
Orbix 3.3.14

Administrator’s Guide Java Edition

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-04-25

Contents
Preface..v
Audience ...v
Organization of this Guide ...v
Document Conventions .. vi

Part I Orbix Java Administration

Overview of Orbix Java Administration3
Components of the Orbix Java Architecture ..3
Administration of Orbix Components ...5

Configuring Orbix Java ..7
Accessing Configuration Parameters ...7
Using Orbix Java Configuration Files ...8
Using Configuration API Calls ...10
Using Orbix Java System Properties ..11
Using Command-Line Arguments ..12

Managing the Implementation Repository...........................13
Implementation Repository Entries ...13
Basic Implementation Repository Usage ..14
Starting Servers Manually ...18
Stopping Servers ...19
Security of Registered Servers ...20
Server Activation Modes ..22
Managing Server Port Selection ..26
Activation Issues Specific to IIOP Servers ..27

Managing the Interface Repository29
Configuring the Interface Repository ...29
Registering the Interface Repository Server ...29
Adding IDL Definitions ..30
Reading the Interface Repository Contents ..31
Removing IDL Definitions ..31

Using Orbix Java on the Internet...33
Applet Signing Technology ..33

Part II Orbix Java GUI Tools

Orbix Java Configuration Explorer37
Starting the Configuration Explorer ...37
Configuring Common Settings ..38
Configuring Orbix Java-Specific Settings ..40
 Orbix Administrator’s Guide Java Edition i i i

Customizing Your Configuration ..41

The Orbix Java Server Manager .. 45
Starting the Orbix Java Server Manager ..45
Connecting to an Implementation Repository ...46
Creating a New Directory ...47
 Registering a Server ..48
Modifying Server Registration Details ..53
Launching a Persistent Server ..53
Configuring the Server Manager ...54

The Interface Repository Browser 55
Starting the Interface Repository Browser ..55
Connecting to an Interface Repository ...56
Adding IDL to the Interface Repository ..57
Viewing the Interface Repository Contents ...58
Exporting IDL Definitions to a File ...59
Configuring the Interface Repository Browser ...60

Part III Appendices

Orbix Java Configuration Variables 63

Orbix Java Daemon Options.. 73

 Orbix Java Command-Line Utilities 75

System Exceptions.. 87
System Exceptions Defined by CORBA ...87

Index.. 89
iv Orbix Administrator’s Guide Java Edition

Preface
The Orbix Administrator’s Guide Java Edition describes the
command-line utilities and GUI tools used during Orbix Java setup
and administration.

Audience
The Orbix Administrator’s Guide Java Edition is designed as
an introduction for Orbix Java administrators and programmers. It
is assumed that you are familiar with relevant sections of the
Orbix Programmer’s Guide Java Edition and the Orbix
Programmer’s Reference Java Edition.

Organization of this Guide
This guide is divided into the following three parts:

Part I “Orbix Java Administration”
• Overview of Orbix Java Administration

This chapter introduces the main components of the Orbix
Java environment. You should read this chapter first to
familiarize yourself with terminology used throughout the
guide.

• Configuring Orbix Java
This chapter describes how to configure Orbix Java and how to
use the Orbix Java configuration Advanced Programming
Interfaces (APIs).

• Managing the Implementation Repository
This chapter explains more about using the Implementation
Repository including registering servers, displaying and
organizing server entries, and security issues.

• Managing the Interface Repository
This chapter describes how to configure Orbix Java to store
object interface definitions so that the applications can learn
about them at runtime.

• Using Orbix Java on the Internet
This chapter describes how client applets can overcome
security restrictions using signed applets.

Part II “Orbix Java GUI Tools”
• Orbix Java Configuration Explorer

This chapter describes how you can configure an OrbxWeb
installation using the Orbix Java Configuration Tool.

• The Orbix Java Server Manager
This chapter describes how you can register servers in the
Implementation Repository using the Orbix Java Server
Manager.

• The Interface Repository Browser
This chapter describes how you can add IDL definitions to the
Interface Repository using the Interface Repository browser.
 Orbix Administrator’s Guide Java Edition v

Part III “Appendices”
• Orbix Java Configuration Variables

This appendix shows the configuration parameters that Orbix
Java recognizes.

• Orbix Java Daemon Options
This appendix describes the start-up options that the Orbix
Java daemon can use.

• Orbix Java Command-Line Utilities
This appendix describes the syntax and the options for each
Orbix Java command you can use.

• System Exceptions
This appendix outlines the system exceptions defined by
CORBA, and the system exceptions that are specific to Orbix
Java.

Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer to
the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and commands
represent variable values you must supply, such
as arguments to commands or path names for
your particular system. For example:

% cd /users/your_name
Note: some command examples may use angle
brackets to represent variable values you must
supply.

No prompt When a command’s format is the same for
multiple platforms, no prompt is used.

% A percent sign represents the UNIX command
shell prompt for a command that does not
require root privileges.

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS, Windows
NT, or Windows 95 command prompt.
 vi Orbix Administrator’s Guide Java Edition

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.

......
Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format and
syntax descriptions.
Orbix Administrator’s Guide Java Edition vii

http://www.microfocus.com
http://www.microfocus.com

• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp
 viii Orbix Administrator’s Guide Java Edition

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Orbix Java

Administration

In this part
This part contains the following:

Overview of Orbix Java Administration page 3

Configuring Orbix Java page 7

Managing the Implementation Repository page 13

Managing the Interface Repository page 29

Using Orbix Java on the Internet page 33

Overview of Orbix Java
Administration
Orbix Java provides a software environment that allows you to
develop distributed applications. This chapter introduces the main
components of the Orbix Java environment.
As described in the Orbix Programmer’s Guide Java Edition,
Orbix Java allows you to build distributed software systems
composed of interacting objects. Orbix Java is a full
implementation of the Object Management Group (OMG) Common
Object Request Broker Architecture (CORBA).
An Orbix Java application consists of one or more client programs
that communicate with distributed objects located in server
programs. Clients can communicate with distributed objects from
any host in a network through clearly-defined interfaces specified
in the CORBA Interface Definition Language (IDL).
Orbix mediates the communication between clients and
distributed objects. This mediation allows clients to communicate
with objects without concern for details such as:

• The hosts on which the objects exist.
• The operating system that these hosts run.
• The programming language used to implement the objects.
The Orbix architecture includes several configurable components
that support the mediation of communications between clients and
objects.

Components of the Orbix Java Architecture
An Orbix Java client invokes IDL operations on a distributed object
using normal Java function calls, as if the object were located in
the client’s address space. Orbix Java converts these function calls
to a series of network messages and sends these messages to the
server process that contains the target object. At the server, Orbix
Java receives these messages and translates them to function
calls on the target object, as shown in Figure 1.

Figure 1: An IDL Operation Call on a Distributed Object
 Orbix Administrator’s Guide Java Edition 3

Servers and the Implementation Repository
Each Orbix Java server program has a name, unique within its
host machine. A server can consist of one or more processes.
When a client invokes a method on an object, a server process
containing the target object must be available. If the process is
not running, the Orbix Java daemon at the server host attempts to
launch the server process automatically.
To allow an Orbix Java daemon to manage the server processes
running in the system, Orbix Java provides an Implementation
Repository. The Implementation Repository maintains a mapping
from a server’s name to the filename of the executable code
implementing that server. The server code must therefore be
registered with the Implementation Repository.

Figure 2: Automatic Launch of an Orbix Server Process

As shown in Figure 2, the Orbix Java daemon launches a server
process as follows:
1. A client makes its first operation call to an object located in a

server.
2. The Orbix Java daemon reads the server details from the

Implementation Repository, including the server launch
command.

3. If the required server process is not running, the Orbix Java
daemon executes the server launch command.

To allow the daemon to launch server processes, you must
maintain records in the Implementation Repository for each server
in your system.

The Interface Repository
Orbix Java maintains object specifications by storing an object’s
IDL interface in a database called the Interface Repository. Some
client applications use the Interface Repository to determine
object interfaces and all information about those interfaces at
runtime.
 4 Orbix Administrator’s Guide Java Edition

A client accesses the Interface Repository by contacting an
Interface Repository server. This is a standard Orbix Java server
that provides a programming interface, defined in IDL, to the
Interface Repository.
To allow clients to obtain information about IDL definitions
implemented in your system, you must add those definitions to
the Interface Repository.

Administration of Orbix Components
To allow Orbix Java applications to run in your network, you must
do the following:

• Configure Orbix Java for your network and environment, using
the Orbix Java configuration files.

• Run the Orbix Java daemon process.
• Register servers in the Implementation Repository.
Part I of this guide, Orbix Java Administration, presents the
configuration files and command-line utilities that allow you to
achieve each of these tasks.
Part II of this guide, Orbix Java GUI Tools, presents the graphical
user interfaces that provide an alternative way to manage Orbix
components.
Orbix Administrator’s Guide Java Edition 5

 6 Orbix Administrator’s Guide Java Edition

Configuring Orbix Java
You may need to change the default Orbix Java configuration
settings. Orbix Java provides several mechanisms to aid
configuration. This chapter describes the Orbix Java configuration
format and how to use the Orbix Java configuration APIs.
You may need to change default configuration settings for a
variety of reasons, including the following:

• Enabling or disabling parts of the functionality.
• Altering the use of specific port numbers.
• Optimizing the size of tables used to track objects in servers.
• Reducing the number of classes downloaded for use in

applets.

Accessing Configuration Parameters
You can get and set the values of Orbix Java configuration
parameters using the following mechanisms.

• Using the Configuration Explorer to access configuration files.
• Using Orbix Java system properties.
• Using an applet's <param> HTML tag.
• Using an application’s command-line parameters.
• Using Java system properties; for example, loaded from a file.

Configuration Parameter Formats
The various configuration parameter-retrieval mechanisms need
to use slightly different formats to store the parameters and their
values. In the examples that follow, the string IT_PARAMETER
represents the Orbix Java configuration parameter being set,
while value represents the value it is set to.

Mechanism Format

Configuration
Files

OrbixWeb {

IT_PARAMETER=value

}

System
Properties

-DOrbixWeb.IT_PARAMETER=value

Applet Tags <PARAM NAME="OrbixWeb.IT_PARAMETER"
VALUE="value">

The applet tags must be used in the
HTML document that loads the applet,
between the <APPLET> and </APPLET>
HTML tags.

Command-Line
Arguments

-OrbixWeb.IT_PARAMETER=value
 Orbix Administrator’s Guide Java Edition 7

Note: You can use the CODEBASE attribute of the <APPLET> tag to specify
the location of files required by the applet. These include packages
such org.omg.CORBA and the Orbix Java configuration files. Refer to
“Developing Applets with Orbix Java” in the Orbix Programmer’s
Guide Java Edition. You will need to use the ARCHIVE attribute to
specify the Orbix Java runtime OrbixWeb.jar.

Scoped Configuration Format
Configuration parameters common to multiple Micro Focus CORBA
products are scoped within the Common prefix; for example,
Common.IT_DAEMON_PORT. Orbix Java-specific configuration
parameters are scoped within the OrbixWeb prefix; for example,
OrbixWeb.IT_HTTP_TUNNEL_PORT.

Using Orbix Java Configuration Files
By default, the Orbix Java configuration files are located in the
config directory of your installation. Orbix Java provides a
convenient configuration editor in the form of the Orbix Java
Configuration Explorer GUI tool. Refer to “Orbix Java
Configuration Explorer” on page 37 for details. This is the
recommended way to access Orbix Java configuration files.
By default, the configuration files are named as follows:

• iona.cfg

• common.cfg

• orbixweb3.cfg

• orbixnames3.cfg

• orbix3.cfg

For backwards compatibility, Orbix Java can also use
OrbixWeb.properties and Orbix.cfg files that shipped with previous
versions of Orbix Java.

Configuring Root Settings
You can configure your root settings by editing the iona.cfg file.
This is the root configuration file used by Orbix Java. This file uses
the include command to link to all other IONA configuration files.
You can also edit this file to include links to customized
configuration files.
The default, iona.cfg file contains the following information:

// In file iona.cfg
cfg_dir = "d:\microfocus\config\";

include cfg_dir + "common.cfg";
include cfg_dir + "orbixnames3.cfg";
include cfg_dir + "orbixweb3.cfg";
include cfg_dir + "orbix3.cfg";

You should set the cfg_dir parameter to
<orbix_install_dir>\config\.
 8 Orbix Administrator’s Guide Java Edition

Configuring Common Parameters
You can configure your common settings by editing the common.cfg
file. This file contains a list of configuration parameters that are
common to multiple Micro Focus CORBA products. The
configuration parameters in this file are declared within the scope
Common{...}, for example:

// In file common.cfg
Common {

The port number for the Orbix daemon.
IT_DAEMON_PORT = "1570";

The starting port number for daemon-run servers
IT_DAEMON_SERVER_BASE = "1570";

The full path name of the Implementation
Repository directory.
IT_IMP_REP_PATH = cfg_dir + "Repositories\ImpRep";

The full path name of the Interface Repository
directory.
IT_INT_REP_PATH = cfg_dir + "Repositories\IFR";

The local DNS domain name.
IT_LOCAL_DOMAIN = "";

The full path name to the JRE binary
executable that installs with Orbix.
IT_JAVA_INTERPRETER="C:\JDK\bin\java.exe";

The default classpath used when Java servers
are automatically launched by the daemon.
IT_DEFAULT_CLASSPATH = cfg_dir +
"C:\JDK\jre\lib\rt.jar;C:\microfocus\lib\orbixweb.jar";

};

You can also use the prefix Common. to refer to individual entries in
this file. For example, Common.IT_DAEMON_PORT.
After installation, the common.cfg file provides default settings for
the main environment parameters required by Orbix Java. You can
change these default settings by manually editing the
configuration file, or by using the Configuration Explorer, or by
setting a parameter in the user environment. An environment
parameter, if set, takes precedence over the value set in the
configuration file. Environment parameters are not scoped with a
Common. prefix.

Configuring Orbix Java-Specific Parameters
You can configure your Orbix Java-specific settings by editing the
orbixweb3.cfg file. This file contains configuration parameters that
are specific to Orbix Java only. The configuration parameters in
this file are declared within the scope OrbixWeb{...}.
You can also use the prefix OrbixWeb. to refer to individual entries
in this file. For example, OrbixWeb.IT_ANY_BUFFER_SIZE.
Orbix Administrator’s Guide Java Edition 9

Note: Orbix Java uses the IT prefix to distinguish its configuration
parameters.
The orbixnames3.cfg file contains configuration parameters that
are specific to OrbixNames. Refer to the OrbixNames
Programmer’s and Administrator’s Guide for more details.

Finding Orbix Java Configuration Information
The dumpconfig utility enables you to obtain information about your
Orbix configuration. This utility outputs the values of the
configuration parameters used by Orbix Java, and the location of
the Orbix Java configuration files in your system. It also reports if
there are any syntax errors in your configuration files that would
normally go unrecognized by Orbix Java. The dumpconfig utility is
especially useful if you need to know where Orbix Java is being
configured from.
The orbixdj -V command also enables you to obtain information
about your Orbix Java configuration. This outputs the current
values of the configuration parameters used by Orbix Java.

Using Configuration API Calls
You can get and set Orbix Java configuration variables using the
methods provided in class IE.Iona.OrbixWeb.Features.OrbConfig.
Orbix Java configuration is on a per-ORB basis, allowing support
for multiple ORBs.

