User Guide
Version 4.3.1

IONA Technologies PLC

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.

“Orbacus” and “JThreads/C+ +" are trademarks or registered trademarks of IONA Tech-
nologies, Inc.

IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA e-Busi-
ness Platform, and Total Business Integration are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 07-Feb-2006

Contents

List of Figures

Part | Using Orbacus

Chapter 1 Introduction to Orbacus
Overview

Chapter 2 Getting Started

The ‘Hello World’ Example Application

Defining the Example in IDL

Implementing the Example in C+ +
Implementing the Server
Writing the Server Program
Implementing the Client
Compiling and Linking
Running the Application

Implementing the Example in Java
Implementing the Server
Implementing the Client
Compiling
Running the Application

Summary

Where To Go From Here

Chapter 3 Generating Code with Orbacus

Orbacus Translators
Translating IDL to C++
Translating IDL to Java
Translating IDL to HTML
Translating IDL to RTF

Generating C++ from an Interface Repository

XiX

AW

10
11
13
17
19
20
21
22
26
28
29
30
31

33

34
35
39
41
42
44

CONTENTS

The IDL-to-C+ + Translator and the Interface Repository 45
Include Statements 46
Documenting IDL Files 47
Using javadoc 49
Chapter 4 ORB and Object Adapter Initialization 53
Initializing the C++ ORB 54
Initializing the Java ORB 55
Object Adapter Initialization 56
Configuring the ORB and Object Adapter 57
ORB Properties 58

OA Properties 65
Command-line Options 68

Using a Configuration File 70

Using the Windows NT Registry 71
Defining Properties 72
Precedence of Properties 74
Advanced Property Usage 75

Using POA Managers 77
The Root POA Manager 78
Anonymous POA Managers 79

The POA Manager Factory 80
Creating a POA Manager 81

POA Manager Policies 83
Endpoints 84
Command-line Options and Endpoints 85
Dispatching Requests 86
Callbacks 87

ORB Destruction 88
Server Event Loop 89
Chapter 5 CORBA Objects 91
Overview 92
Implementing Servants 94
Implementing Servants using Inheritance 95
Implementing Servants using Delegation 98
Creating Servants 103

Creating Servants using C++ 104

CONTENTS

Creating Servants using Java 105
Activating Servants 107
Implicit Activation of Servants using C++ 108
Implicit Activation of Servants using Java 109
Explicit Activation of Servants using C++ 110
Explicit Activation of Servants using Java 111
Deactivating Servants 112
Factory Objects 114
Factory Objects using C++ 116
Factory Objects using Java 118
Caveats 119
Obtaining the POA for a Servant 120
Getting the POA for a Currently Executing Request 122
Chapter 6 Locating Objects 125
Obtaining Object References 126
Lifetime of Object References 130
Hostname 131

Port Number 132
Object Key 133
Stringified Object References 134
Using a File 135

Using a URL 137
Object Reference URLs 138
corbaloc: URLs 139
corbaname: URLs 141

file: URLs 142
relfile: URLs 143

The BootManager 144
BootManager Interface 145

How the BootManager Works 146

Using the BootManager 147

Initial Services 148
Resolving an Initial Service 149
Configuring the Initial Services 151

The Initial Service Locator 153

The IORDump utility 154

CONTENTS

Chapter 7 The Implementation Repository 157
Background 159
Information Managed by the IMR 160
IMR Security 163
Usage 164
Windows NT Native Service 166
Configuration Properties 168
Connecting to the Service 169
Utilities 170
Getting Started with the Implementation Repository 173
Programming Example 176

Chapter 8 The Implementation Repository Console 181
Usage 182
The Menus 183

Chapter 9 Orbacus Names 187
Usage 189
Windows NT Native Service 191
Configuration Properties 193
Persistence 194
Connecting to the Service 195
Using the Naming Service with the IMR 196
Bindings 197
Name Resolution 199
Programming Example 200

Initialization 201
Binding 203
Exceptions 206
The Event Loop 208
Releasing Resources 209

Chapter 10 Orbacus Names Console 211
Usage 212
Naming Service Lookup 213
The Menus 214

The Edit Menu 216

The View Menu 218

Vi

CONTENTS

The Tools Menu 220

The Toolbar 222

The Popup Menu 223
Chapter 11 Orbacus Properties 225
Usage 226
Connecting to the Service 227

Using the Property Service with the IMR 228
Creating Properties 229
Querying for Properties 230
Deleting Properties 232
Programming Example 233
Chapter 12 Orbacus Events 237
Usage 238
Windows NT Native Service 239
Configuration Properties 241

Connecting to the Service 243

Using the Event Service with the IMR 244

Event Service Concepts 245

The Event Channel 246

Event Suppliers and Consumers 247

Event Channel Policies 249

Event Channel Factories 250
Programming Example 253
Chapter 13 The Interface Repository 257
Usage 258
Windows NT Native Service 259
Configuration Properties 261

Connecting to the Interface Repository 262
Configuration Issues 263
Interface Repository Utilities 264
Programming Example 265
Chapter 14 Orbacus Balancer 267
Basic Concepts 268

Load Balancing Strategies 269

vii

CONTENTS

Service Security
Usage
Windows NT Native Service
Configuration Properties
Built-in Load Balancing Strategies
Connecting to the Service
Load Balanced IMR-enabled Servers
Utilities
Service Administration
Making References
Utility Objects
Utility Object Configuration Properties
Programming Example
Non-adaptive Load Balancing
Adaptive Load Balancing
Running the Load Balanced Servers

Chapter 15 Orbacus Watson
Tracing Levels
Installing Watson in C+ +
Installing Watson in Java
Configuration Properties
Sample Configuration File

Chapter 16 Using Policies

Overview

Supported Policies

Programming Examples
Connection Reuse Policy
Retry Policy
Timeout Policy
Interceptor Call Policy
CommunicationsConcurrencyPolicy
EndpointConfigurationPolicy
GIOPVersionPolicy
Bidirectional Policy

Chapter 17 Asynchronous Method Invocation

viii

272
273
274
276
278
281
282
283
284
285
286
287
288
289
294
298

301
302
303
304
305
306

307
308
309
312
313
316
318
319
321
323
325
327

331

Introduction

AMI Router

Router Usage

Router Administration Properties
AMI Reply Handler Implementation
AMI Poller Implementation
Configuring Clients and Servers

Chapter 18 Concurrency Models
Concurrency Models
Single-Threaded Concurrency Model
Multi-Threaded Concurrency Models
Threaded Clients and Servers
Thread-per-Client Server
Thread-per-Request Server
Thread Pool Server
Leader_Follower

The Reactor
The X11 Reactor
The Windows Reactor

Chapter 19 The Open Communications Interface

Interface Summary
Class Diagram
OCI Reference
A ‘Converter’ Class for Java

Getting Hostnames and Port Numbers
Determining a Client’s IP Address
Determining a Server's IP Address

The 1IOP OCI Plug-in
Endpoint Configuration
Command-line Options
Static Linking

The UDP OCI Plug-in
Client Installation
Server Installation
Endpoint Configuration
Static Linking

CONTENTS

332
333
334
335
337
341
343

347
348
350
353
354
356
357
358
359
360
361
362

363
364
366
367
368
369
371
373
375
376
378
379
380
381
382
383
386

CONTENTS

URL Support 387
Narrowing UDP Object References 388

The Bi-directional OCI Plug-in 389
How Does it Work? 390

Peers 391

Client Installation 392
Server Installation 393
Endpoint Configuration 394
Command-line Options 395
Configuration Properties 396

Static Linking 397

URL Support 398
Chapter 20 Exceptions and Error Messages 399
CORBA System Exceptions 400
INITIALIZE Minor Exception Code 403
UNKNOWN Minor Exception Code 404
BAD_PARAM Minor Exception Code 405
NO_MEMORY Minor Exception Code 407
IMP_LIMIT Minor Exception Code 408
COMM_FAILURE Minor Exception Code 409
MARSHAL Minor Exception Code 410
NO_IMPLEMENT Minor Exception Code 412
NO_RESOURCES Minor Exception Code 413
BAD_INV_ORDER Minor Exception Code 414
TRANSIENT Minor Exception Code 415
INTF_REPOS Minor Exception Code 416
OBJECT_NOT_EXIST Minor Exception Code 417
INV_POLICY Minor Exception Code 418
Non-Compliant Application Asserts 419
Appendix A Boot Manager Reference 423
Interface OB::BootManager 424
Interface OB::BootLocator 426
Appendix B Orbacus Policy Reference 427
Module OB 428

Interface OB::ConnectTimeoutPolicy 430

CONTENTS

Interface OB::ConnectionReusePolicy 431
Interface OB::InterceptorPolicy 432
Interface OB::LocateRequestPolicy 433
Interface OB::LocationTransparencyPolicy 434
Interface OB::ProtocolPolicy 435
Interface OB::RequestTimeoutPolicy 436
Interface OB::RetryPolicy 437
Interface OB::TimeoutPolicy 438
Module OBPortableServer 439
Interface OBPortableServer::InterceptorCallPolicy 440
BiDirPolicy 441
Appendix C Reactor Reference 443
Module OB 444
Interface OB::Reactor 445
Appendix D Logger Reference 447
Interface OB::Logger 448
Interface OB::WLogger 449
Appendix E Open Communications Interface Reference 451
Module OCI 452
Interface OCI::Buffer 456
Interface OCI::Plugin 458
Interface OCl::Transport 459
Interface OCl::Transportinfo 464
Interface OClI::CloseCB 466
Interface OCI::Connector 467
Interface OCI::Connectorinfo 469
Interface OCI::ConnectCB 471
Interface OCl::ConFactory 472
Interface OCl::ConFactorylnfo 474
Interface OCl::ConFactoryRegistry 475
Interface OCl::Acceptor 476
Interface OCI::Acceptorinfo 479
Interface OCl::AcceptCB 481
Interface OCl::AccFactory 482
Interface OCl::AccFactorylnfo 484

Xi

CONTENTS

Interface OCI::AccFactoryRegistry

Interface OCI::Current
Module OCI::1IOP

Interface OCI::1l0P::Transportinfo
Interface OClI::110P::Connectorinfo
Interface OClI::110P::ConFactoryInfo
Interface OClI::110P::Acceptorinfo
Interface OCI::IOP::AccFactoryInfo

Appendix F Orbacus Balancer Reference

Module LoadBalancing

Interface LoadBalancing::
Interface LoadBalancing:
Interface LoadBalancing:
Interface LoadBalancing:
Interface LoadBalancing:

Module LoadBalancing::Util

Interface LoadBalancing::
Interface LoadBalancing::
Interface LoadBalancing::

Orbacus Bibliography

Part Il FreeSSL

LoadAlert

:Strategy
:StrategyProxy
:Group
:GroupFactory

Util::LoadAlert
Util::LoadCalculator
Util::LoadUpdater

Chapter 1 Using FreeSSL for Orbacus

What is SSL?
Installation

Endpoint Configuration
Command-Line Options
Static Linking

URL Support

Contexts

Chapter 2 Extending the ‘Hello World’ Application

Server Side Usage

Xii

485
486
487
488
489
490
491
492

493
494
499
500
501
502
504
505
506
507
508

509

513
514
517
519
520
521
522
523

529
530

Client Side Usage

Determining Peer Identity

Preventing Connections to Secure/Insecure Servers
Complete Example

Client Side

Server Side

Appendix A FSSL Definitions
Appendix B Toolkits Supported by FSSL

Appendix C FSSL Reference
Module CORBA
Module FSSL
Module IOP
Module OB

FSSL Bibliography

Part Il JThreads

Chapter 1 Introduction to JThreads/C+ +

Overview

Chapter 2 ‘Hello World’
‘Hello World’ in Java
‘Hello World’ in C+ +
‘Hello World’ with Runnable

Chapter 3 Working With Threads
Synchronization
Thread Safe Version in Java
Thread Safe Version in C++
Block Synchronization
Static Monitors

CONTENTS

534
537
539
540
541
550

559

561

563
564
565
570
572

573

577
578

581
582
583
585

587
588
590
592
594
597

xiii

CONTENTS

The Wait, Notify and NotifyAll Methods

The Stop and Suspend Methods
The Join and IsAlive Methods

Chapter 4 Memory Management

Reference Counting
Introducing ‘Handles’

The JTCHandleT Template
Rules of Thumb

Appendix A Class Reference

Xiv

JTClInitialize
JTCAdoptCurrentThread
JTCThread

JTCRunnable
JTCThreadGroup

JTCHandleT

JTCMonitor

JTCMonitorT
JTCRecursiveMutex
JTCMutex

JTCRWMutex
JTCSynchronized

JTCSyncT

JTCReadLock

JTCWriteLock

JTCThreadld

JTCThreadKey

JTCTSS

JTCThreadDeath
JTCException
JTClInterruptedException
JTClllegalThreadStateException
JTClllegalMonitorStateException
JTClllegalArgumentException
JTCSystemCallException
JTCUnknownThreadException
JTCOutOfMemoryError

600
604
608

611
612
613
615
616

617
618
620
621
629
630
635
638
640
642
644
646
647
649
650
651
652
653
654
656
657
659
660
661
662
663
664
665

CONTENTS

JTClInitializeError 666

JThreads Bibliography 667

Part IV Orbacus Notification

Chapter 1 Introduction 671
Overview 672
Chapter 2 Configuration and Startup 675
Orbacus Notify 676
Orbacus Notify Console 683
Startup Example 684
Chapter 3 Notification Service Concepts 687
Overview 688

The OMG Event Service 690
Delivery Models 691

Object Management Hierarchy 694

Event Delivery 696

The OMG Notification Service 697
Delivery Models 698

Object Management Hierarchy 699

Event Delivery 700

Event Translation 702

Filtering 703

Mapping Filters 707

Quality of Service 709

Proprietary QoS Properties 713
Administrative Properties 715

Subscription Sharing 716

Chapter 4 Programming Example 719
Introduction 720
Connecting to a Notification Channel 721

Connecting a Consumer 731

Xv

CONTENTS

Connecting to a Proxy 735

Supplying Events 739
Consuming Events 741
Filtering 742
Disconnecting from a Notification Channel 749
Building Orbacus Notify Clients 751
Chapter 5 Orbacus Notify Console 753
Overview 754

The Orbacus Notify Console Menus 757
Creation Wizards 759
Managing Notification Channels 760
Managing Admins 763
Managing Proxies 766
Managing Filters 769
Managing Filter Constraints 770
Managing Mapping Filters 772
Managing Mapping Filter Constraint-Value Pairs 773
Appendix A CosEventChannelAdmin Reference 777
Module CosEventChannelAdmin 778
Interface CosEventChannelAdmin::ProxyPushConsumer 779

Interface CosEventChannelAdmin::ProxyPullSupplier 780

Interface CosEventChannelAdmin::ProxyPullConsumer 781

Interface CosEventChannelAdmin::ProxyPushSupplier 782

Interface CosEventChannelAdmin::ConsumerAdmin 783

Interface CosEventChannelAdmin::SupplierAdmin 784

Interface CosEventChannelAdmin::EventChannel 785

Appendix B CosEventComm Reference 787
Module CosEventComm 788
Interface CosEventComm::PushConsumer 789

Interface CosEventComm::PushSupplier 790

Interface CosEventComm::PullSupplier 791

Interface CosEventComm::PullConsumer 792

Appendix C CosNotification Reference 793

Module CosNotification 794

XVi

Interface CosNotification::QoSAdmin
Interface CosNotification::AdminPropertiesAdmin

Appendix D CosNotifyChannelAdmin Reference

Module CosNotifyChannelAdmin
Interface CosNotifyChannelAdmin::
Interface CosNotifyChannelAdmin::
Interface CosNotifyChannelAdmin::
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin::
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin::
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin::
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin:
Interface CosNotifyChannelAdmin::
Interface CosNotifyChannelAdmin::

ProxyConsumer
ProxySupplier
ProxyPushConsumer

:StructuredProxyPushConsumer
:SequenceProxyPushConsumer

ProxyPullSupplier

:StructuredProxyPullSupplier
:SequenceProxyPullSupplier

ProxyPullConsumer

:StructuredProxyPullConsumer
:SequenceProxyPullConsumer

ProxyPushSupplier

:StructuredProxyPushSupplier
:SequenceProxyPushSupplier
:ConsumerAdmin
:SupplierAdmin

EventChannel
EventChannelFactory

Appendix E CosNotifyComm Reference

Module CosNotifyComm

Interface CosNotifyComm::
Interface CosNotifyComm::
Interface CosNotifyComm::
Interface CosNotifyComm::
Interface CosNotifyComm::
Interface CosNotifyComm::
Interface CosNotifyComm:
Interface CosNotifyComm:
Interface CosNotifyComm:
Interface CosNotifyComm:
Interface CosNotifyComm:
Interface CosNotifyComm:

NotifyPublish
NotifySubscribe
PushConsumer
PullConsumer
PullSupplier
PushSupplier

:StructuredPushConsumer
:StructuredPullConsumer
:StructuredPullSupplier
:StructuredPushSupplier
:SequencePushConsumer
:SequencePullConsumer

CONTENTS

803
804

805
806
810
812
814
815
816
817
818
819
820
821
822
823
824
825
826
829
831
834

837
838
839
840
841
842
843
844
845
846
847
848
849
850

Xvii

CONTENTS

Interface CosNotifyComm::SequencePullSupplier
Interface CosNotifyComm::SequencePushSupplier

Appendix F CosNotifyFilter Reference
Module CosNotifyFilter
Interface CosNotifyFilter::Filter
Interface CosNotifyFilter::MappingFilter
Interface CosNotifyFilter::FilterFactory
Interface CosNotifyFilter::FilterAdmin

Appendix G OBNotify Reference
Module OBNotify

Notify Bibliography

Index

xviii

851
852

853
854
858
862
866
867

869
870

873

875

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Documentation generated with the IDL-to-HTML translator

Servants, Proxies and the Object Adapter

Class Hierarchy for Delegation Implementation in C+ +

Class Hierarchy for Inheritance and Delegation Implementation in Java
Entering an IOR

The Ping Window

A closer look at the toolbar

A popup menu offers important operations

Reactive Server

Figure 10: Reactive Client/Server

Figure 11: Threaded Server

Figure 12: Thread-per-Client Server

Figure 13: Thread-per-Request Server

Figure 14: Thread Pool Server

Figure 15: OCI Class Diagram

Figure 16: Connection Requirements

Figure 1:
Figure 2:
Figure 3:
Figure 4-:
Figure b5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Starting the Orbacus Notify Console

Basic Event Service Communications Model

Canonical Push Model

Canonical Pull Model

Hybrid Push/Pull Model

Hybrid Pull/Push Model

Mixed Suppliers and Consumers

Event Service CosEventChannelAdmin Object Management Hierarchy
Notification Service CosNotifyChannelAdmin Object Management Hierarchy

Figure 10: CosNoatification::StructuredEvent

47

92

99
101
215
220
222
223
350
351
354
356
357
358
366
390
686
688
691
691
692
692
693
694
699
700

Xix

LIST OF FIGURES

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

XX

Event Translation Example

Filter Composition

Admin and Proxy Filtering

Mapping Filter Composition

Orbacus Notify Example

Connecting to a Notification Channel
Connecting a Supplier to a Notification Channel
Connecting a Consumer to a Notification Channel
Applying a Filter

Demo Event Structure

The Orbacus Notify Console Main Window
Popup Menu

Sample Creation Wizard

Notification Channel QoS Properties
Notification Channel Admin Properties
Admin QoS Properties

Consumer Admin Mapping Filters

Admin Subscription/Offer Types

Proxy QoS Properties

Supplier Proxy Mapping Filters

Proxy Subscription/Offer Types

Constraint Expression Properties
Constraint Event Type Properties
Constraint Expression Properties
Constraint Event Type Properties
Constraint Result to Set Properties

702
703
705
708
720
722
726
731
742
743
755
758
759
761
762
763
764
765
766
767
768
770
771
774
775
776

Part |
Using Orbacus

In this part This part contains the following chapters:

Introduction to Orbacus page 3
Getting Started page 7
Generating Code with Orbacus page 33
ORB and Object Adapter Initialization page 53
Locating Objects page 125
The Implementation Repository page 157
The Implementation Repository Console page 181
Orbacus Names page 187
Orbacus Names Console page 211
Orbacus Properties page 225
Orbacus Events page 237
The Interface Repository page 257
Orbacus Balancer page 267
Orbacus Watson page 301

Using Policies page 307

Asynchronous Method Invocation page 331
Concurrency Models page 347
The Open Communications Interface page 363
Exceptions and Error Messages page 399
Boot Manager Reference page 423
Orbacus Policy Reference page 427
Reactor Reference page 443
Logger Reference page 447
Open Communications Interface Reference page 451
Orbacus Balancer Reference page 493

Orbacus Bibliography page 509

In this chapter

CHAPTER 1

Introduction to
Orbacus

This chapter gives a short overview of Orbacus

This chapter contains the following section:

Overview page 4

CHAPTER 1 | Introduction to Orbacus

Overview

What is Orbacus? Orbacus is an Object Request Broker (ORB) that is compliant with the
Common Object Request Broker Architecture (CORBA) specification as
defined in “The Common Object Request Broker: Architecture and
Specification” [4], “C+ + Language Mapping” [5], “IDL/Java Language
Mapping” [6], and “Portable Interceptors” [71.

The following sections highlight some of the features of Orbacus.

Ease of Use ® Configuration and bootstrapping is simple:

¢ Daemon-less servers
. Servers started automatically by the Implementation Repository
+ URL-style object references

® Watson diagnostics and analysis - method tracing within the ORB

® Extensible Logging facility - output to multiple devices

® Documentation Tools - Translators (see “Orbacus Translators” on
page 34)
* IDL to Hypertext Markup Language (HTML)
+ IDL to Rich Text Format (RTF)

® JThreads/C+ + - Java like threading for C++. (See “JThreads” on
page 575.)

Qualities of Service ® Load Balancing - balance client requests across a set of replicated

objects and stateless servers.

® Fault Tolerance - transparent failover by implementing multiple profile
Interoperable Object References.

® Active Connection Management - reclaim idle connections
automatically, conserving threads, sockets, memory and other
important system resources.

® Security - FreeSSL plug-in provides secure authentication and
encryption facilities. (See “FreeSSL” on page 511.)

CORBA features

Platform support

About this Document

Overview

® Concurrency - Single and Multithreaded models to exploit power of
multiprocessor hardware.

® Dynamic Loading Of Modules - transparently install extensions and
services such as transactions, interceptors, and protocol plug-ins.

® Flexibility through pluggable transport protocols. (See “The Open
Communications Interface” on page 363.)

® CORBA 2.5 support

® CORBA Services
¢ Naming, Events and Property services are part of the Orbacus

product.
. Orbacus interoperates with the Orbix Notification, Orbix Trader
and Orbix Telecom Logging services.

® Portable Interceptors - provide a "hook" for adding code that is called
upon for each operation invocation.

® Portable Object Adapter - provides high scalability for servers that
contain very large numbers of objects.

® Objects by Value - reduce network traffic by turning a remote
interaction into a local invocation.

® Dynamic Invocation and Dynamic Skeleton Interface - send and receive
requests without compile-time knowledge of interface types and
operation signatures.

® Implementation Repository - start servers on demand and migrate
servers to different hosts without adversely affecting clients.

® |Interface Repository - build IDL-to-anything translators easily

® Support for Local Interfaces - standard way to implement
locality-constrained objects

For platform availability, please refer to the Orbacus home page at
http://www.orbacus.com/support/new_site/platforms.jsp.

This manual is—except for the “Getting Started” chapter—no replacement
for a good CORBA book. This manual also does not contain the precise
specifications of the CORBA standard, which are freely available on-line. A
good grasp of the CORBA specifications in [41, [5], and [6] is absolutely

http://www.orbacus.com/support/new_site/platforms.jsp
http://www.orbacus.com/support/new_site/platforms.jsp

CHAPTER 1 | Introduction to Orbacus

necessary to effectively use this manual. In particular, the chapters in [4],
covering CORBA IDL and the IDL-to-C+ + mapping, should be studied
thoroughly.

For C++ users, we also highly recommend [3]. This book contains by far
the best treatment of CORBA programming with C++ to date.

What this manual does contain, however, is information on how Orbacus
implements the CORBA standard. A shortcoming of the current CORBA
specification is that it leaves a high degree of freedom to the CORBA
implementation. For example, the precise semantics of a oneway call are
not specified by the standard.

To make it easier to get started with Orbacus, this part contains a “Getting
Started” chapter, explaining some Orbacus basics with a very simple
example.

In this chapter

CHAPTER 2

Getting Started

This chapter introduces you to Orbacus using a well-known
application: the ‘Hello World!" application is presented here
in a special client-server version.

This chapter contains the following sections:

The ‘Hello World" Example Application page 8
Defining the Example in IDL page 9
Implementing the Example in C++ page 10
Implementing the Example in Java page 21
Summary page 30
Where To Go From Here page 31

CHAPTER 2 | Getting Started

The ‘Hello World’ Example Application

C++ and Java applications Many books on programming start with this tiny demo program. In
introductory C+ + books you'll probably find the following piece of code in
the very first chapter:

/] C++
#i ncl ude <i ostream h>

int main(int, char*[])

{
cout << "Hello Wrld!'" << endl;
return O;

}

Or in introductory Java books:

/1 Java

public class Geeter

{
public static void main(String args[])
{

Systemout. printIn("Hello Wrldl");
}
}

These applications simply print “Hello World!” to standard output and that
is exactly what this chapter is about: Printing “Hello World!” with a
CORBA-based client-server application. In other words, we will develop a
client program that invokes a say_hel | o operation on an object in a server
program. The server responds by printing “Hello World!” on its standard
output.

Defining the Example in IDL

Defining the Example in IDL

CORBA-based program

How do we write a CORBA-based “Hello World!"” program? The first step is
to create a file containing our IDL definitions. Since our example application
isn't a complicated one, the IDL code needed for this example is simple.

Save the IDL code shown below to a file called Hel 1 o0.i dI .

/1 1DL
interface Hello

1
2
3 {
4
5

I

voi d say_hello();

An interface with the name Hel | o is defined. An IDL interface is
conceptually equivalent to a pure abstract class in C++, or to an interface
in Java.

The only operation defined is say_hel | o, which neither takes any
parameters nor returns any result.

CHAPTER 2 | Getting Started

Implementing the Example in C+ +

Generating C+ + from IDL The next step is to translate the IDL code to C++ using the IDL-to-C++
translator.

Translate the code in Hel 1 0.idl to C++ using the following command:

id Hello.idl
This command will create the files:
° Hello. h
® Hello.cpp

® Hello_skel.h
® Hello_skel.cpp

Now we will implement the server and client.

In this section This section discusses the following topics:
Implementing the Server page 11
Writing the Server Program page 13
Implementing the Client page 17
Compiling and Linking page 19
Running the Application page 20

10

Implementing the Example in C+ +

Implementing the Server

Overview

Hello_impl definition

To implement the server, we need to define an implementation class for the
Hel | o interface. To do this, we create a class Hel | o_i npl that is derived
from the “skeleton” class POA Hel | o, defined in the file Hel | o_skel . h.

Create a file Hel | o_i npl . h and enter the class definition of Hel I o_i npl
shown below:

1 /] C++

2 #include <Hell o_skel . h>

3

4 class Hello_inpl : public POA Hello, public
5 Por t abl eSer ver : : Ref Count Ser vant Base
6 {

7 public:

8

9 virtual void say_hello()

10 t hr ow(CORBA: : Syst enExcepti on);

11 };

Since our implementation class derives from the skeleton class PQA Hel | o,
we must include the file Hel | o_skel . h.

Here we define Hel I o_i npl as a class derived from PQA Hel | o and

Ref Count Ser vant Base. Ref Count Ser vant Base is part of the Port abl eSer ver
namespace and provides reference counting.

Our implementation class must implement all operations from the IDL
interface. In this case, this is just the operation say_hel | o.

11

CHAPTER 2 | Getting Started

Hello_impl implementation

12

6-9

Create a file Hel | o_i npl . cpp and enter the class implementation of
Hel | o_i npl shown below:

/] C++

#i ncl ude <i ostream h>
#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hel | o_i npl . h>

voi d Hello_inpl::say_hello()
hr ow(CORBA: : Syst enExcept i on)
{

}

cout << "Hello World!" << endl;

©OoO~N"TOUDWNDNLPR

We must include 8/ GCRBA. h, which contains definitions for the standard
CORBA classes, as well as for other useful things.

We must also include the Hel | o_i npl class definition, contained in the
header file Hel 1 o_i npl . h.

The say_hel | o function simply prints “Hello World!” on standard output.

Implementing the Example in C+ +

Writing the Server Program

Overview

main() function

Now we will write the server program. To simplify exception handling and
ORB destruction, we will split the server into two functions: mai n() and
run(), where mai n() only creates the ORB, and calls run()

Create a file with the name Server. cpp and enter the code for the mai n()
function shown below:

O~NO O WN PR

©

10 {
11
12
13
14
15
16
17
18
19
20
21
22
23

i nt

/] Ct+
#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hell o_i npl . h>

#i ncl ude <fstream h>

run(CORBA: : ORB_ptr);

int main(int argc, char* argv[])

int status = EXl T_SUCCESS;
CORBA: : ORB_var orb;

try
{
orb = CORBA:: ORB_init(argc, argv);
status = run(orb);

}
cat ch(const CORBA: : Excepti on&)
{
status = EXI T_FAI LURE;
}

13

CHAPTER 2 | Getting Started

14

2-5

16

17
19-22

24-34

36

24 if(!CORBA: :is_nil(orb))

25 {

26 try

27 {

28 orb -> destroy();

29 }

30 cat ch(const CORBA: : Excepti on&)
31 {

32 status = EXI T_FAI LURE;
33 }

34 }

35

36 return status;

37 }

Several header files are included. Of these, CB/ OCRBA. h provides the
standard CORBA definitions, and Hel I o_i npl . h contains the definition of
the Hel I o_i npl class.

A forward declaration for the run() function.

The first thing a CORBA program must do is initialize the ORB. This
operation expects the parameters with which the program was started.
These parameters may or may not be used by the ORB, depending on the
CORBA implementation. Orbacus recognizes certain options that will be
explained later.

The run() helper function is called.

This code catches and prints all CORBA exceptions raised by CRB init () or
run() .

If the ORB was successfully created, it is destroyed. This releases the
resources used by the ORB. If destroy() raises a CORBA exception, this
exception is caught and printed.

The exit status is returned. If there was no error, EXI T_SUCCESS is returned,
or EXI T_FAI LURE otherwise.

run() function

4-7

9-10
12-14

16-20

Implementing the Example in C+ +

Add the code for the run() function to Server. cpp:

1 /] C++

2 int run(CORBA: : ORB ptr orb)

3 {

4 CORBA: : Ooj ect _var poaChj =

5 orb -> resolve_initial _references("Root POA");
6 Port abl eServer:: POA var rootPoa =

7 Por t abl eSer ver: : POA: : _narrow poaQbj) ;

8

9 Port abl eSer ver : : POAVanager _var manager =

10 root Poa -> t he_PQAManager () ;

11

12 Hel lo_i npl * hell ol npl = new Hel I o_i npl ();

13 Por t abl eSer ver: : Servant Base_var servant = hel | ol npl;
14 Hello_var hello = hellolnpl -> _this();

15

16 CORBA: : String_var s = orb -> object_to_string(hello);
17 const char* refFile = "Hello.ref";

18 of streamout (refFile);

19 out << s << endl;

20 out.close();

21

22 manager -> activate();

23 orb -> run();

24

25 return EXI T_SUCCESS;

26 }

Using the ORB reference, resol ve_initial _references() is invoked to
obtain a reference to the Root POA.

The Root POA is used to obtain a reference to its POA Manager.

A servant of type Hel | o_i npl is created and assigned to a Ser vant Base_var
variable. The servant is then used to incarnate a CORBA object, using the
_this() operation. Servant Base_var and Hel | o_var, like all _var types, are
“smart” pointer, i.e., servant and hel | o will release their assigned object
automatically when they go out of scope.

The client must be able to access the implementation object. This can be
done by saving a “stringified” object reference to a file, which can then be
read by the client and converted back to the actual object reference.! The
operation obj ect _to_string() converts a CORBA object reference into its
string representation.

15

CHAPTER 2 | Getting Started

22-23 The server must activate the POA Manager to allow the Root POA to start
processing requests, and then inform the ORB that it is ready to accept
requests.

1. If your application contains more than one object, you do not need to save object
references for all objects. Usually you save the reference of one object which
provides operations that can subsequently return references to other objects.

16

Implementing the Example in C+ +

Implementing the Client

Overview

Client code

7-12
16-20

In several respects, the client program is similar to the server program. The
code to initialize and destroy the ORB is the same.

Save the following code in a file Qi ent . cpp:

oO~NOoOOhs WN PR

15

26
27

/] C++

#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hel |l 0. h>

#i ncl ude <fstream h>

int run(CORBA:: ORB _ptr);

int main(int argc, char* argv[])

{
/! Sane as for the server
}
int run(CORBA:: ORB ptr orb)
{
const char* refFile = "Hello.ref";

ifstreamin(refFile);
char s[2048];
in >>s;

CORBA: : Ohj ect _var obj = orb -> string_to_object(s);

Hel l o_var hello = Hello::_narrow obj);

hello -> say_hello();

return O;

}

In contrast to the server, the client does not need to include Hel I o_i npl . h.
Only the generated file Hel | 0. h is needed.

This code is the same as for the server.

The “stringified” object reference written by the server is read and converted
to a GCRBA: : (hj ect object reference. It's not necessary to obtain a reference
to the Root POA or its POA Manager, because they are only needed by

server applications.

17

CHAPTER 2 | Getting Started

18

22

24

The _narr owoperation generates a Hel | o object reference from the

QCRBA: : (j ect object reference. Although _narr owfor CORBA objects
works similar to dynam c_cast <> for plain C++ objects, dynam c_cast <>
must not be used for CORBA object references. That's because in contrast to
dynami c_cast <>, _narr ow might have to query the server for type
information.

The say_hel | o operation on the hel | o object reference is invoked, causing
the server to print “Hello World!".

Implementing the Example in C+ +

Compiling and Linking

Overview

Dependencies

For more details

Compiling Hel | o. cpp results in an object file with the following name:

® UNIX: Hello.o

® Windows: Hell o. obj

You must link both the client and the server with the file for your platform.

The compiled Hel | o_skel . cpp and Hel | o_i npl . cpp are only needed by the
server.

Compiling and linking is to a large degree compiler- and
platform-dependent. Many compilers require unique options to generate
correct code.

To build Orbacus programs, you must at least link with the Orbacus library
for your platform:

® UNIX: libB a
® Windows: ob.lib

Additional libraries are required on some systems, such as | i bsocket . a and
I'i bnsl . a for Solaris or wsock32. | i b for Windows.

The Orbacus distribution includes various README files for different platforms
which give hints on the options needed for compiling and the libraries
necessary for linking. Please consult these README files for details.

19

CHAPTER 2 | Getting Started

Running the Application

Overview

20

Our “Hello World!"” application consists of two parts:

® The client program

® The server program

Start the server first, since it must create the file Hel | o. ref that the client
needs in order to connect to the server. As soon as the server is running, you

can start the client. If all goes well, the “Hello World!” message will appear
on the screen.

Implementing the Example in Java

Implementing the Example in Java

Generating Java from IDL

In this section

In order to implement this application in Java, the interface specified in IDL

is translated to Java classes similar to the way the C++ code was created.

Translate the code in Hel 1 0.idl to Java using the following command:
jidl --package hello Hello.idl

This command generates several Java source files on which the actual

implementation will be based:

Hel | o.java

Hel | oHel per . j ava

Hel | oHol der . j ava

Hel | oper ati ons. j ava

Hel | oPQA j ava

® HelloStub.java

All these files are generated into a directory with the name hel | o.

This section discusses the following topics:

Implementing the Server page 22
Implementing the Client page 26
Compiling page 28
Running the Application page 29

21

CHAPTER 2 | Getting Started

Implementing the Server

Implementation class Create a file Hel 1 o_i npl . j ava in the directory hel | o and enter the following
code for the server's Hel | o implementation class:

1 /] Java

2 package hell o;

3

4 public class Hello_inpl extends Hel | oPOA
5 {

6 public void say_hello()

7 {

8 Systemout.println("Hello World!");
9 }

10 }

4 The implementation class Hel | o_i npl must inherit from the generated class
Hel | oPQA.

6-8 As with the C++ implementation, the say_hel I o method simply prints
“Hello World!” on standard output.

22

Implementing the Example in Java

Server class main() method Create a file Server. java in the directory hel | o and enter the following
Server class code which holds the server's mai n() and run() methods:

oO~NO O WNBE

/1l Java
package hell o;

public class Server

public static void main(String args[])

java.util.Properties props = System get Properties();
props. put (" org. ong. CORBA. ORBCl ass",
"com ooc. OBSer ver. ORB") ;
props. put (" or g. ong. CORBA. ORBSi ngl et onCl ass",
"com ooc. CORBA. ORBSI ngl et on") ;

int status = 0;
org.ong. CORBA. ORB orb = nul|;

try

{
orb = org.ong. CORBA. ORB.init(args, props);
status = run(orb);

}
cat ch(Excepti on ex)
{
ex. print StackTrace();
status = 1;
}
if(orb !'= null)
{
try
{
orb. destroy();
}
cat ch(Excepti on ex)
{
ex. print StackTrace();
status = 1;
}
}

System exi t (status);

23

CHAPTER 2 | Getting Started

24

20
22-26

28-39

41

These properties are necessary to use the Orbacus ORB instead of the JDK’s
ORB.

The ORB must be initialized using GRB. i nit. The ORB class resides in the
package or g. ong. OCRBA. You must either import this package, or, as shown
in this example, you must use or g. ong. QORBA explicitly.

The run() helper function is called.

This code catches and prints all CORBA exceptions raised by CRB.init() or
run().

If the ORB was successfully created, it is destroyed. This releases the
resources used by the ORB. If destroy() raises a CORBA exception, this
exception is caught and printed.

The exit status is returned. If there was no error, 0 is returned, or 1
otherwise.

Server class run() method

5-10

12-23

15-28
30-31

Implementing the Example in Java

Add the run() method to Server.j ava:

1 // Java

2 static int run(org. ong. CORBA. ORB or b)

3 throws org. ong. CORBA. User Excepti on

4 {

5 or g. ong. Port abl eSer ver. POA r oot POA =

6 or g. ong. Port abl eSer ver . POAHel per . nar r ow(
7 orb.resolve_initial _references("Root POA"));
8

9 org. ong. Port abl eSer ver. POAManager manager =
10 r oot POA. t he_POAManager () ;

11

12 Hel I o_i npl hell ol npl = new Hel I o_i npl ();

13 Hello hello = hellol npl._this(orb);

14

15 try

16 {

17 String ref = orb.object_to_string(hello);
18 String refFile = "Hello.ref";

19 java.io.PrintWiter out = newjava.io.PrintWiter(
20 new j ava.io. Fil eQutputStreanm(refFile));
21 out.println(ref);

22 out . cl ose();

23 }

24 catch(java.io.| OException ex)

25 {

26 ex. print StackTrace();

27 return 1;

28 }

29

30 manager . acti vate();

31 orb.run();

32 return O;

33 }

34}

A reference to the Root POA is obtained using the ORB reference, and the
Root POA is used to obtain a reference to its POA Manager.

A servant of type Hel | o_i npl is created and is used to incarnate a CORBA
object. The CORBA object is released automatically when it is not used
anymore.

The object reference is “stringified” and written to a file.
The server enters its event loop to receive incoming requests.

25

CHAPTER 2 | Getting Started

Implementing the Client

Client.java Save this to a file with the name Qi ent . j ava in the directory hel | o:
1 /] Java
2 package hell o;
3
4 public class dient
5 {
6 public static void main(String args[])
7 {
8 /'l Sanme as for the server
9 }
10
11 static int run(org. ong. CORBA. ORB orb)
12 {
13 org. ong. CORBA. Obj ect obj = null;
14 try
15 {
16 String refFile = "Hello.ref";
17 java.io. Buf feredReader in = new
java. i o. Buf f er edReader (
18 new java.io. Fil eReader (refFile));
19 String ref = in.readLine();
20 obj = orb.string_to_object(ref);
21 }
22 catch(j ava.io.| OException ex)
23 {
24 ex. print StackTrace();
25 return 1;
26 }
27
28 Hell o hell o = Hel | oHel per. narrow(obj);
29
30 hel | 0. say_hel |l o();
31
32 return O;
33 }
34 }

6-9 This code is the same as for the server.
14-26 The stringified object reference is read and converted to an object.

26

28

30

Implementing the Example in Java

The object reference is “narrowed” to a reference to a Hel | o object. A simple
Java cast is not allowed here, because it is possible that the client will need
to ask the server whether the object is really of type Hel | o.

The say_hel | o operation is invoked, causing the server to print “Hello
World!” on standard output.

27

CHAPTER 2 | Getting Started

Compiling

Steps

To compile the application:

Ensure that your CLASSPATH environment variable includes the current
working directory as well as the Orbacus for Java classes (i.e the
@B.j ar file) as shown below:

Platform

Command

UNIX

CLASSPATH=. : your _orbacus_directory/lib/ CB.jar: $CLASSPATH
export CLASSPATH

Windows

set CLASSPATH=. ; your _orbacus_directory\li b\ CBE. j ar ; %0 ASSPATH%

28

Replace your _or bacus_di r ect ory with the name of the directory
where Orbacus is installed.

To compile the implementation classes and the classes generated by
the Orbacus IDL-to-Java translator, use j avac (or the Java compiler of

your choice):

javac hello/*.java

Implementing the Example in Java

Running the Application

Steps To run the application, complete the following steps:

1. Start the ‘Hello World' Java server by entering the following command
in a command prompt:
java hel | o. Server

2. Start the ‘Hello World' Java client by entering the following command:
java hello.dient
Again, make sure that your CLASSPATH environment variable includes
the CBE. j ar file.

You might also want to use a C++ server together with a Java client (or vice
versa). This is one of the primary advantages of using CORBA: if something
is defined in CORBA IDL, the programming language used for the
implementation is irrelevant. CORBA applications can talk to each other,
regardless of the language they are written in.

29

CHAPTER 2 | Getting Started

Summary

What have we learnt?

30

At this point, you might be inclined to think that this is the most
complicated method of printing a string that you have ever encountered in
your career as a programmer. At first glance, a CORBA-based approach may
indeed seem complicated. On the other hand, think of the benefits this kind
of approach has to offer. You can start the server and client applications on
different machines with exactly the same results.

Regarding the communication between the client and the server, you don't
have to worry about platform-specific methods or protocols at all, provided
there is a CORBA ORB available for the platform and programming language
of your choice. If possible, get some hands-on experience and start the
server on one machine, the client on another!. As you will see,
CORBA-based applications run interchangeably in both local and network
environments.

One last point to note: you likely won't be using CORBA to develop systems
as simple as our “Hello, World!” example. The more complex your
applications become (and today’s applications are complex), the more you
will learn to appreciate having a high-level abstraction of your applications'
key interfaces captured in CORBA IDL.

1. Note that after the startup of the server program, you have to copy the stringified
object reference, i.e., the file Hel | o. r ef , to the machine where the client
program is to be run.

Where To Go From Here

Where To Go From Here

Further Reading

To understand the remaining chapters of this manual, you must have read
the CORBA specifications in [4], [5], and [6]. You will not be able to
understand the chapters that follow without a good understanding of
CORBA in general, CORBA IDL and the IDL-to-C+ + or IDL-to-Java
mappings.

31

CHAPTER 2 | Getting Started

32

In this chapter

CHAPTER 3

Generating Code

with Orbacus

This chapter describes the Orbacus translators.

This chapter contains the following sections:

Orbacus Translators page 34
Translating IDL to C++ page 35
Translating IDL to Java page 39
Translating IDL to HTML page 41
Translating IDL to RTF page 42
The IDL-to-C++ Translator and the Interface Repository page 45
Include Statements page 46
Documenting IDL Files page 47
Using javadoc page 49

33

CHAPTER 3 | Generating Code with Orbacus

Orbacus Translators

Overview Orbacus includes the following code generators, or translators:
idl Translates IDL to C++
jid Translates IDL to Java
hi dI Translates IDL to HTML
ridl Translates IDL to RTF
irgen Generates C++ from an Interface Repository

34

Translating IDL to C+ +

Translating IDL to C+ +

Synopsis

Description

Options

i dl [options]i

dl-files...

Translates IDL

files into C+ + files.

For each IDL file four C+ + files are generated. For example,

id MFile.idl
produces the following files:

MFile.h Header file containing M/Fi | e. i dI 's translated data types
and interface stubs

M/Fil e. cpp Source file containing M/Fi | e. i dl ’s translated data types
and interface stubs

M/Fil e_skel . h Header file containing skeletons for MyFi | e. i dI 's interfaces

M/Fil e_skel . cpp | Source file containing skeletons for M/Fi | e. i dl 's interfaces

-h, --help

Show a short help message.

-V, --version

Show the Orbacus version number.
-d, --debug
Print diagnostic messages. This option is for Orbacus internal
debugging purposes only.
- DNAME
Defines NAMVE as 1. This option is directly passed to the preprocessor.
- DNAME=DEF
Defines NAME as DEF. This option is directly passed to the preprocessor.
- UNAME
Removes any definition for NAME. This option is directly passed to the
preprocessor.
-IDR

35

CHAPTER 3 | Generating Code with Orbacus

Adds the directory DI Rto the include file search path. This option is
directly passed to the preprocessor.

Runs the source files through the preprocessor without generating
code.

- - no- skel et ons
Don’t generate skeleton classes.

- - no-type- codes
Don't generate type codes and insertion and extraction functions for the
Any type. Use of this option will cause the translator to generate more
compact code.

--no-virtual -inheritance
Don't use virtual C+ + inheritance. If you use this option, you cannot
use multiple interface inheritance in your IDL code, and you also
cannot use multiple C++ inheritance to implement your servant
classes.

--tie
Generate tie classes for delegate-based interface implementations. Tie
classes depend on the corresponding skeleton classes, i.e., you must
not use - - no- skel et ons in combination with --ti e.

- fwd
Generate separate header files for forward declarations.

--inpl
Generate example servant implementation classes. An input file
Foo.idl will generate the files Foo_i npl . h and Foo_i npl . cpp. These
files will not be overwritten, therefore you must first remove the
existing files before new ones can be generated. You must not use
--no- skel et ons in combination with this option.

--inpl-all
Similar to - -i npl , but function signatures are generated for all
inherited operations and attributes. You must not use - - no- skel et ons
in combination with this option.

--c-suffix SUFFI X
Use SUFFI X as the suffix for source files. The default value is . cpp.

--h-suffix SUFFI X
Use SUFFI X as the suffix for header files. The default value is . h.

36

Translating IDL to C+ +

--stub-suffix SUFFI X
Use SUFFI X as the suffix for stub files. The default value is an empty
suffix.

--skel -suf fix SUFFI X
Use SUFFI X as the suffix for skeleton files. The default value is _skel .

--all
Generate code for included files instead of inserting #i ncl ude
statements. See “Include Statements” on page 46.

--no-rel ative
When generating code, i dl assumes that the same -1 options that are
used with i dl are also going to be used with the C++ compiler.
Therefore i dI will try to make all #i ncl ude statements relative to the
directories specified with -1. The option - -no-rel at i ve suppresses
this behavior, in which case i dI will not make #i ncl ude statements for
included files relative to the paths specified with the -1 option.

--header-dir DR
This option can be used to make #i ncl ude statements for header files
relative to the specified directory.

--this-header-dir DR
Like the - - header - di r option, this option can be used to make
#i ncl ude statements for header files relative to the specified directory.
However, this option only applies to #i ncl ude statements for the
header files of this IDL file.

--other-header-dir DR
Like the - - header - di r option, this option can be used to make
#i ncl ude statements for header files relative to the specified directory.
However, this option only applies to #i ncl ude statements for the
header files corresponding to IDL files that were included in this IDL
file.

--output-dir DR
Write generated files to directory DIR.

--file-list FILE
Write a list of all generated files to file FILE.

--dl'l-inport DEF
Put DEF in front of every symbol that needs an explicit DLL import
statement.

37

CHAPTER 3 | Generating Code with Orbacus

--with-interceptor-args
Generate code with support for arguments, result and exception list
values for interceptors.

--no-1 ocal - copy
To ensure strict compliance with CORBA’s location transparency
semantics, the default behavior of the translator is to generate code
that copies valuetype argument and result values for collocated
invocations. Specify this option to disable strict compliance and
generate more efficient code.

--case-sensitive
The semantics of OMG IDL forbid identifiers in the same scope to differ
only in case. This option relaxes these semantics, but is only provided
for backward compatibility with non-compliant IDL.

--w t h-async
Generate code with support for Asynchronous Method Invocation
(AMI).

38

Translating IDL to Java

Translating IDL to Java

Synopsis jid [options]idl-files...

Description Translates IDL files into Java files.

For every construct in the IDL file that maps to a Java class or interface, a
separate class file is generated. Directories are automatically created for
those IDL constructs that map to a Java package (e.g., a nmodul e).

jid can also add comments from the IDL file starting with / ** to the
generated Java files. This allows you to use the j avadoc tool to produce
documentation from the generated Java files. See “Using javadoc” on
page 49 for additional information.

Options for jidl -h, --help
-V, --version
-d, --debug
- DNAME
- DNAME=DEF
- UNAME
-IDR
-E
- - no- skel et ons
--locality-constrai ned
--all
--tie
--file-list FILE
--no- | ocal - copy
--case-sensitive
--wi t h-async
These options are the same as for the i dl command.

- - no- comment s
The default behavior of ji dl is to add any comments from the IDL file
starting with /** to the generated Java files. Specify this option if you
don’t want these comments added to your Java files.

- - package PKG
Specifies a package name for the generated Java classes. Each class
will be generated relative to this package.

39

CHAPTER 3 | Generating Code with Orbacus

--prefix-package PRE PKG
Specifies a package name for a particular prefixl. Each class with this
prefix will be generated relative to the specified package.

- - aut o- package
Derives the package names for generated Java classes from the IDL
prefixes. The prefix ooc. com for example, results in the package
com oocC.

--output-dir DR
Specifies a directory where ji dl will place the generated Java files.
Without this option the current directory is used.

--cl one
Generates a cl one method for struct, union, enum, exception,
valuetype and abstract interface types. For valuetypes, only an abstract
method is generated. The valuetype implementer must supply an
implementation for cl one.

--inpl
Generates example servant implementation classes. For IDL interface
types, a class is generated in the same package as the interface
classes, having the same name as the interface with the suffix _i npl .
The generated class extends the POA class of the interface. For IDL
valuetypes, a class is generated in the same package as the valuetype
with the suffix Val ueFact ory_i npl . You must not use - - no- skel et ons
in combination with this option.

--inpl-tie
Similar to - -i npl , but implementation classes for interfaces implement
the Qper at i ons interface to facilitate the use of TIE classes. You must
not use - - no- skel et ons in combination with this option.

--with-interceptor-args
Generate code with support for arguments, result and exception list
values for interceptors. Note that use of this option will generate
proprietary stubs and skeletons which are not compatible with ORBs
from other vendors.

1. Prefix refers to the value of the #pragna prefi x statement in an IDL file. For
example, the statement #pragma prefix ““ooc. conf defines ooc. comas the
prefix. The prefix is included in the Interface Repository identifiers for all types
defined in the IDL file.

40

Translating IDL to HTML

Translating IDL to HTML

Synopsis

Description

Options for hidl

hidl [options] idl -files..

Creates HTML files from IDL files.

An HTML file is generated for each module and interface defined in an IDL
file. Comments in the IDL file are preserved and j avadoc style keywords are
supported. The section “Documenting IDL Files” on page 47 provides more
information.

-h, --help

-V, --version
-d, --debug

- DNAME

- DNAME=DEF

- UNAME

-IDR

--all
--case-sensitive

These options are the same as for the i dl command.
--no-sort
Don't sort symbols alphabetically.
--ignore-case
Sort case-insensitive.
--use-tabl es
Use tables for indices.
--alt-indent
Use alternative indentation for argument lists. The alternative format
requires less horizontal space, which is in particular useful if the
names of the operation or arguments are long.
--output-dir DR
Write HTML files to the directory DIR.

41

CHAPTER 3 | Generating Code with Orbacus

Translating IDL to RTF

Description ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is
generated for each module and interface defined in an IDL file. Comments in
the IDL file are preserved and j avadoc style keywords are supported. The
section “Documenting IDL Files” on page 47 provides more information.

Options for ridl -h, --help
-V, --version
-d, --debug
- DNAME
- DNAME=DEF
- UNAME
-IDR
--all
--case-sensitive

These options are the same as for the i dl command.
--no-sort
--ignore-case
--use-tabl es
--alt-indent

These options are the same as for the hi dl command.
--output-dir DR

Write RTF files to the directory DIR.
--single-file FILE

Create a single file called FILE.rtf.
--Wwi t h-i ndex

Create index entries.

--font PARA NAME
--font-size PARA SIZE

Specify the font name or size for a particular paragraph type. The paragraph
types and their default values are shown below.

Type Font Size

body roman Times New Roman 12pt

42

Translating IDL to RTF

Type Font Size
entry swiss Tahoma 12pt
extra same as body 12pt
heading swiss Arial 18pt
index same as heading 15pt
literal roman Courier New 10pt
symbol roman Symbol 12pt

43

CHAPTER 3 | Generating Code with Orbacus

Generating C+ + from an Interface Repository

Synopsis i rgen name-base

Description i rgen generates C++ code directly from the contents of an Interface
Repository. See “The IDL-to-C++ Translator and the Interface Repository”
on page 45 for an example.

Options for irgen -h, --help
-V, --version
- - no- skel et ons
- -no-type- codes
--locality-contrained
--no-virtual -i nheritance
--tie
--inpl
--inpl-all
--c-suffix SUFFI X
--h-suffix SUFFI X
--skel -suf fix SUFFI X
--header-dir DR
--other-header-dir DR
--output-dir DR
--file-list FILE
--dl'l-inport DEF
--with-interceptors-args
--no- | ocal - copy

These options are the same as for the i dl command.

The argument to i r gen is the pathname to use as the base name of the
output filenames. For example, if the pathname you supply is
output/file, thenirgen will produce output/file.cpp,
output/file.h, output/file_skel.cppand output/file_skel.h.
Note that i r gen will generate code for all of the type definitions
contained in the Interface Repository server.

See Chapter 13 for more information on the Interface Repository.

44

The IDL-to-C+ + Translator and the Interface Repository

The IDL-to-C+ + Translator and the Interface

Repository

Private Versus Global Interface
Repositories

Steps

Example

The Orbacus IDL-to-C++ and IDL-to-Java translators internally use the
Interface Repository for generating code. That is, these programs have their
own private Interface Repository that is fed with the specified IDL files. All
code is generated from that private Interface Repository.

However it is also possible to generate C++ code from a global Interface
Repository.

To generate C++ code from a global Interface Repository:
1. Start the Interface Repository using the command i rserv.

2. Feed the Interface Repository the IDL code, using the command
irfeed.

3. Finally, use the i rgen command to generate the C++ code.

For example:

irserv --ior > IntRep.ref &
irfeed -CRBrepository ‘cat IntRep.ref* file.idl
irgen -CRBrepository ‘cat IntRep.ref’ file

By comparison, the IDL-to-C++ translator i dI performs all these steps at
once, in a single process using a private Interface Repository. Thus, you only
have to run a single command:

id file.idl
See Chapter 13 for more information on the Interface Repository.

45

CHAPTER 3 | Generating Code with Orbacus

Include Statements

Using #include statements If you use the #i ncl ude statement in your IDL code, the Orbacus
IDL-to-C+ + translator i di does not create code for included IDL files.
Instead, the translator inserts the appropriate #i ncl ude statements in the
generated header files.

Restrictions There are several restrictions on where to place the #i ncl ude statements in
your IDL files for this feature to work properly:

® #incl ude may only appear at the beginning of your IDL files. All
#i ncl ude statements must be placed before the rest of your IDL code.!
® Type definitions, such as i nt erf ace or struct definitions, may not be
split among several IDL files. In other words, no #i ncl ude statement
may appear within such definitions.

If you do not want these restrictions to be applied, you can use the
translator option --al | with i dl . With this option, the IDL-to-C++
translator treats code from included files as if the code appeared in your IDL
file at the position where it is included. This means that the compiler will
not place #i ncl ude statements in the automatically-generated header files,
regardless of whether the code comes directly from your IDL file or from files
included by your IDL file.

Note that when generating code from an Interface Repository using i r gen,
the translator behaves identically to i di with the --al | option. In other
words, the i rgen command does not place #i ncl ude statements in the
generated files, but rather generates code for all IDL definitions in the
Interface Repository.

1. Preprocessor statements like #def i ne or #i f def may be placed before your
#i ncl ude statements.

46

Documenting IDL Files

Documenting IDL Files

Overview

Example

Syntax

With the Orbacus IDL-to-HTML and IDL-to-RTF translators, hidl and ridl,

you can easily generate HTML and RTF files containing IDL interface
descriptions. The translators generate a nicely-formatted file for each IDL
module and interface.

Figure 1 shows an HTML example:

DL Documentation for "0OCI" - Netscape

File Edit “iew Go Communicator Help

id e AV tasd il I

w§ " Bookmarks A Lacation: [fle:///Cl/rl/cpp/ob/idlOC] kil =l

The Cpen Comunurications Interface (OCT). The defintions i this module provide a uniform mterface to network
protocols. This allows for easy plug-in of new protocols or other comumunication mechanisms mto ORBs that implement
the OCL Furthermore, protocol implementations need only to be written once and can then be reuzed with all OCI
compliant ORBs. For more mformation, please see the OCT documentation.

Module OCI }

Module Index

IoP

Thiz module contains mnterfaces to gather mformation on the IIOP OCT plug-in.

Interface Index

AccRegstry
A regstry for Acceptors.

AcceptCB
An nterface for an accept callback object.

Acceptor

An mterface for an Acceptor object, which 15 used by CORBA servers to accept clhient connection requests.

Figure 1: Documentation generated with the IDL-to-HTML translator

The formatting syntax supported by hi dl and ri dl is similar to that used by

j avadoc. The following keywords are recognized:

47

CHAPTER 3 | Generating Code with Orbacus

48

@ut hor aut hor
Denotes the author of the interface.
@xception exception-nane description
Adds an exception description to the exception list of an operation.
@renber menber - nane descri ption
Adds a member description to the member list of a struct, union, enum
or exception type.
@ar am par anet er - nane descri ption
Adds a parameter description to the parameter list of an operation.
@eturn description
Adds descriptive text for the return value of an operation.
@ee reference
Adds a “See also” note.
@i nce since-text
Comment related to the availability of new features.
@ersion version
The interface’s version number.
Like j avadoc, hi dI and ridl use the first sentence in the documentation
comment as the summary sentence. This sentence ends at the first period
that is followed by a blank, tab or line terminator, or at the first @
ri dl understands most basic HTML tags and produces an equivalent format
in the generated RTF files. The following HTML tags are supported:

 <CODE> <DD> <DL> <DI> <HR> <I > <Q.> <P> <TABLE>
<TD> <TR> <> <U.>

Using javadoc

Using javadoc

Adding IDL Comments

Example

If not explicitly suppressed with the - - no- comrent s option, the Orbacus
IDL-to-Java translator j i dl adds IDL comments starting with /** to the
generated Java files, so that j avadoc can be used to generate

documentation (as long as the comments are in a format compatible with
j avadoc).

Here is an example that shows how to include documentation in an IDL
interface description file. Let's assume we have an interface | in a module M

/1 1DL

nodul e M

{
/

*

This is a cooment related to interface |.
@ut hor Une Sei et

@ersion 1.0

* 0% Ok kX X X %

**/

interface |

{

[**

*

* This comment describes exception E

*

**/

exception E { };

49

CHAPTER 3 | Generating Code with Orbacus

*

~

L S S

The description for operation S
@aram arg A dumy ar gunent .
@eturn A dumy string.

@xception E Rai sed under certain circunstances.

*
~

string S(in long arg)
rai ses(E;
ik
b

When running ji dl on this file, the comments are automatically added to
the generated Java files M| . j ava and M | Package/ E. j ava. For | .j ava, the
generated code looks as follows:

/1 Java
package M

/1

// I1DL:MI:1.0
/1l

/**

* This is a conment related to interface I.

*

* @ut hor Une Seinet

*

* @ersion 1.0

*

**/

50

Using javadoc

public interface | extends org.ong. CORBA (bj ect
{

/1l

/] IDL:MI/S: 1.0

/1

/**

*

* The description for operation S.
*

* @aramarg A durmy argurent .
*

* @eturn A dummy string.

*

* @xception M | Package. E Rai sed under certain

ci rcunst ances.
*

**/
public String
S(int arg)
throws M | Package. E
}

Note that ji dl automatically inserts the fully-qualified Java name for the
exception E (M | Package. E in this case).

These are the contents of | Package/ E. j ava:

/1 Java
package M | Package;

/1
// IDL:MI/E1.0
Il

/**
*
* This comment describes exception E
**/
final public class E extends org. ong. CORBA User Excepti on
{
public
E()
{
}

51

CHAPTER 3 | Generating Code with Orbacus

Now you can use j avadoc to extract the comments from the generated Java
files and produce nicely-formatted HTML documentation.

For additional information please refer to the j avadoc documentation.

52

In this chapter

CHAPTER 4

ORB and Object
Adapter
Initialization

This chapter describes the initialization of client and server
ORBs in various languages.

This chapter contains the following sections:

Initializing the C++ ORB page 54
Initializing the Java ORB page 55
Object Adapter Initialization page 56
Configuring the ORB and Object Adapter page 57
Using POA Managers page 77
ORB Destruction page 88
Server Event Loop page 89

53

54

CHAPTER 4 | ORB and Object Adapter Initialization

Initializing the C++ ORB

In C++, the ORB is initialized with CORBA : CRB i ni t (). For example:
[l C++

int main(int argc, char* argv[])

{

OCRBA : CRB var orb = GORBA : CRB_init(argc, argv);
...

}

The OORBA : CRB i ni t () call interprets arguments starting with - GRB and

- QA All of these arguments, passed through the argc and ar gv parameters,
are automatically removed from the argument list.

Initializing the Java ORB

Initializing the Java ORB

The ORB implementation included in JDK 1.3 and newer can be considered
a “minimal” ORB, suitable primarily for use in basic client-oriented tasks. In
order to use the Orbacus ORB instead of the JDK’s default ORB, you must
start your application with the following properties:
j ava - Dorg. ong. OORBA CRBA ass=com ooc. CORBA. CRB \
- Dor g. ong. CORBA. CRBSI ngl et ond ass=com ooc. CCRBA CRBSI ngl et on \
M App
An alternative is to set these properties in your program before initializing
the ORB. For example:

/1l Java
i mport org. onyg. CORBA *;
public static void main(String args[])

{
java.util.Properties props = System getProperties();
props. put (" org. omg. CORBA CRBd ass", "com ooc. CCRBA. CRB") ;
props. put (" or g. ong. OORBA. CRBSi ngl et ond ass",
"com ooc. CORBA. CRBSi ngl et on") ;
CRB orb = CRB.init(args, props);
/...
}

The GRB. i ni t () call interprets arguments starting with - C(RBand - @a. Unlike
the C++ version, these arguments are not removed (see “Advanced
Property Usage” on page 75 for more information).

55

56

CHAPTER 4 | ORB and Object Adapter Initialization

Object Adapter Initialization

In Orbacus, the object adapter is not initialized until the Root POA is first
resolved. For example:

/] C++
OCRBA : (hj ect _var poaChj =

orb -> resolve_initial_references("Root PQA");

/1l Java
org. ong. CCRBA. (hj ect poaChj =
orb.resol ve_initial_references("Root PQA");

Upon completion, the ORB will have created the Root POA and its POA
Manager, and will have initialized the ORB's server-side functionality.

Configuring the ORB and Object Adapter

Configuring the ORB and Object Adapter

Overview

In this section

Orbacus applications can tailor the behavior of the ORB and object adapters
using a collection of propertiesl. These properties can be defined in a

n

umber ways:
using the Windows Registry (Windows NT/C++)
using a configuration file
using system properties (Java)
using command-line options
programmatically at run-time

The Orbacus configuration properties are described in the following sections.

U

nless otherwise noted, every property can be used in both C++ and Java

applications.

This section contains the following subsections:

ORB Properties page 58
OA Properties page 65
Command-line Options page 68
Using a Configuration File page 70
Using the Windows NT Registry page 71
Defining Properties page 72
Precedence of Properties page 74
Advanced Property Usage page 75

1.

Note that these properties have nothing to do with the Property Service as
described in Appendix B.

57

CHAPTER 4 | ORB and Object Adapter Initialization

ORB Properties

ooc.config

ooc.oci.client

ooc.oci.server

ooc.oci.plugin.name

ooc.orb.client_shutdown_timeout

58

Value: filename

Selects the default configuration file. This property is only available in Java
applications and is equivalent to the CRBACUS_CONFI Genvironment variable
in C++. See “Using a Configuration File” on page 70 for more information
on configuration files.

Value: string

Specifies a comma-separated list of client-side transport plug-ins to be
installed. The plug-ins are installed in the order they appear in the list. The
default value is i i op.

Value: string

Specifies a comma-separated list of server-side transport plug-ins to be
installed. The plug-ins are installed in the order they appear in the list. The
default value is i i op.

Value: string

Specifies a plug-in’s shared library (C++) or initialization class (Java). In
most cases this property is not necessary because the ORB attempts to
locate the library or class using a well-known name. In C++, the
well-known name is I i bGd _name. so (UNIX), Ii bGQ _name. sI (HP-UX) or
d _name.dl| (Windows), where name is the plug-in name (e.g., i i op).
The ORB searches for this shared library in the library search path.
Similarly, in Java the ORB searches the class path for a class named

com ooc. OO . name.

Value: timeout >= 0

If the client is not able to gracefully disconnect from the server in timeout
seconds, a connection shutdown is forced. If this property is set to zero,
then the client will not force a connection shutdown. If the property is not
set, a default timeout value of two seconds is used.

ooc.orb.client_timeout

ooc.orb.conc_model

ooc.orb.default_init_ref

ooc.orb.default_wcs

ooc.orb.extended_wchar

ooc.orb.giop.max_message_size

Configuring the ORB and Object Adapter

Value: timeout >= 0

The client actively closes a connection that has been idle for timeout
seconds once that connection has no more outstanding replies. Note that
the application must use the threaded client-side concurrency model if
connection timeouts are desired. If this property is set to zero, or not set at
all, then the client does not close idle connections. Note that a policy can
also be set on the ORB or on individual object references. See
“OB::ACMTimeoutPolicy” on page 309 for more information.

Value: reacti ve, t hreaded

Selects the client-side concurrency model. The reactive concurrency model
is not currently available in Orbacus for Java. The default value is t hr eaded
for both C++ and Java applications. See Chapter 18 for more information
on concurrency models.

Value: URL

Specifies a partial URL. If an application calls the ORB operation

resol ve_initial _references and no match is found, the ORB appends a
slash (/") character and the service identifier to the specified URL and
invokes string_to_obj ect to obtain the initial reference.

Value: string

Specifies the default wide character code set for the ORB. Note that the
CORBA specification states that a default wide character code set does not
exist. Therefore, this option should only be used when communicating with
a broken ORB that expects a particular wide character code set and does
not correctly support the negotiation of wide character code sets.

Value: true, fal se

Enables transfers of wide characters (IDL types wchar and wst ri ng) with
IIOP 1.0, using Unicode as the code set. This proprietary extension is
required in order to exchange wide characters with Orbix/E, which only
supports [IOP 1.0. The default is f al se.

Value: max >= 0

59

CHAPTER 4 | ORB and Object Adapter Initialization

ooc.orb.id

ooc.orb.modules

ooc.orb.module.name

ooc.orb.native_cs

ooc.orb.native_wcs

60

Specifies the maximum GIOP message size in bytes. If set to 0, no
maximum message size will be used. If a message is sent or received that
exceeds the maximum size, the ORB will raise the IMP_LIMIT system
exception.

Value: id
Specifies the identifier of the ORB to be used by the application.

Value: string

Specifies a comma-separated list of modules to be loaded dynamically by
the ORB. The ORB locates the shared library for a module using a
well-known name: I i bname. so (UNIX), I'i bname. sl (HP-UX) or name. dli |
(Windows), where name is the module name. The ORB then invokes the
initialization function i ni t _nodul e_name in that shared library. The
initialization function takes no arguments and returns voi d. A module
initialization function will typically register an ORBlInitializer, which allows
interceptors and initial references to be installed. This property is only
supported in C++. In Java, the standard mechanism for installing an
ORBInitializer should be used. See [7] for more information on
ORBlnitializers.

Value: string

Specifies the name of a module’s shared library or DLL. In most cases this
property is not necessary because the ORB attempts to locate the library
using a well-known name, as described above for the ooc. or b. nodul es
property. The value of this property can be a simple filename, in which case
the ORB will attempt to load the library using the search path, or it can be
an absolute pathname.

Value: string

Specifies the native character code set for the ORB. The default is ISO
8859-1.

Value: string

Specifies the native wide character code set for the ORB. The default is
UTF-16.

ooc.orb.policy.connect_timeout

ooc.orb.policy.connection_reuse

ooc.orb.policy.interceptor

ooc.orb.policy.locate_request

ooc.orb.policy.location_transpare
ncy

ooc.orb.policy.protocol

ooc.orb.policy.rebind

ooc.orb.policy.request_timeout

Configuring the ORB and Object Adapter

Value: timeout >= -1

Sets the @B: : Connect Ti meout Pol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is - 1.

Value: true, fal se

Sets the @B: : Connect i onReusePol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is true.

Value: true, fal se

Sets the B: : I nt er cept or Pol i cy at the ORB level. See Appendix B for more
information on this policy. The default value is t r ue.

Value: true, fal se

Sets the CB: : Locat eRequest Pol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is f al se.

Value: strict, rel axed

Sets the @B: : Locat i onTr anspar encyPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is
rel axed.

Value: string

Sets the @B: : Prot ocol Pol i cy at the ORB level. See Appendix B for more
information on this policy.

Value: transparent, no_r ebi nd, no_r econnect

Sets the Messagi ng: : Rebi ndPol i cy at the ORB level. The default value is
tr anspar ent.

Value: timeout >= -1

Sets the CB: : Request Ti neout Pol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is - 1.

61

CHAPTER 4 | ORB and Object Adapter Initialization

ooc.orb.policy.retry

ooc.orb.policy.retry.interval

ooc.orb.policy.retry.max

ooc.orb.policy.retry.remote

ooc.orb.policy.sync_scope

ooc.orb.policy.timeout

ooc.orb.raise_dii_exceptions

ooc.orb.server_name

62

Value: never, strict, al ways

Sets the node attribute of the GB: : Ret ryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is stri ct .

Value: timeout >= 0

Sets the i nterval attribute of the GB: : RetryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is 0.

Value: timeout >= 0

Sets the max attribute of the 0B:: Ret ryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is 1.

Value: true, fal se

Sets the renot e attribute of the GB: : RetryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is f al se.

Value: none, transport, server, t ar get

Sets the Messagi ng: : SyncScopePol i cy at the ORB level. The default value
is transport.

Value: timeout >= -1

Sets the @B: : Ti meout Pol i cy at the ORB level. See Appendix B for more
information on this policy. The default value is - 1.

Value: true, fal se

Determines whether system exceptions that occur during Dynamic
Invocation Interface (Dll) operations are raised immediately or are stored
only in the QCRBA: : Envi ronnent object. This property is only available for
Java applications. The default value is t rue. Note that specifying a value of
fal se may result in unexpected behavior.

Value: string

ooc.orb.server_shutdown_timeou
t

ooc.orb.server_timeout

ooc.orb.use_type_code_cache

ooc.orb.service.name

Configuring the ORB and Object Adapter

Specifies the name of the server, as registered with the Implementation
Repository (IMR). Note that you should not put this property in a
configuration file that is shared by several IMR-enabled servers.
Furthermore, this property should not be specified for servers that are not
registered with the IMR.

Value: timeout >= 0

If the server is not able to gracefully disconnect from the client in timeout
seconds, a connection shutdown is forced. If this property is set to zero,
then the server will not force a connection shutdown. If the property is not
set, a default timeout value of two seconds is used.

Value: timeout >= 0

The server actively closes a connection that has been idle for timeout
seconds once that connection has no more outstanding replies. Note that
the application must use one of the threaded server-side concurrency model
if connection timeouts are desired. If this property is set to zero, or not set at
all, then the server does not close idle connections.

Value: true, fal se

Determines whether the ORB caches TypeCodes. When the TypeCode
cache is disabled, the ORB creates a new TypeCode object for each
TypeCode received over the wire, including those associated with Any
values. When the TypeCode cache is enabled, only one TypeCode object is
instantiated for each TypeCode with a unique, non-empty repository id. The
default value is tr ue.

Note that there is one rare case where the cache may not work as expected:
if an application requires the received TypeCode to be equal to the one that
was transmitted, where “equal” implies a successful result from the
TypeCode: : equal () operation. Although TypeCodes with the same
repository id are always equivalent, they are not always equal because of
TypeCode compaction. However, if the cache is enabled, two TypeCode
objects received over the wire with the same repository id will always be
equal. For more information on the semantics of the equal() and
equivalent() TypeCode operations, see [3].

Value: ior

63

CHAPTER 4 | ORB and Object Adapter Initialization

ooc.orb.trace.connections

ooc.orb.trace.retry

64

Adds an initial service to the ORB's internal list. This list is consulted when
the application invokes the ORB operation resol ve_i ni ti al _ref erences.
name is the key that is associated with an IOR or URL. For example, the
property ooc. or b. ser vi ce. NaneSer vi ce adds “NameService” to the list of
initial services. See “The BootManager” on page 144 for more information.

Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to connection establishment and closure. A level of 1 or higher
produces information about connection events, and a level of 2 or higher
produces code set exchange information. The default level is O, which
produces no output.

Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to transparent re-sending of failed messages. A level of 1 or higher
produces information about re-sending of messages, and a level of 2 or
higher also produces information about use of individual IOR profiles. The
default level is O, which produces no output.

Configuring the ORB and Object Adapter

OA Properties

Overview

ooc.orb.oa.conc_model

Configuring an object adapter is achieved by setting properties on POA
Managers. These properties are grouped into two categories: global
properties, and properties specific to a particular POA Manager. Global
properties have the prefix ooc. or b. oa, while properties specific to a
particular POA Manager have the prefix ooc. or b. poananager . name, where
name is the name of the POA Manager (see “Using POA Managers” on
page 77).

Unless otherwise noted, a POA Manager will search for configuration
properties using the following algorithm:

® First, use properties defined specifically for that POA Manager
® Next, use global properties

® Finally, use default settings.

See “Using POA Managers” on page 77 for more information on POA
Managers.

Value: reacti ve, t hreaded, t hread_per_client, t hread_per _request,
thread_pool , | eader _f ol | ower

Selects the server-side concurrency model. The default value is
thread_per_client. The reactive and | eader _fol | ower concurrency
models are only available in Orbacus for C++. See Chapter 18 for more
information on concurrency models.

If this property is set to t hr ead_pool , then the property
ooc. or b. oa. t hread_pool determines how many threads are in the pool.

If this property is set to | eader _f ol | over, then the property
ooc. orb. oa. | eader _f ol | ower _pool determines how many threads are to be
used.

65

CHAPTER 4 | ORB and Object Adapter Initialization

ooc.orb.oa.endpoint

ooc.orb.oa.leader_follower_pool

ooc.orb.oa.thread_pool

ooc.orb.oa.version

66

This property is also used to determine the default value of the
communications concurrency model for POA Managers (see

ooc. or b. poananager . manager. conc_nodel below). The following table
summarises how the setting of this property determines the POA Manager

defaults:

Table 1:

POA Managers’ Communications Concurrency Model

Value of ooc.orb.oa.conc_model

ooc.orb.poamanager. <manager>.
conc_model default

reactive

reactive

leader_follower

leader_follower

threaded threaded

thread_per_client threaded

thread_per_request threaded

thread_pool threaded
Value: string

Specifies a comma-separated list of endpoints for the Root POA Manager.
The default value is i i op. See “Endpoints” on page 84 for more information.

Value: n > 0

Determines the number of threads in the pool used by the leader_follower
concurrency model. The default value is 10. This property is only effective
when the ooc. or b. oa. conc_nodel property has the value | eader _fol | ower.

Value:n > 0

Determines the number of threads to reserve for servicing incoming
requests. The default value is 10. This property is only effective when the
ooc. or b. oa. conc_nodel property has the value t hread_pool .

Value: 1.0, 1.1 or 1.2

ooc.orb.poamanager.manager.co
nc_model

ooc.orb.poamanager.manager.en
dpoint

ooc.orb.poamanager.manager.lea
der_follower_pool

ooc.orb.poamanager.manager.ver
sion

Configuring the ORB and Object Adapter

Specifies the GIOP version to be used in object references. The default value
is 1. 2. This option is useful for backward compatibility with older ORBs that
reject object references using a newer version of the protocol.

Value: reacti ve, t hreaded

Specifies the communications concurrency model used by the POA Manager
with name manager. The default value is determined by

ooc. or b. oa. conc_nodel . See Chapter 18 for more information on
concurrency models.

Value: string

Specifies a comma-separated list of endpoints for the POA Manager with
name manager. The default value is i i op. See “Endpoints” on page 84 for
more information.

Value:n > 0

Determines the number of threads in the pool used by the leader_follower
concurrency model. The default value is 10. This property is only effective
when the ooc. or b. poananager . manager. conc_nodel property has the
value | eader _fol | ower.

Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references generated by a
particular POA Manager. This option is useful for backward compatibility
with older ORBs that reject object references using a newer version of the
protocol. The default value is determined by the value of

ooc. or b. oa. versi on.

67

CHAPTER 4 | ORB and Object Adapter Initialization

Command-line Options

There are equivalent command-line options for many of the Orbacus
properties. The options and their equivalent property settings are shown in
the following table. Refer to “ORB Properties” on page 58 for a description
of the properties.

Option Property
-QAreactive ooc. or b. oa. conc_nodel =reacti ve
- QAt hr eaded ooc. or b. oa. conc_nodel =t hr eaded
- QAt hread_per _cl i ent ooc. or b. oa. conc_nodel =t hr ead_per _cl i ent
- QAt hr ead_per _r equest ooc. or b. oa. conc_nodel =t hr ead_per _r equest
- QAt hread_pool n ooc. or b. oa. conc_nodel =t hr ead_pool

ooc. or b. oa. t hr ead_pool =n

- QA eader _fol | ower n ooc. or b. oa. conc_nodel =l eader _f ol | oner

ooc. orb. oa. | eader _f ol | ower _pool =n

- QAver si on version ooc. or b. oa. ver si on=version

- CRBDef aul t I ni t Ref URL ooc. orb.defaul t _init_ref=URL
-CRBid id ooc. or b. i d=id

- CRBI ni t Ref name=ior ooc. or b. servi ce. name=ior
-CRBnat i ve_cs hame ooc. orb. native_cs=name

- CRBnat i ve_wcs hame ooc. orb. nati ve_wcs=name

- CRBnani ng /or ooc. or b. servi ce. NaneSer vi ce=/or
- CRBpr oper ty name=value name=value

-CRBreactive ooc. or b. conc_nodel =r eacti ve

- CRBreposi tory ior ooc. or b. servi ce. | nt er f aceReposi t or y=ior
- CRBSer ver | d string ooc. or b. server _nane=string

68

Configuring the ORB and Object Adapter

Option

Property

- CRBser vi ce name ior

ooc. or b. servi ce. name=ior

- CRBt hr eaded

ooc. or b. conc_nodel =t hr eaded

- CRBt race_connecti ons leve/

ooc. or b. trace. connect i ons=/evel

-CRBtrace retry level

ooc. orb. trace. retry=level

A few additional command-line options are supported that do not have

equivalent properties. These options are described in the following table.

Option

Description

- CRBeonfi g filename

Causes the ORB to load the configuration file
specified by filename.

- CRBver si on

Causes the ORB to print its version to standard
output.

69

CHAPTER 4 | ORB and Object Adapter Initialization

Using a Configuration File

70

A convenient way to define a group of properties is to use a configuration
file. A sample configuration file is shown below:

Concurrency nodel s

ooc. or b. conc_nodel =t hr eaded

ooc. or b. oa. conc_nodel =t hr ead_pool
ooc. orb. oa. t hread_pool =5

Initial services

ooc. or b. servi ce. NaneSer vi ce=cor bal oc: : nyhost : 7000/ NaneSer vi ce

ooc. or b. servi ce. Event Ser vi ce=cor bal oc: : nyhost : 7001/ Def aul t Event C
hannel

ooc. or b. servi ce. Tr adi ngSer vi ce=cor bal oc: : nyhost : 7002/ Tr adi ngSer v
ice

Note that trailing blanks are not ignored but are a part of the property.
You can define the name of the configuration file! using a command-line
option, an environment variable (C++), or a system property (Java):
® Command-line option:

- CRBeonf i g filename
® Environment variable:

CRBACUS_CONFI G=filename
® Java system property:

ooc. conf i g=filename

When an ORB is initialized, it first checks for the presence of the
environment variable or system property. If present, the ORB loads the
configuration file. Next, the ORB loads the configuration file specified by the
- CRBconf i g option. Therefore, the properties loaded from the file specified
by - GRBconf i g will override any existing properties, including those loaded
by a configuration file specified in the environment variable or system
property. See “Precedence of Properties” on page 74 for more information.

Configuration files are only loaded during ORB initialization. Changes made
to a configuration file after an ORB has been initialized have no effect on
that ORB.

1. Orbacus for Java also accepts a URL specification as the filename.

Configuring the ORB and Object Adapter

Using the Windows NT Registry

RegUpdate

Synopsis

Example:

Another convenient mechanism for use with C++ applications under
Windows NT is to use the system registryl. Properties can be stored in the
registry under the following registry keys:

HKEY_LOCAL_NMACH NEB\ Sof t war e\ QOC\ Properti es

HKEY_CURRENT_USER Sof t war e\ OOC\ Proper ti es
Individual properties are defined as sub-keys of the base. For example, the
property ooc. or b. trace. connecti ons=5 is stored in the registry as the
following key containing a value named connecti ons with a REG_SZ data
member equal to “5”:

Sof t war e\ OOC\ Properti es\ ooc\orb\trace

The Orbacus distribution includes a utility called RegUpdat e. The tool first
removes all sub-keys defined under the specified registry key. Next, all
values defined in an Orbacus configuration file are transferred to the registry.

RegUpdat e HKEY_LOCAL_MACH NE| HKEY_CURRENT USER config-fil e

RegUpdat e HKEY_LQOCAL_NACH NE ob. conf
This command reads the properties defined in the file ob. conf and writes
the values under the following registry key:

HKEY_LOCAL_NMACH NEB\ Sof t war e\ QOC\ Properti es

1. Use caution when defining Orbacus properties in the registry, as they become
global properties that will be used in every Orbacus for C++ application. For
example, subtle errors can occur if the ooc. i i op. port property is defined on a
global basis.

71

CHAPTER 4 | ORB and Object Adapter Initialization

Defining Properties

Properties in Java

72

3-4

3-4

Java applications can use the standard Java mechanism for defining system
properties because Orbacus will also search the system properties during
ORB initialization.

For example:

1 // Java

2 java.util.Properties props = System getProperties();

3 props. put ("ooc. orb. oa. conc_nodel ", "thread_pool ");

4 props. put ("ooc. orb. oa. thread_pool *, "20");

5 org.ony. OCORBA. CRB orb = org. ong. CORBA. GRB.init(args, null);

Obtain the system properties.
Define Orbacus properties.
Initialize the ORB.

Java virtual machines typically allow you to define system properties on the
command line. For example, using Sun’s JVM you can do the following:
java -Dooc. orb. oa. t hr ead_pool =20 M/Ser ver

You can also use the java. util. Properties object that is passed to the
CRB. i nit () method to provide Orbacus property definitions:

1 // Java

2 java.util.Properties props = new java.util.Properties();

3 props. put ("ooc. orb. oa. conc_nodel *, "thread pool ");

4 props. put ("ooc. orb. oa.thread_pool *, "20");

5 org.onmy. CORBA CRB orb = orb. ong. CCRBA. CRB.init(args, props);

Create ajava. util.Properties object to hold our properties.
Define Orbacus properties.
Initialize the ORB using the j ava. util . Properties object.

Properties in C+ +

Configuring the ORB and Object Adapter

In C++, the Orbacus-specific class CB: : Properti es can be used to define
properties:

/] C++
class Properties

{
1o

publ i c:
Properties();
Properties(Properties_ptr p);
~Properties();

static Properties_ptr _duplicate(Properties_ptr p);
static Properties_ptr _nil();

static Properties_ptr getDefaul tProperties();

voi d set Property(const char* key, const char* val ue);
const char* getProperty(const char* key) const;
...

IE

For example, to add the threaded concurrency model to a property set that
is used to initialize the ORB:

1 // C++

2 OB :Properties_var dflt =

CB:: Properties:: getDefaul t Properties();

3 OB :Properties_var props = new OB:: Properties(dfit);

4 props -> setProperty("ooc. orb.conc_nodel ", "threaded");

5 COORBA :CRB var orb = CBOORBA :CRB_ init(argc, argv, props);

Create an @B: : Properti es object that is based on the default properties.
This is important because, unlike or g. ong. CORBA. CRB. i ni t

CBOCRBA: : CRB i nit does not read the default properties if the property
parameter is not null.

Define Orbacus property.
Initialize the ORB using the Orbacus-specific CBOCRBA: : CRB_i ni t operation.

73

CHAPTER 4 | ORB and Object Adapter Initialization

Precedence of Properties

74

Given that properties can be defined in several ways, it's important to
establish the order of precedence used by Orbacus when collecting and
processing the property definitions. The order of precedence is listed below,
from highest to lowest. Properties defined at a higher precedence override
the same properties defined at a lower precedence.

1.

2.
3.
4

o

Command-line options

Configuration file specified at the command-line

User-supplied properties

Configuration file specified by the CRBACUS CONFI Genvironment
variable (C++) or the ooc. confi g system property (Java)

System properties (Java only)

HKEY_CURRENT _USER\ Sof t war e\ O0Q\ Properties (Windows NT/C++
only)

HKEY_LQCAL_MACH NB\ Sof t war e\ Q00 Properti es (Windows NT/C++
only)

For example, a property defined using a command-line option overrides the
same property defined in a configuration file.

Configuring the ORB and Object Adapter

Advanced Property Usage

Examples

With the methods for ORB initialization discussed in the previous sections,
the command-line arguments are not processed until a call to

ORBA :CRB init (C++), BORBA : CRB init (C++), or

org.ony. OCRBA CRB. i nit (Java). Hence, the set of properties that will be
used by the ORB is not available until after the ORB is initialized. This poses
a problem if the properties need to be validated prior to ORB initialization.

If you need access to an ORB'’s property set before it is initialized, then you
may elect to use the Orbacus-specific operations CB: : Par seArgs (C++) or
com ooc. OCRBA. CRB. Par seAr gs (Java).

The following examples check the value of the ooc. or b. conc_nodel
property to ensure that it is set to t hr eaded. If not, the code chooses the
t hr eaded concurrency model.

[l Ct+
#i ncl ude <CB/ Logger . h>
#i ncl ude <CB/ Properties. h>

a b wN ek

CB:: Properties_var dflt =

CB:: Properties:: getDefaul t Properties();

6 OB :Properties_var props = new OB:: Properties(dfit);

7 OB :ParseArgs(argc, argv, props, CB::Logger::_nil());

8 const char* orbMdel = props ->

get Property(“ooc. orb. conc_nodel ") ;

9 if(strcnp(orbMdel, “threaded”) != 0)

10 {

11 props -> setProperty(“ooc. orb.conc_nodel ”, “threaded”);
12 }

13 OORBA : CRB var orb = CBOCRBA: : CRB init(argc, argv, props);

Create an CB: : Properti es object that is based on the default properties.

Initialize the properties for the ORB. After invoking CB: : Par seAr gs, pr ops
contains the ORB properties and ar gv no longer contains any - CRB or - QA
command-line arguments. The CB: : Par seAr gs operation takes an optional
Logger object, which Par seAr gs will use to display any warning or error
messages. In this example, a custom Logger object is not used, so the code
passes a nil value.

75

CHAPTER 4 | ORB and Object Adapter Initialization

76

8-12

13

4-8

Retrieve the ooc. or b. conc_nodel property and set it to t hr eaded if its value
is not valid.

Initialize the ORB.

/1 Java

java.util.Properties props = System get Properties();
args = com ooc. CCRBA. CRB. Par seArgs(args, props, null);
String orbMdel = props. get(“ooc.orb. conc_nodel ") ;

i f (!orbMdel . equal s(“threaded”))

{

props. put (“ooc. orb. conc_nodel ”, “threaded”);

©oo~NOoO O WNPRE

org.ong. CORBA. CRB orb = org. ong. CCRBA. CRB.init(arg, props);

Create ajava. util.Properties object.

Initialize the properties for the ORB. After invoking

com ooc. CCRBA. CRB. Par seAr gs, props contains the ORB properties. The
return value of Par seAr gs is a string array with all - ORB and - QA arguments
removed. As in the C++ example, a Logger object is not used.

Retrieve the ooc. or b. conc_nodel property and set it to t hr eaded if its value
is not valid.

Initialize the ORB.

Using POA Managers

Using POA Managers

In this section

The CORBA specification states that a POA Manager is used to control the

flow of requests to one or more POAs. In Orbacus, each POA Manager also

encapsulates a set of network endpoints on which a server listens for new

connections. This design provides applications with a great deal of

flexibility:

® endpoints can be activated and deactivated on demand

® agroup of endpoints can be controlled using a single POA Manager
and serviced by one or more POAs

This section contains the following sections:

The Root POA Manager page 78
Anonymous POA Managers page 79
The POA Manager Factory page 80
Creating a POA Manager page 81
POA Manager Policies page 83
Endpoints page 84
Command-line Options and Endpoints page 85
Dispatching Requests page 86
Callbacks page 87

77

CHAPTER 4 | ORB and Object Adapter Initialization

The Root POA Manager

As its name suggests, the Root POA Manager is the POA Manager of the
Root POA. When the Root POA is first resolved using

resol ve_i ni tial _ref erences, the Root POA Manager is automatically
created to manage the Root POA. For administrative purposes, the name of
the Root POA Manager is “RootPOAManager”.

78

Using POA Managers

Anonymous POA Managers

An application can implicitly create POA Managers by supplying a ni | value
for the POA Manager argument to the creat e_PQA operation. In fact, this is
the only portable means of creating POA Managers.1 In this text, we'll refer
to POA Managers created in this way as “anonymous” POA Managers.

One limitation of anonymous POA Managers in Orbacus is that their
endpoints cannot be configured externally via properties, therefore
anonymous POA Managers always use the default endpoint configuration.
Specifically, each anonymous POA Manager will create a single 110P
endpoint on a port chosen by the operating system. Consequently, object
references created by POAs managed by an anonymous POA Manager are
inherently transient.2

Applications which require configurable POA Managers (in addition to the
Root POA Manager) can use the proprietary POA Manager factory, described
in the next section.

1. IONA has proposed adding support for POA Manager identity. For details, see
http://cgi.ony. org/issues/orb_revision. ht m#l ssue4297.

2. Unless of course an indirect persistence mechanism such as the Implementation
Repository is in use.

79

CHAPTER 4 | ORB and Object Adapter Initialization

The POA Manager Factory

To allow an application to easily configure POA Managers, Orbacus provides
the standard CORBA 3.0 factory interface for creating named POA

Managers:
/1 1DL
nodul e Port abl eSer ver
{
| ocal interface POAMVanager Fact ory
{
typedef sequence< PQAManager > PQAManager Seq;
exception Manager Al readyExi sts
{
I8
PQAManager create POAVanager (in string id,
in CCRBA: : Pol i cyList policies)
r ai ses(Manager Al r eadyExi st s,
QOCRBA: : Pol i cyError);
PQAManager Seq list();
PQAVanager find(in string id);
IE

local interface PQA

{

readonly attri bute PQAMVanager Fact ory t he_PQAVanager Fact ory;

80

Using POA Managers

Creating a POA Manager

The example below illustrates how to create a new POA Manager using the
POA Manager Factory. For this example, an empty policy list is used.

Here is an example in C++:

O~NO O WN PP

/] Ct+
CORBA: : Onj ect _var poaQhj =

orb -> resolve_initial _references("Root POA");
OBPor t abl eServer: : POA var root POA =

OBPor t abl eServer: : POA: : _narrow poaQbj);
POAManager Fact ory_var factory = root POA ->

t he_POAManager Fact ory() ;
OBPor t abl eSer ver: : POAManager Fact ory_var pnfFactory =
OBPor t abl eSer ver : : POAManager Factory: : _narrow(factory);

POAManager _var myPOAManager ;
Pol i cyLi st pl;
try

nyPOAManager = pnfFactory ->
cr eat e_PCOAManager (" MyPQAManager ", pl);

}
cat ch(const POAManager Fact ory: : Manager Al r eadyExi st s& ex)

/1 do sonet hing
}

2-6 Resolve the POA Manager Factory.
7-16 Create a new POA Manager with the name “MyPOAManager”.

81

CHAPTER 4 | ORB and Object Adapter Initialization

And in Java:

1 // Java

2 org.ong. CORBA. Cbj ect obj =

3 orb.resol ve_initial_references("Root POA");

4 org.ong. Portabl eServer. POA root POA =

5 org. ong. Port abl eServer . POAHel per . narr ow obj)

6 org.ong. Port abl eServer. POAManager Factory factory =

7 root POA. t he_t he_ POAManager Fact ory() ;

8 com ooc. OBPort abl eSer ver . POAManager Factory pnfFactory =
9

com ooc. OBPort abl eSer ver . POAManager Fact or yHel per. narrow(f ac
tory);

10 org. ong. Port abl eServer. POAManager myPOAMVanager = nul | ;
11 org. ong. CORBA. Policy[] pl = new Policy[O0];

12 try

13 {

14 myPOAManager =

15 pnfFact ory. cr eat e_ POAManager (" MyPOAVanager ", pl);
16 }

17 catch(org. ong. Port abl eSer ver . POAManager Fact or yPackage. Man
ager Al r eadyExi sts ex)

18 {

19 /1 do sonet hi ng

20 }

21 catch(org. ong. CORBA. Pol i cyError ex)

22 {

23 /1 do sonet hi ng

24 }

2-9 Resolve the POA Manager Factory.

10-17 Create a new POA Manager with the name “MyPOAManager”.

The ORB processes any configuration properties that were defined for the
POA Manager, and may raise the O : : I nval i dPar amexception if an error
was found in the POA Manager's endpoint configuration.

82

Using POA Managers

POA Manager Policies

The POA Manager Factory interface allows a set of vendor-specific policies
to be used to configure the new POA Manager. For Orbacus, the proprietary
policies are:

/1 1DL

nodul e CBPort abl eSer ver
{
| ocal interface PQAMVanager Factory :
Port abl eSer ver : : POAMVanager Fact ory
{
Endpoi nt Conf i gurat i onPol i cy
creat e_endpoi nt _confi gurati on_pol i cy(
in string val ue)
rai ses(QCRBA : PolicyError);

Cormmuni cat i onsConcur r encyPol i cy
creat e_communi cati ons_concur rency_pol i cy(
in short val ue)
rai ses(COORBA: : Pol i cyError);

A CGPVersi onPol i cy create_gi op_version_pol i cy(
in short val ue)
rai ses(QCRBA : PolicyError);
ik

iE

These policies map to the POA Manager specific configuration properties
(ooc. or b. poamanager . manager.) endpoi nt , conc_nodel , and ver si on (see
“OA Properties” on page 65). For examples of how to use these policies,
refer to “Using Policies” on page 307.

83

CHAPTER 4 | ORB and Object Adapter Initialization

Endpoints

84

Orbacus supports a flexible mechanism for configuring a POA Manager's
endpoints via properties. A single property is used to configure the endpoints
for a particular POA Manager. The property value consists of a
comma-separated list of endpoints, with the following syntax:
plugin-id [options] [, plugin-id [options] ...]
For example:

ooc. orb. oa. endpoi nt=iiop --port 9998, iiop --port 9999

ooc. or b. poamanager . MyManager . endpoi nt =i i op
This configuration creates two 110P endpoints for the Root POA Manager on
specific ports, and one IIOP endpoint for the POA Manager named
‘MyManager’ on an arbitrary port. Technically, the second property isn't
necessary, because this is the default configuration if no endpoints are
specified for a POA Manager.

It is important to note that only those transport plug-ins which were
installed via the ooc. oci . server property can be used in endpoint
configuration.

When experimenting with various endpoint configurations, it can be very
useful to enable connection tracing diagnostics. With diagnostics enabled,
the ORB will display its endpoint information, allowing you to confirm that
the application’s endpoints are configured correctly. Diagnostics can be
enabled using the - ORBt race_connect i ons command-line option, or using
the equivalent property ooc. or b. tr ace. connect i ons.

