
IONA Technologies PLC

User Guide
Version 4.2.1

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.
“Orbacus” and “JThreads/C++” are trademarks or registered trademarks of IONA Tech-
nologies, Inc.
IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA e-Busi-
ness Platform, and Total Business Integration are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001–2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 27-Oct-2004

Contents

List of Figures xiii

Preface xv

Chapter 1 Getting Started 1
The ‘Hello World’ Example Application 2
Defining the Example in IDL 3
Implementing the Example in C++ 4

Implementing the Server 5
Writing the Server Program 7
Implementing the Client 11
Compiling and Linking 13
Running the Application 14

Implementing the Example in Java 15
Implementing the Server 16
Implementing the Client 20
Compiling 22
Running the Application 23

Summary 24
Where To Go From Here 25

Chapter 2 Generating Code with Orbacus 27
Orbacus Translators 28
Translating IDL to C++ 29
Translating IDL to Java 33
Translating IDL to HTML 35
Translating IDL to RTF 36
Generating C++ from an Interface Repository 38
The IDL-to-C++ Translator and the Interface Repository 39
Include Statements 40
Documenting IDL Files 41
Using javadoc 43
iii

CONTENTS
Chapter 3 ORB and Object Adapter Initialization 47
Initializing the C++ ORB 48
Initializing the Java ORB 49
Object Adapter Initialization 50
Configuring the ORB and Object Adapter 51

ORB Properties 52
OA Properties 59
Command-line Options 62
Using a Configuration File 64
Using the Windows NT Registry 65
Defining Properties 66
Precedence of Properties 68
Advanced Property Usage 69

Using POA Managers 71
The Root POA Manager 72
Anonymous POA Managers 73
The POA Manager Factory 74
Creating a POA Manager 75
POA Manager Policies 77
Endpoints 78
Command-line Options and Endpoints 79
Dispatching Requests 80
Callbacks 81

ORB Destruction 82
Server Event Loop 83

Chapter 4 CORBA Objects 85
Overview 86
Implementing Servants 88

Implementing Servants using Inheritance 89
Implementing Servants using Delegation 92

Creating Servants 97
Creating Servants using C++ 98
Creating Servants using Java 99

Activating Servants 101
Implicit Activation of Servants using C++ 102
Implicit Activation of Servants using Java 103
Explicit Activation of Servants using C++ 104
 iv

CONTENTS
Explicit Activation of Servants using Java 105
Deactivating Servants 106
Factory Objects 108

Factory Objects using C++ 110
Factory Objects using Java 112
Caveats 113
Obtaining the POA for a Servant 114
Getting the POA for a Currently Executing Request 116

Chapter 5 Locating Objects 119
Obtaining Object References 120
Lifetime of Object References 124

Hostname 125
Port Number 126
Object Key 127

Stringified Object References 128
Using a File 129
Using a URL 131

Object Reference URLs 132
corbaloc: URLs 133
corbaname: URLs 135
file: URLs 136
relfile: URLs 137

The BootManager 138
BootManager Interface 139
How the BootManager Works 140
Using the BootManager 141

Initial Services 142
Resolving an Initial Service 143
Configuring the Initial Services 145
The Initial Service Locator 147

The IORDump utility 148

Chapter 6 The Implementation Repository 151
Background 153
Information Managed by the IMR 154
IMR Security 157
Usage 158
v

CONTENTS
Windows NT Native Service 160
Configuration Properties 162
Connecting to the Service 163
Utilities 164
Getting Started with the Implementation Repository 167
Programming Example 170

Chapter 7 The Implementation Repository Console 175
Usage 176
The Menus 177

Chapter 8 Orbacus Names 181
Usage 183
Windows NT Native Service 185
Configuration Properties 187
Persistence 188
Connecting to the Service 189
Using the Naming Service with the IMR 190
Bindings 191
Name Resolution 193
Programming Example 194

Initialization 195
Binding 197
Exceptions 200
The Event Loop 202
Releasing Resources 203

Chapter 9 Orbacus Names Console 205
Usage 206
Naming Service Lookup 207
The Menus 208

The Edit Menu 210
The View Menu 212
The Tools Menu 214

The Toolbar 216
The Popup Menu 217

Chapter 10 Orbacus Properties 219
 vi

CONTENTS
Usage 220
Connecting to the Service 221
Using the Property Service with the IMR 222
Creating Properties 223
Querying for Properties 224
Deleting Properties 226
Programming Example 227

Chapter 11 Orbacus Events 231
Usage 232

Windows NT Native Service 233
Configuration Properties 235

Connecting to the Service 237
Using the Event Service with the IMR 238
Event Service Concepts 239

The Event Channel 240
Event Suppliers and Consumers 241
Event Channel Policies 243
Event Channel Factories 244

Programming Example 247

Chapter 12 The Interface Repository 251
Usage 252

Windows NT Native Service 253
Configuration Properties 255

Connecting to the Interface Repository 256
Configuration Issues 257
Interface Repository Utilities 258
Programming Example 259

Chapter 13 Orbacus Balancer 261
Basic Concepts 262
Load Balancing Strategies 263
Service Security 266
Usage 267

Windows NT Native Service 268
Configuration Properties 270
Built-in Load Balancing Strategies 272
vii

CONTENTS
Connecting to the Service 275
Load Balanced IMR-enabled Servers 276
Utilities 277

Service Administration 278
Making References 279
Utility Objects 280
Utility Object Configuration Properties 281

Programming Example 282
Non-adaptive Load Balancing 283
Adaptive Load Balancing 288
Running the Load Balanced Servers 292

Chapter 14 Orbacus Watson 295
Tracing Levels 296
Installing Watson in C++ 297
Installing Watson in Java 298
Configuration Properties 299

Sample Configuration File 300

Chapter 15 Using Policies 301
Overview 302
Supported Policies 303
Programming Examples 306

Connection Reuse Policy 307
Retry Policy 310
Timeout Policy 312
Interceptor Call Policy 313
CommunicationsConcurrencyPolicy 315
EndpointConfigurationPolicy 317
GIOPVersionPolicy 319
Bidirectional Policby 321

Chapter 16 Concurrency Models 325
Concurrency Models 326
Single-Threaded Concurrency Model 328
Multi-Threaded Concurrency Models 331

Threaded Clients and Servers 332
Thread-per-Client Server 334
 viii

CONTENTS
Thread-per-Request Server 335
Thread Pool Server 336
Leader_Follower 337

The Reactor 338
The X11 Reactor 339
The Windows Reactor 340

Chapter 17 The Open Communications Interface 341
Interface Summary 342

Class Diagram 344
OCI Reference 345

A ‘Converter’ Class for Java 346
Getting Hostnames and Port Numbers 347
Determining a Client’s IP Address 349
Determining a Server’s IP Address 351

The IIOP OCI Plug-in 353
Endpoint Configuration 354
Command-line Options 356
Static Linking 357

The UDP OCI Plug-in 358
Client Installation 359
Server Installation 360
Endpoint Configuration 361
Static Linking 364
URL Support 365
Narrowing UDP Object References 366

The Bi-directional OCI Plug-in 367
How Does it Work? 368
Peers 369
Client Installation 370
Server Installation 371
Endpoint Configuration 372
Command-line Options 373
Configuration Properties 374
Static Linking 375
URL Support 376

Chapter 18 Exceptions and Error Messages 377
ix

CONTENTS
CORBA System Exceptions 378
INITIALIZE Minor Exception Code 381
UNKNOWN Minor Exception Code 382
BAD_PARAM Minor Exception Code 383
NO_MEMORY Minor Exception Code 385
IMP_LIMIT Minor Exception Code 386
COMM_FAILURE Minor Exception Code 387
MARSHAL Minor Exception Code 388
NO_IMPLEMENT Minor Exception Code 390
NO_RESOURCES Minor Exception Code 391
BAD_INV_ORDER Minor Exception Code 392
TRANSIENT Minor Exception Code 393
INTF_REPOS Minor Exception Code 394
OBJECT_NOT_EXIST Minor Exception Code 395
INV_POLICY Minor Exception Code 396

Non-Compliant Application Asserts 397

Appendix A Boot Manager Reference 401
Interface OB::BootManager 402
Interface OB::BootLocator 404

Appendix B Orbacus Policy Reference 405
Module OB 406

Interface OB::ConnectTimeoutPolicy 408
Interface OB::ConnectionReusePolicy 409
Interface OB::InterceptorPolicy 410
Interface OB::LocateRequestPolicy 411
Interface OB::LocationTransparencyPolicy 412
Interface OB::ProtocolPolicy 413
Interface OB::RequestTimeoutPolicy 414
Interface OB::RetryPolicy 415
Interface OB::TimeoutPolicy 416

Module OBPortableServer 417
Interface OBPortableServer::InterceptorCallPolicy 418

BiDirPolicy 419

Appendix C Reactor Reference 421
Module OB 422
 x

CONTENTS
Interface OB::Reactor 423

Appendix D Logger Reference 425
Interface OB::Logger 426
Interface OB::WLogger 427

Appendix E Open Communications Interface Reference 429
Module OCI 430

Interface OCI::Buffer 434
Interface OCI::Plugin 436
Interface OCI::Transport 437
Interface OCI::TransportInfo 442
Interface OCI::CloseCB 444
Interface OCI::Connector 445
Interface OCI::ConnectorInfo 447
Interface OCI::ConnectCB 449
Interface OCI::ConFactory 450
Interface OCI::ConFactoryInfo 452
Interface OCI::ConFactoryRegistry 453
Interface OCI::Acceptor 454
Interface OCI::AcceptorInfo 457
Interface OCI::AcceptCB 459
Interface OCI::AccFactory 460
Interface OCI::AccFactoryInfo 462
Interface OCI::AccFactoryRegistry 463
Interface OCI::Current 464

Module OCI::IIOP 465
Interface OCI::IIOP::TransportInfo 466
Interface OCI::IIOP::ConnectorInfo 467
Interface OCI::IIOP::ConFactoryInfo 468
Interface OCI::IIOP::AcceptorInfo 469
Interface OCI::IIOP::AccFactoryInfo 470

Appendix F Orbacus Balancer Reference 471
Module LoadBalancing 472

Interface LoadBalancing::LoadAlert 477
Interface LoadBalancing::Strategy 478
Interface LoadBalancing::StrategyProxy 479
xi

CONTENTS
Interface LoadBalancing::Group 480
Interface LoadBalancing::GroupFactory 482

Module LoadBalancing::Util 483
Interface LoadBalancing::Util::LoadAlert 484
Interface LoadBalancing::Util::LoadCalculator 485
Interface LoadBalancing::Util::LoadUpdater 486

References 487

Index 489
 xii

List of Figures

Figure 1: Documentation generated with the IDL-to-HTML translator 41

Figure 2: Servants, Proxies and the Object Adapter 86

Figure 3: Class Hierarchy for Delegation Implementation in C++ 93

Figure 4: Class Hierarchy for Inheritance and Delegation Implementation in Java 95

Figure 5: Entering an IOR 209

Figure 6: The Ping Window 214

Figure 7: A closer look at the toolbar 216

Figure 8: A popup menu offers important operations 217

Figure 9: Reactive Server 328

Figure 10: Reactive Client/Server 329

Figure 11: Threaded Server 332

Figure 12: Thread-per-Client Server 334

Figure 13: Thread-per-Request Server 335

Figure 14: Thread Pool Server 336

Figure 15: OCI Class Diagram 344

Figure 16: Connection Requirements 368
xiii

LIST OF FIGURES
 xiv

Preface
What is Orbacus? Orbacus is an Object Request Broker (ORB) that is compliant with the

Common Object Request Broker Architecture (CORBA) specification as
defined in “The Common Object Request Broker: Architecture and
Specification” [4], “C++ Language Mapping” [5], “IDL/Java Language
Mapping” [6], and “Portable Interceptors” [7].

The following sections highlight some of the features of Orbacus.

Ease of Use • Configuration and bootstrapping is simple:

♦ Daemon-less servers

♦ Servers started automatically by the Implementation Repository

♦ URL-style object references

• Watson diagnostics and analysis - method tracing within the ORB

• Extensible Logging facility - output to multiple devices

• Documentation Tools - Translators (see “Orbacus Translators” on
page 28)

♦ IDL to Hypertext Markup Language (HTML)

♦ IDL to Rich Text Format (RTF)

• JThreads/C++ - Java like threading for C++. (See the Orbacus
JThreads User Guide.)

Qualities of Service • Load Balancing - balance client requests across a set of replicated
objects and stateless servers.
xv

PREFACE
• Fault Tolerance - transparent failover by implementing multiple profile
Interoperable Object References.

• Active Connection Management - reclaim idle connections
automatically, conserving threads, sockets, memory and other
important system resources.

• Security - FreeSSL plug-in provides secure authentication and
encryption facilities. (See the Orbacus FreeSSL User Guide.)

• Concurrency - Single and Multithreaded models to exploit power of
multiprocessor hardware.

• Dynamic Loading Of Modules - transparently install extensions and
services such as transactions, interceptors, and protocol plug-ins.

• Flexibility through pluggable transport protocols. (See “The Open
Communications Interface” on page 341.)

CORBA features • CORBA 2.5 support

• CORBA Services

♦ Naming, Events and Property services are part of the Orbacus
product.

♦ Orbacus interoperates with the Orbix Notification, Orbix Trader
and Orbix Telecom Logging services.

• Portable Interceptors - provide a "hook" for adding code that is called
upon for each operation invocation.

• Portable Object Adapter - provides high scalability for servers that
contain very large numbers of objects.

• Objects by Value - reduce network traffic by turning a remote
interaction into a local invocation.

• Dynamic Invocation and Dynamic Skeleton Interface - send and receive
requests without compile-time knowledge of interface types and
operation signatures.

• Implementation Repository - start servers on demand and migrate
servers to different hosts without adversely affecting clients.

• Interface Repository - build IDL-to-anything translators easily

• Support for Local Interfaces - standard way to implement
locality-constrained objects
 xvi

PREFACE
Platform support For platform availability, please refer to the Orbacus home page at http://
www.orbacus.com/support/new_site/platforms.jsp.

About this Document This manual is—except for the “Getting Started” chapter—no replacement
for a good CORBA book. This manual also does not contain the precise
specifications of the CORBA standard, which are freely available on-line. A
good grasp of the CORBA specifications in [4], [5], and [6] is absolutely
necessary to effectively use this manual. In particular, the chapters in [4],
covering CORBA IDL and the IDL-to-C++ mapping, should be studied
thoroughly.

For C++ users, we also highly recommend [3]. This book contains by far
the best treatment of CORBA programming with C++ to date.

What this manual does contain, however, is information on how Orbacus
implements the CORBA standard. A shortcoming of the current CORBA
specification is that it leaves a high degree of freedom to the CORBA
implementation. For example, the precise semantics of a oneway call are
not specified by the standard.

To make it easier to get started with Orbacus, this manual contains a
“Getting Started” chapter, explaining some Orbacus basics with a very
simple example.

The latest updates to this guide can be found at http://www.orbacus.com/
support/new_site/support/manual.jsp.

Getting Help Should you need any assistance with Orbacus, please visit our Frequently
Asked Questions (FAQ) list at http://www.orbacus.com/support/new_site/
faqs.html or consult the Orbacus community resources at http://
www.orbacus.com/support/new_site/community.

Customers with a support agreement can contact us at
support@orbacus.com. For more information on support, go to http://
www.orbacus.com/support/new_site/support.

Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about Orbacus
and other products.

Comments on IONA documentation can be sent to docs-support@iona.com.
xvii

http://www.orbacus.com/support/new_site/support/manual.jsp
http://www.orbacus.com/support/new_site/faqs.html
http://www.orbacus.com/support/new_site/faqs.html
http://www.orbacus.com/support/new_site/community
http://www.orbacus.com/support/new_site/community
http://www.orbacus.com/support/new_site/support
http://www.orbacus.com/support/new_site/support
http://www.orbacus.com/support/new_site/platforms.jsp
http://www.orbacus.com/support/new_site/support/manual.jsp
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/knowledge_base/index.xml
mailto:docs-support@iona.com
http://www.orbacus.com/support/new_site/platforms.jsp

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
 xviii

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xix

PREFACE
 xx

CHAPTER 1

Getting Started
This chapter introduces you to Orbacus using a well-known
application: the ‘Hello World!’ application is presented here
in a special client-server version.

In this chapter This chapter contains the following sections:

The ‘Hello World’ Example Application page 2

Defining the Example in IDL page 3

Implementing the Example in C++ page 4

Implementing the Example in Java page 15

Summary page 24

Where To Go From Here page 25
1

CHAPTER 1 | Getting Started
The ‘Hello World’ Example Application

C++ and Java applications Many books on programming start with this tiny demo program. In
introductory C++ books you'll probably find the following piece of code in
the very first chapter:

Or in introductory Java books:

These applications simply print “Hello World!” to standard output and that
is exactly what this chapter is about: Printing “Hello World!” with a
CORBA-based client-server application. In other words, we will develop a
client program that invokes a say_hello operation on an object in a server
program. The server responds by printing “Hello World!” on its standard
output.

// C++
#include <iostream.h>

int main(int, char*[])
{

cout << "Hello World!" << endl;
return 0;

}

// Java
public class Greeter
{

public static void main(String args[])
{

System.out.println("Hello World!");
}

}

 2

Defining the Example in IDL
Defining the Example in IDL

CORBA-based program How do we write a CORBA-based “Hello World!” program? The first step is
to create a file containing our IDL definitions. Since our example application
isn't a complicated one, the IDL code needed for this example is simple.

Save the IDL code shown below to a file called Hello.idl.

2 An interface with the name Hello is defined. An IDL interface is
conceptually equivalent to a pure abstract class in C++, or to an interface
in Java.

4 The only operation defined is say_hello, which neither takes any
parameters nor returns any result.

1 // IDL
2 interface Hello
3 {
4 void say_hello();
5 };
3

CHAPTER 1 | Getting Started
Implementing the Example in C++

Generating C++ from IDL The next step is to translate the IDL code to C++ using the IDL-to-C++
translator.

Translate the code in Hello.idl to C++ using the following command:

idl Hello.idl

This command will create the files:

• Hello.h

• Hello.cpp

• Hello_skel.h

• Hello_skel.cpp

Now we will implement the server and client.

In this section This section discusses the following topics:

Implementing the Server page 5

Writing the Server Program page 7

Implementing the Client page 11

Compiling and Linking page 13

Running the Application page 14
 4

Implementing the Example in C++
Implementing the Server

Overview To implement the server, we need to define an implementation class for the
Hello interface. To do this, we create a class Hello_impl that is derived
from the “skeleton” class POA_Hello, defined in the file Hello_skel.h.

Hello_impl definition Create a file Hello_impl.h and enter the class definition of Hello_impl
shown below:

2 Since our implementation class derives from the skeleton class POA_Hello,
we must include the file Hello_skel.h.

4 Here we define Hello_impl as a class derived from POA_Hello and
RefCountServantBase. RefCountServantBase is part of the PortableServer
namespace and provides reference counting.

9 Our implementation class must implement all operations from the IDL
interface. In this case, this is just the operation say_hello.

1 // C++
2 #include <Hello_skel.h>
3
4 class Hello_impl : public POA_Hello, public
5 PortableServer::RefCountServantBase
6 {
7 public:
8
9 virtual void say_hello()
10 throw(CORBA::SystemException);
11 };
5

CHAPTER 1 | Getting Started
Hello_impl implementation Create a file Hello_impl.cpp and enter the class implementation of
Hello_impl shown below:

3 We must include OB/CORBA.h, which contains definitions for the standard
CORBA classes, as well as for other useful things.

4 We must also include the Hello_impl class definition, contained in the
header file Hello_impl.h.

6-9 The say_hello function simply prints “Hello World!” on standard output.

1 // C++
2 #include <iostream.h>
3 #include <OB/CORBA.h>
4 #include <Hello_impl.h>
5
6 void Hello_impl::say_hello()
throw(CORBA::SystemException)
7 {
8 cout << "Hello World!" << endl;
9 }
 6

Implementing the Example in C++
Writing the Server Program

Overview Now we will write the server program. To simplify exception handling and
ORB destruction, we will split the server into two functions: main() and
run(), where main() only creates the ORB, and calls run()

main() function Create a file with the name Server.cpp and enter the code for the main()
function shown below:

1 // C++
2 #include <OB/CORBA.h>
3 #include <Hello_impl.h>
4
5 #include <fstream.h>
6
7 int run(CORBA::ORB_ptr);
8
9 int main(int argc, char* argv[])
10 {
11 int status = EXIT_SUCCESS;
12 CORBA::ORB_var orb;
13
14 try
15 {
16 orb = CORBA::ORB_init(argc, argv);
17 status = run(orb);
18 }
19 catch(const CORBA::Exception&)
20 {
21 status = EXIT_FAILURE;
22 }
23
7

CHAPTER 1 | Getting Started
2-5 Several header files are included. Of these, OB/CORBA.h provides the
standard CORBA definitions, and Hello_impl.h contains the definition of
the Hello_impl class.

7 A forward declaration for the run() function.

16 The first thing a CORBA program must do is initialize the ORB. This
operation expects the parameters with which the program was started.
These parameters may or may not be used by the ORB, depending on the
CORBA implementation. Orbacus recognizes certain options that will be
explained later.

17 The run() helper function is called.

19-22 This code catches and prints all CORBA exceptions raised by ORB_init() or
run().

24-34 If the ORB was successfully created, it is destroyed. This releases the
resources used by the ORB. If destroy() raises a CORBA exception, this
exception is caught and printed.

36 The exit status is returned. If there was no error, EXIT_SUCCESS is returned,
or EXIT_FAILURE otherwise.

24 if(!CORBA::is_nil(orb))
25 {
26 try
27 {
28 orb -> destroy();
29 }
30 catch(const CORBA::Exception&)
31 {
32 status = EXIT_FAILURE;
33 }
34 }
35
36 return status;
37 }
 8

Implementing the Example in C++
run() function Add the code for the run() function to Server.cpp:

4-7 Using the ORB reference, resolve_initial_references() is invoked to
obtain a reference to the Root POA.

9-10 The Root POA is used to obtain a reference to its POA Manager.

12-14 A servant of type Hello_impl is created and assigned to a ServantBase_var
variable. The servant is then used to incarnate a CORBA object, using the
_this() operation. ServantBase_var and Hello_var, like all _var types, are
“smart” pointer, i.e., servant and hello will release their assigned object
automatically when they go out of scope.

16-20 The client must be able to access the implementation object. This can be
done by saving a “stringified” object reference to a file, which can then be
read by the client and converted back to the actual object reference.1 The
operation object_to_string() converts a CORBA object reference into its
string representation.

1 // C++
2 int run(CORBA::ORB_ptr orb)
3 {
4 CORBA::Object_var poaObj =
5 orb -> resolve_initial_references("RootPOA");
6 PortableServer::POA_var rootPoa =
7 PortableServer::POA::_narrow(poaObj);
8
9 PortableServer::POAManager_var manager =
10 rootPoa -> the_POAManager();
11
12 Hello_impl* helloImpl = new Hello_impl();
13 PortableServer::ServantBase_var servant = helloImpl;
14 Hello_var hello = helloImpl -> _this();
15
16 CORBA::String_var s = orb -> object_to_string(hello);
17 const char* refFile = "Hello.ref";
18 ofstream out(refFile);
19 out << s << endl;
20 out.close();
21
22 manager -> activate();
23 orb -> run();
24
25 return EXIT_SUCCESS;
26 }
9

CHAPTER 1 | Getting Started
22-23 The server must activate the POA Manager to allow the Root POA to start
processing requests, and then inform the ORB that it is ready to accept
requests.

1. If your application contains more than one object, you do not need to save object
references for all objects. Usually you save the reference of one object which
provides operations that can subsequently return references to other objects.
 10

Implementing the Example in C++
Implementing the Client

Overview In several respects, the client program is similar to the server program. The
code to initialize and destroy the ORB is the same.

Client code Save the following code in a file Client.cpp:

3 In contrast to the server, the client does not need to include Hello_impl.h.
Only the generated file Hello.h is needed.

7-12 This code is the same as for the server.

16-20 The “stringified” object reference written by the server is read and converted
to a CORBA::Object object reference. It’s not necessary to obtain a reference
to the Root POA or its POA Manager, because they are only needed by
server applications.

1 // C++
2 #include <OB/CORBA.h>
3 #include <Hello.h>
4
5 #include <fstream.h>
6
7 int run(CORBA::ORB_ptr);
8
9 int main(int argc, char* argv[])
10 {
11 ... // Same as for the server
12 }
13
14 int run(CORBA::ORB_ptr orb)
15 {
16 const char* refFile = "Hello.ref";
17 ifstream in(refFile);
18 char s[2048];
19 in >> s;
20 CORBA::Object_var obj = orb -> string_to_object(s);
21
22 Hello_var hello = Hello::_narrow(obj);
23
24 hello -> say_hello();
25
26 return 0;
27 }
11

CHAPTER 1 | Getting Started
22 The _narrow operation generates a Hello object reference from the
CORBA::Object object reference. Although _narrow for CORBA objects
works similar to dynamic_cast<> for plain C++ objects, dynamic_cast<>
must not be used for CORBA object references. That’s because in contrast to
dynamic_cast<>, _narrow might have to query the server for type
information.

24 The say_hello operation on the hello object reference is invoked, causing
the server to print “Hello World!”.
 12

Implementing the Example in C++
Compiling and Linking

Overview Compiling Hello.cpp results in an object file with the following name:

• UNIX: Hello.o

• Windows: Hello.obj

You must link both the client and the server with the file for your platform.

The compiled Hello_skel.cpp and Hello_impl.cpp are only needed by the
server.

Dependencies Compiling and linking is to a large degree compiler- and
platform-dependent. Many compilers require unique options to generate
correct code.

To build Orbacus programs, you must at least link with the Orbacus library
for your platform:

• UNIX: libOB.a

• Windows: ob.lib

Additional libraries are required on some systems, such as libsocket.a and
libnsl.a for Solaris or wsock32.lib for Windows.

For more details The Orbacus distribution includes various README files for different platforms
which give hints on the options needed for compiling and the libraries
necessary for linking. Please consult these README files for details.
13

CHAPTER 1 | Getting Started
Running the Application

Overview Our “Hello World!” application consists of two parts:

• The client program

• The server program

Start the server first, since it must create the file Hello.ref that the client
needs in order to connect to the server. As soon as the server is running, you
can start the client. If all goes well, the “Hello World!” message will appear
on the screen.
 14

Implementing the Example in Java
Implementing the Example in Java

Generating Java from IDL In order to implement this application in Java, the interface specified in IDL
is translated to Java classes similar to the way the C++ code was created.

Translate the code in Hello.idl to Java using the following command:

jidl --package hello Hello.idl

This command generates several Java source files on which the actual
implementation will be based:

• Hello.java

• HelloHelper.java

• HelloHolder.java

• HelloOperations.java

• HelloPOA.java
• _HelloStub.java

All these files are generated into a directory with the name hello.

In this section This section discusses the following topics:

Implementing the Server page 16

Implementing the Client page 20

Compiling page 22

Running the Application page 23
15

CHAPTER 1 | Getting Started
Implementing the Server

Implementation class Create a file Hello_impl.java in the directory hello and enter the following
code for the server's Hello implementation class:

4 The implementation class Hello_impl must inherit from the generated class
HelloPOA.

6-8 As with the C++ implementation, the say_hello method simply prints
“Hello World!” on standard output.

1 // Java
2 package hello;
3
4 public class Hello_impl extends HelloPOA
5 {
6 public void say_hello()
7 {
8 System.out.println("Hello World!");
9 }
10 }
 16

Implementing the Example in Java
Server class main() method Create a file Server.java in the directory hello and enter the following
Server class code which holds the server's main() and run() methods:

1 // Java
2 package hello;
3
4 public class Server
5 {
6 public static void main(String args[])
7 {
8 java.util.Properties props = System.getProperties();
9 props.put("org.omg.CORBA.ORBClass",
10 "com.ooc.CORBA.ORB");
11 props.put("org.omg.CORBA.ORBSingletonClass",
12 "com.ooc.CORBA.ORBSingleton");
13
14 int status = 0;
15 org.omg.CORBA.ORB orb = null;
16
17 try
18 {
19 orb = org.omg.CORBA.ORB.init(args, props);
20 status = run(orb);
21 }
22 catch(Exception ex)
23 {
24 ex.printStackTrace();
25 status = 1;
26 }
27
28 if(orb != null)
29 {
30 try
31 {
32 orb.destroy();
33 }
34 catch(Exception ex)
35 {
36 ex.printStackTrace();
37 status = 1;
38 }
39 }
40
41 System.exit(status);
42 }
17

CHAPTER 1 | Getting Started
8-12 These properties are necessary to use the Orbacus ORB instead of the JDK’s
ORB.

19 The ORB must be initialized using ORB.init. The ORB class resides in the
package org.omg.CORBA. You must either import this package, or, as shown
in this example, you must use org.omg.CORBA explicitly.

20 The run() helper function is called.

22-26 This code catches and prints all CORBA exceptions raised by ORB.init() or
run().

28-39 If the ORB was successfully created, it is destroyed. This releases the
resources used by the ORB. If destroy() raises a CORBA exception, this
exception is caught and printed.

41 The exit status is returned. If there was no error, 0 is returned, or 1
otherwise.
 18

Implementing the Example in Java
Server class run() method Add the run() method to Server.java:

5-10 A reference to the Root POA is obtained using the ORB reference, and the
Root POA is used to obtain a reference to its POA Manager.

12-23 A servant of type Hello_impl is created and is used to incarnate a CORBA
object. The CORBA object is released automatically when it is not used
anymore.

15-28 The object reference is “stringified” and written to a file.

30-31 The server enters its event loop to receive incoming requests.

1 // Java
2 static int run(org.omg.CORBA.ORB orb)
3 throws org.omg.CORBA.UserException
4 {
5 org.omg.PortableServer.POA rootPOA =
6 org.omg.PortableServer.POAHelper.narrow(
7 orb.resolve_initial_references("RootPOA"));
8
9 org.omg.PortableServer.POAManager manager =
10 rootPOA.the_POAManager();
11
12 Hello_impl helloImpl = new Hello_impl();
13 Hello hello = helloImpl._this(orb);
14
15 try
16 {
17 String ref = orb.object_to_string(hello);
18 String refFile = "Hello.ref";
19 java.io.PrintWriter out = new java.io.PrintWriter(
20 new java.io.FileOutputStream(refFile));
21 out.println(ref);
22 out.close();
23 }
24 catch(java.io.IOException ex)
25 {
26 ex.printStackTrace();
27 return 1;
28 }
29
30 manager.activate();
31 orb.run();
32 return 0;
33 }
34 }
19

CHAPTER 1 | Getting Started
Implementing the Client

Client.java Save this to a file with the name Client.java in the directory hello:

6-9 This code is the same as for the server.

14-26 The stringified object reference is read and converted to an object.

1 // Java
2 package hello;
3
4 public class Client
5 {
6 public static void main(String args[])
7 {
8 ... // Same as for the server
9 }
10
11 static int run(org.omg.CORBA.ORB orb)
12 {
13 org.omg.CORBA.Object obj = null;
14 try
15 {
16 String refFile = "Hello.ref";
17 java.io.BufferedReader in = new
java.io.BufferedReader(
18 new java.io.FileReader(refFile));
19 String ref = in.readLine();
20 obj = orb.string_to_object(ref);
21 }
22 catch(java.io.IOException ex)
23 {
24 ex.printStackTrace();
25 return 1;
26 }
27
28 Hello hello = HelloHelper.narrow(obj);
29
30 hello.say_hello();
31
32 return 0;
33 }
34 }
 20

Implementing the Example in Java
28 The object reference is “narrowed” to a reference to a Hello object. A simple
Java cast is not allowed here, because it is possible that the client will need
to ask the server whether the object is really of type Hello.

30 The say_hello operation is invoked, causing the server to print “Hello
World!” on standard output.
21

CHAPTER 1 | Getting Started
Compiling

Steps To compile the application:

1. Ensure that your CLASSPATH environment variable includes the current
working directory as well as the Orbacus for Java classes (i.e the
OB.jar file) as shown below:

Replace your_orbacus_directory with the name of the directory
where Orbacus is installed.

2. To compile the implementation classes and the classes generated by
the Orbacus IDL-to-Java translator, use javac (or the Java compiler of
your choice):

javac hello/*.java

Platform Command

UNIX CLASSPATH=.:your_orbacus_directory/lib/OB.jar:$CLASSPATH

export CLASSPATH

Windows set CLASSPATH=.;your_orbacus_directory\lib\OBE.jar;%CLASSPATH%
 22

Implementing the Example in Java
Running the Application

Steps To run the application, complete the following steps:

1. Start the ‘Hello World’ Java server by entering the following command
in a command prompt:

java hello.Server

2. Start the ‘Hello World’ Java client by entering the following command:

java hello.Client

Again, make sure that your CLASSPATH environment variable includes
the OBE.jar file.

You might also want to use a C++ server together with a Java client (or vice
versa). This is one of the primary advantages of using CORBA: if something
is defined in CORBA IDL, the programming language used for the
implementation is irrelevant. CORBA applications can talk to each other,
regardless of the language they are written in.
23

CHAPTER 1 | Getting Started
Summary

What have we learnt? At this point, you might be inclined to think that this is the most
complicated method of printing a string that you have ever encountered in
your career as a programmer. At first glance, a CORBA-based approach may
indeed seem complicated. On the other hand, think of the benefits this kind
of approach has to offer. You can start the server and client applications on
different machines with exactly the same results.

Regarding the communication between the client and the server, you don't
have to worry about platform-specific methods or protocols at all, provided
there is a CORBA ORB available for the platform and programming language
of your choice. If possible, get some hands-on experience and start the
server on one machine, the client on another1. As you will see,
CORBA-based applications run interchangeably in both local and network
environments.

One last point to note: you likely won't be using CORBA to develop systems
as simple as our “Hello, World!” example. The more complex your
applications become (and today’s applications are complex), the more you
will learn to appreciate having a high-level abstraction of your applications'
key interfaces captured in CORBA IDL.

1. Note that after the startup of the server program, you have to copy the stringified
object reference, i.e., the file Hello.ref, to the machine where the client
program is to be run.
 24

Where To Go From Here
Where To Go From Here

Further Reading To understand the remaining chapters of this manual, you must have read
the CORBA specifications in [4], [5], and [6]. You will not be able to
understand the chapters that follow without a good understanding of
CORBA in general, CORBA IDL and the IDL-to-C++ or IDL-to-Java
mappings.
25

CHAPTER 1 | Getting Started
 26

CHAPTER 2

Generating Code
with Orbacus
This chapter describes the Orbacus translators.

In this chapter This chapter contains the following sections:

Orbacus Translators page 28

Translating IDL to C++ page 29

Translating IDL to Java page 33

Translating IDL to HTML page 35

Translating IDL to RTF page 36

The IDL-to-C++ Translator and the Interface Repository page 39

Include Statements page 40

Documenting IDL Files page 41

Using javadoc page 43
27

CHAPTER 2 | Generating Code with Orbacus
Orbacus Translators

Overview Orbacus includes the following code generators, or translators:

idl Translates IDL to C++

jidl Translates IDL to Java

hidl Translates IDL to HTML

ridl Translates IDL to RTF

irgen Generates C++ from an Interface Repository
 28

Translating IDL to C++
Translating IDL to C++

Synopsis idl [options] idl-files...

Description Translates IDL files into C++ files.

For each IDL file four C++ files are generated. For example,

idl MyFile.idl

produces the following files:

Options -h, --help

Show a short help message.

-v, --version

Show the Orbacus version number.

-d, --debug

Print diagnostic messages. This option is for Orbacus internal
debugging purposes only.

-DNAME

Defines NAME as 1. This option is directly passed to the preprocessor.

-DNAME=DEF

Defines NAME as DEF. This option is directly passed to the preprocessor.

-UNAME

Removes any definition for NAME. This option is directly passed to the
preprocessor.

-IDIR

MyFile.h Header file containing MyFile.idl’s translated data types
and interface stubs

MyFile.cpp Source file containing MyFile.idl’s translated data types
and interface stubs

MyFile_skel.h Header file containing skeletons for MyFile.idl’s interfaces

MyFile_skel.cpp Source file containing skeletons for MyFile.idl’s interfaces
29

CHAPTER 2 | Generating Code with Orbacus
Adds the directory DIR to the include file search path. This option is
directly passed to the preprocessor.

-E

Runs the source files through the preprocessor without generating
code.

--no-skeletons

Don’t generate skeleton classes.

--no-type-codes

Don’t generate type codes and insertion and extraction functions for the
Any type. Use of this option will cause the translator to generate more
compact code.

--no-virtual-inheritance

Don't use virtual C++ inheritance. If you use this option, you cannot
use multiple interface inheritance in your IDL code, and you also
cannot use multiple C++ inheritance to implement your servant
classes.

--tie

Generate tie classes for delegate-based interface implementations. Tie
classes depend on the corresponding skeleton classes, i.e., you must
not use --no-skeletons in combination with --tie.

--fwd

Generate separate header files for forward declarations.

--impl

Generate example servant implementation classes. An input file
Foo.idl will generate the files Foo_impl.h and Foo_impl.cpp. These
files will not be overwritten, therefore you must first remove the
existing files before new ones can be generated. You must not use
--no-skeletons in combination with this option.

--impl-all

Similar to --impl, but function signatures are generated for all
inherited operations and attributes. You must not use --no-skeletons
in combination with this option.

--c-suffix SUFFIX

Use SUFFIX as the suffix for source files. The default value is .cpp.

--h-suffix SUFFIX

Use SUFFIX as the suffix for header files. The default value is .h.
 30

Translating IDL to C++
--stub-suffix SUFFIX

Use SUFFIX as the suffix for stub files. The default value is an empty
suffix.

--skel-suffix SUFFIX

Use SUFFIX as the suffix for skeleton files. The default value is _skel.

--all

Generate code for included files instead of inserting #include
statements. See “Include Statements” on page 40.

--no-relative

When generating code, idl assumes that the same -I options that are
used with idl are also going to be used with the C++ compiler.
Therefore idl will try to make all #include statements relative to the
directories specified with -I. The option --no-relative suppresses
this behavior, in which case idl will not make #include statements for
included files relative to the paths specified with the -I option.

--header-dir DIR

This option can be used to make #include statements for header files
relative to the specified directory.

--this-header-dir DIR

Like the --header-dir option, this option can be used to make
#include statements for header files relative to the specified directory.
However, this option only applies to #include statements for the
header files of this IDL file.

--other-header-dir DIR

Like the --header-dir option, this option can be used to make
#include statements for header files relative to the specified directory.
However, this option only applies to #include statements for the
header files corresponding to IDL files that were included in this IDL
file.

--output-dir DIR

Write generated files to directory DIR.

--file-list FILE

Write a list of all generated files to file FILE.

--dll-import DEF

Put DEF in front of every symbol that needs an explicit DLL import
statement.
31

CHAPTER 2 | Generating Code with Orbacus
--with-interceptor-args

Generate code with support for arguments, result and exception list
values for interceptors.

--no-local-copy

To ensure strict compliance with CORBA’s location transparency
semantics, the default behavior of the translator is to generate code
that copies valuetype argument and result values for collocated
invocations. Specify this option to disable strict compliance and
generate more efficient code.

--case-sensitive

The semantics of OMG IDL forbid identifiers in the same scope to differ
only in case. This option relaxes these semantics, but is only provided
for backward compatibility with non-compliant IDL.
 32

Translating IDL to Java
Translating IDL to Java

Synopsis jidl [options] idl-files...

Description Translates IDL files into Java files.

For every construct in the IDL file that maps to a Java class or interface, a
separate class file is generated. Directories are automatically created for
those IDL constructs that map to a Java package (e.g., a module).

jidl can also add comments from the IDL file starting with /** to the
generated Java files. This allows you to use the javadoc tool to produce
documentation from the generated Java files. See “Using javadoc” on
page 43 for additional information.

Options for jidl -h, --help
-v, --version
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
-E
--no-skeletons
--locality-constrained
--all
--tie
--file-list FILE
--no-local-copy
--case-sensitive

These options are the same as for the idl command.

--no-comments

The default behavior of jidl is to add any comments from the IDL file
starting with /** to the generated Java files. Specify this option if you
don’t want these comments added to your Java files.

--package PKG

Specifies a package name for the generated Java classes. Each class
will be generated relative to this package.

--prefix-package PRE PKG
33

CHAPTER 2 | Generating Code with Orbacus
Specifies a package name for a particular prefix1. Each class with this
prefix will be generated relative to the specified package.

--auto-package

Derives the package names for generated Java classes from the IDL
prefixes. The prefix ooc.com, for example, results in the package
com.ooc.

--output-dir DIR

Specifies a directory where jidl will place the generated Java files.
Without this option the current directory is used.

--clone

Generates a clone method for struct, union, enum, exception,
valuetype and abstract interface types. For valuetypes, only an abstract
method is generated. The valuetype implementer must supply an
implementation for clone.

--impl

Generates example servant implementation classes. For IDL interface
types, a class is generated in the same package as the interface
classes, having the same name as the interface with the suffix _impl.
The generated class extends the POA class of the interface. For IDL
valuetypes, a class is generated in the same package as the valuetype
with the suffix ValueFactory_impl. You must not use --no-skeletons
in combination with this option.

--impl-tie

Similar to --impl, but implementation classes for interfaces implement
the Operations interface to facilitate the use of TIE classes. You must
not use --no-skeletons in combination with this option.

--with-interceptor-args

Generate code with support for arguments, result and exception list
values for interceptors. Note that use of this option will generate
proprietary stubs and skeletons which are not compatible with ORBs
from other vendors.

1. Prefix refers to the value of the #pragma prefix statement in an IDL file. For
example, the statement #pragma prefix ““ooc.com” defines ooc.com as the
prefix. The prefix is included in the Interface Repository identifiers for all types
defined in the IDL file.
 34

Translating IDL to HTML
Translating IDL to HTML

Synopsis hidl [options] idl-files...

Description Creates HTML files from IDL files.

An HTML file is generated for each module and interface defined in an IDL
file. Comments in the IDL file are preserved and javadoc style keywords are
supported. The section “Documenting IDL Files” on page 41 provides more
information.

Options for hidl -h, --help
-v, --version
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
--all
--case-sensitive

These options are the same as for the idl command.

--no-sort

Don’t sort symbols alphabetically.

--ignore-case

Sort case-insensitive.

--use-tables

Use tables for indices.

--alt-indent

Use alternative indentation for argument lists. The alternative format
requires less horizontal space, which is in particular useful if the
names of the operation or arguments are long.

--output-dir DIR

Write HTML files to the directory DIR.
35

CHAPTER 2 | Generating Code with Orbacus
Translating IDL to RTF

Description ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is
generated for each module and interface defined in an IDL file. Comments in
the IDL file are preserved and javadoc style keywords are supported. The
section “Documenting IDL Files” on page 41 provides more information.

Options for ridl -h, --help
-v, --version
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
--all
--case-sensitive

These options are the same as for the idl command.

--no-sort
--ignore-case
--use-tables
--alt-indent

These options are the same as for the hidl command.

--output-dir DIR

Write RTF files to the directory DIR.

--single-file FILE

Create a single file called FILE.rtf.

--with-index

Create index entries.

--font PARA NAME
--font-size PARA SIZE

Specify the font name or size for a particular paragraph type. The paragraph
types and their default values are shown below.

Type Font Size

body roman Times New Roman 12pt
 36

Translating IDL to RTF
entry swiss Tahoma 12pt

extra same as body 12pt

heading swiss Arial 18pt

index same as heading 15pt

literal roman Courier New 10pt

symbol roman Symbol 12pt

Type Font Size
37

CHAPTER 2 | Generating Code with Orbacus
Generating C++ from an Interface Repository

Synopsis irgen name-base

Description irgen generates C++ code directly from the contents of an Interface
Repository. See “The IDL-to-C++ Translator and the Interface Repository”
on page 39 for an example.

Options for irgen -h, --help
-v, --version
--no-skeletons
--no-type-codes
--locality-contrained
--no-virtual-inheritance
--tie
--impl
--impl-all
--c-suffix SUFFIX
--h-suffix SUFFIX
--skel-suffix SUFFIX
--header-dir DIR
--other-header-dir DIR
--output-dir DIR
--file-list FILE
--dll-import DEF
--with-interceptors-args
--no-local-copy

These options are the same as for the idl command.

The argument to irgen is the pathname to use as the base name of the
output filenames. For example, if the pathname you supply is
output/file, then irgen will produce output/file.cpp,
output/file.h, output/file_skel.cpp and output/file_skel.h.

Note that irgen will generate code for all of the type definitions
contained in the Interface Repository server.

See Chapter 12 for more information on the Interface Repository.
 38

The IDL-to-C++ Translator and the Interface Repository
The IDL-to-C++ Translator and the Interface
Repository

Private Versus Global Interface
Repositories

The Orbacus IDL-to-C++ and IDL-to-Java translators internally use the
Interface Repository for generating code. That is, these programs have their
own private Interface Repository that is fed with the specified IDL files. All
code is generated from that private Interface Repository.

However it is also possible to generate C++ code from a global Interface
Repository.

Steps To generate C++ code from a global Interface Repository:

1. Start the Interface Repository using the command irserv.

2. Feed the Interface Repository the IDL code, using the command
irfeed.

3. Finally, use the irgen command to generate the C++ code.

Example For example:

irserv --ior > IntRep.ref &
irfeed -ORBrepository ‘cat IntRep.ref‘ file.idl
irgen -ORBrepository ‘cat IntRep.ref‘ file

By comparison, the IDL-to-C++ translator idl performs all these steps at
once, in a single process using a private Interface Repository. Thus, you only
have to run a single command:

idl file.idl

See Chapter 12 for more information on the Interface Repository.
39

CHAPTER 2 | Generating Code with Orbacus
Include Statements

Using #include statements If you use the #include statement in your IDL code, the Orbacus
IDL-to-C++ translator idl does not create code for included IDL files.
Instead, the translator inserts the appropriate #include statements in the
generated header files.

Restrictions There are several restrictions on where to place the #include statements in
your IDL files for this feature to work properly:

• #include may only appear at the beginning of your IDL files. All
#include statements must be placed before the rest of your IDL code.1

• Type definitions, such as interface or struct definitions, may not be
split among several IDL files. In other words, no #include statement
may appear within such definitions.

If you do not want these restrictions to be applied, you can use the
translator option --all with idl. With this option, the IDL-to-C++
translator treats code from included files as if the code appeared in your IDL
file at the position where it is included. This means that the compiler will
not place #include statements in the automatically-generated header files,
regardless of whether the code comes directly from your IDL file or from files
included by your IDL file.

Note that when generating code from an Interface Repository using irgen,
the translator behaves identically to idl with the --all option. In other
words, the irgen command does not place #include statements in the
generated files, but rather generates code for all IDL definitions in the
Interface Repository.

1. Preprocessor statements like #define or #ifdef may be placed before your
#include statements.
 40

Documenting IDL Files
Documenting IDL Files

Overview With the Orbacus IDL-to-HTML and IDL-to-RTF translators, hidl and ridl,
you can easily generate HTML and RTF files containing IDL interface
descriptions. The translators generate a nicely-formatted file for each IDL
module and interface.

Example Figure 1 shows an HTML example:

Syntax The formatting syntax supported by hidl and ridl is similar to that used by
javadoc. The following keywords are recognized:

Figure 1: Documentation generated with the IDL-to-HTML translator
41

CHAPTER 2 | Generating Code with Orbacus
@author author

Denotes the author of the interface.

@exception exception-name description

Adds an exception description to the exception list of an operation.

@member member-name description

Adds a member description to the member list of a struct, union, enum
or exception type.

@param parameter-name description

Adds a parameter description to the parameter list of an operation.

@return description

Adds descriptive text for the return value of an operation.

@see reference

Adds a “See also” note.

@since since-text

Comment related to the availability of new features.

@version version

The interface’s version number.

Like javadoc, hidl and ridl use the first sentence in the documentation
comment as the summary sentence. This sentence ends at the first period
that is followed by a blank, tab or line terminator, or at the first @.

ridl understands most basic HTML tags and produces an equivalent format
in the generated RTF files. The following HTML tags are supported:

 <CODE> <DD> <DL> <DT> <HR> <I> <P> <TABLE>
<TD> <TR> <U>
 42

Using javadoc
Using javadoc

Adding IDL Comments If not explicitly suppressed with the --no-comments option, the Orbacus
IDL-to-Java translator jidl adds IDL comments starting with /** to the
generated Java files, so that javadoc can be used to generate
documentation (as long as the comments are in a format compatible with
javadoc).

Example Here is an example that shows how to include documentation in an IDL
interface description file. Let’s assume we have an interface I in a module M:

// IDL

module M
{

/**
*
* This is a comment related to interface I.
*
* @author Uwe Seimet
*
* @version 1.0
*
**/
interface I
{

/**
*
* This comment describes exception E.
*
**/
exception E { };
43

CHAPTER 2 | Generating Code with Orbacus
When running jidl on this file, the comments are automatically added to
the generated Java files M/I.java and M/IPackage/E.java. For I.java, the
generated code looks as follows:

/**
*
* The description for operation S.
*
* @param arg A dummy argument.
*
* @return A dummy string.
*
* @exception E Raised under certain circumstances.
*
**/
string S(in long arg)

raises(E);
};
};

// Java

package M;

//
// IDL:M/I:1.0
//
/**
* This is a comment related to interface I.
*
* @author Uwe Seimet
*
* @version 1.0
*
**/
 44

Using javadoc
Note that jidl automatically inserts the fully-qualified Java name for the
exception E (M.IPackage.E in this case).

These are the contents of IPackage/E.java:

public interface I extends org.omg.CORBA.Object
{

//
// IDL:M/I/S:1.0
//
/**
*
* The description for operation S.
*
* @param arg A dummy argument.
*
* @return A dummy string.
*
* @exception M.IPackage.E Raised under certain

circumstances.
*
**/
public String
S(int arg)

throws M.IPackage.E;
}

// Java

package M.IPackage;

//
// IDL:M/I/E:1.0
//
/**
*
* This comment describes exception E.
*
**/
final public class E extends org.omg.CORBA.UserException
{

public
E()
{
}

}

45

CHAPTER 2 | Generating Code with Orbacus
Now you can use javadoc to extract the comments from the generated Java
files and produce nicely-formatted HTML documentation.

For additional information please refer to the javadoc documentation.
 46

CHAPTER 3

ORB and Object
Adapter
Initialization
This chapter describes the initialization of client and server
ORBs in various languages.

In this chapter This chapter contains the following sections:

Initializing the C++ ORB page 48

Initializing the Java ORB page 49

Object Adapter Initialization page 50

Configuring the ORB and Object Adapter page 51

Using POA Managers page 71

ORB Destruction page 82

Server Event Loop page 83
47

CHAPTER 3 | ORB and Object Adapter Initialization
Initializing the C++ ORB
In C++, the ORB is initialized with CORBA::ORB_init(). For example:

The CORBA::ORB_init() call interprets arguments starting with -ORB and
-OA. All of these arguments, passed through the argc and argv parameters,
are automatically removed from the argument list.

// C++
int main(int argc, char* argv[])
{

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
// ...

}

 48

Initializing the Java ORB
Initializing the Java ORB
The ORB implementation included in JDK 1.3 and newer can be considered
a “minimal” ORB, suitable primarily for use in basic client-oriented tasks. In
order to use the Orbacus ORB instead of the JDK’s default ORB, you must
start your application with the following properties:

java -Dorg.omg.CORBA.ORBClass=com.ooc.CORBA.ORB \
-Dorg.omg.CORBA.ORBSingletonClass=com.ooc.CORBA.ORBSingleton \
MyApp

An alternative is to set these properties in your program before initializing
the ORB. For example:

The ORB.init() call interprets arguments starting with -ORB and -OA. Unlike
the C++ version, these arguments are not removed (see “Advanced
Property Usage” on page 69 for more information).

