
Orbix 3.3.14

Programmer’s Guide Java Edition

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-04-25

Contents
Preface... ix
Audience .. ix
Organization of the Orbix Java Edition Documentation ix
Organization of this Guide .. ix
Document Conventions ...x

Part I Getting Started

Introduction to CORBA and Orbix Java3
CORBA and Distributed Object Programming ..3
The Object Management Architecture ..7
How Orbix Java Implements CORBA ...9

Getting Started with Orbix Java ..11
Prerequisites ...11
Setting ORB Properties for the Orbix ORB ..11

Developing Applications with Orbix Java.............................13
Developing a Distributed Application with Orbix Java13
Defining IDL Interfaces ...13
Compiling IDL Interfaces ...14
Writing an Orbix Java Server Application ...18
Writing the Client Application ...22
Compiling the Client and Server ...25
Registering the Server ..27
Running the Client Application ...27
Summary of the Programming Steps ..29
Orbix Java IDL Compilation ...29

Developing Applets with Orbix Java35
Review of Orbix Java Programming Steps ..35
Providing a Server ..35
Writing a Client Applet ..36
Creating the User Interface ...37
Adding Orbix Java Client Functionality ...39
Adding the Applet to a HTML File ..45
Compiling the Client Applet ...46
Running the Client Applet ..47
Learning more about Orbix Java ...48

Part II CORBA Programming with Orbix Java

Introduction to CORBA IDL..51
IDL Modules and Scoping ..52
Defining IDL Interfaces ...52
 Orbix Programmer’s Guide Java Edition i i i

Overview of the IDL Data Types ...58

IDL to Java Mapping ... 67
Overview of IDL to Java Mapping ..67
Mapping for Basic Data Types ..69
Mapping for Modules ...70
Mapping for Interfaces ..71
Mapping for Constructed Types ..88
Mapping for Strings ..92
Mapping for Sequences ...93
Mapping for Arrays ...95
Mapping for Fixed Types ..95
Mapping for Constants ..96
Mapping for Typedefs ..97
Mapping for Exception Types ..97
Naming Conventions ...99
Parameter Passing Modes and Return Types ...100

Using and Implementing IDL Interfaces 103
Overview of an Example Application ..103
Overview of the Programming Steps ...103
Defining IDL Interfaces to Application Objects ..104
Compiling IDL Interfaces ...104
Implementing the IDL Interfaces ..105
Developing the Server Application ..107
Developing the Client Application ..116
Registration and Activation ..120
Execution Trace ...121
Comparison of the ImplBase and TIE Approaches124

Making Objects Available in Orbix Java............................. 127
Identifying CORBA Objects ..127
Using the CORBA Naming Service ...132
Binding to Objects in Orbix Java Servers ...138
Using Object Reference Strings to Create Proxy Objects141

Exception Handling ... 143
User-Defined Exceptions ..143
System Exceptions ...146
Example of Server-Side Exception Handling ...147
Example of Client-Side Exception Handling ..149

Using Inheritance of IDL Interfaces.................................. 151
Single Inheritance of IDL Interfaces ..151
Using Inheritance in a Client ..155
Using Inheritance in a Server ...156
Multiple Inheritance of IDL Interfaces ..159

Callbacks from Servers to Clients...................................... 161
Implementing Callbacks in Orbix Java ...161
Callbacks and Bidirectional Connections ...165
Avoiding Deadlock in a Callback Model ..165
An Example Callback Application ..168
iv Orbix Programmer’s Guide Java Edition

Part III Running Orbix Java Programs

Running Orbix Java Clients..183
Running Client Applications ... 183
Running Orbix Java Client Applets .. 184
Debugging Orbix Java Clients .. 186
Possible Platform Dependencies in Orbix Java Clients 186
Using the Orbix Java Wrapper Utilities .. 186

Registration and Activation of Servers189
The Implementation Repository ... 189
Activation Modes .. 190
The Orbix Java Putitj Utility for Server Registration 193
Additional Registration Commands ... 195
Activation and Pattern Matching ... 195
Persistent Servers .. 196
Unregistered Servers .. 197
Activation Issues Specific to IIOP Servers .. 197
Security Issues for Orbix Java Servers .. 198
Activation and Concurrency ... 199
Activation Information for Servers .. 199
IDL Interface to the Implementation Repository 200
Using the Server Manager ... 201
About the Java Daemon (orbixdj) ... 201

Using the Orbix Java Daemon..203
Overview of the Java Daemon ... 203
Using the Java Daemon .. 204
In-Process Activation of Servers ... 207
Scope of the Java Daemon .. 210

ORB Interoperability ...213
Overview of GIOP .. 213
Internet Inter-ORB Protocol (IIOP) ... 215
Interoperability between Orbix and Orbix Java ... 221

Orbix Java Diagnostics ..223
Setting Diagnostics .. 223

Part IV Advanced CORBA Programming

Type any..229
Constructing an Any Object ... 229
Inserting Values into an Any Object .. 229
Extracting Values from an Any Object ... 231
Any as a Parameter or Return Value ... 233
Additional Methods ... 233

Dynamic Skeleton Interface ..235
Uses of the DSI ... 235
Using the DSI .. 236
Orbix Programmer’s Guide Java Edition v

Example of Using the DSI ..238

Dynamic Invocation Interface .. 241
Using the DII ...241
The CORBA Approach to Using the DII ...243
Creating a Request ...244
Deferred Synchronous Invocations ..252
Using Filters with the DII ...254

The Interface Repository .. 255
Configuring the Interface Repository ...255
Runtime Information about IDL Definitions ..256
Using the Interface Repository ...256
Structure of the Interface Repository Data ...257
Abstract Interfaces in the Interface Repository ...260
Containment in the Interface Repository ..262
Type Interfaces in the Interface Repository ..269
Retrieving Information from the Interface Repository272
Example of Using the Interface Repository ...274

Service Contexts ... 279
The Orbix Java Service Context API ..279
Using Service Contexts in Orbix Java Applications281
Service Context Handlers and Filter Points ...286

Part V Advanced Orbix Java Programming

Filters ... 291
Introduction to Per-Process Filters ..292
Introduction to Per-Object Filters ..295
Using Per-Process Filters ...295
Using Per-Object Filters ...304
Thread Filters ..306

Smart Proxies ... 311
Proxy Classes and Smart Proxy Classes ...311
Using Smart Proxies ...314

Loaders... 319
Overview of Creating a Loader ...319
Specifying a Loader for an Object ...320
Connection between Loaders and Object Naming321
Saving Objects ...323
Writing a Loader ...324
Example Loader ...324
Polymorphism ..330
Approaches to Providing Persistent Objects ..331
Disabling the Loaders ..332

Opaque Types ... 333
Using Opaque Types ...334
vi Orbix Programmer’s Guide Java Edition

Transforming Requests ...339
Transforming Request Data ... 339
An Example Transformer ... 341

Part VI Appendix

IDL Compiler Switches ..347

Index...351
Orbix Programmer’s Guide Java Edition vii

viii Orbix Programmer’s Guide Java Edition

Preface
Orbix Java Edition is an implementation of the Common Object
Request Broker Architecture (CORBA) from the Object
Management Group (OMG). Orbix Java maps CORBA functionality
to the Java programming language. It combines a powerful
standards-based approach to distributed application development
with the flexibility of the Java environment.

Audience
The Orbix Programmer’s Guide Java Edition and the Orbix
Programmer’s Reference Java Edition are intended for use by
application programmers and designers wishing to familiarize
themselves with CORBA distributed programming and its
application in the Java environment. The Orbix Administrator’s
Guide Java Edition describes how to use various command line
and GUI tools during Orbix Java operation. These guides assume
that you are familiar with the Java programming language.

Organization of the Orbix Java Edition
Documentation

The complete Orbix Java Edition documentation set includes the
following manuals:

• The Orbix Programmer’s Guide Java Edition provides a
complete guide to Orbix Java programming.

• The Orbix Programmer’s Reference Java Edition
provides an exhaustive reference for the Orbix Java
application programming interface (API).

• The Orbix Administrator’s Guide Java Edition explains
how to configure and manage the components of the Orbix
Java environment using the command line and Orbix Java GUI
tools.

Organization of this Guide
The Orbix Programmer’s Guide Java Edition is divided into
the following five parts:

Part I “Getting Started”
This part of the guide introduces basic CORBA concepts and
introduces Orbix Java.

Part II “CORBA Programming with Orbix Java”
Part II provides a description of developing CORBA programs in
Java using Orbix Java.
This part of the guide provides an outline of the CORBA Interface
Definition Language (IDL) and the standard Object Management
Group (OMG) mapping from IDL to Java. It shows how to program
 Orbix Programmer’s Guide Java Edition ix

a simple application and provides information on various aspects
of programming a distributed application, including the use of the
Naming Service to identify objects in the system.

Part III “Running Orbix Java Programs”
This part describes the issues involved in running Orbix Java
programs. An important aspect of this description is a complete
introduction to the Orbix Java Implementation Repository. The
Java daemon, orbixdj, is also introduced.

Part IV “Advanced CORBA Programming”
This part of the guide explains more advanced features of Orbix
Java as specified by the CORBA standard. In particular, it provides
the information needed to use the Dynamic Invocation Interface
that allows a client to issue requests on objects whose interfaces
may not have been defined at the time the application was
compiled.

Part V “Advanced Orbix Java Programming”
Orbix Java provides a number of interfaces to allow you to
influence runtime behaviour for particular deployment scenarios.
Part V explains how you can replace different components of Orbix
Java, and the circumstances where the use of these Orbix Java
specific features is advantageous.

Part VI “Appendix”
This contains an appendix listing the command-line options to the
Orbix IDL compiler.

Document Conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer to
the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and commands
represent variable values you must supply, such
as arguments to commands or path names for
your particular system. For example:

% cd /users/your_name

Note: some command examples may use angle
brackets to represent variable values you must
supply.
 x Orbix Programmer’s Guide Java Edition

This guide may use the following keying conventions:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.

No prompt When a command’s format is the same for
multiple platforms, no prompt is used.

% A percent sign represents the UNIX command
shell prompt for a command that does not
require root privileges.

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS, Windows
NT, or Windows 95 command prompt.

......
Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format and
syntax descriptions.
Orbix Programmer’s Guide Java Edition xi

http://www.microfocus.com

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-3.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp
 xii Orbix Programmer’s Guide Java Edition

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-3.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Getting Started

In this part
This part contains the following:

Introduction to CORBA and Orbix Java page 3

Getting Started with Orbix Java page 11

Developing Applications with Orbix Java page 13

Developing Applets with Orbix Java page 35

Introduction to CORBA
and Orbix Java
Orbix Java is a software environment that allows you to build and
integrate distributed applications. Orbix Java is a full
implementation of the Object Management Group’s (OMG) Common
Object Request Broker Architecture (CORBA) specification. This
chapter introduces CORBA and describes how Orbix Java
implements this specification.

CORBA and Distributed Object Programming
The diversity of modern networks makes the task of network
programming very difficult. Distributed applications often consist
of several communicating programs written in different
programming languages and running on different operating
systems. Network programmers must consider all of these factors
when developing applications.
The Common Object Request Broker Architecture (CORBA) defines
a framework for developing object-oriented, distributed
applications. This architecture makes network programming much
easier by allowing you to create distributed applications that
interact as though they were implemented in a single
programming language on one computer.
CORBA also brings the advantages of object-oriented techniques
to a distributed environment. It allows you to design a distributed
application as a set of cooperating objects and to reuse existing
objects in new applications.

The Role of an Object Request Broker
CORBA defines a standard architecture for Object Request Brokers
(ORBs). An ORB is a software component that mediates the
transfer of messages from a program to an object located on a
remote network host. The role of the ORB is to hide the underlying
complexity of network communications from the programmer.
An ORB allows you to create standard software objects whose
methods can be invoked by client programs located anywhere in
your network. A program that contains instances of CORBA
objects is often known as a server.
When a client invokes a member method on a CORBA object, the
ORB intercepts the method call. As shown in Figure 1, the ORB
redirects the method call across the network to the target object.
The ORB then collects results from the method call and returns
these to the client.
 Orbix Programmer’s Guide Java Edition 3

The Nature of Objects in CORBA
CORBA objects are standard software objects implemented in any
supported programming language. CORBA supports several
languages, including Java, C++ and Smalltalk.
With a few calls to an ORB’s application programming interface
(API), you can make CORBA objects available to client programs
in your network. Clients can be written in any supported
programming language and can invoke the member methods of a
CORBA object using the normal programming language syntax.
Although CORBA objects are implemented using standard
programming languages, each CORBA object has a clearly-defined
interface, specified in the CORBA Interface Definition Language
(IDL). The interface definition specifies what member methods are
available to a client, without making any assumptions about the
implementation of the object.
To invoke member methods on a CORBA object, a client needs
only the object’s IDL definition. The client does not need to know
details such as the programming language used to implement the
object, the location of the object in the network, or the operating
system on which the object runs.
The separation between an object’s interface and its
implementation has several advantages. For example, it allows
you to change the programming language in which an object is
implemented without changing clients that access the object. It
also allows you to make existing objects available across a
network.

Figure 1: The Object Request Broker

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

 Method
 Call
 4 Orbix Programmer’s Guide Java Edition

The Structure of a CORBA Application
The first step in developing a CORBA application is to define the
interfaces to objects in your system, using CORBA IDL. You then
compile these interfaces using an IDL compiler.
An IDL compiler generates Java code from IDL definitions. This
Java code includes client stub code, which allows you to develop
client programs, and server skeleton code, which allows you to
implement CORBA objects.
As shown in Figure 2, when a client calls a member method on a
CORBA object, the call is transferred through the client stub code
to the ORB. If the client has not accessed the object before, the
ORB refers to a database, known as the Implementation
Repository, to determine exactly which object should receive the
method call. The ORB then passes the method call through the
server skeleton code to the target object.

Figure 2: Invoking on a CORBA Object

The Structure of a Dynamic CORBA Application
One difficulty with normal CORBA programming is that you have
to compile the IDL associated with your objects and use the
generated Java code in your applications. This means that your
client programs can only invoke member methods on objects
whose interfaces are known at compile-time. If a client wishes to
obtain information about an object’s IDL interface at runtime, it
needs an alternative, dynamic approach to CORBA programming.
The CORBA Interface Repository is a database that stores
information about the IDL interfaces implemented by objects in
your network. A client program can query this database at runtime

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code

 Method
 Call
Orbix Programmer’s Guide Java Edition 5

to get information about those interfaces. The client can then call
member methods on objects using a component of the ORB called
the Dynamic call Interface (DII), as shown in Figure 3 on page 6.

Figure 3: Client Invoking a Method Using the DII

CORBA also supports dynamic server programming. A CORBA
program can receive method calls through IDL interfaces for which
no CORBA object exists. Using an ORB component called the
Dynamic Skeleton Interface (DSI), the server can then examine
the structure of these method calls and implement them at
runtime. Figure 4 on page 6 shows a dynamic client program
communicating with a dynamic server implementation.

Note: The implementation of Java interfaces in client-side generated
code supplies proxy functionality to client applications. This must
not be confused with the implementation of IDL interfaces in Orbix
Java servers.

Figure 4: Method Call Using the DII and DSI

 Method
 Call

 Method
 Call
 6 Orbix Programmer’s Guide Java Edition

Interoperability between Object Request Brokers
The components of an ORB make the distribution of
programs transparent to network programmers. To
achieve this, the ORB components must communicate
with each other across the network.
In many networks, several ORB implementations coexist
and programs developed with one ORB implementation
must communicate with those developed with another.
To ensure that this happens, CORBA specifies that ORB
components must communicate using a standard
network protocol called the Internet Inter-ORB Protocol
(IIOP).

The Object Management Architecture
An ORB is one component of the OMG’s Object
Management Architecture (OMA). This architecture
defines a framework for communications between
distributed objects. As shown in Figure 5, the OMA
includes four elements:

• Application objects.
• The ORB.
• The CORBAservices.
• The CORBAfacilities.
Application objects are objects that implement
programmer-defined IDL interfaces. These objects
communicate with each other, and with the
CORBAservices and CORBAfacilities, through the ORB.
The CORBAservices and CORBAfacilities are sets of
objects that implement IDL interfaces defined by CORBA
and provide useful services for some distributed
applications.
Orbix Programmer’s Guide Java Edition 7

Figure 5: The Object Management Architecture

When writing Orbix Java applications, you might require one or
more CORBAservices or CORBAfacilities. This section provides a
brief overview of these components of the OMA.

The CORBAservices
The CORBAservices define a set of low-level services that allow
application objects to communicate in a standard way. These
services include the following:

• The Naming Service. Before using a CORBA object, a client
program must get an identifier for the object, known as an
object reference. This service allows a client to locate object
references based on abstract, programmer-defined object
names.

• The Trading Service. This service allows a client to locate
object references based on the desired properties of an
object.

• The Object Transaction Service. This service allows CORBA
programs to interact using transactional processing models.

• The Security Service. This service allows CORBA programs to
interact using secure communications.

• The Event Service. This service allows objects to communicate
using decoupled, event-based semantics, instead of the basic
CORBA function-call semantics.

Orbix 3 implements several CORBAservices.

Application Objects

CORBAservices CORBAfacilities

Object Request Broker
 8 Orbix Programmer’s Guide Java Edition

The CORBAfacilities
The CORBAfacilities define a set of high-level services
that applications frequently require when manipulating
distributed objects. The CORBAfacilities are divided into
two categories:

• The horizontal CORBAfacilities.
• The vertical CORBAfacilities.
The horizontal CORBAfacilities consist of user interface,
information management, systems management, and
task management facilities. The vertical CORBAfacilities
standardize IDL specifications for market sectors such as
healthcare and telecommunications.

How Orbix Java Implements CORBA
Orbix Java is an ORB that fully implements the CORBA
2.0 specification. By default, all Orbix Java components
and applications communicate using the CORBA
standard IIOP protocol.
The components of Orbix Java are as follows:

• The IDL compiler parses IDL definitions and
produces Java code that allows you to develop client
and server programs.

• The Orbix Java runtime is called by every Orbix Java
program and implements several components of the
ORB, including the DII, the DSI, and the core ORB
functionality.

• The Orbix Java daemon is a process that runs on
each server host and implements several ORB
components, including the Implementation
Repository. An all-Java counterpart to the daemon
process is also included. This daemon process is
known as the Java Daemon, also referred to as
orbixdj.

• The Interface Repository server is a process that
implements the Interface Repository.
Orbix Programmer’s Guide Java Edition 9

Orbix Java also includes several programming features that
extend the capabilities of the ORB. These features are described in
Part IV “Advanced CORBA Programming”.
The Orbix Java GUI Tools and the Orbix Java command-line
utilities allow you to manage and configure the components of
Orbix Java.
 10 Orbix Programmer’s Guide Java Edition

Getting Started with
Orbix Java
This chapter describes gives a brief overview of what is required to
setup a Java development environment.

Prerequisites
Before proceeding with the demonstration in this chapter you
need to ensure:

• The Orbix developer’s kit is installed on your host.
• Orbix is configured to run on your host platform.
• Your Java development kit (JDK) is configured to use the

Orbix ORB runtime (see “Setting ORB Properties for the Orbix
ORB” on page 11).

The Orbix Administrator’s Guide Java Edition contains more
information on Orbix configuration, and details of Orbix command
line utilities.

Setting ORB Properties for the Orbix ORB
The Java development kit (JDK) comes with a built-in ORB
runtime that is used by default. However, you cannot use this ORB
runtime with Orbix applications. You must configure the JDK to
use the Orbix ORB runtime instead by setting system properties
org.omg.CORBA.ORBClass and org.omg.CORBA.ORBSingletonClass to the
appropriate values. You can set the ORB properties in one of the
following ways:

• Using the orb.properties file.
• Using Java interpreter arguments.

Using the orb.properties File
Setting the org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass system properties in the
orb.properties file is the preferred way to configure your JDK to
use the Orbix ORB runtime.

Location of the orb.properties File.
The orb.properties file is located in the JDKHome/jre/lib directory,
where JDKHome is the JDK root directory.

Contents of the orb.properties File.
The orb.properties file should contain the following two lines of
text:
org.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB
org.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.singleton

ORB

The first line sets org.omg.CORBA.ORBClass to the name of a class
that implements org.omg.CORBA.ORB.
 Orbix Programmer’s Guide Java Edition 11

The second line sets org.omg.CORBA.ORBSingletonClass to the name
of a class that implements the static ORB instance returned from
org.omg.CORBA.ORB.init() (taking no arguments).

Note: By setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass in the orb.properties file, as
detailed above, you effectively specify the Orbix ORB classes as
the ORB runtime for the JDK. This might affect other applications
that use the same JDK but want to use different ORB classes—if
this is the case, you should consider using the alternative
mechanism for setting ORB properties, given in the following
sub-section.

Using Java Interpreter Arguments
You can use the -Dproperty_name=property_value option on the
Java Interpreter to specify the org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass properties. For example, to set
the ORB properties for an orbix_app Orbix application:
java -Dorg.omg.CORBA.ORB=IE.Iona.OrbixWeb.CORBA.ORB

-Dorg.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA
.singletonORB orbix_app
 12 Orbix Programmer’s Guide Java Edition

Developing
Applications with Orbix
Java
This chapter introduces Orbix Java with a step-by-step description
of how to create a simple banking application. These steps include
defining an Interface Definition Language (IDL) interface,
implementing this interface in Java, and developing a standalone
client application. The Orbix Java IDL compiler and the files it
generates are also introduced at the end of this chapter.

This chapter illustrates the programming steps using a banking
example. In this example, an Orbix Java server program
implements two types of objects: a single object implementing the
Bank interface, and multiple objects implementing the Account
interface. A client program uses these clearly defined object
interfaces to create and find accounts, and to deposit and
withdraw money.
The source code for the example described in this chapter is
available in the demos\BankSimpleTie directory of your Orbix Java
installation.

Developing a Distributed Application with Orbix
Java

To create a distributed client-server application in Java using
Orbix Java, you must perform the following programming steps:
1. Define the IDL interfaces.
2. Compile the IDL interfaces.
3. Implement the IDL interfaces.
4. Write the server application.
5. Write the client application.
6. Compile the client and server.
7. Register the server in the Implementation Repository.
8. Run the client.
This chapter outlines these programming steps in detail, using a
banking example.

Defining IDL Interfaces
Defining IDL interfaces to your objects is the most important step
in developing an Orbix Java application. These interfaces define
how clients access objects, regardless of the location of those
objects on the network.
An interface definition contains attributes and operations.
Attributes allow clients to read and write to values on an object.
Operations are functions that clients can call on an object.
 Orbix Programmer’s Guide Java Edition 13

For example, the following IDL from the banking example defines
two interfaces for objects that represent a bank application. These
interfaces are defined within an IDL module to prevent clashes
with similarly named interfaces defined in subsequent examples.
The IDL interfaces to the banking example are defined as follows:

// IDL
// In file Banksimple.idl

1 module BankSimpleTie {
typedef float CashAmount;

2 interface Account;

3 interface Bank {
Account create_account (in string name);
Account find_account (in string name);

};

4 interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

5 void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};
};

This code is explained as follows:
1. An IDL module is a container construct that groups IDL

definitions into a common namespace. Using a module is not
mandatory, but it is good practice.

2. This is a forward declaration to the Account interface. This
allows you to refer to Account in the Bank interface, before
actually defining Account.

3. The Bank interface contains two operations: create_account()
and find_account(), allowing a client to create and search for
an account.

4. The Account interface contains two readonly attributes: name
and balance. Clients can read a balance or name, but cannot
write to them. If the readonly keyword is omitted, clients can
also write to these values.

5. The Account interface also contains two operations: deposit()
and withdraw(). The deposit() operation allows a client to
deposit money in an account. The withdraw() operation allows
a client to withdraw money from an account.

The parameters to these operations are labelled with the IDL
keyword in. This means that their values are passed from the
client to the object. Operation parameters can be labelled as in,
out (passed from the object to the client) or inout (passed in both
directions).

Compiling IDL Interfaces
You must compile IDL definitions using the Orbix Java IDL
compiler. Before running the IDL compiler, ensure that your
configuration is correct.
 14 Orbix Programmer’s Guide Java Edition

Checking your Configuration
To set up configuration for the IDL compiler, you should check
that Orbix Java can find its root configuration file, iona.cfg.
You should ensure that the environment variable IT_CONFIG_PATH is
set to the directory in which iona.cfg resides. By default, this is
the config directory of your installation. You should also include
the config directory on your classpath.

Running the IDL Compiler
To compile the IDL interfaces, enter the following command at the
operating system prompt:

idlj -jP Demos BankSimple.idl

This command generates a number of Java files that are used to
communicate with Orbix Java. The generated files are located in
the Demos\BankSimpleTie\java_output directory. Discussion of these
files is deferred until, “Orbix Java IDL Compilation” on page 29.
The -jP switch passed to the IDL compiler specifies the package
name into which all generated Java classes are placed. This helps
to avoid potential name clashes. In the banking example, all
application files are placed within a package called
Demos.BankSimpleTie.

Implementing IDL Interfaces
You must implement the IDL interfaces using the code generated
by the IDL compiler. The banking example uses the TIE approach
to implement its IDL interfaces. You can also use the ImplBase
approach. Both of these approaches are discussed in detail in
“Implementing the IDL Interfaces” on page 105.

Implementing the Bank Interface
Implementing the Bank IDL interface using the TIE approach
involves creating an implementation class that implements the
IDL-generated class _BankOperations.
In this example, the implementation class created for the Bank IDL
interface is BankImplementation.

// Java
// In file BankImplementation.java

package Demos.BankSimpleTie;

import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import java.util.*;

1 public class BankImplementation
implements _BankOperations {

// Default Constructor.
2 public BankImplementation (org.omg.CORBA.ORB Orb) {

 m_orb = Orb;
m_list = new Hashtable();
Orbix Programmer’s Guide Java Edition 15

}

// Implementation for create_account().
3 public Account create_account (String name) {

Account m_account = null;
AccountImplementation m_account_impl = null;

// Check if account already exists.
if (m_list.get (name) != null) {

System.out.println ("- Account for " + name
+ " already exists, " + "finding details.");
return find_account (name);

}

System.out.println ("Creating new account for "
+ name +".");

// Create a new account.
try {

4 m_account_impl = new AccountImplementation(name,
0.0F);

m_account = new _tie_Account(m_account_impl,
“Marker”);

5 m_orb.connect(m_account);
}
catch (SystemException se) {

System.out.println ("[Exception raised when
 creating Account.]");

}

// Add account to table of accounts.
m_list.put (name, m_account);
return m_account ;

}

// Implementation for find_account().
6 public Account find_account (String name) {

Account m_acc = null;
m_acc = (Account) m_list.get (name);

if (m_acc == null) {
// Account not in table.
System.out.println ("Unable to find Account for"

+ name + ".");
}
return m_acc;

}
...
}

 16 Orbix Programmer’s Guide Java Edition

This code is described as follows:
1. The implementation class must implement the IDL-generated

interface _BankOperations. This maps the attributes and
operations in the IDL definitions to Java methods.

2. The Orb parameter to the BankImplementation default
constructor refers to the server’s ORB.

3. The implementation for the IDL operation create_account()
takes the account name as a parameter and returns a
reference to the newly created account.

4. Using the TIE approach, you must tie together the
implementation class and the IDL interface using the
automatically generated Java TIE class.
In this example, the IDL compiler generates the TIE class
_tie_Account for the IDL interface Account. You must then pass
an object that implements the IDL interface as a parameter to
the constructor for the TIE class.

5. Connect the implementation object to the Orbix Java runtime.
6. The implementation for the IDL operation find_account()

takes the account name as a parameter and returns a
reference to the account searched for.

Implementing the Account Interface
The implementation class for the Account IDL interface should
inherit from the IDL-generated interface _AccountOperations:
// Java
// In file BankImplementation.java

package Demos.BankSimpleTie;

public class AccountImplementation
implements _AccountOperations {

// Constructor
public AccountImplementation(String name,float bal){

this.m_name = name;
m_balance=bal;
System.out.println ("- Creating account for " +

m_name + ". Initial " + "balance of £" + bal);
}

// Implementation for IDL name accessor.
public String name() {

return m_name;
}
// Implementation for IDL balance accessor.
public float balance() {

return m_balance;
}

// Implementation for IDL operation deposit().
public void deposit (float amount){

System.out.println ("- Depositing £" + amount + "
into " + m_name + "'s account");

m_balance += amount;
}

// Implementation for IDL operation withdraw().
Orbix Programmer’s Guide Java Edition 17

public void withdraw (float amount) {
System.out.println ("- Withdrawing £" + amount +

" from " + m_name + "'s account");
m_balance -= amount;

}
...
}

The IDL attributes name and balance are implemented by
corresponding Java accessor methods. All mapped attributes and
operations are defined in the Java interface _AccountOperations,
generated by the IDL compiler.

Writing an Orbix Java Server Application
To write a Java program that acts as an Orbix server, perform the
following steps:
1. Initialize the server connection to the ORB.
2. Create an implementation object by creating instances of the

implementation classes.
3. Register the implementation object in the Naming Service.
This section describes each of these programming steps in turn.

Initializing the ORB
All clients and servers must call org.omg.CORBA.ORB.init() to
initialize the ORB. This returns a reference to the ORB object. The
ORB methods defined by the CORBA standard can then be invoked
on this instance. You should use the parameterized version of the
init() method, defined as follows:

static public org.omg.CORBA.ORB init
(String[] args, java.util.Properties props)

This method is passed an array of strings as command-line
arguments, and a list of Java properties. Either of these values
may be null. This version of the init() method returns a new fully
functional ORB Java object each time it is called.

Note: Calling ORB.init() without parameters returns a singleton ORB
with restricted functionality.
Refer to the Orbix Programmer’s Reference Java Edition for
further details on the org.omg.CORBA.ORB class.
 18 Orbix Programmer’s Guide Java Edition

Creating an Implementation Object
To create an implementation object, you must create an instance
of your implementation class in your server program. Typically a
server program creates a small number of objects in its main()
function, and these objects may in turn create further objects. In
the banking example, the server creates a single Bank object in its
main() function. This bank object then creates accounts when
create_account() is called by the client.
For example, to create an instance of the Bank IDL interface in
your server main() function, using the TIE approach, do the
following:

Bank m_bank = new _tie_Bank(new BankImplementation(m_orb),
“myBankMarker”);

This creates a new server implementation object, passing a
reference to the server ORB.

Registering an Object with the Naming Service
You must register your implementation objects with the CORBA
Naming Service. This provides a flexible CORBA-defined way to
locate objects. The Naming Service allows a name to be bound to
an object, and allows that object to be found subsequently by
resolving that name within the Naming Service.

CORBA Object References
A CORBA object reference identifies an object in your system. A
server that holds an object reference can register it with the
Naming Service, giving it a name that can be used by other
components of the system to find the object.
The Naming Service maintains a database of bindings between
names and object references. A binding is an association between
a name and an object reference. Clients can call the Naming
Service to resolve a name, and this returns the object reference
bound to that name.
The Naming Service provides operations to resolve a name, to
create new bindings, to delete existing bindings, and to list the
bound names. A name is always resolved within a given naming
context.
Orbix Programmer’s Guide Java Edition 19

The following server program initializes the ORB, creates a
BankImplementation object, and registers this object in the Naming
Service:

// Java
// In file Server.java.

package Demos.BankSimpleTie;

1 import Demos.IT_DemoLib.*;
import IE.Iona.OrbixWeb.Features.Config;
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.*;

public class Server {

public static void main (String args[]) {

// Initalize the ORB
2 org.omg.CORBA.ORB Orb = ORB.init (args, null);

// Create a new bank Server
new Server (Orb);

}

// Server constructor.
3 public Server (org.omg.CORBA.ORB Orb) {

m_orb = Orb;
System.out.println("Server started on port "
 + Config.getConfigItem ("IT_IIOP_LISTEN_PORT")

);

// Create a new Naming Service wrapper.
try {

4 m_ns_wrapper = new IT_NS_Wrapper(m_orb,
m_demo_context_name);
m_ns_wrapper.initialise();

}
catch (org.omg.CORBA.UserException userEx) {
System.out.println ("[Exception raised during

creation of naming "+ "service wrapper.]");
}

String serverName = new String ("IT_Demo/
BankSimple/Bank");

5 m_bank = new _tie_Bank (new BankImplementation
(m_orb));

try {
6 m_ns_wrapper.registerObject ("Bank", m_bank);

}
catch (org.omg.CORBA.UserException userEx) {

System.out.println("[Exception registering
 Bank in " +

"NamingService.]");
}

// Wait for client connections.
try {

7 _OrbixWeb.ORB (m_orb).processEvents
 20 Orbix Programmer’s Guide Java Edition

(10000 * 60);
}
catch (SystemException se) {
System.out.println("[Exception during creation
of implementation : " + se.toString() + "]");

System.exit(1);
}

}
...
private final String m_demo_context_name =

“IT_Demo.BankSimple";
}

This code is described as follows:
1. To simplify the use of the Naming Service, a Naming Service

wrapper is provided. This hides the low-level detail of the
CORBA Naming Service.

2. Initialize the ORB for an Orbix Java application using the
parameterized version of ORB.init().

3. The Server() constructor creates the bank implementation
object and adds an entry for it to the Naming Service. If the
entry already exists, it is replaced. The Orb parameter refers
to the server’s ORB.

4. Create a Naming Service wrapper object. The banking
example uses Naming Service wrapper methods to simplify
the use of the Naming Service.

5. Create a new server implementation object, and pass a
reference to the server ORB.

6. Register the bank object in the Naming Service using the
wrapper method registerObject(). This object is now known
as Bank in the Naming Service.

7. Start the server listening for incoming invocations.
For details of different methods for connecting the implementation
objects to the Orbix Java runtime, refer to “Object Initialization
and Connection” on page 113.

Error Handling for Server Applications
If an error occurs during an Orbix Java method call, the method
may raise a Java exception to indicate this. To handle these
exceptions, you must enclose Orbix Java calls in try statements.
Exceptions thrown by Orbix Java calls can then be handled by
subsequent Java catch clauses. All Orbix Java system exceptions
inherit from the class org.omg.CORBA.SystemException.
In the banking example, the code in the catch clause displays
details of possible system exceptions raised by Orbix Java. It does
this by printing the result of the SystemException.toString()
method to the Java System.out print stream.
The constructor for the IDL-generated _BankOperations type may
raise a system exception, so the instantiation of this object must
be enclosed in a try statement. Refer to “Exception Handling” on
page 143 for more details.
Orbix Programmer’s Guide Java Edition 21

Writing the Client Application
Writing client applications involves writing Java clients that access
implementation objects through IDL interfaces. You must perform
the following steps:
1. Initialize the client connection to the ORB.
2. Get a reference to an object.
3. Invoke attributes and operations defined in the object’s IDL

interface.
This section describes each of these steps in turn.

Initializing the ORB
All clients and servers must call org.omg.CORBA.ORB.init() to
initialize the ORB. This returns a reference to the ORB object. The
ORB methods defined by the standard can then be invoked on this
instance. You should use the parameterized version of the init()
method, defined as follows:

static public org.omg.CORBA.ORB init
(String[] args, ava.util.Properties props)

In the banking example, the client initializes the ORB, and passes
it as a parameter to the client constructor, as follows:

// Java
// In file Client.java

// Initilize the ORB
org.omg.CORBA.ORB Orb = ORB.init (args,null);

// Create a new client
new Client (Orb);

Getting a Reference to an Object
The CORBA-defined way to get a reference to an object is to use
the Naming Service. When an object reference enters a client
address space, Orbix Java creates a proxy object that acts as a
local representative for the remote implementation object. Orbix
Java forwards operation invocations on the proxy object to
corresponding methods in the implementation object.
The following sample code shows how the client uses Naming
Service wrapper methods to obtain an object reference:

// Java
// In file Client.java
...

public void connectToBank {
// Get the hostname from the user interface.

1 String host = m_client_frame.Get_HostName();

_OrbixWeb.ORB(m_orb).setConfigItem
("IT_NAMES_SERVER_HOST",host);

try {
2 m_ns_wrapper = new IT_NS_Wrapper (m_orb,
 22 Orbix Programmer’s Guide Java Edition

m_demo_context_name);
}
catch (org.omg.CORBA.UserException userEx) {
m_client_frame.printToMessageWindow ("[Exception

raised during creation of naming" + "service
wrapper.]");

}
try {

3 org.omg.CORBA.Object obj = m_ns_wrapper.resolveName
("Bank");

4 m_bank = BankHelper.narrow (obj);
m_client_frame.printToMessageWindow("Connection

succeeded.");
}
catch (org.omg.CORBA.UserException userEx) {
m_client_frame.printToMessageWindow ("[Exception
raised getting Bank reference " + userEx + "]");
}

}

This code is described as follows:
1. Set the Naming Service hostname to the hostname input by

the user.
2. Create a new Naming Service wrapper object.
3. The method m_ns_wrapper.resolveName() retrieves the object

reference from the Naming Service placed there by the
server. The parameter is the name of the object to resolve.
This must match the name used by the server when it called
registerObject().

4. The return type from resolveName() is of type
org.omg.CORBA.Object. You must call BankHelper.narrow() to
cast from this base class to the Bank IDL class, before you can
make invocations on remote Bank objects. The client stub code
generated for every IDL class contains the
BankHelper.narrow() method definition for that class.

Invoking IDL Attributes and Operations
To access an attribute or an operation associated with an object,
call the appropriate Java method on the object reference. The
client-side proxy redirects this call across the network to the
appropriate Java method for the implementation object.
Orbix Java enables you to invoke IDL operations using normal
Java method calls. The following code extract shows the code
called when you choose to create an account, using the interactive
GUI shown in Figure 6 on page 24:

// Create a user account.
public void createNewAccount() {

Account new_account = null;
String current_name = m_client_frame.Get_UserName();
try {

// Call the IDL-defined method create_account().
new_account = m_bank.create_account(current_name);
m_client_frame.Set_Balance(0f);
m_client_frame.printToMessageWindow("Created

account for " + current_name + ".");
}

Orbix Programmer’s Guide Java Edition 23

catch (SystemException se) {
m_client_frame.printToMessageWindow ("[Exception

raised during account creation. " + se + "] ");
}

}

Figure 6: Creating an Account using the Bank GUI

Similarly, the following Java code is called when you choose to
find an account:

// Java.
// In file Client.java.
...
// Find a user account.
private Account getCurrentUserAccount() {

try {
// Call the IDL-defined method find_account().
return m_bank.find_account

(m_client_frame.Get_UserName());
}
catch (SystemException ex) {

m_client_frame.printToMessageWindow
("[Exception raised finding account for "

+ m_client_frame.Get_UserName()+ "]");
}
return null;

}

 24 Orbix Programmer’s Guide Java Edition

The following code extract shows the Java code called when the
user chooses to make a deposit into an account:

// Java.
// In file ClientGUIFrame.java.

public void DepositButton_mouseClicked() {
Account user_account =

m_client.getCurrentUserAccount();

if (user_account != null) {
try {

user_account.deposit
(Get_Transaction_Amount());

m_client.updateCurrentUserBalance();
}
catch (SystemException se) {

printToMessageWindow ("[Exception raised
during account deposit.]");

}
}

}

Compiling the Client and Server
Details of compiling the client and server are specific to the Java
development environment used. However, it is possible to
describe general requirements. These are illustrated here using
the Oracle Java Developer’s Kit (JDK), version 1.1.x or higher.
This is the development environment used by the Orbix Java
demonstration makefiles.
To compile an Orbix Java application, you must ensure that the
Java compiler can access the following:

• The Java API classes located in the rt.jar file in the jre/lib
directory of your JDK installation.

• The Orbix Java API classes located in the OrbixWeb.jar file in
the lib directory of your Orbix Java installation.

• The config directory of your Orbix Java installation.
• Any other classes required by the application.

Compiling the Server Application
To compile the server application, you must invoke the Java
compiler on the user-generated source files, and on files
generated by the IDL compiler. In the banking server example,
the user-generated source files are as follows:

• Server.java

• BankImplementation.java

• AccountImplementation.java

The IDL-generated files are as follows:

• _BankSkeleton.java

• _BankOperations.java
Orbix Programmer’s Guide Java Edition 25

• _tie_Bank.java

• _BankStub.java
• Bank.java

• _AccountSkeleton.java

• _AccountOperations.java

• _tie_Account.java

• _AccountStub.java

• Account.java

The IDL-generated files are located in the
demos\BankSimpleTie\java directory. Discussion of the
IDL-generated files is deferred until “Orbix Java IDL Compilation”
on page 29.

Compiling the Client Application
To compile the client application, invoke the Java compiler on the
client source file and on the files generated by the IDL compiler. In
this example, the source file is Client.java, and the generated
files are as follows:

• _BankStub.java
• Bank.java

• _AccountStub.java

• Account.java

Using Orbix Java Utilities
You can use the standard Java command line to compile all the
required Java source files. Alternatively, Orbix Java provides a
convenience tool called owjavac.pl that acts as a front end to your
chosen Java compiler. This tool passes the default classpath and
classes directories to the compiler, avoiding the need to set
environment variables.
The Orbix Java demos\BankSimpleTie directory provides a script
that calls owjavac.pl as required. To compile the Java source files,
enter the appropriate command from the BankSimpleTie\java
directory:

You can use these commands for all the Orbix Java
demonstrations from the appropriate demos directory. These
commands run the IDL compiler and compile the Java source files.
For details on the use of the owjava.pl and owjavac.pl wrapper
utilities, refer to “Using the Orbix Java Wrapper Utilities” on
page 186.

UNIX % make

Windows > compile
 26 Orbix Programmer’s Guide Java Edition

Registering the Server
Registering the server in the Implementation Repository allows
the server to be launched automatically. The Implementation
Repository is a server database that maintains a mapping from
the server name to the name of the Java class that implements
the server. If the server is registered, it is automatically run
through the Java interpreter when a client binds to the Bank
object.

Running the Orbix Java Daemon
Before registering the server, you should ensure that an Orbix
C++ or Java daemon process (orbixd or orbixdj) is running on the
server machine.
To run the Orbix Java daemon, enter the orbixdj command from
the bin directory of your Orbix Java installation. To run the Orbix
C++ or Java daemon, enter the orbixd command.
On Windows, you can also start a daemon process by clicking on
the appropriate menu item from the Orbix Java folder.

Using Putitj
Once an Orbix Java daemon process is running, you can register
the server. To register the Bank server, use the putitj command
as follows:

putitj -j Bank Demos.BankSimpleTie.Server

The -j switch indicates that the specified server should be
launched via the Java Interpreter. The second parameter to putitj
is the server name, Bank in this example. The third parameter is
the name of the class that contains the server’s main() method
(Demos.BankSimpleTie.Server in this example). This is the class
that should be run through the Java interpreter.
The server registration step is automated by a script in the
demos\BankSimpleTie directory that executes the putitj command.
Refer to the Orbix Administrator’s Guide Java Edition for
more details on the putitj command.

Running the Client Application
To run the client application you must run the Java interpreter on
the bytecode (.class files) produced by the Java compiler. When
running an Orbix Java client application, you must ensure that the
interpreter can access the following:

• The Java API classes located in the rt.jar file in the jre/lib
directory of your JDK installation.

• The Orbix Java API classes located in the OrbixWeb.jar file in
the lib directory of your Orbix Java installation.

• The config directory of your Orbix Java installation.
• Any other classes required by the application.
Orbix Programmer’s Guide Java Edition 27

Using Orbix Java Utilities
You can use the owjava.pl tool as an alternative to the standard
Java command line. This is a wrapper utility that acts as a front
end to your chosen Java interpreter. The owjava.pl tool passes the
default classpath to the interpreter, avoiding the need to set up
environment variables. Refer to “Using the Orbix Java Wrapper
Utilities” on page 186 for more details on this convenience tool.
A script named Client in the demos\BankSimpleTie\java directory
implements this step. To run the client application, use the
following command:

Client server_host
The Bank GUI then appears as shown in Figure 7 on page 28.

Figure 7: The Bank GUI.
 28 Orbix Programmer’s Guide Java Edition

Summary of the Programming Steps
The steps involved in creating a distributed client-server
application using Orbix Java are as follows:
1. Define the interfaces to objects used by the application, using

CORBA standard IDL.
2. Compile the IDL to generate the Java code.
3. Implement the IDL interface using the generated code.
4. Write a server, using the generated code as follows:

i. Initialize the server connection to the ORB.
ii. Create an implementation object by creating instances of

the implementation classes.
iii. Register the implementation object in the Naming

Service.
5. Write a client application to use the CORBA objects located in

the server as follows:
i. Initialize the client connection to the ORB.
ii. Get a reference to an object.
iii. Invoke attributes and operations defined in the object’s

IDL interface.
6. Compile the client and server applications.
7. Register the server in the Orbix Java Implementation

Repository.
8. Run the client application.

Orbix Java IDL Compilation
This section examines the Orbix Java IDL compilation process,
focusing on the Java classes and interfaces generated by the IDL
compiler.
The Orbix Java IDL compiler produces Java code corresponding to
the IDL definitions. For example, the mapped Java code consists
of code that allows a client to access an object through the Bank
interface, and code that allows a Bank object to be implemented in
a server.
The IDL compilation produces Java constructs (six classes and two
interfaces) from the IDL interface Bank. Each public Java class or
interface is located in a single source file with a .java suffix. Each
source file is located in a directory that follows the Java mapping
for package names to directory structures.
By default, the Orbix Java IDL compiler creates a local java_output
directory into which the generated Java directory structure is
placed. You can specify an alternative target directory using the
compiler switch “-jO directory”.
Orbix Programmer’s Guide Java Edition 29

Each generated file contains a Java class or interface that serves a
specific role in an application. For example, the following files are
generated for the Bank IDL interface:

Client-Side Mapping Description
Bank A Java interface whose methods define

the Java client view of the IDL interface.
_BankStub A Java class that implements the

methods defined in the Bank interface.
This class provides functionality that
allows client method calls to be
forwarded to a server.

Server-Side Mapping Description
_BankSkeleton A Java class used internally by Orbix

Java to forward incoming server
requests to implementation objects.
You do not need to know the details of
this class.

_BankImplBase An abstract Java class that allows
server-side developers to implement
the Bank interface using the ImplBase
approach.

_tie_Bank A Java class that allows server-side
developers to implement the Bank
interface using delegation. This
approach to interface implementation is
called the TIE approach.
The TIE approach is an Orbix Java
-specific feature, and is not defined by
the CORBA specification. It is the
recommended approach for Orbix Java
due to the restriction to single
inheritance in Java.

_BankOperations A Java interface, used in the TIE
approach only, that maps the attributes
and operations of the IDL definition to
Java methods. These methods must be
implemented by a class in the server,
using the TIE approach.

Client and Server-Side
Mapping

Description

BankHelper A Java class that allows you to
manipulate IDL user-defined types in
various ways.

BankHolder A Java class defining a Holder type for
class Bank. This is required for passing
Bank objects as inout or out parameters
to and from IDL operations. Refer to
“Holder Classes and Parameter
Passing”.

BankPackage A Java package used to contain any IDL
types nested within the Bank interface;
for example, structures or unions.
 30 Orbix Programmer’s Guide Java Edition

Figure 8: Overview of the Compiling the Bank IDL Interface

BankSimple.idl

BankSimple
Client

Application

BankSimple
Object

Application

_BankSkeleton_BankStub
Generated

Classes and
Interfaces

IDL Compiler

Java Compiler

Client
ByteCode

Server
ByteCode
Orbix Programmer’s Guide Java Edition 31

Examining the Generated Interfaces and Classes
The relationships between the Java types produced by the IDL
compiler can be illustrated by a brief examination of the generated
source code.

Client-Side Mapping
The Java files Bank.java and _BankStub.java support the client-side
mapping. The Bank.java file maps the operations and attributes in
BankSimple.idl to Java methods as follows:

// Generated by the Orbix Java IDL compiler

package Demos.BankSimpleTie;

public interface Bank extends org.omg.CORBA.Object {
 public Demos.BankSimpleTie.Account create_account

(String name) ;
 public Demos.BankSimpleTie.Account find_account

(String name) ;
 public java.lang.Object _deref() ;
}

This Java interface defines an Orbix Java client view of the IDL
interface defined in BankSimple.idl. The Java interface is
implemented by the Java class _BankStub in the file _BankStub.java
as follows:

// Generated by the Orbix Java IDL compiler

package Demos.BankSimpleTie;

public class _BankStub
extends org.omg.CORBA.portable.ObjectImpl
implements Demos.BankSimpleTie.Bank {

public _BankStub () {}

public Demos.BankSimpleTie.Account
create_account(String name) {

...
}
public Demos.BankSimpleTie.Account

find_account(String name) {
...
}

public static final String _interfaces[] =
{"IDL:BankSimple/Bank:1.0"};

public String[] _ids() {return _interfaces;}

public java.lang.Object _deref() {return null;}

}

The primary role of the _BankStub Java class is to transparently
forward client invocations on Bank operations to the appropriate
implementation object in the server. The IDL is mapped to the
Java interface Bank to allow for multiple inheritance. The
implementation is then supplied by the corresponding _BankStub.
 32 Orbix Programmer’s Guide Java Edition

The create_account() and find_account() IDL operations are
mapped to corresponding Java methods. The parameters, which
are IDL basic types in the IDL definition, are mapped to equivalent
Java basic types. For example, the IDL type long (a 32-bit integer
type) maps to the Java type int (also a 32-bit integer type). For
IDL types that have no exact Java equivalent, an approximating
class or basic type is used. Refer to “IDL to Java Mapping” for a
complete description.

Server-Side Mapping
Orbix Java provides support for two approaches to implementing
an IDL interface:

• The TIE approach, which uses delegation.
The generated Java constructs used in the TIE approach are
the interface _BankOperations and the class _tie_Bank.
The TIE approach is used in this chapter to implement the
BankSimple IDL interfaces.

• The ImplBase approach, which uses inheritance.
The generated Java class used in the ImplBase approach is
_BankImplBase.

The use of the TIE and ImplBase approaches is discussed in detail
in “Implementing the IDL Interfaces” on page 105. The TIE
approach, which uses delegation, is preferred for many Java
applications and applets.
After the IDL interface has been implemented, a server creates an
instance of the implementation class. This server then connects
the created object to the ORB runtime, which passes incoming
invocations to the implementation object.
Orbix Programmer’s Guide Java Edition 33

 34 Orbix Programmer’s Guide Java Edition

Developing Applets
with Orbix Java
This chapter extends the banking example from “Developing
Applications with Orbix Java”. It explains how to use Orbix Java to
create a downloadable client applet that communicates with a
back-end server. The programming steps differ on the client side
only. You should be familiar with the material covered in
“Developing Applications with Orbix Java” before continuing with
this chapter.

Review of Orbix Java Programming Steps
Recall the programming steps typically required to create a
distributed client-server application using Orbix Java:
1. Define the interfaces to objects used by the application,

using CORBA IDL.
2. Generate Java code from the IDL using the IDL compiler.
3. Implement the IDL interface, using the generated code.
4. Write a server that creates instances of the generated classes

and informs Orbix Java when initialization is complete.
5. Write a client application that connects to the server and uses

server objects.
6. Compile the client and server applications.
7. Register the server in the Implementation Repository.
8. Run the client application.
This chapter uses the banking IDL interface outlined in “Defining
IDL Interfaces” on page 13. The sample code described in this
chapter is available in the demos/common/BankSimpleApplet directory
of your Orbix Java installation.

Providing a Server
This chapter illustrates a distributed architecture in which a
downloadable client applet communicates with an Orbix Java
server through an IDL interface. This client-server architecture is
a common requirement in the Java environment where small,
dynamic client applets are downloaded to communicate with large,
powerful back-end service applications. Architectures in which full
Orbix Java servers are coded as downloadable applets are less
common, and are not described here.
The example server used in this chapter is developed in “Writing
an Orbix Java Server Application” on page 18. The Orbix Java
programming steps for writing servers are identical for Java
applications and Java applets. The main differences between
programming for Java applications and Java applets occur when
writing the client.
 Orbix Programmer’s Guide Java Edition 35

Writing a Client Applet
This section develops a simple Java applet, providing a graphical
user interface to the banking IDL interface. The example used
builds upon the concepts already introduced in “Writing the Client
Application” on page 22.
Writing the client applet can be broken down into four sub-steps,
each corresponding to a particular demonstration source file, as
follows:

These files are located in the demos\common\BankSimpleApplet\java
directory of your Orbix Java installation. The package name for
the Java classes in this example is Demos.BankSimpleApplet. This
example assumes that the file BankSimple.idl is compiled with the
following command:

idlj -jP Demos BankSimple.idl

Developing an Orbix Java client can be completely decoupled from
developing the server. For this reason, when compiling the IDL
file, the package name chosen for the client can differ from the
package name for the server.

Programming Step Source File
1. Creating the user interface BankPanel.java

2. Adding Orbix Java client functionality BankEvents.java

3. Creating the applet BankApplet.java

4. Adding the client to a HTML file Index.html
 36 Orbix Programmer’s Guide Java Edition

Creating the User Interface
The GUI source code in BankPanel.java uses the Java Abstract
Windowing Toolkit package (java.awt) to create and arrange each
of the elements within a java.awt.Panel container. You should
refer to your Java documentation for details of the AWT.
The BankSimpleApplet GUI shown in Figure 9 on page 37 consists
of three tabs:

Figure 9: The Banking Graphical User Interface

Bank Location Used to specify a Naming Service host and get
a reference to a Bank object.

Accounts Used to create, find and update specified
accounts.

