
OrbacusTM

Making Software Work TogetherTM

JThreads/C++
Version 2.0, January 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.
COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: February 1, 2007

Contents

Preface 5

The Orbacus Library 5
Audience 6
Getting the Latest Version 6
Searching the Orbacus Library 6
Additional Resources 6
Document Conventions 7

Chapter 1 Introduction to JThreads/C++ 9
Overview 10

Chapter 2 Hello World 13
Hello World in Java 14
Hello World in C++ 15
Hello World with Runnable 17

Chapter 3 Working With Threads 19
Synchronization 20

Thread Safe Version in Java 22
Thread Safe Version in C++ 24

Block Synchronization 26
Static Monitors 29
The Wait, Notify and NotifyAll Methods 32
The Stop and Suspend Methods 36
The Join and IsAlive Methods 40

Chapter 4 Memory Management 43
Reference Counting 44
Introducing Handles 45
The JTCHandleT Template 47
Rules of Thumb 48
3

CONTENTS
Appendix A Class Reference 49
JTCInitialize 51
JTCAdoptCurrentThread 53
JTCThread 54
JTCRunnable 62
JTCThreadGroup 63
JTCHandleT 68
JTCMonitor 71
JTCMonitorT 73
JTCRecursiveMutex 75
JTCMutex 77
JTCRWMutex 79
JTCSynchronized 80
JTCSyncT 82
JTCReadLock 83
JTCWriteLock 84
JTCThreadId 85
JTCThreadKey 86
JTCTSS 87
JTCThreadDeath 89
JTCException 90
JTCInterruptedException 92
JTCIllegalThreadStateException 93
JTCIllegalMonitorStateException 94
JTCIllegalArgumentException 95
JTCSystemCallException 96
JTCUnknownThreadException 97
JTCOutOfMemoryError 98
JTCInitializeError 99

JThreads Bibliography 101
4

Preface
The Orbacus Library
The Orbacus documentation library consists of the following books:

� Using Orbacus

� Using FreeSSL for Orbacus

� JThreads/C++ (this book)

� Orbacus Notify

� .NET Connector Programmer�s Guide

Using Orbacus

This manual describes how Orbacus implements the CORBA standard, and
describes how to develop and maintain code that uses the Orbacus ORB.
This is the primary developer�s guide and reference for Orbacus.

Using FreeSSL for Orbacus

This manual describes the FreeSSL plug-in, which enables secure
communications using the Orbacus ORB in both Java and C++.

JThreads/C++

This manual describes JThreads/C++, which is a high-level thread
abstraction library that gives C++ programmers the look and feel of Java
threads.

Orbacus Notify

This manual describes Orbacus Notify, an implementation of the Object
Management Group�s Notification Service specification.
5

PREFACE
.NET Connector Programmer�s Guide

This manual describes the Orbacus .NET Connector, which enables
transparent communication between clients running in a Microsoft .NET
environment and servers running in a CORBA environment.

Audience
Manuals in the Orbacus library are written for intermediate to advanced
level programmers who are:

� Experienced with Java or C++ programming

� Familiar with the CORBA standard and its specifications

These manuals do not teach the CORBA specification or CORBA
programming in general, which are prerequisite skills. These manuals
concentrate on how Orbacus implements the CORBA standard.

Getting the Latest Version
The latest updates to the Orbacus documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Orbacus Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right.

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Additional Resources
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles written by IONA experts about Orbacus
and other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.
 6

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml

PREFACE
If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
7

http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 8

CHAPTER 1

Introduction to
JThreads/C++
This chapter gives an overview of JThreads.

In this chapter This chapter contains the following section:

Overview page 10
9

CHAPTER 1 | Introduction to JThreads/C++
Overview

What is JThreads/C++? JThreads/C++ is the short-form of �Java-like Threads for C++�.
JThreads/C++ is a high-level thread abstraction library that gives C++
programmers the look and feel of Java threads.

Java supports multi-threaded programming using the classes
java.lang.Thread and java.lang.ThreadGroup, the interface
java.lang.Runnable, and the synchronized keyword together with the
methods wait, notify and notifyAll in java.lang.Object.

Let�s have a look how JThreads/C++ translates this to C++:

� The Java classes java.lang.Thread and java.lang.ThreadGroup are
directly translated into the C++ classes JTCThread and
JTCThreadGroup. The only difference is that the JThreads/C++ classes
have JTC as a prefix instead of the Java package java.lang. The Java
interface java.lang.Runnable is implemented as the abstract C++
class JTCRunnable, which contains the pure virtual method run.

� Support for the synchronized keyword is slightly more difficult, since it
is not possible to add new keywords to C++. JThreads/C++ solves
this using the classes JTCMonitor and JTCSynchronized. Instances of
JTCSynchronized can be used as a replacement for the synchronized
keyword, provided that an instance of JTCMonitor was created for the
object to be synchronized. JTCMonitor also provides the methods
wait, notify and notifyAll.

There are some features of Java�s thread model that are not implemented in
JThreads/C++. These are:

� The security API. This is because some parts of the API simply can�t be
implemented in C++. In general, this issue is not as important as in
Java, since C++ is not used for Internet applications (applets) in the
same way as Java.

� The thread control primitives java.lang.Thread.stop,
java.lang.Thread.suspend, and java.lang.Thread.resume cannot be
implemented with the same semantics as the Java thread model in a
portable fashion. The WIN32 thread API supports primitives for these
operations, but the POSIX thread API does not. In general, it is not a
10

Overview
good idea to use these API primitives as they exist in the Java thread
model, for they can easily lead to deadlock situations.1 These
primitives are deprecated in JDK 1.2 [4], and therefore won�t be
supported in upcoming versions of Java.

About this Document This manual is not a substitute for a good thread programming book. This
manual only describes how Java thread constructs translate to
JThreads/C++.

There are excellent books available on Java thread programming, such as
[2] and [3]. We highly recommend use of these books while learning
JThreads/C++ programming. With the help of this manual it is easy to
translate the examples provided there to JThreads/C++ programs.

1. In fact, the WIN32 programmers guide recommends against using
TerminateThread (the API call to stop a thread�s execution) since it can easily
lead to application misbehavior.
11

CHAPTER 1 | Introduction to JThreads/C++
12

CHAPTER 2

Hello World
We begin with the first program most programmers start with:
a program that displays the text Hello World and then exits.
However, our example is different from the typical Hello World
program in that it is multi-threaded. That is, our version starts
a new thread whose sole purpose is to print Hello World on
the display.

In this chapter This chapter contains the following sections:

Hello World in Java page 14

 Hello World in C++ page 15

 Hello World with Runnable page 17
13

CHAPTER 2 | Hello World
Hello World in Java
In Java, this program can be written as:

Line 1 A class HelloWorld is defined, extending the class
java.lang.Thread.

Lines 3-6 A run method is defined, displaying �Hello World� on standard
output.

Lines 8-12 A static main method is defined which creates an object of type
HelloWorld. The start method is called which starts a new thread of
execution. This thread then invokes the run method of the HelloWorld
object.

 1 public class HelloWorld extends Thread
 2 {
 3 public void run()
 4 {
 5 System.out.println("Hello World");
 6 }
 7
 8 static public void main(String args[])
 9 {
10 Thread t = new HelloWorld();
11 t.start();
12 }
13 }
14

Hello World in C++
Hello World in C++
Let�s convert the Java program to a JThreads/C++ program:

Line 1 All JThreads/C++ programs must include the header file
JTC/JTC.h, which contains (among other useful things) all of the necessary
JThreads/C++ class definitions.

Line 3 Just like in the Java example, a class HelloWorld is defined. This
class is derived from JTCThread instead of the Java equivalent
java.lang.Thread.

Lines 6-9 A run method is defined which prints �Hello World� on standard
output. System.out is replaced by the familiar C++ iostreams object cout.

 1 #include <JTC/JTC.h>
 2
 3 class HelloWorld : public JTCThread
 4 {
 5 public:
 6 virtual void run()
 7 {
 8 cout << "Hello World" << endl;
 9 }
10 };
11
12 int
13 main(int argc, char** argv)
14 {
15 JTCInitialize initialize;
16 JTCThread* t = new HelloWorld;
17 t -> start();
18 return 0;
19 }
15

CHAPTER 2 | Hello World
Lines 12-19 A main method is defined, not as a static class member as in
the Java example, but as the standard C++ global main function. main
creates an object of type HelloWorld and calls the start method which
starts a new thread of execution.

The only other change is that the JThreads/C++ thread library must be
initialized in main. This is done by creating an instance of the class
JTCInitialize.

At first sight this application seems to indicate a problem. Can the
application terminate due to return from main before the thread gets a
chance to run? The answer is No, because the destructor for JTCInitialize
doesn�t return until all of the threads have terminated. The JTCInitialize
destructor allows JThreads/C++ applications to have the same behavior as
multi-threaded Java applications.

Note: You might think that the Hello World program has a memory leak
because the thread object is created with new but never deleted with
delete, but this is not the case. See �Reference Counting� on page 44 for
more information.
16

Hello World with Runnable
Hello World with Runnable
Java provides the Runnable interface, so that an application developer may
use threads without using inheritance. The JThreads/C++ equivalent of the
Runnable interface is the class JTCRunnable.

The Hello World example using Runnable in Java looks like this:

Line 1 A class HelloWorld is declared that implements the interface
Runnable.

Line 10 A new thread is created with a Runnable object as the parameter,
which in this case is an instance of the HelloWorld class.