// Java
import org.omg.CORBA.*;
public static void main(String args[])
{

java.util.Properties props = System.getProperties();
props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
props.put("org.omg.CORBA.ORBSingletonClass",

"com.ooc.CORBA.ORBSingleton");

ORB orb = ORB.init(args, props);
// ...

}

49

CHAPTER 3 | ORB and Object Adapter Initialization
Object Adapter Initialization
In Orbacus, the object adapter is not initialized until the Root POA is first
resolved. For example:

Upon completion, the ORB will have created the Root POA and its POA
Manager, and will have initialized the ORB’s server-side functionality.

// C++
CORBA::Object_var poaObj =

orb -> resolve_initial_references("RootPOA");

// Java
org.omg.CORBA.Object poaObj =

orb.resolve_initial_references("RootPOA");
 50

Configuring the ORB and Object Adapter
Configuring the ORB and Object Adapter

Overview Orbacus applications can tailor the behavior of the ORB and object adapters
using a collection of properties1. These properties can be defined in a
number ways:

• using the Windows Registry (Windows NT/C++)

• using a configuration file

• using system properties (Java)

• using command-line options

• programmatically at run-time

The Orbacus configuration properties are described in the following sections.
Unless otherwise noted, every property can be used in both C++ and Java
applications.

In this section This section contains the following subsections:

1. Note that these properties have nothing to do with the Property Service as
described in Appendix B.

ORB Properties page 52

OA Properties page 59

Command-line Options page 62

Using a Configuration File page 64

Using the Windows NT Registry page 65

Defining Properties page 66

Precedence of Properties page 68

Advanced Property Usage page 69
51

CHAPTER 3 | ORB and Object Adapter Initialization
ORB Properties

ooc.config Value: filename

Selects the default configuration file. This property is only available in Java
applications and is equivalent to the ORBACUS_CONFIG environment variable
in C++. See “Using a Configuration File” on page 64 for more information
on configuration files.

ooc.oci.client Value: string

Specifies a comma-separated list of client-side transport plug-ins to be
installed. The plug-ins are installed in the order they appear in the list. The
default value is iiop.

ooc.oci.server Value: string

Specifies a comma-separated list of server-side transport plug-ins to be
installed. The plug-ins are installed in the order they appear in the list. The
default value is iiop.

ooc.oci.plugin.name Value: string

Specifies a plug-in’s shared library (C++) or initialization class (Java). In
most cases this property is not necessary because the ORB attempts to
locate the library or class using a well-known name. In C++, the
well-known name is libOCI_name.so (UNIX), libOCI_name.sl (HP-UX) or
OCI_name.dll (Windows), where name is the plug-in name (e.g., iiop).
The ORB searches for this shared library in the library search path.
Similarly, in Java the ORB searches the class path for a class named
com.ooc.OCI.name.

ooc.orb.client_shutdown_timeout Value: timeout >= 0

If the client is not able to gracefully disconnect from the server in timeout
seconds, a connection shutdown is forced. If this property is set to zero,
then the client will not force a connection shutdown. If the property is not
set, a default timeout value of two seconds is used.
 52

Configuring the ORB and Object Adapter
ooc.orb.client_timeout Value: timeout >= 0

The client actively closes a connection that has been idle for timeout
seconds once that connection has no more outstanding replies. Note that
the application must use the threaded client-side concurrency model if
connection timeouts are desired. If this property is set to zero, or not set at
all, then the client does not close idle connections. Note that a policy can
also be set on the ORB or on individual object references. See
“OB::ACMTimeoutPolicy” on page 303 for more information.

ooc.orb.conc_model Value: reactive, threaded

Selects the client-side concurrency model. The reactive concurrency model
is not currently available in Orbacus for Java. The default value is threaded
for both C++ and Java applications. See Chapter 16 for more information
on concurrency models.

ooc.orb.default_init_ref Value: URL

Specifies a partial URL. If an application calls the ORB operation
resolve_initial_references and no match is found, the ORB appends a
slash (‘/’) character and the service identifier to the specified URL and
invokes string_to_object to obtain the initial reference.

ooc.orb.default_wcs Value: string

Specifies the default wide character code set for the ORB. Note that the
CORBA specification states that a default wide character code set does not
exist. Therefore, this option should only be used when communicating with
a broken ORB that expects a particular wide character code set and does
not correctly support the negotiation of wide character code sets.

ooc.orb.extended_wchar Value: true,false

Enables transfers of wide characters (IDL types wchar and wstring) with
IIOP 1.0, using Unicode as the code set. This proprietary extension is
required in order to exchange wide characters with Orbix/E, which only
supports IIOP 1.0. The default is false.

ooc.orb.giop.max_message_size Value: max >= 0
53

CHAPTER 3 | ORB and Object Adapter Initialization
Specifies the maximum GIOP message size in bytes. If set to 0, no
maximum message size will be used. If a message is sent or received that
exceeds the maximum size, the ORB will raise the IMP_LIMIT system
exception.

ooc.orb.id Value: id

Specifies the identifier of the ORB to be used by the application.

ooc.orb.modules Value: string

Specifies a comma-separated list of modules to be loaded dynamically by
the ORB. The ORB locates the shared library for a module using a
well-known name: libname.so (UNIX), libname.sl (HP-UX) or name.dll
(Windows), where name is the module name. The ORB then invokes the
initialization function init_module_name in that shared library. The
initialization function takes no arguments and returns void. A module
initialization function will typically register an ORBInitializer, which allows
interceptors and initial references to be installed. This property is only
supported in C++. In Java, the standard mechanism for installing an
ORBInitializer should be used. See [7] for more information on
ORBInitializers.

ooc.orb.module.name Value: string

Specifies the name of a module’s shared library or DLL. In most cases this
property is not necessary because the ORB attempts to locate the library
using a well-known name, as described above for the ooc.orb.modules
property. The value of this property can be a simple filename, in which case
the ORB will attempt to load the library using the search path, or it can be
an absolute pathname.

ooc.orb.native_cs Value: string

Specifies the native character code set for the ORB. The default is ISO
8859-1.

ooc.orb.native_wcs Value: string

Specifies the native wide character code set for the ORB. The default is
UTF-16.
 54

Configuring the ORB and Object Adapter
ooc.orb.policy.connect_timeout Value: timeout >= -1

Sets the OB::ConnectTimeoutPolicy at the ORB level. See Appendix B for
more information on this policy. The default value is -1.

ooc.orb.policy.connection_reuse Value: true,false

Sets the OB::ConnectionReusePolicy at the ORB level. See Appendix B for
more information on this policy. The default value is true.

ooc.orb.policy.interceptor Value: true,false

Sets the OB::InterceptorPolicy at the ORB level. See Appendix B for more
information on this policy. The default value is true.

ooc.orb.policy.locate_request Value: true,false

Sets the OB::LocateRequestPolicy at the ORB level. See Appendix B for
more information on this policy. The default value is false.

ooc.orb.policy.location_transpare
ncy

Value: strict,relaxed

Sets the OB::LocationTransparencyPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is
relaxed.

ooc.orb.policy.protocol Value: string

Sets the OB::ProtocolPolicy at the ORB level. See Appendix B for more
information on this policy.

ooc.orb.policy.rebind Value: transparent,no_rebind,no_reconnect

Sets the Messaging::RebindPolicy at the ORB level. The default value is
transparent.

ooc.orb.policy.request_timeout Value: timeout >= -1

Sets the OB::RequestTimeoutPolicy at the ORB level. See Appendix B for
more information on this policy. The default value is -1.
55

CHAPTER 3 | ORB and Object Adapter Initialization
ooc.orb.policy.retry Value: never,strict,always

Sets the mode attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is strict.

ooc.orb.policy.retry.interval Value: timeout >= 0

Sets the interval attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is 0.

ooc.orb.policy.retry.max Value: timeout >= 0

Sets the max attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is 1.

ooc.orb.policy.retry.remote Value: true,false

Sets the remote attribute of the OB::RetryPolicy at the ORB level. See
Appendix B for more information on this policy. The default value is false.

ooc.orb.policy.sync_scope Value: none,transport,server,target

Sets the Messaging::SyncScopePolicy at the ORB level. The default value
is transport.

ooc.orb.policy.timeout Value: timeout >= -1

Sets the OB::TimeoutPolicy at the ORB level. See Appendix B for more
information on this policy. The default value is -1.

ooc.orb.raise_dii_exceptions Value: true, false

Determines whether system exceptions that occur during Dynamic
Invocation Interface (DII) operations are raised immediately or are stored
only in the CORBA::Environment object. This property is only available for
Java applications. The default value is true. Note that specifying a value of
false may result in unexpected behavior.

ooc.orb.server_name Value: string
 56

Configuring the ORB and Object Adapter
Specifies the name of the server, as registered with the Implementation
Repository (IMR). Note that you should not put this property in a
configuration file that is shared by several IMR-enabled servers.
Furthermore, this property should not be specified for servers that are not
registered with the IMR.

ooc.orb.server_shutdown_timeou
t

Value: timeout >= 0

If the server is not able to gracefully disconnect from the client in timeout
seconds, a connection shutdown is forced. If this property is set to zero,
then the server will not force a connection shutdown. If the property is not
set, a default timeout value of two seconds is used.

ooc.orb.server_timeout Value: timeout >= 0

The server actively closes a connection that has been idle for timeout
seconds once that connection has no more outstanding replies. Note that
the application must use one of the threaded server-side concurrency model
if connection timeouts are desired. If this property is set to zero, or not set at
all, then the server does not close idle connections.

ooc.orb.use_type_code_cache Value: true, false

Determines whether the ORB caches TypeCodes. When the TypeCode
cache is disabled, the ORB creates a new TypeCode object for each
TypeCode received over the wire, including those associated with Any
values. When the TypeCode cache is enabled, only one TypeCode object is
instantiated for each TypeCode with a unique, non-empty repository id. The
default value is true.

Note that there is one rare case where the cache may not work as expected:
if an application requires the received TypeCode to be equal to the one that
was transmitted, where “equal” implies a successful result from the
TypeCode::equal() operation. Although TypeCodes with the same
repository id are always equivalent, they are not always equal because of
TypeCode compaction. However, if the cache is enabled, two TypeCode
objects received over the wire with the same repository id will always be
equal. For more information on the semantics of the equal() and
equivalent() TypeCode operations, see [3].

ooc.orb.service.name Value: ior
57

CHAPTER 3 | ORB and Object Adapter Initialization
Adds an initial service to the ORB’s internal list. This list is consulted when
the application invokes the ORB operation resolve_initial_references.
name is the key that is associated with an IOR or URL. For example, the
property ooc.orb.service.NameService adds “NameService” to the list of
initial services. See “The BootManager” on page 138 for more information.

ooc.orb.trace.connections Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to connection establishment and closure. A level of 1 or higher
produces information about connection events, and a level of 2 or higher
produces code set exchange information. The default level is 0, which
produces no output.

ooc.orb.trace.retry Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to transparent re-sending of failed messages. A level of 1 or higher
produces information about re-sending of messages, and a level of 2 or
higher also produces information about use of individual IOR profiles. The
default level is 0, which produces no output.
 58

Configuring the ORB and Object Adapter
OA Properties

Overview Configuring an object adapter is achieved by setting properties on POA
Managers. These properties are grouped into two categories: global
properties, and properties specific to a particular POA Manager. Global
properties have the prefix ooc.orb.oa, while properties specific to a
particular POA Manager have the prefix ooc.orb.poamanager.name, where
name is the name of the POA Manager (see “Using POA Managers” on
page 71).

Unless otherwise noted, a POA Manager will search for configuration
properties using the following algorithm:

• First, use properties defined specifically for that POA Manager

• Next, use global properties

• Finally, use default settings.

See “Using POA Managers” on page 71 for more information on POA
Managers.

ooc.orb.oa.conc_model Value: reactive, threaded, thread_per_client, thread_per_request,
thread_pool, leader_follower

Selects the server-side concurrency model. The default value is
thread_per_client. The reactive and leader_follower concurrency
models are only available in Orbacus for C++. See Chapter 16 for more
information on concurrency models.

If this property is set to thread_pool, then the property
ooc.orb.oa.thread_pool determines how many threads are in the pool.

If this property is set to leader_follower, then the property
ooc.orb.oa.leader_follower_pool determines how many threads are to be
used.
59

CHAPTER 3 | ORB and Object Adapter Initialization
This property is also used to determine the default value of the
communications concurrency model for POA Managers (see
ooc.orb.poamanager.manager.conc_model below). The following table
summarises how the setting of this property determines the POA Manager
defaults:

ooc.orb.oa.endpoint Value: string

Specifies a comma-separated list of endpoints for the Root POA Manager.
The default value is iiop. See “Endpoints” on page 78 for more information.

ooc.orb.oa.leader_follower_pool Value: n > 0

Determines the number of threads in the pool used by the leader_follower
concurrency model. The default value is 10. This property is only effective
when the ooc.orb.oa.conc_model property has the value leader_follower.

ooc.orb.oa.thread_pool Value: n > 0

Determines the number of threads to reserve for servicing incoming
requests. The default value is 10. This property is only effective when the
ooc.orb.oa.conc_model property has the value thread_pool.

ooc.orb.oa.version Value: 1.0, 1.1 or 1.2

Table 1: POA Managers’ Communications Concurrency Model

Value of ooc.orb.oa.conc_model ooc.orb.poamanager.<manager>.
conc_model default

reactive reactive

leader_follower leader_follower

threaded threaded

thread_per_client threaded

thread_per_request threaded

thread_pool threaded
 60

Configuring the ORB and Object Adapter
Specifies the GIOP version to be used in object references. The default value
is 1.2. This option is useful for backward compatibility with older ORBs that
reject object references using a newer version of the protocol.

ooc.orb.poamanager.manager.co
nc_model

Value: reactive, threaded

Specifies the communications concurrency model used by the POA Manager
with name manager. The default value is determined by
ooc.orb.oa.conc_model. See Chapter 16 for more information on
concurrency models.

ooc.orb.poamanager.manager.en
dpoint

Value: string

Specifies a comma-separated list of endpoints for the POA Manager with
name manager. The default value is iiop. See “Endpoints” on page 78 for
more information.

ooc.orb.poamanager.manager.lea
der_follower_pool

Value: n > 0

Determines the number of threads in the pool used by the leader_follower
concurrency model. The default value is 10. This property is only effective
when the ooc.orb.poamanager.manager.conc_model property has the
value leader_follower.

ooc.orb.poamanager.manager.ver
sion

Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references generated by a
particular POA Manager. This option is useful for backward compatibility
with older ORBs that reject object references using a newer version of the
protocol. The default value is determined by the value of
ooc.orb.oa.version.
61

CHAPTER 3 | ORB and Object Adapter Initialization
Command-line Options
There are equivalent command-line options for many of the Orbacus
properties. The options and their equivalent property settings are shown in
the following table. Refer to “ORB Properties” on page 52 for a description
of the properties.

Option Property

-OAreactive ooc.orb.oa.conc_model=reactive

-OAthreaded ooc.orb.oa.conc_model=threaded

-OAthread_per_client ooc.orb.oa.conc_model=thread_per_client

-OAthread_per_request ooc.orb.oa.conc_model=thread_per_request

-OAthread_pool n ooc.orb.oa.conc_model=thread_pool

ooc.orb.oa.thread_pool=n

-OAleader_follower n ooc.orb.oa.conc_model=leader_follower

ooc.orb.oa.leader_follower_pool=n

-OAversion version ooc.orb.oa.version=version

-ORBDefaultInitRef URL ooc.orb.default_init_ref=URL

-ORBid id ooc.orb.id=id

-ORBInitRef name=ior ooc.orb.service.name=ior

-ORBnative_cs name ooc.orb.native_cs=name

-ORBnative_wcs name ooc.orb.native_wcs=name

-ORBnaming ior ooc.orb.service.NameService=ior

-ORBproperty name=value name=value

-ORBreactive ooc.orb.conc_model=reactive

-ORBrepository ior ooc.orb.service.InterfaceRepository=ior

-ORBServerId string ooc.orb.server_name=string
 62

Configuring the ORB and Object Adapter
A few additional command-line options are supported that do not have
equivalent properties. These options are described in the following table.

-ORBservice name ior ooc.orb.service.name=ior

-ORBthreaded ooc.orb.conc_model=threaded

-ORBtrace_connections level ooc.orb.trace.connections=level

-ORBtrace_retry level ooc.orb.trace.retry=level

Option Property

Option Description

-ORBconfig filename Causes the ORB to load the configuration file
specified by filename.

-ORBversion Causes the ORB to print its version to standard
output.
63

CHAPTER 3 | ORB and Object Adapter Initialization
Using a Configuration File
A convenient way to define a group of properties is to use a configuration
file. A sample configuration file is shown below:

Note that trailing blanks are not ignored but are a part of the property.

You can define the name of the configuration file1 using a command-line
option, an environment variable (C++), or a system property (Java):

• Command-line option:
-ORBconfig filename

• Environment variable:
ORBACUS_CONFIG=filename

• Java system property:
ooc.config=filename

When an ORB is initialized, it first checks for the presence of the
environment variable or system property. If present, the ORB loads the
configuration file. Next, the ORB loads the configuration file specified by the
-ORBconfig option. Therefore, the properties loaded from the file specified
by -ORBconfig will override any existing properties, including those loaded
by a configuration file specified in the environment variable or system
property. See “Precedence of Properties” on page 68 for more information.

Configuration files are only loaded during ORB initialization. Changes made
to a configuration file after an ORB has been initialized have no effect on
that ORB.

Concurrency models
ooc.orb.conc_model=threaded
ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=5

Initial services
ooc.orb.service.NameService=corbaloc::myhost:7000/NameService
ooc.orb.service.EventService=corbaloc::myhost:7001/DefaultEventC

hannel
ooc.orb.service.TradingService=corbaloc::myhost:7002/TradingServ

ice

1. Orbacus for Java also accepts a URL specification as the filename.
 64

Configuring the ORB and Object Adapter
Using the Windows NT Registry
Another convenient mechanism for use with C++ applications under
Windows NT is to use the system registry1. Properties can be stored in the
registry under the following registry keys:

HKEY_LOCAL_MACHINE\Software\OOC\Properties
HKEY_CURRENT_USER\Software\OOC\Properties

Individual properties are defined as sub-keys of the base. For example, the
property ooc.orb.trace.connections=5 is stored in the registry as the
following key containing a value named connections with a REG_SZ data
member equal to “5”:

Software\OOC\Properties\ooc\orb\trace

RegUpdate The Orbacus distribution includes a utility called RegUpdate. The tool first
removes all sub-keys defined under the specified registry key. Next, all
values defined in an Orbacus configuration file are transferred to the registry.

Synopsis RegUpdate HKEY_LOCAL_MACHINE|HKEY_CURRENT_USER config-file

Example: RegUpdate HKEY_LOCAL_MACHINE ob.conf

This command reads the properties defined in the file ob.conf and writes
the values under the following registry key:

HKEY_LOCAL_MACHINE\Software\OOC\Properties

1. Use caution when defining Orbacus properties in the registry, as they become
global properties that will be used in every Orbacus for C++ application. For
example, subtle errors can occur if the ooc.iiop.port property is defined on a
global basis.
65

CHAPTER 3 | ORB and Object Adapter Initialization
Defining Properties

Properties in Java Java applications can use the standard Java mechanism for defining system
properties because Orbacus will also search the system properties during
ORB initialization.

For example:

2 Obtain the system properties.

3-4 Define Orbacus properties.

5 Initialize the ORB.

Java virtual machines typically allow you to define system properties on the
command line. For example, using Sun’s JVM you can do the following:

java -Dooc.orb.oa.thread_pool=20 MyServer

You can also use the java.util.Properties object that is passed to the
ORB.init() method to provide Orbacus property definitions:

2 Create a java.util.Properties object to hold our properties.

3-4 Define Orbacus properties.

5 Initialize the ORB using the java.util.Properties object.

1 // Java
2 java.util.Properties props = System.getProperties();
3 props.put("ooc.orb.oa.conc_model", "thread_pool");
4 props.put("ooc.orb.oa.thread_pool", "20");
5 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

1 // Java
2 java.util.Properties props = new java.util.Properties();
3 props.put("ooc.orb.oa.conc_model", "thread_pool");
4 props.put("ooc.orb.oa.thread_pool", "20");
5 org.omg.CORBA.ORB orb = orb.omg.CORBA.ORB.init(args, props);
 66

Configuring the ORB and Object Adapter
Properties in C++ In C++, the Orbacus-specific class OB::Properties can be used to define
properties:

For example, to add the threaded concurrency model to a property set that
is used to initialize the ORB:

2-3 Create an OB::Properties object that is based on the default properties.
This is important because, unlike org.omg.CORBA.ORB.init,
OBCORBA::ORB_init does not read the default properties if the property
parameter is not null.

4 Define Orbacus property.

5 Initialize the ORB using the Orbacus-specific OBCORBA::ORB_init operation.

// C++
class Properties
{

// ...
public:

Properties();
Properties(Properties_ptr p);
~Properties();

static Properties_ptr _duplicate(Properties_ptr p);
static Properties_ptr _nil();

static Properties_ptr getDefaultProperties();

void setProperty(const char* key, const char* value);
const char* getProperty(const char* key) const;
// ...

};

1 // C++
2 OB::Properties_var dflt =
OB::Properties::getDefaultProperties();
3 OB::Properties_var props = new OB::Properties(dflt);
4 props -> setProperty("ooc.orb.conc_model", "threaded");
5 CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);
67

CHAPTER 3 | ORB and Object Adapter Initialization
Precedence of Properties
Given that properties can be defined in several ways, it’s important to
establish the order of precedence used by Orbacus when collecting and
processing the property definitions. The order of precedence is listed below,
from highest to lowest. Properties defined at a higher precedence override
the same properties defined at a lower precedence.

1. Command-line options

2. Configuration file specified at the command-line

3. User-supplied properties

4. Configuration file specified by the ORBACUS_CONFIG environment
variable (C++) or the ooc.config system property (Java)

5. System properties (Java only)

6. HKEY_CURRENT_USER\Software\OOC\Properties (Windows NT/C++
only)

7. HKEY_LOCAL_MACHINE\Software\OOC\Properties (Windows NT/C++
only)

For example, a property defined using a command-line option overrides the
same property defined in a configuration file.
 68

Configuring the ORB and Object Adapter
Advanced Property Usage
With the methods for ORB initialization discussed in the previous sections,
the command-line arguments are not processed until a call to
CORBA::ORB_init (C++), OBCORBA::ORB_init (C++), or
org.omg.CORBA.ORB.init (Java). Hence, the set of properties that will be
used by the ORB is not available until after the ORB is initialized. This poses
a problem if the properties need to be validated prior to ORB initialization.

If you need access to an ORB’s property set before it is initialized, then you
may elect to use the Orbacus-specific operations OB::ParseArgs (C++) or
com.ooc.CORBA.ORB.ParseArgs (Java).

Examples The following examples check the value of the ooc.orb.conc_model
property to ensure that it is set to threaded. If not, the code chooses the
threaded concurrency model.

5-6 Create an OB::Properties object that is based on the default properties.

7 Initialize the properties for the ORB. After invoking OB::ParseArgs, props
contains the ORB properties and argv no longer contains any -ORB or -OA
command-line arguments. The OB::ParseArgs operation takes an optional
Logger object, which ParseArgs will use to display any warning or error
messages. In this example, a custom Logger object is not used, so the code
passes a nil value.

1 // C++
2 #include <OB/Logger.h>
3 #include <OB/Properties.h>
4 ...
5 OB::Properties_var dflt =
OB::Properties::getDefaultProperties();
6 OB::Properties_var props = new OB::Properties(dflt);
7 OB::ParseArgs(argc, argv, props, OB::Logger::_nil());
8 const char* orbModel = props ->
getProperty(“ooc.orb.conc_model”);
9 if(strcmp(orbModel, “threaded”) != 0)
10 {
11 props -> setProperty(“ooc.orb.conc_model”, “threaded”);
12 }
13 CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);
69

CHAPTER 3 | ORB and Object Adapter Initialization
8-12 Retrieve the ooc.orb.conc_model property and set it to threaded if its value
is not valid.

13 Initialize the ORB.

2 Create a java.util.Properties object.

3 Initialize the properties for the ORB. After invoking
com.ooc.CORBA.ORB.ParseArgs, props contains the ORB properties. The
return value of ParseArgs is a string array with all -ORB and -OA arguments
removed. As in the C++ example, a Logger object is not used.

4-8 Retrieve the ooc.orb.conc_model property and set it to threaded if its value
is not valid.

9 Initialize the ORB.

1 // Java
2 java.util.Properties props = System.getProperties();
3 args = com.ooc.CORBA.ORB.ParseArgs(args, props, null);
4 String orbModel = props.get(“ooc.orb.conc_model”);
5 if(!orbModel.equals(“threaded”))
6 {
7 props.put(“ooc.orb.conc_model”, “threaded”);
8 }
9 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(arg, props);
 70

Using POA Managers
Using POA Managers
The CORBA specification states that a POA Manager is used to control the
flow of requests to one or more POAs. In Orbacus, each POA Manager also
encapsulates a set of network endpoints on which a server listens for new
connections. This design provides applications with a great deal of
flexibility:

• endpoints can be activated and deactivated on demand

• a group of endpoints can be controlled using a single POA Manager
and serviced by one or more POAs

In this section This section contains the following sections:

The Root POA Manager page 72

Anonymous POA Managers page 73

The POA Manager Factory page 74

Creating a POA Manager page 75

POA Manager Policies page 77

Endpoints page 78

Command-line Options and Endpoints page 79

Dispatching Requests page 80

Callbacks page 81
71

CHAPTER 3 | ORB and Object Adapter Initialization
The Root POA Manager
As its name suggests, the Root POA Manager is the POA Manager of the
Root POA. When the Root POA is first resolved using
resolve_initial_references, the Root POA Manager is automatically
created to manage the Root POA. For administrative purposes, the name of
the Root POA Manager is “RootPOAManager”.
 72

Using POA Managers
Anonymous POA Managers
An application can implicitly create POA Managers by supplying a nil value
for the POA Manager argument to the create_POA operation. In fact, this is
the only portable means of creating POA Managers.1 In this text, we’ll refer
to POA Managers created in this way as “anonymous” POA Managers.

One limitation of anonymous POA Managers in Orbacus is that their
endpoints cannot be configured externally via properties, therefore
anonymous POA Managers always use the default endpoint configuration.
Specifically, each anonymous POA Manager will create a single IIOP
endpoint on a port chosen by the operating system. Consequently, object
references created by POAs managed by an anonymous POA Manager are
inherently transient.2

Applications which require configurable POA Managers (in addition to the
Root POA Manager) can use the proprietary POA Manager factory, described
in the next section.

1. IONA has proposed adding support for POA Manager identity. For details, see
http://cgi.omg.org/issues/orb_revision.html#Issue4297.

2. Unless of course an indirect persistence mechanism such as the Implementation
Repository is in use.
73

CHAPTER 3 | ORB and Object Adapter Initialization
The POA Manager Factory
To allow an application to easily configure POA Managers, Orbacus provides
the standard CORBA 3.0 factory interface for creating named POA
Managers:

// IDL
module PortableServer
{

local interface POAManagerFactory
{

typedef sequence< POAManager > POAManagerSeq;

exception ManagerAlreadyExists
{
};

POAManager create_POAManager(in string id,
in CORBA::PolicyList policies)

raises(ManagerAlreadyExists,
CORBA::PolicyError);

POAManagerSeq list();

POAManager find(in string id);
};

...

local interface POA
{

...

readonly attribute POAManagerFactory the_POAManagerFactory;

...
};
...
};
 74

Using POA Managers
Creating a POA Manager
The example below illustrates how to create a new POA Manager using the
POA Manager Factory. For this example, an empty policy list is used.

Here is an example in C++:

2-6 Resolve the POA Manager Factory.

7-16 Create a new POA Manager with the name “MyPOAManager”.

1 // C++
2 CORBA::Object_var poaObj =
3 orb -> resolve_initial_references("RootPOA");
4 OBPortableServer::POA_var rootPOA =
5 OBPortableServer::POA::_narrow(poaObj);
6 POAManagerFactory_var factory = rootPOA ->
7 the_POAManagerFactory();
8 OBPortableServer::POAManagerFactory_var pmFactory =
9 OBPortableServer::POAManagerFactory::_narrow(factory);
10 POAManager_var myPOAManager;
11 PolicyList pl;
12 try
13 {
14 myPOAManager = pmFactory ->
15 create_POAManager("MyPOAManager", pl);
16 }
17 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
18 {
19 // do something
20 }
75

CHAPTER 3 | ORB and Object Adapter Initialization
And in Java:

2-9 Resolve the POA Manager Factory.

10-17 Create a new POA Manager with the name “MyPOAManager”.

The ORB processes any configuration properties that were defined for the
POA Manager, and may raise the OCI::InvalidParam exception if an error
was found in the POA Manager’s endpoint configuration.

1 // Java
2 org.omg.CORBA.Object obj =
3 orb.resolve_initial_references("RootPOA");
4 org.omg.PortableServer.POA rootPOA =
5 org.omg.PortableServer.POAHelper.narrow(obj)
6 org.omg.PortableServer.POAManagerFactory factory =
7 rootPOA.the_the_POAManagerFactory();
8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
9
com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(fac
tory);
10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[0];
12 try
13 {
14 myPOAManager =
15 pmFactory.create_POAManager("MyPOAManager", pl);
16 }
17 catch(org.omg.PortableServer.POAManagerFactoryPackage.Man
agerAlreadyExists ex)
18 {
19 // do something
20 }
21 catch(org.omg.CORBA.PolicyError ex)
22 {
23 // do something
24 }
 76

Using POA Managers
POA Manager Policies

The POA Manager Factory interface allows a set of vendor-specific policies
to be used to configure the new POA Manager. For Orbacus, the proprietary
policies are:

These policies map to the POA Manager specific configuration properties
(ooc.orb.poamanager.manager.) endpoint, conc_model, and version (see

“OA Properties” on page 59). For examples of how to use these policies,
refer to “Using Policies” on page 301.

// IDL
module OBPortableServer
{
local interface POAManagerFactory :
PortableServer::POAManagerFactory
{

EndpointConfigurationPolicy
create_endpoint_configuration_policy(

in string value)
raises(CORBA::PolicyError);

CommunicationsConcurrencyPolicy
create_communications_concurrency_policy(

in short value)
raises(CORBA::PolicyError);

GIOPVersionPolicy create_giop_version_policy(
in short value)
raises(CORBA::PolicyError);

};
...

};
77

CHAPTER 3 | ORB and Object Adapter Initialization
Endpoints
Orbacus supports a flexible mechanism for configuring a POA Manager’s
endpoints via properties. A single property is used to configure the endpoints
for a particular POA Manager. The property value consists of a
comma-separated list of endpoints, with the following syntax:

plugin-id [options] [, plugin-id [options] ...]

For example:

ooc.orb.oa.endpoint=iiop --port 9998, iiop --port 9999
ooc.orb.poamanager.MyManager.endpoint=iiop

This configuration creates two IIOP endpoints for the Root POA Manager on
specific ports, and one IIOP endpoint for the POA Manager named
‘MyManager’ on an arbitrary port. Technically, the second property isn’t
necessary, because this is the default configuration if no endpoints are
specified for a POA Manager.

It is important to note that only those transport plug-ins which were
installed via the ooc.oci.server property can be used in endpoint
configuration.

When experimenting with various endpoint configurations, it can be very
useful to enable connection tracing diagnostics. With diagnostics enabled,
the ORB will display its endpoint information, allowing you to confirm that
the application’s endpoints are configured correctly. Diagnostics can be
enabled using the -ORBtrace_connections command-line option, or using
the equivalent property ooc.orb.trace.connections.

See “Configuring the ORB and Object Adapter” on page 51 for more
information on configuration properties.

For a complete description of the available transport plug-ins and their
options, see Chapter 17.
 78

Using POA Managers
Command-line Options and Endpoints
Transport plug-ins may support command-line options, and it is important
to understand the effects of using those options. They can be summarized
as follows:

• Using a plug-in’s command-line options will always add a new
endpoint configuration, i.e., command-line options do not override an
existing endpoint configuration.

• Command-line options only configure endpoints for the Root POA
Manager.

The first item is the most significant. Let’s consider some examples which
will serve to explain this issue. First, assume that there is no endpoint
configuration property for the Root POA Manager, and that we use the
following command-line options:

-IIOPhost host.abc.com -IIOPport 1234

The IIOP plug-in will convert these command-line options into the following
configuration property:

ooc.orb.oa.endpoint=iiop --host host.abc.com --port 1234

Now let’s consider a more complicated example. Suppose that we have an
existing endpoint configuration property defined, and we also use
command-line options. The existing endpoint configuration is

ooc.orb.oa.endpoint=iiop --port 5555

And the command-line options are

-IIOPport 5556

After the command-line options are processed by the IIOP plug-in, the
endpoint configuration property will be

ooc.orb.oa.endpoint=iiop --port 5555, iiop --port 5556

Note that there are now two endpoints; the command-line options resulted
in an additional endpoint being appended to the existing property value.
79

CHAPTER 3 | ORB and Object Adapter Initialization
Dispatching Requests
As explained in [4], a POA Manager is initially in the “holding” state, where
incoming requests on the POA Manager’s endpoints are queued. To
dispatch requests, the POA Manager must be activated using the
activate() operation.
 80

Using POA Managers
Callbacks
In mixed client/server applications in which callbacks occur, it is important
to remember that callbacks will not be dispatched until the POA Manager
has been activated. If the POA Manager has not been activated, the
application will likely hang. In general, applications should activate the POA
Manager prior to making any request that might result in a callback.
81

CHAPTER 3 | ORB and Object Adapter Initialization
ORB Destruction
Applications must destroy the ORB before returning from main so that
resources used by the ORB are properly released.

To destroy the ORB in C++, invoke destroy on the ORB:

And in Java:

// C++
CORBA::ORB_var orb = // Initialize the orb
// ...
orb -> destroy();

// Java
org.omg.CORBA.ORB orb = // Initialize the orb
// ...
orb.destroy();
 82

Server Event Loop
Server Event Loop
A server’s event loop is entered by calling POAManager::activate on each
POA Manager, and then calling ORB::run.

For example, in Java:

And in C++:

You can deactivate a server by calling ORB::shutdown, which causes
ORB::run to return. For example, consider a server that can be shut down by
a client by calling a deactivate operation on one of the server’s objects.

First the IDL code:

// Java
org.omg.CORBA.ORB orb = ... // Initialize the orb
org.omg.PortableServer.POAManager manager = ... // Get Root POA

manager
manager.activate();
orb.run();

// C++
CORBA::ORB_var orb = ... // Initialize the orb
PortableServer::POAManager_var manager = ... // Get the Root POA

manager
manager -> activate();
orb -> run();

// IDL
interface ShutdownObject
{

void deactivate();
};
83

CHAPTER 3 | ORB and Object Adapter Initialization
On the server side, ShutdownObject can be implemented like this:

2-3 A servant class for ShutdownObject is defined. For more information on how
to implement servant classes, see Chapter 4.

5 An ORB is needed to call shutdown.

9-12 The constructor initializes the ORB member.

14-17 deactivate calls shutdown on the ORB. Note that shutdown is called with
the argument false to avoid a deadlock. A false argument instructs
shutdown to terminate request processing without waiting for executing
operations to complete. A true argument instructs shutdown to return only
once all operations have completed. If shutdown were called with a true
argument in this example, it would deadlock. That is because
shutdown(true) would be invoked from within an operation and, therefore,
could not ever return.

The client can use the deactivate call as shown below:

1 // C++
2 class ShutdownObject_impl :
3 public POA_ShutdownObject,
4 public PortableServer::RefCountServantBase
5 {
6 CORBA::ORB_var orb_;
7
8 public:
9
10 ShutdownObject_impl(CORBA::ORB_ptr orb)
11 : orb_(CORBA::ORB::_duplicate(orb))
12 {
13 }
14
15 virtual void deactivate() throw(CORBA::SystemException)
16 {
17 orb_ -> shutdown(false);
18 }
}

// C++
ShutdownObject_var shutdownObj = ... // Get a reference somehow
shutdownObj -> deactivate();
 84

CHAPTER 4

CORBA Objects
This chapter describes how to create and use CORBA servant
objects.

In this chapter This chapter contains the following sections:

Overview page 86

Implementing Servants page 88

Creating Servants page 97

Activating Servants page 101

Deactivating Servants page 106

Factory Objects page 108
85

CHAPTER 4 | CORBA Objects
Overview
A CORBA object is an object with an interface defined in CORBA IDL.
CORBA objects have different representations in clients and servers.

• A server implements a CORBA object in a concrete programming
language, for example in C++ or Java. This is done by writing an
implementation class for the CORBA object and by instantiating this
class. The resulting implementation object is called a servant.

• A client that wants to make use of an object implemented by a server
creates an object that delegates all operation calls to the servant via
the ORB. Such an object is called a proxy.

When a client invokes a method on the local proxy object, the ORB packs
the input parameters and sends them to the server, which in turn unpacks
these parameters and invokes the actual method on the servant. Output
parameters and return values, if any, follow the reverse path back to the
client. From the client’s perspective, the proxy acts just like the remote
object since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can
invoke a method on the servant when a request is received from a client.
This connection is handled by the Portable Object Adapter (POA), as shown
in Figure 2.

Figure 2: Servants, Proxies and the Object Adapter

Proxy

Servant

POA
ORB

Client Server
 86

Overview
The Portable Object Adapter in Orbacus replaces the deprecated “Basic
Object Adapter” (BOA). (The BOA was deprecated by the OMG because it
had a number of serious deficiencies and was under-specified.) The POA is
a far more flexible and powerful object adapter than the BOA. The POA not
only allows you to write code that is portable among ORBs from different
vendors, it also provides a number of features that are essential for building
high-performance and scalable servers.
87

CHAPTER 4 | CORBA Objects
Implementing Servants
In this section, we will implement servant classes (or “implementation
classes”) for the IDL interfaces defined below:

2-5 An interface A is defined with the operation op_a.

7-10 An interface B is defined with the operation op_b.

12-15 Interface I is defined, which is derived from A and B. It also defines a new
operation op_i.

1 // IDL
2 interface A
3 {
4 void op_a();
5 };
6
7 interface B
8 {
9 void op_b();
10 };
11
12 interface I : A, B
13 {
14 void op_i();
15 };
 88

Implementing Servants
Implementing Servants using Inheritance

Overview Orbacus for C++ and Orbacus for Java both support the use of inheritance
for interface implementation. To implement an interface using inheritance,
you write a servant class that inherits from a skeleton class generated by the
IDL translator. By convention, the name of the servant class should be the
name of the interface with the suffix _impl, e.g., for an interface I, the
implementation class is named I_impl.1

Inheritance using C++ In C++, I_impl must inherit from the skeleton class POA_I that was
generated by the IDL-to-C++ translator. If I inherits from other interfaces,
for example from the interfaces A and B, then I_impl must also inherit from
the corresponding implementation classes A_impl and B_impl.

2-6 The servant class A_impl is defined, inheriting from the skeleton class
POA_A. If op_a had any parameters, these parameters would be mapped
according to the standard IDL-to-C++ mapping rules [4].

8-13 This is the servant class for B_impl.

1. These naming rules are not mandatory, they are just a recommendation.

1 // C++
2 class A_impl : virtual public POA_A
3 {
4 public:
5 virtual void op_a() throw(CORBA::SystemException);
6 };
7
8 class B_impl : virtual public POA_B
9 {
10 public:
11 virtual void op_b() throw(CORBA::SystemException);
12 };
13
14 class I_impl : virtual public POA_I,
15 virtual public A_impl,
16 virtual public B_impl
17 {
18 public:
19 virtual void op_i() throw(CORBA::SystemException);
20 };
89

CHAPTER 4 | CORBA Objects
14-20 The servant class for I_impl is not only derived from POA_I, but also from
the servant classes A_impl and B_impl.

Note that virtual public inheritance must be used. The only situation in
which the keyword virtual is not necessary is for an interface I which does
not inherit from any other interface and from which no other interface
inherits. This means that the implementation class I_impl only inherits from
the skeleton class POA_I and no implementation class inherits from I_impl.

It is not strictly necessary to have an implementation class for every
interface. For example, it is sufficient to only have the class I_impl as long
as I_impl implements all interface operations, including the operations of
the base interfaces:

2 Now I_impl is only derived from POA_I, but not from the other servant
classes.

5-7 I_impl must implement all operations from the interface I as well as the
operations of all interfaces from which I is derived.

Inheritance using Java Several files are generated by the Orbacus IDL-to-Java translator for an
interface I, including:

• I.java, which defines a Java interface I containing public methods for
the operations and attributes of I, and

• IPOA.java, which is an abstract skeleton class that serves as the base
class for servant classes.

In contrast to C++, Java’s lack of multiple inheritance currently makes it
impossible for a servant class to inherit operation implementations from
other servant classes, except when using delegation-based implementation.

1 // C++
2 class I_impl : virtual public POA_I
3 {
4 public:
5 virtual void op_a() throw(CORBA::SystemException);
6 virtual void op_b() throw(CORBA::SystemException);
7 virtual void op_i() throw(CORBA::SystemException);
8 };
 90

Implementing Servants
For our interface I it is therefore necessary to implement all operations in a
single servant class I_impl, regardless of whether those operations are
defined in I or in an interface from which I is derived.

2-15 The servant class I_impl is defined, which implements op_i, as well as the
inherited operations op_a and op_b.

1 // Java
2 public class I_impl extends IPOA
3 {
4 public void op_a()
5 {
6 }
7
8 public void op_b()
9 {
10 }
11
12 public void op_i()
13 {
14 }
15 }
91

CHAPTER 4 | CORBA Objects
Implementing Servants using Delegation
Sometimes it is not desirable to use an inheritance-based approach for
implementing an interface. This is especially true if the use of inheritance
would result in overly complex inheritance hierarchies (for example, because
of use of an existing class library that requires extensive use of inheritance).
Therefore, another alternative is available for implementing servants which
does not use inheritance. A special class, known as a tie class, can be used
to delegate the implementation of an interface to another class.1

Delegation using C++ The Orbacus IDL-to-C++ translator can automatically generate a tie class
for an interface in the form of a template class. A tie template class is
derived from the corresponding skeleton class and has the same name as
the skeleton, with the suffix _tie appended.

For the interface I from the C++ example above, the template POA_I_tie is
generated and must be instantiated with a class that implements all
operations of I. By convention, the name of this class should be the name of
the interface with _impl_tie appended.2

1. Note that tie classes are rarely necessary. Not only is the inheritance
implementation less complex, but it also avoids a number of problems that arise
with the life cycle of objects, particularly in threaded servers. We suggest that you
use the tie approach only if you have no other option.

2. Again, you are free to choose whatever name you like. This is just a
recommendation.
 92

Implementing Servants
In contrast to the inheritance-based approach, it is not necessary for the
class implementing I’s operations, i.e., I_impl_tie, to be derived from a
skeleton class. Instead, an instance of POA_I_tie delegates all operation
calls to I_impl_tie, as shown in Figure 3.

Here is our definition of I_impl_tie:

2 I_impl_tie is defined and not derived from any other class.

5-7 I_impl_tie must implement all of I’s operations, including inherited
operations.

A servant class for I can then be defined using the I_skel_tie template:

1 // C++
2 typedef POA_I_tie< I_impl_tie > I_impl;

2 The servant class I_impl is defined as a template instance of POA_I_tie,
parameterized with I_impl_tie.

Figure 3: Class Hierarchy for Delegation Implementation in C++

POA_I_tie

T

delegates to

POA_I

I_impl_tie

1 // C++
2 class I_impl_tie
3 {
4 public:
5 virtual void op_a() throw(CORBA::SystemException);
6 virtual void op_b() throw(CORBA::SystemException);
7 virtual void op_i() throw(CORBA::SystemException);
8 };
93

CHAPTER 4 | CORBA Objects
The tie template generated by the IDL compiler contains functions that
permit you change the instance denoted by the tie:

7-9 The _tied_object function permits you to retrieve and change the
implementation instance that is currently associated with the tie. The first
modifier function calls delete on the current tied instance before accepting
the new tied instance if the release flag is currently true; the release flag
for the new tied instance is set to false. The second modifier function also
calls delete on the current tied instance before accepting the new instance
but sets the release flag to the passed value.

Delegation using Java For every IDL interface, the IDL-to-Java mapping generates an “operations”
interface containing methods for the IDL attributes and operations. This
operations interface is also used to support delegation-based servant
implementation. For an interface I, the following additional class is
generated:

• IPOATie.java, the tie class that inherits from IPOA and delegates all
requests to an instance of IOperations.

1 // C++
2 template<class T>
3 class POA_I_tie : public POA_I
4 {
5 public:
6 // ...
7 T* _tied_object();
8 void _tied_object(T& obj);
9 void _tied_object(T* obj, CORBA::Boolean release = true);
10 // ...
11 }
 94

Implementing Servants
To implement our servant class using delegation, we need to write a class
that implements the IOperations interface:

2 The servant class I_impl_tie is defined to implement the IOperations
interface.

4-14 I_impl_tie must implement all of I’s operations, including inherited
operations.

Figure 4 illustrates the relationship between the classes generated by the
IDL-to-Java translator and the servant implementation classes.

1 // Java
2 public class I_impl_tie implements IOperations
3 {
4 public void op_a()
5 {
6 }
7
8 public void op_b()
9 {
10 }
11
12 public void op_i()
13 {
14 }
15 }

Figure 4: Class Hierarchy for Inheritance and Delegation Implementation
in Java

IPOATie
delegates to

IPOA

I_impl IOperations

I_impl_tie
95

CHAPTER 4 | CORBA Objects
As noted earlier, Java’s lack of multiple inheritance makes it impossible to
inherit an implementation from another servant class. Using tie classes,
however, does allow implementation inheritance, but only in certain
situations.

For example, let’s implement each of our sample interfaces using
delegation.

2-7 Class A_impl is defined as implementing AOperations.

9-14 Class B_impl is defined as implementing BOperations.

16-21 Class I_impl inherits the implementation of op_b from B_impl, and provides
an implementation of op_a and op_i. Since a Java class can only extend one
class, it’s not possible for I_impl to inherit the implementations of both
op_a and op_b.

1 // Java
2 public class A_impl implements AOperations
3 {
4 public void op_a()
5 {
6 }
7 }
8
9 public class B_impl implements BOperations
10 {
11 public void op_b()
12 {
13 }
14 }
15
16 public class I_impl extends B_impl implements IOperations
17 {
18 public void op_a()
19 {
20 }
21
22 public void op_i()
23 {
24 }
25 }
 96

Creating Servants
Creating Servants
Servants are created the same way in both C++ and Java: once your
servant class is written, you simply instantiate a servant with new.1

1. You can also instantiate servants on the stack. However, this only works only for
some POA policies, so servants are usually instantiated on the heap.
97

CHAPTER 4 | CORBA Objects
Creating Servants using C++
Here is how to create servants using C++:

2,3 Two servants are created with new. Note that this merely instantiates the
servants but does not inform the ORB that these servants exist yet. The ORB
server-side run time only learns of the existence of the servants once you
activate them.

In case the servant class was written using the delegation approach, an
object of the class implementing I’s operations must be passed to the
servant’s constructor:

2 A new I_impl_tie is created with new.

3,4 An instance of POA_I_tie parameterized with I_impl_tie is created, taking
impl as a parameter. All operation calls to tie will then be delegated to
impl.

In this example, the lifetime of impl is coupled to the lifetime of the servant
tie. That is, when the tie is destroyed, delete impl is called by the tie’s
destructor. In case you don’t want the lifetime of impl to be coupled to the
lifetime of the tie, for example, because you want to create a servant on the
stack and not on the heap (making it illegal to call delete on the tie), use
the following code:

2 A new I_impl_tie is created, this time on the stack, not on the heap.

3,4 An instance of POA_I_tie is created. The false parameter tells tie not to
call delete on impl.

1 // C++
2 I_impl* servant_pointer = new I_impl;
3 I_impl* another_servant_pointer = new I_impl;

1 // C++
2 I_impl_tie* impl = new I_impl_tie;
3 POA_I_tie< I_impl_tie >* tie_pointer =
4 new POA_I_tie< I_impl_tie >(impl);

1 // C++
2 I_impl_tie impl;
3 POA_I_tie< I_impl_tie >* tie =
4 new POA_I_tie< I_impl_tie >(&impl, false);
 98

Creating Servants
Creating Servants using Java
Every tie class generated by the IDL-to-Java translator has two constructors:

The second constructor allows a POA instance to be supplied, which will be
used as the return value for the tie’s _default_POA method. If the POA
instance is not supplied, the _default_POA method will return the root POA
of the ORB with which the tie has been associated.

This example demonstrates how to create servants using Java:

2,3 Two servants, impl and anotherImpl, are created with new.

In case the servant class was written using the delegation approach, an
object implementing the IOperations interface must be passed to the tie’s
constructor:

2 A new I_impl_tie is created.

3 An instance of IPOATie is created, taking impl as a parameter. All operation
calls to tie will then be delegated to impl.

// Java
public class IPOATie extends IPOA
{

public IPOATie(IOperations delegate) { ... }
public IPOATie(IOperations delegate, POA poa) { ... }
...

}

1 // Java
2 I_impl impl = new I_impl();
3 I_impl anotherImpl = new I_impl();

1 // Java
2 I_impl_tie impl = new I_impl_tie();
3 IPOATie tie = new IPOATie(impl);
99

CHAPTER 4 | CORBA Objects
The tie class also provides methods for accessing and changing the
implementation object:

5 This method returns the current delegate (i.e., implementation) object.

6 This method changes the delegate object.

1 // Java
2 public class IPOATie extends IPOA
3 {
4 ...
5 public IOperations _delegate() { ... }
6 public void _delegate(IOperations delegate) { ... }
7 ...
}

 100

Activating Servants
Activating Servants
Servants must be activated in order to receive requests from clients. Servant
activation informs the ORB run time which particular servant represents (or
incarnates) a particular CORBA object. Activation of a servant assigns an
object identifier to the servant. That object identifier is also embedded in
every object reference that is created for an object and serves to link the
object reference with its servant.

The POA’s IdAssignmentPolicy value controls whether object IDs are
assigned by the POA or the server application code. The SYSTEM_ID policy
value directs the ORB to assign a unique object identifier to the CORBA
object represented by the servant; the USER_ID policy value requires the
server application code to supply an ID that must be unique within the
servant’s POA.

Servants can be activated implicitly or explicitly. Implicit activation takes
place when you create the first object reference for a servant. Explicit
activation requires a separate API call. Typically, you will use implicit
activation for transient objects and explicit activation for persistent objects.
The ImplicitActivationPolicy controls whether explicit or implicit is in
effect. Explicit activation requires the NO_IMPLICIT_ACTIVATION policy value
on the servant’s POA, whereas implicit activation requires the
IMPLICIT_ACTIVATION policy value.
101

CHAPTER 4 | CORBA Objects
Implicit Activation of Servants using C++
The following code shows how to implicitly activate a servant:

2 A new servant impl is created.

3 The new servant is activated implicitly by calling _this.

Note that implicit activation as shown requires the RETAIN,
IMPLICIT_ACTIVATION, and SYSTEM_ID policies on the servant’s POA. The
servant is activated with the POA that is returned by the servant’s
_default_POA member function. (The default implementation of
_default_POA returns the Root POA; if you want servants activated on a
different POA, you must override _default_POA in the implementation class
to return the POA you want to use.)

1 // C++
2 I_impl impl;
3 I_var iv = impl -> _this();
 102

Activating Servants
Implicit Activation of Servants using Java
This is how Java servants are implicitly activated:

2 To activate a servant, we need the ORB.

3 A new servant impl is created.

4 The new servant is activated (using the POA returned by the servant’s
_default_POA operation).

As shown above, a servant in Java must be associated with an ORB, and
cannot be associated with multiple ORBs. The first call to _this() must
supply the ORB reference; subsequent calls to _this() for the same servant
can omit the ORB reference.