See “Configuring the ORB and Object Adapter” on page 57 for more
information on configuration properties.

For a complete description of the available transport plug-ins and their
options, see Chapter 19.

Using POA Managers

Command-line Options and Endpoints

Transport plug-ins may support command-line options, and it is important
to understand the effects of using those options. They can be summarized
as follows:
® Using a plug-in's command-line options will always add a new
endpoint configuration, i.e., command-line options do not override an
existing endpoint configuration.
® Command-line options only configure endpoints for the Root POA
Manager.
The first item is the most significant. Let's consider some examples which
will serve to explain this issue. First, assume that there is no endpoint
configuration property for the Root POA Manager, and that we use the
following command-line options:
-1 1 CPhost host. abc. com-11CPport 1234
The 1lOP plug-in will convert these command-line options into the following
configuration property:
ooc. or b. oa. endpoi nt =i i op --host host.abc.com--port 1234
Now let's consider a more complicated example. Suppose that we have an
existing endpoint configuration property defined, and we also use
command-line options. The existing endpoint configuration is
ooc. or b. oa. endpoi nt=ii op --port 5555
And the command-line options are
-1 1 CPport 5556
After the command-line options are processed by the IIOP plug-in, the
endpoint configuration property will be
ooc. or b. oa. endpoi nt=iiop --port 5555, iiop --port 5556

Note that there are now two endpoints; the command-line options resulted
in an additional endpoint being appended to the existing property value.

85

CHAPTER 4 | ORB and Object Adapter Initialization

Dispatching Requests

As explained in [4], a POA Manager is initially in the “holding” state, where
incoming requests on the POA Manager's endpoints are queued. To
dispatch requests, the POA Manager must be activated using the

activat e() operation.

86

Using POA Managers

Callbacks

In mixed client/server applications in which callbacks occur, it is important
to remember that callbacks will not be dispatched until the POA Manager
has been activated. If the POA Manager has not been activated, the
application will likely hang. In general, applications should activate the POA
Manager prior to making any request that might result in a callback.

87

CHAPTER 4 | ORB and Object Adapter Initialization

ORB Destruction

88

Applications must destroy the ORB before returning from nai n so that
resources used by the ORB are properly released.

To destroy the ORB in C++, invoke dest roy on the ORB:

[l C++
OORBA: : GRB var orb =// Initialize the orb
/...

orb -> destroy();
And in Java:

/1 Java
org.ong. CCRBA. CRB orb = // Initialize the orb
/...

orb. destroy();

Server Event Loop

Server Event Loop

A server’s event loop is entered by calling POAManager : : acti vat e on each
POA Manager, and then calling CRB: : run.

For example, in Java:

/1 Java
org.ong. CCRBA CRB orb = ... // Initialize the orb

or g. ong. Port abl eSer ver. POAManager manager = ... // Get Root PQA
manager

manager . activate();
orb.run();

And in C++:

/1 Ct+

OORBA: :ORB var orb =... // Initialize the orb

Port abl eSer ver: : POAManager _var manager = ... // Get the Root POA
manager

nmanager -> activate();
orb -> run();

You can deactivate a server by calling CRB: : shut down, which causes

CRB: : run to return. For example, consider a server that can be shut down by
a client by calling a deact i vat e operation on one of the server's objects.
First the IDL code:

/1 1DL
interface Shutdown(bj ect
{

voi d deactivate();

IE

89

CHAPTER 4 | ORB and Object Adapter Initialization

90

On the server side, Shut downChj ect can be implemented like this:

1 /] C++

2 class ShutdownCbj ect _i npl

3 publ i ¢ PQA_Shut downChj ect ,

4 publ i ¢ Portabl eServer: : Ref Count Ser vant Base
5 {

6 OORBA: : CRB_var orb_;

7

8 public:

9

10 Shut downhj ect _i npl (OCCRBA: : CRB ptr orb)

11 : orb_(COORBA : ORB:: _duplicate(orb))

12 {

13 }

14

15 virtual void deactivate() throw CORBA : Syst enExcepti on)
16 {

17 orb_ -> shutdown(fal se);

18 }

}

A servant class for Shut down(vj ect is defined. For more information on how
to implement servant classes, see Chapter 5.

An ORB is needed to call shut down.
The constructor initializes the ORB member.

deact i vat e calls shut down on the ORB. Note that shut down is called with
the argument f al se to avoid a deadlock. A f al se argument instructs

shut down to terminate request processing without waiting for executing
operations to complete. A true argument instructs shut down to return only
once all operations have completed. If shut down were called with a true
argument in this example, it would deadlock. That is because

shut down(true) would be invoked from within an operation and, therefore,
could not ever return.

The client can use the deact i vat e call as shown below:
/] C++

Shut downChj ect _var shutdownChj = ... // Cet a reference sonehow
shut downChj -> deactivate();

In this chapter

CHAPTER 5

CORBA Objects

This chapter describes how to create and use CORBA servant
objects.

This chapter contains the following sections:

Overview page 92
Implementing Servants page 94
Creating Servants page 103
Activating Servants page 107
Deactivating Servants page 112
Factory Objects page 114

91

CHAPTER 5 | CORBA Objects

Overview

92

A CORBA object is an object with an interface defined in CORBA IDL.

CORBA objects have different representations in clients and servers.

® Aserver implements a CORBA object in a concrete programming
language, for example in C++ or Java. This is done by writing an
implementation class for the CORBA object and by instantiating this
class. The resulting implementation object is called a servant.

® Aclient that wants to make use of an object implemented by a server
creates an object that delegates all operation calls to the servant via
the ORB. Such an object is called a proxy.

When a client invokes a method on the local proxy object, the ORB packs
the input parameters and sends them to the server, which in turn unpacks
these parameters and invokes the actual method on the servant. Output
parameters and return values, if any, follow the reverse path back to the
client. From the client’s perspective, the proxy acts just like the remote
object since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can
invoke a method on the servant when a request is received from a client.

This connection is handled by the Portable Object Adapter (POA), as shown
in Figure 2.

Client Server
Servant
Proxy POA

S

Figure 2: Servants, Proxies and the Object Adapter

Overview

The Portable Object Adapter in Orbacus replaces the deprecated “Basic
Object Adapter” (BOA). (The BOA was deprecated by the OMG because it
had a number of serious deficiencies and was under-specified.) The POA is
a far more flexible and powerful object adapter than the BOA. The POA not
only allows you to write code that is portable among ORBs from different
vendors, it also provides a number of features that are essential for building
high-performance and scalable servers.

93

CHAPTER 5 | CORBA Objects

Implementing Servants

In this section, we will implement servant classes (or “implementation
classes”) for the IDL interfaces defined below:

/1l 1D
interface A

voi d op_a();
B

interface B

{

9 voi d op_b();
10 };

oO~NO OhAs WN PR

12 interface | : A B

14 void op_i();
15 };

2-5 An interface A is defined with the operation op_a.
7-10 An interface B is defined with the operation op_b.

12-15 Interface 1 is defined, which is derived from A and B. It also defines a new
operation op_i .

94

Implementing Servants

Implementing Servants using Inheritance

Overview

Inheritance using C+ +

2-6

8-13

Orbacus for C++ and Orbacus for Java both support the use of inheritance
for interface implementation. To implement an interface using inheritance,
you write a servant class that inherits from a skeleton class generated by the
IDL translator. By convention, the name of the servant class should be the
name of the interface with the suffix _i npl , e.g., for an interface 1, the
implementation class is named | _i npl .1

In C++, I _i npl must inherit from the skeleton class PQA | that was
generated by the IDL-to-C+ + translator. If I inherits from other interfaces,
for example from the interfaces Aand B, then I _i npl must also inherit from
the corresponding implementation classes A i npl and B_i npl .

1 // G+

2 class Ainpl : virtual public POA A

3 {

4 public:

5 virtual void op_a() throw CORBA: : Syst enException);
6 }

7

8 class Binpl : virtual public POA B

9 {

10 public:

11 virtual void op_b() throw CORBA: : Syst enExcepti on);
12 };

13

14 class |_inpl : virtual public PQA I,

15 virtual public Ainpl,

16 virtual public B inpl

17 {

18 publi c:

19 virtual void op_i() throw CORBA: : Syst enExcepti on);
20 };

The servant class A i npl is defined, inheriting from the skeleton class
PQA A. If op_a had any parameters, these parameters would be mapped
according to the standard IDL-to-C++ mapping rules [4].

This is the servant class for B_i npl .

1. These naming rules are not mandatory, they are just a recommendation.

95

CHAPTER 5 | CORBA Objects

Inheritance using Java

96

14-20

5-7

The servant class for | _i npl is not only derived from PQA I, but also from
the servant classes A i npl and B i npl .

Note that virtual public inheritance must be used. The only situation in
which the keyword vi rtual is not necessary is for an interface I which does
not inherit from any other interface and from which no other interface
inherits. This means that the implementation class I _i npl only inherits from
the skeleton class PQA | and no implementation class inherits from I _i npl .

It is not strictly necessary to have an implementation class for every
interface. For example, it is sufficient to only have the class | _i npl as long
as | _inpl implements all interface operations, including the operations of
the base interfaces:

/] C++

class | _inpl : virtual public PQOA |

{

publ i c:
virtual void op_a() throw CGORBA: : Syst enExcepti on);
virtual void op_b() throw CORBA: : SystenException);
virtual void op_i() throw CORBA: : Syst enException);

oO~NO OhsWNBRE

b
Now | _i npl is only derived from PQA I, but not from the other servant
classes.

I _i npl must implement all operations from the interface | as well as the
operations of all interfaces from which I is derived.

Several files are generated by the Orbacus IDL-to-Java translator for an

interface I, including:

® |.java, which defines a Java interface | containing public methods for
the operations and attributes of 1, and

® | PQA java, which is an abstract skeleton class that serves as the base
class for servant classes.

In contrast to C+ +, Java’s lack of multiple inheritance currently makes it
impossible for a servant class to inherit operation implementations from
other servant classes, except when using delegation-based implementation.

Implementing Servants

For our interface I it is therefore necessary to implement all operations in a
single servant class | _i npl , regardless of whether those operations are
defined in I or in an interface from which I is derived.

1 // Java

2 public class |_inpl extends |PQA
3 {

4 public void op_a()
5 {

6 }

7

8 public void op_b()
9 {

10 }

11

12 public void op_i()
13 {

14 }

15 }

2-15 The servant class | _i npl is defined, which implements op_i , as well as the
inherited operations op_a and op_b.

97

CHAPTER 5 | CORBA Objects

Implementing Servants using Delegation

Sometimes it is not desirable to use an inheritance-based approach for
implementing an interface. This is especially true if the use of inheritance
would result in overly complex inheritance hierarchies (for example, because
of use of an existing class library that requires extensive use of inheritance).
Therefore, another alternative is available for implementing servants which
does not use inheritance. A special class, known as a tie class, can be used
to delegate the implementation of an interface to another class.!

Delegation using C++ The Orbacus IDL-to-C++ translator can automatically generate a tie class
for an interface in the form of a template class. A tie template class is
derived from the corresponding skeleton class and has the same name as
the skeleton, with the suffix _ti e appended.

For the interface I from the C+ + example above, the template POA | tieis
generated and must be instantiated with a class that implements all
operations of I . By convention, the name of this class should be the name of
the interface with _inpl _tie appended.2

1. Note that tie classes are rarely necessary. Not only is the inheritance
implementation less complex, but it also avoids a number of problems that arise
with the life cycle of objects, particularly in threaded servers. We suggest that you
use the tie approach only if you have no other option.

2. Again, you are free to choose whatever name you like. This is just a
recommendation.

98

2
5-7

Implementing Servants

In contrast to the inheritance-based approach, it is not necessary for the
class implementing I 's operations, i.e., | _i npl _ti e, to be derived from a
skeleton class. Instead, an instance of POA | _ti e delegates all operation
calls to | _i npl _ti e, as shown in Figure 3.

POA_I

|
L I -
POA | tie

?delegates to

|_impl_tie

Figure 3: Class Hierarchy for Delegation Implementation in C++
Here is our definition of I _i npl _tie:

/] Ct+

class | _inpl _tie

{

public:
virtual void op_a() throw CORBA: : Syst enException);
virtual void op_b() throw CORBA: : SystenException);
virtual void op_i() throw OCORBA : SystenException);

iE

oO~NOoOOhs WN PR

| _inpl _tieis defined and not derived from any other class.

I _inpl _ti e must implement all of I''s operations, including inherited
operations.

A servant class for I can then be defined using the | _skel _ti e template:

1 /] G+
2 typedef POA | tie< |_inpl_tie > 1 _inpl;

The servant class | _i npl is defined as a template instance of POA | _tie,
parameterized with | _i npl _tie.

929

CHAPTER 5 | CORBA Objects

The tie template generated by the IDL compiler contains functions that
permit you change the instance denoted by the tie:

1 /] C++

2 tenpl ate<class T>

3 class PA | _tie : public PQA |
4 {

5 public:

6 /...

7 T* _tied_object();

8 void _tied object(T& obj);
9 voi d _tied_object(T* obj, OORBA :Bool ean rel ease = true);
10 ...

11 }

7-9 The _ti ed_obj ect function permits you to retrieve and change the
implementation instance that is currently associated with the tie. The first
modifier function calls del et e on the current tied instance before accepting
the new tied instance if the rel ease flag is currently true; the r el ease flag
for the new tied instance is set to false. The second modifier function also
calls del et e on the current tied instance before accepting the new instance
but sets the rel ease flag to the passed value.

Delegation using Java For every IDL interface, the IDL-to-Java mapping generates an “operations”
interface containing methods for the IDL attributes and operations. This
operations interface is also used to support delegation-based servant
implementation. For an interface I, the following additional class is
generated:

® | PQATI e. j ava, the tie class that inherits from 1 POA and delegates all
requests to an instance of | Qper at i ons.

100

Implementing Servants

To implement our servant class using delegation, we need to write a class
that implements the | Qper at i ons interface:

1 // Java

2 public class | _inpl_tie inplenments | Cperations
3 {

4 public void op_a()
5 {

6 }

7

8 public void op_b()
9 {

10 }

11

12 public void op_i()
13 {

14 }

15 }

The servant class | _i npl _ti e is defined to implement the | Qper at i ons
interface.

I _inpl _tie must implement all of 1''s operations, including inherited
operations.

Figure 4 illustrates the relationship between the classes generated by the
IDL-to-Java translator and the servant implementation classes.

IPOA

I_impl IPOATie %delegates ™ IOperations

I_impl_tie

Figure 4: Class Hierarchy for Inheritance and Delegation Implementation
in Java

101

CHAPTER 5 | CORBA Objects

As noted earlier, Java's lack of multiple inheritance makes it impossible to
inherit an implementation from another servant class. Using tie classes,
however, does allow implementation inheritance, but only in certain
situations.

For example, let's implement each of our sample interfaces using

delegation.

1 // Java

2 public class Ainpl inplenments AQperations
3 {

4 public void op_a()

S {

6 }

7}

8

9 public class B.inpl inplenments BQerations
10 {

11 public void op_b()

12 {

13 }

14 }

15

16 public class |_inpl extends B_inpl inplenments | Qperations
17 {

18 public void op_a()

19 {

20 }

21

22 public void op_i()

23 {

24 }

25 }

2-7 Class A i npl is defined as implementing AQper at i ons.
9-14 Class B_i npl is defined as implementing BQper at i ons.

16-21 Class | _i npl inherits the implementation of op_b from B_i npl , and provides
an implementation of op_a and op_i . Since a Java class can only extend one
class, it's not possible for I _i npl to inherit the implementations of both
op_a and op_b.

102

Creating Servants

Creating Servants

Servants are created the same way in both C++ and Java: once your
servant class is written, you simply instantiate a servant with new.!

1. You can also instantiate servants on the stack. However, this only works only for
some POA policies, so servants are usually instantiated on the heap.

103

CHAPTER 5 | CORBA Objects

Creating Servants using C+ +

104

2,3

Here is how to create servants using C+ +:

1 /] C++
2 |_inpl* servant_pointer = new | _inpl;
3 |_inpl* another_servant_pointer = new | _inpl;

Two servants are created with new. Note that this merely instantiates the
servants but does not inform the ORB that these servants exist yet. The ORB
server-side run time only learns of the existence of the servants once you
activate them.

In case the servant class was written using the delegation approach, an
object of the class implementing |1's operations must be passed to the
servant’s constructor:

1 // C++

2 |_inpl_tie* inpl = newl_inpl _tie;

3 PAI_tie<|I_inpl_tie >* tie pointer =
4 new POA | _tie< |_inpl_tie >(inpl);

A new | _inpl _tie is created with new.

An instance of POA | _ti e parameterized with | _i npl _ti e is created, taking
i npl as a parameter. All operation calls to ti e will then be delegated to

i mpl .

In this example, the lifetime of i npl is coupled to the lifetime of the servant
tie. That is, when the tie is destroyed, del ete i npl is called by the tie's
destructor. In case you don’t want the lifetime of i npl to be coupled to the
lifetime of the tie, for example, because you want to create a servant on the
stack and not on the heap (making it illegal to call del et e on the tie), use
the following code:

/] C++

1
2 |_inpl_tie inpl;

3 PAAI_tie<|_inpl_tie > tie =

4 new POA | tie< | _inpl_tie >(& npl, false);

A new I _inpl _ti e is created, this time on the stack, not on the heap.

An instance of POA | _ti e is created. The fal se parameter tells ti e not to
call del ete oninpl .

Creating Servants

Creating Servants using Java

2,3

Every tie class generated by the IDL-to-Java translator has two constructors:

/1 Java
public class | POATi e extends | PQA
{
publ i c | POATI e(| Qperations del egate) { ... }
publ i c | POATi e(| Qperations del egate, PQA poa) { ... }
}

The second constructor allows a POA instance to be supplied, which will be
used as the return value for the tie's _def aul t _PQA method. If the POA
instance is not supplied, the _def aul t _PQOA method will return the root POA
of the ORB with which the tie has been associated.

This example demonstrates how to create servants using Java:

1 // Java
2 |_inpl inpl = new I _inpl();
3 I_inpl anotherlnpl = new | _inpl();

Two servants, i npl and anot her | npl , are created with new.

In case the servant class was written using the delegation approach, an
object implementing the | Qper ati ons interface must be passed to the tie's
constructor:

1 // Java

2 |_inpl_tieinpl = new | _inpl_tie();
3 |IPQOATie tie = new | PQATi e(i npl);

Anew | _inpl _tie is created.

An instance of | PQATi e is created, taking i npl as a parameter. All operation
calls to ti e will then be delegated to i npl .

105

CHAPTER 5 | CORBA Objects

The tie class also provides methods for accessing and changing the
implementation object:

1 // Java

2 public class | POATi e extends | POA

3 {

4 S

5 public | Qperations _delegate() { ... }

6 public void _del egate(l Qperations delegate) { ... }
7

}

5 This method returns the current delegate (i.e., implementation) object.
6 This method changes the delegate object.

106

Activating Servants

Activating Servants

Servants must be activated in order to receive requests from clients. Servant
activation informs the ORB run time which particular servant represents (or
incarnates) a particular CORBA object. Activation of a servant assigns an
object identifier to the servant. That object identifier is also embedded in
every object reference that is created for an object and serves to link the
object reference with its servant.

The POA’s | dAssi gnment Pol i cy value controls whether object IDs are
assigned by the POA or the server application code. The SYSTEM I D policy
value directs the ORB to assign a unique object identifier to the CORBA
object represented by the servant; the USER I D policy value requires the
server application code to supply an ID that must be unique within the
servant’s POA.

Servants can be activated implicitly or explicitly. Implicit activation takes
place when you create the first object reference for a servant. Explicit
activation requires a separate API call. Typically, you will use implicit
activation for transient objects and explicit activation for persistent objects.
The I'nplicitActivationPol i cy controls whether explicit or implicit is in
effect. Explicit activation requires the NO_| MPLI A T_ACTI VATI ON policy value
on the servant’s POA, whereas implicit activation requires the

| MPLI O T_ACTI VATI ON policy value.

107

CHAPTER 5 | CORBA Objects

Implicit Activation of Servants using C+ +

The following code shows how to implicitly activate a servant:

1 /] C++

2 |_inpl inpl;
3 | var iv=inpl -> this();

A new servant i npl is created.
The new servant is activated implicitly by calling _t hi s.

Note that implicit activation as shown requires the RETAI N,

I MPLI O T_ACTI VATI ON, and SYSTEM I D policies on the servant’s POA. The
servant is activated with the POA that is returned by the servant’s

_def aul t _PQA member function. (The default implementation of

_def aul t _PQA returns the Root POA; if you want servants activated on a
different POA, you must override _def aul t _PQA in the implementation class
to return the POA you want to use.)

108

Activating Servants

Implicit Activation of Servants using Java

This is how Java servants are implicitly activated:

1 // Java

2 org.ong. CORBACRB orb = ... // Get areference to the CRB
sonehow

3 I_inpl inpl = new I _inpl();

4 | lref =inpl._this(orb);

To activate a servant, we need the ORB.
A new servant i npl is created.

4 The new servant is activated (using the POA returned by the servant’s
_def aul t _PQA operation).
As shown above, a servant in Java must be associated with an ORB, and
cannot be associated with multiple ORBs. The first call to _t hi s() must
supply the ORB reference; subsequent calls to _t hi s() for the same servant
can omit the ORB reference.

An alternative way to associate a servant with an ORB is to call the
set _del egat e method defined in or g. ong. CORBA 2_3. CRB.

/1 Java
org.ong. CCRBA CRB orb = ... // Get a reference to the CRB somehow
((org.ong. CORBA 2 3. (RB)orb) . set _del egat e(i npl) ;

109

CHAPTER 5 | CORBA Objects

Explicit Activation of Servants using C+ +

If NO_I MPLI O T_ACTI VATI ONand SYSTEM | Dare in effect for a servant’s POA,
you activate the servant by calling acti vat e_obj ect :

1 I_inpl inpl;
2 Portabl eServer::PQA var poa = inpl._defaul t_PQOA();
3 poa -> activate_object (& npl);

1 The code instantiates a servant.
To activate a servant, we need the servant’s POA.
acti vat e_obj ect creates a unique ID for the servant.

Once a servant is activated, calls to _t hi s on the servant return an object
reference that contains the ORB-assigned ID for the object.

If NO_I MPLI O T_ACTI VATI ONand USER | Dare in effect for servant’s POA, you
activate the servant by supplying the ID value as an octet sequence to
activate object_with_id:

1 I_inpl inpl;

2 Portabl eServer::PQA var poa = inpl._defaul t_PQOA();

3 Portabl eServer:: ojectld_var oid =

4 Port abl eServer::string_to_Cbject!d("MChj ect Narre") ;
5 poa -> activate_object_with_id(oid, & npl);

3,4 The string_to_oj ect 1 d helper function converts a string into an octet
sequence.

5 activate_obj ect _with_id uses the octet sequence as the object ID for the
servant.

You can use any suitable key value as an object ID. Typically, the key will
be part of the object’s state, such as a social security number. However, you
can also use keys that are not directly related to object state, such as
database record identifiers. Once the servant is activated, calls to _this on
the servant return an object reference that contains the ID you assigned to
the object.

110

Activating Servants

Explicit Activation of Servants using Java

Servant activation in Java also uses acti vat e_obj ect (for SYSTEM | D) and
acti vat e_obj ect _wi th_i d (for USER | D). With SYSTEM I D, the code looks as
follows:

1 1_inpl inpl = new | _inpl();
2 orb. ony. Port abl eServer. PQA poa = inpl._defaul t _PQOA();
3 poa. activate_object(inpl);

For USER | D, you must provide the Object ID:

I _inpl inpl = new I _inpl();

or g. ong. Port abl eServer. POA poa = inpl._defaul t _PQOA();
byte[] id = "M/Qbj ect Nane". get Byt es();

poa. acti vate_object_wth_id(id, inpl);

A WN PR

111

CHAPTER 5 | CORBA Objects

Deactivating Servants

Deactivation of Servants using
C++

Deactivation of Servants using
Java

Transient and Persistent Objects

112

A servant can be deactivated. Deactivating a servant breaks the association
between the CORBA object and the servant; requests that arrive from clients
thereafter result in an CBJIECT_NOT_EXI ST exception (or a TRANSI ENT
exception, if the server is down at the time a request is made).

To deactivate a servant, call the deacti vat e_obj ect member function on
the servant’'s POA:

/] Ct++

Port abl eServer:: POA var poa = inpl._defaul t_PQOA();

Port abl eServer:: Cbjectld_var id = poa -> servant _to_i d(& npl)
poa -> deactivate_object(id);

B WN

The code obtains a reference to the servant’s POA by calling _def aul t _PQA.
(This assumes that _def aul t _PQA is correctly overridden to return the
appropriate POA if the servant is not activated with the Root POA.)

The call to servant _t o_i d on the servant’s POA returns the object ID with
which the servant is activated.

The call to deacti vat e_obj ect breaks the association between the CORBA
object and the servant.

Note that deact i vat e_obj ect returns immediately, even though the servant
may still be executing requests, possibly in a number of different threads.

Deactivation of a servant in Java is analogous to C+ +:

/1 Java

org. ong. Port abl eServer. PQA poa = inpl._defaul t_PQOA();
byte[] id = poa.servant_to_id(inpl);

poa. deacti vat e_obj ect (i d);

A OwWDN PR

A POA has either the TRANSI ENT or the PERSI STENT policy value. A transient
POA generates transient object references. A transient object reference
remains functional only for as long as its POA remains in existence. Once
the POA for a transient reference is destroyed, the reference becomes

Deactivating Servants

permanently non-functional and client requests on such a reference raise
either CBIECT_NOT_EXI ST or TRANSI ENT (depending on whether or not the
server is running at the time the request is sent). Transient references
remain non-functional even if you restart the server and re-create a transient
POA with the same name as was used previously. Transient POAs almost
always use the SYSTEM | D policy as a matter of convenience (although the
combination of TRANSI ENT and USER | Dis legal).

Object references created on a persistent POA continue to be valid beyond
the POA’s life time. That is, if you create a persistent reference on a POA,
destroy the POA, and then recreate that POA again (with the same POA
name), the original reference continues to denote the same CORBA object
(even if the server was shut down and restarted). Persistent references
require the same POA name and object ID to be used to denote the same
object. This means that persistent references rely on the combination of
PERSI STENT and USER | D. USER | D must be used in conjunction with

NO_| MPLI A T_ACTI VATI QN, so servants for persistent references are always
activated explicitly.

113

CHAPTER 5 | CORBA Objects

Factory Objects

114

It is quite common to use the Factory [2] design pattern in CORBA
applications. In short, a factory object provides access to one or more
additional objects. In CORBA applications, a factory object can represent a
focal point for clients. In other words, the object reference of the factory
object can be published in a well-known location, and clients know that
they only need to obtain this object reference in order to gain access to other
objects in the system, thereby minimizing the number of object references
that need to be published.

The Factory pattern can be applied in a wide variety of situations, including

the following:

® Security - A client is required to provide security information before the
factory object will allow the client to have access to another object.

® Load-balancing - The factory object manages a pool of objects, often
representing some limited resource, and assigns them to clients based
on some utilization algorithm.

® Polymorphism - A factory object enables the use of polymorphism by
returning object references to different implementations depending on
the criteria specified by a client.

These are only a few examples of the potential applications of the Factory

pattern. The examples listed above can also be used in any combination,

depending on the requirements of the system being designed. Note that the

factory pattern applies equally to persistent and transient objects.

A simple application of the Factory pattern, in which a new object is created

for each client, is illustrated below. The implementation uses the following
interface definitions:

/1 1D
interface Product

{
¥

voi d destroy();

interface Factory

{
Product creat eProduct () ;

OO NO U A WN P

2-5

7-10

Factory Objects

The Product interface is defined. The dest r oy operation allows a client to
destroy the object when it is no longer needed.

The Fact ory interface is defined. The creat ePr oduct operation returns the
object reference of a new Product .

115

CHAPTER 5 | CORBA Objects

Factory Objects using C+ +

116

2-4

First, we'll implement the Product interface:

1 /] C++

2 class Product_inpl

3 public virtual PQOA Product,

4 public virtual Portabl eServer:: Ref Count Servant Base
5 {

6 public:

7

8 virtual void destroy() throw CORBA: : Syst enExcepti on)
9 {

10 Port abl eServer:: POA var poa = _defaul t_PQOA();
11 Port abl eServer:: jectld_var id = poa ->
servant _to_id(this);

12 poa -> deactivate_object(id);

13 }

b

The servant class Product _i npl is defined as an implementation of the
Product interface. In addition, Product _i npl inherits from
Ref Count Ser vant Base, which makes the servant reference counted.

The destroy() operation deactivates the servant with the POA. As a result,
the POA will release all references it maintains to the servant. Since there
are no other references to the servant left, the servant’s reference count will
drop to zero, and thus the servant is destroyed.

9-10

11-14

Factory Objects

Next, we'll implement the factory:

1 // C++

2 class Factory_inpl : public virtual POA Factory

3 {

4 public:

5

6 virtual Product_ptr

7 creat eProduct () throw CORBA: : Syst enExcept i on)

8 {

9 Product _i npl * i nmpl = new Product _i npl (orb_);

10 Por t abl eServer: : Servant Base_var servant = inpl;

11 Port abl eServer:: POA var poa = ... // Get servant’s POA
12 Portabl eServer:: Cbjectld var id = ... // Assign an ID
13 poa -> activate_object_with_id(id, inpl);

14 return inpl -> _this();

15 }

ha

The servant class Factory_i npl is defined as an implementation of the
Fact ory interface.

A new reference counted Product servant is instantiated. The servant is
assigned to a Servant Base_var, which decrements the servant’s reference
count when it goes out of scope.

Activates the servant and returns an object reference to the client.

It is important to understand how the servant is eventually destroyed. The
Ref Count Ser vant Base class from which the servant inherits implements a
reference count. When the servant is instantiated, the Ref Count Ser vant Base
constructor sets this reference count to 1. When the servant is activated
with the POA, the POA increases the reference count by at least 1. When
the Servant Base_var we assigned the servant to goes out of scope, the
reference count is decremented by 1. This means that when

creat eProduct () returns, only the POA is “holding” a reference to the
servant. Later, when the servant is deactivated in destroy(), the POA
decrements the reference count by exactly the same number it used to
increment the reference count upon activation. This causes the reference
count to drop to zero, in which case the servant will be implicitly deleted.

Note that whenever the ORB starts to dispatch a request on the servant, the
reference count is incremented. After request dispatching is finished, the
count is decremented by the same amount. This ensures that a reference
counted servant cannot be deleted while a request is executing.

117

CHAPTER 5 | CORBA Objects

Factory Objects using Java

Here is our Java implementation of the Product interface:

1 // Java

2 public class Product_inpl extends Product POA

3 {

4 public void destroy()

5 {

6 byte[] id = _default PQOA().servant _to_id(this);
7 _default _PQA(). deacti vat e_obj ect (i d);

8 }

}

2 Servant class Product _i npl is defined as an implementation of the Pr oduct
interface.
6,7 The dest r oy operation deactivates the servant with the POA. As long as no
other references to the servant are held in the server, the object will be
eligible for garbage collection.

Here's our implementation of the factory:

1 // Java

2 public class Factory_inpl extends FactoryPQA

3 {

4 publi ¢ Product createProduct ()

5 {

6 Product i npl result = new Product i npl (orb);
7 org.ony. Port abl eServer. PQA poa = ... // Get servant’s
PQA

8 byte[] id=... // Assign an ID

9 poa. activate_object_with_ id(id, result);

10 return result. _this(orb_);

11 }

}

2 Servant class Factory_i npl is defined as an implementation of the Fact ory
interface.

4-11 The creat eProduct operation instantiates a new Product servant, activates
it with the POA, and returns an object reference to the client.

118

Factory Objects

Caveats

In these simple examples, the factory objects do not maintain any references
to the Product servants they create; it is the responsibility of the client to
ensure that it destroys a Product object when it is no longer needed. This
design has a significant potential for resource leaks in the server, as it is
quite possible that a client will not destroy its Product objects, either
because the programmer who wrote the client forgot to invoke dest roy, or
because the client program crashed before it had a chance to clean up. You
should keep these issues in mind when designing your own factory objec’[s.1

1. Two possible strategies for handling this issue include: time-outs, in which a
servant that has not been used for some length of time is automatically released;
and expiration, in which an object reference is only valid for a certain length of
time, after which a client must obtain a new reference. The implementation of
these solutions is beyond the scope of this manual.

119

CHAPTER 5 | CORBA Objects

Obtaining the POA for a Servant

120

9-12

14-17

As mentioned in the previous sections, every servant inherits a

_def aul t _PQA function from its skeleton class. The default implementation

of this function returns the Root POA. If you instantiate servants on anything
but the Root POA, you must override the function in the servant; otherwise,
calls to _t hi s will create incorrect object references. Usually, this involves

remembering the POA reference for a servant in a private member variable

and returning that reference from a call to _def aul t _PQA. (If all servants for
objects of a particular interface type use the same POA, you can use a static
member variable.)

In C++, you can use an approach similar to the following:

1 // G+

2 class Product _inpl

3 public virtual PQOA Product,

4 public virtual Portabl eServer:: Ref Count Servant Base
5 {

6 Port abl eServer: : POA var poa_;

7

8 public:

9 voi d Product _i npl (Portabl eServer:: POA ptr poa)
10 : poa_(Portabl eServer::PQA : _duplicate(poa))
11 {

12 }

13

14 virtual Portabl eServer::PQA ptr _defaul t_PQOA()
15 {

16 return Portabl eServer:: POA : _duplicate(poa_)
17 }

18 };

The constructor accepts a POA reference and remembers that reference in a
private member variable.

The _def aul t _PQA function returns the servant’s POA.
In Java, the approach is very similar:

Factory Objects

/1 Java
public class Product_i npl extends Product PQA
{

private org. omy. Portabl eServer. POA poa_;

publ i ¢ Product _i npl (org. omy. Port abl eSer ver. POA poa)
{

}

poa_ = pog;

publ i c org. ong. Port abl eServer. POA

_defaul t _POA()
{

}

return poa_;

121

CHAPTER 5 | CORBA Objects

Getting the POA for a Currently Executing Request

The ORB provides access to an object of type Port abl eServer:: Qurrent :

/1 1D
nmodul e Port abl eSer ver
{
interface Qurrent : CCRBA: : Qurrent
{
exception NoContext { };
PQA get _PQA() rai ses(NoCont ext);
(bj ect 1 d get_obj ect_id() raises(NoContext);
b

Ik

This interface provides access to the POA and the object ID for an executing
request. Note that these operations must be invoked only from within the
context of an executing operation inside a servant; otherwise, they raise
NoCont ext . The Qurrent object provides a useful way to obtain access to a
servant’s POA and object ID without having to store the POA reference in a
member variable, at the cost of being accessible only from within an
operation implementation. You can obtain a reference to the Qurrent object

from resol ve_initi al _references. In C++, the code looks something like
this:// C++

[l C++
OORBA: : GRB var orb = ... // Get the ORB sonehow
OCORBA: : (hj ect _var obj =

orb -> resolve_initial_references("PQAQurrent");
Port abl eServer:: Qurrent_var current =

Port abl eServer:: Qurrent:: _narrow obj);
if(!OCRBA :is_nil(current))

. /] Got Qurrent object CK

You can keep the reference to the Qurrent object in a variable and use it
from within any executing operation in a servant. There is no need to
“refresh” the Qurrent reference for the current operation, not even for
threaded servers. The ORB takes care of ensuring that operation invocations
on the aQurrent object return the correct data.

122

Factory Objects

In Java, the code to obtain the current reference looks like this:

/1 Java
org.ong. CCRBA. CRB orb = ..

. /I Get the CRB sonmehow
org. ong. CCRBA. (hj ect obj =

orb.resolve_initial _references("PQAurrent");
org. ony. Port abl eServer. Qurrent current

or g. ong. Port abl eSer ver. Qurrent Hel per. narrow obj);
if(current !'= null)

./l Gt CQurrent object K

123

CHAPTER 5 | CORBA Objects

124

CHAPTER 6

Locating Objects

This chapter describes how to locate CORBA servant objects.

In this chapter This chapter contains the following sections:
Obtaining Object References page 126
Lifetime of Object References page 130
Stringified Object References page 134
Object Reference URLs page 138
The BootManager page 144
Initial Services page 148
The IORDump utility page 154

125

CHAPTER 6 | Locating Objects

Obtaining Object References

Using CORBA, an object can obtain a reference to another object in a
multitude of ways. One of the most common ways is by receiving an object
reference as the result of an operation, as demonstrated by the following
example:

/1l 1D
interface A

{
B

interface B

A getA();

© 00 ~NOO U WN PR

¥
2-4 An interface A is defined.

6-9 An interface B is defined with an operation returning an object reference to
an A

126

2-5

7-28

14-17

19-22

24-27

Obtaining Object References

On the server side, Aand B can be implemented in C++ as follows:

1 // C++

2 class Ainpl : public POA A

3 publ i ¢ Port abl eServer: : Ref Count Ser vant Base
4 {

5 1

6

7 class Binpl : public PQA B,

8 publ i ¢ Port abl eServer: : Ref Count Ser vant Base
9 {

10 Ainpl* a_;

11

12 publi c:

13

14 B inpl ()

15 {

16 a_ =newAinpl();

17 }

18

19 ~B_i npl ()

20 {

21 a_-> renove_ref();

22 }

23

24 virtual A ptr getA() throw CCRBA: : SystenExcepti on)
25 {

26 return a_ -> _this();

27 }

28 };

The servant class A i npl is defined, which inherits from the skeleton class
PQA A and the class Ref Count Ser vant Base which provides a reference
counting implementation.

The servant class B i npl inherits from the skeleton class POA B and the
reference counting class Ref Count Ser vant Base.

An instance of the servant class A i npl is created in the constructor for
B.inpl.

In the destructor for B_i npl , the reference count for the servant A i npl is
decremented, which leads to the destruction of the servant.

get A returns an object reference to the A i npl servant (implicitly creating
and activating the CORBA object if necessary).

127

CHAPTER 6 | Locating Objects

128

2-4

6-21

11-15

17-20

In Java, the interfaces can be implemented like this:

1 // Java

2 public class A inpl extends APQA
3 {

45

5

6 public class B inpl extends BPQA
7 {

8 org. ong. CCRBA. CRB orb_;

9 Ainpl a_;

10

11 public B_inpl (org. ong. CORBA. CRB or b)
12 {

13 orb_ = orb;

14 a_ = new Ainpl();

15 }

16

17 A get A()

18 {

19 return a_._this(orb_);

20 }

}

The servant class A i npl is defined, which inherits from the skeleton class
APQA.

The servant class B i npl is defined, which inherits from the skeleton class
BPQA.

B i npl 's constructor stores a reference to the orb and creates a new A i npl
servant.

get A returns an object reference to the A i npl servant (implicitly creating
and activating the CORBA object if necessary).

A client written in C++ could use code like the following to get references to
A

Il C+
B var b
A var a

. Il Get a B object reference somehow
b -> getA);

And in Java:

/1 Java
Bb=...// Gt a B object reference somehow
Aa =b.getA);

Obtaining Object References

In this example, once your application has a reference to a B object, it can
obtain a reference to an A object using get A. The question that arises,
however, is How do | obtain a reference to a B object? This chapter answers
that question by describing a number of ways an application can bootstrap

its first object reference.

129

CHAPTER 6 | Locating Objects

Lifetime of Object References

All of the strategies described in this chapter involve the publication of an
object reference in some form. A common source of problems for
newcomers to CORBA is the lifetime and validity of object references. Using
II0OP, an object reference can be thought of as encapsulating several pieces
of information:

® hostname

® port number

® object key

If any of these items were to change, any published object references
containing the old information would likely become invalid and its use might
result in @ TRANSI ENT or GBJECT_NOT_EXI ST exception. The sections that

follow discuss each of these components and describe the steps you can
take to ensure that a published object reference remains valid.

130

Lifetime of Object References

Hostname

By default, the hostname in an object reference is the canonical hosthame
of the host on which the server is running. Therefore, running the server on
a new host invalidates any previously published object references for the old
host.

Orbacus provides the - 11 CPhost option to allow you to override the
hostname in any object references published by the server. This option can
be especially helpful when used in conjunction with the Domain Name
System (DNS), in which the - 11 CPhost option specifies a hostname alias
that is mapped by DNS to the canonical hostname.

See “Command-line Options and Endpoints” on page 85 for more
information on the - 11 CPhost option.

131

CHAPTER 6 | Locating Objects

Port Number

132

Each time a server is executed, the Root POA manager selects a new port
number on which to listen for incoming requests. Since the port number is
included in published object references, subsequent executions of the server
could invalidate existing object references.

To overcome this problem, Orbacus provides the -1 | GPport option that
causes the Root POA manager to use the specified port number. You will
need to select an unused port number on your host, and use that port
number every time the server is started.

See “Command-line Options and Endpoints” on page 85 for more
information on the - 11 CPport option.

Lifetime of Object References

Object Key

Each object created by a server is assigned a unique key that is included in
object references published for the object. Furthermore, the order in which
your server creates its objects may affect the keys assigned to those objects.
To ensure that your objects always have the same keys, activate your
objects using POAs with the PERSI STENT life span policy and the USER | D
object identification policy.

133

CHAPTER 6 | Locating Objects

Stringified Object References

The CORBA specification defines two operations on the ORB interface for
converting object references to and from strings.

/1 1D
nodul e GCRBA
{
interface CRB
{
string object_to_string(in Cbject obj);
Chj ect string_to object(in string ref);
}
¥

Using “stringified” object references is the simplest way of bootstrapping
your first object reference. In short, the server must create a stringified
object reference for an object and make the string available to clients. A
client obtains the string and converts it back into an object reference, and
can then invoke on the object.

The examples discussed in the sections below are based on the IDL
definitions presented at the beginning of this chapter.

134

Stringified Object References

Using a File

3-5

3-4

One way to publish a stringified object reference is for the server to create
the string using obj ect _t o_st ri ng and then write it to a well-known file.
Subsequently, the client can read the string from the file and use it as the
argument to string_t o_obj ect. This method is shown in the following
C++ and Java examples.

First, we'll look at the relevant server code:

/] C++

OCRBA: : CRB var orb = ... // Get areference to the CRB sonmehow
Binpl* blmp = new B_inpl ();

Port abl eSer ver: : Servant Base_var servant = bl npl;

B var b = blnpl -> _this();

OCRBA: : String_var s = orb -> object_to_string(b);

of st ream out (" obj ect.ref")

out << s << endl;

out. cl ose();

©oOo~NOOhs WNBE

A servant for the interface B is created and is used to incarnate a CORBA
object.

The object reference of the servant is “stringified”.

The stringified object reference is written to a file.

In Java, the server code looks like this:

1 // Java
2 org.ong. CORBACRB orb = ... // CGet areference to the GRB
sorrehow

3 B.inpl blnpl = new B inpl();
4 Bb =blnpl._this(orb);

5 String ref = orb.object_to_string(b);

6 java.io.PrintWiter out = new java.io.PrintWiter(
7 new j ava. i o. Fi | eQut put Strean{"object.ref"));

8 out.printlin(ref);

9 out.close();

A servant for the interface B is created and is used to incarnate a CORBA
object.

The object reference of the servant is “stringified”.

The stringified object reference is written to a file.

135

CHAPTER 6 | Locating Objects

Now that the stringified object reference resides in a file, our clients can
read the file and convert the string to an object reference:

1 // C++

2 OORBA :CRBvar orb =... // Gt a reference to the CRB sonehow
3 ifstreamin("object.ref");

4 string s;

5 in>>s;

6 COORBA :(hject_var obj = orb -> string_to_object(s.c_str());

7 Bwvar b =B :_narrowobj);

3-5 The stringified object reference is read.
string_to_obj ect creates an object reference from the string.

Since the return value of string_t o_obj ect is of type CCRBA : (bj ect_ptr,
B:: _narrow must be used to get a B ptr (which is assigned to a
self-managed B var in this example).

1 // Java

2 org.ong. CORBA CRB orb = ... // Get a reference to the CRB

sonehow

3 java.io.BufferedReader in = new java.io. Buf f er edReader (
new j ava. i o. Fi | eReader ("object.ref"));

String ref = in.readLine();

org. ong. OCRBA. (hj ect obj = orb.string_to object(ref);

B b = BHel per. narrow(obj);

~N o o b

3-5 The stringified object reference is read.
6 string_to_object creates an object reference from the string.
7 Use BHel per . nar rowto narrow the return value of string_t o_obj ect to B.

136

Stringified Object References

Using a URL

8-13
15
16

It is sometimes inconvenient or impossible for clients to have access to the
same filesystem as the server in order to read a stringified object reference
from a file. A more flexible method is to publish the reference in a file that is
accessible by clients as a URL. Your clients can then use HTTP or FTP to
obtain the contents of the file, freeing them from any local filesystem
requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for use in applets.

Note: This example is shown only in Java because of Java’s built-in support
for URLs, but the strategy can also be used in C++.

1 // Java

2 inport java.io.*;

3 inport java.net.*;

4

5 String location = "http://wwm nywebserver/ obj ect.ref";

6 org.ong. CORBACRB orb = ... // CGet areference to the GRB
sorrehow

7

8 URL url = new URL(l ocation);

9 URLConnection conn = url.openConnection();

10 BufferedReader in = new Buff er edReader (

11 new | nput St r eanReader (conn. get | nput Strean()));

12 String ref = in.readLine();

13 in.cl ose();

14

15 org. ong. CORBA (hj ect object = orb.string_to_object(ref);
16 B b = BHel per. narrow obj ect);

I ocati on is the URL of the file containing the stringified object reference.
Read the string from the URL connection.

Convert the string to an object reference.

Narrow the reference to a B object.

137

CHAPTER 6 | Locating Objects

Object Reference URLs

138

Prior to the adoption of the Interoperable Naming Service (INS) [10], the
only standard format for stringified object references was the cumbersome

I R format. The INS introduced two new, more readable formats for object
references that use a URL-like syntax. Object reference URLs can be passed
to string_to_object, just like | R references. The two new URL formats
are described in detail in the specification, but will be briefly discussed here.
The optional fil e: URL format is also discussed, as well as the proprietary
relfile: URL format.

Object Reference URLs

corbaloc: URLs

The corbal oc: URL supports any number of protocols; the format of the
URL depends on the protocol in use. The general format of a corbaloc: URL
is shown below:
cor bal oc: [prot ocol] : <pr ot ocol - speci fi c>
Orbacus supports two standard protocols, i i op and ri r, but additional
protocols may be supported via transport plug-ins.
The corbal oc: URL for the i i op protocol has the following structure:
corbal oc: [iiop]:[version@host[:port]/object-key
The components of the URL are as follows:

® iiop- Thisis the default protocol for cor bal oc: URLs, and therefore is
optional.

® version - The IIOP version number in maj or. mi nor format. The default
is 1. 0.

® host - The hostname of the server.

® port - The port on which the server is listening. The default is 2089.

® obj ect-key - A stringified object key.

The specification allows a URL to contain multiple addresses, but the
semantics are vendor-specific. In Orbacus, each address is used in turn until

one is found that works or until the ORB has tried them all and failed to
contact the object.

The rir protocol is a shortcut for the ORB operation

resol ve_initial _references. The corbal oc: URL for the rir protocol has

the following structure:
corbaloc:rir:[/id]

The components of the URL are as follows:

® rir - The protocol.

® id - The identifier of the service to be resolved. The identifier
NameSer vi ce is used if i d is not supplied.

Some examples of corbal oc: URLs are:

cor bal oc: : nshost : 10000/ NaneSer vi ce
cor bal oc: : nyhost : 10000/ M/Chj ect | d
corbal oc: rir:/NameService

139

CHAPTER 6 | Locating Objects

See “The BootManager” on page 144 for information on how a server can
support corbaloc: URLs.

140

Object Reference URLs

corbaname: URLs

A cor banarme: URL provides additional flexibility by incorporating use of the
Naming Service in the string_t o_obj ect operation. The cor banane: URL
extends the capabilities of the corbal oc: URL to allow the obj ect - key to
identify a binding in a Naming Service. For example, consider this URL:
cor banane: : ns1: 5001/ NarreSer vi ce#ct x/ M/(hj ect

When the ORB interprets this URL, it attempts to resolve a naming context
object located at host ns1 on port 5001 and having the object key
NaneSer vi ce. Once the naming context has been resolved, the ORB
attempts to lookup the binding named MyQbj ect in the naming context ct x.
If successful, the result of string_t o_obj ect is the object reference
associated with the binding.

141

CHAPTER 6 | Locating Objects

file: URLs

142

Afile: URL provides a convenient way to obtain object references using an
IOR or URL reference that is in a file. The format of a file: URL is:

file:/<absolute file nane>

Using the file: URL and given that the file obj ect . ref is located in the
/ t np directory, the client side example of on page 135 may be simplified as
follows:

/] C++
OCRBA :CRB var orb = ... // Get a reference to the CRB sonehow
OORBA: : (oj ect _var obj
=orb -> string_to_object("file:/tnp/object.ref");
B var b = B::_narrowobj);

/1 Java

org.ong. CORBA CRB orb = ... // Get a reference to the CRB sonmehow

org. ong. OCRBA (bj ect obj =
orb.string_to_object("file:/tnp/object.ref");

B b = BHel per. narrow(obj);

Object Reference URLs

relfile: URLSs

Orbacus also provides the proprietary rel file: URL. This URL is the same
as the file: URL except that it takes a relative file name instead of an
absolute file name.

143

CHAPTER 6 | Locating Objects

The BootManager

Consider the following cor bal oc: URL:

cor bal oc: : nyhost : 10000/ M/Chj ect | d
In this example, M/Quj ect | d is the complete object key. Normally, object
keys require more information than a simple name to uniquely identify a
POA and a servant within the POA. The CORBA specification does not
standardize how a server can configure these simple object keys, therefore
each ORB implementation must provide a proprietary solution. In Orbacus,
the BootManager provides the mapping from a simple object key to a
complete object reference.

144

The BootManager

BootManager Interface

Here is the IDL interface for the BootManager:

nmodul e B

{

| ocal interface Boot Manager
{

exception Not Found {};
exception A readyExists {};

voi d add_bi ndi ng(i n Portabl eServer::Chjectld oid, in
(hj ect obj)
rai ses(Al readyExi sts);

voi d renove_bi ndi ng(in Portabl eServer:: Cbjectld oid)
rai ses(Not Found) ;
B
b

For the complete IDL description, please see Appendix A.

145

CHAPTER 6 | Locating Objects

How the BootManager Works

146

When an Orbacus server receives a request, the ORB verifies that the key
has the ORB's internal format. If not, the ORB will ask the BootManager if it
has a mapping for the “foreign” key. If a match is found, the ORB will return
a “location forward” reply, redirecting the client to the object reference
supplied by the BootManager.

The BootManager

Using the BootManager

The Boot Manager : : add_bi ndi ng operation binds an object id to an object
reference. The Boot Manager : : r enove_bi ndi ng operation removes an
existing binding. The following example illustrates how a server can add a
binding for the object id M/bj ect I d.

Il Ct+
CCRBA: : (hj ect _var obj =// ... Get a reference
OORBA: : (hj ect _var bngrChj =

orb -> resolve_initial_references("Boot Manager");
CB: : Boot Manager _var boot Manager =

CB: : Boot Manager : : _narr ow(bngr Qoj) ;
Port abl eServer:: Cbjectld var objld =

Port abl eServer::string_to_(bject!ld("MCojectld");
boot Manager -> add_bi ndi ng(obj 1 d, obj);

© 0O ~NOO U WDN PP

3-6 Get a reference to the Boot Manager object by invoking
resol ve_initial _references on the ORB.

7-8 Create the object id.
Create the new binding.

And in Java:

1 // Java

2 org.ony. OCCRBA (hject obj =// ... Get a reference
3 org.ong. OCRBA (hj ect brmgr o) =

4 orb.resol ve_initial _references("Boot Manager");
5 com ooc. CB. Boot Manager _var boot Manager =

6 com ooc. CB. Boot Manager Hel per. narr ow(bngr Qoj) ;
7 byte[] objld = "MQbjectld".getBytes();

8 boot Manager . add_bi ndi ng(obj I d, obj);

3-6 Get a reference to the Boot Manager object by invoking
resol ve_initial _references on the ORB.

Create the object id.
8 Create the new binding.

147

CHAPTER 6 | Locating Objects

Initial Services

148

The CORBA specification provides a standard way to bootstrap an object
reference through the use of initial services, which denote a set of unique
services whose object references, if available, can be obtained using the
ORB operation resol ve_i ni ti al _references, which is defined as follows:

/1 1D

nodul e GCRBA

{
interface CRB
{

typedef string Cbjectld;
exception | nvalidNane {};

(bj ect resolve_initial_references(in Chjectld
identifier)
rai ses(l nval i d\ane) ;
IE
ik

Initial services are intended to have well-known names, and the OMG has
standardized the names for some of the CORBAservices [9]. For example,

the Naming Service has the name NarmeSer vi ce, and the Trading Service has
the name Tr adi ngSer vi ce.

Initial Services

Resolving an Initial Service

An example in which the ORB is queried for a Naming Service object
reference will demonstrate how to use resol ve_initial _references. The
example assumes that the ORB has already been initialized as usual. First
the Java version:

O~NO O~ WN PR

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/1l Java
or g. ong. CORBA. (bj ect obj = nul | ;
or g. ong. CosNam ng. Nam ngCont ext ctx = null;
try
{
obj = orb.resolve_initial_references("NaneService");

}
cat ch(or g. ong. CORBA. CRBPackage. | nval i dNane ex)
{

. [/ An error occured, service is not available
}
if(obj == null)
{

. Il The object reference is invalid
}
try
{

ctx = org. ong. CosNam ng. Nam ngCont ext Hel per . narrow(obj) ;

}
cat ch(or g. ong. CCRBA. BAD PARAM ex)
{

. [/ This object does not inplement a Nam ngCont ext
}

Try to resolve the name of a particular service. If a service of the specified
name is not known to the ORB, an I nval i dName exception is thrown.

The service type was known. Now the object reference has to be narrowed
to the particular service type. If this fails, the service is not available.

149

CHAPTER 6 | Locating Objects

And here’s the C++ equivalent to the Java version above:

1 // C++

2 COORBA : (hj ect_var obj;

3 CosNanmi ng: : Nanmi ngCont ext _var ctx;

4

5 try

6 {

7 obj = orb -> resolve_initial_references("NaneService");
8 1}

9 catch(OORBA : GRB:: I nval i dNanme&)

10 {

11 ... Il An error occured, service is not available
12 }

13

14 i f(OORBA :is_nil(obj))

15 {

16 ... Il The object reference is invalid

17 }

18

19 ctx = CosNani ng: : Nam ngCont ext : : _narrow(obj) ;

20 if(OCRBA :is_nil(ctx))

21 {

22 ... Il This object does not inplenent Nam ngCont ext

150

Initial Services

Configuring the Initial Services

When an application uses initial services that are not locality-constrained,
the application must register the object references for these objects with the
ORB. Orbacus supports the standard - GRBI ni t Ref and - CRBDef aul t | ni t Ref
command-line options for registering initial service object references:

-CRBI ni t Ref name=URL

-CORBDefaul t I nitRef URL
For example, starting an application as shown below will enable the client to
resolve the NanmeSer vi ce initial reference:

nyclient -CRBInitRef

NaneSer vi ce=cor bal oc: : nshost : 10000/ NaneSer vi ce

The - CRBconf i g option is an alternative method for defining a list of initial
services, and is often preferable when a number of services must be defined.

See “Configuring the ORB and Object Adapter” on page 57 for more
information on these command-line options. Also refer to the INS
specification [10] for detailed information on the standard options

- CRBI ni t Ref and - CRBDef aul t I ni t Ref .

In addition to using command-line parameters, a program can add to the list
of initial services using the ORB operation regi ster _initial _refer encel:

/1l 1D
nodul e CCRBA
{

interface CRB

{
void register_initial _reference(in hjectld id, in
Chj ect obj)
rai ses(| nval i dNane) ;
IiE
Ik

For example, in C++:

1 /] C++
2 CORBA :pject_var obj = ... // Get a name service reference
sonehow

3 orb ->register_initial_reference("NameService", obj);

1. This will become part of the ORB interface when the Portable Interceptor
specification is adopted.

151

CHAPTER 6 | Locating Objects

152

1-3

Get a reference to the naming service, for example by reading a stringified
object reference and converting it with string_t o_obj ect, or by any other
means.

Add the reference to the ORB's list of initial references.

Or in Java:
1 // Java
2 org.ong. OORBA (hject obj =...// Get a nane service reference

sonehow
3 orb.register_initial_reference("NameService", obj);

This is the same as the C+ + version above.

Initial Services

The Initial Service Locator

In addition to providing the Orbacus Implementation Repository, the IMR
server (see Chapter 7) acts as an initial service locator. That is, assuming
that the IMR server is properly configured, the name of the host running the
IMR server is the only information needed to find a particular initial service.

To locate an initial service with name f oo, the IMR server must first be
configured with the initial reference of this service. This may be done with
the - GRBI ni t Ref command-line option or the ooc. or b. servi ce
configuration property (see Chapter 4 for details). Next, the client that
wishes to connect to f oo must be configured with the default initial
reference specifying the host running the IMR server. The

- ORBDef aul t | ni t Ref command-line option or the

ooc. orb. def aul t _i ni t _ref configuration property may be used to configure
the default initial reference. For example, given that the IMR server is
running on imr-host, then the client can be started with the option:

- CRBDef aul t | ni t Ref =cor bal oc: : i nr - host

When the client is configured with this default initial reference it may invoke
resol ve_initial _references("foo") on the ORB to obtain a reference to
f oo.

153

CHAPTER 6 | Locating Objects

The IORDump utility

Overview Orbacus provides the iordump utility to decode stringified IORs and to print
out their components in human readable format. It is available in a C++
and a Java version.

Its usage is shown below.

iordunp [options] [-f FILE... | IOR...]
comooc. CB. | CRbunp [options] [-f FILE... | IOR...] 1
-h, --help Show available options.
-v, --version Show Orbacus version.
-f FILE ... Read I0Rs from file instead of command line.
IOR ... List of IORs.

The Java version is available in CB.j ar.

Sample output for the demo/hello The following command:
example iordunp -f Hello.ref

154

prints:

I OR #1:

byteorder: little endi an

type_id: IDL:Hello:1.0
Profile #1: iiop

iiop_version: 1.2

host: 192.168.0.1

port: 17000

obj ect _key: (37)

171 172 171 49 49 48 50 48 "...11020"
55 55 53 54 56 48 0 95 "775680._ "
82 111 111 116 80 79 65 O "Root PQA "

0 202 254 186 190 60 215 205 "..!!¥<."
0O 0 O O o R, "

Native char codeset:

"1 SO 8859-1:1987; Latin Al phabet No. 1"

Char conversi on codeset s:

"1 SO 646: 1991 | RV (International Reference Version)"
"X/ pen UTF-8; UCS Transformation Format 8 (UTF-8)"

Nati ve wchar codeset :

"1 SO | EC 10646- 1: 1993; UCS-2, Level 1"

Whar conversi on codesets:

The IORDump utility

"1SQ | EC 10646-1: 1993; UTF- 16, UCS Transformation Format 16-bit fornt

155

CHAPTER 6 | Locating Objects

156

CHAPTER 7

The
Implementation
Repository

This chapter describes how the Orbacus Implementation
Repository (IMR) works and how to use it.

In this chapter This chapter contains the following sections:
Background page 159
Information Managed by the IMR page 160
IMR Security page 163
Usage page 164
Windows NT Native Service page 166
Configuration Properties page 168
Connecting to the Service page 169
Utilities page 170
Getting Started with the Implementation Repository page 173

157

CHAPTER 7 | The Implementation Repository

158

Programming Example

page 176

Background

Background

Overview

How It All Works

The Orbacus Implementation Repository (IMR) provides support for the
indirect binding1 of persistent object references. The key advantage of
indirect binding is that it loosens the coupling between clients and servers
so that the location of the server can change without affecting the client. In
practical terms, this is accomplished by providing the client with an IOR
that actually refers to the IMR, rather than to the server itself. The IMR also
provides the ability to start servers on demand using the Object Activation
Daemon (OAD).

The CORBA specification does not standardize how servers and the IMR
interact, it only suggests functionality for vendors to implement. Hence, the
interface between servers and the IMR s strictly proprietary. Due to the
proprietary interface between servers and the IMR, servers using the IMR
must be developed using Orbacus for C++ or Java. However, the
interaction between clients and the IMR is strictly specified by the GIOP
specification, so any client that is CORBA compliant may interact with the
IMR.

When a server is using the IMR, object references created by one of its
persistent POAs refer to the IMR rather than to the server itself. When the
client makes a request using this reference, the IMR receives the request,
activates the server (if necessary) using the OAD, and returns a new object
reference to the client that identifies the server at its current host and port.
The client then establishes a connection with the server using the new
object reference and communicates directly with the server, without the
intervention of the IMR. However, should the server fail, a well-behaved
client will contact the IMR again, which may restart the server and allow the
client to resume its activities.

1. Binding refers to the process of opening a connection and associating an object
reference with its servant.

159

CHAPTER 7 | The Implementation Repository

Information Managed by the IMR

The IMR provides support for the indirect binding and automatic activation
of servers within a given domain. In order to provide this support, the IMR
manages three types of entities: OADs, servers, and POAs.

OADs An OAD is responsible for the activation of servers on a given host. Each
OAD is registered in the IMR using a host name. The IMR also maintains the
status of each OAD. If the OAD is running and in a ready state it will have a
status of up, otherwise, its status will be down.

Servers Servers are registered with a name that is unique within the domain and the
host corresponding to the OAD that is responsible for the server. Since the
name is unique within the domain, it is not currently possible to register the
same server with multiple OADs. The server name that is registered in the
IMR can be any string, but it must be the same as the name used by the
server (i.e., the name specified by the - ORBSer ver I d option, or equivalent
property). The attributes of a server that are stored by the IMR are
summarized below:

host The host corresponding to the OAD that is
responsible for the server.

exec The path of server executable (the . exe extension
must be included on Windows platforms). If this
attribute is not set, then the IMR will not activate the
server.

args The arguments to be supplied when starting the
server executable. Note that “- CRBServer | d
server-id” is automatically appended to the
arguments before the server process is started.

rundi r The directory that the server process will be started
from. If this attribute is not set, then the server
process will be started from the root directory. For
Windows platforms, the full path must be specified
in the exec attribute even if this attribute is set.

160

Information Managed by the IMR

nmode The activation mode. The possible values are:

shar ed, only one server process is created which is
used by all clients, and persi st ent, the server
process is started when the IMR starts and is used
by all clients.

acti vat e- poas If this attribute is set to t rue (default), then all
persistent POAs will be registered automatically. If
set to f al se, then persistent POAs are not registered
automatically.

updat e-t i meout The amount of time (in milliseconds) to wait for
server status updates.

failure-timeou The amount of time (in seconds) to wait for the
t server to start.

max- spawns The maximum number of tries to start the server.

The IMR also maintains various state information for each server:

® Theinternal ID of the server.

® The status of the server process. The valid values are f or ked,
starting, runni ng, st oppi ng, and st opped.

® Whether or not the server was started manually.

® The number of times that the server process has been spawned.

Server processes inherit environment settings from the environment in

which the OAD was started. Hence, path, library path, and class path

environment variables can be used by the server application. This is

especially useful in the case of shared library and class path settings. (Note
that the class path may also be set in the ar gs attribute.)

On Windows platforms, the exec attribute may refer to an executable or
batch file. Make sure that the first line of the batch file contains:

@cho of f

On UNIX platforms, the exec attribute may refer to an executable or a shell
script with

interpreter
as its first line.

161

CHAPTER 7 | The Implementation Repository

POAs

162

However, if a batch file or shell script is used, then it should accept the
- CRBSer ver | d option since it is automatically appended to the args
attribute by the IMR.

In the case of Java servers, a batch file or shell script should be created to
start the server. An alternative is to set the exec attribute to the Java
interpreter and to use the ar gs attribute to specify the class implementing
the server.

The IMR allows implicit registration of POAs when the server is started. This
can be enabled or disabled for each server using the acti vat e_poas server
attribute. If implicit registration is enabled, then the user does not have to
register any of the POAs; instead, the server transparently notifies the IMR
whenever a call to creat e_PQA is made by the application code.

If the user disables implicit registration, then the user must register all
persistent POAs (i.e., POAs with the PERSI STENT life span policy). POAs are
registered using the name of its server and the name of the POA. Note that
any transient POAs (POAs with the TRANSI ENT life span policy) created by
the server are not registered with the IMR.

The IMR also maintains the status for each POA, which indicates the state

of its POA Manager. The valid values are i nacti ve, acti ve, hol di ng, and
di scar di ng.

IMR Security

IMR Security

It is very important that only the IMR’s public endpoint (also referred to as
its forward endpoint) be accessible outside of the network firewall.
Otherwise, anyone can mimic the IMR and cause an OAD to run any
command they decide.

For additional security, the information managed by the IMR may only be
modified when the IMR is running in administrative mode. That is:

® OAD registration and removal,

® server registration and removal,

® modification of server attributes, and

® POA registration and removal

are only possible when the IMR is running in administrative mode. An
attempt to modify the information managed by the IMR when it is not

running in administration mode will result in a CORBA: : NO_PERM SSI ON
exception.

163

CHAPTER 7 | The Implementation Repository

Usage

The IMR and OAD are currently implemented using Orbacus for C++, but
Orbacus for Java servers can also be launched by the IMR. Both the IMR
and OAD are contained in the IMR server, which may be started in one of
three modes:

mast er Start only the IMR.

sl ave Start only the OAD.

dual Start both the IMR and OAD.

Command-line usage is as follows:
inr
[-h,--help] [-v,--version] [-m--master] [-s,--slave]
[-a,--administrative] [-d,--database][-A --adm n-endpoi nt]
[-F, --forward-endpoint] [-S, --slave-endpoint]

[-L, --locator-endpoint]
-h Display the command-line options supported by the
--hel o] server.
-V Display the version of the server.
--version
-m Run the server in nast er mode.?
--naster
-s Run the server in sl ave mode.?
--slave
-a Run the IMR in administrative mode. The IMR will
--adnministrative run in non-administrative mode by default.
-d D RECTCRY Specifies the directory in which the IMR maintains
--dat abase D RECTCRY its database files. If not specified, the current
working directory is used.

164

Usage

-A INFO
- -adni n-endpoi nt | NFO

Specifies the IMR's administrative endpoint settings.
This is the endpoint that the OADs and IMR-enabled
servers use to communicate with the IMR. For
security reasons, access to this endpoint can be
restricted. If not specified, iiop --port 9999 is
used.

-F INFO
--forward-endpoi nt | NFO

Specifies the IMR's public endpoint, which is used
by clients for server requests. If not specified, i i op
--port 9998 is used.

-S INFO
--sl ave-endpoi nt | NFO

Specifies the endpoint used by the OAD. Note that
all of the OADs in a domain must use the same
endpoint. If not specified, i i op --port 9997 is used.

-L INFO
- -l ocat or - endpoi nt | NFO

Specifies the endpoint used by the Initial Service
Locator (see “The Initial Service Locator” on
page 153). If not specified, iiop --port 2809 is
used.

a. Note that only one of the - mor - s options may be specified. Also, if neither the - mor - s
option is specified, then the server is started in dual mode.

165

CHAPTER 7 | The Implementation Repository

Windows NT Native Service

166

The imr server is also available as a native Windows NT service.

ntinrservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-h Display the command-line options supported by
--help the service.

-i Install the service. The service must be started
—-install manually.

-s Install and start the service.
--start-install

-u Uninstall the service.
--uninstall

-d Run the service in debug mode.
- - debug

In order to use the IMR server as a native Windows NT service, first add the
desired configuration properties to the HKEY_LOCAL_MACH NE NT registry key
(see “Using the Windows NT Registry” on page 71 for more details). For
example, add the ooc. i nr. adni n_endpoi nt, ooc. i nr. f or war d_endpoi nt ,
and ooc. i nt. sl ave_endpoi nt properties so that the IMR and OAD will use
non-default endpoint settings.
Next the service should be installed with:

ntinrservice -i
This adds the O bacus | npl ement ati on Repository entry to the Servi ces
dialog in the Control Panel. To start the service, select the O bacus
I npl enent ati on Repository entry, and press Start. If the service is to be
started automatically when the machine is booted, select the O bacus
I npl enent at i on Reposi tory entry, then click Start up. Next select Start up
Type - Aut onati ¢, and press CK. Alternatively, the service could have been
installed using the -s option, which configures the service for automatic
start-up:

Windows NT Native Service

ntinrservice -s
If you want to remove the service, run:

ntinmservice -u
Note: If the executable for the service is moved, it must be uninstalled and
re-installed.
Any trace information provided by the service is be placed in the Windows
NT Event Viewer with the title | MRSer vi ce. To enable tracing information,
add the desired trace configuration property (i.e., one of the ooc. i mr. trace

properties or one of the ooc. orb. trace properties) to the
HKEY_LOCAL_MACH NE NT registry key with a REG Sz value of at least 1.

167

CHAPTER 7 | The Implementation Repository

Configuration Properties

In addition to the standard configuration properties described in Chapter 4,
the IMR also supports the following properties:

Property

Value

Description

ooc.imr.mode

nast er, sl ave, dual

Specifies the mode in which the imr server
will be started.

ooc.imr.administrative true, fal se If set to true, then run the IMR in
administrative mode. For details refer to
the -a command-line option.
ooc.imr.dbdir directory Equivalent to the -d command-line option.
ooc.imr.admin_endpoint info Equivalent to the - Acommand-line option.
ooc.imr.forward_endpoint info Equivalent to the - F command-line option.
ooc.imr.slave_endpoint info Equivalent to the - S command-line option.
ooc.imr.locator_endpoint info Equivalent to the - L command-line option.
ooc.imr.trace.peer_status level >=0 Defines the output level for IMR diagnostic
messages related to communications with
the OADs. The default level is O, which
produces no output.
ooc.imr.trace.process_control level >=0 Defines the output level for IMR diagnostic
messages related to the forking and death
of server processes. The default level is O,
which produces no output.
ooc.imr.trace.server_status level >=0 Defines the output level for IMR diagnostic

messages related to the status of servers
and POAs. The default level is O, which
produces no output.

168

Connecting to the Service

Connecting to the Service

Servers that use the IMR must be configured with the IMR initial reference.
The object key of the IMR is | MR, hence, a URL-style object reference of the
IMR service running on host i nrhost at port 10000 would be:

cor bal oc: : i nt host : 10000/ | MR
Using this object reference, a server can configure the IMR initial reference
with the property:

ooc. or b. servi ce. | MR=cor bal oc: : i nt host : 10000/ | MR
An alternative to using the above property is to use the - CRBI ni t Ref
command-line option. Refer to Chapter 6 for more information on URLs and
configuring initial services.

169

CHAPTER 7 | The Implementation Repository

Utilities

Implementation Repository
Administration

170

The i nr adm n utility provides complete control over the IMR, OADs and

servers in a domain. Its command interface is shown below:

-h, --help

Display this information.

--add- oad [host]

Register an OAD for the specified host.

--add- server server-name [exec [host]]

Register a server under the OAD
specified by host with the given exec
attribute.

- -add- poa server-name poa-name

Register a POA for the specified server.

--renove- oad [host]

Unregister an OAD.

--renove-server Server-name

Unregister a server.

--renove- poa server-name poa-name

Unregister a POA.

--get - oad- st at us [host]

Get the status of an OAD.

--get-server-info server-name

Get the attributes and state information
for a server.

--get-poa-status server-name poa-name

Get the status of a POA.

--list-oads

List all OADs.

--list-servers

List all servers.

--list-poas server-name

List all POAs.

--tree

Display all OADs, servers and POAs in
a tree like format.

--tree-oad [host]

Display an OAD and its associated
servers and POAs in a tree like format.

--tree-server server-name

Display a server and its associated
POAs in a tree like format.

Making References

Utilities

--set-server server-name {exec| host | Set an attribute of a server (e.g.,
ar gs| rundi r| node| acti vat e_poas| --set-server srv max_spawns 2
updat e_ti meout | fai | ure_timeout | sets the max_spawns attribute for the

max_spawns} value

server srv to 2).

--start-server server-name Start a server.
--stop-server server-name Stop a server.
--reset-server server-name Reset a server.

Note that the i nradmi n utility also needs to be configured with the IMR
initial reference (see “Connecting to the Service” on page 169).

The host argument is optional. If host is not specified the local host name is
used. The server-name argument refers to the name of the server. The
format of the poa- nane argument is poal/ poa2/ poa3, where poal is a child
of the Root POA, poa2 is a child of poal, and poa3 is a child of poa2. Refer
to “Information Managed by the IMR” on page 160 for further details.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to
manually reset the state of the server using the - -reset - server command.
It is also necessary to use this command if the server continually crashes on
startup and has reached the maximum number of retries specified by its
max_spawns attribute. This prevents the OAD from continually starting the
same broken server.

The nkref utility creates IMR-based object references for use by clients.
Since the Object ID is required to create a reference, this utility can only be
used to create references for objects created by POAs using the USER I D
object identification policy. Its usage is shown below.

nkref [-H host] [-P port] server-nanme object-id
poal/ poa2/. ../ poan

host

The host that the i nr server is running on. The default
value is the canonical hostname of the machine in
which nkref is executed.

171

CHAPTER 7 | The Implementation Repository

port The forward port of the i m server. If not set, then
mkr ef will use 9998.

server-name The name of the server as registered in the IMR.

object-id The Object ID used by the object.

poal/poaZ/.../poan The POA which creates the object, where poal is a
child of the Root POA, poa?2 is a child of poal, and so
on.

Upgrading the IMR Database

172

The i nr dbupgr ade utility is used to upgrade an earlier version of the IMR
database. Command-line usage is as follows:
i ntdbupgr ade dat abase-directory

The database-directory parameter is used to specify the IMR database
directory.

Getting Started with the Implementation Repository

Getting Started with the Implementation

Repository

To use the IMR, several steps must be taken. These steps are presented
below and are explained by way of example. In this example we assume
that Orbacus has been installed in the directory / usr/1 ocal / O bacus and
the executables i nr, i nradm n and nkref all exist in a directory that is in the
search path.

1.

Determine the physical architecture.

In this example, we have a network with three hosts: nast er, sl avel
and sl ave2. The host nast er is used to run only the IMR. The hosts
sl avel and sl ave2 are used to run individual CORBA servers.

Create a configuration file for the IMR and OADs.
First, create a configuration file for the IMR containing the following:

inr. conf

ooc. i nt. adm n_endpoi nt=ii op --port 10000
ooc. i nt. forward_endpoi nt=iiop --port 10001
ooc. i nt. sl ave_endpoi nt=iiop --port 10002
ooc. i nt. mode=nast er

ooc. i nr. dbdi r=/usr/| ocal / O bacus/ db

This file is placed in the / usr/ 1 ocal / Or bacus/ et ¢ directory on host
mast er .

Second, create a configuration file for the OADs containing the
following:

oad. conf

ooc. or b. servi ce. | MR=cor bal oc: : mast er: 10000/ | MR
ooc. i nr. sl ave_endpoi nt=iiop --port 10002

ooc. i nr. node=sl| ave

ooc. i nt. dbdi r=/usr/| ocal / O bacus/ db

This files is placed in the / usr/ | ocal / Or bacus/ et ¢ directory on hosts
sl avel and sl ave2.

Start the IMR in administrative mode.
On host mast er, run:

173

CHAPTER 7 | The Implementation Repository

174

int -CRBconfig /usr/local/Q bacus/etc/inr.conf
--admni strative

Start the OADs.

On host sl avel, run:

int -CRBconfig /usr/local/Q bacus/ et c/oad. conf

On host sl ave2, run:

int -CRBconfig /usr/local/Q bacus/ etc/oad. conf

Each OAD automatically registers itself with the IMR. Note that an
OAD can also be registered manually using the i nradm n utility. For
example, to register the OAD on host sl avel, run:

inmmadm n - CRBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--add-oad sl avel

Add each server to the IMR.

In our example, we will run one server on each OAD. The server names
are Server 1 and Server2 and are located in / usr/ 1 ocal / bi n on their
respective hosts.

First, we register the servers using the i nr admi n utility:

inradm n - CRBI nit Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--add-server Serverl "/usr/local/bin/serverl" slavel

inmmadm n - CRBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--add-server Server2 "/usr/local/bin/server2" slave2

Next, we set the server arguments:

inmmadm n - CRBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--set-server Serverl args \
"-CRBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR'
inmmadm n - CRBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--set-server Server2 args \
"-CRBI ni t Ref | MR=cor bal oc: : mast er : 10000/ | MR'

A C++ server can automatically register itself with the IMR using the
- CRBr egi st er command-line option. For example, to registered
Server 1, run the following on sl avel:

/usr/local /bin/serverl -CRBregister Serverl \
-CRBI ni t Ref | MR=cor bal oc: : nast er: 10000/ | MR

If the server requires command-line options, then these options must
be added using the i mr adni n utility.
Add each POA to the IMR.

In this example, the servers are registered without setting the
activat e_poas attribute, so the attribute defaults to t rue. Hence, all

Getting Started with the Implementation Repository

persistent POAs will be registered automatically. If this were not the
case, the POAs would have to be registered manually.

7. Configure your servers to use the IMR.
There are three ways to configure a server to use the IMR:
i. Use the - CRBregi ster command-line option (only available for
C++ servers). This option is used for server registration and can
only be used when starting the server for the first time.

ii. Use the - CRBServer | d command-line option.

iii. Use the ooc. or b. server _nane configuration property. This
configuration property is equivalent to the - ORBServer | d
command-line option and may be set in a configuration file or
programmatically prior to initializing the ORB in a server.

In this example, the IMR is responsible for starting the servers. Hence,
when the server is started, the - CRBSer ver I d option is automatically
added to the argument list.

8. Create object references for use by the clients.

A server can always be used to create references for its objects.
However, if an object is created by a POA that uses the USER | D object
identification policy, then the nkref utility can also be used to create a
reference for the object. Using the nkref utility is discussed below.

Assume each server has a single primary object. Server 1 uses (bj ect 1
for its Object ID and Server 2 uses vj ect 2. Also, each server creates a
persistent POA called Mai n to hold its objects. To create object
references for these objects, run the following on naster:
nkref -P 10001 Serverl Cbjectl Main > (bjectl.ref
nkref -P 10001 Server2 (bject2 Main > bject2.ref
After all OADs, servers and POAs are registered, it is recommended to
restart the IMR in non-administrative mode. This will prevent any accidental
(or unauthorized) modifications.

175

CHAPTER 7 | The Implementation Repository

Programming Example

176

12

16

In this section, we will show how to modify the C++ version of the “Hello
World"” server (see Chapter 2) to use a persistent object reference. This will
allow the server to use the IMR for indirect binding. Modifications to the
Java version of the server are similar. The code for both the C++ and Java
persistent “Hello World” servers may be found in the deno/ hel | o_i nr
directories of the Orbacus for C++ and Java distributions.

The “Hello World” server presented in Chapter uses the Root POA to
activate its Hello servant. Since the Root POA uses the TRANSI ENT life span
policy, the object reference it creates will not be persistent. Hence, the
“Hello World” server must be modified so that the Hello servant is activated
using a child POA with the PERSI STENT life span policy. The new child POA
will also use the USER | Dobject identification policy so that the nkref utility
may be used. Further, the Hello servant is no longer activated under the
Root POA, so it becomes necessary for it to override the _def aul t _PQA
method. The modified servant’s class declaration is shown below:

[l C++
#i ncl ude <Hel | o_skel . h>
class Hello_inpl : public PQA Hell o,

publ i c Portabl eServer: : Ref Count Ser vant Base
{

oO~NO OO~ WNBRE

Port abl eServer: : POA var poa_;

9

10 public:

11

12 Hel | o_i npl (Port abl eServer:: PQA ptr);

13

14 virtual void say_hello() throw GORBA: : SystenException);
15

16 virtual Portabl eServer::PQA ptr _defaul t_PQA();

17 };

Private member to store the servant’s default POA.

A constructor must be defined to allow the assignment of the servant’s
default POA.

Declaration of the _def aul t_PQA method.

Programming Example

The remainder of the class declaration is unchanged. The definition of the
constructor and _def aul t _POA method follow:

Il C++

1

2

3 Hello_inpl::Hello_inpl(Portabl eServer:: POA ptr poa)
4 poa_(Portabl eServer: : POA : _dupli cat e(poa)

5 {

6 1}

7
8 PortableServer::PQA ptr Hello_inpl::_default_PQX)
9
1

}

{
0 return Portabl eServer::POA : duplicate(poa);

177

CHAPTER 7 | The Implementation Repository

The modified portion of the server program is shown below:

1 // C++

2

3 int

4 run(CORBA :CRB ptr orb, int argc)

5 {

6 OORBA: : oj ect _var poaChj =

7 orb -> resolve_initial_references("Root PQA");
8 Port abl eServer: : POA var rootPoa =

9 Port abl eSer ver: : POA: : _narrow(poathj) ;
10

11 Port abl eServer : : POAManager _var nanager =
12 root Poa -> t he_PQAMVanager () ;

13

14 OCRBA: : Pol i cyList pl(2);
15 pl .l ength(2);
16 pl [0] = root PQA -> create_lifespan_policy(

17 Por t abl eSer ver : : PERS| STENT) ;

18 pl[1] = root POA -> create_id_assi gnment _pol i cy(
19 Portabl eServer:: USER | D) ;

20

21 Port abl eServer: : PQA var hel | oPQA =

22 root POA -> create_POA("hel | 0", manager, pl);
23

24 Hel l o_i npl * hell ol npl = new Hel | o_i npl (hel | oPQA) ;
25 Por t abl eServer : : Servant Base_var servant = hel | ol npl ;
26 Port abl eServer:: Chjectld var oid =

27 Port abl eServer::string_to_(bjectld("hello");

28 hel | oPQA -> activate_object_with_id(oid, servant);
29 Hello_var hello = hellolnpl -> _this();

30

31 QCRBA : String_var s = orb -> object_to_string(hello);
32 of streamout ("Hel l o.ref");
33 out << s << endl;

34 out . cl ose();

35

36 manager -> activate();

37 orb -> run();

38

39 return O;

}

14-22 Create a new POA using PERSI STENT life span policy and the USER | D object
identification policy.
24-25 Create the Hello servant.

178

Programming Example

26-27 Using the string "hel | 0", create an object id.
28 Activate the servant with the new POA.
The remainder of the code is unchanged.

179

CHAPTER 7 | The Implementation Repository

180

In this chapter

CHAPTER 8

The
Implementation
Repository
Console

The Orbacus Implementation Repository (IMR) includes a
graphical client for administering the service called the
Orbacus IMR Console. The Orbacus IMR Console provides
complete control over the IMR, OADs and servers in a domain.

This chapter contains the following sections:

Usage page 182

The Menus page 183

181

CHAPTER 8 | The Implementation Repository Console

Usage

com ooc. | MRConsol e. Mai n
[--1ook CLASS] [--windows] [--motif] [--nmac] [-h,--help]

--l ook CLASS Use the specified Look & Feel class.
- -wi ndows Use the Windows Look & Feel (if available).
--noti f Use the Motif Look & Feel (if available).
--nac Use the Macintosh Look & Feel (if available).
-h Display the command-line options supported by the
--hel p program.
CLASSPATH Requirements The Orbacus IMR Console requires the classes in GB.jar, GBI MR jar and
CBUil.jar.
Implementation Repository In order to locate an IMR Service, the application uses the initial IMR
Service Lookup Service, as provided to the ORB with options such as - CRBser vi ce or

- CRBeonf i g. If the service is not found, an error is displayed and the IMR
Console exits.

182

The Menus

The Menus

The File Menu

The Edit Menu

The menus provide access to all of the features of the application. In
addition, the most common actions are also available in the toolbar, as well
as in a popup menu that is displayed when pressing the right mouse button
over an item in the binding table or context tree.

The File menu contains the Exit menu item, which is used to exit the
Orbacus IMR Console.

The operations in the Edit menu provide the means for manipulating OADs,
servers and POAs.

Create Create a new OAD, server, or POA.

Modify Modify the selected object.

Delete Delete the selected object.

Cut Move the selected server to the clipboard.

Paste Insert the server contained in the clipboard under the
selected OAD.

Start Start the selected server.

Stop Stop the selected server.

Reset Reset the state of the selected server.

The Create menu item creates a child object under the selected object.
OADs are created under the “IMR Domain” root object, servers are created
under OADs, and POAs are created under servers.

The Modify menu item applies to all objects. However, servers are currently
the only objects that have attributes that can be modified.

To delete an object, the Delete menu item is used. This operation
recursively deletes all children under the selected item.

183

CHAPTER 8 | The Implementation Repository Console

The View Menu

The Toolbar and the Popup Menu

184

The Cut and Paste menu items only apply to servers and are used to move
servers to different hosts. Note that OAD for the desired host must be
selected when using Paste.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to
manually reset the state of the server using the Reset menu item. It also
necessary to use this item if the server continually crashes on startup and
has reached the maximum number of retries specified by its max_spawns
attribute. This prevents the OAD from continually starting the same broken
server.

The View menu contains the Refresh menu item. The Refresh menu item is
used to update the console when the contents of the IMR have been
changed from outside the console. Note that clicking or expanding an item
will refresh the item.

In addition to the operations offered by the menu bar, some frequently
needed functions are available by icons located in the toolbar. The toolbar
contains all of the items of the Edit menu and the Refresh item of the View
menu. The toolbar is shown below.

DJe[x] 4]/ [»]=]&] |o]

The Menus

When selecting an OAD, server or POA with the right mouse button, a
popup menu with a choice of operations will be displayed as shown below.

Create..,
Modify...
Delete...
Cut

Start...

Reset..,

Refresh

This popup menu provides the same operations as the toolbar.

185

CHAPTER 8 | The Implementation Repository Console

186

In this chapter

CHAPTER 9

Orbacus Names

A CORBA object is often represented by an object reference
in the form of a “stringified” IOR, a lengthy string that is
difficult to read and cumbersome to use. It is much more
natural to think of an object in terms of its name, which is a
core feature of the CORBA Naming Service. In the Naming
Service, objects are registered with a unique name, which can
later be used to resolve their associated object references.

Orbacus Names is compliant with [10]. This chapter does not
provide a complete description of the service. It only provides
an overview, suitable to get you started. For more information,

please refer to the specification.

This chapter contains the following sections:

Usage page 189
Windows NT Native Service page 191
Configuration Properties page 193
Persistence page 194
Connecting to the Service page 195
Using the Naming Service with the IMR page 196
Bindings page 197

187

CHAPTER 9 | Orbacus Names

Name Resolution page 199

Programming Example page 200

188

Usage

Usage

Orbacus includes functionally equivalent implementations of the Naming
Service in C++ and Java.

C++ naneser v
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-1, --limt OOUNT]

[-t,--timeout MNS] [-c, --callback-tinmeout SECS

Java com ooc. CosNam ng. Ser ver
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-1, --limt OOUNT]

[-t,--timeout MNS] [-c, --callback-timeout SECS]

Options
-h Display the command-line options supported by the
--hel p server.
-V Display the version of the server.
--version

-i Prints the stringified IOR of the server to standard

--ior output.

-n Disables automatic updates, i.e., callbacks that

- - no- updat es notify interested clients of changes to the naming
service.

-s Use this option only when starting a persistent server

--start using a new database.

-d FILE Enables persistence for the server. All of the bindings

--dat abase FILE created by the server will be saved to the specified

file. If you are starting the server for the first time
using this database, you must also use the -s
command-line option.

189

CHAPTER 9 | Orbacus Names

-1 OOUNT Limits the number of bindings returned in the

-limt COUNT binding list by a call to list() to COUNT bindings.
Using this option can reduce the memory
requirements of the server.

-t MNS Specifies the timeout in minutes after which a

__timeout MNS persistent server automatically compacts its
database. The default timeout is five minutes.

-¢c SECS Specifies the timeout in seconds to be used for the

--cal | back-tineout SECS

Orbacus timeout policy (CB: : Ti meout Pol i cy). The
default timeout is five seconds. See Chapter 16 for
more information.

CLASSPATH Requirements

190

Orbacus Names for Java requires the classes in GB.j ar and CBNami ng. j ar .

Windows NT Native Service

Windows NT Native Service

The C++ version of Orbacus Names is also available as a native Windows
NT service.
nt naneser vi ce
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstal] [-d, --debug]

-h Display the command-line options supported by
--help the server.

-i Install the service. The service must be started

—-install manually.

-s Install the service. The service will be started

--start-install automatically.

-u Uninstall the service.

--uninstall

-d Run the service in debug mode.
--debug

In order to use the Naming Service as a native Windows NT service, it is first
necessary to add the ooc. nam ng. endpoi nt configuration property to the
HKEY_LQOCAL_MACH NE NT registry key (see “Using the Windows NT Registry”
on page 71 for more details). If the service is to be persistent, the path to
the database file must be stored in the following proper‘[y:1

HKEY_LOCAL_MACH NE\ Sof t war e\ OOC\ Pr oper ti es\ ooc\ nam ng\ dat abase
Next the service should be installed with:
nt narreser vi ce -i

This adds the O bacus Nami ng Servi ce entry to the Servi ces dialog in the
Control Panel. To start the naming service, select the O bacus Nani ng
Servi ce entry, and press Start. If the service is to be started automatically
when the machine is booted, select the O bacus Nami ng Servi ce entry,

1. Please note that services do not have access to network drives, so the path to the
database must be on a local hard drive.

191

CHAPTER 9 | Orbacus Names

192

then click Startup. Next select Startup Type - Automati ¢, and press CK.
Alternatively, the service could have been installed using the - s option,
which configures the service for automatic start-up:

nt naneservice -s
If you want to remove the service, run:
nt nameservice -u

Note: If the executable for the Naming Service is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service will be placed in the Windows
NT Event Viewer with the title Nam ngSer vi ce. To enable tracing
information, add the desired trace configuration property (i.e., the

ooc. nam ng. trace_| evel property or one of the ooc. or b. t race properties)
to the HKKEY_LQOCAL_MACH NE NT registry key with a REG Sz value of at least
1.

Configuration Properties

Configuration Properties

In addition to the standard configuration properties described in Chapter 4,
Orbacus Names also supports the following properties:

ooc. nam ng. cal | back_ti meout =SECS | Equivalent to the - ¢ command-line option.

ooc. nam ng. dat abase=FI LE Equivalent to the - d command-line option.

ooc. nam ng. no_updat es Equivalent to the - n command-line option.

ooc. nam ng. endpoi nt =ENDPQ NT Specifies the endpoint configuration for the
service. Note that this property is only used if
the ooc. or b. oa. endpoi nt property is not set.

ooc. nanmi ng. ti meout =M NS Equivalent to the -t command-line option.

ooc. nam ng. trace_| evel =LEVEL Defines the output level for diagnostic messages

printed by Orbacus Names. The default level
is 0, which produces no output. A level of 1 or
higher produces messages related to database
operations, a level of 2 or higher produces
messages related to adding and removing
listeners, and a level of 3 or higher produces
messages related to binding operations.

193

CHAPTER 9 | Orbacus Names

Persistence

194

Orbacus Names can optionally be used in a persistent mode, in which all
data managed by the service is saved in a file. If you do not run the service
in its persistent mode, all of the data will be lost when the service
terminates.

It is also important to note that when using the service in its persistent
mode, you should always start the service on the same port (see Chapter 4
for more information).

Connecting to the Service

Connecting to the Service

The object key of the Naming Service is NaneSer vi ce, which identifies an
object of type CosNani ng: : GBNam ngCont ext . The CBNani ngCont ext
interface is derived from the standard interface

CosNam ng: : Nam ngCont ext Ext and provides additional Orbacus-specific
functionality. For a description of the CBNami ngCont ext interface, please
refer to the documented IDL file nami ng/i dl / CBNami ng. i dI .

The object key can be used when composing URL-style object references.
For example, the following URL identifies the naming service running on
host nshost at port 10000:

cor bal oc: : nshost : 10000/ NaneSer vi ce

Refer to Chapter 6 for more information on URLs and configuring initial
services.

195

CHAPTER 9 | Orbacus Names

Using the Naming Service with the IMR

The Naming Service may be used with the Implementation Repository
(IMR). However, if used with the IMR, it is important to note that the

cor bal oc URL-style object reference described in the previous section
cannot be used. If the IMR is used, then the object reference for the Naming
Service must be created using one of the following methods (where

Nam ngSer ver refers to the server name configured with the IMR):

® Start the Naming Service with the options:
--ior -CRBServerld Nam ngServer

causing the Naming Service to print its reference to standard output.

® Use the nkref utility:
nkref Nam ngServer NameServi ce Root Cont ext POA

When using the Naming Service with the IMR, the service must be started
with the option - CRBSer ver 1 d Nani ngSer ver , where Nani ngSer ver refers to
the server name configured with the IMR. When the IMR is configured to
start the Naming Service, this option is automatically added to the service’s
arguments. However, when the Naming Service is started manually, the
option must be present. For further information on configuring a service with
the IMR, refer to “Getting Started with the Implementation Repository” on
page 173.

196

Bindings

Bindings

Object references registered with the Naming Service are maintained in a
hierarchical structure similar to a filesystem. A file in a filesystem is
analogous to an object binding in the Naming Service. The equivalent for a
folder in a filesystem is a naming context in Naming Service terms. The
pieces of information stored in a Naming Service are called bindings. A
binding consists of an object’'s name and its type, as defined in the
CosNani ng module:

/1 1DL
typedef string Istring;

struct NameConponent

{
Istring id;
I'string kind;
B

typedef sequence<NaneConponent> Nane;

enum Bi ndi ngType

{
nobj ect,
ncont ext
iE
struct Bindi ng
{
Nane bi ndi ng_nare;
Bi ndi ngType bi ndi ng_t ype;
Ik

As you can see, each name consists of one or more components, like a file is
fully specified by its path in a filesystem. Each name component consists of
two strings, i d and ki nd, which could be likened to a file’s name and its
extension. Generally, the filesystem analogy works very well when
describing the Naming Service structures.

197

CHAPTER 9 | Orbacus Names

A new Naming Service entry, i.e., a binding, is created with the following
operations:

/1 1D
voi d bind(in Name n, in Cbject obj)
rai ses(Not Found, Cannot Proceed, |nvalidNanme, A readyBound);

voi d bind_context (in Name n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, |nvalidNanme, A readyBound);

Nam ngCont ext new _cont ext () ;

Nam ngCont ext bi nd_new context (i n Narme n)
rai ses(Not Found, Cannot Proceed, |nvalidName, Al readyBound);

bi nd registers a new object with the Naming Service, whereas a new context
is registered with bi nd_cont ext . For each operation, an object reference and
a Nane are expected as parameters. New naming context objects are created
with new cont ext or bi nd_new cont ext . bi nd_cont ext and

bi nd_new cont ext throw an Al r eadyBound exception if the name is already
in use in the target context.

To create a new binding without being concerned if the specified binding
already exists, use the following operations:

/1 1D
voi d rebind(in Nane n, in Cbject obj)
rai ses(Not Found, Cannot Proceed, |nvalidNane);

voi d rebind_context(in Nane n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, |nvalidNane);

Use the unbi nd operation to delete a particular binding:

/1 1D
voi d unbi nd(in Nane n)
rai ses(Not Found, Cannot Proceed, |nvalidNane);

198

Name Resolution

Name Resolution

Besides registering objects, an equally important task of the Naming Service
is name resolution. A name is passed to the resol ve or resol ve_str
operation and an object reference is returned if the name exists.

/1 1DL
(hj ect resol ve(in Nane n)
rai ses(Not Found, Cannot Proceed, |nvali dNare);
(bj ect resol ve_str(in StringNane n)
rai ses(Not Found, Cannot Proceed, |nvalidNane);

The resol ve and resol ve_str operations are only useful when a particular
name is known in advance. Sometimes it is necessary to ask for a list of all
bindings registered with a particular naming context. The | i st operation
returns a list of bindings.

/1 1DL
typedef sequence<Bi ndi ng> Bi ndi nglLi st ;

voi d list(in unsigned | ong how nany,
out BindingList bl, out Bindinglterator bi);

If the number of bindings is especially large, the Bi ndi ngl ter at or interface
is provided so that you don't have to query for all available bindings at once.
Simply get a certain number of bindings specified with how many, and get
the rest, if any, using the Bi ndi nglterator.

/1 1DL
interface Bindinglterator

{

bool ean next _one(out Binding b);
bool ean next_n(in unsigned | ong how nmany, out Bi ndi ngLi st
bl);
voi d destroy();
i

Make sure that you destroy the iterator object when it is no longer needed.

199

CHAPTER 9 | Orbacus Names

Programming Example

200

Orbacus includes simple C++ and Java examples that demonstrate how to
use the CORBA Naming Service. These examples are located in the folder
nam ng/ deno. We will concentrate on the Java example, but the C++
example works similarly. The example expects a Naming Service server to
be already running and that the server’s initial reference can be resolved by
the ORB. Because of its volume we have split the code into several parts for
the discussion below.

Programming Example

Initialization

The first code fragment deals with initializing the ORB.

