unique endpoint is derived from the
hostname/port combination. However, since the Bi-directional OCI plug-in has
no knowledge of the underlying protocol, a separate identification scheme is
currently required, and must be provided by the application. It is therefore the
application's responsibility to ensure that each server and client has a unique
peer ID.

In IIOP, object references can be made persistent (valid across process restarts)
by ensuring that the process is restarted on the same host and port, and that the
object keys in the object references will continue to be valid. The same is true of
peer IDs. If you want a bidirectional IIOP object reference to remain valid across
process restarts, you must use the same peer ID, host, port and object key.
Conversely, if an object reference is transient, then the peer ID can vary along
with the host, port and object key.
383

CHAPTER 19 | The Open Communications Interface
Client Installation
The client-side bi-directional plug-in is installed as shown below:

The following options are supported:

Because the bi-directional plug-in is layered on another plug-in, the underlying
plug-in must be installed first. For example, to install bi-directional IIOP, the
IIOP plug-in is installed first, and then the bi-directional plug-in is installed:

ooc.oci.client=iiop, bidir --protocol iiop

Note that a bi-directional application generally needs to install both the client-
and server-side plug-ins.

ooc.oci.client=ID [options], bidir --protocol ID

--protocol ID Specifies the identifier of the underlying plug-in.
This parameter is required.
384

The Bi-directional OCI Plug-in
Server Installation
The server-side bi-directional plug-in is installed as shown below:

The following options are supported:

Because the bi-directional plug-in is layered on another plug-in, the underlying
plug-in must be installed first. For example, to install bi-directional IIOP, the
IIOP plug-in is installed first, and then the bi-directional plug-in is installed:

ooc.oci.server=iiop, bidir --protocol iiop

Note that a bi-directional application generally needs to install both the client-
and server-side plug-ins.

ooc.oci.server=ID [options], bidir --protocol ID

--protocol ID Specifies the identifier of the underlying plug-in.
This parameter is required.
385

CHAPTER 19 | The Open Communications Interface
Endpoint Configuration
There are two distinct types of bi-directional endpoints: one which creates a real
endpoint using the underlying plug-in, and one which only listens for callbacks
on existing, outgoing bi-directional connections. The latter type will be referred
to as a callback endpoint.

A server will typically create the first type of endpoint; a security-restricted
client will only create the second type, since listening on a real port is often
forbidden (or pointless, if a firewall prevents incoming connections).

The implication of creating a callback endpoint is that a server wishing to call
back to a client will only be able to do so if there is an existing bi-directional
connection from the client to the server. If not, the server will receive a
TRANSIENT exception.

The configuration options for a bi-directional endpoint are shown below. Note
that the plug-in identifier for endpoint configuration purposes is formed by
combining bidir_ with the identifier of the underlying plug-in (for example,
bidir_iiop).

bidir_ID [--callback] [options]

The only option supported by the bi-directional plug-in is --callback, which
creates a callback endpoint. If this option is specified, it must be the only option.

If --callback is not the first and only option, all additional options are passed to
the underlying plug-in for processing. For example, a server would typically use
a configuration such as:

ooc.orb.oa.endpoint=bidir_iiop --port 7000

This creates a bi-directional IIOP endpoint on the static port 7000.

On the other hand, a bi-directional client would use the following configuration:

ooc.orb.oa.endpoint=bidir_iiop --callback

This creates a callback endpoint which can only receive requests when an
existing, outgoing bi-directional IIOP connection has been established from this
client to the server that wishes to make a callback.
386

The Bi-directional OCI Plug-in
Command-line Options
No command-line options are supported.
387

CHAPTER 19 | The Open Communications Interface
Configuration Properties
The bi-directional plug-in supports a single configuration property:

ooc.bidir.peer Specifies the peer ID. If not specified, a unique
peer ID is used.
388

The Bi-directional OCI Plug-in
Static Linking
When statically a C++ application, an explicit reference must be made to the
bi-directional plug-in (as well as to the underlying plug-in) in order to include
the plug-in’s modules. Shown below is the technique used by the sample
programs in the bidir/demo subdirectory. Note that the code below is enclosed
in guard macros that are only activated when statically linking. These macros are
appropriate for both Unix and Windows. First, extra include files are necessary:

Next, the plug-in must be registered prior to calling ORB_init():

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
#include <OB/OCI_init.h>
#include <OB/OCI_BiDir_init.h>
#endif

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
 //
 // When linking statically, we need to explicitly register
 // the plug-in prior to ORB initialization
 //
 OCI::register_plugin("bidir", OCI_init_bidir);
#endif
389

CHAPTER 19 | The Open Communications Interface
URL Support
The bi-directional plug-in supports corbaloc URLs with the following protocol
syntax:

The first form indicates a callback endpoint, whereas the second form indicates
an endpoint using an underlying plug-in.

The components of the URL are as follows:

• bidir_ID - This selects the bi-directional plug-in using the underlying

plug-in identified by ID.

• peer - The peer ID.

• options - Options specific to the underlying plug-in.

• object-key - A stringified object key.

For example:

corbaloc:bidir_iiop:Client/Foo
corbaloc:bidir_iiop:Server:thehost:9999/Foo

The first example is a URL for a bi-directional IIOP callback endpoint. The
second example is a URL for a bi-directional IIOP endpoint on host thehost
and port 9999.

corbaloc:bidir_ID:peer/object-key
corbaloc:bidir_ID:peer:[options]/object-key
390

CHAPTER 20

Exceptions and
Error Messages

In this chapter This chapter contains the following sections:

CORBA System Exceptions page 392

Non-Compliant Application Asserts page 411
391

CHAPTER 20 | Exceptions and Error Messages
CORBA System Exceptions
The CORBA specification defines the standard system exceptions shown in the
following table.

UNKNOWN Unknown exception type

BAD_PARAM An invalid parameter was passed

NO_MEMORY Failure to allocate dynamic memory

IMP_LIMIT Implementation limit was violated

COMM_FAILURE Communication failure

INV_OBJREF Invalid object reference

NO_PERMISSION The attempted operation was not permitted

INTERNAL Internal error in ORB

MARSHAL Error marshalling a parameter or result

INITIALIZE Failure when initializing ORB

NO_IMPLEMENT Operation implementation unavailable

BAD_TYPECODE Bad typecode

BAD_OPERATION Invalid operation

NO_RESOURCES Insufficient resources for a request

NO_RESPONSE Response to a request is not yet available

PERSIST_STORE Persistent storage failure

BAD_INV_ORDER Routine invocation out of order

TRANSIENT Transient failure, request can be reissued

FREE_MEM Cannot free memory

INV_IDENT Invalid identifier syntax

INV_FLAG Invalid flag was specified
392

CORBA System Exceptions
In the following subsections the minor exception codes are presented. Minor
codes that are Orbacus-specific are presented as MinorCodeName*, that is, are
tagged with the superscript ‘*’.

In this section This section describes the following minor exception codes:

INTF_REPOS Error accessing interface repository

BAD_CONTEXT Error processing context object

OBJ_ADAPTER Failure detected by object adapter

DATA_CONVERSION Error in data conversion

OBJECT_NOT_EXIST Non-existent object, references should be
discarded

TRANSACTION_REQUIRED Active transaction context required

TRANSACTION_ROLLEDBACK Transaction has rolled back or is marked to be
rolled back

INVALID_TRANSACTION Invalid transaction context

INV_POLICY Invalid Policy

CODESET_INCOMPATIBLE Incompatible client and server native code sets

REBIND Thrown on a OBJECT_FORWARD or
LOCATION_FORWARD status, depending on
the RebindPolicy

TIMEOUT Time-to-live period was exceeded

TRANSACTION_UNAVAILABLE Transaction service context could not be
processed

TRANSACTION_MODE Mismatch between TransactionPolicy and current
transaction mode

BAD_QOS Object cannot support the required QOS

INITIALIZE Minor Exception Code page 395

UNKNOWN Minor Exception Code page 396
393

CHAPTER 20 | Exceptions and Error Messages
BAD_PARAM Minor Exception Code page 397

NO_MEMORY Minor Exception Code page 399

IMP_LIMIT Minor Exception Code page 400

COMM_FAILURE Minor Exception Code page 401

MARSHAL Minor Exception Code page 402

NO_IMPLEMENT Minor Exception Code page 404

NO_RESOURCES Minor Exception Code page 405

BAD_INV_ORDER Minor Exception Code page 406

TRANSIENT Minor Exception Code page 407

INTF_REPOS Minor Exception Code page 408

OBJECT_NOT_EXIST Minor Exception Code page 409

INV_POLICY Minor Exception Code page 410
394

CORBA System Exceptions
INITIALIZE Minor Exception Code

MinorORBDestroyed ORB already destroyed
395

CHAPTER 20 | Exceptions and Error Messages
UNKNOWN Minor Exception Code

MinorUnknownUserException Unknown user exception
396

CORBA System Exceptions
BAD_PARAM Minor Exception Code

MinorValueFactoryError Failure to register, unregister or
lookup value factory

MinorRepositoryIdExists Repository ID already exists in
Interface Repository

MinorNameExists Name already used in Interface
Repository

MinorInvalidContainer Target is not a valid container

MinorNameClashInInheritedContext Name clash in inherited context

MinorBadAbstractInterfaceType Incorrect type for abstract interface

MinorBadSchemeName Bad scheme name

MinorBadAddress Bad address

MinorBadSchemeSpecificPart Bad scheme specific part

MinorOther Other

MinorInvalidAbstractInterfaceInheritance Invalid abstract interface inheritance

MinorInvalidValueInheritance Invalid valuetype inheritance

MinorInvalidServiceContextId Invalid service context ID

MinorObjectIsNull Object parameter to
object_to_ior() is null

MinorInvalidComponentId Invalid component ID

MinorInvalidProfileId Invalid profile ID

MinorDuplicatePolicyType Duplicate policy types

MinorDuplicateDeclarator* Duplicate declarator

MinorInvalidValueModifier* Invalid valuetype modifier

MinorDuplicateValueInit* Duplicate valuetype initializer

MinorAbstractValueInit* Abstract valuetype cannot have
initializer

MinorDuplicateBaseType* Base type appears more than once
397

CHAPTER 20 | Exceptions and Error Messages
MinorSingleThreadedOnly* ORB does not support multiple
threads

MinorNameRedefinitionInImmediateScope* Invalid name redefinition in an
immediate scope