Accessing Configuration Items
You can use the following methods to get and set specific
configuration parameters by passing the name of the parameter
as a string:

public String getConfigItem(String);

public synchronized void setConfigItem(String, String);

Note: Because Orbix Java configuration is on a per-ORB basis, OrbConfig calls
should be made on the object returned by calling config() on the selected
ORB; for example, myOrb.config().getConfigItem(“IT_BIND_USING_IIOP”).

Accessing Configuration Properties
You can use the following methods to get and set multiple
configuration parameters at once, using the java.util.Properties
object:

public synchronized Properties getConfiguration();

public synchronized void setConfiguration(Properties);

The getConfiguration() method returns the configuration
parameters that you set programmatically.
To set configuration, you must first set your configuration
parameters programmatically and then pass your Properties
object to the setConfiguration() method.
 10 Orbix Administrator’s Guide Java Edition

Accessing Configuration Files
You can use the following method to set your configuration from a
specified configuration file:

public synchronized void setConfiguration(String);

Your specified configuration file must be included on the classpath.
To obtain all of the currently set parameters, use the following
method:

public Hashtable getConfigFile();

There is also an API call available for emergency use, if you
accidentally delete your configuration file. A call to this API returns
a string containing the default values:

public String defaultConfigFile()

Refer to the Orbix Programmer’s Reference Java Edition for
more details on class OrbConfig.

Using Orbix Java System Properties
You can use the ORB.init() call to configure Orbix Java using
system properties. The ORB.init() method is a standard part of
the OMG Java mapping, and should be used by all Orbix Java
applications and applets.

The API calls are as follows:
org.omg.CORBA.ORB.init (Applet app, Properties

props);

org.omg.CORBA.ORB.init (String[] args, Properties
props);

org.omg.CORBA.ORB.init (Properties props);

org.omg.CORBA.ORB.init ();

Note: Calling ORB.init() without parameters returns a singleton ORB
with restricted functionality. Refer to the class omg.org.CORBA.ORB
in the Orbix Programmer’s Reference Java Edition.
If any of the parameters are null, they are not used for
configuration. If the props parameter is null, the default system
properties are used instead.
You should pass the initialization method for applets a this
parameter, representing the applet object itself. This allows the
Orbix Java code to search for Orbix Java-specific applet tags.
Orbix Administrator’s Guide Java Edition 11

Using Command-Line Arguments
The call to initialize Orbix Java from an application's main()
method is as follows. This sample code also illustrates how an
application that wishes to use other command-line arguments can
skip over the ORB parameters, since the Orbix Java arguments all
start with the string "-OrbixWeb.".

// Initialize the ORB.
org.omg.CORBA.ORB.init (args, null);
// Now read in the command-line parameters, and
// ignore any of the OrbixWeb ones.

for (int i = 0; i < args.length; i++) {
String ignore = "-OrbixWeb.";
if (args[i].length() < ignore.length() ||

!(args[i].substring (0,

ignore.length())).equalsIgnoreCase
(ignore)){

// This is a non-OrbixWeb command-line
// parameter, take appropriate action.

}
}

// Your application initialization code can now
// continue...

An alternative is to simply parse your own command-line
argument format and set the parameters using the API calls.
However, the above command-line parsing mechanism provides a
built-in way to do this.

Using Java System Properties
You can also use the Java system properties to pass configuration
parameters. However, there is no standard way to set Java
system properties. The JDK, for example, uses a file containing a
list of the property names and values, and most web browsers do
not allow properties to be set at all. The most useful way to use
this functionality is by passing in parameters using the JDK Java
interpreter's -D command-line switch. This approach supplements
the command-line argument support.
Refer to “Orbix Java Configuration Variables” for a full table of
Orbix Java configuration parameters.
 12 Orbix Administrator’s Guide Java Edition

Managing the
Implementation
Repository
When you install server applications on a network host, you must
register those servers in the Implementation Repository. This
repository allows Orbix Java to direct client operation calls to
objects in servers and to start server processes when necessary.
This chapter describes how to manage servers in the
Implementation Repository using the Orbix Java command-line
utilities.
The chapter covers the following topics:

• The Implementation Repository and its entries.
• Basic usage of the Implementation Repository including

registering servers, organizing server entries, removing
server entries, listing registered servers, and displaying
information about an entry.

• How to start a server manually.
• How to stop servers manually.
• The security of servers, including how to change ownership of

servers, and how to modify access control lists (ACLs).
• How to register servers in specialized activation modes rather

than simply one server process for all clients.
• How to manage the set of ports Orbix Java uses to run

servers.
This chapter explains how to manage the Implementation
Repository using Orbix Java command-line utilities. Refer to “The
Orbix Java Server Manager” for details of how you can use Orbix
Java GUI tools.

Implementation Repository Entries
The Implementation Repository maintains a mapping from a
server’s name to the filename of the executable code
implementing that server. A server must be registered with the
Implementation Repository to make use of this mapping. Orbix
Java automatically starts the server (if it is not already running)
when a client binds to one of the server’s objects, or when an
operation invocation is made on any object that names that
particular server.
When a client first communicates with an object, Orbix Java uses
the Implementation Repository to identify an appropriate server to
handle the connection. If a suitable entry cannot be found in the
Implementation Repository during a search for a server, an error
is returned to the client.
The Implementation Repository maintains its data in entries that
include the following information:
 Orbix Administrator’s Guide Java Edition 13

• The server name.
Because server names can be hierarchical, the
Implementation Repository supports directories.

• The server owner—usually the user who registered the server.
• The server permission values.

These specify which users have the right to launch the server,
and which users have the right to invoke operations on
objects in the server.

• One or more activation orders.
An activation order associates an object or group of objects
with a launch command. A launch command specifies how
Orbix Java starts the server.

Basic Implementation Repository Usage
Use the putitj command to register or modify an Implementation
Repository entry. The general form of the putitj command is as
follows:

putitj switches server_name command_line
where <command line> is usually an absolute path name specifying
an executable file that implements the server. This can also be a
shell command or script.

Note: The availability of a given feature depends on which Orbix Java
daemon is running orbixd or orbixdj. Features labelled orbixd are
currently not supported by orbixdj. Refer to the Orbix
Programmer’s Guide Java Edition for details of the differences
between orbixd and orbixdj.

Registering a Server using Putitj
Orbix Java servers are implemented as Java classes and should be
registered using the -java switch to putitj. This switch allows you
to specify a class name (and an optional classpath) as follows:

putitj switches server_name -java
class_name class _arguments

This command specifies that the Orbix Java daemon, when
launching the server, should invoke the Java interpreter on the
specified bytecode. Any command-line parameters to the target
class are appended after the class name in the putitj command.
These parameters are passed to the server every time it is run by
Orbix Java. However, the parameters must be stated explicitly if
the server is launched manually.

Specifying a Classpath for an Orbix Java Server
The Orbix Java configuration variable IT_DEFAULT_CLASSPATH
specifies the default classpath used by the Orbix Java daemon
when launching all Java servers. The putitj command enables you
to override IT_DEFAULT_CLASSPATH for a given server.
 14 Orbix Administrator’s Guide Java Edition

To do this, you should register the server with the -classpath
switch, followed by the full class path for that server:

putitj switches server_name -java
-classpath full_classpath

class_name class_arguments
For example:

putitj BankSrv -java -classpath
 /vol/jdk/classes:/orbixweb/classes BankerClass

Specifying a Partial Classpath for an Orbix Java Server
As an alternative, Orbix Java also allows a partial classpath to be
specified during server registration. This partial class path will be
appended to the value of IT_DEFAULT_CLASSPATH if the Orbix Java
daemon attempts to launch the specified server. Use the -addpath
switch to specify a partial class path:

putitj switches server_name -java
-addpath partial_classpath

class_name class_arguments
For example, you can achieve the functionality of the -classpath
example given above by setting IT_DEFAULT_CLASSPATH to the value
/vol/jdk/classes and registering the server BankSrv as follows:

putitj BankSrv -java -addpath
/orbixweb/classes BankerClass

Specifying the Location of the Java Interpreter
The Orbix Java daemon must be able to locate the Java interpreter
to launch Java servers registered in the Implementation
Repository. To enable this, you must set the value of the
configuration variable IT_JAVA_INTERPRETER in the common.cfg file, as
described in “Configuring Orbix Java”.

Passing Parameters to the Java Interpreter
Conceptually, the classpath details, class name and class
arguments specified during the registration of an Orbix Java
server are passed directly to the Java Interpreter when the server
is launched. If specific parameters also need to be passed to the
Java interpreter, you can add these to the putitj command as
follows:

putitj switches server_name -java
-- interpreter_switches class_name

class_parameters
The string after the -- switch is passed to the Java interpreter
instead of the standard class name and class arguments. You
must insert a space after the -- switch, as shown in the following
example:

putitj -java GridSrv -- -ms200m -mx200m
grid.javaserver1

Although registering a full Java Interpreter command as an
executable file for an Orbix Java server appears to achieve similar
functionality, this is not an acceptable alternative. The -java
switch significantly alters the internal server launch strategy of the
Orbix Java daemon, and an Orbix Java server should not be
registered without this switch.
Orbix Administrator’s Guide Java Edition 15

Registering a Server on a Remote Host
The following command registers a shared server called FirstTrust
on the remote host alpha, with the specified class name:

putitj -h alpha FirstTrust -java BankClass arg1

Using the -h hostname option enables you to use all the
commands for remote hosts. However, for simplicity, most of the
examples in this guide do not use this option and use the local
host default instead.
The following command registers the same shared server and also
sets the “OrbixWeb.setDiagnostics” property to “255”.

putitj -h alpha FirstTrust -java
 -- -DOrbixWeb.setDiagnostics=255 BankClass

Organizing Servers into Hierarchies
Server names can be hierarchically structured, in the same way as
UNIX filenames. Hierarchical server names are useful in
structuring the name space of servers in Implementation
Repositories. You can create hierarchical directories by using the
mkdiritj command. For example, you can make a new banking
registration directory and make a registration within it as follows:

mkdiritj banking
putitj banking/Berliner -java BankClass

Thus banking/Berliner is a valid, hierarchical server name.
The rmdiritj command removes a registration directory. This
command can take a -R option to recursively delete a directory
and the Implementation Repository entries and subdirectories
within it. The rmdiritj command returns an error if it is called
without the -R option on a non-empty registration directory.
For example:

lsitj
FirstTrust
banking

rmdiritj banking
directory not empty

rmdiritj -R banking

This example uses the lsitj command to display the
Implementation Repository entries and directories.
To move an entry in the hierarchy, first remove it with the rmitj
command and then re-register it with the putitj command.

Removing a Registered Server
Use the rmitj command to remove an Implementation Repository
entry. For example, the following command removes a server
entry:

rmitj FirstTrust

This simplest format of the command removes the entry and all
activation orders for the server.
 16 Orbix Administrator’s Guide Java Edition

You can also use the rmitj command to remove specific activation
orders. Use the -marker option for the shared or unshared
activation modes to remove specific activation orders for
individual objects. Use the -method option for the per-method call
activation mode to remove specific activation orders for individual
methods. Activation modes are described in “Server Activation
Modes” on page 22.

Listing Registered Servers
Use the lsitj command to list registered servers and directories.
For example, if you have registered a server called International
and another called printer:

putitj International -java
-classpath /usr/users/joe banker

putitj printer -java laser

the output of the lsitj command is as follows:
International
printer

Use the -R option with the lsitj command to recursively list all
server entries in the given directory and its subdirectories.

Displaying a Server Entry
Use the catitj command to display information about a specific
server’s registration entry. The following example assumes that
the International server is registered as in the previous example,
and that catitj International is entered at the command line:

Details for server : International

Comms. Protocol : tcp
Code : cdr
Activation Mode : shared
Owner : jbloggs
Launch : ;all;
Invoke : ;all;

Marker Launch Command

###ORBIXWEB### banker

The output can include the following:

Owner The user who put in the entry.
Launch The users and groups who have permission

to start or launch the server.
Invoke The users and groups who have permission

to invoke operations on an object controlled
by the server.

Per-client
(orbixd)

Indicates whether a new server is to be
launched for each client that uses the server.
Orbix Administrator’s Guide Java Edition 17

The final output is a table of activation orders. An activation order
is identified with a marker. An asterisk (*) represents all objects
and means that there is only one activation order for the server
entry.

Contacting an Orbix Java Daemon
Use the pingitj utility to contact an Orbix Java daemon to
determine if it is running on a specified host. This outputs a
success or failure message, as appropriate; for example:
[New Connection (joe.dublin.iona.ie,IT_daemon,*,,pid=230)

]
Trying to contact daemon at joe.dublin.iona.ie and it is

running.

Starting Servers Manually
Most servers are designed to have Orbix Java start them
automatically when a client uses an object. The majority of an
administrator’s work therefore involves registering servers in the
Implementation Repository and managing the registration entries
in the repository. However, some servers do need to be started
before any clients attempt to use their objects.
Servers that are started by some mechanism external to Orbix
Java are useful for a number of reasons. For example, if a server
takes a long time to initialize and it starts when a client requests a
service, it may cause the client to timeout. In addition, some
servers that are meant to run as long-lived daemons may require
manual starting. Manually launched servers are also known as
persistent servers in CORBA terminology.

Registering a Manual Server
(orbixd)

All servers registered in the shared mode can also be started
manually. Subsequent invocations on the objects are passed to
the running process. However, if you wish to prevent Orbix Java
from starting a server and make it manual-only, use the following
command:

putitj FirstTrust -persistent

This command registers a manual-only server called FirstTrust on
the local host. No start command is specified to putitj, because
this server cannot be started by Orbix Java automatically and can
only start as a manual server.
The CORBA specification requires that unshared or per-method
types of server fail if an attempt is made to start them manually.
This means that manual servers can only be registered as shared
servers. Therefore, you cannot use the
-persistent option with either the -unshared or -per-method
options of the putitj command. These unshared and per-method
servers are described in “Server Activation Modes” on page 22.
 18 Orbix Administrator’s Guide Java Edition

Starting the Orbix Java Daemon for Unregistered Servers
In some circumstances, it can be useful not to register servers in
the Implementation Repository. Under normal operation, Orbix
Java would know nothing about these servers. However, if you
invoke the Orbix Java daemon with the -u option, it maintains an
active record of unregistered Orbix Java servers and clients that
may use these servers, for example:

orbixdj -u

When Orbix Java is started this way, any server process can be
started manually. However, no access control is enforced and
there is no record of the server in the Implementation Repository.
The daemon does not check if this is a server name known to it.
A disadvantage of this approach is that an unregistered server is
not known to the daemon. This means that the daemon cannot
automatically invoke the Java interpreter on the server bytecode
when a client binds to, or invokes an operation on, one of its
objects. If a client invocation is to succeed, the server must be
launched in advance of the invocation.
In a Java context, a more significant disadvantage of this
approach is that the Orbix Java daemon is involved in initial
communications between the client and server, even though the
server is not registered in the Implementation Repository. This
restriction applies to all Orbix Java servers that communicate over
the standard Orbix communications protocol, and limits such
servers to running on hosts where an Orbix Java daemon process
is available.
Refer to “Activation Issues Specific to IIOP Servers” on page 27
for more information on unregistered servers.