Line 11 The thread is started. Since the Thread object was created with a
Runnable object parameter, the run method of this Runnable is invoked.

 1 public class HelloWorld implements Runnable
 2 {
 3 public void run()
 4 {
 5 System.out.println("Hello World");
 6 }
 7
 8 static public void main(String[] args)
 9 {
10 Thread t = new Thread(new HelloWorld());
11 t.start();
12 }
13 }
17

CHAPTER 2 | Hello World
The Java version can be translated directly into a JThreads/C++ application
as follows:

Line 3 As in the Java example, the class HelloWorld inherits from the
JThreads/C++ class JTCRunnable.

Line 16 Create a new thread, using a new instance of the HelloWorld
class as the required JTCRunnable parameter.

Line 17]Start the new thread, which invokes the run method.

 1 #include <JTC/JTC.h>
 2
 3 class HelloWorld : public JTCRunnable
 4 {
 5 public:
 6 virtual void run()
 7 {
 8 cout << "Hello World" << endl;
 9 }
10 };
11
12 int
13 main(int argc, char** argv)
14 {
15 JTCInitialize initialize;
16 JTCThread* t = new JTCThread(new HelloWorld);
17 t -> start();
18 return 0;
19 }
18

CHAPTER 3

Working With
Threads
This chapter describes how JThreads/C++ implements Java
Monitors used in multithreading.

In this chapter This chapter contains the following sections:

Synchronization page 20

Block Synchronization page 26

Static Monitors page 29

The Wait, Notify and NotifyAll Methods page 32

The Stop and Suspend Methods page 36

The Join and IsAlive Methods page 40
19

CHAPTER 3 | Working With Threads
Synchronization

Example Let�s write a plain C++ class, which can be used for the buffering of
characters. This class defines the methods addChar and writeBuffer.
addChar adds a character to an internal character buffer and writeBuffer
prints the buffer contents on standard output:

 1 class CharacterBuffer
 2 {
 3 char* data_;
 4 int max_;
 5 int len_;
 6
 7 public:
 8
 9 CharacterBuffer()
10 : data_(0), len_(0), max_(0)
11 {
12 }
13
14 ~CharacterBuffer()
15 {
16 delete[] data_;
17 }
18
19 void addChar(char c)
20 {
21 if(len_ == max_)
22 {
23 char* newData = new char[len_ + 128];
24 memcpy(newData, data_, len_);
25 delete[] data_;
26 data_ = newData;
27 max_ += 128;
28 }
29 data_[len_++] = c;
30 }
31 void writeBuffer()
32 {
33 cout.write(data_, len_) << flush;
34 len_ = 0;
35 }
36 };
20

Synchronization
Lines 3-5 Several data members are defined:

� data_ is a character pointer to the buffered characters.

� max_ is the maximum length of the buffer pointed to by data_.

� len_ is the current length of the buffer (the number of valid characters
in the buffer pointed to by data_). len_ must be less than or equal to
max_.

Line 10 The constructor initializes the class data members data_, max_
and len_.

Line 14 The destructor deletes data_, freeing the buffer memory.

Lines 21-28 If the buffer is full (that is, if len_ is equal to max_), allocate
more memory. This is done by allocating a new, larger character buffer,
copying the existing buffer contents into the new buffer, deleting the old
buffer and assigning the pointer to the new buffer to data_. Finally max_
must be updated to reflect the new buffer size.

Line 29 A character is added to the buffer and len_ is incremented by
one.

Lines 32-36 The writeBuffer method prints len_ characters from the
buffer on standard output and then resets len_ to zero.

Mulit-threading environment The above class works fine as long as there is only a single thread of
execution, but it will not work properly in a multi-threaded environment.

For example, if two threads execute addChar simultaneously, things can
easily go wrong. Let's assume that the first thread runs until after the
delete[] data_ statement has been executed. At this point the operating
system switches from the execution of the first thread to the second. Since
max_ has not yet been incremented by the first thread, the second thread
also enters the conditional and accesses the data_ variable, which now
points to memory already deleted by the first thread. This will most likely
crash the program.

Monitors To solve the above problem, Java uses a concept known as monitors. This is
described in the following sections.
21

CHAPTER 3 | Working With Threads
Thread Safe Version in Java

Thread-safe Java example A thread-safe Java version of the code in the previous section can be written
as follows:

Lines 3-4 Two data members are defined:

� data_ is a character array, which holds the buffered characters.

� len_ is the current length of the buffer (the number of valid characters
in the buffer pointed to by data_).

In contrast to the C++ version of this program, it�s not necessary to have a
max_ data member, since data_.length can be used instead.

Lines 6-14 If no buffer has been created yet or if the buffer is full (that is,
if len_ is equal to data_.length) a new, larger buffer is allocated. This is
similar to the C++ version.

 1 public class CharacterBuffer
 2 {
 3 private char[] data_ = null;
 4 private int len_ = 0;
 5
 6 synchronized public void addChar(char c)
 7 {
 8 if(data_ == null || len_ == data_.length)
 9 {
10 byte[] newData = new byte[len_+128];
11 if (data_ != null)
12 System.arraycopy(data_, 0, newData, 0, len_);
13 data_ = newData;
14 }
15 data_[len_++] = c;
16 }
17
18 synchronized public void writeBuffer()
19 {
20 System.out.write(data_, 0, len_);
21 System.out.flush();
22 len_ = 0;
23 }
22

Synchronization
Line 15 A character is added to the buffer and len_ is incremented by
one.

Lines 18-22 Like in the C++ example, the writeBuffer method prints
len_ characters from the buffer on standard output and then resets len_ to
zero.

What is different? The only conceptual change to make the program thread-safe was to add
the synchronized keyword to the definitions of addChar and writeBuffer.
In Java every object implicitly has an associated monitor. On entry to a
synchronized method, the monitor belonging to the object is locked,
preventing other threads from entering any other synchronized method of
the object. On exit, the monitor is unlocked, thus allowing access by other
threads. This makes sure that the scenario described above won�t ever arise,
since it is impossible for two threads to enter the addChar method
simultaneously.
23

CHAPTER 3 | Working With Threads
Thread Safe Version in C++

Thread-safe C++ example JThreads/C++ supports monitors with two classes: JTCMonitor and
JTCSynchronized. The JTCSynchronized class uses the initialization is
acquisition concept to acquire the monitor�s lock. The associated monitor�s
lock is acquired on construction and released on destruction.

Here is the thread-safe C++ version of the example:

 1 class CharacterBuffer : public JTCMonitor
 2 {
 3 char* data_;
 4 int len_;
 5 int max_;
 6
 7 public:
 8
 9 CharacterBuffer()
10 : data_(0), len_(0), max_(0)
11 {
12 }
13
14 ~CharacterBuffer()
15 {
16 delete[] data_;
17 }
18
19 void addChar(char c)
20 {
21 JTCSynchronized synchronized(*this);
22 if (len_ >= max_)
23 {
24 char* newData = new char[len_+128];
25 memcpy(newData, data_, len_);
26 delete[] data_;
27 data_ = newData;
28 max_ += 128;
29 }
30 data_[len_++] = c;
31 }
32
24

Synchronization
Line 1 The class CharacterBuffer is now derived from JTCMonitor. In
Java this is not necessary, since all Java objects inherit implicitly from
java.lang.Object, which provides the monitor functionality.

Lines 21, 35 The addChar and writeBuffer methods are now thread safe.
Instead of declaring the operations as synchronized (as is done in Java),
the functions first create an instance of JTCSynchronized with the
CharacterBuffer�s monitor object as argument.

So all that has to be done to translate a thread-safe (that is, synchronized)
Java class to a thread-safe JThreads/C++ class is to:

� Derive the class from JTCMonitor.

� Replace synchronized methods by methods which contain
JTCSynchronized synchronized(*this) as the first statement in the
function body.

That�s quite easy, isn�t it?

33 void writeBuffer()
34 {
35 JTCSynchronized synchronized(*this);
36 cout.write(data_, len_) << flush;
37 len_ = 0;
38 }
39 };
25

CHAPTER 3 | Working With Threads
Block Synchronization

Code blocks Java not only supports synchronized methods, but also synchronized code
blocks.

For example, let�s assume that we want to write a thread class whose run
method puts a string into a CharacterBuffer object using addChar. In Java,
this could be written as follows.

Line 1 A Writer class is defined, which inherits from Thread.

Lines 6-10 The constructor initializes the buffer_ and str_ data
members.

Lines 12-16 The thread�s run method puts the string str_ into the buffer,
character by character, using the buffer�s addChar method.

 1 class Writer extends Thread
 2 {
 3 private CharacterBuffer buffer_;
 4 private String str_;
 5
 6 public Writer(CharacterBuffer buffer, String str)
 7 {
 8 buffer_ = buffer;
 9 str_ = str;
10 }
11
12 public void run()
13 {
14 for(int i = 0 ; i < str.length() ; i++)
15 buffer_.addChar(str_.characterAt(i));
16 }
17 };
26

Block Synchronization
This class does not work as we want it to, however. Suppose we start two
new threads, one to add �123� to the buffer and another one to add �abc�:

Line 1 A CharacterBuffer is created.

Lines 2, 3 Two Writer threads are created, one with �123� as argument,
and the other with �abc�. Both threads use the same CharacterBuffer
object. The JTCHandleT template is explained in �The JTCHandleT
Template� on page 47. It would be wrong to use just a plain C++ pointer
Writer* here, but for now let�s just assume that JTCHandleT<Writer> and
Writer* are the same.

Lines 4, 5 The two Writer threads are started.

