
OrbacusTM

Making Software Work TogetherTM

Orbacus .NET Connector
Programmer’s Guide

Version 4.3, January 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.
COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: November 4, 2009

Contents

List of Figures 7

Preface 9

Chapter 1 .NET and CORBA Frameworks 15
.NET versus CORBA 16
CORBA Principles 17

Chapter 2 Introduction to Orbacus .NET Connector 21
.NET Connector Overview 23
.NET Connector System Components 26
.NET Client to CORBA Server Usage Model 28

Chapter 3 Getting Started 31
Prerequisites 32
Developing .NET Clients 36

Introduction 37
Generating .NET Metadata from OMG IDL 38
Writing a Visual Basic .NET Client 40
Writing a C# Client 43
Building and Running the Client 46

Chapter 4 Client Callbacks 49
Introduction to Callbacks 50
Implementing Callbacks 51

Defining the OMG IDL Interfaces 52
Implementing the Client in C# 54
Implementing the Server in C++ 56

Chapter 5 Development Support Tools 57
Generating .NET Metadata 58
Managing the Type Store 60
3

CONTENTS
The Role of the Type Store 61
The Caching Mechanism of the Type Store 63
Adding New Information to the Type Store 65
Emptying the Type Store Cache 67
Dumping the Type Store Contents 68

Chapter 6 Deploying a .NET Connector Application 69
Deployment Model 70
Deployment Steps 72

Chapter 7 Introduction to OMG IDL 75
IDL 76
Modules and Name Scoping 77
Interfaces 78

Introduction to Interfaces 79
Interface Contents 81
Operations 82
Attributes 85
Exceptions 86
Empty Interfaces 87
Inheritance of Interfaces 88
Multiple Inheritance 89
Inheritance of the Object Interface 91
Inheritance Redefinition 92
Forward Declaration of IDL Interfaces 93
Local Interfaces 94
Valuetypes 96
Abstract Interfaces 97

IDL Data Types 98
Built-in Data Types 99
Extended Built-in Data Types 102
Complex Data Types 105
Enum Data Type 106
Struct Data Type 107
Union Data Type 108
Arrays 110
Sequence 111
Pseudo Object Types 112
4

CONTENTS
Defining Data Types 113
Constants 114
Constant Expressions 117

Chapter 8 Mapping CORBA to .NET 119
Mapping for Basic Types 121
Mapping for Extended Types 122
Mapping for Interfaces 123
Mapping for Interface Inheritance 125
Mapping for Complex Types 126

Mapping for Structs 127
Mapping for Enums 128
Mapping for Unions 129
Mapping for Arrays 131
Mapping for Sequences 132
Mapping for System Exceptions 133
Mapping for User Exceptions 134
Mapping for the Any Type 135

Mapping for Object References 140
Mapping for Modules 141
Mapping for Constants 142

Chapter 9 Orbacus .NET Connector Configuration 145
Overview 146
Configuration Variables 147

Chapter 10 .NET Connector Utility Arguments 151
Itts2il Argument Details 152
Ittypeman Argument Details 156

Chapter 11 Advanced Topics 159
.NET Metadata versus Type Store Information 160
Enabling Advanced CORBA Features 162

Index 165
5

CONTENTS
6

List of Figures

Figure 1: Role of the ORB in Client-Server Communication 20

Figure 2: Role of .NET Connector 24

Figure 3: .NET Client to CORBA Server 28

Figure 4: .NET Connector Type Store and the Development Utilities 61

Figure 5: Overview of Typical Deployment Scenario 70

Figure 6: Overview of Deployment Steps 73

Figure 7: Inheritance Hierarchy for PremiumAccount Interface 90

Figure 8: .NET Metadata and Dynamic Type Information Usage 160

Figure 9: CORBA Features as Plug-Ins to Remoting Channel 162
7

LIST OF FIGURES
 8

Preface
The Orbacus .NET Connector provides a high performance bridge that
enables transparent communication between .NET clients and CORBA
servers. It is designed to allow .NET programmers who use any .NET
language (Visual Basic .NET, C#, J#, and so on) to easily access CORBA
applications running in Windows, UNIX, or OS/390 environments. This
means that .NET programmers can use familiar tools to build heterogeneous
systems that use both .NET and CORBA components within a .NET
environment.

Audience
This guide is intended for .NET application programmers who want to use
the Orbacus .NET Connector to develop and deploy distributed applications
that combine CORBA and .NET components within a .NET environment.
This guide assumes you already have a working knowledge of .NET-based
tools, such as Visual Basic .NET and C#.

Required Versions
To use the .Orbacus NET Connector, you need at least Microsoft .NET
Framework 1.1 and Microsoft Visual Studio .NET 2003 installed on your
machine.

Organization of this Guide
This guide is organized into the following chapters:
9

PREFACE
Chapter 1, �.NET and CORBA Frameworks�

Both .NET Remoting and CORBA are recognized as industry-standard
frameworks for distributed object computing. This chapter introduces
comparisons between these two frameworks, and provides an introductory
overview of CORBA and its main principles for the sake of novice CORBA
users.

Chapter 2, �Introduction to Orbacus .NET Connector�

IONA�s .NET Connector enables transparent communication between clients
running in a Microsoft .NET environment and servers running in a CORBA
environment. This chapter introduces the Orbacus .NET Connector, first by
outlining the distributed component concepts supported by .NET, and then
by describing how the .NET Connector implements these concepts.

Chapter 3, �Getting Started�

This chapter is provided to get you started quickly in application
programming with the Orbacus .NET Connector. It explains the basics you
need to know to develop in Visual Basic .NET or C# a simple .NET client
that can call objects in an existing CORBA server.

Chapter 4, �Client Callbacks�

The typical Orbacus .NET Connector scenario involves .NET clients invoking
operations on objects in CORBA servers. However, .NET clients can
implement some of the functionality associated with servers, and all servers
can act as clients. A callback invocation is a programming technique that
takes advantage of this. This chapter describes how to implement client
callbacks.

Chapter 5, �Development Support Tools�

This chapter describes how to use the itts2il utility to generate .NET
metadata from existing OMG IDL, and to perform various type store
management tasks.

Chapter 6, �Deploying a .NET Connector Application�

This chapter provides an overview of the deployment model you can adopt
when deploying a distributed application with the Orbacus .NET Connector.
It also describes the steps you must follow to deploy a distributed .NET
Connector application.
 10

PREFACE
Chapter 7, �Introduction to OMG IDL�

An object�s interface describes that object to potential clients through its
attributes and operations, and their signatures. This chapter describes the
semantics and uses of the CORBA Interface Definition Language (OMG IDL),
which is used to describe the interfaces to CORBA objects.

Chapter 8, �Mapping CORBA to .NET�

CORBA types are defined in OMG IDL, and .NET types are defined in
Microsoft Intermediate Language (MSIL). To allow interworking between
.NET clients and CORBA servers, .NET clients must be presented with
metadata that describes the interfaces exposed by CORBA objects.
Therefore, it must be possible to translate CORBA types to .NET types.
When using .NET Remoting, the .NET types must use the .NET Common
Type System (CTS). This chapter outlines the CORBA-to-.NET CTS mapping
rules.

Chapter 9, �Orbacus .NET Connector Configuration�

This chapter describes the configuration variables specific to the Orbacus
.NET Connector, and their associated values.

Chapter 10, �.NET Connector Utility Arguments�

This chapter describes the various arguments available with the ittypeman
and itts2il command-line utilities.

Chapter 11, �Advanced Topics�

This chapter provides details of topics that might be of interest to more
advanced users of the .NET Connector, including an explanation of the
difference between static .NET metadata and dynamic runtime type
information, and a description of programatically enabling advanced CORBA
features.

Related Reading
The following related reading material is recommended:

� The Common Object Request Broker: Architecture and Specification at
http://www.omg.org/docs/formal/01-09-01.pdf.

The Orbacus Library
The Orbacus documentation library consists of the following books:

� Using Orbacus

� Using FreeSSL for Orbacus
11

http://www.omg.org/docs/formal/01-09-01.pdf

PREFACE
� JThreads/C++

� Orbacus Notify

� .NET Connector Programmer�s Guide (this book)

Using Orbacus

This manual describes how Orbacus implements the CORBA standard, and
describes how to develop and maintain code that uses the Orbacus ORB.
This is the primary developer�s guide and reference for Orbacus.

Using FreeSSL for Orbacus

This manual describes the FreeSSL plug-in, which enables secure
communications using the Orbacus ORB in both Java and C++.

JThreads/C++

This manual describes JThreads/C++, which is a high-level thread
abstraction library that gives C++ programmers the look and feel of Java
threads.

Orbacus Notify

This manual describes Orbacus Notify, an implementation of the Object
Management Group�s Notification Service specification.

.NET Connector Programmer�s Guide

This manual describes the Orbacus .NET Connector, which enables
transparent communication between clients running in a Microsoft .NET
environment and servers running in a CORBA environment.

Getting the Latest Version
The latest updates to the Orbacus documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Orbacus Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right.
 12

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE
You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Additional Resources
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles written by IONA experts about Orbacus
and other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.
13

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

No prompt When a command�s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 14

CHAPTER 1

.NET and CORBA
Frameworks
Both .NET Remoting and CORBA are recognized as
industry-standard frameworks for distributed object
computing. This chapter introduces comparisons between
these two frameworks, and provides an introductory overview
of CORBA and its main principles for the sake of novice CORBA
users.

In this chapter This chapter discusses the following topics:

.NET versus CORBA page 16

CORBA Principles page 17

Note: A knowledge of CORBA is not a prerequisite for using the Orbacus
.NET Connector. This is because the .NET Connector abstracts the details
of CORBA from the .NET programmer. Unless you are using advanced
CORBA features, no knowledge of the CORBA server is required, apart
from its contact details. This chapter is provided for reference purposes
only. An in-depth study of .NET or CORBA is outside the scope of this
guide.
15

CHAPTER 1 | .NET and CORBA Frameworks
.NET versus CORBA

Overview .NET and CORBA are both industry-standard frameworks for distributed
object computing. Both share the common goals of:

� Enabling interoperability of distributed applications written in
heterogeneous languages.

� Allowing for modifications to the implementation of objects in a
particular language without the need for changes to other objects
implemented in other languages.

This section provides an introductory comparison of .NET and CORBA
concepts.

Comparison Table 1 provides an introductory comparison of .NET and CORBA concepts.

Table 1: Comparison of .NET and CORBA Concepts

.NET CORBA

.NET metadata and Microsoft
Intermediate Language (MSIL)
provide language-independent
definitions of .NET object interfaces.

Interface Definition Language
(IDL) provides
language-independent definitions
of CORBA object interfaces.

.NET metadata is stored in a .NET
assembly.

IDL is stored in an Interface
Repository.

Common Type System specifies
types that have mappings to various
language implementations.

Standardized IDL type mappings
exist for various language
implementations.

Common Language Runtime uses
metadata to marshal requests
between distributed applications.

Object Request Broker (ORB)
runtime uses IDL to marshal
requests between distributed
applications.

.NET Remoting Channel used for
communication. (For example,
Microsoft-proprietary binary protocol
over TCP transport.)

Standard protocols used for
communication. (For example,
Internet Inter-ORB Protocol
(IIOP) over TCP/IP transport).
16

CORBA Principles
CORBA Principles

Overview This section provides an introductory overview of the main principles of
CORBA for novice CORBA users. It discusses the following topics:

� �Basic principles� on page 17.

� �CORBA objects� on page 18.

� �Object IDs and references� on page 18.

� �CORBA object interfaces� on page 18

� �CORBA client requests� on page 18.

� �CORBA object lifetime� on page 19.

� �Object request broker� on page 19.

� �Multiple inheritance� on page 20.

Basic principles Some of the basic principles of CORBA are:

� The system architecture is based around the concept of objects.

� An object is a discrete unit of functionality that exposes its behavior
through a set of well defined interfaces.

� The details of an object�s implementation are hidden from the clients
that want to make requests on it.

� An object is an independent component with a related set of behaviors,
transparently available to any CORBA client, regardless of where the
object or client are implemented in the system.

� The domain of an object is typically an arbitrarily scalable distributed
network.

Note: A knowledge of CORBA is not a prerequisite for using the .NET
Connector. This is because the .NET Connector abstracts the details of
CORBA from the .NET programmer. Unless you are using advanced
CORBA features, no knowledge of the CORBA server is required apart from
its contact details. This section is provided for reference purposes only. A
more in-depth study of CORBA is outside the scope of this guide.
17

CHAPTER 1 | .NET and CORBA Frameworks
� The purpose of CORBA is to allow independent components of a
distributed system to be shared among a wide variety of possibly
unrelated applications and objects in that distributed system.

CORBA objects A CORBA object is a discrete, independent unit of functionality, comprising
a related set of behaviors. A particular CORBA object can be described as an
entity that exhibits a consistency of interface, behavior (or functionality),
and state over its lifetime.

CORBA uses the concept of a portable object adapter (POA), which is used
to map abstract CORBA objects to their actual implementations. A CORBA
object can be implemented in any programming language that CORBA
supports, such as C++ or Java.

Object IDs and references A CORBA object has both an object ID and an object reference. An object ID
identifies an object with respect to a particular POA instance. An object
reference contains unique details about an object, including its object ID
and POA identifier, which can be used by clients to locate and invoke on
that object. See �CORBA client requests� on page 18 for more details about
the use of object references.

CORBA object interfaces A CORBA object presents itself to its clients through a published interface,
defined in OMG interface definition language (IDL). The concept of keeping
an object�s interface separate from its implementation means that a client
can make requests on an object without needing to know how or where that
object is implemented.

The IDL interfaces for CORBA objects can be stored (registered) in an
interface repository. CORBA identifies an interface by means of an interface
repository ID. Even if you update a particular interface in some way, its
repository ID can remain the same.

CORBA client requests In CORBA, a client can access an object�s interface and its underlying
functionality by making one or more requests on that object. Each client
request is made on a specific instance of an object, which is identifiable and
contactable via an object reference that is unique to that object instance. An
object reference is a name that is used to consistently identify a particular
object during that object�s lifetime. An object reference in CORBA is roughly
equivalent to the concept of an object reference in .NET.
18

CORBA Principles
CORBA client requests can contain parameters consisting of object
references or data values that correspond to particular types of data
supported by the system. A client request can be dynamically created at
runtime (rather than simply being statically defined at compile time) on any
object whose interfaces are stored in an interface repository.

CORBA object lifetime The in-memory lifetime of a CORBA object is independent of the lifetime of
any clients that hold a reference to it. This means that a client that is no
longer running can continue to maintain object references. It also means
that a server object can deactivate and remove itself from memory when it
becomes idle (although this does consequently mean that the server
application must be made to explicitly decide when this should happen).

Object request broker A CORBA system is based on an architectural abstraction called the object
request broker (ORB). An ORB allows for:

� Interception and transfer of client requests to servers across the
network, and the return of output from the server back to the client.

� Registration of data types and their interfaces, defined in OMG IDL.

� Registration of object instance identities, from which the ORB can
construct appropriate object references for use by clients that want to
make requests on those object instances.

� Location (and activation, if necessary) of objects.

Orbacus is one of IONA�s implementations of an ORB.
19

CHAPTER 1 | .NET and CORBA Frameworks
Figure 1 provides an overview of the role of the ORB in CORBA client-server
communication.

Multiple inheritance CORBA supports the concept of multiple interface inheritance. This basically
means that a CORBA object interface can be extended by making it derive
from one or more other interfaces. The derived interface ends up having not
only its own defined functionality, but also the functionality of the
interface(s) from which it derives. Interfaces can also be evolved, by having
new interfaces derive from existing interfaces.