An alternative way to associate a servant with an ORB is to call the
set_delegate method defined in org.omg.CORBA_2_3.ORB.

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB
somehow
3 I_impl impl = new I_impl();
4 I Iref = impl._this(orb);

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
((org.omg.CORBA_2_3.ORB)orb).set_delegate(impl);
103

CHAPTER 4 | CORBA Objects
Explicit Activation of Servants using C++
If NO_IMPLICIT_ACTIVATION and SYSTEM_ID are in effect for a servant’s POA,
you activate the servant by calling activate_object:

1 The code instantiates a servant.

2 To activate a servant, we need the servant’s POA.

3 activate_object creates a unique ID for the servant.

Once a servant is activated, calls to _this on the servant return an object
reference that contains the ORB-assigned ID for the object.

If NO_IMPLICIT_ACTIVATION and USER_ID are in effect for servant’s POA, you
activate the servant by supplying the ID value as an octet sequence to
activate_object_with_id:

3,4 The string_to_ObjectId helper function converts a string into an octet
sequence.

5 activate_object_with_id uses the octet sequence as the object ID for the
servant.

You can use any suitable key value as an object ID. Typically, the key will
be part of the object’s state, such as a social security number. However, you
can also use keys that are not directly related to object state, such as
database record identifiers. Once the servant is activated, calls to _this on
the servant return an object reference that contains the ID you assigned to
the object.

1 I_impl impl;
2 PortableServer::POA_var poa = impl._default_POA();
3 poa -> activate_object(&impl);

1 I_impl impl;
2 PortableServer::POA_var poa = impl._default_POA();
3 PortableServer::ObjectId_var oid =
4 PortableServer::string_to_ObjectId("MyObjectName");
5 poa -> activate_object_with_id(oid, &impl);
 104

Activating Servants
Explicit Activation of Servants using Java
Servant activation in Java also uses activate_object (for SYSTEM_ID) and
activate_object_with_id (for USER_ID). With SYSTEM_ID, the code looks as
follows:

For USER_ID, you must provide the Object ID:

1 I_impl impl = new I_impl();
2 orb.omg.PortableServer.POA poa = impl._default_POA();
3 poa.activate_object(impl);

1 I_impl impl = new I_impl();
2 org.omg.PortableServer.POA poa = impl._default_POA();
3 byte[] id = "MyObjectName".getBytes();
4 poa.activate_object_with_id(id, impl);
105

CHAPTER 4 | CORBA Objects
Deactivating Servants

Deactivation of Servants using
C++

A servant can be deactivated. Deactivating a servant breaks the association
between the CORBA object and the servant; requests that arrive from clients
thereafter result in an OBJECT_NOT_EXIST exception (or a TRANSIENT
exception, if the server is down at the time a request is made).

To deactivate a servant, call the deactivate_object member function on
the servant’s POA:

2 The code obtains a reference to the servant’s POA by calling _default_POA.
(This assumes that _default_POA is correctly overridden to return the
appropriate POA if the servant is not activated with the Root POA.)

3 The call to servant_to_id on the servant’s POA returns the object ID with
which the servant is activated.

4 The call to deactivate_object breaks the association between the CORBA
object and the servant.

Note that deactivate_object returns immediately, even though the servant
may still be executing requests, possibly in a number of different threads.

Deactivation of Servants using
Java

Deactivation of a servant in Java is analogous to C++:

Transient and Persistent Objects A POA has either the TRANSIENT or the PERSISTENT policy value. A transient
POA generates transient object references. A transient object reference
remains functional only for as long as its POA remains in existence. Once
the POA for a transient reference is destroyed, the reference becomes

1 // C++
2 PortableServer::POA_var poa = impl._default_POA();
3 PortableServer::ObjectId_var id = poa -> servant_to_id(&impl);
4 poa -> deactivate_object(id);

1 // Java
2 org.omg.PortableServer.POA poa = impl._default_POA();
3 byte[] id = poa.servant_to_id(impl);
4 poa.deactivate_object(id);
 106

Deactivating Servants
permanently non-functional and client requests on such a reference raise
either OBJECT_NOT_EXIST or TRANSIENT (depending on whether or not the
server is running at the time the request is sent). Transient references
remain non-functional even if you restart the server and re-create a transient
POA with the same name as was used previously. Transient POAs almost
always use the SYSTEM_ID policy as a matter of convenience (although the
combination of TRANSIENT and USER_ID is legal).

Object references created on a persistent POA continue to be valid beyond
the POA’s life time. That is, if you create a persistent reference on a POA,
destroy the POA, and then recreate that POA again (with the same POA
name), the original reference continues to denote the same CORBA object
(even if the server was shut down and restarted). Persistent references
require the same POA name and object ID to be used to denote the same
object. This means that persistent references rely on the combination of
PERSISTENT and USER_ID. USER_ID must be used in conjunction with
NO_IMPLICIT_ACTIVATION, so servants for persistent references are always
activated explicitly.
107

CHAPTER 4 | CORBA Objects
Factory Objects
It is quite common to use the Factory [2] design pattern in CORBA
applications. In short, a factory object provides access to one or more
additional objects. In CORBA applications, a factory object can represent a
focal point for clients. In other words, the object reference of the factory
object can be published in a well-known location, and clients know that
they only need to obtain this object reference in order to gain access to other
objects in the system, thereby minimizing the number of object references
that need to be published.

The Factory pattern can be applied in a wide variety of situations, including
the following:

• Security - A client is required to provide security information before the
factory object will allow the client to have access to another object.

• Load-balancing - The factory object manages a pool of objects, often
representing some limited resource, and assigns them to clients based
on some utilization algorithm.

• Polymorphism - A factory object enables the use of polymorphism by
returning object references to different implementations depending on
the criteria specified by a client.

These are only a few examples of the potential applications of the Factory
pattern. The examples listed above can also be used in any combination,
depending on the requirements of the system being designed. Note that the
factory pattern applies equally to persistent and transient objects.

A simple application of the Factory pattern, in which a new object is created
for each client, is illustrated below. The implementation uses the following
interface definitions:

1 // IDL
2 interface Product
3 {
4 void destroy();
5 };
6
7 interface Factory
8 {
9 Product createProduct();
};
 108

Factory Objects
2-5 The Product interface is defined. The destroy operation allows a client to
destroy the object when it is no longer needed.

7-10 The Factory interface is defined. The createProduct operation returns the
object reference of a new Product.
109

CHAPTER 4 | CORBA Objects
Factory Objects using C++
First, we’ll implement the Product interface:

2-4 The servant class Product_impl is defined as an implementation of the
Product interface. In addition, Product_impl inherits from
RefCountServantBase, which makes the servant reference counted.

8-13 The destroy() operation deactivates the servant with the POA. As a result,
the POA will release all references it maintains to the servant. Since there
are no other references to the servant left, the servant’s reference count will
drop to zero, and thus the servant is destroyed.

1 // C++
2 class Product_impl :
3 public virtual POA_Product,
4 public virtual PortableServer::RefCountServantBase
5 {
6 public:
7
8 virtual void destroy() throw(CORBA::SystemException)
9 {
10 PortableServer::POA_var poa = _default_POA();
11 PortableServer::ObjectId_var id = poa ->
servant_to_id(this);
12 poa -> deactivate_object(id);
13 }
};
 110

Factory Objects
Next, we’ll implement the factory:

2 The servant class Factory_impl is defined as an implementation of the
Factory interface.

9-10 A new reference counted Product servant is instantiated. The servant is
assigned to a ServantBase_var, which decrements the servant’s reference
count when it goes out of scope.

11-14 Activates the servant and returns an object reference to the client.

It is important to understand how the servant is eventually destroyed. The
RefCountServantBase class from which the servant inherits implements a
reference count. When the servant is instantiated, the RefCountServantBase
constructor sets this reference count to 1. When the servant is activated
with the POA, the POA increases the reference count by at least 1. When
the ServantBase_var we assigned the servant to goes out of scope, the
reference count is decremented by 1. This means that when
createProduct() returns, only the POA is “holding” a reference to the
servant. Later, when the servant is deactivated in destroy(), the POA
decrements the reference count by exactly the same number it used to
increment the reference count upon activation. This causes the reference
count to drop to zero, in which case the servant will be implicitly deleted.

Note that whenever the ORB starts to dispatch a request on the servant, the
reference count is incremented. After request dispatching is finished, the
count is decremented by the same amount. This ensures that a reference
counted servant cannot be deleted while a request is executing.

1 // C++
2 class Factory_impl : public virtual POA_Factory
3 {
4 public:
5
6 virtual Product_ptr
7 createProduct() throw(CORBA::SystemException)
8 {
9 Product_impl* impl = new Product_impl(orb_);
10 PortableServer::ServantBase_var servant = impl;
11 PortableServer::POA_var poa = ... // Get servant’s POA
12 PortableServer::ObjectId_var id = ... // Assign an ID
13 poa -> activate_object_with_id(id, impl);
14 return impl -> _this();
15 }
};
111

CHAPTER 4 | CORBA Objects
Factory Objects using Java
Here is our Java implementation of the Product interface:

2 Servant class Product_impl is defined as an implementation of the Product
interface.

6,7 The destroy operation deactivates the servant with the POA. As long as no
other references to the servant are held in the server, the object will be
eligible for garbage collection.

Here’s our implementation of the factory:

2 Servant class Factory_impl is defined as an implementation of the Factory
interface.

4-11 The createProduct operation instantiates a new Product servant, activates
it with the POA, and returns an object reference to the client.

1 // Java
2 public class Product_impl extends ProductPOA
3 {
4 public void destroy()
5 {
6 byte[] id = _default_POA().servant_to_id(this);
7 _default_POA().deactivate_object(id);
8 }
}

1 // Java
2 public class Factory_impl extends FactoryPOA
3 {
4 public Product createProduct()
5 {
6 Product_impl result = new Product_impl(orb_);
7 org.omg.PortableServer.POA poa = ... // Get servant’s
POA
8 byte[] id = ... // Assign an ID
9 poa.activate_object_with_id(id, result);
10 return result._this(orb_);
11 }
}

 112

Factory Objects
Caveats
In these simple examples, the factory objects do not maintain any references
to the Product servants they create; it is the responsibility of the client to
ensure that it destroys a Product object when it is no longer needed. This
design has a significant potential for resource leaks in the server, as it is
quite possible that a client will not destroy its Product objects, either
because the programmer who wrote the client forgot to invoke destroy, or
because the client program crashed before it had a chance to clean up. You
should keep these issues in mind when designing your own factory objects.1

1. Two possible strategies for handling this issue include: time-outs, in which a
servant that has not been used for some length of time is automatically released;
and expiration, in which an object reference is only valid for a certain length of
time, after which a client must obtain a new reference. The implementation of
these solutions is beyond the scope of this manual.
113

CHAPTER 4 | CORBA Objects
Obtaining the POA for a Servant
As mentioned in the previous sections, every servant inherits a
_default_POA function from its skeleton class. The default implementation
of this function returns the Root POA. If you instantiate servants on anything
but the Root POA, you must override the function in the servant; otherwise,
calls to _this will create incorrect object references. Usually, this involves
remembering the POA reference for a servant in a private member variable
and returning that reference from a call to _default_POA. (If all servants for
objects of a particular interface type use the same POA, you can use a static
member variable.)

In C++, you can use an approach similar to the following:

9-12 The constructor accepts a POA reference and remembers that reference in a
private member variable.

14-17 The _default_POA function returns the servant’s POA.

In Java, the approach is very similar:

1 // C++
2 class Product_impl :
3 public virtual POA_Product,
4 public virtual PortableServer::RefCountServantBase
5 {
6 PortableServer::POA_var poa_;
7
8 public:
9 void Product_impl(PortableServer::POA_ptr poa)
10 : poa_(PortableServer::POA::_duplicate(poa))
11 {
12 }
13
14 virtual PortableServer::POA_ptr _default_POA()
15 {
16 return PortableServer::POA::_duplicate(poa_)
17 }
18 };
 114

Factory Objects
// Java
public class Product_impl extends ProductPOA
{

private org.omg.PortableServer.POA poa_;

public Product_impl(org.omg.PortableServer.POA poa)
{

poa_ = poa;
}

public org.omg.PortableServer.POA
_default_POA()

{
return poa_;

}
}

115

CHAPTER 4 | CORBA Objects
Getting the POA for a Currently Executing Request
The ORB provides access to an object of type PortableServer::Current:

This interface provides access to the POA and the object ID for an executing
request. Note that these operations must be invoked only from within the
context of an executing operation inside a servant; otherwise, they raise
NoContext. The Current object provides a useful way to obtain access to a
servant’s POA and object ID without having to store the POA reference in a
member variable, at the cost of being accessible only from within an
operation implementation. You can obtain a reference to the Current object
from resolve_initial_references. In C++, the code looks something like
this:// C++

You can keep the reference to the Current object in a variable and use it
from within any executing operation in a servant. There is no need to
“refresh” the Current reference for the current operation, not even for
threaded servers. The ORB takes care of ensuring that operation invocations
on the Current object return the correct data.

// IDL
module PortableServer
{

interface Current : CORBA::Current
{

exception NoContext { };
POA get_POA() raises(NoContext);
ObjectId get_object_id() raises(NoContext);

};
};

// C++
CORBA::ORB_var orb = ... // Get the ORB somehow
CORBA::Object_var obj =

orb -> resolve_initial_references("POACurrent");
PortableServer::Current_var current =

PortableServer::Current::_narrow(obj);
if(!CORBA::is_nil(current))

... // Got Current object OK
 116

Factory Objects
In Java, the code to obtain the Current reference looks like this:

// Java
org.omg.CORBA.ORB orb = ... // Get the ORB somehow
org.omg.CORBA.Object obj =

orb.resolve_initial_references("POACurrent");
org.omg.PortableServer.Current current =

org.omg.PortableServer.CurrentHelper.narrow(obj);
if(current != null)

... // Got Current object OK
117

CHAPTER 4 | CORBA Objects
 118

CHAPTER 5

Locating Objects
This chapter describes how to locate CORBA servant objects.

In this chapter This chapter contains the following sections:

Obtaining Object References page 120

Lifetime of Object References page 124

Stringified Object References page 128

Object Reference URLs page 132

The BootManager page 138

Initial Services page 142

The IORDump utility page 148
119

CHAPTER 5 | Locating Objects
Obtaining Object References
Using CORBA, an object can obtain a reference to another object in a
multitude of ways. One of the most common ways is by receiving an object
reference as the result of an operation, as demonstrated by the following
example:

2-4 An interface A is defined.

6-9 An interface B is defined with an operation returning an object reference to
an A.

1 // IDL
2 interface A
3 {
4 };
5
6 interface B
7 {
8 A getA();
9 };
 120

Obtaining Object References
On the server side, A and B can be implemented in C++ as follows:

2-5 The servant class A_impl is defined, which inherits from the skeleton class
POA_A and the class RefCountServantBase which provides a reference
counting implementation.

7-28 The servant class B_impl inherits from the skeleton class POA_B and the
reference counting class RefCountServantBase.

14-17 An instance of the servant class A_impl is created in the constructor for
B_impl.

19-22 In the destructor for B_impl, the reference count for the servant A_impl is
decremented, which leads to the destruction of the servant.

24-27 getA returns an object reference to the A_impl servant (implicitly creating
and activating the CORBA object if necessary).

1 // C++
2 class A_impl : public POA_A,
3 public PortableServer::RefCountServantBase
4 {
5 };
6
7 class B_impl : public POA_B,
8 public PortableServer::RefCountServantBase
9 {
10 A_impl* a_;
11
12 public:
13
14 B_impl()
15 {
16 a_ = new A_impl();
17 }
18
19 ~B_impl()
20 {
21 a_ -> _remove_ref();
22 }
23
24 virtual A_ptr getA() throw(CORBA::SystemException)
25 {
26 return a_ -> _this();
27 }
28 };
121

CHAPTER 5 | Locating Objects
In Java, the interfaces can be implemented like this:

2-4 The servant class A_impl is defined, which inherits from the skeleton class
APOA.

6-21 The servant class B_impl is defined, which inherits from the skeleton class
BPOA.

11-15 B_impl’s constructor stores a reference to the orb and creates a new A_impl
servant.

17-20 getA returns an object reference to the A_impl servant (implicitly creating
and activating the CORBA object if necessary).

A client written in C++ could use code like the following to get references to
A:

And in Java:

1 // Java
2 public class A_impl extends APOA
3 {
4 }
5
6 public class B_impl extends BPOA
7 {
8 org.omg.CORBA.ORB orb_;
9 A_impl a_;
10
11 public B_impl(org.omg.CORBA.ORB orb)
12 {
13 orb_ = orb;
14 a_ = new A_impl();
15 }
16
17 A getA()
18 {
19 return a_._this(orb_);
20 }
}

// C++
B_var b = ... // Get a B object reference somehow
A_var a = b -> getA();

// Java
B b = ... // Get a B object reference somehow
A a = b.getA();
 122

Obtaining Object References
In this example, once your application has a reference to a B object, it can
obtain a reference to an A object using getA. The question that arises,
however, is How do I obtain a reference to a B object? This chapter answers
that question by describing a number of ways an application can bootstrap
its first object reference.
123

CHAPTER 5 | Locating Objects
Lifetime of Object References
All of the strategies described in this chapter involve the publication of an
object reference in some form. A common source of problems for
newcomers to CORBA is the lifetime and validity of object references. Using
IIOP, an object reference can be thought of as encapsulating several pieces
of information:

• hostname

• port number

• object key

If any of these items were to change, any published object references
containing the old information would likely become invalid and its use might
result in a TRANSIENT or OBJECT_NOT_EXIST exception. The sections that
follow discuss each of these components and describe the steps you can
take to ensure that a published object reference remains valid.
 124

Lifetime of Object References
Hostname
By default, the hostname in an object reference is the canonical hostname
of the host on which the server is running. Therefore, running the server on
a new host invalidates any previously published object references for the old
host.

Orbacus provides the -IIOPhost option to allow you to override the
hostname in any object references published by the server. This option can
be especially helpful when used in conjunction with the Domain Name
System (DNS), in which the -IIOPhost option specifies a hostname alias
that is mapped by DNS to the canonical hostname.

See “Command-line Options and Endpoints” on page 79 for more
information on the -IIOPhost option.
125

CHAPTER 5 | Locating Objects
Port Number
Each time a server is executed, the Root POA manager selects a new port
number on which to listen for incoming requests. Since the port number is
included in published object references, subsequent executions of the server
could invalidate existing object references.

To overcome this problem, Orbacus provides the -IIOPport option that
causes the Root POA manager to use the specified port number. You will
need to select an unused port number on your host, and use that port
number every time the server is started.

See “Command-line Options and Endpoints” on page 79 for more
information on the -IIOPport option.
 126

Lifetime of Object References
Object Key
Each object created by a server is assigned a unique key that is included in
object references published for the object. Furthermore, the order in which
your server creates its objects may affect the keys assigned to those objects.

To ensure that your objects always have the same keys, activate your
objects using POAs with the PERSISTENT life span policy and the USER_ID
object identification policy.
127

CHAPTER 5 | Locating Objects
Stringified Object References
The CORBA specification defines two operations on the ORB interface for
converting object references to and from strings.

Using “stringified” object references is the simplest way of bootstrapping
your first object reference. In short, the server must create a stringified
object reference for an object and make the string available to clients. A
client obtains the string and converts it back into an object reference, and
can then invoke on the object.

The examples discussed in the sections below are based on the IDL
definitions presented at the beginning of this chapter.

// IDL
module CORBA
{

interface ORB
{

string object_to_string(in Object obj);
Object string_to_object(in string ref);

};
};
 128

Stringified Object References
Using a File
One way to publish a stringified object reference is for the server to create
the string using object_to_string and then write it to a well-known file.
Subsequently, the client can read the string from the file and use it as the
argument to string_to_object. This method is shown in the following
C++ and Java examples.

First, we’ll look at the relevant server code:

3-5 A servant for the interface B is created and is used to incarnate a CORBA
object.

6 The object reference of the servant is “stringified”.

7-9 The stringified object reference is written to a file.

In Java, the server code looks like this:

3-4 A servant for the interface B is created and is used to incarnate a CORBA
object.

5 The object reference of the servant is “stringified”.

6-9 The stringified object reference is written to a file.

1 // C++
2 CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
3 B_impl* bImlp = new B_impl();
4 PortableServer::ServantBase_var servant = bImpl;
5 B_var b = bImpl -> _this();
6 CORBA::String_var s = orb -> object_to_string(b);
7 ofstream out("object.ref")
8 out << s << endl;
9 out.close();

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB
somehow
3 B_impl bImpl = new B_impl();
4 B b = bImpl._this(orb);
5 String ref = orb.object_to_string(b);
6 java.io.PrintWriter out = new java.io.PrintWriter(
7 new java.io.FileOutputStream("object.ref"));
8 out.println(ref);
9 out.close();
129

CHAPTER 5 | Locating Objects
Now that the stringified object reference resides in a file, our clients can
read the file and convert the string to an object reference:

3-5 The stringified object reference is read.

6 string_to_object creates an object reference from the string.

7 Since the return value of string_to_object is of type CORBA::Object_ptr,
B::_narrow must be used to get a B_ptr (which is assigned to a
self-managed B_var in this example).

3-5 The stringified object reference is read.

6 string_to_object creates an object reference from the string.

7 Use BHelper.narrow to narrow the return value of string_to_object to B.

1 // C++
2 CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
3 ifstream in("object.ref");
4 string s;
5 in >> s;
6 CORBA::Object_var obj = orb -> string_to_object(s.c_str());
7 B_var b = B::_narrow(obj);

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB
somehow
3 java.io.BufferedReader in = new java.io.BufferedReader(
4 new java.io.FileReader("object.ref"));
5 String ref = in.readLine();
6 org.omg.CORBA.Object obj = orb.string_to_object(ref);
7 B b = BHelper.narrow(obj);
 130

Stringified Object References
Using a URL
It is sometimes inconvenient or impossible for clients to have access to the
same filesystem as the server in order to read a stringified object reference
from a file. A more flexible method is to publish the reference in a file that is
accessible by clients as a URL. Your clients can then use HTTP or FTP to
obtain the contents of the file, freeing them from any local filesystem
requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for use in applets.

Note: This example is shown only in Java because of Java’s built-in support
for URLs, but the strategy can also be used in C++.

5 location is the URL of the file containing the stringified object reference.

8-13 Read the string from the URL connection.

15 Convert the string to an object reference.

16 Narrow the reference to a B object.

1 // Java
2 import java.io.*;
3 import java.net.*;
4
5 String location = "http://www.mywebserver/object.ref";
6 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB
somehow
7
8 URL url = new URL(location);
9 URLConnection conn = url.openConnection();
10 BufferedReader in = new BufferedReader(
11 new InputStreamReader(conn.getInputStream()));
12 String ref = in.readLine();
13 in.close();
14
15 org.omg.CORBA.Object object = orb.string_to_object(ref);
16 B b = BHelper.narrow(object);
131

CHAPTER 5 | Locating Objects
Object Reference URLs
Prior to the adoption of the Interoperable Naming Service (INS) [10], the
only standard format for stringified object references was the cumbersome
IOR: format. The INS introduced two new, more readable formats for object
references that use a URL-like syntax. Object reference URLs can be passed
to string_to_object, just like IOR: references. The two new URL formats
are described in detail in the specification, but will be briefly discussed here.
The optional file: URL format is also discussed, as well as the proprietary
relfile: URL format.
 132

Object Reference URLs
corbaloc: URLs
The corbaloc: URL supports any number of protocols; the format of the
URL depends on the protocol in use. The general format of a corbaloc: URL
is shown below:

corbaloc:[protocol]:<protocol-specific>

Orbacus supports two standard protocols, iiop and rir, but additional
protocols may be supported via transport plug-ins.

The corbaloc: URL for the iiop protocol has the following structure:

corbaloc:[iiop]:[version@]host[:port]/object-key

The components of the URL are as follows:

• iiop - This is the default protocol for corbaloc: URLs, and therefore is
optional.

• version - The IIOP version number in major.minor format. The default
is 1.0.

• host - The hostname of the server.

• port - The port on which the server is listening. The default is 2089.

• object-key - A stringified object key.

The specification allows a URL to contain multiple addresses, but the
semantics are vendor-specific. In Orbacus, each address is used in turn until
one is found that works or until the ORB has tried them all and failed to
contact the object.

The rir protocol is a shortcut for the ORB operation
resolve_initial_references. The corbaloc: URL for the rir protocol has
the following structure:

corbaloc:rir:[/id]

The components of the URL are as follows:

• rir - The protocol.

• id - The identifier of the service to be resolved. The identifier
NameService is used if id is not supplied.

Some examples of corbaloc: URLs are:

corbaloc::nshost:10000/NameService
corbaloc::myhost:10000/MyObjectId
corbaloc:rir:/NameService
133

CHAPTER 5 | Locating Objects
See “The BootManager” on page 138 for information on how a server can
support corbaloc: URLs.
 134

Object Reference URLs
corbaname: URLs
A corbaname: URL provides additional flexibility by incorporating use of the
Naming Service in the string_to_object operation. The corbaname: URL
extends the capabilities of the corbaloc: URL to allow the object-key to
identify a binding in a Naming Service. For example, consider this URL:

corbaname::ns1:5001/NameService#ctx/MyObject

When the ORB interprets this URL, it attempts to resolve a naming context
object located at host ns1 on port 5001 and having the object key
NameService. Once the naming context has been resolved, the ORB
attempts to lookup the binding named MyObject in the naming context ctx.
If successful, the result of string_to_object is the object reference
associated with the binding.
135

CHAPTER 5 | Locating Objects
file: URLs
A file: URL provides a convenient way to obtain object references using an
IOR or URL reference that is in a file. The format of a file: URL is:

file:/<absolute file name>

Using the file: URL and given that the file object.ref is located in the
/tmp directory, the client side example of on page 129 may be simplified as
follows:

// C++
CORBA::ORB_var orb = ... // Get a reference to the ORB somehow
CORBA::Object_var obj

= orb -> string_to_object("file:/tmp/object.ref");
B_var b = B::_narrow(obj);

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
org.omg.CORBA.Object obj =

orb.string_to_object("file:/tmp/object.ref");
B b = BHelper.narrow(obj);
 136

Object Reference URLs
relfile: URLs
Orbacus also provides the proprietary relfile: URL. This URL is the same
as the file: URL except that it takes a relative file name instead of an
absolute file name.
137

CHAPTER 5 | Locating Objects
The BootManager
Consider the following corbaloc: URL:

corbaloc::myhost:10000/MyObjectId

In this example, MyObjectId is the complete object key. Normally, object
keys require more information than a simple name to uniquely identify a
POA and a servant within the POA. The CORBA specification does not
standardize how a server can configure these simple object keys, therefore
each ORB implementation must provide a proprietary solution. In Orbacus,
the BootManager provides the mapping from a simple object key to a
complete object reference.
 138

The BootManager
BootManager Interface
Here is the IDL interface for the BootManager:

For the complete IDL description, please see Appendix A.

module OB
{
local interface BootManager
{

exception NotFound {};
exception AlreadyExists {};

void add_binding(in PortableServer::ObjectId oid, in
Object obj)

raises(AlreadyExists);

void remove_binding(in PortableServer::ObjectId oid)
raises(NotFound);

};
};
139

CHAPTER 5 | Locating Objects
How the BootManager Works
When an Orbacus server receives a request, the ORB verifies that the key
has the ORB’s internal format. If not, the ORB will ask the BootManager if it
has a mapping for the “foreign” key. If a match is found, the ORB will return
a “location forward” reply, redirecting the client to the object reference
supplied by the BootManager.
 140

The BootManager
Using the BootManager
The BootManager::add_binding operation binds an object id to an object
reference. The BootManager::remove_binding operation removes an
existing binding. The following example illustrates how a server can add a
binding for the object id MyObjectId.

3-6 Get a reference to the BootManager object by invoking
resolve_initial_references on the ORB.

7-8 Create the object id.

9 Create the new binding.

And in Java:

3-6 Get a reference to the BootManager object by invoking
resolve_initial_references on the ORB.

7 Create the object id.

8 Create the new binding.

1 // C++
2 CORBA::Object_var obj = // ... Get a reference
3 CORBA::Object_var bmgrObj =
4 orb -> resolve_initial_references("BootManager");
5 OB::BootManager_var bootManager =
6 OB::BootManager::_narrow(bmgrObj);
7 PortableServer::ObjectId_var objId =
8 PortableServer::string_to_ObjectId("MyObjectId");
9 bootManager -> add_binding(objId, obj);

1 // Java
2 org.omg.CORBA.Object obj = // ... Get a reference
3 org.omg.CORBA.Object bmgrObj =
4 orb.resolve_initial_references("BootManager");
5 com.ooc.OB.BootManager_var bootManager =
6 com.ooc.OB.BootManagerHelper.narrow(bmgrObj);
7 byte[] objId = "MyObjectId".getBytes();
8 bootManager.add_binding(objId, obj);
141

CHAPTER 5 | Locating Objects
Initial Services
The CORBA specification provides a standard way to bootstrap an object
reference through the use of initial services, which denote a set of unique
services whose object references, if available, can be obtained using the
ORB operation resolve_initial_references, which is defined as follows:

Initial services are intended to have well-known names, and the OMG has
standardized the names for some of the CORBAservices [9]. For example,
the Naming Service has the name NameService, and the Trading Service has
the name TradingService.

// IDL
module CORBA
{

interface ORB
{

typedef string ObjectId;
exception InvalidName {};

Object resolve_initial_references(in ObjectId
identifier)

raises(InvalidName);
};

};
 142

Initial Services
Resolving an Initial Service
An example in which the ORB is queried for a Naming Service object
reference will demonstrate how to use resolve_initial_references. The
example assumes that the ORB has already been initialized as usual. First
the Java version:

5-12 Try to resolve the name of a particular service. If a service of the specified
name is not known to the ORB, an InvalidName exception is thrown.

19-26 The service type was known. Now the object reference has to be narrowed
to the particular service type. If this fails, the service is not available.

1 // Java
2 org.omg.CORBA.Object obj = null;
3 org.omg.CosNaming.NamingContext ctx = null;
4
5 try
6 {
7 obj = orb.resolve_initial_references("NameService");
8 }
9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
10 {
11 ... // An error occured, service is not available
12 }
13
14 if(obj == null)
15 {
16 ... // The object reference is invalid
17 }
18
19 try
20 {
21 ctx = org.omg.CosNaming.NamingContextHelper.narrow(obj);
22 }
23 catch(org.omg.CORBA.BAD_PARAM ex)
24 {
25 ... // This object does not implement a NamingContext
26 }
143

CHAPTER 5 | Locating Objects
And here’s the C++ equivalent to the Java version above:

1 // C++
2 CORBA::Object_var obj;
3 CosNaming::NamingContext_var ctx;
4
5 try
6 {
7 obj = orb -> resolve_initial_references("NameService");
8 }
9 catch(CORBA::ORB::InvalidName&)
10 {
11 ... // An error occured, service is not available
12 }
13
14 if(CORBA::is_nil(obj))
15 {
16 ... // The object reference is invalid
17 }
18
19 ctx = CosNaming::NamingContext::_narrow(obj);
20 if(CORBA::is_nil(ctx))
21 {
22 ... // This object does not implement NamingContext
}

 144

Initial Services
Configuring the Initial Services
When an application uses initial services that are not locality-constrained,
the application must register the object references for these objects with the
ORB. Orbacus supports the standard -ORBInitRef and -ORBDefaultInitRef
command-line options for registering initial service object references:

-ORBInitRef name=URL
-ORBDefaultInitRef URL

For example, starting an application as shown below will enable the client to
resolve the NameService initial reference:

myclient -ORBInitRef
NameService=corbaloc::nshost:10000/NameService

The -ORBconfig option is an alternative method for defining a list of initial
services, and is often preferable when a number of services must be defined.

See “Configuring the ORB and Object Adapter” on page 51 for more
information on these command-line options. Also refer to the INS
specification [10] for detailed information on the standard options
-ORBInitRef and -ORBDefaultInitRef.

In addition to using command-line parameters, a program can add to the list
of initial services using the ORB operation register_initial_reference1:

For example, in C++:

1. This will become part of the ORB interface when the Portable Interceptor
specification is adopted.

// IDL
module CORBA
{

interface ORB
{

void register_initial_reference(in ObjectId id, in
Object obj)

raises(InvalidName);
};

};

1 // C++
2 CORBA::Object_var obj = ... // Get a name service reference
somehow
3 orb -> register_initial_reference("NameService", obj);
145

CHAPTER 5 | Locating Objects
2 Get a reference to the naming service, for example by reading a stringified
object reference and converting it with string_to_object, or by any other
means.

3 Add the reference to the ORB’s list of initial references.

Or in Java:

1-3 This is the same as the C++ version above.

1 // Java
2 org.omg.CORBA.Object obj = ...// Get a name service reference
somehow
3 orb.register_initial_reference("NameService", obj);
 146

Initial Services
The Initial Service Locator
In addition to providing the Orbacus Implementation Repository, the IMR
server (see Chapter 6) acts as an initial service locator. That is, assuming
that the IMR server is properly configured, the name of the host running the
IMR server is the only information needed to find a particular initial service.

To locate an initial service with name foo, the IMR server must first be
configured with the initial reference of this service. This may be done with
the -ORBInitRef command-line option or the ooc.orb.service
configuration property (see Chapter 3 for details). Next, the client that
wishes to connect to foo must be configured with the default initial
reference specifying the host running the IMR server. The
-ORBDefaultInitRef command-line option or the
ooc.orb.default_init_ref configuration property may be used to configure
the default initial reference. For example, given that the IMR server is
running on imr-host, then the client can be started with the option:

-ORBDefaultInitRef=corbaloc::imr-host

When the client is configured with this default initial reference it may invoke
resolve_initial_references("foo") on the ORB to obtain a reference to
foo.
147

CHAPTER 5 | Locating Objects
The IORDump utility

Overview Orbacus provides the iordump utility to decode stringified IORs and to print
out their components in human readable format. It is available in a C++
and a Java version.

Its usage is shown below.

iordump [options] [-f FILE ... | IOR ...]
com.ooc.OB.IORDump [options] [-f FILE ... | IOR ...] 1

The Java version is available in OB.jar.

Sample output for the demo/hello
example

The following command:

iordump -f Hello.ref

-h, --help Show available options.

-v, --version Show Orbacus version.

-f FILE ... Read IORs from file instead of command line.

IOR ... List of IORs.
 148

The IORDump utility
prints:

IOR #1:
byteorder: little endian
type_id: IDL:Hello:1.0
Profile #1: iiop
iiop_version: 1.2
host: 192.168.0.1
port: 17000
object_key: (37)
171 172 171 49 49 48 50 48 "...11020"
55 55 53 54 56 48 0 95 "775680._"
82 111 111 116 80 79 65 0 "RootPOA."
0 202 254 186 190 60 215 205 "..¦¦¥<Î."
0 0 0 0 0 "....."

Native char codeset:
"ISO 8859-1:1987; Latin Alphabet No. 1"

Char conversion codesets:
"ISO 646:1991 IRV (International Reference Version)"
"X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"

Native wchar codeset:
"ISO/IEC 10646-1:1993; UCS-2, Level 1"

Wchar conversion codesets:
"ISO/IEC 10646-1:1993; UTF-16, UCS Transformation Format 16-bit form"
149

CHAPTER 5 | Locating Objects
 150

CHAPTER 6

The
Implementation
Repository
This chapter describes how the Orbacus Implementation
Repository (IMR) works and how to use it.

In this chapter This chapter contains the following sections:

Background page 153

Information Managed by the IMR page 154

IMR Security page 157

Usage page 158

Windows NT Native Service page 160

Configuration Properties page 162

Connecting to the Service page 163

Utilities page 164

Getting Started with the Implementation Repository page 167
151

CHAPTER 6 | The Implementation Repository
Programming Example page 170
 152

Background
Background

Overview The Orbacus Implementation Repository (IMR) provides support for the
indirect binding1 of persistent object references. The key advantage of
indirect binding is that it loosens the coupling between clients and servers
so that the location of the server can change without affecting the client. In
practical terms, this is accomplished by providing the client with an IOR
that actually refers to the IMR, rather than to the server itself. The IMR also
provides the ability to start servers on demand using the Object Activation
Daemon (OAD).

The CORBA specification does not standardize how servers and the IMR
interact, it only suggests functionality for vendors to implement. Hence, the
interface between servers and the IMR is strictly proprietary. Due to the
proprietary interface between servers and the IMR, servers using the IMR
must be developed using Orbacus for C++ or Java. However, the
interaction between clients and the IMR is strictly specified by the GIOP
specification, so any client that is CORBA compliant may interact with the
IMR.

How It All Works When a server is using the IMR, object references created by one of its
persistent POAs refer to the IMR rather than to the server itself. When the
client makes a request using this reference, the IMR receives the request,
activates the server (if necessary) using the OAD, and returns a new object
reference to the client that identifies the server at its current host and port.
The client then establishes a connection with the server using the new
object reference and communicates directly with the server, without the
intervention of the IMR. However, should the server fail, a well-behaved
client will contact the IMR again, which may restart the server and allow the
client to resume its activities.

1. Binding refers to the process of opening a connection and associating an object
reference with its servant.
153

CHAPTER 6 | The Implementation Repository
Information Managed by the IMR
The IMR provides support for the indirect binding and automatic activation
of servers within a given domain. In order to provide this support, the IMR
manages three types of entities: OADs, servers, and POAs.

OADs An OAD is responsible for the activation of servers on a given host. Each
OAD is registered in the IMR using a host name. The IMR also maintains the
status of each OAD. If the OAD is running and in a ready state it will have a
status of up, otherwise, its status will be down.

Servers Servers are registered with a name that is unique within the domain and the
host corresponding to the OAD that is responsible for the server. Since the
name is unique within the domain, it is not currently possible to register the
same server with multiple OADs. The server name that is registered in the
IMR can be any string, but it must be the same as the name used by the
server (i.e., the name specified by the -ORBServerId option, or equivalent
property). The attributes of a server that are stored by the IMR are
summarized below:

host The host corresponding to the OAD that is
responsible for the server.

exec The path of server executable (the .exe extension
must be included on Windows platforms). If this
attribute is not set, then the IMR will not activate the
server.

args The arguments to be supplied when starting the
server executable. Note that “-ORBServerId
server-id” is automatically appended to the
arguments before the server process is started.

rundir The directory that the server process will be started
from. If this attribute is not set, then the server
process will be started from the root directory. For
Windows platforms, the full path must be specified
in the exec attribute even if this attribute is set.
 154

Information Managed by the IMR
The IMR also maintains various state information for each server:

• The internal ID of the server.

• The status of the server process. The valid values are forked,
starting, running, stopping, and stopped.

• Whether or not the server was started manually.

• The number of times that the server process has been spawned.

Server processes inherit environment settings from the environment in
which the OAD was started. Hence, path, library path, and class path
environment variables can be used by the server application. This is
especially useful in the case of shared library and class path settings. (Note
that the class path may also be set in the args attribute.)

On Windows platforms, the exec attribute may refer to an executable or
batch file. Make sure that the first line of the batch file contains:

@echo off

On UNIX platforms, the exec attribute may refer to an executable or a shell
script with

#! interpreter

as its first line.

mode The activation mode. The possible values are:
shared, only one server process is created which is
used by all clients, and persistent, the server
process is started when the IMR starts and is used
by all clients.

activate-poas If this attribute is set to true (default), then all
persistent POAs will be registered automatically. If
set to false, then persistent POAs are not registered
automatically.

update-timeout The amount of time (in milliseconds) to wait for
server status updates.

failure-timeou

t

The amount of time (in seconds) to wait for the
server to start.

max-spawns The maximum number of tries to start the server.
155

CHAPTER 6 | The Implementation Repository
However, if a batch file or shell script is used, then it should accept the
-ORBServerId option since it is automatically appended to the args
attribute by the IMR.

In the case of Java servers, a batch file or shell script should be created to
start the server. An alternative is to set the exec attribute to the Java
interpreter and to use the args attribute to specify the class implementing
the server.

POAs The IMR allows implicit registration of POAs when the server is started. This
can be enabled or disabled for each server using the activate_poas server
attribute. If implicit registration is enabled, then the user does not have to
register any of the POAs; instead, the server transparently notifies the IMR
whenever a call to create_POA is made by the application code.

If the user disables implicit registration, then the user must register all
persistent POAs (i.e., POAs with the PERSISTENT life span policy). POAs are
registered using the name of its server and the name of the POA. Note that
any transient POAs (POAs with the TRANSIENT life span policy) created by
the server are not registered with the IMR.

The IMR also maintains the status for each POA, which indicates the state
of its POA Manager. The valid values are inactive, active, holding, and
discarding.
 156

IMR Security
IMR Security
It is very important that only the IMR’s public endpoint (also referred to as
its forward endpoint) be accessible outside of the network firewall.
Otherwise, anyone can mimic the IMR and cause an OAD to run any
command they decide.

For additional security, the information managed by the IMR may only be
modified when the IMR is running in administrative mode. That is:

• OAD registration and removal,

• server registration and removal,

• modification of server attributes, and

• POA registration and removal

are only possible when the IMR is running in administrative mode. An
attempt to modify the information managed by the IMR when it is not
running in administration mode will result in a CORBA::NO_PERMISSION
exception.
157

CHAPTER 6 | The Implementation Repository
Usage
The IMR and OAD are currently implemented using Orbacus for C++, but
Orbacus for Java servers can also be launched by the IMR. Both the IMR
and OAD are contained in the IMR server, which may be started in one of
three modes:

Command-line usage is as follows:

imr
[-h,--help] [-v,--version] [-m,--master] [-s,--slave]
[-a,--administrative] [-d,--database][-A,--admin-endpoint]
[-F,--forward-endpoint] [-S,--slave-endpoint]
[-L, --locator-endpoint]

master Start only the IMR.

slave Start only the OAD.

dual Start both the IMR and OAD.

-h

--help

Display the command-line options supported by the
server.

-v

--version

Display the version of the server.

-m

--master

Run the server in master mode.a

-s

--slave

Run the server in slave mode.a

-a

--administrative

Run the IMR in administrative mode. The IMR will
run in non-administrative mode by default.

-d DIRECTORY

--database DIRECTORY

Specifies the directory in which the IMR maintains
its database files. If not specified, the current
working directory is used.
 158

Usage
-A INFO

--admin-endpoint INFO

Specifies the IMR's administrative endpoint settings.
This is the endpoint that the OADs and IMR-enabled
servers use to communicate with the IMR. For
security reasons, access to this endpoint can be
restricted. If not specified, iiop --port 9999 is
used.

-F INFO

--forward-endpoint INFO

Specifies the IMR's public endpoint, which is used
by clients for server requests. If not specified, iiop
--port 9998 is used.

-S INFO

--slave-endpoint INFO

Specifies the endpoint used by the OAD. Note that
all of the OADs in a domain must use the same
endpoint. If not specified, iiop --port 9997 is used.

-L INFO

--locator-endpoint INFO

Specifies the endpoint used by the Initial Service
Locator (see “The Initial Service Locator” on
page 147). If not specified, iiop --port 2809 is
used.

a. Note that only one of the -m or -s options may be specified. Also, if neither the -m or -s
option is specified, then the server is started in dual mode.
159

CHAPTER 6 | The Implementation Repository
Windows NT Native Service
The imr server is also available as a native Windows NT service.

ntimrservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

In order to use the IMR server as a native Windows NT service, first add the
desired configuration properties to the HKEY_LOCAL_MACHINE NT registry key
(see “Using the Windows NT Registry” on page 65 for more details). For
example, add the ooc.imr.admin_endpoint, ooc.imr.forward_endpoint,
and ooc.imr.slave_endpoint properties so that the IMR and OAD will use
non-default endpoint settings.

Next the service should be installed with:

ntimrservice -i

This adds the Orbacus Implementation Repository entry to the Services
dialog in the Control Panel. To start the service, select the Orbacus
Implementation Repository entry, and press Start. If the service is to be
started automatically when the machine is booted, select the Orbacus
Implementation Repository entry, then click Startup. Next select Startup
Type - Automatic, and press OK. Alternatively, the service could have been
installed using the -s option, which configures the service for automatic
start-up:

-h

--help

Display the command-line options supported by
the service.

-i

--install

Install the service. The service must be started
manually.

-s

--start-install

Install and start the service.

-u

--uninstall

Uninstall the service.

-d

--debug

Run the service in debug mode.
 160

Windows NT Native Service
ntimrservice -s

If you want to remove the service, run:

ntimrservice -u

Note: If the executable for the service is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is be placed in the Windows
NT Event Viewer with the title IMRService. To enable tracing information,
add the desired trace configuration property (i.e., one of the ooc.imr.trace
properties or one of the ooc.orb.trace properties) to the
HKEY_LOCAL_MACHINE NT registry key with a REG_SZ value of at least 1.
161

CHAPTER 6 | The Implementation Repository
Configuration Properties
In addition to the standard configuration properties described in Chapter 3,
the IMR also supports the following properties:

Property Value Description

ooc.imr.mode master, slave, dual Specifies the mode in which the imr server
will be started.

ooc.imr.administrative true, false If set to true, then run the IMR in
administrative mode. For details refer to
the -a command-line option.

ooc.imr.dbdir directory Equivalent to the -d command-line option.

ooc.imr.admin_endpoint info Equivalent to the -A command-line option.

ooc.imr.forward_endpoint info Equivalent to the -F command-line option.

ooc.imr.slave_endpoint info Equivalent to the -S command-line option.

ooc.imr.locator_endpoint info Equivalent to the -L command-line option.

ooc.imr.trace.peer_status level >= 0 Defines the output level for IMR diagnostic
messages related to communications with
the OADs. The default level is 0, which
produces no output.

ooc.imr.trace.process_control level >= 0 Defines the output level for IMR diagnostic
messages related to the forking and death
of server processes. The default level is 0,
which produces no output.

ooc.imr.trace.server_status level >= 0 Defines the output level for IMR diagnostic
messages related to the status of servers
and POAs. The default level is 0, which
produces no output.
 162

Connecting to the Service
Connecting to the Service
Servers that use the IMR must be configured with the IMR initial reference.
The object key of the IMR is IMR, hence, a URL-style object reference of the
IMR service running on host imrhost at port 10000 would be:

corbaloc::imrhost:10000/IMR

Using this object reference, a server can configure the IMR initial reference
with the property:

ooc.orb.service.IMR=corbaloc::imrhost:10000/IMR

An alternative to using the above property is to use the -ORBInitRef
command-line option. Refer to Chapter 5 for more information on URLs and
configuring initial services.
163

CHAPTER 6 | The Implementation Repository
Utilities

Implementation Repository
Administration

The imradmin utility provides complete control over the IMR, OADs and
servers in a domain. Its command interface is shown below:

-h, --help Display this information.

--add-oad [host] Register an OAD for the specified host.

--add-server server-name [exec [host]] Register a server under the OAD
specified by host with the given exec
attribute.

--add-poa server-name poa-name Register a POA for the specified server.

--remove-oad [host] Unregister an OAD.

--remove-server server-name Unregister a server.

--remove-poa server-name poa-name Unregister a POA.

--get-oad-status [host] Get the status of an OAD.

--get-server-info server-name Get the attributes and state information
for a server.

--get-poa-status server-name poa-name Get the status of a POA.

--list-oads List all OADs.

--list-servers List all servers.

--list-poas server-name List all POAs.

--tree Display all OADs, servers and POAs in
a tree like format.

--tree-oad [host] Display an OAD and its associated
servers and POAs in a tree like format.

--tree-server server-name Display a server and its associated
POAs in a tree like format.
 164

Utilities
Note that the imradmin utility also needs to be configured with the IMR
initial reference (see “Connecting to the Service” on page 163).

The host argument is optional. If host is not specified the local host name is
used. The server-name argument refers to the name of the server. The
format of the poa-name argument is poa1/poa2/poa3, where poa1 is a child
of the Root POA, poa2 is a child of poa1, and poa3 is a child of poa2. Refer
to “Information Managed by the IMR” on page 154 for further details.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to
manually reset the state of the server using the --reset-server command.
It is also necessary to use this command if the server continually crashes on
startup and has reached the maximum number of retries specified by its
max_spawns attribute. This prevents the OAD from continually starting the
same broken server.

Making References The mkref utility creates IMR-based object references for use by clients.
Since the Object ID is required to create a reference, this utility can only be
used to create references for objects created by POAs using the USER_ID
object identification policy. Its usage is shown below.

mkref [-H host] [-P port] server-name object-id
poa1/poa2/.../poan

--set-server server-name {exec|host|

args|rundir|mode|activate_poas|

update_timeout|failure_timeout|

max_spawns} value

Set an attribute of a server (e.g.,

--set-server srv max_spawns 2

sets the max_spawns attribute for the
server srv to 2).

--start-server server-name Start a server.

--stop-server server-name Stop a server.

--reset-server server-name Reset a server.

host The host that the imr server is running on. The default
value is the canonical hostname of the machine in
which mkref is executed.
165

CHAPTER 6 | The Implementation Repository
Upgrading the IMR Database The imrdbupgrade utility is used to upgrade an earlier version of the IMR
database. Command-line usage is as follows:

imrdbupgrade database-directory

The database-directory parameter is used to specify the IMR database
directory.

port The forward port of the imr server. If not set, then
mkref will use 9998.

server-name The name of the server as registered in the IMR.

object-id The Object ID used by the object.

poa1/poa2/.../poan The POA which creates the object, where poa1 is a
child of the Root POA, poa2 is a child of poa1, and so
on.
 166

Getting Started with the Implementation Repository
Getting Started with the Implementation
Repository

To use the IMR, several steps must be taken. These steps are presented
below and are explained by way of example. In this example we assume
that Orbacus has been installed in the directory /usr/local/Orbacus and
the executables imr, imradmin and mkref all exist in a directory that is in the
search path.

1. Determine the physical architecture.

In this example, we have a network with three hosts: master, slave1
and slave2. The host master is used to run only the IMR. The hosts
slave1 and slave2 are used to run individual CORBA servers.

2. Create a configuration file for the IMR and OADs.

First, create a configuration file for the IMR containing the following:

This file is placed in the /usr/local/Orbacus/etc directory on host
master.

Second, create a configuration file for the OADs containing the
following:

This files is placed in the /usr/local/Orbacus/etc directory on hosts
slave1 and slave2.

3. Start the IMR in administrative mode.

On host master, run:

imr.conf
ooc.imr.admin_endpoint=iiop --port 10000
ooc.imr.forward_endpoint=iiop --port 10001
ooc.imr.slave_endpoint=iiop --port 10002
ooc.imr.mode=master
ooc.imr.dbdir=/usr/local/Orbacus/db

oad.conf
ooc.orb.service.IMR=corbaloc::master:10000/IMR
ooc.imr.slave_endpoint=iiop --port 10002
ooc.imr.mode=slave
ooc.imr.dbdir=/usr/local/Orbacus/db
167

CHAPTER 6 | The Implementation Repository
imr -ORBconfig /usr/local/Orbacus/etc/imr.conf
--administrative

4. Start the OADs.

On host slave1, run:

imr -ORBconfig /usr/local/Orbacus/etc/oad.conf

On host slave2, run:

imr -ORBconfig /usr/local/Orbacus/etc/oad.conf

Each OAD automatically registers itself with the IMR. Note that an
OAD can also be registered manually using the imradmin utility. For
example, to register the OAD on host slave1, run:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--add-oad slave1

5. Add each server to the IMR.

In our example, we will run one server on each OAD. The server names
are Server1 and Server2 and are located in /usr/local/bin on their
respective hosts.

First, we register the servers using the imradmin utility:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--add-server Server1 "/usr/local/bin/server1" slave1

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--add-server Server2 "/usr/local/bin/server2" slave2

Next, we set the server arguments:

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--set-server Server1 args \
"-ORBInitRef IMR=corbaloc::master:10000/IMR"

imradmin -ORBInitRef IMR=corbaloc::master:10000/IMR \
--set-server Server2 args \
"-ORBInitRef IMR=corbaloc::master:10000/IMR"

A C++ server can automatically register itself with the IMR using the
-ORBregister command-line option. For example, to registered
Server1, run the following on slave1:

/usr/local/bin/server1 -ORBregister Server1 \
-ORBInitRef IMR=corbaloc::master:10000/IMR

If the server requires command-line options, then these options must
be added using the imradmin utility.