O~NO O~ WNBRE

WWWWWWRNNNNMNNNMNNNNNRPRRERERERRRPRP RO
ORWONRPOOONODUBRWNRPOOON®UNWNERO

36

—

/'l Java
java.util.Properties props = System get Properties();
props. put (" org. ong. CORBA. ORBd ass", "com ooc. OCRBA CRB') ;
props. put (" org. ong. CORBA. GRBSI ngl et ond ass",

"com ooc. CORBA. CRBSI ngl et on™) ;

org.onmg. CORBA CRB orb = nul | ;
try

{
orb = CRB.init(args, props);

or g. ong. CORBA. (hj ect poaChj = nul | ;
try
{

}
cat ch(or g. ong. CCRBA CRBPackage. | nval i d\ane ex)

{

}
PQA r oot POA = PQAHel per. nar r ow poaQhj) ;
PQAManager nanager = root POA t he_PQAVanager () ;

poaChj = orb.resolve_initial _references("Root POA");

t hrow new Runt i neException();

org. ong. CORBA. (hj ect obj = nul|;
try
{

}
cat ch(or g. ong. CCRBA CRBPackage. | nval i d\ane ex)
{

}

if(obj == null)
{

obj = orb.resolve_initial_references("NaneService");

t hrow new Runt i neException();

t hr ow new Runt i neException();

201

CHAPTER 9 | Orbacus Names

202

10-22

24-32

34-47

37

38

39 Nam ngCont ext Ext nc = nul | ;

40 try

41 {

42 nc = Nam ngCont ext Ext Hel per . narrow(obj) ;
43 }

44 cat ch(or g. ong. CORBA. BAD_PARAM ex)
45 {

46 t hr ow new Runt i meException();
47 }

Usually the application is initialized in the mai n method. For more
information on ORB initialization see Chapter 4.

In the next step we try to connect to the Naming Service by supplying
“NameService” to resol ve_ini tial _references. If | nval i dNane is thrown,
there is no Naming Service available because the ORB doesn’t know
anything about this service.

If calling resol ve_i ni ti al _ref er ences was successful, the object reference
is checked and narrowed in order to verify that it supports the interface
CosNami ng: : Nami ngCont ext Ext . If the nar r ow operation raises

QCRBA: : BAD PARAM the object does not support the interface. This is
considered to be an error because we explicitly asked for a Naming Service
instance.

Programming Example

Binding

In the next step some sample bindings are created and bound to the Naming

Service.

1 // Java

2 Nared_i npl i npl A = new Naned_i npl ();

3 Naned_i npl inpl AL = new Naned_i npl ();

4 Naned_i npl i npl A2 = new Narred_i npl () ;

5 Nared_i npl i npl A3 = new Nared_i npl () ;

6 Naned_i npl i npl R = new Naned_i npl () ;

7 Naned_i npl i npl C = new Narred_i npl () ;

8 Nanmed a = inpl A _this(orb);

9 Narmed al = inpl Al. _this(orb);

10 Naned a2 = inpl A2. _this(orb);

11 Naned a3 = i npl A3. _this(orb);

12 Naned b = inpl B. _this(orb);

13 Narmed ¢ = inpl C _this(orb);

14

15 try

16 {

17 NaneConponent [] nclName = new NaneConponent[1] ;
18 nciNane[0] = new NaneConponent ();

19 nciNanme[0] .id = "ncl";

20 nclNane[O] . kind = "";

21 Nam ngCont ext ncl = nc. bi nd_new_cont ext (nc1Name) ;
22

23 NaneConponent [] nc2Nanme = new NaneConponent [2] ;
24 nc2Nane[0] = new NaneConponent () ;

25 nc2Nanme[0] .id = "ncl";

26 nc2Nane[O] . kind = "";

27 nc2Nane[1] = new NaneConponent () ;

28 nc2Name[1] .id = "nc2";

29 nc2Nane[1] . kind = "";

30 Nam ngCont ext nc2 = nc. bi nd_new _cont ext (nc2Nane) ;
31

32 NaneConponent [] aNane = new NaneConponent [1] ;
33 aNane[0] = new NaneConponent () ;

34 aNane[0].id = "a";

35 aNane[0] . kind = "";

36 nc. bi nd(aNane, a);

203

CHAPTER 9 | Orbacus Names

37

38 NaneConponent [] alNane = new NaneConponent [1] ;
39 alNane[0] = new NaneConponent ();

40 alNane[0].id = "al";

41 alNane[O] . kind = "";

42 nc. bi nd(alNane, al);

43

44 NaneConponent [] a2Nane = new NaneConponent [1] ;
45 a2Nane[0] = new NaneConponent () ;

46 a2Nane[0] .id = "a2";

47 a2Nane[0] . kind = "";

48 nc. bi nd(a2Nane, a2);

49

50 NaneConponent [] a3Nanme = new NaneConponent [1] ;
51 a3Nane[0] = new NaneConponent () ;

52 a3Nane[0] .id = "a3";

53 a3Nane[0] . kind = "";

54 nc. bi nd(a3Nane, a3);

55

56 NaneConponent [] bNane = new NaneConponent [2] ;
57 bNane[0] = new NaneConponent () ;

58 bNane[0].id = "ncl";

59 bNane[0] . kind = "";

60 bNane[1] = new NaneConponent () ;

61 bNane[1].id = "b";

62 bNane[1] . kind = "";

63 nc. bi nd(bNane, b);

64

65 NaneConponent [] cNanme = new NaneConponent [3] ;
66 cNarre[0] = new NameConponent () ;

67 cNarre[0].id = "ncl";

68 cNane[0] . kind = "";

69 cNare[1] = new NameConponent () ;

70 cNanme[1].id = "nc2";

71 cNane[1] . kind = "";

72 cNarre[2] = new NameConponent () ;

73 cNarre[2].id = "c";

74 cNane[2] . kind = "";

75 nc. bi nd(cNane, c);

76 }

2-13 Several sample objects are created that will later be bound to our Naming
Service. These objects implement an interface called Narred. In this example,
the details of this interface are not important. Naned might even be an
interface without any operations defined in it.

204

17-75

Programming Example

Create and bind some new contexts and bind the sample objects to these
contexts. Each binding name consists of several NaneConponent s that are
similar to the path components of a file located somewhere in a filesystem.
Objects are bound with the Naming Service’s bi nd operation; for contexts,
the corresponding operation bi nd_cont ext is used. In addition to the
object’s IOR, both operations expect a unique binding name. If a name
already exists, an Al r eadyBound exception is thrown. There are also other
exceptions you might encounter at this stage, e.g., 111 egal Nane if an empty
string was provided as part of a NameConponent .

205

CHAPTER 9 | Orbacus Names

Exceptions

This code fragment deals with exceptions that may be thrown by the
Naming Service operations.

1 // Java

2 cat ch(Not Found ex)

3 {

4 Systemerr.print ("Gt a ‘ Not Found” exception (");
5 swi t ch(ex. why. val ue())

6 {

7 case Not FoundReason. _ni ssi ng_node:
8 Systemerr. print("mssing node");
9 br eak;

10

11 case Not FoundReason. _not _cont ext :
12 Systemerr. print("not context");
13 br eak;

14

15 case Not FoundReason. _not _obj ect :
16 Systemerr.print("not object");

17 br eak;

18 }

19

20 Systemerr.printin(")");

21 ex. print StackTrace();

22 t hrow new Syst enException();

23

24 cat ch(Cannot Proceed ex)

25 {

26 Systemerr.println("Gdt a ‘ Cannot Proceed’ exception");
27 ex. print StackTrace();

28 t hrow new Syst enException();

29

30 catch(I nval i dNane ex)

31 {

32 Systemerr.println("Gt an ‘InvalidName’ exception");
33 ex. print StackTrace();

34 t hrow new Syst enException();

}

206

Programming Example

35

36 cat ch(Al readyBound ex)

37 {

38 Systemerr.println("Got an ‘ Al readyBound’ exception");
39 ex. pri nt StackTrace();

40 t hr ow new Syst enExcepti on();

41 }

2-41 Catch exceptions. Don't ever forget to do this. It can be useful to call
print StackTr ace on the exception object in order to get detailed information
about the program flow causing the exception.

207

CHAPTER 9 | Orbacus Names

The Event Loop

Next we start listening for requests.

1 // Java

2 try

3 {

4 manager . activate();

S }

6 catch(org. ong. Port abl eSer ver. PQAVanager Package. Adapt er | nacti ve
ex)

7 {

8 t hr ow new Runt i neException();

9 }

10 orb.run();

2-10 Everything is ready now, so we can listen for requests by calling act i avat e
on the POA Manager and run on the ORB.

208

Programming Example

Releasing Resources

2-9
16-26

Some cleanup work should be done before exiting the program. Every
binding must be properly unbound and the ORB must be destroyed.

unbi nd(cNane) ;
unbi nd(bNarre) ;
unbi nd(aNane) ;
unbi nd(alNane) ;
unbi nd(a2Nane) ;
unbi nd(a3Nane) ;
unbi nd(nc2Nane) ;
unbi nd(nc1Nane) ;

11 catch(Runti neException ex)

status = 1,

if (orb!=null)

orb. destroy();

cat ch(const Runti neException ex)

status = 1,

1 // Java
2 nc
3 nc
4 nc
5 nc
6 nc
7 nc
8 nc
9 nc
10 }

12 {

13

14 }

15

16

17 {

18 try
19 {
20

21 }
22

23 {
24

25 }
26 }

27

28 System exit (status)

All bindings are unbound.
destroy is called on the ORB. This releases the resources used by the ORB.

The complete example can be found in the folder nani ng/ deno included with
the Orbacus distribution.

209

CHAPTER 9 | Orbacus Names

210

In this chapter

CHAPTER 10

Orbacus Names
Console

Orbacus Names includes a graphical client for administering
the service called the Orbacus Names Console. The application
can manage any CORBA-compliant Naming Service, but
additional features are provided when used with Orbacus
Names.

This chapter contains the following sections:

Usage page 212
Naming Service Lookup page 213
The Menus page 214
The Toolbar page 222
The Popup Menu page 223

211

CHAPTER 10 | Orbacus Names Console

Usage

CLASSPATH Requirements

212

com ooc. CosNam ngConsol e. Mai n

[-f,--file FILE] [-i,--ior] [-n,--no-updates] [--look CLASS
[--windows] [--motif] [--nac] [-h,--help] [-v, --version]
-f FILE Read the Naming Service IOR from FI LE.
--file FILE
-i Print the stringified IOR of the Naming Service to
--ior standard output.
-n Disables automatic updates, i.e., callbacks that
-- ho- updat es notify interested clients of changes to the naming
service.
--1 ook CLASS Use the specified Look & Feel class.
- - Wi ndows Use the Windows Look & Feel (if available).
--noti f Use the Motif Look & Feel (if available).
--nac Use the Macintosh Look & Feel (if available).
-h Display the command-line options supported by
--help the program.

The Orbacus Names Console requires the classes in GB.j ar, GBNani ng. j ar
and GBUil.jar.

Naming Service Lookup

Naming Service Lookup

In order to locate a Naming Service, the application takes the following

steps on start-up:

® First it checks whether a Naming Service reference was given with the
-f option.

® If this is not the case, then the initial Naming Service is used, as
provided to the ORB with options like -ORBservice or -ORBconfig.

If both of the above steps fail, an error window is displayed and the Names
console exits.

213

CHAPTER 10 | Orbacus Names Console

The Menus

The menus provide access to all of the features of the application. In
addition, the most common actions are also available in the toolbar, as well
as in a popup menu that is displayed when pressing the right mouse button
over an item in the binding table or context tree.

The File Menu This menu contains operations that create bindings and define the current
root context.

New Window Opens an additional control window.

Switch Root Context Selects a new root naming context.

Load Context Recursively loads a naming context from a file.

Save Context As Recursively saves the selected naming context
to a file.

Save IOR to File Saves the stringified IOR of the currently
selected item to a file.

Close Window Closes the current window.

Exit Quits the Orbacus Names Console.

After starting the application, the current root context is the naming context
corresponding to the IOR specified on the command line or the initial
Naming Service, as provided to the ORB with options like -ORBservice or
-ORBconfigby. You can make another naming context the root context using
Switch Root Context. The new root context’s IOR is specified in the Enter

214

The Menus

IOR dialog window, as shown in Figure 5. The IOR can be entered directly

B3 Enter IOR |]

) Target IOR. @ From File Browse...

Figure 5: Entering an IOR

or can be read from a file. If an IOR is entered manually you usually either
use the URL-style notation as described in Chapter , or you copy a
stringified object reference into the dialog box using “Cut & Paste”. After
selecting Browse a file containing an I0R can be selected.

Sometimes it is not desirable to completely replace the currently visible root
context by another root context. For example, you may need to copy
bindings from one context to another. If this is the case, simply open an
additional window for the new root context using New Window. You can
then switch the root context in only one window without affecting the
information displayed in the other one. Using two windows, you can easily
transfer bindings from one context to another using “Cut & Paste”.

Complete naming contexts can be loaded from a special file with naming
context information. Such a file, which was previously created with Save
Context As, is loaded with Load Context. The bindings saved to this file are
added to the current naming context.

When saving a naming context, the console checks each context for
accessibility. If a context cannot be accessed, i.e., if its contents cannot be
saved, a message is displayed in the error window. You also get an error
message if the console detects a recursion. The bindings contained in the
naming context leading to the recursion is not saved.

Use Save IOR to File in order to create a file that contains the stringified
IOR of the currently selected binding or context.

With Close Window the current window is closed. Closing the last window
causes the application to terminate. Exit can be used to terminate the
application regardless of how many windows are open.

215

CHAPTER 10 | Orbacus Names Console

The Edit Menu

216

The operations in this menu provide the means for creating and deleting
objects and for changing the Naming Service structure.

New Context
New Binding
Delete

Link

Unlink

Cut

Copy

Paste
Change ID
Change Kind
Change IOR

Select all

Invert Selection

Creates a new naming context.

Creates a new binding for an object.
Deletes the selected items.

Creates a new binding for an existing naming context.
Unbinds the selected items.

Moves the selected items to the clipboard.
Copies the selected items to the clipboard.
Inserts the clipboard contents.

Edits the ID field of the selected item.
Edits the Kind field of the selected item.
Edits the IOR of the selected item.

Selects all items in the object table.

Inverts the current selection.

New contexts and bindings are created with the operations New Context
and New Binding, respectively. If one of these functions is selected, a new
context or object binding with a unique name is added to the current
context. For new object bindings an IOR can be specified.

Use Delete to remove the selected items from a naming context. Deleting
Naming Service entries removes all selected bindings from their parent

context. The objects belonging to these bindings are not affected. Destroying
Naming Service information only affects the actual Naming Service data, not
the objects themselves.

Use Link to create a new binding for an existing naming context, where the
naming context is specified by an IOR. The operation Unlink unbinds the
selected items. For objects, Unlink is equivalent to Delete, but for contexts,
Unlink differs in that the context is not destroyed. Since a context is not
destroyed using Unlink, it should only be used when there are multiple
bindings to a context in order to avoid orphaned contexts.

The Menus

The console supports a clipboard that you can use to move bindings
between different contexts. Data is transferred to the clipboard using the Cut
or Copy commands. Cut moves the currently selected items to the clipboard
and deletes the original entries, whereas Copy simply creates a copy in the
clipboard but keeps the source entry unchanged. When new data is
transferred to the clipboard, the old clipboard contents are replaced. Using
Paste, you can add the clipboard data into a naming context. The clipboard
contents are not changed by this operation, i.e., you can Paste the same
items several times. Note that if naming contexts are transferred to the
clipboard, their contents are not evaluated before they are pasted. It is
during the Paste operation that the bindings of a context are duplicated.
This means that if new bindings are added to a context after a Cut or Copy
operation, these bindings will be present after pasting this context.

An item registered with the Naming Service has three modifiable attributes:
its ID, its Kind and its IOR. The ID and Kind attributes can be edited by
simply double-clicking the ID or Kind field in the table. You can also change
binding attributes with the corresponding menu operations Change ID,
Change Kind and Change IOR. Entering a new IOR for an existing name
effectively replaces an object registered with the Naming Service by another
object with the same name.

Use Select all to select all of the entries in the binding table. The current
table selection can be inverted using Invert Selection.

217

CHAPTER 10 | Orbacus Names Console

The View Menu

The operations in this menu control the appearance of the console window
as well as the presentation of the Naming Service data.

Toolbar Toggles the toolbar visibility.

Status Bar Toggles the statusbar visibility.

Error Window Toggles the error message window visibility.
Simple List Displays minimum object information.
Details Displays additional object information.

Sort Sets sorting mode for object list.

Refresh Updates the complete window contents

A toolbar that gives access to frequently needed operations is normally
present below the menu. If you don’t have a need for this toolbar or if you
just want to save space on the screen, you can switch it off with the Toolbar
toggle button. The same applies to the status bar where information about
the currently selected item is displayed. The status bar displays an object’s
repository ID, the host where this object is located and the port it is bound
to. If an item with a nil object reference is selected or if multiple items are
selected, the status bar is empty.

If an error occurs while editing bindings, the console automatically displays
a new window with information about what went wrong. Usually this
information consists of exception data. The visibility of this window can be
explicitly controlled with the Error Window toggle button.

If the console is connected to Orbacus Names, as described in Chapter 9,
the console can display timestamp information for each binding by making
use of proprietary features of Orbacus Names. This information is shown in
the binding table if the Details display mode instead of the Simple List
mode is active.

Usually the console sorts the items in the binding table in ascending
alphabetical order, with naming contexts being listed at the top. You can
change this order with the options available in the Sort menu. Bindings can
be sorted by their ID or Kind fields. If the extended attributes are displayed,
items can also be sorted by date and time. You can reverse the sort order by

218

The Menus

selecting the current sorting mode a second time in the View menu or by
clicking on the table header cells. In this case, the display switches from
ascending to descending order and vice versa.

If the contents of a naming context have been changed by a third party and
you want to update the information displayed in the console window,
selecting Refresh updates the display. If the console is connected to
Orbacus Names, a refresh is done automatically each time a change occurs.

219

CHAPTER 10 | Orbacus Names Console

The Tools Menu

220

The operations available in this menu are meant as tools for your everyday
work.

Ping Checks the accessibility of the selected items.

Clean up Unbinds inaccessible objects from the current context.

Sometimes it is useful to check if an object bound to a name still exists or if
the object reference associated with it has become invalid, for example,
because of a server crash. To perform such a check, select all the objects
you want to check and start the Ping operation. The console tries to contact
each of the selected objects and displays the time it took to get a connection
to them in a separate window.

[ORBacus Names Ping Window 1] 3
Pinging “Sophed (luke.software.bruker.de)' ... 11 ms =
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns

Pinging “Sophed [(luke.software.bruker.de)' ... 0 ns

Pinging “Sophed (demosophe.esr.bruker.de)' ... 0 ns

Pinging “Sophed (luke.software.bruker.de)' ... 20 ns

Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns

Pinging “Sophed (luke.software.bruker.de)' ... 20 ns

Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns

Pinging “Sophed [(luke.software.bruker.de)' ... 100 ms

Pinging “Sophed (demosophe.esr.bruker.de)' ... 0 ns

Pinging “Sophed (luke.software.bruker.de)' ... 10 ns

Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns

Pinging “Sophed (luke.software.bruker.de)' ... 30 ns

Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns

Pinging “Sophed (luke.software.bruker.de)' ... 30 ns

Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns

Pinging “Sophed [(luke.software.bruker.de)' ... 0 ns

Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns

Pinging “Sophed [(luke.software.bruker.de)' ... 0 ns

Close | | Clear | | Stop | | Continue

Figure 6: The Ping Window

This is very similar to the Windows or Unix pi ng command for an IP address
or a host name. If there is a time-out while trying to contact an object, this
information is displayed in the Ping Window and the console continues with
the next object.

The Menus

If you want objects that cannot be contacted, for example because of a
server breakdown, to be unbound from the current context, Clean up does
the job. Clean up non-recursively tries to connect to the selected objects. If
there is a communication failure or the _non_exi st ent () operation returns
true for a particular object, the corresponding binding is automatically
removed. Clean up should be used with care.

221

CHAPTER 10 | Orbacus Names Console

The Toolbar

In addition to the operations offered by the menu bar, some frequently
needed functions are available by icons located in the toolbar, as shown in
Figure 7 .

[~ [#]R@) [X]

Figure 7: A closer look at the toolbar

The icon on the toolbar’s left is the Upwards icon which changes the
naming context to the parent of the context currently being displayed. The
next five icons correspond to the New Context, New Binding, Cut, Copy,
Paste and Delete items as described in “The Edit Menu” on page 216.

The Simple List and Details items from the View menu are the next two
icons in the toolbar. They determine whether the binding table displays only
the ID and Kind fields, or, if Orbacus Names is available, also the date and
time the binding was last modified.

The last item in the menubar corresponds to the Refresh operation from the
View menu.

222

The Popup Menu

The Popup Menu

When selecting an item in the binding table or a tree node with the right
mouse button, a popup menu with a choice of operations is displayed as
shown in Figure 8.

Open Context
Cut

Copy

Paste

Change ID
Change Kind
Change IOR...

Delete
Unlink

Save IOR to File...

Figure 8: A popup menu offers important operations

This is another convenient alternative for executing frequently used
operations.

223

CHAPTER 10 | Orbacus Names Console

224

CHAPTER 11

Orbacus Properties

The CORBA Property Servicel permits you to annotate an
object with extra attributes (called properties) that were not
defined by the object’s IDL interface. Properties can represent
any value because they make use of the CORBA any data type.

Orbacus Properties is compliant with [101. This chapter does
not provide a complete description of the service. It only
provides an overview, suitable to get you started. For more
information, please refer to the specification.

In this chapter This chapter contains the following sections:
Usage page 226
Connecting to the Service page 227
Using the Property Service with the IMR page 228
Creating Properties page 229
Querying for Properties page 230
Deleting Properties page 232
Programming Example page 233

1. Note that the Property Service has nothing to do with the properties used for
configuration purposes. Configuration properties are described in “ORB
Properties” on page 58.

225

CHAPTER 11 | Orbacus Properties

Usage

Orbacus includes functionally equivalent implementations of the Property
Service in C++ and Java.

C++ propserv
[-h,--help] [-v,--version] [-i,--ior]
Java com ooc. CosPropertyServi ce. Server
[-h,--help] [-v,--version] [-i,--ior]
Options
-h Display the command-line options supported by the
--help server.
-v Display the version of the server.
--version
-i Prints the stringified IOR of the server to standard
--ior output.
Configuration Properties In addition to the standard configuration properties described in Chapter 4,

Orbacus Properties also supports the following properties:

ooc. property. endpoi nt =ENDPQ NT Specifies the endpoint configuration for the
service. Note that this property is only used if
the ooc. or b. oa. endpoi nt property is not set.

CLASSPATH Requirements Orbacus Properties for Java requires the classes in CB.j ar and
CBProperty.jar.

226

Connecting to the Service

Connecting to the Service

The object key of the Property Service is Propert yServi ce, which identifies
an object of type CosPropert ySer vi ce: : Propert ySet Def Fact ory.

The object key can be used when composing URL-style object references.
For example, the following URL identifies the Property Service running on
host prophost at port 10000:

cor bal oc: : prophost : 10000/ Pr opert yServi ce

Refer to Chapter 6 for more information on URLs and configuring initial
services.

227

CHAPTER 11 | Orbacus Properties

Using the Property Service with the IMR

The Property Service may be used with the Implementation Repository
(IMR). However, if used with the IMR, it is important to note that the
corbaloc URL-style object reference described in the previous section cannot
be used. If the IMR is used, then the object reference for the Property
Service must be created using one of the following methods (where
Proper t yServer refers to the server name configured with the IMR):
® Start the Property Service with the options:

--ior -CORBServerld PropertyServer

causing the Property Service to print its reference to standard output.
® Use the nkref utility:

nkref PropertyServer PropertyService PropertyServi cePOA
When using the Property Service with the IMR, the service must be started
with the option - CRBServer | d PropertyServer, where PropertyServer
refers to the server name configured with the IMR. When the IMR is
configured to start the Property Service, this option is automatically added
to the service's arguments. However, when the Property Service is started
manually, the option must be present. For further information on configuring
a service with the IMR, refer to “Getting Started with the Implementation
Repository” on page 173.

228

Creating Properties

Creating Properties

A property handled by the CORBA Property Service consists of two
components: the property’s name and its value. The name is a CORBA
string and the associated value is represented by a CORBA Any:

/1 1DL
typedef string PropertyNang;

struct Property

{
PropertyNane property_nane;
any property_val ue;

IE

New properties are created using a factory object implementing the
PropertySet interface. A new property is created using the
def i ne_property operation:

/1 1DL

voi d define_property(in PropertyName, in any property_val ue)
rai ses(l nval i dPropertyName, ConflictingProperty,
Unsuppor t edTypeCode, UWnsupportedProperty, ReadOnl yProperty);

As a property consists of a name-value pair, both the name and the value
are the parameters to this operation.

229

CHAPTER 11 | Orbacus Properties

Querying for Properties

230

As soon as a property is defined, the PropertySet can be queried for the
property’s value with the get _property_val ue operation:

/1 1D
any get_property_val ue(in PropertyNane property_nane)
rai ses(PropertyNot Found, | nvalidPropertyNane);

For a particular property name, this call either returns the Any associated
with that name or throws an exception if a property with the name does not
exist.

You can not only query for a particular property value, but also for a list of
all the properties defined within a PropertySet. The get _al | _properties
operation serves this purpose:

/1 1DL
void get_al |l _properties(in unsigned | ong how _nany,
out Properties nproperties, out Propertiesliterator rest);

This operation works similar to the I'i st call offered by the Naming Service.
In both cases the maximum number of items to be returned at once is
specified. An iterator implementing the Properti eslterator interface gives
access to the remaining items, if any.

/1 1D
interface Propertieslterator

{
voi d reset ();

bool ean next _one(out Property aproperty);

bool ean next _n(in unsigned | ong how_nmany,
out Properties nproperties);

voi d destroy();
Ik

Querying for Properties

If you are only interested in a list of property names you can get this list by
calling get _al | _property_nanes:

/1 1DL

voi d get_all _property names(in unsigned | ong how nany,
out PropertyNames property_namnes,
out PropertyNameslterator rest);

As with get _al | _properties a list of names as well as an iterator is
returned. This iterator implements the PropertyNaresl t erat or interface:

/1 1DL
interface PropertyNaneslterator

{

void reset();

bool ean next _one(out PropertyNane property_nane);

bool ean next_n(i n unsi gned | ong how_nany,
out PropertyNames property_nanes);

voi d destroy();
b

The iterators should always be destroyed when they are no longer needed.

Sometimes it is useful to know of how many properties a Propert ySet
consists of. This information is provided by get _nunber _of _properti es:

/1 1DL
unsi gned | ong get _nunber _of _properties();

Note that you have to be careful if you intend to use the return value of

get _nunber _of _properti es as the input value for the how_many parameter
of get _al | _properties in order to get a complete property list. You always
have to check the Properti eslterat or for properties that were not returned
as part of the Properti es sequence returned by get _al | _properti es,
otherwise you might miss a property that was defined by another process
between your calls to get _nunber _of _properties and get _al | _properti es.

231

CHAPTER 11 | Orbacus Properties

Deleting Properties

232

If a property has become obsolete it can be deleted from the Propert ySet
with del et e_property:

/1 1DL
voi d del ete_property(in PropertyNane property_nane)
rai ses(PropertyNot Found, |nvalidProperty, FixedProperty);

As you might have guessed by this operation’s signature, there are
properties that cannot be deleted at all. This kind of property is called a

Fi xedPr operty. The Property Service defines several other special property
types, such as read-only properties. Please refer to the OMG Property
Service [9] specification for details.

Programming Example

Programming Example

The Property Service test suite, which is part of the Orbacus distribution,
provides a good example of how to create properties and query for their
values. The code below is based on excerpts of this test suite, which is
located in the directory property/test. We will concentrate on an example
in Java here. As with the previous examples, the Java code is very similar to
what is necessary in C++. The example demonstrates how to create
properties and how to get a list of all the properties defined within a

PropertySet.

1 // Java

2

3 org.ony. CCRBA (hj ect obj = null;

4

5 try

6 {

7 obj = orb.resolve_initial_references("PropertyService");
8 1}

9 catch(org. omg. CORBA CRBPackage. | nval i dNane ex)

10 {

11 // An error occurred, Property Service is not avail able
12 }

13

14 if(obj == null)

15 {

16 /1l The object reference is invalid

17 }

18

19 PropertySetDef Factory factory = nul | ;

20 try

21 {

22 factory = PropertySet Def Fact or yHel per. narrow(obj);
23 }

24 cat ch(or g. ong. CCRBA. BAD_PARAM ex)

25 {

26 // This object does not inplenment the Property Service
27 }

28

29 PropertySetDef set = factory.create_propertysetdef();
30

233

CHAPTER 11 | Orbacus Properties

31 Any anylLong = orb.create_any();

32 Any AnyString = orb. create_any();

33 Any anyShort = orb.create_any();

34 anylong.insert_| ong(12345L);

35 anyString.insert_string(“Foo”);

36 anyShort.insert_short((short)0);

37

38 try

39 {

40 set . def i ne_property(“LongProperty”, anylLong);
41 set . define_property(“StringProperty”, anyString);
42 set . define_property(“ShortProperty”, anyShort);

43 }

44 cat ch(ReadOnl yProperty ex)
45 {

46 // An error occurred

47 }

48 catch(GonflictingProperty ex)
49 {

50 /1l An error occurred

51 }

52 cat ch(Unsupport edProperty ex)
53 {

54 /1l An error occurred

55 }

56 cat ch(Unsupport edTypeCode ex)
57 {

58 /1 An error occurred

59 }

60 catch(Inval i dPropertyNane ex)
61 {

62 /1l An error occurred

63 }

64

65 PropertiesHol der ph = new PropertiesHol der();

66 PropertieslteratorHolder ih = new PropertieslteratorHol der();
67 set.get_all_properties(0, ph, ih);

68

69 PropertyHol der h = new PropertyHol der ();

70 whi | e(i h. val ue. next _one(h))

71 {

72 // The next property is now stored in h.val ue
73 }

74

75 ih.val ue.destroy();

b-27 Get a Property Service reference and check for errors.

234

29

31-36
38-63

65-73

75

Programming Example

The Propert ySet Def Fact ory object is used to create a Propert ySet Def
instance. Note that Propert ySet Def is a subclass of PropertySet.

Each property consists of a name and a value in the form of a CORBA Any.
Three properties are defined. The first has the name “LongProperty” and
stores a | ong value. The second one is called “StringProperty” and stores a
string. The remaining property represents a short value. If for some reason
a property cannot be created, an exception is thrown.

Now we try to get a list of all the properties that were previously defined.
With get _al | _properties the PropertySet Def returns its properties. As we
have set the how _nmany parameter to O, we have to use the
Propertieslterator for each item. An application would normally provide a
positive integer for how many.

The iterator has fulfilled its duty and can now be destroyed.

235

CHAPTER 11 | Orbacus Properties

236

In this chapter

CHAPTER 12

Orbacus Events

Some applications need to exchange information without
explicitly knowing about each other. Often a server isn’t even
aware of the nature and number of clients that are interested
in the data the server has to offer. A special mechanism is
required that provides decoupled data transfer between
servers and clients. This requirement is addressed by the
CORBA Event Service.

Orbacus Events is compliant with [91. This chapter does not
provide a complete description of the service. It only provides
an overview, suitable to get you started. For more information,
please refer to the specification.

This chapter contains the following sections:

Usage page 238
Connecting to the Service page 243
Using the Event Service with the IMR page 244
Event Service Concepts page 245
Programming Example page 253

237

CHAPTER 12 | Orbacus Events

Usage

Orbacus includes functionally equivalent implementations of the Event

Service in C++:

event serv

[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u, --unt yped- servi ce]

and Java:

com ooc. CosEvent . Server
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u, --untyped- servi ce]

Options

-h
--help

Y
--version

-i
--ior

-t
- -typed- servi ce

-u
- -unt yped- servi ce

238

Display the command-line options supported by the
server.

Display the version of the server.

Print the stringified IOR of the server to standard
output.

Run a typed event service.

Run an untyped event service. This is the default
behavior.

Usage

Windows NT Native Service

The C++ version of Orbacus Events is also available as a native Windows
NT service.
nt event servi ce
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-h Display the command-line options supported by the server.
--help

-i Install the service. The service must be started manually.
--install

-s Install and start the service.

--start-install

-u Uninstall the service.

--uninstall

-d Run the service in debug mode.
--debug

In order to use the Event Service as a native Windows NT service, it is first
necessary to add the ooc. event . endpoi nt property to the
HKEY_LQOCAL_MACH NE NT registry key (see “Using the Windows NT Registry”
on page 71 for more details).
Next the service should be installed with:

nt event service -i
This adds the Orbacus Event Servi ce entry to the Servi ces dialog in the
Control Panel. To start the event service, select the Orbacus Event Service
entry, and press Start . If the service is to be started automatically when the
machine is booted, select the O bacus Event Servi ce entry, then click
Startup. Next select Startup Type - Aut omati ¢, and press K. Alternatively,
the service could have been installed using the -s option, which configures
the service for automatic start-up:

ntevent service -s
If you want to remove the service, run:

239

CHAPTER 12 | Orbacus Events

nt event service -u

Note: If the executable for the Event Service is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service is be placed in the Windows
NT Event Viewer with the title Event Ser vi ce. To enable tracing information,
add the desired trace configuration property (i.e., one of the

ooc. event . t race properties or one of the ooc. orb. trace properties) to the
HKEY_LOCAL_MACH NE NT registry key with a REG Sz value of at least 1.

240

Usage

Configuration Properties

0ocC.

oocC.

0ocC.

oocC.

0ocC.

oocC.

0ocC.

oocC.

event

event .

event.

event .

event.

event .

event.

event .

In addition to the standard configuration properties described in Chapter 4,
Orbacus Events also supports the following properties:

.inactivity_tinmeout=SEC

max_event s=N

max_retri es=N

endpoi nt =ENDPQ NT

pul | _i nterval =MSEC

reap_f r equency=SEC

retry_ti meout =MsEC

retry_multiplier=N

ooc.event.request_timeout=MSEC

Proxies that are inactive for the specified number of
seconds will be reaped. The default value is four
hours.

The maximum number of events in each event
queue. If this limit is reached and another event is
received, the oldest event is discarded.The default
value is 10.

The maximum number of times to retry before
giving up and disconnecting the proxy. The default
value is 10.

Specifies the endpoint configuration for the service.
Note that this property is only used if the
ooc. or b. oa. endpoi nt property is not set.

This specifies the number of milliseconds between
successive calls to pull on Pul | Suppl i er . Default
value is O.

This specifies the frequency (in seconds) in which
inactive proxies will be reaped. The default value is
thirty minutes. Setting this property to O disables
the reaping of proxies.

Specifies the initial amount of time in milliseconds
that the service waits between successive
retries.The default value is 1000.

A doubl e that defines the factor by which the
retry_timeout property should be multiplied for
each successive retry.

The amount of time permitted for a blocking request
on a client to return before a timeout. The default
value is 5 seconds.

241

CHAPTER 12 | Orbacus Events

ooc.event.trace.events=LEVEL Defines the output level for event diagnostic
messages printed by Orbacus Events. The default
level is O, which produces no output. A level of 1 or
higher produces event processing information and a
level of 2 or higher produces event creation and
destruction information.

ooc.event.trace.lifecycle=LEVEL Defines the output level for lifecycle diagnostic
messages printed by Orbacus Events. The default
level is O, which produces no output. A level of 1 or
higher produces lifecycle information (e.g. creation
and destruction of Suppliers and Consumers).

ooc. event . t yped_servi ce=true|fal se Equivalent to the -t command-line option.

CLASSPATH Requirements Orbacus Events for Java requires the classes in CB.j ar and CBEvent . j ar .

242

Connecting to the Service

Connecting to the Service

The object key of the Event Service depends on whether it is running as a
“typed” or “untyped” service. The object keys and corresponding interface
types are shown in Table 2.

Table 2: Object Keys and Interface Types

Object Key Interface Type
Event Service Def aul t Event Channel CosEvent Channel Admi n: : Event Channel
Typed Event Def aul t TypedEvent Channel CosTypedEvent Channel Adni n: :
Service TypedEvent Channel

The object key can be used when composing URL-style object references.
For example, the following URL identifies the untyped event service running
on host evhost at port 10000:

cor bal oc: : evhost : 10000/ Def aul t Event Channel

Refer to Chapter 6 for more information on URLs and configuring initial
services.

Orbacus Events also provides proprietary “factory” interfaces which allow
construction and administration of multiple event channels in a single
service. The object keys and corresponding interface types of the factories
are shown in Table 3.

Table 3: Object Keys and Interface Types for Event Channel Factories

Object Key Interface Type

Event Channel
Factory

Def aul t Event Channel Fact ory CBEvent Channel Factory: :
Event Channel Fact ory

Typed Event
Channel
Factory

Def aul t TypedEvent Channel Fact ory CBTypedEvent Channel Factory: :
TypedEvent Channel Fact ory

For a description of the factory interfaces, please refer to the documented
IDL files event /i dl / CBEvent Channel Factory.idl and
event /i dl / BTypedEvent Channel Factory.idl .

243

CHAPTER 12 | Orbacus Events

Using the Event Service with the IMR

The Event Service may be used with the Implementation Repository (IMR).
However, if used with the IMR, it is important to note that the cor bal oc
URL-style object reference described in the previous section cannot be used.
If the IMR is used, then the object reference for the “untyped” Event Service
must be created using one of the following methods (where Event Ser ver
refers to the server name configured with the IMR):

® Start the Event Service with the options:

-CRBServerld Event Server --ior

causing the Event Service to print its reference to standard output.
® Use the nkref utility:

nkref Event Server Defaul t Event Channel Event Servi cePQA
For the “typed” Event Service, the object reference must be created using
one of the following methods:
® Start the Event Service with the options:

- CRBServer| d Event Server --typed-service --ior

causing the Event Service to print its reference to standard output.
® Use the nkref utility:

nkref Event Server Defaul t TypedEvent Channel Event Servi cePQA
Object references for the Orbacus proprietary “factory” objects can be
created using the following commands:

nkref Event Server Def aul t Event Channel Fact ory Event Servi cePQA
nkref Event Server Defaul t TypedEvent Channel Fact ory
Event Ser vi cePQA

When using the Event Service with the IMR, the service must be started
with the option - CRBServer | d Event Server, where Event Server refers to
the server name configured with the IMR. When the IMR is configured to
start the Event Service, this option is automatically added to the service’s
arguments. However, when the Event Service is started manually, the option
must be present. For further information on configuring a service with the
IMR, refer to “Getting Started with the Implementation Repository” on
page 173.

244

Event Service Concepts

Event Service Concepts

In this section This section contains the following topics:
The Event Channel page 246
Event Suppliers and Consumers page 247
Event Channel Policies page 249
Event Channel Factories page 250

245

CHAPTER 12 | Orbacus Events

The Event Channel

246

The Event Service distributes data in the form of events. The term event in
this context refers to a piece of information that is contributed by an event
source. An event channel instance accepts this information and distributes it
to a list of objects that previously have connected to the channel and are
listening for events.

The Event Service specification defines two distinct kinds of event channels:
untyped and typed. Whereas an untyped event channel forwards every event
to each of the registered clients in the form of a CORBA Any, a typed event
channel works more selectively by supporting strongly-typed events which
allow for data filtering. We will only discuss the untyped event channel here.
For information on typed event channels, and more details on the Event
Service in general, please refer to the official Event Service specification [9].

Event Service Concepts

Event Suppliers and Consumers

Applications participating in generating and accepting events are called
suppliers and consumers, respectively. Suppliers and consumers each come
in two different versions, namely, push suppliers and pull suppliers, and
push consumers and pull consumers.

What's the difference between pushing events and pulling events? Let's
have a look at the consumer side first. Some consumers must be
immediately informed when new events become available on an event
channel. Such consumers usually act as push consumers. They implement
the PushConsuner interface which ensures that the event channel actively
forwards events to them using the push() operation:.

/1l 1D
interface PushConsuner

{
voi d push(in any dat a)
rai ses(Di sconnect ed) ;

voi d di sconnect _push_consuner () ;

IE

Push consumers are passive, that is, are servers. Conversely, pull
consumers are active, that is, are clients. Pull consumers poll an event
channel for new events. As events may arrive at a greater rate than they are
polled for by a pull consumer or accepted and processed by a push
consumer, some events might get lost. A buffering policy implemented by
the event channel determines whether events are buffered and what
happens in case of an event queue overflow.

Like consumers, suppliers can also use push or pull behavior. Push
suppliers are the more common type, in which the supplier directly forwards
data to the event channel and thus plays the client role in the link to the
channel. Pull suppliers, on the other hand, are polled by the event channel
and supply an event in response, if a new event is available. Polling is done
by the try_pul I () operation if it is to be non-blocking or by the blocking
pul | () call:

247

CHAPTER 12 | Orbacus Events

/1 1DL
interface Pull Supplier

{
any pul | ()
rai ses(D sconnect ed) ;

any try_pull (out bool ean has_event)
rai ses(D sconnect ed) ;

voi d di sconnect _pul | _supplier();

b

248

Event Service Concepts

Event Channel Policies

The untyped event channel implementation included in the Orbacus
distribution features a simple event queue policy. Events are buffered in the
form of a queue, i.e., a certain number of events are stored and, in case of a
buffer overflow, the oldest events are discarded.

249

CHAPTER 12 | Orbacus Events

Event Channel Factories

The standard CORBA Event Service provides no support for managing the
lifecycle of event channels; as a result, applications requiring multiple
channels are often forced to run a separate instance of the Event Service for
each channel. To remedy this situation, Orbacus Events provides optional,
proprietary interfaces for event channel administration.

The CBEvent Channel Fact ory: : Event Channel Fact ory interface describes the
factory for untyped event channels:

/1 1DL
nodul e CBEvent Channel Fact ory
{

typedef string Channel | d;
typedef sequence<Channel | d> Channel | dSeq;

exception Channel Al readyExi sts {};
exception Channel Not Avai | abl e {};

i nterface Event Channel Factory

{
CosEvent Channel Adnmi n: : Event Channel
create_channel (in Channel I d id)
rai ses(Channel Al r eadyExi st s) ;

CosEvent Channel Adni n: : Event Channel
get _channel _by i d(in Channel | d id)
rai ses(Channel Not Avai | abl e) ;

Channel | dSeq get _channel s();

voi d shut down();

250

Event Service Concepts

The BTypedEvent Channel Fact ory: : TypedEvent Channel Fact ory interface
describes the factory for typed event channels:

/1 1D
nodul e GBTypedEvent Channel Fact ory
{

i nterface TypedEvent Channel Fact ory

{
CosTypedEvent Channel Adm n: : TypedEvent Channel
create_channel (i n GBEvent Channel Fact ory: : Channel | d i d)
rai ses(CBEvent Channel Fact ory: : Channel Al r eadyExi st s) ;

CosTypedEvent Channel Adnmi n: : TypedEvent Channel
get _channel _by i d(i n GBEvent Channel Fact ory: : Channel 1 d id)
rai ses(GBEvent Channel Fact ory: : Channel Not Avai | abl e) ;

CBEvent Channel Fact ory: : Channel | dSeq get _channel s();

voi d shut down();
ik
ik

At start-up, the untyped Event Service creates a single channel having the
identifier Def aul t Event Channel , and the typed Event Service creates a
single channel having the identifier Def aul t TypedEvent Channel . A channel’s
identifier also serves as its object key; therefore, a channel can be located
using a corbal oc: URL (see “corbaloc: URLs” on page 139). For example,
a channel with the identifier Tel emet ryDat a can be located on the host
nyhost at port 2098 using the following URL:

cor bal oc: : nyhost : 2098/ Tel enet r yDat a

To obtain the object reference of a channel factory, use a corbal oc: URL
with the object key as shown in Table 2 on page 243. For example,
assuming the untyped Event Service is running on host nyhost at port 2098,
here is how a C++ application can obtain the object reference of the
channel factory and create a channel with the identifier Tel enet r yDat a:

/] C++
QOORBA: : (hj ect _var obj = orb -> string_to_object (
"corbal oc: : nyhost : 2098/ Def aul t Event Channel Fact ory") ;
CBEvent Channel Fact ory: : Event Channel Factory_var factory =
CBEvent Channel Fact ory: : Event Channel Fact ory: : _narrow(obj);
CosEvent Channel Admi n: : Event Channel _var channel =
factory -> create_channel ("Tel enetrybData");

251

CHAPTER 12 | Orbacus Events

252

Here is the same example in Java:

/1 Java
org. ong. OORBA. (bj ect obj = orb. string_to_object (

"cor bal oc: : nyhost : 2098/ Def aul t Event Channel Fact ory") ;
com ooc. CBEvent Channel Fact ory. Event Channel Factory factory =

com ooc. CBEvent Channel Fact ory. Event Channel Fact or yHel per .
narrow(obj) ;

or g. ong. CosEvent Channel Adm n. Event Channel channel =
factory. create_channel ("Tel enetryData");

Programming Example

Programming Example

In the Event Service example that comes with Orbacus, two supplier and
two consumer clients demonstrate how to use an untyped event channel to
propagate information. The pieces of information transferred by this example
are strings containing the current date and time. After starting the Event
Service server, you can start these clients in any order. The demo
applications obtain the initial Event Service reference as already
demonstrated, i.e., by calling resol ve_i ni ti al _ref erences. When started,
each supplier provides information about the current date and time and
each client displays the event data in its console window.

This is the push supplier's main loop:

1 // Java

2 while(consurmer_ !'= null)

3 {

4 java.util.Date date = new java. util.Date();
5 String s = "PushSupplier says: " + date.toString();
6

7 Any any = orb_.create_any();

8 any.insert_string(s);

9

10 try

11 {

12 consurer _. push(any);

13 }

14 cat ch(Di sconnect ed ex)

15

16 /1 Supplier was di sconnected from event channel
17 }

18

19 try

20 {

21 Thr ead. sl eep(1000) ;

22 }

23 cat ch(I nterruptedExcepti on ex)

24 {

25 }

26 }

4-8 The current date and time is inserted into the Any.

253

CHAPTER 12 | Orbacus Events

254

10-17

19-25

4-8
13-19

The event data, in this example date and time, are pushed to the event
channel. From the push supplier's view the event channel is just a consumer
implementing the PushConsuner interface.

After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that
the event channel explicitly polls the supplier for new events. This is done by
eitherpul I () ortry_pul I (). The pull supplier doesn’t see anything from the
event channel but an object implementing the Pul | Consurrer interface. The
following example shows the basic layout of a pull supplier:

1 // Java

2 public Any pull ()

3 {

4 java.util.Date date = new java. util.Date();
5 String s = "Pull Supplier says: " + date.toString();
6

7 Any any = orb.create_any();

8 any.insert_string(s);

9

10 return any;

11 }

12

13 public Any

14 try_pul | (Bool eanHol der has_event)

15 {

16 has_event . val ue = true;

17

18 return pull();

19 }

Date and time are inserted into the Any.

In this example new event data can be provided at any time, sotry_pul I ()
always sets has_event to true in order to signal that an event is available. It
then returns the actual event data.

2-13

Programming Example

After examining the most important aspects of the event suppliers’ code, we
are now going to analyze the consumers’ code. The push consumer with its
push() operation is shown first:

1 // Java

2 public void push(Any any)

3 {

4 try

5 {

6 String s = any.extract_string();
7 Systemout. println(s);

8 }

9 cat ch(MARSHAL ex)

10 {

11 /1 1gnore unknown event data
12 }

13 }

The push consumer’s push() operation is called with the event wrapped in a
CORBA Any. In this code fragment it is assumed that the Any contains a
string with date and time information. In case the Any contains another data
type a MARSHAL exception is thrown.This exception can be ignored here
because other events aren't of interest. After extracting the string it is
displayed in the console window.

255

CHAPTER 12 | Orbacus Events

In contrast to the push consumer, the pull consumer has to actively query
the event channel for new events. This is how the pull consumer loop looks:

1 // Java

2 while(supplier_!=null)

3 {

4 Any any = nul|;

5

6 try

7 {

8 any = supplier_.pull();

9

10 cat ch(D sconnect ed ex)

11 {

12 /1 Supplier was diconnected fromevent channel
13 }

14

15 try

16 {

17 String s = any.extract_string();
18 Systemout. println(s);

19 }

20 cat ch(MARSHAL ex)

21 {

22 /1 1gnore unknown event data
23 }

24 }

4 A CORBA Any is prepared for later use.

6-13 Using pul I (), the consumer polls the event channel for new events. The
event channel acts as a pull supplier in this case. The pul I () operation
blocks until a new event is available.

15-23 The consumer expects a string wrapped in a CORBA Any. The string value is
extracted and displayed. If an exception is raised the Any contained some
other data type which is simply ignored.

In all of these examples the event channel acts either as a consumer (if the
clients are suppliers) or a supplier (if the clients are consumers) of events.
Actually each client is not directly connected to the event channel but to a
proxy that receives or sends events on behalf of the channel. For more
information on the Event Service and for the complete definitions of the IDL
interfaces, please refer to the official Event Service specification.

256

In this chapter

CHAPTER 13

The Interface
Repository

A CORBA Interface Repository (IFR) is essential for
applications using the dynamic features of CORBA, such as
the Dynamic Invocation Interface and DynAny. The IFR holds
IDL type definitions and can be queried and traversed by
applications.

The Orbacus Interface Repository is compliant with [41. This
chapter does not provide a complete description of the IFR.
For more information, please refer to the specification.

This chapter contains the following sections:

Usage page 258
Connecting to the Interface Repository page 262
Configuration Issues page 263
Interface Repository Utilities page 264
Programming Example page 265

257

CHAPTER 13 | The Interface Repository

Usage

The Orbacus Interface Repository is currently only provided with Orbacus for
C++.

irserv

258

h,--help] [-v,--version] [-d,--debug] [-i,--ior]

[_
[-DNAME] [-DNAME=DEF] [-UNAME] [-IDIR
[_

-case-sensitive] [FILE ...]

-h Display the command-line options supported by the server.

--help

-v Display the version of the server.

--version

-d Print diagnostic messages. This option is for Orbacus internal

- - debug debugging purposes only.

-i Print the stringified IOR of the server to standard output.

--ior

- DNAME Defines NAME as DEF, or 1 if DEF is not provided. This option is

- DNAMVE=DEF passed directly to the preprocessor.

- UNAMVE Removes any definition for NaVE. This option is passed directly to
the preprocessor.

-IDR Adds D Rto the include file search path. This option is passed
directly to the preprocessor.

--case-sensitive The semantics of OMG IDL forbid identifiers in the same scope to
differ only in case. This option relaxes these semantics, but is only
provided for backward compatibility with non-compliant IDL.

FILE ... IDL files to be loaded into the repository.

Usage

Windows NT Native

Service

ntirservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the server.

--install

Install the service. The service must be started manually.

-S

--start-install

Install the service and start it.

-u

--uninstall

Uninstall the service.

-d
- - debug

Run the service in debug mode.

In order to use the IFR as a native Windows NT service, it is first necessary
to add the ooc. i fr. endpoi nt configuration property to the
HKEY_LOCAL_MACH NE NT registry key (see “Using the Windows NT Registry”
on page 71 for more details).
Next the service should be installed with:

ntirservice -i
This adds the Orbacus Interface Repository Service entry to the
Servi ces dialog in the Control Panel. To start the naming service, select the
QO bacus Interface Repository Service entry, and press Start. If the
service is to be started automatically when the machine is booted, select the
QO bacus Interface Repository Service entry, then click Startup. Next
select Startup Type - Aut omati ¢, and press CK. Alternatively, the service
could have been installed using the -s option, which configures the service
for automatic start-up:

ntirservice -s
If you want to remove the service, run:

259

CHAPTER 13 | The Interface Repository

260

ntirservice -u

Note: If the executable for the Interface Repository is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service is placed in the Windows NT
Event Viewer with the title | RServi ce. To enable tracing information, add
the desired trace configuration property (i.e., one of the ooc. orb. trace
properties) to the HKEY_LOCAL_MACH NE NT registry key with a REG Sz value
of at least 1.

Usage

Configuration Properties

In addition to the standard configuration properties described in Chapter 4,
the Orbacus Interface Repository also supports the following properties:

ooc. i fr.opti ons=CPTS Allows command-line options to be passed to the
Windows NT Native service at start-up. Note that
absolute pathnames should be used when specifying
include directives, IDL files, etc.

ooc. i fr. endpoi nt =ENDPQ NT Specifies the endpoint configuration for the service.
Note that this property is only used if the
ooc. or b. oa. endpoi nt property is not set.

261

CHAPTER 13 | The Interface Repository

Connecting to the Interface Repository

The object key of the IFR is Def aul t Reposi t ory, which identifies an object
of type OORBA: : Reposi tory.

The object key can be used when composing URL-style object references.
For example, the following URL identifies the IFR running on host i f r host
at port 10000:

cor bal oc: : i frhost: 10000/ Def aul t Reposi t ory

Refer to Chapter 6 for more information on URLs and configuring initial
services.

262

Configuration Issues

Configuration Issues

Although applications can interact with the IFR as with any other CORBA
server, it does have special status within the ORB. Specifically, use of the

standard operation (oj ect: : get _i nterface() requires the presence of an
IFR:

/1 PIDL
interface yject

{

InterfaceDef get_interface();
ik

The exact semantics of get _i nt erf ace can be a source of confusion. In
Orbacus, as with most other ORBs, the get _i nt er f ace operation is a
remote operation. That is, when a client invokes get _i nterface on an
object reference, the request is sent to the server. The server knows the
interface type of the object reference and interacts with the IFR to locate the
appropriate GORBA: : I nt er f aceDef object to return to the client. Therefore,
the server must be configured for the IFR. It is not necessary to configure
the client for the IFR if the client’s only interaction with the IFR is via
get_interface.

263

CHAPTER 13 | The Interface Repository

Interface Repository Utilities

irfeed IDL files can be loaded into the IFR at runtime using i rf eed. See the
description of the i rserv command for more information on the
command-line options.

irfeed [-h,--help] [-v,--version] [-d,--debug]
[-DNAMVE] [-DNAME=DEF] [-UNAME] [-IDIR FILE ...

irdel Type definitions can be removed from the IFR using i rdel . See the
description of the i rserv command for more information on the
command-line options.
irdel [-h,--help] [-v,--version] nane ...
The nare argument represents the scoped name of the type to be removed.
A scoped name has the form “X::Y::Z". For example, an interface | defined
in a module Mcan be identified by the scoped name “M::|".

264

Programming Example

Programming Example

Below is a simple example in Java that demonstrates how to obtain an
I nterfaceDef object and display its contents:

1 // Java

2 inport org.ony. CORBA *;

3 ...

4

5 org.ong. CORBACRB =... // initialize the CRB

6 org.ong. CORBA (hject obj = ... // get object reference somehow
7

8 org.onyg. OORBA (hj ect def(hj = obj. _get _interface def();

9 if(defj == null)

10 {

11 Systemerr.println("No Interface Repository avail abl e");
12 Systemexit(1);

13 }

14

15 InterfaceDef def = I|nterfaceDefHel per. narrowdef(j);

16 org. ong. GORBA | nt er f aceDef Package. Ful | | nt er f aceDescri ption
desc =

17 def . descri be_i nterface();

18

19 int i;

20 Systemout.println("name =" + desc.nane);

21 Systemout.println("id =" + desc.id);

22 Systemout.println("defined_in =" + desc. defined_in);

23 Systemout.println("version =" + desc.version);

24 Systemout. println("operations:");

25 for(i =0 ; i < desc.operations.length ; i++)

26 {

27 Systemout.printin(i +": " + desc.operations[i].nane);
28 }

29 Systemout.println("attributes:");

30 for(i =0 ; i <desc.attributes.length ; i++)

31 {

32 Systemout.println(i + ": " + desc.attributes[i].nane);
33 }

34 Systemout.println("base_ interfaces:");

35 for(i =0 ; i < desc.base_interfaces.length ; i++)

36 {

37 Systemout.println(i + ": " + desc.base interfaces[i]);
38 }

265

CHAPTER 13 | The Interface Repository

5-8

9-13
15

16-17
19-39

266

After initializing the ORB and obtaining an object reference, we invoke
_get_interf ace_def1 on the object.

If no interface definition could be found, _get _i nterface_def returns nil.
Narrow the object reference to I nt er f aceDef . We now have a reference to
an object in the IFR that describes the most-derived type of our object
reference.

Request a complete description of the interface.

Print information about the interface, including the names of its operations
and attributes.

A complete example of how to use the IFR can be found in the

ob/ deno/ r eposi t ory subdirectory.

1. Recent versions of the IDL-to-Java mapping introduced the
_get _interface_def operation, which returns or g. ong. CCRBA (bj ect
instead of or g. ong. CORBA. | nt er f aceDef . Portable Java applications should
use _get _i nterface_def. In C++, the operation is _get _i nt er f ace.

In this chapter

CHAPTER 14

Orbacus Balancer

Orbacus Balancer provides load balancing of client
connections across a group of replicated objects. The load
balancing service provided by Orbacus Balancer is transparent
and interoperable with any CORBA client. However, the
interface between the servers and the service is strictly
proprietary.

This chapter contains the following sections:

“Basic Concepts” on page 268

“Load Balancing Strategies” on page 269

“Service Security” on page 272

“Usage” on page 273

“Connecting to the Service” on page 281

“Load Balanced IMR-enabled Servers” on page 282

“Utilities” on page 283

“Programming Example” on page 288

267

CHAPTER 14 | Orbacus Balancer

Basic Concepts

268

Let us assume that we wish to provide a library service that is made
available through a set of objects. These objects being a set of book objects
and a library object that manages the book objects. Furthermore, it is
desired that connections made with each of these objects be load balanced.
The replicated objects for each book and the replicated library objects are
managed in the service by a single entity that is called a /oad balanced
group. Each member of the load balanced group must provide a replica of
each object — for the library service, each member must provide a replica of
each book object and a replica of the library object.

All of the replicas provided by a member must be activated on a single POA
with a member policy (which uniquely identifies the member within the
service), the USER | DID assignment policy value, and the PERSI STENT
lifespan policy value. Such a POA will be referred to as a member POA and
the corresponding server will be referred to a load balanced server. Object
references created by a member POA will refer to the service instead of the
member POA within the load balanced server.

When a client makes a request on an object using a reference create by a

member POA, the service:

® receives the request,

® determines the load balanced group,

® selects a member of this group, and

® returns a new reference to the client that refers to the replica of the
object that is provided by this member.

The client then establishes a connection with the server using the new

object reference and communicates directly with the server, without the
intervention of the service.

Load Balancing Strategies

Load Balancing Strategies

Member Selection

Each load balanced group within the service has an associated load
balancing strategy. The load balancing strategy determines which member
will be used to service the next client connection. The strategy is also
responsible for load re-balancing. Load re-balancing is done by issuing load
alerts to overload members. When a member receives a load alert, it
forwards the next client request back to the service.

There are two types of strategies: adaptive and non-adaptive. When using
an adaptive strategy, a load balanced group must receive load updates from
the members. These loads are then used by the strategy to determine the
next member to be used for a client connection. Adaptive strategies can also
provide load re-balancing. When using non-adaptive strategies, the service
does not require load updates from the members and load re-balancing is
not possible.

Member selection and load re-balancing are discussed in the following
sections. The advantages and disadvantages of the different types of load
balancing strategies is also presented.

Non-adaptive member selection does not use load information from the

members. Hence, non-adaptive member selection will only correctly balance

connections under a certain set of conditions. These conditions are as

follows:

® Dedicated hosts

® Homogeneous hosts

® Clients generate the same load and are connected for the same amount
of time — or —clients are connected for short periods of time

While adaptive member selection can be used in more situations than

non-adaptive member selection, it is not without problems. The problems

with adaptive member selection are highlighted below:

1. Using a polling technique to retrieve member loads does not scale.
Hence, it is decided that loads will be reported to the load balanced
group at regular intervals by each member. However, this implies that

269

CHAPTER 14 | Orbacus Balancer

Load Re-balancing

270

when making a load balancing decision, loads do not necessarily
represent the current loads of the members, but instead past loads.
This is a source of error.

These errors will be large when many clients connect in a short period
of time. This is because the actual load of members will increase
dramatically before the loads can be updated.

Increasing the frequency of load updates will decrease the error, but
then the overhead of load balancing is increased due the extra network
traffic. Hence, an optimum value must be discovered for each
installation.

2. Another source of error is that spikes in the load of a member may
cause bad load balancing decisions.

3. Yet another problem with load balancing is that, in most cases, it is
difficult to estimate the load that a new client connection will impose
on a member. This becomes a bigger problem on a heavily loaded
system since a load balancing decision may cause a members load to
increase well past the critical level.

Errors of this type can be alleviated by using load re-balancing. However,

load re-balancing will introduce other sources of errors, as discussed in the
next section.

Load re-balancing is the transfer of a client connection from the replica of
one member to the replica of another. This is achieved by getting a member
to forward the next client request back to the service. Load re-balancing is
useful when the loads of the members become imbalanced. Through load
re-balancing these imbalances can be corrected, resulting in a higher
average throughput. Several factors may contribute to a load imbalance:

¢ Clients not generating a consistent load while connected

® Clients not connected for the same amount of time

® Heterogeneous hosts

® Non-dedicated hosts

® Member selection errors

For effective load re-balancing, we must be able track client connections

and the load generated by each connection. However, the concept of a
connection is hidden from the CORBA developer, so in general, all that is

Choosing a Load Balancing
Strategy

Load Balancing Strategies

available is the load for each member of the load balanced group. Hence,
we must make certain approximations when making load re-balancing
decisions. For these approximations to hold, the following assumptions
must made:

® The average load created by a client can be reliably estimated

® The load created by a client does not deviate much from the average
load

® Dedicated hosts

® Homogeneous hosts

Since load re-balancing decisions are based on approximations that will only
be reasonable when certain conditions are meant, there is always the
chance of a load re-balancing error. Let us say that a load re-balancing error
occurs when the load that is transferred from the replica of one member to
the replica of another causes the target member to become overloaded. This
situation is what we will call system instability. In some cases the system
may remain instable indefinitely. For example, if a single client is solely
responsible for causing a high load, then the client will likely be bounced
from member to member. Yet another source of load re-balancing errors
comes from the fact that a member cannot redirect a client until it receives a
request. When this occurs, the member may no longer be overloaded. This
can be alleviated by associating an expire time with a load alert.

Some important things to note when choosing between adaptive and
non-adaptive load balancing strategies are:

® Non-adaptive strategies impose very little overhead compared to
adaptive strategies.

® Adaptive strategies will produce a more balanced system when the
assumptions for the non-adaptive strategies are not satisfied.

Under certain conditions, load re-balancing will be error-prone. In such a
case, adaptive strategies which take an aggressive approach to re-balancing
may result in many load re-balancing errors. Furthermore, load re-balancing
can be an expensive operation, making these errors even more severe. On
the other hand, if the system is such that load re-balancing errors seldom
occur and the expense of re-balancing is minimal, then adaptive strategies
that take an aggressive approach to load re-balancing should result in a
higher average throughput due to a more balanced system.

271

CHAPTER 14 | Orbacus Balancer

Service Security

272

It is very important that only Orbacus Balancer's public port (also referred to
as its forward port) be accessible outside of the network firewall. Otherwise,
anyone can mimic the members of a load balanced group causing a denial
of service.

For additional security, many of the operations on the service are only
allowed when the service is running in administrative mode. That is:

® creating and destroying load balanced groups,

® setting the load balancing strategy, and

® adding or removing members

are only possible when the service is running in administrative mode. An

attempt to perform these operations when it is not running in administration
mode will result in a OORBA: : NO_PERM SSI ON exception.

Usage

Usage

Orbacus Balancer is currently only implemented using Orbacus for C++,
but Orbacus for Java servers can also be load balanced. Orbacus Balancer
command line usage is as follows:
bal ancer
[-h,--help] [-v,--version] [-a, --adm nistrative]
[-d,--database] [-A --adm n-endpoint]
[-F, --forward-endpoi nt]

-h, --help Display the command-line options supported by the
server.

-V, --version Display the version of the server.

-a, --adninistrative Run the service in administrative mode. The service will

run in non-administrative mode by default.

-d D RECTCRY, Specifies the directory in which the service maintains its

- - dat abase DI RECTCRY database files. If not specified, then the current working
directory is used.

-A INFQ Specifies the service’'s administrative public endpoint

--adm n-endpoi nt | NFO settings. This is the endpoint that the load balanced

servers use to communicate with the service. For security
reasons, access to this endpoint can be restricted.

-F INFQ Specifies the services's public endpoint settings, which is
--forward- endpoi nt 1 NFO used by clients for server requests.

273

CHAPTER 14 | Orbacus Balancer

Windows NT Native Service

274

The bal ancer server is also available as a native Windows NT service.
nt bal ancer servi ce
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstal I] [-d,--debug]

-h Display the command-line options supported by the service.
--hel p

- Install the service. The service must be started manually.
--install

-s Install and start the service.

--start-install

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.

In order to use Orbacus Balancer as a native Windows NT service, first add
the desired configuration properties to the HKEY_LOCAL_NACH NE NT registry
key (see “Using the Windows NT Registry” on page 71 for more details). For
example, add the ooc. bal ancer. adm n_endpoi nt and

ooc. bal ancer . f or war d_endpoi nt properties so that the service will use
non-default ports.

Next the service should be installed with:

nt bal ancer servi ce -i

This adds the Orbacus Bal ancer entry to the Services dialog in the Control
Panel. To start the service, select the O bacus Bal ancer entry, and press
Start. If the service is to be started automatically when the machine is
booted, select the Orbacus Bal ancer entry, then click Startup. Next select
Automatic for the Startup Type and press OK. Alternatively, the service
could have been installed using the - s option, which configures the service
for automatic start-up:

nt bal ancerservice -s

If you want to remove the service, run:

Usage

nt bal ancerservi ce -u
Note: If the executable for the service is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is be placed in the Windows

NT Event Viewer with the title Bal ancer. To enable tracing information, add
the desired trace configuration property (i.e., one of the

ooc. bal ancer . trace properties or one of the ooc. or b. t race properties) to
the HKEY_LOCAL_NMACH NE NT registry key with a REG Sz value of at least 1.

275

CHAPTER 14 | Orbacus Balancer

Configuration Properties

ooc.balancer.administrative

ooc.balancer.dbdir

ooc.balancer.admin_endpoint

ooc.balancer.forward_endpoint

ooc.balancer.trace.database

ooc.balancer.trace.lifecycle

ooc.balancer.trace.load_balance

276

In addition to the standard configuration properties described in Chapter ,
Orbacus Balancer also supports the following properties:

Value: true, fal se

If set to t rue, then run the service in administrative mode. For details refer
to the -a command-line option.

Value: directory

Equivalent to the - d command-line option.

Value: info
Equivalent to the - Acommand-line option.

Value: info
Equivalent to the - F command-line option.

Value: level >= 0

Defines the output level for database diagnostic messages printed by the
service. The default level is O, which produces no output. A level of 1 or
higher produces database information (e.g., loading, adding and removing
group records in the database).

Value: level >= 0

Defines the output level for lifecycle diagnostic messages printed by the
service. The default level is O, which produces no output. A level of 1 or
higher produces lifecycle information (e.g., creation and destruction of load
balanced groups, adding and removing members, and setting load balancing
strategies).

Value: level >= 0

Usage

Defines the output level for diagnostic messages related to the load
balancing of members. The default level is O, which produces no output.
Levels greater than O produce different degrees of output.

277

CHAPTER 14 | Orbacus Balancer

Built-in Load Balancing Strategies

random

round-robin

least-load

tolerance

load-per-client

critical-load

278

In this section we present the load balancing strategies that are provided
with Orbacus Balancer. Note that the default strategy is the round-robin
strategy.

Non-adaptive strategy where members are selected at random. There are no
configuration properties for this strategy.

Non-adaptive strategy where members are selected in round-robin order.
There are no configuration properties for this strategy.

Adaptive strategy where the least loaded members are chosen in
round-robin order. The configuration properties for this strategy are as
follows:

Type: GCRBA: : ULong
Members with a load difference that is less than t ol er ance are considered
to have the same load. The default value for this property is O.

This alleviates the member selection problem 1. on page 269.

Type: GCRBA: : ULong

The | oad- per-cl i ent property is an estimate of the load for a given client
connection. It is used so that a member's load can be adjusted without
having to wait for the next load update. It is also used to estimate the effect
of load re-balancing. The default value for this property is O.

This alleviates the member selection problem 1. on page 269.

Type: GCRBA: : ULong

A member with a load greater than critical -1 oad is re-balanced if there
exists a member with a load that is less than cri ti cal -1 oad minus

| oad- per - cl i ent . This property has a default value of O, which disables
load re-balancing.

This alleviates the member selection problem 3. on page 270.

reject-load

dampening-multiplier

min-dispersion

tolerance

load-per-client

reject-load

Usage

Type: GORBA: : ULong
A connection request will be rejected if all members have a load greater

than the rej ect -1 oad property. This property has a default value of O,
which means that connections will never be rejected.

Type: CCRBA : Fl oat
A dampening technique is used to smooth out spikes that may occur in the
reported loads of members. The load of a member is calculated using the
danpeni ng- nul ti pl i er property as follows:

load = mult * old_load + (1 - mult) * new| oad
where mul t is the value of the danpeni ng-mul ti pl i er property. This
property must be greater than or equal to 0 and less than 1. The default
value of 0, which disables dampening.

This alleviates member selection problems 1. on page 269 and 2. on page
270.

Adaptive strategy which attempts to keep the member loads within a given
tolerance. This strategy takes an aggressive approach to load re-balancing.
The configuration properties for this strategy are as follows:

Type: GORBA: : ULong

Members with loads less than the average minus the t ol er ance are selected
in round-robin order. Members with loads greater than the average plus the
t ol er ance are re-balanced. If there are no members with loads less than the
average minus the t ol er ance, then members with loads within t ol er ance
of the average are selected in round-robin order. The default value for this
property is 0.

This alleviates the member selection problem 1. on page 269 and 3. on
page 270.

See “load-per-client” on page 278.

See “reject-load” on page 279.

279

CHAPTER 14 | Orbacus Balancer

dampening-multiplier See “dampening-multiplier” on page 279.

280

Connecting to the Service

Connecting to the Service

Servers that use Orbacus Balancer must be configured with the service’s
initial reference. The object key of the service is Bal ancer, hence, a
URL-style object reference of the service running on host | bhost at port
10000 would be:

cor bal oc: : | bhost : 10000/ Bal ancer

Using this object reference, a server can configure the Orbacus Balancer
initial reference with the property:

ooc. or b. servi ce. Bal ancer =cor bal oc: : | bhost : 10000/ Bal ancer

An alternative to using the above property is to use the - CRBI ni t Ref
command-line option. Refer to Chapter 6 for more information on URLs and
configuring initial services.

281

CHAPTER 14 | Orbacus Balancer

Load Balanced IMR-enabled Servers

Load balanced servers may also be IMR-enabled servers. For information on
using the IMR, refer to Chapter 7. Note that Orbacus Balancer and the IMR
need no additional configuration.

Object references created by a member POA of an IMR-enabled server will
still refer to the associated load balanced group within Orbacus Balancer.
However, when Orbacus Balancer selects a member implemented by a
IMR-enabled server to service a new connection, the reference returned to
the client will actually refer to the IMR instead of the member's server.
When the client makes a request using this reference, the IMR receives the
request, activates the member's server (if necessary) using the OAD, and
returns a new object reference to the client that refers the server.

282

Utilities

Utilities

In this section This section describes various load balancing utilities:
Service Administration page 284
Making References page 285
Utility Objects page 286
Utility Object Configuration Properties page 287

283

CHAPTER 14 | Orbacus Balancer

Service Administration

The I badmi n utility provides complete control over Orbacus Balancer. Its
command interface is shown below:

-h, --help Display this information.
--list-groups List the load balanced groups.
--create-group group-id Create a load balanced group.
--destroy-group group-id Destroy a load balanced group.
--get-group-info group-id Get the attributes of a group.

--get-group-ior group-id repository-id object-id | Get the IOR for use by a client.

--set-strategy group-id <strategy> Use the specified built-in strategy.
--set-customstrategy group-id ior Use the given custom strategy.
--list-menbers group-id Enumerate the members of the group.
- - add- menber group-id member-id Add a member to the group.
--renove- nenber group-id member-id Remove a member from the group.

- - shut down Shutdown the service.

Where <st rat egy> can be random r ound- r obi n, | east -1 oad, or
m n- di spersi on. The | east -1 oad strategy has the options:

--tol erance tol erance

--load-per-client |oad_per_client
--critical-load critical_|oad
--reject-load reject_| oad

- -danpeni ng-nul tiplier danpening_multiplier

The mi n- di sper si on strategy has the options:

--tol erance tol erance

--load-per-client |oad_per_client
--reject-load reject_| oad

- -danpeni ng-nul tiplier danpening_multiplier

284

Utilities

Making References

The I bnkref utility creates object references for use by clients of Orbacus
Balancer. Note that this can only be used to create object references when
the service is configured to use the IIOP. Its usage is shown below.

| brkref [-H host] port group-id repository-id object-id

host

The host that the bal ancer server is running on. The
default value is the canonical hostname of the
machine in which | brkr ef is executed.

port

The forward port of the service.

group-id

The ID of the load balanced group.

repository-id

The Repository ID of the new object reference.

object-id

The Object ID of the new object reference.

285

CHAPTER 14 | Orbacus Balancer

Utility Objects

LoadAlert

LoadCalculator

LoadUpdater

286

To take advantage of the features of the adaptive load balancing strategies,
a load balanced server must send load updates to the appropriate load
balanced groups and respond to load alerts. Orbacus Balancer provides
utility objects that the developer may use to help implement this
functionality.

The utility objects provided by Orbacus Balancer are part of the

LoadBal anci ng: : Wi | module and are provided as initial services (see “The
BootManager” on page 144). Each utility object is described below. For
further detail, refer to Appendix F, and for an example refer to “Adaptive
Load Balancing” on page 294.

The LoadAlert object is used to manage load alerts sent by the service. The
name of the LoadAlert initial service is LoadAl ert .

The LoadCalculator object is used by the LoadUpdater object (see below) to
calculate the current load of the server (which will be used as the load of
each member registered with the LoadUpdater object). The implementation
provided by the service calculates the load based on the number of active
requests.

The LoadUpdater object is used to manage load updates sent to the
Balancer. At regular intervals the LoadUpdater object gets the load from the
LoadCalculator object and pushes it to the load balanced group of each
registered member.

Utilities

Utility Object Configuration Properties

ooc.balancer.util.create_alert

ooc.balancer.util.create_calculat

or

ooc.balancer.util.create_updater

ooc.balancer.trace.alert_expire

ooc.balancer.trace.load_update

The Orbacus Balancer utility objects support the following properties:

Value: true, fal se

If set to true, then the LoadAlert object will be created and will be available
as an initial service. The default value is true.

Value: true, fal se

If set to true, then the LoadCalculator object will be created and will be
available as an initial service. The default value is true.

Value: true, fal se

If set to true, then the LoadUpdater object will be created and will be
available as an initial service. The default value is true. If the LoadCalculator
object is also created, then this object does not have to be set in the
LoadUpdater object.

Value: timeout >= 0

Specifies the expiry time for a load alert in milliseconds. The default is 1000
(1 second). A value of O means that load alerts never expire.

Value: frequency >= 0

Specifies the load update frequency for the LoadUpdater object in
milliseconds. The default is 1000 (1 second). A value of O means that no
load updates will be sent to the service.

287

CHAPTER 14 | Orbacus Balancer

Programming Example

Implementing a Load Balanced
Server

In this section

288

In this section, we will show how to modify the C++ version of the “Hello
World” server (see Chapter 2) for load balancing. First we will present the
modifications necessary for non-adaptive load balancing, then the necessary
modifications for adaptive load balancing will be presented. This is followed
by a description of the steps necessary to configure the service for the load
balanced “Hello World” servers.

This section covers the following topics:

Non-adaptive Load Balancing page 289
Adaptive Load Balancing page 294
Running the Load Balanced Servers page 298

Programming Example

Non-adaptive Load Balancing

15

The “Hello World” server presented in Chapter uses the Root POA to
activate its Hello servant. However, a member POA must have a member
policy, the USER | DID assignment policy value and the PERSI STENT lifespan
policy value. Hence, the “Hello World” server must be modified so that the
Hello servant is activated using a POA with the above policies. Furthermore,
the Hello servant is no longer activated under the Root POA, so it becomes
necessary for it to override the _def aul t _PQA method. The modified
servant’s class declaration is shown below:

[l Ct+
#i ncl ude <Hel | o_skel . h>

class Hello_inpl : public POA Hell o,
publ i ¢ Portabl eServer: : Ref Count Ser vant Base

{
Port abl eServer: : POA var poa_;

O~NO O~ WN PR

©

public:

10

11 Hel | o_i npl (Port abl eServer:: PQA ptr);

12

13 virtual void say_hello() throw GCRBA: : SystenException);
14

15 virtual Portabl eServer::POA ptr _default POA();

16 };

Private member to store the servant’s default POA.

A constructor must be defined to allow the assignment of the servant’s
default POA.

Declaration of the _def aul t_PQOA method.

289

CHAPTER 14 | Orbacus Balancer

The remainder of the class declaration is unchanged. The definition of the
constructor and _def aul t _PQOA method follow:

1 /] G+

2 Hello_inpl::Hello_inpl(Portabl eServer::PQA ptr poa)
3 poa_(Port abl eServer: : POA : _dupl i cat e(poa)

4 {

5 1

6

7 PortableServer::PQA ptr Hello_inpl:: _defaul t_PQOA()
8 {

9 return Portabl eServer:: PQOA : _duplicate(poa);

10 }

The modified server program is shown below :

1 // G+

2 #include <OB/ CCRBA h>

3 #include <CB/ Bal ancer_init.h>

4 #include <Hel | o_i npl . h>

5

6 int run(CORBA :CRB ptr, int, char*[]);
7

8 int main(int argc, char* argv[])

9 {

10 int status = BEXI T_SUCCESS;

11 OORBA: : CRB var orb;

12

13 try

14 {

15 LoadBal anci ng: : LB init();

16 orb = CORBA :GRB init(argc, argv);
17 status = run(orb, argc, argv);
18 }

19 cat ch(const CORBA: : Except i on&)

20 {

21 status = EXI T_FA LURE

22 }

23

290

15

Programming Example

24 if(!QORBA: :is_nil(orb))

25 {

26 try

27 {

28 orb -> destroy();

29 }

30 cat ch(const OCRBA: : Excepti on&)
31 {

32 status = EXI T_FA LURE;
33 }

34 }

35

36 return status;

37 }

Include the header file that declares the Orbacus Balancer initialization
function. This header file also includes the header files CB/ Bal ancer . h and
B/ Bal ancer Pol i cyTypes. h, which contain the definitions necessary for
non-adaptive load balancing.

Invoke LoadBal anci ng: : LB_i ni t (). This function initializes the server for
load balancing and must be called before initializing the ORB.

291

CHAPTER 14 | Orbacus Balancer

The remainder of the main() function is similar to that of Chapter . Now we
write the run() function:

1 // C++

2 int run(CORBA: : CRB ptr orb, int argc, char* argv[])
3 {

4 if(argec !'= 2)

5 return EXI T_FA LURE

6 const char* menberld = argv[1];

7

8 OORBA: : oj ect _var poaChj =

9 orb -> resol ve_initial _references("Root PQA");
10 Port abl eServer: : POA var root Poa =

11 Port abl eServer: : POA: : _narrow poathj);

12

13 Por t abl eSer ver : : POAManager _var nanager =

14 root Poa -> t he_PQAMVanager () ;

15

16 LoadBal anci ng: : Menber Pol i cyVal ue_var val ue =

17 new LoadBal anci ng: : Menber Pol i cyVal ue() ;

18 value -> group_id = OORBA :string_dup("Hello");
19 val ue -> nenber_id = OCRBA: : string_dup(nenberld);
20 OCRBA: : Any any;

21 any <<= val ue. _retn();

22 QCRBA: : Pol i cy_var nenberPolicy =

23 orb -> create_pol i cy(LoadBal anci ng: : MEMBER PCLI CY_| D,
any) ;

24

292

46
16-23

25-33
35-40

Programming Example

25 OCRBA: : Pol i cyLi st pl (3);
26 pl .l ength(3);
27 pl[0] = rootPQA -> create_|ifespan_policy(

28 Port abl eSer ver : : PERS| STENT) ;
29 pl [1] = root POA -> create_i d_assi gnment _pol i cy(
30 Port abl eServer:: USER | D);

31 pl [3] = menber Poli cy;
32 Por t abl eServer: : POA var hel | oPQA =

33 root POA -> create POA("hel | 0", manager, pl);
34

35 Hel l o_i npl * hel l ol npl = new Hel | o_i npl (hel | oPQA);
36 Por t abl eServer : : Servant Base_var servant = hel |l ol npl ;
37 Port abl eServer:: Cbjectld var oid =

38 Port abl eServer::string_to_(bjectld("hello");

39 hel | oPQA -> activate_object with id(oid, servant);
40 Hello_var hello = hellolnpl -> _this();

41

42 nanager -> activate();

43 orb -> run();

44

45 return EXI T_SUCCESS,

46 }

Check the arguments for the member ID.

Create the member policy. The group ID will be Hel | o0 and the member ID is
an argument of the program.

Create the member POA.
Create the Hello servant and activate it on the member POA.
The remainder of the run() function is similar to that of Chapter .

293

CHAPTER 14 | Orbacus Balancer

Adaptive Load Balancing

294

To use adaptive load balancing, the Hello server must send load updates to
the service and react to load alerts. The Orbacus Balancer utility objects will
be used to help implement this functionality. The modified server program is
shown below:

1 /] C++

2 #include <GB/ CCRBA h>

3 #include <CB/ Bal ancer_init.h>

4 #include <CB/ Bal ancerWil _init.h>

5 #include <8 Bal ancer_skel . h>

6 #include <Hello_inpl . h>

7

8 class LoadA ert _inpl

9 virtual public PQA LoadBal ancing: : LoadAl ert,
10 virtual public Portabl eServer:: Ref Count Ser vant Base
11 {

12 LoadBal ancing: : Wil ::LoadAl ert_var alert_;
13

14 public:

15 LoadAl ert i npl (LoadBal ancing:: Wil ::LoadAl ert_ptr alert)
16 :

al ert _(LoadBal ancing:: Wil ::LoadA ert:: _duplicate(alert))
17 {

18 }

19

20 virtual void alert()

21 t hr ow(GORBA: : Syst enExcept i on)

22 {

23 alert_ -> alert();

24 }

25 };

26

27 int run(CORBA : CRB ptr, int, char*[]);

28

29 int main(int argc, char* argv[])

30 {

31 int status = BEXI T_SUCCESS;

32 OORBA: : ORB var orb;

33

8-25

37

Programming Example

34 try

35 {

36 LoadBal anci ng: : LB init();

37 LoadBal ancing: : Wil ::LBWil _init();
38 orb = CORBA :CRB init(argc, argv);
39 status = run(orb, argc, argv);
40 }

41 cat ch(const OCRBA: : Excepti on&)

42 {

43 status = EXI T_FA LURE

44 }

45

46 if(!QORBA: :is_nil(orb))

47 {

48 try

49 {

50 orb -> destroy();

51 }

52 cat ch(const OCRBA: : Excepti on&)
53 {

54 status = EXI T_FA LURE

55 }

56 }

57

58 return status;

59 }

Include the header file that declares the Orbacus Balancer utility
initialization function. This header file also includes the header file

OB/ Bal ancer Wi | . h, which contain the definitions of the utility objects.
The header file &/ Bal ancer _skel . h must be included for the
implementation of the LoadBal anci ng: : LoadAl ert interface.

An implementation of the LoadBal anci ng: : LoadAl ert interface that
delegates to the LoadAlert utility object.

Invoke LoadBal ancing: : Wil::LBWil _init(). This function initializes the
utility objects and must be called before initializing the ORB.

295

CHAPTER 14 | Orbacus Balancer

296

The remainder of the main() function is the same as in section
“Non-adaptive Load Balancing” on page 289. Now we write the run()

function:

1 // C++

2 int run(CORBA: : CRB ptr orb, int argc, char* argv[])
3 {

4 if(argc != 2)

5 return EXI T_FA LURE

6 const char* menberld = argv[1];

7

8 OORBA: : oj ect _var poaChj =

9 orb -> resol ve_initial _references("Root PQA");
10 Port abl eServer: : POA var root Poa =

11 Port abl eServer: : POA : _narr ow(poaChj) ;

12

13 Por t abl eSer ver : : POAManager _var nanager =

14 root Poa -> t he_PQAMVanager () ;

15

16 LoadBal anci ng: : Menber Pol i cyVal ue_var val ue =

17 new LoadBal anci ng: : Menber Pol i cyVal ue() ;

18 value -> group_id = OORBA :string_dup("Hello");
19 val ue -> nenber_id = OCORBA: : string_dup(nenberld);
20 OCRBA: : Any any;

21 any <<= val ue. _retn();

22 QCRBA: : Pol i cy_var nenberPolicy =

23 orb -> create_pol i cy(LoadBal anci ng: : MEMBER PCLI CY_| D,
any) ;

24

25 QCRBA : Pol i cyList pl (3);

26 pl .1 ength(3);

27 pl [0] = root PQA -> create_lifespan_policy(

28 Por t abl eServer : : PERS| STENT) ;

29 pl[1] = root POA -> create_i d_assi gnment _pol i cy(
30 Portabl eServer:: USER | D) ;

31 pl [3] = menber Pol i cy;

32 Port abl eServer: : PQA var hel | oPQA =

33 root POA -> create_PQOA("hel | 0", manager, pl);
34

35 Hel l o_i npl * hell ol npl = new Hel | o_i npl (hel | oPQY) ;
36 Por t abl eServer : : Servant Base_var servant = hel | ol npl ;
37 Port abl eServer:: Chjectld var oid =

38 Port abl eServer::string_to_(bjectld("hello");
39 hel | oPQA -> activate_object_with_id(oid, servant);
40 Hello_var hello = hellolnpl -> _this();

41

42-53
25-33
55-58
62-63

65

Programming Example

42 OORBA: : (hj ect _var obj =

43 orb -> resolve_initial_references("Bal ancer");

44 LoadBal anci ng: : G oupFactory_var factory =

45 LoadBal anci ng: : G oupFact ory: : _narrow obj) ;

46

47 obj = orb ->resolve_initial _references("LoadUpdater");
48 LoadBal anci ng: : Wil :: LoadUpdat er _var updater =

49 LoadBal anci ng: : Wil :: LoadUpdat er:: _narrow(obj);

50

51 obj = orb ->resolve_initial_references("LoadA ert");
52 LoadBal anci ng: : Wil ::LoadAl ert_var alert =

53 LoadBal ancing: : Wil ::LoadA ert:: _narrow obj);

54

55 LoadA ert_inpl * | oadA ertlnpl = new LoadAl ert_inpl (alert);
56 Port abl eServer: : Servant Base var al ert Servant =

| oadAl ert | npl ;

57 LoadBal anci ng: : LoadAl ert _var |oadAlert =

58 loadAl ertlnpl -> _this();

59

60 manager -> activate();

61

62 LoadBal anci ng: : G oup_var group = factory -> get("Hello");
63 group -> set_| oad_al ert(nenberld, |oadA ert);

64

65 updat er -> regi ster_mnenber (nmenberld, "Hello");

66

67 orb -> run();

68

69 return EXI T_SUCCESS,

70 }

Get the GroupFactory and the LoadUpdater and LoadAlert utility objects.
Create the member POA.
Create the LoadAlert servant and activate it on the root POA.

Set the member’s LoadAlert object. Note that this should be done after
activating the POA manager since it may result in a request to this server.

Register the member with the LoadUpdater.

The remainder of the run() function is the same as in section “Non-adaptive
Load Balancing” on page 289.

297

CHAPTER 14 | Orbacus Balancer

Running the Load Balanced Servers

In this section we present the step required to set up the Orbacus Balancer
for the “Hello World” load balanced servers. We will assume that Orbacus
has been installed in the directory / usr/ 1 ocal / O bacus and the executables
bal ancer, | badni n and | brkr ef all exist in a directory that is in the search
path. The steps are as follows:

298

1.

Create a configuration file for Orbacus Balancer containing the
following:

bal ancer. conf

ooc. bal ancer. adni n_endpoi nt =i i op --port 10000

ooc. bal ancer . f orwar d_endpoi nt=ii op --port 10001

ooc. bal ancer . dbdi r =/ usr/ | ocal / O bacus/ db

This file is placed in the /usr/1 ocal / O bacus/ et ¢ directory.

Start the service in administrative mode:

bal ancer -CRBconfig /usr/|ocal / O bacus/ etc/ bal ancer. conf \
--adnministrative

Create the load balanced group.

Before starting the load balanced servers, the associated load balanced

group must be created. This can be done using the I badm n utility as

follows:

| badm n - CRBI ni t Ref Bal ancer =cor bal oc: : | bhost : 10000/ Bal ancer\
--create-group Hello

Where | bhost is the host running the service.

Add the members.

The members can be added to the group explicitly using the

- - add- menber command of the | badni n utility or they can be added

automatically when the load balanced servers are started.

Note that members cannot be added automatically by the load

balanced servers if the service is not running in administrative mode.

Configure the load balancing strategy.

The --set-strategy or --set - cust om st rat egy commands of the

I badni n utility may be used to configure the group’s load balancing

strategy, For example, to use the | east -1 oad strategy:

| badm n - CRBI ni t Ref Bal ancer =cor bal oc: : | bhost : 10000/ Bal ancer\

Programming Example

--set-strategy |l east-load \
--tolerance 5 --load-per-client 5

Note that the strategy may also be changed after the load balanced
servers are started.

6. Start the load balanced servers. For example, to start a server for the
member with ID menber 1, run:

server -CRBInitRef Bal ancer=corbal oc: : | bhost: 10000/ Bal ancer \
nenber 1

7. Create object references for use by the clients.
To create an object reference run:
| bkref -H I bhost 10001 Hello IDL:Hell0:1.0 Hello > Hello.ref
Note that the object references created by the load balanced servers
can also be used by the clients.

After all members have been registered and the load balancing strategy is

configured, it is recommended to restart the service in non-administrative
mode. This will prevent any accidental (or unauthorized) modifications.

299

CHAPTER 14 | Orbacus Balancer

300

In this chapter

CHAPTER 15

Orbacus Watson

Orbacus Watson is a loadable module that provides request
tracing capabilities based on Portable Interceptors. Method
names, parameter and return values, exceptions and a call
stack can be visualized. The module can be loaded
dynamically at application startup (when shared libraries are
used) or linked statically to an application.

This chapter contains the following sections:

Tracing Levels page 302
Installing Watson in C++ page 303
Installing Watson in Java page 304
Configuration Properties page 305

301

CHAPTER 15 | Orbacus Watson

Tracing Levels

The level of request tracing is controlled by the properties described in the
next section. The default value for all tracing levels is O.

0 no tracing

1 displays name, request id, return/exception status of operation
2 displays parameters and return values

3 displays the call stack

4 displays object id, adapter id, effective profile

The tracing levels are cumulative, i.e., the higher levels include the output
generated by the lower levels. In order to make request parameters, results
and exceptions available for tracing the option - -wi t h-i nt er cept or - ar gs
has to be specified to the IDL compiler.

302

Installing Watson in C+ +

Installing Watson in C+ +

2-4
10-16

If Orbacus was built with shared libraries or DLLs, Orbacus Watson can be
installed dynamically by defining the following configuration properties:

ooc. or b. nodul es=wat son
ooc. or b. modul e. wat son=<| i br ar y- name>

Please refer to Chapter 4 for more information on these properties.

If Orbacus was built statically, the module initialization function has to be
called directly from the application code:

1 // G+

2 #if ldefined(HAVE_SHARED) && !defined(CB DLL)
3 #include <CB/ wat son. h>

4 #endif

5

6 int main(int argc, char* argv[])

7 {

8 OORBA: : GRB_var orb;

9 S

10 #if !defined(HAVE SHARED) && !defi ned(CB_DLL)
11 /1l

12 // Wen linking statically, we need to explicitly
initialize

13 /] Nt son

14 /1

15 ini t_nodul e_wat son();

16 #endi f

17

18 orb = CCRBA :CRB init(argc, argv);

19

20 }

Include OB/ wat son. h only when building statically.

Explicitly install the Watson module prior to initializing the ORB.

Specifying the configuration property ooc. or b. nodul es=wat son will result in
an (informative) error message from the ORBs ModuleManager upon
application startup if the module was linked statically.

303

CHAPTER 15 | Orbacus Watson

Installing Watson in Java

304

Since Orbacus Watson is based on Portable Interceptors, it is installed using

the standard mechanism for installing interceptors. Specifically, a property

is defined which specifies the name of a class to be loaded:

org.ong. Portabl el nterceptor. CRBInitializerd ass.com ooc. watson. R
CRBInitializer_inpl

Note that the property has no associated value, as the name of the class to

be loaded is part of the property name.

Configuration Properties

Configuration Properties

The behavior of the Orbacus Watson module is controlled by the following

properties.
Property Description
ooc. wat son. t r ace. r equest s=<| evel > This property sets the indicated
tracing level for the i n and out
direction. The default value is O.
ooc. wat son. t race. request s. i n=<I evel > This property sets the indicated

tracing level only for the i n
direction. The default value is 0.

0oc. wat son. trace. r equest s. out =<l evel > This property sets the indicated
tracing level only for the out
direction. The default value is O.

The information displayed in the i n and out directions differ for the different
roles an application takes in CORBA. For a client application making a
CORBA request, the out direction corresponds to the request sending
direction and the results are received in the i n direction. For a server
application, requests from clients are coming i n and replies with results or
exceptions are sent out .

Setting one of the more specific properties (ooc. wat son. trace. requests. i n
and ooc. wat son. t r ace. request s. out) overrides the corresponding value for
this direction set by ooc. wat son. trace. r equest s.

305

CHAPTER 15 | Orbacus Watson

Sample Configuration File

Applications using Orbacus Watson can simply be started by specifying a
configuration file with appropriate property settings with the - CRBconfi g
command-line option:

server -CRBconfig watson.cfg

The following example file shows how to set properties for C++ and Java
applications:

#

Register GRB initializer for watson (Q bacus/Java)

#

org.ong. Portabl el nterceptor. CRBIni tializerd ass. com ooc. wat son. R
ICRBInitializer_inpl

#

Load nodul e wat son (O bacus/ G++)

#

Disable if nodul e was build statically to avoid
error nessage fromthe CRBs Mydul eManager

#

ooc. or b. nodul es=wat son

#

nh Wndows, enabl e one of the follow ng properties
#if you built with DLLs

#

For debug buil ds:

#

#ooc. or b. modul e. wat son=wat son412d. dl |
#

For non-debug buil ds:

#

#ooc. or b. nodul e. wat son=wat son412. dl |

#

Set request tracing |evels

- nore specific settings (.in and .out) override the
general setting in the first of these |ines

#

ooc. wat son. trace. r equest s=3

ooc. wat son. trace. requests. i n=1

ooc. wat son. trace. request s. out =2

306

CHAPTER 16

Using Policies

This chapter describes the policies used to configure the ORB
and to create a new POA. These policies are derived from the
interface CORBA::Policy.

In this chapter This chapter contains the following sections:
Overview page 308
Supported Policies page 309
Programming Examples page 312

307

CHAPTER 16 | Using Policies

Overview

308

The ORB and its services may allow the application developer to configure

the semantics of its operations. This configuration is accomplished in a

structured manner through interfaces derived from the interface

CCRBA: : Pol i cy.

There are two basic types of policies: those used to configure the ORB and

those used to create a new POA. Furthermore, the configuration of ORB

policy objects is accomplished at two levels:

® ORB Level: These policies override the system defaults. The ORB has
an initial reference CRBPol i cyManager . A Pol i cyManager has a set of
operations through which the current set of overriding policies can be
obtained, and new policies can be applied.

® Object Level: The object interface contains operations to retrieve and
set policies for itself. Policies applied at the object level override those
applied at the thread level, or the ORB level.

For more information on Policies, the Pol i cyManager interface and the
QCRBA: : (oj ect policy operations see [8] and [4].

Supported Policies

Supported Policies

The following is a brief description of the Orbacus-specific policies that are
currently supported. For a detailed description, please refer to Appendix B.
For standard policies, please refer to [4].

Table 4: Orbacus policies

Policy

Description

BiDirPolicy::BidirectionalPolicy

This policy is used to enable CORBA 3 compliant BiDir
GIOP functionality on both the Object and POA levels.
Enabling this policy with a value of BiDirPolicy::BOTH
on both levels will result in connection reuse when the
server is required to make requests to the client.

The default value is BiDirPolicy:: NORMAL (disabled
BiDir functionality). Both the client object and server
POA needs this policy set to BOTH for BiDir
communication to take place.