A CORBA object reference refers to a CORBA object that exposes a single,
most-derived interface in which any and all parent interfaces are joined.
CORBA does not support the concept of objects with multiple, disjoint
interfaces. See �Introduction to OMG IDL� on page 75 for more details of
multiple inheritance.

Figure 1: Role of the ORB in Client-Server Communication

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code
20

CHAPTER 2

Introduction to
Orbacus .NET
Connector
IONA�s Orbacus .NET Connector enables transparent
communication between clients running in a Microsoft .NET
environment and servers running in a CORBA environment.
This chapter introduces the .NET Connector by outlining the
distributed component concepts supported by .NET and by
describing how the .NET Connector implements these
concepts.

In this chapter This chapter discusses the following topics:

.NET Connector Overview page 23

.NET Connector System Components page 26
21

CHAPTER 2 | Introduction to Orbacus .NET Connector
Note: The Orbacus .NET Connector supports development and
deployment of .NET clients that can communicate with CORBA servers.
Any CORBA C++ server examples provided in this guide are supplied for
reference purposes only. It is assumed that you already have a CORBA
server implementation product. The examples provided are for use with
Orbacus 4.3 SP2 or later.
22

.NET Connector Overview
.NET Connector Overview

Overview This section provides an introductory overview of how the Orbacus .NET
Connector facilitates communication between .NET clients and CORBA
servers. The following topics are discussed:

� �What is the .NET Connector?� on page 23..

� �Graphical Overview of Role� on page 24.

� �Advantages for the .NET Programmer� on page 24.

� �Supported Protocols� on page 25.

What is the .NET Connector? The Orbacus .NET Connector is a custom .NET remoting channel, referred
to as OrbacusDotNET, from IONA Technologies. Its purpose is to support
application integration across network boundaries, different operating
systems, and different programming languages. Specifically, it provides a
high performance bridge that enables integration between .NET clients and
CORBA objects. It allows you to develop and deploy .NET client applications
that can interact with existing CORBA server applications that might be
running on Windows or other platforms.
23

CHAPTER 2 | Introduction to Orbacus .NET Connector
Graphical Overview of Role Figure 2 provides a conceptual overview of how the .NET Connector
facilitates integration of .NET clients and CORBA servers.

Advantages for the .NET
Programmer

The Orbacus .NET Connector provides two main advantages to .NET
programmers:

1. The Orbacus .NET Connector provides access to existing CORBA
servers, which can be implemented on any operating system and in
any language supported by a CORBA implementation. Orbacus
supports a range of operating systems, such as Windows, Linux, and
Solaris. It also supports different programming languages, including
C++ and Java.

2. Using the .NET Connector, a .NET programmer can use familiar
.NET-based tools to build heterogeneous systems that use both .NET
and CORBA components within a .NET environment. The .NET
Connector, therefore, presents a programming model that is familiar to
the .NET programmer.

Figure 2: Role of .NET Connector

(Windows, Linux,
Solaris, Java,
and so on)

Type Store

(Machine/Process Boundary)

.NET Client

(Visual Basic .NET,
Visual C++ 7,
C#, J#, Jscript,

and so on)

.NET Connector
Bridge

Type Store

CORBA Server
24

.NET Connector Overview
Supported Protocols The Orbacus .NET Connector supports the IIOP protocol. Contact IONA
Product Management for information on protocols supported in upcoming
editions of the Orbacus .NET Connector.
25

CHAPTER 2 | Introduction to Orbacus .NET Connector
.NET Connector System Components

Overview This section describes the various components that comprise a .NET
Connector system. The following topics are discussed:

� �Bridge� on page 26.

� �Type Store� on page 26.

� �.NET Client� on page 27.

� �CORBA Server� on page 27.

Bridge The bridge is a synonym for the .NET Connector itself. It is implemented as
a custom remoting channel, referred to as OrbacusDotNET. It is
implemented in a mixture of managed and umanaged C++. This channel
uses a dynamic marshaller and type store to formulate dynamic requests
that can be invoked on the CORBA server. The bridge provides the
mappings and performs the necessary translation between .NET common
type system (CTS) and CORBA types.

The bridge is used in conjunction with a .NET Connector utility, called
itts2il, which generates .NET metadata from OMG IDL.

The bridge allows .NET clients to take advantage of all the CORBA services
that are available to an ordinary C++ client, such as security and portable
interceptors.

Type Store As shown in Figure 2 on page 24, the .NET Connector uses a component
called the type store. The type store holds a cache of information about all
the CORBA types in your system. The .NET Connector can retrieve this
information from the Interface Repository (IFR) at application runtime, and
then automatically update the type store with this information for
subsequent use, instead of having to query the IFR for it again. See �The
Caching Mechanism of the Type Store� on page 63 and �.NET Metadata
versus Type Store Information� on page 160 for further details about the
type store.
26

.NET Connector System Components
.NET Client A .NET client can use the .NET Connector to communicate with a CORBA
server. This client can be written in a language such as Visual Basic .NET,
Visual C++, C#, J#, Jscript, or any other .NET-compatible language.

CORBA Server A CORBA server can be contacted by .NET clients, using the .NET
Connector. This is a normal CORBA server written in any language and
running on any platform supported by an ORB.
27

CHAPTER 2 | Introduction to Orbacus .NET Connector
.NET Client to CORBA Server Usage Model

Overview This section describes the typical usage model supported by the .NET
Connector: a .NET client communicating with a CORBA server. It discusses
the following topics:

� �Graphical overview� on page 28.

� �.NET client and bridge� on page 29.

� �CORBA server� on page 29.

Graphical overview Figure 3 shows a graphical overview of this usage model.

Figure 3: .NET Client to CORBA Server
28

.NET Client to CORBA Server Usage Model
.NET client and bridge A dynamic bridge for .NET is provided by a custom remoting channel,
referred to as OrbacusDotNET. The .NET client loads this bridge in-process
(that is, in the client�s address space). This involves the use of IIOP as the
wire protocol for communication between the .NET client machine and
CORBA server.

The .NET client registers the OrbacusDotNET custom remoting channel. The
.NET client then creates a proxy object for the remote CORBA object. The
.NET client can subsequently make calls on this proxy object as if it were a
local .NET object. The proxy object uses the OrbacusDotNET channel to
make a corresponding call on the target object in the CORBA server.

Because the OrbacusDotNET channel exposes mapped .NET types as
metadata contained in a .NET assembly, automatic mapping of .NET object
references to CORBA interfaces and object references at runtime is enabled.

The client does not need to know that the target object is a CORBA object. A
.NET client can be written in Visual Basic .NET, C#, J#, or any language
that supports the .NET runtime.

CORBA server The CORBA server presents an OMG IDL interface to its objects. The server
application can exist on platforms other than Windows. It can be written in
any language supported by a CORBA implementation, such as C++ or
Java.
29

CHAPTER 2 | Introduction to Orbacus .NET Connector
30

CHAPTER 3

Getting Started
This chapter is provided as a means to getting started quickly
in application programming with the .NET Connector. It
explains the basics you need to know to develop a simple .NET
client, written in Visual Basic .NET or C#, which can call
objects in an existing CORBA server.

In This Chapter This chapter discusses the following topics:

Prerequisites page 32

Developing .NET Clients page 36
31

CHAPTER 3 | Getting Started
Prerequisites

Overview This section describes the prerequisites to starting application development
with the .NET Connector. The following topics are discussed:

� �Required versions� on page 32.

� �Client-Side Requirements� on page 33.

� �Server-Side Requirements� on page 33.

� �Registering OMG IDL Type Information� on page 33.

� �Adding .NET Connector to the Global Assembly Cache� on page 33.

� �Making .NET Connector Available to Add References dialog� on
page 34.

Required versions To use the .NET Connector, you need at least Microsoft .NET Framework
1.1 and Microsoft Visual Studio .NET 2003 installed on your machine.

Due to issues regarding IJW (It Just Works) and statical linking, we are
unable to offer the ability to build our .NET connector statically.

Since it is necessary to have built Orbacus in the same configuration you
desire for the .NET connector, you will require a dynamically linked
distribution of Orbacus. Version 4.3 SP2 or later is recommended.

Required runtime libraries In this release of the .NET Connector, the .NET framework requires that the
following Visual C++ 7.1 runtime libraries are installed:

� msvcr71.dll / msvcr71d.dll
� msvcp71.dll / msvcp71d.dll
32

Prerequisites
Client-Side Requirements Make sure that both Orbacus and the .NET Connector are installed and
configured correctly, and make sure that all required options are installed.
Consult the Orbacus README files within the distribution for more details
on building and installing Orbacus. See Using Orbacus for details on
configuring both Orbacus and the .NET Connector.

Server-Side Requirements The Orbacus .NET Connector requires no changes to existing CORBA
servers. See the Orbacus documentation for details on managing servers.
This chapter assumes that you are using Orbacus as your server-side object
request broker (ORB), but any CORBA-compliant ORB can be used on the
server side.

Registering OMG IDL Type
Information

As explained in �Introduction to Orbacus .NET Connector� on page 21, the
.NET Connector uses a custom remoting channel between .NET clients and
CORBA servers. The bridge is driven by OMG IDL type information derived
from a CORBA Interface Repository (IFR).

Before you run an application, ensure that your OMG IDL is registered in the
IFR. This is because the .NET custom remoting channel is designed to
automatically retrieve the required type information from the IFR at
application runtime. The .NET Connector then saves this information to the
type store for subsequent use. See �Registering OMG IDL� on page 38 for
more details of how to do this.

Adding .NET Connector to the
Global Assembly Cache

As explained in �.NET client and bridge� on page 29, the .NET Connector is
implemented as a custom remoting channel in managed C++. This custom
remoting channel is called OrbacusDotNET and is contained in the
OrbacusDotNET.dll assembly. To use the OrbacusDotNET channel, the .NET
framework must be able to obtain and access the OrbacusDotNET.dll
assembly from either of the following:

� The directory from which the client program is run.

Note: An Interface Repository (IFR) service must be configured when
setting up your configuration domain, to allow the .NET type store to
obtain the OMG IDL type information it requires. It is sufficient to deploy
only one centralized IFR server on your network. You do not need to have
an IFR service installed on each client machine.
33

CHAPTER 3 | Getting Started
� The Global Assembly Cache (GAC).

By default, the supplied demonstrations are configured to use a local copy of
the OrbacusDotNET channel.

If you want to register the OrbacusDotNET channel with the GAC, do either of
the following:

� Register the channel from the command line, by entering the following
command (where install-dir represents the full path to your Orbacus
.NET Connector installation):

� Register the channel graphically, as follows:

i. Select Settings|Control Panel|Administrative Tools|.NET
Framework 1.1 Configuration from your Windows Start menu.

ii. Right-click Assembly Cache.

iii. Click Add.

iv. Browse to install-dir\bin\OrbacusDotNET.dll.

v. Click Open.

Making .NET Connector Available
to Add References dialog

When you are adding a reference in Visual Studio .NET, you are presented
with an Add References dialog that contains a list of references from which
you can choose. The displayed list is determined from the sub-keys (and
their properties) corresponding to the following registry key:

If you want to add the .NET Connector to this list:

1. Add the following registry key:

gacutil -I install-dir\bin\OrbacusDotNET.dll

Note: Adding the .NET Connector to the GAC is not mandatory. The
advantage to doing it is that it means you do not need to copy the
OrbacusDotNET.dll assembly to your client program directory.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.1\
 AssemblyFolders

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.1\
 AssemblyFolders\OrbacusDotNET
34

Prerequisites
2. In the preceding key, set its default value to install-dir\bin (where
install-dir represents the full path to your Orbacus .NET Connector
installation).

Note: Making the Orbacus .NET Connector available to the Add
References dialog is not mandatory, but doing so eliminates the need to
search the hard disk for the OrbacusDotNET.dll assembly.
35

CHAPTER 3 | Getting Started
Developing .NET Clients

Overview This section describes how to use the Orbacus .NET Connector to develop
.NET clients in Visual C++, C#, and Visual Basic .NET.

In This Section This section discusses the following topics:

Introduction page 37

Generating .NET Metadata from OMG IDL page 38

Writing a Visual Basic .NET Client page 40

Writing a C# Client page 43

Building and Running the Client page 46
36

Developing .NET Clients
Introduction

Overview This subsection provides an introduction to the .NET client demonstrations
provided. The following topics are discussed:

� �The grid demonstration� on page 37.

� �OMG IDL Grid interface� on page 37.

� �Location of .NET client demonstration source files� on page 37.

The grid demonstration The examples developed in this section are .NET clients, written in Visual
Basic .NET and C#, which can access and modify values that are assigned
to cells within a grid that is implemented as an object in a supplied CORBA
server.

OMG IDL Grid interface The Grid object in the CORBA server implements the following OMG IDL
Grid interface:

Location of .NET client
demonstration source files

The source code for the Visual Basic .NET demonstration client is in:

...\OBdotNET-1.0\remoting\demos\grid\vb_client

The source code for the C# demonstration client is in:

...\OBdotNET-1.0\remoting\demos\grid\csharp_client

// OMG IDL
interface Grid {

readonly attribute short height;
readonly attribute short width;
void set(in short n, in short m, in long value);
long get(in short n, in short m);

};
37

CHAPTER 3 | Getting Started
Generating .NET Metadata from OMG IDL

Overview The first step in implementing a .NET client that can communicate with a
CORBA server is to generate the .NET metadata that describes the target
CORBA interface. This in turn provides the .NET clients with a familar
interface to the remote CORBA objects. This subsection provides an
overview of .NET metadata and how to generate it.

.NET metadata .NET metadata is required so that .NET applications that are to make
invocations on remote objects can be compiled, and to allow .NET to create
proxy objects. Ordinarily, when .NET applications are communicating with
each other, the metadata for .NET objects can be found as part of the .NET
assembly. However, this is obviously not the case for CORBA objects.
Therefore, the .NET Connector provides an itts2il utility that allows you to
generate .NET metadata based on OMG IDL type information for CORBA
objects. The itts2il utility generates a .NET assembly in which the
generated metadata is contained.

Registering OMG IDL Before you attempt to use itts2il to create .NET metadata from the OMG
IDL for your target CORBA objects, you must ensure that the OMG IDL is
registered with the IFR. This is because itts2il reads the OMG IDL
information from the IFR. For example, the following command, using the
Orbacus irfeed utility, registers with the IFR the OMG IDL in the grid.idl
file:

where config_file contains information for connecting to the irfeed, namely
a variable ooc.orb.service.InterfaceRepository, whose value is a
corbaloc with the host name and port number.

Generating .NET metadata The following itts2il command, for example, generates a .NET metadata
assembly within a Grid.dll file, based on the OMG IDL Grid interface:

irfeed -ORBconfig config_file grid.idl

itts2il Grid
38

Developing .NET Clients
See �Development Support Tools� on page 57 for more details about
itts2il and creating .NET metadata from OMG IDL.
39

CHAPTER 3 | Getting Started
Writing a Visual Basic .NET Client

Overview This subsection describes the steps to develop a simple Visual Basic .NET
client of a CORBA server. The steps are:

Step 1: Read IOR from file Start by reading the interoperable object reference (IOR) for the target
object, which is contained in the .ref file that the user specifies on the
command line when starting the client. The following code raises an error if
the .ref file is not specified on the command line.

Step 2: Register remoting channel The following line registers the remoting channel that the client wants to
use. The custom remoting channel should be registered in the same way as
any other .NET remoting channel.

Step Action

1 Read IOR for the target object from file.

2 Register the required remoting channel.

3 Create proxy object for client invocations.

4 Invoke operations on target object.

' Visual Basic .NET
If args.Length < 1 Then

Throw New System.Exception("IOR filename not specified on
command line")

End If

Dim iorFile As New StreamReader(args(0))
Dim ior As String = iorFile.ReadToEnd()
iorFile.Close()

' Visual Basic .NET
ChannelServices.RegisterChannel(New OrbacusClientChannel)
40

Developing .NET Clients
The preceding code tells the .NET application that when it is attempting to
access an object outside of its application domain, it should attempt to use
the ClientChannel remoting channel.