MinorInvalidValueBoxType* Invalid type for valuebox

MinorInvalidLocalInterfaceInheritance* Invalid local interface inheritance

MinorConstantTypeMismatch* Constant type doesn't match
definition
398

CORBA System Exceptions
NO_MEMORY Minor Exception Code

MinorAllocationFailure* Memory allocation failure
399

CHAPTER 20 | Exceptions and Error Messages
IMP_LIMIT Minor Exception Code

MinorNoUsableProfile No usable profile in IOR

MinorMessageSizeLimit* Maximum message size exceeded

MinorThreadLimit* Can’t create new thread
400

CORBA System Exceptions
COMM_FAILURE Minor Exception Code

MinorRecv* recv() failed

MinorSend* send() failed

MinorRecvZero* recv() returned zero

MinorSendZero* send() returned zero

MinorSocket* socket() failed

MinorSetsockopt* setsockopt() failed

MinorGetsockopt* getsockopt() failed

MinorBind* bind() failed

MinorListen* listen() failed

MinorConnect* connect() failed

MinorAccept* accept() failed

MinorSelect* select() failed

MinorGethostname* gethostname() failed

MinorGethostbyname* gethostbyname() failed

MinorWSAStartup* WSAStartup() failed

MinorWSACleanup* WSACleanup() failed

MinorNoGIOP* Not a GIOP message

MinorUnknownMessage* Unknown GIOP message

MinorWrongMessage* Wrong GIOP message

MinorMessageError* Got a message error message

MinorFragment* Invalid fragment message

MinorUnknownReqId* Unknown request ID

MinorVersion* Incompatible GIOP version

MinorPipe* Creation of pipe failed

MinorSetSoTimeout* setSoTimeout() failed
401

CHAPTER 20 | Exceptions and Error Messages
MARSHAL Minor Exception Code

MinorNoValueFactory Unable to locate value factory

MinorDSIResultBeforeContext DSI result cannot be set before context

MinorDSIInvalidParameterList DSI argument list does not describe all
parameters

MinorLocalObject Attempt to marshal local object

MinorWcharSentByClient wchar data sent by client on GIOP 1.0
connection

MinorWcharSentByServer wchar data returned by server on GIOP 1.0
connection

MinorReadOverflow* Input stream buffer overflow

MinorReadBooleanOverflow* Overflow while reading boolean

MinorReadCharOverflow* Overflow while reading char

MinorReadWCharOverflow* Overflow while reading wchar

MinorReadOctetOverflow* Overflow while reading octet

MinorReadShortOverflow* Overflow while reading short

MinorReadUShortOverflow* Overflow while reading ushort

MinorReadLongOverflow* Overflow while reading long

MinorReadULongOverflow* Overflow while reading ulong

MinorReadLongLongOverflow* Overflow while reading longlong

MinorReadULongLongOverflow* Overflow while reading ulonglong

MinorReadFloatOverflow* Overflow while reading float

MinorReadDoubleOverflow* Overflow while reading double

MinorReadLongDoubleOverflow* Overflow while reading longdouble

MinorReadStringOverflow* Overflow while reading string

MinorReadStringZeroLength* Encountered zero-length string

MinorReadStringNullChar* Encountered null char in string
402

CORBA System Exceptions
MinorReadStringNoTerminator* Terminating null char missing in string

MinorReadWStringOverflow* Overflow while reading wstring

MinorReadWStringZeroLength* Encountered zero-length wstring

MinorReadWStringNullWChar* Encountered null char in wstring

MinorReadWStringNoTerminator* Terminating null char missing in wstring

MinorReadFixedOverflow* Overflow while reading fixed

MinorReadFixedInvalid* Invalid encoding for fixed value

MinorReadBooleanArrayOverflow* Overflow while reading boolean array

MinorReadCharArrayOverflow* Overflow while reading char array

MinorReadWCharArrayOverflow* Overflow while reading wchar array

MinorReadOctetArrayOverflow* Overflow while reading octet array

MinorReadShortArrayOverflow* Overflow while reading short array

MinorReadUShortArrayOverflow* Overflow while reading ushort array

MinorReadLongArrayOverflow* Overflow while reading long array

MinorReadULongArrayOverflow* Overflow while reading ulong array

MinorReadLongLongArrayOverflow* Overflow while reading longlong array

MinorReadULongLongArrayOverflow* Overflow while reading ulonglong array

MinorReadFloatArrayOverflow* Overflow while reading float array

MinorReadDoubleArrayOverflow* Overflow while reading double array

MinorReadLongDoubleArrayOverflow* Overflow while reading longdouble array

MinorReadInvTypeCodeIndirection* Invalid type code indirection

MinorWriteObjectLocal* Attempt to marshal a locality-constrained
object

MinorLongDoubleNotSupported* Long double is not supported
403

CHAPTER 20 | Exceptions and Error Messages
NO_IMPLEMENT Minor Exception Code

MinorMissingLocalValueImplementation Missing local value
implementation

MinorIncompatibleValueImplementationVersion Incompatible value
implementation version

MinorNotSupportedByLocalObject Operation not supported by local
object

MinorDIINotSupportedByLocalObject DII operation not supported by
local object
404

CORBA System Exceptions
NO_RESOURCES Minor Exception Code

MinorInvalidBinding Portable Interceptor operation not supported in
binding
405

CHAPTER 20 | Exceptions and Error Messages
BAD_INV_ORDER Minor Exception Code

MinorDependencyPreventsDestruction Dependency exists in Interface Repository
prevents destruction of object

MinorIndestructibleObject Attempt to destroy indestructible object in
Interface Repository

MinorDestroyWouldBlock Operation would deadlock

MinorShutdownCalled ORB has shutdown

MinorDuplicateSend Request has already been sent

MinorServantManagerAlreadySet Servant manager already set

MinorInvalidUseOfDSIArguments Invalid use of DSI arguments

MinorInvalidUseOfDSIContext Invalid use of DSI context

MinorRequestAlreadySent DII request has already been sent

MinorRequestNotSent DII request has not been sent yet

MinorResponseAlreadyReceived DII response has already been received

MinorSynchronousRequest Operation not supported on synchronous DII
request

MinorInvalidPICall Invalid Portable Interceptor call

MinorServiceContextExists A service context already exists with the given
ID

MinorPolicyFactoryExists A factory already exists for the given
PolicyType

MinorNoCreatePOA Cannot create POA while undergoing
destruction

MinorBadConcModel* Invalid concurrency model

MinorORBRunning* ORB::run() already called
406

CORBA System Exceptions
TRANSIENT Minor Exception Code

MinorRequestDiscarded Request has been discarded

MinorNoUsableProfileInIOR No usable profile in IOR

MinorRequestCancelled Request has been cancelled

MinorPOADestroyed POA has been destroyed

MinorConnectFailed* Request has been cancelled

MinorCloseConnection* Got a ‘close connection’ message

MinorActiveConnectionManagement* Active connection management closed
connection

MinorForcedShutdown* Forced connection shutdown because of
timeout

MinorLocationForwardHopCountExceeded* Forced connection shutdown because of
timeout
407

CHAPTER 20 | Exceptions and Error Messages
INTF_REPOS Minor Exception Code

MinorNoIntfRepos* Interface Repository is not available

MinorLookupAmbiguous* Search name for lookup() is ambiguous

MinorIllegalRecursion* Illegal Recursion

MinorNoEntry* IFR is not populated with a required definition.
408

CORBA System Exceptions
OBJECT_NOT_EXIST Minor Exception Code

MinorUnregisteredValue Attempt to pass unactivated (unregistered) value as
an object reference

MinorCannotDispatch Unable to dispatch - servant or POA not found
409

CHAPTER 20 | Exceptions and Error Messages
INV_POLICY Minor Exception Code

MinorCannotReconcilePolicy Cannot reconcile IOR policy with effective policy
override

MinorInvalidPolicyType Invalid PolicyType

MinorNoPolicyFactory No PolicyFactory for the PolicyType has been
registered
410

Non-Compliant Application Asserts
Non-Compliant Application Asserts
If the Orbacus library was compiled without the preprocessor definition
-DNDEBUG defined, Orbacus tries to detect common programming mistakes that
lead to non–compliant CORBA applications. If such a mistake is found an error
messages like this will appear:

Non-compliant application error detected:
Application used wrong memory allocation function

After detecting such an error, the Orbacus library dumps a core (Unix only) and
prints the file and line number where the error was detected. You can use the
core dump in order to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implementedThis is not an
application error. This error message appears if an application attempts to use a
feature that has not yet been implemented in Orbacus. In this case the only thing
that can be done is to wait for the next Orbacus version that has this particular
feature implemented.

Application used a deprecated feature that is not implemented anymoreThis is
not an application error. This error message appears if an application attempts to
use a feature that is no longer implemented in Orbacus. In this case the only
thing that can be done is to avoid using this particular feature.

Application used wrong memory allocation functionIf this message appears, an
incorrect memory allocation function has been used. A common mistake that
leads to this error is to use malloc, strdup and free (or the new and delete
operator) instead of CORBA::string_alloc and CORBA::string_dup and
CORBA::string_free for string memory management.

Message Description

Memory that was already deallocated was
deallocated again

This message indicates multiple memory deallocations. For
example, if CORBA::string_free is called twice on the same
string, this message will be displayed.

Object was deleted without an object
reference count of zero

This message appears if an object was deleted by calling
delete on its object reference. Never use the delete operator
for that; use CORBA::release instead.
411

CHAPTER 20 | Exceptions and Error Messages
Object was already deleted (object
reference count was already zero)

This message appears if the number of release operations on
an object reference is greater than the number of _duplicate
operations.

Sequence length was greater than
maximum sequence length

This message indicates that the application tried to set the
length of a bounded sequence to a value greater than its
maximum length.

Index for sequence operator[]() or
remove() function was out of range

This message appears if the argument to the sequence member
functions operator[] or remove exceeds the sequence length.

Buffer size not equal to sequence bound This message indicates that the application attempted to call
allocbuf on a bounded sequence with an argument not equal
to the sequence bound.

Null pointer was used to initialize T_var
type

This message indicates an attempt to initialize a _var type with
a null pointer.

operator->() was used on null pointer or nil
object reference

This message indicates an attempt to use operator-> on an
uninitialized _var type.

Application tried to dereference a null
pointer

Some CORBA _var types have built-in conversion operators to
a C++ reference type. That is, some _var types for type T have
a conversion operator to T&. This message appears if an
application uses this conversion operator on an uninitialized
_var type.

Null pointer was passed as string parameter
or return value

According to the IDL–to–C++ mapping specification, no null
pointers may be passed as string parameters or return values.
This message appears if an application tries to do so.

Null value passed as parameter This message indicates that an application attempted to pass a
null value across an IDL interface.

Message Description
412

Non-Compliant Application Asserts
Self assignment caused a dangling pointer This message appears if the content of a _var type is assigned
to itself. For example, the following code will lead to this error
message:

// Somehow get a pointer to a variable struct
AVariableStruct_var var = ...
AVariableStruct* ptr = var;
var = ptr;

This will result in a dangling pointer, because var will free its
own content on assignment.

Replacement of Any content by its own
value caused a dangling pointer

This message appears if there is an attempt to replace the
content of an Any by its own value. For example:

char* s = CORBA::string_dup("Hello, world!");
CORBA::Any any;
any <<= s;
any <<= s;

Inserting s into any twice will result in a dangling pointer,
because any will free its own value (which is s) on assignment.

Invalid union discriminator type used This message appears if the discriminator type argument to
CORBA::ORB::create_union_tc denotes a type invalid for
union discriminators. Valid types have a CORBA::TCKind that is
one of CORBA::tk_short, CORBA::tk_ushort,
CORBA::tk_long, CORBA::tk_ulong, CORBA::tk_char,
CORBA::tk_boolean or CORBA::tk_enum.

Union discriminator mismatch This message either indicates an attempt to set a union
discriminator to an invalid value with the _d modifier function
or the use of a wrong accessor function: an accessor function
that does not correspond to the type of the union’s actual value.

Uninitialized union used If this message appears, a union was used that was created with
the default constructor and that was not set to any legal value.

CORBA::Any::operator<<=(Exception*)
cannot be used with --no-type-codes

This message indicates that
CORBA::Any::operator<<=(Exception*) was invoked for an
exception for which no TypeCode is available. That is, the IDL
defining the exception was compiled with the --no-typecodes
option.

Message Description
413

CHAPTER 20 | Exceptions and Error Messages
An operation on an unembedded recursive
TypeCode was invoked

If this message appears, an operation was invoked on a
recursive TypeCode that has not yet been embedded.