Stopping Servers
Just as most servers start automatically when needed, they are
usually designed to stop automatically after a specified time.
However, there may be other situations where you need to
manually stop a server.
The killitj command stops a server process by using the SIGTERM
signal.
1. For example, the following command stops the Berliner

server on the host omega:
killitj -h omega Banking/Berliner

2. When there is more than one server process, use the marker
option and argument to distinguish between different
processes. To do this, use the following killitj command
format:

killitj -m marker server_name
Orbix Administrator’s Guide Java Edition 19

Security of Registered Servers
For each Implementation Repository entry, Orbix Java maintains
two access control lists (ACLs) as follows:

The entries in the ACL can be user names or group names. The
owner of an Implementation Repository entry is always allowed to
launch it and invoke operations on its objects. A client normally
needs both launch and invoke access to use an automatically
launched server. The following sections describe how to modify
ACLs by adding groups and users to ACLs, or removing groups and
users from ACLs.

Note: The Java daemon (orbixdj) does not support access rights for user
groups. An exception to this is the pseudo-user group all.

Modifying Server Access
Use the chmoditj command to modify the launch or invoke ACLs.
For example:
1. The following command allows the user chris to launch the

server AlliedBank:
chmoditj AlliedBank l+chris

2. The following command grants the user chris rights to launch
any server in the directory banks/investmentBanks:

chmoditj -a banks/investmentBanks l+chris

3. The following command revokes joe’s right to invoke all
servers in the Implementation Repository directory
banks/commercialBanks:

chmoditj -a banks/commercialBanks i-joe

4. There is also a pseudo-group named all that you can use to
implicitly add all users to an ACL. The following command
grants all users the right to invoke the server
banks/commercialBanks/AlliedBank:

chmoditj banks/commercialBanks/AlliedBank i+all

On UNIX, the group membership of a user is determined via the
user’s primary group as well as the user’s supplementary groups
as specified in the /etc/group file.

Changing Owners of Registered Servers
Only the owner of an Implementation Repository entry can use the
chmoditj command on that entry. The original owner is the one
who uses the putitj command to register the server. Use the
chownitj command to change ownership. For example, use the
following command to change the ownership of server AlliedBank
to user mcnamara:

Launch The users or groups that can launch the associated
server. Users on this list, and users in groups on this
list, can cause the server to be launched by invoking
on one of its objects.

Invoke The users and groups that can invoke operations on
any object controlled by the associated server.
 20 Orbix Administrator’s Guide Java Edition

chownitj -s AlliedBank mcnamara

An Implementation Repository directory can have more than one
owner. An ownership ACL is associated with each directory in the
Implementation Repository, and this ACL can be modified to give
certain users or groups ownership rights on a directory. Only a
user on an ownership ACL has the right to modify the ACL.
Some other examples of changing ownership are as follows:
1. To add the group microfocus to the ownership ACL on the

Implementation Repository directory banks/investmentBanks,
use the following command:

chownitj -d banks/investmentBanks + microfocus

2. To remove mcnamara from the same ACL, do the following:
chownitj -d banks/investmentBanks - mcnamara

Orbix Java supports the pseudo-group all. This grants access
to all callers when added to an ACL. The following command
grants all users ownership rights on directory
banks/commercialBanks:

chownitj -d banks/commercialBanks + all

Spaces are significant in this command. For example, the
following command is correct:

chownitj -d banks/investmentBanks + microfocus

However, the following command is incorrect:
chownitj -dbanks/investmentBanks + microfocus

Refer to “Orbix Java Command-Line Utilities” for a complete list of
the Orbix Java utilities and their switches.

Determining the User and Group IDs of Running Servers
(orbixd)

On Windows platforms, the user ID uid and group ID gid of a
server process launched by the Orbix Java daemon are the same
as those of the daemon itself.
On UNIX platforms, the effective uid and gid of a server process
launched by the Orbix Java daemon are determined as follows:

• If orbixd is not running as a superuser, such as root on UNIX,
the uid and gid of every activated server process is that of
orbixd itself.

• If orbixd is running as root, it attempts to activate a server
with the uid and gid of the (possibly remote) principal
attempting to activate the server.

• If the principal is unknown (not a registered user) at the local
machine on which orbixd is running, orbixd attempts to run
the new server with uid and gid of a standard user called
orbixusr.

• If there is no such standard user orbixusr, orbixd attempts to
run the new server with uid and gid of a user “nobody”.

• If there is no such user nobody, the activation fails and an
exception is returned to the caller.

The daemon must be able to execute the server’s executable file.
Orbix Administrator’s Guide Java Edition 21

You should not run orbixd as root. This would allow a client
running as root on a remote machine to launch a server with root
privileges on a different machine.
You can avoid this security risk by setting the set-uid bit of the
orbixd executable and giving ownership of the executable to a
user called, for example, orbixusr who does not have root
privileges. Then orbixd, and any server launched by the daemon,
do not have root privileges. Any servers that must be run with
different privileges can have the set-uid bit set on the executable
file.

Server Activation Modes
Orbix Java provides a number of different modes for launching
servers. You specify the mode of a server when it is registered.
Usually, clients are not concerned with the activation details of a
server or aware of what server processes are launched. The
following primary activation modes are supported by Orbix Java.

Note: The availability of a given activation mode depends on which Orbix
Java daemon is running orbixd or orbixdj. Activation modes
labelled orbixd are currently not supported by the Orbix Java
daemon orbixdj.

Shared Activation Mode
In this mode, all of the objects with the same server name on
a given machine are managed by the same server process on
that machine. This is the default activation mode.
If the process is already running when an application
invocation arrives for one of its objects, Orbix Java routes the
invocation to that process; otherwise, Orbix Java launches a
process.

Unshared Activation Mode
(orbixd)

In this mode, individual objects of a server are registered with
the Implementation Repository. As each object is invoked, an
individual process is run for that particular object—one
process is created for each active registered object. You can
register each object managed by a server with a different
executable file, or any number of objects can share the same
executable file.

Per-Method Activation Mode
(orbixd)

In this mode, individual operation names are registered with
the Implementation Repository. Inter-process calls can be
made to these operations—and each invocation results in the
launch of an individual process. A process is launched to
handle each individual operation call, and the process is
destroyed once the operation has completed. You can specify
a different executable file for each operation, or any number
of operations can share the same executable file.

The shared activation mode is the most commonly used. The
unshared and per-method modes are rarely used. Refer to your
server documentation to determine the correct activation modes
to use.
 22 Orbix Administrator’s Guide Java Edition

Registering Unshared Servers
(orbixd)

The -unshared option registers a server in the unshared activation
mode. For example:

putitj -unshared NationalTrust -java banker

This command registers an unshared server called NationalTrust
on the local host, with the specified executable file. Each
activation for an object goes to a unique server process for that
particular object. However, all users accessing a particular object
share the same server process.

Using Markers to Specify Named Objects
Each Orbix Java object has a unique object reference that includes
the following information:

• A name that is usually referred to as a marker.
An object’s interface name and its marker uniquely identify
the object within a server. A server programmer can choose
the marker names for objects or they can be assigned
automatically by Orbix Java.

• A server name identifying the server in which the object is
located.

• A host name identifying the host on which the server is
located.

For example, the object reference for a bank account would
include the bank account name (marker name), the name of the
server that manages the account, and the name of the server’s
host.
Server activation policies can specify individual object marker
names; this is because objects can be named shared and
unshared.
For example:
1. putitj -marker College_Green NationalBank -java BankClass

This command registers a shared server called NationalBank
on the local host, with the specified executable file. However,
activation only occurs for the object whose marker matches
College_Green. There is, at most, one server process resulting
from this registration request; although you can make other
-marker registrations for server NationalBank. All users share
the same server process.

2. putitj -unshared -marker College_Green FirstNational

-java BankClass
putitj -unshared -marker St_Stephens_Green

FirstNational -java BankClass

The first command registers an unshared server called
FirstNational on the local host with the specified executable
files. The second adds an activation order (marker and launch
command) for the St_Stephens_Green marker. However,
activation only occurs for objects whose marker name is
College_Green or St_Stephens_Green and each activation for a
specific object goes to a unique server process for that
Orbix Administrator’s Guide Java Edition 23

particular object. All users of a specific object share the same
server process.

Using Pattern Matching
You can use pattern matching in activation policies when seeking
to identify which server process to communicate with. Specifically,
you can register a server activation policy for a subset of the
server’s objects. Because the number of objects named can
become very large, pattern matching also means you do not have
to specify a separate policy for every possible object. You specify
this object subset by using wildcard characters in a marker
pattern. The pattern matching is based on regular expressions,
similar to UNIX regular expressions.
You can use pattern matching to specify a set of objects for shared
or unshared servers. For example, some registrations can be used
as a means of sharing work between server processes; in this
case, between two processes:

putitj -marker '[0-4]*' NationalBank -java NBBank
putitj -marker '[5-9]*' NationalBank -java NBBank

If these two commands are issued, server NationalBank can have
up to two active processes; one launched for objects whose
markers begin with the digits 0 through 4, and the other for
markers beginning with digits 5 through 9.
Refer to the entry for the putitj command in “Orbix Java
Command-Line Utilities” for a complete list of recognized patterns
with examples.
Use the rmitj command with -marker option to modify a server
entry. This allows you to remove a specific activation order for a
server without removing the entire server entry. You can also use
pattern matching with the rmitj command’s marker option.

Registering Per-Method Servers
(orbixd)

A per-method server processes each operation call in a separate
process.
1. The following command registers a per-method server called

NationalTrust on the local host with the specified executable
file. The activation occurs only if the operation
makeWithdrawal() is called.

putitj -per-method -method
makeWithdrawal
 NationalTrust -java NTbank

2. If the -method option is used, Orbix Java assumes that the
server is a per-method server.

putitj -method makeDeposit
NationalTrust

-java NTbank

You can specify patterns for methods so that operation names
matching a particular pattern cause Orbix Java to use a
particular server activation. The use of pattern matching
allows a group of server processes to share a workload
between them, whereby each server process is responsible for
 24 Orbix Administrator’s Guide Java Edition

a range of methods. The pattern matching is based on regular
expressions similar to UNIX regular expressions.

3. The following command registers a per-method server called
FirstTrust on the local host with the specified executable file:

putitj -per-method FirstTrust -method
'make*'

-java banker

The activation is to occur only if an operation matching the
pattern make* is being called, for example makeDeposit() or
makeWithdrawal(). A separate process is activated for each
method call.

Note: You can only use method pattern matching in the per-method
activation mode, thus the -per-method option is redundant.
Use the rmitj command with -method option to modify a
per-method server entry. This allows you to remove a specific
activation order for a server without removing the entire server
entry. You can also use pattern matching with the rmitj
command’s -method option.

Secondary Activation Modes
For each of the primary activation modes, a server can be
launched in one of the secondary activation modes described as
follows:

Multiple-Client Activation Mode
In this mode, activations of the same server by different users
share the same process, in accordance with the selected primary
activation mode. This is the default secondary activation mode. No
putitj option is required to specify this mode when registering a
server.

Per-Client Activation Mode
(orbixd)
In this mode, activations of the same server by different users
cause a different process to be launched for each end-user.
Use the putitj -per-client option to register a server in this
secondary activation mode.

Per-Client-Process Activation Mode
(orbixd)
In this mode, activations of the same server by different client
processes cause a different process to be created for each client
process.
Use the putitj -per-client-pid option to register a server in this
secondary activation mode. For example, the following command
registers a shared, per-client-process server:

putitj -per-client-pid FirstTrust -java banker

Activation occurs when any of the objects managed by the
FirstTrust server are used; there is a separate server process for
each different client process.
Orbix Administrator’s Guide Java Edition 25

Managing Server Port Selection
When the Orbix Java daemon activates a server, it is assigned a
port so that clients can communicate with it. There are two ways
to control the port numbers assigned to a server:

• Registering the server with a specified port number.
• Using configuration variables to control port numbers.
This section describes each of these approaches.

Registering Servers with Specified Ports
(orbixd)

When registering a server, you can specify the port on which the
server should listen using the -port option to putitj. For example,
to specify that shared server FirstTrust should communicate on
port 1597, enter the following:

putitj -port 1597 FirstTrust
-java -classpath /work/bank banker

By default, all Orbix Java applications communicate over the
CORBA standard Internet Inter-ORB Protocol (IIOP). The -port
option is very important for such applications.
If an Orbix Java server that communicates over IIOP publishes an
object reference, (for example, using the CORBA Naming Service)
this reference is valid while the server continues to run. However,
if the server exits and then recreates the same object, the
published object reference is not valid unless the server always
runs on the same port. If your servers require this functionality,
you should register them using the -port option.

Controlling Port Allocation with Configuration Variables
You can control the range of server port numbers chosen by the
Orbix Java daemon by using the configuration entries
IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE in the
common.cfg configuration file. The IT_DAEMON_SERVER_BASE must be
set and the recommended value is 1590. You do not have to set
IT_DAEMON_SERVER_RANGE, which has a default value of 50.
When the Orbix Java daemon starts a server, the first server port
assigned is IT_DAEMON_SERVER_BASE plus 1, and the last assigned is
IT_DAEMON_SERVER_BASE plus IT_DAEMON_SERVER_RANGE.
Once the end of the range is reached, orbixd recycles the range in
an attempt to find a free port. If no free port is found, an
IMP_LIMIT system exception is raised to the client application
attempting an invocation to the server.
You should set IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE
values using the Orbix Java Configuration Explorer—refer to
“Orbix Java Configuration Explorer” for details. You should ensure
that the values you set do not conflict with other services. Make
sure the range you choose is greater than the maximum number
of servers you expect to run on the host.
 26 Orbix Administrator’s Guide Java Edition

Activation Issues Specific to IIOP Servers
You do not have to register all Orbix Java servers communicating
over IIOP in the Implementation Repository. An IIOP server can
publish Interoperable Object References (IORs) for the
implementation objects it creates, and then await incoming client
requests on those objects without contacting an Orbix Java
daemon.
Unregistered IIOP servers are important in a Java domain. This is
because they can be completely independent of any supporting
processes that may be platform-specific. In particular, any server
that relies on the orbixd daemon to establish initial connections
depends on the availability of the daemon on specific platforms.
However, you can overcome this problem by using the Java
daemon, orbixdj, which is platform-independent. An Orbix Java
unregistered IIOP server is completely self-contained and
platform-independent.
However, an unregistered IIOP server does have an important
disadvantage. The TCP/IP port number on which a server
communicates is embedded in each IOR that a server creates. If
the port is dynamically allocated to a server process on start-up,
the port may differ between different processes for a single
server. This may invalidate IORs created by a server if, for
example, the server is killed and relaunched. Orbix Java addresses
this problem by allowing you to assign a well-known IIOP port
number to the server.
These issues are discussed in more detail in the Orbix
Programmer’s Guide Java Edition .
Orbix Administrator’s Guide Java Edition 27

 28 Orbix Administrator’s Guide Java Edition

Managing the Interface
Repository
The Interface Repository is the component of Orbix Java that
stores information about IDL definitions and allows clients to
retrieve this information at runtime. This chapter describes how to
manage the contents of the Interface Repository.
The Interface Repository maintains full information about the IDL
definitions implemented in your system. Given an object
reference, a client can determine at runtime the object’s type and
all information about that type by using the Interface Repository.
Clients can also browse contents of the Interface Repository.
To allow a client to obtain information about a set of IDL
definitions, you must add those definitions to the Interface
Repository. Orbix supports commands that allow you to add IDL
definitions to the repository, read the contents of the repository,
and remove definitions from it. Each of these commands accesses
the Interface Repository through the Interface Repository server.
This chapter explains how to manage the Interface Repository
using Orbix command-line utilities. Refer to “The Interface
Repository Browser” for details of how you can use Orbix GUI
tools.