Step 3: Create proxy object The following code creates a proxy instance of the remote target object in
the client�s address space.

The call to GetObject() specifies the name of the target object to which the
client wants to connect (in this case, Grid). The main difference between
the preceding call example and a call to a native .NET object is that instead
of passing an object URL to the call, the client must instead pass an IOR, a
corbaloc reference, or a Naming Service reference. The call to GetObject()
creates both the proxy object and an ClientChannelSink channel sink.

The channel sink parses the reference (that is, IOR, corbaloc reference, or
Naming Service reference) passed by the client and creates a CORBA object
reference either by:

� Using string_to_object(), if an IOR or corbaloc reference has been
passed.

� Resolving the Naming Service reference, if a Naming Service reference
has been passed.

' Visual Basic .NET
Dim GridObj As Grid = CType(Activator.GetObject(GetType(Grid),

ior), Grid)

Note: An alternative way of creating the proxy object (instead of calling
Activator.GetObject()) is to use the new operator for the .NET Grid type.
In this case, the reference must be specified in the application�s
configuration file. This alternative approach is useful in that it allows you
to dynamically specify the reference at deployment time, rather than
statically at compile time.
41

CHAPTER 3 | Getting Started
Step 4: Invoke operations on
target object

Now that the proxy object has been created, the following code obtains the
width and height of the grid, and then sets a particular element of it to a
particular value (in this case, it sets the element in row 2 column 4 to the
value 123).

' Visual Basic .NET
Dim height As Short = GridObj.height
Dim width As Short = GridObj.width
Console.WriteLine("Grid�s size : " & height & " x " & width)

�
Console.WriteLine("Set element 2 x 4 to 123")
GridObj.set(2, 4, 123)
Dim 1_Value As Int32 = GridObj.get(2, 4)
Console.WriteLine("2 x 4 Element�s value : " & 1_Value)
If (1_Value = 123) Then

Console.WriteLine("Demo succeeded")
Else

Console.WriteLine("Demo failed, incorrect value returned")
End If
42

Developing .NET Clients
Writing a C# Client

Overview This subsection describes the steps to develop a simple C# client of a
CORBA server. The steps are:

Step 1: Read IOR from file Start by reading the interoperable object reference (IOR) for the target
object, which is contained in the .ref file that the user specifies on the
command line when starting the client. The following code raises an error if
the .ref file is not specified on the command line.

Step 2: Register remoting channel The following line registers the remoting channel that the client wants to
use. The custom remoting channel should be registered in the same way as
any other .NET remoting channel.

The preceding code tells the .NET application that when it is attempting to
access an object outside of its application domain, it should attempt to use
the ClientChannel remoting channel.

Step Action

1 Read IOR for the target object from file.

2 Register the required remoting channel.

3 Create proxy object for client invocations.

4 Invoke operations on target object.

// C#
if (args.Length < 1)

throw new Exception("IOR filename not specified");
string url;
using (StreamReader iorFile = new StreamReader(args [0]))
{
 url = iorFile.ReadToEnd();
}

// C#
ChannelServices.RegisterChannel(new ClientChannel());
43

CHAPTER 3 | Getting Started
Step 3: Create proxy object The following code creates a proxy instance of the remote target object in
the client�s address space.

The call to GetObject() specifies the name of the target object to which the
client wants to connect (in this case, Grid). The main difference between
the preceding call example and a call to a native .NET object is that instead
of passing an object URL to the call, the client must instead pass an IOR, a
corbaloc reference, or a Naming Service reference. The call to GetObject()
creates both the proxy object and an ClientChannelSink channel sink.

The channel sink parses the reference (that is, IOR, corbaloc reference, or
Naming Service reference) passed by the client and creates a CORBA object
reference either by:

� Using string_to_object(), if an IOR or corbaloc reference has been
passed.

� Resolving the Naming Service reference, if a Naming Service reference
has been passed.

// C#
Grid GridObj = (Grid) Activator.GetObject(typeof (Grid), url);

Note: An alternative way of creating the proxy object (instead of calling
Activator.GetObject()) is to use the new operator for the .NET Grid type.
In this case, the reference must be specified in the application�s
configuration file. This alternative approach is useful in that it allows you
to dynamically specify the reference at deployment time, rather than
statically at compile time.
44

Developing .NET Clients
Step 4: Invoke operations on
target object

Now that the proxy object has been created, the following code obtains the
width and height of the grid, and then sets a particular element of it to a
particular value (in this case, it sets the element in row 2 column 4 to the
value 123).

// C#
Int16 height = GridObj.height;
Int16 width = GridObj.width;
Console.WriteLine("Grid�s size : " + height + " x " + width);

�
Console.WriteLine("Set element 2 x 4 to 123");
GridObj.set(2, 4, 123);
Int32 1_Value = GridObj.get(2,4);
Console.WriteLine("2 x 4 Element�s value : " + 1_Value);
if (1_Value == 123) Then

Console.WriteLine("Demo succeeded");
else

Console.WriteLine("Demo failed, incorrect value returned");
45

CHAPTER 3 | Getting Started
Building and Running the Client

Overview This subsection describes how to build and run the supplied grid client
demonstrations. It discusses the following topics:

Building and running the Visual
Basic .NET client

The steps to build and run the Visual Basic .NET grid client demonstration
are:

1. Navigate to:
...\OBdotNET-1.0\remoting\demos\common\dotnet\grid\

vb_client\bin

2. Enter nmake.

3. Enter vb_client ..\..\grid.ref.

Building and running the C#
client

The steps to build and run the C# grid client demonstration are:

1. Navigate to:
...\OBdotNET-1.0\remoting\demos\common\dotnet\grid\

csharp_client\bin

2. Enter nmake.

3. Navigate to bin\Debug or bin\Release.

4. Enter csharp_client ..\..\..\grid.ref.

Output The output from the demonstrations is as follows:

Note: An alternative way to build the client is to open the Visual Basic
.NET project files in the Visual Studio IDE and perform the build from
there.

Note: An alternative way to build the client is to open the C# project files
in the Visual Studio IDE and perform the build from there.

Grid�s size : 5 x 5
Set element 2 x 4 to 123
2 x 4 Element�s value :123
Demo succeeded
46

Developing .NET Clients
47

CHAPTER 3 | Getting Started
48

CHAPTER 4

Client Callbacks
The typical .NET Connector scenario involves .NET clients
invoking operations on objects in CORBA servers. However,
.NET clients can implement some of the functionality
associated with servers, and all servers can act as clients. A
callback invocation is a programming technique that takes
advantage of this. This chapter describes how to implement
client callbacks.

In this chapter This chapter discusses the following topics:

Introduction to Callbacks page 50

Implementing Callbacks page 51
49

CHAPTER 4 | Client Callbacks
Introduction to Callbacks

Overview This chapter introduces the concept of client callbacks. The following topics
are discussed:

� �What is a callback?� on page 50.

� �Typical use� on page 50.

What is a callback? A callback is an operation invocation made from a server to an object that is
implemented in a client. A callback allows a server to send information to
clients without forcing clients to explicitly request the information.

Typical use Callbacks are typically used to allow a server to notify a client to update
itself. For example, in a banking application, clients might maintain a local
cache to hold the balance of accounts for which they hold references. Each
client that uses the server�s account object maintains a local copy of its
balance. If the client accesses the balance attribute, the local value is
returned if the cache is valid. If the cache is invalid, the remote balance is
accessed and returned to the client, and the local cache is updated.

When a client makes a deposit to, or withdrawal from, an account, it
invalidates the cached balance in the remaining clients that hold a reference
to that account. These clients must be informed that their cached value is
invalid. To do this, the real account object in the server must notify (that is,
call back) its clients whenever its balance changes.

Note: The .NET Connector bridge holds an Orbacus proxy object for each
.NET object.
50

Implementing Callbacks
Implementing Callbacks

Overview This section describes how to implement callbacks.

In this section This section discusses the following topics:

Defining the OMG IDL Interfaces page 52

Implementing the Client in C# page 54

Implementing the Server in C++ page 56

Note: A demonstration that implements callback functionality is provided
in ...\OBdotNET-1.0\remoting\demos\callback.
51

CHAPTER 4 | Client Callbacks
Defining the OMG IDL Interfaces

Overview This section describes the first step in implementing client callback
functionality, which is to define the OMG IDL interfaces for the server
objects and client objects. The following topics are discussed:

� �Client interface example� on page 52.

� �Client interface explanation� on page 52.

� �Server interface example� on page 52.

� �Server interface explanation� on page 53.

Client interface example The client implements an IDL interface that the server uses to call back
clients. A suitable IDL interface for the client might be defined as follows:

Client interface explanation In the preceding example, the op1() operation is declared as oneway,
because it is important that the server is not blocked when it calls back its
clients.

Server interface example The server implements an IDL interface that allows it to maintain a list of
clients that should be notified of changes in its objects� data. A suitable IDL
interface for the server might be defined as follows:

// OMG IDL
interface ClientObject{

oneway void op1(in string s);
}

// OMG IDL
interface Callback{

oneway void Register(in ClientObject obj);
}

52

Implementing Callbacks
Server interface explanation In the preceding example, the Register() operation registers a client with
the server. The parameter to Register() is of the ClientObject type, so
that the client can pass a reference to itself to the server. The server can
maintain this reference in a list of clients that should be notified of events of
interest.
53

CHAPTER 4 | Client Callbacks
Implementing the Client in C#

Overview After you have defined the OMG IDL interfaces for the server and client, you
can start implementing the client and server. To write a client based on the
IDL in �Defining the OMG IDL Interfaces� on page 52, you must implement
the ClientObject interface defined for the client objects. This subsection
describes how to implement the client in C#. The following topics are
discussed:

� �Client implementation code� on page 54.

� �Main client code� on page 55.

Client implementation code The following is the code in the generated ClientObjectImpl.cs file:

Note: Because it implements an interface, the client is acting as a server.
However, the client does not have to register its implementation object
with the bridge, and it is not registered in the Implementation Repository.
Therefore, the server cannot bind to the client�s implementation object.

public class ClientObjectImpl : ClientObject
{
 public System.Boolean called;
 public ClientObjectImpl()
 {
 called = false;
 }
 #region ClientObject Members

 public void op1(string s)
 {
 Console.WriteLine("ClientObjectImpl::op1(): called.");
 Console.WriteLine(" s = " + s);
 Console.WriteLine("ClientObjectImpl::op1(): returning.");
 called = true;
 }

 #endregion

}

54

Implementing Callbacks
As shown in the preceding example, the C# class ClientObjectImpl
inherits from the ClientObject interface.

Main client code The following code extract is from the client.cs file:

The preceding code extract can be explained as follows:

1. It binds to an object, CallBackObj, of the Callback type in the server.

2. It creates an implementation object, ClientObj, of the ClientObject
type.

3. It calls the Register() operation on the CallbackObj server object,
and passes it a reference to its implementation object, ClientObj. This
allows the server to subsequently invoke operations on the callback
object.

�
 // Create the remote proxy
 // The URL parameter to this call could either be an ior, a
 // corbaloc or a Naming Service ref.
 // The new operator can be used here instead of GetObject,
 // in this case the url can be specified in a config file.

1 CallBack CallBackObj = (CallBack)
 Activator.GetObject(typeof (CallBack), url);
 // Instansiate the ClientObject and try to register
 // it with the server.
 Console.WriteLine("Calling Register...");

2 ClientObjectImpl ClientObj = new ClientObjectImpl();
3 CallBackObj.Register((ClientObject) ClientObj);

 Console.WriteLine("Called Register.");
 while (!ClientObj.called)
 {
 Thread.Sleep(1000);
 }
�

55

CHAPTER 4 | Client Callbacks
Implementing the Server in C++

Overview This section describes the steps to implement a server for the purpose of
client callbacks, based on the IDL in �Defining the OMG IDL Interfaces� on
page 52. The steps are:

Step 1: Implementing the
Callback interface

You must provide an implementation class for the Callback interface.

The implementation of the Register operation receives an object reference
from the client. When the client invokes the Register operation on the
server, an Orbacus proxy object for the client�s ClientObject object is
created in the .NET Connector bridge.

The server uses the Orbacus proxy object to call back to the client. The
implementation of the Register() operation should store the reference to
the Orbacus proxy for this purpose.

Step 2: Invoking the op1()
operation on the client

After the Orbacus proxy object for the client�s ClientObject object has been
created in the .NET Connector bridge, the server can then invoke the op1()
operation on this proxy object.

Step Action

1 Implement the Callback interface.

2 Invoke the op1() operation on the client object.

Note: See Using Orbacus for more details of how to implement servers.
56

CHAPTER 5

Development
Support Tools
This chapter describes how to use the itts2il utility to generate
.NET metadata from existing OMG IDL and perform various
type store management tasks.

In this chapter This chapter discusses the following topics:

Generating .NET Metadata page 58

Managing the Type Store page 60

Note: The itts2il and ittypeman command-line utilities described in
this chapter are located in install-dir\bin, where install-dir
represents your Orbacus .NET Connector installation directory.
57

CHAPTER 5 | Development Support Tools
Generating .NET Metadata

Overview The first step in writing a .NET client that is to communicate with a CORBA
server is to obtain .NET metadata, which describes the target CORBA
interfaces and types as .NET interfaces and types. You can generate .NET
metadata from existing OMG IDL information in the type store. To minimize
manual lookups, you should ensure that each IDL file contains a module.

Registering OMG IDL Before you attempt to create .NET metadata from the OMG IDL for your
target CORBA objects, you must ensure that the OMG IDL is registered with
the Interface Repository (IFR). This is because itts2il reads the OMG IDL
information from the IFR. For example, the following command, using the
Orbacus irfeed utility, registers with the IFR the OMG IDL in the grid.idl
file:

where config_file contains information for connecting to the irfeed, namely
a variable ooc.orb.service.InterfaceRepository, whose value is a
corbaloc with the host name and port number.

Generating metadata The following command creates a .NET metadata assembly within a
Grid.dll file, based on the OMG IDL Grid interface:

Usage Text You can display the usage text for itts2il as follows:

The usage text for itts2il is:

irfeed -ORBconfig config_file grid.idl

itts2il Grid

itts2il -?
58

Generating .NET Metadata
Usage: [options] <type name> [[<type name>] �]
 -f : file name (defaults to <type name #1>.dll)
 -a : assembly name (defaults to <type name #1>)
 -m : module name (defaults to <type name #1>)
 -i : always connect to the IFR
 -e : lookup and cache type entries from the IFR
 (use "*" to look up the entire IFR)
 -c : list the type store contents
 -w : wipe the type store cache clean
 -v : verbose mode
59

CHAPTER 5 | Development Support Tools
Managing the Type Store

Overview This section first describes the role of the Orbacus .NET Connector type
store and how it works. It then describes how to use itts2il to perform
various type store management tasks.

In this section This section discusses the following topics:

The Role of the Type Store page 61

The Caching Mechanism of the Type Store page 63

Adding New Information to the Type Store page 65

Emptying the Type Store Cache page 67

Dumping the Type Store Contents page 68
60

Managing the Type Store
The Role of the Type Store

Overview This subsection describes the role of the type store. The following topics are
discussed:

� �Graphical Overview� on page 61.

� �Role� on page 62.

Graphical Overview Figure 4 provides a graphical overview of the central role played by the type
store in the use of the .NET Connector development utilities.