Now consider the following scenario: w1 runs first, but after writing �12� into
the buffer the operating system switches to the execution of w2, which writes
�abc�. After that w1 continues to write �3�. The result is that the buffer now
contains the character sequence �12abc3� instead of �123abc�.

We can easily avoid this by rewriting the run method to lock the monitor of
the CharacterBuffer object before starting to write into the buffer:

Lines 3-7 The for loop is now placed in a code block synchronized with
the CharacterBuffer�s monitor lock. This will make sure that the characters
are put into the buffer in the proper sequence.

1 CharacterBuffer buffer = new CharacterBuffer();
2 JTCHandleT<Writer> w1 = new Writer(buffer, "123");
3 JTCHandleT<Writer> w2 = new Writer(buffer, "abc");
4 w1 -> start();
5 w2 -> start();

1 public void run()
2 {
3 synchronized(buffer_)
4 {
5 for(int i = 0 ; i < str.length() ; i++)
6 buffer_.addChar(str_.characterAt(i));
7 }
8 }
27

CHAPTER 3 | Working With Threads
This is called a synchronized code block, in contrast to a synchronized
method. The example translates to JThreads/C++ as follows:

Lines 16-21 Instead of using *this, *buffer_ is used for synchronization.

 1 class Writer : public JTCThread
 2 {
 3 CharacterBuffer* buffer_;
 4 const char* str_;
 5
 6 public:
 7
 8 Writer(CharacterBuffer* buffer, const char* str)
 9 {
10 buffer_ = buffer;
11 str_ = str;
12 }
13
14 virtual void run()
15 {
16 {
17 JTCSynchronized synchronized(*buffer_);
18 int len = strlen(str_);
19 for(int i = 0 ; i < len ; i++)
20 buffer_ -> addChar(str_[i]);
21 }
22 }
23 };
28

Static Monitors
Static Monitors

Synchronized static monitors In Java it is possible to have static methods which are synchronized. Here is
an example:

This class allows global access to a protected counter. This class must be
synchronized because access to a long value in Java is not atomic.

It is not possible to inherit from JTCMonitor if static member functions need
to be synchronized, since the JTCSynchronized class requires *this as the
argument to its constructor (which is not available within static member
functions).

To solve this problem, a static data member of type JTCMonitor is used to
synchronize static member functions.

 1 public class StaticCounter
 2 {
 3 static long counter_;
 4
 5 public static synchronized void increment()
 6 {
 7 ++counter_;
 8 }
 9
10 public static synchronized void decrement()
11 {
12 --counter_;
13 }
14
15 public static synchronized long value()
16 {
17 return counter_;
18 }
19 };
29

CHAPTER 3 | Working With Threads
This is the Java example converted to C++.

Line 4 A static JTCMonitor instance variable is declared. This allows the
class to be synchronized.

Lines 10, 16, 22 The methods are synchronized. Instead of using *this,
the static variable mon_ is used.

Note that there are certain restrictions on the use of static monitors. It is not
correct to use1 a static monitor before an instance of JTCInitialize has
been created. Any use before initialization of JThreads/C++ will result in
undefined behavior. Additionally, the monitor class must not be used after
the final instance of the JTCInitialize object was destroyed.

 1 class StaticCounter
 2 {
 3 static long counter_;
 4 static JTCMonitor mon_;
 5
 6 public:
 7
 8 static void increment()
 9 {
10 JTCSynchronized sync(mon_);
11 ++counter_;
12 }
13
14 static void decrement()
15 {
16 JTCSynchronized sync(mon_);
17 --counter_;
18 }
19
20 static long value()
21 {
22 JTCSynchronized sync(mon_);
23 return counter_;
24 }
25 };
26
27 long StaticCounter::counter_ = 0;
28 JTCMonitor StaticCounter::mon_;

1. Construction and destruction of static monitors (which is out of the control of the
application programmer) is not using of monitors in this context.
30

Static Monitors
Note that the only JThreads/C++ classes that can be used as a static
member are the JTCMutex, JTCRecursiveMutex and JTCMonitor classes. All
other classes must not be used as static members.
31

CHAPTER 3 | Working With Threads
The Wait, Notify and NotifyAll Methods

Inter-thread communication Like in Java, JThreads/C++ offers the wait, notify and notifyAll
methods for inter-thread communication. As an example, let�s return to our
previous example involving the CharacterBuffer class. This time, we want
the writeBuffer operation to behave in a slightly different way:
writeBuffer should only print the buffer�s contents if there are at least 80
characters in the buffer.

Using Wait/Notify with Java Let�s start with rewriting the writeBuffer method in Java, using wait:

Line 1 The writeBuffer method must be declared synchronized. This
makes sure that the monitor lock is acquired on entry to the method.

Line 3 The while loop is executed until there are at least 80 characters
available.

Line 7 wait is called. This releases the monitor lock (which was acquired
on entry to the writeBuffer method) and waits for another thread to call
either notify or notifyAll on the monitor.

 1 synchronized void writeBuffer()
 2 {
 3 while(len_ < 80)
 4 {
 5 try
 6 {
 7 wait()
 8 }
 9 catch(InterruptedException ex)
10 {
11 }
12 }
13 System.out.write(data_, 0, len_);
14 System.out.flush();
15 len_ = 0;
15 }
32

The Wait, Notify and NotifyAll Methods
Lines 5, 9 It is possible that wait throws an InterruptedException.
Therefore this exception must be caught.

Now let�s change the addChar method so that it calls notify whenever there
are at least 80 characters in the buffer:

Line 1 Again, addChar is declared synchronized so that the monitor lock
is acquired. This is a requirement for using wait, notify or notifyAll.

LInes 11-12 If, after the addition of a new character, the number of
characters in the buffer is equal to or larger than 80, notify is called. This
wakes exactly one thread which is waiting using wait. Waking in this
context means that the wait call of the waiting thread returns and implicitly
locks the monitor again, making sure that only one thread at a time can run
the synchronized method.

The difference between notify and notifyAll is that notify only wakes
one thread, while notifyAll wakes all waiting threads. If more than one
thread is waiting, and notify is used, a random thread is woken. If more
than one thread is waiting and notifyAll is used, then all threads are
woken, but the order in which the waiting threads return from their call to
wait is random. Remember that only one thread at a time can return from
wait, since returning from wait requires the monitor�s lock to be acquired.
This is not possible if another thread has previously returned from wait and
has not yet released the monitors lock by exiting the synchronized method.

For this example, notify is used as we know that there is going to be only
one waiting thread. However, it doesn�t matter whether notify or
notifyAll is used because if more than one thread is waiting, the number

 1 synchronized public void addChar(char c)
 2 {
 3 if(data_ == null || len_ >= data_.length)
 4 {
 5 byte[] newData = new byte[len_+128];
 6 if (data_ != null)
 7 System.arraycopy(data_, 0, newData, 0, len_);
 8 data_ = newData;
 9 }
10 data_[len_++] = c;
11 if(len_ >= 80)
12 notify();
13 }
33

CHAPTER 3 | Working With Threads
of characters is reset to zero once a thread has returned from wait. When
the other threads subsequently return from wait, they will wait again
because of the while loop.

Using Wait/Notify with C++ Let�s see how this example translates to JThreads/C++:

Line 3 As in the Java example the writeBuffer method must be
synchronized. Calling wait, notify or notifyAll without having the
monitor locked results in the exception JTCIllegalMonitorStateException
being thrown.

Line 4 Like in the Java example, the while loop is executed until there are
at least 80 characters available.

Line 8 wait is called just in the same way as in the Java example. This
releases the monitor lock (which was acquired with the synchronization
through the JTCSynchronize class) and waits for notification.

 1 void writeBuffer()
 2 {
 3 JTCSynchronized synchronized(*this);
 4 while(len_ < 80)
 5 {
 6 try
 7 {
 8 wait();
 9 }
10 catch(const JTCInterruptedException&)
11 {
12 }
13 }
14 cout.write(data_, len_) << flush;
15 len_ = 0;
16 }
34

The Wait, Notify and NotifyAll Methods
Lines 5-9 The equivalent to java.lang.InterruptedException is the
JThreads/C++ exception JTCInterruptedException.

Line 3 addChar is made synchronized.

Lines 12-13 notify is called if 80 characters are available, waking a
waiting thread.

As you can see, the semantics of wait, notify and notifyAll in
JThreads/C++ are exactly the same as in Java.

 1 void addChar(char c)
 2 {
 3 JTCSynchronized synchronized(*this);
 4 if (len_ >= max_)
 5 {
 6 char* newData = new char[len_+128];
 7 memcpy(newData, data_, len_);
 8 delete[] data_;
 9 data_ = newData;
10 max_ += 128;
11 }
12 data_[len_++] = c;
13 if(len_ >= 80)
14 notify();
15 }
35

CHAPTER 3 | Working With Threads
The Stop and Suspend Methods

Terminating and suspending
execution of a thread

We have already introduced the start method of the JTCThread class. The
opposite of start is stop, which terminates the execution of a thread.
Besides stop, there is also a suspend method which suspends the execution
of a thread until resume is called.

Control Points stop and suspend do not terminate or suspend a thread immediately,
because this is not supported by every underlying low-level thread API (for
example, POSIX threads). Instead, the JThreads/C++ library uses the
concept of control points to implement the suspend and stop methods. This
is similar to the cancellation points concept used in the POSIX threads
library. If suspend or stop is called from outside the thread that is to be
suspended or stopped, the thread is marked as control-pending. When this
thread calls a method which is a control point the thread is stopped or
suspended, respectively.