Transactions Used to make withdrawals and deposits for
specified accounts.
Orbix Programmer’s Guide Java Edition 37

The following code sample names the individual GUI components,
such as buttons and text fields. The details of how the GUI is
implemented are not discussed:
// Java
// In file BankPanel.java.

package Demos.BankSimpleApplet;
import java.awt.*;

public class BankPanel extends Panel {

// Button String constants
final String m_connect_string = "Connect";
final String m_disconnect_string = "Disconnect";
final String m_withdraw_string = "Withdraw";
final String m_deposit_string = "Deposit";
final String m_create_string = "Create New Account";
final String m_update_string = "Update";

// Labels
Label m_user_label = new Label ("Username");
Label m_balance_label = new Label ("Acount Balance");
Label m_transaction_label = new Label

("Transaction Amount");
Label m_hostname_label = new Label ("Host");
// Buttons
Button m_connect_button;
Button m_disconnect_button;
Button m_withdraw_button;
Button m_deposit_button;
Button m_create_button;
Button m_update_button;

// Text fields
TextField m_transaction_field;
TextField m_user_field;
TextField m_balance_field;
TextField m_hostname_field;

// Sub panels
Panel m_top_panel = new Panel();
Panel m_bottom_panel = new Panel();
// Constructor
public BankPanel() {
...
}

...
}

 38 Orbix Programmer’s Guide Java Edition

Adding Orbix Java Client Functionality
In the banking applet example, all Orbix Java client functions are
initiated by GUI button clicks. For the purposes of illustration, the
applet maps GUI button clicks directly to individual operations on
a Bank object. Operation parameter values and results are sent
and returned using text boxes. This allows the client to receive
notification of a button click event, and to determine which button
received the event. The client can then react by calling the
appropriate operation on a Bank or Account proxy object.
A subclass of BankPanel named BankEvents acts as the container for
the various buttons and text fields. The following is an outline of
the source code for the class BankEvents. The button
implementation methods defined here are expanded on later in
this section:

// Java
// In file BankEvents.java.

package Demos.BankSimpleApplet;

import java.awt.*;
import Demos.IT_DemoLib.*;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb._CORBA;

public class BankEvents extends BankPanel {

 // Constructor.
public BankEvents(){

 super();
 org.omg.CORBA.ORB Orb = ORB.init(this,null);
 m_orb = Orb;
 }

// Notify appropriate method for action event.
 public boolean action (Event event, Object arg) {
 if (m_connect_string.equals(arg)){
 connect();
 }

else if (m_disconnect_string.equals(arg)){
disconnect();

}
else if (m_withdraw_string.equals(arg)){

withdraw();
}
else if (m_deposit_string.equals(arg)) {

deposit();
}
else if (m_create_string.equals(arg)) {

create();
}
else if (m_update_string.equals(arg)) {

update();
}
return true;
Orbix Programmer’s Guide Java Edition 39

}
// Connect button implementation.
public void connect() {

// Details later in this section.
}

// Exit button implementation.
public void disconnect() {

m_bank = null;
}

public void update() {
updateCurrentUserBalance();

}

// Deposit button implementation.
public void deposit() {

// Details later in this section.
}

// Withdraw button implementation.
public void withdraw() {

...
}

// Create button implementation.
public void create() {
// Details later in this section.
}

// Update button implementation.
private void updateCurrentUserBalance() {

...
}

// Find button implementation.
private Account getCurrentUserAccount() {
// Details later in this section.
}

private void displayMsg (String msg) {
// Details later in this section.
}
...

}

The BankEvents class provides methods to handle the client
functionality required for the GUI buttons shown in Figure 9 on
page 37. The following sections explain the button
implementations in detail.
 40 Orbix Programmer’s Guide Java Edition

Getting a Reference to an Object
The CORBA-defined way to get a reference to an object is to use
the Naming Service. When an object reference enters a client
address space, Orbix Java creates a proxy object that acts as a
local representative for the remote implementation object. Orbix
Java forwards operation invocations on the proxy object to
corresponding methods in the implementation object.
The Connect button on the Bank Location tab is implemented
by the Connect() method. This uses Naming Service wrapper
functions to obtain a Bank object reference:

public void connect() {
String hostname;

// Get hostname from the text field.
hostname = m_hostname_field.getText();
try {

//Set the naming service hostname
1 _OrbixWeb.ORB (m_orb).setConfigItem

("IT_NAMES_SERVER_HOST", hostname);
}

catch(Exception ex){
displayMsg("First exception caught:

"+ex.toString());
}

// Create a new Naming Service wrapper
try {

2 m_ns_wrapper = new IT_NS_Wrapper
(m_orb, m_demo_context_name);

}
catch (org.omg.CORBA.UserException user_ex) {

displayMsg("Exception raised during creation of
naming service wrapper: " + user_ex.toString());

}
try {

org.omg.CORBA.Object m_obj =
3 m_ns_wrapper.resolveName("Bank");

displayMsg("After resolving name");

4 m_bank = BankHelper.narrow(m_obj);
displayMsg("Connect succeeded!");

}
catch(org.omg.CORBA.UserException user_ex) {

displayMsg("Exception raised getting bank
reference: "+user_ex.toString());

}
catch (Exception ex) {
 displayMsg("Exception caught: "+ex.toString());
}

}
}

This code is described as follows:
1. Set the Naming Service hostname to that input by the user.
2. Create a new Naming Service wrapper object.
Orbix Programmer’s Guide Java Edition 41

3. The method nsWrapper.resolveName() retrieves the object
reference from the Naming Service placed there by the
server. The parameter is the name of the object to resolve, in
this case Bank.This must match the name used by the server
when it called registerObject().

4. The return type from resolveName() is of type
org.omg.CORBA.Object. You must call BankHelper.narrow() to
cast from this base class to the Bank IDL class, before you can
make invocations on remote Bank objects. The client stub code
generated for every IDL class contains the
BankHelper.narrow() function definition for that class.

Disconnecting from a Server
The Exit button functionality is implemented as follows:

public void disconnect() {
m_bank = null;

}

This destroys a previously created proxy object by assigning it a
Java null value. This does not actually close the connection; to do
this, you must call the following:

m_orb.closeConnection(m_bank);

Invoking IDL Attributes and Operations
To access an attribute or an operation associated with an object,
call the appropriate Java method on the object reference. The
client-side proxy redirects this call across the network to the
appropriate Java method for the implementation object.
Orbix Java enables you to invoke IDL operations using normal
Java method calls. The following code extracts show the code
called when you select the appropriate GUI button.

Creating an Account
The Create button functionality is implemented as follows:

// Create button implementation.
public void create() {

Account new_account = null;
String current_name = m_user_field.getText();
try{

new_account = m_bank.create_account
(current_name);

m_balance_field.setText
(String.valueOf((float)0));

displayMsg("Created an account for "+
current_name);

}
catch (SystemException se) {

displayMsg("Exception raised during creation
of account "+se.toString());

}
}

The create() method enables the IDL-defined method
create_account() to be called on the proxy object m_bank.
 42 Orbix Programmer’s Guide Java Edition

Finding an Account
The Find button functionality is implemented as follows:

// Find button implementation.
private Account getCurrentUserAccount() {

try {
return m_bank.find_account

(m_user_field.getText());
}
catch(SystemException se){

displayMsg("Exception raised finding account
for "+ m_user_field.getText());

}
return null;

}

This enables the IDL-defined method find_account() to be called
on the m_bank proxy object.

Making a Deposit
The Deposit button functionality is implemented as follows:

public void deposit() {
Account user_account = getCurrentUserAccount();
float amount = Float.valueOf
(m_transaction_field.getText()).floatValue();

if (user_account != null) {
try {

user_account.deposit(amount);
updateCurrentUserBalance();

}

catch (SystemException se) {
displayMsg("Exception raised while

attempting a deposit "+se.toString());
}

}
}

This allows the IDL-defined deposit() method to be called on
proxy objects located via the find_account() method. The
Withdraw button functionality is implemented in a similar way.

Handling Exceptions in Orbix Java Client Applets
In the example described in “Writing the Client Application” on
page 22, Orbix Java system exceptions are handled in catch
clauses by displaying the exception toString() output in the
System.out print stream. This information is helpful when you are
debugging Orbix Java clients. In a client applet, however, it may
not be practical to output the information to a print stream. In this
example, exception strings are displayed in information dialog
boxes.
Orbix Programmer’s Guide Java Edition 43

The file MsgDialog.java implements a generic dialog class for this
purpose:

// In file MsgDialog.java.
package Demos.BankSimpleApplet;

import java.awt.*;

public class MsgDialog extends Frame {
 protected Button button;
 protected Msg label;

public MsgDialog(String title, String message){
// Details omitted.
}

// Other class details omitted.
}

The details of this class implementation is not important. Orbix
Java error-handling can be added to the BankEvents class by
defining a display method as follows:

private void displayMsg (String msg) {
Demos.SimpleBankApplet.MsgDialog m_msg_dialog =

new Demos.SimpleBankApplet.MsgDialog
("Bank Operation Result", msg);

m_msg_dialog.resize(380,200);
m_msg_dialog.show();

}

This allows any string, including system exception strings, to be
displayed in a dialog box.

Creating the Applet
To create the BankSimple client applet, define a subclass of
java.applet.Applet and add a BankEvents object to this class:
// Java
// In file BankApplet.java.
package Demos.BankSimpleApplet;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.INITIALIZE;
import java.applet.*;
import java.awt.*;
import org.omg.CORBA.ORB;

public class BankApplet extends Applet {

// Main display panel
BankEvents m_bank_events;

public void init () {
try {

ORB.init(this, null);
}
catch (INITIALIZE ex) {

System.err.println ("failed to initialize: "+ex);
}

// Create new panel.
 44 Orbix Programmer’s Guide Java Edition

m_bank_events = new BankEvents ();

// Add panel to applet.
this.add (m_bank_events);
}

}

Initializing the ORB
Because Orbix Java uses the standard OMG IDL to Java mapping,
all client and server applets must call org.omg.CORBA.ORB.init() to
initialize the ORB. This returns a reference to the ORB object. You
can then invoke the ORB methods defined by the standard on this
instance.
The example applet, BankApplet.java, uses the following version
of org.omg.CORBA.ORB.init():

ORB.init(Applet app, java.util.Properties props)

You must use this version of init() for applet initialization. In the
example, the client applet passes a reference to itself using the
this parameter. The props parameter, used to set configuration
properties, is set to null. This means that the default system
properties are used instead.
This version of the init() method returns a new fully functional
ORB Java object each time it is called. Refer to the Orbix
Programmer’s Reference Java Edition for further information on
class org.omg.CORBA.ORB and ORB.init().

Adding the Applet to a HTML File
In HTML terms, an Orbix Java applet client behaves exactly like a
standard Java applet. It can be included in a HTML file using the
standard <APPLET> tag, as shown in the file Index.html:

// HTML
// In file Index.html

<HTML>
<HEAD>

<TITLE>Orbix Java BankSimpleApplet demo</TITLE>
</HEAD>

<BODY>
<H1>Bank Client</H1>

<APPLET CODE="Demos/BankSimpleApplet/
BankSimpleApplet.class"

1 CODEBASE="../../classes/"
archive=”OrbixWeb.jar”
WIDTH=390 HEIGHT=560>

<PARAM NAME=”org.omg.CORBA.ORBClass”
2 VALUE=”IE.Iona.OrbixWeb.CORBA.ORB>

<PARAM NAME=”org.omg.CORBA.ORBSingletonClass”
VALUE=”IE.Iona.OrbixWeb.CORBA.singletonORB>

</APPLET>
</BODY>
</HTML>
Orbix Programmer’s Guide Java Edition 45

This HTML is described as follows:
1. The CODEBASE attribute of the HTML <APPLET> tag indicates the

location of the additional classes required by the applet.
2. Pass the parameter value IE.Iona.OrbixWeb.CORBA.ORB to

enable use of the Orbix Java ORB implementation. This means
that Orbix Java -specific methods such as bind() can be used.

Compiling the Client Applet
The instructions for compiling an Orbix Java applet are identical to
those for a standard Orbix Java application, as described in
“Compiling the Client and Server” on page 25.
You must ensure that the Java compiler can access the Java API
packages (including java.awt for this sample code), the Orbix Java
IE.Iona.OrbixWeb.CORBA package, and any applet-specific classes.
Invoke the compiler on all the Java source files for the application.
The following files are required for the banking example:

• _BankStub.java

• Bank.java

• _AccountStub.java

• Account.java

• BankPanel.java
• BankEvents.java
• BankApplet.java
• MsgDialog.java
• Msg.java

The Orbix Java demos/common/BankSimpleApplet directory provides a
script that invokes the owjavac.pl wrapper utility as required. To
compile the client applet, enter the appropriate command at the
operating system prompt:

UNIX % make

Windows > compile
 46 Orbix Programmer’s Guide Java Edition

Running the Client Applet
When running the client applet, you must use a Web browser or
an applet viewer to view the HTML file. For example, you can use
the JDK appletviewer as follows:

appletviewer Index.html

Java applets differ slightly from standalone Java applications in
their requirements for accessing class directories. Before running
the viewer, you can specify the locations of required classes in the
CLASSPATH environment variable. The classes required are identical
to those for an Orbix Java client application:

• The Java API classes located in the rt.jar file in the jre/lib
directory of your JDK installation.

• The Orbix Java API classes located in the OrbixWeb.jar file in
the lib directory of your Orbix Java installation.

• The config directory of your Orbix Java installation.
• Any other classes required by the application.
An alternative approach is to provide access to all the classes the
applet requires in a single directory. Instead of setting
environment variables, you can use the CODEBASE attribute of the
HTML <APPLET> tag to indicate the location of the required classes.
This approach is recommended, and is the approach used in
“Creating the Applet” on page 44. The Orbix Java configuration
files are loaded from the location specified by the CODEBASE
attribute of the <APPLET> tag. If you do not specify the CODEBASE
attribute, the directory containing HTML file is used as the default
location.
Refer to the Orbix Administrator’s Guide Java Edition for
more details on the Orbix Java configuration files.

Security Issues for Java Applets
Java applets are subject to important security restrictions that are
imposed by the Java environment and Web browsers. The severity
of these restrictions is often dependent on browser technology.
Refer to the Orbix Administrator’s Guide Java Edition for
details about using Orbix Java on the Internet.
Orbix Programmer’s Guide Java Edition 47

Learning more about Orbix Java
Part II and Part III of this guide describe Orbix Java features in
more detail and expand on the information presented in Part I.
Specifically, Part II and Part III include the following:

• An overview of the structure of distributed applications.
• An introduction to IDL and the corresponding mapping of IDL

to the Java programming language. Both client and server
programmers must be familiar with this mapping.

• Further examples of using Orbix Java to define an interface to
a system component and write client and server programs.

• How to make objects available in Orbix Java, using the
CORBA-defined Naming Service and the Orbix Java -specific
bind() method.

• The use of inheritance when defining IDL interfaces, allowing
an interface to be defined by extending others.

• More details on compiling IDL definitions, and registering
Orbix Java servers in the Implementation Repository.

• Details on enabling communication between independently
developed implementations of the CORBA standard, using
IIOP (Inter-ORB Interoperability Protocol).

Part IV and Part V of this guide discuss advanced features that
extend the power of Orbix Java, for example:

• Filters can be installed in your system to allow programs to
monitor or control incoming or outgoing requests.

• A proxy is a local representative or stand-in for a remote
object. A smart proxy is an intelligent stand-in. You can write
Smart proxies to optimize the performance of a component as
perceived by a client.

• To facilitate applications such as browsers, the interface of an
object can be examined at runtime, using the Interface
Repository.

• If Orbix Java fails to find an object being sought by a client or
server, it informs loader objects, which can load the object
from some persistent store. Interfacing Orbix Java to a
persistent store, therefore, involves writing a loader object
and installing this within programs that directly use that
persistent store. As a result, Orbix Java is not tied to using
any specific persistent store from a particular vendor.

• Orbix Java has an inbuilt mechanism for searching the
distributed system for a server. If this mechanism is not
appropriate or if it needs to be augmented, you can write a
locator object and install this.

• Some applications, such as browsers, must be able to use all
of the interfaces defined in a system—even those interfaces
that did not exist when the browser was compiled. Orbix Java
supports such applications via its Dynamic Invocation
Interface.

A full description of the API to Orbix Java is supplied in the Orbix
Programmer’s Reference Java Edition .
 48 Orbix Programmer’s Guide Java Edition

Part II
CORBA Programming

with Orbix Java

In this part
This part contains the following:

Introduction to CORBA IDL page 51

IDL to Java Mapping page 67

Using and Implementing IDL Interfaces page 103

Making Objects Available in Orbix Java page 127

Exception Handling page 143

Using Inheritance of IDL Interfaces page 151

Callbacks from Servers to Clients page 161

Introduction to CORBA
IDL
The CORBA Interface Definition Language (IDL) is used to define
interfaces to objects in your network. This chapter introduces the
features of CORBA IDL and illustrates the syntax used to describe
interfaces.

The first step in developing a CORBA application is to define the
interfaces to the objects required in your distributed system. To
define these interfaces, you use CORBA IDL.
IDL allows you to define interfaces to objects without specifying
the implementation of those interfaces. To implement an IDL
interface you must:
1. Define a Java class that can be accessed through the IDL

interface.
2. Create objects of that class within an Orbix Java server

application.
You can implement IDL interfaces using any programming
language for which an IDL mapping is available. An IDL mapping
specifies how an interface defined in IDL corresponds to an
implementation defined in a programming language. CORBA
applications written in different programming languages are fully
interoperable.
CORBA defines standard mappings from IDL to several
programming languages, including C++, Java, and Smalltalk. The
Orbix Java IDL compiler converts IDL definitions to corresponding
Java definitions, in accordance with the standard IDL to Java
mapping.
 Orbix Programmer’s Guide Java Edition 51

IDL Modules and Scoping
An IDL module defines a naming scope for a set of IDL definitions.
Modules allow you to group interface and other IDL type
definitions into logical name spaces. When writing IDL definitions,
always use modules to avoid possible name clashes.
The following example illustrates the use of modules in IDL:

// IDL
module finance {

interface account {
...

};
};

The interface account is scoped within the module finance. IDL
definitions are available directly within the scope in which they are
defined. In other naming scopes, you must use the scoping
operator :: to access these definitions. For example, the fully
scoped name of interface account is finance::account.
IDL modules can be reopened. For example, a module declaration
can appear several times in a single IDL specification if each
declaration contains different data types. In most IDL
specifications, this feature of modules is not required.

Defining IDL Interfaces
An IDL interface describes the functions that an object supports in
a distributed application. Interface definitions provide all the
information that clients need to access the object across a
network.
Consider the example of an interface that describes objects that
implement bank accounts in a distributed application.
The IDL interface definition is as follows:

//IDL
module finance {

interface account {
// The account owner and balance.
readonly attribute string owner;
readonly attribute float balance;

// Operations available on the account.
void makeLodgement(in float amount,

out float newBalance);
void makeWithdrawal(in float amount,

out float newBalance);
};

};

The definition of interface account includes both attributes and
operations. These are the main elements of any IDL interface
definition.
 52 Orbix Programmer’s Guide Java Edition

IDL Attributes
Conceptually, IDL attributes correspond to variables that an object
implements. Attributes indicate that these variables are available
in an object and that clients can read or write their values.
In general, each attribute maps to a pair of functions in the
programming language used to implement the object. These
functions allow client applications to read or write the attribute
values. However, if an attribute is preceded by the keyword
readonly, clients can only read the attribute value.
For example, the account interface defines the attributes balance
and owner. These attributes represent information about the
account which the object implementation can set, but which client
applications can only read.

IDL Operations
IDL operations define the format of functions, methods, or
operations that clients use to access the functionality of an object.
An IDL operation can take parameters and return a value, using
any of the available IDL data types.
For example, the account interface defines the operations
makeLodgement() and makeWithdrawal() as follows:

//IDL
module finance {

interface account {
// Operations available on the account.
void makeLodgement(in float amount,

out float newBalance);
void makeWithdrawal(in float amount,

out float newBalance);
...

};
};

Each operation takes two parameters and has a void return type.
The parameter definitions must specify the direction in which the
parameter value is passed. The possible parameter-passing
modes are as follows:

Parameter-passing modes clarify operation definitions and allow
an IDL compiler to map operations accurately to a target
programming language.

in The parameter is passed from the caller of the
operation to the object.

out The parameter is passed from the object to
the caller.

inout The parameter is passed in both directions.
Orbix Programmer’s Guide Java Edition 53

Raising Exceptions in IDL Operations
IDL operations can raise exceptions to indicate the occurrence of
an error. CORBA defines two types of exceptions:

• System exceptions
These are a set of standard exceptions defined by CORBA.

• User-defined exceptions
These are exceptions that you define in your IDL specification.

All IDL operations can implicitly raise any of the CORBA system
exceptions. No reference to system exceptions appears in an IDL
specification. See the Orbix Administrator’s Guide Java
Edition appendices for a full list of the CORBA system exceptions.
To specify that an operation can raise a user-defined exception,
first define the exception structure and then add an IDL raises
clause to the operation definition. For example, the operation
makeWithdrawal() in interface account could raise an exception to
indicate that the withdrawal has failed, as follows:

// IDL
module finance {

interface account {
exception WithdrawalFailure {

string reason;
};

void makeWithdrawal(in float amount,
out float newBalance)
raises(WithdrawalFailure);

...
};

};

An IDL exception is a data structure that contains member fields.
In this example, the exception WithdrawalFailure includes a single
member of type string.
The raises clause follows the definition of operation
makeWithdrawal() to indicate that this operation can raise exception
WithdrawalFailure. If an operation can raise more then one type of
user-defined exception, include each exception identifier in the
raises clause and separate the identifiers using commas.

Invocation Semantics for IDL Operations
By default, IDL operation calls are synchronous. This means that a
client calls an operation and blocks until the object has processed
the operation call and returned a value. The IDL keyword oneway
allows you to modify these invocation semantics.
If you precede an operation definition with the keyword oneway, a
client that calls the operation will not block while the object
processes the call. For example, you could add a oneway
operation to interface account that sends a notice to an account
object, as follows:

module finance {
interface account {

oneway void notice(in string text);
...

};
};
 54 Orbix Programmer’s Guide Java Edition

Orbix Java does not guarantee that a oneway operation call will
succeed. Thus, if a oneway operation fails, a client may never
know. There is only one circumstance in which Orbix Java
indicates failure of a oneway operation. If a oneway operation call
fails before Orbix Java transmits the call from the client address
space, Orbix Java raises a system exception.

Note: A oneway operation cannot have any out or inout parameters and
cannot return a value. In addition, a oneway operation cannot
have an associated raises clause.

Passing Context Information to IDL Operations
CORBA context objects allow a client to map a set of identifiers to
a set of string values. When defining an IDL operation, you can
specify that the operation should receive the client mapping for
particular identifiers as an implicit part of the operation call. To do
this, add a context clause to the operation definition.
Consider the example of an account object, where each client
maintains a set of identifiers, such as sys_time and sys_location,
that map to information that the operation makeLodgement() logs
for each lodgement received.
To ensure that this information is passed with every operation call,
extend the definition of makeLodgement() as follows:

// IDL
module finance {

interface account {
void makeLodgement(in float amount,

out float newBalance)
context("sys_time", "sys_location");

...
};

};

A context clause includes the identifiers for which the operation
expects to receive mappings. IDL contexts are rarely used in
practice.
Orbix Programmer’s Guide Java Edition 55

Inheritance of IDL Interfaces
IDL supports inheritance of interfaces. An IDL interface can inherit
all the elements of one or more other interfaces.
For example, the following IDL definition illustrates two interfaces
called checkingAccount and savingsAccount. Both of these inherit
from an interface named account:

// IDL
module finance {

interface account {
...

};

interface checkingAccount : account {
readonly attribute overdraftLimit;
boolean orderChequeBook ();

};

interface savingsAccount : account {
float calculateInterest ();

};
};

Interfaces checkingAccount and savingsAccount implicitly include all
elements of interface account.
An object that implements checkingAccount can accept calls on any
of the attributes and operations of this interface, and also on any
of the elements of interface account. However, a checkingAccount
object may provide different implementations of the elements of
interface account to an object that implements account only.
The following IDL definition shows how to define an interface that
inherits both checkingAccount and savingsAccount:

// IDL
module finance {

interface account {
...

};

interface checkingAccount : account {
...

};

interface savingsAccount : account {
...

};

interface premiumAccount :
checkingAccount, savingsAccount {

};
};
 56 Orbix Programmer’s Guide Java Edition

Interface premiumAccount is an example of multiple inheritance in
IDL. Figure 10 on page 57 illustrates the inheritance hierarchy for
this interface.

If you define an interface that inherits from other interfaces
containing a constant, type, or exception definition of the same
name, you must fully scope that name when using the constant,
type, or exception.

Note: An interface cannot inherit from other interfaces that include
operations or attributes that have the same name.

The Object Interface Type
IDL includes the pre-defined interface Object, which all
user-defined interfaces inherit implicitly. The operations defined in
this interface are described in the Orbix Programmer’s
Reference Java Edition. While interface Object is never defined
explicitly in your IDL specification, the operations of this interface
are available through all your interface types. In addition, you can
use Object as an attribute or operation parameter type to indicate
that the attribute or operation accepts any interface type, for
example:

// IDL
interface ObjectLocator {

void getAnyObject (out Object obj);
};

It is not legal IDL syntax to explicitly inherit interface Object.

Figure 10: Multiple Inheritance of IDL Interfaces

account

savingsAccountcheckingAccount

premiumAccount
Orbix Programmer’s Guide Java Edition 57

Forward Declaration of IDL Interfaces
In IDL, you must declare an IDL interface before you reference it.
A forward declaration declares the name of an interface without
defining it. This feature of IDL allows you to define interfaces that
mutually reference each other.
For example, IDL interface account could include an attribute of
IDL interface type bank, to indicate that an account stores a
reference to a bank object. If the definition of interface bank follows
the definition of interface account, you would make a forward
declaration for the bank interface as follows:

// IDL
module finance {

// Forward declaration of bank.
interface bank;
interface account {

readonly attribute bank branch;
...

};

// Full definition of bank.
interface bank {

...
};

};

The syntax for a forward declaration is the keyword interface
followed by the interface identifier.

Note: It is not possible to inherit from a forwardly declared interface.
You can only inherit from an interface that has been fully
specified.
The following IDL definition, for example, is not permitted:

//IDL
module finance{

//Forward declaration of bank.
interface bank;

interface account Bigbank:bank{
...

}

Overview of the IDL Data Types
In addition to IDL module, interface, and exception types, there
are four main categories of data type in IDL:

• Basic types
• Constructed types
• Template types
• Pseudo object types
This section examines each IDL data type in turn, and describes
how you can define new data type names, arrays, and constants
in IDL.
 58 Orbix Programmer’s Guide Java Edition

IDL Basic Types
Table 1 lists the basic types supported in IDL.

The any data type allows you to specify that an attribute value, an
operation parameter, or an operation return value can contain an
arbitrary type of value to be determined at runtime. Refer to
“Type any” on page 229 for more details.

IDL Constructed Types
IDL provides three constructed data types:

• enum

• struct

• union

Table 1: The IDL Basic Types

IDL Type Range of Values

short -215...215-1 (16-bit)

unsigned short 0...216-1 (16-bit)

long –231...231-1 (32-bit)

unsigned long 0...232-1 (32-bit)

long long –263...263-1 (64-bit)

unsigned long long 0...263-1 (64-bit)

float IEEE single-precision floating point
numbers.

double IEEE double-precision floating point
numbers.

char An 8-bit value.

wchar A 16-bit value.

boolean TRUE or FALSE.

octet An 8-bit value that is guaranteed not to
undergo any conversion during
transmission.

any The any type allows the specification of
values that can express an arbitrary IDL
type.
Orbix Programmer’s Guide Java Edition 59

Enum
An enumerated type allows you to assign identifiers to the
members of a set of values, for example:

// IDL
module finance {

enum currency {pound, dollar, yen, franc};

interface account {
readonly attribute float balance;
readonly attribute currency balanceCurrency;
...

};
};

In this example, attribute balanceCurrency in interface account can
take any one of the values pound, dollar, yen, or franc to indicate
the currency associated with the attribute balance.

Struct
A struct data type allows you to package a set of named members
of various types, for example:

// IDL
module finance {

struct customerDetails {
string name;
short age;

};

interface bank {
customerDetails getCustomerDetails(

in string name);
...

};
};

In this example, the struct customerDetails has two members:
name and age. The operation getCustomerDetails() returns a struct
of type customerDetails that includes values for the customer
name and age.

Union
A union data type allows you to define a structure that can contain
only one of several alternative members at any given time. A
union saves memory space, because the amount of storage
required for a union is the amount necessary to store its largest
member.
All IDL unions are discriminated. This means that they associate a
label value with each member. The value of the label indicates
which member of the union currently stores a value.
 60 Orbix Programmer’s Guide Java Edition

For example, consider the following IDL union definition:
// IDL
struct DateStructure {

short Day;
short Month;
short Year;

};

union Date switch (short) {
case 1: string stringFormat;;
case 2: long digitalFormat;
default: DateStructure structFormat;

};

The union type Date is discriminated by a short value. For
example, if this short value is 1, the union member stringFormat
stores a date value as an IDL string. The default label associated
with the member structFormat indicates that if the short value is
not 1 or 2, the structFormat member stores a date value as an IDL
struct.
The type specified in parentheses after the switch keyword must
be an integer, char, boolean or enum type and the value of each
case label must be compatible with this type.

IDL Template Types
IDL provides two template types:

• string

• sequence

String
An IDL string represents a character string, where each character
can take any value of the char basic type.
If the maximum length of an IDL string is specified in the string
declaration, the string is bounded. Otherwise, the string is
unbounded.
The following example shows how to declare bounded and
unbounded strings:

// IDL
module finance {

interface bank {
// A bounded string with maximum length 10.
attribute string sortCode<10>;
// An unbounded string.
attribute string address;
...

};
};
Orbix Programmer’s Guide Java Edition 61

Sequence
In IDL, you can declare a sequence of any IDL data type or
user-defined data type. An IDL sequence is similar to a
one-dimensional array of elements.
An IDL sequence does not have a fixed length. If the sequence has
a fixed maximum length, the sequence is bounded. Otherwise, the
sequence is unbounded.
For example, the following code shows how to declare bounded
and unbounded sequences as members of an IDL struct:

// IDL
module finance {

interface account {
...

};

struct limitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<account, 50> accounts;

};

struct unlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<account> accounts;

};
};

A sequence must be named by an IDL typedef declaration
(described in “Defining Aliases and Constants” on page 65) before
it can be used as the type of an IDL attribute or operation
parameter. This is illustrated by the following code:

// IDL
module finance {

typedef sequence<string> customerSeq;

interface bank {
void getCustomerList(out customerSeq names);
...

};
};
 62 Orbix Programmer’s Guide Java Edition

Arrays
In IDL, you can declare an array of any IDL data type. IDL arrays
can be multidimensional and always have a fixed size. For
example, you can define an IDL struct with an array member as
follows:

// IDL
module finance {

interface account {
...

};

struct customerAccountInfo {
string name;
account accounts[3];

};

interface bank {
getCustomerAccountInfo (in string name,

out customerAccountInfo accounts);
...

};
};

In this example, struct customerAccountInfo provides access to an
array of account objects for a bank customer, where each
customer can have a maximum of three accounts.
As with sequences, an array must be named by an IDL typedef
declaration before it can be used as the type of an IDL attribute or
operation parameter. The following code illustrates this:

// IDL
module finance {

interface account {
...

};
typedef account accountArray[100];

interface bank {
readonly attribute accountArray accounts;
...

};
};

Note: Arrays are a less flexible data type than an IDL sequence, because
an array always has a fixed length. An IDL sequence always has a
variable length, although it may have an associated maximum
length value.
Orbix Programmer’s Guide Java Edition 63

Fixed Types
The fixed data type allows you to represent a number in two
parts: a digit and a scale. The digit represents the length of the
number, and the scale is a non-negative integer that represents
the position of the decimal point in the number, relative to the
rightmost digit.

module finance {
typedef fixed<10,4> ExchangeRate;

struct Rates {
ExchangeRate USRate;
ExchangeRate UKRate;
ExchangeRate IRRate;

};
};

In this case, the ExchangeRate type has a digit of size 10, and a
scale of 4. This means that it can represent numbers up to
(+/-)999999.9999.
The maximum value for the digits is 31, and scale cannot be
greater than digits. The maximum value that a fixed type can hold
is equal to the maximum value of a double.
Scale can also be a negative number. This means that the decimal
point is moved scale digits in a rightward direction, causing
trailing zeros to be added to the value of the fixed. For example,
fixed <3,-4> with a numeric value of 123 actually represents the
number 1230000. This provides a mechanism for storing numbers
with trailing zeros in an efficient manner.

Note: Fixed <3, -4> can also be represented as fixed <7, 0>.
Constant fixed types can also be declared in IDL. The digits and
scale are automatically calculated from the constant value. For
example:

module Circle {
const fixed pi = 3.142857;

};

This yields a fixed type with a digits value of 7, and a scale value
of 6.

IDL Pseudo-Object Types
CORBA defines a set of pseudo-object types that ORB
implementations use when mapping IDL to some programming
languages. These object types have interfaces defined in IDL, but
do not have to follow the normal IDL mapping for interfaces, and
are not generally available in your IDL specifications.
You can use only the following pseudo-object types as attribute or
operation parameter types in an IDL specification:

• NamedValue

• Principal

• TypeCode
 64 Orbix Programmer’s Guide Java Edition

To use any of these three types in an IDL specification, include the
file orb.idl in the IDL file as follows:

// IDL
#include <orb.idl>
...

This statement indicates to the IDL compiler that types NamedValue,
Principal, and TypeCode may be used. The file orb.idl does not
actually exist in your system. Do not name any of your IDL files
orb.idl.
For more information on these types, refer to “IDL to Java
Mapping”, and to the Orbix Programmer’s Reference Java
Edition.

Defining Aliases and Constants
IDL allows you to define aliases (new data type names) and
constants. This section describes how to use these IDL features.

Using Typedef to Create Aliases
The typedef keyword allows you define a more meaningful or
simple name for an IDL type. The following IDL provides a simple
example of using this keyword:

// IDL
module finance {

interface account {
...

};

typedef account standardAccount;
};

The identifier standardAccount can act as an alias for type account
in subsequent IDL definitions. CORBA does not specify whether
the identifiers account and standardAccount represent distinct IDL
data types in this example.

Constants
IDL allows you to specify constant data values using one of
several basic data types. Refer to the IDL Reference in the Orbix
Programmer’s Reference Java Edition indicates which data
types you can use to define constants.
To declare a constant, use the IDL keyword const, for example:

// IDL
module finance {

interface bank {
const long MaxAccounts = 10000;
const float factor = (10.0 - 6.5) * 3.91;
...

};
};

The value of an IDL constant cannot change. You can define a
constant at any level of scope in your IDL specification.
Orbix Programmer’s Guide Java Edition 65

 66 Orbix Programmer’s Guide Java Edition

IDL to Java Mapping
This chapter describes Orbix Java's mapping of IDL to Java, using
the Orbix Java IDL to Java compiler. Orbix Java's implementation
of the IDL to Java mapping conforms with version 1.1 of the
standard OMG IDL/Java Language Mapping specification. This
chapter explains the rules used to convert IDL definitions into Java
source code, as well as how to use the generated Java constructs.

(The IDL/Java Language Mapping specification is available from the
OMG web site at http://www.omg.org.)

An IDL definition is used to specify the interface for an object. This
interface must then be implemented using an appropriate
programming language. To allow implementation of interfaces in
Orbix Java, the IDL specified interfaces are mapped to Java, using
the Orbix Java IDL to Java compiler. This compilation produces a
set of classes that allow the client to invoke operations on a
remote object as if it were located on the same machine.
This chapter is designed to illustrate the fundamentals of the IDL
to Java mapping, and to serve as a reference for more detailed
technical information required when writing applications.

Overview of IDL to Java Mapping
The principal elements of the IDL to Java mapping are outlined as
follows:

Basic Types
Basic types in IDL are mapped to the most closely corresponding
Java type. All mapped basic types have holder classes that
support parameter passing modes. Refer to “Mapping for Basic
Data Types” on page 69.

Mapping for Modules
An IDL module is mapped to a Java package of the same name.
Scoped names are used for types defined in interfaces within a
module. Refer to “Mapping for Modules” on page 70 for details.

Mapping for Interfaces and Operation Parameters
IDL interfaces are mapped to Java interfaces and classes that
provide client-side and server-side support. Provision is made for
two approaches to interface implementation: the TIE and
Implbase approaches.
Attributes within IDL interfaces are mapped to a pair of
overloaded methods allowing the attribute value to be set and
retrieved.
Operations within IDL interfaces are mapped to Java methods of
the same name in the corresponding Java interface.
Helper classes are generated by the IDL compiler. These contain a
number of static methods for type manipulation. Refer to “Helper
Classes for Type Manipulation” on page 72.
 Orbix Programmer’s Guide Java Edition 67

http://www.omg.org
http://www.omg.org

Holder classes are generated by the IDL compiler for all
user-defined types to implement parameter-passing modes in
Java. Holder classes are needed because IDL inout and out
parameters do not map directly into the Java parameter- passing
mechanism. Holder classes for the basic types are available in the
org.omg.CORBA package. Refer to “Holder Classes and Parameter
Passing” on page 75.

Mapping for Constructed Types
Constructed types map to a Java final class, containing methods
and data members appropriate to the mapped type. For a full
description of mapping for enum, struct, and union types, refer to
“Mapping for Constructed Types” on page 88.

Mapping for Strings
IDL strings, both bounded and unbounded, map to the Java type
String. Orbix Java performs bounds checking for String parameter
values passed as bounded strings to IDL operations. Refer to
“Mapping for Strings” on page 92.

Mapping for Sequences and Arrays
IDL sequences, both bounded and unbounded, map to Java arrays
of the same name. Orbix Java performs bounds checking for
bounded sequences. Helper and holder classes are generated for
mapped IDL sequences. Refer to “Mapping for Sequences” on
page 93.
IDL arrays map directly to Java arrays of the same name. Orbix
Java performs the bounds checking, because Java arrays are not
bounded. Refer to “Mapping for Arrays” on page 95.

Mapping for Fixed Types
IDL fixed types map to the Java java.math.BigDecimal class. Refer
to “Mapping for Fixed Types” on page 95.

Mapping for Constants
Constants map to public static final fields in a corresponding
Java interface. If the constant is not defined in an interface, the
mapping first generates a public interface with the same name as
the constant. Refer to “Mapping for Constants” on page 96.

Mapping for Typedefs
Typedefs are mapped to the corresponding Java mapping for the
original IDL type. A helper class is generated for the declared
type. The IDL to Java mapping for constants and typedefs is
described in “Mapping for Typedefs” on page 97.

Mapping for Exceptions
IDL standard system exceptions are mapped to Java final classes
that extend org.omg.CORBA.SystemException and provide access to
IDL exception code. IDL user-defined exception types map to a
final class that derives from org.omg.CORBA.UserException.
User-defined exceptions have helper and holder classes
generated. Refer to “Mapping for Exception Types” on page 97.
 68 Orbix Programmer’s Guide Java Edition

Mapping for Basic Data Types
The IDL basic data types are mapped to corresponding Java types
as shown in Table 2.

You should note the following features of the IDL to Java mapping
for basic types:

• Holder Classes for Parameter Passing
All IDL basic types have holder classes available in the
org.omg.CORBA package to provide support for the out and
inout parameter-passing modes. For more details on holder
classes refer to “Holder Classes and Parameter Passing” on
page 75.

• IDL Long Maps to Java Int
The 32-bit IDL long is mapped to the 32-bit Java int.

• IDL Unsigned Types Map to Signed Java Types
Java does not support unsigned data types. All unsigned IDL
types are mapped to the corresponding signed Java types.
You should ensure that large unsigned IDL type values are
handled correctly as negative integers in Java.

• IDL Chars and Java Chars
IDL chars are based on the 8-bit character set for ISO 8859.1.
Java chars come from the 16-bit UNICODE character set.
Consequently, IDL chars only represent a small subset of Java

Table 2: Mapping for Basic Types

IDL JAVA Exceptions

short short

long int

unsigned short short

unsigned long int

long long long

unsigned long long long

float float

double double

char char CORBA::DATA_CONVERSION

wchar char CORBA::DATA_CONVERSION

string java.lang.String CORBA::MARSHAL
CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL
CORBA::DATA_CONVERSION

boolean boolean

octet byte

any org.omg.CORBA.Any
Orbix Programmer’s Guide Java Edition 69

chars. On marshalling, if a char has a value outside the range
defined by the character set, a CORBA::DATA_CONVERSION
exception is thrown. The 16-bit IDL wchar represents the full
range of Java chars, and maps to the Java primitive type char.

• IDL Strings
IDL string types map to the Java type String. On
marshalling, range checking for characters and bounds
checking of the string is performed. Character range violations
raise a CORBA::DATA_CONVERSION exception; bounds violations
raise a CORBA::MARSHAL exception. IDL wstring types, both
bounded and unbounded, also map to the Java type String.

• Booleans
The IDL boolean type constants TRUE and FALSE map to the
Java boolean type literals true and false.

• Type any
The mapping for type any is described in full in “Type any” on
page 229.

Mapping for Modules
An IDL module is mapped to a Java package of the same name. All
IDL type declarations within the module are mapped to a
corresponding Java class or interface declaration within the
generated package. IDL declarations not enclosed in any modules
are mapped into the Java global scope. The use of modules is
recommended.

Scoped Names
All types defined within an IDL module are mapped within a Java
package with the same name as that module. For example, if an
interface named bank is defined inside the module IDLDemo, then
the Java interface for bank is scoped as IDLDemo.bank.
Similarly, any type defined inside an interface is scoped first by
the module name, if defined, and then by a package named
<type>Package, where <type> is the interface name. Therefore, if
bank defines a structure called Details, the corresponding class is
scoped as IDLDemo.bankPackage.Details.
IDL types which are not defined inside either a module or an
interface are not included in a Java package. This creates the
potential for naming collisions with other globally defined Java
types. To avoid the generation of such naming collisions, always
define your IDL within modules. Alternatively, use the -jP
compiler option, which specifies a package prefix that is added to
generated types. This makes it possible to use globally defined IDL
types within a package scope.
Refer to the Orbix Administrator’s Guide Java Edition for
more details on the use of compiler options.
 70 Orbix Programmer’s Guide Java Edition

The CORBA Module
The objects and data types pre-defined in CORBA are logically
defined within an IDL module called CORBA. IDL maps the CORBA
module to a Java package called org.omg.CORBA. In line with this
mapping, the OMG keyword Object maps to org.omg.CORBA.Object.
In Orbix Java, the org.omg.CORBA set of classes represents the OMG
standard abstract runtime. The actual implementation of the Orbix
Java ORB resides in the IE.Iona.OrbixWeb package.

Mapping for Interfaces
An IDL interface maps to a public Java interface of the same
name, and a number of other generated Java constructs. This
discussion focuses on the client-side and server-side mapping,
and on helper and holder classes. These classes have roles on
both the client side and the server side.
IDL interface definitions are compiled by the IDL to Java compiler.
The following Java constructs are generated, where <type>
represents a user-defined interface name:

Note: The classes _tie_<type>.java and _<type>Operations.java are
specific to Orbix Java. To generate files defined by CORBA only,
use the -jOMG IDL compiler switch.
This section uses the IDL interface account to show how an IDL
interface is mapped to Java:
// IDL
module bank_demo{
interface account {

readonly attribute float balance;

void makeLodgement(in float sum);
void makeWithdrawal(in float sum);

};
};

Generated Files Description Side
<type>.java Java Reference interfaceclient
_<type>Stub.java Java Stub class client
_<type>Skeleton.java Java Skeleton class server
_<type>ImplBase.java ImplBase class server
tie<type>.java TIE class server
_<type>Operations.java Java interface

(used with TIE class)
server

<type>Helper.java Java Helper class client/server
<type>Holder.java Java Holder class client/server
<type>Package Java package. client/server
Orbix Programmer’s Guide Java Edition 71

Client Mapping
The Orbix Java client provides proxy functionality for the IDL
interface. The IDL compiler generates the following client-side
Java constructs for each IDL interface:

• Java Reference interface
• Java Stub class
• Java Helper class
• Java Holder class

Java Reference Interface
A Java Reference Interface type has the naming format
<type>.java. It defines the client view of the IDL interface, listing
the methods that a client can call on objects that implement the
IDL type. The interface extends the base org.omg.CORBA.Object
interface.
The following Java Reference interface for the IDL interface
account illustrates the Java mapping for IDL attributes and
operations:

// Java generated by the Orbix Java IDL compiler

package bank_demo;
public interface account

extends org.omg.CORBA.Object {
public float balance();
public void makeLodgement(float sum);
public void makeWithdrawal(float sum);

}

The read-only attribute balance maps to a single Java method,
because there is no requirement for setting its value.
The IDL operations makeLodgement and makeWithdrawal map to
methods of the same name in the corresponding Java interface.

Java Stub Class
The Java Stub class generated by the IDL compiler implements
the Java interface and provides the functionality to allow client
invocations to be forwarded to the server.This class has a naming
format of _<type>Stub.java. This generated class is used internally
by Orbix Java and you do not need to understand how it works.
Java Helper classes and Java Holder classes are discussed in the
following two sections.

Helper Classes for Type Manipulation
A Java Helper class is also generated by the Java mapping. Helper
classes contain methods that allow IDL types to be manipulated in
various ways. The IDL-to-Java compiler generates helper classes
for all IDL user-defined types. The naming format for helper
classes is <type>Helper, where <type> is the name of an IDL
user-defined type.
Helper classes include methods that support insertion and
extraction of the account object into and from Java Any types.
Interface Helper classes also have static class methods for
 72 Orbix Programmer’s Guide Java Edition

narrow() and bind(). The narrow() method takes an
org.omg.CORBA.Object type as an argument, and returns an object
reference of the same type as the class. The bind() method may
be used to create a proxy for an object that implements the IDL
interface. A proxy object is a client-side representative for a
remote object. Operations invoked on the proxy result in requests
being sent to the target object.
(The bind() method is a feature specific to Orbix Java. If you wish
to use only those features defined in the CORBA specification, you
should compile your IDL using the -jOMG switch.)
The following code illustrates the Java Helper class generated from
the IDL account interface:
// in file accountHelper.java
// Java generated by the Orbix Java IDL compiler
//
import org.omg.CORBA.Any;
import org.omg.CORBA.Object;
import org.omg.CORBA.TypeCode;
import org.omg.CORBA.portable.OutputStream;
import org.omg.CORBA.portable.InputStream;

public class accountHelper {

1 public static void insert (Any any, account value) {
...

 }
public static account extract (org.omg.CORAny any) {

...
}

2 public static TypeCode type () {
...

}
3 public static String id () {

...
}

4 public static account read (InputStream _stream) {
...

}
public static void write (OutputStream _stream, account

value){
...

 }
 public static final account bind(String markerServer) {
 ...

}
public static final account bind

(String markerServer, String host){
...

 }

public static final account bind
(String markerServer, org.omg.CORBA.ORB orb){
...

 }
public static final account bind

(String markerServer, String host, org.omg.CORBA.ORB
orb){

...
Orbix Programmer’s Guide Java Edition 73

 }
5 public static account narrow (Object _obj) {

...
}

}

These methods provided by helper classes are described as
follows:
1. The insert() and extract() methods allow for IDL interface

types to be passed as a parameter of IDL type any. Refer to
“Type any” on page 229 for more details.

2. The type() method returns a TypeCode for a specified interface.
TypeCodes allow runtime querying of type information for an
Any type. They can also be used for interrogating the Interface
Repository.

3. The id() method is used to retrieve the Repository ID for the
object.

4. The read() and write() methods allow the type to be written
to and from a stream.

5. The bind() method provides an alternative to using the
Naming Service, and is a feature specific to Orbix Java.
The Naming Service is the preferred method for locating
objects in servers.

Using the Bind Method
A client wishing to use the IDL interface should bind an object
of the Java class type to the target implementation object in
the server, assigning the result to the Java Reference
interface type.
For example, a client could bind to an account implementation
object by calling the bind() static method on the Java
accountHelper class as follows:
// Java
account aRef;
aRef = accountHelper.bind
(“accMarker:serverName”, hostname);

This returns a proxy object that can be accessed using the
methods defined in the account interface.

6. The narrow() method allows an interface to be safely cast to a
derived interface. For example, it allows an org.omg.CORBA.Object
to be narrowed to the object reference of a more specific type. For
IDL-defined objects, you must use narrow() rather than the
normal Java cast operation. Failure of the method raises a
CORBA::BAD_PARAM exception.
Refer to “Mapping for Derived Interfaces” on page 84 for
further information on narrowing object references.
 74 Orbix Programmer’s Guide Java Edition

Holder Classes and Parameter Passing
IDL in parameters always map directly to the corresponding Java
type. This mapping is possible because in parameters are always
passed by value, and Java supports by-value passing of all types.
Similarly, IDL return values always map directly to the
corresponding Java type.
IDL inout and out parameters, however, must be passed by
reference, because they may be modified during an operation call,
and do not map directly into the Java parameter passing
mechanism. In the IDL to Java mapping, IDL inout and out
parameters are mapped to Java Holder classes. Holder classes
simulate passing by reference. The client supplies an instance of
the appropriate Java holder class passed by value, for each IDL
out or inout parameter. The contents of the holder instance are
modified by the call, and the client uses the contents when the call
returns.
There are two categories of holder classes:

• Holders for basic types.
• Holders for user-defined types.

Holders for Basic Types
Holder classes for basic Java types and the Java string type, are
available in the package org.omg.CORBA.The name format used is
<type>Holder, where <type> is the name of a basic Java type, with
initial capital letter; for example, IntHolder.
An example of the implementation for IntHolder follows:
// Java
package org.omg.CORBA;
public class IntHolder {

1 public int value;
public IntHolder () {}

2 public IntHolder (int value) {
this.value = value;

}
}

1. The holder class stores an int value as a member variable.
2. The value can be initialized by the constructor and accessed

directly. The holder class simulates passing by reference to
method invocations and so facilitates the modification of an
int, which would not be possible if the int were passed
directly.
Orbix Programmer’s Guide Java Edition 75

Holders for User-Defined Types
Holder classes for user-defined types, including IDL interface
types, are generated by the Java mapping. The name format is
<type>Holder.For example, given an IDL interface account, the
following Holder class is generated:
// in file accountHolder.java
// Java generated by the Orbix Java IDL compiler
//
public final class accountHolder {

1 public account value;
public accountHolder() {};
public accountHolder(account value) {

 this.value = value;
}
...

}
1. The holder class stores an account value as a member

variable, which can be initialized by the constructor and
accessed directly.

Invoking an Operation using Holder Classes
When using holder classes to pass inout and out parameters, the
following rules apply:

• The client programmer must supply an instance of the
appropriate holder Java class that is passed, by value, for
each IDL out or inout parameter.
The contents of the holder instance are modified by the call,
and the client then uses the contents after the call returns.

• For the inout parameter, the client must initialize the holder
with a valid value. The operation can examine the value
supplied by the client and may change the value if it wishes.
The final value at the end of the operation (changed or not) is
returned to the client.

• For the out parameter, the client does not need to initialize
the holder with a value, because any value in the holder is
ignored. The operation should not use the initial value in the
holder and must supply a valid value to be returned to the
client.

To illustrate the use of holder types, consider the following IDL
definition:
// IDL

void newAccount
(in string name, out account acc, out string accID)

The IDL compiler maps this operation to a method of Java
interface bank as follows:
// In package bank_demo.bank,

public void newAccount(String name, bank_demo.accountHolder acc,
org.omg.CORBA.StringHolder accID);

This method returns an object reference to the interface account
and a string value of a variable accID, which is an account number
automatically generated by the server object. Holder classes are
generated for the out return values to allow the server to pass
back new values to the client.
 76 Orbix Programmer’s Guide Java Edition

The holder class accountHolder stores a value member variable of
type Account, which may be modified during the operation call.
// Java generated by the Orbix Java IDL compiler
// accountHolder.java
package bank_demo
public final class accountHolder {

1 public bank_demo.account value;
public accountHolder() {}

2 public accountHolder(bank_demo.account value) {
...

}

}

1. The value variable is of type account.
2. value can be initialized by a constructor and accessed directly.

The holder class simulates passing by reference to method
calls and so allows value to be changed. This would not be
possible if value was passed directly.

A client application can be coded as follows:
// Java
// In file javaclient1.java.
import org.omg.CORBA.SystemException;

public class javaclient1{
public static void main (String args[]) {

bank bRef = null;
account aRef = null;
accountHolder aHolder = new accountHolder ();
float f = (float) 0.0;

try {
// Bind to any bank object
// in BankSrv server.
bRef = bankHelper.bind

("BankMarker:BankSrv");

// Obtain a new bank account.
bRef.newAccount ("Joe", aHolder);

}
catch (SystemException se) {

System.out.println (
"Unexpected exception on bind");

System.out.println (se.toString ());
System.exit(1);

}

// Retrieve value from Holder object.
aRef = aHolder.value;

try {
// Invoke operations on account.
aRef.makeLodgement ((float)56.90);
f = aRef.balance();

 System.out.println ("Current balance is + f);
}
catch (SystemException se) {

System.out.println (
Orbix Programmer’s Guide Java Edition 77

"Unexpected exception"
+ " on makeLodgement or balance");

System.out.println (se.toString ());
System.exit(1);

}
}

In the server, the implementation of method newAccount() receives
the Holder object for type account and may manipulate the value
field as required. For example, in this case the newAccount()
method can instantiate a new account implementation object as
follows:

// Java
// In class bankImplementation.
public void newAccount

(String name,bank_demo.accountHolder acc) {
accountImplementation accImpl =

new accountImplementation (0, name);

acc.value = new _tie_account
(accImpl, “Marker”);

...
}

Note: If the account parameter is labelled inout in the IDL definition, the
value member of the Holder class must be instantiated before
calling the newAccount() operation.

Server Implementation Mapping
The Java mapping generates four classes to support server
implementation in Orbix Java. The following files are generated:

• A Java Skeleton class, with the name format
_<type>Skeleton.java, used internally by Orbix Java to
dispatch incoming server requests to implementation objects.
You do not need to know the details of this class.

• An abstract Java ImplBase class, with the name format
_<type>ImplBase.java, that allows server-side developers to
implement interfaces using the ImplBase approach.

• A Java TIE class, with the name format _tie_<type>.java, that
allows server-side developers to implement interfaces using
delegation. (This is the TIE approach, which is specific to
Orbix Java. If you wish to use only those features defined in
the CORBA specification, you should compile the IDL using the
-jOMG switch).

• A Java Operations interface, with the name format
_<type>Operations, that is used in the TIE approach to map the
attributes and operations of the IDL definition to Java
methods. This class is specific to Orbix Java, and is used to
support implementation using the TIE approach.
 78 Orbix Programmer’s Guide Java Edition

Approaches to Interface Implementation
Orbix Java supports two approaches to the implementation of IDL
interfaces in Java applications:

• The ImplBase approach.
• The TIE approach.
This section discusses the Java types generated to enable each
implementation method.
Both approaches to interface implementation share the common
requirement that you must create a Java implementation class.
This class must fully implement methods corresponding to the
attributes and operations of the IDL interface.

The ImplBase Approach
To support the ImplBase approach, the IDL compiler generates an
abstract Java class from each IDL interface definition. This
abstract class is named by adding ImplBase to the IDL interface
name, prefixed by an underscore. For example, the compiler
generates class _accountImplBase from the definition of interface
account.

To implement an IDL interface using the ImplBase approach, you
must create a Java class that extends the corresponding ImplBase
class and implements the abstract methods.
For example, given the IDL definition for interface account, the
compiler generates the abstract class _accountImplBase as follows:

// Java generated by the Orbix Java IDL compiler
// _accountImplBase.java
//
import IE.Iona.OrbixWeb.Features.LoaderClass;
public abstract class _accountImplBase

extends _accountSkeleton implements account {

public _accountImplBase() {
...

}
public _accountImplBase(String marker) {

...
}
public _accountImplBase (LoaderClass loader){

...
}
public _accountImplBase(String marker,

LoaderClass loader) {
...