Figure 4: .NET Connector Type Store and the Development Utilities

OMG IDL

.NET Connector Bridge

Type Store

Interface
Repository

.NET
Metadata

irfeed
command

itts2il
command
61

CHAPTER 5 | Development Support Tools
Role As shown in Figure 4 on page 61, the type store plays a central role in the
use of the .NET Connector development utilities. The itts2il utility uses
the OMG IDL type information in the cache to generate the .NET metadata
used by .NET clients to communicate with CORBA objects. The .NET
metadata assembly is stored in a DLL file that is also generated using the
itts2il utility.
62

Managing the Type Store
The Caching Mechanism of the Type Store

Overview This subsection describes how type information is stored in the type store.
The following topics are discussed:

� �OMG IDL� on page 63.

� �Memory and Disk Cache� on page 63.

� �Type Information Management� on page 64.

OMG IDL OMG IDL files define the IDL interfaces for CORBA objects. As shown in
Figure 4 on page 61, you can register OMG IDL in a CORBA Interface
Repository (IFR), where it is stored in binary format.

To register an IDL file, enter the following command from the directory
where the IDL file is located (where filename represents the IDL filename,
and config_file contains information for connecting to the irfeed, namely a
variable ooc.orb.service.InterfaceRepository, whose value is a corbaloc
with the host name and port number):

The .NET Connector uses the OMG IDL type information available in the
IFR. The type information can consist of any IDL content, such as module
names, interface names, or data types.

Memory and Disk Cache A possible performance bottleneck might result at application runtime, if the
.NET Connector needs to contact the IFR for each OMG IDL definition. This
is because every query might involve multiple remote invocations.

To avoid any bottlenecks, the .NET Connector uses a memory and disk
cache of type information. Both the itts2il and ittypeman utilities are
capable of converting OMG IDL type information to an ORB-neutral binary
format and caching it in memory. The use of a memory cache means that
the .NET Connector has to query the IFR only once for each OMG IDL
definition. This memory cache can then be saved to disk for future use.

irfeed -ORBconfig config_file filename
63

CHAPTER 5 | Development Support Tools
Type Information Management At application runtime, when the .NET Connector is marshalling
information, and method invocations are being made, the type store cache
holds the required type information in memory. The type information is
handled on a first-in-first-out basis in the memory cache. This means that
the most recently accessed information becomes the most recent in the
queue.

On exiting the application process, or when the memory cache size limit has
been reached, new entries in the memory cache are written to persistent
storage, and are reloaded on the next run of a .NET Connector application.

The memory cache and disk cache are quite separate. Initially, on starting
up, the memory cache is primed with the most recently accessed elements
of the disk cache. (The number of elements in the memory cache depends
on the configuration settings, as described in �Orbacus .NET Connector
Configuration� on page 145.) When lookups are performed, if the required
type information is not already in the memory cache, ittypeman pulls it out
of the disk cache. If the required type information is not in the disk cache,
ittypeman pulls it out of the IFR. The related type information then becomes
the most recent item in the queue in the type store memory cache.
64

Managing the Type Store
Adding New Information to the Type Store

Overview This section describes how to use the itts2il utility to add new OMG IDL
type information to the .NET Connector type store.

Priming the cache Adding new information to the type store is also known as priming the
cache. Priming the cache is not mandatory and the only advantage in doing
it is that it can help to optimize the first run of a .NET Connector application
that is using OMG IDL types that were not already in the type store. As
explained in �The Caching Mechanism of the Type Store� on page 63, the
type store obtains its information from the IFR on an as-needed basis at
application runtime. So, the only reason you might want to prime the cache
is if you want to avoid the type store having to contact the IFR on start-up.

Registering OMG IDL Before you can prime the cache, you must ensure that the relevant OMG IDL
is registered with the IFR. This is because the utilities used to prime the
cache need to read the OMG IDL information from the IFR.

To register an IDL file, enter the following command, as described in �OMG
IDL� on page 63.

Priming the Type Store with an
Individual Entry

To prime the type store with, for example, the OMG IDL mygrid interface,
enter:

In this case, the -e argument instructs itts2il to query the IFR for the
specified myinterface interface, and then add it to the type store. Ensure
that you enter the fully scoped name of the OMG IDL type, as shown. This
means you must precede the interface name with the module name (that is,
mymodule:: in the previous example).

Note: All of the commands described here can also be performed using
the ittypeman utility. It is simply a matter of replacing itts2il with
ittypeman in each case.

irfeed -ORBconfig config_file filename

itts2il -e mymodule::myinterface
65

CHAPTER 5 | Development Support Tools
Priming the Type Store with
Multiple Entries

To prime the type store with multiple OMG IDL entries simultaneously, enter
for example:

Priming the Type Store with the
entire IFR

To prime the type store with the entire contents of the IFR, enter:

This is a convenient way of simultaneously priming the cache with the full
contents of the IFR.

itts2il -e module1::interface1 module2::interface2 module3::int3

Note: As shown in the preceding example, ensure there is a space
between each entry.

itts2il -e *
66

Managing the Type Store
Emptying the Type Store Cache

Overview When making changes to IDL during development, it is possible that your
.NET metadata and cache of type information in the type store can become
inconsistent with the IDL in the IFR. This in turn results in runtime errors.
Therefore, if you modify an IDL interface definition, you should subsequently
empty the type store cache and then regenerate the .NET metadata. This
section describes how to use the itts2il utility to empty the contents of the
type store.

Using the command line The following command empties the type store (that is, typeman) data files:

Repriming the cache The cache can be reprimed with type information in the following ways:

� When you use the itts2il command to subsequently regenerate your
.NET metadata, the corresponding type information is automatically
added to the type store cache.

� If an item of type information cannot be obtained from the type store
cache at application runtime on a deployment machine, it is then
obtained from the IFR and automatically added to the cache.

� The itts2il -e * command can be specified on a deployment
machine to add the full contents of the IFR to the cache. This might be
done, for example, to avoid a potential performance bottleneck at
application runtime that could result if different clients were
simultaneously trying to contact the IFR for type information not
currently in the local cache.

Note: It is not possible to selectively delete only some type store entries.
To delete entries, you must empty the entire cache.

itts2il -w

Note: See �Itts2il Argument Details� on page 152 for more details of the
-w argument and the type store data files. As an alternative to using the
itts2il -w command, you can also use the ittypeman -wm command to
empty the type store data files.
67

CHAPTER 5 | Development Support Tools
Dumping the Type Store Contents

Overview This section describes how to use the itts2il utility to list (that is, dump)
the contents of the type store cache.

Using the command line The following command lists the type store contents:

Example output The following is an example of output resulting from the preceding
command:

itts2il -c

Note: As an alternative to using the itts2il -c command, you can also
use ittypeman -c to list type store contents.

OperationSet TypeTest
CORBA_ENUM TypeTest::Beer
CORBA_USER_DEF_STRUCT TypeTest::FixedLength
CORBA_USER_DEF_STRUCT TypeTest::UserExc
CORBA_USER_DEF_STRUCT TypeTest::VarLength
CORBA_USER_DEF_UNION TypeTest::BeerUnion
CORBA_TYPEDEF TypeTest::LongSeqnce
CORBA_TYPEDEF _IDL_SEQUENCE_long
68

CHAPTER 6

Deploying a .NET
Connector
Application
This chapter provides an overview of the deployment model
you can adopt when deploying a distributed application with
the Orbacus .NET Connector. It also describes the steps you
must follow to deploy a distributed .NET Connector
application.

In This Chapter This chapter discusses the following topics:

Deployment Model page 70

Deployment Steps page 72
69

CHAPTER 6 | Deploying a .NET Connector Application
Deployment Model

Overview This section provides an overview of the typical deployment model.

Deployment scenario overview Figure 5 provides a graphical overview of the typical deployment scenario
involved in using the .NET Connector to enable .NET clients to
communicate with CORBA servers.

Figure 5: Overview of Typical Deployment Scenario

(Windows, UNIX, Linux,
and so on)

CORBA Server Machine

Client Process

.NET Client Machine 1
(Windows XP or Windows Server 2003)

Client Program

(Visual Basic .NET,
Visual C++ 7,

C#, J#,
 and so on)

.NET Connector Bridge

(OrbacusDotNet.dll)

.NET
metadata
assembly

DLL

Client Process

.NET Client Machine 2
(Windows XP or Windows Server 2003)

Client Program

(Visual Basic .NET,
Visual C++ 7,

C#, J#,
 and so on)

.NET Connector Bridge

(OrbacusDotNet.dll)

.NET
metadata
assembly

DLL

IIOP

IIOP
70

Deployment Model
Explanation The deployment scenario overview in Figure 5 on page 70 can be outlined
as follows:

� Each .NET client machine must be running on either Windows XP or
Windows 2003.

� The .NET Connector bridge (that is, OrbacusDotNET custom remoting
channel) always runs in-process (that is, within the client process).

� The .NET metadata DLL file is also exposed within the client process.

� Each client machine uses IIOP to communicate with the CORBA
server.

� The CORBA server process can be running on any platform that is
supported by the server-side ORB being used.
71

CHAPTER 6 | Deploying a .NET Connector Application
Deployment Steps

Overview This section describes the steps involved in deploying a .NET Connector
application.

Required components Two components are required for successful deployment of a .NET
Connector client:

� The .NET client executable.

� The .NET metadata assembly DLL.

These must be copied from the development host to every deployment host.

Steps The steps to deploy a .NET Connector client application are:

1. Build and install the Orbacus 4.3 runtime (SP2 or later) on the
deployment host.

2. Configure a local Orbacus IFR service on the deployment host or
provide access to a remote centralized IFR service.

3. Copy the client executable and the .NET metadata DLL to the
deployment host.

Repeat these steps as necessary for each deployment host on your system.
See Figure 6 on page 73 for a graphical overview of these steps.

Points to note Note the following points:

� You can choose to copy the typestore cache files from the development
machine to the deployment host. If you do this, it removes the need to
configure an IFR at all for the deployment host.

� Using the itts2il -e * command on the deployment host primes the
local typestore cache with the entire contents of the IFR.

Note: An alternative to this step is to copy the type store cache files
from the development machine to the deployment host. If you do
this, you do not need to configure an IFR at all for the deployment
host.
72

Deployment Steps
Graphical overview Figure 6 provides a graphical overview of the steps involved in deploying a
.NET Connector client application. The version of Orbacus must be 4.3 SP2
or higher.

Figure 6: Overview of Deployment Steps
73

CHAPTER 6 | Deploying a .NET Connector Application
74

CHAPTER 7

Introduction to
OMG IDL
An object�s interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes the semantics and uses of the CORBA
Interface Definition Language (OMG IDL), which is used to
describe the interfaces to CORBA objects.

In This Chapter This chapter discusses the following topics:

IDL page 76

Modules and Name Scoping page 77

Interfaces page 78

IDL Data Types page 98

Defining Data Types page 113

Note: .NET does not support all the OMG IDL types described in this
chapter. See �Mapping CORBA to .NET� on page 119 for details of the
OMG IDL types that the .NET Connector supports.
75

CHAPTER 7 | Introduction to OMG IDL
IDL

Overview An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, COBOL, and PL/I. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

IDL Standard Mappings CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, COBOL, and PL/I. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbacus IDL compiler uses these mappings to convert
IDL definitions to language-specific definitions that conform to the
semantics of that language.

Overall Structure You create an application�s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

IDL Definition Structure In the following example, two interfaces, Bank and Account, are defined
within the BankDemo module:

module BankDemo
{
interface Bank {

 //�
};

interface Account {
 //�
};

};
76

Modules and Name Scoping
Modules and Name Scoping

Resolving a Name To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.

2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Referencing Interfaces Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped, with the following syntax:

For example, the fully scoped names of the Bank and Account interfaces
shown in �IDL Definition Structure� on page 76 are, respectively,
BankDemo::Bank and BankDemo::Account.

Nesting Restrictions A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

module-name::interface-name

module A
{

module B
{
 interface A {
 //�
 };
};

};
77

CHAPTER 7 | Introduction to OMG IDL
Interfaces

Overview This section provides details about OMG IDL interfaces.

In This Section The following topics are discussed in this section:

Introduction to Interfaces page 79

Interface Contents page 81

Operations page 82

Attributes page 85

Exceptions page 86

Empty Interfaces page 87

Inheritance of Interfaces page 88

Multiple Inheritance page 89
78

Interfaces
Introduction to Interfaces

Overview This subsection provides an introductory overview of OMG IDL interfaces.

What Are Interfaces? Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Objects and Interfaces Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Public Members Because an interface does not expose an object�s implementation, all
members are public. A client can access variables in an object�s
implementation only through an interface�s operations and attributes.

Operations and Attributes An IDL interface generally defines an object�s behavior through operations
and attributes:

� Operations of an interface give clients access to an object�s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,
whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

� An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.
79

CHAPTER 7 | Introduction to OMG IDL
Account Interface IDL Sample In the following example, the Account interface in the BankDemo module
describes the objects that implement the bank accounts:

Code Explanation This interface has two readonly attributes, AccountId and balance, which
are respectively defined as typedefs of the string and float types. The
interface also defines two operations, withdraw() and deposit(), which a
client can invoke on this object.

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; // Type for representing account
 // ids
//�
interface Account {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
};

};
80

Interfaces
Interface Contents

IDL Interface Components An IDL interface definition typically has the following components.

� Operation definitions.

� Attribute definitions

� Exception definitions.

� Type definitions.

� Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.
81

CHAPTER 7 | Introduction to OMG IDL
Operations

Overview Operations of an interface give clients access to an object�s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

Operation Components IDL operations define the signature of an object�s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

� Return value data type.

� Parameters and their direction.

� Exception clause.

An operation�s return value and parameters can use any data types that IDL
supports.

Operations IDL Sample In the following example, the Account interface defines two operations,
withdraw() and deposit(), and an InsufficientFunds exception:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//...
interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
};

};
82

Interfaces
Code Explanation On each invocation, both operations expect the client to supply an argument
for the amount parameter, and return void. Invocations on the withdraw()
operation can also raise the InsufficientFunds exception, if necessary.

Parameter Direction Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The COBOL runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

Parameter-Passing Mode
Qualifiers

There are three parameter-passing mode qualifiers:

In general, you should avoid using inout parameters. Because an inout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter�s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, in and out, the caller can decide for
itself when to discard the parameter.

One-Way Operations By default, IDL operations calls are synchronous; that is, a client invokes an
operation on an object and blocks until the invoked operation returns. If an
operation definition begins with the keyword oneway, a client that calls the
operation remains unblocked while the object processes the call.

The COBOL runtime cannot guarantee the success of a one-way operation
call. Because one-way operations do not support return data to the client,
the client cannot ascertain the outcome of its invocation. The COBOL

in This means that the parameter is initalized only by the client and is
passed to the object.

out This means that the parameter is initialized only by the object and
returned to the client.

inout This means that the parameter is initialized by the client and
passed to the server; the server can modify the value before
returning it to the client.
83

CHAPTER 7 | Introduction to OMG IDL
runtime indicates failure of a one-way operation only if the call fails before it
exits the client�s address space; in this case, the COBOL runtime raises a
system exception.

A client can also issue non-blocking, or asynchronous, invocations. See
Using Orbacus for further details.

One-Way Operation Constraints Three constraints apply to a one-way operation:

� The return value must be set to void.

� Directions of all parameters must be set to in.

� No raises clause is allowed.

One-Way Operation IDL Sample In the following example, the Account interface defines a one-way operation
that sends a notice to an Account object:

module BankDemo {
//�
interface Account {
 oneway void notice(in string text);
 //�
};

};
84

Interfaces
Attributes

Attributes Overview An interface�s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are accessible
to clients.

Qualified and Unqualified
Attributes

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the readonly keyword
maps only to a get function.

IDL Readonly Attributes Sample For example the Account interface defines two readonly attributes,
AccountId and balance. These attributes represent information about the
account that only the object�s implementation can set; clients are limited to
readonly access:

Code Explanation The Account interface has two readonly attributes, AccountId and balance,
which are respectively defined as typedefs of the string and float types.
The interface also defines two operations, withdraw() and deposit(),
which a client can invoke on this object.