Once a thread has been suspended, execution for that thread is halted until
it is resumed. If a thread has been stopped, the exception JTCThreadDeath
is raised. If this exception is caught by user code, it must be re-thrown to
ensure the proper termination of the thread.

The control points in the JThreads/C++ library are:

� JTCThread::suspend()

� JTCThread::join()

� JTCThread::sleep()

� JTCThread::yield()

� JTCSynchronized::JTCSyncronized()

� JTCSynchronized::~JTCSyncronized()

� JTCMonitor::wait()

Implementing a Thread
Termination Method

The Java versions of stop, resume and suspend are deprecated [4]. The
reason is that under very rare circumstances, these methods can lead to a
deadlock of the Java Virtual Machine.
36

The Stop and Suspend Methods
The JThreads/C++ implementation of stop, resume and suspend is
completely portable and does not suffer from the same shortcomings as the
Java counterpart. However, in order to keep your source code compatible
with Java, we recommend that you provide your own termination method
for your thread classes. As an example, let�s visit our CharacterBuffer class
once more. We now want to have a separate thread, which waits for 80
characters to become available. It then prints these 80 characters on
standard output, resets the buffer�s contents and starts over again. The
thread should only stop if a terminate method is called on the
CharacterBuffer class. We can write this class as follows:

 1 class CharacterBuffer : public JTCMonitor, public JTCThread
 2 {
 3 char* data_;
 4 int max_;
 5 int len_;
 6 bool done_;
 7
 8 public:
 9
10 CharacterBuffer()
11 : data_(0), len_(0), max_(0), done_(false)
12 {
13 }
14
15 ~CharacterBuffer()
16 {
17 delete[] data_;
18 }
19
37

CHAPTER 3 | Working With Threads
20 void addChar(char c)
21 {
22 JTCSynchronized synchronized(*this);
23 if (len_ >= max_)
24 {
25 char* newData = new char[len_+128];
26 memcpy(newData, data_, len_);
27 delete[] data_;
28 data_ = newData;
29 max_ += 128;
30 }
31 data_[len_++] = c;
32 if(len_ >= 80)
33 notify();
34 }
35
36 virtual void run()
37 {
38 JTCSynchronized synchronized(*this);
39 while(true)
40 {
41 while(!done_ && len_ < 80)
42 {
43 try
44 {
45 wait();
46 }
47 catch(const JTCInterruptedException&)
48 {
49 }
50 }
51 if(done_)
52 break;
53 cout.write(data_ , len_) << flush;
54 len_ = 0;
55 }
56 }
57
58 void terminate()
59 {
60 JTCSynchronized synchronized(*this);
61 done_ = true;
62 notify();
63 }
64 };
38

The Stop and Suspend Methods
Line 1 The CharacterBuffer class is now also derived from JTCThread in
order to provide the separate thread for printing the buffer�s contents.

Lines 6, 11 We added a done_ flag, initially set to false in the
constructor.

Lines 20-34 Nothing has changed in the addChar method. The
implementation is the same as in section [TBD].

Lines 36-56 The writeBuffer method is obsolete. We now have a run
method instead, which prints the buffer�s contents in an endless loop.

Lines 41-50 This is similar to the implementation shown in section [TBD].
However, the while loop now not only checks whether 80 characters are
available, but also whether the done_ flag is set to true.

Lines 50-51 If the inner while loop was terminated because done_ was
set to true, break is called. This causes the thread to exit the outer while
loop, to return from the run method and to terminate.

Lines 53-54 If the inner while loop was terminated for any other reason,
there are 80 characters available now, which are printed on standard
output.

Lines 58-63 The terminate method serves as a replacement for stop. It
first acquires the monitor�s lock with an instance of JTCSynchronize, then
sets the done_ flag to true and notifies the waiting thread.
39

CHAPTER 3 | Working With Threads
The Join and IsAlive Methods

Waiting for threads to terminate In some applications it is necessary to explicitly wait for threads to
terminate. For instance, if a set of threads is performing a complex parallel
calculation, the application may have to wait for the calculation to be
completed before continuing.

As an example, let�s assume that we want the main function of our Hello
World program from Chapter 2 to wait for the HelloWorld thread to
terminate. One way this can be done is as follows:

Line 5 It is absolutely necessary to use JTCThreadHandle instead of
JTCThread* here. See �Introducing Handles� on page 45 for more
information. For now, let�s just think of a JTCThreadHandle as if it would be
a typedef for JTCThread*.

Lines 7, 8 The isAlive method is used to wait for the thread to terminate.
isAlive returns true if the thread is alive (that is, if it was started and not
yet terminated), or false otherwise.

 1 int
 2 main(int argc, char** argv)
 3 {
 4 JTCInitialize initialize;
 5 JTCThreadHandle t = new HelloWorld;
 6 t -> start();
 7 while(t -> isAlive())
 8 ;
 9 return 0;
10 }
40

The Join and IsAlive Methods
The code above has the obvious problem of busy-looping, which should be
avoided at all costs. Fortunately there is alternative approach: join can be
used for this purpose. This method waits for the thread to terminate and
then returns.

Line 7 The join method is used to wait for the thread to die.

However, this example has a bug. The join method can throw the exception
JTCInterruptedException. Therefore this example should be re-written as
follows:

Lines 9-15 join is called on the thread, which should wait until the
thread has terminated. However, if JTCInterruptedException is thrown we
ignore it.

 1 int
 2 main(int argc, char** argv)
 3 {
 4 JTCInitialize initialize;
 5 JTCThreadHandle t = new HelloWorld;
 6 t -> start();
 7 t -> join();
 8 return 0;
 9 }

 1 int
 2 main(int argc, char** argv)
 3 {
 4 JTCInitialize initialize;
 5 JTCThreadHandle t = new HelloWorld;
 6 t -> start();
 7 do
 8 {
 9 try
10 {
11 t -> join();
12 }
13 catch(const JTCInterruptedException&)
14 {
15 }
16 }
17 while(t -> isAlive());
18 return 0;
19 }
41

CHAPTER 3 | Working With Threads
Line 17 This makes sure that the loop is only terminated if no
JTCInterruptedException was thrown, that is, if the thread is not alive
anymore.
42

CHAPTER 4

Memory
Management
This chapter discusses the memory management features
JThreads/C++ such as reference counting and handle classes.

In this chapter This chapter contains the following sections:

Reference Counting page 44

Introducing Handles page 45

The JTCHandleT Template page 47

Rules of Thumb page 48
43

CHAPTER 4 | Memory Management
Reference Counting

Avoiding memory leaks You may have thought that the Hello World examples from Chapter 2 all
have memory leaks, since the thread objects are created with new but never
deleted with delete. However, you would be wrong. Why? The magic
comes in the form of reference counting.

Every JTCThread object (and also JTCThreadGroup and JTCRunnable objects)
has a reference counter. When a new thread object is created, this counter
is set to 1. When the thread terminates (that is, the run method returns),
the counter is decremented by 1. Whenever the counter�s value drops to 0,
the thread object is deleted with delete.

Since in our Hello World example the reference count is never incremented,
the reference count drops to 0 as soon as run returns, meaning that the
thread object is deleted upon thread termination - so there is no memory
leak.

One drawback of using reference counting is that it is not possible to
allocate reference counted objects on the stack. It is only possible to allocate
them with new (on the heap), since they will be deleted with delete as soon
as the reference count becomes 0.
44

Introducing Handles
Introducing Handles

Smart pointers You might think that reference counting is pretty complicated, because you
now have to remember when to increment or to decrement the counter of a
reference counted object. However, this is not the case. JThreads/C++
provides handle classes (sometimes also called smart pointers) that take
care of incrementing and decrementing the reference counter for you.

Let�s go back to the example from �The Join and IsAlive Methods� on
page 40. There we told you that it is absolutely necessary to use
JTCThreadHandle instead of JTCThread*. Now we will reveal the secret
behind it.

Consider how we would have written the example without
JTCThreadHandle:

// Wrong example!
int
main(int argc, char** argv)
{
 JTCInitialize initialize;
 // Don�t do this! Use JTCThreadHandle instead of JTCThread*
 JTCThread* t = new HelloWorld;
 t -> start();
 do
 {
 try
 {
 t -> join();
 }
 catch(const JTCInterruptedException&)
 {
 }
 }
 while(t -> isAlive());
 return 0;
}

45

CHAPTER 4 | Memory Management
This example is wrong and the program will most certainly crash. When the
thread terminates, its reference count is decremented from 1 to 0 and thus
the thread object is deleted with delete. However, we are still trying to join
with the thread and check whether it�s still alive using isAlive even though
the thread object has already been deleted.

So what we would have to do is increase the reference count by 1 after the
new and to decrement it by 1 after the while loop. This would make sure
that the reference count drops to 0 after the join and isAlive methods
were called.

This is exactly what handles are doing for you. Whenever you assign a
thread object to a handle, it increases the reference count of the thread
object by 1. The same is true if you assign a handle to another handle.
Whenever a handle is destroyed, the destructor of the handle decrements
the reference count of the thread object it points to by 1.

For the example above, this means that if you replace JTCThread* by
JTCThreadHandle, the reference count of the thread object will be 2 instead
of 1 after the new, because the handle increased the counter by 1. After the
thread has terminated, the counter is still 1, and thus the thread object is
not deleted, so that it is safe to use operations like isAlive or join on the
thread object. When the handle is destroyed at the end of the main function,
the handle�s destructor decrements the thread object�s counter by 1, so that
the thread object is then also deleted.
46

The JTCHandleT Template
The JTCHandleT Template

Handle classes JThreads/C++ provides the following handle classes:

� JTCThreadHandle as a replacement for JTCThread*.