Configuring the Interface Repository
The Interface Repository has its own directory, which is specified
by the IT_INT_REP_PATH entry in the common.cfg configuration file.
You must configure the Interface Repository before the IDL
compiler or applications can use it. To configure the Interface
Repository, do the following:
1. Specify a value for the IT_INT_REP_PATH entry in the common.cfg

file using the Orbix Java Configuration Explorer GUI tool. For
example:

IT_INT_REP_PATH /orbix/IntRep

2. Create the corresponding directory if it does not already exist.
mkdir /orbix/IntRep

3. If the Orbix Java daemon is running, stop it and then restart it
so that it recognizes the new configuration variable.

Registering the Interface Repository Server
The Interface Repository is accessed through an Orbix Java
server. The interfaces to the Interface Repository objects are
defined in IDL and you must register the Interface Repository
server using the putitj command. For example:

putitj IFR /opt/microfocus/orbix33/bin/ifr

Orbix Java expects that the server is registered with the name IFR
as a shared server. The Interface Repository’s executable file is in
the bin directory with the name IFR.
 Orbix Administrator’s Guide Java Edition 29

The Interface Repository server can be launched by the Orbix
daemon, or it can be launched manually. For example, the server
executable file can be explicitly run as a background process:

/opt/microfocus/orbix33/bin/ifr

This has the advantage that the Interface Repository can initialize
itself before any other processes need to use it.
The IFR server executable file takes the following options:

Adding IDL Definitions
The Orbix Java utility putidl allows you to enter all the definitions
in a single IDL source file into the Interface Repository. This utility
provides a simple and safe way to add IDL definitions to the
repository.
For example, the following command adds the definitions in the
file banksimple.idl to the Interface Repository:

putidl banksimple.idl

The putidl utility parses the definitions in the file banksimple.idl
and integrates the definitions into the repository. If the file
banksimple.idl uses definitions already registered in the
repository, putidl checks that the definitions are used consistently
before updating the repository contents.
If you modify the file banksimple.idl, you can update the contents
of the Interface Repository by repeating the putidl command.
Although putidl takes an IDL file as an argument, the Interface
Repository does not store information about the file itself. The
Interface Repository has no knowledge of the file associated with
specific IDL definitions. This means that you cannot remove
definitions based on the file in which they were declared. For this
reason, it is important that you use modules in your IDL
definitions to group definitions in logical units.
The syntax for the putidlj command is:

putidl { [-?] | [-v] [-h <hostname>]
[-s <filename for output>]
[-I<path>] <IDL file name> }

Refer to “Orbix Java Command-Line Utilities” for a full description
of each option.

-? Print a summary of switches.
-h Specify an IFR server host name.
-L Immediately load data from the Interface

Repository data directory. The default is not to do
this, but instead to load each file on demand at
runtime as it is required.

-t seconds Specify the timeout in seconds for the Interface
Repository server. The default timeout is infinite.

-v Print version information about the Interface
Repository.
 30 Orbix Administrator’s Guide Java Edition

Reading the Interface Repository Contents
The readifr utility allows you to read a specified IDL definition
from the Interface Repository. For example, to view the definition
of interface Bank defined in module Finance, enter the following:

readifr Finance::Bank

This utility prints the IDL definition to the standard output. (Note
that the C++ scoping operator is used in IFR scoped names.)
If you use readifr to view an IDL interface definition, you can
instruct it to also display all derived interfaces. To do this, specify
the -d option, for example:

readifr -d Finance::Bank

You can also invoke readifr with no arguments, in which case the
default is to output the whole repository. Because the repository
may be very large, you are prompted to confirm this operation.

Removing IDL Definitions
The rmidl utility allows you to remove an IDL definition from the
Interface Repository. This utility takes a fully scoped name for an
IDL definition as an argument.
For example, to remove information about the IDL operation
create_Account() defined on interface Bank in module Finance, do
the following:

rmidl Finance::Bank::create_Account()

The rmidl command removes definitions recursively. For example,
to remove the module Finance and all definitions within this
module, do the following:

rmidl Finance

You should only use the rmidl utility to remove old or incorrect
entries.

Note: Refer to “Orbix Java Command-Line Utilities” for a full description
of the Orbix Java utilities and their options.
Orbix Administrator’s Guide Java Edition 31

 32 Orbix Administrator’s Guide Java Edition

Using Orbix Java on
the Internet
Orbix Java client applets are, like any applet, subject to security
restrictions imposed by the browser in which they execute. The
most fundamental of these restrictions include the inability to
access local disks and the inability to contact an arbitrary Internet
host. This chapter describes how client applets can get around
these restrictions in a secure manner, using signed applets.

Applet Signing Technology
For security reasons, an applet is prevented from accessing the
local file system and connecting to a host other than the host from
which it was downloaded. Often these restrictions must be
relaxed, in order for an applet to be fully functional. It is possible
to achieve this using signed applet technology.
A signed applet has a digital signature which is interpreted as a
sign of good intent. An applet that has been signed with a trusted
digital signature may therefore be treated more permissively by a
browser, and may even be granted the permission of a full
application.
The following section provides a brief overview of signed applet
technology.

Overview
There is no single standard implementation of applet-signing
technology, however the implementation offered by Microsoft is
widely adopted. Specific details of these vendors implementations
are available from their corporate Web sites. In this section,
discussion is limited to the implementation independent
characteristics of the technology.

How Applets are Signed
Applets may be signed using public key cryptography technology.
Distributors of the applet must digitally sign the applet with their
private key. When a signed applet is downloaded by a browser, it
can determine the identity of the signing entity by consulting a
Certification Authority. A Certification Authority is a trusted third
party that verifies the identify of a key holder. The browser may
also determine whether the applet has been tampered with.
Assuming there are no problems, the browser may assume that
the applet is not malicious, and grant it extended privileges.
The user must ultimately grant the applet these extended
privileges, either by configuring browser security settings or
responding at runtime to individual requests for privileges from
the applet. In some circumstances it may be the case that an
applet does not function correctly unless it is granted extended
privileges.
 Orbix Administrator’s Guide Java Edition 33

The benefits of signed applet technology to the Orbix Java applet
programmer include the following:

• The ability to contact any host.
• The ability to cache information locally on disk.
• The ability to access system properties.
It is common for the applet, other classes it requires and
associated files to be bundled into a single archive file. In this
case, it is the archive that is signed and downloaded to the
browser, thereby reducing download time.

Looking Ahead
It is expected that browsers will be able to support multiple
archives in the future. Deployment should then become more
flexible and efficient as applications can be split into a number of
archives, each containing classes pertaining to a particular area of
functionality. For example, an Orbix Java applet may be split into
archives containing the Orbix Java runtime, the Java classes
generated by the IDL compiler, the applet code and finally third
party archives.
The Orbix Java installation includes Microsoft CAB (signed) and
Netscape JAR (unsigned) compatible archives. They can be found
in the classes directory of your Orbix Java installation.
 34 Orbix Administrator’s Guide Java Edition

Part II
Orbix Java GUI Tools

In this part
This part contains the following:

Orbix Java Configuration Explorer page 37

The Orbix Java Server Manager page 45

The Interface Repository Browser page 55

Orbix Java
Configuration Explorer
Components of an Orbix Java system are configured using a
number of configuration files, as described in “Configuring Orbix
Java”. The Orbix Java Configuration Explorer allows you to
configure Orbix Java components without modifying the
configuration files directly.
The Orbix Java configuration files configure the main components
of Orbix Java, and each Orbix Java installation has at least one
copy of each file. The Orbix Java Configuration Explorer allows you
to modify any Orbix Java configuration file on your system.
The configuration files include settings that affect the
configuration of Orbix Java and settings that affect the
configuration of other Orbix Java products; for example
OrbixNames. The Orbix Java Configuration Explorer allows you to
modify all these settings, and to create additional settings. This
tool integrates all Orbix Java configuration in a single user
interface.
By default, the Configuration Explorer allows you to configure
settings that are:

• Common to multiple Micro Focus CORBA products.
• Orbix Java-specific.
• OrbixNames-specific.

Starting the Configuration Explorer
You can run the Orbix Configuration Explorer from the Windows
Start menu, or by entering configurationexplorer at the command
line. The Configuration Explorer appears as shown in Figure 3.

Figure 3: Orbix Java Configuration Explorer
 Orbix Administrator’s Guide Java Edition 37

This tool includes the following elements:

• A menu bar.
• A toolbar.
• A navigation tree.

The navigation tree displays icons that represent each
configuration file and configuration scope.

• A textbox.
The Name textbox displays the name of the current
configuration file or scope.

• A textpane.
The textpane control contains a Name column and a Value
column as shown in Figure 4. Each row corresponds to
individual configuration file entries. The text pane enables you
to view and modify these entries.

At startup, the Orbix Java Configuration Explorer opens the
iona.cfg root configuration file. By default, this file is located in
the config directory of your Orbix Java installation. The
Configuration Explorer navigation tree displays icons that
represent the configuration files included in iona.cfg as shown in
Figure 3.

Configuring Common Settings
To configure settings that are common to multiple Micro Focus
CORBA products, select the Common icon in the navigation tree.
This icon represents the Common configuration scope in the file
common.cfg. The Common variables stored in the default common.cfg
configuration file then appear in the text pane, as shown in
Figure 4 on page 38.

Figure 4: Common Configuration Settings
 38 Orbix Administrator’s Guide Java Edition

The default Common configuration settings are as follows:

To update any of these settings, do the following:
1. Select the variable in the text pane.
2. Double-click on this variable in the Value column.
3. Enter your new setting.
4. Select the Apply button to save your setting to the

appropriate configuration file.
You cannot undo settings that you have saved to file.

IT_DAEMON_PORT The TCP port number on which the
Orbix Java daemon receives
communications from clients.

IT_DAEMON_ SERVER_ BASE The first TCP port number assigned by
the daemon to a server. Each server
listens on a single port number for
client connection attempts.

IT_IMP_REP_PATH The full path name of the Orbix Java
Implementation Repository directory.

IT_INT_REP_PATH The full path name of the Orbix Java
Interface Repository directory.

IT_LOCAL_DOMAIN The Internet domain name for your
local network.

IT_JAVA_INTERPRETER The full path name to the Java Runtime
Environment binary executable. This
installs with Orbix Java by default.

IT_DEFAULT_CLASSPATH The default classpath used when Java
servers are automatically launched by
the daemon.
Orbix Administrator’s Guide Java Edition 39

Configuring Orbix Java-Specific Settings
To configure settings that apply to Orbix Java only, select the
Orbix Java icon in the navigation tree. This icon represents the
OrbixWeb configuration scope in the file orbixweb3.cfg. The
OrbixWeb variables stored in the default orbixweb3.cfg
configuration file appear in the text pane, as shown in Figure 5.

Figure 5: Configuring Orbix Java-Specific Settings

For example, the Orbix Java configuration settings include the
following:

To update these settings, do the following:
1. Select the variable in the text pane.
2. Double-click on this variable in the Value column to enter

your setting.
3. Select the Apply button to save your setting to the

appropriate configuration file.
You can also modify configuration variables specific to other Orbix
Java components by following these steps. Refer to the
OrbixNames Programmer’s and Administrator’s Guide for
details of configuration variables that are specific to OrbixNames.

IT_JAVA_COMPILER The path to the Java compiler
executable.

IT_CLASSPATH_SWITCH The switch used by the Java interpreter
to specify a classpath.
 40 Orbix Administrator’s Guide Java Edition

Customizing Your Configuration
By default, the Orbix Java Configuration Explorer displays the
configuration variables contained in the default configuration files.
You can use the Orbix Java Configuration Explorer to customize
your configuration by:

• Creating configuration variables.
• Creating configuration scopes.
• Creating configuration files.

Creating Configuration Variables
By default, the Configuration Explorer displays a default subset of
the available configuration variables. You can also create
additional configuration variables, as shown in Figure 6.

Figure 6: Creating Configuration Variables

To create a configuration variable, perform the following steps:
1. Select the Create Configuration Variable button, shown in

Figure 7 on page 42.
2. Double-click the new entry in the Name column of the text

pane.
3. Enter a name for your configuration setting.
4. Double-click the entry in the Value column.
5. Enter a value for your configuration variable
Orbix Administrator’s Guide Java Edition 41

6. Select the Apply button to save your setting to the
appropriate configuration file.

Figure 7: Creating and Deleting Configuration Variables

Valid Names for Configuration Variables and Scopes
You can use the following characters when naming configuration
variables and scopes:

["_", "-"], ["a"-"z","A"-"Z"], ["0"-"9"]

Note: You cannot use spaces when naming configuration variables and
configuration scopes.
There are no restrictions on the valid characters for configuration
values.

Deleting Configuration Variables
You cannot delete the configuration variables included in the
default configuration files. You can only change the values of
these variables. However, you can delete any additional variables
that you may have created.
To delete a configuration variable, do the following:
1. Select the setting to be deleted from the text pane.
2. Select the Delete Configuration Variable button, shown in

Figure 7.
3. Select the Apply button to save your setting to the

appropriate configuration file.
Refer to “Orbix Java Configuration Variables” for a complete list of
both common and Orbix Java-specific configuration variables.
 42 Orbix Administrator’s Guide Java Edition

Creating Configuration Scopes
The Configuration Explorer displays the configuration variables
contained in the default configuration files. You can customize
your configuration by creating additional configuration scopes.
Configuration scopes are containers for configuration variables.
Refer to “Using Orbix Java Configuration Files” for more details.
In the navigation tree, user-defined configuration scopes are
displayed as branching from default configuration scope icons, as
shown in Figure 8 on page 43.
To create a user-defined configuration scope, do the following:
1. Select Edit>Create Scope from the menu bar. Alternatively,

you can use the Create Scope toolbar.
2. In the Name text box, enter the name of your configuration

scope.
3. Select the Apply button to save your setting to the

appropriate configuration file.
You can then create new configuration variables within your
configuration scope, as described in “Creating Configuration
Variables” on page 41.

Deleting Configuration Scopes
You cannot delete the default configuration scopes included in the
default configuration files. However, you can delete any additional
scopes that you may have created.
To delete a configuration scope, do the following:
1. From the navigation tree, select the scope to be deleted.
2. Select the Edit>Delete Scope menu option. Alternatively,

you can use the Delete Scope button on the toolbar.
Select the Apply button to save your setting to the appropriate
configuration file.

Figure 8: Creating Configuration Scopes
Orbix Administrator’s Guide Java Edition 43

Creating Configuration Files
You can extend the Configuration Explorer to display custom
configuration files. To create a configuration file you should edit
your iona.cfg file to include the additional configuration file. An
icon associated with this configuration file then appears in the
Configuration Explorer navigation tree.
You can then create new configuration scopes and variables within
your new configuration file as usual, as described in “Creating
Configuration Variables” on page 41 and “Creating Configuration
Scopes” on page 43.
 44 Orbix Administrator’s Guide Java Edition

The Orbix Java Server
Manager
The Implementation Repository is the component of Orbix Java
that maintains registration information about servers and controls
their activation. The Orbix Java Server Manager allows you to
manage the Implementation Repository.
The Implementation Repository maintains a mapping from a
server name to the executable code that implements that server.
In an Orbix Java system, the Orbix Java daemon on each host has
an associated Implementation Repository. The Implementation
Repository allows the daemon to launch server processes in
response to operation calls from Orbix Java clients.
The Orbix Java Server Manager allows you to do the following:

• Browse an Implementation Repository.
• Register new servers.
• Modify existing server registration details.
The Orbix Programmer’s Guide Java Edition describes the
Implementation Repository in detail. This chapter assumes that
you are familiar with this description.