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; //Type for representing account

ids
//�
interface Account {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
};

};
85

CHAPTER 7 | Introduction to OMG IDL
Exceptions

IDL and Exceptions IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

The raises Clause After you define an exception, you can specify it through a raises clause in
any operation that is defined within the same scope. A raises clause can
contain multiple comma-delimited exceptions:

Example of IDL-Defined
Exceptions

The Account interface defines the InsufficientFunds exception with a
single member of the string data type. This exception is available to any
operation within the interface. The following IDL defines the withdraw()
operation to raise this exception when the withdrawal fails:

exception exception-name {
[member;]�

};

return-val operation-name([params-list])
raises(exception-name[, exception-name]);

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//�
interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);
 //�
};

};
86

Interfaces
Empty Interfaces

Defining Empty Interfaces IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces.

IDL Empty Interface Sample In the following example, the CORBA PortableServer module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, ServantActivator and ServantLocator:

module PortableServer
{

interface ServantManager {};

interface ServantActivator : ServantManager {
 //�
};

interface ServantLocator : ServantManager {
 //�
};

};
87

CHAPTER 7 | Introduction to OMG IDL
Inheritance of Interfaces

Inheritance Overview An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

Inheritance Interface IDL Sample In the following example, the CheckingAccount and SavingsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

Code Sample Explanation An object that implements the CheckingAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a CheckingAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

interface new-interface : base-interface[, base-interface]�
{�};

module BankDemo{
typedef float CashAmount; // Type for representing cash
interface Account {
 //�
};

interface CheckingAccount : Account {
 readonly attribute CashAmount overdraftLimit;
 boolean orderCheckBook ();
};

interface SavingsAccount : Account {
 float calculateInterest ();
};

};
88

Interfaces
Multiple Inheritance

Multiple Inheritance IDL Sample In the following IDL definition, the BankDemo module is expanded to include
the PremiumAccount interface, which inherits from the CheckingAccount and
SavingsAccount interfaces:

Multiple Inheritance Constraints Multiple inheritance can lead to name ambiguity among elements in the
base interfaces. The following constraints apply:

� Names of operations and attributes must be unique across all base
interfaces.

� If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Inheritance Hierarchy Diagram Figure 7 shows the inheritance hierarchy for the Account interface, which is
defined in �Multiple Inheritance IDL Sample� on page 89.

module BankDemo {
interface Account {
 //�
};

interface CheckingAccount : Account {
 //�
};

interface SavingsAccount : Account {
 //�
};

interface PremiumAccount :
 CheckingAccount, SavingsAccount {
 //�
};

};
89

CHAPTER 7 | Introduction to OMG IDL
Figure 7: Inheritance Hierarchy for PremiumAccount Interface

Account

SavingsAccountCheckingAccount

PremiumAccount
90

Interfaces
Inheritance of the Object Interface

User-Defined Interfaces All user-defined interfaces implicitly inherit the predefined Object interface.
Thus, all Object operations can be invoked on any user-defined interface.
You can also use Object as an attribute or parameter type, to indicate that
any interface type is valid for the attribute or parameter.

Object Locator IDL Sample For example, the following getAnyObject() operation serves as an
all-purpose object locator:

interface ObjectLocator {
void getAnyObject (out Object obj);

};

Note: It is illegal in IDL syntax to explicitly inherit the Object interface.
91

CHAPTER 7 | Introduction to OMG IDL
Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance Redefinition IDL
Sample

In the following example, the CheckingAccount interface modifies the
definition of the InsufficientFunds exception, which it inherits from the
Account interface:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//�
interface Account {
 exception InsufficientFunds {};
 //�
};
interface CheckingAccount : Account {
 exception InsufficientFunds {
 CashAmount overdraftLimit;
 };
};
//�

};

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C++, that support it.
However, COBOL does not support operation overloading.
92

Interfaces
Forward Declaration of IDL Interfaces

Overview An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface�s name; the interface�s actual
definition is deferred until later in the module.

Forward Declaration IDL Sample In the following example, the Bank interface defines a create_account()
and find_account() operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 typedef string AccountId; //Type for representing account ids

 // Forward declaration of Account
 interface Account;

 // Bank interface...used to create Accounts
 interface Bank {
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };

 Account
 find_account(in AccountId account_id)
 raises(AccountNotFound);

 Account
 create_account(
 in AccountId account_id,
 in CashAmount initial_balance
) raises (AccountAlreadyExists);
 };

 // Account interface�used to deposit, withdraw, and query
 // available funds.
 interface Account { //�
 };
};
93

CHAPTER 7 | Introduction to OMG IDL
Local Interfaces

Overview An interface declaration that contains the IDL local keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An
object that implements a local interface is a local object.

Characteristics Local interfaces differ from unconstrained interfaces in the following ways:

� A local interface can inherit from any interface, whether local or
unconstrained. Unconstrained interfaces cannot inherit from local
interfaces.

� Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

� Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.

� Local types cannot be marshalled, and references to local objects
cannot be converted to strings through ORB::object_to_string(). Any
attempts to do so throw a CORBA::MARSHAL exception.

� Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DII
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such as is_a() or
validate_connection(). Any attempts to do so throw a
CORBA::NO_IMPLEMENT exception.

� The ORB does not mediate any invocations on a local object. Thus,
local interface implementations are responsible for providing the
parameter copy semantics that a client expects.

� Instances of local objects that the OMG defines, as supplied by ORB
products, are exposed either directly or indirectly through
ORB::resolve_initial_references().
94

Interfaces
Implementation Local interfaces are implemented by CORBA::LocalObject to provide
implementations of Object pseudo-operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the LocalObject type is only defined by each language
mapping.

Local Object Pseudo-Operations The LocalObject type implements the Object pseudo-operations shown in
Table 2.

Table 2: CORBA::LocalObject Pseudo-Operations and Return Values

Operation Always returns

is_a() An exception of NO_IMPLEMENT.

get_interface() An exception of NO_IMPLEMENT.

get_domain_managers() An exception of NO_IMPLEMENT.

get_policy() An exception of NO_IMPLEMENT.

get_client_policy() An exception of NO_IMPLEMENT.

set_policy_overrides() An exception of NO_IMPLEMENT.

get_policy_overrides() An exception of NO_IMPLEMENT.

validate_connection() An exception of NO_IMPLEMENT.

non_existent() False.

hash() A hash value that is consistent
with the object�s lifetime.

is_equivalent() True, if the references refer to the
same LocalObject
implementation.
95

CHAPTER 7 | Introduction to OMG IDL
Valuetypes

Overview Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Characteristics Valuetypes can be seen as a cross between the following:

� Data types, such as long and string, which can be passed by value
over the wire as arguments to remote invocations.

� Objects, which can only be passed by reference.

When a program supplies an object reference, the object remains in its
original location; subsequent invocations on that object from other address
spaces move across the network, rather than the object moving to the site of
each request.

Valuetype Support Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is
passed as an argument to a remote operation, the receiving address space
creates a copy of it. The copied valuetype exists independently of the
original; operations that are invoked on one have no effect on the other.

Valuetype Invocations Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

Valuetype Implementations Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype�s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.
96

Interfaces
Abstract Interfaces

Overview An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

IDL Abstract Interface Sample In the following example, the IDL definitions specify that the
Example::display() operation accepts any derivation of the abstract
interface, Describable:

Abstract Interface IDL Sample Based on the preceding IDL, you can define two derivations of the
Describable abstract interface: the Currency valuetype and the Account
interface.

abstract interface Describable {
string get_description();

};

interface Example {
void display(in Describable someObject);

};

interface Account : Describable {
// body of Account definition not shown

};

valuetype Currency supports Describable {
// body of Currency definition not shown

};

Note: Because the parameter for display() is defined as a Describable
type, invocations on this operation can supply either Account objects or
Currency valuetypes.
97

CHAPTER 7 | Introduction to OMG IDL
IDL Data Types

In This Section The following topics are discussed in this section:

Data Type Categories In addition to IDL module, interface, valuetype, and exception types, IDL
data types can be grouped into the following categories:

� Built-in types such as short, long, and float.

� Extended built-in types such as long long and wstring.

� Complex types such as enum, struct, and string.

� Pseudo objects.

Built-in Data Types page 99

Extended Built-in Data Types page 102

Complex Data Types page 105

Enum Data Type page 106

Struct Data Type page 107

Union Data Type page 108

Arrays page 110

Sequence page 111

Pseudo Object Types page 112
98

IDL Data Types
Built-in Data Types

List of Types, Sizes, and Values Table 3 shows a list of CORBA IDL built-in data types (where the

<= symbol means �less than or equal to�).

Floating Point Types The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

Table 3: Built-in IDL Data Types, Sizes, and Values

Data type Size Range of values

short <= 16 bits �215 ... 215�1

unsigned short <= 16 bits 0 ... 216�1

long <= 32 bits �231 ... 231�1

unsigned long <= 32 bits 0 ... 232�1

float <= 32 bits IEEE single-precision floating
point numbers

double <= 64 bits IEEE double-precision
floating point numbers

char <= 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound> Variable length ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE

octet <= 8 bits 0x0 to 0xff

any Variable length Universal container type
99

CHAPTER 7 | Introduction to OMG IDL
Char Type The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

String Type The string type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as string<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL
character. Thus, a string<6> can contain the six-character string, cheese.

Bounded and Unbounded Strings The declaration statement can optionally specify the string�s maximum
length, thereby determining whether the string is bounded or unbounded:

For example, the following code declares the ShortString type, which is a
bounded string with a maximum length of 10 characters:

Octet Type Octet types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, because characters might be subject to
translation during transmission. For example, if a client that uses ASCII
sends a string to a server that uses EBCDIC, the sender and receiver are
liable to have different binary values for the string�s characters.

Any Type The any type allows specification of values that express any IDL type, which
is determined at runtime, thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this

string[length] name

typedef string<10> ShortString;
attribute ShortString shortName; // max length is 10 chars
100

IDL Data Types
call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the typecode. See
Using Orbacus for further details about the any type.
101

CHAPTER 7 | Introduction to OMG IDL
Extended Built-in Data Types

List of Types, Sizes, and Values Table 4 shows a list of CORBA IDL extended built-in data types (where the
<= symbol means �less than or equal to�).

Long Long Type The 64-bit integer types, long long and unsigned long long, support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

Table 4: Extended built-in IDL Data Types, Sizes, and Values

Data Type Size Range of Values

long longa <= 64 bits �263 ... 263�1

unsigned long longa <= 64 bits 0 ... �264�1

long doubleb <= 79 bits IEEE double-extended
floating point number, with
an exponent of at least 15
bits in length and a signed
fraction of at least 64 bits.
The long double type is
currently not supported on
Windows.

wchar Unspecified Arbitrary codesets

wstring Variable
length

Arbitrary codesets

fixedc Unspecified <= 31 significant digits

a. Due to compiler restrictions, the COBOL range of values for the long long
and unsigned long long types is the same range as for a long type (that
is, 0 � 231�1).

b. Due to compiler restrictions, the COBOL range of values for the long double
type is the same range as for a double type (that is, <= 64 bits).

c. Due to compiler restrictions, the COBOL range of values for the fixed type is
<= 18 significant digits.
102

IDL Data Types
Long Double Type Like 64-bit integer types, platform support varies for the long double type,
so its use can yield IDL compiler errors.

Wchar Type The wchar type encodes wide characters from any character set. The size of
a wchar is platform-dependent.

Wstring Type The wstring type is the wide-character equivalent of the string type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

Fixed Type IDL specifies that the fixed type provides fixed-point arithmetic values with
up to 31 significant digits.

You specify a fixed type with the following format:

The format for the fixed type can be explained as follows:

� The digit-size represents the number�s length in digits. The
maximum value for digit-size is 31 and it must be greater than
scale. A fixed type can hold any value up to the maximum value of a
double type.

� If scale is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount, to have a digit size of 10 and a
scale of 2:

Given this typedef, any variable of the CashAmount type can contain
values of up to (+/-)99999999.99.

� If scale is a negative integer, the decimal point moves to the right by
the number of digits specified for scale, thereby adding trailing zeros
to the fixed data type�s value. For example, the following code declares
a fixed type, bigNum, to have a digit size of 3 and a scale of -4:

typedef fixed<digit-size,scale> name

typedef fixed<10,2> CashAmount;

typedef fixed <3,-4> bigNum;
bigNum myBigNum;
103

CHAPTER 7 | Introduction to OMG IDL
If myBigNum has a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant Fixed Types Constant fixed types can also be declared in IDL, where digit-size and
scale are automatically calculated from the constant value. For example:

This yields a fixed type with a digit size of 7, and a scale of 6.

Fixed Type and Decimal Fractions Unlike IEEE floating-point values, the fixed type is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value, 0.1, cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fixed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

module Circle {
const fixed pi = 3.142857;

};
104

IDL Data Types
Complex Data Types

IDL Complex Data Types IDL provide the following complex data types:

� Enums.

� Structs.

� Multi-dimensional fixed-sized arrays.

� Sequences.
105

CHAPTER 7 | Introduction to OMG IDL
Enum Data Type

Overview An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

Enum IDL Sample For example, you can modify the BankDemo IDL with the balanceCurrency
enum type:

In the preceding example, the balanceCurrency attribute in the Account
interface can take any one of the values pound, dollar, yen, or franc.

Ordinal Values of Enum Type The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dollar is greater than pound, yen is greater than
dollar, and so on. All enumerators are mapped to a 32-bit type.

module BankDemo {
enum Currency {pound, dollar, yen, franc};

interface Account {
 readonly attribute CashAmount balance;
 readonly attribute Currency balanceCurrency;
 //�
};

};
106

IDL Data Types
Struct Data Type

Overview A struct type lets you package a set of named members of various types.

Struct IDL Sample In the following example, the CustomerDetails struct has several members.
The getCustomerDetails() operation returns a struct of the
CustomerDetails type, which contains customer data:

module BankDemo{
struct CustomerDetails {
 string custID;
 string lname;
 string fname;
 short age;
 //�
};

interface Bank {
 CustomerDetails getCustomerDetails(in string custID);
 //�
};

};

Note: A struct type must include at least one member. Because a struct
provides a naming scope, member names must be unique only within the
enclosing structure.
107

CHAPTER 7 | Introduction to OMG IDL
Union Data Type

Overview A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

Union Declaration Syntax You declare a union type with the following syntax:

Discriminated Unions All IDL unions are discriminated. A discriminated union associates a
constant expression (label1�labeln) with each member. The
discriminator�s value determines which of the members is active and stores
the union�s value.

IDL Union Date Sample The following IDL defines a Date union type, which is discriminated by an
enum value:

union name switch (discriminator) {
case label1 : element-spec;
case label2 : element-spec;
[�]
case labeln : element-spec;
[default : element-spec;]

};

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
short Day;
short Month;
short Year;

};
union Date switch (dateStorage) {

case numeric: long digitalFormat;
case strMMDDYY:
case strDDMMYY: string stringFormat;
default: DateStructure structFormat;

};
108

IDL Data Types
Sample Explanation Given the preceding IDL:

� If the discriminator value for Date is numeric, the digitalFormat
member is active.

� If the discriminator�s value is strMMDDYY or strDDMMYY, the
stringFormat member is active.

� If neither of the preceding two conditions apply, the default
structFormat member is active.

Rules for Union Types The following rules apply to union types:

� A union�s discriminator can be integer, char, boolean, enum, or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

� Because a union provides a naming scope, member names must be
unique only within the enclosing union.

� Each union contains a pair of values: the discriminator value and the
active member.

� IDL unions allow multiple case labels for a single member. In the
previous example, the stringFormat member is active when the
discriminator is either strMMDDYY or strDDMMYY.