� JTCRunnableHandle as a replacement for JTCRunnable*.

� JTCThreadGroupHandle as a replacement for JTCThreadGroup*.

These classes are all typedefs for a more general handle type written as a
C++ template:

In case you want to access methods from classes derived from JTCThread
(or from JTCRunnable) you must define your own handle type. As an
example, let�s go back to �Implementing a Thread Termination Method� on
page 36, in which we defined a terminate method. In case we actually
want to call this method, we cannot use JTCThreadHandle as shown below:

Just as you cannot use JTCThread* to access methods from classes derived
from JTCThread, you cannot use JTCThreadHandle for this either. You must
use the handle class for CharacterBuffer*. This can be done by using the
JTCHandleT template:

typedef JTCHandleT<JTCThread> JTCThreadHandle;
typedef JTCHandleT<JTCRunnable> JTCRunnableHandle;
typedef JTCHandleT<JTCThreadGroup> JTCThreadGroupHandle;

JTCThreadHandle t = new CharacterBuffer;
... // Do something with the CharacterBuffer
t -> terminate(); // This does not work, compiler will complain

typedef JTCHandleT<CharacterBuffer> CharacterBufferHandle;
CharacterBufferHandle t = new CharacterBuffer;
... // Do something with the CharacterBuffer
t -> terminate(); // This works
47

CHAPTER 4 | Memory Management
Rules of Thumb

Rules Keep the following rules in mind when using JThreads/C++:

� Always use handle types instead of plain C++ pointers. The only
exception can be made if it is absolutely certain that after start is
called on the thread object the C++ pointer is not used anymore.

� Never allocate thread objects, runnable objects or thread group objects
on the stack. Always use new.

� Never attempt to delete thread objects, runnable objects or thread
group objects with delete. They will be deleted automatically.

� Define your own handle types by using the JTCHandleT template
whenever you must access methods of classes derived from
JTCThread, JTCThreadGroup or JTCRunnable.

As long as you follow these basic rules, memory management in
JThreads/C++ is virtually automatic.

The nice thing about reference counting and handle classes is that it makes
JThreads/C++ even more Java-like. Reference counting emulates the Java
garbage collector, and handles emulate Java references.
48

APPENDIX A

Class Reference
This chapter provides a reference to the classes in the
JThreads/C++ library.

In this appendix This appendix contains the following sections:

JTCInitialize page 51

JTCAdoptCurrentThread page 53

JTCThread page 54

JTCRunnable page 62

JTCThreadGroup page 63

JTCHandleT page 68

JTCMonitor page 71

JTCMonitorT page 73

JTCRecursiveMutex page 75

JTCMutex page 77

JTCRWMutex page 79

JTCSynchronized page 80

JTCSyncT page 82

JTCReadLock page 83
49

APPENDIX A | Class Reference
JTCWriteLock page 84

JTCThreadId page 85

JTCThreadKey page 86

JTCTSS page 87

JTCThreadDeath page 89

JTCException page 90

JTCInterruptedException page 92

JTCIllegalThreadStateException page 93

JTCIllegalMonitorStateException page 94

JTCIllegalArgumentException page 95

JTCSystemCallException page 96

JTCUnknownThreadException page 97

JTCOutOfMemoryError page 98

JTCInitializeError page 99
50

JTCInitialize
JTCInitialize

Overview An instance of this class must be instantiated before JThreads/C++ is used.
If no instance of this class is created, the JThreads/C++ library will not
work properly.

JTCInitialize can be instantiated multiple times. However, only the first
instantiation has any effect. When the last JTCInitialize instance is
destroyed, the destructor will wait for all running threads to terminate.

JTCInitialize interprets arguments starting with -JTC. All of these
arguments, passed through the argc and argv parameters, are
automatically removed from the argument list.

JTCOptions The following JThreads/C++ options can be used:

-JTCversion

Shows the JThreads/C++ version number.

-JTCss stack-size

This option sets the thread stack size to stack-size kilobytes.

Constructors JTCInitialize
JTCInitialize()

Initializes the JThreads/C++ library.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCInitialize
JTCInitialize(int& argc, char** argv)

Initializes the JThreads/C++ library and interprets arguments starting
with -JTC.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCInitializeError - Indicates a that an invalid option or option
argument was specified.
51

APPENDIX A | Class Reference
Member Functions waitTermination
void waitTermination()

Waits for all threads to terminate.

initialized
static bool initialized()

Determines if the JThreads/C++ library has been initialized.

Returns:

true if JThreads/C++ has been initialized and false otherwise.
52

JTCAdoptCurrentThread
JTCAdoptCurrentThread

Overview When integrating with third-party libraries, it is often necessary to call
JThreads/C++ methods from a thread that was not created using
JThreads/C++. In this situation, the thread must create an instance of
JTCAdoptCurrentThread prior to using any other JThreads/C++ classes.
Failure to instantiate JTCAdoptCurrentThread will result in undefined
behavior.

Constructors JTCAdoptCurrentThread
JTCAdoptCurrentThread()

Informs the JThreads/C++ library about the existence of this thread.

Throws:

JTCSystemCallException - Indicates a failed system call.
53

APPENDIX A | Class Reference
JTCThread

Overview This class is used to create a new thread of execution. The thread
functionality can be added by either deriving a class from JTCThread and
overriding the run method, or by passing an object of a class derived from
JTCRunnable to the JTCThread constructor.

Constructors JTCThread
JTCThread(JTCRunnableHandle target, const char* name = 0)

Create a new thread object with a target object and a name.

Parameters:

target - The object whose run method is invoked when start is
called. If no object is specified, the run method of the thread object
must be overridden in a derived class.

name - The name of the thread. If no name is specified, a default name
is used. This default name is the string "thread-" concatenated with
the thread id. A thread id is a system-specific identifier generated by
the operating system when a new thread is created. Application
developers are encouraged to use the JTCThreadId class to refer to
thread ids.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCThread
JTCThread(const char* name)

Create a new thread object with a name.

Parameters:

name - The name of the thread.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCThread
JTCThread(JTCThreadGroupHandle& group, JTCRunnableHandle

target, const char* name = 0)
54

JTCThread
Create a new thread object belonging to a group, with a target object
and a name.

Parameters:

group - The thread group.

target - The object whose run method is invoked when start is
called. If no target object is specified, the run method of the thread
object must be overridden in a derived class.

name - The name of the thread. If no name is specified, a default name
is used. This default name is the string "thread-" concatenated with
the thread id. A thread id is a system-specific identifier generated by
the operating system when a new thread is created. Application
developers are encouraged to use the JTCThreadId class to refer to
thread ids.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCThread
JTCThread(JTCThreadGroupHandle& group, const char* name = 0)

Create a new thread object belonging to a group, with a name.

Parameters:

group - The thread group.

name - The name of the thread. If no name is specified, a default name
is used. This default name is the string "thread-" concatenated with
the thread id. A thread id is a system-specific identifier generated by
the operating system when a new thread is created. Application
developers are encouraged to use the JTCThreadId class to refer to
thread ids.

Throws:

JTCSystemCallException - Indicates a failed system call.

Member Functions getThreadGroup
JTCThreadGroupHandle getThreadGroup()

Returns a thread group handle for the thread group object to which this
thread object belongs.
55

APPENDIX A | Class Reference
Returns:

A handle for the thread group object.

setName
void setName(const char* name)

Sets the name of the thread object.

Parameters:

name - The new name for the thread object. If a null pointer is used, a
default name is used. This default name is the string "thread-"
concatenated with the thread id. A thread id is a system-specific
identifier generated by the operating system when a new thread is
created. Application developers are encouraged to use the JTCThreadId
class to refer to thread ids.

getName
const char* getName() const

Returns the name of the thread object.

Returns:

The thread object name.

start
void start()

Starts execution of the thread. If the thread was created with a target
object (that is, with an object of a class derived from JTCRunnable),
the run method of the target object is invoked. If there is no target
object, the run method of the thread object itself is invoked. In this
case, a class derived from JTCThread with an overridden run method
should be used.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalStateException - Thrown if the thread has already been
started.

run
virtual void run()

This method is called when start is invoked. If the thread object has
been constructed with an associated target JTCRunnable object, the
56

JTCThread
target�s run method is invoked. Otherwise, the run method should be
overridden in a class derived from JTCThread. If run terminates due to
an uncaught exception, then the thread�s thread group method
uncaughtException is called.

isAlive
bool isAlive() const

This method determines whether the thread is alive.

Returns:

true if the thread is alive, false otherwise.

join
void join()

Waits for the thread to terminate.

Throws:

JTCSystemCallException - Indicates a failed system call.

join
void join(long millis)

Waits for the thread to terminate for at most millis milliseconds.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalArgumentException - Thrown if the value of millis is
negative.

join
void join(long millis, int nanos)

Waits for the thread to terminate for at most millis milliseconds and
nanos nanoseconds.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalArgumentException - Thrown if the value of millis is
negative, or if the value of nanos is not in the range 0 - 999999.

setPriority
void setPriority(int newPri)

Sets the thread priority to a new value.
57

APPENDIX A | Class Reference
Parameters:

newPri - The new thread priority.

Throws:

JTCSystemCallException - Indicates a failed system call.

getPriority
int getPriority() const

Returns the priority of the thread.

Returns:

The thread priority.