Starting the Orbix Java Server Manager
To start the Orbix Java Server Manager, choose the Server
Manager option in the Orbix Java menu. Alternatively, enter
srvmgr at the command line.
The main Server Manager window appears as shown in Figure 9.

Figure 9: Server Manager Main Window
 Orbix Administrator’s Guide Java Edition 45

The Server Manager window includes the following elements:

• A menu bar.
• A toolbar.
• A navigation tree.

This tree displays a graphical representation of the contents of
an Implementation Repository.

• A server information pane.
If you select an item in the navigation tree, the pane to the
right of the tree displays detailed information about that item.
Information about servers is displayed in a tabbed folder.

• A status bar.
You can use the toolbar icons in place of the menu options
described in this chapter.

Connecting to an Implementation Repository
To connect to an Implementation Repository, do the following:
1. Select Host/Connect.

The Connect dialog box appears, as shown in Figure 10.

2. In the Host Name text box, type the name or IP address of
the host on which the required Orbix Java daemon runs. The
default is the local host.

3. In the Port Number text box, type the TCP/IP port number
on which the Orbix Java daemon runs. To make a port number
the default, click the Set as Default Port check box. The
default port number is initially set to 1570.

4. Click Connect.
The main Server Manager window then displays the contents
of the Implementation Repository. For example, Figure 11
shows an Implementation Repository on the local host.

Figure 10: Connect Dialog Box
 46 Orbix Administrator’s Guide Java Edition

You can disconnect from an Implementation Repository at any
time. To disconnect, in the main window, select the required host
and then select Host/Disconnect.

Figure 11: Connection to an Implementation Repository

Creating a New Directory
The Implementation Repository supports the concept of
directories. This allows you to structure server names
hierarchically, and organize the contents of an Implementation
Repository.
To create an Implementation Repository directory, do the
following:
1. Select the Implementation Repository on the appropriate

host.
2. Select Directory/New.

The Directory Name text box appears in the right hand pane
of the main window, as shown in Figure 12 on page 48.

3. Type the name of the new directory in the Directory Name
text box.

4. Click Apply.
The main Server Manager window now includes the new
directory when displaying the contents of the Implementation
Repository. For example, if you create a Bank directory, this
directory is displayed in the directory tree after the Apply
button is clicked. This is shown in Figure 12 on page 48.
Orbix Administrator’s Guide Java Edition 47

To delete a directory, select the directory in the main Server
Manager window and then select Directory/Delete.

Figure 12: Creating a New Directory

 Registering a Server
To register a server, do the following:
1. Select the Implementation Repository directory in which you

wish to register the server. For example, to register a server
in directory Bank, select the icon for this directory in the main
window.

2. Select Server/New.
A tabbed folder appears in the right pane of the main window
as shown in Figure 13. This folder is used to record a server’s
registration details.

3. Enter the server name in the Server Name text box on the
General tab.

4. If the server is an Orbix Java server, click the Orbix Java
Server check box.

5. By default, only the user who registers the server can run
clients that launch the server or invoke operations on server
objects.
To provide server access rights to other users, click the
Rights tab. The Rights tab is described in “Providing Server
Access Rights to Users” on page 49.

6. The default server primary activation mode is shared. The
default secondary activation mode is normal.
To modify the server activation details, click the Activation
tab. The Activation tab is described in “Specifying Server
 48 Orbix Administrator’s Guide Java Edition

Activation Details” on page 51.

Figure 13: Registering a New Server

Providing Server Access Rights to Users
During server registration, you can provide server access rights to
other users by clicking the Rights tab in the main window. The
Rights tab appears as shown in Figure 14 on page 50.
Orbix Java offers two types of access rights:

• Launch rights
• Invoke rights
Launch rights allow clients owned by a specified user to cause the
Orbix Java daemon to activate the server.
Invoke rights allow clients owned by a specified user to invoke
operations on objects in the server.
To provide launch or invoke rights to a user, do the following:
1. In the appropriate area, type the user identifier in the text

box. To grant these rights to all users, type the user name
all.

2. Click Add.
To remove launch or invoke rights for a user, do the following:
1. In the appropriate user list, select the required user identifier.
2. Click Remove.
Orbix Administrator’s Guide Java Edition 49

When you have added or removed the required users from the
access rights lists, click Apply to commit the changes.

Figure 14: Providing Server Access Rights
 50 Orbix Administrator’s Guide Java Edition

Specifying Server Activation Details
During server registration, you can specify the server activation
details by clicking the Activation tab in the Server Manager main
window. The Activation tab appears as shown in Figure 15.

Figure 15: Specifying Server Activation Details

Activation Modes
To specify a server’s primary activation mode, use the radio
buttons in the Activation Mode section of the Activation tab.
The default server primary activation mode is shared.
To specify a server’s secondary activation mode click the
Advanced button in the Activation Mode section. This launches
the Secondary Activation Modes dialog box, as shown in
Figure 16. The default secondary activation mode is normal.

Figure 16: Secondary Activation Modes
Orbix Administrator’s Guide Java Edition 51

A server registered in shared activation mode can have an
associated maximum number of processes. The Orbix Java
daemon launches up to the specified number of processes for that
server.
Each new client connection results in a new server process until
the maximum number of processes is available. Subsequent client
connections are routed to existing server processes using a
round-robin algorithm. This provides a primitive form of load
balancing for shared servers.
To specify the number of processes associated with a shared
server, enter a positive integer value in the Max. number of
processes associated with this server text box.
You can associate a well-known TCP/IP port number with servers
that communicate using the CORBA-defined Internet Inter-ORB
Protocol (IIOP). To specify a well-known IIOP port for a server,
click the Use a Well known IIOP Port check box and enter a
value in the Port Number text box.
When you have specified the server activation details, click OK to
confirm these details.

Note: The Orbix Java daemon currently supports shared primary
activation mode and normal secondary activation mode only.

Launch Commands
The Commands section on the Activation tab allows you to
modify the launch commands associated with a server. A
registered server must have at least one launch command.
Launch commands depend on the server activation mode, as
follows:

Shared Activation Mode
If the server activation mode is shared:
1. Enter the server launch command in the Command text box.
2. Enter a * character in the Marker text box.
3. Click Add.

Unshared Activation Mode
If the server activation mode is unshared:
1. Enter a marker pattern in the Marker text box.
2. Enter the launch command for this marker pattern in the

Command text box.
3. Click Add.
Repeat this process for each marker pattern you wish to register.

Per-Method Activation Mode
If the server activation mode is per-method:
1. Enter a method name in the Marker text box.
2. Enter the launch command for this method in the Command

text box.
3. Click Add.
Repeat this process for each method you wish to register.
 52 Orbix Administrator’s Guide Java Edition

Modifying Server Registration Details
When you register a server, the Orbix Java daemon creates a
server registration record in the Implementation Repository. This
record stores detailed information about the server.
To modify a server registration record, do the following:
1. Select the server you wish to modify.

The Server Manager displays the tabbed folder containing all
the registration details for the selected server.

2. Select the required tab from the following:
 General
 Activation
 Rights

3. Enter the value in the appropriate section of the tab, as
described in “Registering a Server” on page 48.

4. Click the Apply button.

Launching a Persistent Server
Orbix Java allows you to launch shared servers manually. A
manually-launched server is known as a persistent server.
To launch a persistent server process, do the following:
1. Select the server you wish to launch.

The server must be registered in shared mode.
2. Select Server/Launch.

If successful, this starts the server executable file specified in
the server launch command. The icon for the selected server
displays a green traffic light while the server process runs, as
shown in Figure 17.

To kill a shared server process, select Server/Kill.

Figure 17: Launching a Persistent Server
Orbix Administrator’s Guide Java Edition 53

Configuring the Server Manager
To configure the Server Manager, do the following:
1. In the main Server Manager window, select Server

Manager/Options. The Options dialog box appears, as
shown in Figure 18.

Figure 18: The Options Dialog Box

2. By default, the Server Manager does not connect to an Orbix
Java daemon at startup. To specify that the Server Manager
should connect to the Orbix Java daemon at the local host,
click the Connect to your local host on startup check box.

3. The Server Manager allows you to register Orbix or Orbix Java
servers. By default, the Server Manager assumes that servers
are Orbix Java servers.
To change this default, check Create Java servers by
default.

4. You can also select the transport protocol used. The default
protocol is IIOP (Internet Inter-Orb Protocol). To change this
default, click the check box labelled Set the transport
protocol to Orbix.

5. To enable online help, enter the Location of your Internet
browser in the text box provided.

6. Click OK to commit the new configuration.
Note: The main Server Manager window refreshes itself
automatically, reflecting updates as they occur. This means that
the Refresh Time option, used in earlier versions of the Server
Manager, is no longer necessary.
 54 Orbix Administrator’s Guide Java Edition

The Interface
Repository Browser
The Interface Repository provides persistent storage of IDL
definitions and allows CORBA applications to retrieve information
about those definitions at runtime. The Interface Repository
Browser allows you to manage IDL definitions in the Interface
Repository.
Some CORBA applications, for example applications that use the
Dynamic Invocation Interface (DII) to invoke operations, require
runtime access to information about IDL definitions. The Interface
Repository allows you to store IDL definitions for retrieval by these
applications.
The Interface Repository Browser allows you to add IDL definitions
to the Interface Repository and view information about those
definitions. CORBA applications can retrieve information about
those definitions using standard IDL interfaces implemented by
the Interface Repository.
The Interface Repository Browser also allows you to export IDL
definitions from the Interface Repository to a file. This feature
makes the Interface Repository Browser a useful development tool
for managing the availability of IDL definitions in your system.
The Orbix Programmer’s Guide Java Edition describes the
Interface Repository in detail. The remainder of this chapter
assumes that you are familiar with this description.

Starting the Interface Repository Browser
You can start the Interface Repository Browser from the Windows
Start menu. Alternatively, enter the orbixifr command at the
command line.
 Orbix Administrator’s Guide Java Edition 55

The main Interface Repository Browser window appears as shown
in Figure 19.

Figure 19: The Main Interface Repository Browser Window

The browser interface includes the following elements:

• A menu bar.
• A tool bar.
• A navigation tree. This tree displays a graphical

representation of the contents of an Implementation
Repository.

• A multi-columned list box. This list box displays information
about IDL definitions selected in the navigation tree.

• A status bar.

Note: You can use the tool bar icons in place of the menu options
described in this chapter.

Connecting to an Interface Repository
The Interface Repository is implemented as an Orbix server. The
Orbix Programmer’s Guide Java Edition describes how you
make an Interface Repository server available to your system.
To connect to an Interface Repository server, do the following:
1. Select Host/Connect. The Connect dialog box appears as

shown in Figure 20.

Figure 20: The Connect Dialog Box
 56 Orbix Administrator’s Guide Java Edition

2. In the text box, enter the name or IP address of the host on
which the Interface Repository server runs.

3. Click OK. The navigation tree in the main browser window
displays the contents of the Interface Repository.

Adding IDL to the Interface Repository
The Interface Repository Browser allows you to import IDL
definitions from a source file. This is a safe mechanism for adding
IDL definitions to the Interface Repository which maintains the
Interface Repository in a consistent state.
To add IDL definitions to the Interface Repository, do the
following:
1. Select File/Import. The standard Open File dialog box for

your operating system appears.
2. In the dialog box, enter the name of the source file in which

your IDL is defined.
3. Click OK. In the main browser window, the navigation tree

control displays the contents of the Interface Repository
including the new IDL definitions.

Consider the following example IDL source file:
// IDL
interface Grid {

readonly attribute short height;
readonly attribute short width;

long get (in short row, in short col);
void set (in short row, in short col, in long value);

};

If you import this file into an empty Interface Repository, the main
browser window appears as shown in Figure 21 on page 57.

Figure 21: IDL Definitions in the Interface Repository Browser
Orbix Administrator’s Guide Java Edition 57

Viewing the Interface Repository Contents
The navigation tree in the main browser window represents the
contents of the Interface Repository in terms of containment
relationships. As described in the Orbix Programmer’s Guide
Java Edition , the Interface Repository uses containment
relationships to represent the nested structure of IDL definitions.
Consider the following example IDL source file:

// IDL
module Finance {
interface Account {
readonly attribute float balance;
void makeDeposit (in float amount);
void makeWithdrawal (in float amount);
};
interface Bank {
Account newAccount ();
};

};

If you import this file into an Interface Repository, the browser
navigation tree illustrates that the definition of module Finance
contains interfaces Account and Bank which in turn contain attribute
and operation definitions, as shown in Figure 22.

Figure 22: Containment Relationships in the Interface Repository Browser
 58 Orbix Administrator’s Guide Java Edition

Viewing Information about IDL Definitions
The list box in the main browser window displays information
about selected IDL definitions. To view information about an IDL
definition, select the navigation tree icon of the container in which
the definition is contained. The list box displays information about
the contents of the container, including the type and name of each
contained definition.
For example, if you select the icon for module Finance, the list box
displays information about the IDL interface definitions contained
within this module, as shown in Figure 22.

Viewing Source Code for IDL Definitions
To view the source for an IDL definition, do the following:
1. Navigate to the required IDL definition.
2. Select View/View CORBA IDL. The View Interface

Definition Language dialog box displays the IDL source
associated with the selected definition.

For example, if you view the source for interface Bank, the View
Interface Definition Language dialog box appears as shown in
Figure 23.

Figure 23: The View Interface Definition Language Dialog Box

Exporting IDL Definitions to a File
The Interface Repository Browser allows you to save an IDL
definition to a file. To export an IDL definition from the Interface
Repository to a file, do the following:
1. Navigate to the required IDL definition.
2. Select File/Export. The standard Save File As dialog box for

your operating system appears.
3. In the dialog box, enter the name of the target file in which

you wish to save the IDL definition.
4. Click OK to save the definition to the specified file.
Orbix Administrator’s Guide Java Edition 59

Configuring the Interface Repository Browser
To configure the Interface Repository Browser, do the following:
1. Select Network/Options. The Interface Repository

Options dialog box appears as shown in Figure 24.

Figure 24: The Interface Repository Options Dialog Box

2. By default, the main browser window refreshes every seven
seconds. To modify this refresh time, enter a positive integer
value in the Refresh Time text box.

3. By default, the browser does not connect to an Interface
Repository at startup. To specify that the browser should
connect to the Interface Repository at the local host, click the
Connect to local host on startup button.

4. Click OK to commit the new configuration.
Note that you can manually refresh the main browser window at
any time. To do this, select View/Refresh.
 60 Orbix Administrator’s Guide Java Edition

Part III
Appendices

In this part
This part contains the following:

Orbix Java Configuration Variables page 63

Orbix Java Daemon Options page 73

Orbix Java Command-Line Utilities page 75

System Exceptions page 87

Orbix Java
Configuration
Variables
There are two types of Orbix Java configuration variables: those
that are common to multiple Micro Focus CORBA products, and
variables that are specific to Orbix Java only.

Common Configuration variables
You can set the following variables as environment variables using
the Configuration Explorer GUI tool, or by editing the common.cfg
configuration file.

Table 1: Common Configuration variables

Variable Type Description

IT_DAEMON_PORT Integer TCP port number for the Orbix
Java daemon.