OB::ACMTimeoutPolicy

This policy determines whether the ORB performs
“active connection management” (ACM) on the
connection associated with an object reference. The
policy specifies a time after which idle connections are
shutdown. A value of O means no timeout. The default
for this policy is the value of the

ooc. orb. client_tineout property (see
“ooc.orb.client_timeout” on page 59).

OB::ConnectionReusePolicy

This policy determines whether the ORB is permitted to
reuse a communications channel between peers. If this
policy is f al se then each object will have a new
communications channel to its peer. The default for this
policy is t rue.

OB::ConnectTimeoutPolicy

If an object has this policy and a connection cannot be
established after val ue milliseconds, a
QCRBA: : NO_RESPONSE exception is raised.

309

CHAPTER 16 | Using Policies

310

Table 4: Orbacus policies

Policy

Description

OB::InterceptorPolicy

This policy determines whether client-side interceptors
will be called. Client-side interceptors are enabled by
default. To disable client-side interceptors, this policy
can be set on an ORB or object reference with a value
of fal se.

OB::LocateRequestPolicy

This policy determines whether the ORB sends GIOP
“LocateRequest” messages. This policy exists to avoid
an interoperability issue regarding the formatting of
GIOP 1.2 LocateReply messages. Orbacus uses the
correct formatting as of version 4.1. Unfortunately, all
versions of Orbacus 4.0.x use the incorrect formatting,
as do some other ORB implementations. As a result,
the default value of this policy is f al se, which means
the ORB will not send LocateRequest messages, and
therefore will not receive improperly formatted replies.

OB::LocationTransparencyPolicy

This policy determines how strictly the ORB will enforce
location transparency. The default behavior is relaxed.
An application may wish to sacrifice performances to
have strict CORBA compliance for local invocations.

OB::ProtocolPolicy

This policy allows an application to influence how the
ORB orders and filters the profiles of an object
reference. The value of the policy is a list of transport
plug-in identifiers which determine the preferred order
in which the ORB should attempt to establish
connections. Only those profiles which match an entry
in the list will be used. If no profile from the object
reference matches a transport in the list, or the ORB
was unable to establish a connection, then a TRANSI ENT
exception is raised.

OB::RequestTimeoutPolicy

If an object has this policy and no response is available
for a request after val ue milliseconds, a
QOCRBA: : NO_RESPONSE exception is raised.

Table 4:

Supported Policies

Orbacus policies

Policy

Description

OB::RetryPolicy

This policy is used to specify retry behavior after
communication failures. Namely,

® the types of failures for which retries are allowed,
® the time between successive retries, and
® the maximum number of retries.

OB::TimeoutPolicy

If an object has this policy and a connection cannot be
established or no response is available for a request
after val ue milliseconds, a OORBA: : NO_RESPONSE
exception is raised. If an object has

CB: : Connect Ti neout Pol i cy or

CB: : Request Ti meout Pol i cy set, those policies have
precedence.

OBPortableServer::InterceptorCall
Policy

This policy determines whether server-side interceptors
will be called for requests on a POA. Server-side
interceptors are enabled by default. To disable
server-side interceptors for a POA, create the POA using
this policy with a value of fal se.

OBPortableServer::Communication
sConcurrencyPolicy

See “ooc.orb.oa.conc_model” on page 65 and
“ooc.orb.poamanager.manager.conc_model” on
page 67

OBPortableServer::EndpointConfig
urationPolicy

See “ooc.orb.poamanager.manager.endpoint” on
page 67

OBPortableServer::GIOPVersionPol
icy

See “ooc.orb.poamanager.manager.version” on
page 67

311

CHAPTER 16 | Using Policies

Programming Examples

This section provides several examples of setting policies programmatically.
Please note however that policies used to configure the ORB can easily be
set at the ORB level, without requiring changes to the application, through
the use of configuration properties. See “ORB Properties” on page 58 for
more information.

For the sake of clarity, the psuedo-code examples in this section lack
exception handling.

In this section This section contains the following examples:
Connection Reuse Policy page 313
Retry Policy page 316
Timeout Policy page 318
Interceptor Call Policy page 319
CommunicationsConcurrencyPolicy page 321
EndpointConfigurationPolicy page 323
GIOPVersionPolicy page 325
Bidirectional Policy page 327

312

Programming Examples

Connection Reuse Policy

Connection Reuse Policy at ORB
Level

2-3
4-5

The following examples demonstrate how to set

CB: : Connect i onReusePol i cy at both the ORB level and the object level in
C++ and Java. Setting a policy at the ORB level means that the ORB will
honor this policy for all newly created objects. Existing objects maintain
their current set of policies. Setting a policy at the object level overrides any
ORB level policies applied to that object.

Setting the connection reuse policy to f al se at the ORB level means that the
ORB will create a new connection from the client to the server for each new
proxy object instead of reusing existing ones. Setting the connection reuse
policy to f al se at the object level means that the client does not reuse
connections to the server only for a particular proxy object.

If the connection reuse policy is set to t rue at some later point,
communications channels that were previously created with a connection
reuse policy set to f al se will not be reused. That is, the connection reuse
policy is sticky, in the sense that the reuse policy that was in effect at the
time that a communications channel is created stays with it. Setting the
reuse policy at the object level means that for a client the ORB will not reuse
the communications channel that is associated with the proxy object.

Our first example shows how the connection reuse policy can be set at the
ORB level. First in C++:

1 // C++

2 COORBA : Any bool Any;

3 bool Any <<= CCORBA: : Any: : from bool ean(0) ;

4 QOCRBA : PolicyList policies;

5 policies.length(l);

6 policies[0] = orb -> create_policy(

7 CB: : CONNECTI ON_REUSE_PCLI CY_I D, bool Any) ;
8 COORBA : (pject_var pnthj =

9 orb -> resolve_initial_references("CRBPol i cyManager");
10 OCRBA : Pol i cyManager _var pm =

11 QCORBA: : Pol i cyManager : : _narrow(pntoj) ;

12 pm-> set_policy_overrides(policies, OCORBA : ADD OVERR DE);

Create an any and insert the value O (false).
Create a sequence containing one policy object.

313

CHAPTER 16 | Using Policies

6-7 Ask the ORB to create a connection reuse policy. Pass the any that contains
the value for this policy.

8-10 Obtain the ORB level policy manager object.
12 Add the policies to the ORB level policy manager.
And here is the same example in Java:

1 // Java
2 org.ong. CORBA Any bool Any = orb.create_any();
3 bool Any. i nsert_bool ean(f al se);
4 org.onyg. CCRBA Pol i cy[] policies = new org.ong. CCRBA Policy[1];
5 policies[0] = orb.create_policy(
6 com ooc. CB. CONNECTI ON_REUSE _PQLI CY_I D. val ue, bool Any) ;
7 org.ony. CORBA Pol i cyManager pm =
8 or g. ong. CORBA. Pol i cyManager Hel per . nar r ow(
9 orb.resol ve_initial _references("CORBPol i cyManager"));
10 pmset _policy_overrides(policies,
Set Overri deType. ADD OVERR DE) ;

1-10 This is equivalent to the C++ version.

Connection Reuse Policy atObject And now the same example, but at the object level. C+ + first:
Level

/] C++
QCRBA: : Any bool Any;
bool Any <<= CCRBA: : Any: : f rom bool ean(0);
QOCORBA: : Pol i cyLi st policies(l);
policies.length(l);
policies[0] = orb -> create_policy(

CB: : CONNECTI ON_REUSE PQLI CY_I D, bool Any) ;
OCRBA: : (oj ect _var newChj =

obj -> set_policy overrides(policies,
QOCRBA: : ADD OVERRI [E) ;

© 0O ~NOO UL WDN PR

2-7 This is the same as in the example for the ORB level.

Set the policy on the object by using the _set _pol i cy_overri des method.
This method returns a new object that has the set of policies applied.

314

Programming Examples

And here is the same example in Java:

1 // Java

2 org.ong. GORBA Any bool Any = orb. create_any();

3 bool Any. i nsert _bool ean(f al se) ;

4 org.ong. OCRBA Policy[] policies = new org. ong. CCRBA. Pol i cy[1];
5 policies[0] =

6

orb. create_policy(com ooc. (B. CONNECTI ON_REUSE PCLI CY_I D. val ue,
7 bool Any) ;

8 org.onyg. CORBA (hj ect newhj =

9 obj . _set_policy_override(policies,

10 or g. omg. CORBA. Set Overri deType. ADD_ OVERR DE) ;

1-10 This is equivalent to the C++ version.

315

CHAPTER 16 | Using Policies

Retry Policy

316

13-14

This example shows how to configure retries at the object level. The C+ +
version is presented first, followed by the Java version:

O~NO OB~ WNBRE

©

10
11
12
13
14

/] C++

OB :RetryAttributes attrib;
attrib. node = GB:: RETRY_STRI CT;
attrib.interval = 500;
attrib. max = 5;

attrib.renote = true;

QCRBA: : Any any;
any <<= attrib;
QCRBA: : Pol i cyLi st policies(1);
policies.|ength(1);
policies[0] = orb -> create_policy(CB:: RETRY_PCLICY_I D, any);
OORBA: : (oj ect _var newChj =
obj -> _set_policy_overrides(policies,

QCRBA: : ADD OVERRI [E) ;

Use the RETRY_STRI CT mode, that is, retry only if the exception completion
status is GOMPLETED_NO.

Wait 500 milliseconds between successive retries.

Retry a maximum of 5 times.

Allow retries on exceptions that are generated remotely (in addition to locally
generated exceptions).

Set the policy on the object by using the _set _pol i cy_overri des method.
This method returns a new object that has the set of policies applied.

Programming Examples

And now the same example in Java:

/'l Java
comooc. CB. RetryAttributes attrib =
new com ooc. CB. RetryAttri butes();
attrib. node = com ooc. B. RETRY_STRI CT. val ue;
attrib.interval = 500;
attrib.max = 5;
attrib.renote = true;

oO~NOoOOhs WN PR

9 org.ong. CORBA Any any = orb. create_any();

10 comooc. CB. RetryAt tri but esHel per.insert(any, attrib);

11 org. ony. GORBA Pol i cy[] policies = new org. ong. CORBA Pol i cy[1] ;
12 policies[0] =

13 orb. create_pol i cy(com ooc. B. RETRY_PCLI CY_I D. val ue, any);
14 org. ony. CORBA (hj ect newChj =

15 obj . _set_policy_override(policies,

16 org. ong. CCRBA. Set Overri deType. ADD OVERRI CE) ;

1-16 This is equivalent to the C++ version.
Note that you can also set the retry policy at the ORB level.

317

CHAPTER 16 | Using Policies

Timeout Policy

This example shows how to configure timeouts at the object level. As usual,
the C+ + version is presented first, followed by the Java version:

1 /] C++

2 QOORBA : Any ULongAny;

3 ULongAny <<= (OCRBA : ULong) 1000;

4 (QOCRBA: : PolicyList policies(1);

5 policies.length(l);

6 policies[0] = orb -> create_policy(OB:: TI MEQUT_PCLI CY_I D,
UongAny) ;

7 COORBA : (oj ect _var newChj =

8 obj -> set_policy overrides(policies,

QORBA: : ADD OVERRI [E) ;

2-6 We want to set the timeout to a value of 1000 milliseconds.

7-8 Set the policy on the object by using the _set _pol i cy_overri des method.
This method returns a new object that has the set of policies applied.

And now the same example in Java:

1 // Java

2 org.ong. CORBA Any U.ongAny = orb. create_any();

3 UWongAny. i nsert _ul ong(1000) ;

4 org.onyg. CCRBA Pol i cy[] policies = new org.ong. CCRBA Policy[1];
5 policies[0] =

6 orb. create_policy(com ooc. GB. TI MEQUT_PQLI CY_| D. val ue,

7 ULongAny) ;

8 org.ony. OORBA (bj ect newChj =

9 obj . _set_policy_override(policies,

10 or g. ong. OORBA. Set Overri deType. ADD_OVERRI DE) ;

1-10 This is equivalent to the C++ version.

Note that you can also set the timeout policy at the ORB level.

318

Programming Examples

Interceptor Call Policy

This example shows how to create a new POA with server-side interceptors
disabled. The C++ version is presented first, followed by the Java version:

Il Ct+
CCRBA: : (hj ect _var obj =
orb -> resolve_initial_references("Root PQA");
Port abl eSer ver: : POA var root POA =
Port abl eServer: : POA : _narrow obj);
Por t abl eSer ver : : POAManager _var nanager =
r oot PQA -> t he_PQAVanager () ;

O~NO O~ WNBRE

9 COCRBA : Any any;

10 CCRBA: : PolicyList policies(1);

11 policies.length(1);

12 any <<= OORBA : Any::frombool ean(fal se);
13 policies[0] =

14 orb -> create_policy(

15 OBPor t abl eSer ver : : | NTERCEPTCR CALL_PCLICY I D, any);
16

17 Portabl eServer:: PQA var nyPQA =

18 root POA -> create POA("M/PQA', nanager, policies)

2-7 Obtain references to the root POA and its POA manager.

9-15 Create a policy set consisting of the
CBPor t abl eServer: : | ntercept or Cal | Pol i cy policy. The
CBPor t abl eServer: : | ntercept or Cal | Pol i cy policy is given a value of
fal se so that server-side interceptors will be disabled.

17-18 Create a new POA using the policy set created above.

319

CHAPTER 16 | Using Policies

320

And now the same example in Java:

oO~NOoOOhs WN PR

©

10
11
12
13

/1 Java
org. ong. CORBA. (bj ect obj =
orb.resol ve_initial _references("Root PQA");
or g. ong. Port abl eSer ver. PQA r oot PQA =
or g. omg. Por t abl eSer ver . POAHel per . nar row(obj) ;
or g. ony. Port abl eSer ver . PQAManager manager =
root POA t he_PQAVanager () ;

org.ong. CCRBA Any any = orb.create_any();
org. ong. CORBA. Pol i cy[] policies = new org. ong. CCRBA Pol i cy[1] ;
any. i nsert _bool ean(f al se);
policies[0] = orb.create_policy(
com ooc. CBPor t abl eSer ver. | NTERCEPTCR CALL_PQLI CY_I D. val ue,

any) ;

14
15
16

or g. ong. Port abl eSer ver. PQA nyPQA =
r oot POA creat e POA("M/PQA', nanager, policies);

This is equivalent to the C++ version.

Programming Examples

CommunicationsConcurrencyPolicy

This example shows how to create a new POA Manager with the
concurrency model set to threaded. The C+ + version is presented first,
followed by the Java version.

o0 WNPRE

13

14
15
16
17
18
19
20
21

[l C++
OORBA: : (oj ect _var poaChj =
orb -> resolve_initial_references("Root PQA");
CBPor t abl eServer: : POA var root PQA =
CBPor t abl eSer ver: : POA : _narrow poaQhj) ;
PQAManager Factory_var factory = root POA ->
t he_PQAVanager Fact ory() ;
CBPor t abl eSer ver : : POAVanager Fact ory_var pnfFactory =
CBPor t abl eSer ver : : POAManager Fact ory: : _narrow(factory);
PQAMVanager _var nyPQAVanager ;

Pol i cyList pl;
pl.length(1);
pl [0] = pnfFactory ->

creat e_conmuni cat i ons_concur rency_pol i cy(

CBPor t abl eSer ver : :
OOMMUN CATI ONS_ GONCURRENCY _PQLI CY_THREADED) ;
try
{
nyPQAMVanager = creat e_PQAManager (" M/PQAManager ", pl);
}
cat ch(const PQAManager Fact ory: : Manager Al r eadyExi st s& ex)

{
}

/1 do sonet hi ng

And now the same example in Java:

321

CHAPTER 16 | Using Policies

322

© 0O ~NOO UL WDN PR

10
11
12
13

14
15
16

17
18

19
20
21
22
23
24
25

/1 Java
org. ong. CCRBA. (bj ect obj =
orb.resolve_ initial_references("Root PQA");
or g. ony. Port abl eSer ver. PQA r oot PQA =
or g. ong. Por t abl eSer ver . POAHel per . nar r ow(obj)
or g. ong. Port abl eSer ver . POAManager Factory factory =
r oot PQA t he_t he_PQAManager Fact ory() ;
com ooc. CBPor t abl eSer ver . POAManager Fact ory pnfactory =

com ooc. CBPor t abl eSer ver . PQAVanager Fact or yHel per. narr ow(f act o
ry);

or g. ong. Port abl eSer ver . POAMVanager nyPQAManager = nul | ;

org. ong. OORBA Pol icy[] pl = new Policy[1];

pl [0] = pnFactory. creat e_comuni cati ons_concurrency_pol i cy(

com ooc. CBPor t abl eSer ver . COMMUN CATI ONS_CONCURRENCY_PCLI CY_TH
READED. val ue) ;
try
{

nyPQAVanager = pnfact ory. cr eat e PQAVanager (" M/PQAManager “,
pl);
}

cat ch(org. ong. Por t abl eSer ver . POAManager Fact or yPackage. Manager
Al readyExi sts ex)

{
/1 do soret hi ng
}
cat ch(org. ong. CCRBA Pol i cyError ex)
{
/1 do soret hi ng
}

Programming Examples

EndpointConfigurationPolicy

This example shows how to create a new POA Manager with a list of
endpoints for the Root POA Manager.

The C++ version is presented first, followed by the Java version:

OO WN B

o ~

11
12

13
14

15
16
17
18
19
20
21
22

/] C++
OORBA: : (oj ect _var poaChj =
orb -> resolve_initial_references("Root PQA");
CBPor t abl eSer ver: : POA var root PQA =
CBPor t abl eSer ver: : POA: : _narrow poaQyj) ;
PQAManager Factory_var factory = root PQA ->
t he_PQAVanager Fact ory() ;
CBPor t abl eSer ver : : POAManager Factory_var pnfactory =
OBPor t abl eSer ver : : POAManager Factory: : _narrow(factory);
PQANVanager _var nyPQAVanager ;
Pol i cyLi st pl;
String_var config =
OCRBA: : string_dup("iiop --host |ocal host --port 5555
--bind I ocal host");

pl .l ength(1);
pl [0] = pnfFactory ->
creat e_endpoi nt _configuration_policy(config.in());
try
{
nyPQAManager = creat e_PQAManager (" M/PQAManager ", pl);
}
cat ch(const PQAManager Fact ory: : Manager Al r eadyExi st s& ex)

{
}

/1 do sonet hi ng

And now the same example in Java:

323

CHAPTER 16 | Using Policies

324

© 0O ~NOO UL WDN PR

10
11
12

13

14
15
16

17
18

19
20
21
22
23
24
25

/1 Java
org. ong. CCRBA. (bj ect obj =
orb.resolve_ initial_references("Root PQA");
or g. ony. Port abl eSer ver. PQA r oot PQA =
or g. ong. Por t abl eSer ver . POAHel per . nar r ow(obj)
or g. ong. Port abl eSer ver . POAManager Factory factory =
r oot PQA t he_t he_PQAManager Fact ory() ;
com ooc. CBPor t abl eSer ver . POAManager Fact ory pnfactory =

com ooc. CBPor t abl eSer ver . PQAVanager Fact or yHel per. narr ow(f act o
ry);
or g. ong. Port abl eSer ver . POAMVanager nyPQAManager = nul | ;
org. ong. OORBA Pol icy[] pl = new Policy[1];
String config = "iiop --host |ocal host --port 10999 --bind
| ocal host";
pl[0] =
pnfact ory. creat e_endpoi nt _confi gurati on_pol i cy(config);
try
{
nyPQAVanager = pnfact ory. cr eat e_POAVanager (" M/PQAManager ",
pl);
}

cat ch(org. ong. Por t abl eSer ver . POAManager Fact or yPackage. Manager
Al readyExi sts ex)

{
/1 do soret hi ng
}
cat ch(org. ong. CCRBA Pol i cyError ex)
{
/1 do soret hi ng
}

Programming Examples

GIOPVersionPolicy

This example shows how to create a new POA Manager with a specific GIOP
vesion to be used in object references generated by that POA Manager.

This option is useful for backward compatibility with older ORBs that reject
object references using a newer version of the protocol. In the example
below the GIOP version is set to 1.2.

The C++ version is presented first, followed by the Java version:

[l C++
OCRBA: : (oj ect _var poaChj =
orb -> resolve_initial_references("Root PQA");
CBPor t abl eServer: : POA var root PQA =
CBPor t abl eServer: : POA : _narrow poahj) ;
PQAManager Factory_var factory = root POA ->
t he_PQAVanager Fact ory() ;
7 (OBPort abl eServer: : POAManager Fact ory_var pnfFactory =
8 CBPor t abl eSer ver : : POAManager Fact ory: : _narrow(factory);
9 POAManager _var nyPQAVanager ;
10 PolicyList pl;
11 pl.length(1);
12 pl[0] = pnFactory -> create_gi op_versi on_policy(
13 CBPor t abl eServer: : @ CP_VERSI ON PCLI CY_1_2);
14 try
15 {
16 nyPQAManager = creat e_POAManager (" M/PQAMVanager ", pl);
17 }
18 catch(const PQAMVanager Fact ory: : Manager Al r eadyExi st s& ex)
19 {
20 /1 do sonet hi ng
21}

o0 WN PR

And now the same example in Java:

325

CHAPTER 16 | Using Policies

326

© 0O ~NOO UL WDN PR

10
11
12
13
14
15
16

17
18

19
20
21
22
23
24
25

/1 Java
org. ong. CCRBA. (bj ect obj =
orb.resolve_ initial_references("Root PQA");
or g. ony. Port abl eSer ver. PQA r oot PQA =
or g. ong. Por t abl eSer ver . POAHel per . nar r ow(obj)
or g. ong. Port abl eSer ver . POAManager Factory factory =
r oot PQA t he_t he_PQAManager Fact ory() ;
com ooc. CBPor t abl eSer ver . POAManager Fact ory pnfactory =

com ooc. CBPor t abl eSer ver . PQAVanager Fact or yHel per. narr ow(f act o
ry);
or g. ong. Port abl eSer ver . POAMVanager nyPQAManager = nul | ;
org. ong. OORBA Pol icy[] pl = new Policy[1];
pl [0] = pnfactory. create_gi op_versi on_pol i cy(
com ooc. CBPor t abl eServer. G CP_VERS| ON_PCLI CY_1_2. val ue) ;

try
{

nyPQAMVanager = pnfact ory. cr eat e_POAVanager (" M/PQAManager ",
pl);
}

cat ch(org. ong. Port abl eSer ver . POAManager Fact or yPackage. Manager
Al readyExi sts ex)

{
/1 do soret hi ng
}
cat ch(org. onmg. CORBA Pol i cyError ex)
{
/1 do sonet hing
}

Programming Examples

Bidirectional Policy

BidirectionalPolicy Server This example shows how to create a new POA with the BidirectionalPolicy
Implementation enabled to allow negotiation of Bidirectional connection reuse. The C+ +
example is presented first followed by the Java version:

1// G+

2 CORBA : (pj ect _var obj =

3 orb -> resol ve_initial_references("Root PQA");
4 Portabl eServer:: POA var root POA =

5 Port abl eServer: : POA : _narrow obj);

6 Portabl eServer:: POAManager _var nanager =

7 root PQA -> t he_PQAVanager () ;

8

9 CCRBA : Any any;

10 OORBA:: PolicyList policies(1);

11 policies.length(1);

12 any <<= BiDirPolicy:: BOTH

13 policies[0] = orb -> create_policy(

14 Bi D rPolicy:: Bl D RECTI ONAL_PQLI CY_TYPE, any);

15

16 Portabl eServer:: POA var nyPQA =

17 root PQA -> creat e POA("M/PQA', nanager, poli cies)

2-7 Obtain the reference to the RootPOA and RootPOAManager

9-14 Create a new BidirectionalPolicy containing the value of BiDirPolicy::BOTH
(to enable Bidirectional connection reuse negotiation).

16-17 Create the new POA with this policy to enable BiDir negotiation on requests
destined for this POA.

327

CHAPTER 16 | Using Policies

And now the same example in Java:

/] Java
or g. ong. CCRBA. (bj ect obj =

orb.resol ve_initial _references("Root PQA");
or g. ong. Port abl eSer ver . POA r oot POA =

or g. ong. Port abl eSer ver. POAHel per . nar r ow(obj) ;
or g. ony. Port abl eSer ver . POAManager nmanager =

r oot PQA t he_PQAVanager () ;

org.ong. CORBA Any any = orb. create_any();

0 org.ong. OCRBA Pol icy[] policies = new
org. ong. CORBA. Pol i cy[1] ;

11 org.ony. Bi DirPolicy. Bidirectional PolicyVal ueHel per.insert (
12 any, org.ony.Bi D rPolicy.BOTH val ue);
13 policies[0] = orb.create_policy(
14 org.ong. Bi D rPol i cy. Bl D RECTI ONAL_PQLI CY_TYPE. val ue,
15 any) ;
16
17 org. ony. Port abl eServer. POA nyPQA =
18 r oot POA creat e_PQOA(" M/PQA", nanager, policies);

P OoO~NO O~ WNPRE

This is equivalent to the C++ version.

BidirectionalPolicy Client This example shows how to create an object reference with the

Implementation BidirectionalPolicy enabled to signal connection reuse is allowed over
connections established with this object reference. The C++ example is
presented first followed by the Java version:

[l G+
CCRBA: : (hj ect _var obj =
orb -> string_to_object(“relfile:/Hello.ref");

CCRBA: : Pol i cyLi st policies(l);
policies.length(1);

CCRBA: : Any any;

any <<= Bi D rPolicy:: BOTH

policies[0] = orb -> create_policy(

10 Bi Di rPol i cy: : Bl DI RECTI CNAL_PQLI CY_TYPE,
11 any) ;

12

13 obj = obj -> _set_policy_overrides(
14 pol i ci es, OCRBA : ADD OVERR DE);

15

16 Hello_var hello = Hello:: _narrowobj);

O~NO O~ WDNBRE

©

328

2-3
5-11
13-14

16

Programming Examples

Obtain the object reference from some means (here using a file)
Create the BidirectionalPolicy with a value of BOTH to enable BiDir.

Add the Bidirectional Policy to the object and make sure to catch the return
object reference.

Narrow the object to the specific type for method invocation.
And now the Java version:

[l Java
org. ong. CORBA. (bj ect obj =
orb.string_to_object(“relfile:/Hello.ref");

org. ong. CORBA Any any = orb. create_any();
org.ong. Bi D rPolicy. Bi di rectional Pol i cyVal ueHel per.
i nsert (any, org.ony.Bi DrPolicy. BOTH val ue);
org. ong. CCRBA. Pol i cy[] policies = new org. ong. CCRBA Policy[1];
policies[0] = orb.create_policy(
10 org. ong. Bi D rPol i cy. Bl Dl RECTI ONAL_PQLI CY_TYPE. val ue, any);
11
12 obj = obj._set_policy_override(policies,
13 or g. ong. CCRBA. Set Overri deType. ADD OVERR DE) ;
14
15 Hell o hel l o = Hel | oHel per. narrow(obj);

©oo~NOOhs WN PR

This is equivalent to the C++ version.

329

CHAPTER 16 | Using Policies

330

CHAPTER 17

Asynchronous
Method Invocation

This chapter describes how to design asynchronous
non-blocking clients.

In this chapter This chapter contains the following sections:
Introduction page 332
AMI Router page 333
Router Usage page 334
Router Administration Properties page 335
AMI Reply Handler Implementation page 337
AMI Poller Implementation page 341
Configuring Clients and Servers page 343

331

CHAPTER 17 | Asynchronous Method Invocation

Introduction

Overview

In this section

332

Asynchronous Method Invocation (AMI) allows the design of asynchronous,
non-blocking clients without change to server-side design. This allows a
client to invoke a request on a server and immediately return, without
waiting for the request to be serviced. The response will be delivered to the
client at a later time through either a callback mechanism, initiated by the
ORB (AMI Reply Handler implementation), or a polling mechanism, initiated
by the client (AMI Polling implementation).

The Orbacus 4.3 AMI implementation is based on OMG's CORBA 3.0.2
specification (specifically Chapter 22: CORBA Messaging; Section Il
Messaging Programming Model.) for the client-side code generation, while
the message delivery is done through an AMI Router. Quality of Service
(QoS) policies are not currently supported, though they will be incorporated
into a future release of the product when the routing capability is enhanced.

The AMI-enabled client code is generated by using the - - wi t h- async option
for the Orbacus code generators. Also, the target IDL file must include the
AM .idl file.

Modifying an application's client code to use AMI is discussed in the
following sections. The AMI "echo" demos, located in the directory
ob/ deno/ AM / , will be used as the basis for this discussion.

This section contains the following topics:

AMI Router page 333
Router Usage page 334
Router Administration Properties page 335
AMI Reply Handler Implementation page 337
AMI Poller Implementation page 341
Configuring Clients and Servers page 343

AMI Router

AMI Router

The AMI Router allows users to configure their systems so that servers that
have the potential to go offline on a regular basis can have an associated set
of AMI Routers specified as an alternative, fallback destination for their
requests. Rather than encumbering the client application with retry logic,
the AMI Router allows the client application to send a message as though
the server were available, and continue processing. The message will
actually be delivered to a router that can then worry about delivering the
message to the server when it becomes available. The client application can
then handle the expected response from the asynchronous invocation when
necessary.

333

CHAPTER 17 | Asynchronous Method Invocation

Router Usage

The AMI Router is currently implemented using Orbacus for C++, but can
be used with C++ and Java clients and servers. Command-line usage is as
follows:

am rout er

[-h,--help] [-v,--version] [-i,--ior]

[-p,--persistent] [-w --workers WIRKERS]

Options
-h Display the command-line options supported by the
--help router.
-V Display the version of the router.
--version

-i Prints the stringified IOR of the router to standard

--ior output.

-p Starts a persistent request router for use with the

- - persi stent AMI polling model.

-w Sets the number of worker threads for processing

—-workers WRKERS requests. The value of WORKERS should be between
1 and 255.

334

Router Administration Properties

Router Administration Properties

ooc.router.retry_policy

ooc.router.retry_policy.base_
interval

ooc.router.retry_policy.backoff_
factor

ooc.router.retry_policy.
max_backoffs

In addition to the standard configuration properties described in Chapter 4,
the Orbacus AMI Router also supports the following properties for
configuring router administration functionality:

Values: i medi at e_suspend, unlimted ping, |inited_ping

Default: unl i nited_pi ng

Specifies the retry policy to use for the router. If a router has a retry policy of
i mredi at e_suspend, its state is set to SUSPENDED as soon as a message fails

to be delivered to it. Otherwise, retry attempts are governed by additional
configuration parameters, given below.

Value: Integer n > 0
Default: 5
This is the base number of seconds to wait between retry attempts. This

property is used for both the unl i mit ed_pi ng and the I'i m t ed_pi ng retry
policies.

Value: Decimal n >0
Default: 2

The time between retry attempts is the product of the value of the

base_i nt erval multiplied by the value of the backof f _f act or . After the first
retry attempt, which is based solely on the base interval, each subsequent

retry is multiplied by the backof f _fact or. This property is used for both the
unl i m ted_pi ng and the Ii m ted_pi ng retry policies.

Value: Integer n >0
Default: 6

The maximum number of times the backoff factor is applied to the base
retry interval. This property is used for both the unl i m t ed_pi ng and the
Ii mted_ping retry policies.

335

CHAPTER 17 | Asynchronous Method Invocation

ooc.router.retry_policy.interval_
limit

ooc.router.decay_policy.decay_
seconds

ooc.router.resume_policy.resume
_seconds

336

Value: Integer n >0

The maximum number of retry attempts made. This property is used for
I'i m ted_pi ng retry policy only.

Value: Integer n >= 0
Default: 0

The time (in seconds) for which a destination registration is valid. If this is
set to zero (0), the registration remains valid until the destination explicitly
unregisters itself with a call to unregi st er _desti nati on.

Value: Integer n >= 0
Default: 1200 (20 minutes)
The time (in seconds) after which a suspended destination should be

resumed. If this is set to zero (0), the registered destination can only be
resumed with an explicit call to resume_desti nati on.

Note: Orbacus 4.3.1 does not allow this value to be set to zero (0). This
is required due to the lack of persistence in the AMI Router in the 4.3.1
version of Orbacus.

AMI Reply Handler Implementation

AMI Reply Handler Implementation

C++

In the reply handler implementation, the user must instantiate a callback
object and pass it to the ORB in the deferred AMI request (or sendc_ call).
The ORB can then use this callback object to inform the client application
that the request has completed. This callback object must be derived from
the generated AM _EchoHandl er class. This is shown in the C++ and Java
code examples that follow.

The following code snippet shows the client application making the AMI
deferred call for the Reply Handler implementation. The EchoHandl er _i npl
class must be implemented by the user. For a complete example, please see
the code in the ob/ deno/ AM / echo_repl y_rout er/ directory of the Orbacus
for C++ distribution.

1 COORBA :PolicyList policies;

2 policies.length(2);
3 policies[0] =
root PQA ->

create_i d_assi gnnent _pol i cy(Portabl eServer:: USER | D);
4 policies[1] =
root PQA ->
create_|ifespan_policy(Portabl eServer:: PERSI STENT);
5 Portabl eServer:: POA var handl er PQA =
root POA -> create_POA("nyHandl er PQA', manager, policies);

6 OCRBA :(bject_var obj = orb ->
string_to object("relfile:/Echo.ref");
7 Echo_var echo = Echo::_narrowobj);

8 EchoHandl er _i npl * handl er = new EchoHandl er _i npl (handl er PQY) ;
9 Portabl eServer:: Servant Base_var servant = handl er;
10 Portabl eServer::(hjectld var id =
Port abl eServer::string_to_(bject!|d("nyHandl er Servant");
11 handl erPQA -> activate object_w th_id(id, servant);
12 AM _EchoHandl er _var handl erRef = handler -> _this();

13 echo -> sendc_echo_nessage(handl er Ref, "Hell0");

14 whil e(handl er -> receptions() < 1)
15 orb -> performwork();

337

CHAPTER 17 | Asynchronous Method Invocation

338

1-5

6-7
8-12

13
14-15

Create a persistent POA for the reply handler. This is important as it allows
the router to deliver the reply in the event that the client goes down and
comes back up. Servers should also use persistent POAs for the same
reason.

Create the Echo object based on the IOR in the Echo. ref file.

Instantiate a new EchoHandl er _i npl object using the new persistent POA.
This class must be created by the user and derived from the generated
POA AM _EchoHandl er . Sample code for an EchoHandl er _i npl can be found
in the Echo_i npl . cpp file located in the ob/ deno/ AM / ech_reply_router/
demo folder.

Make the deferred call, passing the handler as the first parameter.

Wait for the response to come back. This is simply how this demo was
implemented. How the callback is handled is application dependent.

Java

AMI Reply Handler Implementation

The following code snippet shows the client application making the AMI
deferred call for the Reply Handler implementation. The AsyncEchoHand! er
class must be implemented by the user. For a complete example, please see
the code in the ob/ deno/ AM / echo_reply_rout er/ directory of the Orbacus
for Java distribution.

10
11

12

13

14

15

16

17

18

19

or g. ong. Port abl eSer ver. PQA r oot PQA =

or g. ong. Por t abl eSer ver. PQAHel per . nar r ow(
orb.resol ve_initial _references("Root PQA"));
or g. ong. Port abl eSer ver . POAManager nanager =
r oot PQA t he_PQAManager () ;

or g. ong. Port abl eSer ver. POA persi stent POA = nul | ;

try

{

org. ong. CCRBA Pol i cy[] policies = new

org. ong. CCRBA. Pol i cy[2] ;

policies[0] = rootPQA create_|ifespan_policy(

or g. ong. Por t abl eSer ver. Li f espanPol i cyVal ue. PERS| STENT) ;
policies[1] =root POA create_id_assi gnnment _policy(

or g. ong. Port abl eSer ver. | dAssi gnrent Pol i cyVal ue. USER | D) ;

per si st ent POA = root POA creat e_PQA(" Per si st ent POA", manager,
policies);

}

cat ch(org. ong. Port abl eSer ver . POAPackage. Adapt er Al r eadyExi st s
ex)

{
ex. print StackTrace();
t hr ow new Runti neException();
}
cat ch(or g. omy. Port abl eSer ver. POAPackage. | nval i dPol i cy ex)

{

ex. print StackTrace();
t hrow new Runt i meException();
}
AsyncEchoHandl er asyncHandl er = new

AsyncEchoHandl er (r oot PQA) ;
echo. AM _EchoHandl er handl er = asyncHandl er. _thi s(orb);

org. ong. OCCRBA. Chj ect obj =
orb.string_to_object("relfile:/Echo.ref");
echo. Echo ec = echo. EchoHel per. narrow(obj);

ec. sendc_echo_nessage(handl er, "Hello0");

339

CHAPTER 17 | Asynchronous Method Invocation

340

15-16

17-18
19

Create a persistent POA for the reply handler. This is important as it allows
the router to deliver the reply in the event that the client goes down and
comes back up. Servers should also use persistent POAs for the same
reason.

Instantiate a new AsyncEchoHandl er object using our new persistent POA.
This class must be created by the user and derived from the generated

AM _EchoHandl er POA. Sample code for an AsyncEchoHandl er can be found
in the AsyncEchoHandl er . j ava file located in the

ob/ dermo/ AM / echo_repl y_router/ demo folder.

Create the Echo object based on the IOR in the Echo. ref file.

Make the deferred call, passing the handler as the first parameter.

AMI Poller Implementation

AMI Poller Implementation

Overview

C++

In the poller implementation, the user is returned a poller object from the
deferred AMI request (or sendp_ call). The user can then query this poller
object to find out when a request has completed. This is shown in the C++
and Java code examples that follow.

For complete code, please see the EchoQ i ent . cpp file in the
ob/ dermo/ AM / echo_pol | _router/ directory of the Orbacus for C+ +
distribution.

1 OORBA :(pject_var obj =orb ->
string_to object("relfile:/Echo.ref");

2 Echo_var echo = Echo:: _narrow(obj);

3 AM _EchoPol | er_var poller = echo ->
sendp_echo_nessage(L"Hel I o! ");

4 CORBA :\WBtring var reply;

5 OORBA :UWong max_tinmeout = (OCRBA : ULong)-1;

6 poller -> echo_message(max_timeout, reply);

Create the Echo object based on the IOR in the Echo. ref file

Make the deferred call, which returns an AM _EchoPol | er object based on
the generated class. Note that the user does not have to override this class,
as must be done for the Reply Handler implementation.

Set up the parameters that will be passed to the poller function.

Check the poller for the status of the deferred call. This function will update
any parameters with data that was expected from the deferred call.

Note that a timeout value of "-1" will cause the client code to wait forever.

341

CHAPTER 17 | Asynchronous Method Invocation

Java

342

For complete code, please see the EchoQ i ent . j ava file in the
ob/ dermo/ AM / echo_pol | _rout er/ directory of the Orbacus for Java
distribution.

1 org.ong. CORBA (bj ect obj =
orb.string_to object("relfile:/Echo.ref");
2 echo. Echo ec = echo. EchoHel per. narrow(obj);
3 echo. AM _EchoPol | er poller =
ec. sendp_echo_message("Hel 1 o! ");
4 org.ong. CORBA StringHol der reply = new
org. ong. CORBA. Stri ngHol der () ;
5 poller.echo_nessage(-1, reply);

Create the Echo object based on the IOR in the Echo. ref file.

Make the deferred call, which returns an AM _EchoPol | er object based on
the generated class. Note that the user does not have to override this class,
as must be done for the Reply Handler implementation.

Set up the parameters that will be passed to the poller function.

Check the poller for the status of the deferred call. This function will update
any parameters with data that was expected from the deferred call.

Note that a timeout value of "-1" will cause the client code to wait forever.

Configuring Clients and Servers

Configuring Clients and Servers

Configuring router lists

Clients and servers can specify any routers they want to use for the routing
of requests and replies to them via the configuration file property

ooc. am . rout er. #, where # is a unique integer that differentiates the router
from other routers in the list. When the list of router property keys is sorted
in increasing order, which is done automatically by the client or server,
routers that appear later in the list are given preference when routing
request/replies over routers that appear earlier in the list.

The value for the ooc. am . rout er property is a string that represents an
object reference or location to be used for contacting the router. These can
be specified in one of the following four formats:
1. An object reference file (for example, router 1. ref)

ooc.am .router.l=relfile:/routerl.ref
2. A stringified IOR object reference

ooc. am . rout er. 2=l R 013074b70d00000049444¢c3a4563686f 3a3. . .
3. A corbaloc address

ooc. am . rout er. 3=cor bal oc: : | ocal host : 20000/ AM Rout er

The Orbacus AMI router uses the stringified object key AM Rout er .
4. A host/port combination in the format <host >: <port >

ooc. am . rout er. 4=l ocal host : 20000

Note: Using corbalocs or host/port combinations limits the functionality

of the router administration, as these methods provide incomplete object

references that prevent the router administration from doing proper object
comparisons.

343

CHAPTER 17 | Asynchronous Method Invocation

Sample configuration file The following is a sample configuration file that specifies the endpoint for

the application along with three routers that can be used for routing
request/replies:

#

Persistent handlers require a persistent port
#

ooc. or b. oa. endpoi nt =i i op --port 20000

#

List of routers to use for routing requests
#

ooc.am .router.1=relfile:/routerl.ref
ooc.am .router.2=relfile:/router?2.ref
ooc. am . rout er . 3=cor bal oc: : | ocal host : 30000/ AM Rout er

This configuration file defines three routers for routing request/replies to an

application using the file, with router 3 given first preference, then router 2,
and finally router 1.

Applications using AMI polling Applications using the AMI polling model should start a single persistent

model AMI request router instead of the usual list of routers. This can be done
through the configuration property ooc. ani . persi stent _router and is
placed in the configuration for the application making the polling requests.
The value for this property is again a string that represents an object
reference or location to be used for contacting the router. These object
references or locations can be specified using one of the four methods listed
for the ooc. am . rout er configuration property. For example:

#

AM Persistent Router
#

ooc. am . persi stent_router=relfile:/p_router.ref

Application development Applications that can potentially receive requests or, in the case of

considerations applications using the AMI callback model, replies from AMI routers should
be implemented using persistent POAs. This allows routers to deliver
requests and/or replies in the event that an application is terminated and

344

Configuring Clients and Servers

restarted at a later time. Applications that do not use persistent POAs will
generate a different object reference when restarted and the router will be
unable to deliver the request and/or reply.

345

CHAPTER 17 | Asynchronous Method Invocation

346

In this chapter

CHAPTER 18

Concurrency
Models

This chapter describes how an Object Request Broker handles
communication and request execution using single- and
multi-threaded concurrency models.

This chapter contains the following sections:

Concurrency Models page 348
Single-Threaded Concurrency Model page 350
Multi-Threaded Concurrency Models page 353
The Reactor page 360

347

CHAPTER 18 | Concurrency Models

Concurrency Models

What is a Concurrency Model?

Why different Concurrency
Models?

Orbacus Concurrency Models
Overview

348

A concurrency model describes how an Object Request Broker (ORB)
handles communication and request execution. There are two main
categories of concurrency models, single-threaded concurrency models and
multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaves while a
request is sent or received in a single-threaded environment. For example,
one model is to simply let the ORB block while sending and receiving
messages. Another model is to let the ORB do some work while sending and
receiving messages, for example to receive user input through a keyboard or
a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of
multiple threads, for example to send and receive messages “in the
background.” Multi-threaded concurrency models also describe how several
threads can be active in the user code and the strategy the ORB employs to
create these threads.

There is no “one size fits all” approach with respect to concurrency models.
Each concurrency model provides a unique set of properties, each having
advantages and disadvantages. For example, applications using callbacks
must have a concurrency model that allows nested method invocations to
avoid deadlocks. Other applications must be optimized for speed, in which
case a concurrency model with the least overhead will be chosen.

Some ORBs are highly specialized, providing only the most frequently used
concurrency models for a specific domain. Orbacus takes a different
approach by supporting several concurrency models.

Orbacus allows different concurrency models to be established for the client
and server activities of an application. The client-side concurrency models
are Reactive and Threaded. The server-side concurrency models are
Reactive, Threaded, Thread-per-Client, Thread-per-Request and Thread
Pool.

Selecting Concurrency Models

Concurrency Models

Concurrency models can be selected either by properties or command-line
parameters (see Chapter 4). The default concurrency models are shown in

Table 5.
Table 5: Default Concurrency Models
Client Server
Java Threaded Threaded
C++ Threaded Reactive

349

CHAPTER 18 | Concurrency Models

Single-Threaded Concurrency Model

Orbacus supports one single-threaded concurrency model: reactive.

Reactive servers use calls to operations like sel ect in order to
simultaneously accept incoming connection requests, to receive requests
from multiple clients and to send back replies. This is shown in Figure 9.

connect

- — = E accept
0

- -« dispatch

[

] connect

accept i] € — — —
f0

dispatch Ly <

A

Y

disconnect

i I: close
disconnect
| |-

close 1 W% — T T 7

Client A Server Client B

Figure 9: Reactive Server

Reactive clients also use operations like sel ect to avoid blocking. This
means that while a request to a server is sent or a reply from that server is
received, the client can simultaneously send buffered requests to other

350

Single-Threaded Concurrency Model

servers or receive and buffer replies. This is very useful for oneway
operations or the Dynamic Invocation Interface (Dll) operation

send_def erred in combination with get _response or pol | _r esponse.1

However, the main advantage of a reactive client becomes apparent if it is
used together with a reactive server in mixed client/server applications. A
mixed client/server application is a program that is both a client and server
at the same time. Without the reactive concurrency model it is not possible
to use nested method calls in single-threaded applications, which are
absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First
A tries to call a method f on B. Before this method returns, B calls back A
by invoking method g. This scenario is quite common, and for example is
used in the popular Model-View-Controller pattern [1]. Using the reactive
concurrency model for the client, A can dispatch incoming requests while
waiting for B’s reply for f. This is shown in Figure 10.

1 1

0
gT ¢ dispatch
dispatch Ly <
L]
< -
T 1
Client/Server Client/Server

Figure 10: Reactive Client/Server

The reactive concurrency models are also very fast. There is no overhead for

thread creation or context switching. Only an additional call to an operation

like sel ect is needed before operations such as send, recv or accept can be

used by the ORB.2

1. For more information on send_def err ed, get _r esponse and pol | _r esponse,
see the chapter “The Dynamic Invocation Interface” in [4].

2. Instead of directly using operations like sel ect, Orbacus uses a Reactor to
provide for flexible integration with existing event loops and to allow the

installation of user supplied event handlers. See “The Reactor” on page 360 for
more information.

351

CHAPTER 18 | Concurrency Models

352

The maximum nesting level for the reactive concurrency model is usually
much higher than for threaded concurrency models. The reason is that the
maximum nesting level for threaded models is determined by the maximum
number of threads allowed per process, whereas the reactive concurrency
model is only limited by the maximum stack size per process.

Multi-Threaded Concurrency Models

Multi-Threaded Concurrency Models

In this section This section covers the following concurrency models:
Threaded Clients and Servers page 354
Thread-per-Client Server page 356
Thread-per-Request Server page 357
Thread Pool Server page 358
Leader_Follower page 359

353

CHAPTER 18 | Concurrency Models

Threaded Clients and Servers

354

For a threaded client, outgoing requests are sent by the user thread, but a
separate “receiver” thread for handling replies is allocated for each
connection to a server. The separate receiver thread allows messages to be
received and buffered for later retrieval by the user thread with DI
operations such as get _response or pol | _response.

Like a threaded client, a threaded server uses a separate thread for receiving
requests from clients, but sends replies in the dispatch thread. Additionally,
there is a separate thread dedicated to accepting incoming connection

requests, so that a threaded server can serve more than one client at a time.

Orbacus’s threaded server concurrency model allows only one active thread
in the user code. This means that even though many requests can be
received simultaneously, the execution of these requests is serialized. This is
shown in Figure 11. (For simplicity, the “dispatch” arrows and the
corresponding return arrows are omitted in this and all following diagrams.)

1 0 i‘_‘ 1 1
>@g'()|-

h() -«

A

S
Y

A

T 7_‘ T T
Client A Threaded Server Client B

Figure 11: Threaded Server

In the example, the threaded server has two clients connected to it and thus
two receiver threads. First A calls f on the server. If, before f returns, B tries
to call another operation g, this request is delayed until f returns. The same
is true for A’s call to h, which must wait until g returns.

Multi-Threaded Concurrency Models

Allowing only one active thread in user code has the advantage of the user
code not having to take care of any kind of thread synchronization. This
means that the user code can be written as if for a single threaded system,
but without losing the advantage of the ORB optimizing its operation by
using multiple threads internally.

The threaded concurrency model is still fast. No calls to operations like

sel ect are required. Time consuming thread creation is only necessary
when a new client is connecting, but not for each request. However, thread
context switching makes this approach slower than the reactive concurrency
model, at least on a single-processor computer.

355

CHAPTER 18 | Concurrency Models

Thread-per-Client Server

The thread-per-client server concurrency model is very similar to the
threaded server concurrency model, except that the ORB allows one active
thread-per-client in the user code. This is shown in Figure 12.

- 10 =
g0

s |

Y

<€
-

T ‘l_‘ T
Client A Thread-per-Client Client B
Server

Figure 12: Thread-per-Client Server

A’s call to f and B's call to g are carried out simultaneously, each in its own
thread. However, if A tries to call another operation h (for example by
sending requests from different threads in a multi-threaded client or by
using the DIl operation send_def err ed in a single-threaded client) as long as
f has not finished yet, the execution of h is delayed until f returns.

The thread-per-client model is still efficient. Like with the threaded
concurrency model, no threads need to be created, except when new
connections are accepted.

356

Multi-Threaded Concurrency Models

Thread-per-Request Server

If the thread-per-request server concurrency model is chosen, the ORB
creates a new thread for each request. This is shown in Figure 13.

1 ‘ 1 1

f0)

g0
-

hQ >

T T T T
Client A Thread-per-Request Client B
Server

Figure 13: Thread-per-Request Server

(For simplicity there are no separate arrows for dispatch and thread creation
in the diagram.) With the thread-per-request model, requests are never
delayed. When they arrive, a new thread is created and the request is
executed in the user code using this thread. On return, the thread is
destroyed.

Besides using a reactive client together with a reactive server, the
thread-per-request server in combination with a threaded client is the only
other model that allows nested method calls with an unlimited nesting level.
The thread pool model also allows nested method calls, but the nesting level
is limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem
results from the overhead involved in creating new threads, namely one for
each request.

357

CHAPTER 18 | Concurrency Models

Thread Pool Server

358

The thread pool model uses threads from a pool to carry out requests, so
that threads have to be created only once and can then be reused for other
requests. Figure 14 shows an example with one client and a thread pool

server with three threads in the pool. (Sender and receiver threads are not
shown.)

WY NN

T T T
Client Thread Pool
Server

Figure 14: Thread Pool Server

The first three operation calls f, g and h can be carried out immediately,
since there are three threads in the pool. However, the fourth request i is
delayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool
concurrency model performs better than the thread-per-request model. The
thread pool is a good trade-off if on the one hand frequent thread creation
and destruction result in unacceptable performance, but on the other hand
delaying the execution of concurrent method calls is also not desired.

Multi-Threaded Concurrency Models

| Leader_Follower

In the Leader-Follower concurrency model, each thread from the thread pool
will transition between the following states:

® leader

® processing

® follower

The leader thread, of which there can only be one at any given time, waits
for incoming requests. When a request is received, the leader thread will
promote a new leader while it goes into the processing state to handle the
received requests. Once processing is complete, the thread is absorbed back
into the pool, where it waits to be promoted again. While in the waiting
state, the thread is said to be a follower.

In this model, it is possible to have multiple threads in the processing state
at the same time. However, as stated above, there can only ever be one
leader.

The main advantage of this model is scalablilty. It allows tight control over
the number of threads used by each POAManager.

359

CHAPTER 18 | Concurrency Models

The Reactor

What is a Reactor?

Available Reactors

360

In “reactive” mode (see “Single-Threaded Concurrency Model” on

page 350), Orbacus uses a so-called “Reactor” for event dispatching [14].
Simply speaking, the Reactor is an instance in Orbacus (a singleton) where
special objects — so-called event handlers — can register if they are
interested in specific events. These events can be network events, such as
an event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to Orbacus when used with reactive
concurrency models. If you use Orbacus with any other concurrency model,
for example any of the multi-threaded models, the following examples are
not applicable. Also, since Orbacus for Java currently doesn’t support the
reactive model at all, the following only applies to Orbacus for C++.

Currently there are three Reactors supported by Orbacus:

® The standard “select” Reactor which relies on the Berkeley Sockets
sel ect function.

® A special Reactor for use with the X11 Window System. This Reactor
handles X11 events (which for example can trigger X11 callbacks) and
CORBA network events simultaneously. See “The X11 Reactor” on
page 361.

® A special Reactor for use with Microsoft Windows 95/98/NT/2000.
This Reactor handles Windows messages and CORBA network events
simultaneously. See “The Windows Reactor” on page 362.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is
to be used, it must be initialized explicitly.

The Reactor

The X11 Reactor

An application that wants to use the X11 Reactor can obtain a special X11
Reactor using B: : Get X11React or (), which it must pass to
CBOORBA : GRB i ni t():

/] Ct+
#include <X11/Intrinsic. h>

#i ncl ude <CB/ CCRBA. h>

#i ncl ude <CB/ Logger . h>

#i ncl ude <OB/ Properti es. h>
#i ncl ude <CB/ X11. h>

O~NO O~ WNBRE

©

int main(int argc, char* argv[])

10 {

11 Xt AppCont ext appCont ext ;

12 Wdget topLevel = Xt Applnitialize(&ppCont ext,

13 "M/Application", 0, 0, &rgc, argv, 0, 0, 0);
14
15 (B: : Reactor _var reactor = OB:: Get X11React or (appCont ext) ;
16
17 QOCRBA : CRB var = CBOORBA: : CRB_i nit (argc, argv,
18 CB:: Properties::_nil(), CB:Logger::_nil(), reactor);
19
20 ... I/ PQAinitialization not shown
21
22 orb -> run();
23
24 ... [/l Qdeanup not shown
25 }
1-7 Include header files.

11-13 Initialize the X11 application.
15 Use the X11 application context to obtain a X11 Reactor.
17 Initialize the ORB using the Orbacus-specific CBOORBA: : CRB_init ().

22 Enter the CORBA event loop. This loop will also dispatch X11 events.
Alternatively, the standard X11 event loop may be called, which will also
dispatch CORBA events.

361

CHAPTER 18 | Concurrency Models

The Windows Reactor
Using a Windows Reactor is very similar to using a X11 Reactor:

/] C++
#i ncl ude <Wndows. h>

#i ncl ude <CB/ CORBA. h>

#i ncl ude <CB/ Logger . h>

#i ncl ude <CB/ Properties. h>
#i ncl ude <CB/ BBW ndows. h>

© 0O ~NOO UL WDN PR

int main(int argc, char* argv[])

10 {

11 H NSTANCE hl nst ance = Get Modul eHandl e(0) ;

12

13 (B: : Reactor_var reactor =

OB: : Get WndowsReact or (hl nst ance) ;

14

15 OCRBA: : CRB var = CBOORBA : CRB_init (argc, argv,
16 OB : Properties::_nil(), OB :Logger::_nil(), reactor);
17

18 ... I/ PQAinitialization not shown

19

20 orb -> run();

21

22 ... Il deanup not shown

23 }

2-7 Include header files.
13 Use the Windows application instance to get a Windows Reactor.

15-16 Initialize the ORB using the Orbacus-specific CBOORBA: : CRB_init ().

20 Enter the CORBA event loop, which now also dispatches Windows events.
The standard Windows event loop may also be called, which will then also
dispatch CORBA events.

362

In this chapter

CHAPTER 19

The Open
Communications
Interface

The Open Communications Interface (OCl) defines common
interfaces for pluggable protocols. TCP/IP is one possible
candidate for an OCI plug-in. Since Orbacus uses GIOP, such
a plug-in then implements the IIOP protocol. Other candidates
are SCCP (Signaling Connection Control Part, part of SS.7) or
SAAL (Signaling ATM Adaptation Layer).

This chapter contains the following sections:

Interface Summary page 364
OCI Reference page 367
The 1IOP OCI Plug-in page 375
The UDP OCI Plug-in page 380
The Bi-directional OCI Plug-in page 389

363

CHAPTER 19 | The Open Communications Interface

Interface Summary

Buffer

Transport

Acceptor and Connector

Acceptor and Connector Factories

The Registries

364

An interface for a buffer. A buffer can be viewed as an object holding an
array of octets and a position counter, which determines how many octets
have already been sent or received.

The Transport interface allows the sending and receiving of octet streams in
the form of Buffer objects. There are blocking and non-blocking send/receive
operations available, as well as operations that handle time-outs and
detection of connection loss.

Acceptors and Connectors are Factories [2] for Transport objects. A
Connector is used to connect clients to servers. An Acceptor is used by a
server to accept client connection requests.

Acceptors and Connectors also provide operations to manage
protocol-specific IOR profiles. This includes operations for comparing
profiles, adding profiles to IORs or extracting object keys from profiles.

Acceptor and Connector Factories are used by clients to create Acceptors
and Connectors. Acceptors are created infrequently, usually only when POA
Managers are created. Connectors, however, need to be created by clients
whenever a new connection to a server has to be established.

The only component of the OCI that is configurable by applications is the
Acceptor. When creating a new Acceptor, an Acceptor Factory takes a
sequence of protocol-specific parameters which are used to configure the
Acceptor. Each plug-in implementation should document these
configuration parameters. The configuration parameters for the plug-ins
included with Orbacus are described later in this chapter.

The ORB provides Acceptor and Connector Factory Registries. These
registries allow the plugging-in of new protocols. Transport, Connector,
Connector Factory, Acceptor Factory and Acceptor must be written by the

Interface Summary

plug-in implementers. The Connector Factory must then be registered with
the ORB's Connector Factory Registry and the Acceptor Factory must be
registered with the ORB’s Acceptor Factory Registry.

The Info Objects Info objects provide information on Transports, Acceptors and Connectors. A
Transport Info provides information on a Transport, an Acceptor Info on an
Acceptor and a Connector Info on a Connector. To get information for a
concrete protocol, these info objects must be narrowd to an info object for
this protocol, for example, in the case of an 1IOP plug-in, a
Q4 :: Transport | nfo must be narrowd to QO :: 11 CP:: Transport I nf o.

365

CHAPTER 19 | The Open Communications Interface

Class Diagram

Figure 15 shows the classes and interfaces of the OCI (except for the Buffer
and Info interfaces).

1 C ORB OA : 1

Connector Acceptor
Factory Factory
Registry Registry

n n
Connector Acceptor
Factory Connector Transport Acceptor Factory

T |creates>| T |creates>| T |<createL T |<create|s T

Psrgézicf?cl_ Protocol- Protocol- Protocol- Psrotog:fc_)l-
Specific Specific Specific pecific

Connector Acceptor
Factory Connector Transport Acceptor Factory

366

Figure 15: OC/ Class Diagram

Orbacus provides abstract base classes for the interfaces Connector Factory,
Connector, Transport, Acceptor Factory and Acceptor. The protocol plug-in
must inherit from these classes in order to provide concrete implementations
for a specific protocol. Orbacus also provides concrete classes for the
interfaces Buffer, Connector Factory Registry and Acceptor Factory Registry.
Instances of Connector Factory Registry and Acceptor Factory Registry can
be obtained via the ORB operation resol ve_i ni ti al _ref erences, using the
identifiers “OCIConFactoryRegistry” and “OClAccFactoryRegistry”,
respectively. Concrete implementations of Connector Factory must be
registered with the Connector Factory Registry, and concrete
implementations of Acceptor Factory must be registered with the Acceptor
Factory Registry.

OCI Reference

OCI Reference

OCI for the Application
Programmer

This chapter does not contain a complete reference of the OCI. It only
explains OCI basics and, in the remainder of this chapter, how it is used
from the application programmer’s point of view for the most common
tasks. For more information on how to use the OCI to write your own
protocol plug-ins, and for a complete reference, please refer to Appendix E.

The following sections only apply to the standard Orbacus [IOP plug-in. For
other plug-ins, please refer to the plug-in's documentation.

A ‘Converter’ Class for Java page 368
Getting Hostnames and Port Numbers page 369
Determining a Server's IP Address page 373

367

CHAPTER 19 | The Open Communications Interface

A ‘Converter’ Class for Java

As you will see in the following examples, the OCI info objects return port
numbers as IDL unsi gned short values and IP addresses as an array of 4
IDL unsi gned oct et values. This works fine for C++, but in Java this
causes a problem, because there are no unsigned types in Java. The Java
mapping simply maps unsigned types to signed types. Consider for example
the IP address 126.127.128.129. In Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java
byt e type, are -128 and -127.

To avoid this problem, we will use a helper class which converts port
numbers and IP addresses to Java i nt types. This helper class looks as
follows:

1 // Java

2 final class Converter

3 {

4 static int port(short s)

5

6 if(s <0)

7 return Oxffff + (int)s + 1;
8 el se

9 return (int)s;

10 }

11

12 static int[] addr(byte[] bArray)
13 {

14 int[] iArray = newint[4];

15 for(int i =0; i <4 ; i++
16 if(bArray[i] < 0)

17 iArray[i] = Oxff + (int)bArray[i] + 1;
18 el se

19 iArray[i] = (int)bArray[i];
20

21 return i Array;

22 }

23 };

4-10 Converts short port numbers toint.
12-22 Converts byte[] IP addresses toint[].

The converter class is used throughout the examples in the sections below.

368

OCI Reference

Getting Hostnames and Port Numbers

The following code fragments show how it is possible to find out on what
hostnames and port numbers a server is listening. First the C++ version:

1 /] C++
2 (OJ::AcceptorSeqg_var acceptors = poaManager ->
get _acceptors();

3

4 for(CORBA:Uong i =0 ; i < acceptors -> length() ; i++)
5 {

6 Q0 : : Acceptorlnfo_var info = acceptors[i] -> get_info();
7 Qd:: 11 QP : Acceptorlnfo_var iioplnfo =

8 Qd:: 11 CP:: Acceptorlnfo:: _narrow(info);

9

10 i f(!OORBA :is_nil(iioplnfo))

11 {

12 OCRBA: : StringSeq_var hosts = iioplnfo -> hosts();
13 QCRBA: : Ushort port = iioplnfo -> port();

14

15 cout << "host: " << host[0] << endl;

16 cout << "port: " << port << endl;

17 }

18 }

The list of registered acceptors is requested from the POA Manager.
The for loop iterates over all acceptors.

6-8 The info object for the acceptor is requested and narrowed to an IIOP
acceptor info object.
10 The i f block is only entered in case the info object really belongs to an IIOP
plug-in.
12-16 The hostname and port number are requested from the I10P acceptor info
object and printed on standard output.

369

CHAPTER 19 | The Open Communications Interface

370

2-12
13
15-16

The Java version is basically equivalent to the C++ code and looks as

follows:

1 // Java
2 comooc. Q. Acceptor[] acceptors =
poaManager . get _accept ors();

3

4 for(int i =0 ; i < acceptors.length ; i++)

5 {

6 com ooc. OO . Acceptorlnfo info = acceptors[i].get_info();
7 comooc. OO . || CP. Acceptorinfo iioplnfo =

8 com ooc. O . | | GP. Accept or | nf oHel per . narrow(i nfo);
9

10 if(iioplnfo !'= null)

11 {

12 String[] hosts = iioplnfo.hosts();

13 short port = Converter.port(iioplnfo.port());

14

15 Systemout. println("host: " + host[0]);

16 Systemout.println("port: " + port);

17 }

18 }

This is equivalent to the C++ version.

The converter class is used to get a port number in i nt format.

Like in the C++ version, the hostname and port number are printed on
standard output.

OCI Reference

Determining a Client’s IP Address

2-4

6-8

10

12-18

To determine the IP address of a client within a server method, the following
code can be used in a servant class method implementation:

1 /] C++
2 CORBA : (pj ect_var baseQurrent =
3 orb ->resolve_ initial _references("Od Qurrent");

4 Qd::Qurrent_var current =

Q0 ::Qurrent::_narrow baseCQurrent);

5

6 OC::Transportlinfo_var info = current ->
get_oci _transport_info();

7 OA::l11CP::Transportlnfo_var iioplnfo =

8 Q0 :: 11 CP:: Transport | nfo::_narrow(info);

9

10 if(!QORBA :is_nil (iioplnfo))

11 {

12 Q0 ::11CP::InetAddr renoteAddr =iioplnfo ->renote_addr();
13 QORBA: : Ushort renmotePort = iioplnfo -> remote_port();
14

15 cout << "Call from "

16 << renmoteAddr[0] << '.' << renoteAddr[1] << '.'
17 << renoteAddr[2] << '.' << renoteAddr[3]

18 << ":" << renotePort << endl;

19 }

The OCI current object is requested and narr owd to the correct
Qd:: Qurrent type.

The info object for the transport is requested and narr owd to an [IOP
transport info object.

The remainder of the example code is only executed if this was really an
IIOP transport info object.

The address and the port of the client calling this operation are obtained and
printed on standard output.

371

CHAPTER 19 | The Open Communications Interface

372

The Java version looks as follows:

1 // Java

2 org.ony. CORBA (bj ect baseCQurrent =

3 orb.resolve_initial _references("Cd Qurrent");
4 comooc. . Qurrent current =

5 com ooc. OO . Qurrent Hel per. narrow baseCurrent);
6

7

comooc. O . Transportinfo info =
current.get_oci _transport_info();
8 comooc.Od.|lICP. Transportinfo iioplnfo =

9 com ooc. OO . | | CP. Tr ansport | nf oHel per . nar r ow(basel nf o) ;
10

11 if(iioplnfo !'= null)

12 {

13 int[] renmoteAddr = Converter.addr(iioplnfo.renote_addr());
14 int renotePort = Converter. port(iioplnfo.renote port());
15

16 Systemout.printin("Call from " +

17 remoteAddr[0] + "." +

18 renoteAddr[1] + "." +

19 remoteAddr[2] + "." +

20 remoteAddr[3] + ":" + renotePort);

21}

2-11 This code is equivalent to the C++ version.
13-14 Again, the port number must be converted from short toint.
16-20 This is also equivalent to the C+ + version.

OCI Reference

Determining a Server’s IP Address

To determine the server's IP address and port that an object will attempt to
connect to, the following code can be used:

1 /] C++

2 COORBA :pject_var obj =... // Get an object reference somehow
3

4 (O::Connectorlnfo_var info = obj -> get_oci_connector_info();
5 QOd::11CP:Connectorlnfo_var iioplnfo =

6 Qd:: |11 CP:: Connectorlnfo:: _narrowinfo);

7

8 if(!CCORBA :is_nil(iioplnfo))

9 {

10 Q0 :: 11 CP::InetAddr_var renoteAddr = iioplnfo ->

renot eAddr () ;

11 QOORBA: : Ushort renmotePort = iioplnfo -> remote_port();

12

13 cout << "WI| connect to:

14 << renmoteAddr[0] << '.' << renoteAddr[2] << '.'

15 << renoteAddr[2] << '.' << renoteAddr[3]

16 << ":" << renotePort << endl;

17 }

4-6 Get the OCI connector info and narrow to an IIOP connector info
8 The i f block is only executed if this really was an [IOP connector info.
10-16 The address and port are obtained and displayed on standard output.

373

CHAPTER 19 | The Open Communications Interface

The Java version looks as follows:

1 // Java

2 org.ony. OCORBA. (hject obj = ... // Get an object reference
sonehow

3

4 org.ong. CCRBA portabl e. Chj ect| npl objlInpl =

5 (org. ong. CCRBA. port abl e. (oj ect | npl) obj ;

6 com ooc. CORBA Del egat e obj Del egate =

7 (com ooc. OCRBA. Del egat e) obj | npl . _get _del egat e();
8

9 comooc. . Connectorlnfo info =

10 obj Del egat e. get _oci _connector _i nfo();

11 comooc.Qd .|| CP. Connectorlnfo iioplnfo =

12 com ooc. OO . | | CP. Connect or | nf oHel per . nar row(i nf o) ;

13

14 if(iioplnfo !'= null)

15 {

16 int[] renmoteAddr = Converter.addr(iioplnfo.renote_addr());
17 int renotePort = Converter. port(iioplnfo.renote port());
18

19 Systemout. println("WIIl connect to: " +

20 remoteAddr[0] + "." +

21 renoteAddr[1] + "." +

22 renoteAddr[2] + "." +

23 remoteAddr[3] + ":" + renotePort);

24 }

4-7 We need to retrieve the Orbacus-specific Del egat e object so that we can get
the connector info.

9-12 Get the OCI connector info and narrow to an IIOP connector info.
14 The i f block is only entered if this really was an [IOP connector info.
16-23 The address and port are obtained and displayed on standard output.

374

The 1IOP OCI Plug-in

The 1IOP OCI Plug-in

Client Installation

Server Installation

In this section

The IIOP plug-in implements the Internet Inter-ORB Protocol as described in
[4]. By default, the ORB automatically installs the client and server (i.e.,
Connector Factory and Acceptor Factory) components of the [IOP plug-in,
and IIOP is the default protocol used by the ORB.

For configuration purposes, the identifier of the IIOP plug-in is i i op.

The client-side [IOP plug-in is installed as shown below:
ooc.oci.client=iiop [--no-keepalive]
The following options are supported:

--no- keepal i ve Disable the use of TCP keepalives.

The server-side IIOP plug-in is installed as shown below:

00cC. oci . server =i iop

This sections covers the following topics:

Endpoint Configuration page 376
Command-line Options page 378
Static Linking page 379

375

CHAPTER 19 | The Open Communications Interface

Endpoint Configuration

The configuration options for an IIOP endpoint are shown below:

iiop [--backlog N [--bind ADDR [--host ADDR, ADDR ...]]
[--nulti-profile] [--no-keepalive] [--numeric] [--port N

--backl og N Specifies the maximum length of the listen backlog queue.
Note that the operating system may have a smaller limit
which will override this value. If not specified, a default
value of 50 is used in Java, and 5 in C++.

--bind ADDR Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not
specified, the socket will be bound to all available
interfaces. This option is useful in situations where a host
has several network interfaces, but the server should only
listen for connections on a particular interface.

--host ADDR], ADDR, .. .] Specifies a list of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Using [IOP 1.0 or 1.1, multiple
addresses are represented as multiple tagged profiles. Using
IIOP 1.2, multiple addresses can be represented as either
multiple tagged profiles, or as a single tagged profile with a
tagged component for each additional address. The

--mul ti-profile option determines how multiple
addresses are represented in IIOP 1.2. If - - host is not
specified, the canonical hostname is used.

--mul ti-profile If set, multiple addresses in the - - host option are
represented as multiple tagged profiles in an IOR. By
default, multiple addresses are represented as a single
tagged profile (using the first address in the - - host list as
the primary address), with all additional addresses
represented as alternate addresses in tagged components. If
IIOP 1.0 or 1.1 is in use, multiple addresses are always
represented as multiple tagged profiles.

--no- keepal i ve Disable the use of TCP keepalives.

376

The 1IOP OCI Plug-in

--numeric If set, and if - - host is not specified, then the canonical
dotted decimal address is advertised in IORs. The default
behavior is to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If no
port is specified, an unused one will be selected
automatically by the operating system. Use this option if
you plan to publish an IOR (e.g., in a file, a naming service,
etc.) and you want that IOR to remain valid across
executions of your server. Without this option, your server is
likely to use a different port number each time the server is
executed. See Chapter 6 for more information.

377

CHAPTER 19 | The Open Communications Interface

Command-line Options

The IIOP plug-in supports the following command-line options:

-1 1 CPbackl og N Equivalent to the - - backl og endpoint option.
-11CPbind ADDR Equivalent to the - - bi nd endpoint option.
-11CPhost ADDR, ADDR .. .] Equivalent to the - - host endpoint option.
-1 1 CPnuneric Equivalent to the - - nuneri c endpoint option.
-11CPport N Equivalent to the - - port endpoint option.

See “Command-line Options and Endpoints” on page 85 for more
information on the behavior of command-line options.

378

The 1IOP OCI Plug-in

Static Linking

URL Support

There are no special requirements for linking the 1IOP plug-in statically in
C++, since the plug-in is part of the Orbacus core library.

The IIOP plug-in supports the standard i i op format for cor bal oc URLs, as
described in “corbaloc: URLs” on page 139.

379

CHAPTER 19 | The Open Communications Interface

The UDP OCI Plug-in

The UDP plug-in provides unreliable unicast and multicast functionality,
suitable for applications which can tolerate the potential for lost messages.
Only oneway operations are supported.

For configuration purposes, the identifier of the UDP plug-in is udp.

In this section This sections covers the following topics:
Client Installation page 381
Server Installation page 382
Static Linking page 386
URL Support page 387
Narrowing UDP Object References page 388

380

The UDP OCI Plug-in

Client Installation

The client-side UDP plug-in is installed as shown below:

ooc.oci.client=udp [--buffer-size N [--packet-delay MSEC
[--packet-size N [--no-loopback] [--ttl N [--trace N

The following options are supported:

--buffer-size N Sets the size of the socket’s send buffer. Note that this is
only a hint to the operating system. To determine the
actual size, use the --trace option. The default value is
operating-system dependent.

- - packet - del ay MSEC Specifies the delay in milliseconds between packets. In
some cases, sending packets too quickly can cause more
packets to be dropped. The default value is O.

- - packet - si ze N Sets the size of a packet in bytes. If necessary, the plug-in
splits a single request into multiple packets of the
specified size and reassembles them on the server. Note
that there are hard operating system limits on the size of a
datagram. The default size is 1472, which is the largest
portable size.

- - no- | oopback Specifies that loopback mode of the socket shall be
disabled for multicast communication. This prevents
sending multicast packets back to the local socket. For
Java this functionality is only available from JDK 1.4.0
on.

--ttl N Specifies the time-to-live value (0..255) of multicast
packets sent. System defaults apply if not specified.

--trace N Sets the level of diagnostic output. The default value is O.

Note: The - - no- 1 oopback option for multicast communication is to be
specified on the client side for Unix systems and on the server side for
Windows systems.

381

CHAPTER 19 | The Open Communications Interface

Server Installation

382

The server-side UDP plug-in is installed as shown below:

ooc. oci . server=udp [--trace N
The following options are supported:

--trace N

Sets the level of diagnostic output. The
default value is O.

The UDP OCI Plug-in

Endpoint Configuration

The configuration options for a UDP endpoint are shown below:
udp [--bind ADDR] [--buffer-size N [--host ADDR, ADDR ...]]

[--nessage-tinmeout SEQ [--multicast] [--no-Ioopback]
[--tt] N [--numeric] [--port N [--transport-tinmeout SEC

--bind ADDR

Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not
specified, the socket will be bound to all available
interfaces. This option is useful in situations where a host
has several network interfaces, but the server should only
listen for connections on a particular interface.

--buffer-size N

Sets the size of the socket’s receive buffer. Note that this
is only a hint to the operating system. To determine the
actual size, use the - -trace option when installing the
plug-in. The default value is operating-system dependent.

--host ADDR, ADDR ...]

Specifies a list of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Multiple addresses are represented
as multiple tagged profiles. If - - host is not specified, the
canonical hostname is used. This option must be specified
if multicast is used.

--message-ti meout SEC

Specifies the expiration time in seconds for incomplete
messages. Because the plug-in may fragment a request
into multiple packets, it is possible for some packets to be
lost. If no more packets have arrived for an incomplete
message after the specified timeout, the message is
discarded. The default value is 15 seconds.

--mul ti cast

Specifies that multicast should be used. If this option is
set, the --host and - - port options must also be
specified, and the host must be an IP address in the
multicast range (224.0.0.0 through 239.255.255.255).
By default, multicast is not used.

383

CHAPTER 19 | The Open Communications Interface

Command-line Options

384

- - no- | oopback

Specifies that loopback mode of the socket shall be
disabled in multicast mode. This prevents sending
multicast packets back to the local socket. For Java this
functionality is only available from JDK 1.4.0 on.

--ttl N Specifies the time-to-live value (0..255) of multicast
packets sent. System defaults apply if not specified.

--nuneric If set, and if - - host is not specified, then the canonical
dotted decimal address is advertised in IORs. The default
behavior is to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If

no port is specified, an unused one will be selected
automatically by the operating system. Use this option if
you plan to publish an IOR (e.g., in a file, a naming
service, etc.) and you want that IOR to remain valid
across executions of your server. Without this option, your
server is likely to use a different port number each time
the server is executed. This option must be specified if
multicast is used.

--transport-tinmeout N

Specifies the time in seconds after which inactive
“connections” are reaped. The default value is 60
seconds.

Note: When using multicast, all servers which belong to the same
“multicast group” must specify the same host address and port. The

- - no- | oopback option for multicast communication is to be specified on
the client side for Unix systems and on the server side for Windows

systems.

The UDP plug-in supports the following command-line options:

- UDPbi nd ADDR

Equivalent to the - - bi nd endpoint option.

- UbPhost ADDR, ADDR .. .]

Equivalent to the - - host endpoint option.

The UDP OCI Plug-in

- UDPmul ti cast Equivalent to the --mul ti cast endpoint option.
- UDPnureri ¢ Equivalent to the - - nuneri c endpoint option.
-WPport N Equivalent to the - - port endpoint option.

See “Command-line Options and Endpoints” on page 85 for more
information on the behavior of command-line options.

385

CHAPTER 19 | The Open Communications Interface

Static Linking

386

When statically a C++ application, an explicit reference must be made to
the UDP plug-in in order to include the plug-in's modules. Shown below is
the technique used by the sample programs in the udp/ deno subdirectory.
Note that the code below is enclosed in guard macros that are only
activated when statically linking. These macros are appropriate for both
Unix and Windows. First, extra include files are necessary:

#i f !defined(HAVE_SHARED) && !defined(CB DLL)

#include <GB/ Qd _init. h>

#i ncl ude <GB/ OQ _UDP_init. h>

#endi f

Next, the plug-in must be registered prior to calling CRB init():

#i f !defined(HAVE _SHARED) && !defi ned(CB_DLL)
/1
/1 Wen linking statically, we need to explicitly register
/1 the plug-in prior to GRB initialization
11
Qd : :register_plugin("udp", OJ_init_udp);
#endi f

The UDP OCI Plug-in

URL Support

The UDP plug-in supports cor bal oc URLs with the following protocol
syntax:

cor bal oc: udp: host : port/ obj ect - key

The components of the URL are as follows:

® udp - This selects the UDP plug-in.

® host - The hostname or IP address of the server.
port - The port on which the server is listening.
obj ect - key - A stringified object key.

387

CHAPTER 19 | The Open Communications Interface

Narrowing UDP Object References

388

When an application calls narrow(), it may result in the ORB making a
twoway call to the _i s_a() operation to determine whether narrow() should
succeed. However, twoway operations cannot be invoked on UDP object
references, therefore the application must take extra precautions.

It is only safe to use narrow() when

5. the object reference has a non-empty repository ID!, and
6. the repository ID matches the type being narrowed.

In all other cases, the ORB will attempt to invoke _i s_a().

Therefore, if an application cannot be sure that narrow() will succeed
without invoking_i s_a(), it should use the standard operation
unchecked_narrow() instead. This operation assumes that the application is
operating correctly and allows the narrow to succeed without using _is_a().

1. Object references created from cor bal oc URLs always have empty repository
IDs.

The Bi-directional OCI Plug-in

The Bi-directional OCI Plug-in

Note This Bidir implementation is deprecated with the addition of the CORBA 3
compliant version of BiDir GIOP. New users requiring BiDir functionality
should use the new BiDir GIOP interface as described in Chapter 16.

Overview The Orbacus Bi-directional plug-in offers a solution for distributed systems
where security restrictions interfere with a client's ability to receive
callbacks.

This capability is especially useful in two common situations:

®* Firewalls prevent the server from establishing a separate connection
back to the client

® Browser restrictions prevent an applet from accepting connections

Note: This plug-in does not implement the Bi-directional [IOP standard
defined by CORBA 2.3. This plug-in uses a proprietary protocol that is not
interoperable with other ORBs.

In this section This sections covers the following topics:
How Does it Work? page 390
Peers page 391
Client Installation page 392
Server Installation page 393
Endpoint Configuration page 394
Command-line Options page 395
Configuration Properties page 396
Static Linking page 397
URL Support page 398

389

CHAPTER 19 | The Open Communications Interface

How Does it Work?

390

The Bi-directional plug-in uses a layered design that theoretically enables
any connection-oriented OCI plug-in to support bi-directional functionality.

Initially however, only bi-directiona

| 11OP is supported.

In Figure 16, a server is shown that is capable of receiving both

bi-directional 1lIOP connections and

regular [IOP connections.

Server
OCl OcCl
Bi-dir IIOP
OCl
[IOP
Requests & Requests| Callbacks
Callbacks
ocl ocl
IIOP IIOP
OcCl .
Bi-dir Client B
Client A

Figure 16: Connection Requirements

Any callback requests from the Serv

er to Client A will travel down the

existing connection already established by the client. On the other hand, any

callback requests from the Server to
to be established from the server to

Client B require a new [IOP connection
the client.

The Bi-directional OCI Plug-in

Peers

The Bi-directional plug-in requires each peer in a bi-directional connection
to have a unique identifier, called the “peer ID". Currently, this identifier is
just a simple ISO-LATIN1 string. In [IOP terms, a unique endpoint is derived
from the hostname/port combination. However, since the Bi-directional OClI
plug-in has no knowledge of the underlying protocol, a separate
identification scheme is currently required, and must be provided by the
application. It is therefore the application's responsibility to ensure that each
server and client has a unique peer ID.

In 1IOP, object references can be made “persistent” (i.e., valid across
process restarts) by ensuring that the process is restarted on the same host
and port, and that the object keys in the object references will continue to
be valid. The same is true of peer IDs. If you want a bi-directional [IOP
object reference to remain valid across process restarts, you must use the
same peer ID, host, port and object key. Conversely, if an object reference is
transient, then the peer ID can vary along with the host, port and object key.

391

CHAPTER 19 | The Open Communications Interface

Client Installation

392

The client-side bi-directional plug-in is installed as shown below:
ooc.oci.client=ID [options], bidir --protocol ID
The following options are supported:

--protocol 1D Specifies the identifier of the underlying plug-in.
This parameter is required.

Because the bi-directional plug-in is layered on another plug-in, the
underlying plug-in must be installed first. For example, to install
bi-directional IIOP, the IIOP plug-in is installed first, and then the
bi-directional plug-in is installed:

ooc.oci.client=iiop, bidir --protocol iiop

Note that a bi-directional application generally needs to install both the
client- and server-side plug-ins.

The Bi-directional OCI Plug-in

Server Installation

The server-side bi-directional plug-in is installed as shown below:
ooc.oci.server=ID [options], bidir --protocol |ID
The following options are supported:

--protocol 1D Specifies the identifier of the underlying plug-in.
This parameter is required.

Because the bi-directional plug-in is layered on another plug-in, the
underlying plug-in must be installed first. For example, to install
bi-directional IIOP, the IIOP plug-in is installed first, and then the
bi-directional plug-in is installed:

ooc. oci . server=iiop, bidir --protocol iiop
Note that a bi-directional application generally needs to install both the
client- and server-side plug-ins.

393

CHAPTER 19 | The Open Communications Interface

Endpoint Configuration

394

There are two distinct types of bi-directional endpoints: one which creates a
“real” endpoint using the underlying plug-in, and one which only listens for
callbacks on existing, outgoing bi-directional connections. The latter type
will be referred to as a “callback” endpoint.

A server will typically create the first type of endpoint; a security-restricted
client will only create the second type, since listening on a real port is often
forbidden (or pointless, if a firewall prevents incoming connections).

The implication of creating a callback endpoint is that a server wishing to
call back to a client will only be able to do so if there is an existing
bi-directional connection from the client to the server. If not, the server will
receive a TRANSI ENT exception.
The configuration options for a bi-directional endpoint are shown below.
Note that the plug-in identifier for endpoint configuration purposes is formed
by combining “bi di r _" with the identifier of the underlying plug-in (e.g.,
bi dir_iiop).

bidir_ID[--callback] [options]
The only option supported by the bi-directional plug-in is - - cal | back, which
creates a callback endpoint. If this option is specified, it must be the only
option.
If - - cal I back is not the first and only option, all additional options are
passed to the underlying plug-in for processing. For example, a server would
typically use a configuration such as:

0oc. or b. oa. endpoi nt=bidir_iiop --port 7000
This creates a bi-directional 1lIOP endpoint on the static port 7000.

On the other hand, a bi-directional client would use the following
configuration:

ooc. or b. oa. endpoi nt =bi di r_iiop --call back
This creates a callback endpoint which can only receive requests when an
existing, outgoing bi-directional [IOP connection has been established from
this client to the server that wishes to make a callback.

The Bi-directional OCI Plug-in

Command-line Options

No command-line options are supported.

395

CHAPTER 19 | The Open Communications Interface

Configuration Properties

The bi-directional plug-in supports a single configuration property:

ooc. bi di r. peer Specifies the peer ID. If not specified, a
unique peer ID is used.

396

The Bi-directional OCI Plug-in

Static Linking

When statically a C++ application, an explicit reference must be made to
the bi-directional plug-in (as well as to the underlying plug-in) in order to
include the plug-in’s modules. Shown below is the technique used by the
sample programs in the bi di r/ deno subdirectory. Note that the code below
is enclosed in guard macros that are only activated when statically linking.

These macros are appropriate for both Unix and Windows. First, extra
include files are necessary:

#i f 1 defined(HAVE_SHARED) && !defined(CB DLL)
#include <B/ QA _init. h>

#include <GB/C0 _BiDr_init.h>

#endi f

Next, the plug-in must be registered prior to calling GRB_ i ni t():

#i f 1 defined(HAVE_SHARED) && !defined(CB _DLL)
11l
/1 Wen linking statically, we need to explicitly register
// the plug-in prior to CRBinitialization
/1l

Q0 ::register_plugin("bidir", OJ_init_bidir);
#endi f

397

CHAPTER 19 | The Open Communications Interface

URL Support

398

The bi-directional plug-in supports cor bal oc URLs with the following
protocol syntax:

cor bal oc: bi di r_| D: peer/ obj ect - key
corbal oc: bi dir_| D peer: [opti ons]/obj ect - key

The first form indicates a callback endpoint, whereas the second form
indicates an endpoint using an underlying plug-in.
The components of the URL are as follows:
® bidir_/D - This selects the bi-directional plug-in using the underlying
plug-in identified by I D.
® peer - The peer ID.
® options - Options specific to the underlying plug-in.
® object-key - A stringified object key.
For example:
corbal oc: bidir_iiop:dient/Foo
cor bal oc: bi di r_i i op: Server: t hehost : 9999/ Foo
The first example is a URL for a bi-directional [IOP callback endpoint. The
second example is a URL for a bi-directional IIOP endpoint on host t hehost
and port 9999.

CHAPTER 20

Exceptions and
Error Messages

399

CHAPTER 20 | Exceptions and Error Messages

CORBA System Exceptions

The CORBA specification defines the standard system exceptions shown in
the following table.

UNKNOAN

Unknown exception type

BAD_PARAM

An invalid parameter was passed

NO_MEMCRY

Failure to allocate dynamic memory

IMP LIMT

Implementation limit was violated

OOW FAI LURE

Communication failure

| N\V_CBIREF

Invalid object reference

NO_PERM SSI CN

The attempted operation was not permitted

| NTERNAL

Internal error in ORB

VARSHAL

Error marshalling a parameter or result

I'NITIALI ZE

Failure when initializing ORB

NO_| MPLEMENT

Operation implementation unavailable

BAD TYPECCDE

Bad typecode

BAD CPERATI ON

Invalid operation

NO_RESQURCES

Insufficient resources for a request

NO_RESPCNSE

Response to a request is not yet available

PERS| ST_STCRE

Persistent storage failure

BAD | NV_CRDER

Routine invocation out of order

TRANSI ENT

Transient failure, request can be reissued

FREE_MEM

Cannot free memory

| NV_| DENT

Invalid identifier syntax

I NV_FLAG

Invalid flag was specified

400

In this section

CORBA System Exceptions

| NTF_REPCS Error accessing interface repository
BAD OONTEXT Error processing context object
(CBJ_ADAPTER Failure detected by object adapter

DATA CONVERS| ON

Error in data conversion

CBJECT_NOT_EXI ST

Non-existent object, references should be
discarded

TRANSACTI ON_REQU RED

Active transaction context required

TRANSACTI ON_RCOLLEDBACK

Transaction has rolled back or is marked to be
rolled back

I NVALI D_TRANSACTI ON

Invalid transaction context

I NV_PQLI CY

Invalid Policy

QOCDESET_| NOOWPATI BLE

Incompatible client and server native code sets

REBI ND Thrown on a OBJECT_FORWARD or
LOCATION_FORWARD status, depending on
the RebindPolicy

TI MEQUT Time-to-live period was exceeded

TRANSACTI ON_UNAVAI LABLE

Transaction service context could not be
processed

TRANSACTI ON_MCDE

Mismatch between TransactionPolicy and
current transaction mode

BAD Q05

Object cannot support the required QOS

In the following subsections the minor exception codes are presented. Minor
codes that are Orbacus-specific are presented as MinorCodeName*, that is,
are tagged with the superscript “*'.

This section describes the following minor exception codes:

INITIALIZE Minor Exception Code page 403

UNKNOWN Minor Exception Code page 404

401

CHAPTER 20 | Exceptions and Error Messages

402

BAD_PARAM Minor Exception Code page 405
NO_MEMORY Minor Exception Code page 407
IMP_LIMIT Minor Exception Code page 408
COMM_FAILURE Minor Exception Code page 409
MARSHAL Minor Exception Code page 410
NO_IMPLEMENT Minor Exception Code page 412
NO_RESOURCES Minor Exception Code page 413
BAD_INV_ORDER Minor Exception Code page 414
TRANSIENT Minor Exception Code page 415
INTF_REPOS Minor Exception Code page 416
OBJECT_NOT_EXIST Minor Exception Code page 417
INV_POLICY Minor Exception Code page 418

CORBA System Exceptions

INITIALIZE Minor Exception Code

‘M nor CRBDest r oyed ‘ORB already destroyed

403

CHAPTER 20 | Exceptions and Error Messages

UNKNOWN Minor Exception Code

‘M nor UnknownUser Except i on ‘Unknown user exception

404

CORBA System Exceptions

BAD PARAM Minor Exception Code

M nor Val ueFact or yErr or

Failure to register, unregister or
lookup value factory

M nor Reposi t oryl dExi st s

Repository ID already exists in
Interface Repository

M nor NameExi st s

Name already used in Interface
Repository

M nor | nval i dCont ai ner

Target is not a valid container

M nor Narred ashl nl nher i t edCont ext

Name clash in inherited context

M nor BadAbst r act | nt er f aceType

Incorrect type for abstract interface

M nor BadSchermeNane

Bad scheme name

M nor BadAddr ess

Bad address

M nor BadScherneSpeci fi cPart

Bad scheme specific part

M nor Q her

Other

M nor | nval i dAbstract | nterfacel nheritance

Invalid abstract interface
inheritance

M nor I nval i dVal uel nherit ance

Invalid valuetype inheritance

M nor | nval i dSer vi ceCont ext | d

Invalid service context ID

M nor Cbj ect | sNul |

Object parameter to
obj ect _to_ior() is null

M nor | nval i dConponent | d

Invalid component ID

M norlnvalidProfileld

Invalid profile ID

M nor Dupl i cat ePol i cyType

Duplicate policy types

M nor Dupl i cat eDecl ar at or”

Duplicate declarator

M nor | nval i dVal ueModi fi er *

Invalid valuetype modifier

M nor Dupl i cat eVal uel ni t"

Duplicate valuetype initializer

M nor Abst r act Val uel ni t *

Abstract valuetype cannot have
initializer

405

CHAPTER 20 | Exceptions and Error Messages

M nor Dupl i cat eBaseType” Base type appears more than once

M nor Si ngl eThr eadedonl y* ORB does not support multiple
threads

M nor NaneRedef i ni ti onl nl mredi at eScope* Invalid name redefinition in an
immediate scope

M nor | nval i dval ueBoxType* Invalid type for valuebox

M nor | nval i dLocal | nt er f acel nheri t ance” Invalid local interface inheritance

M nor Const ant TypeM snat ch” Constant type doesn't match
definition

406

CORBA System Exceptions

NO_MEMORY Minor Exception Code

‘M nor Al | ocat i onFai | ure” ‘Memory allocation failure

407

CHAPTER 20 | Exceptions and Error Messages

IMP_LIMIT Minor Exception Code

408

M nor NoUsabl eProfil e

No usable profile in IOR

M nor MessageSi zeLi mi t ¥

Maximum message size exceeded

M nor Thr eadLi m t *

Can't create new thread

CORBA System Exceptions

COMM_FAILURE Minor Exception Code

*
M nor Recv

recv() failed

M nor Send*

send() failed

*
M nor RecvZer o

recv() returned zero

M nor SendZer o*

send() returned zero

M nor Socket *

socket () failed

M nor Set sockopt ¥

set sockopt () failed

M nor Get sockopt *

get sockopt () failed

M nor Bi nd*

bi nd() failed

M nor Li st en*

l'isten() failed

M nor Gonnect *

connect () failed

M nor Accept *

accept () failed

M nor Sel ect *

sel ect () failed

M nor Get host nane*

get host nane() failed

M nor Get host byname*

get host bynane() failed

M nor WBASt artup*

VBASt ar t up() failed

M nor WAAQ eanup*

VBAJ eanup() failed

M nor No@ O

Not a GIOP message

M nor Lhknovaessage*

Unknown GIOP message

M norWongMassage*

Wrong GIOP message

M nor MessageEr r or ¥

Got a message error message

M nor Fr agrment ¥

Invalid fragment message

M nor UnknownReq| d"

Unknown request ID

. *
M nor Ver si on

Incompatible GIOP version

M nor Pi pe*

Creation of pipe failed

M nor Set SoTi meout *

setSoTimeout() failed

409

CHAPTER 20 | Exceptions and Error Messages

MARSHAL Minor Exception Code

410

M nor NoVal ueFact ory

Unable to locate value factory

M nor DSI Resul t Bef or eCont ext

DSI result cannot be set before context

M nor DSl | nval i dPar anet er Li st

DSl argument list does not describe all
parameters

M nor Local (bj ect

Attempt to marshal local object

M nor Wehar Sent Byd i ent

wchar data sent by client on GIOP 1.0
connection

M nor Wehar Sent By Ser ver

wchar data returned by server on GIOP 1.0
connection

M nor ReadOver f | ow*

Input stream buffer overflow

M nor ReadBool eanQver f | ow*

Overflow while reading boolean

M nor ReadChar Over f | ow*

Overflow while reading char

M nor ReadWhar Over f | ow*

Overflow while reading wchar

M nor ReadCct et Over f | ow’

Overflow while reading octet

M nor ReadShor t Over f | ow’

Overflow while reading short

M nor ReadUShort Qver f | ow*

Overflow while reading ushort

M nor ReadLongOver f | ow'

Overflow while reading long

M nor ReadULongQver f | ow'

Overflow while reading ulong

M nor ReadLongLongQver f | ow'

Overflow while reading longlong

M nor ReadULongLongOrer f | ow'

Overflow while reading ulonglong

M nor ReadF! oat Over f | ow"

Overflow while reading float

M nor ReadDoubl eQver f | ow*

Overflow while reading double

M nor ReadLongDoubl eOver f | ow'

Overflow while reading longdouble

M nor ReadSt ri ngOver f | ow'

Overflow while reading string

M nor ReadSt ri ngZer oLengt h"

Encountered zero-length string

M nor ReadSt ri ngNul | Char

Encountered null char in string

CORBA System Exceptions

M nor ReadSt ri ngNoTer mi nat or ¥

Terminating null char missing in string

M nor ReadW&t ri ngOver f | ow'

Overflow while reading wstring

M nor ReadW&t ri ngZer oLengt h*

Encountered zero-length wstring

M nor ReadVW&t ri ngNul | Whar

Encountered null char in wstring

M nor Read\W\&t r i ngNoTer m nat or ¥

Terminating null char missing in wstring

M nor ReadFi xedOver f ow*

Overflow while reading fixed

M nor ReadFi xedl nval i d”

Invalid encoding for fixed value

M nor ReadBool eanArrayOver f | ow'

Overflow while reading boolean array

M nor ReadChar ArrayQver f | ow'

Overflow while reading char array

M nor ReadWohar Ar rayOver f | ow'

Overflow while reading wchar array

M nor ReadCct et ArrayQver f ow'

Overflow while reading octet array

M nor ReadShor t ArrayQver f | ow'

Overflow while reading short array

M nor ReadUShort ArrayQver f | ow'

Overflow while reading ushort array

M nor ReadLongAr rayOver f | ow'

Overflow while reading long array

M nor ReadU_ongAr rayOver f | ow'

Overflow while reading ulong array

M nor ReadLongLongAr r ayOver f | ow'

Overflow while reading longlong array

M nor ReadU_ongLongAr r ayOver f | ow'

Overflow while reading ulonglong array

M nor ReadFl oat ArrayQverf | ow'

Overflow while reading float array

M nor ReadDoubl eArrayQver f | ow'

Overflow while reading double array

M nor ReadLongDoubl eAr rayOver f | ow'

Overflow while reading longdouble array

M nor Readl nvTypeCodel ndi r ect i on”

Invalid type code indirection

M nor Wi t eQhj ect Local ¥

Attempt to marshal a locality-constrained
object

M nor LongDoubl eNot Suppor t ed”

Long double is not supported

411

CHAPTER 20 | Exceptions and Error Messages

NO_IMPLEMENT Minor Exception Code

412

M nor M ssi ngLocal Val uel npl errent at i on

Missing local value
implementation

M nor | nconpat i bl eVal uel npl errent at i onVer si on

Incompatible value
implementation version

M nor Not Suppor t edByLocal (bj ect

Operation not supported by local
object

M nor DI | Not Suppor t edByLocal (bj ect

DIl operation not supported by
local object

CORBA System Exceptions

NO_RESOURCES Minor Exception Code

M nor | nval i dBi ndi ng Portable Interceptor operation not supported in
binding

413

CHAPTER 20 | Exceptions and Error Messages

BAD_INV_ORDER Minor Exception Code

414

M nor DependencyPr event sDest ruct i on

Dependency exists in Interface Repository
prevents destruction of object

M nor | ndest ructi bl eChj ect

Attempt to destroy indestructible object in
Interface Repository

M nor Dest r oyVwul dBl ock

Operation would deadlock

M nor Shut downCal | ed

ORB has shutdown

M nor Dupl i cat eSend

Request has already been sent

M nor Ser vant Manager Al r eady Set

Servant manager already set

M nor | nval i dUseCr DS| Ar gunent s

Invalid use of DSI arguments

M nor | nval i dUsef DSI Cont ext

Invalid use of DSI context

M nor Request Al r eady Sent

DIl request has already been sent

M nor Request Not Sent

DIl request has not been sent yet

M nor ResponseAl r eadyRecei ved

DIl response has already been received

M nor Synchr onousRequest

Operation not supported on synchronous DII
request

M nor I nval i dPI Cal |

Invalid Portable Interceptor call

M nor Ser vi ceCont ext Exi st's

A service context already exists with the
given ID

M nor Pol i cyFact or yExi st's

A factory already exists for the given
PolicyType

M nor NoCr eat ePQA

Cannot create POA while undergoing
destruction

M nor BadConcModel

Invalid concurrency model

M nor CRBRunni ng*

CRB: :run() already called

CORBA System Exceptions

TRANSIENT Minor Exception Code

M nor Request D scar ded

Request has been discarded

M nor NoUsabl eProfil el nl (R

No usable profile in IOR

M nor Request Cancel | ed

Request has been cancelled

M nor PQADest r oyed

POA has been destroyed

M nor Connect Fai | ed”

Request has been cancelled

. *
M nor d oseConnect i on

Got a ‘close connection’ message

M nor Act i veConnect i onManagernent *

Active connection management closed
connection

M nor For cedShut down”

Forced connection shutdown because of
timeout

M nor Locat i onFor war dHopCount Exceeded”

Forced connection shutdown because of
timeout

415

CHAPTER 20 | Exceptions and Error Messages

INTF_REPOS Minor Exception Code

416

M nor Nol nt f Repos*

Interface Repository is not available

M nor LookupAmbi guous*

Search name for I ookup() is ambiguous

. *
M nor | I | egal Recur si on

Illegal Recursion

M nor NoEnt ry*

IFR is not populated with a required definition.