� IDL unions can optionally contain a default case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.
109

CHAPTER 7 | Introduction to OMG IDL
Arrays

Overview IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where dimension-spec must be a non-zero positive
constant integer expression):

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

Array IDL Sample For example, the following defines a two-dimensional array of bank
accounts within a portfolio:

Array Indexes Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C++
array indexes always start at 0, but COBOL, PL/I, and Pascal always start at
1. Consequently, clients and servers cannot exchange array indexes unless
they both agree on the origin of array indexes and make adjustments, as
appropriate, for their respective implementation languages. Usually, it is
easier to exchange the array element itself, instead of its index.

[typedef] element-type array-name [dimension-spec]�

typedef Account portfolio[MAX_ACCT_TYPES][MAX_ACCTS]

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.
110

IDL Data Types
Sequence

Overview IDL supports sequences of any IDL data type with the following syntax:

[typedef] sequence < element-type[, max-elements] > sequence-name

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration. You can omit a
typedef declaration only for a sequence that is declared within a structure
definition.

A sequence�s element type can be of any type, including another sequence
type. This feature is often used to model trees.

Bounded and Unbounded
Sequences

The maximum length of a sequence can be fixed (bounded) or unfixed
(unbounded):

� Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

� Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

Bounded and Unbounded IDL
Definitions

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimitedAccounts {
string bankSortCode<10>;
sequence<Account, 50> accounts; // max sequence length is 50

};

struct UnlimitedAccounts {
string bankSortCode<10>;
sequence<Account> accounts; // no max sequence length

};
111

CHAPTER 7 | Introduction to OMG IDL
Pseudo Object Types

Overview CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

Defining You can use only the following pseudo-object types as attribute or operation
parameter types in an IDL specification:

To use these types in an IDL specification, include the orb.idl file in the
IDL file as follows:

This statement instructs the IDL compiler to allow the NamedValue and
TypeCode types.

CORBA::NamedValue
CORBA::TypeCode

#include <orb.idl>
//�
112

Defining Data Types
Defining Data Types

Overview With typedef, you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or
user-defined.

The following code defines the typedef identifier, StandardAccount, so that
it can act as an alias for the Account type in later IDL definitions:

In This Section This section contains the following subsections:

module BankDemo {
interface Account {
 //�
};

typedef Account StandardAccount;
};

Constants page 114

Constant Expressions page 117
113

CHAPTER 7 | Introduction to OMG IDL
Constants

Overview IDL lets you define constants of all built-in types except the any type. To
define a constant�s value, you can use either another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

Integer Constants IDL accepts integer literals in decimal, octal, or hexadecimal:

Both unary plus and unary minus are legal.

Floating-Point Constants Floating-point literals use the same syntax as C++:

const short I1 = -99;
const long I2 = 0123; // Octal 123, decimal 83
const long long I3 = 0x123; // Hexadecimal 123, decimal 291
const long long I4 = +0xaB; // Hexadecimal ab, decimal 171

const float f1 = 3.1e-9; // Integer part, fraction part,
 // exponent
const double f2 = -3.14; // Integer part and fraction part
const long double f3 = .1 // Fraction part only
const double f4 = 1. // Integer part only
const double f5 = .1E12 // Fraction part and exponent
const double f6 = 2E12 // Integer part and exponent
114

Defining Data Types
Character and String Constants Character constants use the same escape sequences as C++:

Wide Character and String
Constants

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean Constants Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

const char C1 = 'c'; // the character c
const char C2 = '\007'; // ASCII BEL, octal escape
const char C3 = '\x41'; // ASCII A, hex escape
const char C4 = '\n'; // newline
const char C5 = '\t'; // tab
const char C6 = '\v'; // vertical tab
const char C7 = '\b'; // backspace
const char C8 = '\r'; // carriage return
const char C9 = '\f'; // form feed
const char C10 = '\a'; // alert
const char C11 = '\\'; // backslash
const char C12 = '\?'; // question mark
const char C13 = '\''; // single quote
// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters
 // ('\xA' and 'B'),
 // not the single character '\xAB'

const wchar C = L'X';
const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';
const wstring OMEGA_STR = L"Omega: \u3A9";

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing
115

CHAPTER 7 | Introduction to OMG IDL
Octet Constants Octet constants are positive integers in the range 0-255.

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

Fixed-Point Constants For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration Constants Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

const octet O1 = 23;
const octet O2 = 0xf0;

// Fixed point constants take digits and scale from the
// initializer:
const fixed val1 = 3D; // fixed<1,0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

enum Size { small, medium, large }

const Size DFL_SIZE = medium;
const Size MAX_SIZE = ::large;
116

Defining Data Types
Constant Expressions

Overview IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for %, which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

Arithmetic Operators The following code contains several examples of arithmetic operators:

Evaluating Expressions for
Arithmetic Operators

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

Bitwise Operators Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

// You can use arithmetic expressions to define constants.
const long MIN = -10;
const long MAX = 30;
const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE_PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT);

// You can use bitwise operators to define constants.
const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff
117

CHAPTER 7 | Introduction to OMG IDL
IDL guarantees two�s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.
118

CHAPTER 8

Mapping CORBA
to .NET
CORBA types are defined in OMG IDL, and .NET types are
defined in Microsoft Intermediate Language (MSIL). To allow
interworking between .NET clients and CORBA servers, .NET
clients must be presented with metadata that describes the
interfaces exposed by CORBA objects. Therefore, it must be
possible to translate CORBA types to .NET types. When using
.NET Remoting, the .NET types must use the .NET Common
Type System (CTS). This chapter outlines the CORBA-to-.NET
CTS mapping rules.

In this chapter This chapter discusses the following topics:

Mapping for Basic Types page 121

Mapping for Extended Types page 122

Mapping for Interfaces page 123

Mapping for Interface Inheritance page 125

Mapping for Complex Types page 126

Mapping for Object References page 140

Mapping for Modules page 141
119

CHAPTER 8 | Mapping CORBA to .NET
Mapping for Constants page 142

Note: For the purposes of illustration, the .NET mapping is represented in
this chapter in C# rather than MSIL. The mappings shown in this chapter
are automatically performed by the Orbacus .NET Connector.
120

Mapping for Basic Types
Mapping for Basic Types

Overview OMG IDL basic types translate to compatible types in .NET.

Mapping Rules Table 5 shows the mapping rules for each basic type.

Table 5: CORBA-to-.NET Mapping Rules for Basic Types

OMG IDL Type Description .NET CTS Type Description

boolean Valid values are

0=FALSE

1=TRUE

System.Boolean Valid values are:

0=FALSE

1=TRUE

char 8-bit quantity System.Byte 8-bit unsigned integer

double IEEE 64-bit float System.Double IEEE 64-bit float

float IEEE 32-bit float System.Single Single-precision floating point
number

long 32-bit integer System.Int32 32-bit signed integer

octet 8-bit quantity System.Byte 8-bit unsigned integer

short 16-bit integer System.Int16 16-bit signed integer

unsigned long 32-bit integer System.UInt32 32-bit unsigned integer

unsigned short 16-bit integer System.UInt16 16-bit unsigned integer

string Series of characters System.String Series of unicode characters
121

CHAPTER 8 | Mapping CORBA to .NET
Mapping for Extended Types

Overview OMG IDL extended types translate to compatible types in .NET.

Mapping Rules Table 6 shows the mapping rules for each extended type.

Table 6: CORBA-to-.NET Mapping Rules for Extended Types

OMG IDL Type Description .NET CTS Type Description

long long 64-bit integer System.Int64 64-bit signed integer

unsigned long long 64-bit integer System.UInt64 64-bit unsigned integer

wchar 16-bit quantity System.Char 16-bit character

wstring Series of Unicode characters System.String Series of Unicode characters

Note: There is currently no supported .NET mapping for valutypes and
long double and fixed CORBA types.
122

Mapping for Interfaces
Mapping for Interfaces

Overview This section describes how OMG IDL interfaces map to .NET.

Mapping rules The rules for mapping OMG IDL interfaces to .NET are:

� An OMG IDL interface maps to a .NET interface that contains the
appropriate .NET signatures.

� For each operation declared in an OMG IDL interface there must be a
corresponding method defined in the .NET language of choice, with
conforming return type and parameter declarations.

� For each attribute declared in an OMG IDL interface there must be a
corresponding property defined in the .NET interface. (No set
definitions are provided for read-only attributes.)

Example The example can be broken down as follows:

1. Consider the following OMG IDL interface, Grid:

2. The preceding OMG IDL maps, for example, to the following C#
interface defined using the Common Type System:

// OMG IDL
interface Grid
{

readonly attribute short height; // height of the grid
readonly attribute short width; // width of the grid

// set the element [n,m] of the grid, to value:
void set(in short n, in short m, in long value);

// return element [n,m] of the grid:
long get(in short n, in short m);

};
123

CHAPTER 8 | Mapping CORBA to .NET
// C#
interface Grid
{

Int16 height // height of the grid
{
 get;
}
Int16 width // width of the grid
{
 get;
}

// set the element [n,m] of the grid, to value:
void set(Int16 n, Int16 m, Int32 value);

// return element [n,m] of the grid:
Int32 get(Int16 n, Int16 m);

};
124

Mapping for Interface Inheritance
Mapping for Interface Inheritance

Overview This section describes the CORBA-to-.NET mapping rules for interface
inheritance.

Mapping rule A hierarchy of inherited interfaces defined in OMG IDL maps to an identical
hierarchy of .NET interfaces.
125

CHAPTER 8 | Mapping CORBA to .NET
Mapping for Complex Types

Overview This section describes the rules for mapping various OMG IDL complex
types to .NET.

In this section This section discusses the following topics:

Mapping for Structs page 127

Mapping for Enums page 128

Mapping for Unions page 129

Mapping for Arrays page 131

Mapping for Sequences page 132

Mapping for System Exceptions page 133

Mapping for User Exceptions page 134

Mapping for the Any Type page 135
126

Mapping for Complex Types
Mapping for Structs

Overview This subsection describes the CORBA-to-.NET mapping rules for structs.

Mapping rules An OMG IDL struct maps to a .NET struct that contains data elements
corresponding to the data elements of the OMG IDL struct. When a struct is
being marshalled as an in parameter (that is, from a .NET client to a
CORBA server), the marshaller uses dynamic any types to create the OMG
IDL struct. When a struct is being marshalled as an out parameter (that is,
from a CORBA server to a .NET client), .NET reflection is used to construct
the .NET struct, as required.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL struct maps, for example, to the following C#
struct:

// OMG IDL
struct AccountDetails
{

long number;
float balance;

};

// C#
public struct AccountDetails
{

public System.Int32 number;
public System.Single balance;

};
127

CHAPTER 8 | Mapping CORBA to .NET
Mapping for Enums

Overview This subsection describes the CORBA-to-.NET mapping rules for enums.

Mapping rules An OMG IDL enum maps to a .NET System.Enum type. By default, the
underlying type for a .NET System.Enum is System.Int32, but it can be
configured to an alternative type.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL enum maps, for example, to the following C#
System.Enum:

// OMG IDL
interface Typetest
{

enum e_color [red, green, blue}
}

// C#
namespace Enums
{

namespace Typetest
{
 public enum e_color {red, green, blue};
}

}

Note: All enums must be defined within an Enums namespace. This is due
to a problem with .NET reflection in the current version of the .NET
framework, whereby the TypeBuilder.DefineNestedEnum() method is not
available.
128

Mapping for Complex Types
Mapping for Unions

Overview This subsection describes the CORBA-to-.NET mapping rules for unions.

Mapping rules .NET does not have anything that equates to an OMG IDL union. For this
reason, an OMG IDL union is mapped to a .NET class that provides similar
functionality to the OMG IDL union.

When a union is being marshalled as an in parameter (that is, from a .NET
client to a CORBA server), the marshaller uses dynamic any types to create
the CORBA any types required to construct the CORBA request. When a
union is being marshalled as an out parameter (that is, from a CORBA
server to a .NET client), .NET reflection is used to construct the appropriate
return parameters, as required.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following C# class that
implements the union:

// OMG IDL
union U switch(long)
{

case 1: long l;
case 2: float f;

};
129

CHAPTER 8 | Mapping CORBA to .NET
// C#
public class U
{

private System.Int32 m_d;
private System.Int32 l;
private System.Single f;
public Int16 _d
{
 get{ return m_d;}
}
public Int16 l
{
 get{
 if (m_d == 1) return l;
 else throw new Exception("Illegal access of
 union member U::l attempted");
 }
 set{ l = value; m_d = 1};
}
public Int16 f
{
 get{
 if (m_d == 2) return f;
 else throw new Exception("Illegal access of
 union member U::f attempted");
 }
 set{ f = value; m_d = 2};
}

}

130

Mapping for Complex Types
Mapping for Arrays

Overview This subsection describes the CORBA-to-.NET mapping rules for arrays.

Mapping rules An OMG IDL array maps to a .NET System.Array of the type in question.
131

CHAPTER 8 | Mapping CORBA to .NET
Mapping for Sequences

Overview This subsection describes the CORBA-to-.NET mapping rules for sequences.

Mapping rules An OMG IDL sequence maps to a .NET System.Array of the type in
question.
132

Mapping for Complex Types
Mapping for System Exceptions

Overview This subsection describes the CORBA-to-.NET mapping rules for system
exceptions.

Mapping rules An OMG IDL system exception currently maps to a .NET exception that
contains a stringified description of the exception.
133

CHAPTER 8 | Mapping CORBA to .NET
Mapping for User Exceptions

Overview This subsection describes the CORBA-to-.NET mapping rules for user
exceptions.

Mapping rules An OMG IDL user exception inherits from the .NET System.Exception class,
and any user-defined fields are then added. When a user exception is
thrown and is being marshalled as an out parameter (that is, from a CORBA
server to a .NET client), .NET reflection is used to construct the .NET
exception, as required.
134

Mapping for Complex Types
Mapping for the Any Type

Overview This section describes the CORBA-to-.NET mapping rules for the any type.

Standard mapping rule For most types, the standard rule for passing a .NET value as an any type
simply involves using the any type as a standard System.Object parameter
to a .NET Remoting call. In this case, the .NET Connector uses the most
convenient type mapping by default. For example, consider the following C#
client demonstration:

Exceptions to standard rule For certain types, the mapping between the .NET type system and CORBA
is not straightforward. These types include:

� char

� octet

� wstring

//C#
//
//CORBA Any type
//

Int32 long_any_in_value = 18;
Int32 long_any_inout_in_val = 207;
Int32 long_any_inout_out_val = 1000346;
Int32 long_any_out_val = 1009044;
Int32 long_any_return_val = 1000019042;

TypeTestObj.any_in(long_any_in_value);

System.Object any_inout = long_any_inout_in_val;
TypeTestObj.any_inout(ref any_inout);
Debug.Assert((Int32)any_inout == long_any_inout_out_val,

"any_inout");

System.Object any_out =(Int32) 0x00000000;
TypeTestObj.any_out(out any_out);
Debug.Assert((Int32)any_out == long_any_out_val, "any_out");

Int32 any_return = (Int32)TypeTestObj.any_return();
Debug.Assert(any_return == long_any_return_val, "any_return");
135

CHAPTER 8 | Mapping CORBA to .NET
� sequence

To pass any of these types as an any in a .NET Remoting call, the type must
be passed in an Any object. The rest of this sub-section provides an overview
of the Any interface and illustrates the mapping rule for passing each of the
non-standard types as an any.