IT_DAEMON_SERVER_BASE Integer A server that is launched in
separate processes listens on its
own port.
The first server port assigned is
IT_DAEMON_SERVER_BASE plus 1,
subsequently allocated ports
increment until
IT_DAEMON_SERVER_BASE plus
IT_DAEMON_SERVER_RANGE.

IT_DAEMON_SERVER_RANGE Integer Refer to the entry for
IT_DAEMON_SERVER_BASE.
The default value is 2000.

IT_DEFAULT_CLASSPATH String This is the classpath the daemon
uses to find Java servers when
launching them.
You can supplement this on a
per-server basis using the
-addpath variable to putitj.
There is no default.

IT_IMP_REP_PATH String The full path name of the
Implementation Repository
directory.

IT_INT_REP_PATH String The full path name of the
Interface Repository directory.
 Orbix Administrator’s Guide Java Edition 63

IT_JAVA_INTERPRETER String The path to the Java interpreter
executable. Used by the "owjava"
tool when starting servers or other
Java applications. Also used by
the Orbix Java daemon when
starting servers.

IT_LOCAL_DOMAIN String The name of the local Internet
domain; for example,
microfocus.com.

Table 1: Common Configuration variables

Variable Type Description
 64 Orbix Administrator’s Guide Java Edition

Orbix Java-Specific Configuration variables
You can set these variables using the Configuration Explorer GUI
tool, or by editing the orbixweb3.cfg configuration file.
The available configuration variables are listed here in alphabetical
order. Infrequently-used variables are marked with an asterisk
(*); these generally do not need to be changed.

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description

IT_ACCEPT_CONNECTIONS Boolean Allow connections to be opened from remote
ORBs so that operations can be called on this
ORB’s objects.
The default value is true. (*)

IT_ALWAYS_CHECK_LOCAL_OBJS Boolean A true value here indicates that when an
object reference arrives, always check to see
if this is a reference for a local object.
The default value is false. (*)

IT_ANY_BUFFER_SIZE Integer The initial size of the internal buffer used for
marshalling anys.
The default value is 512. (*)

IT_BIND_IIOP_VERSION String This controls the IOR (Interoperable Object
Reference) version used in bind() calls.
Orbix Java supplies a separate version
control for bind() calls because they create
their own IORs, and do not return IORs
created by servers.
This defaults to 10 (version 1.0). You should
only set this to 11 if you are sure that the
target server supports IIOP 1.1.

IT_BIND_USING_IIOP Boolean Use the IIOP protocol to bind() instead of
the Orbix protocol.
The default is true.

IT_BUFFER_SIZE Integer The initial size of the internal buffer used for
marshalling operation variables.
The default value is 8192. (*)

IT_CLASSPATH_SWITCH String The switch used by the Java interpreter to
specify a classpath. Used by the owjava tool
when starting servers or other Java
applications.
This defaults to -classpath. (*)

IT_CONNECT_ATTEMPTS Integer The maximum number of retries Orbix Java
makes to connect a client to a server.
The default value is 5. (*)
Orbix Administrator’s Guide Java Edition 65

IT_CONNECTION_ORDER String Specifies the order in which clients try
different connect mechanisms to servers.
You can specify direct, iiopproxy or http. If
SSL is enabled, the SSL version of the
connection mechanism is used.
The default is iiopproxy.

IT_CONNECTION_TABLE_PER_THREAD Boolean This variable allows you to specify a
connection table for each thread as opposed
to for each ORB.This prevents multi
threaded HTTP connections from being
locked.
This setting is independent of the
IT_MULTI_THREADED_SERVER. variable. You must
set both to true for multi threaded HTTP to
work.
The default is false.

IT_CONNECTION_TIMEOUT Integer The time (in milliseconds) an existing
connection from client to server is kept alive
to be used for further invocations.
The default is 300000. (*)

IT_CONNECT_TABLE_SIZE_DEFAULT Integer The initial size of the connection table. This
is resized automatically.
This defaults to 100. (*)

IT_DETECT_APPLET_SANDBOX Boolean If set to true, always try to detect whether
the ORB is being used in an applet. If the
applet sandbox is detected, do not perform
operations that cause a SecurityException,
such as accessing system properties.
The default value is true. (*)

IT_DEFAULT_IIOP_VERSION String This controls the IIOP version embedded in
IORs produced in Orbix Java servers. It
indicates what versions of IIOP the target
supports, and also the version of messages
sent by a client (as long as it is less than or
equal to that of the target).
Set to 10 (IIOP version 1.0) by default. You
must set this to 11 in servers to allow clients
to use IIOP fragmentation.

IT_DII_COPY_ARGS Boolean Whether the DII should copy invocation
arguments.
Set this to false to optimize stub marshalling
for large messages.
This defaults to false. (*)

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description
 66 Orbix Administrator’s Guide Java Edition

IT_DSI_COPY_ARGS Boolean Whether the DSI should copy invocation
arguments.
The default value is false. (*)

IT_HTTP_TUNNEL_HOST String The TCP/IP hostname used by a client to
contact a Wonderwall IIOP proxy for HTTP
tunnelling.

IT_HTTP_TUNNEL_PORT Integer The TCP/IP port used by a client to contact a
Wonderwall IIOP proxy for HTTP tunnelling.
This defaults to 0.

IT_HTTP_TUNNEL_PREFERRED Boolean Whether HTTP tunnelling should be used in
preference to any other connection
mechanism.
This defaults to false.

IT_HTTP_TUNNEL_PROTO String The HTTP protocol used by a client to contact
a Wonderwall IIOP proxy for HTTP tunnelling
(usually http).

IT_IIOP_LISTEN_PORT Integer A server’s well-known port; the port to listen
for client invocations using IIOP.
The default value is 0. (*)

IT_IIOP_PROXY_HOST String The TCP/IP hostname used by a client to
contact a Wonderwall IIOP proxy for IIOP
proxy connections.

IT_IIOP_PROXY_PORT Integer The TCP/IP port used by a client to contact a
Wonderwall IIOP proxy for IIOP proxy
connections.
This has a default value of 0.

IT_IIOP_PROXY_PREFERRED Boolean Indicates whether connecting using IIOP
proxying via a Wonderwall should be used in
preference to any other connection
mechanism.
This defaults to false.

IT_IMPL_READY_IF_CONNECTED Boolean Specifies whether the Orbix Java runtime
should inform the daemon that the server is
ready by calling impl_is_ready() when the
server calls ORB.connect().
This defaults to true.

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description
Orbix Administrator’s Guide Java Edition 67

IT_IMPL_IS_READY_TIMEOUT Integer When an in-process server is launched, the
Java daemon waits to be informed that the
server is active before allowing the causative
client request to proceed. Refer to the Orbix
Programmer’s Guide Java Edition for further
details.
It waits a maximum of this amount of time,
specified in milliseconds.
The default is 30000 milliseconds (30
seconds).

IT_INITIAL_REFERENCES String A list of IORs for initial service objects, as
returned by the ORB operation
list_initial_references(). It is specified in a
"name value name value..." format.
For example, "NameService
IOR:[IOR_for_naming_service] TradingService
IOR:[IOR_for_Trader]".

IT_IORS_USE_DNS Boolean Indicates whether IIOP object references use
DNS hostnames or IP addresses. A true
value here indicates that they should use
DNS hostnames.
This defaults to false. (*)

IT_JAVA_COMPILER String The path to the Java compiler executable.
Used by the owjavac tool when building the
Orbix Java demos.

IT_JVM_SYSTEM_PROPERTY_SWITCH String This allows the Java daemon to be run on
different JVMs.
It facilitates the different switches that
different Java Interpreters support to pass
system properties to the JVM.
The default is -D for the JDK. You should set
this to /d: for Microsoft’s JView.

IT_KEEP_ALIVE_FORWARDER_CONN Boolean Whether the connection from the client to
the Orbix Java daemon should be kept alive
after a bind() call.
The default is true. (*)

IT_LISTENER_PRIORITY Integer The priority of the server-side
connection-listener thread.
The default value is 5. (*)

IT_LOCAL_DOMAIN String The name of the local DNS domain.

IT_LOCAL_HOSTNAME String The name of the local host. You do not need
to set this normally, but it can be useful if you
wish to control the interface on which incoming
connections are accepted.

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description
 68 Orbix Administrator’s Guide Java Edition

IT_MARSHAL_NULLS_OK Boolean Allow Java nulls to be used to represent null
IDL strings and anys.
This variable enables API compatibility with
pre-OMG standard versions of Orbix Java
and Orbix C++.
The default is false.

IT_MULTI_THREADED_SERVER Boolean Whether this instance of the Java runtime
can contain multiple servers in the one
process.
This defaults to false. (*)

IT_NAMES_HASH_TABLE_LOAD_FACTOR Float Percentage of table elements used before a
resize. The default value is 0.5.

IT_NAMES_HASH_TABLE_SIZE Integer The initial size for the Naming Service hash
table. This value must be a prime number.
The default value is 23.

IT_NAMES_REPOSITORY_PATH String This represents the default location of the
Naming Service repository entries.
This is set to the following directory by
default:
<install dir>/config/NamesRep

IT_NAMES_SERVER String The name of the Name Server that is
registered with the Implementation
Repository.

IT_NAMES_TIMEOUT Integer The default timeout, set to the following:
-1(IT-INFINITE_TIMEOUT)

IT_NAMES_SERVER_HOST String The TCP/IP hostname of the host where the
CORBA Naming Service is installed.

IT_NS_IP_ADDR String The IP address of the host where the CORBA
Naming Service is installed. If this is not set,
the IT_NAMES_SERVER_HOST variable is used
instead. (*)

IT_NS_PORT Integer The TCP/IP port of the host running the
CORBA Naming Service.
The default value is 1570.

IT_OBJECT_CONNECT_TIMEOUT Integer The amount of time an object is available
after connect() is called.
The default value of -1 means indefinitely.
(*)

IT_OBJECT_TABLE_LOAD_FACTOR Float The load factor of the server object table.
Once this proportion of objects has been
registered, it is resized.
This has a default of 0.75. (*)

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description
Orbix Administrator’s Guide Java Edition 69

IT_OBJECT_TABLE_SIZE Integer The initial size of the internal table used to
register Orbix Java objects in a server.
The default value is 1789. (*)

IT_ORBIXD_IIOP_PORT Integer The TCP/IP port number on which the Orbix
Java daemon can be contacted when using
IIOP. Provided to support legacy daemons
requiring a separate port for each protocol.
The default is 1570.

IT_ORBIXD_PORT Integer The TCP/IP port number on which the Orbix
Java daemon should be contacted when
using the Orbix protocol.
The default is 1570.

IT_READER_PRIORITY Integer The priority of the server-side
request-reader thread.
The default is 3. (*)

IT_REQ_CACHE_SIZE Integer The initial size of the internal cache for
outgoing requests.
The default is 10. (*)

IT_SEND_FRAGMENTS Boolean If this is set to true and the target server
supports IIOP version 1.1 or higher,
messages that exceed IT_BUFFER_SIZE are
sent as fragments.
This defaults to false.

IT_TRADING_SERVER String The server name for the CORBA Trader
service. (*)

IT_USE_ALIAS_TYPECODE Boolean When set to true creates an alias TypeCode.
This defaults to false.

IT_USE_BIDIR_IIOP Boolean Whether bidirectional IIOP connections
should be used to support callbacks through
firewalls.
This is set to false by default.

IT_USE_EXTENDED_CAPABILITIES Boolean Orbix Java provides built-in support for
Netscape's Capabilities API. If this is
enabled, connections can be opened to any
host using IIOP, Orbix protocol or SSL-IIOP,
when a valid Netscape Object Signing
certificate is used.
This is set to true by default. (*)

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description
 70 Orbix Administrator’s Guide Java Edition

IT_USE_ORBIX_COMP_OBJREF Boolean When this is set to false, the default
TypeCode alias is used for object references.
This is IDL:CORBA/Object:1.0
When this is set to true, the following
TypeCode alias is used for object references:
IDL:omg.org/CORBA/Object:1.0

The default is false.

IT_USE_ORB_THREADGROUP Boolean When set to true, this causes Orbix Java to
place any threads it creates into an "ORB
threadgroup", a top-level thread-group.
This allows ORB threads to be separated
from application threads, and is especially
useful in Netscape-signed applets. In the
JVM, multiple instances of the same applet
sharing the same ORB object can interfere
with each others operation.
This is set to true by default. (*)

config String The configuration file to use. By default, the
first configuration file found in the classpath,
or the first found in the CODEBASE directory for
applets is used.

pingDuringBind Boolean Whether a client should try to ping the
server during a bind() call.
This is set to true by default. (*)

setDiagnostics Integer Specifies the Orbix Java diagnostics level
output to stdout. You should enter a value in
the range 0-255.
The default value is 1.

useDefaults Boolean If this is set to true, Orbix Java does not
output a warning if the configuration file
cannot be found.

IT_USE_TRUE_PROCESS_PID Boolean Specifies whether an Orbix server will use a
JNI library to figure out the true PID of itself.
The default value is false.

IT_KEYOBJECTTABLE_USINGPORT Boolean Whether Orbix Java should take the
hostname and port into consideration when
adding servants into the runtime object
table. If this is set to false, Orbix uses the
object key only.
The default value is false.

IT_CALLBACK_PORT_BASE Integer Sets the base port to start assigning port
numbers for callbacks. Setting to 0 will let
the kernel assign the callback ports.
The default value is 0.

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description
Orbix Administrator’s Guide Java Edition 71

Note: The entries in Orbix configuration files are scoped with a prefix;
for example, Common{...} or OrbixWeb{...}.
For details of OrbixNames-specific configuration variables, refer to
the OrbixNames Programmer’s and Administrator’s Guide.

IT_CALLBACK_PORT_RANGE Integer Sets the port range to start assigning port
numbers for callbacks.
The default value is 1.

IT_ENABLE_IPV6 Boolean Enable IPv6 communication. This enable
both IPv4 and IPv6 communication.
The default value is false.

Table 2: Orbix Java-Specific Configuration Variables

Variable Type Description
 72 Orbix Administrator’s Guide Java Edition

Orbix Java Daemon
Options

Orbixd Options
The Orbix Java daemon process, orbixd, takes the following
options:

-c filename Specifies the log file to use for check-point
information. In the event that a daemon is
terminated, this allows a new daemon to recover
information about existing running servers.
Unless an absolute pathname is specified, the
file is placed in a directory relative to that from
which the daemon is launched.

-i filename Outputs the daemon’s interoperable object
reference (IOR) to the specified file.
Unless an absolute pathname is specified, the
file is placed in a directory relative to that from
which the daemon is launched.

-p Runs the daemon in protected mode. In this
mode, only clients running as the same user as
the daemon are allowed to modify the
Implementation Repository. No updates are
accepted from remote hosts.

-r seconds Specifies the frequency (in seconds) at which
orbixd’s child processes should be reaped. The
default is 60 seconds.

-s Runs the daemon in silent mode. By default, the
daemon outputs some trace information.

-t Outputs more than the default trace information
while the daemon is running.

-u Allows invocations on a manually-launched
unregistered server. This means that the
manually-launched (persistent) server does not
have to be registered in the Implementation
Repository.

-x seconds Sets the time limit in seconds for establishing
that a connection to the daemon is fully
operational. The default is 30 seconds.

-v Outputs the daemon version number and a
summary of the configuration details that a new
daemon process would use. Specifying -v does
not cause a new daemon to be run.