6. Add each POA to the IMR.

In this example, the servers are registered without setting the
activate_poas attribute, so the attribute defaults to true. Hence, all
 168

Getting Started with the Implementation Repository
persistent POAs will be registered automatically. If this were not the
case, the POAs would have to be registered manually.

7. Configure your servers to use the IMR.

There are three ways to configure a server to use the IMR:

i. Use the -ORBregister command-line option (only available for
C++ servers). This option is used for server registration and can
only be used when starting the server for the first time.

ii. Use the -ORBServerId command-line option.

iii. Use the ooc.orb.server_name configuration property. This
configuration property is equivalent to the -ORBServerId
command-line option and may be set in a configuration file or
programmatically prior to initializing the ORB in a server.

In this example, the IMR is responsible for starting the servers. Hence,
when the server is started, the -ORBServerId option is automatically
added to the argument list.

8. Create object references for use by the clients.

A server can always be used to create references for its objects.
However, if an object is created by a POA that uses the USER_ID object
identification policy, then the mkref utility can also be used to create a
reference for the object. Using the mkref utility is discussed below.

Assume each server has a single primary object. Server1 uses Object1
for its Object ID and Server2 uses Object2. Also, each server creates a
persistent POA called Main to hold its objects. To create object
references for these objects, run the following on master:

mkref -P 10001 Server1 Object1 Main > Object1.ref

mkref -P 10001 Server2 Object2 Main > Object2.ref

After all OADs, servers and POAs are registered, it is recommended to
restart the IMR in non-administrative mode. This will prevent any accidental
(or unauthorized) modifications.
169

CHAPTER 6 | The Implementation Repository
Programming Example
In this section, we will show how to modify the C++ version of the “Hello
World” server (see Chapter 1) to use a persistent object reference. This will
allow the server to use the IMR for indirect binding. Modifications to the
Java version of the server are similar. The code for both the C++ and Java
persistent “Hello World” servers may be found in the demo/hello_imr
directories of the Orbacus for C++ and Java distributions.

The “Hello World” server presented in Chapter uses the Root POA to
activate its Hello servant. Since the Root POA uses the TRANSIENT life span
policy, the object reference it creates will not be persistent. Hence, the
“Hello World” server must be modified so that the Hello servant is activated
using a child POA with the PERSISTENT life span policy. The new child POA
will also use the USER_ID object identification policy so that the mkref utility
may be used. Further, the Hello servant is no longer activated under the
Root POA, so it becomes necessary for it to override the _default_POA
method. The modified servant’s class declaration is shown below:

8 Private member to store the servant’s default POA.

12 A constructor must be defined to allow the assignment of the servant’s
default POA.

16 Declaration of the _default_POA method.

1 // C++
2
3 #include <Hello_skel.h>
4
5 class Hello_impl : public POA_Hello,
6 public PortableServer::RefCountServantBase
7 {
8 PortableServer::POA_var poa_;
9
10 public:
11
12 Hello_impl(PortableServer::POA_ptr);
13
14 virtual void say_hello() throw(CORBA::SystemException);
15
16 virtual PortableServer::POA_ptr _default_POA();
17 };
 170

Programming Example
The remainder of the class declaration is unchanged. The definition of the
constructor and _default_POA method follow:

1 // C++
2
3 Hello_impl::Hello_impl(PortableServer::POA_ptr poa)
4 : poa_(PortableServer::POA::_duplicate(poa)
5 {
6 }
7
8 PortableServer::POA_ptr Hello_impl::_default_POA()
9 {
10 return PortableServer::POA::_duplicate(poa_);
}

171

CHAPTER 6 | The Implementation Repository
The modified portion of the server program is shown below:

14-22 Create a new POA using PERSISTENT life span policy and the USER_ID object
identification policy.

24-25 Create the Hello servant.

1 // C++
2
3 int
4 run(CORBA::ORB_ptr orb, int argc)
5 {
6 CORBA::Object_var poaObj =
7 orb -> resolve_initial_references("RootPOA");
8 PortableServer::POA_var rootPoa =
9 PortableServer::POA::_narrow(poaObj);
10
11 PortableServer::POAManager_var manager =
12 rootPoa -> the_POAManager();
13
14 CORBA::PolicyList pl(2);
15 pl.length(2);
16 pl[0] = rootPOA -> create_lifespan_policy(
17 PortableServer::PERSISTENT);
18 pl[1] = rootPOA -> create_id_assignment_policy(
19 PortableServer::USER_ID);
20
21 PortableServer::POA_var helloPOA =
22 rootPOA -> create_POA("hello", manager, pl);
23
24 Hello_impl* helloImpl = new Hello_impl(helloPOA);
25 PortableServer::ServantBase_var servant = helloImpl;
26 PortableServer::ObjectId_var oid =
27 PortableServer::string_to_ObjectId("hello");
28 helloPOA -> activate_object_with_id(oid, servant);
29 Hello_var hello = helloImpl -> _this();
30
31 CORBA::String_var s = orb -> object_to_string(hello);
32 ofstream out("Hello.ref");
33 out << s << endl;
34 out.close();
35
36 manager -> activate();
37 orb -> run();
38
39 return 0;
}

 172

Programming Example
26-27 Using the string "hello", create an object id.

28 Activate the servant with the new POA.

The remainder of the code is unchanged.
173

CHAPTER 6 | The Implementation Repository
 174

CHAPTER 7

The
Implementation
Repository
Console
The Orbacus Implementation Repository (IMR) includes a
graphical client for administering the service called the
Orbacus IMR Console. The Orbacus IMR Console provides
complete control over the IMR, OADs and servers in a domain.

In this chapter This chapter contains the following sections:

Usage page 176

The Menus page 177
175

CHAPTER 7 | The Implementation Repository Console
Usage
com.ooc.IMRConsole.Main

[--look CLASS] [--windows] [--motif] [--mac] [-h,--help]

CLASSPATH Requirements The Orbacus IMR Console requires the classes in OB.jar, OBIMR.jar and

OBUtil.jar.

Implementation Repository
Service Lookup

In order to locate an IMR Service, the application uses the initial IMR
Service, as provided to the ORB with options such as -ORBservice or
-ORBconfig. If the service is not found, an error is displayed and the IMR
Console exits.

--look CLASS Use the specified Look & Feel class.

--windows Use the Windows Look & Feel (if available).

--motif Use the Motif Look & Feel (if available).

--mac Use the Macintosh Look & Feel (if available).

-h

--help

Display the command-line options supported by the
program.
 176

The Menus
The Menus
The menus provide access to all of the features of the application. In
addition, the most common actions are also available in the toolbar, as well
as in a popup menu that is displayed when pressing the right mouse button
over an item in the binding table or context tree.

The File Menu The File menu contains the Exit menu item, which is used to exit the
Orbacus IMR Console.

The Edit Menu The operations in the Edit menu provide the means for manipulating OADs,
servers and POAs.

The Create menu item creates a child object under the selected object.
OADs are created under the “IMR Domain” root object, servers are created
under OADs, and POAs are created under servers.

The Modify menu item applies to all objects. However, servers are currently
the only objects that have attributes that can be modified.

To delete an object, the Delete menu item is used. This operation
recursively deletes all children under the selected item.

Create Create a new OAD, server, or POA.

Modify Modify the selected object.

Delete Delete the selected object.

Cut Move the selected server to the clipboard.

Paste Insert the server contained in the clipboard under the
selected OAD.

Start Start the selected server.

Stop Stop the selected server.

Reset Reset the state of the selected server.
177

CHAPTER 7 | The Implementation Repository Console
The Cut and Paste menu items only apply to servers and are used to move
servers to different hosts. Note that OAD for the desired host must be
selected when using Paste.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to
manually reset the state of the server using the Reset menu item. It also
necessary to use this item if the server continually crashes on startup and
has reached the maximum number of retries specified by its max_spawns
attribute. This prevents the OAD from continually starting the same broken
server.

The View Menu The View menu contains the Refresh menu item. The Refresh menu item is
used to update the console when the contents of the IMR have been
changed from outside the console. Note that clicking or expanding an item
will refresh the item.

The Toolbar and the Popup Menu In addition to the operations offered by the menu bar, some frequently
needed functions are available by icons located in the toolbar. The toolbar
contains all of the items of the Edit menu and the Refresh item of the View
menu. The toolbar is shown below.
 178

The Menus
When selecting an OAD, server or POA with the right mouse button, a
popup menu with a choice of operations will be displayed as shown below.

This popup menu provides the same operations as the toolbar.
179

CHAPTER 7 | The Implementation Repository Console
 180

CHAPTER 8

Orbacus Names
A CORBA object is often represented by an object reference
in the form of a “stringified” IOR, a lengthy string that is
difficult to read and cumbersome to use. It is much more
natural to think of an object in terms of its name, which is a
core feature of the CORBA Naming Service. In the Naming
Service, objects are registered with a unique name, which can
later be used to resolve their associated object references.

Orbacus Names is compliant with [10]. This chapter does not
provide a complete description of the service. It only provides
an overview, suitable to get you started. For more information,
please refer to the specification.

In this chapter This chapter contains the following sections:

Usage page 183

Windows NT Native Service page 185

Configuration Properties page 187

Persistence page 188

Connecting to the Service page 189

Using the Naming Service with the IMR page 190

Bindings page 191
181

CHAPTER 8 | Orbacus Names
Name Resolution page 193

Programming Example page 194
 182

Usage
Usage
Orbacus includes functionally equivalent implementations of the Naming
Service in C++ and Java.

C++ nameserv
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-l, --limit COUNT]
[-t,--timeout MINS] [-c, --callback-timeout SECS]

Java com.ooc.CosNaming.Server
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-l, --limit COUNT]
[-t,--timeout MINS] [-c, --callback-timeout SECS]

Options

-h
--help

Display the command-line options supported by the
server.

-v
--version

Display the version of the server.

-i

--ior

Prints the stringified IOR of the server to standard
output.

-n

--no-updates

Disables automatic updates, i.e., callbacks that
notify interested clients of changes to the naming
service.

-s
--start

Use this option only when starting a persistent server
using a new database.

-d FILE
--database FILE

Enables persistence for the server. All of the bindings
created by the server will be saved to the specified
file. If you are starting the server for the first time
using this database, you must also use the -s
command-line option.
183

CHAPTER 8 | Orbacus Names
CLASSPATH Requirements Orbacus Names for Java requires the classes in OB.jar and OBNaming.jar.

-l COUNT

--limit COUNT

Limits the number of bindings returned in the
binding list by a call to list() to COUNT bindings.
Using this option can reduce the memory
requirements of the server.

-t MINS

--timeout MINS

Specifies the timeout in minutes after which a
persistent server automatically compacts its
database. The default timeout is five minutes.

-c SECS

--callback-timeout SECS

Specifies the timeout in seconds to be used for the
Orbacus timeout policy (OB::TimeoutPolicy). The
default timeout is five seconds. See Chapter 15 for
more information.
 184

Windows NT Native Service
Windows NT Native Service
The C++ version of Orbacus Names is also available as a native Windows
NT service.

ntnameservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

In order to use the Naming Service as a native Windows NT service, it is first
necessary to add the ooc.naming.endpoint configuration property to the
HKEY_LOCAL_MACHINE NT registry key (see “Using the Windows NT Registry”
on page 65 for more details). If the service is to be persistent, the path to
the database file must be stored in the following property:1

HKEY_LOCAL_MACHINE\Software\OOC\Properties\ooc\naming\database

Next the service should be installed with:

ntnameservice -i

This adds the Orbacus Naming Service entry to the Services dialog in the
Control Panel. To start the naming service, select the Orbacus Naming

Service entry, and press Start. If the service is to be started automatically
when the machine is booted, select the Orbacus Naming Service entry,

-h

--help

Display the command-line options supported by
the server.

-i

--install

Install the service. The service must be started
manually.

-s

--start-install

Install the service. The service will be started
automatically.

-u

--uninstall

Uninstall the service.

-d

--debug

Run the service in debug mode.

1. Please note that services do not have access to network drives, so the path to the
database must be on a local hard drive.
185

CHAPTER 8 | Orbacus Names
then click Startup. Next select Startup Type - Automatic, and press OK.
Alternatively, the service could have been installed using the -s option,
which configures the service for automatic start-up:

ntnameservice -s

If you want to remove the service, run:

ntnameservice -u

Note: If the executable for the Naming Service is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service will be placed in the Windows
NT Event Viewer with the title NamingService. To enable tracing
information, add the desired trace configuration property (i.e., the
ooc.naming.trace_level property or one of the ooc.orb.trace properties)
to the HKEY_LOCAL_MACHINE NT registry key with a REG_SZ value of at least
1.
 186

Configuration Properties
Configuration Properties
In addition to the standard configuration properties described in Chapter 3,
Orbacus Names also supports the following properties:

ooc.naming.callback_timeout=SECS Equivalent to the -c command-line option.

ooc.naming.database=FILE Equivalent to the -d command-line option.

ooc.naming.no_updates Equivalent to the -n command-line option.

ooc.naming.endpoint=ENDPOINT Specifies the endpoint configuration for the
service. Note that this property is only used if
the ooc.orb.oa.endpoint property is not set.

ooc.naming.timeout=MINS Equivalent to the -t command-line option.

ooc.naming.trace_level=LEVEL Defines the output level for diagnostic messages
printed by Orbacus Names. The default level
is 0, which produces no output. A level of 1 or
higher produces messages related to database
operations, a level of 2 or higher produces
messages related to adding and removing
listeners, and a level of 3 or higher produces
messages related to binding operations.
187

CHAPTER 8 | Orbacus Names
Persistence
Orbacus Names can optionally be used in a persistent mode, in which all
data managed by the service is saved in a file. If you do not run the service
in its persistent mode, all of the data will be lost when the service
terminates.

It is also important to note that when using the service in its persistent
mode, you should always start the service on the same port (see Chapter 3
for more information).
 188

Connecting to the Service
Connecting to the Service
The object key of the Naming Service is NameService, which identifies an
object of type CosNaming::OBNamingContext. The OBNamingContext
interface is derived from the standard interface
CosNaming::NamingContextExt and provides additional Orbacus-specific
functionality. For a description of the OBNamingContext interface, please
refer to the documented IDL file naming/idl/OBNaming.idl.

The object key can be used when composing URL-style object references.
For example, the following URL identifies the naming service running on
host nshost at port 10000:

corbaloc::nshost:10000/NameService

Refer to Chapter 5 for more information on URLs and configuring initial
services.
189

CHAPTER 8 | Orbacus Names
Using the Naming Service with the IMR
The Naming Service may be used with the Implementation Repository
(IMR). However, if used with the IMR, it is important to note that the
corbaloc URL-style object reference described in the previous section
cannot be used. If the IMR is used, then the object reference for the Naming
Service must be created using one of the following methods (where
NamingServer refers to the server name configured with the IMR):

• Start the Naming Service with the options:
--ior -ORBServerId NamingServer

causing the Naming Service to print its reference to standard output.

• Use the mkref utility:
mkref NamingServer NameService RootContextPOA

When using the Naming Service with the IMR, the service must be started
with the option -ORBServerId NamingServer, where NamingServer refers to
the server name configured with the IMR. When the IMR is configured to
start the Naming Service, this option is automatically added to the service’s
arguments. However, when the Naming Service is started manually, the
option must be present. For further information on configuring a service with
the IMR, refer to “Getting Started with the Implementation Repository” on
page 167.
 190

Bindings
Bindings
Object references registered with the Naming Service are maintained in a
hierarchical structure similar to a filesystem. A file in a filesystem is
analogous to an object binding in the Naming Service. The equivalent for a
folder in a filesystem is a naming context in Naming Service terms. The
pieces of information stored in a Naming Service are called bindings. A
binding consists of an object’s name and its type, as defined in the
CosNaming module:

As you can see, each name consists of one or more components, like a file is
fully specified by its path in a filesystem. Each name component consists of
two strings, id and kind, which could be likened to a file’s name and its
extension. Generally, the filesystem analogy works very well when
describing the Naming Service structures.

// IDL
typedef string Istring;

struct NameComponent
{

Istring id;
Istring kind;

};

typedef sequence<NameComponent> Name;

enum BindingType
{

nobject,
ncontext

};

struct Binding
{

Name binding_name;
BindingType binding_type;

};
191

CHAPTER 8 | Orbacus Names
A new Naming Service entry, i.e., a binding, is created with the following
operations:

bind registers a new object with the Naming Service, whereas a new context
is registered with bind_context. For each operation, an object reference and
a Name are expected as parameters. New naming context objects are created
with new_context or bind_new_context. bind_context and
bind_new_context throw an AlreadyBound exception if the name is already
in use in the target context.

To create a new binding without being concerned if the specified binding
already exists, use the following operations:

Use the unbind operation to delete a particular binding:

// IDL
void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

NamingContext new_context();

NamingContext bind_new_context(in Name n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

// IDL
void rebind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

// IDL
void unbind(in Name n)

raises(NotFound, CannotProceed, InvalidName);
 192

Name Resolution
Name Resolution
Besides registering objects, an equally important task of the Naming Service
is name resolution. A name is passed to the resolve or resolve_str
operation and an object reference is returned if the name exists.

The resolve and resolve_str operations are only useful when a particular
name is known in advance. Sometimes it is necessary to ask for a list of all
bindings registered with a particular naming context. The list operation
returns a list of bindings.

If the number of bindings is especially large, the BindingIterator interface
is provided so that you don’t have to query for all available bindings at once.
Simply get a certain number of bindings specified with how_many, and get
the rest, if any, using the BindingIterator.

Make sure that you destroy the iterator object when it is no longer needed.

// IDL
Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);
Object resolve_str(in StringName n)

raises(NotFound, CannotProceed, InvalidName);

// IDL
typedef sequence<Binding> BindingList;

void list(in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

// IDL
interface BindingIterator
{

boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList
bl);
void destroy();

};
193

CHAPTER 8 | Orbacus Names
Programming Example
Orbacus includes simple C++ and Java examples that demonstrate how to
use the CORBA Naming Service. These examples are located in the folder
naming/demo. We will concentrate on the Java example, but the C++
example works similarly. The example expects a Naming Service server to
be already running and that the server’s initial reference can be resolved by
the ORB. Because of its volume we have split the code into several parts for
the discussion below.
 194

Programming Example
Initialization
The first code fragment deals with initializing the ORB.

1 // Java
2 java.util.Properties props = System.getProperties();
3 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
4 props.put("org.omg.CORBA.ORBSingletonClass",
5 "com.ooc.CORBA.ORBSingleton");
6
7 org.omg.CORBA.ORB orb = null;
8 try
9 {
10 orb = ORB.init(args, props);
11
12 org.omg.CORBA.Object poaObj = null;
13 try
14 {
15 poaObj = orb.resolve_initial_references("RootPOA");
16 }
17 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
18 {
19 throw new RuntimeException();
20 }
21 POA rootPOA = POAHelper.narrow(poaObj);
22 POAManager manager = rootPOA.the_POAManager();
23
24 org.omg.CORBA.Object obj = null;
25 try
26 {
27 obj = orb.resolve_initial_references("NameService");
28 }
29 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
30 {
31 throw new RuntimeException();
32 }
33
34 if(obj == null)
35 {
36 throw new RuntimeException();
}

195

CHAPTER 8 | Orbacus Names
10-22 Usually the application is initialized in the main method. For more
information on ORB initialization see Chapter 3.

24-32 In the next step we try to connect to the Naming Service by supplying
“NameService” to resolve_initial_references. If InvalidName is thrown,
there is no Naming Service available because the ORB doesn’t know
anything about this service.

34-47 If calling resolve_initial_references was successful, the object reference
is checked and narrowed in order to verify that it supports the interface
CosNaming::NamingContextExt. If the narrow operation raises
CORBA::BAD_PARAM, the object does not support the interface. This is
considered to be an error because we explicitly asked for a Naming Service
instance.

37
38
39 NamingContextExt nc = null;
40 try
41 {
42 nc = NamingContextExtHelper.narrow(obj);
43 }
44 catch(org.omg.CORBA.BAD_PARAM ex)
45 {
46 throw new RuntimeException();
47 }
 196

Programming Example
Binding
In the next step some sample bindings are created and bound to the Naming
Service.

1 // Java
2 Named_impl implA = new Named_impl();
3 Named_impl implA1 = new Named_impl();
4 Named_impl implA2 = new Named_impl();
5 Named_impl implA3 = new Named_impl();
6 Named_impl implR = new Named_impl();
7 Named_impl implC = new Named_impl();
8 Named a = implA._this(orb);
9 Named a1 = implA1._this(orb);
10 Named a2 = implA2._this(orb);
11 Named a3 = implA3._this(orb);
12 Named b = implB._this(orb);
13 Named c = implC._this(orb);
14
15 try
16 {
17 NameComponent[] nc1Name = new NameComponent[1];
18 nc1Name[0] = new NameComponent();
19 nc1Name[0].id = "nc1";
20 nc1Name[0].kind = "";
21 NamingContext nc1 = nc.bind_new_context(nc1Name);
22
23 NameComponent[] nc2Name = new NameComponent[2];
24 nc2Name[0] = new NameComponent();
25 nc2Name[0].id = "nc1";
26 nc2Name[0].kind = "";
27 nc2Name[1] = new NameComponent();
28 nc2Name[1].id = "nc2";
29 nc2Name[1].kind = "";
30 NamingContext nc2 = nc.bind_new_context(nc2Name);
31
32 NameComponent[] aName = new NameComponent[1];
33 aName[0] = new NameComponent();
34 aName[0].id = "a";
35 aName[0].kind = "";
36 nc.bind(aName, a);
197

CHAPTER 8 | Orbacus Names
2-13 Several sample objects are created that will later be bound to our Naming
Service. These objects implement an interface called Named. In this example,
the details of this interface are not important. Named might even be an
interface without any operations defined in it.

37
38 NameComponent[] a1Name = new NameComponent[1];
39 a1Name[0] = new NameComponent();
40 a1Name[0].id = "a1";
41 a1Name[0].kind = "";
42 nc.bind(a1Name, a1);
43
44 NameComponent[] a2Name = new NameComponent[1];
45 a2Name[0] = new NameComponent();
46 a2Name[0].id = "a2";
47 a2Name[0].kind = "";
48 nc.bind(a2Name, a2);
49
50 NameComponent[] a3Name = new NameComponent[1];
51 a3Name[0] = new NameComponent();
52 a3Name[0].id = "a3";
53 a3Name[0].kind = "";
54 nc.bind(a3Name, a3);
55
56 NameComponent[] bName = new NameComponent[2];
57 bName[0] = new NameComponent();
58 bName[0].id = "nc1";
59 bName[0].kind = "";
60 bName[1] = new NameComponent();
61 bName[1].id = "b";
62 bName[1].kind = "";
63 nc.bind(bName, b);
64
65 NameComponent[] cName = new NameComponent[3];
66 cName[0] = new NameComponent();
67 cName[0].id = "nc1";
68 cName[0].kind = "";
69 cName[1] = new NameComponent();
70 cName[1].id = "nc2";
71 cName[1].kind = "";
72 cName[2] = new NameComponent();
73 cName[2].id = "c";
74 cName[2].kind = "";
75 nc.bind(cName, c);
76 }
 198

Programming Example
17-75 Create and bind some new contexts and bind the sample objects to these
contexts. Each binding name consists of several NameComponents that are
similar to the path components of a file located somewhere in a filesystem.
Objects are bound with the Naming Service’s bind operation; for contexts,
the corresponding operation bind_context is used. In addition to the
object’s IOR, both operations expect a unique binding name. If a name
already exists, an AlreadyBound exception is thrown. There are also other
exceptions you might encounter at this stage, e.g., IllegalName if an empty
string was provided as part of a NameComponent.
199

CHAPTER 8 | Orbacus Names
Exceptions
This code fragment deals with exceptions that may be thrown by the
Naming Service operations.

1 // Java
2 catch(NotFound ex)
3 {
4 System.err.print("Got a ‘NotFound’ exception (");
5 switch(ex.why.value())
6 {
7 case NotFoundReason._missing_node:
8 System.err.print("missing node");
9 break;
10
11 case NotFoundReason._not_context:
12 System.err.print("not context");
13 break;
14
15 case NotFoundReason._not_object:
16 System.err.print("not object");
17 break;
18 }
19
20 System.err.println(")");
21 ex.printStackTrace();
22 throw new SystemException();
23 }
24 catch(CannotProceed ex)
25 {
26 System.err.println("Got a ‘CannotProceed’ exception");
27 ex.printStackTrace();
28 throw new SystemException();
29 }
30 catch(InvalidName ex)
31 {
32 System.err.println("Got an ‘InvalidName’ exception");
33 ex.printStackTrace();
34 throw new SystemException();
}

 200

Programming Example
2-41 Catch exceptions. Don’t ever forget to do this. It can be useful to call
printStackTrace on the exception object in order to get detailed information
about the program flow causing the exception.

35
36 catch(AlreadyBound ex)
37 {
38 System.err.println("Got an ‘AlreadyBound’ exception");
39 ex.printStackTrace();
40 throw new SystemException();
41 }
201

CHAPTER 8 | Orbacus Names
The Event Loop
Next we start listening for requests.

2-10 Everything is ready now, so we can listen for requests by calling actiavate
on the POA Manager and run on the ORB.

1 // Java
2 try
3 {
4 manager.activate();
5 }
6 catch(org.omg.PortableServer.POAManagerPackage.AdapterInactive
ex)
7 {
8 throw new RuntimeException();
9 }
10 orb.run();
 202

Programming Example
Releasing Resources
Some cleanup work should be done before exiting the program. Every
binding must be properly unbound and the ORB must be destroyed.

2-9 All bindings are unbound.

16-26 destroy is called on the ORB. This releases the resources used by the ORB.

The complete example can be found in the folder naming/demo included with
the Orbacus distribution.

1 // Java
2 nc.unbind(cName);
3 nc.unbind(bName);
4 nc.unbind(aName);
5 nc.unbind(a1Name);
6 nc.unbind(a2Name);
7 nc.unbind(a3Name);
8 nc.unbind(nc2Name);
9 nc.unbind(nc1Name);
10 }
11 catch(RuntimeException ex)
12 {
13 status = 1;
14 }
15
16 if (orb != null)
17 {
18 try
19 {
20 orb.destroy();
21 }
22 catch(const RuntimeException ex)
23 {
24 status = 1;
25 }
26 }
27
28 System.exit(status);
203

CHAPTER 8 | Orbacus Names
 204

CHAPTER 9

Orbacus Names
Console
Orbacus Names includes a graphical client for administering
the service called the Orbacus Names Console. The application
can manage any CORBA-compliant Naming Service, but
additional features are provided when used with Orbacus
Names.

In this chapter This chapter contains the following sections:

Usage page 206

Naming Service Lookup page 207

The Menus page 208

The Toolbar page 216

The Popup Menu page 217
205

CHAPTER 9 | Orbacus Names Console
Usage
com.ooc.CosNamingConsole.Main

[-f,--file FILE] [-i,--ior] [-n,--no-updates] [--look CLASS]
[--windows] [--motif] [--mac] [-h,--help] [-v, --version]

CLASSPATH Requirements The Orbacus Names Console requires the classes in OB.jar, OBNaming.jar
and OBUtil.jar.

-f FILE
--file FILE

Read the Naming Service IOR from FILE.

-i
--ior

Print the stringified IOR of the Naming Service to
standard output.

-n
--no-updates

Disables automatic updates, i.e., callbacks that
notify interested clients of changes to the naming
service.

--look CLASS Use the specified Look & Feel class.

--windows Use the Windows Look & Feel (if available).

--motif Use the Motif Look & Feel (if available).

--mac Use the Macintosh Look & Feel (if available).

-h
--help

Display the command-line options supported by
the program.
 206

Naming Service Lookup
Naming Service Lookup
In order to locate a Naming Service, the application takes the following
steps on start-up:

• First it checks whether a Naming Service reference was given with the
-f option.

• If this is not the case, then the initial Naming Service is used, as
provided to the ORB with options like -ORBservice or -ORBconfig.

If both of the above steps fail, an error window is displayed and the Names
console exits.
207

CHAPTER 9 | Orbacus Names Console
The Menus
The menus provide access to all of the features of the application. In
addition, the most common actions are also available in the toolbar, as well
as in a popup menu that is displayed when pressing the right mouse button
over an item in the binding table or context tree.

The File Menu This menu contains operations that create bindings and define the current
root context.

After starting the application, the current root context is the naming context
corresponding to the IOR specified on the command line or the initial
Naming Service, as provided to the ORB with options like -ORBservice or
-ORBconfigby. You can make another naming context the root context using
Switch Root Context. The new root context’s IOR is specified in the Enter

New Window Opens an additional control window.

Switch Root Context Selects a new root naming context.

Load Context Recursively loads a naming context from a file.

Save Context As Recursively saves the selected naming context
to a file.

Save IOR to File Saves the stringified IOR of the currently
selected item to a file.

Close Window Closes the current window.

Exit Quits the Orbacus Names Console.
 208

The Menus
IOR dialog window, as shown in Figure 5. The IOR can be entered directly

or can be read from a file. If an IOR is entered manually you usually either
use the URL-style notation as described in Chapter , or you copy a
stringified object reference into the dialog box using “Cut & Paste”. After
selecting Browse a file containing an IOR can be selected.

Sometimes it is not desirable to completely replace the currently visible root
context by another root context. For example, you may need to copy
bindings from one context to another. If this is the case, simply open an
additional window for the new root context using New Window. You can
then switch the root context in only one window without affecting the
information displayed in the other one. Using two windows, you can easily
transfer bindings from one context to another using “Cut & Paste”.

Complete naming contexts can be loaded from a special file with naming
context information. Such a file, which was previously created with Save
Context As, is loaded with Load Context. The bindings saved to this file are
added to the current naming context.

When saving a naming context, the console checks each context for
accessibility. If a context cannot be accessed, i.e., if its contents cannot be
saved, a message is displayed in the error window. You also get an error
message if the console detects a recursion. The bindings contained in the
naming context leading to the recursion is not saved.

Use Save IOR to File in order to create a file that contains the stringified
IOR of the currently selected binding or context.

With Close Window the current window is closed. Closing the last window
causes the application to terminate. Exit can be used to terminate the
application regardless of how many windows are open.

Figure 5: Entering an IOR
209

CHAPTER 9 | Orbacus Names Console
The Edit Menu
The operations in this menu provide the means for creating and deleting
objects and for changing the Naming Service structure.

New contexts and bindings are created with the operations New Context
and New Binding, respectively. If one of these functions is selected, a new
context or object binding with a unique name is added to the current
context. For new object bindings an IOR can be specified.

Use Delete to remove the selected items from a naming context. Deleting
Naming Service entries removes all selected bindings from their parent
context. The objects belonging to these bindings are not affected. Destroying
Naming Service information only affects the actual Naming Service data, not
the objects themselves.

Use Link to create a new binding for an existing naming context, where the
naming context is specified by an IOR. The operation Unlink unbinds the
selected items. For objects, Unlink is equivalent to Delete, but for contexts,
Unlink differs in that the context is not destroyed. Since a context is not
destroyed using Unlink, it should only be used when there are multiple
bindings to a context in order to avoid orphaned contexts.

New Context Creates a new naming context.

New Binding Creates a new binding for an object.

Delete Deletes the selected items.

Link Creates a new binding for an existing naming context.

Unlink Unbinds the selected items.

Cut Moves the selected items to the clipboard.

Copy Copies the selected items to the clipboard.

Paste Inserts the clipboard contents.

Change ID Edits the ID field of the selected item.

Change Kind Edits the Kind field of the selected item.

Change IOR Edits the IOR of the selected item.

Select all Selects all items in the object table.

Invert Selection Inverts the current selection.
 210

The Menus
The console supports a clipboard that you can use to move bindings
between different contexts. Data is transferred to the clipboard using the Cut
or Copy commands. Cut moves the currently selected items to the clipboard
and deletes the original entries, whereas Copy simply creates a copy in the
clipboard but keeps the source entry unchanged. When new data is
transferred to the clipboard, the old clipboard contents are replaced. Using
Paste, you can add the clipboard data into a naming context. The clipboard
contents are not changed by this operation, i.e., you can Paste the same
items several times. Note that if naming contexts are transferred to the
clipboard, their contents are not evaluated before they are pasted. It is
during the Paste operation that the bindings of a context are duplicated.
This means that if new bindings are added to a context after a Cut or Copy
operation, these bindings will be present after pasting this context.

An item registered with the Naming Service has three modifiable attributes:
its ID, its Kind and its IOR. The ID and Kind attributes can be edited by
simply double-clicking the ID or Kind field in the table. You can also change
binding attributes with the corresponding menu operations Change ID,
Change Kind and Change IOR. Entering a new IOR for an existing name
effectively replaces an object registered with the Naming Service by another
object with the same name.

Use Select all to select all of the entries in the binding table. The current
table selection can be inverted using Invert Selection.
211

CHAPTER 9 | Orbacus Names Console
The View Menu
The operations in this menu control the appearance of the console window
as well as the presentation of the Naming Service data.

A toolbar that gives access to frequently needed operations is normally
present below the menu. If you don’t have a need for this toolbar or if you
just want to save space on the screen, you can switch it off with the Toolbar
toggle button. The same applies to the status bar where information about
the currently selected item is displayed. The status bar displays an object’s
repository ID, the host where this object is located and the port it is bound
to. If an item with a nil object reference is selected or if multiple items are
selected, the status bar is empty.

If an error occurs while editing bindings, the console automatically displays
a new window with information about what went wrong. Usually this
information consists of exception data. The visibility of this window can be
explicitly controlled with the Error Window toggle button.

If the console is connected to Orbacus Names, as described in Chapter 8,
the console can display timestamp information for each binding by making
use of proprietary features of Orbacus Names. This information is shown in
the binding table if the Details display mode instead of the Simple List
mode is active.

Usually the console sorts the items in the binding table in ascending
alphabetical order, with naming contexts being listed at the top. You can
change this order with the options available in the Sort menu. Bindings can
be sorted by their ID or Kind fields. If the extended attributes are displayed,
items can also be sorted by date and time. You can reverse the sort order by

Toolbar Toggles the toolbar visibility.

Status Bar Toggles the statusbar visibility.

Error Window Toggles the error message window visibility.

Simple List Displays minimum object information.

Details Displays additional object information.

Sort Sets sorting mode for object list.

Refresh Updates the complete window contents
 212

The Menus
selecting the current sorting mode a second time in the View menu or by
clicking on the table header cells. In this case, the display switches from
ascending to descending order and vice versa.

If the contents of a naming context have been changed by a third party and
you want to update the information displayed in the console window,
selecting Refresh updates the display. If the console is connected to
Orbacus Names, a refresh is done automatically each time a change occurs.
213

CHAPTER 9 | Orbacus Names Console
The Tools Menu
The operations available in this menu are meant as tools for your everyday
work.

Sometimes it is useful to check if an object bound to a name still exists or if
the object reference associated with it has become invalid, for example,
because of a server crash. To perform such a check, select all the objects
you want to check and start the Ping operation. The console tries to contact
each of the selected objects and displays the time it took to get a connection
to them in a separate window.

This is very similar to the Windows or Unix ping command for an IP address
or a host name. If there is a time-out while trying to contact an object, this
information is displayed in the Ping Window and the console continues with
the next object.

Ping Checks the accessibility of the selected items.

Clean up Unbinds inaccessible objects from the current context.

Figure 6: The Ping Window
 214

The Menus
If you want objects that cannot be contacted, for example because of a
server breakdown, to be unbound from the current context, Clean up does
the job. Clean up non-recursively tries to connect to the selected objects. If
there is a communication failure or the _non_existent() operation returns
true for a particular object, the corresponding binding is automatically
removed. Clean up should be used with care.
215

CHAPTER 9 | Orbacus Names Console
The Toolbar
In addition to the operations offered by the menu bar, some frequently
needed functions are available by icons located in the toolbar, as shown in
Figure 7 .

The icon on the toolbar’s left is the Upwards icon which changes the
naming context to the parent of the context currently being displayed. The
next five icons correspond to the New Context, New Binding, Cut, Copy,
Paste and Delete items as described in “The Edit Menu” on page 210.

The Simple List and Details items from the View menu are the next two
icons in the toolbar. They determine whether the binding table displays only
the ID and Kind fields, or, if Orbacus Names is available, also the date and
time the binding was last modified.

The last item in the menubar corresponds to the Refresh operation from the
View menu.

Figure 7: A closer look at the toolbar
 216

The Popup Menu
The Popup Menu
When selecting an item in the binding table or a tree node with the right
mouse button, a popup menu with a choice of operations is displayed as
shown in Figure 8.

This is another convenient alternative for executing frequently used
operations.

Figure 8: A popup menu offers important operations
217

CHAPTER 9 | Orbacus Names Console
 218

CHAPTER 10

Orbacus Properties
The CORBA Property Service1 permits you to annotate an
object with extra attributes (called properties) that were not
defined by the object’s IDL interface. Properties can represent
any value because they make use of the CORBA Any data type.

Orbacus Properties is compliant with [10]. This chapter does
not provide a complete description of the service. It only
provides an overview, suitable to get you started. For more
information, please refer to the specification.

In this chapter This chapter contains the following sections:

1. Note that the Property Service has nothing to do with the properties used for
configuration purposes. Configuration properties are described in “ORB
Properties” on page 52.

Usage page 220

Connecting to the Service page 221

Using the Property Service with the IMR page 222

Creating Properties page 223

Querying for Properties page 224

Deleting Properties page 226

Programming Example page 227
219

CHAPTER 10 | Orbacus Properties
Usage
Orbacus includes functionally equivalent implementations of the Property
Service in C++ and Java.

C++ propserv
[-h,--help] [-v,--version] [-i,--ior]

Java com.ooc.CosPropertyService.Server
[-h,--help] [-v,--version] [-i,--ior]

Options

Configuration Properties In addition to the standard configuration properties described in Chapter 3,
Orbacus Properties also supports the following properties:

CLASSPATH Requirements Orbacus Properties for Java requires the classes in OB.jar and
OBProperty.jar.

-h
--help

Display the command-line options supported by the
server.

-v
--version

Display the version of the server.

-i

--ior

Prints the stringified IOR of the server to standard
output.

ooc.property.endpoint=ENDPOINT Specifies the endpoint configuration for the
service. Note that this property is only used if
the ooc.orb.oa.endpoint property is not set.
 220

Connecting to the Service
Connecting to the Service
The object key of the Property Service is PropertyService, which identifies
an object of type CosPropertyService::PropertySetDefFactory.

The object key can be used when composing URL-style object references.
For example, the following URL identifies the Property Service running on
host prophost at port 10000:

corbaloc::prophost:10000/PropertyService

Refer to Chapter 5 for more information on URLs and configuring initial
services.
221

CHAPTER 10 | Orbacus Properties
Using the Property Service with the IMR
The Property Service may be used with the Implementation Repository
(IMR). However, if used with the IMR, it is important to note that the
corbaloc URL-style object reference described in the previous section cannot
be used. If the IMR is used, then the object reference for the Property
Service must be created using one of the following methods (where
PropertyServer refers to the server name configured with the IMR):

• Start the Property Service with the options:
--ior -ORBServerId PropertyServer

causing the Property Service to print its reference to standard output.

• Use the mkref utility:
mkref PropertyServer PropertyService PropertyServicePOA

When using the Property Service with the IMR, the service must be started
with the option -ORBServerId PropertyServer, where PropertyServer
refers to the server name configured with the IMR. When the IMR is
configured to start the Property Service, this option is automatically added
to the service’s arguments. However, when the Property Service is started
manually, the option must be present. For further information on configuring
a service with the IMR, refer to “Getting Started with the Implementation
Repository” on page 167.
 222

Creating Properties
Creating Properties
A property handled by the CORBA Property Service consists of two
components: the property’s name and its value. The name is a CORBA
string and the associated value is represented by a CORBA Any:

New properties are created using a factory object implementing the
PropertySet interface. A new property is created using the
define_property operation:

As a property consists of a name–value pair, both the name and the value
are the parameters to this operation.

// IDL
typedef string PropertyName;

struct Property
{

PropertyName property_name;
any property_value;

};

// IDL
void define_property(in PropertyName, in any property_value)

raises(InvalidPropertyName, ConflictingProperty,
UnsupportedTypeCode, UnsupportedProperty, ReadOnlyProperty);
223

CHAPTER 10 | Orbacus Properties
Querying for Properties
As soon as a property is defined, the PropertySet can be queried for the
property’s value with the get_property_value operation:

For a particular property name, this call either returns the Any associated
with that name or throws an exception if a property with the name does not
exist.

You can not only query for a particular property value, but also for a list of
all the properties defined within a PropertySet. The get_all_properties
operation serves this purpose:

This operation works similar to the list call offered by the Naming Service.
In both cases the maximum number of items to be returned at once is
specified. An iterator implementing the PropertiesIterator interface gives
access to the remaining items, if any.

// IDL
any get_property_value(in PropertyName property_name)

raises(PropertyNotFound, InvalidPropertyName);

// IDL
void get_all_properties(in unsigned long how_many,

out Properties nproperties, out PropertiesIterator rest);

// IDL
interface PropertiesIterator
{

void reset();

boolean next_one(out Property aproperty);

boolean next_n(in unsigned long how_many,
out Properties nproperties);

void destroy();
};
 224

Querying for Properties
If you are only interested in a list of property names you can get this list by
calling get_all_property_names:

As with get_all_properties a list of names as well as an iterator is
returned. This iterator implements the PropertyNamesIterator interface:

The iterators should always be destroyed when they are no longer needed.

Sometimes it is useful to know of how many properties a PropertySet
consists of. This information is provided by get_number_of_properties:

Note that you have to be careful if you intend to use the return value of
get_number_of_properties as the input value for the how_many parameter
of get_all_properties in order to get a complete property list. You always
have to check the PropertiesIterator for properties that were not returned
as part of the Properties sequence returned by get_all_properties,
otherwise you might miss a property that was defined by another process
between your calls to get_number_of_properties and get_all_properties.

// IDL
void get_all_property_names(in unsigned long how_many,

out PropertyNames property_names,
out PropertyNamesIterator rest);

// IDL
interface PropertyNamesIterator
{

void reset();

boolean next_one(out PropertyName property_name);

boolean next_n(in unsigned long how_many,
out PropertyNames property_names);

void destroy();
};

// IDL
unsigned long get_number_of_properties();
225

CHAPTER 10 | Orbacus Properties
Deleting Properties
If a property has become obsolete it can be deleted from the PropertySet
with delete_property:

As you might have guessed by this operation’s signature, there are
properties that cannot be deleted at all. This kind of property is called a
FixedProperty. The Property Service defines several other special property
types, such as read-only properties. Please refer to the OMG Property
Service [9] specification for details.

// IDL
void delete_property(in PropertyName property_name)
raises(PropertyNotFound, InvalidProperty, FixedProperty);
 226

Programming Example
Programming Example
The Property Service test suite, which is part of the Orbacus distribution,
provides a good example of how to create properties and query for their
values. The code below is based on excerpts of this test suite, which is
located in the directory property/test. We will concentrate on an example
in Java here. As with the previous examples, the Java code is very similar to
what is necessary in C++. The example demonstrates how to create
properties and how to get a list of all the properties defined within a
PropertySet.

1 // Java
2
3 org.omg.CORBA.Object obj = null;
4
5 try
6 {
7 obj = orb.resolve_initial_references("PropertyService");
8 }
9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
10 {
11 // An error occurred, Property Service is not available
12 }
13
14 if(obj == null)
15 {
16 // The object reference is invalid
17 }
18
19 PropertySetDefFactory factory = null;
20 try
21 {
22 factory = PropertySetDefFactoryHelper.narrow(obj);
23 }
24 catch(org.omg.CORBA.BAD_PARAM ex)
25 {
26 // This object does not implement the Property Service
27 }
28
29 PropertySetDef set = factory.create_propertysetdef();
30
227

CHAPTER 10 | Orbacus Properties
5-27 Get a Property Service reference and check for errors.

31 Any anyLong = orb.create_any();
32 Any AnyString = orb.create_any();
33 Any anyShort = orb.create_any();
34 anyLong.insert_long(12345L);
35 anyString.insert_string(“Foo”);
36 anyShort.insert_short((short)0);
37
38 try
39 {
40 set.define_property(“LongProperty”, anyLong);
41 set.define_property(“StringProperty”, anyString);
42 set.define_property(“ShortProperty”, anyShort);
43 }
44 catch(ReadOnlyProperty ex)
45 {
46 // An error occurred
47 }
48 catch(ConflictingProperty ex)
49 {
50 // An error occurred
51 }
52 catch(UnsupportedProperty ex)
53 {
54 // An error occurred
55 }
56 catch(UnsupportedTypeCode ex)
57 {
58 // An error occurred
59 }
60 catch(InvalidPropertyName ex)
61 {
62 // An error occurred
63 }
64
65 PropertiesHolder ph = new PropertiesHolder();
66 PropertiesIteratorHolder ih = new PropertiesIteratorHolder();
67 set.get_all_properties(0, ph, ih);
68
69 PropertyHolder h = new PropertyHolder();
70 while(ih.value.next_one(h))
71 {
72 // The next property is now stored in h.value
73 }
74
75 ih.value.destroy();
 228

Programming Example
29 The PropertySetDefFactory object is used to create a PropertySetDef
instance. Note that PropertySetDef is a subclass of PropertySet.

31-36 Each property consists of a name and a value in the form of a CORBA Any.

38-63 Three properties are defined. The first has the name “LongProperty” and
stores a long value. The second one is called “StringProperty” and stores a
string. The remaining property represents a short value. If for some reason
a property cannot be created, an exception is thrown.

65-73 Now we try to get a list of all the properties that were previously defined.
With get_all_properties the PropertySetDef returns its properties. As we
have set the how_many parameter to 0, we have to use the
PropertiesIterator for each item. An application would normally provide a
positive integer for how_many.

75 The iterator has fulfilled its duty and can now be destroyed.
229

CHAPTER 10 | Orbacus Properties
 230

CHAPTER 11

Orbacus Events
Some applications need to exchange information without
explicitly knowing about each other. Often a server isn’t even
aware of the nature and number of clients that are interested
in the data the server has to offer. A special mechanism is
required that provides decoupled data transfer between
servers and clients. This requirement is addressed by the
CORBA Event Service.

Orbacus Events is compliant with [9]. This chapter does not
provide a complete description of the service. It only provides
an overview, suitable to get you started. For more information,
please refer to the specification.

In this chapter This chapter contains the following sections:

Usage page 232

Connecting to the Service page 237

Using the Event Service with the IMR page 238

Event Service Concepts page 239

Programming Example page 247
231

CHAPTER 11 | Orbacus Events
Usage
Orbacus includes functionally equivalent implementations of the Event
Service in C++:

and Java:

Options

eventserv
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u,--untyped-service]

com.ooc.CosEvent.Server
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u,--untyped-service]

-h

--help

Display the command-line options supported by the
server.

-v

--version

Display the version of the server.

-i

--ior

Print the stringified IOR of the server to standard
output.

-t

--typed-service

Run a typed event service.

-u

--untyped-service

Run an untyped event service. This is the default
behavior.
 232

Usage
Windows NT Native Service
The C++ version of Orbacus Events is also available as a native Windows
NT service.

nteventservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

In order to use the Event Service as a native Windows NT service, it is first
necessary to add the ooc.event.endpoint property to the
HKEY_LOCAL_MACHINE NT registry key (see “Using the Windows NT Registry”
on page 65 for more details).

Next the service should be installed with:

nteventservice -i

This adds the Orbacus Event Service entry to the Services dialog in the
Control Panel. To start the event service, select the Orbacus Event Service
entry, and press Start. If the service is to be started automatically when the
machine is booted, select the Orbacus Event Service entry, then click
Startup. Next select Startup Type - Automatic, and press OK. Alternatively,
the service could have been installed using the -s option, which configures
the service for automatic start-up:

nteventservice -s

If you want to remove the service, run:

-h
--help

Display the command-line options supported by the server.

-i

--install

Install the service. The service must be started manually.

-s

--start-install

Install and start the service.

-u

--uninstall
Uninstall the service.

-d

--debug
Run the service in debug mode.
233

CHAPTER 11 | Orbacus Events
nteventservice -u

Any trace information provided by the service is be placed in the Windows
NT Event Viewer with the title EventService. To enable tracing information,
add the desired trace configuration property (i.e., one of the
ooc.event.trace properties or one of the ooc.orb.trace properties) to the
HKEY_LOCAL_MACHINE NT registry key with a REG_SZ value of at least 1.

Note: If the executable for the Event Service is moved, it must be
uninstalled and re-installed.
 234

Usage
Configuration Properties
In addition to the standard configuration properties described in Chapter 3,
Orbacus Events also supports the following properties:

ooc.event.inactivity_timeout=SEC Proxies that are inactive for the specified number of
seconds will be reaped. The default value is four
hours.

ooc.event.max_events=N The maximum number of events in each event
queue. If this limit is reached and another event is
received, the oldest event is discarded.The default
value is 10.

ooc.event.max_retries=N The maximum number of times to retry before
giving up and disconnecting the proxy. The default
value is 10.

ooc.event.endpoint=ENDPOINT Specifies the endpoint configuration for the service.
Note that this property is only used if the
ooc.orb.oa.endpoint property is not set.

ooc.event.pull_interval=MSEC This specifies the number of milliseconds between
successive calls to pull on PullSupplier. Default
value is 0.

ooc.event.reap_frequency=SEC This specifies the frequency (in seconds) in which
inactive proxies will be reaped. The default value is
thirty minutes. Setting this property to 0 disables
the reaping of proxies.

ooc.event.retry_timeout=MSEC Specifies the initial amount of time in milliseconds
that the service waits between successive
retries.The default value is 1000.

ooc.event.retry_multiplier=N A double that defines the factor by which the
retry_timeout property should be multiplied for
each successive retry.

ooc.event.request_timeout=MSEC The amount of time permitted for a blocking request
on a client to return before a timeout. The default
value is 5 seconds.
235

CHAPTER 11 | Orbacus Events
CLASSPATH Requirements Orbacus Events for Java requires the classes in OB.jar and OBEvent.jar.

ooc.event.trace.events=LEVEL Defines the output level for event diagnostic
messages printed by Orbacus Events. The default
level is 0, which produces no output. A level of 1 or
higher produces event processing information and a
level of 2 or higher produces event creation and
destruction information.

ooc.event.trace.lifecycle=LEVEL Defines the output level for lifecycle diagnostic
messages printed by Orbacus Events. The default
level is 0, which produces no output. A level of 1 or
higher produces lifecycle information (e.g. creation
and destruction of Suppliers and Consumers).

ooc.event.typed_service=true|false Equivalent to the -t command-line option.
 236

Connecting to the Service
Connecting to the Service
The object key of the Event Service depends on whether it is running as a
“typed” or “untyped” service. The object keys and corresponding interface
types are shown in Table 2.

The object key can be used when composing URL-style object references.
For example, the following URL identifies the untyped event service running
on host evhost at port 10000:

corbaloc::evhost:10000/DefaultEventChannel

Refer to Chapter 5 for more information on URLs and configuring initial
services.

Orbacus Events also provides proprietary “factory” interfaces which allow
construction and administration of multiple event channels in a single
service. The object keys and corresponding interface types of the factories
are shown in Table 3.

For a description of the factory interfaces, please refer to the documented
IDL files event/idl/OBEventChannelFactory.idl and
event/idl/OBTypedEventChannelFactory.idl.