Any interface The following is an overview of the Any interface:

namespace IONA
{
 namespace dotNET
 {
 _gc public class Any
 {
 public:

 Any();
 ~Any();

 // Convenience Constructor
 Any(
 System::String* type_name,
 System::Object* value
);

 void insert_char(System::Byte value);
 System::Byte get_char();

 void insert_octet(System::Byte value);
 System::Byte get_octet();

 void insert_wstring(System::String* value);
 System::String* get_wstring();

 void insert_sequence(System::String*
 sequence_name, System::Object* value);
 System::Object* get_sequence();

 // Values can be "CORBA::Octet", "CORBA::Char",
 // "CORBA::WString", <Name of User Defined STRUCT>
 System::String* get_typename();
 System::Object* get_value();
 };
 }
}

136

Mapping for Complex Types
Mapping char types The CORBA char type is an 8�bit value, but the .NET char type is a 16�bit
value. Therefore, to pass an 8�bit char type as an any in a .NET Remoting
call, the char type must be passed as the .NET 8�bit Byte type inside an
Any object. For example:

1. Consider the following OMG IDL:

2. Based on the preceding OMG IDL, the following C# client code passes
the char type inside an Any object:

Mapping octet types The CORBA octet type is an 8�bit value, so potential ambiguity exists
between it and the CORBA char type. Therefore, to pass an octet type as an
any in a .NET Remoting call, the octet type must be passed as the .NET 8�
bit Byte type inside an Any object. For example:

1. Consider the following OMG IDL:

// OMG IDL
void char_in(in any val);

// C#
Any any1 = new Any();
any1.insert_char((System.Byte) ' a');
TypeTestObj.char_in(any1);

// OMG IDL
void octet_inout(inout any val);
137

CHAPTER 8 | Mapping CORBA to .NET
2. Based on the preceding OMG IDL, the following C# client code passes
the octet type inside an Any object:

Mapping wstring types Because most deployed CORBA servers use the CORBA string type in
preference to the CORBA wstring type, the .NET Connector uses the
CORBA string type by default for its string mappings. To pass a wstring
type as an any in a .NET Remoting call, the Any interface must be used. For
example:

1. Consider the following OMG IDL:

2. Based on the preceding OMG IDL, the following C# client code uses
Any to pass the wstring type.

// C#

Any any1 = new Any();

//Insert octet to pass over to server
any1.insert_octet((System.Byte) 0x33);
Object octet_inout = (Object) any1;

TypeTestObj.octet_inout(ref octet_inout);

//Extract octet passed back from server
any1 = (Any)octet_inout;
System.Byte = any1.get_octet();

// OMG IDL
void wstring_out(out any val);

// C#

Any any1 = new Any();

Object wstring_out = (Object)any1;

TypeTestObj.wstring_out(out wstring_out);

any1 = (Any)wstring_out;
Console.WriteLine(any1.get_wstring());
138

Mapping for Complex Types
Mapping sequence types It is not possible to distinguish between CORBA sequences based on their
structure alone. This is because two sequences might have the same
structure and different typenames. To ensure that the .NET Connector
passes a sequence as the correct type, the .NET Connector needs to know
the sequence typename. To pass a sequence as an any in a .NET Remoting
call, the Any interface must be used. For example:

1. Consider the following OMG IDL:

2. Based on the preceding OMG IDL, the following C# client code uses
Any to pass the sequence:

// OMG IDL
typedef sequence<long> LongSeqnce;
void longseq_in(in any val);
any longseq_return();

// C#

Any any1 = new Any();

// In Any CORBA Sequence

Int32[] longseq_in_val = {64839149, 438521937, 1821949};
any1.insert_sequence("LongSeqnce", longseq_in_val);
TypeTestObj.longseq_in(any1);

// Return Any CORBA Sequence

Object sequence_return = (Object)any1;
sequence_return = TypeTestObj.longseq_return();
any1 = (Any)sequence_return;

Console.WriteLine("Sequence name:" + any1.get_typename());
Int32[] longseq_return = (Int32[])any1.get_sequence();
139

CHAPTER 8 | Mapping CORBA to .NET
Mapping for Object References

Overview This section describes the CORBA-to-.NET mapping rules for object
references.

Mapping rules The .NET Connector bridge maintains a table that contains all of the CORBA
object references that exist within the application. If a CORBA object
reference is passed as a parameter of a CORBA operation, it is the proxy for
this object that is actually passed. The bridge then finds the corresponding
CORBA object reference for this proxy and passes it to the CORBA request.
If a CORBA object reference is returned from the server, a proxy is generated
for it, if necessary.
140

Mapping for Modules
Mapping for Modules

Overview This section describes the CORBA-to-.NET mapping rules for modules.

Mapping rules An OMG IDL module maps to a .NET namespace that reflects the OMG IDL
module name.
141

CHAPTER 8 | Mapping CORBA to .NET
Mapping for Constants

Overview This section describes the CORBA-to-.NET mapping rules for constant
types.

Mapping rules .NET does not support constant types at a global level, so all constants must
be defined within a class or interface. Any CORBA consts defined at the
global or module level map to a value field that represents the value of the
const and is contained in a special .NET interface. (This is analagous to the
IDL-to-Java mapping for consts.)

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

// OMG IDL
const string str = "foo";
module A
{

const float flt = 123.45;
module B
{
 const short shrt = 678;
};

};
142

Mapping for Constants
2. The preceding OMG IDL maps, for example, to the following C#
interface:

OMG IDL constants defined at interface, struct, union, or exception level
map to constants (that is, literal fields) within the mapped type.

// C#
interface str
{

public static String value = "foo";
};
namespace A
{

interface flt
{
 public static Single value = 123.45;
};
namespace B
{
 interface shrt
 {
 public static Int16 value = 678;
 };
};

};
143

CHAPTER 8 | Mapping CORBA to .NET
144

CHAPTER 9

Orbacus .NET
Connector
Configuration
This chapter describes the configuration variables specific to
the Orbacus .NET Connector, and their associated values.

In this chapter This chapter discusses the following topics:

Overview page 146

Configuration Variables page 147
145

CHAPTER 9 | Orbacus .NET Connector Configuration
Overview

Configuration keys and files Configuration variables can be defined in an Orbacus configuration file. See
Using Orbacus for more information on configuration files.

A configuration file consists of a set of key-value pairs. You assign values for
the keys of interest, then set the ORBACUS_CONFIG environment variable
to point to the location of the configuration file.

The available configuration variables are described in the rest of this
chapter.
146

Configuration Variables
Configuration Variables

Overview This section describes the configuration variables associated with the
Orbacus .NET Connector. Add the variables of interest to a configuration file,
then set the ORBACUS_CONFIG environment variable to point to the
location of this file.

This section discusses the following topics:

� �TYPEMAN_CACHE_FILE� on page 147.

� �TYPEMAN_DISK_CACHE_SIZE� on page 147.

� �TYPEMAN_MEM_CACHE_SIZE� on page 148.

� �TYPEMAN_IFR_IOR_FILENAME� on page 148.

� �TYPEMAN_IFR_NS_NAME� on page 149.

� �TYPEMAN_READONLY� on page 149.

TYPEMAN_CACHE_FILE The .NET Connector uses both a memory cache and disk cache for efficient
access to type information. This variable specifies the name and location of
the file used to contain the disk cache. The default setting for this variable
is:

where %TEMP% is an environment variable containing the path to a location
containing temporary files. Best practice is to specify a fully qualified path. If
you specify a file name only, the cache file is placed in the current directory.

The configuration file key for this variable is:

ooc.dotnet.typeman.cachefile

TYPEMAN_DISK_CACHE_SIZE The default setting is 2000 (which is the value of DEFAULT_INDEX_SIZE).

Note: Some configuration variable settings have equivalent settings in the
form of parameters to the command line utility itts2il. Settings made
with itts2il take precedence over the equivalent settings in a
configuration file.

%TEMP%\typeman._dc
147

CHAPTER 9 | Orbacus .NET Connector Configuration
This variable is used in conjunction with TYPEMAN_MEM_CACHE_SIZE, and
specifies the maximum number of entries allowed in the disk cache. When
this value is exceeded, entries can be flushed from the cache. The nature of
the applications using the bridge affects the value that should be assigned to
this variable. However, as a general rule, the disk cache size should be
about eight to ten times greater than the the memory cache (which is
specified with TYPEMAN_MEM_CACHE_SIZE.

A single cache entry in this case corresponds to a user-defined type. For
example, a union defined in OMG IDL results in one entry in the cache. An
interface containing the definition of a structure results in two entries.

A good rule of thumb is that 1000 cache entries (given a representative
cross section of user-defined types) corresponds to approximately 2
megabytes of disk space. Therefore, the default disk cache size of 2000
allows for a maximum disk cache file size of approximately 4 megabytes.

The configuration file key for this variable is:

ooc.dotnet.typeman.diskcachesize

TYPEMAN_MEM_CACHE_SIZE The default setting for this variable is 250 (which is the value of
DEFAULT_TABLE_SIZE).

This variable is used in conjunction with TYPEMAN_DISK_CACHE_SIZE,
and specifies the maximum number of entries allowed in the memory cache.
When this value is exceeded, entries can be flushed from the cache. The
nature of the applications using the bridge affects the value that should be
assigned to this variable. However, as a general rule, the disk cache size
should be about eight to ten times greater than the memory cache.
Furthermore, to avoid unnecessary swapping to and from disk, make sure
the memory cache size is no smaller than 100.

The configuration file key for this variable is:

ooc.dotnet.typeman.memcachesize

TYPEMAN_IFR_IOR_FILENAME The default setting for this variable is blank.

When the dynamic marshalling engine in the .NET Connector encounters a
type for which it cannot find corresponding type information in the type
store, it must then retrieve the type information from the Interface
Repository (IFR). The order in which the .NET Connector attempts to
connect to the IFR is as follows:
148

Configuration Variables
� If a name is specified in the TYPEMAN_IFR_NS_NAME variable, the
.NET Connector looks up that name in the Naming Service to connect
to the IFR.

� If a name is not specified in TYPEMAN_IFR_NS_NAME, the .NET
Connector checks to see whether an IOR is specified in the
initial_references:InterfaceRepository:reference variable. If so,
it uses the IFR associated with that IOR.

� If an IOR is not specified in
initial_references:InterfaceRepository:reference, the .NET
Connector checks to see whether a filename is specified in the
TYPEMAN_IFR_IOR_FILENAME variable.

Consequently, you must set the TYPEMAN_IFR_IOR_FILENAME variable if you
do not set TYPEMAN_IFR_NS_NAME or
initial_references:InterfaceRepository:reference. In this case, the
value required is the full pathname to the file that contains the IOR for the
IFR you want to use.

The configuration file key for this variable is:

ooc.dotnet.typeman.ifriorfilename

TYPEMAN_IFR_NS_NAME The default setting for this variable is blank.

This variable is needed if you are using the Naming Service to resolve the
IFR, and specifies the name of the IFR in the Naming Service. Be sure to
register an IOR for the IFR in the Naming Service under a compound name;
this variable then contains that compound name. As explained in
�TYPEMAN_IFR_IOR_FILENAME� on page 148, this is the first configuration
variable that the .NET Connector checks if it needs to contact the IFR for
type information that it cannot find in the type store.

The configuration file key for this variable is:

ooc.dotnet.typeman.ifrnsname

TYPEMAN_READONLY The default setting for this variable is �no�.

The valid settings for this variable are:

"no" This means that clients have write access to the type
store.
149

CHAPTER 9 | Orbacus .NET Connector Configuration
This variable specifies whether clients have write access or read-only access
to the type store. Because the .NET Connector bridge runs in-process to
each client, there is a local copy of the type store on each client machine. If
you want the local cache of type information to be locked, so that it cannot
be expanded locally, set this variable to "yes".

The configuration file key for this variable is:

ooc.dotnet.typeman.readonly

"yes" This means that clients have read-only access to the type
store.
150

CHAPTER 10

.NET Connector
Utility Arguments
This chapter describes the various arguments that are
available with the itts2il and ittypeman command-line
utilities.

In This Chapter This chapter discusses the following topics:

Itts2il Argument Details page 152

Ittypeman Argument Details page 156
151

CHAPTER 10 | .NET Connector Utility Arguments
Itts2il Argument Details

Overview This section describes the arguments available with the itts2il
utility. The itts2il utility performs two main functions:

� Generation of .NET metadata, using the -f, -a, -m, and -i arguments.

� Management of the type store, using the -e, -c, -w, -n, -d, -s, and -o
arguments.

Usage text You can display the usage text for itts2il as follows:

The usage text for itts2il is:

Specifying commands When specifying an itts2il command, it is important that all command
arguments precede any specified type names. Any arguments specified after
a type name are not only ignored, they are also assumed to be additional
type names.

For example, in the following command, itts2il can recognize the -v
argument, to run in verbose mode:

itts2il -?

Usage: [options] <type name> [[<type name>] �]
 -f : file name (defaults to <type name #1>.dll)
 -a : assembly name (defaults to <type name #1>)
 -m : module name (defaults to <type name #1>)
 -i : always connect to the IFR
 -e : lookup and cache type entries from the IFR
 (use "*" to look up the entire IFR)
 -c : list the type store contents
 -w : wipe the type store cache clean
 -n : cache file name (full path or filename)
 -d : disk cache size (number of entires in)
 -s : mem cache size (number of entries in)
 -o : read only (deny clients write access)
 -v : verbose mode

itts2il -i -v Grid // CORRECT USAGE
152

Itts2il Argument Details
However, in the following example, itts2il cannot recognize -v as an
argument and wrongly assumes it is a type named -v:

Summary of arguments for
generating metadata

The arguments available with itts2il for the purposes of controlling
metadata generation are listed in this section.

itts2il -i Grid -v // INCORRECT USAGE

-f This specifies the filename of the generated .NET metadata DLL. If
you do not specify the -f argument, the generated DLL filename is
based by default on the specified IDL interface name, with a .dll
extension. This argument should be qualified with the name you
want to assign to the DLL file. For example, the following command
generates a .NET metadata DLL file called myfile.dll that contains
an assembly called test with metadata corresponding to the Grid
IDL interface:

itts2il -a test -f myfile.dll Grid

-a This specifies the name of the assembly contained in the generated
.NET metadata DLL. If you do not specify the -a argument, the
assembly name is based by default on the specified IDL interface
name. This argument should be qualified with the name you want to
assign to the assembly. For example, the following command
generates an assembly called test that contains metadata
corresponding to the Grid IDL interface:

itts2il -a test Grid

-m This specifies the module name in the generated .NET metadata
DLL assembly manifest. If you do not specify the -m argument, the
generated module name is based by default on the specified IDL
interface name. This argument should be qualified with the name
you want to assign.

-i By default, itts2il always queries the host�s local typestore cache
when generating the .NET metadata DLL. This argument instructs
itts2il to query the IFR instead of the local typestore cache, to
ensure that the most up-to-date type information is being used. You
should specify this argument if the IDL in the IFR has changed since
the typestore was last primed.

Note: Most development scenarios can simply accept the default for the
.NET metatadata DLL, assembly, and module names.
153

CHAPTER 10 | .NET Connector Utility Arguments
Summary of arguments for
managing type store

The arguments available with itts2il for the purposes of controlling
typestore management are:

Note: Some of these parameters have equivalent configuration file
entries. Values passed as itts2il arguments take precedence over
configuration file entries.

-e Instructs itts2il to prime the local typestore cache with type
information from the IFR. You can qualify -e with an individual OMG
IDL interface name, a series of names separated by spaces, or an
asterisk (*) to prime the cache with the entire contents of the IFR.
See �Adding New Information to the Type Store� on page 65 for
details of how to specify each.

If you specify an OMG IDL interface name that is not already in the
cache, itts2il looks up the IFR to obtain the relevant type
information before copying it to the cache.

-c Allows you to view the contents of the type store disk cache.

-w Erases the type store contents, emptying the contents of the disk
cache data files. The disk cache data files include:

� typeman._dc The disk cache data file.

� typeman.idc The disk cache index.

� typeman.edc The disk cache empty record index.

� typeman.map The UUID name mapper file.