Throws:

JTCSystemCallException - Indicates a failed system call.

enumerate
static int enumerate(JTCThreadHandle* list, int len)

Copies each active thread from this thread�s thread group and
subgroups into the array list. If more than len items are present, the
list is truncated.

Parameters:

list - The array into which all threads from this thread�s group and
subgroups are copied.

len - The number of JTCThreadHandle* elements in list.

Returns:

The number of threads returned in list.

currentThread
static JTCThread* currentThread()

Returns a pointer to the currently executing thread object.

Returns:

The currently executing thread object.

sleep
static void sleep(long millis, int nanos = 0)

Suspends execution of this thread for millis milliseconds, and nanos
nanoseconds.

Parameters:
58

JTCThread
millis - The number of milliseconds to sleep.

nanos - The number of nanoseconds to sleep.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCIllegalArgumentException - Thrown if the value of millis is
negative, or if the value of nanos is not in the range 0 - 999999.

JTCInterruptedException - Thrown if the sleep call is interrupted.

yield
static void yield()

Gives up the thread�s current timeslice. This can be called if you want
to manually give other threads an opportunity to execute.

activeCount
static int activeCount()

Returns the number of active threads in this thread�s thread group and
subgroups.

Returns:

The number of active threads in this thread�s group and subgroups.

getId
JTCThreadId getId() const

Returns the id of the thread.

Returns:

The thread id of the thread.

setAttrHook
typedef void (*JTCAttrHook)(pthread_attr_t*)

static void setAttrHook(JTCAttrHook hook, JTCAttrHook*
oldHook = 0)

Sets/gets a hook that will be used to initialize custom POSIX thread
attributes. Note: this method is only available for systems using POSIX
threads.

Parameters:

hook - The function that will be called to retrieve the custom POSIX
thread attributes before the creation of each thread.
59

APPENDIX A | Class Reference
oldHook - Optional parameter in which the previously set hook is
returned. Applications should call this function within the new hook. In
essence, hooks may be chained.

setRunHook
typedef void (*JTCRunHook)(JTCThread*)

static void setRunHook(JTCRunHook hook, JTCRunHook* oldHook =
0)

Sets/gets a run hook which may be used to setup any application
specific information during thread creation. The hook function must
call thread -> run() to actually run the thread.

Parameters:

hook - The function that will be called on creation of the thread.

oldHook - Optional parameter in which the previously set hook is
returned. Applications should call this function from within the new
hook. In essence, hooks may be chained.

setStartHook
typedef void (*JTCStartHook)()

static void setStartHook(JTCStartHook hook, JTCStartHook*
oldHook = 0)

Sets/gets a start hook which may be used to setup any thread specific
information.

Parameters:

hook - The function that will be called on creation of the thread.

oldHook - Optional parameter in which the previously set hook is
returned. Applications should call this function from within the new
hook. In essence, hooks may be chained.

Data Members JTC_MIN_PRIORITY
const int JTC_MIN_PRIORITY

A constant for the minimum priority a thread can have.

JTC_NORM_PRIORITY
const int JTC_NORM_PRIORITY

A constant for the default priority of a thread.
60

JTCThread
JTC_MAX_PRIORITY
const int JTC_MAX_PRIORITY

A constant for the maximum priority a thread can have.

Related Functions operator<<
ostream& operator<<(ostream& os, const JTCThread& thr)

Print the thread id to the output stream os. The output format of the
thread-id field is platform-specific.

Parameters:

os - Output stream in which to insert the thread id.

thr - Reference to the thread.

Returns:

The output stream os.
61

APPENDIX A | Class Reference
JTCRunnable

Overview This class is provided as an alternative method of providing functionality in a
thread. In order to use this class, you must write a subclass and provide a
definition for the run method. An instance of this class should then be
provided as an argument to the JTCThread constructor. When the thread is
started, the run method of that instance will be invoked.

Member Functions run
virtual void run()

Called when the start method is called on the associated thread
object.
62

JTCThreadGroup
JTCThreadGroup

Overview This class represents a collection of threads, and other thread groups. The
thread groups form a tree, rooted at the system thread group. New threads
by default belong to the thread group of their parent thread. A thread group
can optionally be a daemon thread group, which automatically destroys
itself after all threads have terminated and all sub-groups are destroyed. A
newly created thread group inherits its parent�s daemon status. The root
thread group is a non-daemon thread group.

Constructors JTCThreadGroup
JTCThreadGroup(const char* name)

Creates a new thread group with the provided name. The new thread
group�s parent is that of the current thread.

Parameters:

name - The name of the thread group.

Throws:

JTCIllegalThreadStateException - Thrown if the parent thread group
has been destroyed..

JTCThreadGroup
JTCThreadGroup(JTCThreadGroup* group, const char* name)

Creates a new thread group with the provided name and parent thread
group.

Parameters:

group - The parent of the thread group.

name - The name of the thread group.

Throws:

JTCIllegalThreadStateException - Thrown if the parent thread group
has been destroyed..

Member Functions getName()
const char* getName() const
63

APPENDIX A | Class Reference
Returns the name of the thread group.

Returns:

The name of the thread group.

getParent
JTCThreadGroupHandle getParent() const

Returns the parent of the thread group. If the thread group is the root
thread group, the handle contains a null pointer.

Returns:

The parent of the thread group.

isDaemon
bool isDaemon() const

Returns the daemon flag for this thread group. If the daemon flag is
true, the thread group is destroyed once all threads are terminated and
sub-groups are empty.

Returns:

The value of the daemon flag.

setDaemon
void setDaemon(bool daemon)

Sets the daemon flag for this thread group. If the daemon flag is true,
the thread group is destroyed once all threads are terminated and
sub-groups are empty.

Parameters:

daemon - The new value for the daemon flag.

uncaughtException
virtual void uncaughtException(JTCThreadHandle t, const

JTCException& e)

This method is called if a JTCThread::run() exits because of an
uncaught JTCException. By default, if the thread group has a parent
this method invokes the parent�s uncaughtException method,
otherwise it displays the exception to stderr.

Parameters:

t - The thread that threw the JTCException.

e - The uncaught exception.
64

JTCThreadGroup
uncaughtException
virtual void uncaughtException(JTCThreadHandle t)

This method is called if a JTCThread::run() exits because of an
uncaught exception. By default, if the thread group has a parent this
method invokes the parent�s uncaughtException method, otherwise it
displays the text �uncaught exception� to stderr.

Parameters:

t - The thread that threw the JTCException.

getMaxPriority
int getMaxPriority() const

Returns the maximum priority permitted for threads in this thread
group.

Returns:

The maximum priority of this thread group.

isDestroyed
bool isDestroyed() const

Determines if the thread group has been destroyed. A thread group is
destroyed once all threads have terminated in the thread group and all
subgroups.

Returns:

true if the thread group has been destroyed, false otherwise.

destroy
void destroy()

Destroys this thread group and all of its subgroups. The thread group
must not contain any active threads.

Throws:

JTCIllegalThreadStateException - If the thread group has active
threads, or has already been destroyed.

setMaxPriority
void setMaxPriority(int pri)

Sets the maximum priority that threads in the thread group and its
subgroups may have. Threads in the thread group that have higher
priority are not affected. That is, their priorities are not lowered.
65

APPENDIX A | Class Reference
parentOf
bool parentOf(JTCThreadGroupHandle g)

Returns true if the thread group is the parent of thread group g.

Returns:

true if this thread is a parent of g, false otherwise.

activeCount
int activeCount() const

Returns the number of active threads in this thread group, and all of its
subgroups.

Returns:

The number of active threads.

activeGroupCount
int activeGroupCount() const

Returns the number of active thread groups in this thread group.

Returns:

The number of active thread groups.

enumerate
int enumerate(JTCThreadHandle* list, int len, bool recurse =

true) const

Copies pointers to each active thread in this thread group to the array
list. activeCount can be used to get an estimate of how big the array
should be. If more than len active threads are present, the remaining
threads are silently ignored. The reason that the developer cannot
determine precisely the number of threads is that threads can be
added and removed from the thread group at the same time as they
are enumerated.

Parameters:

list - The array into which the set of active threads should be copied.

len - The length of the array list.

recurse - If set to true, active threads from subgroups are also
enumerated.

Returns:

The number of active threads copied to the array.
66

JTCThreadGroup
enumerate
int enumerate(JTCThreadGroupHandle* list, int len, bool

recurse = true) const

Copies handles for every active subgroup of this thread group into the
array list. activeGroupCount can be used to determine how big the
array must be. If more than len active subgroups are present, the
remaining subgroups are silently ignored.

Parameters:

list - The array in which to copy the thread group handles.

len - The length of the array.

recurse - If set to true, child subgroups are also enumerated.

Returns:

The number of handles copied to list.

list
void list()

Outputs to the stream cout the set of threads and subgroups.

list
void list(ostream& os, int indent)

Outputs to the stream os the set of threads and subgroups. Use indent
spaces for indentation.

Related Functions operator<<
ostream& operator<<(ostream& os, const JTCThreadGroup& g)

Prints a string representation of the thread group to the output stream
os. This calls g.list(os, 4).

Parameters:

os - Output stream in which to insert the thread id.

g - Reference to the thread group.

Returns:

The output stream os.
67

APPENDIX A | Class Reference
JTCHandleT

Overview The JThreads/C++ library cannot know when to delete instances of
JTCThread, JTCRunnable, and JTCThreadGroup. One solution to this
dilemma is to force application developers to delete instances of these
classes when they are sure the instances are no longer useful. However, this
is error prone. Fortunately there is a well-known solution to this problem:
reference counting (see [4], p. 782). This isn�t necessary in Java since it
provides garbage collection. The basic idea is to count the number of
references to the object, and delete the object when the reference count
drops to zero. To ease the counting of references, a handle class is used that
increments the reference count when constructed, and decrements the
reference count when destructed.