An already embedded TypeCode was
reused

This message indicates that an application attempted to embed
a recursive TypeCode that was already embedded.

LongDouble type is not supported on this
platform

This message appears when an application uses the
CORBA::LongDouble type on a platform which does not support
this type.

Message Description
414

APPENDIX A

Boot Manager
Reference
This appendix describes the interfaces for the Orbacus Boot
Manager.

In this appendix This appendix contains the following sections:

Interface OB::BootManager page 416

Interface OB::BootLocator page 418
415

APPENDIX A | Boot Manager Reference
Interface OB::BootManager
local interface BootManager

Interface to manage bootstrapping of objects.

Exceptions NotFound

exception NotFound
{
};

This exception indicates that a binding has not been found.

AlreadyExists

exception AlreadyExists
{
};

This exception indicates that a binding already exists.

Operations add_binding

void add_binding(in PortableServer::ObjectId oid,
 in Object obj)
 raises(AlreadyExists);

Add a new binding to the internal table.

Parameters:

oid – The object id to bind.

obj – The object reference.

Raises:

AlreadyExists – Thrown if binding already exists.

remove_binding

void remove_binding(in PortableServer::ObjectId oid)
 raises(NotFound);

Remove a binding from the internal table.

Parameters:

oid – The object id to remove.

Raises:

NotFound – Thrown if no binding found.
416

Interface OB::BootManager
set_locator

void set_locator(in BootLocator locator);

Set the BootLocator. The BootLocator is called when a binding for an object id
does not exist in the internal table.

Parameters:

locator – The BootLocator reference.

See Also:

“Interface OB::BootLocator”
417

APPENDIX A | Boot Manager Reference
Interface OB::BootLocator
local interface BootLocator

Interface used by BootManager to assist in locating objects.

See Also:

“Interface OB::BootManager”

Operations locate

void locate(in PortableServer::ObjectId oid,
 out Object obj,
 out boolean add)
 raises(BootManager::NotFound);

Locate the object corresponding to the given object id.

Parameters:

oid – The object id.

obj – The object reference to associate with the id.

add – Whether the binding should be added to the internal table.

Raises:

NotFound – Raised if no binding found.
418

APPENDIX B

Orbacus Policy
Reference
This appendix describes the Orbacus Policy interfaces.

In this appendix This appendix contains the following sections:

Module OB page 420

Module OBPortableServer page 431

BiDirPolicy page 433
419

APPENDIX B | Orbacus Policy Reference
Module OB

Constants CONNECTION_REUSE_POLICY_ID

const CORBA::PolicyType CONNECTION_REUSE_POLICY_ID = 1330577411;

This policy type identifies the connection reuse policy.

CONNECT_TIMEOUT_POLICY_ID

const CORBA::PolicyType CONNECT_TIMEOUT_POLICY_ID = 1330577416;

This policy type identifies the connect timeout policy.

INTERCEPTOR_POLICY_ID

const CORBA::PolicyType INTERCEPTOR_POLICY_ID = 1330577415;

This policy type identifies the interceptor policy.

LOCATE_REQUEST_POLICY_ID

const CORBA::PolicyType LOCATE_REQUEST_POLICY_ID = 1330577418;

This policy type identifies the locate request policy.

LOCATION_TRANSPARENCY_POLICY_ID

const CORBA::PolicyType LOCATION_TRANSPARENCY_POLICY_ID =
1330577414;

This policy type identifies the location transparency policy.

LOCATION_TRANSPARENCY_RELAXED

const short LOCATION_TRANSPARENCY_RELAXED = 1;

The LOCATION_TRANSPARENCY_RELAXED LocationTransparencyPolicy value.

LOCATION_TRANSPARENCY_STRICT

const short LOCATION_TRANSPARENCY_STRICT = 0;

The LOCATION_TRANSPARENCY_STRICT LocationTransparencyPolicy value.

PROTOCOL_POLICY_ID

const CORBA::PolicyType PROTOCOL_POLICY_ID = 1330577410;

This policy type identifies the protocol policy.

REQUEST_TIMEOUT_POLICY_ID

const CORBA::PolicyType REQUEST_TIMEOUT_POLICY_ID = 1330577417;

This policy type identifies the request timeout policy.
420

Module OB
RETRY_ALWAYS

const short RETRY_ALWAYS = 2;

The RETRY_ALWAYS RetryPolicy value.

RETRY_NEVER

const short RETRY_NEVER = 0;

The RETRY_NEVER RetryPolicy value.

RETRY_POLICY_ID

const CORBA::PolicyType RETRY_POLICY_ID = 1330577412;

This policy type identifies the retry policy.

RETRY_STRICT

const short RETRY_STRICT = 1;

The RETRY_STRICT RetryPolicy value.

TIMEOUT_POLICY_ID

const CORBA::PolicyType TIMEOUT_POLICY_ID = 1330577413;

This policy type identifies the timeout policy.

Structs RetryAttributes

struct RetryAttributes
{
 short mode;
 unsigned long interval;
 unsigned long max;
 boolean remote;
};

The retry information
421

APPENDIX B | Orbacus Policy Reference
Interface OB::ConnectTimeoutPolicy
local interface ConnectTimeoutPolicy
inherits from CORBA::Policy

The connect timeout policy. This policy can be used to specify a maximum time
limit for connection establishment.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value

readonly attribute unsigned long value;

If an object has a ConnectTimeoutPolicy set and a connection cannot be
established after value milliseconds, a CORBA::NO_RESPONSE exception is
raised. The default value is -1, which means no timeout.
422

Module OB
Interface OB::ConnectionReusePolicy
local interface ConnectionReusePolicy
inherits from CORBA::Policy

The connection reuse policy. This policy determines whether connections may
be reused or are private to specific objects.

Attributes value

readonly attribute boolean value;

If an object has a ConnectionReusePolicy set with value set to FALSE, then
other object references will not be permitted to use connections made on behalf
of this object. If set to TRUE, then connections are shared. The default value is
TRUE.
423

APPENDIX B | Orbacus Policy Reference
Interface OB::InterceptorPolicy
local interface InterceptorPolicy
inherits from CORBA::Policy

The interceptor policy. This policy can be used to control whether the client-side
interceptors are called.

Attributes value

readonly attribute boolean value;

If an object reference has an InterceptorPolicy set and value is FALSE then
any installed client-side interceptors are not called. Otherwise, interceptors are
called for each method invocation. The default value is TRUE.
424

Module OB
Interface OB::LocateRequestPolicy
local interface LocateRequestPolicy
inherits from CORBA::Policy

The locate request policy. This policy can be used to specify whether the ORB
sends locate request messages.

Attributes value

readonly attribute boolean value;

If an object has a LocateRequestPolicy set to false then the ORB will not
send locate request messages for the object.
425

APPENDIX B | Orbacus Policy Reference
Interface OB::LocationTransparencyPolicy
local interface LocationTransparencyPolicy
inherits from CORBA::Policy

The location transparency policy. This policy is used to control how strict the
ORB is in enforcing location transparency. This is useful for performance
reasons.

Attributes value

readonly attribute short value;

LOCATION_TRANSPARENCY_STRICT ensures strict location transparency is
followed. LOCATION_TRANSPARENCY_RELAXED relaxes the location transparency
guarantees for performance reasons. Specifically for collocated method
invocations, the dispatch concurrency model will be ignored, and policy
overrides are not removed. The default value is
LOCATION_TRANSPARENCY_RELAXED.
426

Module OB
Interface OB::ProtocolPolicy
local interface ProtocolPolicy
inherits from CORBA::Policy

The protocol policy. This policy specifies the order in which profiles should be
tried.

Attributes value

readonly attribute OCI::PluginIdSeq value;

If a ProtocolPolicy is set, then the value specifies the list of plugins that may
be used. The profiles of an IOR will be used in the order specified by this policy.
If no profile in an IOR matches any of the plugins specified by this policy, a
CORBA::TRANSIENT exception will be raised. By default, the ORB chooses the
protocol to be used.

Operations contains

boolean contains(in OCI::PluginId id);

Determines if this policy includes the given plugin id.
427

APPENDIX B | Orbacus Policy Reference
Interface OB::RequestTimeoutPolicy
local interface RequestTimeoutPolicy
inherits from CORBA::Policy

The request timeout policy. This policy can be used to specify a maximum time
limit for requests.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value

readonly attribute unsigned long value;

If an object has a RequestTimeoutPolicy set and no response to a request is
available after value milliseconds, a CORBA::NO_RESPONSE exception is raised.
The default value is -1, which means no timeout.
428

Module OB
Interface OB::RetryPolicy
local interface RetryPolicy
inherits from CORBA::Policy

The retry policy. This policy is used to specify retry behavior after
communication failures (that is, CORBA::TRANSIENT and CORBA::COMM_FAILURE
exceptions).

Attributes retry_interval

readonly attribute unsigned long retry_interval;

retry_max

readonly attribute unsigned long retry_max;

retry_mode

readonly attribute short retry_mode;

For retry_mode RETRY_NEVER indicates that requests should never be retried, and
the exception is re-thrown to the application. RETRY_STRICT will retry once if the
exception completion status is COMPLETED_NO, in order to guarantee
at-most-once semantics. RETRY_ALWAYS will retry once, regardless of the
exception completion status. The default value is RETRY_STRICT. retry_interval
is the time in milliseconds between retries. The default is 0. retry_max is the
maximum number of retries. The default is 1. retry_remote determines
whether or not to retry on exceptions received over-the-wire. The default is
false: only retry on locally generated exceptions. Note: Many TCP/IP stacks do
not provide a reliable indication of communication failure when sending smaller
requests, therefore the failure may not be detected until the ORB attempts to read
the reply. In this case, the ORB must assume that the remote end has received
the request, in order to guarantee at-most-once semantics for the request. The
implication is that when using the default setting of RETRY_STRICT, most
communication failures will not cause a retry. This behavior can be relaxed
using RETRY_ALWAYS.

retry_remote

readonly attribute boolean retry_remote;
429

APPENDIX B | Orbacus Policy Reference
Interface OB::TimeoutPolicy
local interface TimeoutPolicy
inherits from CORBA::Policy

The timeout policy. This policy can be used to specify the default timeout for
connection establishment and requests. If an object also has
ConnectionTimeoutPolicy or RequestTimeoutPolicy set, those values have
precedence.

See Also:

“Interface OB::ConnectTimeoutPolicy”

“Interface OB::RequestTimeoutPolicy”

Attributes value

readonly attribute unsigned long value;

If an object has a TimeoutPolicy set and a connection cannot be established or
no response to a request is available after value milliseconds, a
CORBA::NO_RESPONSE exception is raised. The default value is -1, which means
no timeout.
430

Module OBPortableServer
Module OBPortableServer

Constants INTERCEPTOR_CALL_POLICY_ID

const CORBA::PolicyType INTERCEPTOR_CALL_POLICY_ID = 1330577667;

This policy type identifies the interceptor call policy.
431

APPENDIX B | Orbacus Policy Reference
Interface OBPortableServer::InterceptorCallPolicy
local interface InterceptorCallPolicy
inherits from CORBA::Policy

The interceptor call policy. This policy controls whether the server-side
interceptors are called for a particular POA.

Attributes value

readonly attribute boolean value;

The InterceptorCallPolicy value. If a POA has an InterceptorCallPolicy set
and value is FALSE then any installed server-side interceptors are not called for
requests on this POA. Otherwise, interceptors are called for each request. The
default value is TRUE.
432

BiDirPolicy
BiDirPolicy

Constants BIDIRECTIONAL_POLICY_TYPE

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

This policy type identifies the BiDirectional GIOP (CORBA 3 compliant)
protocol policy.