CORBA System Exceptions

OBJECT _NOT_EXIST Minor Exception Code

M nor Unr egi st er edVal ue

Attempt to pass unactivated (unregistered) value
as an object reference

M nor Cannot D spat ch

Unable to dispatch - servant or POA not found

417

CHAPTER 20 | Exceptions and Error Messages

INV_POLICY Minor Exception Code

418

M nor Cannot Reconci | ePol i cy

Cannot reconcile I0R policy with effective policy
override

M nor | nval i dPol i cyType

Invalid PolicyType

M nor NoPol i cyFact ory

No PolicyFactory for the PolicyType has been
registered

Non-Compliant Application Asserts

Non-Compliant Application Asserts

If the Orbacus library was compiled without the preprocessor definition
- DNDEBUG defined, Orbacus tries to detect common programming mistakes
that lead to non—-compliant CORBA applications. If such a mistake is found
an error messages like this will appear:

Non- conpl i ant application error detected:

Application used wong nenory allocation function
After detecting such an error, the Orbacus library dumps a core (Unix only)
and prints the file and line number where the error was detected. You can
use the core dump in order to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implementedThis is
not an application error. This error message appears if an application
attempts to use a feature that has not yet been implemented in Orbacus. In
this case the only thing that can be done is to wait for the next Orbacus
version that has this particular feature implemented.

Application used a deprecated feature that is not implemented anymoreThis
is not an application error. This error message appears if an application

attempts to use a feature that is no longer implemented in Orbacus. In this
case the only thing that can be done is to avoid using this particular feature.

Application used wrong memory allocation functionlf this message appears,
an incorrect memory allocation function has been used. A common mistake
that leads to this error is to use nmal | oc, strdup and free (or the newand
del et e operator) instead of OORBA: : string_al | oc and OORBA: : st ri ng_dup
and OCRBA: : string_free for string memory management.

Message

Description

was deallocated again

Memory that was already deallocated This message indicates multiple memory deallocations. For

example, if GCRBA : string_free is called twice on the
same string, this message will be displayed.

reference count of zero

Object was deleted without an object This message appears if an object was deleted by calling

del et e on its object reference. Never use the del ete
operator for that; use CORBA: : rel ease instead.

419

CHAPTER 20 | Exceptions and Error Messages

Message

Description

Object was already deleted (object
reference count was already zero)

This message appears if the number of r el ease operations
on an object reference is greater than the number of
_dupl i cat e operations.

Sequence length was greater than
maximum sequence length

This message indicates that the application tried to set the
length of a bounded sequence to a value greater than its
maximum length.

Index for sequence operator[1() or
remove() function was out of range

This message appears if the argument to the sequence
member functions operator[] or remove exceeds the
sequence length.

Buffer size not equal to sequence bound

This message indicates that the application attempted to
call al ocbuf on a bounded sequence with an argument not
equal to the sequence bound.

Null pointer was used to initialize T_var
type

This message indicates an attempt to initialize a _var type
with a null pointer.

operator->() was used on null pointer or
nil object reference

This message indicates an attempt to use operat or->on an
uninitialized _var type.

Application tried to dereference a null
pointer

Some CORBA _var types have built-in conversion operators
to a C++ reference type, i.e., some _var types for type T
have a conversion operator to T& This message appears if
an application uses this conversion operator on an
uninitialized _var type.

Null pointer was passed as string
parameter or return value

According to the IDL-to—C+ + mapping specification, no
null pointers may be passed as string parameters or return
values. This message appears if an application tries to do
so.

Null value passed as parameter

This message indicates that an application attempted to
pass a null value across an IDL interface.

420

Non-Compliant Application Asserts

Message

Description

Self assignment caused a dangling
pointer

This message appears if the content of a _var type is
assigned to itself. For example, the following code will lead
to this error message:

I/ Somehow get a pointer to a variable struct
AVari abl eStruct _var var = ...

AVariabl eStruct* ptr = var;

var = ptr;

A WN PR

This will result in a dangling pointer, because var will free
its own content on assignment.

Replacement of Any content by its own
value caused a dangling pointer

This message appears if there is an attempt to replace the
content of an Any by its own value. For example:

char* s = CCRBA: :string_dup("Hello, world!");
CCRBA: : Any any;

any <<= s;

4 any <<= s;

w N -

Inserting s into any twice will result in a dangling pointer,
because any will free its own value (which is s) on
assignment.

Invalid union discriminator type used

This message appears if the discriminator type argument to
QCRBA : CRB: : creat e_uni on_t ¢ denotes a type invalid for
union discriminators. Valid types have a CCRBA: : TCKi nd
that is one of QORBA: : tk_short, QCRBA : tk_ushort,

QORBA: : tk_| ong, OORBA: : t k_ul ong, OCRBA: : tk_char,
QCRBA: : t k_bool ean or CORBA: : t k_enum

Union discriminator mismatch

This message either indicates an attempt to set a union
discriminator to an invalid value with the _d modifier
function or the use of a wrong accessor function, i.e., an
accessor function that does not correspond to the type of
the union’s actual value.

Uninitialized union used

If this message appears, an uninitialized union (i.e., a union
that was created with the default constructor and that was
not set to any legal value) was used.

421

CHAPTER 20 | Exceptions and Error Messages

422

Message

Description

CORBA::Any::operator< < =(Exception*)
cannot be used with --no-type-codes

This message indicates that

QCRBA : Any: : oper at or <<=(Except i on*) was invoked for an
exception for which no TypeCode is available. That is, the
IDL defining the exception was compiled with the

- - no- t ypecodes option.

An operation on an unembedded
recursive TypeCode was invoked

If this message appears, an operation was invoked on a
recursive TypeCode that has not yet been embedded.

An already embedded TypeCode was
reused

This message indicates that an application attempted to
embed a recursive TypeCode that was already embedded.

LongDouble type is not supported on this
platform

This message appears when an application uses the
QCRBA : LongDoubl e type on a platform which does not
support this type.

APPENDIX A

Boot Manager
Reference

This appendix describes the interfaces for the Orbacus Boot

Manager.
In this appendix This appendix contains the following sections:
Interface OB::BootManager page 424
Interface OB::BootLocator page 426

423

CHAPTER A | Boot Manager Reference

Interface OB::BootManager

I ocal interface Boot Manager
Interface to manage bootstrapping of objects.

Exceptions NotFound
excepti on Not Found

{
b
This exception indicates that a binding has not been found.

AlreadyExists
exception Al readyExi sts

{
h
This exception indicates that a binding already exists.

Operations add_binding

voi d add_bi ndi ng(i n Portabl eServer:: (jectld oid,
in Chject obj)
rai ses(Al readyExi sts);

Add a new binding to the internal table.
Parameters:

oi d — The object id to bind.

obj — The object reference.

Raises:

Al readyExi sts — Thrown if binding already exists.

remove_binding

voi d renove_bi ndi ng(i n Portabl eServer:: (hjectld oid)
rai ses(Not Found) ;

Remove a binding from the internal table.
Parameters:

oi d — The object id to remove.

Raises:

Not Found — Thrown if no binding found.

424

Interface OB::BootManager

set_locator
voi d set | ocator(in BootLocator |ocator);

Set the BootLocator. The BootLocator is called when a binding for an object
id does not exist in the internal table.

Parameters:

I ocat or — The BootLocator reference.
See Also:

“Interface OB::BootLocator”

425

CHAPTER A | Boot Manager Reference

Interface OB::BootLocator

I ocal interface BootLocator
Interface used by BootManager to assist in locating objects.

See Also:
“Interface OB::BootManager”

Operations locate

voi d | ocate(in Portabl eServer:: Cojectld oid,
out (hject obj,
out bool ean add)
rai ses(Boot Manager : : Not Found) ;

Locate the object corresponding to the given object id.
Parameters:

oi d — The object id.

obj — The object reference to associate with the id.

add — Whether the binding should be added to the internal table.
Raises:

Not Found — Raised if no binding found.

426

In this appendix

APPENDIX B

Orbacus Policy
Reference

This appendix describes the Orbacus Policy interfaces.

This appendix contains the following sections:

Module OB page 428
Module OBPortableServer page 439
BiDirPolicy page 441

427

CHAPTER B | Orbacus Policy Reference

Module OB

Constants

428

CONNECTION_REUSE_POLICY_ID
const OCRBA: : Pol i cyType CONNECTI ON REUSE PCLI CY_I D = 1330577411,
This policy type identifies the connection reuse policy.

CONNECT_TIMEOUT_POLICY_ID
const QCRBA: : Pol i cyType GONNECT_TI MEQUT_PCLI CY_I D = 1330577416;
This policy type identifies the connect timeout policy.

INTERCEPTOR_POLICY_ID

const OCRBA: : Pol i cyType | NTERCEPTCR PCLI CY_|I D = 1330577415;
This policy type identifies the interceptor policy.
LOCATE_REQUEST_POLICY_ID

const OCRBA: : Pol i cyType LOCATE_REQUEST_PQLI CY_| D = 1330577418;
This policy type identifies the locate request policy.

LOCATION_TRANSPARENCY_POLICY_ID

const OCRBA: : Pol i cyType LOCATI ON_TRANSPARENCY PCLICY_ID =
1330577414,

This policy type identifies the location transparency policy.

LOCATION_TRANSPARENCY_RELAXED
const short LOCATI ON TRANSPARENCY RELAXED = 1,
The LOCATI ON_TRANSPARENCY_RELAXED LocationTransparencyPolicy value.

LOCATION_TRANSPARENCY_STRICT

const short LOCATI ON_TRANSPARENCY STRI CT = 0;

The LOCATI ON_TRANSPARENCY_STRI CT LocationTransparencyPolicy value.
PROTOCOL_POLICY_ID

const OCRBA: : Pol i cyType PROTOOCL_PCLI CY_| D = 1330577410;

This policy type identifies the protocol policy.
REQUEST_TIMEOUT_POLICY_ID

const OORBA: : Pol i cyType REQUEST TI MEQUT_PCLI CY_I D = 1330577417;
This policy type identifies the request timeout policy.

Structs

Module OB

RETRY_ALWAYS
const short RETRY_ALWAYS = 2;
The RETRY_ALWAYS RetryPolicy value.

RETRY_NEVER
const short RETRY_NEVER = 0;
The RETRY_NEVER RetryPolicy value.

RETRY_POLICY_ID
const OORBA: : Pol i cyType RETRY_PCLICY_I D = 1330577412;
This policy type identifies the retry policy.

RETRY_STRICT
const short RETRY_STRICT = 1;
The RETRY_STR CT RetryPolicy value.

TIMEOUT_POLICY_ID
const QCRBA: : Pol i cyType TI MEQUT_PCLI CY_I D = 1330577413;
This policy type identifies the timeout policy.

RetryAttributes

struct RetryAttributes
{

short node;
unsi gned long interval;
unsi gned | ong nax;
bool ean renot e;
b

The retry information

429

CHAPTER B | Orbacus Policy Reference

Interface OB::ConnectTimeoutPolicy

I ocal interface Connect Ti neout Pol i cy
inherits from GCORBA: : Pol i cy

The connect timeout policy. This policy can be used to specify a maximum
time limit for connection establishment.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value
readonly attribute unsigned | ong val ue;

If an object has a Connect Ti neout Pol i cy set and a connection cannot be
established after val ue milliseconds, a OORBA: : NO_RESPONSE exception is
raised. The default value is - 1, which means no timeout.

430

Module OB

Interface OB::ConnectionReusePolicy

Attributes

I ocal interface ConnectionReusePolicy
inherits from OORBA: : Pol i cy

The connection reuse policy. This policy determines whether connections
may be reused or are private to specific objects.

value

readonly attribute bool ean val ue;

If an object has a Connect i onReusePol i cy set with val ue set to FALSE, then
other object references will not be permitted to use connections made on
behalf of this object. If set to TRUE, then connections are shared. The default
value is TRUE.

431

CHAPTER B | Orbacus Policy Reference

Interface OB::InterceptorPolicy

Attributes

432

local interface InterceptorPolicy
inherits from GCORBA: : Pol i cy

The interceptor policy. This policy can be used to control whether the
client-side interceptors are called.

value

readonly attribute bool ean val ue;

If an object reference has an I nt er cept or Pol i cy set and val ue is FALSE
then any installed client-side interceptors are not called. Otherwise,
interceptors are called for each method invocation. The default value is
TRUE.

Module OB

Interface OB::LocateRequestPolicy

Attributes

I ocal interface LocateRequestPolicy
inherits from OORBA: : Pol i cy

The locate request policy. This policy can be used to specify whether the
ORB sends locate request messages.

value
readonly attribute bool ean val ue;

If an object has a Locat eRequest Pol i cy set to f al se then the ORB will not
send locate request messages for the object.

433

CHAPTER B | Orbacus Policy Reference

Interface OB::LocationTransparencyPolicy

I ocal interface LocationTransparencyPolicy

inherits from GCORBA: : Pol i cy

The location transparency policy. This policy is used to control how strict the
ORB is in enforcing location transparency. This is useful for performance
reasons.

Attributes value
readonly attribute short val ue;
LQOCATI ON_TRANSPARENCY_STR! CT ensures strict location transparency is
followed. LOCATI ON_TRANSPARENCY RELAXED relaxes the location
transparency guarantees for performance reasons. Specifically for collocated
method invocations, the dispatch concurrency model will be ignored, and
policy overrides are not removed. The default value is
LOCATI ON_TRANSPARENCY _RELAXED.

434

Module OB

Interface OB::ProtocolPolicy

Attributes

Operations

I ocal interface Protocol Policy
inherits from OORBA: : Pol i cy

The protocol policy. This policy specifies the order in which profiles should
be tried.

value

readonly attribute OO :: Pl uginldSeq val ue;

If a Protocol Policy is set, then the value specifies the list of plugins that
may be used. The profiles of an IOR will be used in the order specified by
this policy. If no profile in an IOR matches any of the plugins specified by
this policy, a OORBA: : TRANSI ENT exception will be raised. By default, the
ORB chooses the protocol to be used.

contains
bool ean contains(in GJ::Pluginldid);
Determines if this policy includes the given plugin id.

435

CHAPTER B | Orbacus Policy Reference

Interface OB::RequestTimeoutPolicy

I ocal interface RequestTi neout Policy
inherits from GCORBA: : Pol i cy

The request timeout policy. This policy can be used to specify a maximum
time limit for requests.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value
readonly attribute unsigned | ong val ue;

If an object has a Request Ti neout Pol i cy set and no response to a request is
available after val ue milliseconds, a OORBA: : NO_ RESPONSE exception is
raised. The default value is - 1, which means no timeout.

436

Module OB

Interface OB::RetryPolicy

Attributes

local interface RetryPolicy

inherits from OORBA: : Pol i cy

The retry policy. This policy is used to specify retry behavior after
communication failures (i.e., QCRBA: : TRANSI ENT and OCORBA: : COMM FAl LURE
exceptions).

retry_interval
readonly attribute unsigned long retry_interval;

retry_max
readonly attribute unsigned long retry_max;

retry_mode

readonly attribute short retry_node;

For retry_mode RETRY_NEVER indicates that requests should never be retried,
and the exception is re-thrown to the application. RETRY_STR CT will retry
once if the exception completion status is COMPLETED NO, in order to
guarantee at-most-once semantics. RETRY_ALWAYS will retry once, regardless
of the exception completion status. The default value is RETRY_STR CT.
retry_interval is the time in milliseconds between retries. The default is O.
retry_max is the maximum number of retries. The default is 1.

retry_renot e determines whether or not to retry on exceptions received
over-the-wire. The default is f al se: only retry on locally generated
exceptions. Note: Many TCP/IP stacks do not provide a reliable indication of
communication failure when sending smaller requests, therefore the failure
may not be detected until the ORB attempts to read the reply. In this case,
the ORB must assume that the remote end has received the request, in
order to guarantee at-most-once semantics for the request. The implication
is that when using the default setting of RETRY_STRI CT, most communication
failures will not cause a retry. This behavior can be relaxed using
RETRY_ALVAYS,

retry_remote
readonly attribute bool ean retry_renote;

437

CHAPTER B | Orbacus Policy Reference

Interface OB::TimeoutPolicy

Attributes

438

I ocal interface TinmeoutPolicy
inherits from GCORBA: : Pol i cy

The timeout policy. This policy can be used to specify the default timeout for
connection establishment and requests. If an object also has

Connect i onTi meout Pol i cy or Request Ti neout Pol i cy set, those values have
precedence.

See Also:
“Interface OB::ConnectTimeoutPolicy”
“Interface OB::RequestTimeoutPolicy”

value

readonly attribute unsigned | ong val ue;

If an object has a Ti meout Pol i cy set and a connection cannot be
established or no response to a request is available after val ue milliseconds,
a OORBA: : NO_RESPONSE exception is raised. The default value is - 1, which
means no timeout.

Module OBPortableServer

Module OBPortableServer

Constants INTERCEPTOR_CALL_POLICY_ID
const QOCRBA: : Pol i cyType | NTERCEPTCR CALL_PQLI CY_I D = 1330577667;
This policy type identifies the interceptor call policy.

439

CHAPTER B | Orbacus Policy Reference

Interface OBPortableServer::InterceptorCallPolicy

local interface InterceptorCallPolicy
inherits from GCORBA: : Pol i cy

The interceptor call policy. This policy controls whether the server-side
interceptors are called for a particular POA.

Attributes value
readonly attribute bool ean val ue;
The InterceptorCallPolicy value. If a POA has an I nt er cept or Cal | Pol i cy
set and val ue is FALSE then any installed server-side interceptors are not
called for requests on this POA. Otherwise, interceptors are called for each
request. The default value is TRUE.

440

BiDirPolicy

BiDirPolicy

Constants

Typedefs

BIDIRECTIONAL_POLICY_TYPE

const OCRBA: : Pol i cyType Bl DI RECTI CNAL_PQLI CY_TYPE = 37,

This policy type identifies the BiDirectional GIOP (CORBA 3 compliant)
protocol policy.

NORMAL
const Bidirectional PolicyVal ue NORVAL = O;
This value indicates normal (disabled) BiDir GIOP functionality.

BOTH
const Bidirectional PolicyVal ue BOTH = 1;
This value indicates enabled BiDir GIOP functionality.

typedef unsi gned short Bidirectional PolicyVal ue;

441

CHAPTER B | Orbacus Policy Reference

442

APPENDIX C

Reactor Reference

This appendix describes the Orbacus Reactor interfaces.

In this appendix This appendix contains the following section:

Module OB page 444

443

CHAPTER C | Reactor Reference

Module OB

Aliases Handle
typedef |ong Handl e;
An event handler's handle.

Mask
typedef |ong Mask;

An event handler's mask. The mask determines which events the event
handler is interested in.

TypeMask
typedef |ong TypeMask;

An event handler's type mask. The type mask determines which category
the event handler belongs to. A value of zero means no specific category.

Constants EventRead
const Mask EventRead = 1;
The mask for read events.

EventWrite
const Mask EventWite = 2;
The mask for write events.

TypeClient
const TypeMask Typedient = 1;
The type mask for client event handlers.

TypeServer
const TypeMask TypeServer = 2;
The type mask for server event handlers.

Native Types EventHandler
native EventHandl er;
An event handler is a native type.

444

Module OB

Interface OB::Reactor

Operations

I ocal interface Reactor
A generic Reactor interface.

register_handler

voi d register_handl er (in Event Handl er handl er,
in Mask handl er _nask,
in TypeMask type_nask,
in Handl e h);

Register an event handler with the Reactor, or change the registration of an
already registered event handler.

Parameters:

handl er — The event handler to register.

mask — The type of events the event handler is interested in.
t ype_mask — The category the event handler belongs to.
h — The event handler's handle.

unregister_handler

voi d unregi ster_handl er (i n Event Handl er handl er);
Remove an event handler from the Reactor.
Parameters:

handl er — The event handler to remove.

dispatch

bool ean di spatch(in TypeMask type_nask);

Dispatch events.

Parameters:

type_mask — If not zero, this operation will return once all registered event
handlers that match the type mask have unregistered.

Returns:

TRUE if all event handlers that match the type mask have unregistered, or
FALSE if event dispatching has been interrupted.

interrupt_dispatch

voi d interrupt_dispatch();

445

CHAPTER C | Reactor Reference

446

Interrupt event dispatching. After calling this operation, i nterrupt () will
return with FALSE.

dispatch_one_event

bool ean di spat ch_one_event (in | ong timeout);
Dispatch at least one event.

Parameters:

ti meout — The timeout in milliseconds. A negative value means no timeout,
i.e., the operation will not return before at least one event has been
dispatched. A zero timeout means that the operation will return immediately
if there is no event to dispatch.

Returns:
TRUE if at least one event has been dispatched, or FALSE otherwise.
event_ready

bool ean event _ready();
Check whether an event is available.

Returns:
TRLE if an event is ready, or FALSE otherwise.

APPENDIX D

Logger Reference

This appendix describes the Orbacus Logger interfaces.

In this appendix This appendix contains the following sections:
Interface OB::Logger page 448
Interface OB::WLogger page 449

447

CHAPTER D | Logger Reference

Interface OB::Logger

Operations

448

I ocal interface Logger
The Orbacus message logger interface.

info

void info(in string nsg);
Log an informational message.
Parameters:

msg — The message.

error

void error(in string nsg);
Log an error message.
Parameters:

msg — The error message.
warning

voi d warning(in string nmsg);
Log a warning message.
Parameters:

msg — The warning message.

trace

void trace(in string category,
in string nsg);

Log a trace message.
Parameters:

cat egory — The trace category.
msg — The trace message.

Interface OB::WLogger

Interface OB::WLogger

Operations

I ocal interface Wogger : Logger
The Orbacus message logger interface with support for wide strings.

winfo

void winfo(in wstring nsg);
Log an informational message.
Parameters:

msg — The message.

werror

void error(in wstring nsg);
Log an error message.
Parameters:

msg — The error message.
wwarning

voi d warning(in wstring nsg);
Log a warning message.
Parameters:

msg — The warning message.
wtrace

void trace(in wstring category,
in wstring nsg);

Log a trace message.
Parameters:

cat egory — The trace category.
msg — The trace message.

449

CHAPTER D | Logger Reference

450

In this appendix

APPENDIX E

Open
Communications
Interface
Reference

This appendix describes the interfaces for the Open
Communication Interface.

This appendix contains the following sections:

Module OCI page 452

Module OCI::[IOP page 487

451

CHAPTER E | Open Communications Interface Reference

Module OCI

Aliases

452

BufferSeq
typedef sequence<Buffer> Buffer Seq;
Alias for a sequence of buffers.

IOR
typedef ICP:: 1R ICR
Alias for an IOR.

Profileld
typedef ICGP::Profileld Profileld,
Alias for a profile id.

ProfileldSeq
typedef sequence<Profileld> Profil el dSeq;
Alias for a sequence of profile ids.

Pluginid
typedef string Pluginld;
Alias for a plugin id.

PluginldSeq
typedef sequence<Pl ugi nl d> Pl ugi nl dSeq;
Alias for a sequence of plugin ids.

ObjectKey
typedef CORBA:: Cct et Seq (bj ect Key;
Alias for an object key, which is a sequence of octets.

TaggedComponentSeq
typedef | CP:: TaggedConponent Seq TaggedConponent Seq;
Alias for a sequence of tagged components.

Handle
typedef |ong Handl e;
Alias for a system-specific handle type.

Constants

Module OCI

ProfilelnfoSeq
typedef sequence<Profil el nfo> Profil el nfoSeq;
Alias for a sequence of basic information about profiles.

ParamSeq
typedef sequence<string> Paranfeq;
Alias for a sequence of parameters.

CloseCBSeq
typedef sequence<d oseCB> O 0seCBSeq;
Alias for a sequence of close callback objects.

ConnectorSeq
typedef sequence<Connect or> Connect or Seq;
Alias for a sequence of Connectors.

ConnectCBSeq
typedef sequence<Connect CB> Connect CBSeq;
Alias for a sequence of connect callback objects.

ConFactorySeq
typedef sequence<ConFact ory> ConFact orySeq;
Alias for a sequence of Connector factories.

AcceptorSeq
typedef sequence<Accept or> Accept or Seq;
Alias for a sequence of Acceptors.

AcceptCBSeq
typedef sequence<Accept CB> Accept CBSeq;
Alias for a sequence of accept callback objects.

AccFactorySeq
typedef sequence<AccFactory> AccFact orySeq;
Alias for a sequence of AccFactory objects.

Version
const string Version = "1.0";

The OCI version. If an interface or implementation changes in an
incompatible way, this version will be changed.

453

CHAPTER E | Open Communications Interface Reference

Enums

Structs

Exceptions

454

SendReceiveMode
enum SendRecei veMode

{
Sendnl y,
Recei venl y,
SendRecei ve
b

Indicates the send/receive capabilities of an OCl component.

Profilelnfo
struct Profilelnfo
{
oj ect Key key;
octet major;
octet mnor;
Profileld id;
unsi gned | ong i ndex;
TaggedCornponent Seq conponent s;
b

Basic information about an IOR profile. Profiles for specific protocols contain
additional data. (For example, an IIOP profile also contains a hostname and
a port number.)

Members:
key — The object key.

maj or — The major version number of the ORB's protocol. (For example, the
major GIOP version, if the underlying ORB uses GIOP.)

m nor — The minor version number of the ORB's protocol. (For example, the
minor GIOP version, if the underlying ORB uses GIOP.)

i d — The id of the profile that contains this information.
i ndex — The position index of this profile in an IOR.

conponent s — A sequence of tagged components.

FactoryAlreadyExists
exception Fact oryAl readyExi sts

{

b
A factory with the given plugin id already exists.

Pl uginldid;

Module OCI

Members:
i d — The plugin id.

NoSuchFactory

exception NoSuchFactory
{

b
No factory with the given plugin id could be found.

Pluginldid;

Members:
i d — The plugin id.

InvalidParam
exception InvalidParam

{
}s

A parameter is invalid.

string reason;

Members:

reason — A description of the error.

455

CHAPTER E | Open Communications Interface Reference

Interface OCI::Buffer

Synopsis

Attributes

Operations

456

| ocal interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an

array of octets and a position counter, which determines how many octets

have already been sent or received. The IDL interface definition for Buffer is

incomplete and must be extended by the specific language mappings. For

example, the C++ mapping defines the following additional functions:

® (ctet* data(): Returns a C++ pointer to the first element of the array
of octets, which represents the buffer's contents.

® ctet* rest(): Similar to data(), this operation returns a C++
pointer, but to the n-th element of the array of octets with n being the
value of the position counter.

length
readonly attribute unsigned I ong | ength;
The buffer length.

pos
attribute unsigned | ong pos;

The position counter. Note that the buffer's length and the position counter
don't depend on each other. There are no restrictions on the values
permitted for the counter. This implies that it's even legal to set the counter
to values beyond the buffer's length.

advance

voi d advance(in unsigned |ong delta);
Increment the position counter.
Parameters:

del t a — The value to add to the position counter.

rest_length
unsi gned | ong rest_length();

Module OCI

Returns the rest length of the buffer. The rest length is the length minus the
position counter's value. If the value of the position counter exceeds the
buffer's length, the return value is undefined.

Returns:

The rest length.

is_full

bool ean is_full();

Checks if the buffer is full. The buffer is considered full if its length is equal
to the position counter's value.

Returns:

TRUE if the buffer is full, FALSE otherwise.

457

CHAPTER E | Open Communications Interface Reference

Interface OCI::Plugin

Synopsis local interface Plugin
The interface for a Plugin object, which is used to initialize an OCI plug-in.

Attributes id
readonly attribute Pluginld id,;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

Operations init_client
void init_client(in ParanBeq parans);
Initialize the client-side of the plug-in.
Parameters:
par ans — Plug-in specific parameters.
init_server
voi d init_server(in ParanBeq parans);
Initialize the server-side of the plug-in.
Parameters:

par ans — Plug-in specific parameters.

458

Module OCI

Interface OCI::Transport

Synopsis

Attributes

Operations

local interface Transport

The interface for a Transport object, which provides operations for sending
and receiving octet streams. In addition, it is possible to register callbacks

with the Transport object, which are invoked whenever data can be sent or
received without blocking.

See Also:
“Interface OCI::Connector”
“Interface OCI::Acceptor”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

mode
readonly attribute SendRecei veMdde node;
The send/receive capabilities of this Transport.

handle

readonly attribute Handl e handl e;

The “handle” for this Transport. The handle may only be used to determine
whether the Transport object is ready to send or to receive data, e.g., with
sel ect () on Unix-based operating systems. All other uses (e.g., calls to
read(), wite(), close()) are strictly non-compliant. A handle value of -1
indicates that the protocol plug-in does not support “selectable” Transports.

close
voi d cl ose();

Closes the Transport. After calling cl ose, no operations on this Transport
object and its associated Transportinfo object may be called. To ensure that
no messages get lost when cl ose is called, shut down should be called first.

459

CHAPTER E | Open Communications Interface Reference

460

Then dummy data should be read from the Transport, using one of the
recei ve operations, until either an exception is raised, or until connection
closure is detected. After that its safe to call cl ose, i.e., no messages can
get lost.

Raises:
QOWM FAI LURE — In case of an error.

shutdown
voi d shut down();

Shutdown the Transport. Upon a successful shutdown, threads blocking in
the recei ve operations will return or throw an exception. After calling
shut down, no operations on associated Transportinfo object may be called.
To fully close the Transport, cl ose must be called.

Raises:
QOOW FAI LURE — In case of an error.

receive

voi d receive(in Buffer buf,
i n bool ean bl ock);

Receives a buffer's contents.

Parameters:
buf — The buffer to fill.

bl ock — If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Raises:
OOW FAI LURE — In case of an error.

receive_detect

bool ean recei ve_detect (i n Buffer buf,
i n bool ean bl ock);

Similar to recei ve, but it signals a connection loss by returning FALSE
instead of raising COW FAI LURE.

Parameters:
buf — The buffer to fill.

bl ock — If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Returns:

Module OCI

FALSE if a connection loss is detected, TRUE otherwise.
Raises:
QOMM FAI LURE — In case of an error.

receive_timeout

voi d receive_timeout (in Buffer buf,
in unsigned long timeout);

Similar to recei ve, but it is possible to specify a timeout. On return the
caller can test whether there was a timeout by checking if the buffer has
been filled completely.

Parameters:
buf — The buffer to fill.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling recei ve(buf, FALSE).

Raises:
QOOWM FAI LURE — In case of an error.

receive_timeout_detect

bool ean receive_timeout _detect (in Buffer buf,
in unsigned [ong timeout);

Similar to recei ve_ti meout , but it signals a connection loss by returning
FALSE instead of raising COW FAI LURE.

Parameters:
buf — The buffer to fill.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling recei ve(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
Raises:

QOW FAl LURE — In case of an error.

send

voi d send(in Buffer buf,
i n bool ean bl ock);

Sends a buffer's contents.
Parameters:
buf — The buffer to send.

461

CHAPTER E | Open Communications Interface Reference

462

bl ock — If set to TRUE, the operation blocks until the buffer has completely
been sent. If set to FALSE, the operation sends as much of the buffer's data
as possible without blocking.

Raises:
QOW FAI LURE — In case of an error.

send_detect

bool ean send_det ect (i n Buf fer buf,
i n bool ean bl ock);

Similar to send, but it signals a connection loss by returning FALSE instead of
raising COW FAl LURE.

Parameters:

buf — The buffer to fill.

bl ock — If set to TRUE, the operation blocks until the entire buffer has been
sent. If set to FALSE, the operation sends as much of the buffer's data as
possible without blocking.

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
Raises:

OOW FAI LURE — In case of an error.

send_timeout

voi d send_timeout (in Buffer buf,
in unsigned | ong timeout);

Similar to send, but it is possible to specify a timeout. On return the caller
can test whether there was a timeout by checking if the buffer has been sent
completely.

Parameters:
buf — The buffer to send.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Raises:
COW FAI LURE — In case of an error.

send_timeout_detect

bool ean send_ti meout _detect (i n Buffer buf,
in unsigned | ong timeout);

Module OCI

Similar to send_ti neout , but it signals a connection loss by returning FALSE
instead of raising COW FAI LURE.

Parameters:
buf — The buffer to fill.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
Raises:

OOW FAI LURE — In case of an error.

get_info

Transportinfo get_info();

Returns the information object associated with the Transport.
Returns:

The Transport information object.

463

CHAPTER E | Open Communications Interface Reference

Interface OCI::Transportinfo

Synopsis local interface Transportlnfo
Information on an OCI Transport object. Objects of this type must be
narrowed to a Transport information object for a concrete protocol
implementation, for example to OO :: 11 CP: : Transport I nf o in case the
plug-in implements [1OP.

See Also:
“Interface OCl::Transport”

Attributes id
readonly attribute Pluginld id;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

connector_info

readonly attribute Connectorlnfo connector_info;

The Connectorlnfo object for the Connector that created the Transport object
that this Transportinfo object belongs to. If the Transport for this
Transportinfo was not created by a Connector, this attribute is set to the nil
object reference.

acceptor_info

readonly attribute Acceptorlnfo acceptor_info;

The Acceptorinfo object for the Acceptor that created the Transport object
that this Transportinfo object belongs to. If the Transport for this
Transportinfo was not created by an Acceptor, this attribute is set to the nil
object reference.

Operations describe
string describe();
Returns a human readable description of the transport.
Returns:

464

Module OCI

The description.

add_close_cb
voi d add_cl ose_cb(in d 0seCB cb);

Add a callback that is called before a connection is closed. If the callback
has already been registered, this method has no effect.

Parameters:
cb — The callback to add.
remove_close_cb

voi d renove_cl ose_cb(in 4 oseCB cb);

Remove a close callback. If the callback was not registered, this method has
no effect.

Parameters:

cb — The callback to remove.

465

CHAPTER E | Open Communications Interface Reference

Interface OCI::CloseCB

Synopsis local interface O oseCB
An interface for a close callback object.
See Also:
“Interface OCl::Transportinfo”

Operations close_cb
voi d close_cb(in TransportInfo transport_info);
Called before a connection is closed.
Parameters:

transport _i nf o — The Transportinfo for the new closeion.

466

Module OCI

Interface OCI::Connector

Synopsis

Attributes

Operations

local interface Connector

An interface for Connector objects. A Connector is used by CORBA clients to
initiate a connection to a server. It also provides operations for the
management of IOR profiles.

See Also:
“Interface OCl::ConFactory”
“Interface OCl::Transport”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

connect
Transport connect();

Used by CORBA clients to establish a connection to a CORBA server. It
returns a Transport object, which can be used for sending and receiving
octet streams to and from the server.

Returns:

The new Transport object.

Raises:

TRANSI ENT — If the server cannot be contacted.
OOWM FAI LURE — In case of other errors.
connect_timeout

Transport connect _timeout (in unsigned |ong timeout);

Similar to connect, but it is possible to specify a timeout. On return the
caller can test whether there was a timeout by checking whether a nil object
reference was returned.

467

CHAPTER E | Open Communications Interface Reference

468

Parameters:

ti meout — The timeout value in milliseconds.
Returns:

The new Transport object.

Raises:

TRANSI ENT — If the server cannot be contacted.
QOWM FAI LURE — In case of other errors.

get_usable_profiles

ProfilelnfoSeq get_usable profiles(in ICR ref,

in OORBA: : PolicyLi st policies);
From the given IOR and list of policies, get basic information about all
profiles for which this Connector can be used.

Parameters:

ref — The IOR from which the profiles are taken.
pol i ci es — The policies that must be satisfied.
Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that matches this Connector and the list of
policies.

equal

bool ean equal (i n Connector con);

Find out whether this Connector is equal to another Connector. Two
Connectors are considered equal if they are interchangeable.

Parameters:

con — The connector to compare with.

Returns:

TRUE if the Connectors are equal, FALSE otherwise.

get_info

ConnectorInfo get_info();

Returns the information object associated with the Connector.
Returns:

The Connector information object.

Module OCI

Interface OCI::Connectorinfo

Synopsis

Attributes

Operations

local interface Connectorlnfo

Information on a OCI Connector object. Objects of this type must be
narrowed to a Connector information object for a concrete protocol
implementation, for example to OO :: 11 CP: : Connect or I nf o in case the
plug-in implements 110P.

See Also:

“Interface OCI::Connector”

id

readonly attribute Pluginldid;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

describe

string describe();

Returns a human readable description of the transport.
Returns:

The description.

add_connect_cb

voi d add_connect _cbh(in Connect @B ch);

Add a callback that is called whenever a new connection is established. If
the callback has already been registered, this method has no effect.
Parameters:

cb — The callback to add.
remove_connect_cbh

voi d renove_connect _ch(in Connect B cb);

Remove a connect callback. If the callback was not registered, this method
has no effect.

469

CHAPTER E | Open Communications Interface Reference

Parameters:
cb — The callback to remove.

470

Module OCI

Interface OCI::ConnectCB

Synopsis

Operations

I ocal interface Connect CB
An interface for a connect callback object.

See Also:

“Interface OCI::Connectorlnfo”

connect_cb
voi d connect _cb(in TransportInfo transport_info);

Called after a new connection has been established. If the application
wishes to reject the connection GORBA: : NO PERM SSI ON may be raised.

Parameters:
transport _i nf o — The Transportinfo for the new connection.

471

CHAPTER E | Open Communications Interface Reference

Interface OCI::ConFactory

Synopsis I ocal interface ConFactory
A factory for Connector objects.
See Also:
“Interface OCI::Connector”

“Interface OCI::ConFactoryRegistry”

Attributes id
readonly attribute Pluginld id;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

Operations describe_profile
string describe_profile(in | O :TaggedProfile prof);
Returns a description of the given tagged profile.
Parameters:
prof — The tagged profile.
Returns:
The profile description.

create_connectors
Connect or Seq create_connectors(in ICR ref,

in CORBA: : PolicyList policies);
Returns a sequence of Connectors for a given IOR and a list of policies. The
sequence includes one or more Connectors for each IOR profile that
matches this Connector factory and satisfies the list of policies.

Parameters:

ref — The IOR for which Connectors are returned.
pol i ci es — The policies that must be satisfied.
Returns:

472

Module OCI

The sequence of Connectors.

equivalent

bool ean equi valent(in ICRiorl,
inlRior2);

Checks whether two IORs are equivalent, taking only profiles into account
matching this Connector factory.

Parameters:

i or1 — The first IOR to check for equivalence.

i or2 — The second IOR to check for equivalence.
Returns:

TRUE if the I0ORs are equivalent, FALSE otherwise.

hash

unsi gned I ong hash(in IR ref,
in unsigned | ong naxi mn);

Calculates a hash value for an IOR.

Parameters:

ref — The IOR to calculate a hash value for.

maxi mum— The maximum value of the hash value.

Returns:

The hash value.

get_info

ConFactorylnfo get_info();

Returns the information object associated with the Connector factory.
Returns:

The Connector factory information object.

473

CHAPTER E | Open Communications Interface Reference

Interface OCI::ConFactoryinfo

Synopsis

Attributes

Operations

474

| ocal interface ConFactorylnfo
Information on an OCI ConFactory object.
See Also:

“Interface OCl::ConFactory”

id

readonly attribute Pluginld id,;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

describe

string describe();

Returns a human readable description of the transport.
Returns:

The description.

add_connect_cb

voi d add_connect _cbh(in Connect CB ch);

Add a callback that is called whenever a new connection is established. If
the callback has already been registered, this method has no effect.
Parameters:

cb — The callback to add.
remove_connect_cbh

voi d renove_connect _ch(in Connect B cb);

Remove a connect callback. If the callback was not registered, this method
has no effect.

Parameters:
cb — The callback to remove.

Module OCI

Interface OCI::ConFactoryRegistry

Synopsis I ocal interface ConFactoryRegistry
A registry for Connector factories.
See Also:
“Interface OCI::Connector”

“Interface OCI::ConFactory”

Operations add_factory

voi d add_factory(in ConFactory factory)
rai ses(Fact or yAl r eadyExi sts);

Adds a Connector factory to the registry.

Parameters:

fact ory — The Connector factory to add.

Raises:

Fact or yAl r eadyExi st s — If a factory already exists with the same plugin id
as the given factory.

get_factory

ConFactory get_factory(in Pluginld id)
rai ses(NoSuchFact ory);

Returns the factory with the given plugin id.
Parameters:

i d — The plugin id.

Returns:

The Connector factory.

Raises:

NoSuchFact ory — If no factory was found with a matching plugin id.
get_factories

ConFactorySeq get_factories();

Returns all registered factories.

Returns:

The Connector factories.

475

CHAPTER E | Open Communications Interface Reference

Interface OCI::Acceptor

Synopsis

Attributes

Operations

476

I ocal interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to
accept client connection requests. It also provides operations for the
management of IOR profiles.

See Also:

“Interface OCl::AccFactoryRegistry”
“Interface OCl::AccFactory”
“Interface OCl::Transport”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

handle

readonly attribute Handl e handl e;

The “handle” for this Acceptor. Like with the handle for Transports, the
handle may only be used with operations like sel ect (). A handle value of
-1 indicates that the protocol plug-in does not support “selectable”
Transports.

close
voi d cl ose();

Closes the Acceptor. accept or |i sten may not be called after cl ose has
been called.

Raises:
COW FAI LURE — In case of an error.

shutdown
voi d shut down();

Module OCI

Shutdown the Acceptor. After shutdown, the socket will not listen to further
connection requests.

Raises:
QOMM FAI LURE — In case of an error.

listen
void listen();

Sets the acceptor up to listen for incoming connections. Until this method is
called on the acceptor, new connection requests should result in a
connection request failure.

Raises:

OOW FAI LURE — In case of an error.
accept

Transport accept (i n bool ean bl ock);

Used by CORBA servers to accept client connection requests. It returns a
Transport object, which can be used for sending and receiving octet streams
to and from the client.

Parameters:

bl ock — If set to TRUE, the operation blocks until a new connection has been
accepted. If set to FALSE, the operation returns a nil object reference if there
is no new connection ready to be accepted.

Returns:

The new Transport object.

Raises:

OOWM FAI LURE — In case of an error.
connect_self

Transport connect_sel f();

Connect to this acceptor. This operation can be used to unblock threads that
are blocking in accept .

Returns:

The new Transport object.

Raises:

TRANSI ENT — If the server cannot be contacted.
QOMM FAI LURE — In case of other errors.

477

CHAPTER E | Open Communications Interface Reference

478

add_profiles

voi d add_profiles(in Profilelnfo profile_info,
inout 1R ref);

Add new profiles that match this Acceptor to an I0R.

Parameters:

profile_info— The basic profile information to use for the new profiles.
ref — The IOR.

get_local_profiles
ProfilelnfoSeq get_local _profiles(in ICR ref);

From the given IOR, get basic information about all profiles for which are
local to this Acceptor.

Parameters:

ref — The IOR from which the profiles are taken.

Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that is local to the Acceptor.

get_info

Acceptorinfo get_info();

Returns the information object associated with the Acceptor.

Returns:

The Acceptor information object.

Module OCI

Interface OCI::Acceptorinfo

Synopsis

Attributes

Operations

| ocal interface Acceptorlnfo

Information on an OCI Acceptor object. Objects of this type must be
narrowed to an Acceptor information object for a concrete protocol
implementation, for example to OO :: 11 CP: : Acceptor I nf o in case the
plug-in implements 11OP.

See Also:
“Interface OCI::Acceptor”

id

readonly attribute Pluginldid;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

describe

string describe();

Returns a human readable description of the transport.
Returns:

The description.

add_accept_cb

voi d add_accept _cb(in Accept CB ch);

Add a callback that is called whenever a new connection is accepted. If the
callback has already been registered, this method has no effect.
Parameters:

cb — The callback to add.
remove_accept_cb
voi d renove_accept _cb(in Accept CB ch);

Remove an accept callback. If the callback was not registered, this method
has no effect.

479

CHAPTER E | Open Communications Interface Reference

Parameters:
cb — The callback to remove.

480

Module OCI

Interface OCl::AcceptCB

Synopsis

Operations

local interface AcceptCB
An interface for an accept callback object.

See Also:
“Interface OCI::AcceptorInfo”

accept_cb
voi d accept_ch(in Transportlnfo transport_info);

Called after a new connection has been accepted. If the application wishes
to reject the connection OCRBA: : NO_PERM SSI ON may be raised.

Parameters:
transport _i nf o — The Transportinfo for the new connection.

481

CHAPTER E | Open Communications Interface Reference

Interface OCI::AccFactory

Synopsis

Attributes

Operations

482

I ocal interface AccFactory

An interface for an AccFactory object, which is used by CORBA servers to
create Acceptors.

See Also:
“Interface OCI::Acceptor”
“Interface OCI::AccFactoryRegistry”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

create_acceptor

Accept or create_acceptor(in ParanBeq parans)
rai ses(Inval i dParanj;

Create an Acceptor using the given configuration parameters. Refer to the
plug-in documentation for a description of the configuration parameters
supported for a particular protocol.

Parameters:

par ans — The configuration parameters.

Returns:

The new Acceptor.

Raises:

I nval i dPar am— If any of the parameters are invalid.
change_key

voi d change_key(inout ICP::ICRior,
in (oj ectKey key);

Change the object-key in the IOR profile for this given protocol.

Module OCI

Parameters:

ior —The IOR

key — The new object key

get_info

AccFactorylnfo get_info();

Returns the information object associated with the Acceptor factory.

Returns:
The Acceptor

483

CHAPTER E | Open Communications Interface Reference

Interface OCI::AccFactorylnfo

Synopsis I ocal interface AccFactorylnfo
Information on an OCI AccFactory object.
See Also:
“Interface OCl::AccFactory”

Attributes id
readonly attribute Pluginld id,;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

Operations describe
string describe();
Returns a human readable description of the transport.
Returns:
The description.

484

Module OCI

Interface OCl::AccFactoryRegistry

Synopsis local interface AccFactoryRegistry
A registry for Acceptor factories.
See Also:
“Interface OCI::Acceptor”
“Interface OCl::AccFactory”

Operations add_factory

voi d add_factory(in AccFactory factory)
rai ses(Fact or yAl r eadyExi sts);

Adds an Acceptor factory to the registry.

Parameters:

fact ory — The Acceptor factory to add.

Raises:

Fact or yAl r eadyExi st s — If a factory already exists with the same plugin id
as the given factory.

get_factory

AccFactory get_factory(in Pluginld id)
rai ses(NoSuchFact ory);

Returns the factory with the given plugin id.
Parameters:

i d — The plugin id.

Returns:

The Acceptor factory.

Raises:

NoSuchFact ory — If no factory was found with a matching plugin id.
get_factories

AccFactorySeq get _factories();

Returns all registered factories.

Returns:

The Acceptor factories.

485

CHAPTER E | Open Communications Interface Reference

Interface OCI::Current

Synopsis

Operations

486

local interface Qurrent
inherits from QORBA : Qurrent

Interface to access Transport and Acceptor information objects related to the
current request.

get_oci_transport_info

TransportInfo get_oci _transport_info();

This method returns the Transport information object for the Transport used
to invoke the current request.

get_oci_acceptor_info

Acceptorinfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which
created the Transport used to invoke the current request.

Module OCI::1IOP

Module OCI::1IOP

This module contains interfaces to support the [IOP OCI plug-in.

Aliases InetAddr
typedef string |netAddr
Alias for an IP address. This alias will be used for address information from
the various information classes. It can be an IPv4 or IPv6 address string.

Constants PLUGIN_ID
const Pluginld PLUAN ID = "iiop";
The identifier for the <SmallCaps>ORBacus IIOP plug-in.

487

CHAPTER E | Open Communications Interface Reference

Interface OCI::l1IOP::Transportinfo

Synopsis local interface Transportlnfo
inherits fromQd:: Transport!|nfo

Information on an IIOP OCI Transport object.
See Also:

“Interface OCl::Transport”

“Interface OCl::Transportinfo”

Attributes addr
readonly attribute |net Addr addr;
The local IP address.

port
readonly attribute unsigned short port;
The local port.

remote_addr
readonly attribute | net Addr renote_addr;
The remote IP address.

remote_port
readonly attribute unsigned short renote_port;
The remote port.

488

Module OCI::110P

Interface OCI::1IOP::Connectorinfo

Synopsis

Attributes

I ocal interface Connectorlnfo
inherits fromQQd:: Connectorlnfo

Information on an IIOP OCI Connector object.
See Also:
“Interface OCI::Connector”

“Interface OCI::Connectorlnfo”

remote_addr
readonly attribute |netAddr renote_addr;
The remote IP address to which this connector connects.

remote_port
readonly attribute unsigned short remote_port;
The remote port to which this connector connects.

489

CHAPTER E | Open Communications Interface Reference

Interface OCI::1IOP::ConFactorylnfo

Synopsis

490

| ocal interface ConFactorylnfo
inherits fromQd :: ConFactoryl nfo

Information on an IIOP OCI Connector Factory object.
See Also:

“Interface OCl::ConFactory”

“Interface OCI::ConFactorylnfo”

Module OCI::110P

Interface OCI::11OP::Acceptorinfo

Synopsis

Attributes

| ocal interface Acceptorlnfo
inherits fromQd:: Acceptorlnfo

Information on an IIOP OCI Acceptor object.
See Also:

“Interface OCl::Acceptor”

“Interface OCI::Acceptorinfo”

hosts
readonly attribute OORBA : StringSeq hosts;
Hostnames used for creation of II0OP object references.

addr
readonly attribute |netAddr addr;
The local IP address on which this acceptor accepts.

port
readonly attribute unsigned short port;
The local port on which this acceptor accepts.

491

CHAPTER E | Open Communications Interface Reference

Interface OCI::11OP::AccFactorylnfo

Synopsis I ocal interface AccFactorylnfo
inherits fromQd :: AccFactorylnfo

Information on an IIOP OCI Acceptor Factory object.

492

APPENDIX F

Orbacus Balancer
Reference

This appendix describes the interfaces for the Orbacus

Balancer.
In this appendix This appendix contains the following sections:
Module LoadBalancing page 494
Module LoadBalancing::Util page 505

493

CHAPTER F | Orbacus Balancer Reference

Module LoadBalancing

The definitions in this module provide the interface of the Orbacus Balancer.

Aliases Groupld
typedef string G oupld;
A load balanced group ID.

GroupldSeq
typedef sequence<Q@ oupl d> G oupl dSeq;
A sequence of load balanced group IDs.

Memberld
typedef string Menberld;
A member ID.

MemberldSeq
typedef sequence<Menber | d> Menber | dSeq;
A sequence of member IDs.

Objectld
typedef Portablelnterceptor::Cbjectld (bjectld,
An object ID.

PropertyName
typedef string PropertyNane;
A load balancing strategy configuration property name.

PropertyValue

typedef any PropertyVal ue;

A load balancing strategy configuration property value.
PropertySeq

typedef sequence<Property> PropertySeq;

A sequence of load balancing strategy configuration properties.

PropertyErrorSeq
typedef sequence<PropertyError> PropertyErrorSeq;
A sequence of load balancing strategy configuration property errors.

494

Constants

Module LoadBalancing

MemberDataSeq
typedef sequence<Menber Dat a> Menber Dat aSeq;
A sequence of member data.

TolerancePropertyValue
typedef unsi gned | ong Tol erancePropertyVal ue;
The tolerance load balancing strategy property value. The default value is O.

LoadPerClientPropertyType

typedef unsi gned | ong LoadPer d i ent PropertyType;

The load-per-client load balancing strategy property value. The default value
is 0.

RejectPropertyValue

typedef unsi gned | ong Rej ect PropertyVal ue;

The reject-load load balancing strategy property value. The default value is
0, meaning no rejections.

DampeningMultiplierPropertyValue
typedef float Danmpeni ngMul tiplierPropertyVal ue;

The dampening-multiplier load balancing strategy property value. The
default value is 0, which disables dampening.

CriticalLoadPropertyValue
typedef unsigned |ong Citical LoadPropertyVal ue;

The critical-load load balancing strategy property value. The default value is
0, which disables re-balancing.

MEMBER_POLICY_ID

const OCRBA : Pol i cyType MEMBER PCLICY_| D = 1000;
This policy type identifies the member policy.
TolerancePropertyName

const string Tol erancePropertyNane = "tol erance";

The tolerance load balancing strategy property name. Members with a load
difference that is less than tolerance are considered to have the same load.

LoadPerClientPropertyName
const string LoadPerdient PropertyName = "l oad-per-client";

495

CHAPTER F | Orbacus Balancer Reference

Enums

Structs

496

The load-per-client load balancing strategy property name. The
load-per-client property is an estimate of the load produced by a client.

RejectLoadPropertyName

const string RejectlLoadPropertyName = "reject-I|oad";

The reject-load load balancing strategy property name. Only members with
loads less than reject-load are selected.

DampeningMultiplierPropertyName
const string Danpeni ngMil ti pli erPropertyName =

"danpeni ng-nul tiplier";
The dampening-multiplier load balancing strategy property name. A
dampening technique is used to smooth out spikes that may occur in the
reported loads of members. The load of a member is calculated using the
dampening-multiplier property as follows:
load = mult * old_load + (1 - nmult) * new | oad
where mul t is the dampening-multiplier property value. The
dampening-multiplier property must be greater than or equal to O and less
than 1.

CriticalLoadPropertyName

const string Critical LoadPropertyName = "critical -1 oad";

The critical-load load balancing strategy property name. Members with
loads greater than or equal to the critical-load are re-balanced.

PropertyErrorCode

enum Pr oper t yEr r or Code
{ BAD PRCPERTY,
BAD VALUE
h
This enumeration contains the various load balancing strategy configuration
property error codes.

Property

struct Property
{

Pr opert yNane nane;
PropertyVal ue val ue;

}

Exceptions

A load balancing strategy configuration property.

PropertyError
struct PropertyError

{

Pr opertyNane nane;

Pr opert yEr r or Code code;

}

A load balancing strategy configuration property error.

MemberData

struct Menber Dat a

{
Menber | d nenber _i d;
LoadAl ert alert;

}s

The member data.

MemberPolicyValue

struct Menber Pol i cyVal ue
{
G oupld group_id;
Menber | d nenber _i d;
b
The member policy value.

Module LoadBalancing

MemberExists

exception MenberExists

{
}

A MemberExists exception indicates that a member with the specified id is

already exists in the load balanced group.

MemberNotFound

exception Menber Not Found
{
b

A MemberNotFound exception indicates that the specified member does not

exist in the load balanced group.

GroupExists
exception G oupExists

{

497

CHAPTER F | Orbacus Balancer Reference

498

h
A GroupExists exception indicates that a load balanced group with the
specified id already exists.

GroupNotFound

exception G oupNot Found

{

h

A GroupNotFound exception indicates that the specified load balanced
group does not exist.

StrategyNotFound
exception StrategyNot Found

{

h

A StrategyNotFound exception indicates that the specified strategy is not
supported by the Balancer.

StrategyNotAdaptive

exception StrategyNot Adaptive

{

b

A StrategyNotAdaptive exception indicates that the strategy is not an
adaptive strategy and does not require load updates.

InvalidProperties
exception InvalidProperties

{

b
An InvalidProperties exception indicates that specified properties were not
valid and could not be used to create the strategy.

PropertyErrorSeq error;

Module LoadBalancing

Interface LoadBalancing::LoadAlert

interface LoadAl ert

Implemented by a server that wishes to receive load alerts (a signal to
redirect requests back to the Balancer).

Operations alert
void alert();
Redirect the next request back to the Balancer.

499

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Strategy

interface Strategy
Used to choose the next member to service a new client connection. The
Balancer provides several implementations of the Strategy interface.

Operations get_name
string get_nane();
Retrieve the name of the strategy.

get_properties
PropertySeq get _properties();
Get the property set of the strategy.

adjust
voi d adj ust (i n Menber Dat aSeq nenbers);
Update the members.

get_next

Menber 1 d get _next ()
r ai ses(Menber Not Found) ;

Get an un-loaded member.

push_load

voi d push_| oad(i n Menber|d nenber_id,
i n unsi gned | ong | oad)
rai ses(Menber Not Found,
Strat egyNot Adapti ve) ;

Update the load of a member.

destroy
voi d destroy();
Destroy the strategy.

500

Module LoadBalancing

Interface LoadBalancing::StrategyProxy

Operations

interface StrategyProxy
Acts as a proxy for the load balancing strategy.

get_name
string get_nane();
Retrieve the name of the strategy.

get_properties
PropertySeq get _properties();
Get the property set of the strategy.

push_load

voi d push_| oad(in Menber|d menber_id,
i n unsigned | ong | oad)
rai ses(Menber Not Found,
Strat egyNot Adapti ve) ;

Update the load of a member.

501

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Group

Operations

502

interface G oup
Represents a load balanced group.

get_id
Goupld get_id();
Get the id of the load balanced group.

get_ior

Chbj ect get_ior(in string repository_id,
in hjectld oid);

Get an IOR for use by a client of this load balanced group.

get_strategy proxy
Strat egyProxy get_strategy_proxy();
Get the strategy proxy of the load balanced group.

set_strategy

voi d set_strategy(in string nane,
in PropertySeq properties)
rai ses(Strat egyNot Found,
I nval i dProperties);

Use the specified built-in load balancing strategy.

set_custom_strategy
voi d set_customstrategy(in Strategy the_strategy);
Use the given custom load balancing strategy.

add_member

voi d add_rnenber (i n Menber | d nenber _i d)
rai ses(Menber Exi sts);

Add a member to the load balanced group.

remove_member

voi d renove_nenber (i n Menber | d nmenber _i d)
rai ses(Menber Not Found) ;

Remove a member of the load balanced group.

set_load_alert
voi d set_|oad_al ert(in Menberld nenber_id,

in LoadAlert alert)
r ai ses(Menber Not Found) ;

Set the LoadAlert object for a member.

list_members
Menber |1 dSeq | i st_nenbers();
Enumerate the members.

destroy
voi d destroy();
Destroy the load balanced group.

Module LoadBalancing

503

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::GroupFactory

Operations

504

interface G oupFactory
Used to create, destroy and retrieve load balanced groups.

create

Qoup create(in Goupld group_id)
rai ses(Q oupExi sts);

Create a new load balanced group with the given id.

get

QG oup get(in Goupld group_id)
rai ses(G oupNot Found) ;

Get the load balanced group with the given id.
list

Qoupl dSeq list();

List the set of existing load balanced groups.

shutdown
voi d shut down();
Shutdown the Balancer.

Module LoadBalancing:: Util

Module LoadBalancing:: Util

The definitions in this module provide the interface for the Orbacus Balancer
utility objects that are provided by the Balancer. These utility objects can be

used to implement the features required by load balanced servers that use
adaptive load balancing.

505

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Util::LoadAlert

local interface LoadAl ert
Interface to manage load alerts sent by the Balancer.

Operations alert
void alert();
Forward the next request to the Balancer.
get_alert_expire
unsigned long get _alert_expire();

Retrieve the alert expire time.

set_alert_expire
voi d set_alert_expire(in unsigned long nmllis);
Set the alert expire time.

506

Module LoadBalancing:: Util

Interface LoadBalancing::Util::LoadCalculator

I ocal interface LoadCal cul ator

Interface for the calculation of the server load.

The LoadCalculator is used by the LoadUpdater to calculate the current
load of the server (which will be used as the load of each member registered
with the LoadUpdater). The implementation provided by the Balancer
calculates the load based on the number of active requests since the last
invocation of cal cul at e_| oad() .

See Also:

“Interface LoadBalancing::Util::LoadUpdater”

Operations calculate_load
unsi gned | ong cal cul ate_| oad();
Calculate the load.

507

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Util::LoadUpdater

Operations

508

I ocal interface LoadUpdat er
Interface to manage load updates sent to the Balancer.

At regular intervals (set by the update frequency) the LoadUpdater gets the
load from the LoadCalculator and pushes it to the load balanced group of
each registered member.

See Also:

“Interface LoadBalancing::Util::LoadCalculator”

get_update_frequency
unsi gned | ong get _updat e_frequency();
Retrieve the load push frequency.

set_update_frequency
voi d set_updat e_frequency(in unsigned long nmllis);
Set the load push frequency.

set_load_calculator
voi d set_| oad_cal cul ator (i n LoadCal cul ator calc);
Set the load calculator.

register_member

voi d register_menber(in Menberld nenber_id,
in Goupld group_id)
rai ses(Q@ oupNot Found) ;

Register a load balanced group member.

unregister_member

voi d unregi ster_nenber (in Menberld nenber _id,
in Goupld group_id);

Unregister a load balanced group member.

Orbacus
Bibliography

(5]

[10]

Buschman, F., et al. 1996. Pattern-Oriented Software
Architecture: A System of Patterns. New York: Wiley.

Gamma, E., et al. 1994. Design Patterns. Reading, MA:
Addison-Wesley

Henning, M., and S. Vinoski. 1999. Advanced CORBA
Programming with C++. Reading, MA: Addison-Wesley.

Object Management Group. 1999. The Common Object
Request Broker: Architecture and Specification. Revision
2.3.1. ftp://www.omg.org/pub/docs/formal/99-10-07.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. C++ Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-45.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. IDL/Java Language
Mapping. ftp://www.omg.org/pub/docs/formal/99-07-53.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. Portable Interceptors.
ftp://ftp.omg.org/pub/docs/orbos/99-12-02.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1998. CORBA Messaging.
ftp://ftp.omg.org/pub/docs/orbos/98-05-06.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1998. CORBAservices: Common

Object Services Specification.
ftp://www.omg.org/pub/docs/formal/98-12-09.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. Naming Service
Specification. ftp://ftp.omg.org/pub/docs/ptc/99-12-03.pdf.
Framingham, MA: Object Management Group.

509

CHAPTER G |

510

[11]

[12]

[13]

[14]

IONA Technologies, Inc. 2001. JThreads/C+ +.
http://www.orbacus.com/jtc/. Waltham, MA: IONA
Technologies, Inc.

IONA Technologies, Inc. 2001. JThreads/C+ + User’s Manual.
Waltham, MA: IONA Technologies, Inc.

IONA Technologies, Inc. 2001. Orbacus.
http://www.orbacus.com/ob/. Waltham, MA: IONA
Technologies, Inc.

Schmidt, D. C. 1995. “Reactor: An Object Behavioral
Pattern for Concurrent Event Demultiplexing and Event
Handler Dispatching.” In Pattern Languages of Program
Design, ed. James O. Coplien and Douglas C. Schmidt.
Reading, MA: Addison-Wesley.

Part ||

FreeSSL

In this part This part contains the following chapters:
Using FreeSSL for Orbacus page 513
Extending the ‘Hello World" Application page 529
FSSL Definitions page 559
Toolkits Supported by FSSL page 561
FSSL Reference page 563
FSSL Bibliography page 573

CHAPTER 1

Using FreeSSL for
Orbacus

This chapter describes the FreeSSL plug-in, which enables
secure communications using the Orbacus ORB in both Java

and C++.
In this chapter This chapter contains the following sections:
What is SSL? page 514
Installation page 517
Endpoint Configuration page 519
Command-Line Options page 520
Static Linking page 521
URL Support page b22
Contexts page 523

513

CHAPTER 1 | Using FreeSSL for Orbacus

What is SSL?

Overview

How Does It Work?

514

The Secure Sockets Layer (SSL) protocol, developed by Netscape
Communications Corporation, provides communications privacy over a
network. It is designed to prevent eavesdropping, tampering, and message
forgery. The FreeSSL plug-in enables secure communications using the
Orbacus ORB in both Java and C++. The plug-in supports SSLv3 as
defined in [11.

SSL uses symmetric cryptography for data communication (e.g., DES). In
symmetric cryptography, both parties use the same key to encrypt and
decrypt data. This is different than asymmetric cryptography, in which
different keys are used for encryption and decryption. The advantage of
using symmetric cryptography for securing message traffic is that it operates
much faster than asymmetric cryptography, thereby minimizing the
overhead incurred by the use of a secure communication protocol.

Asymmetric cryptography, also known as public key cryptography (e.g.,
RSA, DSS), is still used in the SSL protocol for authentication and key
exchange. Using public key cryptography, each party has an associated
public and private key. Data encrypted with the public key can only be
decrypted with the private key, and vice versa. This allows a party to prove
its identity by encrypting the data with its private key. As no other party has
access to the private key, the data must have been sent by the true party.

Each peer is authenticated using an X.509 certificate [4]. Generally, a
certificate will contain the user's name and public key and is signed by a
trustworthy entity, the so-called Certificate Authority (CA).

Usually a chain of X.509 certificates are presented. The certificate at the
head of the chain is the peer's certificate. Each certificate is signed by the
next certificate in the chain. The certificate at the end of the chain is
self-signed, and is generally the certificate of the Certificate Authority itself.

A certificate has an associated private key and passphrase. Without the
private key is it not possible to use a certificate to prove identity. The
passphrase protects the private key and is used to decrypt the private key at
runtime.

What is SSL?

Given a certificate, there must be some logic to determine whether this
certificate is trusted. This is typically done against some certificate authority.
A certificate authority is an organization that is responsible for issuing
certificates to individuals. The choice of trusted certificate authorities is
something that is best left up to the application. For instance, a company
may issue certificates to all of their employees and only trust one certificate
authority certificate.

The generation and signing of certificates is beyond the scope of this
document. For the C++ plug-in please see [5], for the Java plug-in using
iSaSiLk see [6].

The SSL protocol ensures that the connection between communicating
parties is reliable. The integrity of the message data is verified using a keyed
Message Authentication Code (MAC). The sender of a message uses a
secure, one-way hash function (e.g., SHA, MD5) to compute a unique MAC
for the message. The receiver uses the same function to compute its own
MAC, and then compares what it computed against the MAC computed by
the sender. This means that corrupted or deliberately changed messages
can be detected because the two MACs will not match.

Cipher Suites A cipher suite [1] defines: The public key algorithm used for peer
authentication and key exchange. The symmetric algorithm used for data
encryption. The secure hash function for MAC computation. During the
initial handshake, the client offers its set of supported cipher suites in its
preferred order. The server responds by selecting one of the suites, or raising
a handshake failure if they have none in common.

The following table summarizes the algorithms used by each cipher suite for

key exchange, symmetric cryptography, and MAC calculation. Note that the

SSL plug-in only supports the RSA and ADH suites.

Table 1: Supported Cipher Suites

Name Key Alg Symmetric Alg | MAC Calc

FSSL_RSA_EXPORT_WITH_NULL_MD5 RSA None MD5
FSSL_RSA_EXPORT_WITH_NULL_SHA RSA None SHA
FSSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 (40 bits) MD5
FSSL_RSA WITH RC4 128 MD5 RSA RC4 (128 bits) | MD5

515

CHAPTER 1 | Using FreeSSL for Orbacus

516

Table 1: Supported Cipher Suites
Name Key Alg Symmetric Alg MAC Calc
FSSL_RSA WITH_RC4 128 SHA RSA RC4 (128 bits) | SHA
FSSL_RSA_EXPORT WITH RC2_CBC 40 MD5 RSA RC2 (40 bits) MD5
FSSL RSA_WITH_IDEA CBC_SHA RSA IDEA (128 bits) | SHA
FSSL RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES (40 bits) SHA
FSSL RSA_WITH_DES CBC SHA RSA DES (56 bits) SHA
FSSL_RSA WITH_3DES EDE CBC_SHA RSA DES (168 bits) | SHA
FSSL_DHE RSA EXPORT WITH DES40 CBC SHA | RSA DES (40 bits) SHA
FSSL_DHE RSA WITH _DES CBC_SHA RSA DES (56 bits) SHA
FSSL DHE RSA_WITH_3DES EDE_CBC_SHA RSA DES (168 bits) | SHA
FSSL DHE DSS_EXPORT_WITH_DES40 CBC _SHA | DSS DES (40 bits) SHA
FSSL DHE DSS WITH_DES CBC _SHA DSS DES (56 bits) SHA
FSSL_DHE DSS WITH _3DES EDE _CBC_SHA DSS DES (168 bits) | SHA
FSSL_DH_anon_EXPORT WITH_RC4 40 MD5 ADH RC4 (40 bits) MD5
FSSL_DH_anon WITH _RC4 128 MD5 ADH RC4 (128 bits) | MD5
FSSL DH_anon_EXPORT_WITH_DES40 CBC _SHA ADH DES (40 bits) SHA
FSSL DH_anon WITH_DES CBC_SHA ADH DES (56 bits) SHA
FSSL DH_anon WITH_3DES EDE_CBC_SHA ADH DES (168 bits) | SHA

Note: Not all algorithms are supported in JSSE

Installation

Installation

Plug-in Installation

Client Installation

The FSSL plug-in is an implementation of the Orbacus Open
Communications Interface (OCI) and is installed at runtime through
configuration. For more general information on Orbacus configuration and
the OCI please see the Orbacus User Guide.

The client side FSSL plug-in is installed as follows:

ooc.oci.client=fssliop [--seed FILE] [--backend IMPL] [--trace N
The following options are supported:

--seed FILE

FreeSSL for C++ only. If specified, FreeSSL will use
the contents of the file filename as random data to
seed the OpenSSL (PRNG) Psuedo Random Number
Generator. This may be necessary if the operating
system doesn't have its own random data generator.
(usually / dev/ r andom If no random data generator is
found, and this property is not specified, FreeSSL
will use a generic seeding algorithm.

--backend | MPL

FreeSSL for Java only. The Java version supports
multiple third-party SSL toolkits which are identified
to the plug-in during installation. Support for
different third party SSL toolkits is provided through
multiple back-end libraries where each library
includes an implementation of the FSSLImpl
interface. The - - backend option accepts the name of
the class implementing the FSSLImpl interface. By
default the IAIK toolkit is used.

Please see Appendix B for information on the
supported SSL toolkits and the related back-end
library. In this manual we will assume that the IAIK
toolkit is being used.

--trace N

Sets the level of diagnostic output generated by the
plug-in itself, and vendor-specific information from
the underlying SSL toolkit. The default value is O.

517

CHAPTER 1 | Using FreeSSL for Orbacus

Server Installation The server side FSSL plug-in is installed as shown below:
ooc. oci . server =fssl i op
Note that FSSL servers must also install the client side plug-in.

518

Endpoint Configuration

Endpoint Configuration

Options The configuration options for an FSSL endpoint are shown below:

fssliop [--backlog N [--bind ADDR [--host ADDR, ADDR, ...]]
[--nureric] [--port N

--backl og N Specifies the length of the queue for
incoming connection requests. Note that
the operating system may override this
setting if the value exceeds the maximum
allowed.

--bind ADDR Specifies the hostname or dotted decimal
address of the network interface on which
to bind the socket. If not specified, the
POA Manager will bind its socket to all
available network interfaces. This property
is useful in situations where a host has
several network interfaces, but the POA
Manager should only listen for connections
on a particular interface.

--host ADDR], ADDR, . ..] Specifies a list of one or more hostnames
and/or dotted decimal addresses
representing the addresses that should be
advertised in IORs.

--nurreric If set, and if --host is not specified, then
the canonical dotted decimal address is
advertised in IORs. The default behavior is
to use the canonical hostname, if possible.

--port N Specifies the port number on which to
bind the socket. If no port is specified the
operating system selects an unused port
automatically.

519

CHAPTER 1 | Using FreeSSL for Orbacus

Command-Line Options

520

The FreeSSL plug-in defines the following command line options for both
the C++ and the Java version of the plug-in:

- FSSLbackl og N

Equivalent to the --backlog endpoint
option.

- FSSLbi nd ADDR

Equivalent to the --bind endpoint
option.

-FSSLhost ADDR] , ADDR . . .]

Equivalent to the --host endpoint
option.

- FSSLnuneri ¢ Equivalent to the --numeric endpoint
option.
-FSSLport N Equivalent to the --port endpoint option.

Static Linking

Static Linking

When statically linking a C++ application an explicit reference must be
made to the FSSL plug-in in order to include the plug-in's modules. Shown
below is the technique used by the sample programs in the fssl/demo
subdirectory. Note that the code below is enclosed in guard macros that are
only activated when statically linking. These macros are appropriate for both
Unix and Windows. First, extra include files are necessary:

#if !defined(HAVE_SHARED) && !defined(FSSL_DLL)
#include <GB/ Q0 _init.h>

#i ncl ude <FSSL/ OO _FSSLICP_init. h>

#endi f

Next, the plug-in nust be registered prior tocalling CRB_init():
#if !defined(HAVE_SHARED) && !defined(FSSL_DLL)

/1

/1 Wen linking statically, we need to explicitly register the
// plug-in prior to CRB initialization

/1l
Q0 ::register_plugin("fssliop", O _init_fssliop);
#endi f

521

CHAPTER 1 | Using FreeSSL for Orbacus

URL Support

522

The FSSL plug-in supports corbaloc URLs with the following protocol

syntax:

cor bal oc: f ssl i op: host : port/ obj ect - key
The components of the URL are as follows:

fssliop This selects the FSSL plug-in.

host The hostname or IP address of the server.
port The port on which the server is listening.
obj ect - key A stringified object key.

Contexts

Contexts

What is a Context?

Context Creation

A context comprises three pieces of information: identity, trust decision, and
a set of cipher suites. This information is necessary to establish an SSL
connection from a client to a server and to allow a server to accept new SSL

connections from clients. For anonymous communications only the set of
cipher suites is necessary.

Contexts are managed via a context manager. A reference to the context
manager is obtained by resolving the FSSLContextManager initial reference.
To create a new context FSSL: : Manager : : cr eat e_cont ext is called. This
returns the ID of the newly created context.

[l C++
FSSL:: Context I D id = fssl Manager -> create_cont ext (
nyChai n, nyKey, nyPassPhrase, nyDecider, nyQ phers);

/1 Java
int id = fssl Manager. create_cont ext (
nyChai n, nyKey, nyPassPhrase, nyDecider, nyQ phers);

Contexts can also be created using a PKCS12 certificate file which contains
a certificate chain and private key(s). To create a new context from a
PKCS12 file, FSSL: : Manager : : creat e_pkcs12_cont ext is called.

[l C++

FSSL:: ContextI D id = fssl Manager -> create_pkcsl2 context (
pkcs12_certificate, nyPassPhrase, nyDecider, nyQ phers);

/1 Java

int id = fssl Manager. create pkcsl12 context (pkcs12 certificate,
nyPassPhrase, nyDecider, nyQ phers);

To destroy a context call FSSL: : Manager : : dest roy_cont ext . Applications
should be careful not to destroy contexts that are currently in use.

[l C++
f ssl Manager -> destroy_context(id);

523

CHAPTER 1 | Using FreeSSL for Orbacus

/1 Java
f ssl Manager . destroy_cont ext (i d);

Certificates New X.509 certificates are created using the operation

FSSL: : Manager: : create_certificate. An octet sequence containing a
DER-encoded certificate should be passed as an argument.

/] C++
FSSL:: Certificate_var nyCertificate =
fssl Manager -> create_certificate(data);

/1 Javat++
comooc. FSSL. Certificate nyCertificate =
fssl Manager. create certificate(data);

Since reading certificate data from a file is a typical use-case a helper

method FSSL: : 1 oad_fi | e is provided. This takes a file name as the
argument and returns an octet sequence.

[l C++
FSSL:: Cctet Seq_var data = FSSL::load file("nycert.der");

/1 Java
byte[] data = comooc. FSSL. FSSL. | oad_file("nycert.der");

Handling certificate data from a PKCS12 certificate file differs from DER
certificate files. Data from the PKCS12 files is loaded directly into an octet
sequence using FSSL::load_file and passed as a parameter to

FSSL: : Manager : : creat e_pkcs12_cont ext .

/] C++

FSSL: : Cct et Seq_var pkcsl2 data = FSSL::load file("cert.pl2");
FSSL:: ContextI D id = fssl Manager -> create_pkcsl2_cont ext (
pkcs12_dat a, nyPassPhrase, nyDecider, nyd phers);

/1 Java

byte[] pkcsl2 data = comooc. FSSL. FSSL. | oad file("cert.pl2");
int id = fssl Manager. create_pkcsl12_cont ext (pkcs12_dat a,
nyPassPhrase, nyDeci der, nyQ phers);

524

Passphrase

Cipher Suites

Contexts

The passphrase is an octet sequence. Again a typical use-case is that the
passphrase is a string, therefore a helper method
FSSL_string_t o_PassPhrase is provided.

/] C++
FSSL: : PassPhrase_var nyPassphrase =
FSSL: :string_to_PassPhrase("foobar");

/1l Java
byte[] nyPassphrase =
com ooc. FSSL. FSSL. st ri ng_t o_PassPhrase("foobar");

The context creation method is passed a sequence of cipher suite identifiers.
A common use-case is to allow all non-anonymous ciphers. Therefore a
helper method FSSL: : get _non_export _ci phers() is provided.

[l C++
FSSL: : A pher Seq_var ciphers = FSSL:: get _non_export _ci phers();

/1 Java
int[] ciphers = comooc. FSSL. FSSL. get _non_export _ci phers();

Three other helper methods are also provided.

FSSL: : get _export _ci phers() returns a sequence of all export RSA cipher

suites (ciphers using keys that are less than 56 bits),

FSSL: : get _RSA ci phers() returns a sequence of all RSA RSA cipher suites,
FSSL: : get _DSS ci phers() returns a sequence of all DSS DSS cipher suites,
and FSSL_get ADH_ciphers returns a sequence of all ADH cipher suites.

If none of these helper methods supplies the desired functionality it is
possible to manually construct a sequence of the cipher suites as follows:

[l C++

FSSL: : A pher Seq ci phers(2);

ci phers. | ength(2);

ci phers[0] = FSSL:: RSA WTH RC4_128 MX;
ci pher s[1] FSSL: : RSA WTH RC4_128 SHA

525

CHAPTER 1 | Using FreeSSL for Orbacus

Trust Decision

526

/1 Java
com ooc. FSSL. G pher[] ciphers =
{
com ooc. FSSL. d pher. RSA WTH RCA_128 M. val ue,
com ooc. FSSL. G pher. RSA WTH RC4A_128 SHA val ue,
I

The application itself must be responsible for a determination of whether a
certificate chain is trusted or not. To do this the application should provide
an implementation of the TrustDecider interface.

interface Trust Deci der

{

bool ean is_trusted(in CertificateSeq chain);

Ik

The is_trusted method is called when each new connection is established or
accepted. The trust decider can assume that the provided certificate chain is
valid and good. That means that each certificate in the chain is signed by
the next certificate and the last is self signed. If true is returned then the
chain is trusted, and the connection may continue. If false is returned then
the connection is rejected.

Contexts

This example trust decider only trusts those certificates directly signed by
some mythical certificate authority CA-X.

[l C++

class M/Trust Decider : public FSSL:: Trust Deci der
{

/1

/Il CA-X certificate

/1l

FSSL:: Certificate_var cert_;

publ i c:
M/ Tr ust Deci der (FSSL: : Manager _ptr fssl Manager)

{
FSSL:: Cctet Seq_var data = FSSL::load_fil e("cax.der");
cert = fssl Manager -> create certificate(data);

}

virtual OORBA: : Bool ean
is_trusted(const FSSL::CertificateSeq& chain)

i f(chain.length() == 2)

return chain[1] -> is_signed_by(cert_);
return fal se;

527

CHAPTER 1 | Using FreeSSL for Orbacus

528

/1 Java

final class M/TrustDeci der extends com ooc. CORBA Local (bj ect
i mpl ements com ooc. FSSL. Tr ust Deci der

{

/1l

[/l CA-Xcertificate

/1l

comooc. FSSL. Certificate cert_;

M/Tr ust Deci der (com ooc. FSSL. Manager fssl Manager)
{

cert _ = fssl Manager.create creatificate(
comooc. FSSL. FSSL. | oad_fil e("cax. der"));
}
publ i ¢ bool

is_trusted(comooc. FSSL. Certificate[] chain)

i f(chain.length == 2)
return chain[i].is_signed by(cert_);
return fal se;

CHAPTER 2

Extending the
‘Hello World’

Application

In order to demonstrate how to use the FreeSSL plug-in, the
standard "Hello World" application included with Orbacus in
the subdirectory demo/hello will be modified. The complete
source code for this example is included with the FreeSSL
distribution in the directory fssl/demo/hello.

In this chapter This chapter contains the following sections:
Server Side Usage page 530
Client Side Usage page 534
Complete Example page 540

529

CHAPTER 2 | Extending the ‘Hello World’ Application

Server Side Usage

Setting Identity A server application must provide its identity using a context.

[l C++
/1
/1 Load the certificate chain
/1l
FSSL:: CertificateSeq nyCerts(2);
nyCerts.length(2);
nyCerts[0] = fssl Manager -> create_certificate(
FSSL:: Cct et Seq_var (FSSL: : 1 oad _fil e("server.der")));

nyCerts[1] = fssl Manager -> create_certificate(
FSSL:: Cct et Seq_var (FSSL: : 1 oad _fil e("CAcert.der")));

Il
/Il Oreate a new context with this certificate chain
/1
FSSL:: Context I D id = fssl Manager -> create_context (

nyCerts,

FSSL: : Cct et Seq_var (FSSL: : | oadFi | e("server key. der")),

FSSL: : PassPhrase_var (FSSL: : stri ng_t o_PassPhrase("foobar")),
nyTr ust Deci der,

FSSL: : A pher Seq_var (FSSL: : get _RSA ci phers()));

530

Server Side Usage

/1 Java

/1

// Load the certificate chain

/1l

comooc. FSSL. Certificate[] nyCerts =
new com ooc. FSSL. Certificate[2];

nyCerts[0] = fssl Manager.create_certificate(
comooc. FSSL. FSSL. | oad file("server.der"));

nyCerts[1] = fssl Manager.create_certificate(
comooc. FSSL. FSSL. | oad _file("ca.der"));

/1l

/I Oreate the server context

/1l

int id = fssl Manager. create_cont ext (

nyCerts,

com ooc. FSSL. FSSL. | oad_fi | e("serverkey. der"),
com ooc. FSSL. FSSL. string_t o_PassPhrase("foobar"),
nyTr ust Deci der,

com ooc. FSSL. FSSL. get _RSA ci phers());

This example defines the certificate chain for the server. The server's X.509
certificate will be obtained from the file server.der. This certificate is
authenticated by the certificate in the file CAcert.der. The private key of the
server's certificate is contained in the file serverkey.der and is decrypted
using the passphrase foobar. In a real application it wouldn't be prudent to
store the certificate's passphrase in plain text. Typically the pass-phrase
should be requested from the user.

Once a context has been created, the next step is to call
FSSL::create_poa_manager to initialize the server side of the FreeSSL
connection. You can configure the RootPOA's POAManager simply by
creating a POAManager name 'RootPOAManager'. Keep in mind that this
step must be done prior to resolving the 'RootPOA" initial reference,
otherwise the RootPOAManager will have already been created with the
default configuration. The third and fourth arguments to
FSSL::create_poa_manager are the reference to the FSSL::Manager and a

531

CHAPTER 2 | Extending the ‘Hello World’ Application

Determining Peer Identity

532

ContextID which should be associated with the POAManager to be created.
The associated ContextID identifies the SSL identity the server will use when
establishing connections.

[l C++

Port abl eSer ver : : POAMVanager _var poaManager =
FSSL: : creat e_poa_nanager (

" Root PQAManager ", orb, fssl Manager, id, props);

/1 Java

or g. ony. Port abl eSer ver . PQAManager poaManager =
com ooc. FSSL. FSSL. cr eat e_poa_nanager (

" Root PQAManager ", orb, fssl Manager, id, props);

The FSSL::Current interface can be used if the server needs to determine the
identity of the peer that invoked the current operation.

First a reference to the FSSL::Current object must be retrieved.

[l C++
FSSL:: Qurrent _var fsslQurrent =
FSSL:: Qurrent: :_narrow CCRBA: : (bj ect _var (
orb -> resolve_initial_references("FSSLQurrent")));

/1l Java

com ooc. FSSL. Qurrent fsslQurrent =

com ooc. FSSL. Qur r ent Hel per . nar r ow
orb.resolve_initial_references("FSSLQurrent"));

Now the FSSL::Current:get peer_certificate_chain can be used to determine
the identity of the caller:

Il C+
FSSL:: CertificateSeg_var chain =
fsslQurrent -> get_peer _certificate_chain();

/1 Java
com ooc. FSSL. X509Certificate[] chain =
fssl Qurrent. get Peer Certifi cat eChai n();

Server Side Usage

The negotiated cipher can also be determined using the FSSL: : Qurrent
object.

/] C++
FSSL: : G pher ci pher = fsslQurrent -> get_peer_cipher();

/1 Java
com ooc. FSSL. A pher ci pher = fssl Qurrent. get_peer_ci pher();

If this method is called outside of the context of a server method invocation
a FSSL: : Qurrent : : NoCont ext exception is raised. If the current connection
is not an SSL connection then a FSSL: : Qurrent : : NoPeer exception is
raised.

533

CHAPTER 2 | Extending the ‘Hello World’ Application

Client Side Usage

Setting Identity

ORB Level Policies

534

First a context must be created, as in the server case. Next a context policy
must be created with the context id. Policies are a standard CORBA
mechanism for controlling operational behaviour, and are considered to be
immutable objects. That is, once they have been created, they may not be
changed. The set of policies associated with an object reference are also
considered to be immutable.

[l C++
QOCRBA : Pol i cy_var contextPolicy = fssl Manager ->
create_context_policy(id);

/1l Java
org. ong. CCRBA Pol i cy contextPolicy =
f ssl Manager . creat e_cont ext _pol i cy(id);

The CORBA standard provides three methods to associate policies with
object references.

The ORB level policies are managed using the ORB Policy Manager, which
is resolved through the initial reference ORBPolicyManager.

/] C++
QCRBA: : Pol i cyManager _var pol i cyManager =
QCRBA: : Pol i cyManager : : _nar r ow(CCRBA: : (hj ect _var (
orb -> resolve_initial_references("CRBPol i cyManager")));

/1 Java

or g. ong. OCRBA. Pol i cyManager pol i cyManager =
or g. ong. CCRBA. Pol i cyManager Hel per . nar r ow(
orb.resolve_ initial_references("CRBPol i cyManager"));

Through this interface the current set of ORB level policies can be examined
and changed. The set of ORB level policies will be associated with every
new object reference that is created by that ORB.

Object Level Policies

Thread Level Policies

Client Side Usage

Therefore, to associate a context policy with every object reference created
by the ORB, the policy should be set on the ORB Policy Manager.

[l C++

QCRBA: : Pol i cyLi st pl (1);

pl.length(1);

pl [0] = contextPolicy;

pol i cyManger -> add_policy_overrides(pl);

/1 Java

org. ong. CORBA Pol i cy[] pl = new org. ong. CORBA Pol i cy[1] ;
pl [0] = contextPolicy;

pol i cyManager . add_pol i cy_overrides(pl);

Once object references have been created it is possible to create, a new
object reference with a different set of associated policies by calling
set_policy overrides on the object reference. (In Java, set_policy overrides

is not actually called on the object, but on a delegate created from the
object.)

/] C++
OCORBA: : PolicyLi st pl(1);
pl.length(1);
pl [0] = contextPolicy;
OORBA: : (hj ect _var obj =
nyCbj -> _set_policy_overrides(pl, CORBA : ADD OVERR DE);

/1 Java

org. ong. CCRBA Pol i cy[] pl = new org. ong. CCRBA Pol i cy[1] ;

pl [0] = contextPolicy;

com ooc. OCRBA. Del egat e del egate = (com ooc. CCRBA. Del egat €)
((org. ong. CCRBA. port abl e. Cbj ect | npl) nyQoj). _get _del egate();

org. ong. CCRBA (bj ect obj = del egate. set_pol i cy_overri des(

pl, org.ong. OCRBA Set Overri deType. ADD OVERR DE) ;

Once set_policy_overrides has been called, the returned object reference will

have a new set of associated policies. Note that the original object reference
is not affected.

A thread of execution in the application may have an associated set of
policies. For the purposes of the SSL plug-in the context policy is not
considered to be a thread level policy.

535

CHAPTER 2 | Extending the ‘Hello World’ Application

Full Example

536

The following is the full example:

/] C++
FSSL:: CertificateSeq nyCerts(2);
nyCerts.length(2);
nyCerts[0] = fssl Manager -> create_certificate(
FSSL:: Cctet Seq_var (FSSL: : | oadFi | e("client.der")));
nyCerts[1] = fssl Manager -> create_certificate(
FSSL: : Cct et Seq_var (FSSL: : | oadFi | e(" CAcert.der")));
FSSL:: Context I D id = fssl Manager -> create_cont ext (
nyCerts,
FSSL: : Cct et Seq_var (FSSL: : | oadFi | e("cl i ent key. der")),
FSSL: : PassPhrase_var (FSSL: : string_t o_PassPhrase("foobar")),
nyTr ust Deci der,
FSSL: : G pher Seq_var (FSSL: : get Def aul t G phers()));
QOCORBA: : Pol i cyManager _var pol i cyManager =
QCRBA: : Pol i cyManager : : _nar r ow(CCRBA: : (hj ect _var (
orb -> resolve_initial_references("CRBPol i cyManager")));
QCRBA: : Pol i cyList pl(1);
pl.length(1);
pl [0] = fssl Manager -> create_context_policy(id);
pol i cymanger -> add_policy_overrides(pl);

/1 Java
comooc. FSSL. Certificate[] nyCerts = new
com ooc. FSSL. Certificate[2];
nyCerts[0] = fssl Manager.create_certificate(
comooc. FSSL. FSSL. | oad _file("client.der"));
nyCerts[1] = fssl Manager.create_certificate(
comooc. FSSL. FSSL. | oad_file("ca.der"));
int id = fssl Manager. create_cont ext (
nyCerts,
com ooc. FSSL. FSSL. | oad_fil e("clientkey. der"),
com ooc. FSSL. FSSL. string_t o_PassPhrase("foobar"),
nyTr ust Deci der,
com ooc. FSSL. FSSL. get _def aul t _ci phers());
or g. ong. OCRBA. Pol i cyManager pol i cyManager =
or g. ong. CCRBA. Pol i cyManager Hel per . nar r ow(
orb.resol ve_initial_references("CRBPol i cyManager"));
org. ong. OORBA Pol i cy[] pl = new org. ong. CCRBA Pol i cy[1] ;
pl [0] = fssl Manager. create_context _policy(id);
pol i cyManager . add_pol i cy_overrides(pl);

Client Side Usage

Determining Peer Identity

Before the client can determine the identity of the peer it must first get the
OCI::FSSLIOP::Transportinfo. The client accomplishes this by calling
_non_existent() on the object reference to force the connection and then
narrowing the OCl::Transportinfo.

/] C++

QO :: FSSLI CP: : Transport | nfo_var fsslioplnfo;

if('obj -> non_existent())

{

Qd :: Transportlnfo_var info obj -> _get_oci_transport_info();
fsslioplnfo = OO ::FSSLICP: : Transport | nfo:: _narrow(info);

}

/1 Java

comooc. OO . FSSLI CP. TransportInfo fsslioplnfo = null;
if(!obj._non_existent())

{

or g. ong. CCRBA. port abl e. Chj ect | npl obj I npl =

(org. ong. GORBA. port abl e. Cbj ect | npl) obyj ;

com ooc. CCRBA. Del egat e obj Del egate =

(com ooc. OCRBA. Del egat e) obj | npl . _get _del egat e();

comooc. O . TransportInfo info =
obj Del egate. get_oci _transport _info();
fsslioplnfo =
com ooc. OO . FSSLI CP. Tr ansport | nf oHel per . narrow(i nf o) ;
}

Once a reference to the FSSLIOP transport information is aquired,
OCI::FSSLIOP::TransportInfo::certificate_chain can be used to determine
the identity of the caller:

/] C++
FSSL:: CertificateSeq_var chain =
fsslioplnfo -> certificate_chain();

/1 Java
com ooc. FSSL. Certificate[] chain =

fsslioplnfo.certificate _chain();

The negotiated cipher can be determined using the
OClI::FSSLIOP::TransportInfo::negotiated_cipher.

537

CHAPTER 2 | Extending the ‘Hello World’ Application

[l C++
FSSL: : A pher ci pher = fsslioplnfo -> negoti ated_ci pher();

/1 Java
com ooc. FSSL. G pher ci pher = fssli opl nfo. negoti at ed_ci pher () ;

538

Client Side Usage

Preventing Connections to Secure/Insecure Servers

In developing your applications you may want to restrict the servers to
which your proxy will connect. For instance, you may want to connect only
with secure servers, or alternatively only with insecure servers.

To do this, a ProtocolPolicy policy must be used. The ProtocolPolicy is used
to restrict the protocol that will be used to establish communications. By
default, after initializing the FreeSSL plug-in, a protocol policy with a value
of OCI::FSSLIOP::PLUGIN_ID is set as an ORB level policy. Therefore, only
secure connections will be established unless this is overridden. To allow an
object reference to use [IOP the protocol policy can be overridden on the
reference as follows:

[l C++

OCRBA: : Any any;

any <<= Q0 ::11CP:: PLUG N I D

OCRBA: : PolicyLi st pl(1);

pl.length(1);

pl[0] = orb -> create_pol i cy(@B:: PROTCCCL_PQLI CY_I D, any);

OCRBA: : (hj ect _var nyChj = obj -> _set_policy_overrides(
pl, CCRBA : ADD OVERR DE);

/1 Java

org.ong. CCRBA Any any = orb_.create_any();
any. insert_ul ong(comooc. O . |1 CP. PLUG N_I D. val ue) ;

org. ong. CCRBA Pol i cy[] pl = new org. ong. CCRBA Pol i cy[1] ;

pl[0] = orb.create_policy(
com ooc. CB. PROTCCCL_PALI CY_I D. val ue, any);

com ooc. CCRBA. Del egat e del egat e = (com ooc. CCRBA. Del egat e)
((org. ong. CCRBA. port abl e. Cbj ect | npl) nyChj). _get _del egate();

org. ong. CCRBA (bj ect obj = del egate. set_pol i cy_overri des(
nyChj, pl, org.ony. CORBA Set Overri deType. ADD OVERRI DE) ;

If it is necessary to revert to a secure transport again for establishing further
connections (for instance: case of a client creating successive connections to

secure and insecure servers), simply reapply the OCI::FSSLIOP::PLUGIN_ID
protocol policy as needed.