}
}

In this code example, imports such as the marker and loader
constructors are specific to Orbix Java. To generate code that uses
only those features defined in the CORBA specification, compile
the IDL using the -jOMG switch.
Orbix Programmer’s Guide Java Edition 79

A sample class, that implements the IDL interface account could
contain code similar to the following:

// Java Implementation Class

class accountImplementation
extends _accountImplBase {

public accountImplementation(){
...

}
public float balance() {

...
 }

public String get_name()
...

}
public void makeLodgement(float sum){

...
}

public void makeWithdrawal(float sum){
...

 }
...

}

Once the IDL interface has been implemented using the ImplBase
approach, the server application should simply instantiate one or
more objects of the implementation class. These objects can then
handle client requests through the IDL interface in question.

The TIE Approach
The IDL compiler generates a Java interface that defines the
minimum set of methods that you must supply in order to
implement an IDL interface using the TIE approach. The TIE
approach is specific to Orbix Java. To use only those features
defined in the CORBA specification, compile your IDL with the
-jOMG switch.
The name of this Java interface has the following format:

_<type>Operations

For example, given the IDL definition of type account, the IDL
compiler generates the Java interface _accountOperations as
follows:

// Java generated by the Orbix Java IDL compiler

public interface _accountOperations {
public float balance();
public void makeLodgement(float sum);
public void makeWithdrawal(float sum)

}

To support the TIE approach to implementation, the IDL compiler
generates a non-abstract Java class from each IDL interface
definition. This class is named by appending the IDL interface
name to the string _tie_.
 80 Orbix Programmer’s Guide Java Edition

For example, the compiler generates class _tie_account from the
definition of interface account:
// Java generated by the Orbix Java IDL compiler
// in file _tie_account.java
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb.Features.LoaderClass;

public class _tie_account extends _accountSkeleton
 implements account {

public _tie_account(_accountOperations impl) {
...

}
public _tie_account

(_accountOperations impl, String marker) {
...

}
public _tie_account

(_accountOperations impl, LoaderClass loader) {
...

}
public _tie_account

(_accountOperations impl, String marker,
LoaderClass loader) {

...
}
public float balance(){

...
}

public String get_name()
...
}
public void makeLodgement(float sum) {

...
}
public void makeWithdrawal(float sum) {

...
}
public java.lang.Object _deref() {

...
}

...
}

}

When implementing an IDL interface using the TIE approach, the
Java implementation class must directly implement the Operations
interface. Unlike the ImplBase approach, the implementation class
is not required to inherit from any other Java class. The TIE
approach is therefore the recommended approach for Java
programming, because of Java’s restriction to single inheritance.
Refer to “Using and Implementing IDL Interfaces” on page 103 for
a detailed discussion of the TIE and ImplBase approaches.
Orbix Programmer’s Guide Java Edition 81

The class accountImplementation could be outlined using the TIE
approach as follows:
// Java generated by the Orbix Java IDL compiler
// in file accountImplementation.java
class accountImplementation implements _accountOperations {

public accountImplementation() {}
public float balance() {

...
}

public float get_name() {
...

}

public void makeLodgement(float sum) {
...

 }
public void makeWithdrawal(float sum) {

...
}

}

When you have created an implementation class that implements
the required Operations interface, the server application should
instantiate one or more objects of this type. For each
implementation object, the server should also instantiate an
object of the corresponding TIE class, passing the implementation
object as a parameter to the TIE constructor, as in the following
example:

accountImpl = new accountImplementation(“Marker”);
account x = new _tie_account

 (accountImpl, “Marker”);

Each TIE object stores a reference to a single implementation
object. Client operation invocations through the IDL interface are
routed to the appropriate TIE object, which then delegates the call
to the appropriate method in its implementation object.

Object References
When an interface type is used in IDL, this denotes an object
reference. For example, consider the IDL operation newAccount()
defined as follows:

// IDL
interface account;
interface bank {

account newAccount(in string name);
};

The return type of newAccount() is an object reference. An object
reference maps to a Java interface of the same name. This
interface allows IDL operations to be invoked on the object
reference with normal Java method invocation syntax.
 82 Orbix Programmer’s Guide Java Edition

For example, the newAccount() operation could be invoked as
follows:

// Java
...
bank b;
account a;
...
b = bankHelper.bind
(“BankMarker:bankServer", hostname);
a = b.newAccount ("Chris");
a.makeLodgement ((float) 10.0);
...

The server implementation of operation newAccount() creates an
account implementation object, stores a reference to this object,
and returns the object reference to the client. For example, using
the ImplBase approach and an implementation class named
accountImplementation, you could do the following:

class bankImplementation
extends _bankImplBase {

public account m_acc;

public bankImplementation () {
m_acc=null;

}
public account newAccount(String name) {

account a = null;
try {

a = new accountImplementation(0,name);
}
...
m_acc = a;
return a;

}
}

Similarly, you could use the TIE approach as follows:
class bankImplementation

implements _bankOperations {

public account m_acc;
public bankImplementation () {

m_acc=null;
}
public account newAccount(String name) {

account a = null;
try {

a = new _tie_account(
new accountImplementation
(0,name), “Marker”);

}
...
m_acc = a;
return a;

}
}

Orbix Programmer’s Guide Java Edition 83

If the operation newAccount() returned the account object reference
as an inout or out parameter value, you must pass the generated
class accountHolder to the newAccount() Java method.
accountHolder is a class that can contain an account object
reference value.

Mapping for Derived Interfaces
This section describes the mapping for interfaces that inherit from
other interfaces. Additional details of this mapping are provided in
“Using Inheritance of IDL Interfaces” on page 151.
IDL interfaces support both single and multiple inheritance. On the
client side, the Orbix Java IDL compiler maps IDL interfaces to
Java interfaces, which also support single and multiple
inheritance, and generates Java classes that implement proxy
functionality for these interfaces. Inherited interfaces in IDL are
mapped to extended interfaces in Java; the inheritance hierarchy
of the Java interfaces matches that of the original IDL interfaces.
Consider the following example:

// IDL
interface account {

readonly attribute float balance;
attribute String name;

void makeLodgement(in float sum);
void makeWithdrawal(in float sum);

};

interface checkingAccount : account {
void overdraftLimit(in float limit);

};

The corresponding Java interface for type checkingAccount is:
// Java generated by the Orbix Java IDL compiler
//
public interface checkingAccount extends account {

public void setOverdraftLimit(float limit) ;
}

The corresponding Java stub class implements all methods for
both account and checkingAccount. The generated class is as
follows:

// Java generated by the Orbix Java IDL compiler

import org.omg.CORBA.portable.ObjectImpl;

public class _checkingAccountStub
extends ObjectImpl implements checkingAccount {

public _checkingAccountStub () {}

public void overdraftLimit(float limit){
...

}
public float balance() {

...
}
public float get_name() {

...
 84 Orbix Programmer’s Guide Java Edition

}

public void makeLodgement(float sum) {
...

}
public void makeWithdrawal(float sum) {

...
}
public String[] _ids() {

...
}

}

As expected, Java code that you write that uses the
checkingAccount interface can call the inherited makeLodgement()
method:

// Java
checkingAccount checkingAc;

// Code for binding checkingAc {
...

checkingAc.makeLodgement((float)90.97);
...

}

Assignments from a derived to a base class object reference are
allowed, for example:

// Java
account ac = checkingAc;

Normal or cast assignments in the opposite direction—from a base
class object reference to a derived class object reference—are not
generally allowed. Use the narrow() method to bypass this
restriction where it is safe to do so, as described in “Narrowing
Object References” on page 87.
On the server side, the IDL compiler generates a Java Operations
interface for each IDL interface. The generated Java interface
defines the minimum set of implementation methods required for
the IDL interface when using the TIE approach to implementation.
The inheritance hierarchy of generated Operations interfaces
matches that of the original IDL interfaces.
To implement an IDL interface that derives from another, define
an implementation class that extends the ImplBase class for the
required interface and implements all the methods defined in the
ImplBase class.
Orbix Programmer’s Guide Java Edition 85

For example, given the IDL definition of account and
checkingAccount, a checkingAccount implementation class appears
as follows:

// Java
// In file checkingAccountImplementation.java.

...
import org.omg.CORBA.FloatHolder;

public class checkingAccountImplementation
extends _checkingAccountImplBase {

public checkingAccountImplementation() {
...

}
public float balance() {

...
}
public float get_name() {

...
}
public void makeLodgement(float sum) {

...
}
public void makeWithdrawal(float sum) {

...
}

public void overdraftLimit(float limit) {
...

}
}

Using the TIE approach, the implementation class should
implement the generated Operations interface for the relevant IDL
type. The implementation class must implement each method
defined in the Operations interface and all interfaces from which it
inherits. However, you can achieve this using an inheritance
hierarchy of implementation classes, because the TIE approach,
unlike the ImplBase approach, imposes no implicit inheritance
requirements on such classes.
For example, if the IDL type account is implemented by class
accountImplementation, using the TIE approach, you can implement
IDL interface checkingAccount with type
checkingAccountImplementation as follows:

// Java
// In file checkingAccountImplementation.java
...
public class checkingAccountImplementation

extends accountImplementation,
implements _checkingAccountOperations {

public checkingAccountImplementation() {}

public void overdraftLimit (float limit) {
...

}
}
 86 Orbix Programmer’s Guide Java Edition

Narrowing Object References
In the checkingAccount example, if you know that a reference of
type account actually references an object that implements
interface checkingAccount, you can narrow the object reference to
a checkingAccount reference.
To narrow an object reference, use the narrow() method, defined
as a static method in each generated Interface helper class.

// Java Generated by Orbix Java IDL Compiler

import org.omg.CORBA.Object;

public class checkingAccountHelper {
...
public static final checkingAccount narrow(Object

src) {
...

}
...

}

You can call the narrowed object reference as follows:
// Java
account a;
...
a = getCheckingAccountObject();
...
checkingAccount c;

// Narrow a to be a checkingAccount.
c = checkingAccountHelper.narrow(a);

If the parameter passed to THelper.narrow() is not of class T or
one of its derived classes, T.narrow() raises the CORBA.BAD_PARAM
exception.
Orbix Programmer’s Guide Java Edition 87

Mapping for Constructed Types
The following sections describe the IDL to Java mapping for the
enum, struct and union constructed types.

Enums
An enum declaration creates a correspondence between a set of
integer values and a set of named values.
The following IDL definition illustrates an enum construct:

//IDL
enum Fruit { apple, orange};

An enum is mapped to Java according to the rules described for the
mapping of the enum Fruit in the following example.
// Java generated by the Orbix Java IDL compiler

1 public final class Fruit {
2 public static final int _apple = 0;
3 public static final Fruit apple = new Fruit(_apple);

public static final int _orange = 1;
public static final Fruit orange = new Fruit(_orange);

4 public int value () {
 ...

}
5 public static Fruit from_int (int value) {

 ...
}

}

1. The IDL enum called Fruit maps to a Java final class of the
same name.

2. The enum values map to a static final member variable,
prefixed by an underscore (_), for example, _apple = 0; these
underscored values can be used in switch statements and also
to represent enums as integers.

3. Each value in the enum object also maps to a public static
final member variable with the same name as the value.

4. The value() method retrieves the integer value associated
with each value of the enum. The integer values are assigned
sequentially, beginning with 0.

5. The from_int() method returns the value enum object from a
specified integer value.

A holder class is also generated for enums, in this case FruitHolder.
Because only a single instance of an enum value object exists, the
default java.lang.Object implementation of equals() and hash()
can be used on objects associated with the enum.
 88 Orbix Programmer’s Guide Java Edition

Structs
A struct type allows you to form an aggregate structure of
variables, which may be of the same or different types.
Consider the struct in the following IDL definition:

// IDL
interface Clock {

struct Time {
short hour;
short minute;
short second;

};

void updateTime (in Time current);
void currentTime (out Time current);

};

The rules by which an IDL struct is mapped to Java are illustrated
in the Java mapping for the Time struct.
The IDL to Java compiler maps the Time structure as follows:
// Java generated by the Orbix Java IDL compiler
// Time.java
package ClockPackage;

1 public final class Time {
2 public short hour;

public short minute;
public short second;

3 public Time () {}
4 public Time (short hour, short minute,

 short second) {
...

}
}

1. The IDL struct called Time maps to a final Java class of the
same name.

2. The Time class contains one instance variable for each field
(hour,minute,second) in the structure.

3. There are two constructors (in this case, Time) for the
structure class: the first, Time(), takes no arguments, and
initializes all fields in the structure to null or zero.

4. The second constructor takes the fields in the structure as
arguments Time(short hour, short minute, short second), and
initializes the structure.

The interface Clock maps to the Java Reference interface Clock as
follows:

// Java generated by the Orbix Java IDL compiler
// Clock.java
import org.omg.CORBA.Object;
import ClockPackage.Time;

1 import ClockPackage.TimeHolder;
2 public interface Clock extends Object {
3 public void updateTime(Time current);
4 public void currentTime(TimeHolder current) ;

}

Orbix Programmer’s Guide Java Edition 89

1. Holder classes are generated for all struct types, with the
name format <type>Holder, where <type> is the name of the
struct, in this case Time.

2. The operations map to public Java methods of the same
name, the in parameter mapping directly to the
corresponding Java type Time.

3. The out parameter is mapped to a TimeHolder type to allow the
values to be passed correctly.

Unions
IDL supports discriminated unions. A discriminated union consists
of a discriminator and a value: the discriminator indicates what
type the value holds.

Note: Union types do not exist in Java, you should therefore only use the
union mapping to support legacy IDL that already makes use of
unions.
Consider the following example:

//IDL for account
//example of a discriminated Union
interface account {};
interface currentAccount : account {};
interface depositAccount : account {};

1 union accountType switch (short)
{

case 1: currentAccount curAcc;
case 2: depositAccount depacc;
default: account genAcc;

};

1. Here, in the union accountType, the switch discriminator
indicates which case label value is being held.

The IDL discriminated union defined above maps to Java as
follows:
// Java generated by the Orbix Java IDL compiler

public final class accountType {
1 public accountType() {}
2 public short discriminator() {

 ...
 }

3 public currentAccount curAcc() {
 ...
 }

4 public void curAcc(currentAccount value) {
 ...
 }

5 public void curAcc (currentAccount value,
short discriminator){

 ...
 }
 public depositAccount depacc() {
 ...
 }
 90 Orbix Programmer’s Guide Java Edition

 public void depacc(depositAccount value) {
 ...
 }
 public void depacc (depositAccount value,

short discriminator) {
 ...
 }

 public account genAcc() {
 ...
 }
 public void genAcc(account value) {
 ...
 }
 public void genAcc(account value, short discriminator) {
 ...
 }
}

1. The union accountType maps to a public final class of the same
name, with a corresponding default constructor,
accountType().

2. The value returned by the discriminator() method indicates
which variable in the union currently stores a value. You
should check the value returned by this method to determine
which accessor method should be used.

3. For each variable in the union, there is a corresponding
accessor method of the same name (curAcc(),depAcc and the
default genAcc) that retrieves the value held in the variable.
The accessor method used in the application code is
determined by the value returned by the discriminator()
method.

4. The modifier methods for each variable in the union are used
to automatically set the value for the discriminator() method.

5. An additional modifier method is available to set the value of
variables for use in situations where more than one case label
is used. Only one case label is used in this example, so this
method is not relevant here.

In rare cases, where a variable has more than one corresponding
case label, the simple modifier method for that variable sets the
discriminator to the value of the first case label. The secondary
modifier method allows an explicit discriminator value to be
passed, which may be necessary if a variable has more than one
case label. When the value of a variable corresponds to the
default case label, the modifier method sets the discriminant to a
unique value, distinct from other case label values.

Note: If you pass a bad discriminator value, the secondary modifier
throws an exception.
Orbix Programmer’s Guide Java Edition 91

The following code shows how to assign a depositAccount:
// Java

1 depositAccount dep;
2 accountType accType = new accountType();

...

3 accType.depAcc (dep, (short)2);

// Java
currentAccount cur;
depositAccount dep;
account acc;
...

4 switch (accType.discriminator ()) {
case 1: cur = accType.curAcc ();
break;
case 2: dep = accType.depAcc ();
break;
default: acc = accType.genAcc ();

}

1. Create a new depositAccount object.
2. Create an instance of the union type.
3. Pass the value for depositAccount using the modifier method.
4. Invoke the discriminator() method to retrieve the active

value in the union.

Mapping for Strings
IDL bounded and unbounded strings map to the Java type
java.lang.String. As a Java String is fundamentally unbounded,
Orbix Java checks the range of String parameter values passed as
bounded strings to IDL operations. If the actual string length is
greater than the bound value, the org.omg.CORBA.MARSHAL exception
is thrown.
The IDL type wstring, which can represent the full range of
UNICODE characters, also maps to the Java type String.Range
violations for the IDL string types raise CORBA::DATA_CONVERSION
and CORBA::MARSHAL exceptions.
IDL string parameters defined as inout or out map to Java method
parameters of type org.omg.CORBA.StringHolder. This Holder class
contains a Java String value, which you can update during the
operation invocation.
Consider the following IDL definition:

// IDL
interface Customer {

void setCustomerName (in string name);
void getCustomerName (out string name);

};
 92 Orbix Programmer’s Guide Java Edition

This maps to the following Java Reference interface:
// Java generated by the Orbix Java IDL compiler
import org.omg.CORBA.Object;
import org.omg.CORBA.StringHolder;

public interface Customer extends Object {
1 public void setCustomerName(String name) ;
2 public void getCustomerName(StringHolder name) ;

};

1. IDL operations are mapped to Java methods of the same
name.

2. IDL out parameters are mapped to StringHolder types to allow
parameter passing.

The StringHolder class available in the org.omg.CORBA package is as
follows:

// Java
package org.omg.CORBA;

public class StringHolder {
public String value;

public StringHolder () {}

public StringHolder (String value) {
this.value = value;

}
}

The following code demonstrates how a client application could
invoke the IDL operations defined in the Customer interface:

// Java
Customer cRef;
String inName = "Chris";
String outName;
StringHolder outNameHolder = new StringHolder();

// Here, cRef is set to reference a
// Customer (code omitted).

cRef.setCustomerName (inName);
cRef.getCustomerName (outNameHolder);
outName = outNameHolder.value;

The server programmer receives the StringHolder variable as a
parameter to the implementation method and simply assigns the
required string to the value field.

Mapping for Sequences
IDL bounded and unbounded sequences are mapped to Java
arrays of the same name. In the case of bounded sequences,
Orbix Java performs bounds checking on the mapped array during
any operation invocations. This check ensures that the array
length is less than the maximum length specified for the bounded
sequence. A CORBA::MARSHAL exception is raised when the length of
a bounded sequence is greater than the maximum length specified
in the IDL definition.
Orbix Programmer’s Guide Java Edition 93

Both holder and helper classes are generated for each of these
sequence types.

The following IDL definition provides an example of declaring IDL
sequences:

// IDL
module finance {

interface account {
attribute string Name;
attribute float AccNumber;

};

struct limitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<account,50> accounts;

};

struct unlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<account> accounts;

};
};

Given the preceding example, the IDL compiler produces the
following generated classes; one for the bounded sequence, and
another for the unbounded sequence:
// Java generated by the Orbix Java IDL compiler
// Bounded sequence
package Finance;

1 public final class limitedAccounts {
2 public String bankSortCode;
3 public account[] accounts;
4 public limitedAccounts() {}
5 public limitedAccounts (String bankSortCode,

account[] accounts) {
...

 }
...

}

1. An IDL struct maps to a Java public final class of the same
name (in this case, limitedAccounts).

2. The string type is mapped to a Java member variable of type
String.

3. The bounded sequence account is mapped to a Java array of
the same name.

4. The struct has two constructors; the first of which is a null
constructor.

5. The second constructor initializes the public member
variables, bankSortCode and the account array.

Unbounded sequences are mapped in the same way as bounded
sequences. However, bounds checking is not performed on the
mapped array during operation invocations.
 94 Orbix Programmer’s Guide Java Edition

Mapping for Arrays
IDL arrays map directly to Java arrays. However, Java arrays are
not bounded; therefore, Orbix Java explicitly checks the bound of
an array when an operation is called with the array as an
argument.
Arrays are fixed-length objects, so a CORBA::MARSHAL exception is
thrown if the length of an array is not equal to the length specified
in the IDL file. The length of the array can be made available in
Java by bounding the array with an IDL constant, which is mapped
according to the rules specified for constants.
A holder class for the array is also generated, with the format
<array name>Holder.

As a simple example, consider the following IDL definition for an
array:

// IDL
typedef short BankCode[3];

interface Branch {
attribute string location;
attribute BankCode code;

};

This maps to:
// Java generated by the Orbix Java IDL compiler
// in file Branch.java
import org.omg.CORBA.Object;

public interface Branch extends Object {
 public String location();
 public void location(String value);
 public short[] code();
 public void code(short[] value);
}

Mapping for Fixed Types
The IDL fixed type maps to the Java class java.math.BigDecimal.
The way IDL fixed types map to Java depends on whether or not
they are declared within an IDL interface.

Fixed Types Declared outside an IDL Interface
The following sample IDL shows a fixed type declared outside an
IDL interface:

// IDL
const fixed myFixed = 9999.99;
typedef fixed<6, 2> fixedIn;

The const myFixed is mapped to a single Java file called
myFixed.java. This creates a java.math.BigDecimal called value,
which is initialized to 9999.99
The typedef fixedIn is mapped to a <name>Helper file and a
<name>Holder file, as is normal for other typedef types.
Orbix Programmer’s Guide Java Edition 95

Fixed Types Declared within an IDL Interface
The following sample IDL shows a fixed type declared within an
IDL interface:

// IDL
interface exchangeRate{
 const fixed myFixed = 9999.99;
 typedef fixed<6, 2> fixedIn;
};

The const myFixed is handled in a file named exchangeRate.java
(the <interface name>.java file). The typedef Helper and Holder
files are in a Java package directory as usual.
Refer to “Fixed Types” on page 64 for more details of this IDL
type.

Mapping for Constants
The way IDL constants map to Java depends on whether or not
they are declared within an IDL interface.

Constants Defined within an IDL Interface
An IDL constant defined within an interface maps to a public
static final member of the corresponding Java Reference
interface generated by the IDL to Java compiler.
For example, consider the following IDL:

// IDL
interface ConstDefIntf {

const short MaxLen = 4;
};

This maps to the following Java class:
// Java generated by the Orbix Java IDL compiler
// in file ConstDefInt.java
import org.omg.CORBA.Object;

public interface ConstDefIntf extends Object {
 public static final short MaxLen = 4;
}

You can then access the constant by scoping with the Java class
name, for example:

// Java
short len = ConstDefIntf.MaxLen;

Constants Declared outside an IDL Interface
Those constants that are declared outside an IDL interface are
mapped to a public interface with the same name as the constant
and containing a public static final field named value. The value
field holds the value of the constant. Because these Java classes
are only required at compile time, the Java compiler normally
inlines the value when the classes are used in other Java code.
Consider the following IDL:

// IDL
module ExampleModule {

const short MaxLen = 4;
};
 96 Orbix Programmer’s Guide Java Edition

This maps to the following Java class:
// Java generated by the Orbix Java IDL compiler
package ExampleModule;

public interface MaxLen {
 public static final short value = 4;
}

You can then access the constant by scoping with the Java
interface name, for example:

// Java
short len = ExampleModule.MaxLen.value;

Mapping for Typedefs
Java has no language construct equivalent to the IDL typedef
statement. The Java mapping resolves the typedef to the
corresponding base IDL type, and maps this base type according
to the IDL Java mapping. A Helper class for the declared type is
also produced. If the type is a sequence or array, Holder classes
are also generated for the declared types.
All distinct IDL types, including those declared as typedefs, require
a unique Repository ID within the Interface Repository. For this
reason, Helper classes for the types declared as typedefs are
automatically generated with the format:
<declared Type>Helper

For example, consider the following typedef declaration:
// IDL
struct CustomerDetails {

string Name;
string Address;

};
typedef CustomerDetails BankCustomer;

The CustomerDetails structure maps to a Java class as described in
“Mapping for Constants” on page 96. The typedef statement
results in an additional BankCustomerHelper class.

Mapping for Exception Types
CORBA defines two categories of exception type:

• IDL standard system exceptions.
• IDL user-defined exceptions.

System Exceptions
IDL standard system exceptions are mapped to final Java classes
that extend org.omg.CORBA.SystemException. These classes provide
access to the IDL major and minor exception code, as well as a
string describing the reason for the exception. IDL system
exceptions are unchecked exceptions. This is because the class
org.omg.CORBA.SystemException is derived from
java.lang.Runtime.Exception.
Orbix Programmer’s Guide Java Edition 97

For further information on the mapping of IDL System Exceptions
to Java, refer to the Orbix Programmer’s Reference Java Edition.

User-Defined Exceptions
An IDL user-defined exception type maps to a final Java class
that derives from org.omg.CORBA.UserException, which in turn
derives from java.lang.Exception. Helper and Holder classes are
also generated. IDL user-defined exceptions are checked
exceptions.
If the exception is defined within an IDL interface, its Java class
name is defined within the interface package called <interface
name>Package. Where a module has been defined, the Java class
name is defined within the scope of the Java package
corresponding to the IDL module enclosing the exception.
Consider the following IDL user-defined exception:
//IDL
module Exceptions {

interface Illegal {
exception reject {

string reason;
short s;

};
};

};

The reject exception maps as follows:
// Java generated by the Orbix Java IDL compiler
// in file reject.java
import org.omg.CORBA.UserException;

public final class reject extends UserException {
 public String reason;
 public short s;
 public reject() {
 ...
 }
public reject(String reason, short s) {
 ...
 }
 ...
}

The mapping of the reject exception illustrates the rules used by
the IDL-to- Java compiler when mapping exception types. The
reject exception maps to the final class reject, which extends
org.omg.CORBA.UserException. Instance variables for the fields
reason and s, defined in the exception, are also provided. There
are two constructors in the mapped exception: reject() is the
default constructor and the reject(String reason, short s)
constructor initializes each exception member to the given value.
 98 Orbix Programmer’s Guide Java Edition

Now consider an interface with an operation that can raise a
reject IDL exception:
// IDL
interface bank {

exception reject {
...

};

account newAccount() raises (reject);
};

A server can throw a bankPackage.reject exception in exactly the
same way as a standard Java exception.
An Orbix Java client can test for such an exception when invoking
the newAccount() operation as follows:
// Java
bank b;
account a;

...

try {
a = b.newAccount ();

}
catch (bankPackage.reject rejectEx) {

system.out.println ("newAccount() failed");
system.out.println ("reason for failure = " +

rejectEx.reason);
...

}

Orbix Java exception handling is described in detail in “Exception
Handling” on page 143.

Naming Conventions
IDL identifiers are mapped to an identifier of the same name in
Java. There are, however, certain names that are reserved by the
Java mapping. When these occur within IDL definitions, the
mapping uses a prefixed underscore (_) to distinguish the mapped
identifier from a reserved name.
Reserved names in Java include the following:

• Java keywords.
If an IDL definition contains an identifier that exactly matches
a Java keyword, the identifier is mapped to the name of the
identifier preceded by ‘_’ as follows:
_<keyword>

Refer to the Java Language Specification for more details
about Java keywords.

• The Java class <type>Helper, where <type> is the name of an
IDL user-defined type.

• The Java class <type>Holder, where <type> is the name of an
IDL user-defined type.
When a typedef alias is used, the resulting Java class has the
format <alias>Holder.
Orbix Programmer’s Guide Java Edition 99

• The Java classes <basicJavaType>Holder, where
<basicJavaType> represents a Java basic type to which an IDL
basic type is mapped.
Refer to Table 2 on page 69 for details of these types.

• The Java package name <interface>Package, where
<interface> is the name of an already-defined IDL interface.

Parameter Passing Modes and Return Types
Table 3 shows the mapping for the IDL parameter passing modes
and return types. Refer to “Holder Classes and Parameter Passing”
on page 75 for more details. All type that are not user-defined
Holders are in org.omg.CORBA.

Table 3: Mapping for Parameters and Return Values

IDL Type In Inout Out Return

Basic Types

short short ShortHolder ShortHolder short

long int IntHolder IntHolder int

unsigned short short ShortHolder ShortHolder short

unsigned long int IntHolder IntHolder int

long long long LongHolder LongHolder long

unsigned long
long

long LongHolder LongHolder long

float float FloatHolder FloatHolder float

double double DoubleHolder DoubleHolder double

boolean boolean BooleanHolder BooleanHolder boolean

char char CharHolder CharHolder char

wchar char WcharHolder WcharHolder char

octet byte ByteHolder ByteHolder byte

any Any AnyHolder AnyHolder Any

IDL User-Defined Types

enum <type> <type>Holder <type>Holder <type>

struct <type> <type>Holder <type>Holder <type>

union <type> <type>Holder <type>Holder <type>

string String StringHolder StringHolder String

wstring String WstringHolder WstringHolder String

sequence array <type>Holder <type>Holder array

array array <type>Holder <type>Holder array
 100 Orbix Programmer’s Guide Java Edition

Pseudo-IDL Types

NamedValue NamedValue NamedValueHolder NamedValueHolder NamedValue

TypeCode TypeCode TypeCodeHolder TypeCodeHolder TypeCode

object reference <type> <type>Holder <type>Holder <type>

Table 3: Mapping for Parameters and Return Values

IDL Type In Inout Out Return
Orbix Programmer’s Guide Java Edition 101

 102 Orbix Programmer’s Guide Java Edition

Using and
Implementing IDL
Interfaces
This chapter describes how servers can create objects that
implement IDL interfaces, and explains how clients can access these
objects through IDL interfaces. It shows how to use and implement
CORBA objects through a detailed description of the banking
application introduced in “Developing Applications with Orbix Java”.

Overview of an Example Application
In the banking example, an Orbix Java server creates a single
distributed object that represents a bank. This object manages
other distributed objects that represent customer accounts at the
bank.
A client contacts the server by getting a reference to the bank
object. This client then calls operations on the bank object,
instructing the bank to create new accounts for specified
customers. The bank object creates account objects in response to
these requests and returns them to the client. The client can then
call operations on these new account objects.
This application design, where one type of distributed object acts
as a factory for creating another type of distributed object, is very
common in CORBA.
The source code for the example described in this chapter is
available in the demos\common\BankSimpleTie directory of your Orbix
Java installation.

Overview of the Programming Steps
The programming steps are outlined as follows:
1. Define the IDL interfaces to the application objects.
2. Compile the IDL using the IDL-to-Java compiler.
3. Implement the IDL interfaces.
4. Write a server application that creates implementation

objects.
5. Write a client application that accesses implementation

objects.
6. Run an Orbix Java daemon process.
7. Register the server in the Implementation Repository.
8. Run the client.
Subsequent chapters add further functionality to the IDL
interfaces defined in this chapter; for example, user-defined
exceptions and inheritance. At this stage, the basic interfaces are
sufficient to illustrate the main points.
 Orbix Programmer’s Guide Java Edition 103

Defining IDL Interfaces to Application Objects
This example uses two IDL interfaces: an interface for the bank
object created by the server, and an interface that allows clients
to access the account objects created by the bank.
The IDL interfaces are defined as follows:

// IDL
// In BankSimple.idl

module BankSimpleTie {

typedef float CashAmount;
interface Account; // forward reference

// A factory for Bank accounts.
interface Bank {

// Create new account with specified name.
Account create_account(in string name);
// Find the specified account.
Account find_account(in string name);

};

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);

};
};

In this example, the server creates a Bank object that accepts
operation calls such as create_account() from clients. The
operation create_account() instructs the Bank object to create a
new Account object in the server. The operation find_account()
instructs the Bank object to find an existing Account object.
All of the objects (both Bank and Account objects) are created in a
single server process. A real system could use several different
servers and many server processes.

Compiling IDL Interfaces
It is assumed that the BankSimple.idl source file is compiled
using the following IDL compiler command:

idlj -jP Demos BankSimple.idl

See the chapter “IDL to Java Mapping” for more details on the
classes generated by the IDL to Java compiler.
 104 Orbix Programmer’s Guide Java Edition

Implementing the IDL Interfaces
Orbix Java supports two mechanisms for relating an
implementation class to its IDL interface:

• The ImplBase approach
• The TIE approach
The TIE approach is preferred for the majority of implementations
in Java. This is due to the restriction of single inheritance of
classes in Java, which limits the ImplBase approach. However,
both approaches can be used in the same server, if required.
This section briefly describes how you can implement an interface
using both of these approaches. Refer to “Comparison of the
ImplBase and TIE Approaches” on page 124 for more details.

Note: The choice of implementation method in an Orbix Java server does
not affect the coding of client applications.

The TIE Approach to Implementing Interfaces
The TIE approach to defining an implementation class is shown in
Figure 11 on page 105.

Figure 11: The TIE Approach to Defining an Implementation Class

Account (IDL interface)

Account

IDL Compiler _AccountOperations

(Java
interface
that defines

_tie_Account

(Java class that you
write to implement

AccountImplementation

(Java class)

references

implements implements

(Java interface)
Orbix Programmer’s Guide Java Edition 105

Using the TIE approach, you can implement the IDL operations
and attributes in a class that does not inherit from the
automatically generated ImplBase class. Instead, use the
automatically generated Java TIE class to tie together the
implementation class and the IDL interface.
The IDL compiler generates a Java TIE class for each IDL
interface. The name of the Java TIE class takes the form of _tie_
prefixed to the name of the interface. For example, the IDL
compiler generates the TIE class _tie_Account for the IDL interface
type Account. An object that implements the IDL interface is
passed as a parameter to the TIE class constructor.
To use the TIE approach you must define a new class,
AccountImplementation, which implements the operations and
attributes defined in the IDL interface. This class need not inherit
from any automatically generated class; however, it must
implement the Java interface _AccountOperations.

Instantiating TIE Objects
To instantiate an object of type _tie_Account, pass an object of
type AccountImplementation to the TIE class constructor; in this
case, _tie_Account().
A TIE object is thus created that delegates incoming operation
invocations to the methods of your AccountImplementation object.
Interface _AccountOperations generated by the IDL compiler is as
follows:

// Java generated by the Orbix Java IDL compiler.

package Demos.BankSimpleTie;

public interface _AccountOperations {
public String name();
public float balance();
public void deposit(float amount) ;
public void withdraw(float amount) ;

}

The ImplBase Approach to Implementing Interfaces
For each IDL interface, Orbix Java also generates an abstract Java
class named _<type>ImplBase, where <type> represents the name
of a user-defined IDL interface. For example, the class
_AccountImplBase is generated for the IDL interface Account. To
indicate that a Java class implements a given IDL interface, that
class should inherit from the corresponding ImplBase class. This
approach is termed the ImplBase Approach, and is the
implementation method defined by the CORBA specification.
Because each ImplBase class is the Java equivalent of an IDL
interface, a class that inherits from this implements the operations
of the corresponding IDL interface. To support the use of the
ImplBase approach, the Orbix Java IDL compiler produces the
Java interface Account and the Java class _AccountImplBase.
 106 Orbix Programmer’s Guide Java Edition

Figure 12 shows the ImplBase approach to implementing IDL
interfaces for the Account interface.

Figure 12: The ImplBase Approach to Defining an Implementation Class

This chapter gives an overview of the ImplBase approach.
Throughout the rest of this guide, the TIE approach to
implementing IDL interfaces is used. The TIE approach is the
method of choice for the majority of Java applications.

Developing the Server Application
In this section, the banking example is used to illustrate both the
TIE and ImplBase approaches. The error handling necessary for a
full banking application has been omitted; for example, checking if
the account is overdrawn. Refer to “Exception Handling” on
page 143 for details.
The following Java classes are used to implement the Bank and
Account IDL interfaces:

IDL Compiler

Account (IDL interface)

Account (Java Interface)

_AccountImplBase

(Java class that you write
to implement the interface

AccountImplementation

(Java class)

implements

implements

AccountImplementation Implements the Account IDL interface.
BankImplementation Implements the Bank IDL interface.
Orbix Programmer’s Guide Java Edition 107

Implementing the Bank Interface
This section implements the Bank IDL interface using both the TIE
and ImplBase approaches.

Using the TIE Approach
With the TIE approach, an implementation class does not have to
inherit from any particular base class. Instead, the
implementation class must implement the Java Operations
interface generated by the IDL compiler.
You must notify Orbix Java that this class implements the IDL
interface by creating an object of the TIE class, which is also
generated by the IDL compiler.
Using the TIE approach, you can write the code for the Bank
implementation class as follows:

// Java
// In file BankImplementation.java.
package Demos.BankSimpleTie;

import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import java.util.*;

public class BankImplementation
implements _BankOperations {
// Constructor for Bank implementation object.
public BankImplementation (org.omg.CORBA.ORB Orb) {

m_orb = Orb;
m_list = new Hashtable();

}

// Implementation for IDL operation create_account()
public Account create_account (String name) {

Account m_account = null;
AccountImplementation m_account_impl = null;

if (m_list.get (name) != null) {
System.out.println ("- Account for " + name + "

already exists, " + "finding details.");
return find_account (name);

 }

System.out.println ("- Creating new account
 for "+ name + ".");

// Create a new account.
try {

m_account_impl = new AccountImplementation
(name, 0.0F);

m_account = new _tie_Account
 (m_account_impl, “Marker”);

m_orb.connect (m_account);
}

catch (SystemException se) {
System.out.println ("[Exception raised

when creating Account.]");
 108 Orbix Programmer’s Guide Java Edition

}

// Add account to table
m_list.put (name, m_account);
return m_account;

}

// Implementation for IDL operation find_account().
public Account find_account (String name) {

Account m_acc = null;
m_acc = (Account) m_list.get (name);

if (m_acc == null) {
// account not in table.
System.out.println ("- Unable to find

Account for " + name + ".");
}
return m_acc;

}

// Reference to the ORB.
private org.omg.CORBA.ORB m_orb = null;

// Table of accounts.
private Hashtable m_list;

}

The BankImplementation class implements the _BankOperations Java
interface generated by the IDL compiler.
The IDL-defined method create_account() creates an
AccountImplementation object and then passes this object to the
TIE class constructor, _tie_Account(). The create_account()
method returns an object that implements Java interface Account.
This IDL-generated type defines the client view of the IDL
interface Account.

Using the ImplBase Approach
Using this approach, you must indicate that a Java class
implements a specific IDL interface by inheriting from the
corresponding ImplBase class generated by the IDL compiler. You
can write the ImplBase code for the Bank implementation class as
follows:
// Java
// In file BankImplementation.java.

package Demos.BankSimpleImplBase;

import IE.Iona.OrbixWeb._OrbixWeb;
...

public class BankImplementation
extends _BankImplBase {

 // Constructor for Bank implementation object.
public BankImplementation (ORB Orb) {

// Same as for the TIE approach.
}

// Implementation for IDL operation create_account().
public Account create_account (String name){
Orbix Programmer’s Guide Java Edition 109

Account m_account = null;
...
// Create a new account
try {

m_account = new AccountImplementation
(name, 0.0F);

m_orb.connect (m_account);
}
catch (SystemException se) {

System.out.println ("[Exception raised when
creating Account.]");

}
...

}

The BankImplementation class inherits the _BankImplBase Java class
generated by the IDL compiler.
The IDL-defined method create_account() creates an
AccountImplementation object and returns an object that
implements Java interface Account.

Implementing the Account Interface
This section implements the Account IDL interface using both TIE
and ImplBase examples.

Using the TIE Approach
When using the TIE approach, your account class implementation
must implement the _AccountOperations interface generated by the
IDL compiler.
The AccountImplementation class is coded as follows:
// Java
// In file AccountImplementation.java.
package Demos.BankSimpleTie;

public class AccountImplementation
implements _AccountOperations {

public AccountImplementation(String name,float bal){
this.m_name = name;
m_balance=bal;
System.out.println ("- Creating account for " +

m_name + ". Initial " + "balance of £" + bal);
}

// Implementation for IDL name attribute.
public String name(){

return m_name;
}

// Implementation for IDL balance attribute.
public float balance() {

return m_balance;
 }

// Implementation for IDL operation deposit().
public void deposit (float amount) {

System.out.println ("- Depositing £" + amount
 110 Orbix Programmer’s Guide Java Edition

 + " into " + m_name + "'s account");
m_balance += amount;

}

// implementation for IDL operation withdraw().
public void withdraw(float amount) {

System.out.println("- Withdrawing £" + amount
 + " from " + m_name + "'s account");

m_balance -= amount;
}

// Account user's name.
private String m_name = null;

// Account user's balance
private float m_balance = 0.0F;

}

Using the ImplBase Approach
When using the TIE approach, your account class
implementation must inherit the _AccountImplBase class
generated by the IDL compiler. The
AccountImplementation class is coded as follows:

// Java
// In file AccountImplementation.java.

package Demos.BankSimpleImplBase;

public class AccountImplementation
extends _AccountImplBase {
...

}

This class is identical, in every other respect, to the
AccountImplementation class used for the TIE approach.
Orbix Programmer’s Guide Java Edition 111

Writing the Server
This section shows the code for the banking server, using both TIE
and ImplBase examples.

Using the TIE Approach
To create a bank implementation object, the server must pass the
constructor for the bank implementation class to the TIE
constructor, _tie_Bank(). You can implement the server using the
TIE approach as follows:

// Java
// In file Server.java

package Demos.BankSimpleTie;

// Import Naming Service wrapper methods.
import Demos.IT_DemoLib.*;
import IE.Iona.OrbixWeb.Features.Config;
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.*;

public class Server {
public static void main (String args[]) {

// Initalize the ORB.
org.omg.CORBA.ORB Orb = ORB.init (args, null);
// Create a new bank Server
new Server (Orb);

}

// Server constructor.
public Server (org.omg.CORBA.ORB Orb) {

m_orb = Orb;
...
// Create a new Naming Service wrapper.
try {

m_ns_wrapper = new IT_NS_Wrapper (m_orb,
m_demo_context_name);

m_ns_wrapper.initialise();
}
catch (org.omg.CORBA.UserException userEx) {

...
}
String serverName = new String ("IT_Demo

/BankSimple");

// Create a new server implementation object.
m_bank = new _tie_Bank

(new BankImplementation(m_orb));
try {
 m_ns_wrapper.registerObject ("Bank", m_bank);
}
catch (org.omg.CORBA.UserException userEx) {

...
}

// Wait for client connections.
try {

_OrbixWeb.ORB (m_orb).processEvents
(10000 * 60);
 112 Orbix Programmer’s Guide Java Edition

}
catch (SystemException se) {

...
}

}
...
}

Using the ImplBase Approach
Using the ImplBase approach, the server must create a new bank
implementation object by passing a reference to the server ORB to
the constructor for the BankImplementation class:

// Java
// In file Server.java

package Demos.BankSimpleImplBase;

public class Server {
...

// Create a new server implementation object.
m_bank = new BankImplementation (m_orb);

...
}

This class is identical, in every other respect, to the Server class
used for the TIE approach.

Object Initialization and Connection
An implementation object must be connected to the Orbix Java
runtime before it can handle incoming operation invocations.
There are two ways to connect implementation objects to the
Orbix Java runtimes:

• Using ORB.connect() and ORB.disconnect().
These methods are the CORBA-defined way of connecting an
implementation to the runtime.

• Using BOA.impl_is_ready().
This is an Orbix Java -specific way of connecting
implementation objects to the runtime.

Using ORB.connect() and ORB.disconnect()
The OMG standard way of connecting an implementation to the
runtime is to use org.omg.CORBA.ORB.connect(). The Orbix Java
runtime can continue to make invocations on the implementation
until it is disconnected using org.omg.CORBA.ORB.disconnect(). Refer
to the API Reference on interface BOA in the Orbix Programmer’s
Reference Java Edition for more details.
Orbix Programmer’s Guide Java Edition 113

As an example, consider the following code, that instantiates a
Bank implementation object and connects it to the runtime. The
implementation object is disconnected at a later stage.

import org.omg.CORBA.ORB;

ORB orb = ORB.init(args,null);

Bank mybank =
new _tie_Bank(new BankImplementation(orb));

orb.connect(mybank);
...
orb.disconnect(mybank);

Note: ORB.connect() is automatically called when you instantiate an
Orbix Java object. However, for strict CORBA compliance, you
should explicitly call ORB.connect() in your application code.

Using BOA.impl_is_ready()
A server is normally coded so that it initializes itself and creates an
initial set of objects. It then calls impl_is_ready() to indicate that it
has completed its initialization and is ready to receive operation
requests on its objects. The impl_is_ready() method normally
does not return immediately. It blocks the server until an event
occurs, handles the event, and then re-blocks the server to wait
for another event.
The impl_is_ready() method consists of four overloaded methods,
as follows:

// Java
// In package IE.Iona.OrbixWeb.CORBA
// in interface BOA.
public void impl_is_ready ();

public void impl_is_ready (String serverName);

public void impl_is_ready (int timeout);

public void impl_is_ready
(String serverName, int timeout);

The Server Name Parameter
The serverName parameter to impl_is_ready() is the name of a
server as registered in the Implementation Repository.
When a server is launched by the Orbix Java daemon process, the
server name is already known to Orbix Java and therefore does
not need to be passed to impl_is_ready(). However, when a
server is launched manually, the server name must be
communicated to Orbix Java. The normal way to do this is using
the first parameter to impl_is_ready(). To allow a server to be
launched either automatically or manually, you should specify the
serverName parameter.
By default, Orbix Java servers must be registered in the
Implementation Repository, using the putitj command.
Therefore, if an unknown server name is passed to
impl_is_ready(), the call is rejected. However, the Orbix Java
daemon can be configured to allow unregistered servers to be run
manually. Refer to “Registration and Activation of Servers” on
 114 Orbix Programmer’s Guide Java Edition

page 189 for more details on the Orbix Java daemon and the
putitj command.

The Timeout Parameter
The impl_is_ready() method returns only when a timeout occurs
or an exception occurs while processing an event. The timeout
parameter indicates the number of milliseconds to wait between
events. A timeout occurs if Orbix Java has to wait longer than the
specified timeout for the next event. A timeout of zero causes
impl_is_ready() to process an event, if one is immediately
available, and then return.
A server can time out either because it has no clients for the
timeout duration, or because none of its clients use it for that
period. The system can also be instructed to make the timeout
active only when the server has no current clients. The server
should remain running as long as there are current clients. This is
supported by the method setNoHangup(), defined in interface BOA.
Refer to the Orbix Programmer’s Reference Java Edition for
more details on interface BOA.
You can explicitly pass the default timeout as
_CORBA.IT_DEFAULT_TIMEOUT. The default value of the
_CORBA.IT_DEFAULT_TIMEOUT parameter is one minute. You can
specify an infinite timeout by passing _CORBA.IT_INFINITE_TIMEOUT.

Comparison of Methods for Connecting to the ORB
This section outlines some of the merits and drawbacks of the
impl_is_ready() and ORB.connect() / ORB.disconnect() methods for
connecting to the ORB.
The primary advantage of using impl_is_ready() is that it allows
server registration and event processing to be decoupled. This
gives the programmer who implements the server more control
over event processing. This is the BOA approach familiar to users
of previous versions of Orbix Java.
The ORB.connect() / ORB.disconnect() approach complies with the
CORBA specification defined in the OMG IDL to Java mapping.
Using this approach, Orbix Java implicitly connects an
implementation object to the runtime when the object is
instantiated. By default, when ORB.connect() is first called in a
server, a background thread that processes events is created, and
the server makes itself known to the Orbix Java daemon.
Correspondingly, calling ORB.disconnect() on the last registered
object stops all event processing. You can disable this behaviour
by setting the configurable item IT_IMPL_READY_IF_CONNECTED to
false.
When this approach is used in servers launched persistently, the
server has no means of specifying a server name. The server
name must be specified using setServerName() or by passing it on
the command line to the Java VM using
-DOrbixWeb.server_name.
By default, even if the target object has been disconnected, the
server continues to process requests until the last object has been
disconnected. This can result, for example, in an INV_OBJREF
exception to a client in response to an incoming request for a
Orbix Programmer’s Guide Java Edition 115

disconnected object. It is important, therefore, to explicitly
disconnect all objects when you want your server to exit. It is also
important to disconnect all objects so that they can call their
loaders, if any exist, in order to save themselves. Refer to
“Loaders” on page 319 for more details.
In the case of out-of-process servers, where each launched server
has its own system process, you can disconnect all objects using
the following call:

_OrbixWeb.ORB(orb).shutdown(true);

In the case of in-process servers, this method has no effect. Refer
to the Orbix Administrator’s Guide Java Edition for details on
in-process servers. By default, servers are activated
out-of-process.
You can combine the two approaches used for connecting to the
ORB. In fact, if you call BOA event-processing operations, a
combined approach is used. ORB.connect()is implicitly called when
the implementation object is instantiated. Also, in Orbix Java,
several threads can concurrently call processEvents().

Note: Disconnecting the last object by default causes all BOA
event-processing calls to exit.

Developing the Client Application
From the point of view of the client, the functionality provided by
the banking application is defined by the IDL interface definitions.
A typical client program locates a remote object, obtains a
reference to the object, and then invokes operations on the
object. These are important concepts in distributed systems.
This section discusses developing the client application in terms of
these three concepts.

• Object location involves searching for an object among the
available servers on available nodes. The CORBA-defined way
to do this is to use the Naming Service.

• Obtaining a reference involves establishing the facilities
required to make remote invocations possible. This involves
setting up a proxy. A reference to the proxy can then be
returned to the client. Obtaining a reference is also termed
binding to an object.

• Remote invocations in Orbix Java occur when normal Java
method calls are made on proxies.
 116 Orbix Programmer’s Guide Java Edition

Obtaining a Reference to a Bank Object
The banking client uses Naming Service wrapper methods to find
and obtain a reference to a Bank object. Remote function
invocations can then be made on the object. These concepts are
illustrated in the following code extracts from the client
application:
// Java
// In file Client.java

package Demos.BankSimpleTie;

import Demos.IT_DemoLib.*;
import Demos.BankInterface.BankGUIFrame;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb._CORBA;
import org.omg.CORBA.ORB;
...

public class Client {
public static void main (String args[]) {

// Initilize the ORB
org.omg.CORBA.ORB Orb = ORB.init (args,null);
// Create a new client
new Client (Orb);

}

// Client constructor.
public Client (org.omg.CORBA.ORB Orb){

super (Orb, m_account_types);
m_orb = Orb;
m_client_frame = new ClientGUIFrame(this, m_orb);

}
// Connects to the bank
public void connectToBank() {

// Get the host name from the user interface.
String host = m_client_frame.Get_HostName();
m_client_frame.printToMessageWindow

("Hostname got "+host);

// Set the naming service host name.
_OrbixWeb.ORB (m_orb).setConfigItem(

"IT_NAMES_SERVER_HOST", host);

// Create a new naming service wrapper.
try {

m_ns_wrapper = new IT_NS_Wrapper (m_orb,
m_demo_context_name);

}
catch (org.omg.CORBA.UserException userEx) {

m_client_frame.printToMessageWindow ("[Exception
raised during creation of naming" +
"service wrapper.]");

}
try {

org.omg.CORBA.Object obj =
m_ns_wrapper.resolveName ("Bank") ;

m_bank = BankHelper.narrow (obj);
Orbix Programmer’s Guide Java Edition 117

 m_client_frame.printToMessageWindow("Connection
succeeded.");

}
catch (org.omg.CORBA.UserException userEx) {

m_client_frame.printToMessageWindow ("[Exception
raised getting Bank reference " + userEx + "]");

}
...

}

Alternatives to the Naming Service
Using the Naming Service is the CORBA-defined way to establish
communications with a particular object. There are two other
ways that a client can obtain a reference to an object that it needs
to communicate with:

• Using a return value or an out parameter to an IDL operation
call.

• Using the Orbix Java -specific bind() mechanism.

Using a Return Value or an Out Parameter
A client can also receive an object reference as a return value or
as an out parameter to an IDL operation call. This results in the
creation of a proxy in the client’s address space. Operation
create_account(), for example, returns a reference to an Account
object, and a client that calls this operation can then make
operation calls on the new object.

Using the Orbix Java specific bind Method
The following code sample shows how a client could obtain a
reference to a Bank object using the Orbix Java specific bind()
operation:

// Search for an object offering the bank
// server and construct a proxy.
try {

System.out.println
("Attempting to bind to :bank on "+hostname);
mybank = BankHelper.bind

("BankMarker:Bank", hostname);
}
catch (org.omg.CORBA.SystemException ex) {

System.out.println
("Exception during bind : " + ex.toString());

}
System.out.println

("Connection to " + hostname + " succeeded.\n");

The bind mechanism is implemented by the static member
method bind() of the BankHelper class generated by the IDL
compiler. This method takes a parameter that specifies the
location of the required implementation object in the system.
Orbix Java can choose any Bank object within the named server.
The value returned by BankHelper.bind() is a proxy object
reference.
 118 Orbix Programmer’s Guide Java Edition

Making Remote Invocations
The proxy object reference returned by the Naming
Service provides access to remote Bank operations using
the Java methods defined on interface Bank. The client
can invoke these operations by calling the equivalent
Java methods on the proxy object. The proxy is
responsible for forwarding the invocation requests to the
target server implementation object and returning
results to the client.
The Java interfaces Account and Bank are generated by
the IDL compiler. These interfaces define the Java client
view of the IDL Account and Bank interfaces.
The generated code for interface Account is as follows:

// Java generated by the IDL compiler

package Demos.BankSimpleTie;

public interface Account
extends org.omg.CORBA.Object {

public String name();

public float balance();

public void deposit(float amount) ;

public void withdraw(float amount) ;

public java.lang.Object _deref() ;
}

Orbix Programmer’s Guide Java Edition 119

The generated code for interface Bank is as follows:
// Java generated by the IDL compiler

package Demos.BankSimpleTie;
public interface Bank

extends org.omg.CORBA.Object {

public Demos.BankSimpleTie Account
create_account(String name) ;

public Demos.BankSimpleTie Account
find_account(String name) ;

public java.lang.Object _deref() ;
}

Both Java types inherit from the Java interface
org.omg.CORBA.Object. This is an Orbix Java interface that defines
functionality common to all IDL object reference types. Refer to
the API Reference in the Orbix Programmer’s Reference Java
Edition on org.omg.CORBA.Object for further information on this
extra functionality.

Registration and Activation
The last step in developing and installing the banking application
is to register the Bank server in the Implementation Repository.

Running the Orbix Daemon
Before registering the server, you should ensure that an Orbix
C++ or Java daemon process (orbixd or orbixdj) is running on the
server machine.
To run the Orbix Java daemon, enter the orbixdj command from
the bin directory of your Orbix Java installation. To run the Orbix
C++ daemon, enter the orbixd command.
On Windows, you can also start a daemon process by clicking on
the appropriate menu item from the Orbix Java menu.