NORMAL

const BidirectionalPolicyValue NORMAL = 0;

This value indicates normal (disabled) BiDir GIOP functionality.

BOTH

const BidirectionalPolicyValue BOTH = 1;

This value indicates enabled BiDir GIOP functionality.

Typedefs typedef unsigned short BidirectionalPolicyValue;
433

APPENDIX B | Orbacus Policy Reference
434

APPENDIX C

Reactor Reference
This appendix describes the Orbacus Reactor interfaces.

In this appendix This appendix contains the following section:

Module OB page 436
435

APPENDIX C | Reactor Reference
Module OB

Aliases Handle

typedef long Handle;

An event handler's handle.

Mask

typedef long Mask;

An event handler's mask. The mask determines which events the event handler is
interested in.

TypeMask

typedef long TypeMask;

An event handler's type mask. The type mask determines which category the
event handler belongs to. A value of zero means no specific category.

Constants EventRead

const Mask EventRead = 1;

The mask for read events.

EventWrite

const Mask EventWrite = 2;

The mask for write events.

TypeClient

const TypeMask TypeClient = 1;

The type mask for client event handlers.

TypeServer

const TypeMask TypeServer = 2;

The type mask for server event handlers.

Native types EventHandler

native EventHandler;

An event handler is a native type.
436

Module OB
Interface OB::Reactor
local interface Reactor

A generic Reactor interface.

Operations register_handler

void register_handler(in EventHandler handler,
 in Mask handler_mask,
 in TypeMask type_mask,
 in Handle h);

Register an event handler with the Reactor, or change the registration of an
already registered event handler.

Parameters:

handler – The event handler to register.

mask – The type of events the event handler is interested in.

type_mask – The category the event handler belongs to.

h – The event handler's handle.

unregister_handler

void unregister_handler(in EventHandler handler);

Remove an event handler from the Reactor.

Parameters:

handler – The event handler to remove.

dispatch

boolean dispatch(in TypeMask type_mask);

Dispatch events.

Parameters:

type_mask – If not zero, this operation will return once all registered event
handlers that match the type mask have unregistered.

Returns:

TRUE if all event handlers that match the type mask have unregistered, or FALSE
if event dispatching has been interrupted.

interrupt_dispatch

void interrupt_dispatch();
437

APPENDIX C | Reactor Reference
Interrupt event dispatching. After calling this operation, interrupt() will
return with FALSE.

dispatch_one_event

boolean dispatch_one_event(in long timeout);

Dispatch at least one event.

Parameters:

timeout – The timeout in milliseconds. A negative value means no timeout: the
operation will not return before at least one event has been dispatched. A zero
timeout means that the operation will return immediately if there is no event to
dispatch.

Returns:

TRUE if at least one event has been dispatched, or FALSE otherwise.

event_ready

boolean event_ready();

Check whether an event is available.

Returns:

TRUE if an event is ready, or FALSE otherwise.
438

APPENDIX D

Logger Reference
This appendix describes the Orbacus Logger interfaces.

In this appendix This appendix contains the following sections:

Interface OB::Logger page 440

Interface OB::WLogger page 441
439

APPENDIX D | Logger Reference
Interface OB::Logger
local interface Logger

The Orbacus message logger interface.

Operations info

void info(in string msg);

Log an informational message.

Parameters:

msg – The message.

error

void error(in string msg);

Log an error message.

Parameters:

msg – The error message.

warning

void warning(in string msg);

Log a warning message.

Parameters:

msg – The warning message.

trace

void trace(in string category,
 in string msg);

Log a trace message.

Parameters:

category – The trace category.

msg – The trace message.
440

Interface OB::WLogger
Interface OB::WLogger
local interface WLogger : Logger

The Orbacus message logger interface with support for wide strings.

Operations winfo

void winfo(in wstring msg);

Log an informational message.

Parameters:

msg – The message.

werror

void error(in wstring msg);

Log an error message.

Parameters:

msg – The error message.

wwarning

void warning(in wstring msg);

Log a warning message.

Parameters:

msg – The warning message.

wtrace

void trace(in wstring category,
 in wstring msg);

Log a trace message.

Parameters:

category – The trace category.

msg – The trace message.
441

APPENDIX D | Logger Reference
442

APPENDIX E

Open
Communications
Interface Reference
This appendix describes the interfaces for the Open
Communication Interface.

In this appendix This appendix contains the following sections:

Module OCI page 444

Module OCI::IIOP page 479
443

APPENDIX E | Open Communications Interface Reference
Module OCI

Aliases BufferSeq

typedef sequence<Buffer> BufferSeq;

Alias for a sequence of buffers.

IOR

typedef IOP::IOR IOR;

Alias for an IOR.

ProfileId

typedef IOP::ProfileId ProfileId;

Alias for a profile id.

ProfileIdSeq

typedef sequence<ProfileId> ProfileIdSeq;

Alias for a sequence of profile ids.

PluginId

typedef string PluginId;

Alias for a plugin id.

PluginIdSeq

typedef sequence<PluginId> PluginIdSeq;

Alias for a sequence of plugin ids.

ObjectKey

typedef CORBA::OctetSeq ObjectKey;

Alias for an object key, which is a sequence of octets.

TaggedComponentSeq

typedef IOP::TaggedComponentSeq TaggedComponentSeq;

Alias for a sequence of tagged components.

Handle

typedef long Handle;

Alias for a system-specific handle type.
444

Module OCI
ProfileInfoSeq

typedef sequence<ProfileInfo> ProfileInfoSeq;

Alias for a sequence of basic information about profiles.

ParamSeq

typedef sequence<string> ParamSeq;

Alias for a sequence of parameters.

CloseCBSeq

typedef sequence<CloseCB> CloseCBSeq;

Alias for a sequence of close callback objects.

ConnectorSeq

typedef sequence<Connector> ConnectorSeq;

Alias for a sequence of Connectors.

ConnectCBSeq

typedef sequence<ConnectCB> ConnectCBSeq;

Alias for a sequence of connect callback objects.

ConFactorySeq

typedef sequence<ConFactory> ConFactorySeq;

Alias for a sequence of Connector factories.

AcceptorSeq

typedef sequence<Acceptor> AcceptorSeq;

Alias for a sequence of Acceptors.

AcceptCBSeq

typedef sequence<AcceptCB> AcceptCBSeq;

Alias for a sequence of accept callback objects.

AccFactorySeq

typedef sequence<AccFactory> AccFactorySeq;

Alias for a sequence of AccFactory objects.

Constants Version

const string Version = "1.0";

The OCI version. If an interface or implementation changes in an incompatible
way, this version will be changed.
445

APPENDIX E | Open Communications Interface Reference
Enums SendReceiveMode

enum SendReceiveMode
{
 SendOnly,
 ReceiveOnly,
 SendReceive
};

Indicates the send/receive capabilities of an OCI component.

Structs ProfileInfo

struct ProfileInfo
{
 ObjectKey key;
 octet major;
 octet minor;
 ProfileId id;
 unsigned long index;
 TaggedComponentSeq components;
};

Basic information about an IOR profile. Profiles for specific protocols contain
additional data. (For example, an IIOP profile also contains a hostname and a
port number.)

Members:

key – The object key.

major – The major version number of the ORB's protocol. (For example, the
major GIOP version, if the underlying ORB uses GIOP.)

minor – The minor version number of the ORB's protocol. (For example, the
minor GIOP version, if the underlying ORB uses GIOP.)

id – The id of the profile that contains this information.

index – The position index of this profile in an IOR.

components – A sequence of tagged components.

Exceptions FactoryAlreadyExists

exception FactoryAlreadyExists
{
 PluginId id;
};

A factory with the given plugin id already exists.
446

Module OCI
Members:

id – The plugin id.

NoSuchFactory

exception NoSuchFactory
{
 PluginId id;
};

No factory with the given plugin id could be found.

Members:

id – The plugin id.

InvalidParam

exception InvalidParam
{
 string reason;
};

A parameter is invalid.

Members:

reason – A description of the error.
447

APPENDIX E | Open Communications Interface Reference
Interface OCI::Buffer

Synopsis local interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of
octets and a position counter, which determines how many octets have already
been sent or received. The IDL interface definition for Buffer is incomplete and
must be extended by the specific language mappings. For example, the C++
mapping defines the following additional functions:

• Octet* data(): Returns a C++ pointer to the first element of the array of

octets, which represents the buffer's contents.

• Octet* rest(): Similar to data(), this operation returns a C++ pointer,

but to the n-th element of the array of octets with n being the value of the

position counter.

Attributes length

readonly attribute unsigned long length;

The buffer length.

pos

attribute unsigned long pos;

The position counter. Note that the buffer's length and the position counter don't
depend on each other. There are no restrictions on the values permitted for the
counter. This implies that it's even legal to set the counter to values beyond the
buffer's length.

Operations advance

void advance(in unsigned long delta);

Increment the position counter.

Parameters:

delta – The value to add to the position counter.

rest_length

unsigned long rest_length();
448

Module OCI
Returns the rest length of the buffer. The rest length is the length minus the
position counter's value. If the value of the position counter exceeds the buffer's
length, the return value is undefined.

Returns:

The rest length.

is_full

boolean is_full();

Checks if the buffer is full. The buffer is considered full if its length is equal to
the position counter's value.

Returns:

TRUE if the buffer is full, FALSE otherwise.
449

APPENDIX E | Open Communications Interface Reference
Interface OCI::Plugin

Synopsis local interface Plugin

The interface for a Plugin object, which is used to initialize an OCI plug-in.

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations init_client

void init_client(in ParamSeq params);

Initialize the client-side of the plug-in.

Parameters:

params – Plug-in specific parameters.

init_server

void init_server(in ParamSeq params);

Initialize the server-side of the plug-in.

Parameters:

params – Plug-in specific parameters.
450

Module OCI
Interface OCI::Transport

Synopsis local interface Transport

The interface for a Transport object, which provides operations for sending and
receiving octet streams. In addition, it is possible to register callbacks with the
Transport object, which are invoked whenever data can be sent or received
without blocking.

See Also:

“Interface OCI::Connector”

“Interface OCI::Acceptor”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

mode

readonly attribute SendReceiveMode mode;

The send/receive capabilities of this Transport.

handle

readonly attribute Handle handle;

The handle for this Transport. The handle may only be used to determine
whether the Transport object is ready to send or to receive data, for example,
with select() on Unix-based operating systems. All other uses (for example,
calls to read(), write(), close()) are strictly non-compliant. A handle value
of -1 indicates that the protocol plug-in does not support selectable Transports.

Operations close

void close();

Closes the Transport. After calling close, no operations on this Transport object
and its associated TransportInfo object may be called. To ensure that no
messages get lost when close is called, shutdown should be called first. Then
451

APPENDIX E | Open Communications Interface Reference
dummy data should be read from the Transport, using one of the receive
operations, until either an exception is raised, or until connection closure is
detected. After that its safe to call close; that is, no messages can get lost.

Raises:

COMM_FAILURE – In case of an error.

shutdown

void shutdown();

Shutdown the Transport. Upon a successful shutdown, threads blocking in the
receive operations will return or throw an exception. After calling shutdown,
no operations on associated TransportInfo object may be called. To fully close
the Transport, close must be called.

Raises:

COMM_FAILURE – In case of an error.

receive

void receive(in Buffer buf,
 in boolean block);

Receives a buffer's contents.