The JTCHandleT is a smart pointer to a reference-counted object. A regular
pointer to instances of these classes should never be stored.

The classes JTCThreadGroupHandle, JTCThreadHandle, and
JTCRunnableHandle are all convenience typedefs of this template class.

Constructors JTCHandleT
JTCHandleT(T* tg = 0)

Creates a handle that refers to the object tg.

Parameters:

tg - The object to reference.

 JTCHandleT
JTCHandleT(const JTCHandleT<T>& rhs)

Creates a handle that refers to the object referred to by rhs.

Parameters:

rhs - The handle from which to retrieve the object.

Member Functions operator=
JTCHandle<T>& operator=(const JTCHandleT<T>& rhs)

Creates a handle that refers to the object referenced by rhs.

Parameters:
68

JTCHandleT
rhs - The handle from which to retrieve the object.

Returns:

A reference to the handle.

operator==
bool operator==(const JTCHandleT<T>& rhs) const

Returns true if rhs references the same object as this object.

Parameters:

rhs - The handle to compare with.

Returns:

true if the objects are equivalent, false otherwise.

operator!=
bool operator!=(const JTCHandleT<T>& rhs) const

Returns true if rhs references a different object as this.

Parameters:

rhs - The handle to compare with.

Returns:

true if the objects are not equivalent, false otherwise.

operator!
bool operator!() const

Determines whether the object referenced by the handle is not valid
(that it is nil).

Returns:

true if the object is not valid, false otherwise.

operator bool
operator bool () const

Determines whether the object referenced by the handle is valid (that it
is not nil).

Returns:

true if the object is valid, false otherwise.

operator->
T* operator->() const
69

APPENDIX A | Class Reference
Invokes a method on the referenced object.

Returns:

A pointer to the referenced object.

get
T* get() const

Gets a pointer to the referenced object.

Returns:

A pointer to the referenced object.

operator*
T& operator*()

Retrieve a C++ reference to the referenced object.

Returns:

A C++ reference to the object.
70

JTCMonitor
JTCMonitor

Overview This class provides the functionality of Java monitors. In order to implement
synchronized methods, the monitor�s lock must be acquired, for example by
creating an instance of the JTCSynchronized class at the top of the
synchronized method, with the monitor as the argument to the constructor.

The monitor�s wait method can be used to release the monitor�s lock and to
wait for notifications. The notify and notifyAll methods can be used to
wake one or all waiting monitors, respectively.

Methods wait
void wait()

Waits for notification by another thread. The calling thread must own
the monitor�s lock. The monitor�s lock is released and the thread waits
for notification by another thread via a call to either notify or
notifyAll. The thread then waits until it can regain ownership of the
monitor�s lock and then resumes execution.

Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by
the calling thread.

JTCSystemCallException - Indicates a failed system call.

wait
wait(long timeout)

Waits for notification by another thread. The calling thread must own
the monitor�s lock. The monitor�s lock is released and the thread waits
for notification by another thread via a call to either notify or
notifyAll, or until timeout milliseconds have passed. The thread then
waits until it can regain ownership of the monitor�s lock and then
resumes execution.

Parameters:

timeout - The maximum number of milliseconds to wait for
notification.
71

APPENDIX A | Class Reference
Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by
the calling thread.

JTCSystemCallException - Indicates a failed system call.

notify
void notify()

Wakes a single thread waiting on the monitor. The calling thread must
own the monitor�s lock.

notifyAll()
void notifyAll()

Wakes all threads waiting on the monitor. The calling thread must own
the monitor�s lock.
72

JTCMonitorT
JTCMonitorT

Overview This is a template class that allows creation of synchronized classes without
altering the implementation.

Member Functions wait
void wait()

Waits for notification by another thread. The calling thread must own
the monitor�s lock. The monitor�s lock is released and the thread waits
for notification by another thread via a call to either notify or
notifyAll. The thread then waits until it can regain ownership of the
monitor�s lock and then resumes execution.

Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by
the calling thread.

JTCSystemCallException - Indicates a failed system call.

wait
wait(long timeout)

Waits for notification by another thread. The calling thread must own
the monitor�s lock. The monitor�s lock is released and the thread waits
for notification by another thread via a call to either notify or
notifyAll, or until timeout milliseconds have passed. The thread then
waits until it can regain ownership of the monitor�s lock and then
resumes execution.

Parameters:

timeout - The maximum number of milliseconds to wait for
notification.

Throws:

JTCIllegalMonitorStateException - If the monitor is not locked by
the calling thread.

JTCSystemCallException - Indicates a failed system call.
73

APPENDIX A | Class Reference
notify
void notify()

Wakes a single thread waiting on the monitor. The calling thread must
own the monitor�s lock.

notifyAll()
void notifyAll()

Wakes all threads waiting on the monitor. The calling thread must own
the monitor�s lock.
74

JTCRecursiveMutex
JTCRecursiveMutex

Overview This class can be used to establish a critical section. This class has no direct
equivalent in Java, and is provided for performance reasons only. An
instance of JTCRecursiveMutex can be locked multiple times by the same
thread, and therefore may not be as efficient as the JTCMutex class. The
developer is responsible for ensuring that each mutex lock has a
corresponding unlock.

Member Functions lock
bool lock() const

Lock the mutex. If the mutex is already locked, the calling thread
blocks until the mutex is unlocked. If the current owner of the mutex
attempts to re-lock the mutex, a deadlock will not result.

Returns:

true, if the mutex is locked for the first time, false, otherwise.

unlock
bool unlock() const

This method is called by the owner of the mutex to release it. The
mutex must be locked and the calling thread must be the one that last
locked the mutex. If these conditions are not met, undefined behavior
will result.

Returns:

true, if the mutex is available for locking by some other thread, false
otherwise.

trylock
bool trylock() const

This method is identical to lock except that if the mutex is already
locked, then false is returned.

Returns:

true, if the mutex was locked, false otherwise.
75

APPENDIX A | Class Reference
get_owner
JTCThreadId get_owner() const

Return the thread id of the owning thread.

Returns:

The thread id of the owning thread.
76

JTCMutex
JTCMutex

Overview This class can be used to establish a critical section. This class has no direct
equivalent in Java. It is provided for performance reasons only. Unlike
JTCMonitor or JTCRecursiveMutex, this class not does guarantee recursive
locking semantics. If the mutex is locked more than once by the same
thread, a deadlock may result.1

Member Functions lock
bool lock() const

Lock the mutex. If the mutex is already locked, the calling thread
blocks until the mutex is unlocked. If the current owner of the mutex
attempts to re-lock the mutex, a deadlock may result.

Returns:

This method always returns true.

unlock
bool unlock() const

This method is called by the owner of the mutex to release it. The
mutex must be locked and the calling thread must be the one that last
locked the mutex. If these conditions are not met, undefined behavior
will result.

Returns:

This method always returns true.

trylock
bool trylock() const

This method is identical to lock except that if the mutex is already
locked, then false is returned.

Returns:

true, if the mutex was locked, false otherwise.

1. Under Windows, JTCMutex allows recursive locking, while a pthreads
implementation (for example, under UNIX) does not.
77

APPENDIX A | Class Reference
get_owner
JTCThreadId get_owner() const

Return the thread id of the owning thread.

Returns:

The thread id of the owning thread.
78

JTCRWMutex
JTCRWMutex

Overview This class can be used to create read-write locks. This class has no direct
equivalent in Java. It is provided for performance reasons only. Like
JTCMutex, this class not does guarantee recursive locking semantics. If the
mutex is locked more than once by the same thread, a deadlock may result.

Member Functions read_lock
void read_lock() const

Lock the mutex for reading. If the mutex is locked for writing or writers
are waiting for a write lock, the calling thread blocks until the mutex is
unlocked. If the current owner of the mutex attempts to re-lock the
mutex, a deadlock may result.

write_lock
void write_lock() const

Lock the mutex for writing. If the mutex is locked for reading or writing,
the calling thread blocks until the mutex is unlocked. If the current
owner of the mutex attempts to re-lock the mutex, a deadlock may
result.

unlock
void unlock() const

This method is called by the owner of the mutex to release it. The
mutex must be locked and the calling thread must be the one that last
locked the mutex. If these conditions are not met, undefined behavior
will result.
79

APPENDIX A | Class Reference
JTCSynchronized

Overview This class is used to acquire and release a monitor�s lock. To create a
synchronized method, an instance of this class should be created with the
monitor as the constructor argument. The constructor acquires the lock and
the destructor releases the lock. This class may also be used with the
classes JTCMutex, JTCRecursiveMutex and JTCRWMutex.

Constructor JTCSynchronized
JTCSynchronized(const JTCMonitor& mon)

Acquires the monitor�s lock. The destructor releases the monitor�s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCSynchronized
JTCSynchronized(const JTCMutex& mon)

Acquires the mutex�s lock. The destructor releases the mutex�s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCSynchronized
JTCSynchronized(const JTCRecursiveMutex& mon)

Acquires the mutex�s lock. The destructor releases the mutex�s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.