The Implementation Repository
The Orbix Java Implementation Repository records the server
name and the details of the Java class that should be interpreted
in order to launch the server. Implementation Repository entries
consist of the class name, the class path, and any command-line
arguments that the class expects.
Every node in a network that runs servers must have access to an
Implementation Repository. Implementation repositories can be
shared using a network file system.
You can register a server in the Implementation Repository using
the putitj command, which takes the following simplified form:

putitj putitj switches -java server name
-classpath classpath class name
command-line arguments for server

For example, you could register the Bank server as follows:
putitj -java Bank Demos.BankSimpleTie.Server

The class Demos.BankSimpleTie.Server is then registered as the
implementation code for the server Bank at the current host.
 120 Orbix Programmer’s Guide Java Edition

The putitj command does not cause the specified server class to
be interpreted. The Java interpreter can be explicitly invoked on
the class, or the Orbix Java daemon can cause the class to be
interpreted in response to an incoming operation invocation. It
uses the Orbix Java configurable IT_DEFAULT_CLASSPATH as its
classpath when searching for the class. You can specify an
alternative classpath using the putitj utility. Refer to the Orbix
Administrator’s Guide Java Edition for more details.

Execution Trace
This section examines the events that occur when the Bank server
and client are run. The TIE approach is used to show the initial
trace, and the ImplBase approach is then discussed. This is
followed by a comparison between the TIE approach and the
ImplBase approach.

Server Side
First, a server with name Bank is registered in the Implementation
Repository. When an invocation arrives from a client, the Orbix
Java daemon launches the server by invoking the Java interpreter
on the specified class. The server application creates a new TIE
object, of type _tie_Bank, for an object of class BankImplementation:

// Java
// In file Server.java

public Server (org.omg.CORBA.ORB Orb) {
m_orb = Orb;
...
// Create a new server implementation object.
m_bank = new _tie_Bank

(new BankImplementation(m_orb),
“Marker”);

...
}

Client Side
The client first obtains a reference to the Bank object, using the
Naming Service, for example:

// Java
// In file Client.java.

public class Client {
...
public void connectToBank() {

...
org.omg.CORBA.Object obj =

m_ns_wrapper.resolveName ("Bank")
;

m_bank = BankHelper.narrow (obj);
...

}
}

Orbix Programmer’s Guide Java Edition 121

When the object reference has been obtained, the Orbix Java
daemon launches an appropriate process by invoking the Java
interpreter on the Server class, if the process is not already
running.
This results in the automatic generation of a proxy object in the
client. This acts as a stand-in for the remote BankImplementation
object in the server. The object reference m_Bank within the client
is now a remote object reference as shown in Figure 13 on
page 123.
The client programmer is not aware of the TIE object.
Nevertheless, all remote operation invocations on the
BankImplementation object are via the TIE object.
The client program proceeds by asking the bank to open a new
account:
// Java
// In file Client.java.
// In class Client

Account new_account = null;
String current_name = m_client_frame.Get_UserName();

try {

new_account = m_bank.create_account
(current_name);

}
catch (SystemException se) {

...
};

When the m_bank.create_account() call is made, the method
BankImplementation.create_account() is called (via the TIE) within
the bank server. This generates a new AccountImplementation
object and associated TIE object. The TIE object is added to the
BankImplementation object’s list of existing Accounts. Finally,
create_account() returns the Account reference back to the client.
A new proxy is created at the client-side for the Account object.
This is referenced by the new_account variable as shown in
Figure 13 on page 123.
 122 Orbix Programmer’s Guide Java Edition

If the ImplBase approach is used, the final diagram is as shown in
Figure 14 on page 123.

Figure 13: Client Creates Object (TIE Object)

Figure 14: Client Creates Object (ImplBase Approach)

BankImplementation
object

_tie_Bank
object

Orbix Java

_tie_Account
object

AccountImplementation
object

Server

Bank
proxy

Account
proxy

Account

Bank

new_account

m_bank

Client

Orbix Java

manages

classesclasses

Server

Bank
proxy

Account
proxy

account

bank

new_account

m_bank

Client

Orbix Java

BankImplementation
object

AccountImplementation
object

manages

classes classes
Orbix Java
Orbix Programmer’s Guide Java Edition 123

Comparison of the ImplBase and TIE Approaches
The TIE and ImplBase approaches to interface implementation
impose similar overheads on the implementation programmer.
However, there are two significant differences that may affect
your choice of implementation strategy:

• The ImplBase approach requires the implementation class to
extend a generated base class, while the TIE approach merely
requires the implementation of a Java interface.

• The TIE approach requires the creation of an additional object
for each implementation object instantiated in a server.

The first of these differences has important implications for the
viability of the ImplBase approach in most applications. Java does
not support multiple inheritance, so the inheritance requirement
that the ImplBase approach imposes on implementation classes
limits the flexibility of those classes and eliminates the possibility
of reusing existing implementations when implementing derived
interfaces. The TIE approach does not suffer from this restriction
and, for this reason, is the recommended approach for Orbix Java
applications.
The creation of a TIE object for each implementation object can be
a significant decision factor in applications where a large number
of implementation objects are created and tight restrictions on the
usage of virtual memory exist. In addition, the delegation of client
invocations by TIE objects implicitly involves an additional Java
method invocation for each incoming request.
Of course, it is not necessary to choose one approach exclusively;
because both can be used within the same server.
The next two sections examine two aspects of IDL interface
implementation:

• Providing different implementations of the same interface.
• Implementing different interfaces with a single

implementation class.

Providing Different Implementations of the Same Interface
Both the ImplBase and TIE approaches allow you to provide a
number of different implementation classes for the same IDL
interface. This is an important feature, especially in a large
heterogeneous distributed system. An object can then be created
as an instance of any one of the implementation classes. Client
programmers do not need to know which implementation class is
used.
 124 Orbix Programmer’s Guide Java Edition

Providing Different Interfaces to the Same Implementation
Using the TIE approach, you can have a Java implementation class
that implements more than one IDL interface. This class must
implement the generated Java Operations interfaces for all the IDL
interfaces it supports. The class must therefore implement all the
operations defined in those IDL interfaces. This common class is
simply instantiated and passed to the constructor of any TIE
objects created for a supported IDL interface. This is a way of
giving different access privileges to the same object.
With the ImplBase approach, it is not possible to implement
different interfaces in a single implementation class, because each
interface requires the implementation class to extend an
IDL-generated base class.
Orbix Programmer’s Guide Java Edition 125

 126 Orbix Programmer’s Guide Java Edition

Making Objects
Available in Orbix Java
A central requirement in a distributed object system is that clients
must be able to locate the objects they wish to use. This chapter
describes how you can make objects available in servers and enable
clients to locate these objects in clients.

Before using a CORBA object, a client must establish contact with
it. To do this, the client must get an object reference for the
required object. An object reference is a unique value that tells an
ORB where an object is and how to communicate with it.
An important issue for every CORBA application is how servers can
make object references available to clients, and how clients can
retrieve these references to establish contact with objects. This
chapter describes three solutions to this issue:

• Using the CORBA Naming Service.
• Using the Orbix Java -specific bind() method.
• Using object reference strings to create proxy objects.
These solutions are presented after a brief introduction to how
object references work in CORBA.

Identifying CORBA Objects
Every CORBA object is identified by an object reference, which is a
unique value that includes all the information an ORB requires to
locate and communicate with the object. When a client gets an
object reference, the ORB creates a proxy in the client’s address
space. When the client calls an operation on the proxy, the ORB
transmits the request to the target object.
Orbix supports two protocols for communications between clients
and servers:

• The CORBA standard Internet Inter-ORB Protocol (IIOP).
This is the default protocol.

• The Orbix protocol.
Each of these communication protocols has its own object
reference format. The Orbix protocol requires an Orbix Java object
reference format. IIOP requires the CORBA Interoperable Object
Reference (IOR) format. This section introduces object references
and shows how you may use the fields of an object reference.
 Orbix Programmer’s Guide Java Edition 127

Interoperable Object References
An object that is accessible via IIOP is identified by an
interoperable object reference (IOR). Because an ORB’s object
reference format is not prescribed by the OMG, the format of an
IOR includes the following:

• An ORB’s internal object reference.
• An internet host address.
• A port number.
An IOR is managed internally by the ORB. It is not necessary for
you to know the structure of an IOR. However, an application may
wish to publish the stringified form of an object’s IOR. You can
obtain the stringified IOR by calling the method
org.omg.CORBA.ORB.object_to_string() with the required object, or
_object_to_string() on the IE.Iona.OrbixWeb.CORBA.ObjectRef
interface of the required object.

Orbix Java Object References
Every object created in an Orbix Java application has an
associated Orbix Java object reference. This object reference
includes the following information:

• An object name that is unique within its server. This is
referred to as the object’s marker.

• The object’s server name
This is sometimes called an implementation name in CORBA
terminology.

• The server’s hostname.
For example, the object reference for a bank account would
include the object’s marker name, the name of the server that
manages the account, and the name of the server’s host. The
bank server could, if necessary, create and name different bank
objects with different names, all managed by the same server.
In more detail, an Orbix Java object reference is fully specified by
the following fields:

• Object marker.
• Server name.
• Server hostname.
• IDL interface type of the object.
• Interface Repository (IFR) server in which the definition of this

interface is stored.
• IFR server host.
 128 Orbix Programmer’s Guide Java Edition

Accessing Object References
All Orbix Java objects implement the Java interface
org.omg.CORBA.Object. This interface supplies several methods
common to all object references, including object_to_string(),
which produces a stringified form of the object reference. The
form of the resultant string depends on the protocol being used. In
the case of IIOP, a string representation of an IOR is produced. In
the case of Orbix Protocol, a string of the following form is
produced:

:\server_host:server_name:marker:IFR_host:
IFR_server:IDL_interface

IE.Iona.OrbixWeb.CORBA.ObjectRef also provides access to the
individual fields of an object reference string via the following set
of accessor methods:

// Java
// in package IE.Iona.OrbixWeb.CORBA,
// in interface ObjectRef.
public String _host();
public String _implementation();
public String _marker();
public String _interfaceHost();
public String _interfaceImplementation();
public String _interfaceMarker();

Orbix Java automatically assigns the server host, server name and
IDL interface fields when an object is created. It is not generally
necessary to update these values.
Orbix Java also assigns a marker value to each object, but you
may choose alternative marker values in order to explicitly name
Orbix Java objects. The assignment of marker names to objects is
discussed in the following section.
In general, the IFR host name (interfaceHost) and IFR server
(interfaceImplementation) fields are set to default values. In the
stringified form, these are IFR and the blank string respectively.

Assigning Markers to Orbix Java Objects
An Orbix Java marker value allows a name (in string format) to be
associated with an object, as part of its object reference. There
are two ways to assign markers to Orbix Java objects:

• Assigning a marker on creation of the object.
• Renaming an object using _marker().

Assigning a Marker on Creation
You can specify a marker name at the time an object is created. If
you do not specify a marker for a newly created object, a name is
automatically chosen by Orbix Java. To assign a marker for an
object on creation, do either of the following:

• Pass a marker name to the second parameter (of type String)
of a TIE-class constructor.
Orbix Programmer’s Guide Java Edition 129

For example:
// Java
import org.omg.CORBA.SystemException;
...
Bank b;

try {
b = new _tie_Bank

(new BankImplementation (),
"College_Green");

}
catch (SystemException se) {

...
}

• Pass a marker name to the first parameter (of type String) of
an ImplBase class constructor. For example:

// Java
// Constructor definition in implementation class:

public class BankImplementation
extends _BankImplBase {

BankImplementation (String marker) {
super (marker);

}
}

// Usage in server class:
import org.omg.CORBA.SystemException;
...

BankImplementation BankImpl;

try {
BankImpl = new BankImplementation

("College Green");
}

catch (SystemException se) {
...

}
}

Renaming the Object using _marker()
You can use the modifier method _marker(String) to rename an
object which has a user-specified name or a name assigned by
Orbix Java. This is defined in the interface ObjectRef in package
IE.Iona.OrbixWeb.CORBA. For details on how to convert an Orbix
Java object to an instance of ObjectRef, refer to the class
_OrbixWeb.ObjectRef in the Orbix Programmer’s Reference
Java Edition .
 130 Orbix Programmer’s Guide Java Edition

Accessing an Object’s Marker Name
You can use the accessor method _marker() to find the marker
name associated with an object. The following code demonstrates
the use of this method:

// Java
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb._OrbixWeb;
...

account a;

try {
a = new _tie_account

(new accountImplementation ());
System.out.println ("The marker name chosen " +
"by OrbixWeb is " + _OrbixWeb.Object(a)._marker ());

}
catch (SystemException se) {

...
}

Marker Chosen by Orbix Java
The marker names chosen by Orbix Java consist of a string
composed entirely of decimal digits. To ensure that your markers
are different from those chosen by Orbix Java, do not use strings
consisting entirely of digits.
Note: Marker names cannot contain any ‘:’ or null characters.
An object’s interface name together with its marker name must be
unique within a server. If a chosen marker is already in use when
an object is named, Orbix Java assigns a different marker to the
object. The object with the original marker is not affected. There
are two ways to test for this, depending on how a marker is
assigned to an object:

• If IE.Iona.OrbixWeb.CORBA.ObjectRef._marker(String) is used,
you can test for a false return value. A false return value
indicates a name clash.

• If the marker is assigned when calling a TIE-class or an
ImplBase class constructor, you can test for a name clash by
calling the accessor method
IE.Iona.OrbixWeb.CORBA.ObjectRef.marker()on the new object
and comparing the marker with the one the programmer tried
to assign.
Orbix Programmer’s Guide Java Edition 131

Using the CORBA Naming Service
The CORBA Naming Service holds a ‘database’ of bindings
between names and object references. A server that holds an
object reference can register it with the Naming Service, giving it
a unique name that can be used by other components of the
system to locate that object. A name registered in the Naming
Service is independent of any properties of the object, such as the
object’s interface, server or hostname.
This section outlines the features of OrbixNames, the Orbix full
implementation of the CORBA Naming Service. The following
topics are outlined:

• The interface to the Naming Service.
• Format of names within the Naming Service.
• Making initial contact with the Naming Service.
• Associating names with objects.
• Using names to find objects.
• Associating a compound name with an object.
For a complete description of using OrbixNames, refer to the
OrbixNames Programmers and Administrator’s Guide.

The Interface to the Naming Service
The programming interface to the Naming Service is defined in
IDL. A standard set of IDL interfaces allow you to access all the
Naming Service features. OrbixNames, for example, is a normal
Orbix Java server that contains objects that implement these
interfaces.
The Naming Service interfaces are defined in the IDL module
CosNaming:

// IDL
module CosNaming {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

typedef sequence<NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
 132 Orbix Programmer’s Guide Java Edition

enum NotFoundReason {missing_node, not_context,
not_object };

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

void bind(in Name n, in Object obj)
raises (NotFound, CannotProceed,

InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)

raises (NotFound, CannotProceed,
InvalidName);

void bind_context(in Name n,
in NamingContext nc)

raises (NotFound, CannotProceed,
InvalidName, AlreadyBound);

void rebind_context(in Name n,
in NamingContext nc)

raises (NotFound, CannotProceed,
InvalidName);

Object resolve(in Name n)
raises (NotFound, CannotProceed,

InvalidName);
void unbind(in Name n)

raises (NotFound, CannotProceed,
InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises (NotFound, CannotProceed,
InvalidName, AlreadyBound);

void destroy() raises (NotEmpty);
void list(in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};
};
Orbix Programmer’s Guide Java Edition 133

Format of Names within the Naming Service
A name is always resolved within a given naming context. The
naming context objects in a system are organized into a naming
graph, that may form a naming hierarchy, much like that of a
filing system. This gives rise to the notion of a compound name.
The first component of a compound name gives the name of a
NamingContext, in which the second name in the compound name is
looked up. This process continues until the last component of the
compound name has been reached.

Compound Names
A compound name in the Naming Service takes the more abstract
form of an IDL sequence of name components. In addition, the
name components that make up a sequence to form a name are
not simple strings. Instead, a name component is defined as a
struct, NameComponent, that holds two strings:

// IDL
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

The id member is intended as the real name component, while
the kind member is intended to be used by the application layer.
For example, you can use the kind member to distinguish whether
the id member should be interpreted as a disk name, or a
directory or a folder name. Alternatively, you can use kind to
describe the type of the object being referred to. The kind
member is not interpreted by OrbixNames.
The type Istring is a placeholder for a future IDL internationalized
string that may be defined by OMG.
A name is defined as a sequence of name components as follows:

typedef sequence<NameComponent> Name;

Both the id and kind members of a NameComponent are used in
name resolution. Thus, two names, which differ only in the kind
member of one NameComponent, are considered to be different
names.
Names with no components (names of length zero) are not
permitted.

Making Contact with the Naming Service
The IDL interface NamingContext, defined in module CosNaming,
provides access to most features of the Naming Service. The first
step in using the Naming Service is to get a reference to an object
of this type.
Each Naming Service contains a special CosNaming::NamingContext
object called the root naming context. This acts as an entry point
to the service. The root naming context allows you to create new
naming contexts, bind names to objects, resolve object names,
and browse existing names.
 134 Orbix Programmer’s Guide Java Edition

An application can obtain a reference to its root naming context by
passing the string “NameService” to the method
resolve_initial_references() on an instance of org.omg.CORBA.ORB:

import org.omg.CORBA.ORB;
import org.omg.CORBA.Object;

ORB orb = ORB.init(args,null);
Object initRef = orb.resolve_initial_references

("NameService");

The result must be narrowed using
CosNaming.NamingContextHelper.narrow(), to obtain a reference to
the naming context.
You can discover which services are available by calling
list_initial_services().

Associating Names with Objects
Once you have a reference to the root naming context, you can
begin to associate names with objects. The operation
CosNaming::NamingContext::bind() enables you to bind a name to
an object in your application. This operation is defined as:

void bind (in Name n, in Object o)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To use this operation, you first create a CosNaming::Name structure
containing the name you want to bind to your object. You then
pass this structure and the corresponding object reference as
parameters to bind().

Using Names to Find Objects
Given an abstract name for an object, you can retrieve a reference
to the object by calling CosNaming::NamingContext::resolve(). This
operation is defined as:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

When you call resolve(), the Naming Service retrieves the object
reference associated with the specified CosNaming::Name value and
returns it to your application.
The return type of the resolve() operation is an IDL Object. This
translates to type org.omg.CORBA.Object in Java. This result must
therefore be narrowed, using the appropriate narrow() method,
before it can be properly used by an application.
Orbix Programmer’s Guide Java Edition 135

Associating a Compound Name with an Object
If you want to use compound names for your objects, you must
first create naming contexts. For example, consider the compound
name shown in Figure 15.

To create this compound name:
1. Create a naming context and bind a name with identifier

company (and no kind value) to it.
2. Create another naming context, in the scope of the company

context, and bind the name staff to it.
3. Bind the name james to your application object in the scope of

the staff context.
The operation CosNaming::NamingContext::bind_new_context()
enables you to create naming contexts:

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To create a new naming context and bind a name to it, create a
CosNaming::Name structure for the context name and pass it to
bind_new_context(). If the call is successful, the operation returns
a reference to your newly created naming context.
You should refer to the OrbixNames Programmers and
Administrator’s Guide for detailed Java examples of using the
Naming Service.

Figure 15: An Example Compound Name

james

staff

company
 136 Orbix Programmer’s Guide Java Edition

Federation of Name Spaces
The collection of all valid names recognized by the Naming Service
is called a name space. A name space is not necessarily located on
a single name server: a context in one name server can be bound
to a context in another name server on the same host or on a
different host. The name space provided by a Naming Service is
the association or federation of the name spaces of each individual
name server that comprises the Naming Service.
Figure 16 shows a Naming Service federation that comprises two
name servers running on different hosts. In this example, names
relating to the company’s engineering and PR divisions are located
on one server and names relating to the company’s marketing
division are located on a separate server. Client requests to look
up names start in one name server but may continue in another
name server’s database. Clients do not have to be aware that
more than one name server is involved in the resolution of a
name, and they do not need to know which server interprets
which part of a compound name.

Figure 16: Naming Graph Spanning Different Name Servers

marketing

company

engineering PR

Host A

Host B
Orbix Programmer’s Guide Java Edition 137

Binding to Objects in Orbix Java Servers
Note: This section discusses the use of the Orbix Java -specific bind()

method to create proxy objects in clients. This should not be
confused with the CORBA-specified bind() method for use with the
Naming Service. Orbix Java Edition only supports fully qualified
Orbix Java -specific bind. That is bind (“myMarker:myServer”,
hostname).
There is a difference between binding to Orbix Java servers and
binding in a Naming Service. Binding in a Naming Service context
involves associating an application level name, usually a
meaningful string, to an IOR. This binding is used at resolution
time to map a name to an object through its IOR. Binding to
servers, however, involves the creation of a proxy object in the
client through which methods on the remote server may be
activated.
The Orbix Java bind() method provides a mechanism for creating
proxies for objects that have been created in servers. A client that
uses bind() to create a proxy does not need to specify the entire
object reference for the target object. Although bind() can be
invoked using either the Orbix protocol or CORBA IIOP, it can only
succeed if the target object is implemented in an Orbix or Orbix
Java server. The bind() method cannot be used with objects that
are implemented using other ORBs.
The creation of a proxy in a client’s address space allows you to
invoke operations on the target object. When an operation is
invoked on the proxy, Orbix Java automatically transmits the
request to the target object. You can use the bind() method to
specify the exact object required or, by using default parameters,
Orbix Java is allowed some freedom when choosing the object.
 138 Orbix Programmer’s Guide Java Edition

The bind() Method
The bind() method is a static method automatically generated by
the IDL compiler for each IDL Java class. The IDL compiler
generates six overloaded bind() methods for each IDL interface.
In the case of the Bank interface, these methods are defined as
follows:

// In file BankHelper.java
// Java generated by the Orbix Java IDL compiler.

package Demos.BankSimple;

import IE.Iona.OrbixWeb._OrbixWeb;
...

public class BankHelper {
...

public static final Bank bind
(String markerServer) {

...
}

public static final Bank bind
(String markerServer, org.omg.CORBA.ORB orb)

{
...

}

public static final Bank bind
(String markerServer, String host) {

...
}
public static final Bank bind

(String markerServer, String host,
 org.omg.CORBA.ORB orb) {

...
}

public static Bank narrow(Object _obj) {
...

}
}

}

Parameters to bind()
The bind() method is overloaded and takes the following sets of
parameters:

• markerServer, host

• markerServer, host, orb

• A full object reference as returned by the method
org.omg.CORBA.ORB.object_to_string().

The orb parameter to bind() enables support for multiple ORBs.
The specific ORB passed to the bind() method is used to build the
proxy and establish a connection to the target server when
required. The markerServer and host parameters are explained in
turn in the following pages.
Orbix Programmer’s Guide Java Edition 139

Finally, this chapter ends with a description of methods of creating
proxy objects from object reference information, including binding
to a stringified object reference.

The MarkerServer Parameter to bind()
The markerServer parameter denotes both a specific server name
and object within that server. It can be a string of the following
form:

marker : server_name

The marker identifies a specific object within the specified server.
The server_name is the name of a server, as registered in the
Implementation Repository. It is not necessarily the name of a
class or an interface although you can assign a server the same
name as that of a class or interface. The Implementation
Repository is described in detail in “Registration and Activation of
Servers” on page 189.
Orbix Java will choose the name of the Java class if a null string is
specified for the server name. You can do this either by not
passing a first parameter, or by passing one of the following as the
first parameter: a null string; a string with no ‘:’; or a string which
terminates with a ‘:’.
If the string does not contain a ‘:’ character, the string is
understood to be a marker with no explicit server name. Because
a colon is used as the separator, it is invalid for a marker or a
server name to include a ‘:’ character.
The marker must be supplied in all cases. Anonymous bind (i.e.
not supplying a marker) is deprecated in Orbix Java Edition.
However, clients built with previous versions of OrbixWeb can still
use anonymous bind even with Orbix Java Edition servers.
Finally, if the markerServer parameter contains at least two ‘:’
characters, it is not treated as a marker:server_name pair. However,
it is assumed to be the string form of a full object reference. Refer
to “Using Object Reference Strings to Create Proxy Objects” on
page 141 for more details.

The Host Parameter to bind()
The host parameter to bind() specifies the Internet host name or
the Internet address of a node on which to find the object. An
Internet address is assumed to be a string of the form
xxx.xxx.xxx.xxx, where x is a decimal digit.

Example Calls to bind()
This section shows some sample calls to bind().
1. Bind to the College_Green object at the AIB server at node

beta, in the internet domain mc.ie. The object should
implement the Bank IDL interface.

Bank b = BankHelper.bind
("College_Green:AIB", "beta.mc.ie")

2. Bind to the College_Green object at the AIB server at Internet
address 10.59.0.1. The object should implement the Bank IDL
interface.

Bank b = BankHelper.bind
("College_Green:AIB", "10.59.0.1");
 140 Orbix Programmer’s Guide Java Edition

Binding and Exceptions
By default, bind() raises an exception if the desired object is
unknown to Orbix Java. This requires Orbix Java to ping the
desired object in order to check its availability The ping operation
is defined by Orbix Java and has no effect on the target object.
The pinging causes the target Orbix Java server process to be
activated if necessary, and confirms that this server recognizes
the target object.
If you wish to improve efficiency by reducing the number of
remote invocations, ping can be disabled by calling the method
pingDuringBind() as follows:

// Java
import IE.Iona.OrbixWeb._CORBA;
...
_CORBA.Orbix.pingDuringBind(false);

When ping is disabled, binding to an unavailable object does not
raise an exception at that time. Instead, an exception is raised
when the proxy object is first used.
A program should always check for exceptions when calling
bind(), whether or not ping is enabled.

Using Object Reference Strings to Create Proxy
Objects

An Orbix Java object is uniquely identified by an object reference.
Given a stringified form of an Orbix Java object reference, an
Orbix Java client can create a proxy for that object, by passing the
string to the method string_to_object() on an instance of
org.omg.CORBA.ORB.
For example, given an object reference string that identifies a Bank
object:

// Java
import org.omg.CORBA.ORB;
import org.omg.CORBA.Object;
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb._CORBA;
...

//Assign to object ref string.
String bStr = ... ;
Bank b;

ORB orb = ORB.init(args, null);

try {
Object o = orb.string_to_object (bStr);
b = BankHelper.narrow (o);

}
catch (SystemException se) {

...
}

Orbix Programmer’s Guide Java Edition 141

Similarly, the markerServer field of the bind() method can accept a
stringified object reference:

// Java
import org.omg.CORBA.SystemException;
...
// Assign to object reference string.
String bStr = ...;
Bank b;

try {
b = BankHelper.bind (bStr);

}
catch (SystemException se) {

...
}

This has exactly the same functionality as calling
string_to_object(), except you do not have to call narrow()
afterwards.
The method string_to_object() on IE.Iona.OrbixWeb.CORBA.ORB is
overloaded to allow the individual fields of a stringified object
reference to be specified. Refer to the section on _OrbixWeb.ORB()
in the Orbix Programmer’s Reference Java Edition for details
on how to convert an instance of org.omg.CORBA.ORB to an instance
of IE.Iona.OrbixWeb.CORBA.ORB.
The definition of this form of string_to_object() is as follows:

// Java
// In package IE.Iona.OrbixWeb.CORBA,
// in class ObjectRef.

public ObjectRef
string_to_object(

String host,
String IFR_host,
String ServerName,
String marker,
String IFR_server,
String interfaceMarker);

The ability to create proxy objects from object reference strings
has several useful applications. For example, this approach to
proxy creation is often used in conjunction with the Orbix Java
Dynamic Invocation Interface (DII).
 142 Orbix Programmer’s Guide Java Edition

Exception Handling
The implementation of an IDL operation or attribute can throw an
exception to indicate that a processing error has occurred. This
chapter describes Orbix Java exception handling in detail, using a
banking example. This example builds on the concepts illustrated
in the banking example in the chapters “Developing Applications
with Orbix Java”, and “Using and Implementing IDL Interfaces”.

There are two types of exceptions that an IDL operation can
throw:

• User-defined exceptions.
These exceptions are defined explicitly in your IDL definitions,
and can only be thrown by operations.

• System exceptions.
These are pre-defined exceptions that all operations and
attributes can throw.

This chapter describes user-defined exceptions and system
exceptions, and shows how to throw and catch these exceptions.
Orbix Java does not require any special handling for exceptions.
IDL exceptions are mapped to Java classes, which inherit from
java.lang.Exception. Therefore, exceptions thrown by a server can
be handled by try and catch statements in the normal way.

User-Defined Exceptions
This section describes how to define exceptions in IDL. It also
describes the Orbix Java mapping for such user-defined
exceptions. The source code for the example described in this
chapter is available in the demos\common\BankExceptions directory of
your Orbix Java installation.
 Orbix Programmer’s Guide Java Edition 143

The IDL Definitions
In this example, the create_account() operation can raise an
exception if the bank cannot create an Account object. The
exception CannotCreate is defined within the Bank IDL interface.
This defines a string member that indicates the reason why the
Bank rejected the request:

// IDL
// In file bankexceptions.idl

module BankExceptions {
typedef float CashAmount;
interface Account;

interface Bank {
1 // User-defined exceptions.

exception CannotCreate { string reason; };
exception NoSuchAccount { string name; };

Account create_account (in string name)
2 raises (CannotCreate);

Account find_account (in string name)
raises (NoSuchAccount);

};

interface Account {
// User-defined exception.

3 exception InsufficientFunds { };
readonly attribute string name;

readonly attribute CashAmount balance;
void deposit (in CashAmount amount);
void withdraw (in CashAmount amount)

raises (InsufficientFunds);
};

};

This IDL is explained as follows:
1. CannotCreate and NoSuchAccount are user-defined exceptions

defined for the Bank IDL interface.
2. Operation BankExceptions::Bank::create_account() can raise

the BankExceptions::Bank::CannotCreate exception. It can only
raise listed user-defined exceptions. It can raise any
system-defined exception.

3. An exception does not need to have any data members.

Note: Read or write access to any IDL attribute can also raise any
system-defined exception.
 144 Orbix Programmer’s Guide Java Edition

The Generated Java Code
This chapter assumes that the IDL source file is compiled using
the following command:

idlj -jP Demos BankExceptions.idl

The IDL compiler generates Java code within the
Demos.BankExceptions package. For example, the following Java
class is generated for the IDL definition for the CannotCreate
exception:

// Java generated by the Orbix Java IDL compiler.

package Demos.BankExceptions.BankPackage;

1 public final class CannotCreate
extends org.omg.CORBA.UserException
implements java.lang.Cloneable {

public String reason;

public CannotCreate() {
super();

}
2 public CannotCreate(String reason) {

super();
this.reason = reason;

}
...

}

1. The class CannotCreate inherits from
org.omg.CORBA.UserException. This Orbix Java class in turn
inherits from java.lang.Exception. This inheritance allows
CannotCreate to be thrown and handled as a Java exception,
using try...catch blocks.

2. Because the CannotCreate exception has one member (reason,
of type String) the generated class provides a constructor that
initializes this member.

The generated Java interface for Bank is as follows:
// Java generated by the Orbix Java IDL compiler.

package Demos.BankExceptions;

public interface Bank
extends org.omg.CORBA.Object {

public Account create_account(String name)
throws CannotCreate;

public Account find_account(String name)
throws NoSuchAccount;

...
}

Orbix Programmer’s Guide Java Edition 145

System Exceptions
The CORBA specification defines a set of system exceptions to
which Orbix Java adds a number of additional exceptions. These
system exceptions can be raised during Orbix Java invocations.
The standard system exceptions are implemented as a set of Java
classes (in the package org.omg.CORBA). Each system exception is a
derived class of org.omg.CORBA.SystemException. This in turn is a
derived class of java.lang.RuntimeException. This means that all
system exceptions can be caught in one single Java catch clause.
The additional Orbix Java system exceptions are implemented in
the IE.Iona.OrbixWeb.Features package. These exceptions also
inherit from the org.omg.CORBA.SystemException class.
A client can also handle individual system exceptions in separate
catch clauses, as described in “Handling Specific System
Exceptions” on page 150.
Each system exception is implemented as a class of the following
form:

// Java
package org.omg.CORBA;
import org.omg.CORBA.CompletionStatus;

public class <EXCEPTION TYPE>
extends org.omg.CORBA.SystemException {

public <EXCEPTION TYPE> (){
...

}

public <EXCEPTION TYPE> (int minor,
CompletionStatus compl_status) {
...

}

public <EXCEPTION TYPE> (String reason) {
 ...

}

public <EXCEPTION TYPE> (String reason, int minor,
CompletionStatus compl_status) {
...

}

Refer to the Orbix Administrator’s Guide Java Edition for a
list of system exceptions defined by Orbix Java.

Obtaining Information from System Exceptions
Class SystemException includes a public member variable called
status of type CompletionStatus, which may be of use in some
applications. This variable holds an int value that indicates how
far the operation or attribute call progresses before the exception
is raised. The return value must be one of three values defined in
the Orbix Java class CompletionStatus (in the package
org.omg.CORBA).
 146 Orbix Programmer’s Guide Java Edition

The return values are as follows:

Example of Server-Side Exception Handling
All Orbix Java exceptions inherit from Java class
java.lang.Exception. Consequently, the rules for throwing Orbix
Java exceptions follow those for throwing standard Java
exceptions: you must throw an object of the exception class. For
example, you can use the following code to throw an exception of
IDL type Bank::CannotCreate:

// Java
import Demos.BankExceptions.BankPackage;

...
throw new CannotCreate("Some reason");

This uses the automatically generated constructor of class
CannotCreate to initialize the exception object’s reason member
with the string “Some reason”.
The implementation of the create_account() operation in class
BankImplementation can be coded as follows:
// Java
// In file BankImplementation.java,

package Demos.BankExceptions;

import Demos.BankExceptions.BankPackage.*;
import org.omg.CORBA.SystemException;
...

// Implemetation for the Bank IDL interface.
public class BankImplementation

implements _BankOperations {
...
// Implementation for IDL operation create_account().
public Account create_account(String name)

throws CannotCreate {

Account account_ref = null;

// Raise an exception if account already exists.

CompletionStatus.COMPLETED_NO The system exception is raised
before the operation or attribute
call starts to execute.

CompletionStatus.COMPLETED_YES The system exception is raised
after the operation or attribute call
finishes its execution.

CompletionStatus.COMPLETED_MAYBE It is uncertain whether or not the
operation or attribute call starts
execution, and, if it does, whether
or not it finishes. For example, the
status is
CompletionStatus.COMPLETED_MAYBE
if a client’s host receives no
indication of success or failure
after transmitting a request to a
target object on another host.
Orbix Programmer’s Guide Java Edition 147

if (m_list.get(name) != null) {
System.out.println("- Account for " + name + "

already exists, " + "throwing CannotCreate
 exception.");

throw new CannotCreate("Account for " + name + "
already exists.");

}

// Raise an exception if bank is full.
if (m_account_count >= MAX_ACCOUNTS) {

throw new CannotCreate("No more space for new
accounts ");

}

System.out.println("- Creating new account for " +
 name + ".");

// Create a new account
try {

account_ref =
new _tie_Account(new AccountImplementation

(name,0F, m_currency_format),name);
m_orb.connect(account_ref);

}
catch(SystemException se){

System.out.println("[Exception raised when
creating Account. " + se + "]");

}
...
}

...
}

 148 Orbix Programmer’s Guide Java Edition

Example of Client-Side Exception Handling
A client calling an operation that raises a user exception should
handle that exception using an appropriate catch statement.
Naturally, a client should also provide handlers for potential
system exceptions.
The following code extract shows client-side exception handling
with the CannotCreate user-defined exception:

// Java
// In file Client.java

package Demos.BankExceptions;

import Demos.BankExceptions.Bank;
import Demos.BankExceptions.BankPackage.*;
...

public class Client {
...
public void createAccount(String name) {

if (!"".equals(name)) {
if (m_bank_ref != null) {

try {
m_bank_ref.create_account(name);
m_client_frame.printToMessageWindow
("Created account for "+ name +".");

}
catch(CannotCreate cc) {
 m_client_frame.printToMessageWindow ("[

Cannot create account " + cc.reason
+ "]");

}
catch(SystemException se) {
m_client_frame.printToMessageWindow("[

Cannot create account " + se +"]");
}

}
...

}
}

Orbix Programmer’s Guide Java Edition 149

Handling Specific System Exceptions
A client can also provide a handler for a specific system exception.
For example, to explicitly handle a COMM_FAILURE exception, you
could write the following code:
// Java

import org.omg.CORBA.SystemException;
import org.omg.CORBA.COMM_FAILURE;
....

public class Client {
...

try {
org.omg.CORBA.Object obj =
m_ns_wrapper.resolveName(“Bank”);
m_bank_ref = BankHelper.narrow(obj);
m_client_frame.printToMessageWindow

("Connection succeeded.");
}
catch (COMM_FAILURE cfe) {

m_client_frame.printToMessageWindow
("Unexpected communication failure

exception:" + cfe);
}
catch (SystemException se) {

m_client_frame.printToMessageWindow
("Unexpected system exception" + se);

}
...
}

}

This code is described as follows:
1. To handle individual system exceptions, you must import the

required exceptions from the org.omg.CORBA package.
Alternatively, you could reference the exception classes by
fully scoped names.

2. The handler for a specific system exception must appear
before the handler for SystemException. In Java, catch clauses
are attempted in the order specified; and the first matching
handler is called. A handler for SystemException matches all
system exceptions. All system exception classes are derived
classes of SystemException because of implicit casting.

3. If you only wish to know the type of exception that occurred,
the message output from class SystemException is sufficient. A
handler for an individual exception is required only when
specific action is to be taken if that exception occurs.
 150 Orbix Programmer’s Guide Java Edition

Using Inheritance of
IDL Interfaces
This chapter describes how to implement inheritance of IDL
interfaces, using a banking example. This example builds on the
concepts illustrated in the banking examples in the chapters “Using
and Implementing IDL Interfaces” and “Exception Handling”.

You can define a new IDL interface that uses functionality
provided by an existing interface. The new interface inherits or
derives from the base interface. IDL also supports multiple
inheritance, allowing an interface to have several immediate base
interfaces. This chapter shows how to use inheritance in Orbix
Java using the banking example.
The source code for the example described in this chapter is
available in the demos\BankInherit directory of your Orbix Java
installation.

Single Inheritance of IDL Interfaces
The IDL for this example demonstrates the use of single
inheritance of IDL interfaces. It expands the banking example in
“Exception Handling” on page 143 to enable support for checking
(current) accounts.

The IDL Interfaces
The IDL interfaces to the banking example are now defined as
follows:

// IDL
// In file bankinherit.idl

#include "bankexceptions.idl"

module BankInherit {
interface CheckingAccount; // forward reference

// BetterBank manufactures checking accounts.
1 interface BetterBank : BankExceptions::Bank {

// New operation to create checking accounts.
2 CheckingAccount create_checking (in string name,

in BankExceptions::CashAmount overdraft)
raises(CannotCreate);

};

// New CheckingAccount interface.
3 interface CheckingAccount : BankExceptions::Account {

readonly attributeBankExceptions::CashAmount
overdraft;

};
};
 Orbix Programmer’s Guide Java Edition 151

This IDL can be explained as follows:
1. BetterBank inherits the operations of BankExceptions::Bank and

adds a new operation to create checking accounts. You do not
need to list the account operations from BankExceptions::Bank
because these are now inherited.

2. The new create_checking()operation added to interface
BetterBank manufactures CheckingAccounts.

3. The new interface CheckingAccount derived from interface
BankExceptions::Account. CheckingAccount has an overdraft
limit, and the implementation allows the balance to become
negative.

The Client-Side Generated Types
It is assumed that the IDL definition is compiled using the
following command:

idlj -jP Demos bankinherit.idl

Orbix Java maps IDL interfaces to Java interfaces. The IDL
interface inheritance hierarchy maps directly to the Java interface
inheritance hierarchy, as shown in Figure 17:

IDL-Generated Java Interfaces
The IDL interface Account maps to the following Java interface:

// Java
// Automatically generated
// in file Account.java

package Demos.BankExceptions;

public interface Account
extends org.omg.CORBA.Object {

public String name();
public float balance();
public void deposit(float amount);
public void withdraw(float amount)

throws InsufficientFunds;
...

}

Figure 17: IDL and Java Inheritance Hierarchies

Account

CheckingAccount

IDL interfaces

Account

CheckingAccount

Java interfaces
 152 Orbix Programmer’s Guide Java Edition

The IDL interface CheckingAccount maps to the following Java
interface:

// Java
// Automatically generated
// In file CheckingAccount.java

package Demos.BankInherit;

public interface CheckingAccount
extends BankExceptions.Account {

public float overdraft();
...

}

As with the IDL interface CheckingAccount, the mapped Java
interface CheckingAccount inherits the methods contained in
interface Account.

IDL-Generated Java Classes
The IDL compiler also generates Java implementation classes for
the Java interfaces. These Java implementation classes provide
client proxy functionality for the IDL operations. This proxy
functionality facilitates the distribution of objects in Orbix Java. In
addition, the IDL compiler also generates a Java helper class that
implements the static bind() and narrow() methods. Refer to “IDL
to Java Mapping” on page 67 for a full description of the mapped
Java classes.
IDL interface inheritance maps directly to the inheritance
hierarchy of the generated Java interfaces, but it does not map to
the generated Java classes for those interfaces. Therefore, each
Java class that implements an IDL-generated Java interface must
implement both the methods of that interface and the methods of
all interfaces from which it inherits. Of course, this is an internal
Orbix Java implementation detail and does not impose any
additional burden on the programmer.
This feature facilitates the mapping of IDL multiple inheritance to
Java, as discussed in “Multiple Inheritance of IDL Interfaces” on
page 159.
Orbix Programmer’s Guide Java Edition 153

The generated Java class that implements the Account interface is
as follows:

// Java
// In file _AccountStub.java

package Demos.BankExceptions;

public class _AccountStub
extends org.omg.CORBA.portable.ObjectImpl
implements Account {

public _AccountStub () {}

public String name() {
...

}

public float balance() {
...

}

public void deposit(float amount) {
...

}

public void withdraw(float amount)
 throws InsufficientFunds {
...

}
...

}

The generated Java class that implements the CheckingAccount
interface is as follows:

// Java
// In file _CheckingAccountStub.java

package Demos.BankInherit;

public class _CheckingAccountStub
extends org.omg.CORBA.portable.ObjectImpl
implements CheckingAccount {

public _CheckingAccountStub () {}

public float overdraft() {
...

}

public String name() {
...

}

public float balance() {
...

}

public void deposit(float amount) {
...

}

 154 Orbix Programmer’s Guide Java Edition

public void withdraw(float amount)
throws InsufficientFunds {
...

}
...

}

The _AccountStub and _CheckingAccountStub classes enable client
method calls to be forwarded to the server.

Using Inheritance in a Client
You can create and manipulate instances of CheckingAccount in a
similar way to the instances of Account in “Developing the Client
Application” on page 116. For example, the following code extract
shows how to create CheckingAccount objects:

// Java
// In file Client.java

package Demos.BankInherit;

public class Client {
...
public void createCheckingAccount(String name,

float overdraftAmount
) {

try {
m_BankRef.create_checking(name,

overdraftAmount);
m_clientFrameReference.printToMessageWindow(

"Created checking account for " +name+
".");

}
catch (CannotCreate ex){

...
}
catch (SystemException se) {

...
}

}
...

}

The IDL-defined create_checking() method creates a
CheckingAccount object with the specified name and overdraft.
Orbix Programmer’s Guide Java Edition 155

Using Inheritance in a Server
This section uses a banking example to describe the two
approaches to server implementation:

• The TIE Approach
• The ImplBase Approach
The TIE approach is preferred for the majority of implementations
in Java. This is due to the restriction of single inheritance of
classes in Java, which limits the ImplBase approach. Refer to
“Comparison of the ImplBase and TIE Approaches” on page 124
for a detailed discussion of both approaches.

The TIE Approach
Using the TIE approach to implementing IDL interfaces, the
CheckingAccount implementation class simply implements Java
interface _CheckingAccountOperations.
This means that there is no implicit inheritance requirement
imposed on the implementation class. This has the advantage of
allowing you to inherit from any existing class that implements
any of the required methods.
On the server side, the IDL compiler generates the Java interface
_CheckingAccountOperations. This defines the methods that a
server class must implement in order to support IDL interface
CheckingAccount. This Java interface inherits from type
_AccountOperations, which serves a similar purpose for IDL type
Account.
Because the inherited class AccountImplementation implements the
methods defined in interface _AccountOperations, you need only
implement methods that differ in class CheckingAccImplementation;
you can reuse common functionality.
 156 Orbix Programmer’s Guide Java Edition

For example, class CheckingAccImplementation calls the constructor
for AccountImplementation. The IDL-defined name() and balance()
accessor methods are not re-implemented:
// Java
// In file CheckingAccImplementation.java
package Demos.BankInherit;

import Demos.BankExceptions._AccountOperations;
import Demos.BankExceptions.AccountPackage.

InsufficientFunds;

public class CheckingAccImplementation
extends AccountImplementation
implements _CheckingAccountOperations {

// Constructor.
public CheckingAccImplementation(String name,

float bal, float overdraft) {
// Calls AccountImplementation constructor.
super (name, bal);

m_Overdraft = overdraft;
m_OverdraftLimit = overdraft;

}

//Implementation for deposit() now updates overdraft.
public void deposit(float amount) {

...
}
// Implementation for withdraw() updates overdraft.
public void withdraw(float amount)

throws Demos.BankExceptions.AccountPackage.
InsufficientFunds {
...

}

// Implementation for new IDL operation.
public float overdraft() {

return m_Overdraft;
}

}

Because class CheckingAccImplementation inherits from class
AccountImplementation, all Account methods do not need to be
re-implemented. Using the TIE approach enables you to take
advantage of the reuse characteristics of object-oriented
programming.
Orbix Programmer’s Guide Java Edition 157

The ImplBase Approach
The IDL compiler generates the abstract class
_CheckingAccountImplBase. This supports the ImplBase approach to
IDL interface implementation. To implement IDL interface
CheckingAccount using the ImplBase approach, define a Java class
that inherits from class _CheckingAccountImplBase, and then
implement the methods defined in this class. This has important
consequences for the reusability of implementation classes.
Java does not support multiple inheritance of classes. So if an
existing class implements a subset of the abstract methods
defined for type CheckingAccount (for example, an existing class
also implements IDL type Account), this class cannot be reused in
the CheckingAccount implementation class.
The CheckingAccount implementation class must directly implement
all the operations of IDL interface CheckingAccount and all
interfaces from which it inherits. This restriction severely limits the
flexibility of the ImplBase approach.
Using the ImplBase approach, class CheckingAccImplementation
cannot inherit the Account implementation, so you must
re-implement the existing Account methods before adding any new
functionality.

// Java
package Demos.BankInherit;

public class CheckingAccountImplementation
extends _CheckingAccountImplBase {
// Re-implement existing Account methods and
// add new CheckingAccount methods.

}

Refer to “Using and Implementing IDL Interfaces” on page 103 for
details of implementing using the ImplBase approach.
 158 Orbix Programmer’s Guide Java Edition

Multiple Inheritance of IDL Interfaces
IDL supports multiple inheritance of interfaces. The following
serves as an example:

// IDL
interface Account {

readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};

// Derived from interface Account.
interface CheckingAccount : Account {

readonly attribute float overdraft;
};

// Derived from interface Account.
interface SavingsAccount : Account {
};

// Indirectly derived from interface Account.
interface PremiumAccount :

CheckingAccount, SavingsAccount {
};

Java also supports multiple inheritance of interfaces, but does not
support multiple inheritance of classes. As in the case of single
inheritance, the inheritance hierarchy of IDL interfaces maps
directly to an identical inheritance hierarchy of Java interfaces that
define client-side functionality. For example, the interface
hierarchy in the preceding definition maps as shown in Figure 18.

Figure 18: Multiple Inheritance of IDL Interfaces

The inheritance hierarchy does not map to the Java classes that
implement the generated Java interfaces. Consequently, each
generated Java class implements the methods of the
corresponding Java interface and of all interfaces from which it
inherits. In this way, a client that holds a PremiumAccount object
reference can invoke all inherited operations (from Account,
CheckingAccount, and DepositAccount) directly on that reference.

CheckingAccount SavingsAccount

Account

PremiumAccount
Orbix Programmer’s Guide Java Edition 159

Implementing Multiple Inheritance
On the server side, the implementation class requirements are
identical to those for single inheritance. You can implement
multiple inheritance in your sever using either the TIE approach or
the ImplBase approach.

Using The TIE Approach
Using the TIE approach, the implementation class must implement
Java interface _PremiumAccountOperations, but can also inherit
implementation methods from an existing class. However, the
absence of support for multiple inheritance of classes in Java
implies that a multiple inheritance hierarchy of IDL interfaces can
never map directly to the implementation classes for those
interfaces.
IDL avoids any ambiguity due to name clashes of operations and
attributes, when two or more direct base interfaces are combined.
This means that an IDL interface cannot inherit from two or more
interfaces with the same operation or attribute name. It is
permitted, however, to inherit two or more constants, types or
exceptions with the same name from more than one interface.
However, you must qualify every use of these with the name of
the interface, by using the full IDL scoped name.

Using The ImplBase Approach
Using the ImplBase approach, when implementing type
PremiumAccount you must inherit from class
_PremiumAccountImplBase and directly implement all methods for
interface PremiumAccount and all types from which it inherits.
 160 Orbix Programmer’s Guide Java Edition

Callbacks from Servers
to Clients
Orbix Java clients usually invoke operations on objects in Orbix Java
servers. However, Orbix Java clients can implement some of the
functionality associated with servers, and all servers can act as
clients. This flexibility increases the range of client-server
architectures you can implement with Orbix Java. This chapter
describes a common approach to implementing callbacks in an Orbix
Java application and this is illustrated by an example.

A callback is an operation invocation made from a server to an
object that is implemented in a client. Callbacks allow servers to
send information to clients without forcing clients to explicitly
request the information.

Implementing Callbacks in Orbix Java
This section introduces a simple model for implementing callbacks
in a distributed system. The following steps are described:

• Defining the IDL interfaces for the system.
• Writing a client.
• Writing a server.

Defining the IDL Interfaces
In the example system, clients invoke operations on servers and
servers invoke operations on clients. Consequently, our IDL
definitions must define the interfaces through which each type of
application can access the other. In the simplest case, this
involves two interfaces, for example:

// IDL
interface ClientOps {

...
};

interface ServerOps {
...

};

In this model the client application supplies an implementation of
type ClientOps, while the server implements ServerOps.
It is important to note that clients are not registered in the
Implementation Repository and therefore the server in this
example cannot bind to the client’s implementation object.
Instead, our IDL definition supplies an operation that allows the
client to explicitly pass an implementation object reference to the
server.
 Orbix Programmer’s Guide Java Edition 161

For example, the IDL for the example system can be defined as
follows:

// IDL
interface ClientOps {

void callBackToClient (in String message);
};
interface ServerOps {

void sendObjRef (in ClientOps objRef);
};

“An Example Callback Application” describes a more realistic
application, and outlines the factors which you must consider
when modifying this definition.

Writing a Client
The first step in writing a client is to implement the interface for
the client objects, in this case type ClientOps. You can use the TIE
or ImplBase approach, as if the client were an Orbix Java server.
In this example, it is assumed that the implementation is named
ClientOpsImplementation.
The client main() method is as follows:

// Java

import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;

public class Client {
public static void main(String args[]) {

// Initialize the ORB.
ORB orb = ORB.init(args,null);
// TIE approach.
ClientOps clientImpl;
ServerOps serverRef;

try {
// Instantiate implementation and proxy.
clientImpl = new _tie_ClientOps

(new ClientImplementation ());

//Start a background event-processing thread
//and connect to the runtime.
orb.connect(clientImpl);
ServerRef = ServerOpsHelper.bind
(opsMarker:opsServer”, hostname);

// Send object reference to server.
serverRef.sendObjRef (clientImpl);

}
// Process requests for 2 mins.
try {

Thread.sleep(1000*60*2);
}
catch (Exception ex){}
orb.disconnect(clientImpl)

catch (SystemException se) {
System.out.println(

"Unexpected exception:\n"
 162 Orbix Programmer’s Guide Java Edition

+ se.toString());
return;

}
}

The client creates an implementation object of type
ClientOpsImplementation. It then binds to an object of type
ServerOps in the server. At this point, the client holds an
implementation object of type ClientOps and a proxy for an object
of type ServerOps, as shown in Figure 19.

Figure 19: Client Objects

To allow the server to invoke operations on the ClientOps
implementation object, the client must pass this object reference
to the server. Consequently, the client now calls the operation
sendObjRef() on the ServerOps proxy object, as shown in Figure 20.

Figure 20: Client Passes Implementation Object Reference to Server

 The ORB.connect() method explicitly connects object
implementations to the ORB. This method starts an
event-processing thread in the background, if there is no such
thread running already, the client calls ORB.connect() after the TIE
or ImplBase object has been created. Refer to Orbix
Programmer’s Reference Java Edition for more details on the
connect() method.

Orbix Java Client

Implementation
object for type
ClientOps

Proxy of type
ServerOps

Orbix Java Client Orbix Java Server

Implementation
object for type
ClientOps

Proxy of type
ServerOps

Implementation
object for type
ServerOps

Proxy of type
ClientOps

(clientImpl)

return

sendObjRef
Orbix Programmer’s Guide Java Edition 163

Finally, the client’s main thread must either sleep or do other
processing to avoid exiting, until it wishes to disconnect its
implementation object.

Writing a Server
You can code the server application as a normal Orbix Java server.
Specifically, you should define an implementation class for type
ServerOps, and create one or more implementation objects.
The implementation of the method sendObjRef() for type ServerOps
requires special attention. This method receives an object
reference from the client. When this object reference enters the
server address space, a proxy for the client’s ClientOps object is
created. The server will use this proxy to call back to the client.
The implementation of sendObjRef() should store the reference to
the proxy for later use.
For example, the implementation of type ServerOps might look as
follows:
// Java
// (TIE approach).

public class ServerOpsImplementation
implements _ServerOpsOperations {
// Member variable to store proxy.
ClientOps m_objRef;
// Constructor.
public ServerOpsImplementation () {

clientObjRef = null;
}
// Operation implementation.
public void sendObjRef (ClientOps objRef) {

m_objRef = objRef;
}

}

Once the server creates the proxy in its address space, it may
invoke the operation callBackToClient(). For example, the server
might initiate this call in response to an incoming event or after
impl_is_ready() returns. The method invocation on the ClientOps
proxy is routed to the client implementation object as shown in
Figure 21.

Figure 21: Server Invokes Operation on Client’s Callback Object

Orbix Java Client Orbix Java Server

Implementation
for type
ClientOps

Proxy of type
ServerOps

Implementation
for type
ServerOps

Proxy of type
ClientOps

callBackToClient()
routed to client

implementation

return

 object
 164 Orbix Programmer’s Guide Java Edition

The transmission of requests from server to client is possible
because Orbix Java maintains an open communications channel
between client and server while both processes remain alive. The
server can send the callback invocation directly to the client and
does not need to route it through an Orbix Java daemon.
Therefore, the client can process the callback event without being
registered in the Implementation Repository and without being
given a server name.