539

CHAPTER 2 | Extending the ‘Hello World’ Application

Complete Example

Certificates

OpenSSL

iSaSiLk

540

First the certificates must be created for both the client and the server. For a
real world application the certificates will most likely be provided by an
actual certificate authority. However, for the purposes of this demo we'll
generate the certificates by hand.

First create a certificate authority.
>cd /tnp
> CA sh -newca

Next create a certificate request and sign the request using the new
certificate authority. Use passphrase blahblah.

> CA sh -neweq

> CA sh -sign

Next the private key must be converted from PEM format to PKCS#8 DER
format.

> openssl pkcs8 -outformDER -in new eq. pem-out newkey. der -topk8
Finally, the new certificate and the CA's certificate must be converted from
PEM to DER encoding.

> openssl x509 -outformDER -in newcert.pem-out newcert.der

> openssl x509 -outformDER -in denoCA/ cacert. pem-out cacert.der
This must be done to create two sets of certificates and private keys, one set
for the server and one set for the client. Store the client set in client.der, and
client.key. Store the server set in server.der and server.key. The CA's
certificate should be in ca.der.

When creating certificates it's necessary to provide identity information. For
the Server, use Server for the common name section of the certificate's
Subject field. This will be used later for trust decisions.

For this toolkit an application must be written to generate the certificates.
Since this is beyond the scope of the manual the reader is advised to consult
the application fssl/demo/hello/GenCerts.java bundled with the FreeSSL for
Java distribution.

Complete Example

Client Side

main

First initialize the ORB.
/] C++

int

main(int argc, char* argv[], char*[])
{

int status = EXI T_SUCCESS;

QCRBA: : CRB var orb;

try

{

orb = CORBA :CRB_ init(argc, argv);
status = run(orb, argc, argv);
}
cat ch(const OORBA: : Excepti on& ex)

{

cerr << ex << endl;
status = BEXI T_FA LURE
}

if(!CCRBA: :is_nil (orb))
{

try

{

orb -> destroy();

}
cat ch(const OORBA: : Excepti on& ex)

{

cerr << ex << endl;
status = BEXI T_FA LURE
}

}

return status;

}

541

CHAPTER 2 | Extending the ‘Hello World’ Application

542

/1 Java

public static void
main(String args[])

{

int status = 0;

org.ong. CORBA CRB orb = nul | ;

java.util.Properties props = System get Properties();
props. put (" org. ong. CORBA. ORBd ass", "com ooc. CORBA CRB') ;
props. put (" org. ong. CORBA. GRBSI ngl et ond ass”,
"com ooc. CORBA. CRB") ;

try
{
orb = org. ong. CORBA. CRB. i nit (args, props);
status = run(orb, args);
}
cat ch(Exception ex)
{
ex. print StackTrace();
status = 1,

}

if(orb = null)

{

try

{

((com ooc. CCRBA. ORB) or b) . destroy();
}éatch(Exception ex)

fax. print StackTrace();

status = 1,

}

}

System exi t (status);

}

run

Complete Example

Next obtain a reference to the FSSL Context Manager.
Il G+

int
run(CCRBA: : CRB ptr orb, int argc, char* argv[])
{
OBOCRBA: : CRB var oborb = CBOORBA: : CRB: : _narrow(orb);

/1

/] Cbtain the CRB's property set

/1

CB:: Properties_var props = oborb -> properties();

/1l

/1 Resol ve the FSSL Context Manager

/1l

CCRBA: : (oj ect _var fssl Manager Qbj =

orb -> resolve_initial_references("FSSLCont ext Manager") ;
FSSL: : Manager _var fssl Manager =

FSSL: : Manager : : _nar row(f ssl Manager Qoj) ;

/1l Java

static int
run(org. ong. CCRBA CRB orb, String[] args)
throws org. ong. CORBA User Except i on

{
/1

/] Qbtain the CRB's property set

/1

java.util.Properties props =

((com ooc. CCRBA. CRB) or b) . properties();

I

/1 Resol ve the FSSL Context Manager
/1l

com ooc. FSSL. Manager fssl Manager =
com ooc. FSSL. Manager Hel per . nar r ow(
orb. resol ve_initial _references("FSSLCont ext Manager"));

543

CHAPTER 2 | Extending the ‘Hello World’ Application

Next the client's certificate chain must be constructed.
/] C++

/1
/Il Create the clients certificate chain
/1
FSSL:: Certificate_var clientCert =
fssl Manager -> create certificate(
FSSL: : Cct et Seq_var (FSSL: : 1 oad _file("client.der")));
FSSL:: Certificate_var caCert =
fssl Manager -> create certificate(
FSSL: : Cctet Seq_var (FSSL: : 1 oad file("ca.der")));

FSSL:: CertificateSeq chain;
chai n. | ength(2);

chain[0] = clientCert;

chai n[1] = caCert;

/1l Java

/1
/I Create the client certificate chain
/1l
comooc. FSSL. Certificate clientCert =
f ssl Manager . create_certificate(
comooc. FSSL. FSSL. | oad file("client.der"));
comooc. FSSL. Certificate caCert =
f ssl Manager . create_certificate(
comooc. FSSL. FSSL. | oad_file("ca.der"));

comooc. FSSL. Certificate[] chain =
new com ooc. FSSL. Certificate[2];
chain[0] = clientCert;

chain[1] = caCert;

544

Complete Example

Once that has been done a context must be created. For this demo all RSA

ciphers can be used. The implementation of the TrustDecider will come a
little later.

[l Ct+

/1l
/Il Oreate the client context
/1

FSSL:: Context I D id = fssl Manager -> create_cont ext (
chai n,

FSSL:: Cct et Seq_var (FSSL: : 1 oad_file("client.key")),

FSSL: : PassPhrase_var (FSSL: : st ri ng_t o_PassPhrase("bl ahbl ah")),
FSSL: : Trust Deci der _var (new Tr ust Deci der _i npl (caCert)),

FSSL: : A pher Seq_var (FSSL: : get _RSA ci phers()));

/1 Java

Il

/] Oreate the client context
1/

int id = fssl Manager. creat e_cont ext (
chai n,

comooc. FSSL. FSSL. | oad_file("client.key"),

com ooc. FSSL. FSSL. stri ng_t o_PassPhrase("bl ahbl ah"),
new A i ent Tr ust Deci der (caCert),

com ooc. FSSL. FSSL. get _RSA ci phers());

After that the context should be set as the default context for all object
references.

[l C++

11l

// Set this as the default context for all
/1

f ssl Manager -> set_context (id);

obj ect references

/1 Java

Il

/] Set this as the default context for all
/1l

f ssl Manager . set _cont ext (i d);

obj ect references

545

CHAPTER 2 | Extending the ‘Hello World’ Application

After this has been done the remainder of run will be the same as the
original demo.

/] Ct+

/1l

I/ Cet "hello" object

/1l

OORBA: : (hj ect _var obj = orb ->
string_to object("relfile:/Hello.ref");

if(QORBA :is_nil(obj))

{

cerr << argv[0] << ": cannot read |ICR fromHello.ref" << endl;
return EXI T_FA LURE

}

Hel lo_var hello = Hello::_narrowobj);
assert (! GQORBA: :is_nil (hello));

Il
// Main | oop
Il
cout << "Enter 'h' for hello or 'x' for exit:\n";
char c;
do
{
cout << "> ";
cin >> c;
if(c ="h")
hell o -> say_hel |l o();
}

whil e(cin.good() & c !'="x");

return EXI T_SUGCCESS;
}

546

The Trust Decider

Complete Example

/1 Java

/1

// Get "hell 0" object

Il

QORBA: : (oj ect _var obj = orb ->
string_to object("relfile:/Hello.ref");

if(CORBA :is_nil(obj))

{

cerr << argv[0] << ": cannot read |OR fromHello.ref" << endl;
return EXIT_FA LURE

}

Hello_var hello = Hello::_narrowobj);
assert (! CORBA: :is_nil (hello));

Il
// Main | oop
Il
cout << "Enter 'h' for hello or 'x' for exit:\n";
char c;
do
{
cout << "> ";
cin >> c;
if(c ="h")
hello -> say_hello();
}

whi l e(cin.good() & c !'="'Xx");

return BEXI T_SUCCESS;
}

The TrustDecider implementation for the demo will be extremely simple. It
will trust only those certificates directly signed by the provided CA. To
implement the TrustDecider the class FSSL_TrustDecider must be
implemented. In addition on the client side only the server will be trusted.

[l Ct+

class TrustDecider _inpl : public FSSL:: Trust Deci der

547

CHAPTER 2 | Extending the ‘Hello World’ Application

548

/1 Java

class dient TrustDeci der extends com ooc. OORBA Local (bj ect
i npl ements com ooc. FSSL. Tr ust Deci der

Next the private members and constructor.

/] Ct+
FSSL:: Certificate var ca_;

public
Trust Deci der _i npl (FSSL: : Certificate_var ca)
: ca_(FSSL::Certificate::_duplicate(ca))

{
}

/1 Java
private comooc. FSSL. Certificate ca ;

d i ent Trust Deci der (com ooc. FSSL. Certi fi cate ca)
{
ca_ = ca;

}
Next, is_trusted must be implemented.
[l C++

virtual COCRBA : Bool ean
is_trusted(const FSSL::CertificateSeg& chain)

/1 Java

publ i ¢ bool ean
i s_trusted(comooc. FSSL. Certificate[] chain)

This method should ensure that the CA in the certificate chain is the CA
provided by the constructor. To do that it should be verfied that the CA has
signed the last certificate in the chain (since CA certificates are self signed),
and that the subject distinguished names are the same. In addition the
common name portion of the server side certificate will be examined to

Complete Example

ensure that only the server is accepted. Note that for a real world example
more than just the common name should be validated, since it's possible
that the common name is the same for two certificates.

[l Ct+

OORBA: : String_var serverDN = chain[0] -> subject_DN);
if(strstr(serverDN "CN=Server/") == 0)
return fal se;
if(chain.length() == 2 && chain[1] -> is_signed_by(ca))
{
OCRBA: : String_var dnl = chain[1] -> subject_DN);
OCRBA: : String_var dn2 = ca_ -> subject_DN();
i f(strcnp(dnl, dn2) == 0)
return true;

}

return fal se;

/1 Java

String serverDN = chain[0Q] . subj ect _DN\();
i f(serverDN i ndexF ("ON=Server,") == -1)
return fal se;

if(chain.length == 2 & chain[1].is_signed_by(ca_))
{

String dnl = chain[1] . subject_DN();

String dn2 = ca_.subject_DN);

i f (dnl. equal s(dn2))

return true;

}

return fal se;

549

CHAPTER 2 | Extending the ‘Hello World’ Application

Server Side

main

550

First initialize the ORB.
/] C++

int

main(int argc, char* argv[], char*[])
{

int status = EXI T_SUCCESS;

COCRBA: : CRB var orb;

try

{

orb = CORBA :CGRB_init(argc, argv);
status = run(orb, argc, argv);
}
cat ch(const OORBA: : Excepti on& ex)

{

cerr << ex << endl;
status = EXI T_FA LURE
}

if(!CQORBA: :is_nil(orb))
{
try

orb -> destroy();

}

cat ch(const OORBA: : Excepti on& ex)
{

cerr << ex << endl;
status = EXI T_FA LURE
}

}

return status;

}

Complete Example

/1 Java

public static void
main(String args[])

{

int status = 0;

org.ong. CCRBA. CRB orb = nul | ;

java.util.Properties props = System get Properties();
props. put (" org. ong. CORBA. CRBd ass", "com ooc. CCRBA CRB') ;
props. put (" org. ong. CORBA. CRBSI ngl et ond ass"”,
"com ooc. OCRBA. ORB") ;

try
{
orb = org. ony. CORBA. CRB. i nit (args, props);
status = run(orb, args);
}
cat ch(Exception ex)
{
ex. print StackTrace();
status = 1,

}

if(orb !'=null)

{

try

{

((com ooc. CCRBA. GRB) or b) . destroy();
}éatch(Excepti on ex)

fax. print StackTrace();

status = 1,

}

}

System exi t (status);

}

551

CHAPTER 2 | Extending the ‘Hello World’ Application

run

552

Next obtain a reference to the FSSL Context Manager.
Il G+

int
run(CCRBA: : CRB ptr orb, int argc, char* argv[])
{
CBOCRBA: : CRB var oborb = CBCORBA: : CRB:: _narrow(orb);

/1l

/l (btain the CRB's property set

/1

CB:: Properties_var props = oborb -> properties();

/1

/1 Resolve the FSSL Context Manager

I

OCRBA: : (oj ect _var fssl Manager Qoj =

orb -> resolve_initial_references("FSSLCont ext Manager ") ;
FSSL: : Manager _var fssl Manager =

FSSL: : Manager : : _narr ow(f ssl Manager oj) ;

/1 Java

static int
run(org.ong. CCRBA. CRB orb, String[] args)
throws org. ony. CORBA User Except i on

{
/1

/] (btain the CRB's property set
/1l

java.util.Properties props =
((com ooc. GORBA. CRB) or b) . properties();

I

/1 Resolve the FSSL Context Manager

I

com ooc. FSSL. Manager fssl Manager =

com ooc. FSSL. Manager Hel per . nar r ow(

orb. resol ve_initial _references("FSSLCont ext Manager"));

Complete Example

Next the certificate chain for the server must be created. This is exactly the
same procedure as for the client.

[l Ct+

/1l
I/l Oreate the servers certificate chain
/1
FSSL:: Certificate_var serverCert =
f ssl Manager -> create_certificate(
FSSL:: Cctet Seq_var (FSSL: : 1 oad_fil e("server.der")));
FSSL:: Certificate var caCert =
f ssl Manager -> create _certificate(
FSSL:: Cctet Seq_var (FSSL: : | oad _file("ca.der")));

FSSL:: CertificateSeq chain;
chain.length(2);

chain[0] = serverCert;
chain[1] = caCert;

/1 Java

/1
/I Create the server certificate chain
/1l
comooc. FSSL. Certificate serverCert =
f ssl Manager . create_certifi cat e(
comooc. FSSL. FSSL. | oad_fil e("server.der"));
comooc. FSSL. Certificate caCert =
f ssl Manager . create_certifi cat e(
comooc. FSSL. FSSL. | oad _file("ca.der"));

comooc. FSSL. Certificate[] chain =
new com ooc. FSSL. Certificate[2];
chain[0] = serverCert;

chain[1] = caCert;

553

CHAPTER 2 | Extending the ‘Hello World’ Application

Once that has been done a context must be created. For this demo all RSA

ciphers can be used. The implementation of the TrustDecider will come a
little later.

/] Ct+

/1l

/l Create the server context

/1

FSSL:: Context I D id = fssl Manager -> create_cont ext (

chai n,

FSSL:: Cct et Seq_var (FSSL: : 1 oad_fil e("server. key")),

FSSL: : PassPhrase_var (FSSL: : stri ng_t o_PassPhrase("bl ahbl ah")),
FSSL: : Trust Deci der _var (new Tr ust Deci der _i npl (caCert)),

FSSL: : G pher Seq_var (FSSL: : get _RSA ci phers()));

/1 Java

11l

I/ Create the server context

/1

int id = fssl Manager. creat e_cont ext (

chai n,

com ooc. FSSL. FSSL. | oad_fi | e("server. key"),

com ooc. FSSL. FSSL. st ri ng_t o_PassPhrase("bl ahbl ah"),
new A i ent Tr ust Deci der (caCert),
com ooc. FSSL. FSSL. get _RSA ci phers());

554

Complete Example

Once the SSL context has been created, the POAManager can be initialized
and the RootPOA resolved.

[l Ct+

/1l
I/l Oeate the POA Manager
/1l
Port abl eSer ver: : POAManager _var poaManager =
FSSL: : creat e_poa_nanager (
" Root PQAVanager ", orb, fssl Manager, id, props);

/1

/1 Resol ve Root PQA

/1l

OORBA: : (oj ect _var poaChj =

orb -> resolve_initial _references("Root PQA");
Port abl eSer ver: : POA var root POA =

Por t abl eServer: : POA: : _nar r ow(poaQh;j) ;

/1 Java

/1
Il Create the POA Manager
/1l
or g. ong. Por t abl eSer ver . POAVanager poaManager =
com ooc. FSSL. FSSL. cr eat e_poa_nanager (
" Root PQAMVanager ", orb, fssl Manager, id, props);

/1l

/1 Resol ve Root PQA

/1

or g. ony. Port abl eServer. PQA root =

or g. ong. Port abl eSer ver . POAHel per . nar r ow(
orb.resol ve_initial _references("Root PQA"));

555

CHAPTER 2 | Extending the ‘Hello World’ Application

After this has been done the remainder of run will be the same as the
original demo.

/] Ct+

/1l

// Create inplenentation object

/1

Hel l o_i npl * hell ol npl = new Hel | o_i npl ();

Port abl eServer : : Servant Base_var servant = hel | ol npl ;
Hel lo_var hello = hellolnpl -> _this();

/1l

I/ Save reference

/1

OORBA : String var s = orb -> object_to_string(hello);

const char* refFile = "Hello.ref";
of streamout (refFile);
if(out.fail())

cerr << argv[0] << ": can't open " << refFile << "'
<< strerror(errno) << endl;
return EXI T_FA LURE

}

out << s << endl;
out . cl ose();

/1l

/1 Run inpl ementation

/1

cout << "Server is ready." << endl;
poaManager -> activate();

orb -> run();

return BEXI T_SUGCCESS;
}

556

Complete Example

/1 Java

/1

// Create inplementation object

/1

Hel l o_i npl hellolnpl = new Hello_inpl ();
Hello hello = hellolnpl._this(orb);

/1

Il Save reference

/1l

try

{

String ref = orb.object_to_string(hello);

String refFile = "Hello.ref";

java.io.FileQutputStreamfile =

new java.io. FileQutputStrean(refFile);

java.io.PrintWiter out = newjava.io.PrintWiter(file);

out.println(ref);

out. flush();

file.close();

}

catch(java.io. | CException ex)

{

Systemerr.println("hello. Server: can't wite to *" +
ex. get Message() + "'");

return 1,

}

/1l
// Run inpl ement ati on
/1
Systemout. println("Server is ready.");
poaManager . acti vate();
orb.run();

return O;

}

557

CHAPTER 2 | Extending the ‘Hello World’ Application

Trust Decider The trust decider for the server is slightly different in that the distinguished
name of the client is not validated since the server accepts connections from
any client validated by the CA.

/I Ct+

if(chain. length() == 2 & chain[1] -> is_signed_by(ca_))

{
QCRBA String_var dnl = chain[1] -> subject_DN\);
OORBA String_var dn2 = ca_ -> subject_D\();
i f(strcnp(dnl, dn2) == 0)
return true;
}

return fal se;

/1 Java

if(chain. length == 2 & chain[1].is_si gned_by(ca_))
{

String dnl = chain[1].subject_DN);

String dn2 = ca_. subject_DN();

i f (dnl. equal s(dn2))

return true;

}

return fal se;

558

APPENDIX A

FSSL Definitions

ADH: The anonymous Diffie-Hellman public-key algorithm, see [9].
ASN.1: Abstract Syntax Notation One, see [14].

DER: Distinguished Encoding Rules for ASN.1, see [4].

DES: Data Encryption Standard, see [12].

IDEA: International Data Encryption Algorithm, see [11].

MD5: RSA Data Security, Inc.'s MD5 message-digest algorithm, see [8].
PEM: Internet Privacy-Enhanced Mail, see [14]-[171].

PKCS#8: Private-Key Information Syntax Standard, see [18].

RC2, RC4: Rivest's Ciphers, variable-key-size encryption algorithms, see
[11].

RSA: The RSA public-key cryptosystem, see [3].
DSS: The Digital Signature Standard, see [11]
SHA: Secure Hash Algorithm, see [71].

559

CHAPTER A | FSSL Definitions

560

Supported Toolkits

OpenSSL

IAIK iSaSiLk

JSSE

APPENDIX B

Toolkits Supported
by FSSL

Both FreeSSL for C++ and Java require third-party SSL toolkits to operate.

DISCLAIMER: IONA Technologies does not assume any responsibility for
the purchase or licensing of any third-party product that is required to
work with a particular version of the SSL plug-in. Any licensing issues that
arise as a result of the use of any third party product is the sole
responsibility of the purchaser.

FreeSSL for C++ requires OpenSSL 0.9.7g. This is a public domain
implementation of the Secure Sockets Layer version 3.0. Please see
http://www.openssl.org for more information on this product.

FreeSSL for Java supports version 3.04 of the IAIK-iSaSiLk SSL toolkit and
version 3.0 (or equivalent Applet Edition) of the IAIK JCE. This is an
excellent SSL toolkit available from the |AIK-Java Group. Please see
http://jce.iaik.tugraz.at/ for more information on this product.

FreeSSL for Java supports the JSSE toolkit. JSSE is available from Sun and
is bundled with JDK 1.4 and above. Please see http://j ava. sun. comfor
more information on this product.

561

http://www.openssl.org
http://jce.iaik.tugraz.at/

CHAPTER B | Toolkits Supported by FSSL

562

APPENDIX C

FSSL Reference

This appendix documents the FSSL interfaces.

In this appendix This appendix contains the following sections:
Module CORBA page 564
Module FSSL page 565
Module 10P page 570
Module OB page b72

563

CHAPTER C | FSSL Reference

Module CORBA

Interface Index Current
Provides information on the current connection.

Policy
Provides information on the current policy.

Aliases PolicyList
typedef sequence<Policy> Policyli st;

PolicyType
typedef unsigned | ong PolicyType;

PolicyTypeSeq
typedef sequence<PolicyType> Pol i cyTypeSeq;

564

Module FSSL

Module FSSL

Overview

Interface Index

Constants

The FSSL plug-in interfaces. This module allows for the configuration of the
Secure Sockets Layer OCI plug-in.

Certificate
X509 Certificate Interface

ContextPolicy
Context Policy Interface

Current
Provides information on the current connection.

Manager
Manager Interface

TrustDecider

TrustDecider Interface allows users to provide custom certificate chain trust
algorithms

BAD_CIPHER
const G pher BAD A PHER = 0;
Identifies an invalid cipher

CONTEXT_POLICY

const COORBA: : Pol i cyType OONTEXT_PQLI CY = 100;
Identifies the ContextPolicy.
DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

const O pher DHE_DSS EXPORT_W TH DES40_CBC SHA = 14;
Key Exchange Algorithm DHE_DSS

Symmetric Encryption Algorithm DES(40)

MAC Encoding SHA

DHE_DSS_WITH_3DES_EDE_CBC_SHA
const O pher DHE DSS WTH 3DES EDE CBC SHA = 16;

565

CHAPTER C | FSSL Reference

Key Exchange Algorithm DHE_DSS

Symmetric Encryption Algorithm DES(168)

MAC Encoding SHA

DHE_DSS WITH_DES_CBC_SHA

const G pher DHE DSS WTH DES CBC SHA = 15;

Key Exchange Algorithm DHE_DSS

Symmetric Encryption Algorithm DES(56)

MAC Encoding SHA
DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

const G pher DHE_RSA EXPCRT_W TH DES40_CBC SHA = 11,
Key Exchange Algorithm DHE_RSA

MAC Encoding SHA
DHE_RSA_WITH_3DES_EDE_CBC_SHA

const G pher DHE_RSA WTH 3DES EDE CBC SHA = 13;
Key Exchange Algorithm DHE_RSA

Symmetric Encryption Algorithm DES(168)

MAC Encoding SHA
DHE_RSA_WITH_DES_CBC_SHA

const G pher DHE RSA WTH DES CBC SHA = 12;

Key Exchange Algorithm DHE_RSA

Symmetric Encryption Algorithm DES(56)

MAC Encoding SHA
DH_anon_EXPORT_WITH_DES40_CBC_SHA

const G pher DH anon_EXPCRT_W TH DES40_CBC SHA = 19;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm DES(40)

MAC Encoding SHA
DH_anon_EXPORT_WITH_RC4_40_MD5

const G pher DH anon_EXPORT_WTH RC4_40_MX» = 17,
Key Exchange Algorithm DH

Symmetric Encryption Algorithm RC4(40)

MAC Encoding MD5

566

Module FSSL

DH_anon_WITH_3DES_EDE_CBC_SHA

const O pher DH anon_WTH 3DES EDE CBC SHA = 21;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm DES(168)

MAC Encoding SHA

DH_anon_WITH_DES CBC_SHA

const O pher DH anon_WTH DES CBC SHA = 20;

Key Exchange Algorithm DH

Symmetric Encryption Algorithm DES(56)

MAC Encoding SHA

DH_anon_WITH_RC4_128 MD5

const O pher DH anon WTH RCG4_128_MX» = 18;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm RC4(128)

MAC Encoding MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

const O pher RSA EXPCORT_WTH DES40_CBC SHA = 8;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm DES(40)

MAC Encoding SHA
RSA_EXPORT_WITH_NULL_MD5

const O pher RSA EXPCRT WTH NLL_MX» = 1;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm NULL

MAC Encoding MD5
RSA_EXPORT_WITH_NULL_SHA

const G pher RSA EXPORT_WTH NULL_SHA = 2;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm NULL

MAC Encoding MD5

RSA_EXPORT WITH_RC2_CBC_40 _MD5
const O pher RSA EXPCRT_WTH RC2_CBC 40 _MX» = 6;

567

CHAPTER C | FSSL Reference

Key Exchange Algorithm RSA
Symmetric Encryption Algorithm RC2(40)
MAC Encoding MD5

RSA_EXPORT_WITH_RC4_40_MD5

const G pher RSA EXPCRT_WTH RC4_40_ MX»% = 3;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm RC4(40)

MAC Encoding MD5
RSA_WITH_3DES_EDE_CBC_SHA

const G pher RSA WTH 3DES EDE CBC SHA = 10;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm DEC(168)

MAC Encoding SHA

RSA_WITH_DES_CBC_SHA

const G pher RSA WTH DES CBC SHA = 9;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm DEC(56)
MAC Encoding SHA

RSA_WITH_IDEA_CBC_SHA

const G pher RSA WTH_ | DEA CBC SHA = 7;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm IDEA(128)
MAC Encoding SHA

RSA_WITH_RC4_128 MD5

const G pher RSA WTH RC4_128 MX% = 4;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm RC4(128)
MAC Encoding MD5

RSA_WITH_RC4_128 SHA
const G pher RSA WTH RC4_128_SHA = 5;
Key Exchange Algorithm RSA
Symmetric Encryption Algorithm RC4(128)

568

Aliases

Module FSSL

MAC Encoding SHA

CertificateSeq
typedef sequence<Certificate> CertificateSeq;
Alias for an X509 Certificate Chain

Cipher
typedef unsigned | ong QG pher;
An alias for a cipher suite

CipherSeq
typedef sequence<Q pher> Q pher Seq;
Alias for a sequence of Ciphers

ContextID
typedef unsigned | ong Contextl| D
Alias for Context ID.

OctetSeq
typedef sequence<octet> Cctet Seq;
Alias for sequences of octets

PassPhrase
typedef sequence<oct et > PassPhrase;
Alias for a PassPhrase

PrivateKey
typedef sequence<octet> Privat eKey;
Alias for a PrivateKey

569

CHAPTER C | FSSL Reference

Module IOP

Constants CodeSets
const Serviceld CodeSets = 1;

TAG_INTERNET_IOP
const Profileld TAG | NTERNET_| CP = 0;

TAG_MULTIPLE_COMPONENTS
const Profileld TAG MLTI PLE_ COWONENTS = 1;

TransactionService
const Serviceld TransactionService = 0;

Structs IOR

struct 1CR
{
string type_id;
sequence<TaggedPr of i | e> profil es;
b
ServiceContext
struct Servi ceCont ext

{
Serviceld context_id,;
sequence<oct et > cont ext _dat a;
b
TaggedComponent
struct TaggedConponent
{
Conponent 1 d tag;
sequence<oct et > conponent _dat a;
b

TaggedProfile

struct TaggedProfile

{
Profileld tag;

sequence<oct et > profil e_dat a;

}s

570

Aliases

Module IOP

Componentid
typedef unsi gned | ong Conponent | d;

MultipleComponentProfile
typedef sequence<TaggedConponent > Mil ti pl eConponent Profil e;

Profileld
typedef unsigned |ong Profileld;
ServiceContextList

typedef sequence<Servi ceCont ext > Servi ceCont ext Li st;

Serviceld
typedef unsigned | ong Serviceld;

571

CHAPTER C | FSSL Reference

Module OB

Interface Index ConnectionReusePolicy
The connection reuse policy.

ProtocolPolicy
The protocol policy.

ReconnectPolicy
The reconnect policy.

TimeoutPolicy
The timeout policy.

Constants CONNECTION_REUSE_POLICY
const OCRBA: : Pol i cyType CONNECTI ON REUSE PCLICY = 3;
This policy type identifies the connection reuse policy.
PROTOCOL_POLICY
const OCRBA: : Pol i cyType PROTCOCOL_PCLI CY = 2;
This policy type identifies the protocol policy.
RECONNECT_POLICY
const OCRBA: : Pol i cyType RECONNECT PCLICY = 4;
This policy type identifies the reconnect policy.
TIMEOUT_POLICY
const OCRBA: : Pol i cyType TI MEQUT_PCLI CY = 5;
This policy type identifies the timeout policy.

572

FSSL Bibliography

The SSL Protocol, Version 3.0, Transport Layer Security
Working Group.

ANSI X3.106, American National Standard for Information
Systems-Data Link Encryption, American National
Standards Institute, 1983.

R. Rivest, A. Shamir, and L. M. Adleman, A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,
Communications of the ACM, v. 21, n. 2, Feb 1978, pp.
120-126.

CCITT. Recommendation X.509: The Directory -
Authentication Framework. 1988.

SSLeay and SSLapps FAQ, T. J. Hudson, E. A. Young.

iSaSiLk 2.0 User Manual, Institute for Appli Information
Processing and Communications, Graz University of
Technology, 1998.

NIST FIPS PUB 180-1, Secure Hash Standard, National
Institute of Standards and Technology, U.S. Department of
Commerce, DRAFT, 31 May 1994.

R. Rivest. RFC 1321: The MD5 Message Digest Algorithm,
April 1992.

W. Diffie and M. E. Hellman, New Directions in
Cryptography, IEEE Transactions on Information Theory,
V.IT-22, n. 6, Jun 1977, pp. 74-84.

Marc Laukien, Uwe Seimet, Matthew Newhook, and Mark
Spruiell, ORBacus For C++ and Java, Object Oriented
Concepts, Inc.

Bruce Schneier, Applied Cryptography, John Wiley & Sons,
Inc.

PUB 46-1 National Bureau of Standards. FIPS PUB 46-1:
Data Encryption Standard. January 1988.

573

574

[13]

[14]

[15]

[16]

[17]

[18]

CCITT. Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1). 1988.

RFC 1421 Linn, J., "Privacy Enhancement for Internet
Electronic Mail: Part |: Message Encryption and
Authentication Procedures," RFC 1421 February 1993.

RFC 1422 Kent, S., "Privacy Enhancement for Internet
Electronic Mail: Part Il: Certificate- Based Key
Management," RFC 1422, February 1993.

RFC 1423 Balenson, D., "Privacy Enhancement for Internet
Electronic Mail: Part IlI: Algorithms, Modes, and Identifiers,"
RFC 1423, February 1993.

RFC 1424 Kaliski, B., "Privacy Enhancement for Internet
Electronic Mail: Part IV: Key Certification and Related
Services," RFC 1424, February 1993.

PKCS #8: Private-Key Information Syntax Standard, An
RSA Laboratories Technical Note, Version 1.2, Revised
November 1, 1993.

Part 11l

JThreads

In this part This part contains the following chapters:
Introduction to JThreads/C+ + page 577
‘Hello World’ page 581
Working With Threads page 587
Memory Management page 611
Class Reference page 617
References page 87

In this chapter

CHAPTER 1

Introduction to
JThreads/C+ +

This chapter gives a short overview of JThreads.

This chapter contains the following section:

Overview page 578

577

CHAPTER 1 | Introduction to JThreads/C+ +

Overview

What is JThreads/C++7?

578

JThreads/C+ + is the short-form of “Java-like Threads for C++".
JThreads/C+ + is a high-level thread abstraction library that gives C+ +
programmers the “look & feel” of Java threads.

Java supports multi-threaded programming using the classes

java.l ang. Thread and j ava. | ang. Thr ead@ oup, the interface

j ava. | ang. Runnabl e, and the synchr oni zed keyword together with the
methods wai t, notify and notifyAl | injava.lang. Qbj ect.

Let’s have a look how JThreads/C+ + translates this to C++:

The Java classes j ava. | ang. Thread and j ava. | ang. Thr ead@ oup are
directly translated into the C++ classes JTCThr ead and

JTCThr ead@ oup. The only difference is that the JThreads/C+ + classes
have JTC as a prefix instead of the Java package j ava. | ang. The Java
interface j ava. | ang. Runnabl e is implemented as the abstract C++
class JTCRunnabl e, which contains the pure virtual method run.
Support for the synchr oni zed keyword is slightly more difficult, since it
is not possible to add new keywords to C++. JThreads/C++ solves
this using the classes JTQvbni t or and JTCSynchr oni zed. Instances of
JTCSynchr oni zed can be used as a replacement for the synchr oni zed
keyword, provided that an instance of JTCwoni t or was created for the
object to be synchronized. JTOwbni t or also provides the methods
wait, notify and notifyAll.

There are some features of Java's thread model that are not implemented in
JThreads/C+ +. These are:

The security API. This is because some parts of the APl simply can’t be
implemented in C++. In general this issue is not as important as in
Java, since C++ is not used for Internet applications (“applets”) in the
same way as Java.

The thread control primitives j ava. | ang. Thr ead. st op,

j ava. | ang. Thr ead. suspend, and j ava. | ang. Thr ead. r esune cannot be
implemented with the same semantics as the Java thread model in a
portable fashion. The WIN32 thread API supports primitives for these
operations, but the POSIX thread API does not. In general, it is not a

Overview

good idea to use these API primitives as they exist in the Java thread
model, for they can easily lead to deadlock situations.! These
primitives are deprecated in JDK 1.2 [4], and therefore won't be
supported in upcoming versions of Java.

About this Document This manual is not a substitute for a good thread programming book. This

manual only describes how Java thread constructs translate to
JThreads/C+ +.

There are excellent books available on Java thread programming, for
example [2] and [3]. We highly recommend use of these books while
learning JThreads/C+ + programming. With the help of this manual it's easy
to translate the examples provided there to JThreads/C++ programs.

1. Infact, the WIN32 programmers guide recommends against using
Ter m nat eThr ead (the API call to stop a thread’s execution) since it can easily
lead to application misbehavior.

579

CHAPTER 1 | Introduction to JThreads/C+ +

580

In this chapter

CHAPTER 2

‘Hello World’

We begin with the first program most programmers start with:
A program that displays the text “Hello World” and then exits.
However, our example is different from the typical “Hello
World” program in that it is multi-threaded. That is, our version
starts a new thread whose sole purpose is to print “Hello
World” on the display.

This chapter contains the following sections:

‘Hello World’ in Java page 582
‘Hello World" in C+ + page 583
‘Hello World" with Runnable page 585

581

CHAPTER 2 | ‘Hello World’

‘Hello World’ in Java

In Java, this program can be written as:

1 public class Hell oWwrld extends Thread
2 {

3 public void run()

4 {

5 Systemout.printin("Hello World");
6 }

7

8 static public void main(String args[])
9 {

10 Thread t = new Hel | oWor | d();

11 t.start();

12 }

13 }

1 A class Hel | owor | d is defined, extending the class j ava. | ang. Thr ead.
3-6 A run method is defined, displaying “Hello World” on standard output.

8-12 A static mai n method is defined which creates an object of type Hel | over | d.
The start method is called which starts a new thread of execution. This
thread then invokes the run method of the Hel | oVer | d object.

582

‘Hello World’ in C+ +

‘Hello World’ in C+ +

6-9

12-19

Let's convert the Java program to a JThreads/C+ + program:

1 #include <JTC/ JTC. h>

2

3 class Hellowrld : public JTCThread
4 {

5 public:

6 virtual void run()

7 {

8 cout << "Hello World" << endl;
9 }

10 };

11

12 int

13 main(int argc, char** argv)

14 {

15 JTClnitialize initialize;

16 JTCThread* t = new Hel | oWor| d;
17 t -> start();

18 return O;

19 }

All JThreads/C++ programs must include the header file JTG JTC h, which
contains (among other useful things) all of the necessary JThreads/C+ +
class definitions.

Just like in the Java example, a class Hel | owr | d is defined. This class is
derived from JTCThr ead instead of the Java equivalent j ava. | ang. Thr ead.

A run method is defined which prints “Hello World” on standard output.
System out is replaced by the familiar C++ iostreams object cout .

A nai n net hod is defined, not as a static class member as in the Java
example, but as the standard C++ global mai n function. nai n creates! an
object of type Hel | owor | d and calls the start method which starts a new
thread of execution.

The only other change is that the JThreads/C++ thread library must be
initialized in mai n. This is done by creating an instance of the class
JTAnnitialize.

1. You might think that the “Hello World” program has a memory leak because the
thread object is created with newbut never deleted with del et e, but this is not
the case. See “Reference Counting” on page 612 for more information.

583

CHAPTER 2 | ‘Hello World’

584

At first sight this application seems to indicate a problem. Can the
application terminate due to return from mai n before the thread gets a
chance to run? The answer is No, because the destructor for JTQ niti al i ze
doesn’t return until all of the threads have terminated. The JTO ni ti al i ze
destructor allows JThreads/C++ applications to have the same behavior as
multi-threaded Java applications.

‘Hello World’ with Runnable

‘Hello World’ with Runnable

10

11

Java provides the Runnabl e interface, so that an application developer may
use threads without using inheritance. The JThreads/C+ + equivalent of the
Runnabl e interface is the class JTCRunnabl e.

The “Hello World” example using Runnabl e in Java looks like this:

1 public class HelloWwrld inplenments Runnabl e
2 {

3 public void run()

4 {

5 Systemout.println("Hello World");

6 }

7

8 static public void main(String[] args)

9

{
10 Thread t = new Thread(new Hel | oWorl d());
11 t.start();
12 }
13 }

A class Hel | ovor | d is declared that implements the interface Runnabl e.

A new thread is created with a Runnabl e object as the parameter, which in
this case is an instance of the Hel | ovor | d class.

The thread is started. Since the Thread object was created with a Runnabl e
object parameter, the run method of this Runnabl e is invoked.

585

CHAPTER 2 | ‘Hello World’

The Java version can be translated directly into a JThreads/C+ + application

as follows:

1 #include <JTC/ JTC. h>

2

3 class Hellowrld : public JTCRunnabl e
4 {

5 public:

6 virtual void run()

7 {

8 cout << "Hello World" << endl;
9 }

10 };

11

12 int

13 main(int argc, char** argv)

14 {

15 JTCInitialize initialize;

16 JTCThread* t = new JTCThread(new Hel | oWorl d);
17 t -> start();

18 return O;

19 }

3 As in the Java example, the class Hel | ovor | d inherits from the
JThreads/C+ + class JTCRunnabl e.

16 Create a new thread, using a new instance of the Hel | oWor | d class as the
required JTCRunnabl e parameter.

17 Start the new thread, which invokes the run method.

586

In this chapter

CHAPTER 3

Working With
Threads

This chapter describes how JThreads/C++ implements Java
Monitors used in multithreading.

This chapter contains the following sections:

Synchronization page 588
Block Synchronization page 594
Static Monitors page 597
The Wait, Notify and NotifyAll Methods page 600
The Stop and Suspend Methods page 604
The Join and IsAlive Methods page 608

587

CHAPTER 3 | Working With Threads

Synchronization

Example Let’s write a plain C++ class, which can be used for the buffering of
characters. This class defines the methods addChar and writeBuffer.
addChar adds a character to an internal character buffer and wri t eBuf f er
prints the buffer contents on standard output:

1 class CharacterBuffer

2 {

3 char* data_;

4 int max_;

5 int len_;

6

7 public:

8

9 Char act er Buf fer ()

10 : data_(0), len_(0), max_(0)
11 {

12 }

13

14 ~Char act er Buf f er ()

15 {

16 delete[] data_;

17 }

18

19 voi d addChar (char c)

20

21 if(len_ == max_)

22 {

23 char* newData = new char[len_ + 128];
24 nencpy(newbata, data_, len);
25 del ete[] data_;

26 data_ = newDat a;

27 max_ += 128;

28 }

29 data_[len_++] = c;

30 }

31 void witeBuffer()

32 {

33 cout.wite(data_, len_) << flush;
34 len_ = 0;

35 }

36 };

588

3-5

10
14
21-28

29
32-36

Mulit-threading environment

Monitors

Synchronization

Several data members are defined:

® data_is a character pointer to the buffered characters.

® nax_ is the maximum length of the buffer pointed to by data_.

® |en_is the current length of the buffer, i.e., the number of valid
characters in the buffer pointed to by dat a_. | en_ must be less than or
equal to max_.

The constructor initializes the class data members data_, max_ and I en_.

The destructor deletes dat a_, freeing the buffer memory.

If the buffer is full (i.e., if en_is equal to max_), allocate more memory.

This is done by allocating a new, larger character buffer, copying the existing

buffer contents into the new buffer, deleting the old buffer and assigning the

pointer to the new buffer to data_. Finally max_ must be updated to reflect

the new buffer size.

A character is added to the buffer and I en_ is incremented by one.

The wri t eBuf f er method prints | en_ characters from the buffer on standard
output and then resets | en_ to zero.

The above class works fine as long as there is only a single thread of
execution, but it will not work properly in a multi-threaded environment.

For example, if two threads execute addChar simultaneously, things can
easily go wrong. Let's assume that the first thread runs until after the

del ete[] data_ statement has been executed. At this point the operating
system switches from the execution of the first thread to the second. Since
max_ has not yet been incremented by the first thread, the second thread
also enters the conditional and accesses the dat a_ variable, which now
points to memory already deleted by the first thread. This will most likely
crash the program.

To solve the above problem, Java uses a concept known as monitors. This is
described in the following sections.

589

CHAPTER 3 | Working With Threads

Thread Safe Version in Java

Thread-safe Java example A thread-safe Java version of the code in the previous section can be written
as follows:
1 public class CharacterBuffer
2 {
3 private char[] data_ = null;
4 private int len_ = 0;
5
6 synchroni zed public void addChar(char c)
7 {
8 if(data_ == null || len_ == data_.length)
9 {
10 byte[] newData = new byte[len_+128];
11 if (data_ != null)
12 System arraycopy(data_, 0, newbData, 0, len_);
13 data_ = newDat a;
14 }
15 data_[len_++] = c;
16 }
17
18 synchroni zed public void witeBuffer()
19 {
20 Systemout.wite(data_, 0, len_);
21 System out . flush();
22 len_ = 0;
23 }

3-4 Two data members are defined:
® data_is a character array, which holds the buffered characters.
® len_is the current length of the buffer, i.e., the number of valid
characters in the buffer pointed to by data_.
In contrast to the C++ version of this program, it's not necessary to have a
max_ data member, since dat a_. | engt h can be used instead.

6-14 If no buffer has been created yet or if the buffer is full (i.e., if en_is equal to
data_. | ength) a new, larger buffer is allocated. This is similar to the C++
version.

15 A character is added to the buffer and | en_ is incremented by one.

590

Synchronization

18-22 Like in the C++ example, the wri t eBuf f er method prints | en_ characters
from the buffer on standard output and then resets | en_ to zero.

What is different? The only conceptual change to make the program thread-safe was to add
the synchr oni zed keyword to the definitions of addChar and wi t eBuffer.
In Java every object implicitly has an associated monitor. On entry to a
synchr oni zed method, the monitor belonging to the object is locked,
preventing other threads from entering any other synchronized method of
the object. On exit, the monitor is unlocked, thus allowing access by other
threads. This makes sure that the scenario described above won't ever arise,
since it is impossible for two threads to enter the addthar method
simultaneously.

591

CHAPTER 3 | Working With Threads

Thread Safe Version in C++

Thread-safe C++ example

592

JThreads/C+ + supports monitors with two classes: JTOvoni t or and
JTCSynchr oni zed. The JTCSynchr oni zed class uses the “initialization is
acquisition” concept to acquire the monitor's lock. The associated monitor's
lock is acquired on construction and released on destruction.

Here is the thread-safe C++ version of the example:

1 class CharacterBuffer : public JTCMonitor
2 {

3 char* data_;

4 int len_;

5 int max_;

6

7 public:

8

9 Char act er Buf fer ()

10 : data_(0), len_(0), max_(0)

11 {

12 }

13

14 ~Char act erBuffer ()

15 {

16 delete[] data_;

17 }

18

19 voi d addChar (char c)

20 {

21 JTCSynchroni zed synchroni zed(*this);
22 if (len_ >= max_)

23 {

24 char* newbData = new char[l en_+128];
25 mencpy(newbata, data_, len_);
26 del ete[] data_;

27 data_ = newDat a;

28 max_ += 128;

29 }

30 data_[len_++] = c;

31 }

32

21,35

Synchronization

33 void witeBuffer()

34

35 JTCSynchroni zed synchroni zed(*this);
36 cout.wite(data_, len_) << flush;

37 len_ = 0;

38 }

39 };

The class Char act er Buf f er is now derived from JTQvoni tor. In Java this is
not necessary, since all Java objects inherit implicitly from
java. | ang. Qbj ect , which provides the monitor functionality.
The addChar and wri t eBuf f er methods are now thread safe. Instead of
declaring the operations as synchroni zed (as is done in Java), the functions
first create an instance of JTCSynchr oni zed with the Char act er Buf fer’s
monitor object as argument.
So all that has to be done to translate a thread-safe (i.e., synchronized) Java
class to a thread-safe JThreads/C+ + class is to:
® Derive the class from JTQwbni tor.
® Replace synchroni zed methods by methods which contain
JTCSynchr oni zed synchroni zed(*t hi s) as the first statement in the
function body.

That's quite easy, isn't it?

593

CHAPTER 3 | Working With Threads

Block Synchronization

Code blocks Java not only supports synchronized methods, but also synchronized code
blocks.

For example, let's assume that we want to write a thread class whose run
method puts a string into a Char act er Buf f er object using addChar . In Java,
this could be written as follows.

1 class Witer extends Thread

2 {

3 private CharacterBuffer buffer_;

4 private String str_;

5

6 public Witer(CharacterBuffer buffer, String str)
7 {

8 buffer_ = buffer;

9 str_ = str;

10 }

11

12 public void run()

13 {

14 for(int i =0 ; i <str.length() ; i++)
15 buf f er _. addChar (str_. characterAt(i));
16 }

17 };

1 A Witer class is defined, which inherits from Thr ead.
6-10 The constructor initializes the buffer _and str_ data members.

12-16 The thread’s r un method puts the string str_ into the buffer, character by
character, using the buffer's addChar method.

This class does not work as we want it to, however. Suppose we start two
new threads, one to add “123" to the buffer and another one to add “abc”:

CharacterBuffer buffer = new CharacterBuffer();
JTCHandl eT<Witer> wl = new Witer(buffer, "123");
JTCHandl eT<Witer> w2 = new Witer(buffer, "abc");
4 wl -> start();

5 w2 -> start();

WN -

1 A Char act er Buf f er is created.

594

2,3

4,5

3-7

Block Synchronization

Two Wi ter threads are created, one with “123" as argument, and the other
with “abc”. Both threads use the same Char act er Buf f er object. The
JTCHandl eT template is explained in “The JTCHandleT Template” on

page 615. It would be wrong to use just a plain C++ pointer Wi ter* here,
but for now let’s just assume that JTOHandl eT<Witer>and Wit er* are the
same.

The two Wi ter threads are started.

Now consider the following scenario: wi runs first, but after writing “12"” into
the buffer the operating system switches to the execution of w2, which writes
“abc”. After that wi continues to write “3”. The result is that the buffer now
contains the character sequence “12abc3” instead of “123abc”.

We can easily avoid this by rewriting the r un method to lock the monitor of
the Char act er Buf f er object before starting to write into the buffer:

1 public void run()

2 {

3 synchr oni zed(buf fer_)

4 {

5 for(int i =0 ; i <str.length() ; i++)
6 buf fer_. addChar (str_.characterAt(i));
7 }

8 }

The for loop is now placed in a code block synchronized with the
Char act er Buf f er 's monitor lock. This will make sure that the characters are
put into the buffer in the proper sequence.

595

CHAPTER 3 | Working With Threads

This is called a “synchronized code block,” in contrast to a synchronized
method. The example translates to JThreads/C+ + as follows:

1 class Witer : public JTCThread
2 {
3 Charact erBuffer* buffer_;
4 const char* str_;
5
6 public:
7
8 Witer(CharacterBuffer* buffer, const char* str)
9
10 buffer_ = buffer;
11 str_ = str;
12 }
13
14 virtual void run()
15 {
16 {
17 JTCSynchroni zed synchroni zed(*buffer_);
18 int len = strlen(str_);
19 for(int i =0 ; i <len; i++)
20 buffer_ -> addChar(str_[i]);
21 }
22 }
23 };
16-21 Instead of using *t hi s, *buf f er _ is used for synchronization.

596

Static Monitors

Static Monitors

Synchronized static monitors In Java it is possible to have static methods which are synchronized. Here is
an example:
1 public class StaticCounter
2 |
3 static | ong counter_;
4
5 public static synchronized void increnent()
6 {
7 ++counter _;
8 }
9
10 public static synchronized void decrenent()
11 {
12 --counter_;
13 }
14
15 public static synchronized | ong val ue()
16 {
17 return counter_;
18 }
19 };

This class allows global access to a protected counter. This class must be
synchronized because access to a | ong value in Java is not atomic.

It is not possible to inherit from JTOwbni t or if static member functions need
to be synchronized, since the JTCSynchr oni zed class requires *t hi s as the
argument to its constructor (which is not available within static member

functions).

To solve this problem, a static data member of type JTOvoni t or is used to
synchronize static member functions.

597

CHAPTER 3 | Working With Threads

This is the Java example converted to C+ +.

1 class StaticCounter

2 {

3 static long counter_;

4 static JTCMonitor non_;

5

6 public:

7

8 static void increnent()

9 {

10 JTCSynchroni zed sync(non_);
11 ++counter _;

12 }

13

14 static void decrenent ()

15 {

16 JTCSynchroni zed sync(non_);
17 --counter_;

18 }

19

20 static |long val ue()

21 {

22 JTCSynchroni zed sync(non_);
23 return counter_;

24 }

25 };

26

27 long StaticCounter::counter_ = 0;

28 JTCMbnitor StaticCounter::non_;

4 A static JTQwbni t or instance variable is declared. This allows the class to be
synchronized.

10,16,22 The methods are synchronized. Instead of using *t hi s, the static variable
non_ is used.

Note that there are certain restrictions on the use of static monitors. It is not
correct to use! a static monitor before an instance of JTQ ni ti al i ze has
been created. Any use before initialization of JThreads/C++ will result in
undefined behavior. Additionally, the monitor class must not be used after
the final instance of the JTA ni ti al i ze object was destroyed.

1. Construction and destruction of static monitors (which is out of the control of the
application programmer) is not “using of monitors” in this context.

598

Static Monitors

Note that the only JThreads/C+ + classes that can be used as a static
member are the JTOMut ex, JTCRecur si veMut ex and JTOMoni t or classes. All
other classes must not be used as static members.

599

CHAPTER 3 | Working With Threads

The Wait, Notify and NotifyAll Methods

Inter-thread communication Like in Java, JThreads/C+ + offers the wai t, notify and notifyAl I
methods for inter-thread communication. As an example, let's return to our
previous example involving the Char act er Buf f er class. This time, we want
the wri t eBuf f er operation to behave in a slightly different way:
writeBuf fer should only print the buffer's contents if there are at least 80
characters in the buffer.

Using Wait/Notify with Java Let's start with rewriting the wri t eBuf f er method in Java, using wai t :
1 synchroni zed void witeBuffer()
2 {
3 whi l e(l en_ < 80)
4 {
5 try
6 {
7 wai t ()
8 }
9 cat ch(I nterrupt edException ex)
10 {
11 }
12 }
13 Systemout.wite(data_, 0, len_);
14 System out . fl ush();
15 len_ = 0;
16 }

1 The wri t eBuf f er method must be declared synchr oni zed. This makes sure
that the monitor lock is acquired on entry to the method.

3 The whi | e loop is executed until there are at least 80 characters available.

wai t is called. This releases the monitor lock (which was acquired on entry
to the wri t eBuf f er method) and waits for another thread to call either
notify ornotifyAl on the monitor.

5,9 It's possible that wai t throws an I nt er r upt edExcept i on. Therefore this
exception must be caught.

600

11-12

The Wait, Notify and NotifyAll Methods

Now let's change the addChar method so that it calls not i fy whenever there
are at least 80 characters in the buffer:

1 synchronized public void addChar (char c)

2 {

3 if(data_ == null || len_ >= data_.length)
4 {

5 byte[] newData = new byte[l en_+128];

6 if (data_ != null)

7 System arraycopy(data_, 0, newbData, O, len);
8 data_ = newDat a;

9 }

10 data [l en_++] = c;

11 if(len_ >= 80)

12 notify();

13 }

Again, addChar is declared synchroni zed so that the monitor lock is
acquired. This is a requirement for using wai t, notify or notifyA | .

If, after the addition of a new character, the number of characters in the
buffer is equal to or larger than 80, noti fy is called. This wakes exactly one
thread which is waiting using wai t . “Waking” in this context means that the
wai t call of the waiting thread returns and implicitly locks the monitor
again, making sure that only one thread at a time can run the synchr oni zed
method.

The difference between noti fy and noti fyAl | is that notify only wakes
one thread, while noti fyAl | wakes all waiting threads. If more than one
thread is waiting, and noti fy is used, a random thread is woken. If more
than one thread is waiting and noti fyAl | is used, then all threads are
woken, but the order in which the waiting threads return from their call to
wai t is random. Remember that only one thread at a time can return from
wai t, since returning from wai t requires the monitor's lock to be acquired.
This is not possible if another thread has previously returned from wai t and
has not yet released the monitors lock by exiting the synchr oni zed method.

For this example, noti fy is used as we know that there is going to be only
one waiting thread. However, it doesn’t matter whether noti fy or
notifyAl | is used because if more than one thread is waiting, the number
of characters is reset to zero once a thread has returned from wait. When
the other threads subsequently return from wai t, they will wait again
because of the while loop.

601

CHAPTER 3 | Working With Threads

Using Wait/Notify with C++ Let's see how this example translates to JThreads/C+ +:
1 void witeBuffer()
2 {
3 JTCSynchroni zed synchroni zed(*this);
4 whi l e(l en_ < 80)
5 {
6 try
7 {
8 wait();
9 }
10 cat ch(const JTCI nt errupt edExcepti on&)
11 {
12 }
13 }
14 cout.wite(data_, len_) << flush;
15 len_ = 0;

16 }

3 As in the Java example the wri t eBuf f er method must be synchronized.
Calling wai t, notify ornotifyA | without having the monitor locked
results in the exception JTA | | egal Moni t or St at eExcept i on being thrown.

4 Like in the Java example, the whi | e loop is executed until there are at least
80 characters available.

8 wai t is called just in the same way as in the Java example. This releases the
monitor lock (which was acquired with the synchronization through the
JTCSynchr oni ze class) and waits for notification.

602

59

12-13

The Wait, Notify and NotifyAll Methods

The equivalent to j ava. | ang. | nt err upt edExcepti on is the JThreads/C++
exception JTA nt er r upt edExcept i on.

1 void addChar(char c)

2 |

3 JTCSynchroni zed synchroni zed(*this);
4 if (len_ >= max_)

5 {

6 char* newbData = new char[l en_+128];
7 nencpy(newData, data_, len_);

8 del ete[] data_;

9 data_ = newDat a;

10 max_ += 128;

11 }

12 data_[l en_++] = c;

13 if(len_ >= 80)

14 notify();

15 }

addChar is made synchronized.
notify is called if 80 characters are available, waking a waiting thread.

As you can see, the semantics of wai t, notify and notifyAl in
JThreads/C++ are exactly the same as in Java.

603

CHAPTER 3 | Working With Threads

The Stop and Suspend Methods

Terminating and suspending
execution of a thread

Control Points

Implementing a Thread
Termination Method

604

We have already introduced the start method of the JTCThr ead class. The
opposite of start is st op, which terminates the execution of a thread.
Besides st op, there is also a suspend method which suspends the execution
of a thread until r esune is called.

stop and suspend do not terminate or suspend a thread immediately,
because this is not supported by every underlying low-level thread API (e.g.,
POSIX threads). Instead, the JThreads/C+ + library uses the concept of
control points to implement the suspend and st op methods. This is similar
to the cancellation points concept used in the POSIX threads library. If
suspend or st op is called from outside the thread that is to be suspended or
stopped, the thread is marked as control-pending. When this thread calls a
method which is a control point the thread is stopped or suspended,
respectively.

Once a thread has been suspended, execution for that thread is halted until
it is resumed. If a thread has been stopped, the exception JTCThr eadDeat h
is raised. If this exception is caught by user code, it must be re-thrown to
ensure the proper termination of the thread.

The control points in the JThreads/C++ library are:

® JTCThread::suspend()

® JTCThread::join()

® JTCThread::sleep()

® JTCThread::yield()

® JTCSynchronized::JTCSyncronized()

® JTCSynchronized::~JTCSyncronized()

® JTCMonitor::wait()

The Java versions of st op, resune and suspend are deprecated [4]. The
reason is that under very rare circumstances, these methods can lead to a
deadlock of the Java Virtual Machine.

The Stop and Suspend Methods

The JThreads/C++ implementation of st op, resune and suspend is
completely portable and does not suffer from the same shortcomings as the
Java counterpart. However, in order to keep your source code compatible
with Java, we recommend that you provide your own termination method
for your thread classes. As an example, let's visit our Char act er Buf f er class
once more. We now want to have a separate thread, which waits for 80
characters to become available. It then prints these 80 characters on
standard output, resets the buffer's contents and starts over again. The
thread should only stop if a t er m nat e method is called on the

Char act er Buf fer class. We can write this class as follows:

1 class CharacterBuffer : public JTCMonitor, public
JTCThr ead

2 {

3 char* data_;

4 int max_;

5 int len_;

6 bool done_;

7

8 public:

9

10 Char act er Buf fer ()
11 : data_(0), len_(0), max_(0), done_(fal se)
12 {

13 }

14

15 ~Char act er Buf f er ()
16 {

17 del ete[] data_;
18 }

19

605

CHAPTER 3 | Working With Threads

20 voi d addChar (char c)

21 {

22 JTCSynchroni zed synchroni zed(*this);
23 if (len_ >= max_)

24 {

25 char* newData = new char[l en_+128];
26 mencpy(newbata, data_, len_);

27 del ete[] data_;

28 data_ = newDat a;

29 max_ += 128;

30 }

31 data_[len_++] = c;

32 if(len_ >= 80)

33 notify();

34 }

35

36 virtual void run()

37 {

38 JTCSynchroni zed synchroni zed(*t hi s);
39 whi | e(true)

40 {

41 whi | e(! done_ && |l en_ < 80)

42 {

43 try

44 {

45 wai t();

46 }

47 catch(const JTCI nterrupt edExcepti on&)
48 {

49 }

50 }

51 i f(done_)

52 br eak;

53 cout.wite(data_, len_) << flush;
54 len_ = 0;

55 }

56 }

57

58 voi d term nate()

59 {

60 JTCSynchroni zed synchroni zed(*this);
61 done_ = true;

62 notify();

63 }

64 };

606

6,11
20-34

36-56

41-50

50-51

53-54

58-63

The Stop and Suspend Methods

The Charact er Buf f er class is now also derived from JTCThr ead in order to
provide the separate thread for printing the buffer's contents.

We added a done_ flag, initially set to f al se in the constructor.

Nothing has changed in the addChar method. The implementation is the
same as in section .

The wri t eBuf f er method is obsolete. We now have a run method instead,
which prints the buffer's contents in an endless loop.

This is similar to the implementation shown in section . However, the whi | e
loop now not only checks whether 80 characters are available, but also
whether the done_ flag is set to true.

If the inner whi | e loop was terminated because done_ was set to true,

br eak is called. This causes the thread to exit the outer whi | e loop, to return
from the run method and to terminate.

If the inner whi | e loop was terminated for any other reason, there are 80
characters available now, which are printed on standard output.

The t er mi nat e method serves as a replacement for st op. It first acquires the
monitor’s lock with an instance of JTCSynchr oni ze, then sets the done_ flag
to true and notifies the waiting thread.

607

CHAPTER 3 | Working With Threads

The Join and IsAlive Methods

Waiting for threads to terminate

608

7,8

In some applications it is necessary to explicitly wait for threads to
terminate. For instance, if a set of threads is performing a complex parallel
calculation, the application may have to wait for the calculation to be
completed before continuing.

As an example, let's assume that we want the nai n function of our “Hello
World” program from Chapter 2 to wait for the Hel | ovr | d thread to
terminate. One way this can be done is as follows:

1 int

2 muin(int argc, char** argv)

3 {

4 JTCInitialize initialize;

5 JTCThreadHandl e t = new Hel | oWor| d;
6 t -> start();

7 while(t -> isAlive())

8 5

9 return O;

10 }

It is absolutely necessary to use JTCThr eadHandl e instead of JTCThr ead*
here. See “Introducing ‘Handles™ on page 613 for more information. For
now, let’s just think of a JTCThr eadHand! e as if it would be a t ypedef for
JTCThr ead*.

The i sAli ve method is used to wait for the thread to terminate. i sAl i ve
returns true if the thread is alive (that is, if it was started and not yet
terminated), or f al se otherwise.

The Join and IsAlive Methods

The code above has the obvious problem of busy-looping, which should be
avoided at all costs. Fortunately there is alternative approach: j oi n can be
used for this purpose. This method waits for the thread to terminate and
then returns.

1 int

2 main(int argc, char** argv)

3 {

4 JTCInitialize initialize;

5 JTCThreadHandl e t = new Hel | oWor| d;
6 t -> start();

7 t ->join();

8 return O;

9 }

7 The j oi n method is used to wait for the thread to die.

However, this example has a bug. The j oi n method can throw the exception
JTA nt er r upt edExcept i on. Therefore this example should be re-written as

follows:

1 int

2 main(int argc, char** argv)

3 {

4 JTCInitialize initialize;

5 JTCThreadHandl e t = new Hel | oWor| d;
6 t -> start();

7 do

8 {

9 try

10 {

11 t ->join();

12 }

13 catch(const JTCl nterrupt edExcepti on&)
14 {

15 }

16 }

17 while(t -> isAlive());
18 return O;
19 }

9-15 j oi nis called on the thread, which should wait until the thread has
terminated. However, if JTQ nt er r upt edExcept i on is thrown we ignore it.

609

CHAPTER 3 | Working With Threads

17 This makes sure that the loop is only terminated if no
JTA nt er r upt edExcept i on was thrown, i.e., if the thread is not alive
anymore.

610

CHAPTER 4

Memory
Management

This chapter discusses the memory management features
JThreads/C+ + such as reference counting and handle classes.

In this chapter This chapter contains the following sections:
Reference Counting page 612
Introducing ‘Handles’ page 613
The JTCHandleT Template page 615
Rules of Thumb page 616

611

CHAPTER 4 | Memory Management

Reference Counting

Avoiding memory leaks

612

You may have thought that the “Hello World” examples from Chapter 2 all
have memory leaks, since the thread objects are created with new but never
deleted with del et e. However, you would be wrong. Why? The magic
comes in the form of “reference counting”.

Every JTCThr ead object (and also JTCThr ead@ oup and JTCRunnabl e objects)
has a reference counter. When a new thread object is created, this counter
is set to 1. When the thread terminates (i.e., the run method returns), the
counter is decremented by 1. Whenever the counter’s value drops to O, the
thread object is deleted with del et e.

Since in our “Hello World” example the reference count is never
incremented, the reference count drops to O as soon as run returns,
meaning that the thread object is deleted upon thread termination - so there
is no memory leak.

One drawback of using reference counting is that it is not possible to
allocate reference counted objects on the stack. It's only possible to allocate
them with new (on the “heap”), since they will be deleted with del et e as
soon as the reference count becomes 0.

Introducing ‘Handles’

Introducing ‘Handles’

Smart pointers

You might think that reference counting is pretty complicated, because you
now have to remember when to increment or to decrement the counter of a
reference counted object. However, this is not the case. JThreads/C+ +
provides “handle” classes (sometimes also called “smart pointers”) that take
care of incrementing and decrementing the reference counter for you.

Let's go back to the example from “The Join and IsAlive Methods” on
page 608. There we told you that it is absolutely necessary to use
JTCThr eadHandl e instead of JTCThr ead*. Now we will reveal the secret
behind it.

Consider how we would have written the example without
JTCThr eadHand! e:

int
mai n(int argc, char** argv)
{
JTAnitialize initialize;
// Don't do this! Use JTCThreadHandl e i nstead of JTCThr ead*
JTCThread* t = new Hel | oWr| d;
t -> start();
do
{
try
{
t ->join();
cat ch(const JTC nt er r upt edExcept i on&)
{
}
}
while(t ->isAive());
return O;
}

This example is wrong and the program will most certainly crash. When the
thread terminates, its reference count is decremented from 1 to O and thus
the thread object is deleted with del et e. However, we are still trying to j oi n
with the thread and check whether it's still alive using i sAl i ve even though
the thread object has already been deleted.

613

CHAPTER 4 | Memory Management

614

So what we would have to do is increase the reference count by 1 after the
new and to decrement it by 1 after the whi | e loop. This would make sure
that the reference count drops to O after the j oi n and i sAl i ve methods
were called.

This is exactly what handles are doing for you. Whenever you assign a
thread object to a handle, it increases the reference count of the thread
object by 1. The same is true if you assign a handle to another handle.
Whenever a handle is destroyed, the destructor of the handle decrements
the reference count of the thread object it points to by 1.

For the example above, this means that if you replace JTCThr ead* by
JTCThr eadHandl e, the reference count of the thread object will be 2 instead
of 1 after the new, because the handle increased the counter by 1. After the
thread has terminated, the counter is still 1, and thus the thread object is
not deleted, so that it is safe to use operations like i sAl i ve or j oi n on the
thread object. When the handle is destroyed at the end of the mai n function,
the handle's destructor decrements the thread object’s counter by 1, so that
the thread object is then also deleted.

The JTCHandleT Template

The JTCHandleT Template

Handle classes

JThreads/C+ + provides the following handle classes:

® JTCThreadHandl e as a replacement for JTCThr ead*.

® JTCRunnabl eHandl e as a replacement for JTCRunnabl e*.

® JTCThr ead@ oupHandl e as a replacement for JTCThr ead@ oup* .

These classes are all t ypedef s for a more general handle type written as a
C++ template:
typedef JTCHandl eT<JTCThr ead> JTCThr eadHandl e;
typedef JTCHandl eT<JTCRunnabl e> JTCRunnabl eHand! e;
typedef JTCHandl eT<JTCThr ead@ oup> JTCThr eadG oupHandl e;
In case you want to access methods from classes derived from JTCThr ead
(or from JTCRunnabl e) you must define your own handle type. As an
example, let's go back to “Implementing a Thread Termination Method” on
page 604, in which we defined a t er ni nat e method. In case we actually
want to call this method, we cannot use JTCThr eadHandl e as shown below:
JTCThreadHandl e t = new CharacterBuffer;

. I/ Do sonething with the CharacterBuffer
t ->terninate(); // This does not work, conpiler will conplain
Just as you cannot use JTCThr ead* to access methods from classes derived
from JTCThr ead, you cannot use JTCThr eadHandl e for this either. You must
use the handle class for Char act er Buf f er *. This can be done by using the
JTCHandl eT template:
typedef JTCHandl eT<Char act er Buf f er > Char act er Buf f er Handl e;
CharacterBufferHandl e t = new Charact er Buf fer;

. /] Do something with the CharacterBuffer
t ->ternminate(); // This works

615

CHAPTER 4 | Memory Management

Rules of Thumb

Rules

616

Keep the following rules in mind when using JThreads/C+ +:

® Always use handle types instead of plain C++ pointers. The only
exception can be made if it is absolutely certain that after start is
called on the thread object the C++ pointer is not used anymore.

® Never allocate thread objects, runnable objects or thread group objects
on the stack. Always use new.

® Never attempt to delete thread objects, runnable objects or thread
group objects with del et e. They will be deleted automatically.

® Define your own handle types by using the JTCHandl eT template
whenever you must access methods of classes derived from
JTCThr ead, JTCThr ead@ oup or JTCRunnabl e.

As long as you follow these basic rules, memory management in

JThreads/C++ is virtually automatic.

The nice thing about reference counting and handle classes is that it makes

JThreads/C++ even more Java-like. Reference counting emulates the Java
garbage collector, and handles emulate Java references.

APPENDIX A

Class Reference

This chapter provides a reference to the classes in the
JThreads/C++ library.

617

CHAPTER A | Class Reference

JTClInitialize

Overview

JTCOptions

Constructors

618

An instance of this class must be instantiated before JThreads/C+ + is used.
If no instance of this class is created, the JThreads/C++ library will not
work properly.

JTAnitialize can be instantiated multiple times. However, only the first
instantiation has any effect. When the last JTQ ni ti al i ze instance is
destroyed, the destructor will wait for all running threads to terminate.

JTAnitialize interprets arguments starting with - JTC. All of these
arguments, passed through the argc and ar gv parameters, are
automatically removed from the argument list.

The following JThreads/C+ + options can be used:

-JTCversion
Shows the JThreads/C+ + version number.

-JTCss stack-size
This option sets the thread stack size to st ack- si ze kilobytes.

JTClInitialize
JTAnnitialize()
Initializes the JThreads/C+ + library.

Throws:
JTCSyst enCal | Excepti on - Indicates a failed system call.

JTClInitialize
JTAnnitialize(int& argc, char** argv)
Initializes the JThreads/C+ + library and interprets arguments starting
with -JTC.
Throws:
JTCSyst entCal | Except i on - Indicates a failed system call.

JTAnitializeError - Indicates a that an invalid option or option
argument was specified.

Member Functions waitTermination
voi d wai t Term nati on()
Waits for all threads to terminate.
initialized
static bool initialized()
Determines if the JThreads/C++ library has been initialized.
Returns:

true if JThreads/C++ has been initialized and f al se otherwise.

619

CHAPTER A | Class Reference

JTCAdoptCurrentThread

Overview

Constructors

620

When integrating with third-party libraries, it is often necessary to call
JThreads/C++ methods from a thread that was not created using
JThreads/C+ +. In this situation, the thread must create an instance of
JTCAdopt Qur rent Thr ead prior to using any other JThreads/C+ + classes.
Failure to instantiate JTCAdopt Qur r ent Thr ead will result in undefined
behavior.

JTCAdoptCurrentThread
JTCAdopt Qur r ent Thr ead()
Informs the JThreads/C+ + library about the existence of this thread.

Throws:

JTCSyst entCal | Except i on - Indicates a failed system call.

JTCThread

Overview

Constructors

This class is used to create a new thread of execution. The thread
functionality can be added by either deriving a class from JTCThr ead and
overriding the run method, or by passing an object of a class derived from
JTCRunnabl e to the JTCThr ead constructor.

JTCThread
JTCThr ead(JTCRunnabl eHandl e target, const char* name = 0)
Create a new thread object with a target object and a name.

Parameters:

target - The object whose run method is invoked when start is
called. If no object is specified, the run method of the thread object
must be overridden in a derived class.

name - The name of the thread. If no name is specified, a default name
is used. This default name is the string "t hr ead- " concatenated with
the thread id. A thread id is a system-specific identifier generated by
the operating system when a new thread is created. Application
developers are encouraged to use the JTCThr eadl d class to refer to
thread ids.

Throws:
JTCSyst enCal | Excepti on - Indicates a failed system call.
JTCThread

JTCThr ead(const char* nane)
Create a new thread object with a name.

Parameters:
nanme - The name of the thread.
Throws:
JTCSyst entCal | Excepti on - Indicates a failed system call.

JTCThread

JTCThr ead(JTCThr eadG oupHandl e& group, JTCRunnabl eHand| e
target, const char* nane = 0)

621

CHAPTER A | Class Reference

Create a new thread object belonging to a group, with a target object
and a name.

Parameters:
group - The thread group.
target - The object whose run method is invoked when start is
called. If no target object is specified, the run method of the thread
object must be overridden in a derived class.
name - The name of the thread. If no name is specified, a default name
is used. This default name is the string "t hr ead- " concatenated with
the thread id. A thread id is a system-specific identifier generated by
the operating system when a new thread is created. Application
developers are encouraged to use the JTCThr eadl d class to refer to
thread ids.

Throws:
JTCSyst enCal | Excepti on - Indicates a failed system call.

JTCThread
JTCThr ead(JTCThr ead@ oupHandl e& group, const char* name = 0)
Create a new thread object belonging to a group, with a name.
Parameters:
group - The thread group.
name - The name of the thread. If no name is specified, a default name
is used. This default name is the string "t hr ead- " concatenated with
the thread id. A thread id is a system-specific identifier generated by
the operating system when a new thread is created. Application
developers are encouraged to use the JTCThr eadl d class to refer to
thread ids.
Throws:
JTCSyst entCal | Excepti on - Indicates a failed system call.

Member Functions getThreadGroup
JTCThr ead@ oupHandl e get Thr eadQ oup()
Returns a thread group handle for the thread group object to which this
thread object belongs.

622

Returns:

A handle for the thread group object.

setName

voi d set Nane(const char* nane)
Sets the name of the thread object.

Parameters:

name - The new name for the thread object. If a nul I pointer is used, a
default name is used. This default name is the string "t hr ead-"
concatenated with the thread id. A thread id is a system-specific
identifier generated by the operating system when a new thread is
created. Application developers are encouraged to use the JTCThr ead! d
class to refer to thread ids.

getName

const char* get Nange() const
Returns the name of the thread object.

Returns:

start

The thread object name.

void start()

Starts execution of the thread. If the thread was created with a target
object, i.e., with an object of a class derived from JTCRunnabl e, the
run method of the target object is invoked. If there is no target object,
the run method of the thread object itself is invoked. In this case, a
class derived from JTCThr ead with an overridden run method should
be used.

Throws:

run

JTCSyst enCal | Excepti on - Indicates a failed system call.

JTA | | egal St at eExcepti on - Thrown if the thread has already been
started.

virtual void run()
This method is called when start is invoked. If the thread object has
been constructed with an associated target JTCRunnabl e object, the

623

CHAPTER A | Class Reference

624

target's run method is invoked. Otherwise, the run method should be
overridden in a class derived from JTCThr ead. If run terminates due to
an uncaught exception, then the thread’s thread group method
uncaught Except i on is called.

isAlive
bool isAive() const
This method determines whether the thread is alive.

Returns:
true if the thread is alive, f al se otherwise.
join
void join()
Waits for the thread to terminate.
Throws:
JTCSyst enCal | Excepti on - Indicates a failed system call.
join
void join(long nmilis)
Waits for the thread to terminate for at most ni | 1i s milliseconds.
Throws:
JTCSyst entCal | Except i on - Indicates a failed system call.
JTA | | egal Argument Except i on - Thrown if the value of nil lis is
negative.
join
void join(long mllis, int nanos)
Waits for the thread to terminate for at most mi 1 1i s milliseconds and
nanos nanoseconds.
Throws:
JTCSyst enCal | Excepti on - Indicates a failed system call.

JTA | | egal Ar gurrent Except i on - Thrown if the value of nmillis is
negative, or if the value of nanos is not in the range 0 - 999999.

setPriority
void setPriority(int newPri)
Sets the thread priority to a new value.

Parameters:

newPri - The new thread priority.
Throws:

JTCSyst entCal | Excepti on - Indicates a failed system call.
getPriority

int getPriority() const
Returns the priority of the thread.

Returns:
The thread priority.
Throws:

JTCSyst entCal | Except i on - Indicates a failed system call.

enumerate
static int enunerate(JTCThreadHandl e* list, int |en)
Copies each active thread from this thread’s thread group and
subgroups into the array I i st. If more than | en items are present, the
list is truncated.

Parameters:

l'i st - The array into which all threads from this thread’s group and
subgroups are copied.

I en - The number of JTCThr eadHand! e* elements in | st.
Returns:

The number of threads returned in i st.
currentThread

static JTCThread* current Thread()
Returns a pointer to the currently executing thread object.

Returns:
The currently executing thread object.
sleep
static void sleep(long mllis, int nanos = 0)

Suspends execution of this thread for ni | I i s milliseconds, and nanos
nanoseconds.

Parameters:

625

CHAPTER A | Class Reference

626

mllis - The number of milliseconds to sleep.
nanos - The number of nanoseconds to sleep.
Throws:
JTCSyst enCal | Excepti on - Indicates a failed system call.

JTA I | egal Argument Except i on - Thrown if the value of nil lis is
negative, or if the value of nanos is not in the range 0 - 999999.

JTA nt er rupt edExcept i on - Thrown if the sl eep call is interrupted.

yield
static void yield()
Gives up the thread’s current timeslice. This can be called if you want
to manually give other threads an opportunity to execute.

activeCount
static int activeCount ()
Returns the number of active threads in this thread’s thread group and
subgroups.

Returns:

The number of active threads in this thread’s group and subgroups.

getld
JTCThreadl d getld() const
Returns the id of the thread.
Returns:

The thread id of the thread.

setAttrHook
typedef void (*JTCAttrHook)(pthread_attr_t*)

static void setAttrHook(JTCAttrHook hook, JTCALtrHook*
ol dHook = 0)

Sets/gets a hook that will be used to initialize custom POSIX thread
attributes. Note: this method is only available for systems using POSIX
threads.

Parameters:

hook - The function that will be called to retrieve the custom POSIX
thread attributes before the creation of each thread.

Data Members

ol dHook - Optional parameter in which the previously set hook is
returned. Applications should call this function within the new hook. In
essence, hooks may be chained.

setRunHook
typedef void (*JTCRunHook) (JTCThr ead*)
static void set RunHook(JTCRunHook hook, JTCRunHook* ol dHook =

0)

Sets/gets a run hook which may be used to setup any application
specific information during thread creation. The hook function must
call thread -> run() to actually run the thread.

Parameters:
hook - The function that will be called on creation of the thread.
ol dHook - Optional parameter in which the previously set hook is
returned. Applications should call this function from within the new
hook. In essence, hooks may be chained.

setStartHook
typedef void (*JTCSt art Hook) ()

static void setStartHook(JTCSt art Hook hook, JTCSt art Hook*

ol dHook = 0)
Sets/gets a start hook which may be used to setup any thread specific
information.
Parameters:

hook - The function that will be called on creation of the thread.

ol dHook - Optional parameter in which the previously set hook is
returned. Applications should call this function from within the new
hook. In essence, hooks may be chained.

JTC_MIN_PRIORITY
const int JTCMNPRORTY
A constant for the minimum priority a thread can have.

JTC_NORM_PRIORITY
const int JTC NORM PR ORI TY
A constant for the default priority of a thread.

627

CHAPTER A | Class Reference

Related Functions

628

JTC_MAX_PRIORITY
const int JTC MAX PRCRITY
A constant for the maximum priority a thread can have.

operator< <
ost rean& oper at or <<(ostrean& os, const JTCThread& thr)
Print the thread id to the output stream os. The output format of the
thread-id field is platform-specific.

Parameters:
os - Output stream in which to insert the thread id.
thr - Reference to the thread.

Returns:

The output stream os.

JTCRunnable

Overview This class is provided as an alternative method of providing functionality in a
thread. In order to use this class, you must write a subclass and provide a
definition for the run method. An instance of this class should then be
provided as an argument to the JTCThr ead constructor. When the thread is
started, the run method of that instance will be invoked.

Member Functions run
virtual void run()
Called when the start method is called on the associated thread
object.

629

CHAPTER A | Class Reference

JTCThreadGroup

Overview

Constructors

Member Functions

630

This class represents a collection of threads, and other thread groups. The
thread groups form a tree, rooted at the system thread group. New threads
by default belong to the thread group of their parent thread. A thread group
can optionally be a daemon thread group, which automatically destroys
itself after all threads have terminated and all sub-groups are destroyed. A
newly created thread group inherits its parent’s daemon status. The root
thread group is a non-daemon thread group.

JTCThreadGroup
JTCThr ead@ oup(const char* nane)
Creates a new thread group with the provided name. The new thread
group’s parent is that of the current thread.

Parameters:
name - The name of the thread group.

Throws:
JTA | | egal Thr eadSt at eExcept i on - Thrown if the parent thread group
has been destroyed..

JTCThreadGroup
JTCThr ead@ oup(JTCThr ead@ oup* group, const char* nane)
Creates a new thread group with the provided name and parent thread
gr oup.

Parameters:
group - The parent of the thread group.
name - The name of the thread group.

Throws:

JTA | | egal Thr eadSt at eExcept i on - Thrown if the parent thread group
has been destroyed..

getName()
const char* get Nane() const
Returns the name of the thread group.

Returns:

The name of the thread group.

getParent
JTCThr ead@ oupHandl e get Parent () const
Returns the parent of the thread group. If the thread group is the root
thread group, the handle contains a null pointer.

Returns:

The parent of the thread group.

isDaemon
bool isDaenon() const
Returns the daemon flag for this thread group. If the daemon flag is
true, the thread group is destroyed once all threads are terminated and
sub-groups are empty.

Returns:

The value of the daemon flag.

setDaemon
voi d set Daenon(bool daenon)
Sets the daemon flag for this thread group. If the daemon flag is true,
the thread group is destroyed once all threads are terminated and
sub-groups are empty.

Parameters:

daenon - The new value for the daemon flag.

uncaughtException

virtual void uncaught Excepti on(JTCThreadHandl e t, const
JTCExcepti on& e)

This method is called if a JTCThread: : run() exits because of an
uncaught JTCExcept i on. By default, if the thread group has a parent
this method invokes the parent’s uncaught Except i on method,
otherwise it displays the exception to stderr.

Parameters:
t - The thread that threw the JTCExcepti on.

e - The uncaught exception.

631

CHAPTER A | Class Reference

632

uncaughtException
virtual void uncaught Excepti on(JTCThr eadHandl e t)
This method is called if a JTCThread: : run() exits because of an
uncaught exception. By default, if the thread group has a parent this
method invokes the parent’s uncaught Except i on method, otherwise it
displays the text “uncaught exception” to stderr.

Parameters:
t - The thread that threw the JTCExcepti on.

getMaxPriority
int getMaxPriority() const
Returns the maximum priority permitted for threads in this thread
group.

Returns:

The maximum priority of this thread group.

isDestroyed
bool isDestroyed() const
Determines if the thread group has been destroyed. A thread group is
destroyed once all threads have terminated in the thread group and all
subgroups.

Returns:

true if the thread group has been destroyed, f al se otherwise.

destroy
voi d destroy()
Destroys this thread group and all of its subgroups. The thread group
must not contain any active threads.

Throws:

JTA I | egal Thr eadSt at eExcept i on - If the thread group has active
threads, or has already been destroyed.

setMaxPriority
voi d set MaxPriority(int pri)
Sets the maximum priority that threads in the thread group and its
subgroups may have. Threads in the thread group that have higher
priority are not affected. That is, their priorities are not lowered.

parentOf

bool parent O (JTCThr eadG oupHandl e @)

Returns t r ue if the thread group is the parent of thread group g.
Returns:

true if this thread is a parent of g, f al se otherwise.

activeCount
int activeCount() const
Returns the number of active threads in this thread group, and all of its
subgroups.
Returns:
The number of active threads.

activeGroupCount

int activeQ@ oupCount() const

Returns the number of active thread groups in this thread group.
Returns:

The number of active thread groups.

enumerate

i nt enurnerate(JTCThreadHandl e* list, int len, bool recurse =
true) const

Copies pointers to each active thread in this thread group to the array
l'ist.activeCount can be used to get an estimate of how big the array
should be. If more than I en active threads are present, the remaining
threads are silently ignored. The reason that the developer cannot
determine precisely the number of threads is that threads can be
added and removed from the thread group at the same time as they
are enumerated.

Parameters:
l'i st - The array into which the set of active threads should be copied.
I en - The length of the array i st.
recur se - If set to t rue, active threads from subgroups are also
enumerated.

Returns:
The number of active threads copied to the array.

633

CHAPTER A | Class Reference

Related Functions

634

enumerate

i nt enurrer at e(JTCThr eadG oupHandl e* list, int |en, bool
recurse = true) const

Copies handles for every active subgroup of this thread group into the
array | i st. acti ve@ oupCount can be used to determine how big the
array must be. If more than I en active subgroups are present, the
remaining subgroups are silently ignored.

Parameters:

I'i st - The array in which to copy the thread group handles.

I en - The length of the array.

recurse - If set to true, child subgroups are also enumerated.
Returns:

The number of handles copied to Ii st.
list

void list()

Outputs to the stream cout the set of threads and subgroups.
list

void |ist(ostrean& os, int indent)

Outputs to the stream os the set of threads and subgroups. Use i ndent
spaces for indentation.

operator< <
ost rean& oper at or <<(ostrean& os, const JTCThreadQ oup& Q)
Prints a string representation of the thread group to the output stream
os. This calls g. i st (os, 4).

Parameters:
os - Output stream in which to insert the thread id.
g - Reference to the thread group.

Returns:

The output stream os.

JTCHandleT

Overview

Constructors

Member Functions

The JThreads/C++ library cannot know when to delete instances of
JTCThr ead, JTCRunnabl e, and JTCThr ead@ oup. One solution to this
dilemma is to force application developers to delete instances of these
classes when they are sure the instances are no longer useful. However, this
is error prone. Fortunately there is a well-known solution to this problem -
reference counting (see [5] p. 782). This isn't necessary in Java since it
provides garbage collection. The basic idea is to count the number of
references to the object, and delete the object when the reference count
drops to zero. To ease the counting of references, a handle class is used that
increments the reference count when constructed, and decrements the
reference count when destructed.

The JTCHandl eT is a “smart pointer” to a reference-counted object. A regular
pointer to instances of these classes should never be stored.

The classes JTCThr ead@ oupHand! e, JTCThr eadHand! e, and
JTCRunnabl eHandl e are all convenience t ypedef s of this template class.

JTCHandleT

JTCHandl eT(T* tg = 0)

Creates a handle that refers to the object t g.
Parameters:

tg - The object to reference.
JTCHandleT

JTCHandl eT(const JTCHandl eT<T>& r hs)
Creates a handle that refers to the object referred to by rhs.

Parameters:

rhs - The handle from which to retrieve the object.

operator=
JTCHand| e<T>& oper at or =(const JTCHandl eT<T>& r hs)
Creates a handle that refers to the object referenced by r hs.

Parameters:

635

CHAPTER A | Class Reference

rhs - The handle from which to retrieve the object.
Returns:
A reference to the handle.
operator==
bool operat or==(const JTCHandl eT<T>& rhs) const
Returns true if rhs references the same object as this object.
Parameters:
rhs - The handle to compare with.
Returns:
true if the objects are equivalent, f al se otherwise.

operator! =
bool operator!=(const JTCHandl eT<T>& rhs) const
Returns t rue if rhs references a different object as this.
Parameters:
rhs - The handle to compare with.
Returns:
true if the objects are not equivalent, f al se otherwise.

operator!
bool operator!() const
Determines if the object referenced by the handle is not valid, i.e., that
it is nil.
Returns:
true if the object is not valid, f al se otherwise.
operator bool
operator bool () const

Determines if the object referenced by the handle is valid, i.e., that it is
not nil.

Returns:
t rue if the object is valid, f al se otherwise.

operator->
T* operator->() const

636

Invokes a method on the referenced object.
Returns:

A pointer to the referenced object.
get

T* get() const
Gets a pointer to the referenced object.

Returns:
A pointer to the referenced object.
operator*

T& operator*()
Retrieve a C++ reference to the referenced object.

Returns:
A C+ + reference to the object.

637

CHAPTER A | Class Reference

JTCMonitor

Overview

Methods

638

This class provides the functionality of Java monitors. In order to implement
synchronized methods, the monitor's lock must be acquired, for example by
creating an instance of the JTCSynchr oni zed class at the top of the

synchronized method, with the monitor as the argument to the constructor.

The monitor's wai t method can be used to release the monitor’s lock and to
wait for notifications. The notify and notifyA | methods can be used to
wake one or all waiting monitors, respectively.

wait
voi d wait()
Waits for notification by another thread. The calling thread must own
the monitor's lock. The monitor's lock is released and the thread waits
for notification by another thread via a call to either noti fy or
notifyAl | . The thread then waits until it can regain ownership of the
monitor's lock and then resumes execution.

Throws:

JTA I | egal Moni t or St at eExcept i on - If the monitor is not locked by
the calling thread.

JTCSyst enCal | Excepti on - Indicates a failed system call.

wait
wai t (I ong tinmeout)
Waits for notification by another thread. The calling thread must own
the monitor's lock. The monitor’s lock is released and the thread waits
for notification by another thread via a call to either noti fy or
noti fyAl I, oruntil ti meout milliseconds have passed. The thread then
waits until it can regain ownership of the monitor's lock and then
resumes execution.

Parameters:

ti meout - The maximum number of milliseconds to wait for
notification.

Throws:

JTA I | egal Moni t or St at eExcept i on - If the monitor is not locked by
the calling thread.

JTCSyst entCal | Excepti on - Indicates a failed system call.

notify
voi d notify()
Wakes a single thread waiting on the monitor. The calling thread must
own the monitor’s lock.

notifyAll()
voi d notifyAl()
Wakes all threads waiting on the monitor. The calling thread must own
the monitor's lock.

639

CHAPTER A | Class Reference

JTCMonitorT

Overview This is a template class that allows creation of synchronized classes without
altering the implementation.

Member Functions wait

voi d wait ()
Waits for notification by another thread. The calling thread must own
the monitor's lock. The monitor's lock is released and the thread waits
for notification by another thread via a call to either noti fy or
notifyAl | . The thread then waits until it can regain ownership of the
monitor’s lock and then resumes execution.

Throws:
JTA | | egal Moni t or St at eExcept i on - If the monitor is not locked by
the calling thread.
JTCSyst entCal | Excepti on - Indicates a failed system call.

wait
wai t (1 ong timeout)
Waits for notification by another thread. The calling thread must own
the monitor's lock. The monitor's lock is released and the thread waits
for notification by another thread via a call to either noti fy or
notifyA |, oruntil ti reout milliseconds have passed. The thread then
waits until it can regain ownership of the monitor's lock and then
resumes execution.

Parameters:
timeout - The maximum number of milliseconds to wait for
notification.

Throws:

JTA I | egal Moni t or St at eExcept i on - If the monitor is not locked by
the calling thread.

JTCSyst enCal | Excepti on - Indicates a failed system call.

640

notify
voi d notify()
Wakes a single thread waiting on the monitor. The calling thread must
own the monitor’s lock.

notifyAll()
void notifyAl ()
Wakes all threads waiting on the monitor. The calling thread must own
the monitor’s lock.

641

CHAPTER A | Class Reference

JTCRecursiveMutex

Overview

Member Functions

642

This class can be used to establish a critical section. This class has no direct
equivalent in Java, and is provided for performance reasons only. An
instance of JTCRecur si veMut ex can be locked multiple times by the same
thread, and therefore may not be as efficient as the JTCMut ex class. The
developer is responsible for ensuring that each mutex lock has a
corresponding unlock.

lock
bool |ock() const
Lock the mutex. If the mutex is already locked, the calling thread
blocks until the mutex is unlocked. If the current owner of the mutex
attempts to re-lock the mutex, a deadlock will not result.

Returns:

true, if the mutex is locked for the first time, f al se, otherwise.

unlock
bool unl ock() const
This method is called by the owner of the mutex to release it. The
mutex must be locked and the calling thread must be the one that last
locked the mutex. If these conditions are not met, undefined behavior
will result.

Returns:
true, if the mutex is available for locking by some other thread, f al se
otherwise.

trylock
bool tryl ock() const
This method is identical to | ock except that if the mutex is already
locked, then f al se is returned.

Returns:

true, if the mutex was locked, f al se otherwise.

get_owner
JTCThr eadl d get _owner () const

Return the thread id of the owning thread.

Returns:
The thread id of the owning thread.

643

CHAPTER A | Class Reference

JTCMutex

Overview

Member Functions

644

This class can be used to establish a critical section. This class has no direct
equivalent in Java. It is provided for performance reasons only. Unlike
JTOMoni t or or JTCRecur si veMit ex, this class not does guarantee recursive
locking semantics. If the mutex is locked more than once by the same
thread, a deadlock may result.!

lock
bool |ock() const
Lock the mutex. If the mutex is already locked, the calling thread
blocks until the mutex is unlocked. If the current owner of the mutex
attempts to re-lock the mutex, a deadlock may result.

Returns:
This method always returns true.

unlock
bool unl ock() const
This method is called by the owner of the mutex to release it. The
mutex must be locked and the calling thread must be the one that last
locked the mutex. If these conditions are not met, undefined behavior
will result.

Returns:

This method always returns true.

trylock
bool trylock() const
This method is identical to | ock except that if the mutex is already
locked, then f al se is returned.

Returns:

true, if the mutex was locked, f al se otherwise.

get_owner
JTCThreadl d get _owner () const

1. Under Windows NT JTOWut ex allows recursive locking, while a pthreads
implementation (i.e., UNIX) does not.

Return the thread id of the owning thread.
Returns:
The thread id of the owning thread.

645

CHAPTER A | Class Reference

JTCRWMutex

Overview

Member Functions

646

This class can be used to create read-write locks. This class has no direct
equivalent in Java. It is provided for performance reasons only. Like

JTOwut ex, this class not does guarantee recursive locking semantics. If the
mutex is locked more than once by the same thread, a deadlock may result.

read_lock
voi d read_| ock() const
Lock the mutex for reading. If the mutex is locked for writing or writers
are waiting for a write lock, the calling thread blocks until the mutex is
unlocked. If the current owner of the mutex attempts to re-lock the
mutex, a deadlock may result.

write_lock
void wite_ | ock() const
Lock the mutex for writing. If the mutex is locked for reading or writing,
the calling thread blocks until the mutex is unlocked. If the current
owner of the mutex attempts to re-lock the mutex, a deadlock may
result.

unlock
voi d unl ock() const
This method is called by the owner of the mutex to release it. The
mutex must be locked and the calling thread must be the one that last
locked the mutex. If these conditions are not met, undefined behavior
will result.

JTCSynchronized

Overview

Constructor

This class is used to acquire and release a monitor’s lock. To create a
synchronized method, an instance of this class should be created with the
monitor as the constructor argument. The constructor acquires the lock and
the destructor releases the lock. This class may also be used with the
classes JTOMit ex, JTCRecur si veMit ex and JTCRAWWUL ex.

JTCSynchronized

JTCSynchr oni zed(const JTCOVbni t or & non)

Acquires the monitor’s lock. The destructor releases the monitor’s lock.
Throws:

JTCSyst entCal | Except i on - Indicates a failed system call.

JTCSynchronized

JTCSynchr oni zed(const JTOMIt ex& non)

Acquires the mutex’s lock. The destructor releases the mutex’s lock.
Throws:

JTCSyst entCal | Excepti on - Indicates a failed system call.

JTCSynchronized
JTCSynchr oni zed(const JTCRecur si veMit ex& non)
Acquires the mutex’s lock. The destructor releases the mutex’s lock.

Throws:
JTCSyst entCal | Excepti on - Indicates a failed system call.

JTCSynchronized
enum ReadW i t eLockType

{

read_| ock,
wite_l ock

b
JTCSynchr oni zed(const JTCRWWIt ex& mon, ReadWit eLockType

type)
Acquires the mutex’s lock. The destructor releases the mutex’s lock.

647

CHAPTER A | Class Reference

Throws:
JTCSyst entCal | Except i on - Indicates a failed system call.

648

JTCSyncT

Overview This class is a template version of the JTCSynchr oni zed class. The JTCSyncT
template is more efficient than the JTCSynchr oni zed class, however it is
more difficult to use. The template’s constructor invokes the | ock method
on the parameter class, and the destructor invokes the unl ock method. This
template may also be instantiated with the classes JTQwoni t or , JTOMut ex
and JTCRecur si veMut ex.

Constructor JTCSyncT
JTCSyncT(const T& non)
Acquires the monitor’s lock. The destructor releases the monitor’s lock.

Throws:

JTCSyst entCal | Except i on - Indicates a failed system call.

649

CHAPTER A | Class Reference

JTCReadLock

Overview

Constructor

650

This class is used to acquire and release a read lock. To create a
synchronized method, an instance of this class should be created with the
JTCRWWt ex as the constructor argument. The constructor acquires the lock
and the destructor releases the lock.

JTCReadLock
JTCReadLock(const JTCRWWt ex& rmon)
Acquires the mutex’s lock for reading. The destructor releases the
mutex’s lock.

Throws:

JTCSyst enCal | Excepti on - Indicates a failed system call.

JTCWriteLock

Overview This class is used to acquire and release a write lock. To create a
synchronized method, an instance of this class should be created with the
JTCRWWt ex as the constructor argument. The constructor acquires the lock
and the destructor releases the lock.