-? Displays the switches to orbixd.
 Orbix Administrator’s Guide Java Edition 73

Orbixdj Options
The Orbix Java daemon process, orbixdj, takes the following
options:

-inProcess By default, the Java daemon activates servers in
a separate process. This is termed out-of-
process activation.
If this switch is set, the Java daemon starts
servers in a separate thread. This is termed in-
process activation.

-textConsole By default, the Java daemon launches a GUI
console.
Adding this switch causes the Java daemon to
use the invoking terminal as the console.

-noProcessRedirect By default, the stdout and stderr streams of
servers activated in a separate process are
redirected to the Java daemon console.
Specifying this switch causes the output streams
to be hidden.

-u Allows the use of unregistered persistently-
launched servers.

-V Prints a detailed description of the configuration
parameters used by the Java daemon on
start-up.
The Java daemon then exits.

-v Causes the Java daemon to print a summary of
the configuration it runs with.
The Java daemon then exits.

-? Displays the switches to orbixdj.
 74 Orbix Administrator’s Guide Java Edition

 Orbix Java
Command-Line Utilities
This appendix acts as a reference for the command-line interface
to Orbix Java. The utilities described in this appendix allow you to
manage the Implementation Repository and the Interface
Repository.

Utility Summary
The following table shows the available command-line utilities:

Table 0.1: Orbix Java Command-Line Utilities

This appendix describes each command-line utility in alphabetical
order.

Note: To get help on any utility, enter the utility name followed by the -?
or the -help switch. For example, putitj -?.

catitj
The catitj utility outputs full information about a given
Implementation Repository entry.

Syntax
catitj [-v] [-h host] server_name

Options

Purpose Utility

Server Registration putitj, rmitj

Listing Server Information lsitj, psitj, catitj

Process Management pingitj, killitj

Implementation Repository
Directories

mkdiritj, rmdiritj

Security chownitj, chmoditj

Interface Repository
Management

putidl, readifr, rmidl

Configuration Information dumpconfig

-v Outputs the utility version information.
-h host Outputs information about an entry on a specific

machine.
 Orbix Administrator’s Guide Java Edition 75

chmoditj
The chmoditj utility modifies access control for a server. For
example, you can use it to grant launch and invoke rights on a
server to users other than the server owner.

Syntax
chmoditj [-v] [-h host]

{ server | -a directory }
{ i{+,-}{user, group}|
 l{+,-}{user, group} }

Options

By default, only the owner of an Implementation Repository entry
can launch or invoke the registered server. However, launch and
invoke ACLs are associated with each entry in the Implementation
Repository, and you can modify these ACLs to give certain users
or groups the right to launch or invoke a specific server or a
directory of servers.
There is also a pseudo-group name called all that you can use to
implicitly add all users to an ACL.

chownitj
The chownitj utility makes changes to the ownership of
Implementation Repository entries and directories.

Syntax
chownitj [-v] [-h host]

{ -s server_name new_owner |
 -d directory { +, - } {user, group} }

Options

Only the current owner of an Implementation Repository entry has
the right to change its ownership.

-v Outputs the utility version information.
-h host Modify an entry on a specific host.
-a Specify that a user or group is to be added to an access

control list (ACL) for a directory of servers.
i+
i-

Add a user or group to the invoke ACL.
Remove a user or group from the invoke ACL.

l+
l-

Add a user or group to the launch ACL.
Remove a user or group from the launch ACL.

-v Outputs the utility version information.
-h host Indicates which host to use.
-s Changes the ownership of an Implementation

Repository entry.
-d Modifies the ACL on a directory, allowing you to add

(+) or remove (-) a user or group from the list of
directory owners.
 76 Orbix Administrator’s Guide Java Edition

An Implementation Repository directory can have more than one
owner. An ownership ACL is associated with each directory in the
Implementation Repository, and this ACL can be modified to give
certain users or groups ownership rights on a directory. Only a
user on an ownership ACL has the right to modify the ACL.

Note: Spaces are significant in this command. Spaces must exist
between an option and its argument, and on either side of the + or
- that follows a directory.
Orbix Java supports the pseudo-group all which, when added to
an ACL, grants access to all callers.

dumpconfig
The dumpconfig utility outputs the values of the configuration
variables used by Orbix, and the location of the Orbix
configuration files in your system. It also reports if there are any
syntax errors in your configuration files.

Syntax
dumpconfig [-v]

Options

killitj
The killitj utility kills (stops) a running server process.

Syntax
killitj [-v] [-h host] [-m marker] server_name

Options

Where there is more than one server process, use the marker
parameter to select between different processes. You must specify
the -m marker parameter when killing a process in the unshared
mode.
The killitj utility uses the SIGTERM signal. This utility does not
remove the entry from the Implementation Repository.

lsitj
The lsitj utility lists entries in an Implementation Repository
directory.

Syntax
lsitj [-v] [-h host] [-R] directory

-v Outputs the utility version information.

-v Outputs the utility version information.
-h host Kills a server on a specific machine.
-m Specifies a marker value to identify a specific object, or

set of objects, to which the killitj utility applies.
Orbix Administrator’s Guide Java Edition 77

Options

mkdiritj
The mkdiritj utility creates a new registration directory.

Syntax
mkdiritj [-v] [-h host] directory

Options

Hierarchical names are extremely useful in structuring the name
space of servers in Implementation Repositories.

pingitj
The pingitj utility tries to contact an Orbix Java daemon to
determine if it is running.

Syntax
pingitj [-v] [-h host]

Options

psitj
The psitj utility outputs a list of server processes known to an
Orbix Java daemon.

Syntax
psitj [-v] [-h host]

Options

One line is output for each server process. Each line has values for
the following fields:

Name Marker Code Comms Port Status Per-Client? OS-pid

The fields are as follows:

-v Outputs the utility version information.
-h host Lists entries on a specific host.
-R Recursively lists all subdirectories and entries.

-v Outputs the utility version information.
-h host Creates a new directory on a specific host.

-v Outputs the utility version information.
-h host Pings a specific host machine.

-v Outputs the utility version information.
-h host Lists server processes on the specified host.

Name The server name.
Marker The object marker pattern associated with the

process; for example, *.
Code The data encoder used; for example, cdr.
 78 Orbix Administrator’s Guide Java Edition

putidl
The putidl utility allows you to add a set of IDL definitions to the
Interface Repository. This utility takes the name of an IDL file as
an argument. All IDL definitions within that file are added to the
repository.
The Interface Repository server must be available for this utility to
succeed.

Syntax
putidl {[-?] | [-v] [-h host] [-s] file}

Options

putitj
The putitj utility creates an entry in the Implementation
Repository that represents how Orbix Java can start a server.

Note: The availability of a given putitj switch depends on which Orbix
Java daemon is used orbixd or orbixdj. Switches labelled orbixd
are not currently supported by the Java daemon orbixdj.

Syntax
putitj [-v] [-h host] [-per-client | -per-client-pid]

[-shared | -unshared] [-marker marker]
[-per-method [-method method]
[-j | -java] [-classpath classpath | -addpath path]
[-oc ORB_class] [-os ORB_singleton_class] [-jdk2]
[-port iiop portnumber][-l] [-persistent]
[-nservers | -n number_of_servers]
serverName [-- command_line_parameters]

Comms The communications protocol used; for
example, tcp.

Port The port number used by the communications
system.

Status This can be auto, manual or inactive.
Per-Client? Indicates whether the server is a per-client

server.
OS-pid The operating system process.

-? Displays the allowed options for this command.
-v Outputs the utility version information.
-h host Indicates the host at which the Interface Repository

server is available.
-s Indicates that the utility should run in silent mode.
Orbix Administrator’s Guide Java Edition 79

Options
Executing putitj without any arguments outputs a summary of its
options. The options are as follows:

-v Outputs the utility’s version information
without executing the command. This option
is available on all of the utilities.

-h host Specifies the hostname on which to execute
the putitj command. By default, this utility
is executed on the local host.

-per-client
(orbixd)

Specifies that a separate server process is
used for each user. You can use this
activation mode with the shared, unshared,
or per-method modes.

-per-client-pid
(orbixd)

Specifies that a separate server process is
used for each client process. You can use
this activation mode with the shared,
unshared, or per-method modes.

-shared Specifies that all active objects managed by
a given server on a given machine are
contained in the same process. This is the
default mode.

-unshared
(orbixd)

Specifies that as an object for a given server
is invoked, an individual process is activated
to handle all requests for that object. Each
object managed by a server can (but does
not have to) be registered with a different
executable file—as specified in
command_line.

-java The -java switch indicates that the specified
server should be launched via the Java
interpreter. You can truncate this switch to
-j.

-classpath
full classpath

You can only use this switch in conjunction
with the -java switch. Specifies a full class
path to be passed to the Java interpreter
when the server is launched. Overrides the
default value IT_DEFAULT_CLASSPATH in
common.cfg.

-addpath
partial classpath

You can only use this switch in conjunction
with the -java switch. Specifies a partial
class path to be appended to the default
value IT_DEFAULT_CLASSPATH when the Orbix
Java daemon attempts to launch the server.

-oc ORB_class Passes -Dorg.omg.CORBA.ORBClass=ORB_class
to the Java interpreter. You should use this
switch with the -os switch.
For Orbix Java servers, the parameter to
this switch should be as follows:
 IE.Iona.OrbixWeb.CORBA.ORB.
You should pass this string to the Java
interpreter before the server class name.
 80 Orbix Administrator’s Guide Java Edition

-os

ORB_singleton_class
Passes -Dorg.omg.CORBA.ORBSingletonClass=
ORB_singleton_class to the Java interpreter.
You should use this switch with the -oc
switch.
For Orbix Java servers the parameter to this
switch should be

IE.Iona.OrbixWeb.CORBA.singletonORB.
This string must be passed to the Java
interpreter before the server class name.
The -os and -oc switches provide foreign
ORB support.

-jdk2 Passes the following system properties to
the Java interpreter:
Dorg.omg.CORBA.ORBClass=

IE.Iona.OrbixWeb.CORBA.ORB

-Dorg.omg.CORBA.ORBSingletonClass=
IE.Iona.OrbixWeb.CORBA.singletonORB

You must pass this string to the Java
interpreter before the server class name.
You should use this switch for Orbix Java
servers being executed by JDK1.2.

-l Allows you to register pre-Orbix 2.3 servers
using the putitj command.

-per method
(orbixd)

Specifies that each invocation to a server
results in a process being activated to
handle that request. Each method can (but
does not have to) be registered with a
different executable file—as specified in
command_line.

-port port
(orbixd)

Specifies a well-known port number for a
server so that Orbix Java, if necessary,
activates a server that communicates on the
specified port number. Often required by
servers that communicate over the CORBA
Internet Inter-ORB Protocol (IIOP).

-- parameters Allows the addition of extra command-line
parameters to be passed to a server.
All parameters specified after the -- switch
are ignored by the putitj utility and passed
to the daemon as the launch command. For
example,
putitj -j testServer
-- -DOrbixWeb.setDiagnostics=255
packageName.className
Orbix Administrator’s Guide Java Edition 81

The following options apply to the shared mode:

The following option applies to the shared and unshared modes:

The following option applies to the per-method mode:

Server Activation Modes
Activation modes control how servers are implemented when they
become processes of the underlying operating system. The
primary activation modes are as follows:

-nservers num-
ber_of_servers
(orbixd)

This switch is applicable only to servers
registered in shared activation mode. It
instructs the daemon to launch up to the
specified number of servers. Each new client
connection results in a new server being
launched as long as the number of clients is
less than the number specified in
number_of_servers. When the number of
clients equals the number of servers specified
in number_of_servers, new clients are
connected to running servers using a round
robin algorithm.
The default number of servers is 1. You can
truncate the -nservers switch to -n.

-persistent
(orbixd)

Specifies that the server can only be launched
persistently (that is, manually). The server is
never automatically launched by Orbix Java.
If the -u option is passed to the Orbix Java
daemon, such servers do not have to be
registered in the Implementation Repository.

-marker marker Specifies a marker value to identify a specific
object, or set of objects, to which the putitj
applies.
Marker names specified using putitj cannot
contain white space.

-method method
(orbixd)

Specifies a method name to identify a specific
method, or set of methods, to which the
putitj applies.

Shared In shared mode, all of the objects with the
same server name on a given machine are
managed by one process on that machine.
If a server is registered in shared mode, it can
also be launched manually prior to any
invocation on its objects.
This is the default activation mode.

Unshared In unshared mode, individual objects are
registered with the Implementation Repository,
and a process is launched for each object.
 82 Orbix Administrator’s Guide Java Edition

You should note the following:

• For a given server name, you can select only one of shared,
unshared, or per-method.

• For each of the modes shared or unshared, a server can be
registered in a secondary activation mode:
 multiple-client
 per-client
 per-client-process
The default is multiple-client activation. This means that a
server process is shared between multiple principals and
multiple client processes.
Per-client activation results in a separate server process for
each principal (end-user). Per-client-process activation results
in a separate server process for each separate client process.
Per-client and per-client-process activation are independent
from shared, unshared and per-method modes. You can
combine these activation modes in an arbitrary manner; for
example, you can combine per-client with shared, unshared or
with per-method.

• Manually-launched servers behave in a similar way to shared
activation mode servers. If a server is registered as unshared
or per-method, the server fails if it is launched manually. This
is in line with the CORBA specification.

Note: Per-method servers are activated for a single IDL operation call.
As a result, the per-client flag is ignored for per-method servers.

Pattern Matching for Markers and Methods
Pattern matching specifies a set of objects for the -marker option,
or a set of methods for the -method option. Pattern matching
allows a group of server processes to share a workload between
them, whereby each server process is responsible for a range of
object marker values. The pattern matching is based on regular
expressions, as follows:

A SET, as presented above, is composed of characters and ranges.
A range is specified using a hyphen character -.

Per-Method In per-method mode, individual operations are
registered with the Implementation Repository,
and each invocation on an operation results in a
separate process.

* Matches any sequence of characters.
? Matches any single character.
[SET] Matches any characters belonging to the specified

set; for example, [abc].
[!SET] Matches any characters not belonging to the

specified set; for example, [!abc].
[^SET] Equivalent to [!SET]; for example, [^abc].
Orbix Administrator’s Guide Java Edition 83

Lastly, because each of the characters *?!^-[]\ is special, in the
sense that it is interpreted by the pattern matching algorithm;
each can be preceded by a \ character to suppress its
interpretation.
Examples of patterns are:

If an activation order exists in an Implementation Repository entry
for a specific object marker or method, and another exists for an
overlapping set of markers or methods, the particular server that
is activated for a given object is non-deterministic. This means
that no attempt is made to find an entry registered for best or
exact match.

readifr
The readifr utility allows you to view an IDL definition stored in
the Interface Repository. This utility takes the fully scoped name
of the IDL definition as an argument and displays that definition.
Calling readifr with no arguments lists the contents of the entire
Interface Repository.
The Interface Repository server must be available for this utility to
succeed.

Syntax
readifr [-?] | [-v] [-h host] [-d] [-c] definition_name

Options

rmdiritj
The rmdiritj utility removes an Implementation Repository
registration directory.