Table 2: Object Keys and Interface Types

Object Key Interface Type

Event Service DefaultEventChannel CosEventChannelAdmin::EventChannel

Typed Event
Service

DefaultTypedEventChannel CosTypedEventChannelAdmin::

TypedEventChannel

Table 3: Object Keys and Interface Types for Event Channel Factories

Object Key Interface Type

Event Channel
Factory

DefaultEventChannelFactory OBEventChannelFactory::

EventChannelFactory

Typed Event
Channel
Factory

DefaultTypedEventChannelFactory OBTypedEventChannelFactory::

TypedEventChannelFactory
237

CHAPTER 11 | Orbacus Events
Using the Event Service with the IMR
The Event Service may be used with the Implementation Repository (IMR).
However, if used with the IMR, it is important to note that the corbaloc
URL-style object reference described in the previous section cannot be used.
If the IMR is used, then the object reference for the “untyped” Event Service
must be created using one of the following methods (where EventServer
refers to the server name configured with the IMR):

• Start the Event Service with the options:
-ORBServerId EventServer --ior

causing the Event Service to print its reference to standard output.

• Use the mkref utility:
mkref EventServer DefaultEventChannel EventServicePOA

For the “typed” Event Service, the object reference must be created using
one of the following methods:

• Start the Event Service with the options:
-ORBServerId EventServer --typed-service --ior

causing the Event Service to print its reference to standard output.

• Use the mkref utility:
mkref EventServer DefaultTypedEventChannel EventServicePOA

Object references for the Orbacus proprietary “factory” objects can be
created using the following commands:

mkref EventServer DefaultEventChannelFactory EventServicePOA
mkref EventServer DefaultTypedEventChannelFactory

EventServicePOA

When using the Event Service with the IMR, the service must be started
with the option -ORBServerId EventServer, where EventServer refers to
the server name configured with the IMR. When the IMR is configured to
start the Event Service, this option is automatically added to the service’s
arguments. However, when the Event Service is started manually, the option
must be present. For further information on configuring a service with the
IMR, refer to “Getting Started with the Implementation Repository” on
page 167.
 238

Event Service Concepts
Event Service Concepts

In this section This section contains the following topics:

The Event Channel page 240

Event Suppliers and Consumers page 241

Event Channel Policies page 243

Event Channel Factories page 244
239

CHAPTER 11 | Orbacus Events
The Event Channel
The Event Service distributes data in the form of events. The term event in
this context refers to a piece of information that is contributed by an event
source. An event channel instance accepts this information and distributes it
to a list of objects that previously have connected to the channel and are
listening for events.

The Event Service specification defines two distinct kinds of event channels:
untyped and typed. Whereas an untyped event channel forwards every event
to each of the registered clients in the form of a CORBA Any, a typed event
channel works more selectively by supporting strongly-typed events which
allow for data filtering. We will only discuss the untyped event channel here.
For information on typed event channels, and more details on the Event
Service in general, please refer to the official Event Service specification [9].
 240

Event Service Concepts
Event Suppliers and Consumers
Applications participating in generating and accepting events are called
suppliers and consumers, respectively. Suppliers and consumers each come
in two different versions, namely, push suppliers and pull suppliers, and
push consumers and pull consumers.

What’s the difference between pushing events and pulling events? Let’s
have a look at the consumer side first. Some consumers must be
immediately informed when new events become available on an event
channel. Such consumers usually act as push consumers. They implement
the PushConsumer interface which ensures that the event channel actively
forwards events to them using the push() operation:.

Push consumers are passive, that is, are servers. Conversely, pull
consumers are active, that is, are clients. Pull consumers poll an event
channel for new events. As events may arrive at a greater rate than they are
polled for by a pull consumer or accepted and processed by a push
consumer, some events might get lost. A buffering policy implemented by
the event channel determines whether events are buffered and what
happens in case of an event queue overflow.

Like consumers, suppliers can also use push or pull behavior. Push
suppliers are the more common type, in which the supplier directly forwards
data to the event channel and thus plays the client role in the link to the
channel. Pull suppliers, on the other hand, are polled by the event channel
and supply an event in response, if a new event is available. Polling is done
by the try_pull() operation if it is to be non-blocking or by the blocking
pull() call:

// IDL
interface PushConsumer
{

void push(in any data)
raises(Disconnected);

void disconnect_push_consumer();
};
241

CHAPTER 11 | Orbacus Events
// IDL
interface PullSupplier
{

any pull()
raises(Disconnected);

any try_pull(out boolean has_event)
raises(Disconnected);

void disconnect_pull_supplier();
};
 242

Event Service Concepts
Event Channel Policies
The untyped event channel implementation included in the Orbacus
distribution features a simple event queue policy. Events are buffered in the
form of a queue, i.e., a certain number of events are stored and, in case of a
buffer overflow, the oldest events are discarded.
243

CHAPTER 11 | Orbacus Events
Event Channel Factories
The standard CORBA Event Service provides no support for managing the
lifecycle of event channels; as a result, applications requiring multiple
channels are often forced to run a separate instance of the Event Service for
each channel. To remedy this situation, Orbacus Events provides optional,
proprietary interfaces for event channel administration.

The OBEventChannelFactory::EventChannelFactory interface describes the
factory for untyped event channels:

// IDL
module OBEventChannelFactory
{
typedef string ChannelId;
typedef sequence<ChannelId> ChannelIdSeq;

exception ChannelAlreadyExists {};
exception ChannelNotAvailable {};

interface EventChannelFactory
{

CosEventChannelAdmin::EventChannel
create_channel(in ChannelId id)
raises(ChannelAlreadyExists);

CosEventChannelAdmin::EventChannel
get_channel_by_id(in ChannelId id)
raises(ChannelNotAvailable);

ChannelIdSeq get_channels();

void shutdown();
};
};
 244

Event Service Concepts
The OBTypedEventChannelFactory::TypedEventChannelFactory interface
describes the factory for typed event channels:

At start-up, the untyped Event Service creates a single channel having the
identifier DefaultEventChannel, and the typed Event Service creates a
single channel having the identifier DefaultTypedEventChannel. A channel’s
identifier also serves as its object key; therefore, a channel can be located
using a corbaloc: URL (see “corbaloc: URLs” on page 133). For example,
a channel with the identifier TelemetryData can be located on the host
myhost at port 2098 using the following URL:

corbaloc::myhost:2098/TelemetryData

To obtain the object reference of a channel factory, use a corbaloc: URL
with the object key as shown in Table 2 on page 237. For example,
assuming the untyped Event Service is running on host myhost at port 2098,
here is how a C++ application can obtain the object reference of the
channel factory and create a channel with the identifier TelemetryData:

// IDL
module OBTypedEventChannelFactory
{
interface TypedEventChannelFactory
{

CosTypedEventChannelAdmin::TypedEventChannel
create_channel(in OBEventChannelFactory::ChannelId id)
raises(OBEventChannelFactory::ChannelAlreadyExists);

CosTypedEventChannelAdmin::TypedEventChannel
get_channel_by_id(in OBEventChannelFactory::ChannelId id)
raises(OBEventChannelFactory::ChannelNotAvailable);

OBEventChannelFactory::ChannelIdSeq get_channels();

void shutdown();
};
};

// C++
CORBA::Object_var obj = orb -> string_to_object(

"corbaloc::myhost:2098/DefaultEventChannelFactory");
OBEventChannelFactory::EventChannelFactory_var factory =

OBEventChannelFactory::EventChannelFactory::_narrow(obj);
CosEventChannelAdmin::EventChannel_var channel =

factory -> create_channel("TelemetryData");
245

CHAPTER 11 | Orbacus Events
Here is the same example in Java:

// Java
org.omg.CORBA.Object obj = orb.string_to_object(

"corbaloc::myhost:2098/DefaultEventChannelFactory");
com.ooc.OBEventChannelFactory.EventChannelFactory factory =

com.ooc.OBEventChannelFactory.EventChannelFactoryHelper.
narrow(obj);

org.omg.CosEventChannelAdmin.EventChannel channel =
factory.create_channel("TelemetryData");
 246

Programming Example
Programming Example
In the Event Service example that comes with Orbacus, two supplier and
two consumer clients demonstrate how to use an untyped event channel to
propagate information. The pieces of information transferred by this example
are strings containing the current date and time. After starting the Event
Service server, you can start these clients in any order. The demo
applications obtain the initial Event Service reference as already
demonstrated, i.e., by calling resolve_initial_references. When started,
each supplier provides information about the current date and time and
each client displays the event data in its console window.

This is the push supplier’s main loop:

4-8 The current date and time is inserted into the Any.

1 // Java
2 while(consumer_ != null)
3 {
4 java.util.Date date = new java.util.Date();
5 String s = "PushSupplier says: " + date.toString();
6
7 Any any = orb_.create_any();
8 any.insert_string(s);
9
10 try
11 {
12 consumer_.push(any);
13 }
14 catch(Disconnected ex)
15 {
16 // Supplier was disconnected from event channel
17 }
18
19 try
20 {
21 Thread.sleep(1000);
22 }
23 catch(InterruptedException ex)
24 {
25 }
26 }
247

CHAPTER 11 | Orbacus Events
10-17 The event data, in this example date and time, are pushed to the event
channel. From the push supplier’s view the event channel is just a consumer
implementing the PushConsumer interface.

19-25 After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that
the event channel explicitly polls the supplier for new events. This is done by
either pull() or try_pull(). The pull supplier doesn’t see anything from the
event channel but an object implementing the PullConsumer interface. The
following example shows the basic layout of a pull supplier:

4-8 Date and time are inserted into the Any.

13-19 In this example new event data can be provided at any time, so try_pull()
always sets has_event to true in order to signal that an event is available. It
then returns the actual event data.

1 // Java
2 public Any pull()
3 {
4 java.util.Date date = new java.util.Date();
5 String s = "PullSupplier says: " + date.toString();
6
7 Any any = orb.create_any();
8 any.insert_string(s);
9
10 return any;
11 }
12
13 public Any
14 try_pull(BooleanHolder has_event)
15 {
16 has_event.value = true;
17
18 return pull();
19 }
 248

Programming Example
After examining the most important aspects of the event suppliers’ code, we
are now going to analyze the consumers’ code. The push consumer with its
push() operation is shown first:

2-13 The push consumer’s push() operation is called with the event wrapped in a
CORBA Any. In this code fragment it is assumed that the Any contains a
string with date and time information. In case the Any contains another data
type a MARSHAL exception is thrown.This exception can be ignored here
because other events aren’t of interest. After extracting the string it is
displayed in the console window.

1 // Java
2 public void push(Any any)
3 {
4 try
5 {
6 String s = any.extract_string();
7 System.out.println(s);
8 }
9 catch(MARSHAL ex)
10 {
11 // Ignore unknown event data
12 }
13 }
249

CHAPTER 11 | Orbacus Events
In contrast to the push consumer, the pull consumer has to actively query
the event channel for new events. This is how the pull consumer loop looks:

4 A CORBA Any is prepared for later use.

6-13 Using pull(), the consumer polls the event channel for new events. The
event channel acts as a pull supplier in this case. The pull() operation
blocks until a new event is available.

15-23 The consumer expects a string wrapped in a CORBA Any. The string value is
extracted and displayed. If an exception is raised the Any contained some
other data type which is simply ignored.

In all of these examples the event channel acts either as a consumer (if the
clients are suppliers) or a supplier (if the clients are consumers) of events.
Actually each client is not directly connected to the event channel but to a
proxy that receives or sends events on behalf of the channel. For more
information on the Event Service and for the complete definitions of the IDL
interfaces, please refer to the official Event Service specification.

1 // Java
2 while(supplier_ != null)
3 {
4 Any any = null;
5
6 try
7 {
8 any = supplier_.pull();
9 }
10 catch(Disconnected ex)
11 {
12 // Supplier was diconnected from event channel
13 }
14
15 try
16 {
17 String s = any.extract_string();
18 System.out.println(s);
19 }
20 catch(MARSHAL ex)
21 {
22 // Ignore unknown event data
23 }
24 }
 250

CHAPTER 12

The Interface
Repository
A CORBA Interface Repository (IFR) is essential for
applications using the dynamic features of CORBA, such as
the Dynamic Invocation Interface and DynAny. The IFR holds
IDL type definitions and can be queried and traversed by
applications.

The Orbacus Interface Repository is compliant with [4]. This
chapter does not provide a complete description of the IFR.
For more information, please refer to the specification.

In this chapter This chapter contains the following sections:

Usage page 252

Connecting to the Interface Repository page 256

Configuration Issues page 257

Interface Repository Utilities page 258

Programming Example page 259
251

CHAPTER 12 | The Interface Repository
Usage
The Orbacus Interface Repository is currently only provided with Orbacus for
C++.

irserv
[-h,--help] [-v,--version] [-d,--debug] [-i,--ior]
[-DNAME] [-DNAME=DEF] [-UNAME] [-IDIR]
[--case-sensitive] [FILE ...]

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-d
--debug

Print diagnostic messages. This option is for Orbacus internal
debugging purposes only.

-i

--ior

Print the stringified IOR of the server to standard output.

-DNAME
-DNAME=DEF

Defines NAME as DEF, or 1 if DEF is not provided. This option is
passed directly to the preprocessor.

-UNAME Removes any definition for NAME. This option is passed directly to
the preprocessor.

-IDIR Adds DIR to the include file search path. This option is passed
directly to the preprocessor.

--case-sensitive The semantics of OMG IDL forbid identifiers in the same scope to
differ only in case. This option relaxes these semantics, but is only
provided for backward compatibility with non-compliant IDL.

FILE ... IDL files to be loaded into the repository.
 252

Usage
Windows NT Native Service
ntirservice

[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

In order to use the IFR as a native Windows NT service, it is first necessary
to add the ooc.ifr.endpoint configuration property to the
HKEY_LOCAL_MACHINE NT registry key (see “Using the Windows NT Registry”
on page 65 for more details).

Next the service should be installed with:

ntirservice -i

This adds the Orbacus Interface Repository Service entry to the
Services dialog in the Control Panel. To start the naming service, select the
Orbacus Interface Repository Service entry, and press Start. If the
service is to be started automatically when the machine is booted, select the
Orbacus Interface Repository Service entry, then click Startup. Next
select Startup Type - Automatic, and press OK. Alternatively, the service
could have been installed using the -s option, which configures the service
for automatic start-up:

ntirservice -s

If you want to remove the service, run:

-h

--help

Display the command-line options supported by the server.

-i

--install

Install the service. The service must be started manually.

-s

--start-install

Install the service and start it.

-u

--uninstall

Uninstall the service.

-d

--debug

Run the service in debug mode.
253

CHAPTER 12 | The Interface Repository
ntirservice -u

Any trace information provided by the service is placed in the Windows NT
Event Viewer with the title IRService. To enable tracing information, add
the desired trace configuration property (i.e., one of the ooc.orb.trace
properties) to the HKEY_LOCAL_MACHINE NT registry key with a REG_SZ value
of at least 1.

Note: If the executable for the Interface Repository is moved, it must be
uninstalled and re-installed.
 254

Usage
Configuration Properties
In addition to the standard configuration properties described in Chapter 3,
the Orbacus Interface Repository also supports the following properties:

ooc.ifr.options=OPTS Allows command-line options to be passed to the
Windows NT Native service at start-up. Note that
absolute pathnames should be used when specifying
include directives, IDL files, etc.

ooc.ifr.endpoint=ENDPOINT Specifies the endpoint configuration for the service.
Note that this property is only used if the
ooc.orb.oa.endpoint property is not set.
255

CHAPTER 12 | The Interface Repository
Connecting to the Interface Repository
The object key of the IFR is DefaultRepository, which identifies an object
of type CORBA::Repository.

The object key can be used when composing URL-style object references.
For example, the following URL identifies the IFR running on host ifrhost
at port 10000:

corbaloc::ifrhost:10000/DefaultRepository

Refer to Chapter 5 for more information on URLs and configuring initial
services.
 256

Configuration Issues
Configuration Issues
Although applications can interact with the IFR as with any other CORBA
server, it does have special status within the ORB. Specifically, use of the
standard operation Object::get_interface() requires the presence of an
IFR:

The exact semantics of get_interface can be a source of confusion. In
Orbacus, as with most other ORBs, the get_interface operation is a
remote operation. That is, when a client invokes get_interface on an
object reference, the request is sent to the server. The server knows the
interface type of the object reference and interacts with the IFR to locate the
appropriate CORBA::InterfaceDef object to return to the client. Therefore,
the server must be configured for the IFR. It is not necessary to configure
the client for the IFR if the client’s only interaction with the IFR is via
get_interface.

// PIDL
interface Object
{

...
InterfaceDef get_interface();
...

};
257

CHAPTER 12 | The Interface Repository
Interface Repository Utilities

irfeed IDL files can be loaded into the IFR at runtime using irfeed. See the
description of the irserv command for more information on the
command-line options.

irfeed [-h,--help] [-v,--version] [-d,--debug]
[-DNAME] [-DNAME=DEF] [-UNAME] [-IDIR] FILE ...

irdel Type definitions can be removed from the IFR using irdel. See the
description of the irserv command for more information on the
command-line options.

irdel [-h,--help] [-v,--version] name ...

The name argument represents the scoped name of the type to be removed.
A scoped name has the form “X::Y::Z”. For example, an interface I defined
in a module M can be identified by the scoped name “M::I”.
 258

Programming Example
Programming Example
Below is a simple example in Java that demonstrates how to obtain an
InterfaceDef object and display its contents:

1 // Java
2 import org.omg.CORBA.*;
3 ...
4
5 org.omg.CORBA.ORB = ... // initialize the ORB
6 org.omg.CORBA.Object obj = ... // get object reference somehow
7
8 org.omg.CORBA.Object defObj = obj._get_interface_def();
9 if(defObj == null)
10 {
11 System.err.println("No Interface Repository available");
12 System.exit(1);
13 }
14
15 InterfaceDef def = InterfaceDefHelper.narrow(defObj);
16 org.omg.CORBA.InterfaceDefPackage.FullInterfaceDescription
desc =
17 def.describe_interface();
18
19 int i;
20 System.out.println("name = " + desc.name);
21 System.out.println("id = " + desc.id);
22 System.out.println("defined_in = " + desc.defined_in);
23 System.out.println("version = " + desc.version);
24 System.out.println("operations:");
25 for(i = 0 ; i < desc.operations.length ; i++)
26 {
27 System.out.println(i + ": " + desc.operations[i].name);
28 }
29 System.out.println("attributes:");
30 for(i = 0 ; i < desc.attributes.length ; i++)
31 {
32 System.out.println(i + ": " + desc.attributes[i].name);
33 }
34 System.out.println("base_interfaces:");
35 for(i = 0 ; i < desc.base_interfaces.length ; i++)
36 {
37 System.out.println(i + ": " + desc.base_interfaces[i]);
38 }
259

CHAPTER 12 | The Interface Repository
5-8 After initializing the ORB and obtaining an object reference, we invoke
_get_interface_def1 on the object.

9-13 If no interface definition could be found, _get_interface_def returns nil.

15 Narrow the object reference to InterfaceDef. We now have a reference to
an object in the IFR that describes the most-derived type of our object
reference.

16-17 Request a complete description of the interface.

19-39 Print information about the interface, including the names of its operations
and attributes.

A complete example of how to use the IFR can be found in the
ob/demo/repository subdirectory.

1. Recent versions of the IDL-to-Java mapping introduced the
_get_interface_def operation, which returns org.omg.CORBA.Object
instead of org.omg.CORBA.InterfaceDef. Portable Java applications should
use _get_interface_def. In C++, the operation is _get_interface.
 260

CHAPTER 13

Orbacus Balancer
Orbacus Balancer provides load balancing of client
connections across a group of replicated objects. The load
balancing service provided by Orbacus Balancer is transparent
and interoperable with any CORBA client. However, the
interface between the servers and the service is strictly
proprietary.

In this chapter This chapter contains the following sections:

“Basic Concepts” on page 262

“Load Balancing Strategies” on page 263

“Service Security” on page 266

“Usage” on page 267

“Connecting to the Service” on page 275

“Load Balanced IMR-enabled Servers” on page 276

“Utilities” on page 277

“Programming Example” on page 282
261

CHAPTER 13 | Orbacus Balancer
Basic Concepts
Let us assume that we wish to provide a library service that is made
available through a set of objects. These objects being a set of book objects
and a library object that manages the book objects. Furthermore, it is
desired that connections made with each of these objects be load balanced.
The replicated objects for each book and the replicated library objects are
managed in the service by a single entity that is called a load balanced
group. Each member of the load balanced group must provide a replica of
each object — for the library service, each member must provide a replica of
each book object and a replica of the library object.

All of the replicas provided by a member must be activated on a single POA
with a member policy (which uniquely identifies the member within the
service), the USER_ID ID assignment policy value, and the PERSISTENT
lifespan policy value. Such a POA will be referred to as a member POA and
the corresponding server will be referred to a load balanced server. Object
references created by a member POA will refer to the service instead of the
member POA within the load balanced server.

When a client makes a request on an object using a reference create by a
member POA, the service:

• receives the request,

• determines the load balanced group,

• selects a member of this group, and

• returns a new reference to the client that refers to the replica of the
object that is provided by this member.

The client then establishes a connection with the server using the new
object reference and communicates directly with the server, without the
intervention of the service.
 262

Load Balancing Strategies
Load Balancing Strategies
Each load balanced group within the service has an associated load
balancing strategy. The load balancing strategy determines which member
will be used to service the next client connection. The strategy is also
responsible for load re-balancing. Load re-balancing is done by issuing load
alerts to overload members. When a member receives a load alert, it
forwards the next client request back to the service.

There are two types of strategies: adaptive and non-adaptive. When using
an adaptive strategy, a load balanced group must receive load updates from
the members. These loads are then used by the strategy to determine the
next member to be used for a client connection. Adaptive strategies can also
provide load re-balancing. When using non-adaptive strategies, the service
does not require load updates from the members and load re-balancing is
not possible.

Member selection and load re-balancing are discussed in the following
sections. The advantages and disadvantages of the different types of load
balancing strategies is also presented.

Member Selection Non-adaptive member selection does not use load information from the
members. Hence, non-adaptive member selection will only correctly balance
connections under a certain set of conditions. These conditions are as
follows:

• Dedicated hosts

• Homogeneous hosts

• Clients generate the same load and are connected for the same amount
of time – or –clients are connected for short periods of time

While adaptive member selection can be used in more situations than
non-adaptive member selection, it is not without problems. The problems
with adaptive member selection are highlighted below:

1. Using a polling technique to retrieve member loads does not scale.
Hence, it is decided that loads will be reported to the load balanced
group at regular intervals by each member. However, this implies that
263

CHAPTER 13 | Orbacus Balancer
when making a load balancing decision, loads do not necessarily
represent the current loads of the members, but instead past loads.
This is a source of error.

These errors will be large when many clients connect in a short period
of time. This is because the actual load of members will increase
dramatically before the loads can be updated.

Increasing the frequency of load updates will decrease the error, but
then the overhead of load balancing is increased due the extra network
traffic. Hence, an optimum value must be discovered for each
installation.

2. Another source of error is that spikes in the load of a member may
cause bad load balancing decisions.

3. Yet another problem with load balancing is that, in most cases, it is
difficult to estimate the load that a new client connection will impose
on a member. This becomes a bigger problem on a heavily loaded
system since a load balancing decision may cause a members load to
increase well past the critical level.

Errors of this type can be alleviated by using load re-balancing. However,
load re-balancing will introduce other sources of errors, as discussed in the
next section.

Load Re-balancing Load re-balancing is the transfer of a client connection from the replica of
one member to the replica of another. This is achieved by getting a member
to forward the next client request back to the service. Load re-balancing is
useful when the loads of the members become imbalanced. Through load
re-balancing these imbalances can be corrected, resulting in a higher
average throughput. Several factors may contribute to a load imbalance:

• Clients not generating a consistent load while connected

• Clients not connected for the same amount of time

• Heterogeneous hosts

• Non-dedicated hosts

• Member selection errors

For effective load re-balancing, we must be able track client connections
and the load generated by each connection. However, the concept of a
connection is hidden from the CORBA developer, so in general, all that is
 264

Load Balancing Strategies
available is the load for each member of the load balanced group. Hence,
we must make certain approximations when making load re-balancing
decisions. For these approximations to hold, the following assumptions
must made:

• The average load created by a client can be reliably estimated

• The load created by a client does not deviate much from the average
load

• Dedicated hosts

• Homogeneous hosts

Since load re-balancing decisions are based on approximations that will only
be reasonable when certain conditions are meant, there is always the
chance of a load re-balancing error. Let us say that a load re-balancing error
occurs when the load that is transferred from the replica of one member to
the replica of another causes the target member to become overloaded. This
situation is what we will call system instability. In some cases the system
may remain instable indefinitely. For example, if a single client is solely
responsible for causing a high load, then the client will likely be bounced
from member to member. Yet another source of load re-balancing errors
comes from the fact that a member cannot redirect a client until it receives a
request. When this occurs, the member may no longer be overloaded. This
can be alleviated by associating an expire time with a load alert.

Choosing a Load Balancing
Strategy

Some important things to note when choosing between adaptive and
non-adaptive load balancing strategies are:

• Non-adaptive strategies impose very little overhead compared to
adaptive strategies.

• Adaptive strategies will produce a more balanced system when the
assumptions for the non-adaptive strategies are not satisfied.

Under certain conditions, load re-balancing will be error-prone. In such a
case, adaptive strategies which take an aggressive approach to re-balancing
may result in many load re-balancing errors. Furthermore, load re-balancing
can be an expensive operation, making these errors even more severe. On
the other hand, if the system is such that load re-balancing errors seldom
occur and the expense of re-balancing is minimal, then adaptive strategies
that take an aggressive approach to load re-balancing should result in a
higher average throughput due to a more balanced system.
265

CHAPTER 13 | Orbacus Balancer
Service Security
It is very important that only Orbacus Balancer’s public port (also referred to
as its forward port) be accessible outside of the network firewall. Otherwise,
anyone can mimic the members of a load balanced group causing a denial
of service.

For additional security, many of the operations on the service are only
allowed when the service is running in administrative mode. That is:

• creating and destroying load balanced groups,

• setting the load balancing strategy, and

• adding or removing members

are only possible when the service is running in administrative mode. An
attempt to perform these operations when it is not running in administration
mode will result in a CORBA::NO_PERMISSION exception.
 266

Usage
Usage
Orbacus Balancer is currently only implemented using Orbacus for C++,
but Orbacus for Java servers can also be load balanced. Orbacus Balancer
command line usage is as follows:

balancer
[-h,--help] [-v,--version] [-a,--administrative]
[-d,--database] [-A,--admin-endpoint]

[-F,--forward-endpoint]

-h, --help Display the command-line options supported by the
server.

-v, --version Display the version of the server.

-a, --administrative Run the service in administrative mode. The service will
run in non-administrative mode by default.

-d DIRECTORY,

--database DIRECTORY

Specifies the directory in which the service maintains its
database files. If not specified, then the current working
directory is used.

-A INFO,

--admin-endpoint INFO

Specifies the service’s administrative public endpoint
settings. This is the endpoint that the load balanced
servers use to communicate with the service. For security
reasons, access to this endpoint can be restricted.

-F INFO,

--forward-endpoint INFO

Specifies the services's public endpoint settings, which is
used by clients for server requests.
267

CHAPTER 13 | Orbacus Balancer
Windows NT Native Service
The balancer server is also available as a native Windows NT service.

ntbalancerservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

In order to use Orbacus Balancer as a native Windows NT service, first add
the desired configuration properties to the HKEY_LOCAL_MACHINE NT registry
key (see “Using the Windows NT Registry” on page 65 for more details). For
example, add the ooc.balancer.admin_endpoint and
ooc.balancer.forward_endpoint properties so that the service will use
non-default ports.

Next the service should be installed with:

ntbalancerservice -i

This adds the Orbacus Balancer entry to the Services dialog in the Control
Panel. To start the service, select the Orbacus Balancer entry, and press
Start. If the service is to be started automatically when the machine is
booted, select the Orbacus Balancer entry, then click Startup. Next select
Automatic for the Startup Type and press OK. Alternatively, the service
could have been installed using the -s option, which configures the service
for automatic start-up:

ntbalancerservice -s

If you want to remove the service, run:

-h
--help

Display the command-line options supported by the service.

-i

--install

Install the service. The service must be started manually.

-s

--start-install

Install and start the service.

-u

--uninstall
Uninstall the service.

-d

--debug
Run the service in debug mode.
 268

Usage
ntbalancerservice -u

Note: If the executable for the service is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is be placed in the Windows
NT Event Viewer with the title Balancer. To enable tracing information, add
the desired trace configuration property (i.e., one of the
ooc.balancer.trace properties or one of the ooc.orb.trace properties) to
the HKEY_LOCAL_MACHINE NT registry key with a REG_SZ value of at least 1.
269

CHAPTER 13 | Orbacus Balancer
Configuration Properties
In addition to the standard configuration properties described in Chapter ,
Orbacus Balancer also supports the following properties:

ooc.balancer.administrative Value: true, false

If set to true, then run the service in administrative mode. For details refer
to the -a command-line option.

ooc.balancer.dbdir Value: directory

Equivalent to the -d command-line option.

ooc.balancer.admin_endpoint Value: info

Equivalent to the -A command-line option.

ooc.balancer.forward_endpoint Value: info

Equivalent to the -F command-line option.

ooc.balancer.trace.database Value: level >= 0

Defines the output level for database diagnostic messages printed by the
service. The default level is 0, which produces no output. A level of 1 or
higher produces database information (e.g., loading, adding and removing
group records in the database).

ooc.balancer.trace.lifecycle Value: level >= 0

Defines the output level for lifecycle diagnostic messages printed by the
service. The default level is 0, which produces no output. A level of 1 or
higher produces lifecycle information (e.g., creation and destruction of load
balanced groups, adding and removing members, and setting load balancing
strategies).

ooc.balancer.trace.load_balance Value: level >= 0
 270

Usage
Defines the output level for diagnostic messages related to the load
balancing of members. The default level is 0, which produces no output.
Levels greater than 0 produce different degrees of output.
271

CHAPTER 13 | Orbacus Balancer
Built-in Load Balancing Strategies
In this section we present the load balancing strategies that are provided
with Orbacus Balancer. Note that the default strategy is the round-robin
strategy.

random Non-adaptive strategy where members are selected at random. There are no
configuration properties for this strategy.

round-robin Non-adaptive strategy where members are selected in round-robin order.
There are no configuration properties for this strategy.

least-load Adaptive strategy where the least loaded members are chosen in
round-robin order. The configuration properties for this strategy are as
follows:

tolerance Type: CORBA::ULong

Members with a load difference that is less than tolerance are considered
to have the same load. The default value for this property is 0.

This alleviates the member selection problem 1. on page 263.

load-per-client Type: CORBA::ULong

The load-per-client property is an estimate of the load for a given client
connection. It is used so that a member's load can be adjusted without
having to wait for the next load update. It is also used to estimate the effect
of load re-balancing. The default value for this property is 0.

This alleviates the member selection problem 1. on page 263.

critical-load Type: CORBA::ULong

A member with a load greater than critical-load is re-balanced if there
exists a member with a load that is less than critical-load minus
load-per-client. This property has a default value of 0, which disables
load re-balancing.

This alleviates the member selection problem 3. on page 264.
 272

Usage
reject-load Type: CORBA::ULong

A connection request will be rejected if all members have a load greater
than the reject-load property. This property has a default value of 0,
which means that connections will never be rejected.

dampening-multiplier Type: CORBA::Float

A dampening technique is used to smooth out spikes that may occur in the
reported loads of members. The load of a member is calculated using the
dampening-multiplier property as follows:

load = mult * old_load + (1 - mult) * new_load

where mult is the value of the dampening-multiplier property. This
property must be greater than or equal to 0 and less than 1. The default
value of 0, which disables dampening.

This alleviates member selection problems 1. on page 263 and 2. on page
264.

min-dispersion Adaptive strategy which attempts to keep the member loads within a given
tolerance. This strategy takes an aggressive approach to load re-balancing.
The configuration properties for this strategy are as follows:

tolerance Type: CORBA::ULong

Members with loads less than the average minus the tolerance are selected
in round-robin order. Members with loads greater than the average plus the
tolerance are re-balanced. If there are no members with loads less than the
average minus the tolerance, then members with loads within tolerance
of the average are selected in round-robin order. The default value for this
property is 0.

This alleviates the member selection problem 1. on page 263 and 3. on
page 264.

load-per-client See “load-per-client” on page 272.

reject-load See “reject-load” on page 273.
273

CHAPTER 13 | Orbacus Balancer
dampening-multiplier See “dampening-multiplier” on page 273.
 274

Connecting to the Service
Connecting to the Service
Servers that use Orbacus Balancer must be configured with the service’s
initial reference. The object key of the service is Balancer, hence, a
URL-style object reference of the service running on host lbhost at port
10000 would be:

corbaloc::lbhost:10000/Balancer

Using this object reference, a server can configure the Orbacus Balancer
initial reference with the property:

ooc.orb.service.Balancer=corbaloc::lbhost:10000/Balancer

An alternative to using the above property is to use the -ORBInitRef
command-line option. Refer to Chapter 5 for more information on URLs and
configuring initial services.
275

CHAPTER 13 | Orbacus Balancer
Load Balanced IMR-enabled Servers
Load balanced servers may also be IMR-enabled servers. For information on
using the IMR, refer to Chapter 6. Note that Orbacus Balancer and the IMR
need no additional configuration.

Object references created by a member POA of an IMR-enabled server will
still refer to the associated load balanced group within Orbacus Balancer.
However, when Orbacus Balancer selects a member implemented by a
IMR-enabled server to service a new connection, the reference returned to
the client will actually refer to the IMR instead of the member's server.
When the client makes a request using this reference, the IMR receives the
request, activates the member's server (if necessary) using the OAD, and
returns a new object reference to the client that refers the server.
 276

Utilities
Utilities

In this section This section describes various load balancing utilities:

Service Administration page 278

Making References page 279

Utility Objects page 280

Utility Object Configuration Properties page 281
277

CHAPTER 13 | Orbacus Balancer
Service Administration
The lbadmin utility provides complete control over Orbacus Balancer. Its
command interface is shown below:

Where <strategy> can be random, round-robin, least-load, or
min-dispersion. The least-load strategy has the options:

--tolerance tolerance
--load-per-client load_per_client
--critical-load critical_load
--reject-load reject_load
--dampening-multiplier dampening_multiplier

The min-dispersion strategy has the options:

--tolerance tolerance
--load-per-client load_per_client
--reject-load reject_load
--dampening-multiplier dampening_multiplier

-h, --help Display this information.

--list-groups List the load balanced groups.

--create-group group-id Create a load balanced group.

--destroy-group group-id Destroy a load balanced group.

--get-group-info group-id Get the attributes of a group.

--get-group-ior group-id repository-id object-id Get the IOR for use by a client.

--set-strategy group-id <strategy> Use the specified built-in strategy.

--set-custom-strategy group-id ior Use the given custom strategy.

--list-members group-id Enumerate the members of the group.

--add-member group-id member-id Add a member to the group.

--remove-member group-id member-id Remove a member from the group.

--shutdown Shutdown the service.
 278

Utilities
Making References
The lbmkref utility creates object references for use by clients of Orbacus
Balancer. Note that this can only be used to create object references when
the service is configured to use the IIOP. Its usage is shown below.

lbmkref [-H host] port group-id repository-id object-id

host The host that the balancer server is running on. The
default value is the canonical hostname of the
machine in which lbmkref is executed.

port The forward port of the service.

group-id The ID of the load balanced group.

repository-id The Repository ID of the new object reference.

object-id The Object ID of the new object reference.
279

CHAPTER 13 | Orbacus Balancer
Utility Objects
To take advantage of the features of the adaptive load balancing strategies,
a load balanced server must send load updates to the appropriate load
balanced groups and respond to load alerts. Orbacus Balancer provides
utility objects that the developer may use to help implement this
functionality.

The utility objects provided by Orbacus Balancer are part of the
LoadBalancing::Util module and are provided as initial services (see “The
BootManager” on page 138). Each utility object is described below. For
further detail, refer to Appendix F, and for an example refer to “Adaptive
Load Balancing” on page 288.

LoadAlert The LoadAlert object is used to manage load alerts sent by the service. The
name of the LoadAlert initial service is LoadAlert.

LoadCalculator The LoadCalculator object is used by the LoadUpdater object (see below) to
calculate the current load of the server (which will be used as the load of
each member registered with the LoadUpdater object). The implementation
provided by the service calculates the load based on the number of active
requests.

LoadUpdater The LoadUpdater object is used to manage load updates sent to the
Balancer. At regular intervals the LoadUpdater object gets the load from the
LoadCalculator object and pushes it to the load balanced group of each
registered member.
 280

Utilities
Utility Object Configuration Properties
The Orbacus Balancer utility objects support the following properties:

ooc.balancer.util.create_alert Value: true, false

If set to true, then the LoadAlert object will be created and will be available
as an initial service. The default value is true.

ooc.balancer.util.create_calculat
or

Value: true, false

If set to true, then the LoadCalculator object will be created and will be
available as an initial service. The default value is true.

ooc.balancer.util.create_updater Value: true, false

If set to true, then the LoadUpdater object will be created and will be
available as an initial service. The default value is true. If the LoadCalculator
object is also created, then this object does not have to be set in the
LoadUpdater object.

ooc.balancer.trace.alert_expire Value: timeout >= 0

Specifies the expiry time for a load alert in milliseconds. The default is 1000
(1 second). A value of 0 means that load alerts never expire.

ooc.balancer.trace.load_update Value: frequency >= 0

Specifies the load update frequency for the LoadUpdater object in
milliseconds. The default is 1000 (1 second). A value of 0 means that no
load updates will be sent to the service.
281

CHAPTER 13 | Orbacus Balancer
Programming Example

Implementing a Load Balanced
Server

In this section, we will show how to modify the C++ version of the “Hello
World” server (see Chapter 1) for load balancing. First we will present the
modifications necessary for non-adaptive load balancing, then the necessary
modifications for adaptive load balancing will be presented. This is followed
by a description of the steps necessary to configure the service for the load
balanced “Hello World” servers.

In this section This section covers the following topics:

Non-adaptive Load Balancing page 283

Adaptive Load Balancing page 288

Running the Load Balanced Servers page 292
 282

Programming Example
Non-adaptive Load Balancing
The “Hello World” server presented in Chapter uses the Root POA to
activate its Hello servant. However, a member POA must have a member
policy, the USER_ID ID assignment policy value and the PERSISTENT lifespan
policy value. Hence, the “Hello World” server must be modified so that the
Hello servant is activated using a POA with the above policies. Furthermore,
the Hello servant is no longer activated under the Root POA, so it becomes
necessary for it to override the _default_POA method. The modified
servant’s class declaration is shown below:

7 Private member to store the servant’s default POA.

11 A constructor must be defined to allow the assignment of the servant’s
default POA.

15 Declaration of the _default_POA method.

1 // C++
2 #include <Hello_skel.h>
3
4 class Hello_impl : public POA_Hello,
5 public PortableServer::RefCountServantBase
6 {
7 PortableServer::POA_var poa_;
8
9 public:
10
11 Hello_impl(PortableServer::POA_ptr);
12
13 virtual void say_hello() throw(CORBA::SystemException);
14
15 virtual PortableServer::POA_ptr _default_POA();
16 };
283

CHAPTER 13 | Orbacus Balancer
The remainder of the class declaration is unchanged. The definition of the
constructor and _default_POA method follow:

The modified server program is shown below :

1 // C++
2 Hello_impl::Hello_impl(PortableServer::POA_ptr poa)
3 : poa_(PortableServer::POA::_duplicate(poa)
4 {
5 }
6
7 PortableServer::POA_ptr Hello_impl::_default_POA()
8 {
9 return PortableServer::POA::_duplicate(poa_);
10 }

1 // C++
2 #include <OB/CORBA.h>
3 #include <OB/Balancer_init.h>
4 #include <Hello_impl.h>
5
6 int run(CORBA::ORB_ptr, int, char*[]);
7
8 int main(int argc, char* argv[])
9 {
10 int status = EXIT_SUCCESS;
11 CORBA::ORB_var orb;
12
13 try
14 {
15 LoadBalancing::LB_init();
16 orb = CORBA::ORB_init(argc, argv);
17 status = run(orb, argc, argv);
18 }
19 catch(const CORBA::Exception&)
20 {
21 status = EXIT_FAILURE;
22 }
23
 284

Programming Example
3 Include the header file that declares the Orbacus Balancer initialization
function. This header file also includes the header files OB/Balancer.h and
OB/BalancerPolicyTypes.h, which contain the definitions necessary for
non-adaptive load balancing.

15 Invoke LoadBalancing::LB_init(). This function initializes the server for
load balancing and must be called before initializing the ORB.

24 if(!CORBA::is_nil(orb))
25 {
26 try
27 {
28 orb -> destroy();
29 }
30 catch(const CORBA::Exception&)
31 {
32 status = EXIT_FAILURE;
33 }
34 }
35
36 return status;
37 }
285

CHAPTER 13 | Orbacus Balancer
The remainder of the main() function is similar to that of Chapter . Now we
write the run() function:

1 // C++
2 int run(CORBA::ORB_ptr orb, int argc, char* argv[])
3 {
4 if(argc != 2)
5 return EXIT_FAILURE;
6 const char* memberId = argv[1];
7
8 CORBA::Object_var poaObj =
9 orb -> resolve_initial_references("RootPOA");
10 PortableServer::POA_var rootPoa =
11 PortableServer::POA::_narrow(poaObj);
12
13 PortableServer::POAManager_var manager =
14 rootPoa -> the_POAManager();
15
16 LoadBalancing::MemberPolicyValue_var value =
17 new LoadBalancing::MemberPolicyValue();
18 value -> group_id = CORBA::string_dup("Hello");
19 value -> member_id = CORBA::string_dup(memberId);
20 CORBA::Any any;
21 any <<= value._retn();
22 CORBA::Policy_var memberPolicy =
23 orb -> create_policy(LoadBalancing::MEMBER_POLICY_ID,
any);
24
 286

Programming Example
4-6 Check the arguments for the member ID.

16-23 Create the member policy. The group ID will be Hello and the member ID is
an argument of the program.

25-33 Create the member POA.

35-40 Create the Hello servant and activate it on the member POA.

The remainder of the run() function is similar to that of Chapter .

25 CORBA::PolicyList pl(3);
26 pl.length(3);
27 pl[0] = rootPOA -> create_lifespan_policy(
28 PortableServer::PERSISTENT);
29 pl[1] = rootPOA -> create_id_assignment_policy(
30 PortableServer::USER_ID);
31 pl[3] = memberPolicy;
32 PortableServer::POA_var helloPOA =
33 rootPOA -> create_POA("hello", manager, pl);
34
35 Hello_impl* helloImpl = new Hello_impl(helloPOA);
36 PortableServer::ServantBase_var servant = helloImpl;
37 PortableServer::ObjectId_var oid =
38 PortableServer::string_to_ObjectId("hello");
39 helloPOA -> activate_object_with_id(oid, servant);
40 Hello_var hello = helloImpl -> _this();
41
42 manager -> activate();
43 orb -> run();
44
45 return EXIT_SUCCESS;
46 }
287

CHAPTER 13 | Orbacus Balancer
Adaptive Load Balancing
To use adaptive load balancing, the Hello server must send load updates to
the service and react to load alerts. The Orbacus Balancer utility objects will
be used to help implement this functionality. The modified server program is
shown below:

1 // C++
2 #include <OB/CORBA.h>
3 #include <OB/Balancer_init.h>
4 #include <OB/BalancerUtil_init.h>
5 #include <OB/Balancer_skel.h>
6 #include <Hello_impl.h>
7
8 class LoadAlert_impl :
9 virtual public POA_LoadBalancing::LoadAlert,
10 virtual public PortableServer::RefCountServantBase
11 {
12 LoadBalancing::Util::LoadAlert_var alert_;
13
14 public:
15 LoadAlert_impl(LoadBalancing::Util::LoadAlert_ptr alert)
16 :
alert_(LoadBalancing::Util::LoadAlert::_duplicate(alert))
17 {
18 }
19
20 virtual void alert()
21 throw(CORBA::SystemException)
22 {
23 alert_ -> alert();
24 }
25 };
26
27 int run(CORBA::ORB_ptr, int, char*[]);
28
29 int main(int argc, char* argv[])
30 {
31 int status = EXIT_SUCCESS;
32 CORBA::ORB_var orb;
33
 288

Programming Example
4 Include the header file that declares the Orbacus Balancer utility
initialization function. This header file also includes the header file
OB/BalancerUtil.h, which contain the definitions of the utility objects.

5 The header file OB/Balancer_skel.h must be included for the
implementation of the LoadBalancing::LoadAlert interface.

8-25 An implementation of the LoadBalancing::LoadAlert interface that
delegates to the LoadAlert utility object.

37 Invoke LoadBalancing::Util::LBUtil_init(). This function initializes the
utility objects and must be called before initializing the ORB.

34 try
35 {
36 LoadBalancing::LB_init();
37 LoadBalancing::Util::LBUtil_init();
38 orb = CORBA::ORB_init(argc, argv);
39 status = run(orb, argc, argv);
40 }
41 catch(const CORBA::Exception&)
42 {
43 status = EXIT_FAILURE;
44 }
45
46 if(!CORBA::is_nil(orb))
47 {
48 try
49 {
50 orb -> destroy();
51 }
52 catch(const CORBA::Exception&)
53 {
54 status = EXIT_FAILURE;
55 }
56 }
57
58 return status;
59 }
289

CHAPTER 13 | Orbacus Balancer
The remainder of the main() function is the same as in section
“Non-adaptive Load Balancing” on page 283. Now we write the run()
function:

1 // C++
2 int run(CORBA::ORB_ptr orb, int argc, char* argv[])
3 {
4 if(argc != 2)
5 return EXIT_FAILURE;
6 const char* memberId = argv[1];
7
8 CORBA::Object_var poaObj =
9 orb -> resolve_initial_references("RootPOA");
10 PortableServer::POA_var rootPoa =
11 PortableServer::POA::_narrow(poaObj);
12
13 PortableServer::POAManager_var manager =
14 rootPoa -> the_POAManager();
15
16 LoadBalancing::MemberPolicyValue_var value =
17 new LoadBalancing::MemberPolicyValue();
18 value -> group_id = CORBA::string_dup("Hello");
19 value -> member_id = CORBA::string_dup(memberId);
20 CORBA::Any any;
21 any <<= value._retn();
22 CORBA::Policy_var memberPolicy =
23 orb -> create_policy(LoadBalancing::MEMBER_POLICY_ID,
any);
24
25 CORBA::PolicyList pl(3);
26 pl.length(3);
27 pl[0] = rootPOA -> create_lifespan_policy(
28 PortableServer::PERSISTENT);
29 pl[1] = rootPOA -> create_id_assignment_policy(
30 PortableServer::USER_ID);
31 pl[3] = memberPolicy;
32 PortableServer::POA_var helloPOA =
33 rootPOA -> create_POA("hello", manager, pl);
34
35 Hello_impl* helloImpl = new Hello_impl(helloPOA);
36 PortableServer::ServantBase_var servant = helloImpl;
37 PortableServer::ObjectId_var oid =
38 PortableServer::string_to_ObjectId("hello");
39 helloPOA -> activate_object_with_id(oid, servant);
40 Hello_var hello = helloImpl -> _this();
41
 290

Programming Example
42-53 Get the GroupFactory and the LoadUpdater and LoadAlert utility objects.

25-33 Create the member POA.

55-58 Create the LoadAlert servant and activate it on the root POA.

62-63 Set the member’s LoadAlert object. Note that this should be done after
activating the POA manager since it may result in a request to this server.

65 Register the member with the LoadUpdater.

The remainder of the run() function is the same as in section “Non-adaptive
Load Balancing” on page 283.

42 CORBA::Object_var obj =
43 orb -> resolve_initial_references("Balancer");
44 LoadBalancing::GroupFactory_var factory =
45 LoadBalancing::GroupFactory::_narrow(obj);
46
47 obj = orb -> resolve_initial_references("LoadUpdater");
48 LoadBalancing::Util::LoadUpdater_var updater =
49 LoadBalancing::Util::LoadUpdater::_narrow(obj);
50
51 obj = orb -> resolve_initial_references("LoadAlert");
52 LoadBalancing::Util::LoadAlert_var alert =
53 LoadBalancing::Util::LoadAlert::_narrow(obj);
54
55 LoadAlert_impl* loadAlertImpl = new LoadAlert_impl(alert);
56 PortableServer::ServantBase_var alertServant =
loadAlertImpl;
57 LoadBalancing::LoadAlert_var loadAlert =
58 loadAlertImpl -> _this();
59
60 manager -> activate();
61
62 LoadBalancing::Group_var group = factory -> get("Hello");
63 group -> set_load_alert(memberId, loadAlert);
64
65 updater -> register_member(memberId, "Hello");
66
67 orb -> run();
68
69 return EXIT_SUCCESS;
70 }
291

CHAPTER 13 | Orbacus Balancer
Running the Load Balanced Servers
In this section we present the step required to set up the Orbacus Balancer
for the “Hello World” load balanced servers. We will assume that Orbacus
has been installed in the directory /usr/local/Orbacus and the executables
balancer, lbadmin and lbmkref all exist in a directory that is in the search
path. The steps are as follows:

1. Create a configuration file for Orbacus Balancer containing the
following:

balancer.conf

ooc.balancer.admin_endpoint=iiop --port 10000

ooc.balancer.forward_endpoint=iiop --port 10001

ooc.balancer.dbdir=/usr/local/Orbacus/db

This file is placed in the /usr/local/Orbacus/etc directory.

2. Start the service in administrative mode:

balancer -ORBconfig /usr/local/Orbacus/etc/balancer.conf \

--administrative

3. Create the load balanced group.

Before starting the load balanced servers, the associated load balanced
group must be created. This can be done using the lbadmin utility as
follows:

lbadmin -ORBInitRef Balancer=corbaloc::lbhost:10000/Balancer\

--create-group Hello

Where lbhost is the host running the service.

4. Add the members.

The members can be added to the group explicitly using the
--add-member command of the lbadmin utility or they can be added
automatically when the load balanced servers are started.

Note that members cannot be added automatically by the load
balanced servers if the service is not running in administrative mode.

5. Configure the load balancing strategy.

The --set-strategy or --set-custom-strategy commands of the
lbadmin utility may be used to configure the group’s load balancing
strategy, For example, to use the least-load strategy:

lbadmin -ORBInitRef Balancer=corbaloc::lbhost:10000/Balancer\
 292

Programming Example
--set-strategy least-load \

--tolerance 5 --load-per-client 5

Note that the strategy may also be changed after the load balanced
servers are started.

6. Start the load balanced servers. For example, to start a server for the
member with ID member1, run:

server -ORBInitRef Balancer=corbaloc::lbhost:10000/Balancer \

member1

7. Create object references for use by the clients.

To create an object reference run:

lbmkref -H lbhost 10001 Hello IDL:Hello:1.0 Hello > Hello.ref

Note that the object references created by the load balanced servers
can also be used by the clients.

After all members have been registered and the load balancing strategy is
configured, it is recommended to restart the service in non-administrative
mode. This will prevent any accidental (or unauthorized) modifications.
293

CHAPTER 13 | Orbacus Balancer
 294

CHAPTER 14

Orbacus Watson
Orbacus Watson is a loadable module that provides request
tracing capabilities based on Portable Interceptors. Method
names, parameter and return values, exceptions and a call
stack can be visualized. The module can be loaded
dynamically at application startup (when shared libraries are
used) or linked statically to an application.

In this chapter This chapter contains the following sections:

Tracing Levels page 296

Installing Watson in C++ page 297

Installing Watson in Java page 298

Configuration Properties page 299
295

CHAPTER 14 | Orbacus Watson
Tracing Levels
The level of request tracing is controlled by the properties described in the
next section. The default value for all tracing levels is 0.

The tracing levels are cumulative, i.e., the higher levels include the output
generated by the lower levels. In order to make request parameters, results
and exceptions available for tracing the option --with-interceptor-args
has to be specified to the IDL compiler.