Note: An alternative method of emptying the disk cache data files
is to enter a command like the following example, which assumes
that the typeman data files are stored in c:\temp under Windows:

 del c:\temp\typeman.*

The -n parameter or the TYPEMAN_CACHE_FILE configuration
variable specifies where the data files are stored.

-n The .NET Connector uses both memory and disk cache for efficient
access to type information. This entry specifies the name and
location of the file used for the disk cache. Best practice is to specify
a fully qualified path, but you can also specify an unqualified file
name, which will be placed in the current directory.
154

Itts2il Argument Details
The verbose mode argument The -v argument indicates that the utility is to run in verbose mode, in
which diagnostic messages are written to standard output. You can specify
the -v argument in either of the following ways:

� As an independent argument, for example:

� As an appendage to other arguments to make them verbose, for
example:

-d Specifies the maximum number of entries allowed in the disk cache.
When this value is exceeded, entries can be flushed from the cache.
The nature of the applications using the bridge affects the value that
should be assigned to this variable. However, as a general rule, the
disk cache size should be about eight to ten times greater than the
the memory cache.

-s Specifies the maximum number of entries allowed in the memory
cache. When this value is exceeded, entries can be flushed from the
cache. The nature of the applications using the bridge affects the
value that should be assigned to this variable. However, as a general
rule, the disk cache size should be about eight to ten times greater
than the the memory cache. Furthermore, to avoid unnecessary
swapping to and from disk, make sure the memory cache size is no
smaller than 100.

-o Specifies whether clients have write access or read-only access to
the type store. Because the .NET Connector bridge runs in-process
to each client, there is a local copy of the type store on each client
machine. If you want the local cache of type information to be
locked, so that it cannot be expanded locally, use this parameter.

itts2il -w -v

itts2il -wv
155

CHAPTER 10 | .NET Connector Utility Arguments
Ittypeman Argument Details

Overview This section describes the arguments available with the ittypeman utility.

Usage Text You can display the usage text for ittypeman as follows:

The usage text for ittypeman is:

Note: The ittypeman utility is used in advanced management and
diagnostics of the type store. It is not needed during typical development
scenarios. It is provided primarily to assist in debugging.

ittypeman -?

Usage:

TypeMan [filename | -e name|uuid|TLBName] [-v[s[i] method]]
 [options]

 filename: Name of input text file.
 -e: Look up entry (name, {uuid} or type library
 pathname).
 -c[n][u]: List disk cache contents, n: Natural order,
 u: display uuid.
 -w[m]: Delete (wipe) cache contents. [m]: Delete uuid-
 mapper contents.
 -f: List type store data files.
 -r: Resolve all references (use to generate static
 bridge compatible names for CORBA sequences).
 -i: Always connect to IFR (for performance
 comparisons).
 -v[s[i] method]: Log v-table for interface/struct.
 [s:search for method].
 [i]: Ignore case. Use -v with -e option.
 -b: Log mem cache hash-table bucket sizes.
 -h: Log cache hits/misses.
 -z: Log mem cache size after each addition.
 -l[+]: Log TS basic contents ['+' shows new's/delete�s].

 -?2: Priming input file format info.
156

Ittypeman Argument Details
Summary of arguments The arguments available with ittypeman are:

-b This allows you to view the bucket sizes in the memory cache hash
table.

-c Note: This provides the same functionality as itts2il -c.

This allows you to view the contents of the type store disk cache.

If you want to view the contents in the order in which they have been
added to the cache, you can specify -cn instead. If you want to view
the UUID of each type listed, you can specify -cu instead. (Every
type in the type store has an associated UUID. The .NET Connector
generates UUIDs for OMG IDL types, using the MD5 algorithm, as
specified by the OMG.)

-e Note: This provides the same functionality as itts2il -e.

This instructs ittypeman to search the Interface Repository (IFR) for
a specific item of type information, and then add it to the type store
cache. You can qualify -e with an individual OMG IDL interface
name, a series of names separated by spaces, or an asterisk (*) to
prime the cache with the entire contents of the IFR. See �Adding
New Information to the Type Store� on page 65 for details of how to
specify each.

If you specify an OMG IDL interface name that is not already in the
cache, ittypeman looks up the IFR to obtain the relevant type
information before copying it to the cache.

-f This allows you to view the type store data files. These include the
disk cache data file (ittypeman._dc), the disk cache index file
(ittypeman.idc), the disk cache empty record index file
(ittypeman.edc), and the UUID name mapper file (ittypeman.map).

-h This instructs ittypeman to display "Cache miss" on the screen, if a
type it is looking for is not already in the cache. If the type is already
in the cache, ittypeman displays "Mem cache hit" on the screen.

-i Note: This provides the same functionality as itts2il -i.

This instructs ittypeman to always query the IFR for an item of OMG
IDL type information. This can be used to compare the performance
of different ORBs, and so on.

-l This logs the type store basic contents to the screen. Enter -l+ to log
newly added and deleted entries.

-r This generates static bridge compatible names for OMG IDL
sequences.
157

CHAPTER 10 | .NET Connector Utility Arguments
-v This allows you to view the v-table contents for an interface or struct.
This option provides output such as the following:

Name Sorted V-table DispId Offset
balance get makeLodgement 1 0
makeLodgement makeWithdrawal 2 1
makeWithdrawal balance 3 2
overdraftLimit get overdraftLimit 4 3

-w Note: This provides the same functionality as itts2il -w.

This wipes the type store contents. This means that it empties the
disk cache data files.

If you also want to empty the UUID name mapper file
(ittypeman.map), you can specify -wm instead. Wiping the type store
contents is useful when you want to reprime the cache. You might
want to reprime the cache, for example, if it contains type
information for an interface that has subsequently been modified.

-z This allows you to view the actual size to which the memory cache
temporarily grows when ittypeman is loading in a containing type
(such as a module) to retrieve a contained type (such as an interface
within that module).

-? This outputs the usage text for ittypeman.

-?2 This allows you to view the format of the entries that you can include
in a text file, which you can specify with the -e option, if you want to
prime the cache simultaneously with any number and combination
of type names.
158

CHAPTER 11

Advanced Topics
This chapter provides details of topics that might be of interest
to more advanced users of the .NET Connector, including an
explanation of the difference between static .NET metadata
and dynamic runtime type information, and a description of
how to programatically enable advanced CORBA features.

In this chapter This chapter discusses the following topics:

.NET Metadata versus Type Store Information page 160

Enabling Advanced CORBA Features page 162
159

CHAPTER 11 | Advanced Topics
.NET Metadata versus Type Store Information

Overview This section explains the distinction between static .NET metadata
generated at compile time and type store information obtained at runtime.

Graphical overview Figure 8 provides a graphical overview of the usage of both the static .NET
metadata and dynamic runtime type information that are required to enable
.NET client invocations on remote CORBA objects.

Figure 8: .NET Metadata and Dynamic Type Information Usage

OMG IDL

irfeed grid.idl

IFR

itts2il Grid

.NET Client
.NET

Connector
Bridge

.NET
Metadata
Assembly

Type
Store

CORBA Server

Target CORBA
Object

(OrbacusDotNet.dll) (grid.dll)

Via itts2il
at compile time,
or dynamically
(if necessary)

at runtime
160

.NET Metadata versus Type Store Information
Explanation The .NET Connector uses two distinct stores of type information, both of
which are required to enable a .NET client to communicate with a CORBA
server, and both of which are managed via the itts2il utility. These stores
of type information are:

� The .NET metadata assembly DLL.

� The type information in the type store.

As a starting point, on the CORBA side, the OMG IDL that defines the
interfaces to your target CORBA objects must first be registered in an
Interface Repository (IFR), using the irfeed filename command (where
filename represents the OMG IDL filename). This is necessary because:

� The itts2il utility (at compile time) obtains the type information it
needs from the IFR to generate .NET metadata and automatically
prime the type store cache.

� The type store (at runtime) obtains from the IFR any required type
information not currently in the type store cache.

The .NET metadata assembly DLL stores type information required by the
.NET framework. .NET metadata must be generated from the OMG IDL
defined for the target CORBA objects, so .NET clients have a .NET interface
to those objects. At application runtime, the client uses the .NET metadata
to make method calls on the remote target CORBA object. As far as the
client is concerned, it is making a method call on a remote .NET object.

The type store cache stores type information in a format useful to CORBA.
When a client makes a method call, the .NET Connector bridge (that is, the
OrbacusDotNET remoting channel) intercepts the client request and attempts
to obtain the type information corresponding to the client request from the
type store cache. The bridge follows this pattern when attempting to obtain
type information:

1. Check the type store memory cache, which is populated on application
start-up with the most recently accessed type information in the type
store.

2. If the type information is not in the memory cache, look for it in the
type store disk cache.

3. If the type information is not in the disk cache, look for it in the IFR.

The bridge then converts the .NET client request to a CORBA request that it
subsequently marshals across the network.
161

CHAPTER 11 | Advanced Topics
Enabling Advanced CORBA Features

Overview This section describes how you can programatically enable advanced
CORBA features, by simply defining in your .NET client code the
configuration scope used by the custom remoting channel. This in turn
provides a simple but dynamic means of enabling your .NET applications to
avail of powerful CORBA client-side features, such as Quality-of-Service
(QOS), portable interceptors, and so on.

Graphical overview Figure 9 shows how CORBA client-side features can be implemented as
plug-ins to the .NET Connector bridge for use by .NET clients.

Figure 9: CORBA Features as Plug-Ins to Remoting Channel

.NET Client
.NET Connector

Bridge

CORBA Server

.N
ET M

etadata Assem
bly

CORBA/.NET
Type Mapping

CORBA ORB

Security

Transactions

Management

CORBA IIOP

UDP

IIOP over
TCP/IP

(C#, J#, Visual
Basic .NET,
and so on)

(Windows, UNIX,
OS/390, Java)

Services Stack

Protocol Stack
162

Enabling Advanced CORBA Features
163

CHAPTER 11 | Advanced Topics
164

Index

Symbols
.NET clients

implementing in C# 43
implementing in Visual Basic .NET 40
introduction to 27

.NET metadata, creating from OMG IDL 58

A
abstract interfaces in IDL 97
any type

in IDL 100
any type (in OMG IDL)

CORBA-to-.NET mapping 140
array type

in IDL 110
attributes

in IDL 85

B
basic types

in IDL 99
basic types (in OMG IDL)

CORBA-to-.NET mapping 121
bitwise operators 117
bridge

introduction to 26
built-in types in IDL 99

C
C#

writing clients in 43
caching mechanism 63
callbacks 49�??

generating stub code for 54
implementing 51

char type
in IDL 100

clients. See .NET clients
command options 151�??
commands

itts2il 152

ittypeman 156
configuration variables 145�??

TYPEMAN_IFR_IOR_FILENAME 148
TYPEMAN_IFR_NS_NAME 149
TYPEMAN_READONLY 149

constant definitions in IDL 114
constant expressions in IDL 117
constant fixed types in IDL 104
constant types (in OMG IDL)

CORBA-to-.NET mapping 142
context clause (in OMG IDL) 140
CORBA complex types 126
CORBA servers

introduction to 27
CORBA-to-.NET mapping 119�??

anys 140
basic types 121
constants 142
exceptions 133
interfaces 123
modules 141
object references 140
strings 122
structs 127
unions 129

D
data types, defining in IDL 113
decimal fractions 104
disk cache 64

E
empty interfaces in IDL 87
enum type

in IDL 106
ordinal values of 106

exceptions, in IDL 86
 See also system exceptions, user exceptions

exceptions See also system exceptions
CORBA-to-.NET mapping 133

extended built-in types in IDL 102
165

INDEX
F
fixed type

in IDL 103
floating point type in IDL 99
forward declaration of interfaces in IDL 93

I
IDL

abstract interfaces 97
arrays 110
attributes 85
built-in types 99
constant definitions 114
constant expressions 117
creating .NET metadata from 58
empty interfaces 87
enum type 106
exceptions 86
extended built-in types 102
forward declaration of interfaces 93
inheritance redefinition 92
interface inheritance 88
local interfaces 94
modules and name scoping 77
multiple inheritance 89
object interface inheritance 91
operations 82
pseudo object types 112
registering 65
sequence type 111
struct type 107
structure 76
union type 108
valuetypes 96

implementing
callbacks 51
server for client callbacks 56

inheritance (in OMG IDL)
CORBA-to-.NET mapping 125

inheritance redefinition in IDL 92
interface (in OMG IDL)

CORBA-to-.NET mapping 123
interface inheritance in IDL 88
itts2il

location of 57
options 152

ittypeman
location of 57

options 156

L
local interfaces in IDL 94
local object pseudo-operations 95
long double type in IDL 103
long long type in IDL 102

M
memory cache 64
module (in OMG IDL)

CORBA-to-.NET mapping 141
modules and name scoping in IDL 77
multiple inheritance in IDL 89

O
object interface inheritance in IDL 91
object references

CORBA-to-.NET mapping 140
octet type

in IDL 100
OMG IDL See IDL
operations

in IDL 82

P
protocols

introduction to 25
pseudo object types in IDL 112

S
sequence type

in IDL 111
servers

implementing for client callbacks 56
string type

in IDL 100
string type (in OMG IDL)

CORBA-to-.NET mapping 122
struct type

in IDL 107
struct type (in OMG IDL)

CORBA-to-.NET mapping 127
stub code

generating for callbacks 54
166

INDEX
T
type store

adding OMG IDL to 65
caching mechanism 63
central role of 61
creating .NET metadata from 58
deleting contents of 67
dumping contents of 68
priming 65

U
union type

in IDL 108

union type (in OMG IDL)
CORBA-to-.NET mapping 129

V
valuetypes in IDL 96
Visual Basic .NET

writing clients in 40

W
wchar type in IDL 103
wstring type in IDL 103
167

INDEX
168

	List of Figures
	Preface
	Audience
	Required Versions
	Organization of this Guide
	Related Reading
	The Orbacus Library
	Getting the Latest Version
	Searching the Orbacus Library
	Additional Resources
	Document Conventions

	.NET and CORBA Frameworks
	.NET versus CORBA
	CORBA Principles

	Introduction to Orbacus .NET Connector
	.NET Connector Overview
	.NET Connector System Components
	.NET Client to CORBA Server Usage Model

	Getting Started
	Prerequisites
	Developing .NET Clients
	Introduction
	Generating .NET Metadata from OMG IDL
	Writing a Visual Basic .NET Client
	Writing a C# Client
	Building and Running the Client

	Client Callbacks
	Introduction to Callbacks
	Implementing Callbacks
	Defining the OMG IDL Interfaces
	Implementing the Client in C#
	Implementing the Server in C++

	Development Support Tools
	Generating .NET Metadata
	Managing the Type Store
	The Role of the Type Store
	The Caching Mechanism of the Type Store
	Adding New Information to the Type Store
	Emptying the Type Store Cache
	Dumping the Type Store Contents

	Deploying a .NET Connector Application
	Deployment Model
	Deployment Steps

	Introduction to OMG IDL
	IDL
	Modules and Name Scoping
	Interfaces
	Introduction to Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	Mapping CORBA to .NET
	Mapping for Basic Types
	Mapping for Extended Types
	Mapping for Interfaces
	Mapping for Interface Inheritance
	Mapping for Complex Types
	Mapping for Structs
	Mapping for Enums
	Mapping for Unions
	Mapping for Arrays
	Mapping for Sequences
	Mapping for System Exceptions
	Mapping for User Exceptions
	Mapping for the Any Type

	Mapping for Object References
	Mapping for Modules
	Mapping for Constants

	Orbacus .NET Connector Configuration
	Overview
	Configuration Variables

	.NET Connector Utility Arguments
	Itts2il Argument Details
	Ittypeman Argument Details

	Advanced Topics
	.NET Metadata versus Type Store Information
	Enabling Advanced CORBA Features

	Index