Syntax
rmdiritj [-v] [-h host] [-R] directory

hello matches “hello”.
he* matches any text beginning with “he”; for

example, “he”, “help”, “hello”.
he? matches any three character text beginning

with “he”; for example, “hec”.
[abc] matches “a”, “b” or “c”.
he[abc] matches “hea”, “heb” or “hec”.
[a-zA-Z0-9] matches any alphanumeric character.
[!a-zA-Z0-9] matches any non-alphanumeric character.
_[gs]et_balance matches _get_balance and _set_balance.
make* matches makeDeposit and makeWithdrawal.

-? Displays the allowed options for this command.
-v Outputs the utility version information.
-h host Indicates the host at which the Interface Repository

server is available.
-d Displays all derived types of an IDL interface.
 84 Orbix Administrator’s Guide Java Edition

Options

The rmdiritj utility returns an error if it is called without the -R
option on a registration directory that is not empty.

rmidl
The rmidl utility allows you to remove an IDL definition from the
Interface Repository. This utility takes the fully scoped name of
the IDL definition as an argument.
The Interface Repository server must be available for this utility to
succeed.

Syntax
rmidl [-?] | [-v] [-h host] definition_name

Options

rmitj
Removes an Implementation Repository entry or modifies an
entry.

Syntax
rmitj [-v] [-h host]

[-marker marker | -method method] server_name

Options

This utility does not kill any currently running processes
associated with a server.
You can use pattern matching for markers and methods as
described in the putitj utility reference on page 79.

-v Outputs the utility version information.
-h host Indicates the host from which the directory is deleted.
-R Recursively deletes the directory, and all the

Implementation Repository entries and subdirectories
within it.

-? Displays the allowed options for this command.
-v Outputs the utility version information.
-h host Indicates the host at which the Interface Repository

server is available.

-v Outputs the utility version information.
-h host Indicates the host to use.
-marker marker Specifies a marker value to identify the object, or

set of objects, to which the rmitj utility applies.
-method method Specifies a method name to identify the method,

or set of methods, to which the rmitj applies.
Orbix Administrator’s Guide Java Edition 85

 86 Orbix Administrator’s Guide Java Edition

System Exceptions
The following tables shows the system exceptions defined by
CORBA, and the system exceptions that are specific to Orbix Java.

System Exceptions Defined by CORBA
Table 3: CORBA System Exceptions

Exception Description

BAD_CONTEXT Error processing context object.

BAD_INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

Bounds Bounds exception.

BAD_TYPECODE Bad TypeCode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

IMP_LIMIT Violated implementation limit.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS Error accessing Interface Repository.

INV_IDENT Invalid identifier syntax.

INV_FLAG Invalid flag was specified.

INV_OBJREF Invalid object reference.

MARSHAL Request marshalling error.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted
operation.

NO_IMPLEMENT Operation implementation unavailable.

NO_RESOURCES Insufficient resources for request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

PERSIST_STORE Persistent storage failure.

TRANSACTION Transaction exception.

TRANSIENT Transient failure—reissue request.
 Orbix Administrator’s Guide Java Edition 87

System Exceptions Specific to Orbix Java

UNKNOWN The unknown exception.

Table 4: Orbix Java-Specific System Exceptions

Orbix Java Exception Description

FILTER_SUPPRESS Suppress exception raised in
per-object pre-filter.

Table 3: CORBA System Exceptions

Exception Description
 88 Orbix Administrator’s Guide Java Edition

Index
A
access control lists 20, 76
access rights to servers 48, 49
activation modes 22–25, 82

multiple-client 25
per-client 25, 79
per-client-process 25
per-method 22, 24
setting 48, 51
shared 22
unshared 22, 23

activation orders for servers 18
adding IDL to the Interface Repository 57
administration, overview 5
applets

signed 33

C
catitj 17, 75
chmoditj 20, 76
chownitj 20, 76
clients

applets
security issues 33

common.cfg 9
modifying 38
opening in Configuration Explorer 38

communications protocols 79
config 71
configuration

API calls 10
parameters

getting 7, 10
setting 7, 10

Configuration Explorer 37, 41
adding configuration files 44
adding configuration scopes 43
adding configuration variables 41
deleting configuration scopes 43
deleting configuration variables 42
modifying configuration values 38, 40
opening iona.cfg 38
valid names 42
valid values 42

configuration files
common.cfg 9, 38
iona.cfg 8, 38
orbixweb3.cfg 9, 40

connecting
to an Interface Repository 56

connection timeout 73
CORBA 3
customizing configuration 41
D
daemon

configuring
port value 39
server base port value 39

data encoders 78
default classpath 39
defaultConfigFile() 11
directories in Implementation
Repository 16

distributed objects 3
documentation

.pdf format viii
updates on the web viii

domains 39, 64
dumpconfig 77

E
Exceptions

system exceptions 87
exporting IDL to files 59

G
getConfigFile() 11
getConfigItem() 10
getConfiguration() 10
gids 21
group identifiers 21

H
hierarchical server names 16

I
IDL 3
IDL definitions

adding to Interface Repository 30
removing from Interface Repository 31

IFR server 29
IIOP 52

server ports 26
well-known ports for servers 81

Implementation Repository 4, 13–26, 45–54
basic usage 14
changing owners of servers 20
connecting to 46
deleting directories 48
directories 16
directory path 63
disconnecting from 47
entries 13
listing details of servers 17
listing registered servers 17
Orbix Administrator’s Guide Java Edition 89

location of 39
modifying server registration details 53
permissions to servers 20
registering servers 16, 48, 52
removing server registrations 16

IMP_LIMIT 26
Interface Repository 4, 29–31

adding IDL definitions 30
configuring 29
exporting 59
location of 39
reading contents 31
removing IDL definitions 31
server 29

command-line options 30
Interface Repository Browser 55–60

adding IDL definitions 57
configuring 60
connecting to an Interface
Repository 56

exporting IDL to files 59
IDL

adding 57
viewing 58, 59

refreshing 60
starting 55
viewing IDL definitions 58–59

Internet domains 39, 64
invoke permissions to servers 20
invoke rights to servers 49
iona.cfg 8

opening in Configuration Explorer 38
IOR for Orbix Java daemon 73
IT_ACCEPT_CONNECTIONS 65
IT_ALWAYS_CHECK_LOCAL_OBJS 65
IT_ANY_BUFFER_SIZE 65
IT_BIND_IIOP_VERSION 65
IT_BIND_USING_IIOP 65
IT_BUFFER_SIZE 65
IT_CALLBACK_PORT_BASE 71
IT_CALLBACK_PORT_RANGE 72
IT_CLASSPATH_SWITCH 40, 65
IT_CONNECT_ATTEMPTS 65
IT_CONNECTION_ORDER 66
IT_CONNECTION_TABLE_PER_THREAD 6

6
IT_CONNECTION_TIMEOUT 66
IT_CONNECT_TABLE_SIZE_DEFAULT 66
IT_DAEMON_PORT 39, 63
IT_DAEMON_SERVER_BASE 26, 39, 63
IT_DAEMON_SERVER_RANGE 26, 63
IT_DEFAULT_CLASSPATH 14, 15, 39, 63
IT_DEFAULT_IIOP_VERSION 66
IT_DETECT_APPLET_SANDBOX 66
IT_DII_COPY_ARGS 66
IT_DSI_COPY_ARGS 67
IT_ENABLE_IPV6 72
IT_HTTP_TUNNEL_HOST 67
IT_HTTP_TUNNEL_PORT 67
IT_HTTP_TUNNEL_PREFERRED 67
IT_HTTP_TUNNEL_PROTO 67
IT_IIOP_LISTEN_PORT 67

IT_IIOP_PROXY_HOST 67
IT_IIOP_PROXY_PORT 67
IT_IIOP_PROXY_PREFERRED 67
IT_IMPL_IS_READY_TIMEOUT 68
IT_IMPL_READY_IF_CONNECTED 67
IT_IMP_REP_PATH 39, 63
IT_INITIAL_REFERENCES 68
IT_INT_REP_PATH 29, 39, 63
IT_IORS_USE_DNS 68
IT_JAVA_COMPILER 40, 68
IT_JAVA_INTERPRETER 15, 39, 64
IT_JAVA_SYSTEM_PROPERTY_SWITCH 68
IT_KEEP_ALIVE_FORWARDER_CONN 68
IT_KEYOBJECTTABLE_USINGPORT 71
IT_LISTENER_PRIORITY 68
IT_LOCAL_DOMAIN 39, 64, 68
IT_LOCAL_HOSTNAME 68
IT_MARSHAL_NULLS_OK 69
IT_MULTI_THREADED_SERVER 69
IT_NAMES_HASH_TABLE_LOAD_FACTOR

69
IT_NAMES_HASH_TABLE_SIZE 69
IT_NAMES_REPOSITORY_PATH 69
IT_NAMES_SERVER 69
IT_NAMES_SERVER_HOST 69
IT_NAMES_TIMEOUT 69
IT_NS_IP_ADDR 69
IT_NS_PORT 69
IT_OBJECT_CONNECT_TIMEOUT 69
IT_OBJECT_TABLE_LOAD_FACTOR 69
IT_OBJECT_TABLE_SIZE 70
IT_ORBIXD_IIOP_PORT 70
IT_ORBIXD_PORT 70
IT_READER_PRIORITY 70
IT_REQ_CACHE_SIZE 70
IT_SEND_FRAGMENTS 70
IT_TRADING_SERVER 70
IT_USE_ALIAS_TYPECODE 70
IT_USE_BIDIR_IIOP 70
IT_USE_EXTENDED_CAPABILITIES 70
IT_USE_ORBIX_COMP_OBJREF 71
IT_USE_ORB_THREADGROUP 71
IT_USE_TRUE_PROCESS_PID 71

K
killitj 19, 77

L
launch commands for servers 52
launch permissions to servers 20
launch rights to servers 49
listing registered servers 17
lsitj 16, 17, 77

M
manually-started servers 18
mkdiritj 16, 78
multiple-client activation mode 25

N
nobody, user identifier 21
 90 Orbix Administrator’s Guide Java Edition

O
OMG 3
Orbix

architecture components 3
orbixd 4

running in protected mode 73
running in silent mode 73
version information 73

Orbix Java daemon
check-point information 73
command options 73
contacting 18
starting for unregistered servers 19
trace information 73

orbixusr, user identifier 21
orbixweb3.cfg 9

modifying 40
owners, changing for servers 20

P
pattern matching, when registering
servers 24

per-client activation mode 25, 79
per-client-process activation mode 25
per-method activation mode 22, 24
persistent servers 18, 53, 73
pingDuringBind 71
pingitj 18, 78
port numbers

for servers 52
for the Orbix Java daemon 39

ports
for Orbix Java daemon 63
for servers 26, 79, 81

protected mode
running orbixd in 73

protocols 79
putidl 30, 79
putitj 14, 79

specifying classpath 14
specifying partial classpath 15

R
readifr 31, 84
reading contents of the Interface
Repository 31

registering servers 16
regular expressions 24
rmdiritj 16, 84
rmidl 31, 85
rmitj 16, 24, 25, 85

S
security

of servers 20
Server Manager 45–54

configuring 54
connecting to an Implementation
Repository 46

deleting directories 48

disconnecting from an Implementation
Repository 47

killing persistent servers 53
launching persistent servers 53
modifying server details 53
registering servers 48, 52

specifying access rights 49
specifying activation modes 51, 52

starting 45
servers

access control lists 20
access rights 48, 49
activation modes 22–25, 48
activation orders 14
details of registration 17
details of running servers 79
for Interface Repository 29
hierarchical names 16
IIOP port numbers 52
IIOP ports 81
invoke permissions 20
killing 53
launch commands 52
launching persistently 53
launch permissions 20
listing 17
managing 13
modifying registration details 53
names of 14
owners of 14, 20
permissions for 14, 20
ports 26
registering 16, 48, 52
removing registration of 16
starting manually 18
stopping 19

setConfigItem() 10
setConfiguration() 11
setDiagnostics 71
shared activation mode 22
silent mode, running orbixd in 73
starting

the Interface Repository Browser 55
the Server Manager 45

stopping servers 19

T
TCP/IP 79
toolbar 45
tools

Configuration Explorer 37
Interface Repository Browser 55–60
Server Manager 45–54

toolbar 45
trace information from Orbix Java
daemon 73

U
uids 21
unregistered servers 74
unshared activation mode 22, 23
Orbix Administrator’s Guide Java Edition 91

useDefaults 71
user identifiers 21

V
version number, of Orbix Java 73

X
XDR 78
 92 Orbix Administrator’s Guide Java Edition

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Contacting Micro Focus
	Orbix Java Administration
	Overview of Orbix Java Administration
	Components of the Orbix Java Architecture
	Servers and the Implementation Repository
	The Interface Repository

	Administration of Orbix Components

	Configuring Orbix Java
	Accessing Configuration Parameters
	Configuration Parameter Formats

	Using Orbix Java Configuration Files
	Configuring Root Settings
	Configuring Common Parameters
	Configuring Orbix Java-Specific Parameters

	Using Configuration API Calls
	Accessing Configuration Items
	Accessing Configuration Properties
	Accessing Configuration Files

	Using Orbix Java System Properties
	Using Command-Line Arguments
	Using Java System Properties

	Managing the Implementation Repository
	Implementation Repository Entries
	Basic Implementation Repository Usage
	Registering a Server using Putitj
	Registering a Server on a Remote Host
	Organizing Servers into Hierarchies
	Removing a Registered Server
	Listing Registered Servers
	Displaying a Server Entry
	Contacting an Orbix Java Daemon

	Starting Servers Manually
	Registering a Manual Server (orbixd)
	Starting the Orbix Java Daemon for Unregistered Servers

	Stopping Servers
	Security of Registered Servers
	Modifying Server Access
	Changing Owners of Registered Servers
	Determining the User and Group IDs of Running Servers (orbixd)

	Server Activation Modes
	Registering Unshared Servers (orbixd)
	Using Markers to Specify Named Objects
	Registering Per-Method Servers (orbixd)
	Secondary Activation Modes

	Managing Server Port Selection
	Registering Servers with Specified Ports (orbixd)
	Controlling Port Allocation with Configuration Variables

	Activation Issues Specific to IIOP Servers

	Managing the Interface Repository
	Configuring the Interface Repository
	Registering the Interface Repository Server
	Adding IDL Definitions
	Reading the Interface Repository Contents
	Removing IDL Definitions

	Using Orbix Java on the Internet
	Applet Signing Technology
	Overview

	Orbix Java GUI Tools
	Orbix Java Configuration Explorer
	Starting the Configuration Explorer
	Configuring Common Settings
	Configuring Orbix Java-Specific Settings
	Customizing Your Configuration
	Creating Configuration Variables
	Creating Configuration Scopes
	Creating Configuration Files

	The Orbix Java Server Manager
	Starting the Orbix Java Server Manager
	Connecting to an Implementation Repository
	Creating a New Directory
	Registering a Server
	Providing Server Access Rights to Users
	Specifying Server Activation Details

	Modifying Server Registration Details
	Launching a Persistent Server
	Configuring the Server Manager

	The Interface Repository Browser
	Starting the Interface Repository Browser
	Connecting to an Interface Repository
	Adding IDL to the Interface Repository
	Viewing the Interface Repository Contents
	Viewing Information about IDL Definitions
	Viewing Source Code for IDL Definitions

	Exporting IDL Definitions to a File
	Configuring the Interface Repository Browser

	Appendices
	Orbix Java Configuration Variables
	Orbix Java Daemon Options
	Orbix Java Command-Line Utilities
	psitj
	rmitj

	System Exceptions
	System Exceptions Defined by CORBA

	Index