Parameters:

buf – The buffer to fill.

block – If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Raises:

COMM_FAILURE – In case of an error.

receive_detect

boolean receive_detect(in Buffer buf,
 in boolean block);

Similar to receive, but it signals a connection loss by returning FALSE instead of
raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

block – If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
452

Module OCI
Raises:

COMM_FAILURE – In case of an error.

receive_timeout

void receive_timeout(in Buffer buf,
 in unsigned long timeout);

Similar to receive, but it is possible to specify a timeout. On return the caller
can test whether there was a timeout by checking if the buffer has been filled
completely.

Parameters:

buf – The buffer to fill.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling receive(buf, FALSE).

Raises:

COMM_FAILURE – In case of an error.

receive_timeout_detect

boolean receive_timeout_detect(in Buffer buf,
 in unsigned long timeout);

Similar to receive_timeout, but it signals a connection loss by returning FALSE
instead of raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling receive(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.

Raises:

COMM_FAILURE – In case of an error.

send

void send(in Buffer buf,
 in boolean block);

Sends a buffer's contents.

Parameters:

buf – The buffer to send.
453

APPENDIX E | Open Communications Interface Reference
block – If set to TRUE, the operation blocks until the buffer has completely been
sent. If set to FALSE, the operation sends as much of the buffer's data as possible
without blocking.

Raises:

COMM_FAILURE – In case of an error.

send_detect

boolean send_detect(in Buffer buf,
 in boolean block);

Similar to send, but it signals a connection loss by returning FALSE instead of
raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

block – If set to TRUE, the operation blocks until the entire buffer has been sent.
If set to FALSE, the operation sends as much of the buffer's data as possible
without blocking.

Returns:

FALSE if a connection loss is detected, TRUE otherwise.

Raises:

COMM_FAILURE – In case of an error.

send_timeout

void send_timeout(in Buffer buf,
 in unsigned long timeout);

Similar to send, but it is possible to specify a timeout. On return, the caller can
test whether there was a timeout by checking if the buffer has been sent
completely.

Parameters:

buf – The buffer to send.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Raises:

COMM_FAILURE – In case of an error.

send_timeout_detect

boolean send_timeout_detect(in Buffer buf,
 in unsigned long timeout);
454

Module OCI
Similar to send_timeout, but it signals a connection loss by returning FALSE
instead of raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.

Raises:

COMM_FAILURE – In case of an error.

get_info

TransportInfo get_info();

Returns the information object associated with the Transport.

Returns:

The Transport information object.
455

APPENDIX E | Open Communications Interface Reference
Interface OCI::TransportInfo

Synopsis local interface TransportInfo

Information on an OCI Transport object. Objects of this type must be narrowed
to a Transport information object for a concrete protocol implementation, for
example to OCI::IIOP::TransportInfo in case the plug-in implements IIOP.

See Also:

“Interface OCI::Transport”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

connector_info

readonly attribute ConnectorInfo connector_info;

The ConnectorInfo object for the Connector that created the Transport object
that this TransportInfo object belongs to. If the Transport for this TransportInfo
was not created by a Connector, this attribute is set to the nil object reference.

acceptor_info

readonly attribute AcceptorInfo acceptor_info;

The AcceptorInfo object for the Acceptor that created the Transport object that
this TransportInfo object belongs to. If the Transport for this TransportInfo was
not created by an Acceptor, this attribute is set to the nil object reference.

Operations describe

string describe();

Returns a human readable description of the transport.

Returns:

The description.
456

Module OCI
add_close_cb

void add_close_cb(in CloseCB cb);

Add a callback that is called before a connection is closed. If the callback has
already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_close_cb

void remove_close_cb(in CloseCB cb);

Remove a close callback. If the callback was not registered, this method has no
effect.

Parameters:

cb – The callback to remove.
457

APPENDIX E | Open Communications Interface Reference
Interface OCI::CloseCB

Synopsis local interface CloseCB

An interface for a close callback object.

See Also:

“Interface OCI::TransportInfo”

Operations close_cb

void close_cb(in TransportInfo transport_info);

Called before a connection is closed.

Parameters:

transport_info – The TransportInfo for the new closeion.
458

Module OCI
Interface OCI::Connector

Synopsis local interface Connector

An interface for Connector objects. A Connector is used by CORBA clients to
initiate a connection to a server. It also provides operations for the management
of IOR profiles.

See Also:

“Interface OCI::ConFactory”

“Interface OCI::Transport”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations connect

Transport connect();

Used by CORBA clients to establish a connection to a CORBA server. It returns
a Transport object, which can be used for sending and receiving octet streams to
and from the server.

Returns:

The new Transport object.

Raises:

TRANSIENT – If the server cannot be contacted.

COMM_FAILURE – In case of other errors.

connect_timeout

Transport connect_timeout(in unsigned long timeout);

Similar to connect, but it is possible to specify a timeout. On return the caller
can test whether there was a timeout by checking whether a nil object reference
was returned.
459

APPENDIX E | Open Communications Interface Reference
Parameters:

timeout – The timeout value in milliseconds.

Returns:

The new Transport object.

Raises:

TRANSIENT – If the server cannot be contacted.

COMM_FAILURE – In case of other errors.

get_usable_profiles

ProfileInfoSeq get_usable_profiles(in IOR ref,
 in CORBA::PolicyList policies);

From the given IOR and list of policies, get basic information about all profiles
for which this Connector can be used.

Parameters:

ref – The IOR from which the profiles are taken.

policies – The policies that must be satisfied.

Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that matches this Connector and the list of policies.

equal

boolean equal(in Connector con);

Find out whether this Connector is equal to another Connector. Two Connectors
are considered equal if they are interchangeable.

Parameters:

con – The connector to compare with.

Returns:

TRUE if the Connectors are equal, FALSE otherwise.

get_info

ConnectorInfo get_info();

Returns the information object associated with the Connector.

Returns:

The Connector information object.
460

Module OCI
Interface OCI::ConnectorInfo

Synopsis local interface ConnectorInfo

Information on a OCI Connector object. Objects of this type must be narrowed
to a Connector information object for a concrete protocol implementation, for
example to OCI::IIOP::ConnectorInfo in case the plug-in implements IIOP.

See Also:

“Interface OCI::Connector”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations describe

string describe();

Returns a human readable description of the transport.

Returns:

The description.

add_connect_cb

void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If the
callback has already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_connect_cb

void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has
no effect.
461

APPENDIX E | Open Communications Interface Reference
Parameters:

cb – The callback to remove.
462

Module OCI
Interface OCI::ConnectCB

Synopsis local interface ConnectCB

An interface for a connect callback object.

See Also:

“Interface OCI::ConnectorInfo”

Operations connect_cb

void connect_cb(in TransportInfo transport_info);

Called after a new connection has been established. If the application wishes to
reject the connection CORBA::NO_PERMISSION may be raised.

Parameters:

transport_info – The TransportInfo for the new connection.
463

APPENDIX E | Open Communications Interface Reference
Interface OCI::ConFactory

Synopsis local interface ConFactory

A factory for Connector objects.

See Also:

“Interface OCI::Connector”

“Interface OCI::ConFactoryRegistry”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations describe_profile

string describe_profile(in IOP::TaggedProfile prof);

Returns a description of the given tagged profile.

Parameters:

prof – The tagged profile.

Returns:

The profile description.

create_connectors

ConnectorSeq create_connectors(in IOR ref,
 in CORBA::PolicyList policies);

Returns a sequence of Connectors for a given IOR and a list of policies. The
sequence includes one or more Connectors for each IOR profile that matches
this Connector factory and satisfies the list of policies.

Parameters:

ref – The IOR for which Connectors are returned.

policies – The policies that must be satisfied.

Returns:
464

Module OCI
The sequence of Connectors.

equivalent

boolean equivalent(in IOR ior1,
 in IOR ior2);

Checks whether two IORs are equivalent, taking only profiles into account
matching this Connector factory.

Parameters:

ior1 – The first IOR to check for equivalence.

ior2 – The second IOR to check for equivalence.

Returns:

TRUE if the IORs are equivalent, FALSE otherwise.

hash

unsigned long hash(in IOR ref,
 in unsigned long maximum);

Calculates a hash value for an IOR.

Parameters:

ref – The IOR to calculate a hash value for.

maximum – The maximum value of the hash value.

Returns:

The hash value.

get_info

ConFactoryInfo get_info();

Returns the information object associated with the Connector factory.

Returns:

The Connector factory information object.
465

APPENDIX E | Open Communications Interface Reference
Interface OCI::ConFactoryInfo

Synopsis local interface ConFactoryInfo

Information on an OCI ConFactory object.

See Also:

“Interface OCI::ConFactory”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations describe

string describe();

Returns a human readable description of the transport.

Returns:

The description.

add_connect_cb

void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If the
callback has already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_connect_cb

void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has
no effect.

Parameters:

cb – The callback to remove.
466

Module OCI
Interface OCI::ConFactoryRegistry

Synopsis local interface ConFactoryRegistry

A registry for Connector factories.

See Also:

“Interface OCI::Connector”

“Interface OCI::ConFactory”

Operations add_factory

void add_factory(in ConFactory factory)
 raises(FactoryAlreadyExists);

Adds a Connector factory to the registry.

Parameters:

factory – The Connector factory to add.

Raises:

FactoryAlreadyExists – If a factory already exists with the same plugin id as
the given factory.

get_factory

ConFactory get_factory(in PluginId id)
 raises(NoSuchFactory);

Returns the factory with the given plugin id.

Parameters:

id – The plugin id.

Returns:

The Connector factory.

Raises:

NoSuchFactory – If no factory was found with a matching plugin id.

get_factories

ConFactorySeq get_factories();

Returns all registered factories.

Returns:

The Connector factories.
467

APPENDIX E | Open Communications Interface Reference
Interface OCI::Acceptor

Synopsis local interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to accept
client connection requests. It also provides operations for the management of
IOR profiles.

See Also:

“Interface OCI::AccFactoryRegistry”

“Interface OCI::AccFactory”

“Interface OCI::Transport”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

handle

readonly attribute Handle handle;

The handle for this Acceptor. Like with the handle for Transports, the handle
may only be used with operations like select(). A handle value of -1 indicates
that the protocol plug-in does not support selectable Transports.

Operations close

void close();

Closes the Acceptor. accept or listen may not be called after close has been
called.

Raises:

COMM_FAILURE – In case of an error.

shutdown

void shutdown();
468

Module OCI
Shutdown the Acceptor. After shutdown, the socket will not listen to further
connection requests.

Raises:

COMM_FAILURE – In case of an error.

listen

void listen();

Sets the acceptor up to listen for incoming connections. Until this method is
called on the acceptor, new connection requests should result in a connection
request failure.

Raises:

COMM_FAILURE – In case of an error.

accept

Transport accept(in boolean block);

Used by CORBA servers to accept client connection requests. It returns a
Transport object, which can be used for sending and receiving octet streams to
and from the client.

Parameters:

block – If set to TRUE, the operation blocks until a new connection has been
accepted. If set to FALSE, the operation returns a nil object reference if there is no
new connection ready to be accepted.

Returns:

The new Transport object.

Raises:

COMM_FAILURE – In case of an error.

connect_self

Transport connect_self();

Connect to this acceptor. This operation can be used to unblock threads that are
blocking in accept.

Returns:

The new Transport object.

Raises:

TRANSIENT – If the server cannot be contacted.