Constructor JTCWriteLock
JTCWi t eLock(const JTCRWMIt ex& non)
Acquires the mutex’s lock for writing. The destructor releases the
mutex’s lock.

Throws:
JTCSyst entCal | Excepti on - Indicates a failed system call.

651

CHAPTER A | Class Reference

JTCThreadld

Member Functions

652

This class represents a thread id. The only operations that should be
used are equality and inequality. Two thread objects may be
considered to be equal if their thread ids are equivalent. A user should
not directly construct instances of this class.

operator==
bool operat or==(const JTCThreadl d& r hs)
Compares for equality.

Parameters:

rhs - The thread id with which to compare.
Returns:

true if the thread ids are equivalent, f al se otherwise.
operator!=

bool operator!=(const JTCThreadl d& rhs) const
Compares for inequality.

Parameters:
rhs - The thread id with which to compare.
Returns:

true if the thread ids are not equivalent, f al se otherwise.

JTCThreadKey

Overview This type represents a thread specific storage key. JTCThr eadKey should be
used as an opaque type.

653

CHAPTER A | Class Reference

JTCTSS

Overview

Member Functions

654

This class is used to manage thread-specific storage, which is an extremely
useful method of managing data that is associated with each thread, while
avoiding the overhead of a mutex. Using thread-specific storage, each
thread associates data with a key. Because each thread has its own data,
there is no contention for the data among multiple threads.

allocate
static JTCThreadKey al | ocat e()
Creates a new thread-specific storage key.

Returns:
A new thread-specific storage key.
Throws:

JTCSyst enCal | Excepti on - Indicates a failed system call.

allocate
static JTCThreadKey al | ocate(void (*)(void*))
Creates a new thread-specific storage key with an associated cleanup
function. Upon thread termination, the registered cleanup function is
called with an argument that contains the value associated with the
thread-specific storage key.

Returns:
A new thread-specific storage key.

Throws:
JTCSyst enCal | Excepti on - Indicates a failed system call.

release
static void rel ease(JTCThr eadKey key)
Releases a thread-specific storage key. The developer is responsible for
freeing any associated storage before releasing the key. Any associated
cleanup function is not called.

Parameters:

key - The thread-specific storage key to release.

Throws:

JTCSyst entCal | Except i on - Indicates a failed system call.

get
static voi d* get (JTCThreadKey key)

Gets the data associated with a thread-specific storage key.

Parameters:

key - The thread-specific storage key.
Returns:

The data associated with the thread-specific storage key.
Throws:

JTCSyst entCal | Except i on - Indicates a failed system call.

set
static void set(JTCThreadKey key, void* data)
Associates data with a thread-specific storage key.

Parameters:
key - The thread-specific storage key.
dat a - The data to associate with the key.
Throws:

JTCSyst entCal | Excepti on - Indicates a failed system call.

655

CHAPTER A | Class Reference

JTCThreadDeath

Overview This exception is thrown when a thread is terminated by JTCThr ead: : st op.
If this exception is caught, it must be re-thrown to ensure correct
termination of the thread.

656

JTCException

Overview

Constructors

Member Functions

With the exception of JTCThr eadDeat h, JTCExcept i on is the base class of all
JThreads/C+ + exception classes.

JTCException
JTCException(const char* note = "", long error = 0)
Constructs a JTCExcept i on with the message in not e, and the error
type inerror.

Parameters:
not e - A description of the error.
error - An exception-specific error code.

getError
long getError() const
Returns the exception-specific error code. Currently only
JTCSyst entCal | Except i on has a specific error code.

Returns:
The error code.
getType
virtual const char* get Type() const

Returns a string representation of the exception type. This is the name
of the exception class. This member is not available in Java.

Returns:
The class name.
getMessage
const char* get Message() const

Returns a description of the exception. This is the not e parameter
provided in the constructor.

Returns:

A description of the exception.

657

CHAPTER A | Class Reference

Related Functions operator< <
ost rean& oper at or <<(ostrean& os, const JTCException& e)
Inserts a description of the error to the output stream os.

Parameters:
os - The output stream in which to insert the thread id.
e - The reference to the exception.

Returns:
The output stream os.

658

JTCinterruptedException

Overview This exception is thrown if a system call is interrupted. Currently
JTQMWoni tor::wait() and JTCThread: : sl eep() can throw this exception.
The semantics differ from Java in this respect. An I nt er r upt edExcept i on in
Java is thrown if a thread is interrupted by j ava. | ang. Thread. i nterr upt .
Unfortunately, it is impossible to implement this method in a portable
fashion using the POSIX and WIN32 threading models.

659

CHAPTER A | Class Reference

JTClllegalThreadStateException

Overview This exception is thrown if a member function is called while the object is in
an illegal state. Currently JTCThread: : start (), the
JTCThr ead@ oup: : JTCThr ead@ oup() constructors and
JTCThr ead@ oup: : dest roy() can throw this exception.

660

JTClllegalMonitorStateException

Overview This exception is thrown by JTCvoni tor: : wai t (), JTOVni tor:: notify() or
JTOWoni tor::notifyA I () if the monitor's lock has not been acquired by
the calling thread.

661

CHAPTER A | Class Reference

JTClllegalArgumentException

Overview This exception is thrown when an illegal argument is passed to a
JThreads/C+ + method. The methods JTOVoni tor: :wait () (with a timeout
argument), JTCThread: : setPriority(), and JTCThread: : sl eep() can
throw this exception.

662

JTCSystemCallException

Overview

This exception indicates a failed system call. Most JThreads/C++ methods
can generate this exception. The JTCExcept i on: : get Error () method
returns the error value. Under UNIX this is the value of errno, under WIN32
this is the value of get Last Error (). There is no application method of
determining which operation caused the error. However, the exception
message contains a description of the operation, and all arguments to assist
in debugging.

663

CHAPTER A | Class Reference

JTCUnknownThreadException

Overview This exception is generated from the JTCThr ead: : cur r ent Thr ead method
when the current thread is not known.

664

JTCOutOfMemoryError

Overview This exception is generated from the JTCThr ead constructors on an out of
memory condition.

665

CHAPTER A | Class Reference

JTCInitializeError

Overview This exception is generated from the JTA nitialize(int& char**)
constructor when an invalid option or option argument is specified.

666

JThreads
Bibliography

[1] Scott Oaks & Henry Wong, Java Threads, O'Reilly & Associates,
Inc., 1997.

[2] Doug Lea, Concurrent Programming in Java, Addison-Wesley
Longman, Inc., 1997.

[3] Why JavaSoft is Deprecating Thread.stop, Thread.suspend and
Thread.resume, Sun Microsystems, Inc.!

[4] Bjarne Stroupstrup, The C++ Programming Language, Third
Edition, Addison-Wesley Longman, Inc., 1997.

1. Available from

http://java.sun.com/products/jdk/1.2/docs/guide/misc/threadPrimitiveDeprecation
.html.

667

CHAPTER B |

668

In this part

Part IV

Orbacus Notification

This part contains the following chapters:

Introduction page 671
Configuration and Startup page 675
Notification Service Concepts page 687
Programming Example page 719
Orbacus Notify Console page 753
CosEventChannelAdmin Reference page 777
CosEventComm Reference page 787
CosNotification Reference page 793
CosNotifyChannelAdmin Reference page 805
CosNotifyComm Reference page 837
CosNotifyFilter Reference page 853
OBNotify Reference page 869
Notify Bibliography page 873

CHAPTER 1

Introduction

This chapter gives a brief overview of Orbacus Notify.

In this chapter This chapter contains the following section:

Overview page 672

671

CHAPTER 1 | Introduction

Overview

What is Orbacus Notify?

Features

Graphical Interface

About this Document

672

Orbacus Notify is an implementation of the Object Management Group
(OMG) Notification Service specification [1]. It is fully backwards
compatible with the OMG Event Service specification [2], providing a
smooth migration path for applications that use an event service.

Some highlights of Orbacus Notify are:

® Written in C++ for maximum performance

® Multi-threaded architecture

® Event filtering

® Any, structured, and sequence event types

® Push and pull suppliers and consumers

® Quality of Service (QoS) parameters to control event queueing and
event lifetime

® Persistent and best effort event and channel reliability QoS parameters

® Subscription sharing between channels and clients

Orbacus Notify also features the Orbacus Notify Console, a graphical user
interface, which is written in Java for maximum portability. The user
interface supports the maintenance of:

® Event channels

® Supplier and consumer admins

® Proxy consumers and suppliers

® All QoS parameters

® Filters and constraint expressions

® Event subscription and offer information

The Orbacus Notify manual provides a brief overview of Event and
Notification Service concepts. However, this document is not a substitute for
the OMG Event Service and Notification Service specifications. Please
consult [1] and [2] for a detailed description of these services.

Overview

The manual also includes a discussion of configuration issues, an
introduction to application development with examples in C++ and Java,
and detailed descriptions of the Orbacus Notify Console and proprietary
Orbacus Notify features.

673

CHAPTER 1 | Introduction

674

In this chapter

CHAPTER 2

Configuration and
Startup

This chapter describes how to start Orbacus Notify and lists
various configuration properties.

This chapter contains the following sections:

Orbacus Notify page 676
Orbacus Notify Console page 683
Startup Example page 684

675

CHAPTER 2 | Configuration and Startup

Orbacus Notify

Synopsis notserv [-v,--version] [-h,--help] [-i,--ior] [-d,--dbdir]
Options:
-v, --version Reports the Orbacus Notify version number.
-h, --help Displays not serv command information.
-i, --ior Prints IOR on standard output.
-d, --dbdir Specifies the path to the database directory

(e.g., --dbdir <dat abase directory>).

Windows NT Native Service Orbacus Notify is also available as a native Windows NT service.
ntnotservicg-h,--help] [-i,--install] [-u,--uninstall]
[-d, - -debug]
Options:
-h, --help Displays command line options supported by
the server.
-i, --install Install the service. The service must be started
manually.
-s, --start-install Install the service. The service will be started

automatically.
-u, --uninstall Uninstall the service.

-d, --debug Run the service in debug mode.

In order to use Orbacus Notify as a native Windows NT service, it is first
necessary to add the Noti fi cati onServi ce initial reference to the
HKEY_LOCAL_MACH NE NT registry key (see “Using the Windows NT Registry”
in the Orbacus manual for more details).

Next the service is installed with:

676

Configuration Properties

Orbacus Notify

nt not service -i

This adds the Orbacus Notify entry to the Servi ces dialog in the Control
Panel. To start Orbacus Notify, select the Orbacus Notify entry and press
Start. If the service is to be started automatically when the machine is
booted, select the Orbacus Notify entry, then click Startup. Next select
Startup Type - Automati c, and press CK.

If you want to remove the service, run:

nt not service -u

Note: If the executable for Orbacus Notify is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service is placed in the Windows NT
Event Viewer with the title Noti f ySer vi ce.

In addition to the standard Orbacus configuration properties, Orbacus Notify
also supports the following properties:

Table 1: Configuration Properties

Property

Value Description

ooc. noti fication. dbdir

directory Specifies the directory in which Orbacus Notify
stores its databases. This property must be set,
either in a configuration file or on the command
line, otherwise Orbacus Notify will not start.

677

CHAPTER 2 | Configuration and Startup

Table 1: Configuration Properties

Property

Value

Description

ooc. notification.dispatch _strategy | threaded,

t hr ead_pool

Orbacus Notify supports two different models for
scheduling push and pull requests on clients. The
best dispatch model depends on how Orbacus
Notify is to be used.

® threaded

Each push supplier and pull consumer proxy has
a thread invoking requests on the client supplier
or consumer. Each proxy transfers or receives
events independent of the other. If there is a large
number of consumers or suppliers, this can result
in a large number of active threads. This model is
useful for environments where communication
latency varies from client to client and/or the host
system can process multiple threads efficiently.
On systems where threads are expensive, it may
be preferable to use t hread_pool .

When using the t hr eaded dispatch model, pull
consumer proxies invoke pul I () on pull suppliers.

® thread_pool

All channels share a “pool” of threads that invoke
requests on the client supplier or consumer. There
is a fixed number of threads dispatching requests
on clients, placing an limit on the number of
concurrent push/pull requests. This model is
useful for environments where it is desirable to
place an upper bound on the number of active
threads. The number of threads in the pool are
controlled by the di spat ch_t hr eads property.

When using the t hr ead_pool dispatch model, pull
consumer proxies invoke try_pul I () on pull
suppliers.

ooc. noti fication. di spatch_t hreads threads > 0

Specifies the number of threads for the
“t hr ead_pool " dispatch strategy. The default is
10.

678

Table 1:

Orbacus Notify

Configuration Properties

Property

Value

Description

oocC.

notification.

endpoi nt

Value: string

Specifies the endpoint configuration for the
service. Note that this property is only used if the
ooc. or b. oa. endpoi nt configuration property (see
“ooc.orb.oa.endpoint” on page 66) is not set.

0ocC.

ion

notification

. events_per_transact

events > 0

Determines the maximum number of events
selected per database transaction for transmission
to a push consumer. This property reduces total
transaction overhead for persistent events. The
default value is 100.

oocC.

notification.

event queue

true, fal se

If true a central event queue is used. The default
value is f al se, that is the central event queue is
not used. The central event queue helps isolate
suppliers from consumers at the expense of an
increased number of transactions. For
configurations with few suppliers and consumers,
it is recommended to set this to f al se.

0ocC.

notification.

trace. events

level >= 0

Controls the level of diagnostic output related to
event lifecycles. Set this value to 1 or greater to
enable event lifecycle tracing. The default is O,
which produces no output.

oocC.

notification.

trace.lifecycle

level >= 0

Controls the level of diagnostic output related to
service object (channel, admin, proxy) lifecycles.
Set this value to 1 or greater to enable service
object lifecycle tracing. The default is O, which
produces no output.

0ocC.

notification.

trace. queue

Value: level
>=0

Controls the level of diagnostic output related to
proxy event queue operations. Set this value to 1
or greater to enable proxy event queue tracing.
The default is O, which produces no output.

0ocC.

notification.

trace.retry

level >= 0

Controls the level of diagnostic output related to
retried event transmissions. Set this value to 1 or
greater to enable event retry tracing. The default is
0, which produces no output.

679

CHAPTER 2 | Configuration and Startup

Table 1:

Configuration Properties

Property

Value

Description

ooc

.notification.trace. subscriptio

level >= 0

Controls the level of diagnostic output related to
subscription sharing. Set this value to 1 or greater
to enable subscription sharing tracing. The default
is 0, which produces no output.

ooc

.filter.trace.lifecycle

Value: level
>=0

Controls the level of diagnostic output related to
filter object (forwarding filter, mapping filter, filter
factory) lifecycles. Set this value to 1 or greater to
enable service object lifecycle tracing. The default
is 0, which produces no output.

ooc

. dat abase. trace. transacti ons

level >= 0

Controls the level of diagnostic output from the
transaction subsystem. Set this value to 1 or
greater to enable database transaction tracing.
The default value is 0, meaning no transaction
tracing.

ooc

. dat abase. trace. dat abase

level >= 0

Controls the level of diagnostic output related to
database activity. Set this value to 1 or greater to
enable database activity tracing. The default value
is 0, meaning no tracing.

ooc

. dat abase. trace. | ocks

level >= 0

Controls the level of diagnostic output related to
database locking. Set this value to 1 or greater to
enable database lock tracing. The default value is
0, meaning no tracing.

ooc

. dat abase. max_retries

retries >= 0

The maximum number of retries of a transaction
before an abort. When a transaction is aborted it
is completely rolled back and a GORBA: : TRANSI ENT
exception is raised meaning the client should retry
the request later. A value of O means unlimited
retries. The default value is O.

680

Table 1:

Orbacus Notify

Configuration Properties

Property

Value

Description

ooc

. dat abase.

max_sl eep_tine

time >=0

The maximum amount of time to sleep (in
seconds) between retries. The time between
successive retries grows exponentially until this
value is reached, thatis 1, 2, 4, 8,...

max_sl eep_ti ne. Set this value to O to disable
sleeping between retries. The default value is
256.

ooc

. dat abase.

checkpoi nt _i nt erval

interval >=
0

The interval at which database checkpointing
occurs in seconds, in conjunction with

checkpoi nt _kbyt e. Set this value to O to disable
checkpointing. The default is 300 seconds.

ooc

. dat abase.

checkpoi nt _kbyt e

kbyte >= 0

The minimum amount of database log data (in
kilobytes) that must be present before a
checkpoint occurs. Set this value to O to create a
checkpoint every checkpoi nt _i nt erval seconds.
The default is 64 kilobytes.

ooc

. dat abase.

sync_transacti ons

true, fal se

Determines whether transactions are truly
synchronous. If set to f al se, event throughput
will be higher but there is a risk of events being
lost if the service crashes. The default is true.

ooc

. dat abase.

max_| ocks

locks > 0

Configures the maximum number of database
locks that may be acquired at any time. The
default value is 16384. If it is expected that the
database will contain a large number of events at
any one time, then this value should be increased.

ooc

. dat abase

.max_transacti ons

transactions
>0

Configures the maximum number of concurrent
transactions that may be active at any one time.
This value should be set proportional to the
number of persistent proxies. Otherwise, if there
are many persistent proxies and not enough
concurrent transactions are permitted,
performance will decrease. The default is 20.

681

CHAPTER 2 | Configuration and Startup

Connecting to the Service

682

The object key of Orbacus Notify is Def aul t Event Channel Fact ory, which
identifies an object of type CosNot i f yChannel Adni n: : Event Channel Fact ory.
The object key can be used when composing URL-style object references.
For example, the following URL identifies the notification service running on
host nshost at port 10000:

cor bal oc: : nshost : 10000/ Def aul t Event Channel Fact ory

Orbacus Notify Console

Orbacus Notify Console

Synopsis java com ooc. CosNot i f yConsol e. Mai n

There are no command line options specific to the Orbacus Notify Console.

683

CHAPTER 2 | Configuration and Startup

Startup Example

Starting Orbacus Notify

684

The following is an example for how to start Orbacus Notify and the Orbacus
Notify Console, using an Orbacus configuration file. For more information on
Orbacus configuration files, please refer to “Using a Configuration File” on
page 70. Note that it is also possible to use command line parameters
instead of configuration files.

Create a file with the following contents, and save it as / t np/ ob. conf (Unix)
or C \tenp\ob. conf (Windows):

1 ooc.notification.endpoint=iiop --port <port>
2 ooc.notification. dbdi r=<dat abase directory>
3 ooc.orb. service. NotificationServi ce=corbal oc: : <host >: <por t >/
Def aul t Event Channel Fact or y?
a. Note that for layout reasons this configuration option spans two lines, but in
your configuration file, only one single line must be used.

Specifies the endpoint configuration for the service. Replace <port > with an
arbitrary, free TCP port (e.g. 10001).

Specifies the path to the service’s database directory. Replace <dat abase

di rect or y> with the directory where the service should create its databases.
Provides a reference to the default event channel factory. Replace <host >
with your system’s host name and <port > with the TCP port chosen above.

After Orbacus Notify has been properly built and installed, there will be a
not serv executable in the installation target directory.

For example, on UNIX, assuming the installation path was set to
/usr/1ocal , the executable is:

[usr/| ocal / bi n/ not serv
And on Windows, with the installation path set to C\ O bacus:
C \ O bacus\ bi n\ not serv. exe

You can start Orbacus Notify in two ways:

Starting the Orbacus Notify
Console

Startup Example

® Specify the configuration file on the command line:

Unix

/usr/l ocal /bi n/notserv -CRBconfig /tnp/ob. conf

Windows

C \ O bacus\ bi n\ not serv. exe - GRBconfig C \tenp\ob. conf
® Specify the configuration file with an environment variable:

Unix

CRBACUS_CONFI G/ t np/ ob. conf

export CRBACUS CONFI G

/usr/| ocal / bi n/ not serv

Windows

set CRBACUS_CONFI G=C: \ 't enp\ ob. conf

C \ O bacus\ bi n\ not serv. exe

The Java archive GBNot i fy. j ar contains the Orbacus Notify Console.

For example, on Unix, assuming the installation path was set to
/usr/1ocal , the archive can be found at:

Jusr/local/lib/CBNotify.jar

And on Windows, assuming the installation path was set to C \ O bacus:
C\QObacus\lib\BN\otify.jar

Note that the console application also requires CB. j ar, CBEvent . j ar, and
@BUil.jar from Orbacus for Java distribution. Assuming these files are in
the same directory as GBNot i fy. j ar, the console can be started as follows:
Unix

CLASSPATH=/ usr/local /lib/CB.jar:/usr/local/lib/CBEvent.jar:/usr/l
ocal /1ib/CBWil.jar:/usr/local/lib/CBNotify.jar: $OLASSPATH

export CLASSPATH
java com ooc. CosNot i f yConsol e. Mai n - CRBconfi g /tnp/ ob. conf

Windows

set CLASSPATH=C \ O bacus\|ib\CB.jar; C\CObacus\I|ib\CBEvent.jar; C
\Orbacus\lib\CBUil.jar; C\Qbacus\lib\BNotify.]jar; ULASSPATHS

java com ooc. CosNot i f yConsol e. Mai n - CRBconfig C \tenp\ob. conf

685

CHAPTER 2 | Configuration and Startup

Figure 1: shows a screenshot of the console right after startup.

Ega ORBacus Motify Console [_ (O] %]
File Edit Control View Help

Service Structure:

@ Event Channel Factary 0
& Filter Factory 0

Host: monty, Port: 11001

Figure 1: Starting the Orbacus Notify Console

686

In this chapter

CHAPTER

Notification
Service Concepts

This chapter describes the Orbacus Event and Notification
Services.

3

This chapter contains the following sections:

Overview page 688
The OMG Event Service page 690
The OMG Notification Service page 697

687

CHAPTER 3 | Notification Service Concepts

Overview

In general, CORBA communications are synchronous. A client obtains a
reference to a target object, invokes a request on that object, and blocks
while waiting for a reply. For some applications the blocking request
mechanism is not suitable. An alternative is to implement a distributed
callback mechanism allowing applications to make requests on a peer and
have that peer notify it asynchronously of the result. This introduces
significant complexity since the application must now deal with issues
related to peer registration, persistence, managing peer object references,
peer unavailability, etc. The effort required to handle such matters may
dwarf the application’s true purpose.

The OMG Event Service was designed to decouple communications between
peer applications, for which the synchronous request model and distributed
callback scheme was too restrictive or too complex. The Event Service
introduced the concept of the event channel, an entity to which peers could
connect to supply and consume events. Clients of the Event Service are
classified as suppliers, consumers, or both depending on how they connect
to an event channel. Figure 2 illustrates a simplified delivery model:

Direction of Event Flow

»
»

Supplier Event Channel

Figure 2: Basic Event Service Communications Model

Still, the event service suffers from some serious drawbacks.

Lack of Reliability

The event service makes no guarantees with regards to event delivery or
connection persistence. Any level of reliability is vendor specific.

688

Overview

Lack of Structured Events and Event Filtering

In the event service, the structure of events is unknown to the event channel
and consumers are forced to handle all events when only a small subset
may be of interest. The CPU time necessary to interpret and discard
unwanted events may seriously impact consumer performance. This is
exacerbated when multiple suppliers are connected to a channel.

Lack of an Event Channel Factory

The event service does not address the issue of channel creation. Instead
vendors are forced to define and implement proprietary interfaces for this
purpose. As a result event service clients become tied a particular vendor
and are not easily ported to other event service implementations.

The OMG has adopted the Notification Service to address these issues while
maintaining compatibility with the Event Service. This chapter presents an
overview of Event Service and Notification Service concepts.

689

CHAPTER 3 | Notification Service Concepts

The OMG Event Service

Overview

In this section

690

This section explains many of the terms and concepts covered by the Event
Service. Section builds upon this discussion with a presentation of the ideas
introduced by the OMG Notification Service. Refer to specifications [1] and
[2] for a complete discussion of the Event Service and Notification Service.

This section contains the following topics:

Delivery Models page 691
Object Management Hierarchy page 694
Event Delivery page 696

The OMG Event Service

Delivery Models

Overview

Canonical Push Model

The mode of event delivery in the Event Service is selected by suppliers and
consumers at connection time. The models supported by the event service
are discussed next.

In this model, the supplier pushes events to an event channel which in turn
pushes events to the consumer (see Figure 3).

Direction of Event Flow

»
»

) Push Push
Push Supplier Event Channel Push Consumer

Canonical Pull Model

Figure 3: Canonical Push Model

The push supplier is termed active since it initiates event delivery with the
channel. Conversely the push consumer is passive since the channel
initiates event delivery.

In this model, the channel pulls events from the supplier while the
consumer pulls events from the channel (see Figure 4).

Direction of Event Flow

»
»

Pull Pull
Pull Supplier Event Channel Pull Consumer

Figure 4: Canonical Pull Model

A pull supplier is passive since the channel initiates event delivery. A pull
consumer initiates event delivery with a channel and is termed active.

691

CHAPTER 3 | Notification Service Concepts

Hybrid Push/Pull Model In the Hybrid Push/Pull model, a push supplier pushes events to an event
channel while a pull consumer pulls event from the channel (see Figure 5).

Direction of Event Flow

»
»

Push Pull
Push Supplier Event Channel Pull Consumer

Figure 5: Hybrid Push/Pull Model

Both the supplier and consumer play active roles in this model.

Hybrid Pull/Push Model In the Hybrid Pull/Push model, an event channel pulls events from suppliers
and pushes them to consumers (see Figure 6).

Direction of Event Flow

»
»

Pull Push
Pull Supplier Event Channel Push Consumer

Figure 6: Hybrid Pull/Push Model

The supplier and consumer are both passive in this model.

Combinations of the various models are also supported as illustrated in
Figure 7.

692

The OMG Event Service

Direction of Event Flow

v

Push Consumer

Event Channel Push Consumer

Pull Consumer

Push Supplier
Pull Supplier

Figure 7: Mixed Suppliers and Consumers

693

CHAPTER 3 | Notification Service Concepts

Object Management Hierarchy

694

The relationship between Event Service objects is shown in Figure 8.1 An

EventChannel
ConsumerAdmin

—— ProxyPushSupplier
—— ProxyPullSupplier
SupplierAdmin

—— ProxyPushConsumer

—— ProxyPullConsumer

Figure 8: Event Service CosEventChannelAdmin Object Management
Hierarchy

Event Service client, ultimately, connects to a proxy object reference so that

it may supply or consume events. A set of steps to obtain a proxy object

reference are:

® Obtain an initial reference to an event channel, this is outside the
scope of the Event Service specification

® Obtain the appropriate admin object from the channel. Suppliers will
want a CosEvent Channel Adni n: : Suppl i er Adm n, while consumers will
want a CosEvent Channel Adm n: : Consuner Adni n

® Obtain the appropriate proxy from the admin as summarized in Table 2

Table 2: Proxy Selection

Event Service Required Proxy Type
Client Type
push supplier CosEvent Channel Admi n: : Pr oxyPushConsumer
pull supplier CosEvent Channel Admi n: : ProxyPul | Consuner

1. This diagram is for an untyped event channel. A similar structure exists for typed
event channels.

The OMG Event Service

Table 2: Proxy Selection

Event Service Required Proxy Type
Client Type
push consumer CosEvent Channel Admi n: : ProxyPushSuppl i er
pull consumer CosEvent Channel Admi n: : ProxyPul | Suppl i er

® Connect to the proxy

Note: Alternatively, Event Service clients may obtain an object
reference (from a naming service, for example) to any of the Event
Service objects and then obtain and connect to the proxy.

The proxy, depending on its type, has methods which support the push and
pull of events by suppliers and consumers.

695

CHAPTER 3 | Notification Service Concepts

Event Delivery

696

Untyped event delivery in the event service is via a GCRBA: : Any. That is, the
event data is unknown to the channel. The proxy interfaces require suppliers
to insert event data into a GORBA: : Any before the event is pushed on or
pulled by the channel. Similarly for consumers, all pulled and pushed events
are contained within a OORBA: : Any. Consumers must first extract the event
before deciding whether to process or discard it.

The OMG Notification Service

The OMG Notification Service

Much of the previous discussion on the OMG Event Service applies equally
to the OMG Notification Service. The Notification Service was designed to
be backward-compatible with the Event Service and it reuses and/or derives
from equivalent Event Service IDL interfaces.

In this section This section contains the following topics:
Delivery Models page 698
Object Management Hierarchy page 699
Event Delivery page 700
Event Translation page 702
Filtering page 703
Mapping Filters page 707
Quality of Service page 709
Proprietary QoS Properties page 713
Administrative Properties page 715
Subscription Sharing page 716

697

CHAPTER 3 | Notification Service Concepts

Delivery Models

The Notification Service supports the same delivery models as the Event
Service, described in “The OMG Event Service” on page 690.

698

The OMG Notification Service

Object Management Hierarchy

The relationship between Notification Service objects is illustrated in
Figure 9.

EventChannelFactory

L EventChannel”
—— ConsumerAdmin”
—— ProxyPushSupplier”
—— StructuredProxyPushSupplier
—— SequenceProxyPushSupplier
—— ProxyPullSupplier*
— StructuredProxyPullSupplier
—— SequenceProxyPullSupplier

—— SupplierAdmin”*

—— ProxyPushConsumer”

—— StructuredProxyPushConsumer
— SequenceProxyPushConsumer
—— ProxyPullConsumer”

—— StructuredProxyPullConsumer

—— SequenceProxyPullConsumer

Figure 9: Notification Service CosNotifyChannelAdmin Object
Management Hierarchy

Note the objects marked with ("); these are Notification Service equivalents
of the Event Service counterparts. Also note the interfaces added by the
Notification Service. The CosNot i f yChannel Adni n: : Event Channel Fact ory
addresses the lack of factory issue in the Event Service, while several proxy
interfaces have been added to support structured event delivery.

699

CHAPTER 3 | Notification Service Concepts

Event Delivery

The Notification Service supports the delivery of events in a CORBA: : Any as
does the Event Service. In addition, the Notification Service introduces the
concept of structured events and sequence events.

Structured Events

Structured events are represented with the
CosNot i fication:: StructuredEvent type as shown in Figure 10.

4} 47
domain_name
type_name Fixed Header
Event Header
event name
47
ohf_name, ohf value,
ohf name, ohf value, Variable
Header
ohf name ohf value,
4> 47
fd_name, fd_value,
fd_name, fd_value, Filterable
Fiel
Event Body ields
fd_name_ fd_value_
< R ..
remainder_of body emaning
Body
4} 47

Figure 10: CosNotification::StructuredEvent

700

The OMG Notification Service

The two main components of a structured event are the event header and
event body. The event header is further sub-divided into a fixed header and
variable header. The fixed header categorizes the event, while the variable
header consists of zero or more name-value pairs which specify per-event
QoS information. See [1] for complete event header details. The event body
holds the “interesting” event data in name-value pairs comprising the
filterable fields and other event data in the opaque remaining body field.

Sequence Events

In some instances, it is inefficient to transfer events one-at-a-time. To
address this the Notification Service includes support for sequences of
structured events on the supplier and consumer side. Suppliers may transfer
multiple events to a channel in a single CORBA method invocation; likewise
consumers may receive multiple structured events in a single CORBA
method call.

701

CHAPTER 3 | Notification Service Concepts

Event Translation

The Notification Service does not impose the restriction that peer entities
(suppliers and consumers) must deal with the same event type. For example
a structured consumer can receive events from an unstructured supplier.
Rules exist (see [1]) that define how events are translated into a format

suitable for various consumers. Event translation supports configurations
like that in Figure 11.

Direction of Event Flow

\4

SequencePushConsumer
AnyPushConsumer

StmcturedPullConsum%

StructuredPushSupplier

Event Channel

AnyPullSupplier

Figure 11: Event Translation Example

702

The OMG Notification Service

Filtering

The Notification Service defines a set of interfaces in the CosNoti fyFil ter
module which support event filtering. In the same way event channels are
created from the Event Channel Fact ory, filters are created from the

Fi | ter Fact ory. The default filter factory is available from the

CosNot i f yChannel Adni n: : Event Channel interface.

Each filter contains a list of constraints, where each constraint is composed
of a list of event types and a single boolean constraint expression (the filter
structure is illustrated in Figure 12).

Filter

Constraint,

Event Types

domain name, ‘ type name,

domain name | type name

Constraint Expression

Constraint,

Event Types

domain name, | type name,

domain name | type name,

Constraint Expression

Figure 12: Filter Composition

703

CHAPTER 3 | Notification Service Concepts

704

The constraint expression conforms to some constraint grammar and
specifies restrictions based on the data in the event filterable fields. Notify
supports the default constraint grammar as specified in [1]. For an event to
match a constraint it must match one or more of the event types within that
constraint and the constraint expression must evaluate to true. If a filter
contains multiple constraints, OR semantics are applied between the
constraints. That is, the boolean result of applying a filter can be expressed
as:

Rpiey = €1+ G+ .+ Cy

where
RFilter is the boolean result of applying a filter
C,, n=1..N is the boolean result of applying constraint n within the

filter

A given proxy or admin may have multiple filters associated with it. Again,
OR semantics are applied between filter results. That is, the boolean result
of applying multiple filters is:

RAllFilters = RFilterl +RFilter2 .. +RFilterN

where:

RalFilters is the boolean result of applying all filters for an admin or
proxy

RFittern» N=1..Nis the boolean result of applying filter n

Perhaps the most complicated scenario is when a proxy and its parent
admin both have multiple filters associated with them. The filters associated
with the admin are applied as described above (using OR semantics).
Likewise the filters associated with the proxy are applied (again using OR
semantics). Next the results of these two operations are combined. The
semantics, AND or OR, of this final operation are specified at the time the

The OMG Notification Service

admin object was created and is known as the interfilter group operator.
So, for the configuration depicted in Figure 13 the following expression

applies

Filterl ‘
Admin Filter2 ‘

(AND interfilter .

group operator) .
FilterM ‘
Filter1 ‘
Filter2 \

Proxy :
FilterN ‘

Figure 13: Admin and Proxy Filtering

RFinal = (RFilterl +RFilter2 T +RFilter(M)) |:(RFilterl +RF[lter2 T +RFilterN)

where:

RFinal is the boolean result of applying all filters for the admin and proxy
RFitterm» M=1..M is the boolean result of applying admin filter m

RFiiterns N=1..N is the boolean result of applying proxy filter n

If the OR interfilter group operator is specified during creation of the admin
object then the resulting expression is:

Rrinat = Rriert T Reiiers v o T Reierst) ™ (Rritert ¥ Reiners T -+ Rrijern)

705

CHAPTER 3 | Notification Service Concepts

Filters can be applied at the supplier and consumer ends of a channel, and
at the admin and proxy levels. Also note that a single filter can be associated
with multiple admins or proxies. This practice is not recommended, since it
can lead to a service which is difficult to manage.

706

The OMG Notification Service

Mapping Filters

Overview

IDL interface

Mapping filters allow consumers to affect the priority and lifetime settings of
an event. The application of a mapping filter does not actually change any
event settings, instead it influences how the consumer perceives the event.

The structure of the mapping filter is shown in Figure 14 on page 708.

The IDL interface for mapping filters, Mappi ngFi I t er, is defined in the

CosNot i fyFi | ter module. Note the similarities between mapping filters and

regular filters:

® both have a list of constraints

® within each constraint, there is a constraint expression and list of event
types

When a mapping filter is applied to an event each constraint is checked

until a match is found or there are no more constraints. If there is a match

then the value stored in the Value field of the matching constraint is

returned to the proxy. This value is used instead of the actual value for the

event property. If there is no match then the property value contained in the

event is used, unless the event does not specify this property, in which case

the mapping filter Default Value is used.

For this reason mapping filters can only be added to proxy suppliers and

consumer admin objects.

707

CHAPTER 3 | Notification Service Concepts

Mapping Filter

‘ Default Value

Constraint,

‘ Value

Event Types

domain name, | type name,

domain namen‘ type name_

‘ Constraint Expression

Constrainty

‘ Value

Event Types

domain name, ‘ type name,

domain name_ ‘ type name_

Constraint Expression

Figure 14: Mapping Filter Composition

708

The OMG Notification Service

Quality of Service

Overview

Persistence

The Notification Service defines standard interfaces for controlling the QoS
characteristics of event delivery. QoS is specified on a per-event,
per-consumetr/supplier, or per-channel basis. Interfaces which support QoS
properties derive from the CosNot i fi cati on: : QSAdm n IDL interface.

Perhaps one of the most important QoS properties added by the Notification
Service is persistence as it applies to event and connection reliability QoS
parameters.

Connection Persistence

Persistent connection reliability refers to Orbacus Notify’s ability to restore
all object connections after a service restart. That is, when Orbacus Notify
starts it restores all channels, admins, proxies, and filters to their state at
shutdown. In addition Orbacus Notify also attempts to re-establish
communication with any clients that were connected at shutdown.

Orbacus Notify can also restore connections to restarted clients. These
clients must supply a persistent, non-nil object reference when connecting
to the proxy.

Note: Orbacus Notify does not permit admin and proxy objects to set a
connection reliability different than that set on the parent event channel.

Event Persistence

With connection persistence enabled, Orbacus Notify also supports event
persistence. That is all consumers connected at the time an event is
delivered to the channel are guaranteed to receive that event within event
expiry limits.

709

CHAPTER 3 | Notification Service Concepts

The following briefly describes the The following QoS properties are set on a per event basis.
available properties.Event QoS
Properties

Table 3: Event QoS properties

Property Value Description

EventReliability BestEffort, Event Rel i abi | i ty, when set on a per event
Per si st ent basis, sets a different reliability for the target
event than that specified at the
channel/admin/proxy level. Note that it is not
permitted to specify per event Persi stent event
reliability over a channel with Best Effort event
reliability. By default, the reliability of event
delivery is determined by the EventRel i abi l ity
setting of the channel.

Priority -32767 <=priority | The order in which events are delivered to a

<= 32767 consumer can be specified based on the priority
of an event. The lowest priority is -32,767 and
32,767 is the highest. The default priority is O.

Timeout Ti neBase: : Ti meT Ti meout states a relative expiry time after which
an event can be discarded. By default, events
have no relative expiry time.

StopTime Ti neBase: : WcT St opTi me states an absolute expiry time after
which an event can be discarded. By default,
events have no absolute expiry time.

StartTime Ti meBase: : WcT St art Ti me states an absolute earliest delivery
time after which the event can be delivered. The
Start Ti me property provides the ability to hold
an event until a specified time, and be eligible
for delivery only after that time. By default,
events are eligible for transmission as soon as
they are received by the service.

QoS Properties The following QoS properties are set on a per channel/admin/proxy basis..c

710

The OMG Notification Service

Table 4: QoS Properties
Property Value Description
EventReliability BestEffort, Event Rel i abi | ity is set on the channel
Per si st ent object and determines whether the
delivery of all events on the channel will
be Persi stent or Best Eff ort. The default
is BestEffort.
ConnectionReliability BestEffort, Connect i onRel i abi | ity applies to
Per si st ent channel, admin, and proxy objects, and

the re-establishment of supplier and
consumer connections. The default is
BestEffort.

MaxEventsPerConsumer | events >= 0 The MaxEvent sPer Consumer property is
used to limit the number of events that
will be queued in a ProxySupplier. The
default is O, meaning no limit.

OrderPolicy AnyQr der , Q der Pol i cy determines the order in

Fi f oQr der, which events are queued for delivery to a

PriorityQder, consumer. AnyQrder means that any

Dead! i neQr der ordering policy (Fi f oQ der,
PriorityQder, or Deadl i neQr der) may
be used. The default is PriorityQ der.

DiscardPolicy AnyQr der, Di scar dPol i cy applies when a queue

Fi f oQr der, reaches a limit specified by

Li f oQr der, MaxEvent sPer Consumer admin property,
PriorityQder, and specifies the order in which events
Deadl i neCr der should be discarded. The default is

Rej ect NewEvent s

AnyQ der meaning that any event may be
discarded on overflow.

MaximumBatchSize

size > 0

Indicates the maximum number of events
that will be delivered in a sequence of
structured events. The default is 1.

Pacinglnterval

Ti meBase: : Ti neT

Paci ngl nt erval is the maximum period of
time a channel will collect events into a
sequence before delivering the sequence.
The default is O, meaning that a sequence
of events is transmitted when ready

711

CHAPTER 3 | Notification Service Concepts

Note: For a more extensive description of the above listed properties
please refer to [11].

712

The OMG Notification Service

Proprietary QoS Properties

Properties for Retry Handling of a
Failed Event Communication

While the Notification Service specification [1] defines a wide range of QoS
properties, there are some important features which remain undefined. For
example, although the specification provides QoS properties to control
priority, expiry times, and earliest delivery time for events, it does not specify
how an event communication failure is handled. Similarly, for pull events,
the specification does not define how often the pull should occur. To
address these deficiencies, Orbacus Notify implements a number of
proprietary features. The IDL names for these features are specified in the
CBNot i fy module.

Orbacus Notify includes several QoS properties which configure proprietary
retry handling facilities. A retry occurs when Orbacus Notify attempts to
“push” an event and receives an exception, thereby prompting it to retry
sending the event at specified intervals.

Table 5: Retry Properties

Property

Value Description

RetryTimeout

Ti meBase: : Ti meT The Ret ryTi neout specifies the initial amount of
time that Orbacus Notify waits before trying to
resend an event after a communication failure
with a client. The default value is 1 second.

RetryMultiplier

1.0 <= multiplier The RetryMil tiplier is the value by which the
<=2.0 current value of the Ret ryTi meout is multiplied
to determine the next Ret ryTi neout value. The
RetryMul tiplier may also be used to provide a
backoff value if necessary. The default value is

1.0.
MaxRetryTimeo | Ti neBase:: Ti meT The MaxRet ryTi neout property is the maximum
ut value or ceiling that the Ret ryTi meout can have.

This property applies to Ret ryTi meout values
that are directly assigned by a developer as well
as those that are generated from the
multiplication of the RetryMil ti plier and

Ret ryTi meout . The default value is 60 seconds.

713

CHAPTER 3 | Notification Service Concepts

Table 5: Retry Properties

Property Value Description

The relationship among the above properties is defined as follows:

RetryTimeout X RetryMultiplier < MaxRetryTimeout

MaxRetries retries >= 0 The MaxRet ri es value is the maximum number
of times that a failed event communication
should be retried. Once this number has been
reached, the proxy is destroyed and the
communication terminated. The default value is
0, meaning unlimited retries.

RequestTimeout | Ti meBase: : Ti meT The amount of time permitted for a blocking
request on a client to return before a timeout.
The default value is 5 seconds.

Other Proprietary QoS Properties This section describes other proprietary QoS properties available for Orbacus
Notify.

Table 6: Propietary QoS Properties

Property Value Description

Pullinterval interval >= 0 Orbacus Notify includes a Pul | I nterval
property to specify how often events should be
pulled from suppliers. This property is
applicable to the pull model and enables users
to configure the frequency of pull requests made
on suppliers. The default value is 1 second.

Request Ti neout | Ti meBase: : Ti meT The Request Ti meout property specifies the
maximum time limit for requests made on pull
suppliers and push consumers by their
associated proxies. The maximum value for this
property is 10 minutes. The default value is 5
seconds.

714

The OMG Notification Service

Administrative Properties

In addition to configurable QoS properties, event channels also support the
configuration of certain administrative properties. There are three
administrative properties, each of type long, which are supported by an
event channel.

Table 7: Administrative Properties

Property Value Description

MaxConsumers consumers >= 0 The maximum number of consumers that can
be connected to a channel at any given time.

MaxSuppliers suppliers >= 0 The maximum number of suppliers that can be
connected to a channel at any given time.

The default value is O for all properties, meaning that no limit applies to that
property.

715

CHAPTER 3 | Notification Service Concepts

Subscription Sharing

716

Subscription sharing is a standard mechanism for suppliers to publish the
types of events that they will supply and for consumers to subscribe to event
types that they wish to receive. The information can be used by suppliers
and consumers to decide whether they wish to supply events or consume
events on a notification channel.

The Notification Service supports subscription sharing between channels
and channel clients through the following interfaces:

/1 1DL
nodul e CosNot i f yComm

{

interface NotifyPublish
{

voi d of fer_change (

in CosNotification::Event TypeSeq added,

in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);

}; /1 NotifyPublish

interface NotifySubscribe
{

voi d subscri pti on_change(

in CosNotification::Event TypeSeq added,

in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);

}; /1 NotifySubscribe

ik

Supplier admins and proxy consumers inherit the Not i f yPubl i sh interface.
Suppliers may use the of f er _change method to notify the channel that it is
about to start supplying new event types or is about to stop supplying an
existing type. The channel maintains an aggregate list of all event types

currently offered; and when this changes it notifies consumers through the
of f er _change method.

The OMG Notification Service

Consumer admins and proxy suppliers inherit the Not i f ySubscri be
interface. Consumers may use the subscri pti on_change method to
subscribe/unsubscribe to a set of channel events. Again, the channel
maintains an aggregate list of all subscriptions, and when this changes it
notifies suppliers through the subscri pti on_change method.

Subscription sharing allows sophisticated suppliers and consumers to
dynamically control the types of events that flow through the channel. This
can increase channel efficiency since unwanted events are no longer
produced.

717

CHAPTER 3 | Notification Service Concepts

718

CHAPTER 4

Programming
Example

This chapter describes a set of steps which implement a simple
Orbacus Notify supplier and consumer.

In this chapter This chapter contains the following sections:
Introduction page 720
Connecting to a Notification Channel page 721
Supplying Events page 739
Consuming Events page 741
Filtering page 742
Disconnecting from a Notification Channel page 749
Building Orbacus Notify Clients page 751/

719

CHAPTER 4 | Programming Example

Introduction

This chapter describes a set of steps which implement a simple Orbacus

Notify supplier and consumer. The supplier uses the push model to present
structured event data to the event channel. Similarly the consumer uses the
push model to receive events from the same channel. Each event represents
a letter of the alphabet in both upper and lower case forms (see Figure 15).

. [¥[t] [E[e] [Dld] ..

[
-

Structured Push Push Push Structured Push
. Event Channel
Supplier Consumer

720

Figure 15: Orbacus Notify Example

Note that this example is taken from the C+ + demos which accompany the
Orbacus Notify distribution (see

not i fy/ demo/ si npl e/ St ruct ur edPushSuppl i er . cpp and

not i fy/ denmo/ si npl e/ St r uct ur edPushConsuner . cpp) or the equivalent Java
demos which accompany the Orbacus Notify Console distribution

(not i fy/ deno/ si npl e/ St ruct ur edPushSuppl i er. j ava and

not i fy/ demo/ si npl e/ St ruct ur edPushConsuner . j ava).

In this example, the supplier and consumer create the channel, admin and
proxy objects. Alternatively an Orbacus Notify client could use an already
existing object, either through a published IOR or via the unique ID assigned
to such objects within Orbacus Notify.

For clarity, appropriate exception handling and error checking is not
included in the code snippets.

Connecting to a Notification Channel

Connecting to a Notification Channel

This section describes how suppliers and consumers connect to a
notification channel so that they may transfer events. Figure 16 illustrates
how the supplier and consumer connect to an event channel in this
example. Each of these steps are described next.

721

CHAPTER 4 | Programming Example

Resolve Event Channel Factory
Obtain Notification Channel

Supplier Consumer
Obtain Supplier Admin Obtain Consumer Admin
v v
Obtain Proxy Consumer Obtain Proxy Supplier
e Delivery Model e Delivery Model
e Push * Push
e Pull e Pull
¢ Client Type * Client Type
* Any * Any
e Structured e Structured
¢ Sequence * Sequence

Push Pull Push Pull

Callback on
Disconnect

Callback on
Disconnect

Yes

N .
© Implement Supplier Implement Consumer
» Connect to Proxy Consumer Connect to Proxy Supplier

Figure 16: Connecting to a Notification Channel

722

Resolving the Event Channel

Factory

Obtaining an Event Channel

2-3
5-6

Connecting to a Notification Channel

Before an application can obtain an event channel it must first resolve the
"NotificationService" initial reference. The result is an object of type
CosNot i f yChannel Adni n: : Event Channel Fact ory. The C++ and Java code
follows:

/] C++
OORBA: : (hj ect _var obj =
orb -> resolve_ initial_references("NotificationService");

a b wnN Bk

CosNot i f yChannel Admi n: : Event Channel Fact ory_var
event Channel Factory =
CosNot i f yChannel Adm n: : Event Channel Fact ory: : _narrow(obj) ;

(o))

/1 Java
org. ony. CORBA (bj ect obj =
orb.resolve_initial _references("NotificationService");

Event Channel Fact ory event Channel Factory =

1
2
3
4
5
6 Event Channel Fact or yHel per. narrow(obj) ;

Resolve the “NotificationService” initial reference.
Narrow the reference to the appropriate type.

The object reference to the CosNot i f yChannel Adni n: : Event Channel Fact ory
is used to create an event channel. Another option is to ask for an existing
channel using an ID previously assigned by Orbacus Notify:

/1 1D
interface Event Channel Factory

{

Event Channel get _event _channel (i n Channel I D i d)
ai ses(Channel Not Found) ;

T AN WN PP

~N o

IE

This example creates the channel, if necessary, and publishes the IOR of the
newly created channell, otherwise an already published IOR is used to get a
channel reference. Note that only one of the supplier or consumer actually
creates the channel, depending on which is started first. It then publishes
the IOR for the newly created channel for use by its peer.

723

CHAPTER 4 | Programming Example

724

2-3

5-8

In C++ the channel is created as follows:

/] C++

CosNot i fication:: QSProperties initial QS;

CosNoti fication:: Adm nProperties initial Adm n;

CosNot i f yChannel Admi n: : Channel | D channel | d;

CosNot i f yChannel Adnmi n: : Event Channel _var event Channel =
event Channel Fact ory -> create_channel (initial QS,

initial Admn,
channel | d) ;
In Java:
1 // Java
2 Property[] initial QS = new Property[0];
3 Property[] initial Admn = new Property[0];
4 org.ong. OCRBA | nt Hol der channel I|d = new

or g. ong. CORBA. | nt Hol der ();
Event Channel event Channel =
event Channel Fact ory. cr eat e_channel (i ni ti al QS,
initial Amn,
channel 1 d);

0 ~N O O

Create empty property sequences for QoS and Channel Administration. To
specify properties other than the default, add the appropriate name-value
pairs to these sequences. For this example the default properties are
sufficient.

The unique channel ID assigned by Orbacus Notify is passed back in the
channel | d parameter.

Use the event channel factory to create a new channel.
Alternatively, a channel may be obtained from an IOR. In C++:

[l C++

OORBA: : (hj ect_var obj = ... // Get reference to the channel

CosNot i f yChannel Admi n: : Event Channel _var event Channel =
CosNot i f yChannel Admi n: : Event Channel : : _narrow(obj);

And in Java:

/1 Java

org.onyg. OCORBA (hject obj = ... // Get reference to the channel
Event Channel event Channel = Event Channel Hel per. narr ow(obj)

1. For this simple example the IOR is published in a file. See the C++
or Java demos for details.

Connecting to a Notification Channel

The code presented so far applies equally to supplier and consumer
applications using either the push or pull model. Connecting the supplier
and consumer is discussed next.

725

CHAPTER 4 | Programming Example

Connecting a Supplier This section describes how to connect an event supplier to an event
channel. Figure 17 illustrates the steps.

Supplier

Obtain Supplier Admin

v

Obtain Proxy Consumer
* Delivery Model

* Push
e Pull

* Client Type
* Any

e Structured
* Sequence

Push Pull

Callback on
Disconnect

Yes

Implement Supplier

v

Connect to Proxy Consumer

Figure 17: Connecting a Supplier to a Notification Channel

726

Connecting to a Notification Channel

Supplier Admin The first step in connecting a supplier is to obtain a supplier admin object.
All event channels come with two read only attributes:
def aul t _suppl i er _adm n and def aul t _consumer _adni n.

/1 1D
interface Event Channel

{

readonly attribute Consunmer Adm n def aul t _consurer _adm n;
readonly attribute SupplierAdm n defaul t_supplier_adm n;

ik
This example uses the default admin objects:

[l C++
CosNot i f yChannel Admi n: : Suppl i er Adm n_var supplierAdnmin =
event Channel -> defaul t_supplier_adnmn();

/1 Java
Suppl i er Admi n supplierAdmn =
event Channel . def aul t _suppl i er _adnmi n();

Supplier applications may also create a new supplier admin using the
following:

// 1D
Event Channel

{

Suppl i er Addm n new for_suppl i ers(
in InterFilter@ oupQperator op,
out AdminiDid);

727

CHAPTER 4 | Programming Example

or use an admin with a given Adni nl D. Note that Adnmi nl Dis a unique ID
assigned by Orbacus Notify.

/1 1DL
Event Channel
{

Suppl i erAdmin get_supplieradmn (in AdmnlDid)
rai ses (Adm nNot Found) ;

Proxy Consumer The next step in connecting to an event channel is to obtain the proper proxy
consumer from the supplier admin. This is the point at which the
application specifies the delivery model and type of events it will supply.
This example uses the push delivery model and structured events. The C++
code looks like:

/] G+
CosNot i f yChannel Adni n: : Proxyl D proxyl d;

CosNot i f yChannel Admi n: : ProxyConsurrer _var proxyConsuner =
suppl i erAdm n -> obtai n_notificati on_push_consuner (
CosNot i f yChannel Adni n: : STRUCTURED _EVENT, proxyl d);

CosNot i f yChannel Adnmi n: : St ruct ur edPr oxyPushConsuner _var
st ruct ur edPr oxyPushConsuner =

CosNot i f yChannel Admi n: : St ruct ur edPr oxyPushConsurrer : : _nar r ow(
pr oxyConsurrer) ;

728

Connecting to a Proxy

Connecting to a Notification Channel

And in Java:

1 // Java
org. ong. CCRBA. | nt Hol der proxyld = new
or g. ong. GORBA | nt Hol der () ;

N

Pr oxyConsuner proxyConsuner =
suppl i er Admi n. obt ai n_noti fi cati on_push_consurrer (
d i ent Type. STRUCTURED EVENT, proxyld);

St ruct ur edPr oxyPushGonsurrer
st ruct ur edPr oxyPushConsuner =
0 St r uct ur edPr oxyPushConsuner Hel per . nar r ow(
1 pr oxyConsurrer) ;

PP O0o~NO U bW

Variable to hold the ID later assigned to the proxy by Orbacus Notify.

Obtain a push consumer, specifying the type. This example wants a
structured event push consumer. Valid types are ANY_EVENT,

STRUCTURED EVENT, SEQUENCE _EVENT.

Narrow the proxy consumer to the appropriate type specified in the previous
call.

Equivalent objects and methods exist for pull model suppliers.

The final step in connecting a supplier to an event channel is to connect to
the proxy. Each of the various proxy types implement their own connect
method. A proxy of type

CosNot i f yChannel Adni n: : St ruct ur edPr oxyPushConsuner is used in this
example:

/1 1D
interface StructuredProxyPushConsuner :
Pr oxyConsuner ,
CosNot i f yGComm : St ruct ur edPushConsuner
{
voi d connect _structured_push_supplier (
in CosNotifyComm : Struct uredPushSuppl i er push_suppl i er)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;
i

A supplier registers itself with a proxy when it invokes the appropriate
connect method. If the supplier wants notification of either of the following:

® when it is about to be disconnected

729

CHAPTER 4 | Programming Example

730

® when there is a change in the set of events to which consumers are
currently subcribed

it must implement the appropriate CORBA servant and pass it as an

argument in the connect call. In this case the supplier must also assume the

role of CORBA server.

The example supplier is not interested in these notifications so it passes a nil

argument during the connect call:

Il C+
st ruct ur edPr oxyPushConsuner -> connect _struct ured_push_suppl i er (

CosNot i fyComm : Struct uredPushSupplier:: _nil());

/1 Java
st ruct ur edPr oxyPushConsuner .
connect _struct ured_push_supplier(null);

Connecting to a Notification Channel

Connecting a Consumer

This section describes how to connect to an event channel so that an

application may receive events. Figure 18 outlines the process of connecting

Consumer

Obtain Consumer Admin

v

Obtain Proxy Supplier
* Delivery Model

* Push
e Pull

e Client Type
e Any

e Structured
* Sequence

Callback on
Disconnect

Implement Consumer

v

Connect to Proxy Supplier

A

Pull

Figure 18: Connecting a Consumer to a Notification Channel

731

CHAPTER 4 | Programming Example

a consumer to an event channel.

Consumer Admin The first step in connecting a consumer is to obtain a consumer admin. As

mentioned earlier each event channel comes with default supplier and
admin objects. The example consumer uses the default consumer admin:

[l C++

CosNot i f yChannel Admi n: : Consuner Adm n_var consuner Admn =
event Channel -> defaul t_consurrer_adm n() ;

/1l Java
Gonsurrer Admi n consurrer Adm n =
event Channel . def aul t _consumner _adm n() ;

As with supplier applications, consumers may also create a new consumer
admin object using the following:

/1 1DL
Event Channel
{

Consurrer Adm n new_f or _consurrer s(

in InterFilter@ oupQperator op,
out AdmniDid);

Ik

or use an admin with a given ID (of type

CosNot i f yChannel Admi n: : Admi nl D). Note that this is a unique ID assigned
by Notify.

/l 1D
Event Channel

{

Consuner Adm n get _consuneradmn (in AdmniDid)
rai ses (Adm nNot Found) ;

732

Proxy Supplier

Connecting to a Notification Channel

The next step in connecting a consumer to an event channel is to obtain the
appropriate proxy supplier from the consumer admin object. Like the
supplier example, this is where the consumer specifies the delivery model
and type of events it wishes to receive.

It is important to note that the type of proxies used by suppliers and
consumers are independent of each other. Hybrid delivery models are
supported, for example a pull consumer can receive events from a push
supplier. Also the type of event specified by the proxies are independent due
to the event translation capabilities of the channel. For example, structured
events inserted into a OORBA: : Any by the supplier are received as structured
events by a structured consumer. !

This example, like the supplier, uses the push delivery model and structured
events. The corresponding C+ + code is:

[l C++
CosNot i f yChannel Adni n: : Proxyl D proxyl d;

CosNot i f yChannel Admi n: : ProxySuppl i er _var proxySupplier =
consurer Adm n -> obtain_notification_push_supplier(
CosNot i f yChannel Admi n: : STRUCTURED EVENT, proxyl d);

CosNot i f yChannel Admi n: : St ruct ur edPr oxyPushSuppl i er _var
st ruct ur edPr oxyPushSuppl i er =

CosNot i f yChannel Admi n: : St ruct ur edPr oxyPushSuppl i er: : _narrow(
proxySuppl i er);

1. Try running different combinations of the demo suppliers and consumers which
accompany the Orbacus Notify distribution (see not i f y/ deno/ si npl e). For
example try running the SequencePul | Suppl i er and the AnyPushConsuner .

733

CHAPTER 4 | Programming Example

734

And in Java:

1 // Java
org. ong. CCRBA. | nt Hol der proxyld = new
or g. ong. CCRBA. | nt Hol der () ;

N

ProxySuppl i er proxySupplier =
consurrer Adm n. obt ai n_not i fi cati on_push_suppl i er (
d i ent Type. STRUCTURED EVENT, proxyld);

St ruct ur edPr oxyPushSuppl i er
st ruct ur edPr oxyPushSuppl i er =
0 St ruct ur edPr oxyPushSuppl i er Hel per . nar r ow(
1 pr oxySuppl i er);

PP O0o~NO U bW

Variable to hold the ID later assigned to the proxy by Orbacus Notify.

Obtain a proxy push supplier specifying the type. This example wants a
structured event proxy push supplier. Valid types are ANY_EVENT,
STRUCTURED EVENT, SEQUENCE_EVENT.

Narrow the proxy supplier to the appropriate type specified in the previous
call.

Equivalent objects and methods exist for pull model consumers.

Connecting to a Notification Channel

Connecting to a Proxy

Implementing the Servant

The final step in connecting a consumer to an event channel is to connect to
the proxy. This is similar to connecting the supplier with one major
difference: a push consumer must implement the appropriate CORBA
servant to support the event delivery. A push consumer must assume the
role of CORBA server since it has to process incoming requests, namely
handle events pushed by the channel. The implementation of the push
consumer servant is discussed next.

12
13
14
15
16
17
18
19
20
21
22
23]
24
25
26
27
28

/] C++
class Struct ur edPushConsurrer _i npl
publ i ¢ CosNot i f yComm St r uct ur edPushConsuner _skel

{
OCORBA CRB var orb_;
CORBA BQA var bhoa_;
publ i c:

St ruct ur edPushConsurrer _i npl (
OORBA CRB ptr orb, OORBA BQA ptr boa) :
orb_(CCRBA CRB:: _duplicate(orb)),
boa_(CORBA BQA: : _dupl i cat e(boa))

{

}

virtual ~StructuredPushConsurrer _i npl ()

{

}

voi d

push_st ruct ured_event (
const CosNoti fication_StructuredEvent & event)

{
cout << "Pushed..." << endl;

i f (D spl ayEvent (event))
t hr ow CosEvent Conm D sconnect ed() ;

}

735

CHAPTER 4 | Programming Example

736

2-3

5-6

9-18

20-27

29-34

36-41

29 voi d
30 di sconnect _st ruct ur ed_push_consuner ()
31 {
32 orb_ -> di sconnect (this);
33 boa_ ->
deacti vate_i npl (CORBA | npl enent ati onDef:: _nil());
34 }
35
36 voi d
37 of f er_change(const CosNoti fi cati on_Event TypeSeq& added,
38 const CosNoti fi cati on_Event TypeSeq& r enoved)
39 {
40 /1l Event offering has changed
41 }
42 };

New class defining our servant. Note the derivation from
CosNot i fyComm St ruct ur edPushConsuner _skel which is
generated by the IDL compiler from CosNotifyComm.idl.

Keep a reference to the ORB and the BOA.

Constructor and destructor. Store our reference to the ORB and BOA in _var
types for automatic memory management.

Implement the push_st ruct ured_event method. This method is invoked
each time the channel pushes an event; in this example the consumer
displays the event. The Di spl ayEvent 1 youtine returns true when an event
containing the last letter of the alphabet is received, prompting the
consumer to disconnect from the channel.

On disconnection by the channel, disconnect the servant and end the
process. Invoking deact i vat e_i npl () causes the BOA’s i npl _i s_ready()
method to return.

Not implemented in this example. This method communicates changes in
the event type offering on the channel. Sequences of event types being
added and event types being removed are passed as parameters.

1. For the details of DisplayEvent() see any of the demos which accompany the
Orbacus Notify distribution in not i f y/ deno/ si npl e).

2-3

5-6
8-12
14-21
23-28

Connecting to a Notification Channel

The corresponding Java code is presented below:
1 // Java

2 class StructuredPushConsuner_i npl extends
_Struct ur edPushConsuner | npl Base

3

4

5 private CRB orb_;
6 private BQA boa_;
7

8

St ruct ur edPushGonsuner _i npl (CRB orb, BQOA boa)

9 {

10 orb_ = orb;
11 boa_ = boa;
12}

13

14 public void
15 push_st ruct ured_event (St ruct ur edEvent event)

16 throws org. ong. CosEvent Comm Di sconnect ed

17 {

18 Systemout. println("Pushed...");

19 i f (StructuredPushConsuner . di spl ayEvent (event))

20 t hrow new or g. ong. CosEvent Comm D sconnect ed() ;
21 }

22

23 public void
24 di sconnect _st ruct ur ed_push_consuner ()

25 {

26 orb_. di sconnect (thi s)

27 boa_. deactivate_inpl (null);
28 }

29

30 public void

31 of f er _change(Event Type[] added, Event Type[] renoved)
32 {

33 // Event offering has changed

34 }

35 }

New class defining our servant. Note the derivation from
_StructuredPushConsurer | npl Base which is generated by the IDL
compiler from CosNotifyComm.idl.

See 5- 6 above.
Constructor.

See 19- 29 above.
See 31- 36 above.

737

CHAPTER 4 | Programming Example

30-34 See 38- 43 above.
Once the servant is implemented it is registered with the proxy supplier:

[l C++
CosNot i f yComm St ruct ur edPushConsurner _var st ruct ur edPushConsurrer

new Struct ur edPushConsuner _i npl (orb, boa);

st ruct ur edPr oxyPushSuppl i er ->
connect _struct ur ed_push_consuner (st r uct ur edPushConsurrer) ;

/1 Java
St ruct ur edPushConsurner _i npl st ruct ur edPushConsuner =
new Struct ur edPushConsuner _i npl (orb, boa);

st ruct ur edPr oxyPushSuppl i er. connect _st r uct ur ed_push_consuner (
st ruct ur edPushConsuner) ;

All that remains is to activate the BOA, and the consumer is ready to receive
events.

738

Supplying Events

Supplying Events

Overview The mechanism of supplying events to a notification channel depends on

the delivery model. The Orbacus Notify C++ and Java demos implement
push and pull suppliers with any, structured, and sequence events.

Push Supplier Implementing a push supplier is relatively easy since no CORBA servants

are required for the most basic applicationsl. Once connected to the proxy,
the application can immediately start supplying events. This example
pushes events within the mai n subroutine as shown below:

/] C++
const int nunthars = 26;
for(int i =0 ; i < nunChars ; ++i)
{
cout << "Pushing..." << endl;

CosNot i fication_StructuredEvent var event =
O eat eNewEvent (i) ;

st ruct ur edPr oxyPushConsuner - >
push_struct ured_event (*event);

}
And in Java:

/1l Java
final int nunChars = 26;
for(int i =0 ; i < nunChars ; ++i)
{
Systemout. println("Pushing...");
Struct uredEvent event = createNewEvent (orb, i);

st ruct ur edPr oxyPushConsuner . push_st r uct ur ed_event (event) ;

1. Aservant is required if the supplier is interested in knowing when it is

disconnected or when the channel subscription information changes.

739

CHAPTER 4 | Programming Example

Pull Supplier

740

The different types of push suppliers have similar but distinct IDL interfaces.
The IDL for the structured push supplier is:

/1l 1D
interface StructuredPushSupplier : NotifySubscribe
{

IE

voi d di sconnect _structured _push_supplier();

Our example does not implement this interface for reasons stated earlier.

Unlike the push supplier, the pull supplier assumes a passive role in event
delivery. The push supplier is active in that it initiates event delivery on the
channel. Conversely, the pull supplier is passive and has events pulled from
it by the channel. For this reason the pull supplier must implement a servant
which incarnates a CORBA object capable of accepting requests from
Orbacus Notify. Separate, but similar, IDL interfaces exist for the any,
structured and sequence pull suppliers. The IDL for the structured pull
supplier is given below.

/1 1DL
interface StructuredPul | Supplier : NotifySubscribe
{

CosNot i fication:: StructuredEvent pul | _structured_event ()
r ai ses(CosEvent Conm : D sconnect ed) ;

CosNot i fication:: StructuredEvent
try pull _structured_event (
out bool ean has_event)
rai ses(CosEvent Comm : D sconnect ed) ;

voi d di sconnect _structured_pul | _supplier();

Ik

The blocking pul I _struct ured_event () and non-blocking
try_pull _structured_event () are the methods which retrieve events from
the supplier.

Consuming Events

Consuming Events

Overview

Push Consumer

Pull Consumer

Like supplying events, receiving events varies with the selected delivery
model. The Orbacus Notify C++ and Java demos implement push and pull
consumers for any, structured and sequence events.

The push consumer is passive and has events pushed on it by Orbacus
Notify. As such it needs to implement the appropriate servant. As with the
suppliers, there are separate IDL interfaces for the different push consumers
(any, structured, sequence). Below is the IDL for the structured push
consumer.

/1 1D
interface StructuredPushConsuner : NotifyPublish

{

voi d push_structured_event (
in CosNotification::StructuredEvent notification)
rai ses(CosEvent Comm : b sconnect ed) ;

voi d di sconnect _st ruct ured_push_consurrer () ;

b

It is in the servant’s implementation of push_struct ured_event () that
events are received by the push consumer.

Compared to the push consumer, the pull consumer is the easier to
implement and may be likened to the push supplier. The most basic pull
consumer need not implement a servant but may directly invoke the
methods of the proxy pull supplier interface. The any, structured, and
sequence pull suppliers have separate IDL interfaces. The structured pull
consumer IDL is given below:

/1 1DL

interface StructuredPul | Consurmer : NotifyPublish
{

voi d di sconnect _structured_pul | _consurer();

b

741

CHAPTER 4 | Programming Example

Filtering

742

So far this chapter has covered the details of connecting to an event channel
and event delivery mechanisms. One of the powerful features of Orbacus
Notify is the ability to filter events on both the supplier and consumer side.
In particular, filters may be applied to supplier and consumer admins and to
supplier and consumer proxies. This section extends the structured push
consumer example by applying a filter to the supplier proxy

(Fi | t er edConsurrer . cpp and Fi | t er edConsuner . j ava in the C++ and Java
demos implement event filtering).

The steps in applying a filter are illustrated in Figure 19.

Obtain reference to FilterFactory

v

Obtain a filter

Create constraints

v

Create filter

v

Add constraints to filter

v

Add filter to appropriate object
(proxy or admin)

Figure 19: Applying a Filter

Demo Event Structure

Event Header

Event Body

——

Filtering

In this example, the filter object is treated much like an event channel in
that it is not necessarily created during each execution of the demo. If the
demo application determines that it must create a filter, it does so and
publishes the I0R for the filter. Subsequent executions of the demo then
attempt to re-use this filter. Obtaining a filter from its IOR is straightforward:

/] C++

OORBA (bject_var obj = ... // Get object fromfilter ICR

CosNotifyFilter_Filter_var filter =
CosNotifyFilter_Filter::_narrowobj);

/1 Java
org.onyg. CCRBA (hject obj = ... // Get object fromFilter IR
Filter filter = FilterHel per.narrow obj);

The structure of the demo events (see Figure 20) is presented before
discussing filter creation.

domain_name: "alpha"

type_name: "character" Fixed Header

event name: "Hh"

empt Variable
Pty Header
4> <7
f : l|l " f] : Nhll
d_name,: "lower d_value, Filterable
Field
fd_name,: "upper"” fd_value,: "H" 1eies
empt Remaining
Pty Body

Figure 20: Demo Event Structure

743

CHAPTER 4 | Programming Example

Obtaining a Reference to the Filter
Factory

Obtaining a Filter

744

For demonstration purposes all events share the same donai n_name and

t ype_nane field values. The event _nane field is a concatenation of the
filterable field values. The Variable Header and Remaining Body of the
event structure are left empty. The Filterable Fields contain two name-value
pairs for the lower and upper case versions of alphabetic character.

The first step in applying a filter is to obtain a reference to the Default Filter
Factory. Note that every object of type

CosNot i f yChannel Adni n: : Event Channel includes a reference to the
DefaultFilterFactory:

/1l 1D
i nterface Event Channel

{

readonly attribute CosNotifyFilter::FilterFactory
default _filter_factory;

b

In C++ the reference is obtained as follows:

/] C++

CosNoti fyFilter_FilterFactory_var filterFactory =
event Channel -> default_filter_factory();

And in Java:

/1 Java

FilterFactory filterFactory =
event Channel . defaul t _filter_factory();

This section presents the creation of a simple filter, as implemented by the
Fi | t er edConsuner demo.

2-10

12-13
15

Filtering

Create Filter Constraints

Creating filter constraints involves populating a sequence of type
CosNoti fyFilter:: Constrai nt ExpSeq. The details are presented below.

1 /] G+
2 const OCRBA Uong nunConstraints = 5;
3 const char* constraintStrings[] =

4 {

5 "S$upper == 'A ",
6 "$lower =='e",
7 "$lower =="i"",
8 "$upper =='0",
9 "$upper =="'U"
10 }

11

12 CosNotifyFilter_Constraint ExpSeq
constrai nts(nunConstrai nts) ;
13 constraints. | engt h(nunmConstraints);
14
15 for(CORBA Uong i =0 ; i < nunConstraints ; ++)
16 {
17 constraints[i].event_types.|ength(1);
18 constraints[i].event_types[0O].donai n_name =

19 QOCRBA string_dup("*");

20

21 constraints[i].event_types[0O].type name =
22 QOCRBA string_dup("*");

23

24 constraints[i].constraint_expr =

25 OCRBA string_dup(constraintStrings[i]);
26 }

Constraint expressions. In this example, events which represent vowels are
“interesting”. The constraint " $upper == " A" " can be interpreted as:
match events which have a filterable field named “upper” and a value of
“A".

Initialize the sequence to hold nunConst r ai nst s expressions.

Iterate over the constrai nt Strings array, assigning each element to a
separate constraint expression.

745

CHAPTER 4 | Programming Example

17-22 Event types are characterized by the domai n_nane and t ype_nane fields. A
constraint is the intersection of a single constraint expression and one or
more event types. For this example we are only interested in events with
filterable data section elements that satisfy our constraint expression. Any
event type will satisfy these constraints.

24-25 Specify the constraint expression.

1 // Java
2 final int nunConstraints = 5;
3 String[] constraintStrings =

A

5 "$upper =="'A",
6 "$lower =='e ",
7 "$lower = "i"",
8 "$upper =="'0",
9 "$upper =="'U"
10 }

11

12 Constraint Exp[] constraints =
13 new Constrai nt Exp[nunConstrai nts] ;

15 for(int i =0 ; i < numConstraints ; ++)

16 {

17 Event Type event Type = new Event Type();

18 event Type. domai n_name = "*";

19 event Type. type_nane = "*";

20

21 Event Type[] event Types = new Event Type[1] ;

22 event Types[0] = event Type;

23

24 Constrai nt Exp constrai nt = new Constrai nt Exp();
25 constraint. event _types = event Types;

26 constraint.constraint_expr = constraintStrings[i];
27

28 constraints[i] = constraint;

29 }

2-15 See 2-15 above.
17-26 See 17-22 above.
28 See 24-25 above.

746

Adding a Filter to an Admin or
Proxy

Filtering

Create Filter

Creating a filter is straightforward:

Il C++
filter = filterFactory -> create filter("EXTENDED TCL");

/1 Java
filter = filterFactory.create filter("EXTENDED TCL");

The single argument to the create_filter() method specifies the
constraint grammar. This example uses “ EXTENDED TCL” which is the
default grammar supported by all compliant notification services.

Add Constraints to the Filter

Once the filter and constraints are available, the constraints are added to the
filter. Again this is straightforward:

/] C++
CosNoti fyFi | ter_ConstraintlnfoSeq_var info =
filter -> add_constrai nts(constraints);

/1 Java
GonstraintInfo[] info = filter.add_constraints(constraints);

The return value of the add_const rai nt s() operation is a sequence in which
each element contains one of the input constraint expressions and the
unique identifier for that expression assigned by Orbacus Notify.

The IDL interfaces:

CosNot i f yChannel Admi n: : Pr oxyConsuner
CosNot i f yChannel Admi n: : ProxySuppl i er
CosNot i f yChannel Adni n: : Consurrer Adm n
CosNot i f yChannel Admi n: : Suppl i er Adnmi n

747

CHAPTER 4 | Programming Example

Destroying a Filter

748

all inherit the CosNoti fyFil ter:: FilterAdm n interface and can have filter
objects associated with them. In this example the filter is added on the
consumer side by associating it with the supplier proxy. Adding a filter to the
proxy looks like:

/] Ct+
CosNot i f yChannel Adm n_ProxySuppl i er _var proxySupplier = ...

proxySupplier -> add_filter(filter);

/1 Java
ProxySuppl i er proxySupplier = ...

proxySupplier.add_filter(filter);

The add_filter() operation adds the given filter to the list of filter objects

already associated with the target proxy or admin object. It returns an ID, of
type CosNoti fyFilter::FilterlD, which is unigue amongst all filter objects
associated with the particular target proxy or admin. Note that the scope of
a filter ID is limited to the scope of the admin or proxy to which the filter is
assigned.

The CosNoti fyFilter::Filter interface includes a method, destroy(),
which destroys the target filter object. Filters are not strictly owned by a
single admin or proxy object. Rather a filter is created from a filter factory
and may be added to one or more admin or proxy objects. For this reason,
clients must be careful when destroying a filter object, as it may be
referenced by other admins and/or proxies within the service. It is
recommended that filters not be shared amongst admins or proxies.

This example does not destroy the filter. Rather its IOR is published and
used to locate the filter object on subsequent executions of the
Fi | t er edConsuner example.

Disconnecting from a Notification Channel

Disconnecting from a Notification Channel

When a supplier or consumer wishes to disconnect from an event channel it
simply disconnects its proxy object. The example structured supplier

implementation disconnects as follows:
[l C++

CosNot i f yChannel Adm n_St r uct ur edPr oxyPushConsurer _var
st ruct ur edPr oxyPushConsuner =

st ruct ur edPr oxyPushConsuner ->
di sconnect _st ruct ur ed_push_consuner () ;

And in Java:

/1l Java

St ruct ur edPr oxyPushConsurrer st r uct ur edPr oxyPushGonsurrer

st r uct ur edPr oxyPushConsuner .
di sconnect _st ruct ur ed_push_consuner () ;

Likewise for the structured push consumer:

/1 Ct+

CosNot i f yChannel Adm n_St r uct ur edPr oxyPushSuppl i er _var
st ruct ur edPr oxyPushSuppl ier = ...

st ruct ur edPr oxyPushSuppl i er ->
di sconnect _st ruct ur ed_push_supplier();

749

CHAPTER 4 | Programming Example

Disconnecting Passive Clients

750

And in Java:

/1 Java
St ruct ur edPr oxyPushSuppl i er st ruct uredProxyPushSupplier = ...

st ruct ur edPr oxyPushSuppl i er .
di sconnect _st ruct ured_push_supplier();

Note that disconnecting a proxy effectively destroys the target proxy object.

Note: The CosNot i f yChannel Adni n: : Event Channel ,

CosNot i f yChannel Admi n: : Suppl i er Adm n and

CosNot i f yChannel Admi n: : Consuner Adm n all support the dest roy()
operation. Care should be taken when invoking this method since it
destroys the target object and all objects it manages. For example,
destroying an admin will destroy all proxies managed by that admin,
potentially cutting off active communication channels. Similarly,
destroying a channel destroys all admins and proxies associated with that
channel.

Disconnecting from a passive client (push consumer or pull supplier) is not
as straight forward as disconnecting from an active client. In the demo
examples, the passive servants disconnect by throwing the

CosEvent Conm : Di sconnect ed exception from the push method when it
detects the last event has been received. On receipt of this exception,
Orbacus Notify invokes the appropriate servant disconnect method which
initiates client process termination.

Building Orbacus Notify Clients

Building Orbacus Notify Clients

Compiling and Linking C++
Clients

Compiling Java Clients

The following sections describe how to build Orbacus Notify clients.

Compiling and linking is to a large degree compiler- and

platform-dependent. Many compilers require unique options to generate

correct code. Orbacus Notify clients, at a minimum, must link with the

following:

® Orbacus Notify library - 1i bCosNot i fy. a (Unix) or CosNotify.lib
(Windows)

® Orbacus library - 1'i bGB. a (Unix) or ob. I'i b (Windows)

See the Orbacus manual and README files which accompany the Orbacus
distribution for various platform-specific compilation instructions.

Ensure that the QLASSPATH environment variable includes the following:
® Orbacus Notify Java classes, that is the BNoti fy.jar file
® Orbacus for Java classes, that is the @8.j ar file.

Note: The Orbacus Notify Java classes are available for download with
the Orbacus Notify Console distribution.

If using the Unix Bourne shell or a compatible shell, this is accomplished
with the following commands:
CLASSPATH=not i fy_directory/lib/CBNotify.jar: \

orbacus_directory/lib/ CB.jar: $CLASSPATH
export CLASSPATH

Replace noti fy_di rect ory with the name of the directory where Orbacus
Notify is installed; and replace or bacus_di rect ory with the name of the
directory where Orbacus is installed.

If running Orbacus on a Windows-based system, use the following
command within the Windows command interpreter:

set CLASSPATH-notify directory\lib\BNotify.jar; \
or bacus_di rectory\li b\ GB.j ar; YCLASSPATHY%

Note that for Windows the delimiter is “;” and not “:".

751

CHAPTER 4 | Programming Example

752

CHAPTER 5

Orbacus Notify
Console

This chapter describes how to use the Orbacus Notify graphical

interface.
In this chapter This chapter contains the following sections:
Overview page 754
The Orbacus Notify Console Menus page 757
Creation Wizards page 759
Managing Notification Channels page 760
Managing Admins page 763
Managing Proxies page 766
Managing Filters page 769
Managing Filter Constraints page 770
Managing Mapping Filters page 772

753

CHAPTER 5 | Orbacus Notify Console

Overview

The Orbacus Notify Console supports the management of all aspects of
Orbacus Notify. The Orbacus Notify Console includes the following
functionality:

® Complete administration of channels, admins and proxies
® QoS configuration at the channel, admin and proxy levels
® Administration of filters

® Administration of mapping filters

® Administration of subscription sharing

754

The Main Window

Overview

The Orbacus Notify Console main window is shown in Figure 21.

Ega DORBacus Motify Console [_ (O] %]
File Edit Control View Help

%o

=

: |Object Properties:
QoS Propery | Value

Service Structure:
@ @ Event Channel Factory
@ .,l‘* Event Channel 0
@ B Default Consurmer Adrmin
» Consumer Admin 1
%Any Full Supplier0
Default Supplier Admin
@ Supplier Admin 1
% Structured Push Consumer 0
@ .,l‘* Event Channel 1
@ Default Consurner Adrmin
Lifetime Mapping Filter
@ [&E] Priority Mapping Filter
% Seqguence Push Supplier 0
% Structured Pull Supplier 1
@ Default Supplier Admin
@ % Any Push Consurmer 0
Q Forearding Filter 0
Constraint 0
@ [&] Forwarding Filter 0
@ _r* Event Channel 2
@ @ Filter Factory
©-] Global Filter 0
© &l Global Filter 1
Constraint 0
Global Mapping Filter 0
@ [Global Mapping Filter 1
i int 1

Host: localhost, Port: 12101

Figure 21: The Orbacus Notify Console Main Window

It contains the following elements:

Menu bar Provides access to all the application features.
Toolbar Shortcuts for the most common menu commands.

Service Structure Displays the list of configured components in Orbacus
Notify.

Object Properties Displays the current property settings for the object
selected in the Service Structure tree.

755

CHAPTER 5 | Orbacus Notify Console

Status bar Displays the host and port at which the console is
connected to Orbacus Notify and also displays
information regarding currently executing operations.

756

The Orbacus Notify Console Menus

The Orbacus Notify Console Menus

The File Menu

The Edit Menu

The Control Menu

The File Menu contains operations that manage the console windows.

New Window

Close
Quit

Creates a new console window connected to the same
instance of Orbacus Notify.

Closes the current console window.

Quits the application.

The Edit Menu contains context sensitive operations which administer the
various objects within Orbacus Notify. These objects include channels,
admins, proxies and filters

Create...

Destroy

Properties

Create a new object from the selected factory. In this
context the term factory refers to any object which
includes factory methods for the creation of other
objects. For example an admin object is a factory for
both proxy and filter creation.

Destroys the selected object.

Displays a properties dialog for the selected object.

This menu contains operations which control the operation of Orbacus

Notify.

Shutdown
Suspend

Resume

Shutdown Orbacus Notify.

This operation is available for proxy push supplier and
proxy pull consumer objects. It interrupts event flow
between the selected proxy and the connected supplier
or consumer.

This operation causes previously suspended proxies to
resume pushing or pulling events.

757

CHAPTER 5 | Orbacus Notify Console

The View Menu This menu contains operations which allow the user to configure the console
display.

Show ToolBar Toggles between a visible and hidden toolbar.
Show StatusBar Toggles between a visible and hidden statusbar.

Explicit Refresh Toggles the refresh mode of the Service Structure tree. If
set then the contents of the tree are not automatically
refreshed on tree node expansion.

Refresh Obtains an updated list of items from Orbacus Notify
and updates the console display accordingly. This option
is useful if the list of items has been changed by another
Orbacus Notify client.

The Help Menu This menu is used to access the on-line help facilities.

Help Contents Displays the main help contents page. From here the
user can navigate the entire on-line help system.

About... Displays version and copyright information.

The Popup Menu Right-clicking on the various items in the console displays a context
sensitive popup menu, as shown in Figure 22.

Create...
Destroy

Suspend
Resume

Refresh

Properties

Figure 22: Popup Menu
This popup menu is a shortcut to the menu commands and contains

appropriate operations for the selected object (channel, admin, proxy or
filter) based on its current state.

758

Creation Wizards

Creation Wizards

The Orbacus Notify Console guides users through the creation of various
items through the use of object creation wizards. A sample wizard dialog is
shown in Figure 23.

Add/Create Wizard [%]

ﬂoc‘ Discard Policy

o O eoncr e | DISCAN Policy determines the order inwhich events are
discarded when the numhber of qgueued events exceeds
‘MaxEventsPerConsumer’.

Please choose:

Discard Policy | FIFO Order |

Mazx Events per Consumer |D |

Help | <Back || Next > || Finish || Cancel |

Figure 23: Sample Creation Wizard

The initial wizard dialog is displayed by invoking the Create... operation on
a selected object. The wizards provide instructions related to the setup of
various objects within Orbacus Notify.

759

CHAPTER 5 | Orbacus Notify Console

Managing Notification Channels

Creating a New Channel To create a new channel simply choose the EventChannelFactory and select
the Edit/Create... operation. The Event Channel Creation Wizard then steps
through the creation of the channel.

Notification Channel Properties The Edit/Properties menu operation for a selected channel displays a
tabbed property dialog in which various channel properties may be edited.
All the properties in this dialog are set initially when the channel is created
with the channel creation wizard.

760

Managing Notification Channels

QoS Properties

The channel QoS Properties tab in the Event Channel Properties dialog is
shown in Figure 24.

E‘%‘Evenl Channel 0 Properties E

fQoS Properties r

Event Reliability
Connection Reliability

Order Policy Priority Order

Discard Policy Any Order -

Maz Events per Consumer |0

Timeout {msec) 0.0
Priority 1]
Mazimum Batch Size 1
Pacing Interval {msec) 0.0
Pull Interval {msec) 1000.0
Retry Timeout (msec) 1000.0
Retry Multiplier 1.0
Mazx Retries 0

Mazx Retry Timeout {msec) (60000.0
Request Timeout {msec) a000.0

Figure 24: Notification Channel QoS Properties

This includes all QoS properties available for the channel including Orbacus
Notify proprietary properties. Note that Event Reliability and Connection
Reliability are only set during channel creation and cannot be altered
afterwards.

761

CHAPTER 5 | Orbacus Notify Console

Admin Properties

The Admin Properties tab in the Event Channel Properties dialog, shown in
Figure 25, is used to set the maximum number of suppliers and consumers
permitted per channel.

"Event Channel 0 Properties [%]

Max Consumers: |D |

Mazx Suppliers: |D |

Figure 25: Notification Channel Admin Properties

Destroying a Channel To destroy a channel simply select the channel and select the Edit/Destroy
menu operation. A confirmation is displayed before the channel is removed.
Note that destroying a channel also destroys all admins and proxies
associated with that channel.

762

Managing Admins

Managing Admins

Creating a New Admin

Admin Properties

To create a new supplier or consumer admin choose Edit/Create on a
selected event channel. The Admin Creation Wizard then steps through the
configuration of the new admin object.

QoS Properties

Supplier and consumer admin QoS properties are configured in QoS
Properties tab of the Admin Properties dialog, shown in Figure 26.

E‘%‘De[aull Consumer Admin' Properties

Mapping Fifters | Subscription Types.

QoS Properties |
Order Policy Priority Order
Discard Policy Any Order -

Maz Events per Consumer |0

Timeout {msec) 0.0
Priority 1]
Mazimum Batch Size 1
Pacing Interval {(msec) 0.0
Retry Timeout {(msec) 1000.0
Retry Multiplier 1.0
Mazx Retries 0

Mazx Retry Timeout {msec) (60000.0
Request Timeout {msec) a000.0

Figure 26: Admin QoS Properties

This dialog is activated from the Edit/Properties operation when an admin
object is selected in the Service Structure tree.

763

CHAPTER 5 | Orbacus Notify Console

Mapping Filters

Priority and lifetime mapping filters may be assigned to or removed from
consumer admin objects in the Mapping Filters tab of the Admin Properties
dialog (Figure 27).

[& "Consumer Admin 1' Properties

Lifetime Mapping Filter:
| <None> - |
Priority Mapping Filter:
| <None> - |

Figure 27: Consumer Admin Mapping Filters

Subscription/Offered Types

For consumer admins, subscription event types are managed in the
Subscription Types tab of the Admin Properties dialog (Figure 28).
Similarly, for supplier admins offered event types are managed in the

764

Managing Admins

Offered Types tab of the Admin Properties dialog. Note that only one of the
Subscription Types or Offered Types tab is available depending on whether
a consumer or supplier admin is selected from the Service Structure Tree.

[E4 "Consumer Admin 1' Properties

Mapping Filters rSuhscription Types
QoS Properties |

Add Event Types:
Daomain Mame | Type Mame

&) add 2

Figure 28: Admin Subscription/Offer Types

Destroying an Admin A selected admin is destroyed by choosing the Edit/Destroy menu operation.
A confirmation is displayed before the admin is removed. Note that
destroying an admin also destroys all proxies associated with it. Any filters
created from the selected admin are not destroyed. Rather the destroyed
admin is removed from the filter's subscriber list.

765

CHAPTER 5 | Orbacus Notify Console

Managing Proxies

Creating a New Proxy

Proxy Properties

766

Supplier and consumer proxies are created from an admin object. Supplier
admins control the creation of consumer proxies while consumer admins
provide methods for the creation of supplier proxies. In either case, to create
a proxy from the console choose the appropriate admin and select
Edit/Create.... The Filter/Proxy Creation Wizard then steps through the
creation of the proxy.

QoS Properties

Proxy QoS properties are configured in the Proxy Properties dialog,
displayed in Figure 29.

E‘%‘Any Pull Supplier ' Properties

FMﬁ.ﬁ'ﬁifr.iQ' Fitters | Subscription Types.

QoS Properties |
Order Policy Priority Order
Discard Policy Any Order -

Maz Events per Consumer |0

Timeout {msec) 0.0
Priority 1]
Request Timeout {msec) a000.0

Figure 29: Proxy QoS Properties

Choose a proxy from the Service Structure tree and select Edit/Properties to
display this dialog.

Managing Proxies

Mapping Filters

Priority and lifetime mapping filters may be assigned to or removed from
supplier proxy objects in the Mapping Filters tab of the Proxy Properties
dialog (Figure 30).

E‘%‘Any Pull Supplier ' Properties

P\n

Lifetime Mapping Filter:
| <None> - |
Priority Mapping Filter:
| <None> - |

Figure 30: Supplier Proxy Mapping Filters

Subscription/Offer Types

For supplier proxies, subscription event types are managed in the
Subscription Types tab of the Proxy Properties dialog (Figure 31).
Similarly, for consumer proxies, offered event types are managed in the

767

CHAPTER 5 | Orbacus Notify Console

Offered Types tab of the Proxy Properties dialog. Note that only one of the
Subscription Types or Offered Types tab is available depending on whether
a consumer or supplier proxy is selected from the Service Structure Tree.

E‘%‘Any Pull Supplier ' Properties

Add Event Types:

Daomain Mame | Type Mame

‘ ,-_ Add H _ Remove

Figure 31: Proxy Subscription/Offer Types

Destroying a Proxy Like channels and admins, a selected proxy is destroyed by choosing the
Edit/Destroy menu operation. A confirmation is displayed before the proxy is
removed. Any filters created from the selected proxy are not destroyed.
Instead the destroyed proxy is removed from the filter's subscriber list.

768

Managing Filters

Managing Filters

Creating a New Filter

Filter Properties

Destroying a Filter

Filters can be created from any of the following objects:

® admin

® proxy

® FilterFactory

Once an object matching one of the above types is selected, invoke the
Edit/Create... menu operation. The Filter Creation Wizard! then steps
through the creation of the filter. Note that all filters become property of the
FilterFactory and have associations with zero, one, or many admins and/or
proxies.

There are no editable properties associated with a filter. When a filter is
selected in the Service Structure Tree the right-hand panel displays the
read-only list of subscribers.

A selected filter is destroyed by choosing the Edit/Destroy menu operation.
A confirmation is displayed before the filter is removed.

1. If the filter is created from an admin then the Filter/Proxy Creation Wizard is
used.

769

CHAPTER 5 | Orbacus Notify Console

Managing Filter Constraints

Creating a New Filter Constraint A filter constraint is created from a filter object. To create a filter constraint
from the console, choose the appropriate filter and select Edit/Create.... The
Constraint Creation Wizard then steps through the creation of the filter
constraint.

Filter Constraint Properties The Edit/Properties menu operation for a selected filter constraint displays a
tabbed property dialog in which various constraint properties may be edited.
All the properties in this dialog are set initially when the constraint is created
with the Constraint Creation Wizard.

Expression Properties

The constraint expression is accessed with the Expression Properties tab,
shown in Figure 32.

“Mapping Constraint 0° Properties E
Expression ||
Expression:
$hlah == foo'

Figure 32: Constraint Expression Properties

770

Managing Filter Constraints

This dialog supports in-place editing of the constraint expression.
Constraints which do not conform to the constraint grammar cannot be
entered.

Event Type Properties

The list of event types for a constraint is accessed with the Event Type
Properties tab, shown in Figure 33.

“Constraint 0' Properties [%]
Daomain Mame | Type Mame
somedamain sometype

‘ &) add H &) Remove ‘
Help M Cancel

Figure 33: Constraint Event Type Properties

To add a new event type click the Add button, which adds a new, blank,
event type to the list. All event types in the list may be edited in-place. To
remove a selected event type click the Remove button.

Destroying a Filter Constraint A selected filter constraint is destroyed by choosing the Edit/Destroy menu
operation. A confirmation is displayed before the constraint is removed.

771

CHAPTER 5 | Orbacus Notify Console

Managing Mapping Filters

Creating a New Mapping Filter

Mapping Filter Properties

Destroying a Mapping Filter

772

Mapping filters may only be created from the FilterFactory. Existing mapping
filters may be assigned to the following objects from the appropriate
properties dialog:

® consumer admin

® supplier proxy

To create a new mapping filter, select the FilterFactory and invoke the
Edit/Create... menu operation. The Filter Creation Wizard! then steps
through the creation of the filter. Note that all mapping filters are property of
the FilterFactory and have associations with zero, one, or many admins
and/or proxies.

There are no editable properties associated with a mapping filter. When a
filter is selected in the Service Structure Tree the right-hand panel displays
the read-only list of subscribers and the default value associated with the
mapping filter.

A selected mapping filter is destroyed by choosing the Edit/Destroy menu
operation. A confirmation is displayed before the mapping filter is removed.

1. If the filter is created from a consumer admin then the Filter/Proxy Creation
Wizard is used.

Managing Mapping Filter Constraint-Value Pairs

Managing Mapping Filter Constraint-Value
Pairs

Creating a New Constraint-Value A constraint-value pair is created from a mapping filter object. To create a

Pair constraint-value pair from the console, choose the appropriate mapping
filter and select Edit/Create.... The Constraint Creation Wizard then steps
through the creation of the constraint-value pair.

Constraint-Value Pair Properties The Edit/Properties menu operation for a selected mapping filter
constraint-value pair displays a tabbed property dialog in which various
constraint properties may be edited. All the properties in this dialog are set
initially when the constraint-value pair is created with the Constraint
Creation Wizard.

773

CHAPTER 5 | Orbacus Notify Console

Expression Properties

The constraint expression is accessed with the Expression Properties tab,
shown in Figure 34. This dialog supports in-place editing of the constraint
expression. Constraints which do not conform to the constraint grammar
cannot be entered.

“Mapping Constraint 0° Properties E
Expression ||
Expression:

$hlah == foo'

Figure 34: Constraint Expression Properties

774

Managing Mapping Filter Constraint-Value Pairs

Event Type Properties

The list of event types for a constraint is accessed with the Event Type
Properties tab, shown in Figure 35. To add a new event type click the Add
button, which adds a new, blank, event type to the list. All event types in
the list may be edited in-place. To remove a selected event type click the
Remove button.

“Mapping Constraint 0° Properties [%]

Daomain Mame | Type Mame
somedamain sometype

‘ &) add H &) Remove ‘

Figure 35: Constraint Event Type Properties

775

CHAPTER 5 | Orbacus Notify Console

Result to Set Properties
The value to be returned by a mapping filter on a match with a constraint
may be edited in the Result to Set Properties tab (Figure 36).

“Mapping Constraint 0° Properties E

EVEREIIRESI| Resultto Set |

Resultto Set: [1] |

Figure 36: Constraint Result to Set Properties

Destroying a Constraint-Value A selected mapping filter constraint-value pair is destroyed by choosing the
Pair Edit/Destroy menu operation. A confirmation is displayed before the
constraint-value pair is removed.

776

In this appendix

APPENDIX A

CosEventChannelA
dmin Reference

This appendix describes the CosEventChannelAdmin module

This appendix contains the following section:

Module CosEventChannelAdmin page 778

777

CHAPTER A | CosEventChannelAdmin Reference

Module CosEventChannelAdmin

Overview

Exceptions

778

This module contains channel administration interfaces. These interfaces
support the creation of the various Event Service type admin and proxy
objects.