Callbacks and Bidirectional Connections
If you use the Orbix protocol, the server sends its callbacks on the
same connection that the client initiated and used to make
requests on the server. This means that the client does not need
to accept an incoming connection.
Standard IIOP, on the other hand, requires that the client accept a
connection from the server to allow the callbacks to be sent. Many
firewalls do not allow an application inside the firewall to receive
connections from outside. As result a client applet downloaded
behind such a firewall cannot use standard IIOP to receive
callbacks from a server outside the firewall.
Orbix Java introduces an optional extension to IIOP to allow the
protocol to use bidirectional connections. Bidirectional connections
allow clients to receive requests from servers on the connection
that the client originated to the server. This gets around the
problem of downloading client applets behind a firewall. To
configure your client to use bidirectional connections set the Orbix
Java configuration parameter IT_USE_BIDIR_IIOP to true. If you set
this to true, and your server supports this feature, you can also
set IT_ACCEPT_CONNECTIONS to false. This ensures that your client
does not open a listening port for accepting connections. If the
server does not support the feature, it attempts to open a
connection back to the client according to the standard IIOP
model.

Avoiding Deadlock in a Callback Model
Note: The potential for deadlock is specific to use of the Orbix Java class

BOA (in package IE.Iona.OrbixWeb.CORBA). Deadlock does not occur
when the class ORB is used; specifically, the methods ORB.connect()
and ORB.disconnect().
When an application invokes an IDL operation on an Orbix Java
object, by default, the caller is blocked until the operation has
returned. In a system where several applications have the
potential to both invoke and implement operations, deadlocks may
arise.
For example, in the application already described in this chapter, a
simple deadlock may arise if the server attempts to call back to
the client in the implementation of the method sendObjRef(). In
this case, the client is blocked on the call to sendObjRef() when the
server invokes callBackToClient(). The callBackToClient() call
blocks the server until the client reaches an event processing call
and handles the server request. Each application is blocked,
pending the return of the other, as shown in Figure 22.
Orbix Programmer’s Guide Java Edition 165

Figure 22: Deadlock in a Simple Callback Model

Unfortunately, it is not always possible to design a callback
architecture in which simultaneous invocations between groups of
processes are guaranteed never to occur. However, there are
alternative methods to avoid deadlock in an Orbix Java system.
The two primary approaches are:

• Using non-blocking operation invocations.
• Using a multi-threaded event processing model.
These approaches are discussed in the two subsections which
follow.

Using Non-Blocking Operation Invocations
There are two ways to invoke an IDL operation in an Orbix Java
application without blocking the caller: the first is to declare the
operation as oneway in the IDL definition; the second is to invoke
the operation using the deferred synchronous approach supported
by the Orbix Java Dynamic Invocation Interface (DII).
You can declare an IDL operation oneway only if it has no return
value, out, or inout parameters. A oneway operation can only raise
an exception if a local error occurs before a call is transmitted.
Consequently, the delivery semantics for a oneway request are
“best-effort” only. This means that a caller can invoke a oneway
request and continue processing immediately, but is not
guaranteed that the request arrives at the server.
You can avoid deadlock, as shown in Figure 22, by declaring either
sendObjRef() or callBackToClient() as a oneway operation, for
example:

// IDL
interface ClientOps {

void callBackToClient (in String message);
};

interface ServerOps {
oneway void sendObjRef (in ClientOps objRef);

};

Orbix Java Client Orbix Java Server

Implementation
for type
ClientOps

Proxy of type
ServerOps

Implementation
for type
ServerOps

Proxy of type
ClientOps

1.) client blocked pending
return of
sendObjRef()

 2.) server blocked
in sendObjRef()
pending return of
callBackToClient()
 166 Orbix Programmer’s Guide Java Edition

In this case, the client’s call to sendObjRef() returns immediately,
without waiting for the server’s implementation method call to
return. This allows the client to enter the Orbix Java event
processing call. At this point, the callback invocation from the
server is processed and routed to the client’s implementation of
callBackToClient(). When this method call returns, the server no
longer blocks and both applications again wait for incoming
events.
You can achieve a similar functionality by using the Orbix Java DII
deferred synchronous approach to invoking operations. As
described in the chapter “Dynamic Invocation Interface”, the DII
allows an application to dynamically construct a method
invocation at runtime, by creating a Request object. You can then
send the invocation to the target object using one of a set of
methods supported by the DII.
“Deferred Synchronous Invocations” describes how to call the
following methods on the _CORBA.Orbix object to invoke an
operation without blocking the caller.

Request.send_deferred()
Request.send_oneway()
ORB.send_multiple_ requests_deferred()
ORB.send_multiple _requests_oneway()

If any of these methods are used, the caller can continue to
process in parallel with the target implementation method.
Operation results can be retrieved at a later point in the caller’s
processing, and avoid deadlock as if the operation call was a
oneway invocation.

Using Multiple Threads of Execution
Note: org.omg.CORBA.ORB.connect() which connects an implementation to

the runtime, by default also causes the ORB to launch a
background event-processing thread. This means that a separate
event-processing thread is not necessary. Use of the methods
processEvents() and processNextEvent() outlined in this section is
optional.
An Orbix Java application may create multiple threads of
execution. To avoid deadlock, it may be useful to create a
separate thread dedicated to handling Orbix Java events.
Orbix Programmer’s Guide Java Edition 167

For example, an Orbix Java application could instantiate an object
as follows:
// Java
// In file EventProcessor.java.

import IE.Iona.OrbixWeb._CORBA;
import org.omg.CORBA.SystemException;

public class EventProcessor extends Thread {
public void run () {

try {
_CORBA.Orbix.processEvents

(_CORBA.IT.INFINITE TIMEOUT)
}
catch (SystemException se) {

System.out.println
("Unexpected exception: " + se.toString());

}
}

}

Invoking run() on an object of this type starts the execution of a
thread that processes incoming Orbix Java events.
If another thread in this application becomes blocked while
invoking an operation on a remote object, the event processing
continues in parallel. So, in the example, the remote operation
can safely call back to the multi-threaded application without
causing deadlock.

Event Processing Methods

Orbix Java applications can use event processing methods that do
not implicitly initialize the application server name. The client can
safely call either the method processEvents() or the method
processNextEvent() on the ORB object.
These event processing methods are defined on Orbix Java class
BOA (in package IE.Iona.OrbixWeb.CORBA). If the client is to receive
callbacks, the client’s ORB object must be initialized as type BOA.
The client call, for example, to, processEvents() blocks while
waiting for incoming Orbix Java events. If the server invokes an
operation on the ClientOps object reference forwarded by the
client, this call is processed by processEvents() and routed to the
correct method in the client's implementation object.

An Example Callback Application
The example described in this section is based on a distributed
chat group application. The source code for this application is
available in the demos/orbixjava/WebChat directory of your Orbix
Java installation.
Users join a chat group by downloading an Orbix Java
callback-enabled client. Using this client, the user can send text
messages to a central server. The server then forwards these
messages to other clients which have joined the same group.
The client provides an interface that allows each user to select a
current chat group, to view messages sent to that group and to
send messages to other group members. For example, if user
 168 Orbix Programmer’s Guide Java Edition

“brian” runs the client, this user is added to the group “General”
by default. At this point, the client interface appears as shown in
Figure 23 on page 169.

Figure 23: WebChat Client Interface

The Groups drop-down box allows the user to select a chat group.
The user receives all messages sent to the current group and can
only join one group at any given time.
The main text area displays all messages sent to the current
group. These messages include messages from other group
members and system messages indicating that other members
have joined or left the group.
Finally, a text field and Send button allow users to send messages
to the group.
The central server manages all messages sent to all chat groups.
It receives the messages from client applications and forwards
these messages to other clients appropriately. The server does not
require any direct user interaction and can run without a user
interface. However, in this example a server monitor is provided—
the WebChat Administrator Server. This displays statistical
information about the messages in the system. This interface
includes information about the number of users, the members of
each group, the total number of messages sent through the
system and the total number of messages sent to each group. A
Message Peek button also allows you to view each message sent
through the system. This information is available because all
messages are routed through this central server.
Orbix Programmer’s Guide Java Edition 169

The IDL Specification
The IDL specification for this application includes two interface
definitions: a CallBack interface implemented by clients and a Chat
interface implemented by the server. The source code for this IDL
is as follows:
// IDL
// In file "WebChat.idl".

// Interface definition for callbacks from
// server to client. This interface is
// implemented by clients.

interface CallBack {
// Operation which allows the server to forward
// a chat message to a client.
oneway void NewMessage (in string Message);

};

// Interface which allows clients to register
// with central server. This interface is
// implemented by the server.

interface Chat {
// Join a chat group.
oneway void registerClient (in CallBack obj, in string Name);

// Leave a chat group.
oneway void RemoveClient (in CallBack obj, in string name);

// Send a message to all group members.
oneway void SendMessage (in string Mess);

};

Each client implements a single CallBack object. This object allows
the client to receive notification from the server when new
messages are sent to the client’s current chat group.
The server implements a set of Chat objects; one object for each
available chat group. A client invokes the operation
RegisterClient() on a Chat object to join the chat group supported
by that object. Similarly, a client application calls RemoveClient()
to leave a chat group. A client that is registered with a chat group
calls the operation SendMessage() to send a text message to other
members of the same group.
 170 Orbix Programmer’s Guide Java Edition

The Client Application
You can run the WebChatGUI client as an applet, using the
ClientStart applet, or as an application, using the client’s main()
method. The source code for the client application consists of the
following Java classes:

• Class local_implementation implements the IDL interface
CallBack.

• Class WebChatGUI initializes the client application and
implements the client main() method.

• Class Process_Events supports the creation of a thread to
handle incoming Orbix Java events, such as callbacks from the
server.

Callback Implementation
The class local_implementation allows a server to forward a chat
message to a client. The implementation of operation NewMessage()
displays the incoming message in the main text area of the client
user interface:
// Java
// In file WebChatGUI.java.

package WebChat;

...

// Callback object implementation class.
class local_implementation extends _CallBackImplBase {

WebChatGUI bkChat;
// Callback objects hold a WebChatGUI object.
public local_implementation(WebChatGUI bkChat) {

super();
this.bkChat = bkChat;

}

// Called by the server when a new message has been
// sent to the current group.
public void NewMessage(String s) {

System.out.println
("Executing

local_implementation::NewMessage("+s+")\n");
try{

bkChat.ChatEdit.appendText(s+"\n");
}
catch(Exception se){

System.out.println
("Exception in NewMessage " + se.toString());

System.exit(1);
 }
 }
}

Orbix Programmer’s Guide Java Edition 171

Implementing the Constructor and main() Method
The constructor of class WebChatGUI and the main() method
implement the initial flow of control for the client application. The
code for the WebChatGUI class is outlined as follows:

package WebChat;

import IE.Iona.OrbixWeb._CORBA;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb.Features.Config;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.ORB;
import java.awt.*;

// The WebChat client class.
public class WebChatGUI extends Frame {

// WebChat constructor
public WebChatGUI(String host, String name) {

super("WebChatGUI window");
// Set up WebChatGUI client window
...

Host = new String(host);
Name = new String(name);

// Create the Orbix Java callback object
try {

CallObj = new local_implementation(this);
}
catch (SystemException ex) {

displayMsg ("Exception creating local implementation \n"+ ex.toString());
System.exit(1);

}

// Bind to "General" group Chat object.
try{

TALK = ChatHelper.bind("General:WebChat",Host);
}
catch(SystemException se){

displayMsg ("Exception during Bind to WebChat\n" + se.toString());
return;

}

// Register the Client with the General group server object
try {

TALK.RegisterClient(CallObj,Name);
TALK.SendMessage("-----> " +Name+" : has joined group " + GroupLabel.getText());

}
catch (SystemException ex) {

displayMsg("FAIL\tException during Register, SendMessage \n"+ex.toString());
System.exit(1);

}
// Enter the Orbix Java event loop and wait for callbacks.
Process_Events EventLoop = new Process_Events();
EventLoop.start();
show();

}

// WebChat client mainline used when running the client as an application.
 172 Orbix Programmer’s Guide Java Edition

public static void main(String args[]) {

ORB.init(args,null);
String hostname, username;

// Initialize host and name from command-line
// arguments
...

// set the Orbix Java user name
_CORBA.Orbix.set_principal(username);

new WebChatGUI(hostname, username);
}
...

}

Method RegisterClient() invokes operation RegisterClient() on
the server Chat object, passing the client’s CallBackImplementation
object reference as a parameter.
Method Process_Events() creates a thread in which incoming
Orbix Java events are processed, including server callback
invocations. This class is defined as follows:

// Java
// In package WebChat,
// in class WebChatGUI.

// Orbix Java event handler thread.
class Process_Events extends Thread {

public Process_Events(){}

public void run() {
try {
_CORBA.Orbix.processEvents

(_CORBA.IT_INFINITE_TIMEOUT);
// one second timeout

}
catch (SystemException ex) {

...
return;

}
}

The definition of class Process_Events is as described in “Using
Multiple Threads of Execution”.
The static main() method begins by retrieving command-line
arguments and then instantiates an object of type WebChatGUI.

Implementing the Event-Handling Methods
When the client’s initialization is complete, it enters the Java
event-processing loop and responds to user interface events
through the method handleEvent() and a set of subsidiary
methods. Each of the subsidiary methods handles an event for a
specific user interface component. Figure 23 on page 169 shows
the Web Chat client user interface.
Orbix Programmer’s Guide Java Edition 173

The Send button implementation sends a new message to the
server object as follows:
// Java
// In package WebChat,
// in class WebChatGUI.

public void clickedSendButton() {
String buff;
buff = Name + " : " + SendEdit.getText();
try {

synchronized(TALK) {
TALK.SendMessage(buff);

}
catch(SystemException se){

displayMsg
("Exception during SendMessage \n "+se.toString());

System.exit(1);
}
SendEdit.setText("");

}

The Clear button implementation sets both the message and main
chat group text boxes to null.
public void clickedClearButton() {

SendEdit.setText("");
ChatEdit.setText("");

}

The Groups drop-down box implementation changes groups by
binding to a new server group object.
public void selectedGroupChoice() {

String NewGroup = null;
try{

TALK.SendMessage("-----> " +Name+" : has left group " +
GroupLabel.getText());

NewGroup = new String(GroupChoice.getSelectedItem());
GroupLabel.setText(NewGroup);

// Remove client from current group.
TALK.RemoveClient(CallObj,Name);

// Bind to server object for new group.
TALK = ChatHelper.bind(NewGroup+":WebChat",Host);

// Register client with new group.
TALK.RegisterClient(CallObj,Name);
TALK.SendMessage("-----> " +Name+" : has joined group " +

NewGroup);
}
catch(SystemException se) {

displayMsg("Exception during SendMessage /n" +
se.toString());

System.exit(1);
}

}

 174 Orbix Programmer’s Guide Java Edition

The Quit button implementation is as follows:
public void clickedQuitButton() {

if (TALK!=null) {
synchronized(TALK){

try{
TALK.SendMessage("-----> " +Name+" : has left

WebChat");
TALK.RemoveClient(CallObj,Name);

}
catch(SystemException se){

this.hide();
this.dispose();
System.exit(1);

}
TALK=null;

}
}

The Central Server Application
The server application maintains a single Chat implementation
object for each chat group. Each Chat implementation object
stores a list of CallBack proxy objects, where each proxy is
associated with a single client. In this way, each server object is
aware of every client which has joined that object’s chat group,
and can forward incoming chat messages to those group
members.
The main functionality of the server is implemented in the
following Java classes:

• Class ChatImplementation implements the IDL interface Chat.
Each ChatImplementation object implements a single chat
group and maintains a linked list of clients who have joined
that group.

• Class ObjectCacheEntry implements a single entry for a linked
list of client objects. Class ChatImplementation uses this class
to store a list of CallBack proxy objects.

• Class ServerGUI initializes the server application and
implements the server main() method.

The class ChatImplementation allows a client to register with a
server object that implements a chat group.
Orbix Programmer’s Guide Java Edition 175

The source code for this class is as follows:
// Java
// In file ServerGUI.java.

package WebChat;

...

// Server-side Chat implementation class.
class ChatImplementation extends _ChatImplBase {

// First linked list entry.
ObjectCacheEntry firstObj;

// Group name for current object.
String m;

int NoOfUsers = 0;
static int NoMess=0;

// Marker is implemented as group name in this example.
ChatImplementation(String marker){

super(marker);
m = new String(marker);

}

public void SendMessage(String Mess) {
...
// Update message count
NoMess++;

// Loop through list of registered clients.
ObjectCacheEntry ptr = firstObj;

while(ptr != null) {
try{

obj = CallBackHelper.narrow(ptr.oref);
obj.NewMessage(Mess);

}
catch(SystemException se) {
...
}
ptr = ptr.next;

}
}

public void RegisterClient(CallBack obj, String Name) {
// Add message to server display to indicate a new
// group memember
...
if (firstObj == null) {

firstObj = new ObjectCacheEntry(obj);
return;

}

ObjectCacheEntry ptr = firstObj;
while(ptr.next!=null) ptr = ptr.next;
ptr.next = new ObjectCacheEntry(obj);
ptr.next.prev = ptr;
 176 Orbix Programmer’s Guide Java Edition

}

public void RemoveClient(CallBack obj, String Name) {
// Update main display
...
// Remve callback object from list.
if (firstObj == null) {

...
return;

}
ObjectCacheEntry ptr = firstObj;
CallBack tmp;

while (ptr != null) {
try {

tmp = CallBackHelper.narrow(ptr.oref);
if

((_OrbixWeb.Object(tmp)._object_to_string()).equals
(_OrbixWeb.Object(obj)._object_to_string())) {

// Update linked list of objects.
...
break;

}
}
catch(SystemException se) {

...
}
ptr = ptr.next;

}
}

}

A ChatImplementation object maintains an ObjectCacheEntry
object as a member variable. This variable represents the head of
a linked list of CallBack proxy objects, where each object is
associated with a client that has joined the current chat group.
The linked list is initially empty.
A client joins the ChatImplementation object’s chat group by calling
RegisterClient(). The implementation of this operation adds the
client’s CallBack object reference to the linked list. A client leaves
a chat group by calling RemoveClient(). This removes the client’s
CallBack object reference from the linked list.
The operation SendMessage() allows a client to send a text message
to all clients in the same chat group. The implementation of this
operation accepts the message as a string parameter. It then
cycles through the linked list of client object references, making a
callback operation invocation on each, with the string value as a
parameter. In this way, the server object redistributes text
messages to all clients in a chat group.
Orbix Programmer’s Guide Java Edition 177

The class ObjectCacheEntry, is a simple linked list node structure
which stores an object reference value. The source code for this is
as follows:
// Java
// In file ServerGUI.java.

package WebChat;

import org.omg.CORBA.*;
...

class ObjectCacheEntry {
public ObjectCacheEntry (Object oref) {

this.oref = oref;
}
// Linked list next
public ObjectCacheEntry next;
// Linked list previous
public ObjectCacheEntry prev;
public Object oref;

}

The class ServerGUI implements the flow control for the server
application. The source code for this class is outlined below:
// Java
// In file ServerGUI.java.

package WebChat;
import IE.Iona.OrbixWeb._CORBA;
...

public class ServerGUI extends Frame {

public static void main(String args[]) {

ORB.init(args,null);

mainGUI = new ServerGUI();

 // Initialize the server and enter the Orbix Java event loop
try {

_CORBA.Orbix.impl_is_ready
("WebChat",_CORBA.IT_INFINITE_TIMEOUT);

}
catch(SystemException se){

mainGUI.displayMsg
("Exception during impl_is_ready : " + se.toString());

System.exit(1);
}
...

}

// Group implementation objects.
ChatImplementation Chat_General = null;
ChatImplementation Chat_Engineering = null;
ChatImplementation Chat_Marcom = null;
ChatImplementation Chat_Sales = null;
 178 Orbix Programmer’s Guide Java Edition

ChatImplementation Chat_Prof = null;
ChatImplementation Chat_Bus = null;

public ServerGUI() {
super("WebChat Administrator Server");
// Set up ServerGUI window.
...
// Create the 6 server objects
try{

Chat_General = new ChatImplementation("General");
Chat_Engineering = new

 ChatImplementation("Engineering");
Chat_Marcom = new ChatImplementation("Marcom");
Chat_Sales = new ChatImplementation("Sales");
Chat_Prof = new ChatImplementation("Prof Services");
Chat_Bus = new ChatImplementation("BusDev");

}
catch(SystemException se) {

displayMsg("Exception : " + se.toString());
}
...

}
...

}

The server main() method first instantiates an object of type
ServerGUI. The constructor for this object initializes the server
display and creates a set of ChatImplementation objects. Each
ChatImplementation object implements a single chat group, where
the group name is implemented as the object marker.
When the ServerGUI object has been created and the server
implementation objects are available, the server main() method
invokes impl_is_ready() on the _CORBA.Orbix object and awaits
incoming requests from clients.
Orbix Programmer’s Guide Java Edition 179

 180 Orbix Programmer’s Guide Java Edition

Part III
 Running Orbix Java

Programs

In this part
This part contains the following:

Running Orbix Java Clients page 183

Registration and Activation of Servers page 189

Using the Orbix Java Daemon page 203

ORB Interoperability page 213

Orbix Java Diagnostics page 223

Running Orbix Java
Clients
This chapter deals with running Orbix Java client applications and
applets, and provides information on some general runtime issues
for clients.

Running Client Applications
The procedure for running an Orbix Java client application is
similar to the procedure for running any standalone Java
application. In general, you must fulfil three requirements:

• Obtain access to the Java bytecode for the application.
• Make this code available to the Java bytecode interpreter.
• Run the interpreter on the class that contains the main()

method for the application.
The only runtime difference between an Orbix Java application and
a standard Java application lies in the first of these requirements.
An Orbix Java application must be able to access the classes
stored in the IE.Iona.OrbixWeb and org.omg.CORBA packages. It also
requires access to the classes produced by compiling the IDL
definitions referenced by the application. The IE.Iona.OrbixWeb and
org.omg.CORBA packages are located in the OrbixWeb.jar file in the
lib directory of your Orbix Java installation. The org.omg.CORBA
classes are portable and may already be installed in the runtime
environment.
How you make class location information available to the Java
interpreter is dependent on the Java development environment
you use. However, you should indicate the location of the
following:

• The Orbix Java packages.
• The Java API classes.
• The IDL compiler output classes.
• The application-specific classes.
For example, if you are using the java interpreter from Oracle’s
JDK, you should add the location of each to the CLASSPATH
environment variable or specify this information in the -classpath
switch.
You must also ensure that the path to your Orbix Java config
directory is included on the list of directories specified after the
-classpath switch.
Orbix Java offers a set of convenience tools called wrapper
utilities. These make information about defaults automatically
available to the Java interpreter and the Java compiler. The
wrapper utilities, owjava.pl and owjavac.pl, are described in the
section “Using the Orbix Java Wrapper Utilities” on page 186.
 Orbix Programmer’s Guide Java Edition 183

Similarly, how you run the application through the interpreter may
differ between development environments. Again, if you are using
the JDK java interpreter, you can pass the name of the class that
contains the application main() method to the interpreter
command, as follows:

java class name

Running Orbix Java Client Applets
The requirements for running an Orbix Java client applet are
slightly more complex than those for an application. To display a
Java applet, you should reference the applet class in a HTML file
using the HTML <APPLET> tag, and then load this file into an applet
viewer or a Java-enabled web browser. The runtime requirements
for the applet depend on whether it is loaded directly from a HTML
file or downloaded from a web server.

Loading a Client Applet from a File
When you load an Orbix Java client applet from a file, the runtime
requirements are similar to those for running a client application.
You should do the following:

• Obtain access to the Java bytecode for the applet.
• Make this code available to the Java bytecode interpreter

embedded in the browser.
• Load the HTML file that references the applet into the

browser.
The second of these requirements often translates to setting the
CLASSPATH environment variable appropriately before running the
viewer or browser and loading the applet. This variable should
usually include the location of the following:

• The Orbix Java package classes.
• The Java API classes.
• The IDL compiler output classes.
• The other applet-specific classes.
If you use a Java-enabled browser, the location of the Java API
classes is generally not required. In some cases, the location of
the org.omg.CORBA package is also not required.
When loading an Orbix Java client applet from a file, you can
specify a codebase attribute in the HTML <APPLET> tag to specify
the location of the required class files. The next section describes
how you can do this.

Note: When loading an Orbix Java applet from a file, you should use a
recent browser version. There are some browser-based URL
restrictions associated with early browser versions.
 184 Orbix Programmer’s Guide Java Edition

Loading a Client Applet from a Web Server
If an Orbix Java applet is loaded into a browser from a Web
server, you cannot specify access paths for the required Java
classes at runtime. In this case, you should provide access to all
the classes the applet requires in a single directory. Then, instead
of setting an environment variable, you can use the codebase
attribute of the HTML tag <APPLET> to indicate the location of the
applet bytecode.
For example:

<APPLET codebase=applet class directory
code=applet class file
ARCHIVE=OrbixWeb.jar>
...

</APPLET>

If you use a Java-enabled Web browser to view an applet, you do
not need to provide access to the Java API classes, because these
are already available.

Security Issues for Client Applets
The necessity of strict security restrictions in Java applets is well
documented. There are two primary security restrictions on
applets:

• No access to local file systems.
• Limited network access.
Both of these restrictions are imposed by the browser sandbox,
and apply to all applets, regardless of how they are loaded.
Applets do not have access to the file system of the host on which
they execute. They cannot save files to the system or read files
from it. Any Orbix Java client implemented as a Java applet must
obey this restriction.
In order to prevent the violation of system integrity, Web
browsers often limit the network connectivity of applets that are
downloaded from a Web server. Such applets can only
communicate with the host from which they were downloaded.
This limitation has obvious implications for Orbix Java client
applets downloaded from Web servers. In particular, such clients
can only communicate directly with Orbix Java servers located on
the host from which the clients themselves were downloaded. If
this restriction applies to an Orbix Java client applet, attempts by
that client to bind to a server on an inaccessible host raises a
system exception of type org.omg.CORBA.COMM_FAILURE.
The exact details of applet security are dependent on the browser
implementation and may exceed the restrictions described here.
Newer browsers allow security to be configured for signed applets.
Consult your browser documentation for further information.
Orbix Programmer’s Guide Java Edition 185

Debugging Orbix Java Clients
An Orbix Java client application or applet has the same
fundamental characteristics as any other Java program. You can
debug Orbix Java clients with any available Java debugging tool,
for example, the JDK jdb debugger.
When debugging Orbix Java clients, it is especially important to be
aware of Java exceptions thrown during Orbix Java method
invocations. Orbix Java provides a set of system exceptions
indicating various categories of execution errors. These represent
vital information for locating the source of invocation failures in a
distributed application. You can handle these exceptions in client
code by using Java try...catch statements. Similarly, they can be
handled like standard Java exceptions when using a Java
debugger.
For more details on Orbix Java integration with Java exceptions,
refer to “Exception Handling” on page 143.

Possible Platform Dependencies in Orbix Java
Clients

In general, Orbix Java clients are only dependent on the
availability of a Java interpreter on the target execution platform.
However, you should also be aware that using the bind() method
can affect the platform-independence of an Orbix Java system.

Using bind()
If a client uses the Orbix Java bind() method to create a proxy for
a server object, the bind() call fails unless an Orbix Java daemon
is available at the server host. Consequently, a client using bind()
does not execute successfully unless the target server is restricted
to running on a host where an Orbix Java daemon is available.

Using the Orbix Java Wrapper Utilities
The Orbix Java Wrapper Utilities, owjava.pl and owjavac.pl, are
convenience tools designed to act as a front end to the Java
interpreter and Java compiler respectively. This section outlines
the use of these tools, and also describes the standard Java
command-line equivalent.
Consider the following standard command-line entry to invoke the
Java interpreter:

> c:\JDK\bin\java -classpath C:\Micro Focus\Orbix
3.3\demos\classes;c:\Micro Focus\Orbix
3.3\lib\OrbixWeb.jar;c:\Micro Focus\Orbix
3.3\config;c:\JDK\jre\lib\rt.jar myPackage.myClass

Using the owjava.pl wrapper utility, you can reduce the standard
command-line entry to the following:

perl owjava.pl myPackage.myClass

The owjava.pl and owjavac.pl wrappers use Perl scripts. Orbix
Java ships with Perl provided in the contrib directory of your
installation on Windows. The examples shown in this chapter
apply to both UNIX and Windows, apart from obvious differences
in paths.
 186 Orbix Programmer’s Guide Java Edition

Using owjava as a Front End to the Java Interpreter
The owjava.pl wrapper is a front end for the Java interpreter you
are using, designed for use with Orbix Java. It takes all the same
arguments as your chosen Java interpreter and passes them on,
together with some other defaults.
owjava.pl uses the ORBIX_HOME environment variable to find the
Orbix Java configuration files. From there it reads the full path of
the Java interpreter, the default classpath and the name of the
switch the Java interpreter uses to specify its class path. For
example, Microsoft J++ uses -c; whereas all other Java
Development Kits use -classpath.
By default, owjava.pl passes the default classpath and a variable
containing the path of the configuration files to the Java
interpreter. So, for example, if Orbix Java is installed in C:\Orbix
3.3 and the JDK is installed in C:\JDK, calling owjava.pl as follows:

perl owjava.pl myPackage.myClass

executes the following command:
> c:\JDK\bin\java -classpath c:\Orbix 3.3\demos\classes;
c:\Orbix 3.3\lib\OrbixWeb.jar;c:\Orbix 3.3\config;
c:\JDK\jre\lib\rt.jar myPackage.myClass

You can override this standard behaviour by using the Orbix Java
Configuration Explorer to change the settings. Refer to the Orbix
Administrator’s Guide Java Edition for details of the
Configuration Explorer.

Using owjavac as a Front End to the Java Compiler
This tool acts as a front end to your chosen Java compiler, and is
designed for use with Orbix Java. Its behaviour is similar to the
owjava.pl tool described previously, but the defaults are different.
By default, owjavac.pl passes the default CLASSPATH and the
classes directories to the compiler.
So, for example, if Orbix Java s installed in c:\Orbix 3.3 and the
JDK is installed in c:\JDK, calling owjavac.pl as follows:

perl owjavac.pl
-d c:\Orbix 3.3\demos\classes\myClass.java

executes the following command:
>c:\JDK\bin\javac -classpath c:\Orbix 3.3\demos\classes;
c:\Orbix 3.3\lib\OrbixWeb.jar;c:\Orbix 3.3\config;
c:\JDK\jre\lib\rt.jar
-d c:\Orbix 3.3\demos\classes \myClass.java

You can override this standard behaviour by using the Orbix Java
Configuration Explorer to change the settings. Refer to the Orbix
Administrator’s Guide Java Edition for details of the
Configuration Explorer.
Orbix Programmer’s Guide Java Edition 187

Using the Interpreter and Compiler without the Wrapper
Utilities

You do not need to use the Wrapper Utilities. These are provided
as convenience tools only. You can use the standard Java
command line format for java and javac, by using the formats
specified as follows:

Using the javac Command
> c:\JDK\bin\javac -classpath c:\Orbix 3.3\demos\classes;

c:\Orbix 3.3\lib\OrbixWeb.jar;c:\Orbix 3.3\config;
c:\JDK\lib\classes.zip
-d c:\Orbix 3.3\demos\classes myClass.java

Using the java Command
> c:\JDK\bin\java -classpath c:\Orbix 3.3\demos\classes;
c:\Orbix 3.3\lib\OrbixWeb.jar;c:\Orbix 3.3\config;
c:\JDK\jre\lib\rt.jar
myPackage.myClass

In addition the following ORB properties should also be passed to
the java command.
-Dorg.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB
-Dorg.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.

singletonORB

For detailed information on the full range of Orbix Java utilities,
refer to the Orbix Administrator’s Guide Java Edition.
 188 Orbix Programmer’s Guide Java Edition

Registration and
Activation of Servers
This chapter describes the Implementation Repository. This is the
component of Orbix Java that maintains registration information
about servers and controls their activation. The Implementation
Repository is effectively a database of server activation information,
implemented in the Orbix Java daemon. The Orbix Java daemon
and utilities provide a superset of the functionality supported by a
standard, non-Java Orbix installation.

This chapter outlines the full functionality supported by the
Implementation Repository. It also discusses aspects of
registration and activation that affect servers communicating over
the CORBA Internet Inter-ORB Protocol (IIOP) or the Orbix
protocol. Aspects of server activation that are specific to IIOP
servers are also described. IIOP servers only need to be registered
in the Implementation Repository under certain circumstances,
and this can be advantageous in a Java environment.

The Implementation Repository
The Implementation Repository maintains a mapping from a
server’s name to the Java program which implements that server.
A server must be registered with the Implementation Repository
to make use of this mapping.
If the server is not running, it is launched automatically by Orbix
Java when a client binds to one of the server’s objects, or when a
client invokes an operation on an object reference which names
that server. The Orbix Java daemon launches a Java server by
invoking the Java interpreter on the class specified in an
Implementation Repository entry.
To allow the daemon to correctly locate and invoke the Java
interpreter, it is important that the values IT_JAVA_INTERPRETER and
IT_DEFAULT_CLASSPATH are correctly configured. The configuration of
these values is described in the Orbix Java Edition
Administrator’s Guide.
When a client first communicates with an object, Orbix Java uses
the Implementation Repository to identify an appropriate server to
handle the connection. This search can occur in the following
circumstances:

• During a call to bind(), if pinging is enabled, otherwise, on the
first invocation on an object reference returned by bind().
You can call the method ORB.pingDuringBind() (in package
IE.Iona.OrbixWeb.CORBA) on the _CORBA.Orbix object to
configure this. If this is set to true, pinging is enabled. If this
is false, the server is not launched automatically when a bind
occurs.

• During a call to the method ORB.string_to_object().
• When an object is used for the first time after being received

as a parameter or return value via an intermediate server.
 Orbix Programmer’s Guide Java Edition 189

If a suitable entry cannot be found in the Implementation
Repository during a search for a server, a system exception is
returned to the caller.

Activation Modes
Orbix Java provides a number of different mechanisms, or modes,
for launching servers, giving you control over how servers are
implemented as processes by the underlying operating system.
The mode of a server is specified when it is being registered.

Note: The availability of a given activation mode depends on which Orbix
Java daemon (orbixd or orbixdj) is used. The default activation
modes are available to both orbixd and orbixdj, and are sufficient
for most applications. Refer to the Orbix Administrator’s Guide
Java Edition for further information on orbixdj.

Primary Activation Modes
The following primary activation modes are supported.

Shared Activation Mode (Default)
This mode is supported by orbixd and orbixdj.
In this mode, all of the objects with the same server name on
a given machine are managed by the same process on that
machine. This is the most commonly used activation mode.
If the process is already launched when an operation
invocation arrives for one of its objects, Orbix Java routes the
invocation to that process. Otherwise, Orbix Java launches the
process, using the Implementation Repository’s mapping from
server name to class name and class path.

Unshared Activation Mode
This mode is supported by orbixd only.
In this mode, individual objects of a server are registered with
the Implementation Repository. All invocations for an
individual object are handled by a single process. This server
process is activated by the first invocation of that object.
Thus, one process is created for each active registered object.
Each object managed by a server can be registered with a
different Java class, or any number of them can share the
same class.

Per-Method Activation Mode
This mode is supported by orbixd only.
In this mode, individual operation names are registered with
the Implementation Repository. You can make inter-process
calls to these operations, and each invocation results in the
creation of an individual process. A process is created to
handle each individual operation call, and the process is
destroyed once the operation has completed. You can specify
a different Java class for each operation, or any number of
them can share the same class.
 190 Orbix Programmer’s Guide Java Edition

Secondary Activation Modes
For each primary activation mode, a server can also be launched
in one of the following secondary activation modes.

Multiple-Client (Default)
This mode is supported by orbixd and orbixdj.
In this mode, activations of the same server by different users
or principals will share the same process, in accordance with
whichever fundamental activation mode is selected.

Per-Client
This mode is supported by orbixd only.
In this mode, activations of the same server by different users
will cause a different process to be created for each user.

Per-Client-Process
This mode is supported by orbixd only.
In this mode, activations of the same server by different client
processes causes a different process to be created for each
client process.

Persistent Server Mode
If a server is registered in the shared mode, it can be launched
manually prior to any invocations on its objects. Subsequent
invocations are passed to the process. CORBA uses the term
persistent server to refer to a process launched manually in this
way. The OMG CORBA term “persistent server” is not ideal,
because it can be confused with the notion of persistent (long
lived, on disk) objects. It may be more useful to view a
“persistent” server as a manually launched server.
Launching persistent servers is useful for a number of reasons.
Some servers take considerable time to initialize, and therefore it
makes sense to launch these servers before clients wish to use
them. Also, during development, it may be clearer to launch a
server in its own window, allowing its diagnostic messages to be
more easily seen. You can launch a server in a debugger during
the development stage to allow debugging.
Because Orbix Java uses the standard OMG IDL-to-Java mapping,
all clients and servers must call org.omg.CORBA.ORB.init() to
initialize the ORB. A reference to the ORB object is returned. You
can invoke the ORB methods defined by the standard on this
instance. Refer to the description of org.omg.CORBA.ORB in the
Orbix Programmer’s Reference Java Edition for more details
on this topic.
Manually launched servers, once they have called impl_is_ready(),
behave in a similar way to shared activation mode servers. If a
server is registered as unshared or per-method, impl_is_ready()
fails if the server is launched manually. Refer to “Persistent
Servers” on page 196 for more details.
Orbix Programmer’s Guide Java Edition 191

Note: If you are using orbixd, a shared server may be registered so that
it may only be launched manually. This means that Orbix Java
does not launch the server when an operation invocation arrives
for one of its objects. This is explained in “Unregistered Servers”
on page 197.
Usually, clients are not concerned with the activation details of a
server or aware of what server processes are launched. To a
client, an object in a server is viewed as a stand alone unit; an
object in a server can be bound to and communicated with without
considering activation mode details.
Although servers are registered in the Implementation Repository,
you do not need to register individual objects; only those objects
for which Orbix Java should launch a process.

Implementation Repository Entries
An entry for a server in an Implementation Repository includes the
following information:

• The server name.
Server names may be hierarchical, so the Implementation
Repository supports nested directories.

• The primary activation mode (shared, unshared, or
per-method).

• The secondary activation mode (per-client, per-client-process
or multiple-client).

• Whether the server is a persistent-only server—it can only be
launched manually.

• The server owner—the user who registered the server.
• Permissions specifying which users have the right to launch

the server, and which users have the right to invoke
operations on objects in the server.

• A set of activation orders specifying a marker or method and a
launch command for that marker or method. For the shared or
unshared activation modes, a number of activation orders
may exist for different markers. For the per-method activation
mode, a number of activation orders may exist for different
methods.

Putitj
The putitj command creates an Implementation Repository entry,
if no entry exists, for the specified server. If an Implementation
Repository entry already exists for the server, the putitj
command creates or modifies an activation order within the
existing entry. In the latter case, the putitj command must
specify the same fundamental activation mode (shared, unshared
or per-method) as that already registered for the server.

Catitj
The catitj command displays the information on a server in an
Implementation Repository entry. Alternatively, you can use the
Server Manager tool. Refer to the Orbix Administrator’s Guide
Java Edition for details of how to use this tool.
 192 Orbix Programmer’s Guide Java Edition

The Orbix Java Putitj Utility for Server Registration
The putitj utility registers servers with the Implementation
Repository. This section outlines some examples of common uses
of putitj. A full description of putitj and its switches is given in
the Orbix Administrator’s Guide Java Edition.
The putitj command is used most often in either of the following
forms:

putitj serverName -java
-classpath <full classPath> className

putitj serverName -java
-addpath <partial ClassPath> className

The first command form indicates that the server is to be
registered with the specified complete class path, independent of
any configuration settings, with the specified class name.
The second command form indicates that the specified class path
should be appended to the value of IT_DEFAULT_CLASSPATH in the
common.cfg configuration file, when the daemon attempts to
launch the server.
The -java switch is an extension of the standard Orbix putitj
command This indicates that the specified server should be
launched by the Java interpreter. You can truncate this switch to
-j.
By default, putitj uses the shared activation mode. Therefore, on
any given host, all objects with the specified server name are
controlled by the same process. Also by default, putitj registers a
server in the multiple-client activation mode. This means that all
client processes bind to the same server process. For example:

putitj Bank -java -addpath
/usr/users/chris/banker bank_demo.BankServer

In this example, the class bank_demo.BankServer is registered as the
implementation code of the server called BankSrv at the current
host. A partial class path of /usr/users/chris/banker is also
specified. The putitj command does not launch the server. You
can do this explicitly from the shell or otherwise. Alternatively,
Orbix Java may automatically launch the server in shared mode in
response to an incoming operation invocation.
Server names may be hierarchically structured, in the same way
as UNIX file names. For example:

putitj banks/BankSrv -java -addpath
/usr/users/chris/banker bank_demo.BankServer

Hierarchical server names are useful in structuring the name
spaces of servers in Implementation Repositories. You can create
the hierarchical structure using the mkdirit command.
Alternatively, you can use the Orbix Java Server Manager tool.
Refer to the Orbix Administrator’s Guide Java Edition for
details on both of these methods.
Orbix Programmer’s Guide Java Edition 193

Examples of Using Putitj
The following examples illustrate some further switches to putit.

-unshared
If you are using the orbixd as your daemon process, you can use
the
-unshared switch to register a server in the unshared activation
mode:
putitj -unshared NationalTrust -java -classpath

/classes:/jdk/classes:/tmp/bank bankPackage.BankServer

This command registers an unshared server called “NationalTrust”
on the local host, with the class name and full class path. Each
activation for an object goes to a unique server process for that
particular object. All users accessing a particular object share the
same server process.

-marker
You can specify a marker to the putitj command to identify an
object to which putitj applies:
putitj -h alpha -marker Boston NationalBank -java -addpath

/bank/classes:/local/classes bankPackage.BankServer

This command registers a shared server called “NationalBank”,
with the specified class name and partial class path. However,
activation only occurs for the object whose marker matches
“Boston”. There is at most one server process resulting from this
registration request. Other -marker registrations can be issued for
server NationalBank for other objects in the server. All users
accessing the “Boston” object share the same server process.
The -h switch specifies the host name on which to execute the
putitj command.
 194 Orbix Programmer’s Guide Java Edition

Additional Registration Commands
Implementation Repository entries created by putitj can be
managed using the following commands:

Execute any of these commands without arguments to obtain a
summary of its switches. Refer to the Orbix Administrator’s
Guide Java Edition for a complete description of each command.

Activation and Pattern Matching
A server programmer can choose the marker names for objects,
as described in “Making Objects Available in Orbix Java” on
page 127. Alternatively, they can be assigned automatically by
Orbix Java.

Pattern Matching using Orbixd
Pattern matching functionality for markers is supported by orbixd
only. Because objects can be named, the various activation
policies can be instructed to use pattern matching when seeking to
identify which server process to communicate with. In particular,
when a server is registered, you can specify that it should be
launched if any of a set of its objects are invoked. You can specify
this set of objects by registering a marker pattern that uses wild
card characters. If no pattern is specified, invoking on any of a
server’s objects causes the server to be launched, if it has not
already been launched.
You can also specify patterns for methods so that operation names
matching a particular pattern cause a particular server to be
launched.
Pattern matching functionality for markers is not currently
supported by orbixdj.

catitj Outputs full details of a given Implementation
Repository entry.

chmoditj Allows launch and invoke rights on a server to be
granted to users other than the server owner.

chownitj Allows the ownership of Implementation
Repository entries and directories to be changed.

killitj Kills a running server process.
lsitj Lists a specific entry or all entries.
mkdiritj Creates a new registration directory.

You can structure the Implementation Repository
hierarchically like UNIX file names.

pingitj Pings the Orbix Java daemon to determine
whether it is alive.

psitj Outputs a list of server processes known to the
Orbix Java daemon.

rmdiritj Removes a registration directory.
rmitj Removes an Implementation Repository entry or

modifies an entry.
Orbix Programmer’s Guide Java Edition 195

Persistent Servers
Persistent servers refer to those that are launched manually. You
should ensure that the persistent server name is correctly set
before it has any interaction with Orbix Java. For example, a
persistent server should not pass out an object reference for one
of its objects (as a parameter or return value, or even by printing
its object reference string) until the server name has been set.
The following methods provide two approaches in Orbix Java to
launching servers manually:

• BOA.impl_is_ready()

• ORB.connect()

BOA.impl_is_ready()
The implementation of impl_is_ready() inserts the correct server
name into the object names of the server’s objects. This is not
done for any object references that have already been passed out
of the address space.
Normally, you set the server name by calling impl_is_ready().
Alternatively, you can set the server name using the method
ORB.setServerName().
Other interactions with Orbix Java such as calling an operation on
a remote object also cause difficulties if they occur in a persistent
server before impl_is_ready() is called.
Persistent servers, once they have called impl_is_ready(), behave
as shared activation mode servers. In line with the CORBA
specification, if a server is registered as unshared or per-method,
impl_is_ready() fails if the server is launched manually.

ORB.connect()
The OMG standard approach to launching a persistent server is to
use org.omg.CORBA.ORB.connect().
Because this approach provides no way of specifying the server
name,
you must use one of the following to specify the server name:

• Before you connect, use ORB.setServername()
or

• Add the following to the java or owjava.pl command line:
-DOrbixWeb.server_name
 196 Orbix Programmer’s Guide Java Edition

Unregistered Servers
In some circumstances, it may be useful not to register servers
with the Implementation Repository. To support this, you can
configure the Orbix Java daemon to allow unregistered servers by
using the -u switch. Any server process can then be started
manually. When the server calls impl_is_ready(), it can pass any
string as its server name. The daemon does not check if this is a
server name known to it. Refer to the Orbix Administrator’s
Guide Java Edition for details of the -u switch.
A disadvantage of this approach is that an unregistered server is
not known to the daemon. This means that the daemon cannot
automatically invoke the Java interpreter on the server bytecode
when a client binds to, or invokes an operation on, one of its
objects. If a client invocation is to succeed, the server must be
launched in advance of the invocation.
In a Java context, a more significant disadvantage of this
approach is that the Orbix Java daemon is involved in initial
communications between the client and server, even though the
server is not registered in the Implementation Repository. This
restriction applies to all Orbix Java servers that communicate over
the standard Orbix communications protocol, and limits such
servers to running on hosts where an Orbix or Orbix Java daemon
process is available.

Activation Issues Specific to IIOP Servers
You do not need to register Orbix Java servers that communicate
over IIOP in the Implementation Repository. An IIOP server can
publish Interoperable Object References (IORs) for the
implementation objects it creates, and then await incoming client
requests on those objects without contacting an Orbix Java
daemon.
Unregistered IIOP servers are important in a Java domain. This is
because they can be completely independent of any supporting
processes that may be platform-specific. In particular, any server
that relies on the orbixd daemon to establish initial connections
depends on the availability of the daemon on specific platforms.
However, you can overcome this problem by using the Java
daemon, orbixdj, which is platform-independent. An Orbix Java
unregistered IIOP server is completely self-contained and platform
independent.
However, an IIOP server does suffer from an important
disadvantage. The TCP/IP port number on which a server
communicates is embedded in each IOR that a server creates. If
the port is dynamically allocated to a server process on start-up,
the port may differ between different processes for a single
server. This may invalidate IORs created by a server if, for
example, the server is killed and relaunched. Orbix Java addresses
this problem by allowing you to assign a well-known IIOP port
number to the server.
These issues are discussed in detail in “ORB Interoperability” on
page 213.
Orbix Programmer’s Guide Java Edition 197

Security Issues for Orbix Java Servers
This section covers issues concerned with security for Orbix Java
servers. The method for addressing security issues will depend, in
some cases, on which Orbix Java daemon process you are using.

Identity of the Caller of an Operation
A server object can obtain the user name of the process that made
the current operation call by using the method get_principal() on
the ORB object. This method is listed in class ORB as follows:
// Java
// In package org.omg.CORBA
// in class ORB.

public org.omg.CORBA.Principal get_principal();

Server Security
Note: The Java daemon (orbixdj) does not support access rights for user

groups. An exception to this is the pseudo user group all.
You must actively grant access control rights to ensure server
security. Orbix Java maintains two access control lists for each
Implementation Repository entry, as follows:

The entries in the access control list can be either user names or
group names. There is also a pseudo group name called all, which
can be used to implicitly add all users to an access control list. The
owner of an Implementation Repository entry is always allowed to
launch it and invoke operations on its objects.
The group system is determined by the underlying operating
system. For example, on UNIX, a user’s group membership is
determined using the user’s primary group along with the user’s
supplementary groups, as specified in the
/etc/group file.
You can use the chmoditj command to modify the two access
control lists. However, only the owner of an Implementation
Repository entry can call the chmoditj command on it. The original
owner is the user who calls the putitj command. Subsequently,
you can change the ownership using the chownitj command.

Launch The users or groups that can launch the associated
server. Users on this list, and users in groups on
this list, can cause the server to be launched by
invoking on one of its objects. Only these users and
groups can call impl_is_ready() with the
Implementation Repository entry’s server name.

Invoke The users and groups that can invoke operations
on any object controlled by the associated server.
 198 Orbix Programmer’s Guide Java Edition

Effective Uid/Gid of Launched Servers

Note: This section does not apply to orbixdj.
On UNIX, the effective uid and gid of a server process launched by
the Orbix Java daemon are determined as follows:
1. If orbixd is not running as the root (super-) user, the uid and

gid of every activated server process is that of orbixd itself.
2. If orbixd is run as root, it attempts to activate a server with

the uid and gid of the principal attempting to activate the
server.
If the principal is unknown (not a registered user) at the local
machine on which orbixd is running, orbixd attempts to run
the new server with uid and gid of a standard user “orbixusr”.

3. If there is no such standard user orbixusr, orbixd attempts to
run the new server with uid and gid of a user “nobody”.

4. If there is no such user “nobody”, the activation fails and an
exception is returned to the caller.

You should not run orbixd as root. This would allow a client
running as root on a remote machine to launch a server with root
privileges on a different machine. You can avoid this security risk
by setting the set-uid bit of the orbixd executable and giving
ownership of the executable to a user called, for example,
orbixusr who does not have root privileges. Then orbixd, and any
server launched by the daemon, does not have root privileges.
Any servers that must be run with different privileges can have
the set-uid bit set on the executable file.

Activation and Concurrency
In the per-method activation mode, or when the secondary
activation modes per-client and per-client-process are used, there
is no inbuilt concurrency control between the different processes
created to handle operation invocations on a given object. Each
resulting process must coordinate its actions as required.

Activation Information for Servers
A server can determine a number of details about how and why it
was launched:

• The activation mode (shared, unshared, per-method or
persistent).

• The marker name of the object that caused the server to be
launched.

• The name of the method called on that object.
• The server name.
You can determine this information in a server by invoking the
relevant method (defined in interface BOA) on the ORB object as
follows:
Orbix Programmer’s Guide Java Edition 199

Activation Mode
Use the following method to find the activation mode under which
the server is registered:

// Server Activation Modes
// (defined in interface IE.Iona.OrbixWeb.CORBA.BOA).
static final short perMethodActivationMode = 0;
static final short unsharedActivationMode = 1;
static final short persistentActivationMode = 2;
static final short sharedActivationMode = 3;
static final short unknownActivationMode = 4;

public short myActivationMode ()
throws SystemException;

Marker Name
Use the following method to find the marker name of the
activation object that caused this server to be launched:

public String myMarkerName ()
throws SystemException;

The marker name for a persistent server is null.

Marker Pattern
Use the following method to find the marker pattern that caused
this server to be launched:

public String myMarkerPattern ()
throws SystemException;

Method Name
Use the following method to find the method name used to launch
this server:

public String myMethodName ()
throws SystemException;

The method name for a persistent server is null.

Server Name
Use the following method to find the server’s name:

public String myImplementationName ()
throws SystemException;

For a persistent server this is some unspecified string until
impl_is_ready() is called.
Each of these methods raises an exception if called by a client.

IDL Interface to the Implementation Repository
The interface to the Implementation Repository, called IT_daemon,
is defined in IDL and implemented by orbixd, which is one of the
two daemon processes available in Orbix Java. The Java daemon,
or orbixdj, currently implements a subset of the IT_daemon
interface. Differences in implementation between orbixd and
orbixdj are explained in the Orbix Administrator’s Guide Java
Edition
The UNIX utilities, such as putitj, catitj, and the Orbix Java
Server Manager are implemented in terms of the daemon’s IDL
interface.
 200 Orbix Programmer’s Guide Java Edition

You should refer to the Orbix Programmer’s Reference Java
Edition for a full description of the interface to the
Implementation Repository.

Using the Server Manager
The Server Manager is a graphical user interface that provides
much of the functionality of the Orbix Java utilities. The Server
Manager facilitates Implementation Repository management,
offering functionality similar to putitj, rmitj, mkdiritj and other
command utilities. It also supports the activation and deactivation
of servers. Refer to the Orbix Administrator’s Guide Java
Edition for a description of how to use this tool.

About the Java Daemon (orbixdj)
The Java daemon (orbixdj) is a Java implementation of a subset
of the IT_daemon interface.
The functionality provided by orbixdj should be sufficient for the
majority of applications. In cases where particular features are not
supported by the Java daemon, the orbixd daemon process may
be used as an alternative.

Additional Java Daemon Functionality
The Java daemon offers the great advantage of platform
independence, with a significant subset of the functionality
available to orbixd.
In addition, it offers the following:

• An in-process activation mode, which is more efficient in
terms of resources, and quicker to start.

• A GUI console.

Limitations of the Java Daemon
The main restriction on the use of the orbixdj is that is supports
only the shared (multiple client) activation mode.
Refer to the Orbix Administrator’s Guide Java Edition for
more details on the features supported by the Java daemon.
Orbix Programmer’s Guide Java Edition 201

 202 Orbix Programmer’s Guide Java Edition

Using the Orbix Java
Daemon
The Orbix Java daemon (orbixdj) is a Java implementation of the
IT_daemon interface. The Java daemon administers the
Implementation Repository and is responsible for activating servers
automatically.

The Implementation Repository is an important component of
CORBA. This stores information that can be used by the ORB to
activate servers on demand from clients. In previous versions of
Orbix Java, the executable orbixd was required to manage this
repository and to activate servers. This version of Orbix Java
provides both orbixd and orbixdj executables.
A limitation of the orbixd executable is that it must be run on the
platform for which it was built, so automatic activation of servers
on other platforms is not possible. The Java daemon fulfils the
same role as the orbixd executable, but as it is written in Java it
can be deployed on any Java platform. This extends considerably
the flexibility of the server-side ORB. The executable for the Java
daemon is called orbixdj.

Note: The terms Java daemon and orbixdj are used interchangeably
throughout the Orbix Java documentation. References to daemon
apply to functionality supported by both orbixd and orbixdj.