COMM_FAILURE – In case of other errors.
469

APPENDIX E | Open Communications Interface Reference
add_profiles

void add_profiles(in ProfileInfo profile_info,
 inout IOR ref);

Add new profiles that match this Acceptor to an IOR.

Parameters:

profile_info – The basic profile information to use for the new profiles.

ref – The IOR.

get_local_profiles

ProfileInfoSeq get_local_profiles(in IOR ref);

From the given IOR, get basic information about all profiles for which are local
to this Acceptor.

Parameters:

ref – The IOR from which the profiles are taken.

Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that is local to the Acceptor.

get_info

AcceptorInfo get_info();

Returns the information object associated with the Acceptor.

Returns:

The Acceptor information object.
470

Module OCI
Interface OCI::AcceptorInfo

Synopsis local interface AcceptorInfo

Information on an OCI Acceptor object. Objects of this type must be narrowed
to an Acceptor information object for a concrete protocol implementation, for
example to OCI::IIOP::AcceptorInfo in case the plug-in implements IIOP.

See Also:

“Interface OCI::Acceptor”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations describe

string describe();

Returns a human readable description of the transport.

Returns:

The description.

add_accept_cb

void add_accept_cb(in AcceptCB cb);

Add a callback that is called whenever a new connection is accepted. If the
callback has already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_accept_cb

void remove_accept_cb(in AcceptCB cb);

Remove an accept callback. If the callback was not registered, this method has
no effect.
471

APPENDIX E | Open Communications Interface Reference
Parameters:

cb – The callback to remove.
472

Module OCI
Interface OCI::AcceptCB

Synopsis local interface AcceptCB

An interface for an accept callback object.

See Also:

“Interface OCI::AcceptorInfo”

Operations accept_cb

void accept_cb(in TransportInfo transport_info);

Called after a new connection has been accepted. If the application wishes to
reject the connection CORBA::NO_PERMISSION may be raised.

Parameters:

transport_info – The TransportInfo for the new connection.
473

APPENDIX E | Open Communications Interface Reference
Interface OCI::AccFactory

Synopsis local interface AccFactory

An interface for an AccFactory object, which is used by CORBA servers to
create Acceptors.

See Also:

“Interface OCI::Acceptor”

“Interface OCI::AccFactoryRegistry”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations create_acceptor

Acceptor create_acceptor(in ParamSeq params)
 raises(InvalidParam);

Create an Acceptor using the given configuration parameters. Refer to the
plug-in documentation for a description of the configuration parameters
supported for a particular protocol.

Parameters:

params – The configuration parameters.

Returns:

The new Acceptor.

Raises:

InvalidParam – If any of the parameters are invalid.

change_key

void change_key(inout IOP::IOR ior,
 in ObjectKey key);

Change the object-key in the IOR profile for this given protocol.
474

Module OCI
Parameters:

ior – The IOR

key – The new object key

get_info

AccFactoryInfo get_info();

Returns the information object associated with the Acceptor factory.

Returns:

The Acceptor
475

APPENDIX E | Open Communications Interface Reference
Interface OCI::AccFactoryInfo

Synopsis local interface AccFactoryInfo

Information on an OCI AccFactory object.

See Also:

“Interface OCI::AccFactory”

Attributes id

readonly attribute PluginId id;

The plugin id.

tag

readonly attribute ProfileId tag;

The profile id tag.

Operations describe

string describe();

Returns a human readable description of the transport.

Returns:

The description.
476

Module OCI
Interface OCI::AccFactoryRegistry

Synopsis local interface AccFactoryRegistry

A registry for Acceptor factories.

See Also:

“Interface OCI::Acceptor”

“Interface OCI::AccFactory”

Operations add_factory

void add_factory(in AccFactory factory)
 raises(FactoryAlreadyExists);

Adds an Acceptor factory to the registry.

Parameters:

factory – The Acceptor factory to add.

Raises:

FactoryAlreadyExists – If a factory already exists with the same plugin id as
the given factory.

get_factory

AccFactory get_factory(in PluginId id)
 raises(NoSuchFactory);

Returns the factory with the given plugin id.

Parameters:

id – The plugin id.

Returns:

The Acceptor factory.

Raises:

NoSuchFactory – If no factory was found with a matching plugin id.

get_factories

AccFactorySeq get_factories();

Returns all registered factories.

Returns:

The Acceptor factories.
477

APPENDIX E | Open Communications Interface Reference
Interface OCI::Current

Synopsis local interface Current
inherits from CORBA::Current

Interface to access Transport and Acceptor information objects related to the
current request.

Operations get_oci_transport_info

TransportInfo get_oci_transport_info();

This method returns the Transport information object for the Transport used to
invoke the current request.

get_oci_acceptor_info

AcceptorInfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which
created the Transport used to invoke the current request.
478

Module OCI::IIOP
Module OCI::IIOP
This module contains interfaces to support the IIOP OCI plug-in.

Aliases InetAddr

typedef string InetAddr

Alias for an IP address. This alias will be used for address information from the
various information classes. It can be an IPv4 or IPv6 address string.

Constants PLUGIN_ID

const PluginId PLUGIN_ID = "iiop";

The identifier for the Orbacus IIOP plug-in.
479

APPENDIX E | Open Communications Interface Reference
Interface OCI::IIOP::TransportInfo

Synopsis local interface TransportInfo
inherits from OCI::TransportInfo

Information on an IIOP OCI Transport object.

See Also:

“Interface OCI::Transport”

“Interface OCI::TransportInfo”

Attributes addr

readonly attribute InetAddr addr;

The local IP address.

port

readonly attribute unsigned short port;

The local port.

remote_addr

readonly attribute InetAddr remote_addr;

The remote IP address.

remote_port

readonly attribute unsigned short remote_port;

The remote port.
480

Module OCI::IIOP
Interface OCI::IIOP::ConnectorInfo

Synopsis local interface ConnectorInfo
inherits from OCI::ConnectorInfo

Information on an IIOP OCI Connector object.

See Also:

“Interface OCI::Connector”

“Interface OCI::ConnectorInfo”

Attributes remote_addr

readonly attribute InetAddr remote_addr;

The remote IP address to which this connector connects.

remote_port

readonly attribute unsigned short remote_port;

The remote port to which this connector connects.
481

APPENDIX E | Open Communications Interface Reference
Interface OCI::IIOP::ConFactoryInfo

Synopsis local interface ConFactoryInfo
inherits from OCI::ConFactoryInfo

Information on an IIOP OCI Connector Factory object.

See Also:

“Interface OCI::ConFactory”

“Interface OCI::ConFactoryInfo”
482

Module OCI::IIOP
Interface OCI::IIOP::AcceptorInfo

Synopsis local interface AcceptorInfo
inherits from OCI::AcceptorInfo

Information on an IIOP OCI Acceptor object.

See Also:

“Interface OCI::Acceptor”

“Interface OCI::AcceptorInfo”

Attributes hosts

readonly attribute CORBA::StringSeq hosts;

Hostnames used for creation of IIOP object references.

addr

readonly attribute InetAddr addr;

The local IP address on which this acceptor accepts.

port

readonly attribute unsigned short port;

The local port on which this acceptor accepts.
483

APPENDIX E | Open Communications Interface Reference
Interface OCI::IIOP::AccFactoryInfo

Synopsis local interface AccFactoryInfo
inherits from OCI::AccFactoryInfo

Information on an IIOP OCI Acceptor Factory object.
484

APPENDIX F

Orbacus Balancer
Reference
This appendix describes the interfaces for the Orbacus Balancer.

In this appendix This appendix contains the following sections:

Module LoadBalancing page 486

Module LoadBalancing::Util page 497
485

APPENDIX F | Orbacus Balancer Reference
Module LoadBalancing
The definitions in this module provide the interface of the Orbacus Balancer.

Aliases GroupId

typedef string GroupId;

A load balanced group ID.

GroupIdSeq

typedef sequence<GroupId> GroupIdSeq;

A sequence of load balanced group IDs.

MemberId

typedef string MemberId;

A member ID.

MemberIdSeq

typedef sequence<MemberId> MemberIdSeq;

A sequence of member IDs.

ObjectId

typedef PortableInterceptor::ObjectId ObjectId;

An object ID.

PropertyName

typedef string PropertyName;

A load balancing strategy configuration property name.

PropertyValue

typedef any PropertyValue;

A load balancing strategy configuration property value.

PropertySeq

typedef sequence<Property> PropertySeq;

A sequence of load balancing strategy configuration properties.

PropertyErrorSeq

typedef sequence<PropertyError> PropertyErrorSeq;

A sequence of load balancing strategy configuration property errors.
486

Module LoadBalancing
MemberDataSeq

typedef sequence<MemberData> MemberDataSeq;

A sequence of member data.

TolerancePropertyValue

typedef unsigned long TolerancePropertyValue;

The tolerance load balancing strategy property value. The default value is 0.

LoadPerClientPropertyType

typedef unsigned long LoadPerClientPropertyType;

The load-per-client load balancing strategy property value. The default value
is 0.

RejectPropertyValue

typedef unsigned long RejectPropertyValue;

The reject-load load balancing strategy property value. The default value is 0,
meaning no rejections.

DampeningMultiplierPropertyValue

typedef float DampeningMultiplierPropertyValue;

The dampening-multiplier load balancing strategy property value. The default
value is 0, which disables dampening.

CriticalLoadPropertyValue

typedef unsigned long CriticalLoadPropertyValue;

The critical-load load balancing strategy property value. The default value is 0,
which disables re-balancing.

Constants MEMBER_POLICY_ID

const CORBA::PolicyType MEMBER_POLICY_ID = 1000;

This policy type identifies the member policy.

TolerancePropertyName

const string TolerancePropertyName = "tolerance";

The tolerance load balancing strategy property name. Members with a load
difference that is less than tolerance are considered to have the same load.

LoadPerClientPropertyName

const string LoadPerClientPropertyName = "load-per-client";
487

APPENDIX F | Orbacus Balancer Reference
The load-per-client load balancing strategy property name. The load-per-client
property is an estimate of the load produced by a client.

RejectLoadPropertyName

const string RejectLoadPropertyName = "reject-load";

The reject-load load balancing strategy property name. Only members with
loads less than reject-load are selected.

DampeningMultiplierPropertyName

const string DampeningMultiplierPropertyName =
"dampening-multiplier";

The dampening-multiplier load balancing strategy property name. A dampening
technique is used to smooth out spikes that may occur in the reported loads of
members. The load of a member is calculated using the dampening-multiplier
property as follows:

load = mult * old_load + (1 - mult) * new_load

where mult is the dampening-multiplier property value. The
dampening-multiplier property must be greater than or equal to 0 and less than 1.

CriticalLoadPropertyName

const string CriticalLoadPropertyName = "critical-load";

The critical-load load balancing strategy property name. Members with loads
greater than or equal to the critical-load are re-balanced.

Enums PropertyErrorCode

enum PropertyErrorCode
{
 BAD_PROPERTY,
 BAD_VALUE
};

This enumeration contains the various load balancing strategy configuration
property error codes.

Structs Property

struct Property
{
 PropertyName name;
 PropertyValue value;
};

A load balancing strategy configuration property.
488

Module LoadBalancing
PropertyError

struct PropertyError
{
 PropertyName name;
 PropertyErrorCode code;
};

A load balancing strategy configuration property error.

MemberData

struct MemberData
{
 MemberId member_id;
 LoadAlert alert;
};

The member data.

MemberPolicyValue

struct MemberPolicyValue
{
 GroupId group_id;
 MemberId member_id;
};

The member policy value.