AlreadyConnected
exception A readyConnect ed

{

b

Thrown by a consumer or supplier proxy to indicate that a client is already
registered. The proxy interfaces permit only one connection at a time.

TypeError
exception TypeError

{

b

Certain proxy implementations may impose additional requirements on pull
suppliers and push consumers that are allowed to connect. If the object
does not support these requirements the TypeError exception is raised.

Module CosEventChannelAdmin

Interface CosEventChannelAdmin::ProxyPushConsumer

Synopsis

Operations

i nterface ProxyPushGConsuner
inherits from CosEvent Comm : PushConsurer

A push supplier uses this interface to register with an event channel.

connect_push_supplier

voi d connect _push_supplier(in CosEvent Comm : PushSuppl i er
push_suppl i er)

rai ses(Al readyConnect ed) ;

Registers a push supplier implementation with the event channel. A push

supplier need not implement a CosEventComm::PushSupplier object to

successfully push events on the channel. This is only necessary if the

supplier wishes for notification when it is disconnected by the channel. If

this notification is not required a nil object reference may be given.

Parameters:

push_suppl i er - A reference to a push supplier implementation, or a nil
object reference.

779

CHAPTER A | CosEventChannelAdmin Reference

Interface CosEventChannelAdmin::ProxyPullSupplier

Synopsis

Operations

780

interface ProxyPul | Supplier
inherits from GCosEvent Comm : Pul | Suppl i er

A pull consumer uses this interface to register with an event channel.

connect_pull_consumer

voi d connect _pul | _consurrer (i n CosEvent Comm : Pul | Consurrer

pul | _consurrer)
rai ses(Al readyConnect ed) ;
Registers a pull consumer implementation with the event channel. A pull
consumer need not implement a CosEvent Conm : Pul | Consumer object to
successfully pull events from a channel. This is only necessary if the
consumer wishes for notification when it is disconnected by the channel. If
this notification is not required a nil object reference may be passed.

Parameters:

pul | _consuner - A reference to a pull consumer implementation, or a nil
object reference.

Module CosEventChannelAdmin

Interface CosEventChannelAdmin::ProxyPullConsumer

Synopsis

Operations

interface ProxyPul | Consuner
inherits from CosEvent Comm : Pul | Consurrer

A pull supplier uses this interface to register with an event channel.

connect_pull_supplier

voi d connect _pul | _supplier(in CosEvent Comm : Pul | Suppl i er
pul | _suppl i er)
rai ses(Al readyConnect ed,
TypeError);

Registers a pull supplier implementation with the event channel. A pull
supplier must implement and register a CosEvent Conm : Pul | Suppl i er
object so that the channel may successfully pull events from it.

Parameters:

pul | _suppl i er - A reference to a pull supplier implementation,

781

CHAPTER A | CosEventChannelAdmin Reference

Interface CosEventChannelAdmin::ProxyPushSupplier

Synopsis

Operations

782

interface ProxyPushSupplier
inherits from GCosEvent Comm : PushSuppl i er

A push consumer uses this interface to register with an event channel.

connect_push_consumer

voi d connect _push_consurrer (i n CosEvent Comm : PushConsurrer
push_consurrer)
rai ses(Al readyConnect ed,
TypeError);
Registers a push consumer implementation with the event channel. A push
consumer must implement and register a CosEvent Conm : PushConsurrer
object so that the channel may successfully push events on it.

Parameters:

push_consurmer - A reference to a push consumer implementation,

Module CosEventChannelAdmin

Interface CosEventChannelAdmin::ConsumerAdmin

Synopsis

Operations

i nterface Consuner Adm n

An event consumer uses this interface to create the appropriate proxy
supplier.

obtain_push_supplier

ProxyPushSuppl i er obtai n_push_supplier();
Creates a new ProxyPushSupplier object.
Returns:

An object reference to the new proxy is returned.
obtain_pull_supplier

ProxyPul | Suppl i er obtain_pul |l _supplier();
Creates a new ProxyPullSupplier object.
Returns:

An object reference to the new proxy is returned.

783

CHAPTER A | CosEventChannelAdmin Reference

Interface CosEventChannelAdmin::SupplierAdmin

Synopsis interface SupplierAdnin
An event supplier uses this interface to create the appropriate proxy
consumer.

Operations obtain_push_consumer

Pr oxyPushConsuner obt ai n_push_consurrer () ;
Creates a new ProxyPushConsumer object.
Returns:

An object reference to the new proxy is returned.
obtain_pull_consumer

ProxyPul | Consuner obtai n_pul | _consurrer () ;
Creates a new ProxyPullConsumer object.
Returns:

An object reference to the new proxy is returned.

784

Module CosEventChannelAdmin

Interface CosEventChannelAdmin::EventChannel

Synopsis

Operations

i nterface Event Channel

Event suppliers and consumers use the EventChannel interface to obtain the
admin objects required for proxy creation.

for_consumers

Consurrer Admi n for_consuners();

Creates a new ConsumerAdmin object.

Returns:

An object reference to the new admin is returned.
for_suppliers

Suppl i er Admin for_suppliers();

Creates a new SupplierAdmin object.

Returns:

An object reference to the new admin is returned.
destroy

voi d destroy();
Destroys an Event Channel and all associated admin and proxy objects.

785

CHAPTER A | CosEventChannelAdmin Reference

786

In this appendix

APPENDIX B

CosEventComm
Reference

This appendix describes the CosEventComm module.

This appendix contains the following section:

Module CosEventComm page 788

787

CHAPTER B | CosEventComm Reference

Module CosEventComm

This module contains the basic, Event Service compatible, interfaces
supporting the exchange of events between a supplier and consumer. Note
that a channel acts as both supplier and consumer of events through its
proxy interfaces.

Exceptions Disconnected
exception D sconnect ed

{

h

This exception is raised by an operation if event communication has been
disconnected.

788

Module CosEventComm

Interface CosEventComm::PushConsumer

Synopsis

Operations

i nterface PushConsurer
This interface is implemented by a push consumer to receive event data.

push

voi d push(in any data)
rai ses(D sconnect ed) ;

A supplier invokes the push operation to transfer an event to a consumer.
Parameters:

dat a - The event is encapsulated in a CORBA::Any.
disconnect_push_consumer

voi d di sconnect _push_consuner () ;

This method terminates event communication and releases resources
allocated by the target object.

789

CHAPTER B | CosEventComm Reference

Interface CosEventComm::PushSupplier

Synopsis interface PushSupplier
This interface is implemented by a push supplier which wishes to receive
notification when it is disconnected.

Operations disconnect_push_supplier
voi d di sconnect _push_supplier();
This method terminates event communication and releases resources
allocated by the target object.

790

Module CosEventComm

Interface CosEventComm::PullSupplier

Synopsis

Operations

interface Pull Supplier

This interface is implemented by a pull supplier so that the channel my pull
events.

pull

any pul I ()
rai ses(D sconnect ed) ;

This method blocks the calling thread until the supplier has data available
or an exception is raised.
Returns:

An event in a CORBA::Any.

try_pull

any try_pull (out bool ean has_event)
rai ses(D sconnect ed) ;

This method does not block and can be used to poll a pull supplier for
events.

Parameters:

has_event - Set to TRUE if there is an event available, FALSE otherwise.
Returns:

An event in a GCRBA: : Any if has_event is TRUE, undefined if has_event is
FALSE.

disconnect_pull_supplier

voi d di sconnect _pul | _supplier();

This method terminates event communication and releases resources
allocated by the target object.

791

CHAPTER B | CosEventComm Reference

Interface CosEventComm::PullConsumer

Synopsis interface Pul | Consunmer
This interface is implemented by a pull consumer which wishes to receive
notification when it is disconnected.

Operations di sconnect _pul | _consuner
voi d di sconnect _pul | _consuner ();

This method terminates event communication and releases resources
allocated by the target object.

792

In this appendix

APPENDIX C

CosNotification
Reference

This appendix describes the CosNotification module.

This appendix contains the following sections:

Module CosNotification page 794

793

CHAPTER C | CosNotification Reference

Module CosNotification

This module contains the definition of the structured event type and various
definitions related to QoS and Administration properties.

Aliases Istring
typedef string Istring;

PropertyName
typedef Istring PropertyNane;
Alias for a property name.

PropertyValue
typedef any PropertyVal ue;
Alias for a property value.

PropertySeq
typedef sequence<Property> PropertySeq;
Alias for a sequence of property name-value pairs.

OptionalHeaderFields
typedef PropertySeq Optional Header Fi el ds;
Alias for event header optional header fields.

FilterableEventBody
typedef PropertySeq Filterabl eEvent Body;
Alias for event body filterable fields.

QoSProperties
typedef PropertySeq QoSProperti es;
Alias for Quality of Service properties.

AdminProperties
typedef PropertySeq Adni nProperti es;
Alias for channel administration properties.

EventTypeSeq
typedef sequence<BEvent Type> Event TypeSeq;
Alias for a sequence of event types.

794

Constants

Module CosNotification

NamedPropertyRangeSeq
typedef sequence<NanedPropertyRange> NamedPr opert yRangeSeq;
Alias for a sequence of named property ranges.

PropertyErrorSeq
typedef sequence<PropertyError> PropertyErrorSeq;
Alias for a sequence of property errors.

EventBatch
typedef sequence<Struct uredEvent > Event Bat ch;
Alias for a sequence of structured events.

EventReliability
const string EventReliability = "EventReliability";
Specifies event reliability. The valid values are Best Ef fort and Persistent.

BestEffort

const short BestEffort = 0
Reliability property value.
Persistent

const short Persistent = 1;

Reliability property value.

ConnectionReliability
const string ConnectionReliability = "ConnectionReliability";

Specifies connection reliability. The valid values are Best Effort and
Persi stent .

Priority

const string Priority = "Priority";

Indicates the relative priority of the event compared to other events in the
channel. Can take on any value between -32,767 and 32,767, with
-32,767 being the lowest priority, 32,767 being the highest, and O being
the default.

LowestPriority
const short LowestPriority = -32767;
Priority property value.

795

CHAPTER C | CosNotification Reference

796

HighestPriority
const short HghestPriority = 32767,
Priority property value.

DefaultPriority

I
e

const short DefaultPriority
Priority property value.

StartTime
const string StartTine = "StartTi me";

Gives an absolute time (e.g., 12/12/99 at 23:59) after which the channel
may deliver the event. The value for this property is of type Ti neBase: U cT.

StopTime

const string StopTime = "StopTi me";

Gives an absolute time (e.g., 12/12/99 at 23:59) at which the channel
should discard the event. The value for this property is of type

Ti neBase: Wk cT.

Timeout
const string Tineout = "Tineout";

Gives a relative time (e.g., 10 minutes from time received) after which the
channel should discard the event. The value O indicates there is no timeout.
The value for this property is of type Ti meBase: Ti neT.

OrderPolicy
const string OrderPolicy = "QOderPolicy";

This QoS property sets the policy used by a given proxy to order the events it
has buffered for delivery (either to another proxy or a consumer). Constant
values to represent the permitted settings are defined.

AnyOrder

const short AnyQrder = 0;
QO der Pol i cy property value indicating any ordering policy is permitted.

FifoOrder
const short FifoOrder = 1,

QO der Pol i cy property value indicating events should be delivered in the
order of their arrival.

Module CosNotification

PriorityOrder

const short PriorityOQrder = 2;

QO der Pol i cy property value indicating events should be buffered in priority
order, such that higher priority events will be delivered before lower priority
events.

DeadlineOrder
const short DeadlineOder = 3;

QO der Pol i cy property value indicating events should be buffered in the
order of shortest expiry deadline first, such that events that are destined to
timeout soonest should be delivered first.

DiscardPolicy
const string D scardPolicy = "D scardPolicy";

Discard policy determines the order in which events are discarded when the
number of queued events exceeds MaxEvent sPer Consurer . The O der Pol i cy
property values are also D scar dPol i cy property values.

LifoOrder
const short LifoOrder = 4

Di scar dPol i cy property value. The last event received will be the first
discarded.

RejectNewEvents

const short RejectNewEvents = 5;

Di scar dPol i cy property value. The proxy consumers of the associated
channel should reject attempts to send new events to the channel when
such an attempt would result in a buffer overflow, raising the system
exception I MPL_LI M T. Note that this is the default setting for discard policy.

MaximumBatchSize
const string Maxi nunBat chSi ze = "Maxi nunBat chSi ze";

This QoS property has meaning in the case of consumers that register to
receive sequences of structured events. For any such consumer, this
property indicates the maximum number of events that will be delivered
within each sequence. The corresponding value is of type | ong.

Pacinginterval
const string Pacinglnterval = "Pacinglnterval";

797

CHAPTER C | CosNotification Reference

798

This QoS property has meaning in the case of consumers that register to
receive sequences of structured events. For any such consumer, this
property defines the maximum period of time the channel will collect
individual events into a sequence before delivering the sequence to the
consumer. The corresponding value is of type Ti neBase: : Ti neT.

StartTimeSupported
const string StartTi meSupported = "Start Ti meSupported”;

Indicates whether or not the setting of Start Ti me on a per-message basis is
supported. The corresponding value is of type bool ean.

StopTimeSupported

const string StopTi meSupported = " St opTi neSupported”;

Indicates whether or not the setting of St opTi me on a per-message basis is
supported. The corresponding value is of type bool ean.

MaxEventsPerConsumer

const string MaxEvent sPer Consuner = "MaxEvent sPer Consuner";

An administrative property can be set on a channel to bound the maximum
number of events a given channel is allowed to queue at any given point in
time. However, a single badly behaved consumer could result in the channel
holding the maximum number of events it is allowed to queue for an
extended period of time, preventing further event communication through
the channel. This QoS property helps to avoid this situation by bounding the
maximum number of events the channel will queue on behalf of a given
consumer. The corresponding value is of type | ong.

MaxQueueLength

const string MaxQueuelLength = " MaxQueuelLengt h";

The maximum number of events that a channel will buffer at any one time.
The corresponding value is of type | ong.

MaxConsumers

const string MaxConsuners = "MaxConsuners";

The maximum number of consumers that can be connected to a channel at
any one time. The corresponding value is of type | ong.

MaxSupplier

const string MaxSuppliers = "MaxSuppliers”;

The maximum number of suppliers that can be connected to a channel at
any one time. The corresponding value is of type | ong.

Structs

Module CosNotification

Property

struct Property
{

PropertyNane nane;
Pr opertyVal ue val ue;

b

A generic name-value property pair.
Members:

nane - The name of the property.

val ue - The value of the property.

EventType
struct Event Type

{
string domai n_nane;
string type_nane;

Structure defining an event type. The type of an event is governed by the
donai n_nane and t ype_nane.

Members:

domai n_nane - |dentifies the vertical industry domain in which the event is
defined.

type_nane - Further classifies the event within the domain.

PropertyRange

struct PropertyRange

LropertyVaI ue | ow val;

PropertyVal ue hi gh_val ;

b

Structure used to indicate a range of acceptable values for an unnamed
property.

NamedPropertyRange

struct NamedPropertyRange
{

PropertyNane nane;
Propert yRange range;
b

799

CHAPTER C | CosNotification Reference

800

Structure used to indicate a range of acceptable values for a named
property.

PropertyError
struct PropertyError

{

QoSError_code code;

Propert yName narre;

Propert yRange avai |l abl e_r ange;

b

Structure to indicate a property error for the name property and, if
applicable, a suitable range of values.

FixedEventHeader

struct Fi xedEvent Header

{
Event Type event _type;

string event_nhane;

b

Structured event fixed header
Members:

event _t ype - Categorizes the event.

event _nane - A name given to this event instance to differentiate it from
other events of the same type.

EventHeader
struct Event Header

{

Fi xedEvent Header fi xed_header;

pt i onal Header Fi el ds vari abl e_header;

b

Structured event header

Members:

fi xed_header - Categorizes and names the event.

vari abl e_header - Optional header information. This may contain any
name-value pair that the user chooses. Standard values are related to per
event QoS settings.

StructuredEvent
struct StructuredEvent

{

Event Header header;

Exceptions

Enums

Module CosNotification

Filterabl eEvent Body filterabl e_data;

any renai nder _of _body;

b

The StructuredEvent Type. Events transmitted in this form are subject to
filtering.

UnsupportedQoS

exception Unsupport edQS

{
PropertyErrorSeq qos_err;

b
This exception is raised when a channel or channel component cannot
satisfy a client's QoS request.

Members:

qos_err - Contains a list of the rejected QoS settings, along with reason for
rejection, and suitable property values, if applicable.

UnsupportedAdmin
exception Unsupport edAdm n

{
PropertyError Seq adm n_err;

b

This exception is raised when a channel or proxy does not support the
requested aministrative property settings.

Members:

adm n_err - Contains a list of the rejected administrative settings, along
with reason for rejection, and suitable property values, if applicable.

QoSError_code
enum Q0SErr or _code

{

UNSUPPCRTED PRCPERTY,
UNAVAI LABLE _PRCPERTY,
UNSUPPCRTED VALUE,
UNAVAI LABLE VALLUE,
BAD PRCPERTY,

BAD TYPE,

BAD VALUE

b
Error codes used to indicate an invalid property assignment.

801

CHAPTER C | CosNotification Reference

802

Members:

UNSUPPCRTED _PRCPERTY - Property not supported by this implementation of
the target object.

UNAVAI LABLE_PRCPERTY - Property cannot be set within the current context
of other property settings.

UNSUPPCRTED VALLE - The property value is not supported by this
implementation of the target object.

UNAVAI LABLE VALLE - The property value is not supported within the current
context of other property settings.

BAD PRCPERTY - Unrecognized property name.
BAD TYPE - Incorrect value type for this property.
BAD VALLE - lllegal value for this property.

Module CosNotification

Interface CosNotification::QoSAdmin

Synopsis

Operations

interface QoSAdm n
Supports the management of QoS property settings.

get_qos

QoSProperties get_qgos();

Retrieves the current list of QoS properties for the target object.
Returns:

A sequence of QoS property hame-value pairs.

set_qos

voi d set_qgos(in QSProperties qos)

rai ses(Unsuppor t edQ@9) ;

Incrementally applies QoS settings to the target object. New elements are
appended to the list of QoS properties already associated with the target
object. If the property already exists for the target object its value is changed
to the new setting.

Parameters:

gos - A list of QoS properties.

validate_qos

voi d val i date_qos(in QoSProperties required_qgos,

out NanedPr opertyRangeSeq avai | abl e_gos)
rai ses(Unsuppor t edQS) ;
Checks to see if a list of QoS properties are supported by the target object
without changing the list of properties already associated with the object. If
any of the properties in requi red_gos are not supported the
Unsuppor t edQoS exception is raised.

Parameters:

requi red_gos - The QoS properties of interest to the caller are passed in this
parameter.

avai | abl e_gos - If the properties in required_qgos are supported, other
optional QoS properties which are also supported are returned in this
parameter.

803

CHAPTER C | CosNotification Reference

Interface CosNotification::AdminPropertiesAdmin

Synopsis interface AdninPropertiesAdnin
Supports the management of administrative properties.

Operations get_admin
Adni nProperties get_admn();
Retrieves the list of administrative properties associated with the target
object.
Returns:

A sequence of admin name-value pairs.

set_admin

voi d set_adm n(in Adm nProperties adm n)
rai ses(Unsuppor t edAdmi n) ;

Sets the administrative properties for the target object. If any of the
properties in adm n are unsupported, the Unsupport edAdni n exception is
raised.

Parameters:

adni n - A sequence of name-value pairs defining the administrative
properties to be set on the target object.

804

APPENDIX D

CosNotifyChannelAd
min Reference

This appendix describes the CosNotifyChannelAdmin module

In this appendix This appendix contains the following section:

Module CosNotifyChannelAdmin page 806

805

CHAPTER D | CosNotifyChannelAdmin Reference

Module CosNotifyChannelAdmin

This module contains the definitions of the primary Notification Service
interfaces. These interfaces allow suppliers and consumers to connect to a
channel.

Aliases ProxylID
typedef |ong Proxyl D
Alias for a proxy ID.

ProxylDSeq
typedef sequence<Proxyl D> Proxyl DSeq;
Alias for a sequence of Proxy IDs.

AdminID
typedef |ong Adm nl D
Alias for an admin ID.

AdminlDSeq
typedef sequence<Adm nl D> Adm nl DSeq;
Alias for a sequence of Admin IDs.

ChannellD
typedef |ong Channel | D,
Alias for a channel ID.

ChannellDSeq
typedef sequence<Channel | > Channel | DSeq;
Alias for a sequence of channel IDs.

Structs AdminLimit
struct Adm nLimt

{
CosNot i fication::PropertyName nane;
CosNot i fication::PropertyVal ue val ue;

h
Contains a property name-value pair representing a limit on the number of
proxies that may connected to an admin object.

806

Exceptions

Module CosNotifyChannelAdmin

ConnectionAlreadyActive
exception Connecti onAl readyActi ve

{
h
Raised on an attempt to resume an already active connection.

ConnectionAlreadylnactive
exception Connecti onAl readyl nacti ve

{
h
Raised on an attempt to suspend an already inactive connection.

NotConnected
exception Not Connect ed

{
b
Raised on an attempt to suspend or a resume a disconnected proxy.

AdminNotFound
exception Adm nNot Found

{
b
Raised when an admin identified by an Adni nl D cannot be found.

ProxyNotFound

exception ProxyNot Found

{
b
Raised when a proxy identified by a Proxyl D cannot be found.

AdminLimitExceeded
exception Adnmi nLi m t Exceeded

{

Adnmi nLi mt admi n_property_err;

b

Raised on an attempt to connect a proxy which would exceed the maximum
number allowed for the target admin object.

ChannelNotFound
exception Channel Not Found

{
}

807

CHAPTER D | CosNotifyChannelAdmin Reference

Indicates that a channel with a given channel ID was not found.

Enums ProxyType

enum ProxyType
{

PUSH_ANY,
PULL_ANY,

PUSH_STRUCTURED,

PULL_STRUCTURED,

PUSH_SEQUENCE,

PULL_SEQUENCE

H

Supplier and consumer proxy types.

Members:

PUSH_ANY - Push delivery model, any events.

PULL_ANY - Pull delivery model, any events.

PUSH_STRUCTURED - Push delivery model, structured events.
PULL_STRUCTURED - Pull delivery model, structured events.
PUSH_SEQUENCE - Push delivery model, sequence of structured events.

PULL_SEQUENCE - Pull delivery model, sequence of structured events.

ObtaininfoMode
enum (bt ai nl nf oMbde

{

ALL_NOW UPDATES_CFF,
ALL_NOW UPDATES ON,
NONE_NOW UPDATES CFF,
NONE_NOW UPDATES ON
h
Configures the mode by which event types are communicated during

subscription sharing.
Members:

ALL_NOW UPDATES CFF - Operation should return all types known by the
target object and disable automatic updates.

ALL_NOW UPDATES ON- Operation should return all types known by the target
object and enable automatic updates.

NCNE_NOW UPDATES_CFF - Operation should disable automatic updates and
return no event types.

808

Module CosNotifyChannelAdmin

NCNE_NOW UPDATES_ON - Operation should enable aautomatic updates and
return no event types.

ClientType
enum d i ent Type

{

ANY_EVENT,
STRUCTURED EVENT,
SEQUENCE_EVENT

b
Notification Service client types, based on supported event type.
Members:

ANY_EVENT - Supports unstructured event delivery.

STRUCTURED EVENT - Supports structured event delivery.

SEQUENCE_EVENT - Supports sequences of structured events.

InterFilterGroupOperator
enum I nt erFi | t er G oupQper at or

{

AND CP,
R CP
h
The InterFilter @ oupQerator determines how filter results from an
admin object and its child proxy object are combined.

Members:

AND _CP - Use logical AND semantics between admin and proxy filter results.

CR_CP - Use logical OR semantics between admin and proxy filter results.

809

CHAPTER D | CosNotifyChannelAdmin Reference

Interface CosNotifyChannelAdmin::ProxyConsumer

Attributes

Operations

810

i nterface ProxyConsuner

inherits from CosNotification:: QSAdm n,
CosNotifyFilter::FilterAdmn

ProxyConsumer interface. Supports operations common to all proxy

consumers.

MyType
readonly attribute ProxyType M/Type;
The type (delivery model and event type) of the proxy.

MyAdmin
readonly attribute SupplierAdm n M/Adn n;
Reference to the parent supplier admin object.

obtain_subscription_types

CosNot i fication::Event TypeSeq obtai n_subscription_types(in
(bt ai nl nf oMbde node) ;

Obtains an aggregate list of all event types on the channel to which there is
a subscription.

Parameters:

mode - Determines how subscribed event types are returned.

Returns:

A sequence of event types representing all events currently subscribed to on
the channel.

validate_event_qos

voi d val i date_event _gos(in CosNotification:: QoSProperties
requi red_qos,
out CosNotification:: NanedPropertyRangeSeq avai |l abl e_qos)
rai ses(CosNoti fication:: Unsupport edQsS);
Checks for a conflict between per event QoS and the QoS settings of the
target proxy. If the target proxy cannot honor any of QoS properties in
requi red_gos an Unsuppor t edQS exception is raised.

Parameters:

Module CosNotifyChannelAdmin

requi red_gos - The QoS properties of interest to the caller are passed in this
parameter.

avai | abl e_qos - If the properties in required_qos are supported, other
optional QoS properties which are also supported are returned in this
parameter.

811

CHAPTER D | CosNotifyChannelAdmin Reference

Interface CosNotifyChannelAdmin::ProxySupplier

interface ProxySupplier

inherits from CosNotification:: QSAdm n,
CosNotifyFilter::FilterAdmn

The ProxySupplier interface supports operations common to all proxy

suppliers.

Attributes MyType
readonly attribute ProxyType M/Type;
The type (delivery model and event type) of the proxy.

MyAdmin
readonly attribute Consurer Adm n M/Adni n;
Reference to the parent consumer admin object.

priority_filter

attribute CosNotifyFilter:: MappingFilter priority_filter;
Reference to an optional priority mapping filter.

lifetime_filter

attribute CosNotifyFilter:: MappingFilter lifetime_filter;
Reference to an optional lifetime mapping filter.

Operations obtain_offered_types

CosNot i fication::Event TypeSeq obtain_offered_types(in
(bt ai nl nf oMbde node) ;

Obtains an aggregate list of all event types currently offered on the channel.
Parameters:

mode - Determines how offered event types are returned.

Returns:

A sequence of event types representing all events currently offered on the
channel.

validate_event_qos

voi d val i date_event _gos(in CosNotification:: QoSProperties
requi red_qos,
out CosNotification:: NanedPropert yRangeSeq avai | abl e_gos)

812

Module CosNotifyChannelAdmin

rai ses(CosNoti fication:: Unsupport edQS);

Checks for a conflict between per event QoS and the QoS settings of the
target proxy. If the target proxy cannot honor any of QoS properties in

requi red_gos an Unsuppor t edQS exception is raised.

Parameters:

requi red_gos - The QoS properties of interest to the caller are passed in this
parameter.

avai | abl e_qos - If the properties in required_qos are supported, other

optional QoS properties which are also supported are returned in this
parameter.

813

CHAPTER D | CosNotifyChannelAdmin Reference

Interface CosNotifyChannelAdmin::ProxyPushConsumer

Operations

814

i nterface ProxyPushConsurer
inherits from GosNoti fyChannel Adm n: : ProxyConsurer,
CosNot i f yComm : PushConsuner
The ProxyPushConsumer interface supports connections by suppliers who
wish to push unstructured (CORBA: : Any) events.

connect_any_push_supplier

voi d connect _any_push_suppl i er (i n CosEvent Comm : PushSuppl i er
push_suppl i er)

rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Connects a supplier to the channel. If a supplier is already connected the

Al r eadyConnect ed exception is raised.

Parameters:

push_suppl i er - A reference to the supplier object. A nil reference is
permitted.

Module CosNotifyChannelAdmin

Interface

CosNotifyChannelAdmin::StructuredProxyPushConsumer

Operations

interface StructuredProxyPushConsuner
inherits from CosNotifyChannel Adni n: : Pr oxyConsurer,
CosNot i f yComm : Struct ur edPushConsuner
The St ruct ur edPr oxyPushConsurer interface supports connections by
suppliers who wish to push structured events on the channel.

connect_structured_push_supplier

voi d connect _structured_push_supplier(in
CosNot i f yComm : Struct uredPushSuppl i er push_suppli er)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Connects a supplier to the channel. If a supplier is already connected the
Al readyConnect ed exception is raised.

Parameters:

push_suppl i er - A reference to the supplier object. A nil reference is
permitted.

815

CHAPTER D | CosNotifyChannelAdmin Reference

Interface

CosNotifyChannelAdmin::SequenceProxyPushConsumer

Operations

816

interface SequenceProxyPushConsumer

inherits from GosNoti fyChannel Adm n: : ProxyConsurer,
CosNot i f yComm : SequencePushConsuner

The SequencePr oxyPushConsuner interface supports connections by
suppliers who wish to supply sequences of structured events to the channel.

connect_sequence_push_supplier

voi d connect _sequence_push_supplier(in
CosNot i f yComm : SequencePushSuppl i er push_suppli er)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Connects a supplier to the channel. If a supplier is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

push_suppl i er - A reference to the supplier object. A nil reference is
permitted.

Module CosNotifyChannelAdmin

Interface CosNotifyChannelAdmin::ProxyPullSupplier

Operations

interface ProxyPullSupplier

inherits from CosNoti fyChannel Adm n: : ProxySuppl i er,
CosNot i f yComm : Pul | Suppl i er

The ProxyPul | Suppl i er interface supports connections by consumers who
wish to pull unstructured events from the channel.

connect_any_pull_consumer

voi d connect _any_pul | _consuner (i n CosEvent Corm : Pul | Consuner
pul | _consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Connects a consumer to the channel. If a consumer is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

pul I _consumer - A reference to the consumer object. A nil reference is
permitted.

817

CHAPTER D | CosNotifyChannelAdmin Reference

Interface

CosNotifyChannelAdmin::StructuredProxyPullSupplier

Operations

818

interface StructuredProxyPullSupplier

inherits from GosNoti fyChannel Adm n: : ProxySuppl i er,
CosNot i fyComm : St ruct uredPul | Suppl i er

The Struct uredProxyPul | Suppl i er interface supports connections by
consumers who wish to pull structured events from the channel.

connect_structured_pull_consumer

voi d connect _structured_pul | _consuner (in
CosNot i f yConm : Struct ur edPul | Consurer pul | _consurer)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Connects a consumer to the channel. If a consumer is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

pul | _consumer - A reference to the consumer object. A nil reference is
permitted.

Module CosNotifyChannelAdmin

Interface

CosNotifyChannelAdmin::SequenceProxyPullSupplier

Operations

interface SequenceProxyPullSupplier

inherits from GCosNoti fyChannel Adm n: : ProxySuppl i er,

CosNot i f yComm : SequencePul | Suppl i er
The SequencePr oxyPul | Suppl i er interface supports connections from
consumers who wish to pull sequences of structured events from the
channel.

connect_sequence_pull_consumer

voi d connect _sequence_pul | _consuner (in
CosNot i f yComm : SequencePul | Consuner pul | _consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Connects a consumer to the channel. If a consumer is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

pul | _consumer - A reference to the consumer object. A nil reference is
permitted.

819

CHAPTER D | CosNotifyChannelAdmin Reference

Interface CosNotifyChannelAdmin::ProxyPullConsumer

interface ProxyPul | Consurrer
inherits from GosNoti fyChannel Adm n: : ProxyConsurer,
CosNot i f yComm : Pul | Consuner
The ProxyPul | Consuner interface manages connections from suppliers who
wish to have unstructured events pull from them by the channel.

Operations connect_any_pull_supplier
voi d connect _any_pul | _suppl i er(in CosEvent Comm : Pul | Suppl i er
pul | _suppl i er)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adm n: : TypeError);
Connects a supplier to the channel. If a supplier is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

pul | _supplier - A reference to the supplier object. A nil reference is not
permitted.

suspend_connection

voi d suspend_connecti on()
rai ses(Connecti onAl readyl nacti ve,

Not Connect ed) ;
This operation causes the target object to stop pulling events from the
connected supplier. If the connection is already suspended the
Connect i onAl r eadyl nact i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

resume_connection

voi d resume_connection()
rai ses(Connect i onAl readyActi ve,

Not Connect ed) ;
This operation causes the target to resume pulling events from the
connected supplier. If the connection is not suspended the
Connect i onAl r eadyAct i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

820

Module CosNotifyChannelAdmin

Interface

CosNotifyChannelAdmin::StructuredProxyPullConsumer

Operations

interface StructuredProxyPul | Consurer
inherits from CosNotifyChannel Adni n: : Pr oxyConsurer,

CosNot i f yComm : Struct ur edPul | Consuner
The Struct ur edPr oxyPul | Consurrer interface manages connections from
suppliers who wish to have structured events pulled from them by the
channel.

connect_structured_pull_supplier

voi d connect_structured_pul | _supplier(in
CosNot i f yComm : Struct uredPul | Supplier pull _supplier)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);
Connects a supplier to the channel. If a supplier is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

pul I _supplier - A reference to the supplier object. A nil reference is not
permitted.

suspend_connection

voi d suspend_connecti on()
rai ses(Connecti onAl readyl nacti ve,

Not Connect ed) ;
This operation causes the target object to stop pulling events from the
connected supplier. If the connection is already suspended the
Connect i onAl r eadyl nact i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

resume_connection

voi d resume_connecti on()
rai ses(Connecti onA readyActi ve,

Not Connect ed) ;
This operation causes the target to resume pulling events from the
connected supplier. If the connection is not suspended the
Connect i onAl r eadyAct i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

821

CHAPTER D | CosNotifyChannelAdmin Reference

Interface

CosNotifyChannelAdmin::SequenceProxyPullConsumer

Operations

822

i nterface SequenceProxyPul | Consurrer
inherits from CosNoti fyChannel Adm n: : ProxyConsurer,

CosNot i f yComm : SequencePul | Consuner
The SequencePr oxyPul | Consuner interface manages connections from
suppliers who wish to have sequences of structured events pulled from them
by the channel.

connect_sequence_pull_supplier

voi d connect _sequence_pul | _supplier(in
CosNot i f yConm : SequencePul | Supplier pul | _supplier)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adnmi n: : TypeError);
Connects a supplier to the channel. If a supplier is already connected the

Al r eadyConnect ed exception is raised.
Parameters:

pul | _suppl i er - A reference to the supplier object. A nil reference is not
permitted.

suspend_connection

voi d suspend_connection()
rai ses(Connecti onAl readyl nacti ve,

Not Connect ed) ;
This operation causes the target object to stop pulling events from the
connected supplier. If the connection is already suspended the
Connect i onAl r eadyl nact i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

resume_connection

voi d resume_connection()
rai ses(Connecti onA readyActi ve,

Not Connect ed) ;
This operation causes the target object to resume pulling events from the
connected supplier. If the connection is not suspended the
Connect i onAl r eadyAct i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

Module CosNotifyChannelAdmin

Interface CosNotifyChannelAdmin::ProxyPushSupplier

Operations

interface ProxyPushSupplier
inherits from GCosNoti fyChannel Adm n: : ProxySuppl i er,

CosNot i f yComm : PushSuppl i er
The ProxyPushSuppl i er interface manages connections from push
consumers who wish to have unstructured events pushed on them by the
channel.

connect_any_push_consumer

voi d connect _any_push_consuner (i n CosEvent Comm : PushConsuner
push_consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Admi n: : TypeError);
Connects a consumer to the channel. If a consumer is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

push_consumer - A reference to the consumer object. A nil reference is not
permitted.

suspend_connection

voi d suspend_connecti on()
rai ses(Connecti onAl readyl nacti ve,

Not Connect ed) ;
This operation causes the target object to stop pushing events to the
connected consumer. If the connection is already suspended the
Connect i onAl r eadyl nact i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

resume_connection

voi d resume_connecti on()
rai ses(Connecti onAl readyActi ve,

Not Connect ed) ;
This operation causes the target object to resume pushing events to the
connected consumer. If the connection is not suspended the
Connect i onAl r eadyAct i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

823

CHAPTER D | CosNotifyChannelAdmin Reference

Interface

CosNotifyChannelAdmin::StructuredProxyPushSupplier

Operations

824

interface StructuredProxyPushSupplier
inherits from GosNoti f yChannel Adm n: : ProxySuppl i er,

CosNot i fyComm : St ruct ur edPushSuppl i er
The Struct ur edPr oxyPushSuppl i er interface manages connections from
consumers who wish to have structured events pushed on them by the
channel.

connect_structured_push_consumer

voi d connect _struct ured_push_consurer (i n
CosNot i f yConm : St ruct ur edPushConsuner push_consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adnmi n: : TypeError);
Connects a consumer to the channel. If a consumer is already connected the
Al r eadyConnect ed exception is raised.

Parameters:

push_consumer - A reference to the consumer object. A nil reference is not
permitted.

suspend_connection

voi d suspend_connection()
rai ses(Connecti onAl readyl nacti ve,

Not Connect ed) ;
This operation causes the target object to stop pushing events to the
connected consumer. If the connection is already suspended the
Connect i onAl r eadyl nact i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

resume_connection

voi d resume_connection()
rai ses(Connecti onA readyActi ve,

Not Connect ed) ;
This operation causes the target object to resume pushing events to the
connected consumer. If the connection is not suspended the
Connect i onAl r eadyAct i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

Module CosNotifyChannelAdmin

Interface

CosNotifyChannelAdmin::SequenceProxyPushSupplier

Operations

i nterface SequenceProxyPushSuppl i er
inherits from CosNoti fyChannel Adm n: : ProxySuppl i er,

CosNot i f yComm : SequencePushSuppl i er
The SequencePr oxyPushSuppl i er interface manages connections from
consumers who wish to have sequences of structured events pushed on
them by the channel.

connect_sequence_push_consumer

voi d connect _sequence_push_consurer (i n
CosNot i f yGomm : SequencePushConsuner push_consurer)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);
Connects a consumer to the channel. If a consumer is already connected the

Al r eadyConnect ed exception is raised.
Parameters:

push_consumer - A reference to the consumer object. A nil reference is not
permitted.

suspend_connection

voi d suspend_connecti on()
rai ses(Connecti onAl readyl nacti ve,

Not Connect ed) ;
This operation causes the target object to stop pushing events to the
connected consumer. If the connection is already suspended the
Connect i onAl r eadyl nact i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

resume_connection

voi d resume_connecti on()
rai ses(Connecti onA readyActi ve,

Not Connect ed) ;
This operation causes the target object to resume pushing events to the
connected consumer. If the connection is not suspended the
Connect i onAl r eadyAct i ve exception is raised. If the target object is not
connected to a supplier the Not Connect ed exception is raised.

825

CHAPTER D | CosNotifyChannelAdmin Reference

Interface CosNotifyChannelAdmin::ConsumerAdmin

Attributes

Operations

826

i nterface Consurer Adnin

inherits from CosNotification:: QSAdm n,
CosNot i fyComm : Not i f ySubscri be, CosNotifyFilter::FilterAdmn,
CosEvent Channel Admi n: : Consurrer Adni n

The Consuner Adni n interface supports the creation of proxy suppliers.

MyID
readonly attribute AdmnlD M/ID;
The ID assigned to the target admin object by the channel.

MyChannel
readonly attribute Event Channel M/Channel ;
A reference to the parent channel.

MyOperator
readonly attribute InterFilterGoupQperator M/Qperator;

The InterFilter@oupQerator to be used when combining filter results
from the target admin object and its child proxies.

priority_filter
attribute CosNotifyFilter:: MappingFilter priority_filter;
Reference to an optional priority mapping filter.

lifetime_filter
attribute CosNotifyFilter:: MappingFilter lifetime_filter;
Reference to an optional lifetime mapping filter.

pull_suppliers
readonly attribute Proxyl DSeq pul | _suppli ers;
A list of pull suppliers managed by the target admin object.

push_suppliers
readonly attribute Proxyl DSeq push_suppli ers;
A list of push suppliers managed by the target admin object.

get_proxy_supplier
ProxySuppl i er get _proxy_supplier(in Proxyl D proxy_id)

Module CosNotifyChannelAdmin

rai ses(ProxyNot Found) ;
Obtains a reference to a proxy supplier with the given proxy ID.
Parameters:

proxy_i d - The ID of the proxy to locate. A consumer admin object assigns
an ID to each proxy it creates.

Returns:
If found, a reference to the proxy supplier is returned. Otherwise a
Pr oxyNot Found exception is raised.

obtain_notification_pull_supplier

ProxySuppl i er obtain_notification_pull_supplier(in dientType
ctype, out Proxyl D proxy_id)
rai ses(Admi nLi ni t Exceeded) ;

Creates a new proxy pull supplier.
Parameters:

ctype - Specifies the client type. The returned proxy can be narrowed to a
type suitable for the given client type.

proxy_i d - Returns the ID assigned to the newly created proxy.
Returns:

A reference to a newly created proxy supplier is returned. This reference
should be narrowed to the appropriate type before use. The

Admi nLi ni t Exceeded exception is raised if creating a new proxy would
exceed the limit for the target admin.

obtain_notification_push_supplier

ProxySuppl i er obtai n_notification_push_supplier(in dientType
ctype, out ProxylD proxy_id)
rai ses(Admi nLi ni t Exceeded) ;

Creates a new proxy push supplier.
Parameters:

ct ype - Specifies the client type. The returned proxy can be narrowed to a
type suitable for the given client type.

proxy_i d - Returns the ID assigned to the newly created proxy.
Returns:

827

CHAPTER D | CosNotifyChannelAdmin Reference

A reference to a newly created proxy supplier is returned. This reference
should be narrowed to the appropriate type before use. The

Adni nLi m t Exceeded exception is raised if creating a new proxy would
exceed the limit for the target admin.

destroy
voi d destroy();
Destroys the target admin object and all proxies it is managing.

828

Module CosNotifyChannelAdmin

Interface CosNotifyChannelAdmin::SupplierAdmin

Attributes

Operations

interface SupplierAdmn

inherits from CosNotification::QSAdm n,
CosNot i f yComm : Noti fyPubl i sh, CosNotifyFilter::FilterAdmn,
CosEvent Channel Admi n: : Suppl i er Admi n

The Suppl i er Adni n interface supports the creation of proxy consumers.

MyID
readonly attribute Adm nl D M/I D
The ID assigned to the target admin object by the channel.

MyChannel
readonly attribute Event Channel M/Channel ;
A reference to the parent channel.

MyOperator
readonly attribute InterFilterQoupQperator M/Qperator;

The InterFilter@oupQerator to be used when combining filter results
from the target admin object a its child proxies.

pull_consumers
readonly attribute Proxyl DSeq pul | _consurrers;
A list of pull consumers managed by the target admin object.

push_consumers
readonly attribute Proxyl DSeq push_consurers;
A list of push consumers managed by the target admin object.

get_proxy_consumer

Pr oxyConsurrer get _proxy_consuner (i n Proxyl D proxy_i d)
rai ses(ProxyNot Found) ;

Obtains a reference to a proxy consumer with the given proxy ID.
Parameters:

proxy_i d - The ID of the proxy to locate. A supplier admin object assigns an
ID to each proxy it creates.

Returns:

829

CHAPTER D | CosNotifyChannelAdmin Reference

830

If found, a reference to the proxy consumer is returned. Otherwise a
Pr oxyNot Found exception is raised.

obtain_notification_pull_consumer

ProxyConsuner obtai n_notification_pull_consuner(in AientType
ctype, out ProxylD proxy_id)
rai ses(Adm nLi m t Exceeded) ;

Creates a new proxy pull consumer.

Parameters:

ctype - Specifies the client type. The returned proxy can be narrowed to a
type suitable for the given client type.

proxy_i d - Returns the ID assigned to the newly created proxy.

Returns:

A reference to a newly created proxy consumer is returned. This reference
should be narrowed to the appropriate type before use. The

Adnmi nLi m t Exceeded exception is raised if creating a new proxy would
exceed the limit for the target admin.

obtain_notification_push_consumer

Pr oxyConsurrer obt ai n_noti fi cati on_push_consurer (in dientType
ctype, out Proxyl D proxy_id)
rai ses(Adm nLi ni t Exceeded) ;

Creates a new proxy push consumer.

Parameters:

ctype - Specifies the client type. The returned proxy can be narrowed to a
type suitable for the given client type.

proxy_i d - Returns the ID assigned to the newly created proxy.

Returns:

A reference to a newly created proxy consumer is returned. This reference
should be narrowed to the appropriate type before use. The

Adni nLi ni t Exceeded exception is raised if creating a new proxy would
exceed the limit for the target admin.

destroy
voi d destroy();
Destroys the target admin object and all proxies it is managing.

Module CosNotifyChannelAdmin

Interface CosNotifyChannelAdmin::EventChannel

Attributes

Operations

i nterface Event Channel
inherits from CosNotification::QSAdm n,
CosNot i fication:: Adm nPropertiesAdnin,
CosEvent Channel Adnmi n: : Event Channel
The Bvent thannel interface has operations which support the
management of supplier and consumer admin objects.

MyFactory
readonly attribute Event Channel Factory M/Factory;
A reference to the event channel factory which created the target object.

default_consumer_admin
readonly attribute Consurer Adm n def aul t _consurer _adm n;

A reference to a default consumer admin which is created automatically
when the channel is created.

default_supplier_admin

readonly attribute SupplierAdm n defaul t_supplier_adnn;

A reference to a default supplier admin which is created automatically when
the channel is created.

default_filter_factory

readonly attribute CosNotifyFilter::FilterFactory
default _filter_factory;

A reference to the default filter factory.

new_for_consumers

Consurner Adm n new for_consuners(in InterFilterQoupQperator op,
out AdniniDid);

Creates a new consumer admin.
Parameters:

op - The InterFilterGroupOperator to apply between filter results from the
target object and subsequently created proxy objects.

i d - The id assigned to the new consumer admin by the event channel.

Returns:

831

CHAPTER D | CosNotifyChannelAdmin Reference

832

A reference to the newly created consumer admin is returned.

new_for_suppliers

Suppl i er Admin new for_suppliers(in InterFilterQoupQperator op,
out AdmnlD id);

Creates a new supplier admin.
Parameters:

op - The InterFilterGroupOperator to apply between filter results from the
target object and subsequently created proxy objects.

i d - The id assigned to the new supplier admin by the event channel.
Returns:

A reference to the newly created supplier admin is returned.

get_consumeradmin

Consuner Admi n get _consureradm n(in Adminl D id)
rai ses(Adm nNot Found) ;

Obtains a reference to a consumer admin from an admin ID.
Parameters:

i d - The ID of the admin for which a reference is required. The ID is
originally assigned by the channel on creation of the admin.

Returns:

A reference to the consumer admin with the given ID. If no matching admin
object is found an Adni nNot Found exception is raised.

get_supplieradmin

Suppl i er Admi n get _supplieradmn(in AdmnlD id)
rai ses(Adm nNot Found) ;

Obtains a reference to a supplier admin from an admin ID.
Parameters:

i d - The ID of the admin for which a reference is required. The ID is
originally assigned by the channel on creation of the admin.

Returns:
A reference to the supplier admin with the given ID. If no matching admin
object is found an Adni nNot Found exception is raised.

get_all_consumeradmins
Adni nl DSeq get _al | _consuner adm ns();

Module CosNotifyChannelAdmin

Obtains the IDs of all consumer admin objects associated with the target
object.

Returns:

A sequence of admin IDs.
get_all_supplieradmins

Adnmi nl BDSeq get _al | _suppl i eradm ns();

Obtains the IDs of all supplier admin objects associated with the target
object.

Returns:
A sequence of admin IDs.

833

CHAPTER D | CosNotifyChannelAdmin Reference

Interface CosNotifyChannelAdmin::EventChannelFactory

Operations

834

i nterface Event Channel Factory

The Event Channel Fact ory interface contains operations which support the
creation and management of Notification Service event channels.

create_channel

Event Channel create_channel (in CosNotification:: QSProperties
initial_gos,
in CosNotification:: Adm nProperties initial_admn,
out Channel I D id)
rai ses(CosNoti fication:: Unsupport edQusS,
CosNot i fi cati on: : Unsupport edAdni n) ;

Creates a new channel.
Parameters:

initial _gos - A sequence of QoS properties to be assigned to the new
channel.

initial _adm n - A sequence of administrative properties to be assigned to
the new channel.

i d - The ID assigned to the channel by the target object is returned in this
parameter.

Returns:

A reference to the newly created channel is returned. If any of the QoS
properties in i ni ti al _QoS are not supported an Unsuppor t edQS exception
is raised. If any of the administrative properties in i ni ti al _adm n are not
supported an Unsuppor t edAdm n exception is raised.

get_all_channels

Channel | DSeq get _al | _channel s();

Obtains a list of all channels known to the factory.

Returns:

A sequence of IDs representing all channels currently managed by the target
object.

get_event_channel

EventChannel get_event_channel(in ChannellD id)

rai ses(Channel Not Found) ;

Module CosNotifyChannelAdmin

Obtains a channel reference from a channel ID.
Parameters:

i d - The id of channel for which a reference is required.
Returns:

A reference to a channel with the corresponding ID. If no channel could be
found with the given ID a Channel Not Found exception is raised.

835

CHAPTER D | CosNotifyChannelAdmin Reference

836

In this appendix

APPENDIX E

CosNotifyComm
Reference

This appendix describes the CosNotifyComm module.

This appendix contains the following section:

Module CosNotifyComm page 838

837

CHAPTER E | CosNotifyComm Reference

Module CosNotifyComm

Exceptions InvalidEventType
exception | nval i dEvent Type

{
CosNot i fication:: Event Type type;

b

Raised to indicate an event type name which contains syntax errors.

838

Module CosNotifyComm

Interface CosNotifyComm::NotifyPublish

Operations

interface NotifyPublish

The Noti f yPubl i sh interface provides a method which suppliers can use to
inform consumers of changes in the set of events offered.

offer_change

voi d of fer_change(in CosNotification:: Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses(I nval i dEvent Type);

Reports changes in the event offering to consumers. If one or more of the
event type names being added or removed is syntactically incorrect the
I nval i dEvent Type exception is raised.

Parameters:
added - A list of new event types being added to those currently offered.
renoved - A list of event types no longer being supplied.

839

CHAPTER E | CosNotifyComm Reference

Interface CosNotifyComm::NotifySubscribe

Operations

840

interface NotifySubscribe

The Noti f ySubscri be interface provides a method which consumers can
use to inform suppliers of the event types of interest.

subscription_change

voi d subscri ption_change(in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses(I nval i dEvent Type);

Reports changes in the event subscription to suppliers. If one or more of the
event type names being added or removed is syntactically incorrect the
I nval i dEvent Type exception is raised.

Parameters:
added - A list of new event types being added to the current subscription.

removed - A list of event types being removed from the subscription.

Module CosNotifyComm

Interface CosNotifyComm::PushConsumer

i nterface PushConsuner
inherits from CosNotifyComm: NotifyPubli sh,
CosEvent Comm : PushConsurrer

The PushConsuner interface is implemented and registered (connected) by
clients who wish to have unstructured events pushed on them by the
channel.

841

CHAPTER E | CosNotifyComm Reference

Interface CosNotifyComm::PullConsumer

interface Pul | Consuner
inherits from CosNotifyComm : NotifyPubli sh,
CosEvent Comm : Pul | Consuner

The Pul | Consuner interface is implemented and registered (connected) by
clients who wish to participate in subscription sharing and be notified when
disconnected by the channel. Clients do not need to implement this
interface to simply pull events.

842

Module CosNotifyComm

Interface CosNotifyComm::PullSupplier

interface Pull Supplier
inherits from CosNotifyComm : NotifySubscri be,
CosEvent Comm : Pul | Suppl i er

The Pul | Suppl i er interface is implemented and registered (connected) by
clients who wish to have unstructured events pulled from them by the
channel.

843

CHAPTER E | CosNotifyComm Reference

Interface CosNotifyComm::PushSupplier

interface PushSupplier
inherits from CosNotifyComm : NotifySubscri be,
CosEvent Conm : PushSuppl i er

The PushSuppl i er interface is implemented and registered (connected) by
clients who wish to participate in subscription sharing and be notified when
disconnected by the channel. Clients do not need to implement this
interface to simply push events.

844

Module CosNotifyComm

Interface CosNotifyComm::StructuredPushConsumer

Operations

interface StructuredPushConsurer
inherits from CosNotifyComm : NotifyPublish

The Struct ur edPushConsuner interface is implemented and registered
(connected) by clients who wish to have structured events pushed on them
by the channel.

push_structured_event

voi d push_structured_event (in CosNotification::StructuredEvent
notification)
rai ses(CosEvent Conm : D sconnect ed) ;

Suppliers invoke this operation to pass structured event data to consumers.
If communication is disconnected the D sconnect ed exception is raised.
Parameters:

notification - The structured event being pushed to the consumer.

disconnect_structured_push_consumer
voi d di sconnect _struct ured_push_consurer () ;

Terminates communication between the target consumer and its supplier.
Also frees resources allocated by the consumer.

845

CHAPTER E | CosNotifyComm Reference

Interface CosNotifyComm::StructuredPullConsumer

Operations

846

interface StructuredPul | Consurer

inherits from GosNotifyComm : NotifyPublish

The Struct uredPul | Consuner interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and
be notified when disconnected by the channel. Clients do not need to
implement this interface to simply pull events.

disconnect_structured_pull_consumer
voi d di sconnect _structured_pul | _consurrer () ;

Terminates communication between the target consumer and its supplier.
Also frees resources allocated by the consumer.

Module CosNotifyComm

Interface CosNotifyComm::StructuredPullSupplier

Operations

interface StructuredPul | Supplier
inherits from CosNotifyComm : NotifySubscribe

The Struct uredPul | Suppl i er interface is implemented and registered
(connected) by clients who wish to have structured events pulled from them
by the channel.

pull_structured_event

CosNot i fication::StructuredEvent pul | _structured_event()
rai ses(CosEvent Conm : D sconnect ed) ;

This method blocks the calling thread until the supplier has data available
or an exception is raised.

Returns:
A structured event.

try_pull_structured_event

CosNotification::StructuredBEvent try pul | _structured_event (out
bool ean has_event)
rai ses(CosEvent Conm : D sconnect ed) ;

This method does not block and can be used to poll a pull supplier for
events.

Parameters:

has_event - Set to TRUE if there is an event available, FALSE otherwise.
Returns:

A structured event if has_event is TRUE, undefined otherwise.
disconnect_structured_pull_supplier

voi d di sconnect _structured_pul | _supplier();

Terminates communication between the target supplier and its consumer.
Also frees resources allocated by the supplier.

847

CHAPTER E | CosNotifyComm Reference

Interface CosNotifyComm::StructuredPushSupplier

Operations

848

interface StructuredPushSupplier

inherits from GosNotifyComm : NotifySubscri be

The Struct ur edPushSuppl i er interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and
be notified when disconnected by the channel. Clients do not need to
implement this interface to simply push events.

disconnect_structured_push_supplier
voi d di sconnect _structured_push_supplier();

Terminates communication between the target supplier and its consumer.
Also frees resources allocated by the supplier.

Module CosNotifyComm

Interface CosNotifyComm::SequencePushConsumer

Operations

i nterface SequencePushConsuner
inherits from CosNotifyComm : NotifyPublish

The SequencePushConsuner interface is implemented and registered
(connected) by clients who wish to have sequences of structured events
pushed on them by the channel.

push_structured_events

voi d push_structured_events(in CosNotification::EventBat ch
notifications)
rai ses(CosEvent Conm : D sconnect ed) ;

Suppliers invoke this operation to pass sequences of structured events to
consumers. If communication is disconnected the D sconnect ed exception
is raised.

Parameters:
notifications - The structured events being pushed to the consumer.
disconnect_sequence_push_consumer

voi d di sconnect _sequence_push_consurer () ;

Terminates communication between the target consumer and its supplier.
Also frees resources allocated by the consumer.

849

CHAPTER E | CosNotifyComm Reference

Interface CosNotifyComm::SequencePullConsumer

Operations

850

i nterface SequencePul | Consuner

inherits from GosNotifyComm : NotifyPublish

The SequencePul | Consuner interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and
be notified when disconnected by the channel. Clients do not need to
implement this interface to simply pull events.

disconnect_sequence_pull_consumer
voi d di sconnect _sequence_pul | _consurer () ;

Terminates communication between the target consumer and its supplier.
Also frees resources allocated by the consumer.

Module CosNotifyComm

Interface CosNotifyComm::SequencePullSupplier

Operations

i nterface SequencePul | Suppl i er

inherits from CosNotifyComm : NotifySubscribe

The SequencePul | Suppl i er interface is implemented and registered
(connected) by clients who wish to have sequences of structured events
pulled from them by the channel.

pull_structured_events

CosNot i fication::EventBatch pul | _structured_events(in |ong
nmax_nunber)
rai ses(CosEvent Conm : D sconnect ed) ;

This method blocks the calling thread until the supplier has data available
or an exception is raised.

Parameters:

max_nunber - Indicates the maximum number of events to return.
Returns:

A sequence of structured events.

try_pull_structured_events

CosNotification::EventBatch try_pul | _structured_events(in |ong
max_nunber, out bool ean has_event)
rai ses(CosEvent Conm : D sconnect ed) ;

This method does not block and can be used to poll a pull supplier for
events.

Parameters:
max_nunber - Indicates the maximum number of events to return.

has_event - Set to TRUE if there is at lease one event is available, FALSE
otherwise.

Returns:

A sequence of structured events if has_event is TRUE, undefined otherwise.
disconnect_sequence_pull_supplier

voi d di sconnect _sequence_pul | _supplier();

Terminates communication between the target supplier and its consumer.
Also frees resources at the supplier.

851

CHAPTER E | CosNotifyComm Reference

Interface CosNotifyComm::SequencePushSupplier

Operations

852

i nterface SequencePushSuppl i er

inherits from GosNotifyComm : NotifySubscri be

The SequencePushSuppl i er interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and
be notified when disconnected by the channel. Clients do not need to
implement this interface to simply push events.

disconnect_sequence_push_supplier
voi d di sconnect _sequence_push_supplier();

Terminates communication between the target supplier and its consumer.
Also frees resources allocated by the supplier.

In this appendix

APPENDIX F

CosNotifyFilter
Reference

This appendix describes the CosNotifyFilter module.

This appendix contains the following section:

Module CosNotifyFilter page 854

853

CHAPTER F | CosNotifyFilter Reference

Module CosNotifyFilter

This module provides interfaces which support all aspects of filter and
mapping filter management.

Aliases ConstraintiD
typedef long ConstraintlD
Alias for a constraint ID.

ConstraintiDSeq
typedef sequence<Constraintl D> Constraint| DSeq;
Alias for a sequence of constraint IDs.

ConstraintExpSeq
typedef sequence<Constrai nt Exp> Const rai nt ExpSeq;
Alias for a sequence of filter constraints.

ConstraintinfoSeq
typedef sequence<Constraint|nfo> Constraint|nfoSeq;
Alias for a sequence of constraint-ID pairs.

MappingConstraintPairSeq
typedef sequence<Mappi ngConst rai nt Pai r> Mappi ngConstrai nt Pai r Seq;
Alias for a sequence of mapping constraint pairs.

MappingConstraintinfoSeq
typedef sequence<Mappi ngConstrai nt | nf o> Mappi ngConst rai nt | nf 0Seq;
Alias for a sequence of constraint-value pairs.

CallbackID
typedef |ong Cal | backl D,
Alias for a callback ID.

CallbackiDSeq
typedef sequence<Cal | backl D> Cal | backl DSeq;
Alias for a sequence of callback IDs.

FilterID
typedef long FilterlD,

854

Structs

Module CosNotifyFilter

Alias for a filter ID.

FilterIDSeq
typedef sequence<Filterl D> FilterlDSeq;
Alias for a sequence of filter IDs.

ConstraintExp

struct Constrai nt Exp

{
CosNoti fication::Event TypeSeq event _types;

string constraint_expr;
b

A single filter constraint.
Members:

event _types - A sequence of event types which are matched against the
event type information in the structured event header.

constrai nt_expr - A constraint expression which conforms to some
constraint grammar.

Constraintinfo
struct Constraintlnfo

{

Const rai nt Exp constrai nt _expressi on;

Constraintl D constraint_id;

}

Used to maintain an association between filter constraints and constraint
IDs.

Members:

const rai nt _expressi on - A reference to the filter constraint.

constraint_i d - The ID assigned to the filter constraint by the target object.

MappingConstraintPair

struct Mappi ngConstrai ntPair
{

Const rai nt Exp constrai nt _expressi on;
any result_to_set;

h

The mapping filter constraint-value pair.
Members:

855

CHAPTER F | CosNotifyFilter Reference

Exceptions

856

constrai nt_expressi on - A filter constraint.

resul t_to_set - The result to return from a match operation which matches
on the corresponding constraint.

MappingConstraintinfo

struct Mappi ngConstraint | nfo
{

Const rai nt Exp constrai nt _expressi on;
Constraintl D constraint_id;
any val ue;

h
Used to maintain an association between mapping filter constraints and
constraint 1Ds.

Members:

constrai nt_expressi on - A filter constraint.

constraint_id - A unique ID assigned to the constraint-value pair by the
target mapping filter object.

val ue - The result to return from a match operation which matches on the
corresponding constraint.

UnsupportedFilterableData

exception UnsupportedFilterabl eData

{

b

Raised during a match operation if the input event contains data that the
match operation is not designed to handle.

InvalidGrammar
exception InvalidGammar

{
h
Raised during filter creation if an invalid constraint grammar is specified.

InvalidConstraint
exception InvalidGConstraint

{

Constrai nt Exp constr;

}

Module CosNotifyFilter

Raised during the addition or modification of constraints if the new
constraint does not conform to the specified grammar for the target filter
object.

DuplicateConstraintID
exception DuplicateConstraintlD

{
ConstraintIDid;

}s
Not used.

ConstraintNotFound
exception Constrai nt Not Found

{
ConstraintIDid;

b
Raised when an operation cannot find a constraint with the given ID.

CallbackNotFound

exception Cal | backNot Found

{

b

Raised when an operation cannot find a callback with the given ID.

InvalidValue
exception |nvalidVal ue

Ejonst rai nt Exp constr;

any val ue;

h

Raised if the datatype of a value in an input constraint-value pair does not
match the val ue_t ype for the target mapping filter object.

FilterNotFound
exception FilterNot Found

{
b
Indicates that a reference for a specified filter was not found.

857

CHAPTER F | CosNotifyFilter Reference

Interface CosNotifyFilter::Filter

Attributes

Operations

858

interface Filter

The Fil ter interface manages groups of filter constraint expressions and
has operations which evaluate events against these constraints.

constraint_grammar
readonly attribute string constraint_grammar;

The constraint grammar specified during creation of the filter. All constraints
for the target filter object must be expressed in this grammar.

add_constraints

Constraint| nfoSeq add_constraints(in Constrai nt ExpSeq
constraint_list)

rai ses(InvalidConstraint);

Add a list of filter constraints to the target filter object. This operation is

incremental in that new constraints are appended to the existing list of

constraints.

Parameters:

constraint_list - The list of constraints to be added to the target filter
object.

Returns:

The target filter object assigns an ID to each constraint. This list of

constraint-ID pairs is returned. If any of the constraints violate the constraint
grammar an I nval i dConst rai nt exception is raised.

modify_constraints

voi d nodi fy_constraints(in ConstraintlDSeq del _Iist,
in ConstraintlnfoSeq nmodify_|ist)
rai ses(InvalidConstraint,
CGonst r ai nt Not Found) ;
Modifies the list of constraints associated with the target filter object. If one
or more of the IDs in either of the two lists are not found the
Const rai nt Not Found exception is raised.

Parameters:

Module CosNotifyFilter

del _list - A list of constraint IDs representing constraints to remove from
the target filter object.

modi fy_list - A list of constraint IDs and constraint expressions.
Constraints which exist in the target filter object are modified to those in the
list with the same constraint ID. If a constraint in this list does not conform
to the constraint grammar for the target filter object, an 1 nval i dConst r ai nt
exception is raised.

get_constraints

ConstraintlnfoSeq get_constraints(in Constraint|lDSeq id_|ist)
rai ses(Constrai nt Not Found) ;

Retrieves a set of constraints from the target filter object.

Parameters:

id_list - A list of constraint IDs representing the constraints to be retrieved.
Returns:

The constraints associated with the target filter object with the given IDs. If
one or more of the IDs are not found the Const rai nt Not Found exception is
raised.

get_all_constraints

ConstraintlnfoSeq get_all _constraints();

Retrieve all constraints associated with the target filter object.
Returns:

All constraints associated with the target filter object.

remove_all_constraints
voi d renove_al | _constraints();
Remove all constraints associated with the target filter object.

destroy
voi d destroy();
Destroys the target filter object.

match

bool ean match(in any filterabl e_data)
rai ses(UnsupportedFi | t erabl eDat a) ;

Compare the filter constraints from the target filter object with the supplied
event.

Parameters:

859

CHAPTER F | CosNotifyFilter Reference

860

filterabl e_data - The event to be evaluated in the form of a
CCRBA: : Any.
Returns:

Returns TRUE if the event satistifes at least one constraint, FALSE otherwise.
If the filterable data of the input event contains data that the match
operation cannot handle, an Wnsuppor t edFi | t er abl eDat a exception is
raised.

match_structured

bool ean match_structured(in GosNotification:: StructuredEvent
filterabl e_data)

rai ses(UnsupportedFi | terabl eDat a) ;

Compare the filter constraints from the target filter object with the supplied

event.

Parameters:

filterabl e_data - The event to be evaluated in the form of a structured
event.

Returns:

Returns TRUE if the event satistifes at least one constraint, FALSE otherwise.
If the filterable data of the input event contains data that the match
operation cannot handle an Unsupport edFi | t er abl eDat a exception is
raised.

match_typed

bool ean match_typed(in CosNotification::PropertySeq
filterabl e_data)
rai ses(UnsupportedFi | terabl eDat a) ;
Not i npl erent ed.
attach_cal | back
Cal | backl D attach_cal | back(i n CosNotifyGomm : Noti fySubscri be
cal | back) ;
Allows objects supporting the Not i f ySubscri be interface (proxy suppliers
and consumer admins) to register with the target filter object. Registered
objects are notified when the set of event types required by the filter
constraints changes.

Parameters:
cal | back - A reference to an object interested in subscription changes.
Returns:

Module CosNotifyFilter

The target filter object assigns and returns a unique ID to each registered
callback.

detach_callback

voi d detach_cal | back(in Cal | backl D cal | back)
rai ses(Cal | backNot Found) ;

Removes a callback previously registered with att ach_cal | back.
Parameters:

cal | back - The ID of the callback to be removed. The Cal | backNot Found
exception is raised of the target object does not contain a reference with the
given ID.

get_callbacks

Cal | backl DSeq get _cal | backs();

Retrieve a list of all callbacks registered with the target filter object.
Returns:

A list of IDs representing all callbacks currently registered.

861

CHAPTER F | CosNotifyFilter Reference

Interface CosNotifyFilter::MappingFilter

interface MappingFilter

The Mappi ngFi | ter interface manages groups of mapping filter
constraint-value pairs and has operations which evaluate events against
these constraints.

Attributes constraint_grammar
readonly attribute string constraint_grammar;
The constraint grammar specified during creation of the filter. All constraints
for a filter object must be expressed in this grammar.
value_type
readonly attribute TypeCode value_type;
Identifies the datatype of the property value which the mapping filter affects.

default_value
readonly attribute any default_value;

This parameter is returned as the result of a match operation for which the
given event satisfied none of the constraints associated with the target
mapping filter object.

Operations add_mapping_constraints

MappingConstraintinfoSeq add_mapping_constraints(in
MappingConstraintPairSeq pair_list)

rai ses(InvalidConstraint,
InvalidValue);

Add a list of mapping filter constraints to the target mapping filter object.
This operation is incremental in that new constraints are appended to the
existing list of constraints.

Parameters:

pai r_list - The list of constraint-value pairs to be added to the target filter
object.

Returns:

862

Module CosNotifyFilter

The target filter object assigns an ID to each constraint-value pair. The input
list is returned along with the ID assigned to each constraint-value pair. If
any of the constraints violate the constraint grammar an I nval i dConst r ai nt
exception is raised. If any of the values in the list of constraint-value pairs
are not of the same type as the val ue_t ype for the target filter object, an

I nval i dval ue exception is raised.

modify_mapping_constraints

voi d nodi fy_mappi ng_constrai nts(in ConstraintlDSeq del _list,
i n Mappi ngConstrai ntl nfoSeq nodi fy_|ist)

rai ses(Inval i dConstraint,

I nval i dVal ue,

Const rai nt Not Found) ;
Modifies the list of constraint-value pairs associated with the target filter
object. If one or more of the IDs in either of the two lists are not found the
Const rai nt Not Found exception is raised.

Parameters:

del _list - A list of constraint IDs representing constraint-value pairs to
remove from the target filter object.

modi fy_list - A list of constraint IDs and constraint-value pairs. Constraints
which exist in the target filter object are modified to those in the list with the
same constraint ID. Both the constraint and value types may be modified. If
a constraint in this list does not conform to the constraint grammar for the
target filter object, an I nval i dConst rai nt exception is raised. Likewise if a
value in this list is not of the same type as the val ue_t ype for the target
filter object, an I nval i dval ue exception is raised.

get_mapping_constraints

Mappi ngConst rai nt | nf oSeq get _mappi ng_constrai nts(in
Constraint| DSeq id_list)
rai ses(Constrai nt Not Found) ;

Retrieves a set of constraint-value pairs from the target filter object.
Parameters:

id_list - A list of constraint IDs representing the constraint-value pairs to
be retrieved.

Returns:

The constraint-value pairs associated with the target filter object with the
given IDs. If one or more of the IDs are not found the Const r ai nt Not Found
exception is raised.

863

CHAPTER F | CosNotifyFilter Reference

864

get_all_mapping_constraints

Mappi ngConst rai nt | nf oSeq get _al | _mappi ng_constrai nts();

Retrieve all constraint-value pairs associated with the target filter object.
Returns:

All constraint-value pairs associated with the target filter object.

remove_all_mapping_constraints
voi d renove_al | _mappi ng_constraints();
Remove all constraint-value pairs associated with the target filter object.

destroy
voi d destroy();
Destroys the target filter object.

match

bool ean match(in any filterabl e_data,
out any result_to_set)
rai ses(UnsupportedFi | t erabl eDat a) ;
Compare the filter constraints from the target filter object with the supplied
event.

Parameters:
filterabl e_dat a - The event to be evaluated in the form of a CORBA : Any.

result_to_set - If the match is successful, that is the return result is TRUE,
this parameter is set to the value paired with the matching constraint.
Otherwise if the match fails, that is the return result is FALSE, this parameter
is set to the def aul t _val ue for the target filter object.

Returns:

Returns TRUE if the event satistifes at least one constraint, FALSE otherwise.
If the filterable data of the input event contains data that the match

operation cannot handle, an Wnsuppor t edFi | t er abl eDat a exception is
raised.

match_structured

bool ean match_structured(in GosNotification:: StructuredEvent
filterable_data, out any result_to_set)
rai ses(UnsupportedFi | terabl eDat a) ;

Compare the filter constraints from the target filter object with the supplied
event.

Parameters:

Module CosNotifyFilter

filterabl e_data - The event to be evaluated in the form of a structured
event.

resul t _to_set - If the match is successful, that is the return result is TRUE,
this parameter is set to the value paired with the matching constraint.
Otherwise if the match fails, that is the return result is FALSE, this parameter
is set to the def aul t _val ue for the target filter object.

Returns:
Returns TRUE if the event satistifes at least one constraint, FALSE otherwise.
If the filterable data of the input event contains data that the match

operation cannot handle, an Unsupport edFi | t er abl eDat a exception is
raised.

match_typed

bool ean match_t yped(in CosNotification:: PropertySeq
filterable data, out any result_to_set)
rai ses(UnsupportedFi | terabl eDat a);

Not Implemented.

865

CHAPTER F | CosNotifyFilter Reference

Interface CosNotifyFilter::FilterFactory

Operations

866

interface FilterFactory

The Fi I ter Fact ory interface includes operations which support the creation
of filter objects and mapping filter objects.

create_filter

Filter create_filter(in string constraint_gramar)
rai ses(Inval i d@ ammar);

Creates a new filter object.
Parameters:

constrai nt_grammar - The constraint grammar to be used for constraint
expressions.

Returns:
A new filter object is returned. If an unknown constraint grammar is
specified an I nval i d@ anmar exception is raised.

create_mapping_filter

Mappi ngFi l ter create_mapping_filter(in string constraint_granmar,
in any default_val ue)
rai ses(Inval i d@ ammar);

Creates a new mapping filter object.
Parameters:

constrai nt_grammar - The constraint grammar to be used for constraint
expressions.

def aul t _val ue - The default value returned by a match operation on the
target mapping filter.

Returns:

A new filter object is returned. If an unknown constraint grammar is
specified an I nval i d@ anmar exception is raised.

Module CosNotifyFilter

Interface CosNotifyFilter::FilterAdmin

Operations

interface FilterAdmn
The Fi | t er Admi n interface supports the management of filter objects.

add_filter

FilterID add_filter(in Filter newfilter);

Adds a filter to the target object.

Parameters:

new filter - The filter object to be added to the target object.
Returns:

The ID assigned to the filter by the target object is returned.

remove_filter

void renmove_filter(in FilterIDfilter)
rai ses(FilterNot Found);

Remove a filter from the target object, the filter itself is not destroyed. If the
specified filter is not found a Fi I t er Not Found exception is raised.

Parameters:
filter - The ID of the filter to remove.

get filter

Filter get_filter(in FilterIDfilter)
rai ses(FilterNot Found);

Retrieves a reference for the filter with the given filter ID from the target
object.

Parameters:

filter - The ID of the filter to locate.

Returns:

A reference to a filter object is returned. If a filter with a given ID could not a
be found a Fi I t er Not Found exception is raised.

get_all_filters

FilterIDSeq get _all _filters();

Retrieve a list of all filters associated with the target object.
Returns:

867

CHAPTER F | CosNotifyFilter Reference

A list of filter IDs is returned.

remove_all_filters
void renove_al |l _filters();
Remove all filters associated with the target object.

868

In this appendix

APPENDIX G

OBNotity
Reference

This appendix describes the OBNotify module.

This appendix contains the following section:

Module OBNotify page 870

869

APPENDIX G | OBNotify Reference

Module OBNotify

Constants

870

This module contains proprietary Orbacus Notify QoS settings.

Pullinterval
const string Pulllnterval = "Pulllnterval";

The amount of time the service pauses between pull requests. The value of
this property is of type Ti meBase: : Ti meT, with a default of 1 second.

RetryTimeout

const string RetryTi meout = "RetryTi meout";

Specifies the initial amount of time as a Ti neBase: : Ti neT that the service
will wait before retrying a failed client communications attempt. The default
value is 1 second.

RetryMultiplier

const string RetryMiultiplier = "RetryMultiplier";

After each consecutive expiration of the retry timeout, the timeout value will
be multiplied by this factor. This value is a double and has a valid range of
1.0 to 2.0 inclusive. The default value is 1.0.

MaxRetries

const string MaxRetries = "MaxRetries";

The maximum number of retries that will be performed before the proxy
ceases making requests to the connected consumer or supplier. The proxy
then disconnects and destroys itself. The default value is O, which means
unlimited retry.

MaxRetryTimeout
const string MaxRetryTi neout = "MaxRetryTi nmeout”;

The upper limit, as a Ti neBase: : Ti neT, for increasing the retry interval.
After this duration has been reached the retry interval will stay constant until
success or until CBNot i fy: : MaxRet ri es has been reached. The default value
is 60 seconds.

RequestTimeout
const string RequestTi meout = "Request Ti neout";

Module OBNotify

The amount of time (Ti neBase: : Ti meT) permitted for a blocking request on
a client to return before a timeout. The default value is 5 seconds.

871

APPENDIX G | OBNotify Reference

872

Notify
Bibliography

(1]

Object Management Group. 2000. Notification Service
Specification.
ftp://ftp.omg.org/pub/docs/formal/00-06-20.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 2001. Event Service
Specification.
ftp://ftp.omg.org/pub/docs/formal/01-03-01.pdf.
Framingham, MA: Object Management Group.

873

CHAPTER H |

874

Index

A

amirouter 334

B

Basic Object Adapter 93
Bindings 197

BOA 93

C

Callbacks 87

Command-line Options 68

Concurrency Models
Threaded 354
Thread-per-Client 356
Thread-per-Request 357
Thread Pool 358

Configuration File 70

Currently Executing Request 122

D
Documenting IDL Files 47

E

Event Channel 246
Event Consumers 247
Event Loop 89

Event Service 237
Event Suppliers 247
Exceptions 399

H

Hello World example application 8
Hostname 131, 369

HTML 47

|

IFR 257

Implementation Repository 157, 159
Implementation Repository Administration 170
IMR 157, 159

IMR Console 181

included IDL files 46

Initial Services 144, 154
Configuring 151
Resolving 149

Interface Repository 257

IP Address 371, 373

irdel 264

irfeed 264

J
javadoc 49

M

message URL http
/fjava.sun.com/products/jdk/1.2/docs/guide/misc/
threadPrimitiveDeprecation.html 667

N

Names Console 211

Name Service
Configuration 193
Initialization 201
Persistence 194

o)
OAD 159
Object Activation Daemon 159
Object Adapter
Configuration 65
Initialization 56
Object Key 133
Object References 126
Objects
Locating 125
Persistent 112
Transient 112
OCl 363
Acceptor 364
Acceptor Factory 364
Bi-directional Plug-in 389
Connector 364
Connector Factory 364

875

INDEX

IIOP Plug-in 375, 380, 389 Properties
Info Objects 365 ooc.config 58
Registries 364 ooc.event.max_events 241
Transport 364 ooc.event.max_retries 241
ooc.router.decay_policy.decay seconds 336 ooc.event.port 241
ooc.router.resume_policy.resume_seconds 336 ooc.event.pull_interval 241
ooc.router.retry_policy 335 ooc.event.retry_multiplier 241
ooc.router.retry policy.backoff factor 335 ooc.event.retry timeout 241
ooc.router.retry_policy.base_interval 335 ooc.event.trace.events 242
ooc.router.retry_policy.interval_ limit 336 ooc.event.trace.lifecycle 242
ooc.router.retry_policy. max_backoffs 335 ooc.event.typed_service 242
Open Communications Interface 363 ooc.ifr.options 261
Options ooc.ifr.port 261
hidl 41 ooc.imr.dbdir 168, 276, 287
irgen 44 ooc.imr.trace.oad 168, 276, 287
jidl 39 ooc.naming.callback_timeout 193
ridl 42 ooc.naming.database 193
ORB 0oc.naming.no_updates 193
Configuration 58 ooc.naming.port 193
Destruction 88 ooc.naming.timeout 193
ORBacus Names 187 ooc.naming.trace_level 193
ooc.oci.client 58
P ooc.oci.plugin 58
POA 93 162 ooc.oci.se.rver 58
POA Mar]1ager 77 ooc.orb.client_timeout 59
Root POA Manager 78 ooc.orb.conc_model 59
Policies 307 ooc.orb.default_init_ref 59
ACMTimeoutPolicy 309 ooc.orb.default_wcs 59
BidirectionalPolicy 309 ooc.orb.extended_wchar 59

ooc.orb.giop.max_message_size 59
ooc.orb.id 60
ooc.orb.module.name 60
ooc.orb.modules 60
ooc.orb.native_cs 60

ConnectionReusePolicy 309
ConnectTimeoutPolicy 309
InterceptorCallPolicy 311
InterceptorPolicy 310
LocationTransparencyPolicy 310

ProtocolPolicy 310 ooc.orb.native_wcs 60
RequestTimeoutPolicy 310 ooc.orb.oa.conc_model 65
RetryPolicy 311 ooc.orb.oa.endpoint 66
TimeoutPolicy 311 ooc.orb.oa.numeric 67
Popup Menu 223 ooc.orb.oa.thread_pool 66
Port 132, 369 ooc.orb.oa.version 66
Portable ébject Adapter 93 ooc.orb.poamanager.manager.conc_model 67
Programming Examples ooc.orb.poamanager.manager.endpoint 67
Event Service 253 ooc.orb.poamanager.manager.version 67

Implementation Repository 176, 288 ooc.orb.policy.connection_reuse 61
Interface Repository 265 ooc.orb.policy.connect_timeout 61
Name Service 200 ooc.orb.pol!cy.lnterceptor 61

oCl 367 ooc.orb.policy.locate_request 61
Policies 312 ooc.orb.policy.location_transparency 61

Property Service 233 ooc.orb.policy.protocol 61

876

INDEX

ooc.orb.policy.rebind 61 X
ooc.orb.policy.request_timeout 61 X11 Reactor 361
ooc.orb.policy.retry 62
ooc.orb.policy.retry.interval 62
ooc.orb.policy.retry.max 62
ooc.orb.policy.retry.remote 62
ooc.orb.policy.sync_scope 62
ooc.orb.policy.timeout 62
ooc.orb.server_name 62
ooc.orb.server_shutdown_timeout 63
ooc.orb.server_timeout 63
ooc.orb.service.name 63
ooc.orb.trace.connections 64
ooc.orb.trace.retry 64
ooc.orb.use_type code_cache 63
ooc.property.port 226
Property Service 225

R

Reactor 360
Recursion 215
RTF 47

S

Servants 94
Activation 107
C++ 104
Deactivation 112
Delegation 98
Inheritance 95
Java 105

T
Toolbar 184, 222

U

URL 137,138
corbaloc 139
corbaname 141
file 142
relfile 143

w
Windows NT Registry 71
Windows Reactor 362

877

INDEX

878

	List of Figures
	Part I—Using Orbacus
	Introduction to Orbacus
	Overview

	Getting Started
	The ‘Hello World’ Example Application
	Defining the Example in IDL
	Implementing the Example in C++
	Implementing the Server
	Writing the Server Program
	Implementing the Client
	Compiling and Linking
	Running the Application

	Implementing the Example in Java
	Implementing the Server
	Implementing the Client
	Compiling
	Running the Application

	Summary
	Where To Go From Here

	Generating Code with Orbacus
	Orbacus Translators
	Translating IDL to C++
	Translating IDL to Java
	Translating IDL to HTML
	Translating IDL to RTF
	Generating C++ from an Interface Repository
	The IDL-to-C++ Translator and the Interface Repository
	Include Statements
	Documenting IDL Files
	Using javadoc

	ORB and Object Adapter Initialization
	Initializing the C++ ORB
	Initializing the Java ORB
	Object Adapter Initialization
	Configuring the ORB and Object Adapter
	ORB Properties
	OA Properties
	Command-line Options
	Using a Configuration File
	Using the Windows NT Registry
	Defining Properties
	Precedence of Properties
	Advanced Property Usage

	Using POA Managers
	The Root POA Manager
	Anonymous POA Managers
	The POA Manager Factory
	Creating a POA Manager
	POA Manager Policies
	Endpoints
	Command-line Options and Endpoints
	Dispatching Requests
	Callbacks

	ORB Destruction
	Server Event Loop

	CORBA Objects
	Overview
	Implementing Servants
	Implementing Servants using Inheritance
	Implementing Servants using Delegation

	Creating Servants
	Creating Servants using C++
	Creating Servants using Java

	Activating Servants
	Implicit Activation of Servants using C++
	Implicit Activation of Servants using Java
	Explicit Activation of Servants using C++
	Explicit Activation of Servants using Java

	Deactivating Servants
	Factory Objects
	Factory Objects using C++
	Factory Objects using Java
	Caveats
	Obtaining the POA for a Servant
	Getting the POA for a Currently Executing Request

	Locating Objects
	Obtaining Object References
	Lifetime of Object References
	Hostname
	Port Number
	Object Key

	Stringified Object References
	Using a File
	Using a URL

	Object Reference URLs
	corbaloc: URLs
	corbaname: URLs
	file: URLs
	relfile: URLs

	The BootManager
	BootManager Interface
	How the BootManager Works
	Using the BootManager

	Initial Services
	Resolving an Initial Service
	Configuring the Initial Services
	The Initial Service Locator

	The IORDump utility

	The Implementation Repository
	Background
	Information Managed by the IMR
	IMR Security
	Usage
	Windows NT Native Service
	Configuration Properties
	Connecting to the Service
	Utilities
	Getting Started with the Implementation Repository
	Programming Example

	The Implementation Repository Console
	Usage
	The Menus

	Orbacus Names
	Usage
	Windows NT Native Service
	Configuration Properties
	Persistence
	Connecting to the Service
	Using the Naming Service with the IMR
	Bindings
	Name Resolution
	Programming Example
	Initialization
	Binding
	Exceptions
	The Event Loop
	Releasing Resources

	Orbacus Names Console
	Usage
	Naming Service Lookup
	The Menus
	The Edit Menu
	The View Menu
	The Tools Menu

	The Toolbar
	The Popup Menu

	Orbacus Properties
	Usage
	Connecting to the Service
	Using the Property Service with the IMR
	Creating Properties
	Querying for Properties
	Deleting Properties
	Programming Example

	Orbacus Events
	Usage
	Windows NT Native Service
	Configuration Properties

	Connecting to the Service
	Using the Event Service with the IMR
	Event Service Concepts
	The Event Channel
	Event Suppliers and Consumers
	Event Channel Policies
	Event Channel Factories

	Programming Example

	The Interface Repository
	Usage
	Windows NT Native Service
	Configuration Properties

	Connecting to the Interface Repository
	Configuration Issues
	Interface Repository Utilities
	Programming Example

	Orbacus Balancer
	Basic Concepts
	Load Balancing Strategies
	Service Security
	Usage
	Windows NT Native Service
	Configuration Properties
	Built-in Load Balancing Strategies

	Connecting to the Service
	Load Balanced IMR-enabled Servers
	Utilities
	Service Administration
	Making References
	Utility Objects
	Utility Object Configuration Properties

	Programming Example
	Non-adaptive Load Balancing
	Adaptive Load Balancing
	Running the Load Balanced Servers

	Orbacus Watson
	Tracing Levels
	Installing Watson in C++
	Installing Watson in Java
	Configuration Properties
	Sample Configuration File

	Using Policies
	Overview
	Supported Policies
	Programming Examples
	Connection Reuse Policy
	Retry Policy
	Timeout Policy
	Interceptor Call Policy
	CommunicationsConcurrencyPolicy
	EndpointConfigurationPolicy
	GIOPVersionPolicy
	Bidirectional Policy

	Asynchronous Method Invocation
	Introduction
	AMI Router
	Router Usage
	Router Administration Properties
	AMI Reply Handler Implementation
	AMI Poller Implementation
	Configuring Clients and Servers

	Concurrency Models
	Concurrency Models
	Single-Threaded Concurrency Model
	Multi-Threaded Concurrency Models
	Threaded Clients and Servers
	Thread-per-Client Server
	Thread-per-Request Server
	Thread Pool Server
	Leader_Follower

	The Reactor
	The X11 Reactor
	The Windows Reactor

	The Open Communications Interface
	Interface Summary
	Class Diagram

	OCI Reference
	A ‘Converter’ Class for Java
	Getting Hostnames and Port Numbers
	Determining a Client’s IP Address
	Determining a Server’s IP Address

	The IIOP OCI Plug-in
	Endpoint Configuration
	Command-line Options
	Static Linking

	The UDP OCI Plug-in
	Client Installation
	Server Installation
	Endpoint Configuration
	Static Linking
	URL Support
	Narrowing UDP Object References

	The Bi-directional OCI Plug-in
	How Does it Work?
	Peers
	Client Installation
	Server Installation
	Endpoint Configuration
	Command-line Options
	Configuration Properties
	Static Linking
	URL Support

	Exceptions and Error Messages
	CORBA System Exceptions
	INITIALIZE Minor Exception Code
	UNKNOWN Minor Exception Code
	BAD_PARAM Minor Exception Code
	NO_MEMORY Minor Exception Code
	IMP_LIMIT Minor Exception Code
	COMM_FAILURE Minor Exception Code
	MARSHAL Minor Exception Code
	NO_IMPLEMENT Minor Exception Code
	NO_RESOURCES Minor Exception Code
	BAD_INV_ORDER Minor Exception Code
	TRANSIENT Minor Exception Code
	INTF_REPOS Minor Exception Code
	OBJECT_NOT_EXIST Minor Exception Code
	INV_POLICY Minor Exception Code

	Non-Compliant Application Asserts

	Boot Manager Reference
	Interface OB::BootManager
	Interface OB::BootLocator

	Orbacus Policy Reference
	Module OB
	Interface OB::ConnectTimeoutPolicy
	Interface OB::ConnectionReusePolicy
	Interface OB::InterceptorPolicy
	Interface OB::LocateRequestPolicy
	Interface OB::LocationTransparencyPolicy
	Interface OB::ProtocolPolicy
	Interface OB::RequestTimeoutPolicy
	Interface OB::RetryPolicy
	Interface OB::TimeoutPolicy

	Module OBPortableServer
	Interface OBPortableServer::InterceptorCallPolicy

	BiDirPolicy

	Reactor Reference
	Module OB
	Interface OB::Reactor

	Logger Reference
	Interface OB::Logger
	Interface OB::WLogger

	Open Communications Interface Reference
	Module OCI
	Interface OCI::Buffer
	Interface OCI::Plugin
	Interface OCI::Transport
	Interface OCI::TransportInfo
	Interface OCI::CloseCB
	Interface OCI::Connector
	Interface OCI::ConnectorInfo
	Interface OCI::ConnectCB
	Interface OCI::ConFactory
	Interface OCI::ConFactoryInfo
	Interface OCI::ConFactoryRegistry
	Interface OCI::Acceptor
	Interface OCI::AcceptorInfo
	Interface OCI::AcceptCB
	Interface OCI::AccFactory
	Interface OCI::AccFactoryInfo
	Interface OCI::AccFactoryRegistry
	Interface OCI::Current

	Module OCI::IIOP
	Interface OCI::IIOP::TransportInfo
	Interface OCI::IIOP::ConnectorInfo
	Interface OCI::IIOP::ConFactoryInfo
	Interface OCI::IIOP::AcceptorInfo
	Interface OCI::IIOP::AccFactoryInfo

	Orbacus Balancer Reference
	Module LoadBalancing
	Interface LoadBalancing::LoadAlert
	Interface LoadBalancing::Strategy
	Interface LoadBalancing::StrategyProxy
	Interface LoadBalancing::Group
	Interface LoadBalancing::GroupFactory

	Module LoadBalancing::Util
	Interface LoadBalancing::Util::LoadAlert
	Interface LoadBalancing::Util::LoadCalculator
	Interface LoadBalancing::Util::LoadUpdater

	Orbacus Bibliography

	Part II—FreeSSL
	Using FreeSSL for Orbacus
	What is SSL?
	Installation
	Endpoint Configuration
	Command-Line Options
	Static Linking
	URL Support
	Contexts

	Extending the ‘Hello World’ Application
	Server Side Usage
	Client Side Usage
	Determining Peer Identity
	Preventing Connections to Secure/Insecure Servers

	Complete Example
	Client Side
	Server Side

	FSSL Definitions
	Toolkits Supported by FSSL
	FSSL Reference
	Module CORBA
	Module FSSL
	Module IOP
	Module OB

	FSSL Bibliography

	Part III—JThreads
	Introduction to JThreads/C++
	Overview

	‘Hello World’
	‘Hello World’ in Java
	‘Hello World’ in C++
	‘Hello World’ with Runnable

	Working With Threads
	Synchronization
	Thread Safe Version in Java
	Thread Safe Version in C++

	Block Synchronization
	Static Monitors
	The Wait, Notify and NotifyAll Methods
	The Stop and Suspend Methods
	The Join and IsAlive Methods

	Memory Management
	Reference Counting
	Introducing ‘Handles’
	The JTCHandleT Template
	Rules of Thumb

	Class Reference
	JTCInitialize
	JTCAdoptCurrentThread
	JTCThread
	JTCRunnable
	JTCThreadGroup
	JTCHandleT
	JTCMonitor
	JTCMonitorT
	JTCRecursiveMutex
	JTCMutex
	JTCRWMutex
	JTCSynchronized
	JTCSyncT
	JTCReadLock
	JTCWriteLock
	JTCThreadId
	JTCThreadKey
	JTCTSS
	JTCThreadDeath
	JTCException
	JTCInterruptedException
	JTCIllegalThreadStateException
	JTCIllegalMonitorStateException
	JTCIllegalArgumentException
	JTCSystemCallException
	JTCUnknownThreadException
	JTCOutOfMemoryError
	JTCInitializeError

	JThreads Bibliography

	Part IV—Orbacus Notification
	Introduction
	Overview

	Configuration and Startup
	Orbacus Notify
	Orbacus Notify Console
	Startup Example

	Notification Service Concepts
	Overview
	The OMG Event Service
	Delivery Models
	Object Management Hierarchy
	Event Delivery

	The OMG Notification Service
	Delivery Models
	Object Management Hierarchy
	Event Delivery
	Event Translation
	Filtering
	Mapping Filters
	Quality of Service
	Proprietary QoS Properties
	Administrative Properties
	Subscription Sharing

	Programming Example
	Introduction
	Connecting to a Notification Channel
	Connecting a Consumer
	Connecting to a Proxy

	Supplying Events
	Consuming Events
	Filtering
	Disconnecting from a Notification Channel
	Building Orbacus Notify Clients

	Orbacus Notify Console
	Overview
	The Orbacus Notify Console Menus
	Creation Wizards
	Managing Notification Channels
	Managing Admins
	Managing Proxies
	Managing Filters
	Managing Filter Constraints
	Managing Mapping Filters
	Managing Mapping Filter Constraint-Value Pairs

	CosEventChannelA dmin Reference
	Module CosEventChannelAdmin
	Interface CosEventChannelAdmin::ProxyPushConsumer
	Interface CosEventChannelAdmin::ProxyPullSupplier
	Interface CosEventChannelAdmin::ProxyPullConsumer
	Interface CosEventChannelAdmin::ProxyPushSupplier
	Interface CosEventChannelAdmin::ConsumerAdmin
	Interface CosEventChannelAdmin::SupplierAdmin
	Interface CosEventChannelAdmin::EventChannel

	CosEventComm Reference
	Module CosEventComm
	Interface CosEventComm::PushConsumer
	Interface CosEventComm::PushSupplier
	Interface CosEventComm::PullSupplier
	Interface CosEventComm::PullConsumer

	CosNotification Reference
	Module CosNotification
	Interface CosNotification::QoSAdmin
	Interface CosNotification::AdminPropertiesAdmin

	CosNotifyChannelAd min Reference
	Module CosNotifyChannelAdmin
	Interface CosNotifyChannelAdmin::ProxyConsumer
	Interface CosNotifyChannelAdmin::ProxySupplier
	Interface CosNotifyChannelAdmin::ProxyPushConsumer
	Interface CosNotifyChannelAdmin::StructuredProxyPushConsumer
	Interface CosNotifyChannelAdmin::SequenceProxyPushConsumer
	Interface CosNotifyChannelAdmin::ProxyPullSupplier
	Interface CosNotifyChannelAdmin::StructuredProxyPullSupplier
	Interface CosNotifyChannelAdmin::SequenceProxyPullSupplier
	Interface CosNotifyChannelAdmin::ProxyPullConsumer
	Interface CosNotifyChannelAdmin::StructuredProxyPullConsumer
	Interface CosNotifyChannelAdmin::SequenceProxyPullConsumer
	Interface CosNotifyChannelAdmin::ProxyPushSupplier
	Interface CosNotifyChannelAdmin::StructuredProxyPushSupplier
	Interface CosNotifyChannelAdmin::SequenceProxyPushSupplier
	Interface CosNotifyChannelAdmin::ConsumerAdmin
	Interface CosNotifyChannelAdmin::SupplierAdmin
	Interface CosNotifyChannelAdmin::EventChannel
	Interface CosNotifyChannelAdmin::EventChannelFactory

	CosNotifyComm Reference
	Module CosNotifyComm
	Interface CosNotifyComm::NotifyPublish
	Interface CosNotifyComm::NotifySubscribe
	Interface CosNotifyComm::PushConsumer
	Interface CosNotifyComm::PullConsumer
	Interface CosNotifyComm::PullSupplier
	Interface CosNotifyComm::PushSupplier
	Interface CosNotifyComm::StructuredPushConsumer
	Interface CosNotifyComm::StructuredPullConsumer
	Interface CosNotifyComm::StructuredPullSupplier
	Interface CosNotifyComm::StructuredPushSupplier
	Interface CosNotifyComm::SequencePushConsumer
	Interface CosNotifyComm::SequencePullConsumer
	Interface CosNotifyComm::SequencePullSupplier
	Interface CosNotifyComm::SequencePushSupplier

	CosNotifyFilter Reference
	Module CosNotifyFilter
	Interface CosNotifyFilter::Filter
	Interface CosNotifyFilter::MappingFilter
	Interface CosNotifyFilter::FilterFactory
	Interface CosNotifyFilter::FilterAdmin

	OBNotify Reference
	Module OBNotify

	Notify Bibliography
	Index