0 no tracing

1 displays name, request id, return/exception status of operation

2 displays parameters and return values

3 displays the call stack

4 displays object id, adapter id, effective profile
 296

Installing Watson in C++
Installing Watson in C++
If Orbacus was built with shared libraries or DLLs, Orbacus Watson can be
installed dynamically by defining the following configuration properties:

ooc.orb.modules=watson
ooc.orb.module.watson=<library-name>

Please refer to Chapter 3 for more information on these properties.

If Orbacus was built statically, the module initialization function has to be
called directly from the application code:

2-4 Include OB/watson.h only when building statically.

10-16 Explicitly install the Watson module prior to initializing the ORB.

Specifying the configuration property ooc.orb.modules=watson will result in
an (informative) error message from the ORBs ModuleManager upon
application startup if the module was linked statically.

1 // C++
2 #if !defined(HAVE_SHARED) && !defined(OB_DLL)
3 #include <OB/watson.h>
4 #endif
5
6 int main(int argc, char* argv[])
7 {
8 CORBA::ORB_var orb;
9 ...
10 #if !defined(HAVE_SHARED) && !defined(OB_DLL)
11 //
12 // When linking statically, we need to explicitly
initialize
13 // Watson
14 //
15 init_module_watson();
16 #endif
17
18 orb = CORBA::ORB_init(argc, argv);
19 ...
20 }
297

CHAPTER 14 | Orbacus Watson
Installing Watson in Java
Since Orbacus Watson is based on Portable Interceptors, it is installed using
the standard mechanism for installing interceptors. Specifically, a property
is defined which specifies the name of a class to be loaded:

org.omg.PortableInterceptor.ORBInitializerClass.com.ooc.watson.RI
ORBInitializer_impl

Note that the property has no associated value, as the name of the class to
be loaded is part of the property name.
 298

Configuration Properties
Configuration Properties
The behavior of the Orbacus Watson module is controlled by the following
properties.

The information displayed in the in and out directions differ for the different
roles an application takes in CORBA. For a client application making a
CORBA request, the out direction corresponds to the request sending
direction and the results are received in the in direction. For a server
application, requests from clients are coming in and replies with results or
exceptions are sent out.

Setting one of the more specific properties (ooc.watson.trace.requests.in
and ooc.watson.trace.requests.out) overrides the corresponding value for
this direction set by ooc.watson.trace.requests.

Property Description

ooc.watson.trace.requests=<level> This property sets the indicated
tracing level for the in and out
direction. The default value is 0.

ooc.watson.trace.requests.in=<level> This property sets the indicated
tracing level only for the in
direction. The default value is 0.

ooc.watson.trace.requests.out=<level> This property sets the indicated
tracing level only for the out
direction. The default value is 0.
299

CHAPTER 14 | Orbacus Watson
Sample Configuration File
Applications using Orbacus Watson can simply be started by specifying a
configuration file with appropriate property settings with the -ORBconfig
command-line option:

server -ORBconfig watson.cfg

The following example file shows how to set properties for C++ and Java
applications:

#
Register ORB initializer for watson (Orbacus/Java)
#
org.omg.PortableInterceptor.ORBInitializerClass.com.ooc.watson.R

IORBInitializer_impl

#
Load module watson (Orbacus/C++)
#
Disable if module was build statically to avoid

error message from the ORBs ModuleManager
#
ooc.orb.modules=watson

#
On Windows, enable one of the following properties
if you built with DLLs
#
For debug builds:
#
#ooc.orb.module.watson=watson412d.dll
#
For non-debug builds:
#
#ooc.orb.module.watson=watson412.dll

#
Set request tracing levels
- more specific settings (.in and .out) override the
general setting in the first of these lines
#
ooc.watson.trace.requests=3
ooc.watson.trace.requests.in=1
ooc.watson.trace.requests.out=2
 300

CHAPTER 15

Using Policies
This chapter describes the policies used to configure the ORB
and to create a new POA. These policies are derived from the
interface CORBA::Policy.

In this chapter This chapter contains the following sections:

Overview page 302

Supported Policies page 303

Programming Examples page 306
301

CHAPTER 15 | Using Policies
Overview
The ORB and its services may allow the application developer to configure
the semantics of its operations. This configuration is accomplished in a
structured manner through interfaces derived from the interface
CORBA::Policy.

There are two basic types of policies: those used to configure the ORB and
those used to create a new POA. Furthermore, the configuration of ORB
policy objects is accomplished at two levels:

• ORB Level: These policies override the system defaults. The ORB has
an initial reference ORBPolicyManager. A PolicyManager has a set of
operations through which the current set of overriding policies can be
obtained, and new policies can be applied.

• Object Level: The object interface contains operations to retrieve and
set policies for itself. Policies applied at the object level override those
applied at the thread level, or the ORB level.

For more information on Policies, the PolicyManager interface and the
CORBA::Object policy operations see [8] and [4].
 302

Supported Policies
Supported Policies
The following is a brief description of the Orbacus-specific policies that are
currently supported. For a detailed description, please refer to Appendix B.
For standard policies, please refer to [4].

Table 4: Orbacus policies

Policy Description

BiDirPolicy::BidirectionalPolicy This policy is used to enable CORBA 3 compliant BiDir
GIOP functionality on both the Object and POA levels.
Enabling this policy with a value of BiDirPolicy::BOTH
on both levels will result in connection reuse when the
server is required to make requests to the client.

The default value is BiDirPolicy::NORMAL (disabled
BiDir functionality). Both the client object and server
POA needs this policy set to BOTH for BiDir
communication to take place.

OB::ACMTimeoutPolicy This policy determines whether the ORB performs
“active connection management” (ACM) on the
connection associated with an object reference. The
policy specifies a time after which idle connections are
shutdown. A value of 0 means no timeout. The default
for this policy is the value of the
ooc.orb.client_timeout property (see
“ooc.orb.client_timeout” on page 53).

OB::ConnectionReusePolicy This policy determines whether the ORB is permitted to
reuse a communications channel between peers. If this
policy is false then each object will have a new
communications channel to its peer. The default for this
policy is true.

OB::ConnectTimeoutPolicy If an object has this policy and a connection cannot be
established after value milliseconds, a
CORBA::NO_RESPONSE exception is raised.
303

CHAPTER 15 | Using Policies
OB::InterceptorPolicy This policy determines whether client-side interceptors
will be called. Client-side interceptors are enabled by
default. To disable client-side interceptors, this policy
can be set on an ORB or object reference with a value
of false.

OB::LocateRequestPolicy This policy determines whether the ORB sends GIOP
“LocateRequest” messages. This policy exists to avoid
an interoperability issue regarding the formatting of
GIOP 1.2 LocateReply messages. Orbacus uses the
correct formatting as of version 4.1. Unfortunately, all
versions of Orbacus 4.0.x use the incorrect formatting,
as do some other ORB implementations. As a result,
the default value of this policy is false, which means
the ORB will not send LocateRequest messages, and
therefore will not receive improperly formatted replies.

OB::LocationTransparencyPolicy This policy determines how strictly the ORB will enforce
location transparency. The default behavior is relaxed.
An application may wish to sacrifice performances to
have strict CORBA compliance for local invocations.

OB::ProtocolPolicy This policy allows an application to influence how the
ORB orders and filters the profiles of an object
reference. The value of the policy is a list of transport
plug-in identifiers which determine the preferred order
in which the ORB should attempt to establish
connections. Only those profiles which match an entry
in the list will be used. If no profile from the object
reference matches a transport in the list, or the ORB
was unable to establish a connection, then a TRANSIENT
exception is raised.

OB::RequestTimeoutPolicy If an object has this policy and no response is available
for a request after value milliseconds, a
CORBA::NO_RESPONSE exception is raised.

Table 4: Orbacus policies

Policy Description
 304

Supported Policies
OB::RetryPolicy This policy is used to specify retry behavior after
communication failures. Namely,

• the types of failures for which retries are allowed,

• the time between successive retries, and

• the maximum number of retries.

OB::TimeoutPolicy If an object has this policy and a connection cannot be
established or no response is available for a request
after value milliseconds, a CORBA::NO_RESPONSE
exception is raised. If an object has
OB::ConnectTimeoutPolicy or
OB::RequestTimeoutPolicy set, those policies have
precedence.

OBPortableServer::InterceptorCall
Policy

This policy determines whether server-side interceptors
will be called for requests on a POA. Server-side
interceptors are enabled by default. To disable
server-side interceptors for a POA, create the POA using
this policy with a value of false.

OBPortableServer::Communication
sConcurrencyPolicy

See “ooc.orb.oa.conc_model” on page 59 and
“ooc.orb.poamanager.manager.conc_model” on
page 61

OBPortableServer::EndpointConfig
urationPolicy

See “ooc.orb.poamanager.manager.endpoint” on
page 61

OBPortableServer::GIOPVersionPol
icy

See “ooc.orb.poamanager.manager.version” on
page 61

Table 4: Orbacus policies

Policy Description
305

CHAPTER 15 | Using Policies
Programming Examples
This section provides several examples of setting policies programmatically.
Please note however that policies used to configure the ORB can easily be
set at the ORB level, without requiring changes to the application, through
the use of configuration properties. See “ORB Properties” on page 52 for
more information.

For the sake of clarity, the psuedo-code examples in this section lack
exception handling.

In this section This section contains the following examples:

Connection Reuse Policy page 307

Retry Policy page 310

Timeout Policy page 312

Interceptor Call Policy page 313

CommunicationsConcurrencyPolicy page 315

EndpointConfigurationPolicy page 317

GIOPVersionPolicy page 319

Bidirectional Policby page 321
 306

Programming Examples
Connection Reuse Policy
The following examples demonstrate how to set
OB::ConnectionReusePolicy at both the ORB level and the object level in
C++ and Java. Setting a policy at the ORB level means that the ORB will
honor this policy for all newly created objects. Existing objects maintain
their current set of policies. Setting a policy at the object level overrides any
ORB level policies applied to that object.

Setting the connection reuse policy to false at the ORB level means that the
ORB will create a new connection from the client to the server for each new
proxy object instead of reusing existing ones. Setting the connection reuse
policy to false at the object level means that the client does not reuse
connections to the server only for a particular proxy object.

If the connection reuse policy is set to true at some later point,
communications channels that were previously created with a connection
reuse policy set to false will not be reused. That is, the connection reuse
policy is sticky, in the sense that the reuse policy that was in effect at the
time that a communications channel is created stays with it. Setting the
reuse policy at the object level means that for a client the ORB will not reuse
the communications channel that is associated with the proxy object.

Connection Reuse Policy at ORB
Level

Our first example shows how the connection reuse policy can be set at the
ORB level. First in C++:

2-3 Create an any and insert the value 0 (false).

4-5 Create a sequence containing one policy object.

1 // C++
2 CORBA::Any boolAny;
3 boolAny <<= CORBA::Any::from_boolean(0);
4 CORBA::PolicyList policies;
5 policies.length(1);
6 policies[0] = orb -> create_policy(
7 OB::CONNECTION_REUSE_POLICY_ID, boolAny);
8 CORBA::Object_var pmObj =
9 orb -> resolve_initial_references("ORBPolicyManager");
10 CORBA::PolicyManager_var pm =
11 CORBA::PolicyManager::_narrow(pmObj);
12 pm -> set_policy_overrides(policies, CORBA::ADD_OVERRIDE);
307

CHAPTER 15 | Using Policies
6-7 Ask the ORB to create a connection reuse policy. Pass the any that contains
the value for this policy.

8-10 Obtain the ORB level policy manager object.

12 Add the policies to the ORB level policy manager.

And here is the same example in Java:

1-10 This is equivalent to the C++ version.

Connection Reuse Policy at Object
Level

And now the same example, but at the object level. C++ first:

2-7 This is the same as in the example for the ORB level.

Set the policy on the object by using the _set_policy_overrides method.
This method returns a new object that has the set of policies applied.

1 // Java
2 org.omg.CORBA.Any boolAny = orb.create_any();
3 boolAny.insert_boolean(false);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] = orb.create_policy(
6 com.ooc.OB.CONNECTION_REUSE_POLICY_ID.value, boolAny);
7 org.omg.CORBA.PolicyManager pm =
8 org.omg.CORBA.PolicyManagerHelper.narrow(
9 orb.resolve_initial_references("ORBPolicyManager"));
10 pm.set_policy_overrides(policies,

SetOverrideType.ADD_OVERRIDE);

1 // C++
2 CORBA::Any boolAny;
3 boolAny <<= CORBA::Any::from_boolean(0);
4 CORBA::PolicyList policies(1);
5 policies.length(1);
6 policies[0] = orb -> create_policy(
7 OB::CONNECTION_REUSE_POLICY_ID,boolAny);
8 CORBA::Object_var newObj =
9 obj -> _set_policy_overrides(policies,
CORBA::ADD_OVERRIDE);
 308

Programming Examples
And here is the same example in Java:

1-10 This is equivalent to the C++ version.

1 // Java
2 org.omg.CORBA.Any boolAny = orb.create_any();
3 boolAny.insert_boolean(false);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] =
6
orb.create_policy(com.ooc.OB.CONNECTION_REUSE_POLICY_ID.value,
7 boolAny);
8 org.omg.CORBA.Object newObj =
9 obj._set_policy_override(policies,
10 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
309

CHAPTER 15 | Using Policies
Retry Policy
This example shows how to configure retries at the object level. The C++
version is presented first, followed by the Java version:

3 Use the RETRY_STRICT mode, that is, retry only if the exception completion
status is COMPLETED_NO.

4 Wait 500 milliseconds between successive retries.

5 Retry a maximum of 5 times.

6 Allow retries on exceptions that are generated remotely (in addition to locally
generated exceptions).

13-14 Set the policy on the object by using the _set_policy_overrides method.
This method returns a new object that has the set of policies applied.

1 // C++
2 OB::RetryAttributes attrib;
3 attrib.mode = OB::RETRY_STRICT;
4 attrib.interval = 500;
5 attrib.max = 5;
6 attrib.remote = true;
7
8 CORBA::Any any;
9 any <<= attrib;
10 CORBA::PolicyList policies(1);
11 policies.length(1);
12 policies[0] = orb -> create_policy(OB::RETRY_POLICY_ID, any);
13 CORBA::Object_var newObj =
14 obj -> _set_policy_overrides(policies,
CORBA::ADD_OVERRIDE);
 310

Programming Examples
And now the same example in Java:

1-16 This is equivalent to the C++ version.

Note that you can also set the retry policy at the ORB level.

1 // Java
2 com.ooc.OB.RetryAttributes attrib =
3 new com.ooc.OB.RetryAttributes();
4 attrib.mode = com.ooc.OB.RETRY_STRICT.value;
5 attrib.interval = 500;
6 attrib.max = 5;
7 attrib.remote = true;
8
9 org.omg.CORBA.Any any = orb.create_any();
10 com.ooc.OB.RetryAttributesHelper.insert(any, attrib);
11 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
12 policies[0] =
13 orb.create_policy(com.ooc.OB.RETRY_POLICY_ID.value, any);
14 org.omg.CORBA.Object newObj =
15 obj._set_policy_override(policies,
16 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
311

CHAPTER 15 | Using Policies
Timeout Policy
This example shows how to configure timeouts at the object level. As usual,
the C++ version is presented first, followed by the Java version:

2-6 We want to set the timeout to a value of 1000 milliseconds.

7-8 Set the policy on the object by using the _set_policy_overrides method.
This method returns a new object that has the set of policies applied.

And now the same example in Java:

1-10 This is equivalent to the C++ version.

Note that you can also set the timeout policy at the ORB level.

1 // C++
2 CORBA::Any ULongAny;
3 ULongAny <<= (CORBA::ULong)1000;
4 CORBA::PolicyList policies(1);
5 policies.length(1);
6 policies[0] = orb -> create_policy(OB::TIMEOUT_POLICY_ID,
ULongAny);
7 CORBA::Object_var newObj =
8 obj -> _set_policy_overrides(policies,
CORBA::ADD_OVERRIDE);

1 // Java
2 org.omg.CORBA.Any ULongAny = orb.create_any();
3 ULongAny.insert_ulong(1000);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] =
6 orb.create_policy(com.ooc.OB.TIMEOUT_POLICY_ID.value,
7 ULongAny);
8 org.omg.CORBA.Object newObj =
9 obj._set_policy_override(policies,
10 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
 312

Programming Examples
Interceptor Call Policy
This example shows how to create a new POA with server-side interceptors
disabled. The C++ version is presented first, followed by the Java version:

2-7 Obtain references to the root POA and its POA manager.

9-15 Create a policy set consisting of the
OBPortableServer::InterceptorCallPolicy policy. The
OBPortableServer::InterceptorCallPolicy policy is given a value of
false so that server-side interceptors will be disabled.

17-18 Create a new POA using the policy set created above.

1 // C++
2 CORBA::Object_var obj =
3 orb -> resolve_initial_references("RootPOA");
4 PortableServer::POA_var rootPOA =
5 PortableServer::POA::_narrow(obj);
6 PortableServer::POAManager_var manager =
7 rootPOA -> the_POAManager();
8
9 CORBA::Any any;
10 CORBA::PolicyList policies(1);
11 policies.length(1);
12 any <<= CORBA::Any::from_boolean(false);
13 policies[0] =
14 orb -> create_policy(
15 OBPortableServer::INTERCEPTOR_CALL_POLICY_ID, any);
16
17 PortableServer::POA_var myPOA =
18 rootPOA -> create_POA("MyPOA", manager, policies)
313

CHAPTER 15 | Using Policies
And now the same example in Java:

1-16 This is equivalent to the C++ version.

1 // Java
2 org.omg.CORBA.Object obj =
3 orb.resolve_initial_references("RootPOA");
4 org.omg.PortableServer.POA rootPOA =
5 org.omg.PortableServer.POAHelper.narrow(obj);
6 org.omg.PortableServer.POAManager manager =
7 rootPOA.the_POAManager();
8
9 org.omg.CORBA.Any any = orb.create_any();
10 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
11 any.insert_boolean(false);
12 policies[0] = orb.create_policy(
13 com.ooc.OBPortableServer.INTERCEPTOR_CALL_POLICY_ID.value,
any);
14
15 org.omg.PortableServer.POA myPOA =
16 rootPOA.create_POA("MyPOA", manager, policies);
 314

Programming Examples
CommunicationsConcurrencyPolicy
This example shows how to create a new POA Manager with the
concurrency model set to threaded. The C++ version is presented first,
followed by the Java version.

And now the same example in Java:

1 // C++
2 CORBA::Object_var poaObj =
3 orb -> resolve_initial_references("RootPOA");
4 OBPortableServer::POA_var rootPOA =
5 OBPortableServer::POA::_narrow(poaObj);
6 POAManagerFactory_var factory = rootPOA ->

the_POAManagerFactory();
7 OBPortableServer::POAManagerFactory_var pmFactory =
8 OBPortableServer::POAManagerFactory::_narrow(factory);
9 POAManager_var myPOAManager;
10 PolicyList pl;
11 pl.length(1);
12 pl[0] = pmFactory ->

create_communications_concurrency_policy(
13 OBPortableServer::

COMMUNICATIONS_CONCURRENCY_POLICY_THREADED);
14 try
15 {
16 myPOAManager = create_POAManager("MyPOAManager", pl);
17 }
18 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
19 {
20 // do something
21 }
315

CHAPTER 15 | Using Policies
1 // Java
2 org.omg.CORBA.Object obj =
3 orb.resolve_initial_references("RootPOA");
4 org.omg.PortableServer.POA rootPOA =
5 org.omg.PortableServer.POAHelper.narrow(obj)
6 org.omg.PortableServer.POAManagerFactory factory =
7 rootPOA.the_the_POAManagerFactory();
8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
9

com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(facto
ry);

10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[1];
12 pl[0] = pmFactory.create_communications_concurrency_policy(
13

com.ooc.OBPortableServer.COMMUNICATIONS_CONCURRENCY_POLICY_TH
READED.value);

14 try
15 {
16 myPOAManager = pmFactory.create_POAManager("MyPOAManager",

pl);
17 }
18

catch(org.omg.PortableServer.POAManagerFactoryPackage.Manager
AlreadyExists ex)

19 {
20 // do something
21 }
22 catch(org.omg.CORBA.PolicyError ex)
23 {
24 // do something
25 }
 316

Programming Examples
EndpointConfigurationPolicy
This example shows how to create a new POA Manager with a list of
endpoints for the Root POA Manager.

The C++ version is presented first, followed by the Java version:

And now the same example in Java:

1 // C++
2 CORBA::Object_var poaObj =
3 orb -> resolve_initial_references("RootPOA");
4 OBPortableServer::POA_var rootPOA =
5 OBPortableServer::POA::_narrow(poaObj);
6 POAManagerFactory_var factory = rootPOA ->

the_POAManagerFactory();
7 OBPortableServer::POAManagerFactory_var pmFactory =
8 OBPortableServer::POAManagerFactory::_narrow(factory);
9 POAManager_var myPOAManager;
10 PolicyList pl;
11 String_var config =
12 CORBA::string_dup("iiop --host localhost --port 5555

--bind localhost");
13 pl.length(1);
14 pl[0] = pmFactory ->

create_endpoint_configuration_policy(config.in());
15 try
16 {
17 myPOAManager = create_POAManager("MyPOAManager", pl);
18 }
19 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
20 {
21 // do something
22 }
317

CHAPTER 15 | Using Policies
1 // Java
2 org.omg.CORBA.Object obj =
3 orb.resolve_initial_references("RootPOA");
4 org.omg.PortableServer.POA rootPOA =
5 org.omg.PortableServer.POAHelper.narrow(obj)
6 org.omg.PortableServer.POAManagerFactory factory =
7 rootPOA.the_the_POAManagerFactory();
8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
9

com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(facto
ry);

10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[1];
12 String config = "iiop --host localhost --port 10999 --bind

localhost";
13 pl[0] =

pmFactory.create_endpoint_configuration_policy(config);
14 try
15 {
16 myPOAManager = pmFactory.create_POAManager("MyPOAManager",

pl);
17 }
18

catch(org.omg.PortableServer.POAManagerFactoryPackage.Manager
AlreadyExists ex)

19 {
20 // do something
21 }
22 catch(org.omg.CORBA.PolicyError ex)
23 {
24 // do something
25 }
 318

Programming Examples
GIOPVersionPolicy
This example shows how to create a new POA Manager with a specific GIOP
vesion to be used in object references generated by that POA Manager.

This option is useful for backward compatibility with older ORBs that reject
object references using a newer version of the protocol. In the example
below the GIOP version is set to 1.2.

The C++ version is presented first, followed by the Java version:

And now the same example in Java:

1 // C++
2 CORBA::Object_var poaObj =
3 orb -> resolve_initial_references("RootPOA");
4 OBPortableServer::POA_var rootPOA =
5 OBPortableServer::POA::_narrow(poaObj);
6 POAManagerFactory_var factory = rootPOA ->

the_POAManagerFactory();
7 OBPortableServer::POAManagerFactory_var pmFactory =
8 OBPortableServer::POAManagerFactory::_narrow(factory);
9 POAManager_var myPOAManager;
10 PolicyList pl;
11 pl.length(1);
12 pl[0] = pmFactory -> create_giop_version_policy(
13 OBPortableServer::GIOP_VERSION_POLICY_1_2);
14 try
15 {
16 myPOAManager = create_POAManager("MyPOAManager", pl);
17 }
18 catch(const POAManagerFactory::ManagerAlreadyExists& ex)
19 {
20 // do something
21 }
319

CHAPTER 15 | Using Policies
1 // Java
2 org.omg.CORBA.Object obj =
3 orb.resolve_initial_references("RootPOA");
4 org.omg.PortableServer.POA rootPOA =
5 org.omg.PortableServer.POAHelper.narrow(obj)
6 org.omg.PortableServer.POAManagerFactory factory =
7 rootPOA.the_the_POAManagerFactory();
8 com.ooc.OBPortableServer.POAManagerFactory pmFactory =
9

com.ooc.OBPortableServer.POAManagerFactoryHelper.narrow(facto
ry);

10 org.omg.PortableServer.POAManager myPOAManager = null;
11 org.omg.CORBA.Policy[] pl = new Policy[1];
12 pl[0] = pmFactory.create_giop_version_policy(
13 com.ooc.OBPortableServer.GIOP_VERSION_POLICY_1_2.value);
14 try
15 {
16 myPOAManager = pmFactory.create_POAManager("MyPOAManager",

pl);
17 }
18

catch(org.omg.PortableServer.POAManagerFactoryPackage.Manager
AlreadyExists ex)

19 {
20 // do something
21 }
22 catch(org.omg.CORBA.PolicyError ex)
23 {
24 // do something
25 }
 320

Programming Examples
Bidirectional Policy

BidirectionalPolicy Server
Implementation

This example shows how to create a new POA with the BidirectionalPolicy
enabled to allow negotiation of Bidirectional connection reuse. The C++
example is presented first followed by the Java version:

2-7 Obtain the reference to the RootPOA and RootPOAManager

9-14 Create a new BidirectionalPolicy containing the value of BiDirPolicy::BOTH
(to enable Bidirectional connection reuse negotiation).

16-17 Create the new POA with this policy to enable BiDir negotiation on requests
destined for this POA.

1 // C++
2 CORBA::Object_var obj =
3 orb -> resolve_initial_references("RootPOA");
4 PortableServer::POA_var rootPOA =
5 PortableServer::POA::_narrow(obj);
6 PortableServer::POAManager_var manager =
7 rootPOA -> the_POAManager();
8
9 CORBA::Any any;
10 CORBA::PolicyList policies(1);
11 policies.length(1);
12 any <<= BiDirPolicy::BOTH;
13 policies[0] = orb -> create_policy(
14 BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE, any);
15
16 PortableServer::POA_var myPOA =
17 rootPOA -> create_POA("MyPOA", manager, policies)
321

CHAPTER 15 | Using Policies
And now the same example in Java:

This is equivalent to the C++ version.

BidirectionalPolicy Client
Implementation

This example shows how to create an object reference with the
BidirectionalPolicy enabled to signal connection reuse is allowed over
connections established with this object reference. The C++ example is
presented first followed by the Java version:

1 // Java
2 org.omg.CORBA.Object obj =
3 orb.resolve_initial_references("RootPOA");
4 org.omg.PortableServer.POA rootPOA =
5 org.omg.PortableServer.POAHelper.narrow(obj);
6 org.omg.PortableServer.POAManager manager =
7 rootPOA.the_POAManager();
8
9 org.omg.CORBA.Any any = orb.create_any();
10 org.omg.CORBA.Policy[] policies = new

org.omg.CORBA.Policy[1];
11 org.omg.BiDirPolicy.BidirectionalPolicyValueHelper.insert(
12 any, org.omg.BiDirPolicy.BOTH.value);
13 policies[0] = orb.create_policy(
14 org.omg.BiDirPolicy.BIDIRECTIONAL_POLICY_TYPE.value,
15 any);
16
17 org.omg.PortableServer.POA myPOA =
18 rootPOA.create_POA("MyPOA", manager, policies);

1 // C++
2 CORBA::Object_var obj =
3 orb -> string_to_object("relfile:/Hello.ref");
4
5 CORBA::PolicyList policies(1);
6 policies.length(1);
7 CORBA::Any any;
8 any <<= BiDirPolicy::BOTH;
9 policies[0] = orb -> create_policy(
10 BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE,
11 any);
12
13 obj = obj -> _set_policy_overrides(
14 policies, CORBA::ADD_OVERRIDE);
15
16 Hello_var hello = Hello::_narrow(obj);
 322

Programming Examples
2-3 Obtain the object reference from some means (here using a file)

5-11 Create the BidirectionalPolicy with a value of BOTH to enable BiDir.

13-14 Add the Bidirectional Policy to the object and make sure to catch the return
object reference.

16 Narrow the object to the specific type for method invocation.

And now the Java version:

This is equivalent to the C++ version.

1 // Java
2 org.omg.CORBA.Object obj =
3 orb.string_to_object("relfile:/Hello.ref");
4
5 org.omg.CORBA.Any any = orb.create_any();
6 org.omg.BiDirPolicy.BidirectionalPolicyValueHelper.
7 insert(any, org.omg.BiDirPolicy.BOTH.value);
8 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
9 policies[0] = orb.create_policy(
10 org.omg.BiDirPolicy.BIDIRECTIONAL_POLICY_TYPE.value, any);
11
12 obj = obj._set_policy_override(policies,
13 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);
14
15 Hello hello = HelloHelper.narrow(obj);
323

CHAPTER 15 | Using Policies
 324

CHAPTER 16

Concurrency
Models
This chapter describes how an Object Request Broker handles
communication and request execution using single- and
multi-threaded concurrency models.

In this chapter This chapter contains the following sections:

Concurrency Models page 326

Single-Threaded Concurrency Model page 328

Multi-Threaded Concurrency Models page 331

The Reactor page 338
325

CHAPTER 16 | Concurrency Models
Concurrency Models

What is a Concurrency Model? A concurrency model describes how an Object Request Broker (ORB)
handles communication and request execution. There are two main
categories of concurrency models, single-threaded concurrency models and
multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaves while a
request is sent or received in a single-threaded environment. For example,
one model is to simply let the ORB block while sending and receiving
messages. Another model is to let the ORB do some work while sending and
receiving messages, for example to receive user input through a keyboard or
a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of
multiple threads, for example to send and receive messages “in the
background.” Multi-threaded concurrency models also describe how several
threads can be active in the user code and the strategy the ORB employs to
create these threads.

Why different Concurrency
Models?

There is no “one size fits all” approach with respect to concurrency models.
Each concurrency model provides a unique set of properties, each having
advantages and disadvantages. For example, applications using callbacks
must have a concurrency model that allows nested method invocations to
avoid deadlocks. Other applications must be optimized for speed, in which
case a concurrency model with the least overhead will be chosen.

Some ORBs are highly specialized, providing only the most frequently used
concurrency models for a specific domain. Orbacus takes a different
approach by supporting several concurrency models.

Orbacus Concurrency Models
Overview

Orbacus allows different concurrency models to be established for the client
and server activities of an application. The client-side concurrency models
are Reactive and Threaded. The server-side concurrency models are
Reactive, Threaded, Thread-per-Client, Thread-per-Request and Thread
Pool.
 326

Concurrency Models
Selecting Concurrency Models Concurrency models can be selected either by properties or command-line
parameters (see Chapter 3). The default concurrency models are shown in
Table 5.

Table 5: Default Concurrency Models

Client Server

Java Threaded Threaded

C++ Threaded Reactive
327

CHAPTER 16 | Concurrency Models
Single-Threaded Concurrency Model
Orbacus supports one single-threaded concurrency model: reactive.

Reactive servers use calls to operations like select in order to
simultaneously accept incoming connection requests, to receive requests
from multiple clients and to send back replies. This is shown in Figure 9.

Reactive clients also use operations like select to avoid blocking. This
means that while a request to a server is sent or a reply from that server is
received, the client can simultaneously send buffered requests to other

Figure 9: Reactive Server

Client A Server Client B

connect

disconnect

connect

disconnect

accept

accept

close

close

f()

f()

dispatch

dispatch
 328

Single-Threaded Concurrency Model
servers or receive and buffer replies. This is very useful for oneway
operations or the Dynamic Invocation Interface (DII) operation
send_deferred in combination with get_response or poll_response.1

However, the main advantage of a reactive client becomes apparent if it is
used together with a reactive server in mixed client/server applications. A
mixed client/server application is a program that is both a client and server
at the same time. Without the reactive concurrency model it is not possible
to use nested method calls in single-threaded applications, which are
absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First
A tries to call a method f on B. Before this method returns, B calls back A
by invoking method g. This scenario is quite common, and for example is
used in the popular Model-View-Controller pattern [1]. Using the reactive
concurrency model for the client, A can dispatch incoming requests while
waiting for B’s reply for f. This is shown in Figure 10.

The reactive concurrency models are also very fast. There is no overhead for
thread creation or context switching. Only an additional call to an operation
like select is needed before operations such as send, recv or accept can be
used by the ORB.2

1. For more information on send_deferred, get_response and poll_response,
see the chapter “The Dynamic Invocation Interface” in [4].

Figure 10: Reactive Client/Server

Client/Server Client/Server

f()

g()
dispatch

dispatch

2. Instead of directly using operations like select, Orbacus uses a Reactor to
provide for flexible integration with existing event loops and to allow the
installation of user supplied event handlers. See “The Reactor” on page 338 for
more information.
329

CHAPTER 16 | Concurrency Models
The maximum nesting level for the reactive concurrency model is usually
much higher than for threaded concurrency models. The reason is that the
maximum nesting level for threaded models is determined by the maximum
number of threads allowed per process, whereas the reactive concurrency
model is only limited by the maximum stack size per process.
 330

Multi-Threaded Concurrency Models
Multi-Threaded Concurrency Models

In this section This section covers the following concurrency models:

Threaded Clients and Servers page 332

Thread-per-Client Server page 334

Thread-per-Request Server page 335

Thread Pool Server page 336

Leader_Follower page 337
331

CHAPTER 16 | Concurrency Models
Threaded Clients and Servers
For a threaded client, outgoing requests are sent by the user thread, but a
separate “receiver” thread for handling replies is allocated for each
connection to a server. The separate receiver thread allows messages to be
received and buffered for later retrieval by the user thread with DII
operations such as get_response or poll_response.

Like a threaded client, a threaded server uses a separate thread for receiving
requests from clients, but sends replies in the dispatch thread. Additionally,
there is a separate thread dedicated to accepting incoming connection
requests, so that a threaded server can serve more than one client at a time.

Orbacus’s threaded server concurrency model allows only one active thread
in the user code. This means that even though many requests can be
received simultaneously, the execution of these requests is serialized. This is
shown in Figure 11. (For simplicity, the “dispatch” arrows and the
corresponding return arrows are omitted in this and all following diagrams.)

In the example, the threaded server has two clients connected to it and thus
two receiver threads. First A calls f on the server. If, before f returns, B tries
to call another operation g, this request is delayed until f returns. The same
is true for A’s call to h, which must wait until g returns.

Figure 11: Threaded Server

Client A Threaded Server

f()

h()

g()

Client B
 332

Multi-Threaded Concurrency Models
Allowing only one active thread in user code has the advantage of the user
code not having to take care of any kind of thread synchronization. This
means that the user code can be written as if for a single threaded system,
but without losing the advantage of the ORB optimizing its operation by
using multiple threads internally.

The threaded concurrency model is still fast. No calls to operations like
select are required. Time consuming thread creation is only necessary
when a new client is connecting, but not for each request. However, thread
context switching makes this approach slower than the reactive concurrency
model, at least on a single-processor computer.
333

CHAPTER 16 | Concurrency Models
Thread-per-Client Server
The thread-per-client server concurrency model is very similar to the
threaded server concurrency model, except that the ORB allows one active
thread-per-client in the user code. This is shown in Figure 12.

A’s call to f and B’s call to g are carried out simultaneously, each in its own
thread. However, if A tries to call another operation h (for example by
sending requests from different threads in a multi-threaded client or by
using the DII operation send_deferred in a single-threaded client) as long as
f has not finished yet, the execution of h is delayed until f returns.

The thread-per-client model is still efficient. Like with the threaded
concurrency model, no threads need to be created, except when new
connections are accepted.

Figure 12: Thread-per-Client Server

Client A Thread-per-Client
Server

f()

h()

g()

Client B
 334

Multi-Threaded Concurrency Models
Thread-per-Request Server
If the thread-per-request server concurrency model is chosen, the ORB
creates a new thread for each request. This is shown in Figure 13.

(For simplicity there are no separate arrows for dispatch and thread creation
in the diagram.) With the thread-per-request model, requests are never
delayed. When they arrive, a new thread is created and the request is
executed in the user code using this thread. On return, the thread is
destroyed.

Besides using a reactive client together with a reactive server, the
thread-per-request server in combination with a threaded client is the only
other model that allows nested method calls with an unlimited nesting level.
The thread pool model also allows nested method calls, but the nesting level
is limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem
results from the overhead involved in creating new threads, namely one for
each request.

Figure 13: Thread-per-Request Server

Client A Thread-per-Request
Server

f()

h()

g()

Client B
335

CHAPTER 16 | Concurrency Models
Thread Pool Server
The thread pool model uses threads from a pool to carry out requests, so
that threads have to be created only once and can then be reused for other
requests. Figure 14 shows an example with one client and a thread pool
server with three threads in the pool. (Sender and receiver threads are not
shown.)

The first three operation calls f, g and h can be carried out immediately,
since there are three threads in the pool. However, the fourth request i is
delayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool
concurrency model performs better than the thread-per-request model. The
thread pool is a good trade-off if on the one hand frequent thread creation
and destruction result in unacceptable performance, but on the other hand
delaying the execution of concurrent method calls is also not desired.

Figure 14: Thread Pool Server

Client Thread Pool
Server

g()

h()

f()

i()
 336

Multi-Threaded Concurrency Models
Leader_Follower

In the Leader-Follower concurrency model, each thread from the thread pool
will transition between the following states:

• leader

• processing

• follower

The leader thread, of which there can only be one at any given time, waits
for incoming requests. When a request is received, the leader thread will
promote a new leader while it goes into the processing state to handle the
received requests. Once processing is complete, the thread is absorbed back
into the pool, where it waits to be promoted again. While in the waiting
state, the thread is said to be a follower.

In this model, it is possible to have multiple threads in the processing state
at the same time. However, as stated above, there can only ever be one
leader.

The main advantage of this model is scalablilty. It allows tight control over
the number of threads used by each POAManager.
337

CHAPTER 16 | Concurrency Models
The Reactor

What is a Reactor? In “reactive” mode (see “Single-Threaded Concurrency Model” on
page 328), Orbacus uses a so-called “Reactor” for event dispatching [14].
Simply speaking, the Reactor is an instance in Orbacus (a singleton) where
special objects — so-called event handlers — can register if they are
interested in specific events. These events can be network events, such as
an event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to Orbacus when used with reactive
concurrency models. If you use Orbacus with any other concurrency model,
for example any of the multi-threaded models, the following examples are
not applicable. Also, since Orbacus for Java currently doesn’t support the
reactive model at all, the following only applies to Orbacus for C++.

Available Reactors Currently there are three Reactors supported by Orbacus:

• The standard “select” Reactor which relies on the Berkeley Sockets
select function.

• A special Reactor for use with the X11 Window System. This Reactor
handles X11 events (which for example can trigger X11 callbacks) and
CORBA network events simultaneously. See “The X11 Reactor” on
page 339.

• A special Reactor for use with Microsoft Windows 95/98/NT/2000.
This Reactor handles Windows messages and CORBA network events
simultaneously. See “The Windows Reactor” on page 340.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is
to be used, it must be initialized explicitly.
 338

The Reactor
The X11 Reactor
An application that wants to use the X11 Reactor can obtain a special X11
Reactor using OB::GetX11Reactor(), which it must pass to
OBCORBA::ORB_init():

1-7 Include header files.

11-13 Initialize the X11 application.

15 Use the X11 application context to obtain a X11 Reactor.

17 Initialize the ORB using the Orbacus-specific OBCORBA::ORB_init().

22 Enter the CORBA event loop. This loop will also dispatch X11 events.
Alternatively, the standard X11 event loop may be called, which will also
dispatch CORBA events.

1 // C++
2 #include <X11/Intrinsic.h>
3
4 #include <OB/CORBA.h>
5 #include <OB/Logger.h>
6 #include <OB/Properties.h>
7 #include <OB/X11.h>
8
9 int main(int argc, char* argv[])
10 {
11 XtAppContext appContext;
12 Widget topLevel = XtAppInitialize(&appContext,
13 "MyApplication", 0, 0, &argc, argv, 0, 0, 0);
14
15 OB::Reactor_var reactor = OB::GetX11Reactor(appContext);
16
17 CORBA::ORB_var = OBCORBA::ORB_init(argc, argv,
18 OB::Properties::_nil(), OB::Logger::_nil(), reactor);
19
20 ... // POA initialization not shown
21
22 orb -> run();
23
24 ... // Cleanup not shown
25 }
339

CHAPTER 16 | Concurrency Models
The Windows Reactor
Using a Windows Reactor is very similar to using a X11 Reactor:

2-7 Include header files.

13 Use the Windows application instance to get a Windows Reactor.

15-16 Initialize the ORB using the Orbacus-specific OBCORBA::ORB_init().

20 Enter the CORBA event loop, which now also dispatches Windows events.
The standard Windows event loop may also be called, which will then also
dispatch CORBA events.

1 // C++
2 #include <Windows.h>
3
4 #include <OB/CORBA.h>
5 #include <OB/Logger.h>
6 #include <OB/Properties.h>
7 #include <OB/OBWindows.h>
8
9 int main(int argc, char* argv[])
10 {
11 HINSTANCE hInstance = GetModuleHandle(0);
12
13 OB::Reactor_var reactor =
OB::GetWindowsReactor(hInstance);
14
15 CORBA::ORB_var = OBCORBA::ORB_init(argc, argv,
16 OB::Properties::_nil(), OB::Logger::_nil(), reactor);
17
18 ... // POA initialization not shown
19
20 orb -> run();
21
22 ... // Cleanup not shown
23 }
 340

CHAPTER 17

The Open
Communications
Interface
The Open Communications Interface (OCI) defines common
interfaces for pluggable protocols. TCP/IP is one possible
candidate for an OCI plug-in. Since Orbacus uses GIOP, such
a plug-in then implements the IIOP protocol. Other candidates
are SCCP (Signaling Connection Control Part, part of SS.7) or
SAAL (Signaling ATM Adaptation Layer).

In this chapter This chapter contains the following sections:

Interface Summary page 342

OCI Reference page 345

The IIOP OCI Plug-in page 353

The UDP OCI Plug-in page 358

The Bi-directional OCI Plug-in page 367
341

CHAPTER 17 | The Open Communications Interface
Interface Summary

Buffer An interface for a buffer. A buffer can be viewed as an object holding an
array of octets and a position counter, which determines how many octets
have already been sent or received.

Transport The Transport interface allows the sending and receiving of octet streams in
the form of Buffer objects. There are blocking and non-blocking send/receive
operations available, as well as operations that handle time-outs and
detection of connection loss.

Acceptor and Connector Acceptors and Connectors are Factories [2] for Transport objects. A
Connector is used to connect clients to servers. An Acceptor is used by a
server to accept client connection requests.

Acceptors and Connectors also provide operations to manage
protocol-specific IOR profiles. This includes operations for comparing
profiles, adding profiles to IORs or extracting object keys from profiles.

Acceptor and Connector Factories Acceptor and Connector Factories are used by clients to create Acceptors
and Connectors. Acceptors are created infrequently, usually only when POA
Managers are created. Connectors, however, need to be created by clients
whenever a new connection to a server has to be established.

The only component of the OCI that is configurable by applications is the
Acceptor. When creating a new Acceptor, an Acceptor Factory takes a
sequence of protocol-specific parameters which are used to configure the
Acceptor. Each plug-in implementation should document these
configuration parameters. The configuration parameters for the plug-ins
included with Orbacus are described later in this chapter.

The Registries The ORB provides Acceptor and Connector Factory Registries. These
registries allow the plugging-in of new protocols. Transport, Connector,
Connector Factory, Acceptor Factory and Acceptor must be written by the
 342

Interface Summary
plug-in implementers. The Connector Factory must then be registered with
the ORB’s Connector Factory Registry and the Acceptor Factory must be
registered with the ORB’s Acceptor Factory Registry.

The Info Objects Info objects provide information on Transports, Acceptors and Connectors. A
Transport Info provides information on a Transport, an Acceptor Info on an
Acceptor and a Connector Info on a Connector. To get information for a
concrete protocol, these info objects must be narrow’d to an info object for
this protocol, for example, in the case of an IIOP plug-in, a
OCI::TransportInfo must be narrow’d to OCI::IIOP::TransportInfo.
343

CHAPTER 17 | The Open Communications Interface
Class Diagram
Figure 15 shows the classes and interfaces of the OCI (except for the Buffer
and Info interfaces).

Orbacus provides abstract base classes for the interfaces Connector Factory,
Connector, Transport, Acceptor Factory and Acceptor. The protocol plug-in
must inherit from these classes in order to provide concrete implementations
for a specific protocol. Orbacus also provides concrete classes for the
interfaces Buffer, Connector Factory Registry and Acceptor Factory Registry.
Instances of Connector Factory Registry and Acceptor Factory Registry can
be obtained via the ORB operation resolve_initial_references, using the
identifiers “OCIConFactoryRegistry” and “OCIAccFactoryRegistry”,
respectively. Concrete implementations of Connector Factory must be
registered with the Connector Factory Registry, and concrete
implementations of Acceptor Factory must be registered with the Acceptor
Factory Registry.

Figure 15: OCI Class Diagram

Connector
Factory Connector Transport Acceptor

Protocol-
Specific

Connector
Factory

Protocol-
Specific

Connector

Protocol-
Specific

Transport

Protocol-
Specific
Acceptor

Connector
Factory
Registry

n

ORB OA1 1

creates createscreates

Acceptor
Factory
Registry

Acceptor

Protocol-
Specific
Acceptor

n

Factory

creates

Factory
 344

OCI Reference
OCI Reference
This chapter does not contain a complete reference of the OCI. It only
explains OCI basics and, in the remainder of this chapter, how it is used
from the application programmer’s point of view for the most common
tasks. For more information on how to use the OCI to write your own
protocol plug-ins, and for a complete reference, please refer to Appendix E.

OCI for the Application
Programmer

The following sections only apply to the standard Orbacus IIOP plug-in. For
other plug-ins, please refer to the plug-in’s documentation.

A ‘Converter’ Class for Java page 346

Getting Hostnames and Port Numbers page 347

Determining a Server’s IP Address page 351
345

CHAPTER 17 | The Open Communications Interface
A ‘Converter’ Class for Java
As you will see in the following examples, the OCI info objects return port
numbers as IDL unsigned short values and IP addresses as an array of 4
IDL unsigned octet values. This works fine for C++, but in Java this
causes a problem, because there are no unsigned types in Java. The Java
mapping simply maps unsigned types to signed types. Consider for example
the IP address 126.127.128.129. In Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java
byte type, are -128 and -127.

To avoid this problem, we will use a helper class which converts port
numbers and IP addresses to Java int types. This helper class looks as
follows:

4-10 Converts short port numbers to int.

12-22 Converts byte[] IP addresses to int[].

The converter class is used throughout the examples in the sections below.

1 // Java
2 final class Converter
3 {
4 static int port(short s)
5 {
6 if(s < 0)
7 return 0xffff + (int)s + 1;
8 else
9 return (int)s;
10 }
11
12 static int[] addr(byte[] bArray)
13 {
14 int[] iArray = new int[4];
15 for(int i = 0 ; i < 4 ; i++)
16 if(bArray[i] < 0)
17 iArray[i] = 0xff + (int)bArray[i] + 1;
18 else
19 iArray[i] = (int)bArray[i];
20
21 return iArray;
22 }
23 };
 346

OCI Reference
Getting Hostnames and Port Numbers
The following code fragments show how it is possible to find out on what
hostnames and port numbers a server is listening. First the C++ version:

2 The list of registered acceptors is requested from the POA Manager.

4 The for loop iterates over all acceptors.

6-8 The info object for the acceptor is requested and narrowed to an IIOP
acceptor info object.

10 The if block is only entered in case the info object really belongs to an IIOP
plug-in.

12-16 The hostname and port number are requested from the IIOP acceptor info
object and printed on standard output.

1 // C++
2 OCI::AcceptorSeq_var acceptors = poaManager ->
get_acceptors();
3
4 for(CORBA::ULong i = 0 ; i < acceptors -> length() ; i++)
5 {
6 OCI::AcceptorInfo_var info = acceptors[i] -> get_info();
7 OCI::IIOP::AcceptorInfo_var iiopInfo =
8 OCI::IIOP::AcceptorInfo::_narrow(info);
9
10 if(!CORBA::is_nil(iiopInfo))
11 {
12 CORBA::StringSeq_var hosts = iiopInfo -> hosts();
13 CORBA::UShort port = iiopInfo -> port();
14
15 cout << "host: " << host[0] << endl;
16 cout << "port: " << port << endl;
17 }
18 }
347

CHAPTER 17 | The Open Communications Interface
The Java version is basically equivalent to the C++ code and looks as
follows:

2-12 This is equivalent to the C++ version.

13 The converter class is used to get a port number in int format.

15-16 Like in the C++ version, the hostname and port number are printed on
standard output.

1 // Java
2 com.ooc.OCI.Acceptor[] acceptors =
poaManager.get_acceptors();
3
4 for(int i = 0 ; i < acceptors.length ; i++)
5 {
6 com.ooc.OCI.AcceptorInfo info = acceptors[i].get_info();
7 com.ooc.OCI.IIOP.AcceptorInfo iiopInfo =
8 com.ooc.OCI.IIOP.AcceptorInfoHelper.narrow(info);
9
10 if(iiopInfo != null)
11 {
12 String[] hosts = iiopInfo.hosts();
13 short port = Converter.port(iiopInfo.port());
14
15 System.out.println("host: " + host[0]);
16 System.out.println("port: " + port);
17 }
18 }
 348

OCI Reference
Determining a Client’s IP Address
To determine the IP address of a client within a server method, the following
code can be used in a servant class method implementation:

2-4 The OCI current object is requested and narrow’d to the correct
OCI::Current type.

6-8 The info object for the transport is requested and narrow’d to an IIOP
transport info object.

10 The remainder of the example code is only executed if this was really an
IIOP transport info object.

12-18 The address and the port of the client calling this operation are obtained and
printed on standard output.

1 // C++
2 CORBA::Object_var baseCurrent =
3 orb -> resolve_initial_references("OCICurrent");
4 OCI::Current_var current =
OCI::Current::_narrow(baseCurrent);
5
6 OCI::TransportInfo_var info = current ->
get_oci_transport_info();
7 OCI::IIOP::TransportInfo_var iiopInfo =
8 OCI::IIOP::TransportInfo::_narrow(info);
9
10 if(!CORBA::is_nil(iiopInfo))
11 {
12 OCI::IIOP::InetAddr remoteAddr = iiopInfo -> remote_addr();
13 CORBA::UShort remotePort = iiopInfo -> remote_port();
14
15 cout << "Call from: "
16 << remoteAddr[0] << '.' << remoteAddr[1] << '.'
17 << remoteAddr[2] << '.' << remoteAddr[3]
18 << ":" << remotePort << endl;
19 }
349

CHAPTER 17 | The Open Communications Interface
The Java version looks as follows:

2-11 This code is equivalent to the C++ version.

13-14 Again, the port number must be converted from short to int.

16-20 This is also equivalent to the C++ version.

1 // Java
2 org.omg.CORBA.Object baseCurrent =
3 orb.resolve_initial_references("OCICurrent");
4 com.ooc.OCI.Current current =
5 com.ooc.OCI.CurrentHelper.narrow(baseCurrent);
6
7 com.ooc.OCI.TransportInfo info =
current.get_oci_transport_info();
8 com.ooc.OCI.IIOP.TransportInfo iiopInfo =
9 com.ooc.OCI.IIOP.TransportInfoHelper.narrow(baseInfo);
10
11 if(iiopInfo != null)
12 {
13 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
14 int remotePort = Converter.port(iiopInfo.remote_port());
15
16 System.out.println("Call from: " +
17 remoteAddr[0] + "." +
18 remoteAddr[1] + "." +
19 remoteAddr[2] + "." +
20 remoteAddr[3] + ":" + remotePort);
21 }
 350

OCI Reference
Determining a Server’s IP Address
To determine the server’s IP address and port that an object will attempt to
connect to, the following code can be used:

4-6 Get the OCI connector info and narrow to an IIOP connector info

8 The if block is only executed if this really was an IIOP connector info.

10-16 The address and port are obtained and displayed on standard output.