Exceptions MemberExists

exception MemberExists
{
};

A MemberExists exception indicates that a member with the specified id is
already exists in the load balanced group.

MemberNotFound

exception MemberNotFound
{
};

A MemberNotFound exception indicates that the specified member does not
exist in the load balanced group.

GroupExists

exception GroupExists
{
};
489

APPENDIX F | Orbacus Balancer Reference
A GroupExists exception indicates that a load balanced group with the specified
id already exists.

GroupNotFound

exception GroupNotFound
{
};

A GroupNotFound exception indicates that the specified load balanced group
does not exist.

StrategyNotFound

exception StrategyNotFound
{
};

A StrategyNotFound exception indicates that the specified strategy is not
supported by the Balancer.

StrategyNotAdaptive

exception StrategyNotAdaptive
{
};

A StrategyNotAdaptive exception indicates that the strategy is not an adaptive
strategy and does not require load updates.

InvalidProperties

exception InvalidProperties
{
 PropertyErrorSeq error;
};

An InvalidProperties exception indicates that specified properties were not valid
and could not be used to create the strategy.
490

Module LoadBalancing
Interface LoadBalancing::LoadAlert
interface LoadAlert

Implemented by a server that wishes to receive load alerts (a signal to redirect
requests back to the Balancer).

Operations alert

void alert();

Redirect the next request back to the Balancer.
491

APPENDIX F | Orbacus Balancer Reference
Interface LoadBalancing::Strategy
interface Strategy

Used to choose the next member to service a new client connection. The
Balancer provides several implementations of the Strategy interface.

Operations get_name

string get_name();

Retrieve the name of the strategy.

get_properties

PropertySeq get_properties();

Get the property set of the strategy.

adjust

void adjust(in MemberDataSeq members);

Update the members.

get_next

MemberId get_next()
 raises(MemberNotFound);

Get an un-loaded member.

push_load

void push_load(in MemberId member_id,
 in unsigned long load)
 raises(MemberNotFound,
 StrategyNotAdaptive);

Update the load of a member.

destroy

void destroy();

Destroy the strategy.
492

Module LoadBalancing
Interface LoadBalancing::StrategyProxy
interface StrategyProxy

Acts as a proxy for the load balancing strategy.

Operations get_name

string get_name();

Retrieve the name of the strategy.

get_properties

PropertySeq get_properties();

Get the property set of the strategy.

push_load

void push_load(in MemberId member_id,
 in unsigned long load)
 raises(MemberNotFound,
 StrategyNotAdaptive);

Update the load of a member.
493

APPENDIX F | Orbacus Balancer Reference
Interface LoadBalancing::Group
interface Group

Represents a load balanced group.

Operations get_id

GroupId get_id();

Get the id of the load balanced group.

get_ior

Object get_ior(in string repository_id,
 in ObjectId oid);

Get an IOR for use by a client of this load balanced group.

get_strategy_proxy

StrategyProxy get_strategy_proxy();

Get the strategy proxy of the load balanced group.

set_strategy

void set_strategy(in string name,
 in PropertySeq properties)
 raises(StrategyNotFound,
 InvalidProperties);

Use the specified built-in load balancing strategy.

set_custom_strategy

void set_custom_strategy(in Strategy the_strategy);

Use the given custom load balancing strategy.

add_member

void add_member(in MemberId member_id)
 raises(MemberExists);

Add a member to the load balanced group.

remove_member

void remove_member(in MemberId member_id)
 raises(MemberNotFound);

Remove a member of the load balanced group.
494

Module LoadBalancing
set_load_alert

void set_load_alert(in MemberId member_id,
 in LoadAlert alert)
 raises(MemberNotFound);

Set the LoadAlert object for a member.

list_members

MemberIdSeq list_members();

Enumerate the members.

destroy

void destroy();

Destroy the load balanced group.
495

APPENDIX F | Orbacus Balancer Reference
Interface LoadBalancing::GroupFactory
interface GroupFactory

Used to create, destroy and retrieve load balanced groups.

Operations create

Group create(in GroupId group_id)
 raises(GroupExists);

Create a new load balanced group with the given id.

get

Group get(in GroupId group_id)
 raises(GroupNotFound);

Get the load balanced group with the given id.

list

GroupIdSeq list();

List the set of existing load balanced groups.

shutdown

void shutdown();

Shutdown the Balancer.
496

Module LoadBalancing::Util
Module LoadBalancing::Util
The definitions in this module provide the interface for the Orbacus Balancer
utility objects that are provided by the Balancer. These utility objects can be
used to implement the features required by load balanced servers that use
adaptive load balancing.
497

APPENDIX F | Orbacus Balancer Reference
Interface LoadBalancing::Util::LoadAlert
local interface LoadAlert

Interface to manage load alerts sent by the Balancer.

Operations alert

void alert();

Forward the next request to the Balancer.

get_alert_expire

unsigned long get_alert_expire();

Retrieve the alert expire time.

set_alert_expire

void set_alert_expire(in unsigned long millis);

Set the alert expire time.
498

Module LoadBalancing::Util
Interface LoadBalancing::Util::LoadCalculator
local interface LoadCalculator

Interface for the calculation of the server load.

 The LoadCalculator is used by the LoadUpdater to calculate the current load of
the server (which will be used as the load of each member registered with the
LoadUpdater). The implementation provided by the Balancer calculates the load
based on the number of active requests since the last invocation of
calculate_load().

See Also:

“Interface LoadBalancing::Util::LoadUpdater”

Operations calculate_load

unsigned long calculate_load();

Calculate the load.
499

APPENDIX F | Orbacus Balancer Reference
Interface LoadBalancing::Util::LoadUpdater
local interface LoadUpdater

Interface to manage load updates sent to the Balancer.

 At regular intervals (set by the update frequency) the LoadUpdater gets the load
from the LoadCalculator and pushes it to the load balanced group of each
registered member.

See Also:

“Interface LoadBalancing::Util::LoadCalculator”

Operations get_update_frequency

unsigned long get_update_frequency();

Retrieve the load push frequency.

set_update_frequency

void set_update_frequency(in unsigned long millis);

Set the load push frequency.

set_load_calculator

void set_load_calculator(in LoadCalculator calc);

Set the load calculator.

register_member

void register_member(in MemberId member_id,
 in GroupId group_id)
 raises(GroupNotFound);

Register a load balanced group member.

unregister_member

void unregister_member(in MemberId member_id,
 in GroupId group_id);

Unregister a load balanced group member.
500

Orbacus
Bibliography
[1] Buschman, F., et al. 1996. Pattern-Oriented Software Architecture:

A System of Patterns. New York: Wiley.

[2] Gamma, E., et al. 1994. Design Patterns. Reading, MA:
Addison-Wesley

[3] Henning, M., and S. Vinoski. 1999. Advanced CORBA
Programming with C++. Reading, MA: Addison-Wesley.

[4] Object Management Group. 1999. The Common Object Request
Broker: Architecture and Specification. Revision 2.3.1. ftp://
www.omg.org/pub/docs/formal/99-10-07.pdf. Framingham,
MA: Object Management Group.

[5] Object Management Group. 1999. C++ Language Mapping. ftp:/
/www.omg.org/pub/docs/formal/99-07-45.pdf. Framingham,
MA: Object Management Group.

[6] Object Management Group. 1999. IDL/Java Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-53.pdf.
Framingham, MA: Object Management Group.

[7] Object Management Group. 1999. Portable Interceptors. ftp://
ftp.omg.org/pub/docs/orbos/99-12-02.pdf. Framingham, MA:
Object Management Group.

[8] Object Management Group. 1998. CORBA Messaging. ftp://
ftp.omg.org/pub/docs/orbos/98-05-06.pdf. Framingham, MA:
Object Management Group.

[9] Object Management Group. 1998. CORBAservices: Common
Object Services Specification. ftp://www.omg.org/pub/docs/
formal/98-12-09.pdf. Framingham, MA: Object Management
Group.

[10] Object Management Group. 1999. Naming Service Specification.
ftp://ftp.omg.org/pub/docs/ptc/99-12-03.pdf. Framingham,
MA: Object Management Group.
501

BIBLIOGRAPHY
[11] Schmidt, D. C. 1995. “Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Event Handler
Dispatching.” In Pattern Languages of Program Design, ed. James
O. Coplien and Douglas C. Schmidt. Reading, MA:
Addison-Wesley.
502

Index

A
amirouter 328

B
Basic Object Adapter 93
Bindings 193
BOA 93

C
Callbacks 87
Command-line Options 68
Concurrency Models

Threaded 346
Thread-per-Client 348
Thread-per-Request 349
Thread Pool 350

Configuration File 70
Currently Executing Request 123

D
documentation

.pdf format xxii
updates on the web xxii

Documenting IDL Files 45

E
Event Channel 242
Event Consumers 243
Event Loop 89
Event Service 233
Event Suppliers 243
Exceptions 391

H
Hello World example application 6
Hostname 131, 361
HTML 45

I
IFR 253
Implementation Repository 155, 156

Implementation Repository Administration 167
IMR 155, 156
IMR Console 177
included IDL files 44
Initial Services 143, 153

Configuring 150
Resolving 148

Interface Repository 253
IP Address 363, 365
irdel 260
irfeed 260

J
javadoc 48

N
Names Console 207
Name Service

Configuration 189
Initialization 197
Persistence 190

O
OAD 156
Object Activation Daemon 156
Object Adapter

Configuration 65
Initialization 56

Object Key 133
Object References 126
Objects

Locating 125
Persistent 112
Transient 112

OCI 355
Acceptor 356
Acceptor Factory 356
Bi-directional Plug-in 381
Connector 356
Connector Factory 356
IIOP Plug-in 367, 372, 381
Info Objects 357
503

INDEX
Registries 357
Transport 356

ooc.router.decay_policy.decay_ seconds 330
ooc.router.resume_policy.resume_seconds 330
ooc.router.retry_policy 329
ooc.router.retry_policy.backoff_ factor 329
ooc.router.retry_policy.base_ interval 329
ooc.router.retry_policy.interval_ limit 330
ooc.router.retry_policy. max_backoffs 329
Open Communications Interface 355
Options

hidl 39
irgen 42
jidl 37
ridl 40

ORB
Configuration 58
Destruction 88

ORBacus Names 183

P
PDF documentation xxii
POA 93, 159
POA Manager 77

Root POA Manager 78
Policies 301

ACMTimeoutPolicy 303
BidirectionalPolicy 303
ConnectionReusePolicy 303
ConnectTimeoutPolicy 303
InterceptorCallPolicy 305
InterceptorPolicy 304
LocationTransparencyPolicy 304
ProtocolPolicy 304
RequestTimeoutPolicy 304
RetryPolicy 305
TimeoutPolicy 305

Popup Menu 220
Port 132, 361
Portable Object Adapter 93
Programming Examples

Event Service 249
Implementation Repository 173, 283
Interface Repository 261
Name Service 196
OCI 359
Policies 306
Property Service 230