Overview of the Java Daemon
The Java daemon is responsible for transparently activating Orbix
Java servers, and reactivating servers that have exited. It is a
separate process that is intended to be always active. Clients can
contact the Java daemon as follows:

• Using the bind() call.
• Calling an operation on an object obtained using

string_to_object on an IOR that contains the Java daemon’s
address.

The Java daemon activates the server if it is not already active,
and provides details of the activated server to the client. The client
can then use these details to contact the server directly.
When a server exits and the client detects the broken connection,
the client can transparently request the Java daemon to reactivate
the server. When the Java daemon reactivates the server, the
client can resume making requests of the server.
Servers can also be launched manually and register themselves
with the Java daemon. In this case, the Java daemon only
provides details of the server's location to clients, because the
server does not require activation.
 Orbix Programmer’s Guide Java Edition 203

Features of the Java Daemon
The following are the main features of the Java daemon (orbixdj):

• Cross platform operation.
• Orbix Java server activation.
• Orbix (C++) server activation.
• In-process and out-of-process activation.
• Graphical console.
• IIOP and Orbix protocol support.
• Compatibility with orbixd (both for Orbix and Orbix Java) and

Orbix’s GUI tools.
• Compatibility with the OrbixWeb 2 and OrbixWeb 3

Implementation Repository format.

Using the Java Daemon
The following sections discuss how to start and configure the Java
daemon, orbixdj.

Starting the Java Daemon
You can launch the Java daemon from the Orbix Java menu in the
Windows Start menu.
To launch the Java daemon from the command line, use the
following command:

orbixdj [-inProcess] [-textConsole] [-noProcessRedirect]
 [-u][-V] [-v] [-help|-?]

The purpose of each switch is as follows:

Switch Effect
-inProcess By default, the Java daemon activates

servers in a separate process. This is
termed out-of-process activation.
If this switch is set, the Java daemon
starts servers in a separate thread.
This is termed in-process activation.

-textConsole By default, the Java daemon launches
a GUI console.
Adding this switch causes the Java
daemon to use the invoking terminal
as the console.

-noProcessRedirect By default, the stdout and stderr
streams of servers activated in a
separate process are redirected to the
Java daemon console.
Specifying this switch causes the
output streams to be hidden.

-u This allows the use of unregistered,
persistently launched servers.
 204 Orbix Programmer’s Guide Java Edition

Configuring the Java Daemon
Use the Orbix Java Configuration Explorer GUI tool to customize
the settings for the Java daemon. The following outlines the
configuration settings that concern the Java daemon. It also
indicates how these settings should be changed using the Orbix
Java Configuration Explorer.
For more details on the Configuration Explorer, refer to the Orbix
Administrator’s Guide Java Edition.

-V This prints a detailed description of the
configuration the Java daemon uses
on start-up. The Java daemon then
exits.

-v Causes the Java daemon to print a
summary of the configuration it runs
with. The Java daemon then exits.

-help
-?

Displays the switches to orbixdj.

Switch Effect

Settings Effect
IT_IMPL_IS_READY_TIMEOUT When an in-process server is launched, the

Java daemon waits to be informed that the
server is active before allowing the causative
client request to proceed. Refer to
“Guidelines for Developing In-Process
Servers” on page 208 for further details.
The Java daemon waits a maximum of this
amount of time, specified in milliseconds.
The default is 30,000 milliseconds, or 30
seconds.

IT_IMP_REP_PATH This is the absolute path to the
Implementation Repository.

IT_ORBIXD_IIOP_PORT This is a second port on which the daemon
can listen for incoming connections. This
port is provided to support legacy daemons
that require a separate port for each
protocol.

IT_DAEMON_SERVER_BASE A server that is launched in separate
processes listens on its own port. This is the
value of *the first port*, and subsequently
allocated ports increment. The default is
1590.

IT_DAEMON_SERVER_RANGE Refer to IT_DAEMON_SERVER_BASE. The default
is 2000.

IT_JAVA_INTERPRETER This is the absolute path to the Java
interpreter.
Orbix Programmer’s Guide Java Edition 205

Viewing Output with the Graphical Console
The Java daemon launches a simple graphical console that
displays output text streams (stdout and stderr) from the Java
daemon and launched servers. The menu items are outlined as
follows:

IT_DEFAULT_CLASSPATH This is the classpath the Java daemon will
use to find Java servers when launching
them.
You can supplement this on a per-server
basis using the -addpath parameter to putit.
The Orbix Java classes must be in the
CLASSPATH.

There is no default.

Settings Effect

Menu Item Effect
File->Exit Causes the Java daemon to exit. If there

are active servers, a prompt to exit is
displayed.

Edit->Clear Clears the content of the console window.
Tools->Threads Outputs information about the current

thread to the console window, as shown in
Figure 24 on page 207.

Tools->Garbage
Collection

Causes the Java Virtual Machine to run the
garbage collector synchronously, and may
free up more memory.

Diagnostics->Off Sets the level of diagnostics to none.
Equivalent to calling setDiagnostics (0) on
the ORB.

Diagnostics->Low Sets the level of diagnostics output to the
console to LO. Equivalent to calling
ORB.setDiagnostics (1).

Diagnostics->High Sets the level of diagnostics output to the
console to HI. Equivalent to calling
ORB.setDiagnostics (2).

Diagnostics->ORB Sets the level of diagnostics output to the
console to ORB. Equivalent to calling
ORB.setDiagnostics (4).

Diagnostics->BOA Sets the level of diagnostics output to the
console to BOA. Equivalent to calling
ORB.setDiagnostics (8).

Diagnostics->Proxy Sets the level of diagnostics output to the
console to PROXY. Equivalent to calling
ORB.setDiagnostics (16).

Diagnostics->
Request

Sets the level of diagnostics output to the
console to REQUEST. Equivalent to calling:
ORB.setDiagnostics (32).

Help->About Displays the About dialog box.
 206 Orbix Programmer’s Guide Java Edition

Figure 24: Sample Output from Tools ->Threads Menu Option

Setting Diagnostics Levels
As with other Orbix Java servers, you can also use the command
line to specify a diagnostics level for the Java daemon. To specify
the diagnostics level on which orbixdj runs, use the following
command:

-DOrbixWeb.setDiagnostics=value

where value is in the range 0-255.
Refer to “Orbix Java Diagnostics” on page 223 for more details.

In-Process Activation of Servers
In-process server activation means that each launched server
runs as a separate thread of execution in the daemon process.
Out-of-process server activation means that each launched server
has its own system process. The Java daemon supports both
in-process and out-of-process server activation. By default,
servers are activated out-of-process.
Running servers in-process rather than in a separate process
brings significant benefits, particularly scalability in terms of
performance and resource consumption. These benefits include:

• Bind time is reduced.
• Connections are shared.
• Much less memory is required for multiple servers.
Orbix Programmer’s Guide Java Edition 207

Guidelines for Developing In-Process Servers
To use in-process servers, your server should initialize the ORB
using:
 IE.Iona.OrbixWeb.CORBA.ORB.init()
In in-process mode, this always returns the default ORB
(_CORBA.Orbix). Currently, in-process servers do not support
multiple ORBs. After the first in-process server is created, calls to
org.omg.CORBA.ORB.init() return a _CORBA.Orbix object.
By their nature, in-process servers are not as isolated from each
other as separate processes. Specifically, they share all global and
static variables, such as the ORB itself and its object table. To
prevent unintended interference between servers (including the
Java daemon itself) you need to be aware of some additional
issues regarding programming of servers activated in-process.
The main issues are described in the following sections:

ORB Configuration
Orbix Java configuration applies to the entire ORB. In general, you
should not set configuration values in server code because this
affects all servers in the Virtual Machine, including the Java
daemon. The capability to alter configuration values can be useful
in certain situations; for example, when a different diagnostics
level may be required.

Other ORB/BOA Operations
Most ORB operations apply to the entire ORB, and should be used
with caution.
Exceptions to this rule for in-process activated servers are as
follows:

• The operations on the Orbix Java OrbCurrent object.
You should use OrbCurrent to discover information about the
this invocation.
Refer to the description of IE.Iona.OrbixWeb.CORBA.OrbCurrent
in the Orbix Programmer’s Reference Java Edition for
more details.

• The results returned by _OrbixWeb.ORB(ORB.init()).myServer()
and _OrbixWeb.ORB(ORB.init()).myMarkerName().

The results of these operations depend on the thread they are
called from (either the main server thread or the thread that has
dispatched a server operation).

Other Global Objects
Orbix Java-specific features such as filters, loaders and
transformers are configured for the entire ORB. Therefore, if you
install a per-process filter in your server, it is applied to all
requests for all servers in the process.
The Java daemon installs a loader and filter for its own purpose.
These should not be removed.
 208 Orbix Programmer’s Guide Java Edition

Object Table
All servers share the same object table. This object table is keyed
by marker and interface type, so different servers should not
create objects with identical marker and interface type.
Markers should generally be assigned by the server programmer.

Server Object Life Cycle
The Java daemon starts up each activated server in a separate
thread that calls the main operation of the server class. It monitors
the status of this thread to determine whether the server is active
or not, as indicated by the psit utility.
The server becomes active when the thread calls ORB.connect()on
instantiating a server object. It becomes inactive when the thread
exits or calls deactivate_impl().

Note: You must ensure that any clean-up operations required, such as
disconnecting all server objects, are performed before the thread
exits. The Java daemon does not clean up objects after the server.
The impl_is_ready() method is redundant for in-process servers
because the Java daemon controls event processing on behalf of
the server. Refer to the Orbix Programmer’s Guide Java
Edition to see how impl_is_ready() can control event processing
for out-of-process servers.
The Java daemon security manager throws a security exception if
System.exit() is called in a server.
Orbix Programmer’s Guide Java Edition 209

Scope of the Java Daemon
The Java daemon implements a subset of the IT_daemon interface.
The scope of the implementation imposes some restrictions on the
Java daemon. This section discusses these restrictions and
outlines those that no longer apply.

Activation
The Java daemon currently only supports shared server activation
mode.

Java Version
The Java daemon requires Java version 1.1 or higher.

IT_daemon Interface
The Java daemon currently implements a large subset of Orbix’s
daemon IDL, IT_daemon. The following is a list of the methods that
are not supported:

• addMarker()

• addMethod()

• changeOwnerDir()

• newPerMethodServer()

• newUnSharedServer()

• removeMarker()

• removeMethod()

• removeSharedMarker()

• removeUnsharedMarker()

Utilities
The Java daemon now supports the following utilities:

• chmodit
• chownit
• mkdirit
• rmdirit
However, because the Java daemon only supports shared
activation modes, it does not support the following switches to
putit:

• -per -client

• -per -client -pid

• -unshared

• -per -method

• -port
 210 Orbix Programmer’s Guide Java Edition

• -n

• -persistent

• -method

Markers and the Implementation Repository
The only marker pattern in the Implementation Repository
supported by the Java daemon is “*”. However, this does not
prohibit the use of named markers in calls to bind().

Security
The Java daemon now supports invoke and launch access rights
for users. However, access rights for user groups are not
supported. An exception to this is for the pseudo group all.
You can use the Orbix Java Server Manager tool and the chmodit
command-line utility to set access rights.

Server Names
Because the Java daemon now supports Implementation
Repository directory utilities, it can also now support server names
containing directory separator characters.

In-Process Servers
In-process servers are launched using the Java Reflection API.
This requires that the target class be public. If a server fails to
launch when the Java daemon is in “in-process” mode, you should
ensure that the server class is public.
Orbix Programmer’s Guide Java Edition 211

 212 Orbix Programmer’s Guide Java Edition

ORB Interoperability
ORB Interoperability allows communication between independently
developed implementations of the CORBA standard. ORB
interoperability enables a client of one ORB to invoke operations on
an object in a different ORB via an agreed protocol. Thus,
invocations between client and server objects are independent of
whether they are on the same or different ORBs. The OMG has
specified two standard protocols to allow ORB interoperability, GIOP
and IIOP. This chapter discusses the use of these protocols.

The OMG-agreed protocol for ORB interoperability is called the
General Inter-ORB Protocol (GIOP). GIOP defines the on-the-wire
data representation and message formats. It assumes that the
transport layer is connection-oriented. The GIOP specification
aims to allow different ORB implementations to communicate
without restricting ORB implementation flexibility.
The Internet Inter-ORB Protocol (IIOP) is an OMG defined
specialization of GIOP that uses TCP/IP as the transport layer.
Specialized protocols for different transports (for example, OSI,
Netware, IPX) or for new features, such as security, are expected
to be defined by the OMG in due course.
There are many reasons why interoperability between the
products of different ORB vendors is desirable. The core CORBA
specification defines a standard for making invocations on an
object via an ORB. A natural extension of this standard is that
conforming implementations should allow invocations on objects
from other conforming implementations. Within an organization
different ORBs may coexist reflecting separate development effort
or different ORB requirements by different parts of the
organization and at some point, these ORBs may need to
communicate.
An overview of the GIOP and IIOP specifications is provided in this
chapter. The “Example using IIOP in a Platform-Independent
Application” shows how IIOP can be used in Orbix Java.

Overview of GIOP
This section provides an overview of the elements of the GIOP
specification. It is provided primarily as background information.
For full details of the GIOP specification, contact the OMG at the
following Web site:
http://www.omg.org.

Coding
The GIOP defines a transfer syntax known as Common Data
Representation (CDR). CDR defines a coding for all IDL data
types: basic types, structured types (including exceptions), object
references and pseudo-objects such as TypeCodes.
All basic types are aligned on their natural boundaries. The
architecture of the message sender determines whether the byte
ordering is big-endian or little-endian. It is then the responsibility
 Orbix Programmer’s Guide Java Edition 213

of the receiver to decode the message according to the byte
ordering. Thus machines with common byte ordering may
exchange messages without unnecessary byte swapping.

Message Formats
GIOP defines eight message types. These formats are intended for
internal use only. All messages include a common message
header which includes the following information:

• The message size.
• A version number indicating the version of GIOP being used.
• The byte ordering.
• The message type.
Messages are exchanged between clients and servers. In this
context, a client is an agent that opens connections and originates
requests. A server is an agent that accepts connections and
receives requests. The eight GIOP message types are as follows:

Request
A Request message is sent by a client to a server. It encodes an
operation invocation which includes the identity of the target
object, and an identifier used to match a Reply message to a
Request. A Request may encode a get or set operation for an
attribute.

Reply
A Reply message is sent by a server to a client. A Reply message
encodes an operation invocation response, including inout and out
parameters and exceptions.
A server receiving a Request message may not be able to provide
direct access to the target object. This may be because the target
object has moved or because the server receiving the Request
message provides a location service. To indicate this, a Reply may
contain a LOCATION_FORWARD status and an indication of the new
location.

CancelRequest
A CancelRequest message may be sent from a client to a server to
notify the server that a reply to a particular pending Request or
LocateRequest message is no longer expected.

LocateRequest
A LocateRequest message may be used to probe for the location of
a remote object. This might be appropriate where an operation’s
parameters are too large to transmit in a Request message that
might return a LOCATION_FORWARD status. A LocateRequest message
determines whether the target object reference is valid, whether
the server can handle requests for that object or, if it returns a
LOCATION_FORWARD status, indicates the location to which invocation
on the reference should be sent.

LocateReply
A LocateReply message is sent by a server to a client in response
to a LocateRequest message. It may contain a new IOR.
 214 Orbix Programmer’s Guide Java Edition

CloseConnection
A CloseConnection message is sent by a server to inform clients
that it intends to close the connection. Any messages for which
clients have not received a reply may be reissued on another
connection.

MessageError
A MessageError message may be sent by a client or a server in
response to any message whose message type or version number
is unknown to the receiver of the message or whose message
header is not properly formed.
The way in which these messages are used by an implementation
of GIOP is transparent to the application. For example, a particular
implementation may respond to a LOCATE_FORWARD status in a Reply
message by transparently reissuing the call. Similarly, use of the
LocateRequest message is an optional optimization.

Fragment
A Fragment message allows you to send a large message
efficiently by transmitting the message as a sequence of
fragments. Any Request or Reply message may be transmitted as
fragments. The initial message is a Request or Reply message with
a value in the GIOP header set to indicate that more fragments
should be expected. The subsequent messages are then Fragment
messages. Fragment messages are sent in the order in which they
should be assembled.

Internet Inter-ORB Protocol (IIOP)
The mapping of GIOP message transfer to TCP/IP connections is
called the Internet Inter-ORB Protocol (IIOP).
An object accessible via IIOP is identified by an Interoperable
Object Reference (IOR). Since the format of normal object
reference is not prescribed by the OMG, the format of an IOR
includes an ORB’s internal object reference as well as an internet
host address and a port number. An IOR is managed internally by
the interoperating ORBs. Refer to “Interoperability between Orbix
and Orbix Java” on page 221 for more details on IORs.

IIOP in Orbix Java
Orbix Java supports IIOP and the native Orbix protocol as
alternative protocols. IIOP is the default protocol. Support for the
Orbix protocol is provided primarily for backward compatibility.
You can indicate during compilation of an IDL definition which
protocol should be used in the generated Java code for that
definition. A client program can then make invocations on this
definition and Orbix Java automatically uses the chosen protocol.
At this point, the chosen protocol is largely transparent at the
application level.
Orbix Programmer’s Guide Java Edition 215

Selection of Protocols
By default, code generated by the IDL compiler supports both IIOP
and the Orbix protocol. When compiling IDL definitions, use the -m
option with the following value to support the IIOP protocol only:

idlj -m IIOPOnly

As described in the chapter “Making Objects Available in Orbix
Java”, there are several ways in which a server can publish an
object reference or IOR for retrieval by clients. IORs are required
when using IIOP. Orbix Java object references are required if
using the Orbix Protocol. The protocol used does not affect the
options available to application programmers.

Comparison of IIOP and the Orbix Protocol
IIOP has two important advantages over the Orbix protocol. The
first is interoperability with other ORBs. The second is the
availability of servers which have no platform-specific
requirement, especially important in the Java domain.

Note: All servers that communicate using the Orbix protocol require an
Orbix Java daemon to run on the server host. This limits these
servers to platforms where an Orbix Java daemon is available.
However, using IIOP, you can design client and server applications
that have no external dependencies and are
platform-independent.
For example, the following application pair would interoperate
across ORBs, and also be platform-independent:

• A server which is not registered in the Implementation
Repository, which creates and publishes IORs (for instance,
using the Naming Service), and which calls the methods
ORB.connect() and ORB.disconnect() instead of impl_is_ready()
on the ORB object.

• A client which retrieves the IORs published by the server
without calling the Orbix Java bind() method.

Refer to “Registration and Activation of Servers” for details on how
Orbix Java servers can be run in a distributed system and their
requirements in this context.

Example using IIOP in a Platform-Independent Application
This section illustrates the use of IIOP in Orbix Java to create an
interoperable application which does not rely on the availability of
an Orbix Java daemon process. The application developed here
consists of a client and server as described in the example above.
The server creates an IOR which it publishes using OrbixNames
and then invokes processEvents() to handle client invocations on
that IOR. The client retrieves the IOR using OrbixNames and
invokes operations on the server object.
 216 Orbix Programmer’s Guide Java Edition

The example is based on the following IDL interface representing a
two-dimensional grid.

// IDL
interface grid {

readonly attribute short height;
readonly attribute short width;
void set(in short row, in short col,in long value);
long get(in short row, in short col);

};

Compiling the IDL Definition
The marshalling protocol uses IIOP by default. It is not necessary
to specify the -m switch in order to use IIOP.
You can compile an IDL definition as normal:

idlj -jP gridDemo grid.idl

Programming the Server
This section outlines the server code. It is assumed that an
implementation of the Naming Service, such as OrbixNames is
available and correctly installed. Following the convention used
elsewhere in this guide, it is also assumed that class
gridImplementation implements interface grid.
// Java
// Server main() method.

import CosNaming.*;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.UserException;
import org.omg.CORBA.Object;

class gridserver {
public static void main(String args[]) {

// Assume TIE approach.
grid gridImpl;
ORB orb;

// Declare Naming service types.
Object initRef;
NamingContext initContext;
NamingContext objectsContext;
NamingContext mathContext;
NameComponent[] name;

try {
// Create implementation object.
gridImpl =

new _tie_grid (new gridImplementation
(100,100), “gridmarker”);

}
catch (SystemException se) {

// Details omitted.
}

try {
// Find initial naming context.
orb = ORB.init(args,null);
initRef =
Orbix Programmer’s Guide Java Edition 217

orb.resolve_initial_references ("NameService");
initContext = NamingContextHelper.narrow (initRef);

// A CosNaming.Name is simply a sequence
// of structs.
name = new NameComponent[1];
name[0] =

new NameComponent("objects","");

// (In one step) create a new context,
// and bind it relative to the
// initial context:
objectsContext =

initContext.bind_new_context (name);

//reuse the NameComponent that has
//already been created
name[0].id = new String ("math");
name[0].kind = new String ("");
// (In one step) create a new context,
// and bind it relative to the
// objects context:
mathContext =

objectsContext.bind_new_context (name);

name[0].id = new String ("grid");
name[0].kind = new String ("");

// Bind name to object gridImpl in context
// objects.math:
mathContext.bind (name, gridImpl);

}
catch (SystemException se) {

// Details omitted.
}
catch (UserException ue) {

// Use the exceptions defined in the
// COSNaming IDL

}
// Call ORB.connect() to process
// client invocations.

orb.connect(gridImpl);
try {

Thread.sleep(1000*60*3);
}
catch (InterruptedException ex) {

// Details omitted.
}

}
}

This server instantiates a TIE object for interface grid. By default,
Orbix Java automatically identifies this object using an IOR. The
server then resolves the initial context in the OrbixNames and
associates the compound name objects.math.grid with the IOR, as
described in “Making Objects Available in Orbix Java”. Finally, the
server enters an Orbix Java event processing loop by calling
processEvents().
 218 Orbix Programmer’s Guide Java Edition

Programming the Client
This client program resolves the name objects.math.grid to locate
the object reference published by the server using the Naming
Service. The interoperable IOR retrieved from the Naming Service
must be narrowed to an object reference of the appropriate
interface before you can invoke operations in the normal way.
The source code for the client is as follows:

// Java
// Client application code.
// In file Client.java.

import CosNaming.*;
import IE.Iona.OrbixWeb._CORBA;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.UserException;
import org.omg.CORBA.Object;

public class Client {
public static void main (String args[]) {

NamingContext initContext;
NameComponent[] name;
ORB orb;

Object initRef, objRef;
grid gRef;

try {
// Find initial naming context.
orb = ORB.init(args,null);
initRef =

orb.resolve_initial_references
("NameService");

initContext = NamingContext.narrow
(initRef);

// Set up name and contexts.
name = new NameComponent[3];
name[0] = new NameComponent ("objects","");
name[1] = new NameComponent ("math","");
name[2] = new NameComponent ("grid","");

// Resolve the name.
objRef = initContext.resolve (name);
gRef = grid.narrow (objRef);

}
catch (SystemException se) {

// Details omitted.
}
catch (UserException ue) {

// Use exceptions defined in the COSNaming
// IDL

}
try {

w = gRef.width();
h = gRef.height();

}
Orbix Programmer’s Guide Java Edition 219

catch (SystemException se) {
// Details omitted.

}

System.out.println("height is " + h);
System.out.println("width is " + w);

try {
gRef.set((short)2,(short)4,123);
v = gRef.get((short)2,(short)4);

}
catch (SystemException se) {

// Details omitted.
}

System.out.println(
"value at grid position (2,4) is " + v);

}
}

Configuring an IIOP Port Number for an Orbix Java Server
Using IIOP, an Orbix Java server must listen for client connection
requests on a fixed TCP/IP port. The port number for each server
is assigned by Orbix Java on start-up.
In most cases this is done by the Orbix Java daemon. Refer to the
descriptions of IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE
in the Orbix Administrator’s Guide Java Edition for more
details.
When this approach is used, the port number assigned to a server
subsequently becomes embedded in the contents of any IORs
which that server creates. This approach has the drawback that a
server which exits and is relaunched may no longer be able to
recreate objects with IORs which exactly match those created in
an earlier process. For this reason, Orbix Java allows you to select
a well-known IIOP port for each server program.
By default, the Orbix Java daemon manages a well-known port for
a server. This feature can be disabled by setting
IT_IIOP_USE_LOCATOR to false in the server, as follows:

// Java
import IE.Iona.OrbixWeb.CORBA.ORB;
...

ORB.setConfigItem("IT_IIOP_USE_LOCATOR",""+ false);

This setting must be applied before any IORs are created in the
server.
When registering a server in the Implementation Repository, you
can specify a well-known port for a server using the putitj -port
switch, for example:
putitj serverName -java -port portNumber ...

Note: The -port switch is supported by orbixd only.
 220 Orbix Programmer’s Guide Java Edition

If you set IT_IIOP_USE_LOCATOR to true and specify a port number
for the server in this manner, the Orbix Java daemon attempts to
assign the required IIOP port to the server. If that port is not
available and you are using orbixd, an attempt to create an IOR in
the server raises a system exception.
If you set IT_IIOP_USE_LOCATOR to true, and do not specify a port
number in a putitj command, the Orbix Java daemon assigns a
default well-known port to the server.
A server which does not depend on the availability of an Orbix
Java daemon process should set IT_IIOP_USE_LOCATOR to false. In
this case, an alternative mechanism is required to allow the server
to establish a well-known IIOP port number. You can achieve this
as follows:

// Server listen port for IIOP protocol.
ORB.setConfigItem("IT_IIOP_LISTEN_PORT",10,000);

This approach is only effective if the new value is assigned before
the creation of any IORs in the server. The value of the
IT_IIOP_LISTEN_PORT setting has no significance if
IT_IIOP_USE_LOCATOR is set to true.
If you set IT_IIOP_LISTEN_PORT to zero, the server is not associated
with a well-known port number. This means that an IIOP port is
not dynamically assigned to the server on start-up.

Interoperability between Orbix and Orbix Java
The default protocol for the Orbix Java runtime is IIOP. IIOP is
also the default protocol for versions of Orbix 2.3 and above.
Earlier versions of Orbix use the Orbix protocol by default. If you
are using code generated by older versions of Orbix, you must
select one protocol. If you choose IIOP, the C++ server must be
linked with the IIOP library. An example of this is provided in the
GRID_IIOP demonstration supplied with Orbix.
If you choose the Orbix protocol, the Java client must include the
line:
ORB.setConfigItem("IT_BIND_USING_IIOP",""+false);
Orbix Programmer’s Guide Java Edition 221

 222 Orbix Programmer’s Guide Java Edition

Orbix Java Diagnostics
Orbix Java provides comprehensive diagnostics log output.
This functionality is supplied by the
IE.Iona.OrbixWeb.Features.DiagnosticsLog API. This
chapter explains how to set diagnostics levels in Orbix Java, and
outlines the output from each diagnostics level.

Setting Diagnostics
The setDiagnostics() method controls the level of diagnostics
messages output by Orbix Java. This method is defined in class
IE.Iona.OrbixWeb.CORBA.ORB, as follows:

public int setDiagnostics(int level)
throws org.omg.CORBA.SystemException;

To set diagnostics, specify the required level as a parameter to
setDiagnostics().The value of this parameter must be in the range
0-255.

The setDiagnostics() method returns the previous diagnostics
level.

Diagnostics Levels
Orbix Java provides diagnostics for specific components, each
associated with a particular level, as follows:

Note: The values LO and HI correspond to the diagnostics levels 1 and 2
from earlier versions of Orbix Java, and are included for
backwards compatibility.
The DETAILED diagnostics component is of special significance. This
controls the amount of diagnostics produced by the components.
Setting the level to DETAILED (128) means that all diagnostics from
the selected components are output.

Combining Diagnostics Levels
To obtain diagnostics output from particular components, add the
values associated with the required components.

level Diagnostics Component
0 No diagnostics
1 LO

2 HI

4 ORB

8 BOA

16 PROXY

32 REQUEST

64 CONNECTION

128 DETAILED
 Orbix Programmer’s Guide Java Edition 223

For example, consider obtaining detailed diagnostics associated
with the BOA and REQUEST components. This involves the following
steps:
1. Sum the levels associated with the BOA (8), REQUEST (32) and

DETAILED components (128):
8 + 32 + 128 =168

2. Pass the total as the level parameter to setDiagnostics().
You can obtain full diagnostics output by setting the value to 255,
the result of adding all the diagnostics components together. This
produces very comprehensive output, including full buffer dumps
of messages.

Overriding the Diagnostics Log
It is possible for an application to override the diagnostics log, for
example, to redirect diagnostics to a file. You can override the
diagnostics log by overriding the entry() operation implemented in
IE.Iona.OrbixWeb.Features.DiagnosticsLog:

entry (ORB orb, int current_diag, int component_diag,
 Stringable component, String message,
 boolean isADetail)

The default entry() operation checks the diagnostics level, and
then outputs the message to System.out. This message is preceded
by a short string that describes the component producing the
diagnostics.
To set the new diagnostics log on the ORB, use the following call:

myORB.setDiagnosticsLog(DiagnosticsLog l);

Alternative Approaches to Setting Diagnostics
You can also set the level of diagnostics output by Orbix Java to
stdout by:

• Using the command line.
• Using the Java Daemon graphical console.
• Using the Orbix Java Configuration Explorer.

Refer to the Orbix Administrator’s Guide Java Edition for
details.

Using the Command Line
You can use the command line to specify a diagnostic level that
outputs to stdout; for example, by using a system parameter on
start-up. To specify the diagnostics level, use the following
command:

-DOrbixWeb.setDiagnostics=value

where value is in the range 0-255.
The diagnostics levels in this range are explained in “Setting
Diagnostics” on page 223. Using the command line enables full
diagnostics log support.

Using the Java Daemon Graphical Console
The Java Daemon launches a simple graphical console that
displays output text streams (stdout and stderr) from the Java
Daemon and launched servers. This console provides diagnostics
output for each diagnostics level.
 224 Orbix Programmer’s Guide Java Edition

The Diagnostics menu item has the following options:

Figure 25: The Orbixdj Graphical Console

Menu Item Effect
Diagnostics
|Off

Sets the level of diagnostics to none.
Equivalent to calling ORB.setDiagnostics
(0).

Diagnostics
|Low

Sets the level of diagnostics output to the
console to LO. Equivalent to calling
ORB.setDiagnostics (1).

Diagnostics
|High

Sets the level of diagnostics output to the
console to HI. Equivalent to calling
ORB.setDiagnostics (2).

Diagnostics
|ORB

Sets the level of diagnostics output to the
console to ORB. Equivalent to calling
ORB.setDiagnostics (4).

Diagnostics
|BOA

Sets the level of diagnostics output to the
console to BOA. Equivalent to calling
ORB.setDiagnostics (8).

Diagnostics
|Proxy

Sets the level of diagnostics output to the
console to PROXY. Equivalent to calling
ORB.setDiagnostics (16).

Diagnostics
|Request

Sets the diagnostics output to the console
to REQUEST. Equivalent to calling
ORB.setDiagnostics (32).

Diagnostics
|Connection

Sets the diagnostics output to the console
to CONNECTION. Equivalent to calling
ORB.setDiagnostics (64).

Diagnostics
|Detailed

Sets the diagnostics output to the console
to DETAILED. Equivalent to calling
ORB.setDiagnostics (128).
Orbix Programmer’s Guide Java Edition 225

Combining Diagnostics Levels
You can also use the Java Daemon graphical console to combine
diagnostics levels as shown in Figure 25 on page 225.
For example, if you select the LOW, ORB, BOA and Proxy menu
items, the orbixdj console produces a combined output for these
diagnostics components.
 226 Orbix Programmer’s Guide Java Edition

Part IV
Advanced CORBA

Programming

In this part
This part contains the following:

Type any page 229

Dynamic Skeleton Interface page 235

Dynamic Invocation Interface page 241

The Interface Repository page 255

Service Contexts page 279

Type any
This chapter gives details of the IDL type any, and the corresponding
Java class Any (defined in package org.omg.CORBA), which is used
to indicate that a value of an arbitrary type can be passed as a
parameter or a return value.

Consider the following interface:
// IDL
interface Test {

void op (in any a);
};

A client can construct an any to contain any type of value that can
be specified in IDL. The client can then pass the any in a call to
operation op(). An application receiving an any must determine
what type of value it stores and then extract the value.
The IDL type any maps to the Java class org.omg.CORBA.Any. Refer
to the Orbix Programmer’s Reference Java Edition for more
details. Conceptually, this class contains the following two
instance variables:

• type
• value
The type is a TypeCode object that provides full type information for
the value contained in the any. The Java Any class provides a
type() method to return the TypeCode object. The value is the
internal representation used to store Any values. The value object
is accessible via the OMG standard insertion and extraction
methods. These methods are described in full in this chapter.

Constructing an Any Object
You must use the ORB class (in package org.omg.CORBA) to construct
Any objects. This is illustrated by the following example:

// Java

import org.omg.CORBA.*

Any a = ORB.init().create_any();

Inserting Values into an Any Object
The Java class Any contains a number of insertion methods that
you can use to insert any of the pre-defined IDL types into an Any
object. The pre-defined IDL types are as follows:

short
unsigned short
long
unsigned long
long long
unsigned long long
float
double
boolean
 Orbix Programmer’s Guide Java Edition 229

char
wchar
octet
any
Object
string
wstring
TypeCode
Principal

The insertion methods for these types are named insert_short,
insert_ushort, insert_long, and so on.
A single-element insertion method simply takes the element value
as a parameter.
For example, the signature of Any.insert_long() is as follows:

public void insert_long(int l);

Helper classes for user-defined types provide insert() methods to
support the insertion of user-defined types into an any. The
signature for insert() can be defined as:

public void insert(org.omg.CORBA.Any a,
<user-def type> value);

Consider the following IDL definition:
// IDL
struct Foo {

string bar;
float number;

};

interface Flexible {
void doit (in any a);

};

Assume that a client programmer wishes to pass an any containing
an IDL short as the parameter to the doit() operation. The
following insertion method, which is a member of class Any, may
be used:

public void insert_short(short s);

The client programmer can then write the following code:
// Java
// Client.java

import org.omg.CORBA.*;
Flexible fRef;
Any param = ORB.init().create_any();
short toPass = 26;
try {

fRef = FlexibleHelper.bind
(“anyMarker:anySave”, hostname);

param.insert_short (toPass);

fRef.doit (param);
}
catch (SystemException se) {

...
}

 230 Orbix Programmer’s Guide Java Edition

If the client wishes to pass a more complex user-defined type,
such as the struct Foo defined above, the appropriate helper class
insert() methods can be used. For example, the client
programmer can write the following:
// Java
// Client.java,

import org.omg.CORBA.*;

Flexible fRef;
Any param = ORB.init().create_any();
Foo toPass = new Foo();

toPass.bar = "Bar";
toPass.number = (float) 34.5;

try {
fRef = FlexibleHelper.bind(“anyMarker:anyServer”, hostname);

fooHelper.insert (param, toPass);

fref.doit (param);
}
catch (SystemException se) {

...
}

These insertion methods provide a type-safe mechanism for
insertion into an any. Both the type and value of the Any are
assigned at insertion. If an attempt is made to insert a value
which has no corresponding IDL type, this results in a
compile-time error.

Extracting Values from an Any Object
The Any Java class contains a number of methods for extracting
pre-defined IDL types from an Any object. These extraction
methods are named extract_long(), extract_ulong(),
extract_float(), and so on. Each extraction method simply returns
a value of the appropriate type.
User-defined type helper classes provide extract() methods,
which support the extraction of user-defined types from an any.
The signature of this method is as follows:

public <user-def type>
extract(org.omg.CORBA.Any a);

The following example IDL can be used to illustrate the use of
extraction methods:

// IDL
typedef sequence<long, 10> longSeq;

interface Versatile {
any getit();

};
Orbix Programmer’s Guide Java Edition 231

You can extract a simple type from an any as follows:
// Java
// Client.java

import org.omg.CORBA.*;

Versatile vRef;
Any rv;
short toReceive;

try {
vRef = VersatileHelper.bind(“anymarker:anyServer”,

hostname);

rv = vRef.getit();

// extract a short value
if ((rv.type()).kind() == TCKind.tk_short) {

toReceive = rv.extract_short();
}

}
catch (SystemException se) {

...
}

You can extract a sequence of type longSeq from an any as follows:
// Java
// Client.java

Versatile vRef;
org.omg.CORBA.Any rv;
long[] toReceive;

try {
vRef = VersatileHelper.bind(“anyMarker:anyServer”,

hostname);

rv = vRef.getit();

// extract a sequence of longs
if ((rv.type()).equal(longSeqHelper.type())) {

toReceive = longSeqHelper.extract (rv);
}

}
catch (SystemException se) {

...
}

Orbix Java does not destroy the value of an any after extraction.
You can therefore extract the value of an any more than once.

Note: The Orbix Java -specific operations on any to extract or insert
arrays are no longer supported. To insert or extract arrays, define
array types in IDL and use the generated Helper class insert and
extract operations.
 232 Orbix Programmer’s Guide Java Edition

Any as a Parameter or Return Value
The mapping for IDL any operation parameters and return values
are illustrated by the following IDL operation:

// IDL
any op1 (in any a1, out any a2, inout any a3);

This IDL operation maps to the following Java method:
// Java
import org.omg.CORBA.Any;
import org.omg.CORBA.AnyHolder;

public Any op1 (Any a1, AnyHolder a2, AnyHolder a3);

Both inout and out parameters map to type AnyHolder as explained
in “Parameter Passing Modes and Return Types”.

Additional Methods
In addition to the standard Any interface described in the
org.omg.CORBA.Any abstract class, there are some additional
methods on the actual implementation class
IE.Iona.OrbixWeb.CORBA.Any:

• A toString() method.
• A fromString() method.
• A constructor Any(java.lang.String).
• A reset() method
• A copy() method.
• A clone() method.
• An equals() method.
• A containsType() method.
• A value() accessor method.
You can use the methods toString() and fromString(), and the
constructor that takes a string as an argument to maintain
persistent any values.
To convert from a standard org.omg.CORBA.Any object to the actual
implementation class IE.Iona.OrbixWeb.CORBA.Any, use the
following casting operation:

IE.Iona.OrbixWeb._OrbixWeb.Any(org.omg.CORBA.Any a)

Note: The additional methods on the implementation class
IE.Iona.OrbixWeb.CORBA.Any may not be supported in a future
release of Orbix Java.
Orbix Programmer’s Guide Java Edition 233

 234 Orbix Programmer’s Guide Java Edition

Dynamic Skeleton
Interface
The Dynamic Skeleton Interface (DSI) is the server-side equivalent
of the DII. It allows a server to receive an operation or attribute
invocation on any object, even one with an IDL interface unknown
at compile time. The server does not need to be linked with the
skeleton code for an interface to accept operation invocations on
that interface.

Instead, a server can define a method that is informed of an
incoming operation or attribute invocation. This method
determines the identity of the object being invoked. The operation
name and the types and values of each argument must be
provided by the user. The method can then perform the task being
requested by the client, and construct and return the result.
Just as the use of the DII is less common than the use of normal
static invocations, the use of the DSI is less common than use of
the static interface implementations. Also, clients are not aware
that a server is in fact implemented using the DSI, clients simply
makes IDL calls as normal.

Uses of the DSI
The DSI is explicitly designed to help you write gateways. Using
the DSI, a gateway can accept operation or attribute invocations
on any specified set of interfaces and pass them to another
system. A gateway can be written to interface between CORBA
and some non-CORBA system. The gateway needs to know the
protocol rules of non-CORBA system. However, it is the only part
of the CORBA system which requires this knowledge. The rest of
the CORBA system continues to make IDL calls as usual.
The IIOP protocol allows an object in one ORB to invoke on an
object in another ORB. Non-CORBA systems do not have to
support this protocol. One way to interface CORBA to such
systems is to construct a gateway using the DSI. This gateway
appears as a CORBA server containing many CORBA objects. The
server uses the DSI to trap the incoming invocations and translate
them into calls to the non-CORBA system. A combination of the
DSI and DII allows a process to be a bi-directional gateway. The
process can receive messages from the non-CORBA system and
use the DII to make CORBA calls. It can use the DSI to receive
requests from the CORBA system and translate these into
messages in the non-CORBA system.
Another example of the use of the DSI is a server that contains a
large number of non-CORBA objects that it wishes to make
available to its clients. One way to achieve this is to provide an
individual CORBA object to act as a front-end for each non-CORBA
object. However, in some cases this multiplicity of objects may
cause too much overhead.
 Orbix Programmer’s Guide Java Edition 235

Another way is to provide a single front-end object that can be
used to invoke on any of the objects, probably by adding a
parameter to each call that specifies which non-CORBA object is to
be manipulated. This changes the client’s view because the client
would cannot invoke on each object individually, treating it as a
proper CORBA object.
You can use the DSI to achieve the same space saving as that
achieved when using a single front-end object. You can give
clients a view that there is one CORBA object for each underlying
object. The server indicates that it wishes to accept invocations on
the IDL interface using the DSI, and when informed of such an
invocation, it identifies the target object, the operation or attribute
being called, and the parameters. It then makes the call on the
underlying non-CORBA object, receives the result, and returns it
to the calling client.

Using the DSI
To use the DSI you must perform the following steps in your
server program:
1. Implement a class that extends the class

org.omg.CORBA.DynamicImplementation.
2. Implement the invoke() and _ids() operations.

The ids() operation is contained in the package
org.omg.CORBA.portable.ObjectImpl which
DynamicImplementation extends.

3. Create an object of this class and call ORB.connect() to connect
the object to the ORB.

Creating DynamicImplementation Objects
The class org.omg.CORBA.DynamicImplementation is defined as
follows:

public abstract class DynamicImplementation
extends org.omg.CORBA.portable.ObjectImpl {

public abstract void invoke
(org.omg.CORBA.ServerRequest request)

throws SystemException;
}

The invoke() method is informed of incoming operation and
attribute requests. This method can use the ServerRequest
parameter to do the following:

• Determine what operation or attribute is being invoked and on
what object.

• Obtain in and inout parameters.
• Return out and inout parameters and the return value to the

caller.
• Return an exception to the caller.
An implementation of the invoke() method is known as a Dynamic
Implementation Routine (DIR).
 236 Orbix Programmer’s Guide Java Edition

The class DynamicImplementation is not visible to clients.
Specifically, the interfaces used by clients do not inherit from class
DynamicImplementation. If clients inherit from
DynamicImplementation, the fact that the DSI is used at the
server-side is not transparent to clients.

The ServerRequest Data Type
The ServerRequest object which is passed to
DynamicImplementation.invoke() is created by Orbix Java once it
receives an incoming request and recognizes it as a request to be
handled by the DSI.
The ServerRequest type is defined in IDL as follows:

// Pesudo IDL
// In module CORBA.

pseudo interface ServerRequest {
String op_name();
Context ctx();
void params(NVList parms);
any result(Any a);
void except(Any a)

};

Instances of the ServerRequest interface are pseudo-objects. This
means that references to these instances cannot be transmitted
through IDL interfaces.
The attributes and operations of ServerRequest are described as
follows:

op_name() Gives the name of the operation being invoked.
ctx() Returns the context associated with the call.
params() Allows the invoke() operation to specify the types of

incoming arguments.
result() Allows the invoke() operation to return the result of

an operation or attribute call to the caller.
except() Allows the invoke() operation to return an exception

to the caller.
Orbix Programmer’s Guide Java Edition 237

Example of Using the DSI
To implement the Dynamic Implementation Routine (DIR), you
must define a class that extends
org.omg.CORBA.DynamicImplementation.
For example:
// Java
// In file javaserver1.java.
// Implementation of Dynamic Implementation Routine

package grid_dsi;

class grid_i extends org.omg.CORBA.DynamicImplementation {

public void invoke(org.omg.CORBA.ServerRequest _req) {
// Implementation of the invoke() method

}
public String[] _ids() {

// Implementation of the _ids() method
}
...

};

Your DSI class must contain the following methods:

• _ids()

• invoke()

_ids()
The _ids() method should return a list of all interfaces supported
by the Dynamic Implementation Routine, as shown in the
following sample code:
// Java
// In file javaserver1.java.
// Implementation of ids() method

public String[] _ids() {
String[] tmp = {"IDL:grid:1.0"};
return tmp;

}

invoke()
The following is an example of the DSI invoke() method:

// Java
// In file javaserver1.java.
// Implementation of invoke() method

// Simulates the operations on the grid interface using the DSI.
public void invoke(org.omg.CORBA.ServerRequest _req) {

String _opName = _req.op_name() ;
org.omg.CORBA.Any _ret = org.omg.CORBA.ORB.init().create_any();
org.omg.CORBA.NVList _nvl = null;

if(_opName.equals("set")) {
_nvl = org.omg.CORBA.ORB.init().create_list(3);

// Create a new any.
org.omg.CORBA.Any n = org.omg.CORBA.ORB.init().create_any();
 238 Orbix Programmer’s Guide Java Edition

// Insert the TypeCode(tk_short) into the new Any.
n.type(org.omg.CORBA.ORB.init().get_primitive_tc (org.omg.CORBA.TCKind.tk_short)) ;

// Insert this Any into the NVList and set the flag to IN.
_nvl.add_value(null, n, org.omg.CORBA.ARG_IN.value);

// Create new Any, set Typecode to short, insert into NVList.
org.omg.CORBA.Any m = org.omg.CORBA.ORB.init().create_any();
m.type(org.omg.CORBA.ORB.init().get_primitive_tc (org.omg.CORBA.TCKind.tk_short));
_nvl.add_value(null, m, org.omg.CORBA.ARG_IN.value);

// Create new Any, set Typecode to long, insert into NVList.
org.omg.CORBA.Any value = org.omg.CORBA.ORB.init().create_any();
value.type(org.omg.CORBA.ORB.init().get_primitive_tc

 (org.omg.CORBA.TCKind.tk_long));
_nvl.add_value(null, value, org.omg.CORBA.ARG_IN.value);

// Use params() method to marshal data into _nvl.
_req.params(_nvl);

// Get the value of row, col from Any row, col
// and set this element in the array to the value.
m_a[n.extract_short()][m.extract_short()] = value.extract_long() ;
return;

}

if(_opName.equals("get")) {
_ret = org.omg.CORBA.ORB.init().create_any();
_nvl = org.omg.CORBA.ORB.init().create_list(2);

org.omg.CORBA.Any n = org.omg.CORBA.ORB.init().create_any();
ntype(org.omg.CORBA.ORB.init().get_primitive_tc (org.omg.CORBA.TCKind.tk_short));
_nvl.add_value(null, n, org.omg.CORBA.ARG_IN.value);

org.omg.CORBA.Any m = org.omg.CORBA.ORB.init().create_any();
m.type(org.omg.CORBA.ORB.init().get_primitive_tc (org.omg.CORBA.TCKind.tk_short));
_nvl.add_value(null, m, org.omg.CORBA.ARG_IN.value);
_req.params(_nvl);
int t = m_a[n.extract_short()][m.extract_short()] ;
_ret.insert_long(t);
_req.result(_ret);
return;

}

if (_opName.equals("_get_height")) {
_ret = org.omg.CORBA.ORB.init().create_any();
_req.params(_nvl);
_ret.insert_short(m_height);
_req.result(_ret);
return;

}

if (_opName.equals("_get_width")) {
_ret = org.omg.CORBA.ORB.init().create_any();
_req.params(_nvl);
_ret.insert_short(m_width);
_req.result(_ret);
return;

}
}

Orbix Programmer’s Guide Java Edition 239

The complete code for this example is available in the
demos/orbixjava/grid_dsi directory of your Orbix Java installation.
 240 Orbix Programmer’s Guide Java Edition

Dynamic Invocation
Interface
In a normal Orbix Java client program, the IDL interfaces that the
client can access are determined when the client is compiled. The
Dynamic Invocation Interface (DII) allows a client to call operations
on IDL interfaces that were unknown when the client was compiled.

IDL is used to describe interfaces to CORBA objects and the Orbix
Java IDL compiler generates the necessary support to allow clients
to make calls to remote objects. Specifically, the IDL compiler
automatically builds the appropriate code to manage proxies, to
dispatch incoming requests within a server, and to manage the
underlying Orbix Java services.
Using this approach, the IDL interfaces that a client program can
use are determined when the client program is compiled.
Unfortunately, this is too limiting for a small but important subset
of applications. These application programs and tools need to use
an indeterminate range of interfaces: interfaces that perhaps were
not even conceived at the time the applications were developed.
Examples include browsers, gateways, management support tools
and distributed debuggers.
Orbix Java supports the CORBA Dynamic Invocation Interface
(DII). This allows an application to issue requests for any
interface, even if that interface was unknown at the time the
application was compiled.
The DII allows invocations to be constructed by specifying, at
runtime, the target object reference, the operation or attribute
name and the parameters to be passed. A server receiving an
incoming invocation request does not know whether the client that
sent the request used the normal, static approach or the dynamic
approach to compose the request.

Using the DII
This chapter uses a bank example to demonstrate the use of the
DII. The IDL definitions are as follows:

// IDL

// A bank account.
interface account {

readonly attribute float balance;
attribute long accountNumber;

void makeLodgement(in float sum);
void makeWithdrawal(in float sum,

out float newBalance);
};

// A factory for bank accounts.
interface bank {

exception reject { string reason; };
 Orbix Programmer’s Guide Java Edition 241

// Create an account.
account newAccount(in string owner,

inout float initialBalance) raises (Reject);

// Delete an account.
void deleteAccount(in account a);

};

You can make dynamic invocations by constructing a Request
object and then invoking an operation on the Request object to
make the request. Class Request is defined in the org.omg.CORBA
package.
In the examples that follow, a request for the operation
newAccount() is created, to dynamically invoke an operation whose
static equivalent is:

// Java
bank b = bankHelper.bind
(“bankMarker:bankServer”, hostname);
account a;
a = b.newAccount("Chris", (float)1000.00);

Programming Steps for Using the DII
This chapter explains how a client can make dynamic invocations.
To do so, the following steps are required:
1. Obtain an object reference.
2. Create a Request object using the object reference.
3. Populate the Request object with the parameters to the

operation.
4. Invoke the request.
5. Obtain the result, if necessary.
The following code illustrates some of the programming steps
using the standard org.omg.CORBA.Request operations:

// Java
// in class Client
import org.omg.CORBA.Request;
import org.omg.CORBA.Any;
...

// Initialize using either the Naming Service
// or ORB.string_to_object() details omitted
org.omg.CORBA.Object aBankObject =

// Create a Request
Request r = aBankObject._request("newAccount");

// Prepare the inout parameter
float ioVal = (float) 1000;

// Add the in string
r.add_in_arg().insert_string("Chris");

// Add the inout float
Any valAny =r.add_inout_arg().insert_float(ioVal);

// Add the Streamable for return value
 242 Orbix Programmer’s Guide Java Edition

accountHolder accountHdr = new accountHolder();
r.return_value().insert_Streamable(accountHdr);

// Invoke the Request
r.invoke ();

// Extract the inout argument
ioVal = valAny.extract_float();

// The account object ref. is now in the value member of
// the accountHdr variable.

To improve clarity, exception handling code is not included in this
example or in most of the remaining examples in this chapter.
However, developers should note that this sample code will not
compile without the inclusion of Orbix Java exception handling.
Refer to the chapter “Exception Handling” on page 143 for details
of how to handle exceptions in Orbix Java.
This example assumes that the name of the operation (newAccount)
is known. In practice, this information is obtained in some other
way; for example, from the Interface Repository.
The programming steps are described in detail later in this
chapter.

Examples of Clients Using the DII
There are two common types of client program that use the DII:

• A client interacts with the Interface Repository to determine a
target object’s interface, including the name and parameters
of one or all of its operations and then uses this information to
construct DII requests.

• A client, such as a gateway, receives the details of a request
to be made. In the case of a gateway, this may arrive as part
of a network package. The gateway can then translate this
into a DII call, without checking the details with the Interface
Repository. If there is any mismatch, the gateway receives an
exception from Orbix Java, and can report an error to the
caller.

Some client programs also use the DII to call an operation with
deferred synchronous semantics, which is not possible using
normal static operation calls. Deferred synchronous calls are
described in “Deferred Synchronous Invocations” on page 252.

The CORBA Approach to Using the DII
This section demonstrates how to use the DII using the Orbix Java
implementation of the classes and operations defined in the
CORBA specification. A number of alternative approaches to
setting up a Request are illustrated, all of which are
CORBA-compliant.
Orbix Programmer’s Guide Java Edition 243

Obtaining an Object Reference
Assume that there is already some server containing a number of
objects that implement the interfaces in “Using the DII” on
page 241. The first step in using the DII is to obtain an object
reference of interface type Object (defined in package
org.omg.CORBA) that references the target object.
If the full object reference of the target object is known in
character string format, an object reference, of a type that
implements org.omg.CORBA.Object, can be constructed to facilitate
making a dynamic invocation on it. For example, you can invoke
the method string_to_object() on the org.omg.CORBA.ORB object as
follows:

// Java
import org.omg.CORBA.Object;
import org.omg.CORBA.ORB;

ORB orb = ORB.init(args, null);
Object o = orb.string_to_object (refStr);

In the above example, the variable refStr is a stringified object
reference for the target object, perhaps retrieved from a file, a
mail message, or an IDL operation call. Object references can also
be obtained from the Naming Service. Refer to the chapter
“Making Objects Available in Orbix Java” on page 127 for further
information on this topic.

Note: In previous versions of Orbix Java, when using the DII, object
references were associated with the default ORB (_CORBA.Orbix).
Now, the object references are associated with the ORB in
context. The enables multiple ORB support.

Creating a Request
CORBA specifies two ways to construct a Request object. These are
implemented in Orbix Java using the _request() and
_create_request() methods:

_request()
The method _request() is defined in interface org.omg.CORBA.Object
It is declared as:

// Java
// in package org.omg.CORBA,
// in interface Object

import org.omg.CORBA.Request;

public Request _request(String operation);

This method takes a single parameter which specifies the name of
the operation to be invoked on the target object.
 244 Orbix Programmer’s Guide Java Edition

_create_request()
There is also a _create_request() methods defined in interface
Object. It is declared as:

// Java
// in package org.omg.CORBA,
// in interface Object

import org.omg.CORBA.Request;
import org.omg.CORBA.Context;
import org.omg.CORBA.NamedValue;
import org.omg.CORBA.NVList;

Request _create_request(Context ctx, String operation,
 NVList arg_list,NamedValue

result);

The use of these methods is described in the next two sections. An
alternative approach to request construction is explained in
“Resetting a Request Object for Reuse” on page 251.