1 // C++
2 CORBA::Object_var obj = ... // Get an object reference somehow
3
4 OCI::ConnectorInfo_var info = obj -> get_oci_connector_info();
5 OCI::IIOP::ConnectorInfo_var iiopInfo =
6 OCI::IIOP::ConnectorInfo::_narrow(info);
7
8 if(!CORBA::is_nil(iiopInfo))
9 {
10 OCI::IIOP::InetAddr_var remoteAddr = iiopInfo ->
remoteAddr();
11 CORBA::UShort remotePort = iiopInfo -> remote_port();
12
13 cout << "Will connect to: "
14 << remoteAddr[0] << '.' << remoteAddr[2] << '.'
15 << remoteAddr[2] << '.' << remoteAddr[3]
16 << ":" << remotePort << endl;
17 }
351

CHAPTER 17 | The Open Communications Interface
The Java version looks as follows:

4-7 We need to retrieve the Orbacus-specific Delegate object so that we can get
the connector info.

9-12 Get the OCI connector info and narrow to an IIOP connector info.

14 The if block is only entered if this really was an IIOP connector info.

16-23 The address and port are obtained and displayed on standard output.

1 // Java
2 org.omg.CORBA.Object obj = ... // Get an object reference
somehow
3
4 org.omg.CORBA.portable.ObjectImpl objImpl =
5 (org.omg.CORBA.portable.ObjectImpl)obj;
6 com.ooc.CORBA.Delegate objDelegate =
7 (com.ooc.CORBA.Delegate)objImpl._get_delegate();
8
9 com.ooc.OCI.ConnectorInfo info =
10 objDelegate.get_oci_connector_info();
11 com.ooc.OCI.IIOP.ConnectorInfo iiopInfo =
12 com.ooc.OCI.IIOP.ConnectorInfoHelper.narrow(info);
13
14 if(iiopInfo != null)
15 {
16 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
17 int remotePort = Converter.port(iiopInfo.remote_port());
18
19 System.out.println("Will connect to: " +
20 remoteAddr[0] + "." +
21 remoteAddr[1] + "." +
22 remoteAddr[2] + "." +
23 remoteAddr[3] + ":" + remotePort);
24 }
 352

The IIOP OCI Plug-in
The IIOP OCI Plug-in
The IIOP plug-in implements the Internet Inter-ORB Protocol as described in
[4]. By default, the ORB automatically installs the client and server (i.e.,
Connector Factory and Acceptor Factory) components of the IIOP plug-in,
and IIOP is the default protocol used by the ORB.

For configuration purposes, the identifier of the IIOP plug-in is iiop.

Client Installation The client-side IIOP plug-in is installed as shown below:

ooc.oci.client=iiop [--no-keepalive]

The following options are supported:

Server Installation The server-side IIOP plug-in is installed as shown below:

ooc.oci.server=iiop

In this section This sections covers the following topics:

--no-keepalive Disable the use of TCP keepalives.

Endpoint Configuration page 354

Command-line Options page 356

Static Linking page 357
353

CHAPTER 17 | The Open Communications Interface
Endpoint Configuration
The configuration options for an IIOP endpoint are shown below:

iiop [--backlog N] [--bind ADDR] [--host ADDR[,ADDR,...]]
[--multi-profile] [--no-keepalive] [--numeric] [--port N]

--backlog N Specifies the maximum length of the listen backlog queue.
Note that the operating system may have a smaller limit
which will override this value. If not specified, a default
value of 50 is used in Java, and 5 in C++.

--bind ADDR Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not
specified, the socket will be bound to all available
interfaces. This option is useful in situations where a host
has several network interfaces, but the server should only
listen for connections on a particular interface.

--host ADDR[,ADDR,...] Specifies a list of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Using IIOP 1.0 or 1.1, multiple
addresses are represented as multiple tagged profiles. Using
IIOP 1.2, multiple addresses can be represented as either
multiple tagged profiles, or as a single tagged profile with a
tagged component for each additional address. The
--multi-profile option determines how multiple
addresses are represented in IIOP 1.2. If --host is not
specified, the canonical hostname is used.

--multi-profile If set, multiple addresses in the --host option are
represented as multiple tagged profiles in an IOR. By
default, multiple addresses are represented as a single
tagged profile (using the first address in the --host list as
the primary address), with all additional addresses
represented as alternate addresses in tagged components. If
IIOP 1.0 or 1.1 is in use, multiple addresses are always
represented as multiple tagged profiles.

--no-keepalive Disable the use of TCP keepalives.
 354

The IIOP OCI Plug-in
--numeric If set, and if --host is not specified, then the canonical
dotted decimal address is advertised in IORs. The default
behavior is to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If no
port is specified, an unused one will be selected
automatically by the operating system. Use this option if
you plan to publish an IOR (e.g., in a file, a naming service,
etc.) and you want that IOR to remain valid across
executions of your server. Without this option, your server is
likely to use a different port number each time the server is
executed. See Chapter 5 for more information.
355

CHAPTER 17 | The Open Communications Interface
Command-line Options
The IIOP plug-in supports the following command-line options:

See “Command-line Options and Endpoints” on page 79 for more
information on the behavior of command-line options.

-IIOPbacklog N Equivalent to the --backlog endpoint option.

-IIOPbind ADDR Equivalent to the --bind endpoint option.

-IIOPhost ADDR[,ADDR,...] Equivalent to the --host endpoint option.

-IIOPnumeric Equivalent to the --numeric endpoint option.

-IIOPport N Equivalent to the --port endpoint option.
 356

The IIOP OCI Plug-in
Static Linking
There are no special requirements for linking the IIOP plug-in statically in
C++, since the plug-in is part of the Orbacus core library.

URL Support The IIOP plug-in supports the standard iiop format for corbaloc URLs, as
described in “corbaloc: URLs” on page 133.
357

CHAPTER 17 | The Open Communications Interface
The UDP OCI Plug-in
The UDP plug-in provides unreliable unicast and multicast functionality,
suitable for applications which can tolerate the potential for lost messages.
Only oneway operations are supported.

For configuration purposes, the identifier of the UDP plug-in is udp.

In this section This sections covers the following topics:

Client Installation page 359

Server Installation page 360

Static Linking page 364

URL Support page 365

Narrowing UDP Object References page 366
 358

The UDP OCI Plug-in
Client Installation
The client-side UDP plug-in is installed as shown below:

ooc.oci.client=udp [--buffer-size N] [--packet-delay MSEC]
[--packet-size N] [--no-loopback] [--ttl N] [--trace N]

The following options are supported:

--buffer-size N Sets the size of the socket’s send buffer. Note that this is
only a hint to the operating system. To determine the
actual size, use the --trace option. The default value is
operating-system dependent.

--packet-delay MSEC Specifies the delay in milliseconds between packets. In
some cases, sending packets too quickly can cause more
packets to be dropped. The default value is 0.

--packet-size N Sets the size of a packet in bytes. If necessary, the plug-in
splits a single request into multiple packets of the
specified size and reassembles them on the server. Note
that there are hard operating system limits on the size of a
datagram. The default size is 1472, which is the largest
portable size.

--no-loopback Specifies that loopback mode of the socket shall be
disabled for multicast communication. This prevents
sending multicast packets back to the local socket. For
Java this functionality is only available from JDK 1.4.0
on.

--ttl N Specifies the time-to-live value (0..255) of multicast
packets sent. System defaults apply if not specified.

--trace N Sets the level of diagnostic output. The default value is 0.

Note: The --no-loopback option for multicast communication is to be
specified on the client side for Unix systems and on the server side for
Windows systems.
359

CHAPTER 17 | The Open Communications Interface
Server Installation
The server-side UDP plug-in is installed as shown below:

ooc.oci.server=udp [--trace N]

The following options are supported:

--trace N Sets the level of diagnostic output. The
default value is 0.
 360

The UDP OCI Plug-in
Endpoint Configuration
The configuration options for a UDP endpoint are shown below:

udp [--bind ADDR] [--buffer-size N] [--host ADDR[,ADDR,...]]
[--message-timeout SEC] [--multicast] [--no-loopback]
[--ttl N] [--numeric] [--port N] [--transport-timeout SEC]

--bind ADDR Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not
specified, the socket will be bound to all available
interfaces. This option is useful in situations where a host
has several network interfaces, but the server should only
listen for connections on a particular interface.

--buffer-size N Sets the size of the socket’s receive buffer. Note that this
is only a hint to the operating system. To determine the
actual size, use the --trace option when installing the
plug-in. The default value is operating-system dependent.

--host ADDR[,ADDR,...] Specifies a list of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Multiple addresses are represented
as multiple tagged profiles. If --host is not specified, the
canonical hostname is used. This option must be specified
if multicast is used.

--message-timeout SEC Specifies the expiration time in seconds for incomplete
messages. Because the plug-in may fragment a request
into multiple packets, it is possible for some packets to be
lost. If no more packets have arrived for an incomplete
message after the specified timeout, the message is
discarded. The default value is 15 seconds.

--multicast Specifies that multicast should be used. If this option is
set, the --host and --port options must also be
specified, and the host must be an IP address in the
multicast range (224.0.0.0 through 239.255.255.255).
By default, multicast is not used.
361

CHAPTER 17 | The Open Communications Interface
Command-line Options The UDP plug-in supports the following command-line options:

--no-loopback Specifies that loopback mode of the socket shall be
disabled in multicast mode. This prevents sending
multicast packets back to the local socket. For Java this
functionality is only available from JDK 1.4.0 on.

--ttl N Specifies the time-to-live value (0..255) of multicast
packets sent. System defaults apply if not specified.

--numeric If set, and if --host is not specified, then the canonical
dotted decimal address is advertised in IORs. The default
behavior is to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If
no port is specified, an unused one will be selected
automatically by the operating system. Use this option if
you plan to publish an IOR (e.g., in a file, a naming
service, etc.) and you want that IOR to remain valid
across executions of your server. Without this option, your
server is likely to use a different port number each time
the server is executed. This option must be specified if
multicast is used.

--transport-timeout N Specifies the time in seconds after which inactive
“connections” are reaped. The default value is 60
seconds.

Note: When using multicast, all servers which belong to the same
“multicast group” must specify the same host address and port. The
--no-loopback option for multicast communication is to be specified on
the client side for Unix systems and on the server side for Windows
systems.

-UDPbind ADDR Equivalent to the --bind endpoint option.

-UDPhost ADDR[,ADDR,...] Equivalent to the --host endpoint option.
 362

The UDP OCI Plug-in
See “Command-line Options and Endpoints” on page 79 for more
information on the behavior of command-line options.

-UDPmulticast Equivalent to the --multicast endpoint option.

-UDPnumeric Equivalent to the --numeric endpoint option.

-UDPport N Equivalent to the --port endpoint option.
363

CHAPTER 17 | The Open Communications Interface
Static Linking
When statically a C++ application, an explicit reference must be made to
the UDP plug-in in order to include the plug-in’s modules. Shown below is
the technique used by the sample programs in the udp/demo subdirectory.
Note that the code below is enclosed in guard macros that are only
activated when statically linking. These macros are appropriate for both
Unix and Windows. First, extra include files are necessary:

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
#include <OB/OCI_init.h>
#include <OB/OCI_UDP_init.h>
#endif

Next, the plug-in must be registered prior to calling ORB_init():

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
//
// When linking statically, we need to explicitly register
// the plug-in prior to ORB initialization
//
OCI::register_plugin("udp", OCI_init_udp);

#endif
 364

The UDP OCI Plug-in
URL Support
The UDP plug-in supports corbaloc URLs with the following protocol
syntax:

corbaloc:udp:host:port/object-key

The components of the URL are as follows:

• udp - This selects the UDP plug-in.

• host - The hostname or IP address of the server.

• port - The port on which the server is listening.

• object-key - A stringified object key.
365

CHAPTER 17 | The Open Communications Interface
Narrowing UDP Object References
When an application calls narrow(), it may result in the ORB making a
twoway call to the _is_a() operation to determine whether narrow() should
succeed. However, twoway operations cannot be invoked on UDP object
references, therefore the application must take extra precautions.

It is only safe to use narrow() when

8. the object reference has a non-empty repository ID1, and

9. the repository ID matches the type being narrowed.

In all other cases, the ORB will attempt to invoke _is_a().

Therefore, if an application cannot be sure that narrow() will succeed
without invoking_is_a(), it should use the standard operation
unchecked_narrow() instead. This operation assumes that the application is
operating correctly and allows the narrow to succeed without using _is_a().

1. Object references created from corbaloc URLs always have empty repository
IDs.
 366

The Bi-directional OCI Plug-in
The Bi-directional OCI Plug-in

Note This Bidir implementation is deprecated with the addition of the CORBA 3
compliant version of BiDir GIOP. New users requiring BiDir functionality
should use the new BiDir GIOP interface as described in Chapter 15.

Overview The Orbacus Bi-directional plug-in offers a solution for distributed systems
where security restrictions interfere with a client's ability to receive
callbacks.

This capability is especially useful in two common situations:

• Firewalls prevent the server from establishing a separate connection
back to the client

• Browser restrictions prevent an applet from accepting connections

In this section This sections covers the following topics:

Note: This plug-in does not implement the Bi-directional IIOP standard
defined by CORBA 2.3. This plug-in uses a proprietary protocol that is not
interoperable with other ORBs.

How Does it Work? page 368

Peers page 369

Client Installation page 370

Server Installation page 371

Endpoint Configuration page 372

Command-line Options page 373

Configuration Properties page 374

Static Linking page 375

URL Support page 376
367

CHAPTER 17 | The Open Communications Interface
How Does it Work?
The Bi-directional plug-in uses a layered design that theoretically enables
any connection-oriented OCI plug-in to support bi-directional functionality.
Initially however, only bi-directional IIOP is supported.

In Figure 16, a server is shown that is capable of receiving both
bi-directional IIOP connections and regular IIOP connections.

Any callback requests from the Server to Client A will travel down the
existing connection already established by the client. On the other hand, any
callback requests from the Server to Client B require a new IIOP connection
to be established from the server to the client.

Figure 16: Connection Requirements

Server

OCI
Bi-dir

OCI
IIOP

OCI
IIOP

OCI
IIOP

OCI
Bi-dir

Client A

OCI
IIOP

Client B

Requests &
Callbacks

Requests Callbacks
 368

The Bi-directional OCI Plug-in
Peers
The Bi-directional plug-in requires each peer in a bi-directional connection
to have a unique identifier, called the “peer ID”. Currently, this identifier is
just a simple ISO-LATIN1 string. In IIOP terms, a unique endpoint is derived
from the hostname/port combination. However, since the Bi-directional OCI
plug-in has no knowledge of the underlying protocol, a separate
identification scheme is currently required, and must be provided by the
application. It is therefore the application's responsibility to ensure that each
server and client has a unique peer ID.

In IIOP, object references can be made “persistent” (i.e., valid across
process restarts) by ensuring that the process is restarted on the same host
and port, and that the object keys in the object references will continue to
be valid. The same is true of peer IDs. If you want a bi-directional IIOP
object reference to remain valid across process restarts, you must use the
same peer ID, host, port and object key. Conversely, if an object reference is
transient, then the peer ID can vary along with the host, port and object key.
369

CHAPTER 17 | The Open Communications Interface
Client Installation
The client-side bi-directional plug-in is installed as shown below:

ooc.oci.client=ID [options], bidir --protocol ID

The following options are supported:

Because the bi-directional plug-in is layered on another plug-in, the
underlying plug-in must be installed first. For example, to install
bi-directional IIOP, the IIOP plug-in is installed first, and then the
bi-directional plug-in is installed:

ooc.oci.client=iiop, bidir --protocol iiop

Note that a bi-directional application generally needs to install both the
client- and server-side plug-ins.

--protocol ID Specifies the identifier of the underlying plug-in.
This parameter is required.
 370

The Bi-directional OCI Plug-in
Server Installation
The server-side bi-directional plug-in is installed as shown below:

ooc.oci.server=ID [options], bidir --protocol ID

The following options are supported:

Because the bi-directional plug-in is layered on another plug-in, the
underlying plug-in must be installed first. For example, to install
bi-directional IIOP, the IIOP plug-in is installed first, and then the
bi-directional plug-in is installed:

ooc.oci.server=iiop, bidir --protocol iiop

Note that a bi-directional application generally needs to install both the
client- and server-side plug-ins.

--protocol ID Specifies the identifier of the underlying plug-in.
This parameter is required.
371

CHAPTER 17 | The Open Communications Interface
Endpoint Configuration
There are two distinct types of bi-directional endpoints: one which creates a
“real” endpoint using the underlying plug-in, and one which only listens for
callbacks on existing, outgoing bi-directional connections. The latter type
will be referred to as a “callback” endpoint.

A server will typically create the first type of endpoint; a security-restricted
client will only create the second type, since listening on a real port is often
forbidden (or pointless, if a firewall prevents incoming connections).

The implication of creating a callback endpoint is that a server wishing to
call back to a client will only be able to do so if there is an existing
bi-directional connection from the client to the server. If not, the server will
receive a TRANSIENT exception.

The configuration options for a bi-directional endpoint are shown below.
Note that the plug-in identifier for endpoint configuration purposes is formed
by combining “bidir_” with the identifier of the underlying plug-in (e.g.,
bidir_iiop).

bidir_ID [--callback] [options]

The only option supported by the bi-directional plug-in is --callback, which
creates a callback endpoint. If this option is specified, it must be the only
option.

If --callback is not the first and only option, all additional options are
passed to the underlying plug-in for processing. For example, a server would
typically use a configuration such as:

ooc.orb.oa.endpoint=bidir_iiop --port 7000

This creates a bi-directional IIOP endpoint on the static port 7000.

On the other hand, a bi-directional client would use the following
configuration:

ooc.orb.oa.endpoint=bidir_iiop --callback

This creates a callback endpoint which can only receive requests when an
existing, outgoing bi-directional IIOP connection has been established from
this client to the server that wishes to make a callback.
 372

The Bi-directional OCI Plug-in
Command-line Options
No command-line options are supported.
373

CHAPTER 17 | The Open Communications Interface
Configuration Properties
The bi-directional plug-in supports a single configuration property:

ooc.bidir.peer Specifies the peer ID. If not specified, a
unique peer ID is used.
 374

The Bi-directional OCI Plug-in
Static Linking
When statically a C++ application, an explicit reference must be made to
the bi-directional plug-in (as well as to the underlying plug-in) in order to
include the plug-in’s modules. Shown below is the technique used by the
sample programs in the bidir/demo subdirectory. Note that the code below
is enclosed in guard macros that are only activated when statically linking.
These macros are appropriate for both Unix and Windows. First, extra
include files are necessary:

Next, the plug-in must be registered prior to calling ORB_init():

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
#include <OB/OCI_init.h>
#include <OB/OCI_BiDir_init.h>
#endif

#if !defined(HAVE_SHARED) && !defined(OB_DLL)
//
// When linking statically, we need to explicitly register
// the plug-in prior to ORB initialization
//
OCI::register_plugin("bidir", OCI_init_bidir);

#endif
375

CHAPTER 17 | The Open Communications Interface
URL Support
The bi-directional plug-in supports corbaloc URLs with the following
protocol syntax:

corbaloc:bidir_ID:peer/object-key
corbaloc:bidir_ID:peer:[options]/object-key

The first form indicates a callback endpoint, whereas the second form
indicates an endpoint using an underlying plug-in.

The components of the URL are as follows:

• bidir_ID - This selects the bi-directional plug-in using the underlying
plug-in identified by ID.

• peer - The peer ID.

• options - Options specific to the underlying plug-in.

• object-key - A stringified object key.

For example:

corbaloc:bidir_iiop:Client/Foo
corbaloc:bidir_iiop:Server:thehost:9999/Foo

The first example is a URL for a bi-directional IIOP callback endpoint. The
second example is a URL for a bi-directional IIOP endpoint on host thehost
and port 9999.
 376

CHAPTER 18

Exceptions and
Error Messages
377

CHAPTER 18 | Exceptions and Error Messages
CORBA System Exceptions
The CORBA specification defines the standard system exceptions shown in
the following table.

UNKNOWN Unknown exception type

BAD_PARAM An invalid parameter was passed

NO_MEMORY Failure to allocate dynamic memory

IMP_LIMIT Implementation limit was violated

COMM_FAILURE Communication failure

INV_OBJREF Invalid object reference

NO_PERMISSION The attempted operation was not permitted

INTERNAL Internal error in ORB

MARSHAL Error marshalling a parameter or result

INITIALIZE Failure when initializing ORB

NO_IMPLEMENT Operation implementation unavailable

BAD_TYPECODE Bad typecode

BAD_OPERATION Invalid operation

NO_RESOURCES Insufficient resources for a request

NO_RESPONSE Response to a request is not yet available

PERSIST_STORE Persistent storage failure

BAD_INV_ORDER Routine invocation out of order

TRANSIENT Transient failure, request can be reissued

FREE_MEM Cannot free memory

INV_IDENT Invalid identifier syntax

INV_FLAG Invalid flag was specified
 378

CORBA System Exceptions
In the following subsections the minor exception codes are presented. Minor
codes that are Orbacus-specific are presented as MinorCodeName*, that is,
are tagged with the superscript ‘*’.

In this section This section describes the following minor exception codes:

INTF_REPOS Error accessing interface repository

BAD_CONTEXT Error processing context object

OBJ_ADAPTER Failure detected by object adapter

DATA_CONVERSION Error in data conversion

OBJECT_NOT_EXIST Non-existent object, references should be
discarded

TRANSACTION_REQUIRED Active transaction context required

TRANSACTION_ROLLEDBACK Transaction has rolled back or is marked to be
rolled back

INVALID_TRANSACTION Invalid transaction context

INV_POLICY Invalid Policy

CODESET_INCOMPATIBLE Incompatible client and server native code sets

REBIND Thrown on a OBJECT_FORWARD or
LOCATION_FORWARD status, depending on
the RebindPolicy

TIMEOUT Time-to-live period was exceeded

TRANSACTION_UNAVAILABLE Transaction service context could not be
processed

TRANSACTION_MODE Mismatch between TransactionPolicy and
current transaction mode

BAD_QOS Object cannot support the required QOS

INITIALIZE Minor Exception Code page 381

UNKNOWN Minor Exception Code page 382
379

CHAPTER 18 | Exceptions and Error Messages
BAD_PARAM Minor Exception Code page 383

NO_MEMORY Minor Exception Code page 385

IMP_LIMIT Minor Exception Code page 386

COMM_FAILURE Minor Exception Code page 387

MARSHAL Minor Exception Code page 388

NO_IMPLEMENT Minor Exception Code page 390

NO_RESOURCES Minor Exception Code page 391

BAD_INV_ORDER Minor Exception Code page 392

TRANSIENT Minor Exception Code page 393

INTF_REPOS Minor Exception Code page 394

OBJECT_NOT_EXIST Minor Exception Code page 395

INV_POLICY Minor Exception Code page 396
 380

CORBA System Exceptions
INITIALIZE Minor Exception Code

MinorORBDestroyed ORB already destroyed
381

CHAPTER 18 | Exceptions and Error Messages
UNKNOWN Minor Exception Code

MinorUnknownUserException Unknown user exception
 382

CORBA System Exceptions
BAD_PARAM Minor Exception Code

MinorValueFactoryError Failure to register, unregister or
lookup value factory

MinorRepositoryIdExists Repository ID already exists in
Interface Repository

MinorNameExists Name already used in Interface
Repository

MinorInvalidContainer Target is not a valid container

MinorNameClashInInheritedContext Name clash in inherited context

MinorBadAbstractInterfaceType Incorrect type for abstract interface

MinorBadSchemeName Bad scheme name

MinorBadAddress Bad address

MinorBadSchemeSpecificPart Bad scheme specific part

MinorOther Other

MinorInvalidAbstractInterfaceInheritance Invalid abstract interface
inheritance

MinorInvalidValueInheritance Invalid valuetype inheritance

MinorInvalidServiceContextId Invalid service context ID

MinorObjectIsNull Object parameter to
object_to_ior() is null

MinorInvalidComponentId Invalid component ID

MinorInvalidProfileId Invalid profile ID

MinorDuplicatePolicyType Duplicate policy types

MinorDuplicateDeclarator* Duplicate declarator

MinorInvalidValueModifier* Invalid valuetype modifier

MinorDuplicateValueInit* Duplicate valuetype initializer

MinorAbstractValueInit* Abstract valuetype cannot have
initializer
383

CHAPTER 18 | Exceptions and Error Messages
MinorDuplicateBaseType* Base type appears more than once

MinorSingleThreadedOnly* ORB does not support multiple
threads

MinorNameRedefinitionInImmediateScope* Invalid name redefinition in an
immediate scope

MinorInvalidValueBoxType* Invalid type for valuebox

MinorInvalidLocalInterfaceInheritance* Invalid local interface inheritance

MinorConstantTypeMismatch* Constant type doesn't match
definition
 384

CORBA System Exceptions
NO_MEMORY Minor Exception Code

MinorAllocationFailure* Memory allocation failure
385

CHAPTER 18 | Exceptions and Error Messages
IMP_LIMIT Minor Exception Code

MinorNoUsableProfile No usable profile in IOR

MinorMessageSizeLimit* Maximum message size exceeded

MinorThreadLimit* Can’t create new thread
 386

CORBA System Exceptions
COMM_FAILURE Minor Exception Code

MinorRecv* recv() failed

MinorSend* send() failed

MinorRecvZero* recv() returned zero

MinorSendZero* send() returned zero

MinorSocket* socket() failed

MinorSetsockopt* setsockopt() failed

MinorGetsockopt* getsockopt() failed

MinorBind* bind() failed

MinorListen* listen() failed

MinorConnect* connect() failed

MinorAccept* accept() failed

MinorSelect* select() failed

MinorGethostname* gethostname() failed

MinorGethostbyname* gethostbyname() failed

MinorWSAStartup* WSAStartup() failed

MinorWSACleanup* WSACleanup() failed

MinorNoGIOP* Not a GIOP message

MinorUnknownMessage* Unknown GIOP message

MinorWrongMessage* Wrong GIOP message

MinorMessageError* Got a message error message

MinorFragment* Invalid fragment message

MinorUnknownReqId* Unknown request ID

MinorVersion* Incompatible GIOP version

MinorPipe* Creation of pipe failed

MinorSetSoTimeout* setSoTimeout() failed
387

CHAPTER 18 | Exceptions and Error Messages
MARSHAL Minor Exception Code

MinorNoValueFactory Unable to locate value factory

MinorDSIResultBeforeContext DSI result cannot be set before context

MinorDSIInvalidParameterList DSI argument list does not describe all
parameters

MinorLocalObject Attempt to marshal local object

MinorWcharSentByClient wchar data sent by client on GIOP 1.0
connection

MinorWcharSentByServer wchar data returned by server on GIOP 1.0
connection

MinorReadOverflow* Input stream buffer overflow

MinorReadBooleanOverflow* Overflow while reading boolean

MinorReadCharOverflow* Overflow while reading char

MinorReadWCharOverflow* Overflow while reading wchar

MinorReadOctetOverflow* Overflow while reading octet

MinorReadShortOverflow* Overflow while reading short

MinorReadUShortOverflow* Overflow while reading ushort

MinorReadLongOverflow* Overflow while reading long

MinorReadULongOverflow* Overflow while reading ulong

MinorReadLongLongOverflow* Overflow while reading longlong

MinorReadULongLongOverflow* Overflow while reading ulonglong

MinorReadFloatOverflow* Overflow while reading float

MinorReadDoubleOverflow* Overflow while reading double

MinorReadLongDoubleOverflow* Overflow while reading longdouble

MinorReadStringOverflow* Overflow while reading string

MinorReadStringZeroLength* Encountered zero-length string

MinorReadStringNullChar* Encountered null char in string
 388

CORBA System Exceptions
MinorReadStringNoTerminator* Terminating null char missing in string

MinorReadWStringOverflow* Overflow while reading wstring

MinorReadWStringZeroLength* Encountered zero-length wstring

MinorReadWStringNullWChar* Encountered null char in wstring

MinorReadWStringNoTerminator* Terminating null char missing in wstring

MinorReadFixedOverflow* Overflow while reading fixed

MinorReadFixedInvalid* Invalid encoding for fixed value

MinorReadBooleanArrayOverflow* Overflow while reading boolean array

MinorReadCharArrayOverflow* Overflow while reading char array

MinorReadWCharArrayOverflow* Overflow while reading wchar array

MinorReadOctetArrayOverflow* Overflow while reading octet array

MinorReadShortArrayOverflow* Overflow while reading short array

MinorReadUShortArrayOverflow* Overflow while reading ushort array

MinorReadLongArrayOverflow* Overflow while reading long array

MinorReadULongArrayOverflow* Overflow while reading ulong array

MinorReadLongLongArrayOverflow* Overflow while reading longlong array

MinorReadULongLongArrayOverflow* Overflow while reading ulonglong array

MinorReadFloatArrayOverflow* Overflow while reading float array

MinorReadDoubleArrayOverflow* Overflow while reading double array

MinorReadLongDoubleArrayOverflow* Overflow while reading longdouble array

MinorReadInvTypeCodeIndirection* Invalid type code indirection

MinorWriteObjectLocal* Attempt to marshal a locality-constrained
object

MinorLongDoubleNotSupported* Long double is not supported
389

CHAPTER 18 | Exceptions and Error Messages
NO_IMPLEMENT Minor Exception Code

MinorMissingLocalValueImplementation Missing local value
implementation

MinorIncompatibleValueImplementationVersion Incompatible value
implementation version

MinorNotSupportedByLocalObject Operation not supported by local
object

MinorDIINotSupportedByLocalObject DII operation not supported by
local object
 390

CORBA System Exceptions
NO_RESOURCES Minor Exception Code

MinorInvalidBinding Portable Interceptor operation not supported in
binding
391

CHAPTER 18 | Exceptions and Error Messages
BAD_INV_ORDER Minor Exception Code

MinorDependencyPreventsDestruction Dependency exists in Interface Repository
prevents destruction of object

MinorIndestructibleObject Attempt to destroy indestructible object in
Interface Repository

MinorDestroyWouldBlock Operation would deadlock

MinorShutdownCalled ORB has shutdown

MinorDuplicateSend Request has already been sent

MinorServantManagerAlreadySet Servant manager already set

MinorInvalidUseOfDSIArguments Invalid use of DSI arguments

MinorInvalidUseOfDSIContext Invalid use of DSI context

MinorRequestAlreadySent DII request has already been sent

MinorRequestNotSent DII request has not been sent yet

MinorResponseAlreadyReceived DII response has already been received

MinorSynchronousRequest Operation not supported on synchronous DII
request

MinorInvalidPICall Invalid Portable Interceptor call

MinorServiceContextExists A service context already exists with the
given ID

MinorPolicyFactoryExists A factory already exists for the given
PolicyType

MinorNoCreatePOA Cannot create POA while undergoing
destruction

MinorBadConcModel* Invalid concurrency model

MinorORBRunning* ORB::run() already called
 392

CORBA System Exceptions
TRANSIENT Minor Exception Code

MinorRequestDiscarded Request has been discarded

MinorNoUsableProfileInIOR No usable profile in IOR

MinorRequestCancelled Request has been cancelled

MinorPOADestroyed POA has been destroyed

MinorConnectFailed* Request has been cancelled

MinorCloseConnection* Got a ‘close connection’ message

MinorActiveConnectionManagement* Active connection management closed
connection

MinorForcedShutdown* Forced connection shutdown because of
timeout

MinorLocationForwardHopCountExceeded* Forced connection shutdown because of
timeout
393

CHAPTER 18 | Exceptions and Error Messages
INTF_REPOS Minor Exception Code

MinorNoIntfRepos* Interface Repository is not available

MinorLookupAmbiguous* Search name for lookup() is ambiguous

MinorIllegalRecursion* Illegal Recursion

MinorNoEntry* IFR is not populated with a required definition.
 394

CORBA System Exceptions
OBJECT_NOT_EXIST Minor Exception Code

MinorUnregisteredValue Attempt to pass unactivated (unregistered) value
as an object reference

MinorCannotDispatch Unable to dispatch - servant or POA not found
395

CHAPTER 18 | Exceptions and Error Messages
INV_POLICY Minor Exception Code

MinorCannotReconcilePolicy Cannot reconcile IOR policy with effective policy
override

MinorInvalidPolicyType Invalid PolicyType

MinorNoPolicyFactory No PolicyFactory for the PolicyType has been
registered
 396

Non-Compliant Application Asserts
Non-Compliant Application Asserts
If the Orbacus library was compiled without the preprocessor definition
-DNDEBUG defined, Orbacus tries to detect common programming mistakes
that lead to non–compliant CORBA applications. If such a mistake is found
an error messages like this will appear:

Non-compliant application error detected:
Application used wrong memory allocation function

After detecting such an error, the Orbacus library dumps a core (Unix only)
and prints the file and line number where the error was detected. You can
use the core dump in order to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implementedThis is
not an application error. This error message appears if an application
attempts to use a feature that has not yet been implemented in Orbacus. In
this case the only thing that can be done is to wait for the next Orbacus
version that has this particular feature implemented.

Application used a deprecated feature that is not implemented anymoreThis
is not an application error. This error message appears if an application
attempts to use a feature that is no longer implemented in Orbacus. In this
case the only thing that can be done is to avoid using this particular feature.

Application used wrong memory allocation functionIf this message appears,
an incorrect memory allocation function has been used. A common mistake
that leads to this error is to use malloc, strdup and free (or the new and
delete operator) instead of CORBA::string_alloc and CORBA::string_dup
and CORBA::string_free for string memory management.

Message Description

Memory that was already deallocated
was deallocated again

This message indicates multiple memory deallocations. For
example, if CORBA::string_free is called twice on the
same string, this message will be displayed.

Object was deleted without an object
reference count of zero

This message appears if an object was deleted by calling
delete on its object reference. Never use the delete
operator for that; use CORBA::release instead.
397

CHAPTER 18 | Exceptions and Error Messages
Object was already deleted (object
reference count was already zero)

This message appears if the number of release operations
on an object reference is greater than the number of
_duplicate operations.

Sequence length was greater than
maximum sequence length

This message indicates that the application tried to set the
length of a bounded sequence to a value greater than its
maximum length.

Index for sequence operator[]() or
remove() function was out of range

This message appears if the argument to the sequence
member functions operator[] or remove exceeds the
sequence length.

Buffer size not equal to sequence bound This message indicates that the application attempted to
call allocbuf on a bounded sequence with an argument not
equal to the sequence bound.

Null pointer was used to initialize T_var
type

This message indicates an attempt to initialize a _var type
with a null pointer.

operator->() was used on null pointer or
nil object reference

This message indicates an attempt to use operator-> on an
uninitialized _var type.

Application tried to dereference a null
pointer

Some CORBA _var types have built-in conversion operators
to a C++ reference type, i.e., some _var types for type T
have a conversion operator to T&. This message appears if
an application uses this conversion operator on an
uninitialized _var type.

Null pointer was passed as string
parameter or return value

According to the IDL–to–C++ mapping specification, no
null pointers may be passed as string parameters or return
values. This message appears if an application tries to do
so.

Null value passed as parameter This message indicates that an application attempted to
pass a null value across an IDL interface.

Message Description
 398

Non-Compliant Application Asserts
Self assignment caused a dangling
pointer

This message appears if the content of a _var type is
assigned to itself. For example, the following code will lead
to this error message:

1 // Somehow get a pointer to a variable struct
2 AVariableStruct_var var = ...
3 AVariableStruct* ptr = var;
4 var = ptr;

This will result in a dangling pointer, because var will free
its own content on assignment.

Replacement of Any content by its own
value caused a dangling pointer

This message appears if there is an attempt to replace the
content of an Any by its own value. For example:

1 char* s = CORBA::string_dup("Hello, world!");
2 CORBA::Any any;
3 any <<= s;
4 any <<= s;

Inserting s into any twice will result in a dangling pointer,
because any will free its own value (which is s) on
assignment.

Invalid union discriminator type used This message appears if the discriminator type argument to
CORBA::ORB::create_union_tc denotes a type invalid for
union discriminators. Valid types have a CORBA::TCKind
that is one of CORBA::tk_short, CORBA::tk_ushort,
CORBA::tk_long, CORBA::tk_ulong, CORBA::tk_char,
CORBA::tk_boolean or CORBA::tk_enum.

Union discriminator mismatch This message either indicates an attempt to set a union
discriminator to an invalid value with the _d modifier
function or the use of a wrong accessor function, i.e., an
accessor function that does not correspond to the type of
the union’s actual value.

Uninitialized union used If this message appears, an uninitialized union (i.e., a union
that was created with the default constructor and that was
not set to any legal value) was used.

Message Description
399

CHAPTER 18 | Exceptions and Error Messages
CORBA::Any::operator<<=(Exception*)
cannot be used with --no-type-codes

This message indicates that
CORBA::Any::operator<<=(Exception*) was invoked for an
exception for which no TypeCode is available. That is, the
IDL defining the exception was compiled with the
--no-typecodes option.

An operation on an unembedded
recursive TypeCode was invoked

If this message appears, an operation was invoked on a
recursive TypeCode that has not yet been embedded.

An already embedded TypeCode was
reused

This message indicates that an application attempted to
embed a recursive TypeCode that was already embedded.

LongDouble type is not supported on this
platform

This message appears when an application uses the
CORBA::LongDouble type on a platform which does not
support this type.

Message Description
 400

APPENDIX A

Boot Manager
Reference
This appendix describes the interfaces for the Orbacus Boot
Manager.

In this appendix This appendix contains the following sections:

Interface OB::BootManager page 402

Interface OB::BootLocator page 404
401

CHAPTER A | Boot Manager Reference
Interface OB::BootManager
local interface BootManager

Interface to manage bootstrapping of objects.

Exceptions NotFound
exception NotFound
{
};

This exception indicates that a binding has not been found.

AlreadyExists
exception AlreadyExists
{
};

This exception indicates that a binding already exists.

Operations add_binding
void add_binding(in PortableServer::ObjectId oid,

in Object obj)
raises(AlreadyExists);

Add a new binding to the internal table.

Parameters:

oid – The object id to bind.

obj – The object reference.

Raises:

AlreadyExists – Thrown if binding already exists.

remove_binding
void remove_binding(in PortableServer::ObjectId oid)

raises(NotFound);

Remove a binding from the internal table.

Parameters:

oid – The object id to remove.

Raises:

NotFound – Thrown if no binding found.
 402

Interface OB::BootManager
set_locator
void set_locator(in BootLocator locator);

Set the BootLocator. The BootLocator is called when a binding for an object
id does not exist in the internal table.

Parameters:

locator – The BootLocator reference.

See Also:

“Interface OB::BootLocator”
403

CHAPTER A | Boot Manager Reference
Interface OB::BootLocator
local interface BootLocator

Interface used by BootManager to assist in locating objects.

See Also:

“Interface OB::BootManager”

Operations locate
void locate(in PortableServer::ObjectId oid,

out Object obj,
out boolean add)
raises(BootManager::NotFound);

Locate the object corresponding to the given object id.

Parameters:

oid – The object id.

obj – The object reference to associate with the id.

add – Whether the binding should be added to the internal table.

Raises:

NotFound – Raised if no binding found.
 404

APPENDIX B

Orbacus Policy
Reference
This appendix describes the Orbacus Policy interfaces.

In this appendix This appendix contains the following sections:

Module OB page 406

Module OBPortableServer page 417

BiDirPolicy page 419
405

CHAPTER B | Orbacus Policy Reference
Module OB

Constants CONNECTION_REUSE_POLICY_ID
const CORBA::PolicyType CONNECTION_REUSE_POLICY_ID = 1330577411;

This policy type identifies the connection reuse policy.

CONNECT_TIMEOUT_POLICY_ID
const CORBA::PolicyType CONNECT_TIMEOUT_POLICY_ID = 1330577416;

This policy type identifies the connect timeout policy.

INTERCEPTOR_POLICY_ID
const CORBA::PolicyType INTERCEPTOR_POLICY_ID = 1330577415;

This policy type identifies the interceptor policy.

LOCATE_REQUEST_POLICY_ID
const CORBA::PolicyType LOCATE_REQUEST_POLICY_ID = 1330577418;

This policy type identifies the locate request policy.

LOCATION_TRANSPARENCY_POLICY_ID
const CORBA::PolicyType LOCATION_TRANSPARENCY_POLICY_ID =

1330577414;

This policy type identifies the location transparency policy.

LOCATION_TRANSPARENCY_RELAXED
const short LOCATION_TRANSPARENCY_RELAXED = 1;

The LOCATION_TRANSPARENCY_RELAXED LocationTransparencyPolicy value.

LOCATION_TRANSPARENCY_STRICT
const short LOCATION_TRANSPARENCY_STRICT = 0;

The LOCATION_TRANSPARENCY_STRICT LocationTransparencyPolicy value.

PROTOCOL_POLICY_ID
const CORBA::PolicyType PROTOCOL_POLICY_ID = 1330577410;

This policy type identifies the protocol policy.

REQUEST_TIMEOUT_POLICY_ID
const CORBA::PolicyType REQUEST_TIMEOUT_POLICY_ID = 1330577417;

This policy type identifies the request timeout policy.
 406

Module OB
RETRY_ALWAYS
const short RETRY_ALWAYS = 2;

The RETRY_ALWAYS RetryPolicy value.

RETRY_NEVER
const short RETRY_NEVER = 0;

The RETRY_NEVER RetryPolicy value.

RETRY_POLICY_ID
const CORBA::PolicyType RETRY_POLICY_ID = 1330577412;

This policy type identifies the retry policy.

RETRY_STRICT
const short RETRY_STRICT = 1;

The RETRY_STRICT RetryPolicy value.

TIMEOUT_POLICY_ID
const CORBA::PolicyType TIMEOUT_POLICY_ID = 1330577413;

This policy type identifies the timeout policy.

Structs RetryAttributes
struct RetryAttributes
{

short mode;
unsigned long interval;
unsigned long max;
boolean remote;

};

The retry information
407

CHAPTER B | Orbacus Policy Reference
Interface OB::ConnectTimeoutPolicy
local interface ConnectTimeoutPolicy
inherits from CORBA::Policy

The connect timeout policy. This policy can be used to specify a maximum
time limit for connection establishment.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value
readonly attribute unsigned long value;

If an object has a ConnectTimeoutPolicy set and a connection cannot be
established after value milliseconds, a CORBA::NO_RESPONSE exception is
raised. The default value is -1, which means no timeout.
 408

Module OB
Interface OB::ConnectionReusePolicy
local interface ConnectionReusePolicy
inherits from CORBA::Policy

The connection reuse policy. This policy determines whether connections
may be reused or are private to specific objects.

Attributes value
readonly attribute boolean value;

If an object has a ConnectionReusePolicy set with value set to FALSE, then
other object references will not be permitted to use connections made on
behalf of this object. If set to TRUE, then connections are shared. The default
value is TRUE.
409

CHAPTER B | Orbacus Policy Reference
Interface OB::InterceptorPolicy
local interface InterceptorPolicy
inherits from CORBA::Policy

The interceptor policy. This policy can be used to control whether the
client-side interceptors are called.

Attributes value
readonly attribute boolean value;

If an object reference has an InterceptorPolicy set and value is FALSE
then any installed client-side interceptors are not called. Otherwise,
interceptors are called for each method invocation. The default value is
TRUE.
 410

Module OB
Interface OB::LocateRequestPolicy
local interface LocateRequestPolicy
inherits from CORBA::Policy

The locate request policy. This policy can be used to specify whether the
ORB sends locate request messages.

Attributes value
readonly attribute boolean value;

If an object has a LocateRequestPolicy set to false then the ORB will not
send locate request messages for the object.
411

CHAPTER B | Orbacus Policy Reference
Interface OB::LocationTransparencyPolicy
local interface LocationTransparencyPolicy
inherits from CORBA::Policy

The location transparency policy. This policy is used to control how strict the
ORB is in enforcing location transparency. This is useful for performance
reasons.

Attributes value
readonly attribute short value;

LOCATION_TRANSPARENCY_STRICT ensures strict location transparency is
followed. LOCATION_TRANSPARENCY_RELAXED relaxes the location
transparency guarantees for performance reasons. Specifically for collocated
method invocations, the dispatch concurrency model will be ignored, and
policy overrides are not removed. The default value is
LOCATION_TRANSPARENCY_RELAXED.
 412

Module OB
Interface OB::ProtocolPolicy
local interface ProtocolPolicy
inherits from CORBA::Policy

The protocol policy. This policy specifies the order in which profiles should
be tried.

Attributes value
readonly attribute OCI::PluginIdSeq value;

If a ProtocolPolicy is set, then the value specifies the list of plugins that
may be used. The profiles of an IOR will be used in the order specified by
this policy. If no profile in an IOR matches any of the plugins specified by
this policy, a CORBA::TRANSIENT exception will be raised. By default, the
ORB chooses the protocol to be used.

Operations contains
boolean contains(in OCI::PluginId id);

Determines if this policy includes the given plugin id.
413

CHAPTER B | Orbacus Policy Reference
Interface OB::RequestTimeoutPolicy
local interface RequestTimeoutPolicy
inherits from CORBA::Policy

The request timeout policy. This policy can be used to specify a maximum
time limit for requests.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value
readonly attribute unsigned long value;

If an object has a RequestTimeoutPolicy set and no response to a request is
available after value milliseconds, a CORBA::NO_RESPONSE exception is
raised. The default value is -1, which means no timeout.
 414

Module OB
Interface OB::RetryPolicy
local interface RetryPolicy
inherits from CORBA::Policy

The retry policy. This policy is used to specify retry behavior after
communication failures (i.e., CORBA::TRANSIENT and CORBA::COMM_FAILURE
exceptions).

Attributes retry_interval
readonly attribute unsigned long retry_interval;

retry_max
readonly attribute unsigned long retry_max;

retry_mode
readonly attribute short retry_mode;

For retry_mode RETRY_NEVER indicates that requests should never be retried,
and the exception is re-thrown to the application. RETRY_STRICT will retry
once if the exception completion status is COMPLETED_NO, in order to
guarantee at-most-once semantics. RETRY_ALWAYS will retry once, regardless
of the exception completion status. The default value is RETRY_STRICT.
retry_interval is the time in milliseconds between retries. The default is 0.
retry_max is the maximum number of retries. The default is 1.
retry_remote determines whether or not to retry on exceptions received
over-the-wire. The default is false: only retry on locally generated
exceptions. Note: Many TCP/IP stacks do not provide a reliable indication of
communication failure when sending smaller requests, therefore the failure
may not be detected until the ORB attempts to read the reply. In this case,
the ORB must assume that the remote end has received the request, in
order to guarantee at-most-once semantics for the request. The implication
is that when using the default setting of RETRY_STRICT, most communication
failures will not cause a retry. This behavior can be relaxed using
RETRY_ALWAYS.

retry_remote
readonly attribute boolean retry_remote;
415

CHAPTER B | Orbacus Policy Reference
Interface OB::TimeoutPolicy
local interface TimeoutPolicy
inherits from CORBA::Policy

The timeout policy. This policy can be used to specify the default timeout for
connection establishment and requests. If an object also has
ConnectionTimeoutPolicy or RequestTimeoutPolicy set, those values have
precedence.

See Also:

“Interface OB::ConnectTimeoutPolicy”

“Interface OB::RequestTimeoutPolicy”

Attributes value
readonly attribute unsigned long value;

If an object has a TimeoutPolicy set and a connection cannot be
established or no response to a request is available after value milliseconds,
a CORBA::NO_RESPONSE exception is raised. The default value is -1, which
means no timeout.
 416

Module OBPortableServer
Module OBPortableServer

Constants INTERCEPTOR_CALL_POLICY_ID
const CORBA::PolicyType INTERCEPTOR_CALL_POLICY_ID = 1330577667;

This policy type identifies the interceptor call policy.
417

CHAPTER B | Orbacus Policy Reference
Interface OBPortableServer::InterceptorCallPolicy
local interface InterceptorCallPolicy
inherits from CORBA::Policy

The interceptor call policy. This policy controls whether the server-side
interceptors are called for a particular POA.

Attributes value
readonly attribute boolean value;

The InterceptorCallPolicy value. If a POA has an InterceptorCallPolicy
set and value is FALSE then any installed server-side interceptors are not
called for requests on this POA. Otherwise, interceptors are called for each
request. The default value is TRUE.
 418

BiDirPolicy
BiDirPolicy

Constants BIDIRECTIONAL_POLICY_TYPE
const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

This policy type identifies the BiDirectional GIOP (CORBA 3 compliant)
protocol policy.

NORMAL
const BidirectionalPolicyValue NORMAL = 0;

This value indicates normal (disabled) BiDir GIOP functionality.

BOTH
const BidirectionalPolicyValue BOTH = 1;

This value indicates enabled BiDir GIOP functionality.

Typedefs typedef unsigned short BidirectionalPolicyValue;
419

CHAPTER B | Orbacus Policy Reference
 420

APPENDIX C

Reactor Reference
This appendix describes the Orbacus Reactor interfaces.

In this appendix This appendix contains the following section:

Module OB page 422
421

CHAPTER C | Reactor Reference
Module OB

Aliases Handle
typedef long Handle;

An event handler's handle.

Mask
typedef long Mask;

An event handler's mask. The mask determines which events the event
handler is interested in.

TypeMask
typedef long TypeMask;

An event handler's type mask. The type mask determines which category
the event handler belongs to. A value of zero means no specific category.

Constants EventRead
const Mask EventRead = 1;

The mask for read events.

EventWrite
const Mask EventWrite = 2;

The mask for write events.

TypeClient
const TypeMask TypeClient = 1;

The type mask for client event handlers.

TypeServer
const TypeMask TypeServer = 2;

The type mask for server event handlers.

Native Types EventHandler
native EventHandler;

An event handler is a native type.
 422

Module OB
Interface OB::Reactor
local interface Reactor

A generic Reactor interface.

Operations register_handler
void register_handler(in EventHandler handler,

in Mask handler_mask,
in TypeMask type_mask,
in Handle h);

Register an event handler with the Reactor, or change the registration of an
already registered event handler.

Parameters:

handler – The event handler to register.

mask – The type of events the event handler is interested in.

type_mask – The category the event handler belongs to.

h – The event handler's handle.

unregister_handler
void unregister_handler(in EventHandler handler);

Remove an event handler from the Reactor.

Parameters:

handler – The event handler to remove.

dispatch
boolean dispatch(in TypeMask type_mask);

Dispatch events.

Parameters:

type_mask – If not zero, this operation will return once all registered event
handlers that match the type mask have unregistered.

Returns:

TRUE if all event handlers that match the type mask have unregistered, or
FALSE if event dispatching has been interrupted.

interrupt_dispatch
void interrupt_dispatch();
423

CHAPTER C | Reactor Reference
Interrupt event dispatching. After calling this operation, interrupt() will
return with FALSE.

dispatch_one_event
boolean dispatch_one_event(in long timeout);

Dispatch at least one event.

Parameters:

timeout – The timeout in milliseconds. A negative value means no timeout,
i.e., the operation will not return before at least one event has been
dispatched. A zero timeout means that the operation will return immediately
if there is no event to dispatch.

Returns:

TRUE if at least one event has been dispatched, or FALSE otherwise.

event_ready
boolean event_ready();

Check whether an event is available.

Returns:

TRUE if an event is ready, or FALSE otherwise.
 424

APPENDIX D

Logger Reference
This appendix describes the Orbacus Logger interfaces.

In this appendix This appendix contains the following sections:

Interface OB::Logger page 426

Interface OB::WLogger page 427
425

CHAPTER D | Logger Reference
Interface OB::Logger
local interface Logger

The Orbacus message logger interface.

Operations info
void info(in string msg);

Log an informational message.

Parameters:

msg – The message.

error
void error(in string msg);

Log an error message.

Parameters:

msg – The error message.

warning
void warning(in string msg);

Log a warning message.

Parameters:

msg – The warning message.

trace
void trace(in string category,

in string msg);

Log a trace message.

Parameters:

category – The trace category.

msg – The trace message.
 426

Interface OB::WLogger
Interface OB::WLogger
local interface WLogger : Logger

The Orbacus message logger interface with support for wide strings.

Operations winfo
void winfo(in wstring msg);

Log an informational message.

Parameters:

msg – The message.

werror
void error(in wstring msg);

Log an error message.