Properties

ooc.config 58
ooc.event.max_events 237
ooc.event.max_retries 237
ooc.event.port 237
ooc.event.pull_interval 237
ooc.event.retry_multiplier 237
ooc.event.retry_timeout 237
ooc.event.trace.events 238
ooc.event.trace.lifecycle 238
ooc.event.typed_service 238
ooc.ifr.options 257
ooc.ifr.port 257
ooc.imr.dbdir 165, 273, 282
ooc.imr.trace.oad 165, 273, 282
ooc.naming.callback_timeout 189
ooc.naming.database 189
ooc.naming.no_updates 189
ooc.naming.port 189
ooc.naming.timeout 189
ooc.naming.trace_level 189
ooc.oci.client 58
ooc.oci.plugin 58
ooc.oci.server 58
ooc.orb.client_timeout 59
ooc.orb.conc_model 59
ooc.orb.default_init_ref 59
ooc.orb.default_wcs 59
ooc.orb.extended_wchar 59
ooc.orb.giop.max_message_size 60
ooc.orb.id 60
ooc.orb.module.name 60
ooc.orb.modules 60
ooc.orb.native_cs 60
ooc.orb.native_wcs 61
ooc.orb.oa.conc_model 65
ooc.orb.oa.endpoint 66
ooc.orb.oa.numeric 67
ooc.orb.oa.thread_pool 66
ooc.orb.oa.version 67
ooc.orb.poamanager.manager.conc_model 67
ooc.orb.poamanager.manager.endpoint 67
ooc.orb.poamanager.manager.version 67
ooc.orb.policy.connection_reuse 61
ooc.orb.policy.connect_timeout 61
ooc.orb.policy.interceptor 61
ooc.orb.policy.locate_request 61
ooc.orb.policy.location_transparency 61
ooc.orb.policy.protocol 61
ooc.orb.policy.rebind 61
504

INDEX
ooc.orb.policy.request_timeout 62
ooc.orb.policy.retry 62
ooc.orb.policy.retry.interval 62
ooc.orb.policy.retry.max 62
ooc.orb.policy.retry.remote 62
ooc.orb.policy.sync_scope 62
ooc.orb.policy.timeout 62
ooc.orb.server_name 63
ooc.orb.server_shutdown_timeout 63
ooc.orb.server_timeout 63
ooc.orb.service.name 64
ooc.orb.trace.connections 64
ooc.orb.trace.retry 64
ooc.orb.use_type_code_cache 63
ooc.property.port 222

Property Service 221

R
Reactor 352
Recursion 212
RTF 45

S
Servants 94

Activation 107
C++ 104
Deactivation 112
Delegation 98
Inheritance 95
Java 105

T
Toolbar 180, 219

U
URL 137, 138

corbaloc 139
corbaname 140
file 141
relfile 142

W
Windows Reactor 354
Windows Registry 71

X
X11 Reactor 353
505

INDEX
506

	List of Tables
	List of Figures
	Preface
	The Orbacus Library
	Audience
	Document Conventions

	Introduction to Orbacus
	Overview

	Getting Started
	The Hello World Example Application
	Defining the Example in IDL
	Implementing the Example in C++
	Implementing the Server
	Writing the Server Program
	Implementing the Client
	Compiling and Linking
	Running the Application

	Implementing the Example in Java
	Implementing the Server
	Implementing the Client
	Compiling
	Running the Application

	Summary
	Where To Go From Here

	Generating Code with Orbacus
	Orbacus Translators
	Translating IDL to C++
	Translating IDL to Java
	Translating IDL to HTML
	Translating IDL to RTF
	Generating C++ from an Interface Repository
	The IDL-to-C++ Translator and the Interface Repository
	Include Statements
	Documenting IDL Files
	Using javadoc

	ORB and Object Adapter Initialization
	Initializing the C++ ORB
	Initializing the Java ORB
	Object Adapter Initialization
	Configuring the ORB and Object Adapter
	ORB Properties
	OA Properties
	Command-line Options
	Using a Configuration File
	Using the Windows Registry
	Defining Properties
	Precedence of Properties
	Advanced Property Usage

	Using POA Managers
	The Root POA Manager
	Anonymous POA Managers
	The POA Manager Factory
	Creating a POA Manager
	POA Manager Policies
	Endpoints
	Command-line Options and Endpoints
	Dispatching Requests
	Callbacks

	ORB Destruction
	Server Event Loop

	CORBA Objects
	Overview
	Implementing Servants
	Implementing Servants using Inheritance
	Implementing Servants using Delegation

	Creating Servants
	Creating Servants using C++
	Creating Servants using Java

	Activating Servants
	Implicit Activation of Servants using C++
	Implicit Activation of Servants using Java
	Explicit Activation of Servants using C++
	Explicit Activation of Servants using Java

	Deactivating Servants
	Factory Objects
	Factory Objects using C++
	Factory Objects using Java
	Caveats
	Obtaining the POA for a Servant
	Getting the POA for a Currently Executing Request

	Locating Objects
	Obtaining Object References
	Lifetime of Object References
	Hostname
	Port Number
	Object Key

	Stringified Object References
	Using a File
	Using a URL

	Object Reference URLs
	corbaloc: URLs
	corbaname: URLs
	file: URLs
	relfile: URLs

	The BootManager
	BootManager Interface
	How the BootManager Works
	Using the BootManager

	Initial Services
	Resolving an Initial Service
	Configuring the Initial Services
	The Initial Service Locator

	The IORDump utility

	The Implementation Repository
	Background
	Information Managed by the IMR
	IMR Security
	Usage
	Windows Native Service
	Configuration Properties
	Connecting to the Service
	Utilities
	Getting Started with the Implementation Repository
	Programming Example

	The Implementation Repository Console
	Usage
	The Menus

	Orbacus Names
	Usage
	Windows Native Service
	Configuration Properties
	Persistence
	Connecting to the Service
	Using the Naming Service with the IMR
	Bindings
	Name Resolution
	Programming Example
	Initialization
	Binding
	Exceptions
	The Event Loop
	Releasing Resources

	Orbacus Names Console
	Usage
	Naming Service Lookup
	The Menus
	The File Menu
	The Edit Menu
	The View Menu
	The Tools Menu
	The Toolbar
	The Popup Menu

	Orbacus Properties
	Usage
	Connecting to the Service
	Using the Property Service with the IMR
	Creating Properties
	Querying for Properties
	Deleting Properties
	Programming Example

	Orbacus Events
	Usage
	Windows Native Service
	Configuration Properties

	Connecting to the Service
	Using the Event Service with the IMR
	Event Service Concepts
	The Event Channel
	Event Suppliers and Consumers
	Event Channel Policies
	Event Channel Factories

	Programming Example

	The Interface Repository
	Usage
	Windows Native Service
	Configuration Properties

	Connecting to the Interface Repository
	Configuration Issues
	Interface Repository Utilities
	Programming Example

	Orbacus Balancer
	Basic Concepts
	Load Balancing Strategies
	Service Security
	Usage
	Windows Native Service
	Configuration Properties
	Built-in Load Balancing Strategies

	Connecting to the Service
	Load Balanced IMR-enabled Servers
	Utilities
	Service Administration
	Making References
	Utility Objects
	Utility Object Configuration Properties

	Programming Example
	Non-adaptive Load Balancing
	Adaptive Load Balancing
	Running the Load Balanced Servers

	Orbacus Watson
	Tracing Levels
	Installing Watson in C++
	Installing Watson in Java
	Configuration Properties
	Sample Configuration File

	Using Policies
	Overview
	Supported Policies
	Programming Examples
	Connection Reuse Policy
	Retry Policy
	Timeout Policy
	Interceptor Call Policy
	CommunicationsConcurrencyPolicy
	EndpointConfigurationPolicy
	GIOPVersionPolicy
	Bidirectional Policy

	Asynchronous Method Invocation
	Introduction
	AMI Router
	Router Usage
	Router Administration Properties
	AMI Reply Handler Implementation
	AMI Poller Implementation
	Configuring Clients and Servers

	Concurrency Models
	Concurrency Models
	Single-Threaded Concurrency Model
	Multi-Threaded Concurrency Models
	Threaded Clients and Servers
	Thread-per-Client Server
	Thread-per-Request Server
	Thread Pool Server
	Leader_Follower

	The Reactor
	The X11 Reactor
	The Windows Reactor

	The Open Communications Interface
	Interface Summary
	Class Diagram

	OCI Reference
	A Converter Class for Java
	Getting Hostnames and Port Numbers
	Determining a Client’s IP Address
	Determining a Server’s IP Address

	The IIOP OCI Plug-in
	Endpoint Configuration
	Command-line Options
	Static Linking

	The UDP OCI Plug-in
	Client Installation
	Server Installation
	Endpoint Configuration
	Static Linking
	URL Support
	Narrowing UDP Object References

	The Bi-directional OCI Plug-in
	How Does it Work?
	Peers
	Client Installation
	Server Installation
	Endpoint Configuration
	Command-line Options
	Configuration Properties
	Static Linking
	URL Support

	Exceptions and Error Messages
	CORBA System Exceptions
	INITIALIZE Minor Exception Code
	UNKNOWN Minor Exception Code
	BAD_PARAM Minor Exception Code
	NO_MEMORY Minor Exception Code
	IMP_LIMIT Minor Exception Code
	COMM_FAILURE Minor Exception Code
	MARSHAL Minor Exception Code
	NO_IMPLEMENT Minor Exception Code
	NO_RESOURCES Minor Exception Code
	BAD_INV_ORDER Minor Exception Code
	TRANSIENT Minor Exception Code
	INTF_REPOS Minor Exception Code
	OBJECT_NOT_EXIST Minor Exception Code
	INV_POLICY Minor Exception Code

	Non-Compliant Application Asserts

	Boot Manager Reference
	Interface OB::BootManager
	Interface OB::BootLocator

	Orbacus Policy Reference
	Module OB
	Interface OB::ConnectTimeoutPolicy
	Interface OB::ConnectionReusePolicy
	Interface OB::InterceptorPolicy
	Interface OB::LocateRequestPolicy
	Interface OB::LocationTransparencyPolicy
	Interface OB::ProtocolPolicy
	Interface OB::RequestTimeoutPolicy
	Interface OB::RetryPolicy
	Interface OB::TimeoutPolicy

	Module OBPortableServer
	Interface OBPortableServer::InterceptorCallPolicy

	BiDirPolicy

	Reactor Reference
	Module OB
	Interface OB::Reactor

	Logger Reference
	Interface OB::Logger
	Interface OB::WLogger

	Open Communications Interface Reference
	Module OCI
	Interface OCI::Buffer
	Interface OCI::Plugin
	Interface OCI::Transport
	Interface OCI::TransportInfo
	Interface OCI::CloseCB
	Interface OCI::Connector
	Interface OCI::ConnectorInfo
	Interface OCI::ConnectCB
	Interface OCI::ConFactory
	Interface OCI::ConFactoryInfo
	Interface OCI::ConFactoryRegistry
	Interface OCI::Acceptor
	Interface OCI::AcceptorInfo
	Interface OCI::AcceptCB
	Interface OCI::AccFactory
	Interface OCI::AccFactoryInfo
	Interface OCI::AccFactoryRegistry
	Interface OCI::Current

	Module OCI::IIOP
	Interface OCI::IIOP::TransportInfo
	Interface OCI::IIOP::ConnectorInfo
	Interface OCI::IIOP::ConFactoryInfo
	Interface OCI::IIOP::AcceptorInfo
	Interface OCI::IIOP::AccFactoryInfo

	Orbacus Balancer Reference
	Module LoadBalancing
	Interface LoadBalancing::LoadAlert
	Interface LoadBalancing::Strategy
	Interface LoadBalancing::StrategyProxy
	Interface LoadBalancing::Group
	Interface LoadBalancing::GroupFactory

	Module LoadBalancing::Util
	Interface LoadBalancing::Util::LoadAlert
	Interface LoadBalancing::Util::LoadCalculator
	Interface LoadBalancing::Util::LoadUpdater

	Orbacus Bibliography
	Index