Setting up a Request Using _request()
You can set up a request by invoking _request() on the target
object, and specifying the name of the operation that is to be
dynamically invoked. In the first attempt at constructing the
request, the code is written in a verbose fashion so that the
individual steps can be explained easily. A simpler, more compact,
version of the same code is then shown.
The following steps are required in setting up a Request using the
_request() method:
1. Obtain an object reference to the target object. The stringified

object reference obtained earlier is used:
// Java
import org.omg.CORBA.Object;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Request;

ORB orb = ORB.init(args, null);
Object o = orb.string_to_object (refStr);

2. Construct a Request object by calling _request() on the target
object, as follows:
Request request = o._request("newAccount");

3. Populate the Request. The most efficient and straightforward
approach to populating a DII Request is the one used by the
Orbix Java IDL generated stubs. This approach takes
advantage of the following methods in the
org.omg.CORBA.Request class:

import org.omg.CORBA.Any;
import org.omg.CORBA.TypeCode;
...
Any add_in_arg();
Any add_inout_arg();
Any add_out_arg();
void set_return_type(TypeCode tc);
Any return_value();
Orbix Programmer’s Guide Java Edition 245

It also uses the following insertion method in the
org.omg.CORBA.Any class:

import org.omg.CORBA.portable.Streamable;
...
void insert_Streamable(Streamable s);

The example code using this approach appears as follows:
Request request = oRef._request("newAccount");

// Insert the in parameter into the Request
request.add_in_arg().insert_string ("Chris");

// Insert the inout parameter:
float ioVal = 1000.00);
request.add_inout_arg().insert_float(ioVal);

// Add the Streamable for return value
accountHolder accountHdr = new accountHolder();
request.return_value().insert_Streamable(accountHdr);

// Invoke the Request
request.invoke ();

// Extract the inout argument
ioVal = valAny.extract_float();

// The account object ref. is now in the value member of
// the accountHdr variable.

All non-primitive inout and out parameters are inserted as
Streamable objects (those that implement
org.omg.CORBA.portable.Streamable). All primitive inout and out
parameters must be explicitly inserted and extracted using the
various Any primitive insert and extract methods. Refer to the
chapter “Type any” on page 229, for more details on these
methods.

Alternative approach
The following method provides an alternative approach to setting
up a request.
1. First obtain an empty NVList, and build it to contain the

parameters to the operation request.
To create an operation list whose length is specified in the first
parameter, invoke the method create_list() on the
org.omg.CORBA.ORB object.

Note: If the IFR has been set up, an easier approach is to call
create_operation_list() on org.omg.CORBA.ORB.
See “Using the DII with the Interface Repository” on page 250.

An NVList is a list of NamedValue elements. A NamedValue
contains a name and a value, where the value is of type Any
and is used in the DII to describe the arguments to a request.
To obtain the Any, use the value() method defined on class
NamedValue.
 246 Orbix Programmer’s Guide Java Edition

2. Using the following code as a guideline, create the NVList and
add the NamedValues:
import org.omg.CORBA.NamedValue;
import org.omg.CORBA.NVList;
import org.omg.CORBA.Any;

import org.omg.CORBA.ARG_IN;
import org.omg.CORBA.ARG_INOUT;
...

NVList argList = ORB.init().create_list(2);
NamedValue owner = argList.add(ARG_IN.value);
owner.value().insert_string (“Chris”);
NamedValue initBal = argList.add(ARG_INOUT.value);
initBal.value().insert_float (56.50);

// Fill in name of operation and parameter values

The method NVList.add()creates a NamedValue and adds it to
the NVList. It returns a NamedValue pseudo object reference for
the newly created NamedValue.
Class NVList also provides a method add_value() that takes
three parameters: the name of the NamedValue (the formal
parameter in the IDL operation); the value (of type Any) of
the NamedValue; and a flag indicating the mode of the
parameter. For example:

NamedValue owner = argList.add_value
("owner",ownerAny, ARG_IN.value);

NamedValue initBal = argList.add_value
("initialBalance", balAny, ARG_INOUT.value));

The parameter to NVList.add() can be a Flags object initialized
with one of the following:

You must choose the appropriate parameter that matches the
corresponding formal argument.
The NamedValues added to the NVList correspond, in order, to
the parameters of the operation. They must be inserted in the
correct order.

3. To fully populate the request, update the Any contained in
each NamedValue element of the argument list with the value
that is to be passed in the operation request.
// Insert the parameter values into the
// NamedValues

owner.value().insert_string ("Chris");
balance.value.insert_float((float)100.00);

ARG_IN.value Input parameters (IDL in).
ARG_OUT.value Output parameters (IDL out).
ARG_INOUT.value Input/output parameters (IDL inout).
Orbix Programmer’s Guide Java Edition 247

Compact Syntax
You can write the code in the last section in a more compact way
by making use of the return values and the method
Request.arguments() which returns the argument list (of type
NVList):

// Java
import org.omg.CORBA.Object;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Request;
import org.omg.CORBA.ARG_IN;
import org.omg.CORBA.ARG_INOUT;
...

// Obtain an object reference from
// string refStr
ORB orb = ORB.init(args, null);
Object o = orb.string_to_object (refStr);

// Create a Request object
Request request = oRef._request("newAccount");

// Insert the first parameter into the Request
(request.arguments().add (ARG_IN.value)).value())
.insert_string ("Chris");

// Insert the second parameter:
(request.arguments().add (ARG_INOUT.value)).value())
.insert_float ((float) 1000.00);

Setting up a Request Using _create_request()
This section shows how to use the CORBA defined method
Request._create_request() to create a request:

// Java
// in package org.omg.CORBA,
// in interface Object
public org.omg.CORBA.Request _create_request(

org.omg.CORBA.Context ctx,
String operation,
org.omg.CORBA.NVList arg_list,
org.omg.CORBA.NamedValue result);

The parameters of this method are as follows:

• Context object to be sent in the request.
• The name of the operation.
• The parameters to the operation (of type NVList).
• Location for the return value (of type NamedValue).
• The return value is a Request object which contains the new

Request object.
The following example constructs a Request for operation
newAccount().The parameters “Chris” and 1000.00 are passed as
before. The argument list is created as in “Setting up a Request
Using _request()” on page 245 using
org.omg.CORBA.ORB.create_list().
 248 Orbix Programmer’s Guide Java Edition

The compact syntax is used to add the arguments to argList (of
type NVList):

// Java
// As before allocate space for an
// NVList of length 2
import org.omg.CORBA.*;
ORB orb = ORB.init(args, null);

NVList argList = ORB.init().create_list(2);

(argList.add(ARG_IN.value)).value())
.insert_string ("Chris");

// The second parameter to newAccount()

(argList.add(ARG_INOUT.value)).value())
.insert_float ((float) 1000.00);

// Construct a Request object with
// this information
Any a = ORB.init().create_any();
a.type(ORB.init().create_interface_tc(

“IDL:account:1.0”,”account”));
NamedValue result = ORB.init().create_named_value

("", a, 0);
Context ctx = ORB.init().get_default_context();

Object o = orb.string_to_object (refStr);
Request request = o._create_request(

ctx,
"newAccount",
argList,
result)) {

...
}

Invoking a Request
Once the parameters are inserted, you can invoke the request as
follows:

// Java
// Send Request and get the outcome
import org.omg.CORBA.SystemException;
...
try {

request.invoke ();
if (request.env().exception() != null)

throw request.env().exception();
}
catch (SystemException ex) {

...
}
catch (java.lang.Exception ex){

...
}

Note: A Request invocation can raise both Orbix Java system exceptions
and user-defined exceptions. To retrieve an exception raised in
this manner, use request.env().exception(), as shown above.
Orbix Programmer’s Guide Java Edition 249

Using the DII with the Interface Repository
If the programmer has obtained a description of the operation (of
type org.omg.CORBA.OperationDef) from the Interface Repository,
an alternative way to create an NVList is to call the operation
create_operation_list() on the org.omg.CORBA.ORB object. This
method fills in the elements of the NVList. If you use
org.omg.CORBA.ORB.create_list() instead, you must fill the NVList.
The prototype of create_operation_list() is shown below:

// Java
// in package org.omg.CORBA,
// in class ORB
public NVList create_operation_list (

org.omg.CORBA.OperationDef oper);

This method returns an NVList, initialized with the argument
descriptions for the operation specified in operation. The returned
NVList is of the correct length, with one element per argument.
Each NamedValue element of the list has a valid name and valid
flags which denote the argument passing mode. The value (of
type Any) of the NamedValue has a valid type which denotes the type
of the argument. The value of the argument is left blank. However
it should be pointed out that this method performs more work
than create_list() on org.omg.CORBA.ORB.

Setting up a Request to Read or Write an IDL Attribute
The DII can also be used to read and write attributes. To read the
attribute balance, for example, the operation name should be set
to "_get_balance". For example:

// Create a Request to read attribute balance
Request r = target._request ("_get_balance");
r.set_return_type(

org.omg.CORBA.ORB.init().
get_primitive_tc(
org.omg.CORBA.TCKind.tk_float));

r.invoke();
float balance = r.return_value().extract_float();

In general, for attribute A, the operation name should be set to
one of the following:

Operation Results
A request can be invoked as described in “Invoking a Request” on
page 249. Once the invocation has been made, the return value
and output parameters can be examined. If there are any out or
inout parameters, then these parameters would be modified by
the call, and no special action is required to access their values.
Their values are contained in the NVList argument list which can
be accessed using the method Request.arguments().
The operation’s return value (if it is not void) can be accessed
using the method Request.result() which returns a NamedValue.

_get_A This reads the attribute.
_set_A This writes the attribute.
 250 Orbix Programmer’s Guide Java Edition

Results can also be retrieved by using Streamables and the
Any.return_value() operation. See the return value in the code
in“Programming Steps for Using the DII” for details.

Interrogating a Request
The operation name and the target object’s object reference of a
Request can be determined using the methods operation() and
target(), respectively.

Resetting a Request Object for Reuse
In an Orbix Java client that uses the DII, it is often necessary to
make several operation invocations. You can do this by declaring
and instantiating individual Request objects for each invocation.
However, Orbix Java provides the method reset(), which allows
you to reuse a Request variable.
The method reset() is called on the Request object and clears all of
the Request fields, including its target object and operation name.
For example, you can reuse the Request variable r in the example
for an invocation of operation makeLodgement() as follows:

// Java
org.omg.CORBA.Request r =...
...
IE.Iona.OrbixWeb.CORBA.Request req

= IE.Iona.OrbixWeb._OrbixWeb.Request(r);

req.reset ();
req.setTarget (oRef);
req.setOperation ("makeLodgement");

or as follows:
// Java
req.reset (oRef, "makeLodgement");
Orbix Programmer’s Guide Java Edition 251

Deferred Synchronous Invocations
In addition to using the invoke() operation on a Request, Orbix
Java supports a deferred synchronous invocation mode. This
allows clients to invoke on a target object and to continue
processing in parallel with the invoked operation. At a later point,
the client can check to see if a response is available, and if so can
obtain the response. This may be useful to improve the
throughput of a client, particularly in the case of long-running
invocations.

Note: It is often more straightforward to start a thread that makes a
normal CORBA call concurrently than to use deferred synchronous
calls. They are defined by the OMG mainly for environments where
threads are not available.
To use this invocation mode, call one of the following methods on
the Request:

• send_deferred()
• send_oneway

send_deferred()
When calling method send_deferred() on the Request, the caller
continues in parallel with the processing of the call by the target
object. The caller can use the method poll_response() on the
Request to determine whether the operation has completed and
get_response() to determine the result. Consider the following
code segment, which invokes a deferred request:
try {

r.send_deferred();
}
catch(SystemException ex) {
// error handling
}
// Execute here in parallel with the call

The caller can perform a blocking wait for the response as follows:
try {
 r.get_response();
 // Extract result, etc
} catch(SystemException ex) {

// get_response throws an exception on
// failure/timeout

}

Alternatively, the caller can poll for the response as follows:
try {
 while(r.poll_response() == false){

// Execute other code
 }

// Extract result, etc
} catch(SystemException ex) { }
 252 Orbix Programmer’s Guide Java Edition

send_oneway()
You can call method send_oneway() can on any Request, however
you must use this method for a oneway operation. The caller
continues in parallel with the processing of the call by the target
object.
Usage of send_oneway() is similar to send_deferred(), except that
there is no response.
Multiple requests are also supported. There are two methods
provided for this that can be called on an ORB. These are as
follows:

• ORB.send_multiple_requests_oneway()

• ORB.send_multiple_requests_deferred()

The relevant prototypes are as follows:
// Java
// In class org.omg.CORBA.ORB
public void send_multiple_requests_oneway

(Request[] requests);
public void send_multiple_requests_deferred

(Request[] requests);

The caller can perform a blocking wait for a response using the
following code:
try {
Request r = orb.get_next_response();
 // Extract result, etc
} catch(SystemException ex) {

......
}

Alternatively the caller can call get_response() or poll_response()
on an individual Request instance.
Orbix Programmer’s Guide Java Edition 253

Using Filters with the DII
Orbix Java allows a you to implement methods which are invoked
at specified filter points in the invocation of a request, as
described in “Filters” on page 291. All filter points that you
implement are called during the invocation of a dynamic request.
 254 Orbix Programmer’s Guide Java Edition

The Interface
Repository
This chapter describes the Interface Repository (IFR). This is the
Orbix Java component that provides persistent storage of IDL
interfaces, modules, and other IDL types. Orbix Java programs can
query the Interface Repository at runtime to obtain information
about IDL definitions.

The Interface Repository (IFR) enables persistent storage of IDL
modules, interfaces and other IDL types. A program can browse
through or list the contents of the Interface Repository. A client
can also add and remove definitions from the Interface Repository
using its IDL interface. Alternatively, given an object reference, an
object’s type and full details about that type can be determined at
runtime by calling functions defined by the Interface Repository.
These facilities are important for tools such as the following:

• Browsers that allow you to determine the types that have
been defined in the system, and to list details of chosen types.

• CASE tools that aid software design, writing and debugging.
• Application level code that uses the Dynamic Invocation

Interface (DII) to invoke on objects whose types were not
known to it at compile time. This code may need to determine
the details of the object being invoked to construct the
request using the DII.

• Gateways that require runtime type information about the
type of objects being invoked.

Orbix Java provides the putidl utility to enter definitions defined in
an IDL file into the Interface Repository. This utility provides the
simplest and safest way to populate the Interface Repository.
The Interface Repository also defines IDL operations to update its
definitions and to enter new definitions. However, while you can
write client code that populates the IFR interface database, this is
complicated and requires a lot of consistency checking by the
client application. It is possible to use the update operations to
define interfaces and types which do not make sense. While the
Interface Repository checks for such updates, it cannot prevent all
incorrect updates.

Configuring the Interface Repository
The Interface Repository stores its data in the file system. You can
configure the path name of its root directory using the
IT_INT_REP_PATH entry in the Orbix Java configuration file; or by
setting the IT_INT_REP_PATH environment variable. The
environment variable takes precedence.
An application can find the path name of its Interface Repository
store by calling the following function on the _CORBA.Orbix object:

import IE.Iona.OrbixWeb._CORBA;
...
String s = _CORBA.Orbix.myIntRepPath();
 Orbix Programmer’s Guide Java Edition 255

Runtime Information about IDL Definitions
The Interface Repository maintains full details of the IDL
definitions that are passed to it. A program can use the Interface
Repository to browse through the set of modules and interfaces,
determining the name of each module, the name of each interface
and the full definition of that interface. Given a name of particular
IDL definition, a program can find its full definition.
For example, given any object reference a program can use the
Interface Repository to determine the following information about
that interface:

• The module in which the interface was defined, if any.
• The interface name.
• The attributes of the interface, and their definitions.
• The operations of the interface, and their full definitions,

including parameter, context and exception definitions.
• The base interfaces of the interface.
There is also a short example at the end of this chapter which
demonstrates the use of the Interface Repository.

Using the Interface Repository
The Interface Repository is located in the bin directory of your
Orbix Java installation. The overall requirements for using the
Interface Repository are as follows:

• You must set the IT_INT_REP_PATH in the Orbix Java
configuration file, or the IT_INT_REP_PATH environment
variable; and the corresponding directory must exist.

• The Interface Repository must be installed as explained in
“Installing the Interface Repository” on page 256.

• An application must import relevant Java classes.

Installing the Interface Repository
The Interface Repository is itself an Orbix Java server. The
interfaces to its objects are defined in IDL and it must be
registered with the Implementation Repository. The Interface
Repository can then be activated by the Orbix Java daemon, or
manually launched.
The executable file of the Interface Repository is ifr. This takes
the following switches:

-L Immediately load data from the IFR directory. The
default is to load data on demand at runtime as it is
required.

-v Print version information about the Interface
Repository.

-h Print summary of switches.
-t <time> Specifies the timeout in seconds for the Interface

Repository server. The default is infinity.
 256 Orbix Programmer’s Guide Java Edition

You can explicitly run the Interface Repository executable as a
background process. This has the advantage that the Interface
Repository can initialize itself before any other processes need to
use it, especially if you specify the -L switch.
The registration record in the Implementation Repository should
be named “IFR” as follows:

putitj IFR <absolute path name and switches>

To terminate the Interface Repository process, use the killit
utility. Alternatively you can use the Windows Server Manager GUI
utility or send the SIGINT signal (^C), as appropriate.
You can use the putidl, readifr and rmidl utility commands to
access the Interface Repository, Refer to the Orbix
Administrator’s Guide Java Edition for details.

Structure of the Interface Repository Data
The data in the Interface Repository is best viewed as a set of
CORBA objects where, for each IDL type definition, one object is
stored in the repository. Objects in the Interface Repository
support one of the following IDL interface types, reflecting the IDL
constructs they describe:

Repository The type of the repository itself, in which all
of its other objects are nested.

ModuleDef The interface for a ModuleDef definition. Each
module has a name and can contain
definitions of any type (except Repository).

InterfaceDef The interface for an InterfaceDef definition.
Each interface has a name, a possible
inheritance declaration, and can contain
definitions of type attribute, operation,
exception, typedef and constant.

AttributeDef The interface for an AttributeDef definition.
Each attribute has a name and a type, and a
mode that determines whether or not it is
readonly.

OperationDef The interface for an OperationDef definition.
Each operation has a name, a return value,
a set of parameters and, optionally, raises
and context clauses.

ConstantDef The interface for a ConstantDef definition.
Each constant has a name, a type and a
value.

ExceptionDef The interface for an ExceptionDef definition.
Each exception has a name and a set of
member definitions.

StructDef The interface for a StructDef definition. Each
struct has a name, and also holds the
definition of each of its members.

UnionDef The interface for a UnionDef definition. Each
union has a name, and also holds a
discriminator type and the definition of each
of its members.
Orbix Programmer’s Guide Java Edition 257

In addition, the following abstract types (those without direct
instances) are defined:

IRObject
IDLType
TypedefDef
Contained
Container

Understanding these types is the key to understanding how to use
the Interface Repository. Refer to “Abstract Interfaces in the
Interface Repository” on page 260 for more details.
Any object of an IDL interface type can be interrogated to
determine its definitions. Interface types are organized in a logical
manner according to the IDL interface. For example, each
InterfaceDef object is said to contain objects representing the
interface’s constant, type, exceptions, attribute and operation
definitions. The outermost object is of type Repository.

EmumDef The interface for an EnumDef definition. Each
enum has a name, and also holds its list of
member identifiers.

AliasDef The interface for a typedef statement in IDL.
Each alias has a name and a type that it
maps to.

PrimitiveDef The interface for primitive IDL types.
Objects of this type correspond to a type
such as short and long, and are pre-defined
within the Interface Repository.

StringDef The interface for a string type. Each string
type records its bound. Objects of this type
do not have a name. If they have been
defined using an IDL typedef statement,
they have an associated AliasDef object.
Objects of this type correspond to bounded
strings.

SequenceDef The interface for a sequence type. Each
sequence type records its bound (a value of
zero indicates an unbounded sequence type)
and its element type. Objects of this type do
not have a name. If they are defined using
an IDL typedef statement, they have an
associated AliasDef object.

ArrayDef The interface for an array type. Each array
type records its length and its element type.
Objects of this type do not have a name. If
they are defined using an IDL typedef
statement, they have an associated AliasDef
object. Each ArrayDef object represents one
dimension. Multiple ArrayDef objects are
required to represent a multi-dimensional
array type.
 258 Orbix Programmer’s Guide Java Edition

The containment relationships between the Interface Repository
types are as follows:
• A Repository can contain:

ConstantDef

TypedefDef

ExceptionDef

InterfaceDef

ModuleDef

 A ModuleDef can contain:
ConstantDef

TypedefDef

ExceptionDef

ModuleDef

InterfaceDef

 An InterfaceDef can contain:
ConstantDef

TypedefDef

ExceptionDef

AttributeDef

OperationDef

Objects of type ModuleDef, InterfaceDef, ConstantDef, ExceptionDef
and TypedefDef can appear outside of any module, directly within a
repository.
Given an object of any of the Interface Repository types, you can
determine full details of that definition. For example, InterfaceDef
defines operations or attributes to determine an interface’s name,
its inheritance hierarchy, and the description of each operation
and each attribute.

Simple Types
The Interface Repository defines the following simple IDL
definitions:

// IDL
// In module CORBA.
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;
typedef string VersionSpec;

enum DefinitionKind {
dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Module,
dk_Operation, dk_Typedef, dk_Alias, dk_Struct,
dk_Union, dk_Enum, dk_Primitive, dk_String,
dk_Sequence, dk_Array, dk_Repository

};

An Identifier is a simple name that identifies modules, interfaces,
constants, typedefs, exceptions, attributes and operations.
A ScopedName gives an entity’s name relative to a scope. A
ScopedName that begins with “::” is an absolute scoped name. This
is a name that uniquely identifies an entity within a repository. An
Orbix Programmer’s Guide Java Edition 259

example is ::finance::account::makeWithdrawal. A ScopedName that
does not begin with “::” is a relative scoped name. This is a name
that identifies an entity relative to some other entity. An example
is makeWithdrawal within the entity with the absolute scoped name
::finance::account.
A RepositoryId is a string that uniquely identifies an object within a
repository, or globally within a set of repositories if more than one
is being used. An object can be a constant, exception, attribute,
operation, structure, union, enumeration, alias, interface or
module.
Type VersionSpec is used to indicate the version number of an
Interface Repository object; that is, to allow the Interface
Repository to distinguish two or more versions of a definition,
each with the same name but with details that evolve over time.
However, the Interface Repository is not required to support such
versioning: it is not required to store more than one definition with
any given name. The Interface Repository currently does not
support versioning.
Each Interface Repository object has an attribute (called def_kind)
of type DefinitionKind that records the kind of the Interface
Repository object. For example, the def_kind attribute of an
interfaceDef object will be dk_interface. The enumerate constants
dk_none and dk_all have special meanings when searching for
objects in a repository.

Abstract Interfaces in the Interface Repository
There are five abstract interfaces defined for the Interface
Repository. These are as
follows:

• IRObject

• IDLType

• TypedefDef

• Contained
• Container

These are of key importance in understanding the basic structure
of the Interface Repository and provide basic functionality for each
of the concrete interface types.

Class Hierarchy and Abstract Base Interfaces
The Interface Repository defines five abstract base interfaces.
These are interfaces that cannot have direct instances, and are
used to define the other Interface Repository types:

IRObject This is the base interface of all Interface
Repository objects. Its only attribute defines the
kind of an Interface Repository object.

IDLType All Interface Repository interfaces that hold the
definition of a type directly or indirectly inherit
from this interface.
 260 Orbix Programmer’s Guide Java Edition

The interface hierarchy for all of the Interface Repository
interfaces is shown in Figure 26.

TypedefDef This is the base interface for all Interface
Repository types that can have names (except
interfaces). These include structures, unions,
enumerations and aliases (results of IDL typedef
definitions).

Contained Many Interface Repository objects can be
contained within others and these all inherit
from Contained.

Container Some Interface Repository interfaces, such as
Repository, ModuleDef and InterfaceDef, can
contain other Interface Repository objects.
These interfaces inherit from Container.

Figure 26: Hierarchy for Interface Repository Interfaces

IRObject

TypedefDef

Repository

Contained

ModuleDef

Container

PrimitiveDef
StringDef
SequenceDef
ArrayDef

ConstantDef
ExceptionDef
AttributeDef
OperationDef

StructDef InterfaceDef
UnionDef
EnumDef
AliasDef

attribute identifier name...

readonly attribute DefinitionKind def_kind

readonly attribute TypeCode type;

// Abstract

// Abstract

// Abstract// Abstract

// Abstract

// Base interface

Set of unnamed types.Set of named types.

// of all named
// types (except
// interfaces)

IDL Type
Orbix Programmer’s Guide Java Edition 261

Interface IRObject
Interface IRObject is defined as follows:

// IDL
// In module CORBA.
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};

This is the base interface of all Interface Repository types. The
attribute def_kind provides a simple way of determining the type
of an Interface Repository object. Other than defining an attribute
and operation, and acting as the base interface of other interfaces,
IRObject plays no further role in the Interface Repository.

Modifying Objects of Type IRObject
You can delete an Interface Repository object by calling its
destroy() operation. This also deletes any objects contained in the
target object. It is an error to call destroy() on a Repository or a
PrimitiveDef object.

Containment in the Interface Repository
Definitions in the IDL language have a nested structure. For
example a module can contain definitions of interfaces and the
interfaces themselves can contain definitions of attributes,
operations and many others. Consider the following IDL fragment:

// IDL

module finance {
interface account {

readonly attribute float balance;
void makeLodgement(in float amount);
void makeWithdrawal(in float amount);

};
interface bank {

account newAccount();
};

};

In this example the module finance (represented in the Interface
Repository as a ModuleDef object) contains two definitions:
interface bank and interface account (each represented by an
individual InterfaceDef object). These two interfaces contain
further definitions. For example, the interface account contains a
single attribute and two operations.
Since the notion of containment is basic to the structure of the IDL
definitions, the Interface Repository specification abstracts the
properties of containment. For example, an Interface Repository
object (such as a ModuleDef or InterfaceDef object) that can
contain further definitions needs a function to list its contents.
Similarly, an Interface Repository object that can be contained
within another Interface Repository object may want to know the
identity of the object it is contained in. This leads to the definition
 262 Orbix Programmer’s Guide Java Edition

of two abstract base interfaces, Container and Contained, which
group together common operations and attributes. Most of the
objects in the repository are derived from one or both of Container
or Contained. The exceptions to this are instances of PrimitiveDef,
StringDef, SequenceDef and ArrayDef.
You can access much of the structure of the Interface Repository
by using the operations and attributes of Container and Contained.
Understanding containment is the key to understanding most
Interface Repository functionality.
There are three different kinds of interface which use
containment. There are interfaces that inherit only from Container,
interfaces that inherit from both Container and Contained, and
interfaces that inherit only from Contained. These are as follows:

The last interface TypedefDef is exceptional because it is an
abstract interface.
The Repository itself is the only interface that can be a pure
Container. There is only one Repository object per Interface
Repository server. This has all the other definitions nested within
it.
Objects of type ModuleDef and InterfaceDef can create additional
layers of nesting, and therefore these derive from both Container
and Contained.
The remaining types of object have a simpler structure and derive
from Contained only.

base Container Repository

base Container and Contained ModuleDef, InterfaceDef
base Contained ConstantDef, ExceptionDef,

AttributeDef, OperationDef,
StructDef, UnionDef, EnumDef,
AliasDef, TypedefDef
Orbix Programmer’s Guide Java Edition 263

The Contained Interface
This section is limited to a discussion of the basic attributes and
operations of interface Contained. Refer to the Orbix Java Edition
Programmer’s Reference for a full description of this interface. An
outline of the Contained interface is as follows:
//IDL

typedef Identifier string;

interface Contained : IRObject {
// Incomplete list of operations and attributes...
...
attribute Identifier name;
...
readonly attribute Container defined_in;
...
struct Description {

DefinitionKind kind;
any value;

};
Description describe();

};

A basic attribute of any Contained object is its name. The attribute
name has the type Identifier which is a typedef for a string. For
example, the module finance is represented in the repository by a
ModuleDef object. The inherited ModuleDef::name attribute resolves
to the string “finance”. Similarly, an OperationDef object
representing makeWithdrawal has an OperationDef::name which
resolves to “makeWithdrawal”. The Repository object itself has no
name because it does not inherit from Contained.
Another basic attribute is Contained::defined_in, which returns an
object reference to the Container in which the object is defined.
This attribute is all that is needed to express the idea of
containment for a Contained object. Since a given definition
appears only once in IDL, the attribute defined_in returns a
uniquely-defined Container reference. However, because of the
possibility of inheritance between interfaces, a given object can be
contained in more than one interface. For example, interface
currentAccount is derived from interface account as follows:

//IDL
// in module finance
interface currentAccount : account {

readonly attribute overDraftLimit;
};

Here the attribute balance is contained in interface account and
also contained in interface currentAccount. However, querying
AttributeDef::defined_in for the balance attribute always returns
an object for account. This is because the definition of attribute
balance appears in the base interface account.
The operation Contained::describe() returns a generic Description
structure. This provides access to details such as the parameters
and return types associated with a specified object.
 264 Orbix Programmer’s Guide Java Edition

The Container Interface
Some of the basic definitions for interface Container are as
follows:
//IDL
typedef sequence<Contained> ContainedSeq;
enum DefinitionKind {dk_name, dk_all, dk_Attribute,

dk_Constant, dk_Exception, dk_Interface, dk_Module,
dk_Operation, dk_Typedef, dk_Alias, dk_Struct, dk_Union,
dk_Enum, dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository};

interface Container : IRObject {
// Incomplete list of operations and attributes
...
ContainedSeq contents(

in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};

contents()
The contents() operation is the most basic operation associated
with a Container. This returns a sequence of Contained objects
belonging to the Container. Using contents you can browse a
Container and descend nested layers of containment. Once the
appropriate Contained object is found, you can find the details of
its definition by invoking Contained::describe() to obtain a
detailed Description of the object. Using Container::contents()
coupled with Contained::describe() provides a basic way of
browsing the Interface Repository.
However, there are other approaches to browsing the Interface
Repository which may be more efficient. These more sophisticated
search operations are discussed in “Retrieving Information from
the Interface Repository” on page 272.
The arguments to the contents() operation make use of
DefinitionKind. This is an enum type which is used to tag the
different kinds of repository objects. In addition to the interfaces
for concrete repository objects there are three additional tags:

The parameters to contents are as follows:

dk_none This tag matches no repository object.
dk_all This tag matches any repository object.
dk_Typedef This tag matches any one of dk_Alias, dk_Struct,

dk_Union, dk_Enum.

limit_type A tag of type DefinitionKind which can be used
to limit the list of contents to certain kinds of
repository objects. A value of dk_all lists all
objects.
Orbix Programmer’s Guide Java Edition 265

The value returned from the contents() operation is a sequence of
Contained objects which match the given criteria.

Containment Descriptions
The containment framework reveals which definitions are made
within a specific interface or module. However, each interface
repository object, besides being a Contained or Container, also
contains the details of an IDL definition. Calling describe() on a
Contained object returns a Description struct holding these details.
Both interfaces Contained and Container define their own version of
a Description struct. These are, respectively,
Contained::Description and Container::Description. The structure
of Container::Description differs slightly from that of
Contained::Description, as shown in “The Contained Interface” on
page 264. Consider the following fragment of the IDL interface for
Container:

//IDL
interface Container : IRObject {

// Incomplete listing of interface
...
struct Description {

Contained contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq;
DescriptionSeq describe_contents(

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned objects);

...
};

Container::Description includes the extra member
contained_object.

describe_ contents()
The Container::Description is used by the operation
describe_contents(). This operation effectively combines calling
contents() on the Container with calling describe() on each of the
returned objects. The parameters to describe_contents() are as
follows:

exclude_inherited This argument is only relevant if the Container
happens to be an InterfaceDef object. In this
case, it determines whether or not inherited
definitions should be included in the contents
listing. true indicates they should be excluded,
while false indicates they should be included.

limit_type A tag of type DefinitionKind that can be
used to limit the list of contents to certain
kinds of repository objects. A value of
dk_all lists all objects.
 266 Orbix Programmer’s Guide Java Edition

The describe_contents() operation returns a sequence of
Description structs, one for each of the Contained objects found.

Interface Description Structures
The Description struct itself serves as a wrapper for a detailed
description specific to the repository object. For example, the
interface OperationDef inherits the OperationDef::describe()
operation.
Associated with the OperationDef interface is the struct
OperationDescription. This has the following structure:

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

This struct is not returned directly by the operation
OperationDef::describe(). Initially, it returns a
Contained::Description wrapper. The first layer includes
Description::kind, which in this case equals dk_Operation. The
second layer includes Description::value, which is an any. This is
the substance of the Description. Inside the any there is a TypeCode
_tc_OperationDescription and the value of the any is the
OperationDescription structure itself.
The structure of OperationDescription is as follows:

exclude_inherited This parameter is only relevant if the
Container is an InterfaceDef object. In this
case, it determines whether inherited
definitions are included in the contents
listing. true indicates they are excluded,
while false indicates they are included.

max_returned_objects Specifies the maximum length of the
sequence that is returned.

name The name of the operation as it appears in the
definition. For example, the operation
account::makeWithdrawal has the name
“makeWithdrawal”.

id The id is a RepositoryId for the OperationDef
object. A RepositoryId is a string that uniquely
identifies an object within a repository, or
globally within a set of repositories if more than
one is being used.

defined_in The member defined_in gives the RepositoryId
for the parent Container of the OperationDef
object.
Orbix Programmer’s Guide Java Edition 267

The OperationDescription provides all of the information present in
the original definition of the operation. The CORBA specification
provides for more than one way of accessing this information. The
interface OperationDef also defines a number of attributes allowing
direct access to the members of OperationDescription. Frequently,
it is more convenient to obtain the complete description in a single
step, which is why the OperationDescription structure is provided.
Only those interfaces that inherit from Contained have an
associated description structure. Of those which do inherit from
Contained, only EnumDef, UnionDef, AliasDef and StructDef have a
unique associated description structure called TypeDescription.
The interface InterfaceDef is a special case. It has an extra
description structure called FullInterfaceDescription. This
structure is provided because of the special importance of
InterfaceDef objects. It enables a full description of the interface
in one step. The description is given as the return value of the
special operation InterfaceDef::describe_interface(). Further
details are given in the Orbix Programmer’s Reference Java
Edition .

version The version of type VersionSpec is used to
indicate the version number of an Interface
Repository object. This allows the Interface
Repository to distinguish two or more versions of
a definition with the same name, but whose
details evolve over time. The Interface
Repository currently does not support
versioning.

result The TypeCode of the result returned by the
defined operation.

mode The mode specifies whether the operation is
normal (OP_NORMAL) or oneway (OP_ONEWAY).

contexts The member contexts is of type ContextIdSeq
which is a typedef for a sequence of strings. The
sequence lists the context identifiers specified in
the context clause of the operation.

parameters The member parameters is a sequence of
ParameterDescription structs giving details of
each parameter to the operation.

exceptions The member exceptions is a sequence of
ExceptionDescription structures giving details of
the exceptions specified in the raises clause of
the operation.
 268 Orbix Programmer’s Guide Java Edition

Type Interfaces in the Interface Repository
A number of repository interfaces are used to represent definitions
of types in the Interface Repository, as follows:

• StructDef

• UnionDef

• EnumDef

• AliasDef

• InterfaceDef

• PrimitiveDef

• StringDef

• SequenceDef
• ArrayDef

This property is independent of, and overlaps with, the properties
of containment. It is useful to represent this property by inheriting
these objects from an abstract base interface called IDLType.
This is defined as follows:

// IDL
// In module CORBA.
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

This base interface defines a single attribute giving the TypeCode of
the defined type. This is also useful for referring to the type
interfaces collectively.
The type interfaces can be classified as either named or unnamed
types.

Named Types
The named type interfaces are as follows:

• StructDef

• UnionDef

• EnumDef

• AliasDef

• InterfaceDef

For example, consider the following IDL definition:
// IDL
enum UD {UP, DOWN};

This effectively defines a new type UD which for use wherever an
ordinary type might appear. It is represented by an EnumDef
object. More obviously, the IDL definition

typedef string accountName;

gives rise to the new type accountName.
Both these interfaces are examples of named types. This means
that their definitions give rise to a new type identifier, such as “UD”
or “accountName” which can be reused throughout the IDL file.
Orbix Programmer’s Guide Java Edition 269

The named types StructDef, UnionDef, EnumDef and AliasDef can be
grouped together by deriving from the abstract base interface
TypedefDef.

Note: It is important to note that interface TypedefDef does not directly
represent an IDL typedef. The interface AliasDef, which derives
from TypedefDef, is the interface representing an IDL typedef.
The abstract interface TypedefDef is defined as follows:

// IDL
// In module CORBA.
interface TypedefDef : Contained, IDLType {
};

The definition of TypedefDef is trivial and causes the four named
interfaces to derive from Contained in addition to IDLType. The
interfaces inherit the attribute Contained::name, which gives the
name of the type, and the operation Contained::describe().
For example the definition of enum UD gives rise to an EnumDef object
that has an EnumDef::name of “UD”. Calling EnumDef::describe()
gives access to a description of type TypeDescription. The type
member of the TypeDescription gives the TypeCode of the enum. The
TypedefDef interfaces all share the same description structure
TypeDescription.
The interface InterfaceDef is also a named type but it is a special
case. Its inheritance is given as follows:

// IDL
// In module CORBA.
interface InterfaceDef : Contained, Container, IDLType
{

...
};

It has three base interfaces. Since you can use IDL object
references in just the same way as any ordinary type the interface
IntefaceDef inherits from IDLType. For example, the definition
interface account {...} gives rise to an InterfaceDef object. This
object has an InterfaceDef::name that is account, and this name
can be reused as a type.
 270 Orbix Programmer’s Guide Java Edition

Unnamed Types
The unnamed type interfaces are as follows:

• PrimitiveDef

• StringDef

• SequenceDef
• ArrayDef

These interfaces are not strictly necessary but offer an approach
to querying the types in the repository that operates in parallel to
the use of TypeCodes.
There are two independent approaches to querying types in the
repository. The traditional approach is to provide TypeCode
attributes whenever necessary so that all the types defined in the
repository can be determined. However the Interface Repository
also provides a complete object-oriented approach for querying
the types. Consider the following example which allows you to
determine the return type of getLongAddress():
interface Mailer {

sequence<string> getLongAddress();
};

The definition of getLongAddress() maps to an object of type
OperationDef in the repository. One way of querying the return
type is to call OperationDef::result_def which returns an object
reference of type IDLType. You can determine the type of object
returned by result_def by obtaining the attribute
OperationDef::def_kind inherited from IRObject.
In this example, the object reference is of type SequenceDef
corresponding to the sequence<string> return type. To query the
returned SequenceDef object further, obtain the attribute
SequenceDef::element_type_def. This returns an IDLType which is a
PrimitiveDef object. This PrimitiveDef object, in turn, has an
attribute PrimitiveDef::kind that has a value of pk_string. At this
stage the return type is fully determined to be a sequence<string>.
The alternative approach is to obtain the TypeCode that retrieves
the complete type information in a single step at the outset. For
example, the OperationDef object associated with getLongAddress()
has an attribute OperationDef::result that gives the TypeCode of
sequence<string>.
Orbix Programmer’s Guide Java Edition 271

Retrieving Information from the Interface
Repository

There are three ways to retrieve information from the Interface
Repository:
1. Given an object reference, you can find its corresponding

InterfaceDef object. You can determine from this all of the
details of the object’s interface definition.

2. Obtain an object reference to a Repository, the full contents
can then be navigated.

3. Given a RepositoryId, a reference to the corresponding object
in the Interface Repository can be obtained and interrogated.

These are explained in more detail in the following three
subsections.

org.omg.CORBA.Object._get_interface()
Given an object reference to any CORBA object, for example,
objVar, you can acquire an object reference to an InterfaceDef
object as follows:

import org.omg.CORBA.InterfaceDef;
InterfaceDef ifVar = objVar._get_interface();

The member function _get_interface() returns a reference to an
object within the Interface Repository. See the example in
“Retrieving Information from the Interface Repository” on
page 272 for an illustration of how to use _get_interface().
For _get_interface() to work correctly the program must be set up
to use the Interface Repository as described in “Using the
Interface Repository” on page 256.

Browsing or Listing a Repository
When you obtain a reference to a Repository object, you can then
browse or list the contents of that repository. There are two ways
to obtain such an object reference as follows:

• Using resolve_initial_references()
• Using bind()
You can call the resolve_initial_references() operation on the
ORB (org.omg.CORBA.ORB), passing the string “InterfaceRepository”
as a parameter. This returns an object reference of type
org.omg.CORBA.Object. You can then narrow this object reference to
a org.omg.CORBA.Repository reference.
Alternatively, you can use the Orbix Java bind() function, as
follows:

import org.omg.CORBA.Repository;
import org.omg.CORBA.RepositoryHelper;
Repository repVar =

RepositoryHelper.bind
("IDL\\iona.com/Repository:IFR”, “hostname”);
 272 Orbix Programmer’s Guide Java Edition

The operations which enable you to browse the Repository are
provided by the interface org.omg.CORBA.Container. There are four
provided as follows:

• contents()

• describe_contents()

• lookup()

• lookup_name()

The last two are particularly useful as they provide a facility for
searching the Repository. The IDL for the search operations is:

// IDL
// In module CORBA.
interface Container : IRObject {

...
Contained lookup(in ScopedName search_name);
...
ContainedSeq lookup_name(

in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};

The operation lookup() provides a simple search facility based on
a ScopedName. For example, consider the case where Container is a
ModuleDef object representing finance. Passing the string
“account::balance” to ModuleDef.lookup() then retrieves a
reference to an AttributeDef object representing balance. This is
an example of using a relative ScopedName. However, lookup() is
not restricted to searching a specific Container. By passing an
absolute ScopedName as an argument it is possible to search the
whole Repository given any Container as a starting point. For
example, given the InterfaceDef for account you can pass the
string “::finance::bank::newAccount” to InterfaceDef.lookup to find
the newAccount() operation lying within the scope of the interface
bank.
The operation lookup_name() provides a different approach to
searching a Container. Instead of the ScopedName it specifies only a
simple name to search for within the Container. Because more
than one match is possible with a given simple name, the lookup()
operation can return a sequence of Contained objects.
The parameters to lookup_name() are as follows:

search_name Specifies the simple name of the object to
search for. The Orbix Java implementation
also allows the use of “*” which matches any
simple name.

levels_to_search Specifies the number of levels of nesting to
be included in the search. If set to 1, the
search is restricted to the current object. If
set to -1, the search is unrestricted.
Orbix Programmer’s Guide Java Edition 273

Note: You cannot use lookup_name() to search outside of the given
Container.

Finding an Object Using its Repository ID
You can pass a Repository ID (of type org.omg.CORBA.RepositoryId)
as a parameter to the lookup_id() operation of an object reference
for a repository (of type org.omg.CORBA.Repository). This returns a
reference to an object of type Contained, which you can narrow to
the correct object reference type.

Using the Interface Repository with the Dynamic Invocation
Interface
When the Interface Repository is used in conjunction with the
Dynamic Invocation Interface (DII) it is frequently necessary to
retrieve type information for the parameters of an operation.
The function org.omg.CORBA.ORB.create_operation_list() is a
convenient function that obtains the types of all the parameters in
a single step. Refer to the API Reference in the Orbix
Programmer’s Reference Java Edition for more details.

Example of Using the Interface Repository
This section presents some sample code that uses the Interface
Repository.
The following code prints the list of operation names and attribute
names defined on the interface of a given object:
import org.omg.CORBA.*;
import org.omg.CORBA.ORB;
import org.omg.CORBA.InterfaceDefPackage.*;
try {

//
// Bind to the Interface Repository server
//
Repository ifr_repository = RepositoryHelper.bind
("IDL\\iona.com/Repository:IFR", “hostname”);
//
// Get the interface definition
//
Contained contained = ifr_repository.lookup("grid");
InterfaceDef interfaceDef =

InterfaceDefHelper.narrow (contained);
// Get a full interface description
FullInterfaceDescription description =

interfaceDef.describe_interface();

limit_type Limits the objects which are returned. If it is
set to dk_all, all objects are returned. If set
to the DefinitionKind for a particular
Interface Repository kind, only objects of that
kind are returned. For example, if operations
are of interest, you can set limit_type to
dk_operation.

exclude_inherited If set to true, inherited objects are not
returned. If set to false, all objects, including
those inherited, are returned.
 274 Orbix Programmer’s Guide Java Edition

// Now print out the operation names:
System.out.println "The operation names are: ";
for(int i = 0; i < description.operations.length; i++)

System.out.println("-> " +
description.operations[i].name);
// Now print out the attribute names:
System.out.println "The attribute names are: ";
for(int i = 0; i < description.attributes.length; i++)

System.out.println("-> " +
description.attributes[i].name);

}
catch (SystemException ex){

// Handle exceptions
}

You can extend the example by finding the OperationDef object for
an operation called do it. You can use the Container.lookup_name()
as follows:
Contained[] opSeq = null;
OperationDef opRef = null;
try
{

interfaceDef.lookup_name
("doit", 1, DefinitionKind.dk_Operation, 0);

if(opSeq.length != 1){
System.out.println

("Incorrect lookup name for lookup_name() ");
System.exit(1);

}
//
// Narrow the result to be an OperationDef
//
opRef = OperationDefHelper.narrow(opSeq[0]);
.......

}
catch (SystemException ex)
{

// Handle Exceptions
}

Repository IDs
Each Interface Repository object describing an IDL definition has a
Repository ID. A Repository ID globally identifies an IDL module,
interface, constant, typedef, exception, attribute or operation
definition. A Repository ID is simply a string identifying the IDL
definition.
Three formats for Repository IDs are defined by CORBA. However
Repository IDs are not, in general, required to be in one of these
formats. The formats defined by CORBA are described as follows.
Orbix Programmer’s Guide Java Edition 275

OMG IDL Format
This format is derived from the IDL definition’s scoped name. It
contains three components which are separated by colons (‘:’) as
follows:

IDL:<identifier/identifier/identifier/...>:<version
number>

The first component identifies the Repository ID format as the
OMG IDL format.
The second component consists of a list of identifiers. These
identifiers are derived from the scoped name by substituting “/”
instead of “::”.
The third component contains a version number of the format:

<major>.<minor>

Consider the following IDL definitions:
// IDL
interface account {

attribute float balance;
void makeLodgement(in float amount);

};

An IDL format Repository ID for the attribute account::balance
based on these definitions is:

IDL:account/balance:1.0

This is the format of the Repository ID used by default in Orbix
Java.

DCE UUID Format
The DCE UUID format is:

DCE:<UUID>:<minor version number>

LOCAL Format
Local format IDs are intended to be used locally within an
Interface Repository and are not intended to be known outside
that repository. They have the format:

LOCAL:<ID>

Local format Repository IDs can be useful in a development
environment as a way to avoid conflicts with Repository IDs using
other formats.

Pragma Directives
You can control Repository IDs using pragma directives in an IDL
source file. These pragmas allow you control over the format of a
Repository ID for IDL definitions.
At present Orbix Java supports the use of a pragma that allows
you to set the version number of the Repository ID. In the present
implementation of the Interface Repository you should only use
one version number per Interface Repository.
 276 Orbix Programmer’s Guide Java Edition

Version Pragma
You can specify a version number for an IDL definition Repository
ID (IDL format) using a version pragma. The version pragma
directive takes the format:

#pragma version <name> <major>.<minor>

The <name> can be a fully scoped name or an identifier whose
scope is interpreted relative to the scope in which the pragma
directive is included.
If you do not specify a version pragma for an IDL definition, the
version number defaults to 1.0. Thus the following definitions:

// IDL
module finance {

interface account {
...

};
 #pragma version account 2.5

};

yield the following Repository IDs:
IDL:finance:1.0
and
IDL:finance/account:2.5

It is important to realize that #pragma version does not only affect
Repository IDs. If #pragma is used to set the version of an
interface, the version number is also embedded in the stringified
object reference. A client must bind to a server object whose
interface has a matching version number. If the IDL interface on
the server side has no version, bind() does not require matching
versions.
Orbix Programmer’s Guide Java Edition 277

 278 Orbix Programmer’s Guide Java Edition

Service Contexts
Service contexts provide a means of passing service-specific
information as part of IIOP message headers. This chapter describes
Orbix Java APIs that allow you to register handlers that intercept
IIOP requests and replies, and to store and retrieve service
contexts.

A service context consists of a unique ID and a sequence of octets.
Its structure in IDL can be outlined as follows:

// IDL
module IIOP {

typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;

sequence<octet> context_data;
};

typedef sequence<ServiceContext> ServiceContextList;

};

The context_id is a unique ID by which a particular service context
is recognized. The context_data octet sequence is the part of the
context containing the data.

Note: Service contexts in Orbix Java can only be used over IIOP.

The Orbix Java Service Context API
The Orbix Java API for service contexts comprises the following:

• Service context handlers.
• Service context lists.
• ORB interfaces.

Service Context Handlers
The ServiceContextHandler class is the base class from which you
derive handlers for a particular ServiceContext. Each handler has a
unique ID. This corresponds to the ID of the particular
ServiceContext used. You should register a handler on both the
client and the server for each ServiceContext. Refer to “ORB
Interfaces” on page 280 for more details.
 Orbix Programmer’s Guide Java Edition 279

The ServiceContextHandler base class has the following structure:
// Java

public abstract class ServiceContextHandler {

// Fields
public int m_serviceContextId;
public Object m_serviceContextObject;

// Constructors
public ServiceContextHandler(int);

// Methods
public int _getID();
public Object _getObject();
public void _setObject(Object);
public abstract boolean incomingReplyHandler(Request);
public abstract boolean incomingRequestHandler(Request);
public abstract boolean outboundReplyHandler(Request);
public abstract boolean outboundRequestHandler(Request);

}

Service Context Lists
A ServiceContextList is a field in an IIOP message header
containing all the service context data associated with a request or
reply.
A ServiceContextList is implemented as a sequence of
ServiceContexts. ServiceContextLists support both per-object and
per-request service context handlers.
The ServiceContextList class has the following structure:

public class ServiceContextList {
// Constructors
public ServiceContextList();
public ServiceContextList(ServiceContext[]);

// Methods
public void add(int, byte[]);
public final ServiceContext get(int);
public final ServiceContext[] getList();
public void register(ServiceContext);
public final int size();

}

ORB Interfaces
Orbix Java provides APIs in class IE.Iona.OrbixWeb.CORBA.ORB to
allow you to enable service contexts and to register service
context handlers with the ORB.

Enabling Service Contexts
The following ORB API allows you to enable ServiceContexts on
the ORB:

public void enableServiceContextList(boolean state);

You must call this method to use service contexts.
 280 Orbix Programmer’s Guide Java Edition

Registering Service Context Handlers
The following ORB APIs allow you to register the service context
handler with the ORB:

// Java

public class ORB {
...
public void registerPerRequestServiceContext

(ServiceContextHandler CtxHandler);

public void unregisterPerRequestServiceContext
(int CtxHandlerId);

public void registerPerObjectServiceContext
(ServiceContextHandler CtxHandler,
org.omg.CORBA.Object HandledObject);

public void unregisterPerObjectServiceContext
(int CtxHandlerId)

}

Per-Request Handlers
Registering a handler as per-request adds its request/reply
handler methods to a ServiceContextList (SCL). The handler is
then called at the appropriate point for the request.

Per-Object Handlers
Registering a handler as per-object also adds its request/reply
handler methods to a ServiceContextList. The handler is then
called for requests /replies associated with the specified target
object.

Using Service Contexts in Orbix Java Applications
Service contexts in Orbix Java are based on two models:

Service context per-request. In this model, service contexts
are handled on all requests and
replies entering and leaving an
ORB.

Service context per-object. In this model, only service
context information is handled
for requests and replies going to
or coming from a particular
object.
Orbix Programmer’s Guide Java Edition 281

ServiceContext Per Request Model
This section gives an overview of implementing per-request
service contexts in Orbix Java applications.

Client Side
To add service context information to all requests leaving a client
application, perform the following steps:
1. Call the enableServiceContextList() method on the ORB to

enable ServiceContexts.
2. In the user code, derive a class from the base class

ServiceContextHandler; for example, myServiceContextHandler.
3. Create an instance of this class within the client, and pass it a

unique SrvCntxtId.
4. Register this handler instance with the ORB using the

following method:
void registerPerRequestServiceContextHandler

(ServiceContextHandler CtxHandlerId)

This registration means, for example, if any outgoing requests
leave the client, the following method is called:

myServiceContextHandler.outboundRequestHandler
(Request req);

This method takes the request that caused the invocation as a
parameter. The request is interrogated by the user handler
class showing the operation name.
Similarly, for incoming requests, incomingReplyHandler() is
called.

5. Create a new instance of ServiceContext in the user code of
the handler.

6. Populate the context_data part of the ServiceContext with
information, and add it to the ServiceContextList.
This ServiceContextList is marshalled with the request
message and is passed across the wire to the server.

Server Side
The server side design is similar to the client side. It creates and
registers handlers, and re-implements the methods from the
serviceContextHandler class.
To receive service context information from all requests entering a
server, perform the following steps:
1. Call the enableServiceContextList() method to on the ORB

enable ServiceContexts.
2. In the user code, derive a class from the base class

ServiceContextHandler; for example, myServiceContextHandler.
3. Create an instance of this class within the server passing it the

SrvCntxtId. You can use the same code on both the server and
client sides.

4. Register this handler instance with the ORB using:
void registerPerRequestServiceContextHandler

(ServiceContextHandler
CtxHandlerId);

This registration means that when a request comes into the
server address space, the ServiceContextList in the request
 282 Orbix Programmer’s Guide Java Edition

header is unmarshalled. This means that only the relevant
handlers are called via the following method:

public boolean incomingRequestHandler(Request req);

If there is a ServiceContext in the request header list that has
the same ID as the registered handler, the
incomingRequestHandler() method is called.

5. Using the incomingRequestHandler() method, take a copy of the
ServiceContext required, and extract the required information,
calling the necessary code. This information can then be
processed.

After the handler has returned, and all other ServiceContext
handlers have completed, the request continues as normal.

Note: Replies are treated the same as requests. They activate the
outboundReply() and incomingReply() handlers in the same way.