Parameters:

msg – The error message.

wwarning
void warning(in wstring msg);

Log a warning message.

Parameters:

msg – The warning message.

wtrace
void trace(in wstring category,

in wstring msg);

Log a trace message.

Parameters:

category – The trace category.

msg – The trace message.
427

CHAPTER D | Logger Reference
 428

APPENDIX E

Open
Communications
Interface
Reference
This appendix describes the interfaces for the Open
Communication Interface.

In this appendix This appendix contains the following sections:

Module OCI page 430

Module OCI::IIOP page 465
429

CHAPTER E | Open Communications Interface Reference
Module OCI

Aliases BufferSeq
typedef sequence<Buffer> BufferSeq;

Alias for a sequence of buffers.

IOR
typedef IOP::IOR IOR;

Alias for an IOR.

ProfileId
typedef IOP::ProfileId ProfileId;

Alias for a profile id.

ProfileIdSeq
typedef sequence<ProfileId> ProfileIdSeq;

Alias for a sequence of profile ids.

PluginId
typedef string PluginId;

Alias for a plugin id.

PluginIdSeq
typedef sequence<PluginId> PluginIdSeq;

Alias for a sequence of plugin ids.

ObjectKey
typedef CORBA::OctetSeq ObjectKey;

Alias for an object key, which is a sequence of octets.

TaggedComponentSeq
typedef IOP::TaggedComponentSeq TaggedComponentSeq;

Alias for a sequence of tagged components.

Handle
typedef long Handle;

Alias for a system-specific handle type.
 430

Module OCI
ProfileInfoSeq
typedef sequence<ProfileInfo> ProfileInfoSeq;

Alias for a sequence of basic information about profiles.

ParamSeq
typedef sequence<string> ParamSeq;

Alias for a sequence of parameters.

CloseCBSeq
typedef sequence<CloseCB> CloseCBSeq;

Alias for a sequence of close callback objects.

ConnectorSeq
typedef sequence<Connector> ConnectorSeq;

Alias for a sequence of Connectors.

ConnectCBSeq
typedef sequence<ConnectCB> ConnectCBSeq;

Alias for a sequence of connect callback objects.

ConFactorySeq
typedef sequence<ConFactory> ConFactorySeq;

Alias for a sequence of Connector factories.

AcceptorSeq
typedef sequence<Acceptor> AcceptorSeq;

Alias for a sequence of Acceptors.

AcceptCBSeq
typedef sequence<AcceptCB> AcceptCBSeq;

Alias for a sequence of accept callback objects.

AccFactorySeq
typedef sequence<AccFactory> AccFactorySeq;

Alias for a sequence of AccFactory objects.

Constants Version
const string Version = "1.0";

The OCI version. If an interface or implementation changes in an
incompatible way, this version will be changed.
431

CHAPTER E | Open Communications Interface Reference
Enums SendReceiveMode
enum SendReceiveMode
{

SendOnly,
ReceiveOnly,
SendReceive

};

Indicates the send/receive capabilities of an OCI component.

Structs ProfileInfo
struct ProfileInfo
{

ObjectKey key;
octet major;
octet minor;
ProfileId id;
unsigned long index;
TaggedComponentSeq components;

};

Basic information about an IOR profile. Profiles for specific protocols contain
additional data. (For example, an IIOP profile also contains a hostname and
a port number.)

Members:

key – The object key.

major – The major version number of the ORB's protocol. (For example, the
major GIOP version, if the underlying ORB uses GIOP.)

minor – The minor version number of the ORB's protocol. (For example, the
minor GIOP version, if the underlying ORB uses GIOP.)

id – The id of the profile that contains this information.

index – The position index of this profile in an IOR.

components – A sequence of tagged components.

Exceptions FactoryAlreadyExists
exception FactoryAlreadyExists
{

PluginId id;
};

A factory with the given plugin id already exists.
 432

Module OCI
Members:

id – The plugin id.

NoSuchFactory
exception NoSuchFactory
{

PluginId id;
};

No factory with the given plugin id could be found.

Members:

id – The plugin id.

InvalidParam
exception InvalidParam
{

string reason;
};

A parameter is invalid.

Members:

reason – A description of the error.
433

CHAPTER E | Open Communications Interface Reference
Interface OCI::Buffer
local interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an
array of octets and a position counter, which determines how many octets
have already been sent or received. The IDL interface definition for Buffer is
incomplete and must be extended by the specific language mappings. For
example, the C++ mapping defines the following additional functions:

• Octet* data(): Returns a C++ pointer to the first element of the array
of octets, which represents the buffer's contents.

• Octet* rest(): Similar to data(), this operation returns a C++
pointer, but to the n-th element of the array of octets with n being the
value of the position counter.

Attributes length
readonly attribute unsigned long length;

The buffer length.

pos
attribute unsigned long pos;

The position counter. Note that the buffer's length and the position counter
don't depend on each other. There are no restrictions on the values
permitted for the counter. This implies that it's even legal to set the counter
to values beyond the buffer's length.

Operations advance
void advance(in unsigned long delta);

Increment the position counter.

Parameters:

delta – The value to add to the position counter.

rest_length
unsigned long rest_length();

Returns the rest length of the buffer. The rest length is the length minus the
position counter's value. If the value of the position counter exceeds the
buffer's length, the return value is undefined.
 434

Module OCI
Returns:

The rest length.

is_full
boolean is_full();

Checks if the buffer is full. The buffer is considered full if its length is equal
to the position counter's value.

Returns:

TRUE if the buffer is full, FALSE otherwise.
435

CHAPTER E | Open Communications Interface Reference
Interface OCI::Plugin
local interface Plugin

The interface for a Plugin object, which is used to initialize an OCI plug-in.

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations init_client
void init_client(in ParamSeq params);

Initialize the client-side of the plug-in.

Parameters:

params – Plug-in specific parameters.

init_server
void init_server(in ParamSeq params);

Initialize the server-side of the plug-in.

Parameters:

params – Plug-in specific parameters.
 436

Module OCI
Interface OCI::Transport
local interface Transport

The interface for a Transport object, which provides operations for sending
and receiving octet streams. In addition, it is possible to register callbacks
with the Transport object, which are invoked whenever data can be sent or
received without blocking.

See Also:

“Interface OCI::Connector”

“Interface OCI::Acceptor”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

mode
readonly attribute SendReceiveMode mode;

The send/receive capabilities of this Transport.

handle
readonly attribute Handle handle;

The “handle” for this Transport. The handle may only be used to determine
whether the Transport object is ready to send or to receive data, e.g., with
select() on Unix-based operating systems. All other uses (e.g., calls to
read(), write(), close()) are strictly non-compliant. A handle value of -1
indicates that the protocol plug-in does not support “selectable” Transports.

Operations close
void close();

Closes the Transport. After calling close, no operations on this Transport
object and its associated TransportInfo object may be called. To ensure that
no messages get lost when close is called, shutdown should be called first.
Then dummy data should be read from the Transport, using one of the
437

CHAPTER E | Open Communications Interface Reference
receive operations, until either an exception is raised, or until connection
closure is detected. After that its save to call close, i.e., no messages can
get lost.

Raises:

COMM_FAILURE – In case of an error.

shutdown
void shutdown();

Shutdown the Transport. Upon a successful shutdown, threads blocking in
the receive operations will return or throw an exception. After calling
shutdown, no operations on associated TransportInfo object may be called.
To fully close the Transport, close must be called.

Raises:

COMM_FAILURE – In case of an error.

receive
void receive(in Buffer buf,

in boolean block);

Receives a buffer's contents.

Parameters:

buf – The buffer to fill.

block – If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Raises:

COMM_FAILURE – In case of an error.

receive_detect
boolean receive_detect(in Buffer buf,

in boolean block);

Similar to receive, but it signals a connection loss by returning FALSE
instead of raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

block – If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
 438

Module OCI
Raises:

COMM_FAILURE – In case of an error.

receive_timeout
void receive_timeout(in Buffer buf,

in unsigned long timeout);

Similar to receive, but it is possible to specify a timeout. On return the
caller can test whether there was a timeout by checking if the buffer has
been filled completely.

Parameters:

buf – The buffer to fill.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling receive(buf, FALSE).

Raises:

COMM_FAILURE – In case of an error.

receive_timeout_detect
boolean receive_timeout_detect(in Buffer buf,

in unsigned long timeout);

Similar to receive_timeout, but it signals a connection loss by returning
FALSE instead of raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling receive(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.

Raises:

COMM_FAILURE – In case of an error.

send
void send(in Buffer buf,

in boolean block);

Sends a buffer's contents.

Parameters:

buf – The buffer to send.
439

CHAPTER E | Open Communications Interface Reference
block – If set to TRUE, the operation blocks until the buffer has completely
been sent. If set to FALSE, the operation sends as much of the buffer's data
as possible without blocking.

Raises:

COMM_FAILURE – In case of an error.

send_detect
boolean send_detect(in Buffer buf,

in boolean block);

Similar to send, but it signals a connection loss by returning FALSE instead of
raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

block – If set to TRUE, the operation blocks until the entire buffer has been
sent. If set to FALSE, the operation sends as much of the buffer's data as
possible without blocking.

Returns:

FALSE if a connection loss is detected, TRUE otherwise.

Raises:

COMM_FAILURE – In case of an error.

send_timeout
void send_timeout(in Buffer buf,

in unsigned long timeout);

Similar to send, but it is possible to specify a timeout. On return the caller
can test whether there was a timeout by checking if the buffer has been sent
completely.

Parameters:

buf – The buffer to send.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Raises:

COMM_FAILURE – In case of an error.

send_timeout_detect
boolean send_timeout_detect(in Buffer buf,

in unsigned long timeout);
 440

Module OCI
Similar to send_timeout, but it signals a connection loss by returning FALSE
instead of raising COMM_FAILURE.

Parameters:

buf – The buffer to fill.

timeout – The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.

Raises:

COMM_FAILURE – In case of an error.

get_info
TransportInfo get_info();

Returns the information object associated with the Transport.

Returns:

The Transport information object.
441

CHAPTER E | Open Communications Interface Reference
Interface OCI::TransportInfo
local interface TransportInfo

Information on an OCI Transport object. Objects of this type must be
narrowed to a Transport information object for a concrete protocol
implementation, for example to OCI::IIOP::TransportInfo in case the
plug-in implements IIOP.

See Also:

“Interface OCI::Transport”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

connector_info
readonly attribute ConnectorInfo connector_info;

The ConnectorInfo object for the Connector that created the Transport object
that this TransportInfo object belongs to. If the Transport for this
TransportInfo was not created by a Connector, this attribute is set to the nil
object reference.

acceptor_info
readonly attribute AcceptorInfo acceptor_info;

The AcceptorInfo object for the Acceptor that created the Transport object
that this TransportInfo object belongs to. If the Transport for this
TransportInfo was not created by an Acceptor, this attribute is set to the nil
object reference.

Operations describe
string describe();

Returns a human readable description of the transport.

Returns:

The description.
 442

Module OCI
add_close_cb
void add_close_cb(in CloseCB cb);

Add a callback that is called before a connection is closed. If the callback
has already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_close_cb
void remove_close_cb(in CloseCB cb);

Remove a close callback. If the callback was not registered, this method has
no effect.

Parameters:

cb – The callback to remove.
443

CHAPTER E | Open Communications Interface Reference
Interface OCI::CloseCB
local interface CloseCB

An interface for a close callback object.

See Also:

“Interface OCI::TransportInfo”

Operations close_cb
void close_cb(in TransportInfo transport_info);

Called before a connection is closed.

Parameters:

transport_info – The TransportInfo for the new closeion.
 444

Module OCI
Interface OCI::Connector
local interface Connector

An interface for Connector objects. A Connector is used by CORBA clients to
initiate a connection to a server. It also provides operations for the
management of IOR profiles.

See Also:

“Interface OCI::ConFactory”

“Interface OCI::Transport”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations connect
Transport connect();

Used by CORBA clients to establish a connection to a CORBA server. It
returns a Transport object, which can be used for sending and receiving
octet streams to and from the server.

Returns:

The new Transport object.

Raises:

TRANSIENT – If the server cannot be contacted.

COMM_FAILURE – In case of other errors.

connect_timeout
Transport connect_timeout(in unsigned long timeout);

Similar to connect, but it is possible to specify a timeout. On return the
caller can test whether there was a timeout by checking whether a nil object
reference was returned.

Parameters:
445

CHAPTER E | Open Communications Interface Reference
timeout – The timeout value in milliseconds.

Returns:

The new Transport object.

Raises:

TRANSIENT – If the server cannot be contacted.

COMM_FAILURE – In case of other errors.

get_usable_profiles
ProfileInfoSeq get_usable_profiles(in IOR ref,

in CORBA::PolicyList policies);

From the given IOR and list of policies, get basic information about all
profiles for which this Connector can be used.

Parameters:

ref – The IOR from which the profiles are taken.

policies – The policies that must be satisfied.

Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that matches this Connector and the list of
policies.

equal
boolean equal(in Connector con);

Find out whether this Connector is equal to another Connector. Two
Connectors are considered equal if they are interchangeable.

Parameters:

con – The connector to compare with.

Returns:

TRUE if the Connectors are equal, FALSE otherwise.

get_info
ConnectorInfo get_info();

Returns the information object associated with the Connector.

Returns:

The Connector information object.
 446

Module OCI
Interface OCI::ConnectorInfo
local interface ConnectorInfo

Information on a OCI Connector object. Objects of this type must be
narrowed to a Connector information object for a concrete protocol
implementation, for example to OCI::IIOP::ConnectorInfo in case the
plug-in implements IIOP.

See Also:

“Interface OCI::Connector”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations describe
string describe();

Returns a human readable description of the transport.

Returns:

The description.

add_connect_cb
void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If
the callback has already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_connect_cb
void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method
has no effect.

Parameters:
447

CHAPTER E | Open Communications Interface Reference
cb – The callback to remove.
 448

Module OCI
Interface OCI::ConnectCB
local interface ConnectCB

An interface for a connect callback object.

See Also:

“Interface OCI::ConnectorInfo”

Operations connect_cb
void connect_cb(in TransportInfo transport_info);

Called after a new connection has been established. If the application
wishes to reject the connection CORBA::NO_PERMISSION may be raised.

Parameters:

transport_info – The TransportInfo for the new connection.
449

CHAPTER E | Open Communications Interface Reference
Interface OCI::ConFactory
local interface ConFactory

A factory for Connector objects.

See Also:

“Interface OCI::Connector”

“Interface OCI::ConFactoryRegistry”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations describe_profile
string describe_profile(in IOP::TaggedProfile prof);

Returns a description of the given tagged profile.

Parameters:

prof – The tagged profile.

Returns:

The profile description.

create_connectors
ConnectorSeq create_connectors(in IOR ref,

in CORBA::PolicyList policies);

Returns a sequence of Connectors for a given IOR and a list of policies. The
sequence includes one or more Connectors for each IOR profile that
matches this Connector factory and satisfies the list of policies.

Parameters:

ref – The IOR for which Connectors are returned.

policies – The policies that must be satisfied.

Returns:

The sequence of Connectors.
 450

Module OCI
equivalent
boolean equivalent(in IOR ior1,

in IOR ior2);

Checks whether two IORs are equivalent, taking only profiles into account
matching this Connector factory.

Parameters:

ior1 – The first IOR to check for equivalence.

ior2 – The second IOR to check for equivalence.

Returns:

TRUE if the IORs are equivalent, FALSE otherwise.

hash
unsigned long hash(in IOR ref,

in unsigned long maximum);

Calculates a hash value for an IOR.

Parameters:

ref – The IOR to calculate a hash value for.

maximum – The maximum value of the hash value.

Returns:

The hash value.

get_info
ConFactoryInfo get_info();

Returns the information object associated with the Connector factory.

Returns:

The Connector factory information object.
451

CHAPTER E | Open Communications Interface Reference
Interface OCI::ConFactoryInfo
local interface ConFactoryInfo

Information on an OCI ConFactory object.

See Also:

“Interface OCI::ConFactory”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations describe
string describe();

Returns a human readable description of the transport.

Returns:

The description.

add_connect_cb
void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If
the callback has already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_connect_cb
void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method
has no effect.

Parameters:

cb – The callback to remove.
 452

Module OCI
Interface OCI::ConFactoryRegistry
local interface ConFactoryRegistry

A registry for Connector factories.

See Also:

“Interface OCI::Connector”

“Interface OCI::ConFactory”

Operations add_factory
void add_factory(in ConFactory factory)

raises(FactoryAlreadyExists);

Adds a Connector factory to the registry.

Parameters:

factory – The Connector factory to add.

Raises:

FactoryAlreadyExists – If a factory already exists with the same plugin id
as the given factory.

get_factory
ConFactory get_factory(in PluginId id)

raises(NoSuchFactory);

Returns the factory with the given plugin id.

Parameters:

id – The plugin id.

Returns:

The Connector factory.

Raises:

NoSuchFactory – If no factory was found with a matching plugin id.

get_factories
ConFactorySeq get_factories();

Returns all registered factories.

Returns:

The Connector factories.
453

CHAPTER E | Open Communications Interface Reference
Interface OCI::Acceptor
local interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to
accept client connection requests. It also provides operations for the
management of IOR profiles.

See Also:

“Interface OCI::AccFactoryRegistry”

“Interface OCI::AccFactory”

“Interface OCI::Transport”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

handle
readonly attribute Handle handle;

The “handle” for this Acceptor. Like with the handle for Transports, the
handle may only be used with operations like select(). A handle value of
-1 indicates that the protocol plug-in does not support “selectable”
Transports.

Operations close
void close();

Closes the Acceptor. accept or listen may not be called after close has
been called.

Raises:

COMM_FAILURE – In case of an error.

shutdown
void shutdown();
 454

Module OCI
Shutdown the Acceptor. After shutdown, the socket will not listen to further
connection requests.

Raises:

COMM_FAILURE – In case of an error.

listen
void listen();

Sets the acceptor up to listen for incoming connections. Until this method is
called on the acceptor, new connection requests should result in a
connection request failure.

Raises:

COMM_FAILURE – In case of an error.

accept
Transport accept(in boolean block);

Used by CORBA servers to accept client connection requests. It returns a
Transport object, which can be used for sending and receiving octet streams
to and from the client.

Parameters:

block – If set to TRUE, the operation blocks until a new connection has been
accepted. If set to FALSE, the operation returns a nil object reference if there
is no new connection ready to be accepted.

Returns:

The new Transport object.

Raises:

COMM_FAILURE – In case of an error.

connect_self
Transport connect_self();

Connect to this acceptor. This operation can be used to unblock threads that
are blocking in accept.

Returns:

The new Transport object.

Raises:

TRANSIENT – If the server cannot be contacted.

COMM_FAILURE – In case of other errors.
455

CHAPTER E | Open Communications Interface Reference
add_profiles
void add_profiles(in ProfileInfo profile_info,

inout IOR ref);

Add new profiles that match this Acceptor to an IOR.

Parameters:

profile_info – The basic profile information to use for the new profiles.

ref – The IOR.

get_local_profiles
ProfileInfoSeq get_local_profiles(in IOR ref);

From the given IOR, get basic information about all profiles for which are
local to this Acceptor.

Parameters:

ref – The IOR from which the profiles are taken.

Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that is local to the Acceptor.

get_info
AcceptorInfo get_info();

Returns the information object associated with the Acceptor.

Returns:

The Acceptor information object.
 456

Module OCI
Interface OCI::AcceptorInfo
local interface AcceptorInfo

Information on an OCI Acceptor object. Objects of this type must be
narrowed to an Acceptor information object for a concrete protocol
implementation, for example to OCI::IIOP::AcceptorInfo in case the
plug-in implements IIOP.

See Also:

“Interface OCI::Acceptor”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations describe
string describe();

Returns a human readable description of the transport.

Returns:

The description.

add_accept_cb
void add_accept_cb(in AcceptCB cb);

Add a callback that is called whenever a new connection is accepted. If the
callback has already been registered, this method has no effect.

Parameters:

cb – The callback to add.

remove_accept_cb
void remove_accept_cb(in AcceptCB cb);

Remove an accept callback. If the callback was not registered, this method
has no effect.

Parameters:
457

CHAPTER E | Open Communications Interface Reference
cb – The callback to remove.
 458

Module OCI
Interface OCI::AcceptCB
local interface AcceptCB

An interface for an accept callback object.

See Also:

“Interface OCI::AcceptorInfo”

Operations accept_cb
void accept_cb(in TransportInfo transport_info);

Called after a new connection has been accepted. If the application wishes
to reject the connection CORBA::NO_PERMISSION may be raised.

Parameters:

transport_info – The TransportInfo for the new connection.
459

CHAPTER E | Open Communications Interface Reference
Interface OCI::AccFactory
local interface AccFactory

An interface for an AccFactory object, which is used by CORBA servers to
create Acceptors.

See Also:

“Interface OCI::Acceptor”

“Interface OCI::AccFactoryRegistry”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations create_acceptor
Acceptor create_acceptor(in ParamSeq params)

raises(InvalidParam);

Create an Acceptor using the given configuration parameters. Refer to the
plug-in documentation for a description of the configuration parameters
supported for a particular protocol.

Parameters:

params – The configuration parameters.

Returns:

The new Acceptor.

Raises:

InvalidParam – If any of the parameters are invalid.

change_key
void change_key(inout IOP::IOR ior,

in ObjectKey key);

Change the object-key in the IOR profile for this given protocol.

Parameters:
 460

Module OCI
ior – The IOR

key – The new object key

get_info
AccFactoryInfo get_info();

Returns the information object associated with the Acceptor factory.

Returns:

The Acceptor
461

CHAPTER E | Open Communications Interface Reference
Interface OCI::AccFactoryInfo
local interface AccFactoryInfo

Information on an OCI AccFactory object.

See Also:

“Interface OCI::AccFactory”

Attributes id
readonly attribute PluginId id;

The plugin id.

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations describe
string describe();

Returns a human readable description of the transport.

Returns:

The description.
 462

Module OCI
Interface OCI::AccFactoryRegistry
local interface AccFactoryRegistry

A registry for Acceptor factories.

See Also:

“Interface OCI::Acceptor”

“Interface OCI::AccFactory”

Operations add_factory
void add_factory(in AccFactory factory)

raises(FactoryAlreadyExists);

Adds an Acceptor factory to the registry.

Parameters:

factory – The Acceptor factory to add.

Raises:

FactoryAlreadyExists – If a factory already exists with the same plugin id
as the given factory.

get_factory
AccFactory get_factory(in PluginId id)

raises(NoSuchFactory);

Returns the factory with the given plugin id.

Parameters:

id – The plugin id.

Returns:

The Acceptor factory.

Raises:

NoSuchFactory – If no factory was found with a matching plugin id.

get_factories
AccFactorySeq get_factories();

Returns all registered factories.

Returns:

The Acceptor factories.
463

CHAPTER E | Open Communications Interface Reference
Interface OCI::Current
local interface Current
inherits from CORBA::Current

Interface to access Transport and Acceptor information objects related to the
current request.

Operations get_oci_transport_info
TransportInfo get_oci_transport_info();

This method returns the Transport information object for the Transport used
to invoke the current request.

get_oci_acceptor_info
AcceptorInfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which
created the Transport used to invoke the current request.
 464

Module OCI::IIOP
Module OCI::IIOP
This module contains interfaces to support the IIOP OCI plug-in.

Aliases InetAddr
typedef string InetAddr

Alias for an IP address. This alias will be used for address information from
the various information classes. It can be an IPv4 or IPv6 address string.

Constants PLUGIN_ID
const PluginId PLUGIN_ID = "iiop";

The identifier for the <SmallCaps>ORBacus IIOP plug-in.
465

CHAPTER E | Open Communications Interface Reference
Interface OCI::IIOP::TransportInfo
local interface TransportInfo
inherits from OCI::TransportInfo

Information on an IIOP OCI Transport object.

See Also:

“Interface OCI::Transport”

“Interface OCI::TransportInfo”

Attributes addr
readonly attribute InetAddr addr;

The local IP address.

port
readonly attribute unsigned short port;

The local port.

remote_addr
readonly attribute InetAddr remote_addr;

The remote IP address.

remote_port
readonly attribute unsigned short remote_port;

The remote port.
 466

Module OCI::IIOP
Interface OCI::IIOP::ConnectorInfo
local interface ConnectorInfo
inherits from OCI::ConnectorInfo

Information on an IIOP OCI Connector object.

See Also:

“Interface OCI::Connector”

“Interface OCI::ConnectorInfo”

Attributes remote_addr
readonly attribute InetAddr remote_addr;

The remote IP address to which this connector connects.

remote_port
readonly attribute unsigned short remote_port;

The remote port to which this connector connects.
467

CHAPTER E | Open Communications Interface Reference
Interface OCI::IIOP::ConFactoryInfo
local interface ConFactoryInfo
inherits from OCI::ConFactoryInfo

Information on an IIOP OCI Connector Factory object.

See Also:

“Interface OCI::ConFactory”

“Interface OCI::ConFactoryInfo”
 468

Module OCI::IIOP
Interface OCI::IIOP::AcceptorInfo
local interface AcceptorInfo
inherits from OCI::AcceptorInfo

Information on an IIOP OCI Acceptor object.

See Also:

“Interface OCI::Acceptor”

“Interface OCI::AcceptorInfo”

Attributes hosts
readonly attribute CORBA::StringSeq hosts;

Hostnames used for creation of IIOP object references.

addr
readonly attribute InetAddr addr;

The local IP address on which this acceptor accepts.

port
readonly attribute unsigned short port;

The local port on which this acceptor accepts.
469

CHAPTER E | Open Communications Interface Reference
Interface OCI::IIOP::AccFactoryInfo
local interface AccFactoryInfo
inherits from OCI::AccFactoryInfo

Information on an IIOP OCI Acceptor Factory object.
 470

APPENDIX F

Orbacus Balancer
Reference
This appendix describes the interfaces for the Orbacus
Balancer.

In this appendix This appendix contains the following sections:

Module LoadBalancing page 472

Module LoadBalancing::Util page 483
471

CHAPTER F | Orbacus Balancer Reference
Module LoadBalancing
The definitions in this module provide the interface of the Orbacus Balancer.

Aliases GroupId
typedef string GroupId;

A load balanced group ID.

GroupIdSeq
typedef sequence<GroupId> GroupIdSeq;

A sequence of load balanced group IDs.

MemberId
typedef string MemberId;

A member ID.

MemberIdSeq
typedef sequence<MemberId> MemberIdSeq;

A sequence of member IDs.

ObjectId
typedef PortableInterceptor::ObjectId ObjectId;

An object ID.

PropertyName
typedef string PropertyName;

A load balancing strategy configuration property name.

PropertyValue
typedef any PropertyValue;

A load balancing strategy configuration property value.

PropertySeq
typedef sequence<Property> PropertySeq;

A sequence of load balancing strategy configuration properties.

PropertyErrorSeq
typedef sequence<PropertyError> PropertyErrorSeq;

A sequence of load balancing strategy configuration property errors.
 472

Module LoadBalancing
MemberDataSeq
typedef sequence<MemberData> MemberDataSeq;

A sequence of member data.

TolerancePropertyValue
typedef unsigned long TolerancePropertyValue;

The tolerance load balancing strategy property value. The default value is 0.

LoadPerClientPropertyType
typedef unsigned long LoadPerClientPropertyType;

The load-per-client load balancing strategy property value. The default value
is 0.

RejectPropertyValue
typedef unsigned long RejectPropertyValue;

The reject-load load balancing strategy property value. The default value is
0, meaning no rejections.

DampeningMultiplierPropertyValue
typedef float DampeningMultiplierPropertyValue;

The dampening-multiplier load balancing strategy property value. The
default value is 0, which disables dampening.

CriticalLoadPropertyValue
typedef unsigned long CriticalLoadPropertyValue;

The critical-load load balancing strategy property value. The default value is
0, which disables re-balancing.

Constants MEMBER_POLICY_ID
const CORBA::PolicyType MEMBER_POLICY_ID = 1000;

This policy type identifies the member policy.

TolerancePropertyName
const string TolerancePropertyName = "tolerance";

The tolerance load balancing strategy property name. Members with a load
difference that is less than tolerance are considered to have the same load.

LoadPerClientPropertyName
const string LoadPerClientPropertyName = "load-per-client";
473

CHAPTER F | Orbacus Balancer Reference
The load-per-client load balancing strategy property name. The
load-per-client property is an estimate of the load produced by a client.

RejectLoadPropertyName
const string RejectLoadPropertyName = "reject-load";

The reject-load load balancing strategy property name. Only members with
loads less than reject-load are selected.

DampeningMultiplierPropertyName
const string DampeningMultiplierPropertyName =

"dampening-multiplier";

The dampening-multiplier load balancing strategy property name. A
dampening technique is used to smooth out spikes that may occur in the
reported loads of members. The load of a member is calculated using the
dampening-multiplier property as follows:

load = mult * old_load + (1 - mult) * new_load

where mult is the dampening-multiplier property value. The
dampening-multiplier property must be greater than or equal to 0 and less
than 1.

CriticalLoadPropertyName
const string CriticalLoadPropertyName = "critical-load";

The critical-load load balancing strategy property name. Members with
loads greater than or equal to the critical-load are re-balanced.

Enums PropertyErrorCode
enum PropertyErrorCode
{

BAD_PROPERTY,
BAD_VALUE

};

This enumeration contains the various load balancing strategy configuration
property error codes.

Structs Property
struct Property
{

PropertyName name;
PropertyValue value;

};
 474

Module LoadBalancing
A load balancing strategy configuration property.

PropertyError
struct PropertyError
{

PropertyName name;
PropertyErrorCode code;

};

A load balancing strategy configuration property error.

MemberData
struct MemberData
{

MemberId member_id;
LoadAlert alert;

};

The member data.

MemberPolicyValue
struct MemberPolicyValue
{

GroupId group_id;
MemberId member_id;

};

The member policy value.

Exceptions MemberExists
exception MemberExists
{
};

A MemberExists exception indicates that a member with the specified id is
already exists in the load balanced group.

MemberNotFound
exception MemberNotFound
{
};

A MemberNotFound exception indicates that the specified member does not
exist in the load balanced group.

GroupExists
exception GroupExists
{

475

CHAPTER F | Orbacus Balancer Reference
};

A GroupExists exception indicates that a load balanced group with the
specified id already exists.

GroupNotFound
exception GroupNotFound
{
};

A GroupNotFound exception indicates that the specified load balanced
group does not exist.

StrategyNotFound
exception StrategyNotFound
{
};

A StrategyNotFound exception indicates that the specified strategy is not
supported by the Balancer.

StrategyNotAdaptive
exception StrategyNotAdaptive
{
};

A StrategyNotAdaptive exception indicates that the strategy is not an
adaptive strategy and does not require load updates.

InvalidProperties
exception InvalidProperties
{

PropertyErrorSeq error;
};

An InvalidProperties exception indicates that specified properties were not
valid and could not be used to create the strategy.
 476

Module LoadBalancing
Interface LoadBalancing::LoadAlert
interface LoadAlert

Implemented by a server that wishes to receive load alerts (a signal to
redirect requests back to the Balancer).

Operations alert
void alert();

Redirect the next request back to the Balancer.
477

CHAPTER F | Orbacus Balancer Reference
Interface LoadBalancing::Strategy
interface Strategy

Used to choose the next member to service a new client connection. The
Balancer provides several implementations of the Strategy interface.

Operations get_name
string get_name();

Retrieve the name of the strategy.

get_properties
PropertySeq get_properties();

Get the property set of the strategy.

adjust
void adjust(in MemberDataSeq members);

Update the members.

get_next
MemberId get_next()

raises(MemberNotFound);

Get an un-loaded member.

push_load
void push_load(in MemberId member_id,

in unsigned long load)
raises(MemberNotFound,

StrategyNotAdaptive);

Update the load of a member.

destroy
void destroy();

Destroy the strategy.
 478

Module LoadBalancing
Interface LoadBalancing::StrategyProxy
interface StrategyProxy

Acts as a proxy for the load balancing strategy.

Operations get_name
string get_name();

Retrieve the name of the strategy.

get_properties
PropertySeq get_properties();

Get the property set of the strategy.

push_load
void push_load(in MemberId member_id,

in unsigned long load)
raises(MemberNotFound,

StrategyNotAdaptive);

Update the load of a member.
479

CHAPTER F | Orbacus Balancer Reference
Interface LoadBalancing::Group
interface Group

Represents a load balanced group.

Operations get_id
GroupId get_id();

Get the id of the load balanced group.

get_ior
Object get_ior(in string repository_id,

in ObjectId oid);

Get an IOR for use by a client of this load balanced group.

get_strategy_proxy
StrategyProxy get_strategy_proxy();

Get the strategy proxy of the load balanced group.

set_strategy
void set_strategy(in string name,

in PropertySeq properties)
raises(StrategyNotFound,

InvalidProperties);

Use the specified built-in load balancing strategy.

set_custom_strategy
void set_custom_strategy(in Strategy the_strategy);

Use the given custom load balancing strategy.

add_member
void add_member(in MemberId member_id)

raises(MemberExists);

Add a member to the load balanced group.

remove_member
void remove_member(in MemberId member_id)

raises(MemberNotFound);

Remove a member of the load balanced group.

set_load_alert
void set_load_alert(in MemberId member_id,
 480

Module LoadBalancing
in LoadAlert alert)
raises(MemberNotFound);

Set the LoadAlert object for a member.

list_members
MemberIdSeq list_members();

Enumerate the members.

destroy
void destroy();

Destroy the load balanced group.
481

CHAPTER F | Orbacus Balancer Reference
Interface LoadBalancing::GroupFactory
interface GroupFactory

Used to create, destroy and retrieve load balanced groups.

Operations create
Group create(in GroupId group_id)

raises(GroupExists);

Create a new load balanced group with the given id.

get
Group get(in GroupId group_id)

raises(GroupNotFound);

Get the load balanced group with the given id.

list
GroupIdSeq list();

List the set of existing load balanced groups.

shutdown
void shutdown();

Shutdown the Balancer.
 482

Module LoadBalancing::Util
Module LoadBalancing::Util
The definitions in this module provide the interface for the Orbacus Balancer
utility objects that are provided by the Balancer. These utility objects can be
used to implement the features required by load balanced servers that use
adaptive load balancing.
483

CHAPTER F | Orbacus Balancer Reference
Interface LoadBalancing::Util::LoadAlert
local interface LoadAlert

Interface to manage load alerts sent by the Balancer.

Operations alert
void alert();

Forward the next request to the Balancer.

get_alert_expire
unsigned long get_alert_expire();

Retrieve the alert expire time.

set_alert_expire
void set_alert_expire(in unsigned long millis);

Set the alert expire time.
 484

Module LoadBalancing::Util
Interface LoadBalancing::Util::LoadCalculator
local interface LoadCalculator

Interface for the calculation of the server load.

 The LoadCalculator is used by the LoadUpdater to calculate the current
load of the server (which will be used as the load of each member registered
with the LoadUpdater). The implementation provided by the Balancer
calculates the load based on the number of active requests since the last
invocation of calculate_load().

See Also:

“Interface LoadBalancing::Util::LoadUpdater”

Operations calculate_load
unsigned long calculate_load();

Calculate the load.
485

CHAPTER F | Orbacus Balancer Reference
Interface LoadBalancing::Util::LoadUpdater
local interface LoadUpdater

Interface to manage load updates sent to the Balancer.

 At regular intervals (set by the update frequency) the LoadUpdater gets the
load from the LoadCalculator and pushes it to the load balanced group of
each registered member.

See Also:

“Interface LoadBalancing::Util::LoadCalculator”

Operations get_update_frequency
unsigned long get_update_frequency();

Retrieve the load push frequency.

set_update_frequency
void set_update_frequency(in unsigned long millis);

Set the load push frequency.

set_load_calculator
void set_load_calculator(in LoadCalculator calc);

Set the load calculator.

register_member
void register_member(in MemberId member_id,

in GroupId group_id)
raises(GroupNotFound);

Register a load balanced group member.

unregister_member
void unregister_member(in MemberId member_id,

in GroupId group_id);

Unregister a load balanced group member.
 486

References
[1] Buschman, F., et al. 1996. Pattern-Oriented Software

Architecture: A System of Patterns. New York: Wiley.

[2] Gamma, E., et al. 1994. Design Patterns. Reading, MA:
Addison-Wesley

[3] Henning, M., and S. Vinoski. 1999. Advanced CORBA
Programming with C++. Reading, MA: Addison-Wesley.

[4] Object Management Group. 1999. The Common Object
Request Broker: Architecture and Specification. Revision
2.3.1. ftp://www.omg.org/pub/docs/formal/99-10-07.pdf.
Framingham, MA: Object Management Group.

[5] Object Management Group. 1999. C++ Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-45.pdf.
Framingham, MA: Object Management Group.

[6] Object Management Group. 1999. IDL/Java Language
Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-53.pdf.
Framingham, MA: Object Management Group.

[7] Object Management Group. 1999. Portable Interceptors.
ftp://ftp.omg.org/pub/docs/orbos/99-12-02.pdf.
Framingham, MA: Object Management Group.

[8] Object Management Group. 1998. CORBA Messaging.
ftp://ftp.omg.org/pub/docs/orbos/98-05-06.pdf.
Framingham, MA: Object Management Group.

[9] Object Management Group. 1998. CORBAservices: Common
Object Services Specification.
ftp://www.omg.org/pub/docs/formal/98-12-09.pdf.
Framingham, MA: Object Management Group.

[10] Object Management Group. 1999. Naming Service
Specification. ftp://ftp.omg.org/pub/docs/ptc/99-12-03.pdf.
Framingham, MA: Object Management Group.
487

CHAPTER G |
[11] IONA Technologies, Inc. 2001. JThreads/C++.
http://www.orbacus.com/jtc/. Waltham, MA: IONA
Technologies, Inc.

[12] IONA Technologies, Inc. 2001. JThreads/C++ User’s Manual.
Waltham, MA: IONA Technologies, Inc.

[13] IONA Technologies, Inc. 2001. Orbacus.
http://www.orbacus.com/ob/. Waltham, MA: IONA
Technologies, Inc.

[14] Schmidt, D. C. 1995. “Reactor: An Object Behavioral
Pattern for Concurrent Event Demultiplexing and Event
Handler Dispatching.” In Pattern Languages of Program
Design, ed. James O. Coplien and Douglas C. Schmidt.
Reading, MA: Addison-Wesley.
 488

Index

B
Basic Object Adapter 87
Bindings 191
BOA 87

C
Callbacks 81
Command-line Options 62
Concurrency Models

Threaded 332
Thread-per-Client 334
Thread-per-Request 335
Thread Pool 336

Configuration File 64
Currently Executing Request 116

D
Documenting IDL Files 41

E
Event Channel 240
Event Consumers 241
Event Loop 83
Event Service 231
Event Suppliers 241
Exceptions 377

H
Hello World example application 2
Hostname 125, 347
HTML 41

I
IFR 251
Implementation Repository 151, 153
Implementation Repository Administration 164
IMR 151, 153
IMR Console 175
included IDL files 40
Initial Services 138, 148

Configuring 145
Resolving 143
Interface Repository 251
IP Address 349, 351
irdel 258
irfeed 258

J
javadoc 43

N
Names Console 205
Name Service

Configuration 187
Initialization 195
Persistence 188

O
OAD 153
Object Activation Daemon 153
Object Adapter

Configuration 59
Initialization 50

Object Key 127
Object References 120
Objects

Locating 119
Persistent 106
Transient 106

OCI 341
Acceptor 342
Acceptor Factory 342
Bi-directional Plug-in 367
Connector 342
Connector Factory 342
IIOP Plug-in 353, 358, 367
Info Objects 343
Registries 342
Transport 342

Open Communications Interface 341
Options

hidl 35
irgen 38
489

INDEX
jidl 33
ridl 36

ORB
Configuration 52
Destruction 82

ORBacus Names 181

P
POA 87, 156
POA Manager 71

Root POA Manager 72
Policies 301

ACMTimeoutPolicy 303
BidirectionalPolicy 303
ConnectionReusePolicy 303
ConnectTimeoutPolicy 303
InterceptorCallPolicy 305
InterceptorPolicy 304
LocationTransparencyPolicy 304
ProtocolPolicy 304
RequestTimeoutPolicy 304
RetryPolicy 305
TimeoutPolicy 305

Popup Menu 217
Port 126, 347
Portable Object Adapter 87
Programming Examples

Event Service 247
Implementation Repository 170, 282
Interface Repository 259
Name Service 194
OCI 345
Policies 306
Property Service 227

Properties
ooc.config 52
ooc.event.max_events 235
ooc.event.max_retries 235
ooc.event.port 235
ooc.event.pull_interval 235
ooc.event.retry_multiplier 235
ooc.event.retry_timeout 235
ooc.event.trace.events 236
ooc.event.trace.lifecycle 236
ooc.event.typed_service 236
ooc.ifr.options 255
ooc.ifr.port 255
ooc.imr.dbdir 162, 270, 281
ooc.imr.trace.oad 162, 270, 281
 490
ooc.naming.callback_timeout 187
ooc.naming.database 187
ooc.naming.no_updates 187
ooc.naming.port 187
ooc.naming.timeout 187
ooc.naming.trace_level 187
ooc.oci.client 52
ooc.oci.plugin 52
ooc.oci.server 52
ooc.orb.client_timeout 53
ooc.orb.conc_model 53
ooc.orb.default_init_ref 53
ooc.orb.default_wcs 53
ooc.orb.extended_wchar 53
ooc.orb.giop.max_message_size 53
ooc.orb.id 54
ooc.orb.module.name 54
ooc.orb.modules 54
ooc.orb.native_cs 54
ooc.orb.native_wcs 54
ooc.orb.oa.conc_model 59
ooc.orb.oa.endpoint 60
ooc.orb.oa.numeric 61
ooc.orb.oa.thread_pool 60
ooc.orb.oa.version 60
ooc.orb.poamanager.manager.conc_model 61
ooc.orb.poamanager.manager.endpoint 61
ooc.orb.poamanager.manager.version 61
ooc.orb.policy.connection_reuse 55
ooc.orb.policy.connect_timeout 55
ooc.orb.policy.interceptor 55
ooc.orb.policy.locate_request 55
ooc.orb.policy.location_transparency 55
ooc.orb.policy.protocol 55
ooc.orb.policy.rebind 55
ooc.orb.policy.request_timeout 55
ooc.orb.policy.retry 56
ooc.orb.policy.retry.interval 56
ooc.orb.policy.retry.max 56
ooc.orb.policy.retry.remote 56
ooc.orb.policy.sync_scope 56
ooc.orb.policy.timeout 56
ooc.orb.server_name 56
ooc.orb.server_shutdown_timeout 57
ooc.orb.server_timeout 57
ooc.orb.service.name 57
ooc.orb.trace.connections 58
ooc.orb.trace.retry 58
ooc.orb.use_type_code_cache 57

INDEX
ooc.property.port 220
Property Service 219

R
Reactor 338
Recursion 209
RTF 41

S
Servants 88

Activation 101
C++ 98
Deactivation 106
Delegation 92
Inheritance 89
Java 99

T
Toolbar 178, 216

U
URL 131, 132

corbaloc 133
corbaname 135
file 136
relfile 137

W
Windows NT Registry 65
Windows Reactor 340

X
X11 Reactor 339
491

INDEX
 492

	Preface
	Getting Started
	The ‘Hello World’ Example Application
	Defining the Example in IDL
	Implementing the Example in C++
	Implementing the Server
	Writing the Server Program
	Implementing the Client
	Compiling and Linking
	Running the Application

	Implementing the Example in Java
	Implementing the Server
	Implementing the Client
	Compiling
	Running the Application

	Summary
	Where To Go From Here

	Generating Code with Orbacus
	Orbacus Translators
	Translating IDL to C++
	Translating IDL to Java
	Translating IDL to HTML
	Translating IDL to RTF
	Generating C++ from an Interface Repository
	The IDL-to-C++ Translator and the Interface Repository
	Include Statements
	Documenting IDL Files
	Using javadoc

	ORB and Object Adapter Initialization
	Initializing the C++ ORB
	Initializing the Java ORB
	Object Adapter Initialization
	Configuring the ORB and Object Adapter
	ORB Properties
	OA Properties
	Command-line Options
	Using a Configuration File
	Using the Windows NT Registry
	Defining Properties
	Precedence of Properties
	Advanced Property Usage

	Using POA Managers
	The Root POA Manager
	Anonymous POA Managers
	The POA Manager Factory
	Creating a POA Manager
	POA Manager Policies
	Endpoints
	Command-line Options and Endpoints
	Dispatching Requests
	Callbacks

	ORB Destruction
	Server Event Loop

	CORBA Objects
	Overview
	Implementing Servants
	Implementing Servants using Inheritance
	Implementing Servants using Delegation

	Creating Servants
	Creating Servants using C++
	Creating Servants using Java

	Activating Servants
	Implicit Activation of Servants using C++
	Implicit Activation of Servants using Java
	Explicit Activation of Servants using C++
	Explicit Activation of Servants using Java

	Deactivating Servants
	Factory Objects
	Factory Objects using C++
	Factory Objects using Java
	Caveats
	Obtaining the POA for a Servant
	Getting the POA for a Currently Executing Request

	Locating Objects
	Obtaining Object References
	Lifetime of Object References
	Hostname
	Port Number
	Object Key

	Stringified Object References
	Using a File
	Using a URL

	Object Reference URLs
	corbaloc: URLs
	corbaname: URLs
	file: URLs
	relfile: URLs

	The BootManager
	BootManager Interface
	How the BootManager Works
	Using the BootManager

	Initial Services
	Resolving an Initial Service
	Configuring the Initial Services
	The Initial Service Locator

	The IORDump utility

	The Implementation Repository
	Background
	Information Managed by the IMR
	IMR Security
	Usage
	Windows NT Native Service
	Configuration Properties
	Connecting to the Service
	Utilities
	Getting Started with the Implementation Repository
	Programming Example

	The Implementation Repository Console
	Usage
	The Menus

	Orbacus Names
	Usage
	Windows NT Native Service
	Configuration Properties
	Persistence
	Connecting to the Service
	Using the Naming Service with the IMR
	Bindings
	Name Resolution
	Programming Example
	Initialization
	Binding
	Exceptions
	The Event Loop
	Releasing Resources

	Orbacus Names Console
	Usage
	Naming Service Lookup
	The Menus
	The Edit Menu
	The View Menu
	The Tools Menu

	The Toolbar
	The Popup Menu

	Orbacus Properties
	Usage
	Connecting to the Service
	Using the Property Service with the IMR
	Creating Properties
	Querying for Properties
	Deleting Properties
	Programming Example

	Orbacus Events
	Usage
	Windows NT Native Service
	Configuration Properties

	Connecting to the Service
	Using the Event Service with the IMR
	Event Service Concepts
	The Event Channel
	Event Suppliers and Consumers
	Event Channel Policies
	Event Channel Factories

	Programming Example

	The Interface Repository
	Usage
	Windows NT Native Service
	Configuration Properties

	Connecting to the Interface Repository
	Configuration Issues
	Interface Repository Utilities
	Programming Example

	Orbacus Balancer
	Basic Concepts
	Load Balancing Strategies
	Service Security
	Usage
	Windows NT Native Service
	Configuration Properties
	Built-in Load Balancing Strategies

	Connecting to the Service
	Load Balanced IMR-enabled Servers
	Utilities
	Service Administration
	Making References
	Utility Objects
	Utility Object Configuration Properties

	Programming Example
	Non-adaptive Load Balancing
	Adaptive Load Balancing
	Running the Load Balanced Servers

	Orbacus Watson
	Tracing Levels
	Installing Watson in C++
	Installing Watson in Java
	Configuration Properties
	Sample Configuration File

	Using Policies
	Overview
	Supported Policies
	Programming Examples
	Connection Reuse Policy
	Retry Policy
	Timeout Policy
	Interceptor Call Policy
	CommunicationsConcurrencyPolicy
	EndpointConfigurationPolicy
	GIOPVersionPolicy
	Bidirectional Policy

	Concurrency Models
	Concurrency Models
	Single-Threaded Concurrency Model
	Multi-Threaded Concurrency Models
	Threaded Clients and Servers
	Thread-per-Client Server
	Thread-per-Request Server
	Thread Pool Server
	Leader_Follower

	The Reactor
	The X11 Reactor
	The Windows Reactor

	The Open Communications Interface
	Interface Summary
	Class Diagram

	OCI Reference
	A ‘Converter’ Class for Java
	Getting Hostnames and Port Numbers
	Determining a Client’s IP Address
	Determining a Server’s IP Address

	The IIOP OCI Plug-in
	Endpoint Configuration
	Command-line Options
	Static Linking

	The UDP OCI Plug-in
	Client Installation
	Server Installation
	Endpoint Configuration
	Static Linking
	URL Support
	Narrowing UDP Object References

	The Bi-directional OCI Plug-in
	How Does it Work?
	Peers
	Client Installation
	Server Installation
	Endpoint Configuration
	Command-line Options
	Configuration Properties
	Static Linking
	URL Support

	Exceptions and Error Messages
	CORBA System Exceptions
	INITIALIZE Minor Exception Code
	UNKNOWN Minor Exception Code
	BAD_PARAM Minor Exception Code
	NO_MEMORY Minor Exception Code
	IMP_LIMIT Minor Exception Code
	COMM_FAILURE Minor Exception Code
	MARSHAL Minor Exception Code
	NO_IMPLEMENT Minor Exception Code
	NO_RESOURCES Minor Exception Code
	BAD_INV_ORDER Minor Exception Code
	TRANSIENT Minor Exception Code
	INTF_REPOS Minor Exception Code
	OBJECT_NOT_EXIST Minor Exception Code
	INV_POLICY Minor Exception Code

	Non-Compliant Application Asserts

	Boot Manager Reference
	Interface OB::BootManager
	Interface OB::BootLocator

	Orbacus Policy Reference
	Module OB
	Interface OB::ConnectTimeoutPolicy
	Interface OB::ConnectionReusePolicy
	Interface OB::InterceptorPolicy
	Interface OB::LocateRequestPolicy
	Interface OB::LocationTransparencyPolicy
	Interface OB::ProtocolPolicy
	Interface OB::RequestTimeoutPolicy
	Interface OB::RetryPolicy
	Interface OB::TimeoutPolicy

	Module OBPortableServer
	Interface OBPortableServer::InterceptorCallPolicy

	BiDirPolicy

	Reactor Reference
	Module OB
	Interface OB::Reactor

	Logger Reference
	Interface OB::Logger
	Interface OB::WLogger

	Open Communications Interface Reference
	Module OCI
	Interface OCI::Buffer
	Interface OCI::Plugin
	Interface OCI::Transport
	Interface OCI::TransportInfo
	Interface OCI::CloseCB
	Interface OCI::Connector
	Interface OCI::ConnectorInfo
	Interface OCI::ConnectCB
	Interface OCI::ConFactory
	Interface OCI::ConFactoryInfo
	Interface OCI::ConFactoryRegistry
	Interface OCI::Acceptor
	Interface OCI::AcceptorInfo
	Interface OCI::AcceptCB
	Interface OCI::AccFactory
	Interface OCI::AccFactoryInfo
	Interface OCI::AccFactoryRegistry
	Interface OCI::Current

	Module OCI::IIOP
	Interface OCI::IIOP::TransportInfo
	Interface OCI::IIOP::ConnectorInfo
	Interface OCI::IIOP::ConFactoryInfo
	Interface OCI::IIOP::AcceptorInfo
	Interface OCI::IIOP::AccFactoryInfo

	Orbacus Balancer Reference
	Module LoadBalancing
	Interface LoadBalancing::LoadAlert
	Interface LoadBalancing::Strategy
	Interface LoadBalancing::StrategyProxy
	Interface LoadBalancing::Group
	Interface LoadBalancing::GroupFactory

	Module LoadBalancing::Util
	Interface LoadBalancing::Util::LoadAlert
	Interface LoadBalancing::Util::LoadCalculator
	Interface LoadBalancing::Util::LoadUpdater

	Index