JTCSynchronized
enum ReadWriteLockType

{
read_lock,
write_lock

};

JTCSynchronized(const JTCRWMutex& mon, ReadWriteLockType
type)

Acquires the mutex�s lock. The destructor releases the mutex�s lock.
80

JTCSynchronized
Throws:

JTCSystemCallException - Indicates a failed system call.
81

APPENDIX A | Class Reference
JTCSyncT

Overview This class is a template version of the JTCSynchronized class. The JTCSyncT
template is more efficient than the JTCSynchronized class, however it is
more difficult to use. The template�s constructor invokes the lock method
on the parameter class, and the destructor invokes the unlock method. This
template may also be instantiated with the classes JTCMonitor, JTCMutex
and JTCRecursiveMutex.

Constructor JTCSyncT
JTCSyncT(const T& mon)

Acquires the monitor�s lock. The destructor releases the monitor�s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.
82

JTCReadLock
JTCReadLock

Overview This class is used to acquire and release a read lock. To create a
synchronized method, an instance of this class should be created with the
JTCRWMutex as the constructor argument. The constructor acquires the lock
and the destructor releases the lock.

Constructor JTCReadLock
JTCReadLock(const JTCRWMutex& mon)

Acquires the mutex�s lock for reading. The destructor releases the
mutex�s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.
83

APPENDIX A | Class Reference
JTCWriteLock

Overview This class is used to acquire and release a write lock. To create a
synchronized method, an instance of this class should be created with the
JTCRWMutex as the constructor argument. The constructor acquires the lock
and the destructor releases the lock.

Constructor JTCWriteLock
JTCWriteLock(const JTCRWMutex& mon)

Acquires the mutex�s lock for writing. The destructor releases the
mutex�s lock.

Throws:

JTCSystemCallException - Indicates a failed system call.
84

JTCThreadId
JTCThreadId
This class represents a thread id. The only operations that should be
used are equality and inequality. Two thread objects may be
considered to be equal if their thread ids are equivalent. A user should
not directly construct instances of this class.

Member Functions operator==
bool operator==(const JTCThreadId& rhs)

Compares for equality.

Parameters:

rhs - The thread id with which to compare.

Returns:

true if the thread ids are equivalent, false otherwise.

operator!=
bool operator!=(const JTCThreadId& rhs) const

Compares for inequality.

Parameters:

rhs - The thread id with which to compare.

Returns:

true if the thread ids are not equivalent, false otherwise.
85

APPENDIX A | Class Reference
JTCThreadKey

Overview This type represents a thread specific storage key. JTCThreadKey should be
used as an opaque type.
86

JTCTSS
JTCTSS

Overview This class is used to manage thread-specific storage, which is an extremely
useful method of managing data that is associated with each thread, while
avoiding the overhead of a mutex. Using thread-specific storage, each
thread associates data with a key. Because each thread has its own data,
there is no contention for the data among multiple threads.

Member Functions allocate
static JTCThreadKey allocate()

Creates a new thread-specific storage key.

Returns:

A new thread-specific storage key.

Throws:

JTCSystemCallException - Indicates a failed system call.

allocate
static JTCThreadKey allocate(void (*)(void*))

Creates a new thread-specific storage key with an associated cleanup
function. Upon thread termination, the registered cleanup function is
called with an argument that contains the value associated with the
thread-specific storage key.

Returns:

A new thread-specific storage key.

Throws:

JTCSystemCallException - Indicates a failed system call.

release
static void release(JTCThreadKey key)

Releases a thread-specific storage key. The developer is responsible for
freeing any associated storage before releasing the key. Any associated
cleanup function is not called.

Parameters:
87

APPENDIX A | Class Reference
key - The thread-specific storage key to release.

Throws:

JTCSystemCallException - Indicates a failed system call.

get
static void* get(JTCThreadKey key)

Gets the data associated with a thread-specific storage key.

Parameters:

key - The thread-specific storage key.

Returns:

The data associated with the thread-specific storage key.

Throws:

JTCSystemCallException - Indicates a failed system call.

set
static void set(JTCThreadKey key, void* data)

Associates data with a thread-specific storage key.

Parameters:

key - The thread-specific storage key.

data - The data to associate with the key.

Throws:

JTCSystemCallException - Indicates a failed system call.
88

JTCThreadDeath
JTCThreadDeath

Overview This exception is thrown when a thread is terminated by JTCThread::stop.
If this exception is caught, it must be re-thrown to ensure correct
termination of the thread.
89

APPENDIX A | Class Reference
JTCException

Overview With the exception of JTCThreadDeath, JTCException is the base class of all
JThreads/C++ exception classes.

Constructors JTCException
JTCException(const char* note = "", long error = 0)

Constructs a JTCException with the message in note, and the error
type in error.

Parameters:

note - A description of the error.

error - An exception-specific error code.

Member Functions getError
long getError() const

Returns the exception-specific error code. Currently only
JTCSystemCallException has a specific error code.

Returns:

The error code.

getType
virtual const char* getType() const

Returns a string representation of the exception type. This is the name
of the exception class. This member is not available in Java.

Returns:

The class name.

getMessage
const char* getMessage() const

Returns a description of the exception. This is the note parameter
provided in the constructor.

Returns:

A description of the exception.
90

JTCException
Related Functions operator<<
ostream& operator<<(ostream& os, const JTCException& e)

Inserts a description of the error to the output stream os.

Parameters:

os - The output stream in which to insert the thread id.

e - The reference to the exception.

Returns:

The output stream os.
91

APPENDIX A | Class Reference
JTCInterruptedException

Overview This exception is thrown if a system call is interrupted. Currently
JTCMonitor::wait() and JTCThread::sleep() can throw this exception.
The semantics differ from Java in this respect. An InterruptedException in
Java is thrown if a thread is interrupted by java.lang.Thread.interrupt.
Unfortunately, it is impossible to implement this method in a portable
fashion using the POSIX and WIN32 threading models.
92

JTCIllegalThreadStateException
JTCIllegalThreadStateException

Overview This exception is thrown if a member function is called while the object is in
an illegal state. Currently JTCThread::start(), the
JTCThreadGroup::JTCThreadGroup() constructors and
JTCThreadGroup::destroy() can throw this exception.
93

APPENDIX A | Class Reference
JTCIllegalMonitorStateException

Overview This exception is thrown by JTCMonitor::wait(), JTCMonitor::notify() or
JTCMonitor::notifyAll() if the monitor�s lock has not been acquired by
the calling thread.
94

JTCIllegalArgumentException
JTCIllegalArgumentException

Overview This exception is thrown when an illegal argument is passed to a
JThreads/C++ method. The methods JTCMonitor::wait() (with a timeout
argument), JTCThread::setPriority(), and JTCThread::sleep() can
throw this exception.
95

APPENDIX A | Class Reference
JTCSystemCallException

Overview This exception indicates a failed system call. Most JThreads/C++ methods
can generate this exception. The JTCException::getError() method
returns the error value. Under UNIX this is the value of errno, under WIN32
this is the value of getLastError(). There is no application method of
determining which operation caused the error. However, the exception
message contains a description of the operation, and all arguments to assist
in debugging.
96

JTCUnknownThreadException
JTCUnknownThreadException

Overview This exception is generated from the JTCThread::currentThread method
when the current thread is not known.
97

APPENDIX A | Class Reference
JTCOutOfMemoryError

Overview This exception is generated from the JTCThread constructors on an out of
memory condition.
98

JTCInitializeError
JTCInitializeError

Overview This exception is generated from the JTCInitialize(int&, char**)
constructor when an invalid option or option argument is specified.
99

APPENDIX A | Class Reference
100

JThreads
Bibliography
[1] Scott Oaks & Henry Wong, Java Threads, O�Reilly & Associates,

Inc., 1997.

[2] Doug Lea, Concurrent Programming in Java, Addison-Wesley
Longman, Inc., 1997.

[3] Why JavaSoft is Deprecating Thread.stop, Thread.suspend and
Thread.resume, Sun Microsystems, Inc.1

[4] Bjarne Stroupstrup, The C++ Programming Language, Third
Edition, Addison-Wesley Longman, Inc., 1997.

1. Available from
http://java.sun.com/products/jdk/1.2/docs/guide/misc/threadPrimitiveDeprecation
.html.
101

http://java.sun.com/products/jdk/1.2/docs/guide/misc/threadPrimitiveDeprecation.html

BIBLIOGRAPHY
102

	Preface
	The Orbacus Library
	Audience
	Getting the Latest Version
	Searching the Orbacus Library
	Additional Resources
	Document Conventions

	Introduction to JThreads/C++
	Overview

	Hello World
	Hello World in Java
	Hello World in C++
	Hello World with Runnable

	Working With Threads
	Synchronization
	Thread Safe Version in Java
	Thread Safe Version in C++

	Block Synchronization
	Static Monitors
	The Wait, Notify and NotifyAll Methods
	The Stop and Suspend Methods
	The Join and IsAlive Methods

	Memory Management
	Reference Counting
	Introducing Handles
	The JTCHandleT Template
	Rules of Thumb

	Class Reference
	JTCInitialize
	JTCAdoptCurrentThread
	JTCThread
	JTCRunnable
	JTCThreadGroup
	JTCHandleT
	JTCMonitor
	JTCMonitorT
	JTCRecursiveMutex
	JTCMutex
	JTCRWMutex
	JTCSynchronized
	JTCSyncT
	JTCReadLock
	JTCWriteLock
	JTCThreadId
	JTCThreadKey
	JTCTSS
	JTCThreadDeath
	JTCException
	JTCInterruptedException
	JTCIllegalThreadStateException
	JTCIllegalMonitorStateException
	JTCIllegalArgumentException
	JTCSystemCallException
	JTCUnknownThreadException
	JTCOutOfMemoryError
	JTCInitializeError

	JThreads Bibliography