Per-Request ServiceContextHandler Example
The service context example in this section sends a String
message using a per-request ServiceContextHandler.
First, you should place the following code in both your client and
your server applications:

//java
IE.Iona.OrbixWeb._OrbixWeb.ORB
(orb).enableServiceContextList(true);

mySrvContext = new myServiceContextHandler(5);

IE.Iona.OrbixWeb._OrbixWeb.ORB
(orb).registerPerRequestServiceContextHandler

(mySrvContext);

Second, you can use the following example code to send a String
using a per-request ServiceContextHandler:

//java
import IE.Iona.OrbixWeb.Features.ServiceContextHandler;
import IE.Iona.OrbixWeb.Features.ServiceContext;
import IE.Iona.OrbixWeb.CORBA.Request;
import IE.Iona.OrbixWeb.CORBA.*;
import IE.Iona.OrbixWeb.*;
import IE.Iona.OrbixWeb.CORBA.Any;
import IE.Iona.OrbixWeb.CORBA.ORB;

public class myServiceContextHandler
extends ServiceContextHandler {

long num = 0;

// constructor
public myServiceContextHandler(int id) {
 super(id);

System.out.println
("Created ServiceContextHandler");

}

public boolean outboundReplyHandler(Request req) {
return true;}
Orbix Programmer’s Guide Java Edition 283

public boolean outboundRequestHandler(Request req)
 {

String str = "hello world";
System.out.println("Add Service Context list to

Request \n" + "\ttarget \t" + req.target()
+"\tcalling \t" + req.operation());

IE.Iona.OrbixWeb.CORBA.Any a = new
IE.Iona.OrbixWeb.CORBA.Any

(_CORBA.IT_INTEROPERABLE_OR_KIND);

a.insert_string(str);
ServiceContext sc = new ServiceContext();
sc.context_id = _getID();
sc.context_data = str.getBytes();

String str2 = new String(sc.context_data);
/*Byte b = null;

 for (int i=0; i < sc.context_data.length; i ++) {
str2 += Byte.toString(sc.context_data[i]);

} */
System.out.println("converted to = " + str2);
req.addServiceContext(sc);

return true;
}

 public boolean incomingReplyHandler(Request req) {
return true;}

public boolean incomingRequestHandler(Request req)
 {

String str = null;
System.out.println("attempting to extract data
 from Service Context List on incoming Request
 \n" + "\ttarget \t" + req.target() + "\tcalling

\t" + req.operation());

ServiceContext sc = req.getServiceContext
(_getID());

IE.Iona.OrbixWeb.CORBA.Any a =

new IE.Iona.OrbixWeb.CORBA.Any
(_CORBA.IT_INTEROPERABLE_OR_KIND);

a.insert_string(str);
str = new String(sc.context_data);
System.out.println("Extracted from Request \n" +
"\tID \t\t" + sc.context_id + " " + str);

return true;
}

}

 284 Orbix Programmer’s Guide Java Edition

ServiceContext Per-Object Model
This section gives an overview of implementing per-object service
contexts in Orbix Java applications.

Client Side
To add ServiceContexts to requests leaving the client for a
particular object, you must also create and register handlers. This
involves the following:

• The registerPerObjectServiceContextHandler() method returns
the handler and object reference.

• The object reference is stored in a Vector array.
• Each ServiceContext in the ServiceContextList has the same

ID as one of the handlers registered for that object.
• Only one ServiceContextList is marshalled and sent across on

the wire.

Server Side
To receive ServiceContexts from requests entering the server for a
particular object you must create and register handlers. The
following stages are involved:

• An object reference is obtained and stored in a Vector array.
• The incomingRequest() method is called for any ServiceContext

IDs that correspond to any of the handlers registered.

Service Context Main Components
The ServiceContext per-request and ServiceContext per-object
models comprise a number of common components. This section
defines each component and explains how these components
interact.

ServiceContextHandler
This base class allows users to define their own handlers for a
particular Context_Id. For each ServiceContext you wish to handle,
there is a handler registered on both the client and on the server.
Each handler is recognized by its ID, which corresponds to the ID
of the ServiceContext it handles.
The ServiceContextHandler base class includes the following
methods:
• incomingRequestHandler()

This method is called when an incoming request arrives in a
server at the point where the ServiceContextList has been
unmarshalled. It accesses the unmarshalled
ServiceContextList, passing the appropriate Context_Id
required to access a specific ServiceContext.

• outboundRequestHandler()
This method is called when an outgoing request is being
marshalled in the client. It can add a ServiceContext to the
ServiceContextList for marshalling.
Orbix Programmer’s Guide Java Edition 285

• incomingReplyHandler()
This method is called when an incoming reply arrives in a
client at the point where the ServiceContextList has been
unmarshalled. It accesses the unmarshalled
ServiceContextList, passing the appropriate ServiceContext_Id
required to access a specific ServiceContext.

• outboundReplyHandler()
This method is called when an outgoing reply is being
marshalled in the server. It can add a ServiceContext to the
ServiceContextList for marshalling.

PerRequestServiceContextHandler
This is a SerivceContextHandler that has been registered as a
handler for all requests on the client or server side. The user
derives from the base class, and registers the handler. The
handler is recognized by its ID. This corresponds to the ID of the
ServiceContext it handles.

PerObjectServiceContextHandler
This is a ServiceContextHandler that has been registered as a
handler for all requests to a particular object on the client or
server side. The user derives from the base class and registers the
handler. The handler is recognized by its ID, which corresponds to
the ID of the ServiceContext it handles.

PerRequestServiceContextHandlerList
This is a list of service context handlers. For all requests or replies
leaving an address space, all outbound methods in all handlers are
called. This is because you do not know which ServiceContext to
add to each request.
For all incoming requests or replies in the client address space,
only the incoming methods of the handlers with IDs corresponding
to actual ServiceContexts are called.
Similarly, on the server side, for all outgoing requests or replies,
only the outgoing methods of the handlers whose IDs corresponds
to actual ServiceContexts in the request or reply header are called.

PerObjectServiceContextHandlerList
This works the same way as PerRequestServiceContextHandlerList
except that only requests and replies relating to a particular object
are both tagged and have their ServiceContext data investigated.
PerRequestServiceContextHandlerList is actually a list indexed by
both the context ID and the omg.org.CORBA.Object it references.

Service Context Handlers and Filter Points
Service context handlers also interact with Orbix Java filter points.
In Orbix Java, there are ten filter points, including the in reply and
out reply failure filter points. Refer to “Filters”for more details. The
service context mechanism provides four more points for
interaction with requests and replies in a typical invocation.
Figure 27 shows the position of the ServiceContextHandlers in an
invocation, in the subsequent reply, and also the order in which
they are called.
 286 Orbix Programmer’s Guide Java Edition

If an exception is thrown in any of the outRequest() pre or post
marshall filter points on the client side, the incomingReplyHandler()
is not called.
Oneway calls do not return anything, thus they do not call the
client-side inboundReplyHandler().

Client Server

Figure 27: ServiceContext Handlers and Filter Points

outRequestPostMarshall

outRequestPreMarshall

outboundRequestHandler

incomingRequestHandler

inRequestPreMarshall

inRequestPostMarshall

outboundReplyHandler

outReplyPreMarshall

outReplyPostMarshall

outReplyFailure

inReplyFailure

inReplyPostMarshall

inReplyPreMarshall

incomingReplyHandler
Orbix Programmer’s Guide Java Edition 287

 288 Orbix Programmer’s Guide Java Edition

Part V
Advanced Orbix Java

Programming

In this part
This part contains the following:

Filters page 291

Smart Proxies page 311

Loaders page 319

Opaque Types page 333

Transforming Requests page 339

Filters
Orbix Java allows you to specify that additional code be executed
before or after the normal code of an operation or attribute. This
support is provided by allowing applications to create filters, which
can perform security checks, provide debugging traps or
information, maintain an audit trail, and so on.

There are two forms of filters in Orbix Java:

• Per-process filters.
• Per-object filters.
Per-process filters monitor all operation and attribute calls leaving
or entering a client’s or server’s address space, irrespective of the
target object. Per-object filters apply to individual objects. Both of
these filter types are illustrated in Figure 28 on page 291. This
chapter briefly introduces each filter type, and then describes each
in detail.

Figure 28: Per-Process and Per-Object Filtering

Multiple ORB Support
All parameterized calls to ORB.init()create a separate ORB. Each
newly-created ORB instance is completely independent; for
example, in terms of its configuration and listener ports. Orbix
Java allows you to associate filters with a particular ORB instance.
By default, Orbix Java associates filters with the first
fully-functional ORB created in a process. To associate a filter with
a particular ORB instance, use the following constructor for your
derived class:

protected Filter(org.omg.CORBA.ORB orb, boolean installme);

Refer to the Orbix Programmer’s Reference Java Edition for
details of org.omg.CORBA.ORB.init() and class
IE.Iona.OrbixWeb.Features.Filter.
Orbix Java also provides constructors that associate a
ThreadFilter or an AuthenticationFilter with a particular ORB
instance. Refer to package IE.Iona.OrbixWeb.Features in the
Orbix Programmer’s Reference Java Edition for more details.

Objects

o1 o2 o3

per-object filter
attached to object o2

chain of per-process
filters

Client or Server Process
 Orbix Programmer’s Guide Java Edition 291

Introduction to Per-Process Filters
Per-process filters monitor all incoming and outgoing operation
and attribute requests to and from an address space. Each
process can have a chain of such filters, with each element of the
chain performing its own actions. You can add a new element to
the chain by performing the following two steps:

• Define a class that inherits from class Filter (defined in
package IE.Iona.OrbixWeb.Features).

• Create a single instance of the new class.

Pre-Marshalling Filter Points
Each filter of the chain can monitor ten individual points during the
transmission and reception of an operation or attribute request, as
shown in Figure 29 on page 294. The four most commonly-used
filter points are:

• outRequestPreMarshal (in the caller’s address space).
This filter monitors the point prior to the transmission of an
operation or attribute request from the filter’s address space
to any object in another address space. Specifically, it
monitors the point before the operation’s parameters are
added to the request packet.

• inRequestPreMarshal (in the target object’s address space).
This filter monitors the point after an operation or attribute
request has arrived at the filter’s address space, but before it
has been processed. Specifically, it monitors the point before
the operation has been sent to the target object and before
the operation’s parameters have been removed from the
request packet.

• outReplyPreMarshal (in the target object’s address space).
This filter monitors the point after the operation or attribute
request has been processed by the target object, but before
the result has been transmitted to the caller’s address space.
Specifically, it monitors the point before an operation’s out
parameters and return value have been added to the reply
packet.

• inReplyPreMarshal (in the caller’s address space).
This filter monitors the point after the result of an operation or
attribute request has arrived at the filter’s address space, but
before the result has been processed. Specifically, it monitors
the point before an operation’s out parameters and return
value have been removed from the reply packet.
 292 Orbix Programmer’s Guide Java Edition

Post-Marshalling Filter Points
These four monitor points are as follows:

• outRequestPostMarshal (in the caller’s address space).
This filter operates the same way as outRequestPreMarshal, but
after the operation’s parameters have been added to the
request packet.

• inRequestPostMarshal (in the target object’s address space).
This filter operates the same way as inRequestPreMarshal, but
after the operation’s parameters have been removed from the
request packet.

• outReplyPostMarshal (in the target object’s address space).
This filter operates the same way as outReplyPreMarshal, but
after the operation’s out parameters and return value have
been added to the reply packet.

• inReplyPostMarshal (in the caller’s address space).
This filter operates the same way as inReplyPreMarshal, but
after the operation’s out parameters and return value have
been removed from the reply packet.

Failure Points
Two additional monitor points deal with exceptional conditions:

• outReplyFailure (in the target object’s address space).
This filter is called if the target object raises an exception, or if
any preceding filter point (‘in request’ or ‘out reply’) raises an
exception or uses its return value to indicate that the call
should not be processed any further.

• inReplyFailure (in the caller’s address space).
This filter is called if the target object raises an exception or if
any preceding filter point (‘out request’, ‘in request’, ‘out
reply’ or ‘in reply’) raises an exception, or uses its return
value to indicate that the call should not be processed any
further.

Once an exception is raised or a filter point uses its return value to
indicate that the call should not be processed further, no further
monitor points are called (with the exception of the two failure
monitor points). If this occurs in the caller’s address space,
InReplyFailure is called. If it occurs in the target object’s address
space, outReplyFailure and inReplyFailure are both called.
Orbix Programmer’s Guide Java Edition 293

All per-process monitor points (eight marshalling points and two
failure points) are shown in Figure 29 on page 294.

Figure 29: Per-Process Monitor Points

A particular filter on the per-process filter chain may perform
actions for any number of these filter points, although it is
common to handle four filter points, for example:

• outRequestPreMarshal

• inRequestPreMarshal

• outReplyPreMarshal

• inReplyPreMarshal

Along with monitoring incoming and outgoing requests, a filter on
the client side and a filter on the server side can cooperate to pass
data between them, in addition to the normal parameters of an
operation (or attribute) or call. For example, you can use the ‘out’
filter points of a filter in the client to insert extra data into the
request package; for example, using outRequestPreMarshal. You
can use the ‘in’ filter points of a filter in the server to extract this
data, for example, using inRequestPreMarshal.
Each filter point must indicate how the handling of the request
should be continued once the filter point itself has completed.
Specifically, a filter point can determine whether or not Orbix Java
should continue to process the request or return an exception to
the caller.

Note: Per-process filters are not informed of calls between collocated
objects. This is because the filters are applied only when a call
leaves or arrives at an address space.
You can use a special form of per-process filter to pass
authentication information from a client to a server. This type of
filter is called an authentication filter. This supports the
verification of the identity of a caller, a fundamental requirement
for security. Refer to “Defining an Authentication Filter” on
page 303 for more details.

outRequestPostMarshal

inReplyPostMarshal

inReplyPreMarshal

outReplyPostMarshal

inRequestPostMarshal

outReplyPreMarshal

target

outReplyFailure

object

inReplyFailure

Client
Process

Server
Process

outRequestPreMarshal request

reply

calling
object

inRequestPreMarshal
 294 Orbix Programmer’s Guide Java Edition

Introduction to Per-Object Filters
Per-object filters are associated with a particular object, and not
with all objects in an address space as in per-process filtering.
Unlike per-process filters, per-object filters apply to intra-process
operation requests. The following filtering points are supported:

• Per-object pre
This filter applies to operation invocations on a particular
object—before they are passed to the target object.

• Per-object post
This filter is applied to operation invocations on a particular
object—after they have been processed by the target object.

A per-object pre-filter can indicate, by raising an exception, that
the actual operation call should not be passed to the target object.
To create per-object filters, perform the following steps:
1. Derive a new class from the IDL-generated Operations class.

For example, inherit from class _GridOperations for an object
implementing interface Grid.

2. Create an instance of this new class. This instance behaves as
a per-object filter when installed.

3. Install this filter object as either a pre-filter or as a post-filter
to a particular target object.

It is important to realize that a per-object filter is either a
pre-filter or a post-filter. In contrast, a single per-process filter
can perform actions for any or all of its eight monitor points.

Note: You can only use per-object filtering if it was enabled when the
corresponding IDL interface was compiled by the IDL compiler.
Refer to “IDL Compiler Switch to Enable Object Filtering” on
page 305.
The parameters to an IDL operation request are readily available
for both pre and post per-object filters. Any in and inout
parameters are valid for pre filters; in, out and inout parameters
and return values are valid for post filters. In contrast, for
per-process filters, parameters to the operation request are not
available in general.
The per-process inRequestPreMarshal and inRequestPostMarshal
filters are applied before any per-object pre-filter. The per-object
post-filters are applied before any per-process outReplyPreMarshal
and outReplyPostMarshal filters.

Using Per-Process Filters
To install a per-process filter, define a class deriving from the
IE.Iona.OrbixWeb.Features.Filter class, and redefine one or more
of its methods:

outRequestPreMarshal() Operates in the caller’s address space
before outgoing requests (before
marshalling).

outRequestPostMarshal() Operates in the caller’s address space
before outgoing requests (after
marshalling).
Orbix Programmer’s Guide Java Edition 295

Each of the eight marshalling methods take a single parameter.
This is the request on which the filtering is to take place. The
return value is boolean, indicating whether or not Orbix Java
should continue to make the request. For example:
public boolean outRequestPreMarshal(org.omg.CORBA.Request r)

Both failure methods take two parameters: the request on which
the filtering was to take place, and the exception which
representing the failure of that request. The failure methods have
a void return type. Refer to the API Reference in the Orbix
Programmer’s Reference Java Edition for full details of these
methods.
You can obtain the details of the request being made by calling
methods on the Request parameter. See “An Example Per-Process
Filter” on page 297 for more details.
The constructor of class Filter adds the newly created filter object
into the per-process filter chain. You cannot create direct
instances of Filter; its constructor is protected to enforce this.
Classes derived from Filter normally have public constructors.
The marshalling methods return a value which indicates how the
call should continue. Redefinitions of these methods in a derived
class should retain the same semantics for the return value as
specified in the relevant entries in the Orbix Programmer’s
Reference Java Edition.

inRequestPreMarshal() Operates in the receiver’s address space
before incoming requests (before
marshalling).

inRequestPostMarshal() Operates in the receiver’s address space
before incoming requests (after
marshalling).

outReplyPreMarshal() Operates in the receiver’s address space
before outgoing replies (before
marshalling).

outReplyPostMarshal() Operates in the receiver’s address space
before outgoing replies (after
marshalling).

inReplyPreMarshal() Operates in the caller’s address space
before incoming replies (before
marshalling).

inReplyPostMarshal() Operates in the caller’s address space
before incoming replies (after
marshalling).

outReplyFailure() Operates in the receiver’s address space
if a preceding filter point raises an
exception or indicates that the call
should not be processed further or if the
target object raises an exception.

inReplyFailure() Operates in the caller’s address space if
the target object raises an exception or a
preceding filter point raises an exception
or indicates that the call should not be
processed further.
 296 Orbix Programmer’s Guide Java Edition

You should define derived classes of Filter and redefine some
subset of the filter point methods to perform the required filtering.
If you do not redefine any of the non-failure monitoring methods
in a derived class of Filter, the following implementation is
inherited in all cases:

// Java
{ return true; } // Continue the call.

The failure filter methods inherit the following implementation:
// Java
{ return; }

An Example Per-Process Filter
Consider the following simple example of a per-process filter:
// Java

import IE.Iona.OrbixWeb.Features.Filter;
import org.omg.CORBA.Request;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;

ORB orb = ORB.init(args, null);

public class ProcessFilter extends Filter {
public boolean outRequestPreMarshal (Request r) {

String s, o;
try {

s = orb.object_to_string((r.target ());
o = r.operation ();

}
catch (SystemException se) {

...
}
System.out.println ("Request outgoing to "+ s

+ " with operation name "+ o + ".");
return true; // continue the call

}

boolean inRequestPreMarshal (Request r) {
String s, o;
try {

s = orb.object_to_string(r.target ());
o = r.operation ();

}
catch (SystemException se) {

...
}
System.out.println ("Request incoming to "+ s

+ " with operation name " + o + ".");
return true; // continue the call

}

boolean outReplyPreMarshal (Request r) {
String o;
try {

o = r.operation ();
}

Orbix Programmer’s Guide Java Edition 297

catch (SystemException se) {
...

}
System.out.println ("Incoming operation "

+ o + " finished.");
return true; // Continue the call.

}

boolean inReplyPreMarshal (Request r) {
String o;
try {

o = r.operation ();
}
catch (SystemException se) {

...
}
System.out.println ("Outgoing operation "

+ o + " finished.");
return true; // Continue the call.

}

void outReplyFailure (Request r, Exception ex) {
String o;
try {

o = r.operation ();
}
catch (SystemException se) {

...
}
System.out.println ("Operation " + o

+ " raised exception.");
return;

}

void inReplyFailure (Request r, Exception ex) {
String o;
try {

o = r.operation ();
}
catch (SystemException se) {

...
}
System.out.println ("Operation " + o

+ " raised exception.");
return;

}
}

Filter classes can have any name, however they must inherit from
the class Filter. This class has a protected default constructor. In
the example, ProcessFilter is given a parameterless public
constructor by Java.
Each filter object method can examine the Request object it
receives by calling its member functions. However, this
examination must be performed in a non-destructive manner.
Modification of the Request instance is only permitted if it is to
“unwind” modifications made by a corresponding filter at the other
end of the connection. This process is known as piggybacking.
Refer to “Piggybacking Extra Data to the Request Buffer” for more
 298 Orbix Programmer’s Guide Java Edition

details. Modification of data inserted by the Orbix Java runtime
into the Request instance invariably causes the request to fail
after the filtering stage.

Getting Additional Information about Requests
You can obtain additional information about the request by using
the filter methods.
For example, you can obtain an instance of
IE.Iona.OrbixWeb.CORBA.OrbCurrent by including the following code:

import IE.Iona.OrbixWeb.CORBA.OrbCurrent;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb._CORBA;
....
Current curr = _OrbixWeb.ORB(orb).get_current();
OrbCurrent orbcurr = _OrbixWeb.Current(curr);

You can then call the OrbCurrent() methods on the current
instance. Refer to the description of OrbCurrent() in the API
Reference of the Orbix Programmer’s Reference Java Edition.
The following methods are of particular interest:

• get_principal()

• get_object()

• get_server()

Installing a Per-Process Filter
To install this per-process filter, you need only create an instance
of it:

// Java
ProcessFilter myFilter = new ProcessFilter ();

This object must be created after the call to ORB.init() and before
the handling of requests.

How to Create a System Exception
Any of the per-process filter points can raise an exception in the
normal manner. Exceptions have three constructors, as shown in
the following example, which uses the NO_PERMISSION exception:
public NO_PERMISSION(String reason, int minor,

CompletionStatus completed);
public NO_PERMISSION(int minor, CompletionStatus completed)
public NO_PERMISSION(String reason)

The reason parameter represents an exception message in text
form. When using IIOP, the marshalling of this string back to a
client is not supported. This is because IIOP does not permit
exception reason strings to be passed over the wire. The client
receives, instead, the string “unknown”. The string can be
marshalled successfully back to the client when using the Orbix
Java Protocol.
The minor parameter represents an error code used to look up an
error message when reconstructing the exception on the client
side.
Orbix Programmer’s Guide Java Edition 299

The completed parameter indicates whether the requested
operation succeeded. Its possible values are COMPLETED_YES,
COMPLETED_NO and COMPLETED_MAYBE. Refer to the description of
CompletionStatus in the API Reference of the Orbix
Programmer’s Reference Java Edition.

Rules for Raising an Exception
The following rules apply when a filter point raises an exception:

• Per-process filters can raise only system exceptions. Any such
exception is propagated by Orbix Java back to the caller.
However, raising an exception in an inReplyPostMarshal() filter
point does not cause the exception to be propagated. At that
stage, the call is essentially already completed, and it is too
late to raise an exception.

• If any filter point raises an exception, no further filter points
are processed for that call, except for one or both of the
failure filter points, outReplyFailure() and inReplyFailure().

• If one of the filter points
 outRequestPreMarshal()

 outRequestPostMarshal()

 inRequestPreMarshal()

 inRequestPostMarshal()

raises an exception, the actual operation call is not forwarded
to the target application object.

• If the operation implementation raises a user exception, and
one of the filter points
 outReplyFailure()

 inReplyFailure()

raises a system exception, the system exception is raised in
the calling client. The user exception is overwritten.

• If the operation implementation raises a system exception, no
further filter points, except one or both of outReplyFailure()
and inReplyFailure() are called for this invocation.
 300 Orbix Programmer’s Guide Java Edition

Piggybacking Extra Data to the Request Buffer
One of the outRequest filter points in a client can add extra
piggybacked data to an outgoing request buffer. This data is then
made available to the corresponding inRequest filter point on the
server side. In addition, one of the ‘out reply’ marshalling filter
points on a server can add data to an outgoing reply. This data is
then made available to the corresponding inReply filter point on
the client-side.
At each of the four ‘out’ marshalling monitor points, you can insert
data by using an appropriate org.omg.CORBA.portable.OutputStream
method for the Request parameter, for example:

// Java
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.Request;
import org.omg.CORBA.portable.OutputStream;
...
int l = 27;
...
try {

OutputStream s =
_OrbixWeb.Request(r).create_output_stream();

s.write_long (l);
}
catch (SystemException se) {

...
}

You can extract data at each of the ‘in’ marshalling monitor points,
using an appropriate org.omg.CORBA.portable.Inputstream method,
for example:

// Java
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.Request;
import org.omg.CORBA.portable.InputStream;
...
int j;
...
try {

InputStream =
_OrbixWeb.Request(r).create_input_stream();

j = s.read_long ();
}
catch (SystemException se) {

...

Matching Insertion and Extraction Points
You must ensure that the insertion and extraction points match
correctly, as follows:

Insertion Point Extraction Point
outRequestPreMarshal() inRequestPreMarshal()

outReplyPreMarshal() inReplyPreMarshal()

outRequestPostMarshal() inRequestPostMarshal()

outReplyPostMarshal() inReplyPostMarshal()
Orbix Programmer’s Guide Java Edition 301

For example, a value inserted by outRequestPreMarshal() must be
extracted by inRequestPreMarshal(). Unmatched insertions and
extractions corrupt the request buffer and can cause a program
crash.
When only one filter is being used, its outRequestPostMarshal()
method can insert piggybacked data that is not removed by the
corresponding inRequestPostMarshal() method on the called side.
However, this causes problems if more than one filter is being
used.

Ensuring that Unexpected Extra Data is not Passed
When coding a filter that adds extra data to the request, you
should ensure that you are communicating with a server that is
expecting the extra data. Frequently, a filter should add extra data
only if the target object is in one of an expected set of servers.
For example,
outRequestPreMarshal()
outRequestPostMarshal()
inRequestPreMarshal()
inRequestPostMarshal()

should include the following code:
// Java
// First find the server name:
import org.omg.CORBA.SystemException;

String impl;

try {
1 impl = (r.target())._get_implementation().toString();

}
catch (SystemException se) {

...
}

if (impl.equals ("some_server")) {
// Can add extra data.

}
else {

// Do not add any extra data.
}

1. It is assumed here that the Request parameter is r.
The method
org.omg.CORBA.Object._get_implementation().toString() returns
the server name of an object reference. In this case, it returns the
name of the target object.
You should not add extra data when communicating with the Orbix
Java daemon. The Orbix Java classes may communicate with the
daemon process, and you must ensure that you do not pass extra
data to the daemon.
 302 Orbix Programmer’s Guide Java Edition

Retrieving the Size of a Request Buffer
Sometimes when programming filters you may wish to obtain the
size of a Request; for example, in order to display trace
information about traffic between Orbix Java applications. You can
obtain this information by invoking the method getMessageLength()
on the org.omg.CORBA.Request class as follows:

// Java
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.SystemException;
...
int msgLen;
try {

msgLen =
_OrbixWeb.Request(r).getMessageLength();

}
catch (SystemException se) {...}

Defining an Authentication Filter
Verification of the identity of the caller of an operation is a
fundamental component of a protection system. Orbix Java
supports this by installing an authentication filter in every
process’s filter chain. This default implementation transmits the
name of the principal (user name) to the server when the channel
between the client and the server is first established by bind().
This name is also added to all requests at the server side. A server
object can obtain the user name of the caller by calling the
method:
// Java
import IE.Iona.OrbixWeb._CORBA;
...
String name = _CORBA.Orbix.get_principal_string();

You can override the default authentication filter by declaring a
derived class of AuthenticationFilter and creating an instance of
this class. For example, an alternative authentication filter could
use a ticket-based authentication system rather than passing the
caller’s user name.
On the client side, a derived AuthenticationFilter class should
override the outRequestPreMarshal() filter point. If this filter point
alters the default behavior, the server-side authentication filter
point inRequestPreMarshal() must be appropriately overridden in
all servers with which the client communicates.
Orbix Programmer’s Guide Java Edition 303

Using Per-Object Filters
You can attach a pre and/or a post per-object filter to an individual
object of a given IDL type. Consider the following IDL interface:

// IDL
interface Inc {

unsigned long increment(in unsigned long vin);
};

You can implement this as follows:
// Java
public class IncImplementation

implements _IncOperations {
public int increment (int vin) {

return (vin+1);
}

}

For example, if you have two objects of this type created, as
follows:

// Java
Inc i1, i2;
try {

i1 = new _tie_Inc (new IncImplementation ());
i2 = new _tie_Inc (new IncImplementation ());

}
catch (org.omg.CORBA.SystemException se) {

...
}

you may wish to pre and/or post filter the specific object
referenced by i1. To achieve this, define one or more additional
classes that implement the _<Interface>Operations Java interface.
To perform pre-filtering, you can define a class, for example
FilterPre, to have the methods and parameters specified in the
_IncOperations Java interface:

// Java
public class FilterPre

implements _IncOperations {
public int increment (int vin) {

System.out.println
("*** PRE call with parameter " + vin);

return 0; // Here any value will do.
}

Similarly, to perform post-filtering, you could define a class called
FilterPost, as follows:

// Java
public class FilterPost

implements _IncOperations {
public int increment (int vin) {

System.out.println
("*** POST call with parameter " + vin);
return 0; // Here any value will do.

}
}

 304 Orbix Programmer’s Guide Java Edition

In these examples, a per-object filter cannot access the object it is
filtering. A filter can however access the object it is filtering by
having a member variable that points to the object. You can set
up this member using a constructor parameter for the filter.
To apply filters to a specific object, do the following:

// Java
// Create two filter objects.
Inc.Ref serverPre, serverPost;

try {
serverPre = new FilterPre ();
serverPost = new FilterPost ();

// Attach the two filter objects to
// the target object pointed to by i1.

((_incSkeleton)i1).__preObject = serverPre;
((_incSkeleton)il).__postObject = serverPost;

It is not always necessary to attach both a pre and a post filter to
an object.
Attaching a pre filter to an object which already has a pre filter
causes the old filter to be removed and the new one to be
attached. The same applies to a post filter.
If a per-object pre filter raises an exception in the normal way, the
actual operation call is not made. Normally this exception is
returned to the client to indicate the outcome of the call. However,
if the pre filter raises the exception FILTER_SUPPRESS, no exception
is returned to the caller. The caller cannot tell that the operation
call has not been processed as normal.
You can raise a FILTER_SUPPRESS exception as follows:
// Java
import IE.Iona.OrbixWeb.Features.FILTER_SUPPRESS;
import org.omg.CORBA.CompletionStatus;
...

throw new FILTER_SUPPRESS(0, CompletionStatus.COMPLETED_NO);

In this example, you could use the same filter objects (those
pointed to by serverPre and serverPost) to filter call to many
objects. Other filters, for example a filter holding a pointer to the
object it is filtering, can only be used to filter one object.

IDL Compiler Switch to Enable Object Filtering
You can apply per-object filtering to an IDL interface only if it has
been compiled with the -F switch to the IDL compiler. By default,
-F is not set, so object level filtering is not enabled.
Orbix Programmer’s Guide Java Edition 305

Thread Filters
The class ThreadFilter (in package IE.Iona.OrbixWeb.Features) is
a special kind of filter that can be used to implement custom
threading and queueing policies.
This section explains the benefits of multi-threaded clients and
servers, and describes class ThreadFilter as a mechanism for
implementing multi-threaded programming with Orbix Java.

Multi-Threaded Clients and Servers
Normally, Orbix Java client and server programs contain one
thread that starts executing at the beginning of the program
(main()) and continues until the program terminates. Many
modern operating systems enable you to create lightweight
threads, with each thread having its own set of CPU registers and
stack. Each thread is independently scheduled by the operating
system, so it can run in parallel with the other threads in its
process. The mechanisms for creating and controlling threads
differ between operating systems but the underlying concepts are
common.
Both clients and servers may benefit from multi-threading.
However, the advantages of multi-threading are most apparent
for servers.

Multi-Threaded Servers
Many servers accept one request at a time and process each
request to completion before accepting the next. Where
parallelism is not required, there is no need to make a server
multi-threaded. However, some servers can provide improved
service to their clients by processing a number of requests in
parallel. Parallelism of requests may be possible because a set of
clients can concurrently use different objects in the same server.
Also some objects in the server can be used concurrently by a
number of clients.

Benefits of Threading
Some operations can take a significant amount of time to execute.
This can be because they are compute bound, or perform a large
number of I/O operations, or make invocations on remote objects.
If a server can execute only one such operation at a time, clients
suffer because of long delays before their requests can be started.
Multi-threading enables a reduction in latency of requests, and an
increase in the number of requests that a server can handle over a
given period. Multi-threading also allows advantage to be taken of
multi-processor machines.
The simplest threading model involves automatically creating a
thread for each incoming request. Each thread executes the code
for each call, executes the low level code that sends the reply to
the caller, and then terminates. Any number of such threads can
be running concurrently in a server. These can use normal
synchronization techniques, such as mutex or semaphore
variables, to prevent corruption of the server’s data. This
protection must be programmed at two levels. The underlying
 306 Orbix Programmer’s Guide Java Edition

ORB library must be thread safe so that concurrent threads do not
corrupt internal variables and tables. Also, the application level
must be made thread safe by the application programmer.

Drawbacks of Threading
The main drawbacks associated with threads are as follows:

• It may be more efficient to avoid creating a thread to execute
a very simple operation. The overhead of creating a thread
may be greater than the potential benefit of parallelism.

• You must ensure that application code is thread safe.
Nevertheless, multi-threaded servers are considered essential for
many applications. A benefit of using Orbix Java is that the
creation of threads in a server is simple.
Threads can also be created explicitly in servers, using the
threading facilities of the underlying operating system. This can be
done so that a remote call can be made without blocking the
server. Threads can also be created within the code that
implements an operation or attribute, so that a complex algorithm
can be parallelized and performed by a number of threads. These
threads can be in addition to those created implicitly to handle
each request.

Multi-Threaded Clients
Multi-threaded clients can also be useful. A client can create a
thread and have it make a remote operation call, rather than
making that remote call directly. The result is that the thread that
makes the call blocks until the operation call has completed, while
the rest of the client can continue in parallel. Another advantage
of a multi-threaded client is that it can receive incoming operation
requests to its objects without having to poll for events.
Clients must create threads explicitly, using the threading facilities
of the underlying operating system. Naturally, multi-threaded
clients must also be coded to ensure that they are thread safe,
using a synchronization mechanism. As for servers, the difficulty
of doing this depends on the complexity of the data, the
complexity of the concurrency control rules, and the form of
concurrency control mechanism being used.

Thread Programming in Orbix Java
Orbix Java supports multi-threaded Java servers that handle
multiple client requests. The Java language is multi-threaded and
the Orbix Java runtime is thread-safe.

Using Class ThreadFilter
The class IE.Iona.OrbixWeb.Features.ThreadFilter enables the
implementation of custom threading and queuing policies in Orbix
Java.
The class ThreadFilter inherits from the class Filter. Although
ThreadFilter does not redefine any of the method in the class
Filter, it does change the behavior of inRequestPreMarshal() and
that of the default constructor.
Orbix Programmer’s Guide Java Edition 307

To use the special functionality associated with class ThreadFilter,
you should define a derived class of ThreadFilter and redefine the
inRequestPreMarshal() method. When a request enters this filter
point you can control the dispatching of the request. You can then
pass the request into a custom event queue serviced by one or
more threads, or you can create a thread directly and pass it the
Request object to be dispatched.
To use the special features of the ThreadFilter you must use its
default constructor, Threadfilter(). This adds a newly created
object onto the ThreadFilter chain. You can also pass an ORB
instance to the constructor to add the filter to that ORB’s
ThreadFilter chain.
Refer to the Orbix Programmer’s Reference Java Edition for
more details on IE.Iona.OrbixWeb.Features.ThreadFilter.

Models of Threading
The following are the three models of thread support provided by
Orbix Java:

• Thread per process
• Thread per object
• Pool of threads

Thread Per Process
In this model, a thread is created for each request. Each thread
executes the code for each call, executes the low level code that
sends the reply to the caller, and then terminates. Any number of
such threads can be running concurrently in a server.

Thread Per Object
In this model, a thread is created for each object (or for a subset
of the objects in the server). Each of these threads accept
requests for one object only, and ignores all others. This can be an
important model in real-time processing, where the threads
associated with some objects need to be given higher priorities
that those associated with others.

Pool of Threads
In this model, a pool of threads is created to handle incoming
requests. The size of the pool puts some limit on the server’s use
of resources. In some cases this is better than the unbounded
nature of the thread per request model. Each thread waits for an
incoming request, and handles it before looping to repeat this
sequence.
 308 Orbix Programmer’s Guide Java Edition

Implementing Threads in Orbix Java
This section gives a brief description of how these models can be
implemented in Orbix Java.

Thread Per Process
To implement this model, you should create a thread to handle a
request.
The thread filter’s inRequestPreMarshal() method can create a
thread to handle an incoming request. You should use the
underlying Java threads package to create the thread, and then
use that thread to process the request.
The inRequestPreMarshal() method returns a boolean value. This
method returns true when the request has been passed on. It
returns false when the request is being handled by a separate
thread.

Thread Per Object
To implement this model, you should create a thread for each (or
for a subset of) the objects in the server.
Each thread should have its own semaphore and queue of
requests. Each thread should wait on its own semaphore. The
inRequestPreMarshal() call should add the Request to the correct
queue of requests, and signal the correct semaphore.
When the thread awakens, it should call continueThreadDispatch()
to process the topmost request, and then loop to await the next
one.

Pool of Threads
To implement this model, a pool of threads should be created, and
each thread should wait on a shared semaphore.
When a request arrives, the inRequestPreMarshal() function of the
ThreadFilter should place a pointer to the Request in an agreed
variable and signal the semaphore. Alternatively, a queue can be
used.
One of the threads awakens, and should call
continueThreadDispatch() before looping to repeat the sequence.
The three models of threading are illustrated in the Threads
demonstrations in the demos/orbixjava/ directory of your Orbix
Java installation.
Orbix Programmer’s Guide Java Edition 309

 310 Orbix Programmer’s Guide Java Edition

Smart Proxies
Smart proxies are an Orbix Java-specific feature that allow you to
implement proxy classes manually, thereby allowing client
interaction with remote services to be optimized. This chapter
describes how proxy objects are generated, and the general steps
needed to implement smart proxy support for a given interface. It
also describes how a you can build a simple smart proxy. This
example is based on a small load balancing application.

The IDL compiler automatically generates proxy classes for IDL
interfaces. Proxy classes are used to support invocations on
remote interfaces. When a proxy receives an invocation, it
packages the invocation for transmission to the target object in
another address space on the same host, or on a different host.

Proxy Classes and Smart Proxy Classes
This section describes how Orbix Java manages proxies.

Proxy Classes
For each IDL interface, the Orbix Java IDL compiler generates a
Java interface defining the client view of the IDL interface. It also
generates a Java proxy class, which implements proxy
functionality for the methods defined in the Java interface. The
proxy class gives the code for standard proxies for that IDL
interface—these proxies transmit requests to their real object and
return the results they receive to the caller.

Smart Proxy Classes
A smart proxy class is a user-defined alternative to the
IDL-generated proxy class. Orbix Java implicitly constructs a
standard proxy when an object reference enters the client address
space. Experienced Orbix developers should note that Orbix Java
does not use proxy factory classes to construct standard proxy
objects. However, Orbix Java does not implicitly create smart
proxies, so each smart proxy class depends on the
implementation of a corresponding class that manufactures smart
proxy objects when requested to by Orbix Java. This class is called
a smart proxy factory class.

Requirements for Smart Proxies
To provide smart proxies for an IDL interface, do the following:
1. Define the smart proxy class, which must inherit from the

generated proxy class.
2. Define a smart proxy factory class, which creates instances of

the smart proxy class on request. Orbix Java calls the proxy
factory's New() method whenever it wishes to create a proxy
for that interface.
 Orbix Programmer’s Guide Java Edition 311

3. Create a single instance of the proxy factory class in the client
program.

Note: Apart from the introduction of new classes and the creation of the
proxy factory object, no changes are required to existing clients in
order to introduce smart proxy functionality. In particular, their
operation invocation code remains unchanged.
Once you have performed these steps, Orbix Java communicates
with the smart proxy factory whenever it needs to create a proxy
of that interface.There are three cases, as follows:

• When the interface’s bind() method is called.
• When a reference to an object of that interface is passed back

as an out or inout parameter or a return value, or when a
reference to a remote object enters an address space via an
in parameter.

• When ORB.string_to_object() is called with a stringified object
reference for a proxy of that interface.

You can define more than one smart proxy class, and associated
smart proxy factory class for a given IDL interface. Orbix Java
maintains a linear linked list of all of the proxy factories for a given
IDL interface.
A chain of smart proxy factories is allowed for an IDL interface
because the same IDL interface can be provided by a number of
different servers in the system. It may be useful, therefore, to
have different smart proxy code to handle each server, or set of
servers. Each factory in turn can examine the marker and server
name of the target object for which the proxy is to be created. The
factory class can then decide whether to create a smart proxy for
the object or to defer the request to the next proxy factory in the
chain.

Creating a Smart Proxy
The following steps must be performed in order to create a smart
proxy:
1. Implement the smart proxy class.

The constructor(s) of this class are used by the proxy factory.
2. Implement a new proxy factory class, derived from the Orbix

Java ProxyFactory class (defined in package
IE.Iona.OrbixWeb.Features). It should redefine the New()
method to create new smart proxy objects. It may also return
null to indicate that it is not willing to create a smart proxy.

3. Declare an object of this new class. The inherited base class
constructor automatically registers this new proxy factory with
the factory manager object.

When a new proxy is required, Orbix Java calls all of the registered
proxy factories for the class until one of them successfully builds a
new proxy. If none succeeds, a standard proxy is implicitly
constructed. Proxy factories are automatically added to the chain
of factories as they are created. However, you cannot predict the
order of use of smart proxy factories.
 312 Orbix Programmer’s Guide Java Edition

The factory manager requests each proxy factory to manufacture
a new proxy using its New() method:

// Java
// The String parameter is the full object
// reference of the target object.
// The return value is the new smart proxy
// object.
import org.omg.CORBA.portable.Delegate;
...
public org.omg.CORBA.Object New (Delegate d);

If the New() method returns null, Orbix Java tries the next smart
proxy factory in the chain.
Examples of these smart proxy implementation steps are given in
the rest of this chapter.

Multiple ORB Support
All parameterized calls to ORB.init()create a separate ORB. Each
newly-created ORB instance is completely independent; for
example, in terms of its configuration and listener ports. Orbix
Java allows you to associate smart proxies with particular ORB
instances.
By default, Orbix Java associates smart proxies with the first
fully-functional ORB created in a process. To associate a smart
proxy with a particular ORB instance, use the following constructor
for your derived class:

protected ProxyFactory(org.omg.CORBA.ORB orb, String name);

The orb parameter associates the smart proxy with a specific ORB
instance. The name parameter refers to name of the IDL interface
implemented by the smart proxy object
Refer to the Orbix Programmer’s Reference Java Edition for
details of class IE.Iona.OrbixWeb.Features.ProxyFactory and the
org.omg.CORBA.ORB.init()method.

Benefits of Using Smart Proxies
It is sometimes beneficial to be able to implement proxy classes
manually. The circumstances in which the use of smart proxies
may be advantageous include the following:

• Load Balancing
For client programmers, a typical example is where you want
to introduce load balancing between several remote objects
when invoking operations. For example, if multiple remote
objects can meet a request for a computationally intensive
operation, a client application may wish to route each
invocation to the object that is currently least busy.

• Caching Information
For interface implementers, it is often useful to implement
smart proxies to cache some information from a remote
object locally at a client site. In the simple bank application
you may wish, for example, to cache the balance of an
account at a client. Requests to obtain the balance of the
account can then be immediately satisfied, provided you
Orbix Programmer’s Guide Java Edition 313

ensure that withdrawals and deposits to the account refresh
the cached value.

Using Smart Proxies
Consider a very simple example of a load balancing system, based
on the following IDL definition:

// IDL

interface NumberCruncher {
long crunch (in long number);

};

interface NCManager {
// Get the least loaded number cruncher:
NumberCruncher getNumberCruncher ();

};

In this application, it is assumed that a number of objects exist
that implement the NumberCruncher interface. Each of these objects
is capable of exhibiting individual load characteristics; this is the
case, for example, if each is located in a separate Orbix Java
server process.
It is also assumed that an Orbix Java server exists that
implements the NCManager interface. The NCManager implementation
object is responsible for locating the currently least-loaded
NumberCruncher and returning the corresponding object reference
to the client. The client can then invoke the crunch() operation,
perhaps repeatedly, on the target object.
Of course, the load on each NumberCruncher object changes over
time. If it is valid to direct each client crunch() invocation to any
NumberCruncher object, the performance perceived by the client can
be improved by updating the target object before each operation
call. In this example, a smart proxy is implemented which takes
advantage of this fact to optimize the performance of the crunch()
operation.

Creating a Smart Proxy
The following two steps are required when creating a smart proxy:

• Define a Smart Proxy Class.
• Define a Proxy Factory for Smart Proxies.

Defining a Smart Proxy Class
Define a smart proxy class, called SmartNC, for Java proxy class
NumberCruncher. Instances of this class stores a variable holding a
default proxy for the NumberCruncher object. This proxy variable is
updated before each call to crunch(), and the operation invocation
is then routed via the refreshed default proxy.
// Java
package SmartProxy;

import org.omg.CORBA.SystemException;

1 public class SmartNC
 314 Orbix Programmer’s Guide Java Edition

extends _NumberCruncherStub {

// Store an NCManager proxy
private NCManager theNCManager;

2 public SmartNC () {

// Create NCManager proxy
try {

theNCManager = NCManagerHelper.bind ();
}
catch (SystemException se) {

...
}

}

3 public int crunch (int number) {
NumberCruncher actNC = null;

// Create default proxy for current
// least busy NumberCruncher object
try {

actNC = theNCManager.getNumberCruncher ();
}
catch (SystemException se) {

...
}

// Make remote invocation
return actNC.crunch (number);

}
}

1. Class SmartNC inherits from the default proxy class generated
by the IDL compiler. It therefore inherits all of the code
required to make a remote invocation: if required, each
SmartNC method can make a call-up to its base class’s method
to make a remote call. However, this functionality is not
required in this example.

2. The SmartNC constructor initializes a member variable holding
a proxy for the NCManager object by calling
NCManagerHelper.bind().

3. The crunch() method first obtains a default proxy for the
current least loaded NumberCruncher object by invoking
NCManager.getNumberCruncher(). The implementation of the
smart proxy factory class, described in “Defining a Proxy
Factory for Smart Proxies”, prevents this invocation from
creating a second smart proxy. The smart crunch() method
then invokes the default crunch() on the newly created object.
Orbix Programmer’s Guide Java Edition 315

Defining a Proxy Factory for Smart Proxies
Define a new proxy factory to generate the smart proxies at the
appropriate time. Recall that the base class for all proxy factory
classes is the following class:
IE.Iona.OrbixWeb.Features.ProxyFactory.
// Java
package SmartProxy;

import IE.Iona.OrbixWeb.Features.ProxyFactory;
import org.omg.CORBA.portable.Delegate;
import org.omg.CORBA.portable.ObjectImpl;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.Object;
...

1 public class SmartNCFactory
extends ProxyFactory {

// Flag to indicate whether a smart proxy
// or a true proxy should be created
private static boolean createProxy;

public SmartNCFactory () {

super (NumberCruncherHelper.id());
createProxy = true;

}

2 public Object New(Delegate d) {
// You only need one smart proxy to
// manage the default proxies, so
// allow implicit creation of a default
// proxy (if a smart proxy already exists)
if (createProxy == false)

return null;

createProxy = false;

3 // Create a smart proxy
ObjectImpl new_ref = null;

 try {
 new_ref = new SmartNC ();

new_ref._set_delegate(d);
 }
 catch (SystemException ex) {

return null;
 }

return new_ref;
}

}

This code is described as follows:
1. The member initialization list of the constructor of class

SmartNCFactory makes a call to the constructor of class
ProxyFactory. The parameter passed is the return value of the
static method NumberCruncherHelper.id(). This automatically
generated method returns a string which holds information
about the IDL interface type for the proxy.
 316 Orbix Programmer’s Guide Java Edition

The proxy and proxy factory class hierarchies are shown in
Figure 30.

2. The SmartNCFactory.New() method is called by Orbix Java to
signal that a smart proxy can be created. Orbix Java passes it
an object of type org.omg.CORBA.portable.Delegate.
If the method decides to create a smart proxy, it must
instantiate a new smart proxy It must also set the delegate
object using the _set_delegate() operation which all proxies
inherit from org.omg.CORBA.portable.ObjectImpl.

3. In this example, each client only requires a single smart proxy
object to manage all invocations on class NumberCruncher. The
New() method first checks the member variable createProxy
member variable to determine if it needs to create a smart
proxy.
If the value of this variable is false, the method simply
returns null. This results in the invocation of the next smart
proxy factory in the factory chain, or the creation of a default
proxy object (if this is the last factory in the chain).

A Sample Client
Finally, you must declare a single instance of the new proxy
factory class in the client:
// Java
SmartNCFactory ncFact = new SmartNCFactory ();

The inherited base class constructor then registers this new
factory, and enters it into the linked list of factories for interface
NumberCruncher.

Figure 30: Class Hierarchy for Smart Proxy Classes

_NumberCruncherStub

SmartNC

ProxyFactory

SmartNCFactory
Orbix Programmer’s Guide Java Edition 317

You can code a sample client that communicates using this smart
proxy as follows:
// Java
package SmartProxy;

import org.omg.CORBA.SystemException;
public class Client {

static public void main (String argv[]) {
NumberCruncher ncRef = null;
NCManager ncmRef = null;
SmartNCFactory ncFact =

new SmartNCFactory ();
int result1 = 0;
int result2 = 0;
int result3 = 0;

try {
1 // bind to NCManager

ncmRef = NCManagerHelper.bind ();

// get least loaded number cruncher
ncRef = ncmRef.getNumberCruncher ();

2 // do some calculations
result1 = ncRef.crunch (100);
result2 = ncRef.crunch (200);
result3 = ncRef.crunch (300);

}
catch (SystemException se) {

System.out.println (
"Number crunch failed.");

System.out.println (se.toString ());
}

}
}

This code can be described as follows:
1. The client binds to the NCManager object, from which it obtains

an object reference for the currently least-loaded
NumberCruncher. When this object reference enters the client
address space, a smart proxy is created transparently to the
client.

2. The client invocations on operation crunch() are then
automatically routed through the smart proxy, as previously
described in this chapter.
 318 Orbix Programmer’s Guide Java Edition

Loaders
This chapter describes the use of loaders, an Orbix Java-specific
feature designed to support persistent objects.

When an operation invocation arrives at a server process, Orbix
Java searches for the target object in the internal object table for
the process. By default, if the object is not found, Orbix Java
returns an exception to the caller. However, if one or more loader
objects are installed in the process, Orbix Java informs the loader
about the object fault and allows it to load the target object and
resume the invocation transparently to the caller. Orbix Java
maintains the loaders in a chain, and tries each loader in turn until
one can load the object. If no loader can load the object, an
exception is returned to the caller.
Loaders can provide support for persistent objects—long-lived
objects stored on disk in the file system or in a database.
Loaders are also called when an object reference enters an
address space, and not only when a missing object is the target of
a request. This can arise in a number of ways:

• When a call to either of the methods bind() or
string_to_object() is made from within a process.

• For a server: as an in parameter.
• For a client (or a server making an operation call): as an out

or inout parameter, or a return value.
The loaders can respond to such object faults by loading the target
object of the reference into the process’s address space. If no
loader can load the referenced object, Orbix Java constructs a
proxy for the object.

Overview of Creating a Loader
To code a loader, define a derived class of LoaderClass (defined in
package IE.Iona.OrbixWeb.Features). To install a loader, create an
instance of that new class. LoaderClass provides the following
methods:

• load()

Orbix Java uses this method to inform a loader of an object
fault. The loader is given the marker of the missing object so
that it can identify which object to load.

• save()

When a process terminates, the objects in its address space
can be saved by its loaders. To allow this, Orbix Java supplies
a shutdown() method, to call on the _CORBA.Orbix object before
process termination. _CORBA.Orbix.shutdown() makes an
individual call to save() for each object managed by a loader.
You can also explicitly call the save() method through the
IE.Iona.OrbixWeb.CORBA.ObjectRef._save() method. The
_OrbixWeb.Object() cast operation must be used on any
org.omg.CORBA.Object object before calling _save() because
this method is on the Orbix Java-specific ObjectRef interface.
 Orbix Programmer’s Guide Java Edition 319

• record() and rename()
These methods are used to control naming of objects, and
they are explained in the chapter “Making Objects Available in
Orbix Java”.

The constructor of LoaderClass (the base class of all loaders) takes
an optional boolean parameter. When creating a loader object, this
parameter must be true if the load() method of the new loader is
to be called by Orbix Java.

Multiple ORB Support
All parameterized calls to ORB.init()create a separate ORB. Each
newly-created ORB instance is completely independent; for
example, in terms of its configuration and listener ports. Orbix
Java allows you to associate loaders with particular ORB instances.
By default, Orbix Java associates loaders with the first
fully-functional ORB created in a process. To associate a loader
with a particular ORB instance, use the following constructor for
your derived class:
public LoaderClass(org.omg.CORBA.ORB orb, boolean
registerMe);

You should refer to the Orbix Programmer’s Reference Java
Edition for more details on class LoaderClass.
Refer to the section “Example Loader” on page 324 for sample
code. The sections before this explain the different aspects of the
loader mechanism in more detail.

Specifying a Loader for an Object
Each object has an associated a loader object. Orbix Java informs
the loader object when the object is named, renamed or saved. If
an object does not have a specified loader, Orbix Java associates
it with a default loader.
You can specify an object’s loader as the object is being created,
either using the TIE or the ImplBase approach.

TIE Approach
Using the TIE approach, you can pass the loader object as the
third parameter to a TIE object constructor. For example,
// Java
// myLoader is a loader object:

bank bRef = new _tie_bank
(new bankImplementation (),
"College Green", myLoader);
 320 Orbix Programmer’s Guide Java Edition

ImplBase Approach
Using the ImplBase approach, you can declare the implementation
class’s constructor to take a loader object parameter; and define
this constructor to pass on this object as the second parameter to
its ImplBase class’s constructor. For example:
// Java
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb.Features.LoaderClass;

class bankImplementation extends _bankImplBase {
...

public bankImplementation
(String marker, LoaderClass loader) {

super (marker, loader);
...

}
}

Orbix Java associates each object with a simple default loader if it
does not have a specified loader. This loader does not support
persistence.
You can retrieve an object’s loader by calling:
// Java
// In package IE.Iona.OrbixWeb.CORBA
// in interface ObjectRef
import IE.Iona.OrbixWeb.Features;
...
public LoaderClass _loader ();

Connection between Loaders and Object Naming
When supporting persistent objects, you often need to control the
markers that are assigned to them. For example, you may need to
use an object’s marker as a key to search for its persistent data.
The format of these keys depends on how the persistence is
implemented by the loader. Therefore, it is common for loaders to
choose object markers. Loaders can accept or reject markers
chosen by application level code.
Recall that you can name an object in a number of ways:

• By passing a marker name to a TIE object constructor, for
example:
bankRef bRef = new _tie_bank

(new bankImplementation (), "College Green",
myLoader);

• By passing the marker name to the BOAImpl constructor, for
example:
bankImplementation bImpl;

try {
bImpl = new bankImplementation

("College Green", myLoader);
}
...
Orbix Programmer’s Guide Java Edition 321

• By calling IE.Iona.OrbixWeb.CORBA.ObjectRef._marker(String),
for example:
import IE.Iona.OrbixWeb._OrbixWeb;
...
org.omg.CORBA.Object bRef = //obtained using bind

 // or Naming Service

_OrbixWeb.Object(bRef)._marker ("Foster Place");

In all cases, Orbix Java calls the object’s loader to confirm the
chosen name, thus allowing the loader to override the choice. In
the first two cases above, Orbix Java calls record(); in the last
case it calls rename() because the object already exists.
Orbix Java executes the following algorithm when an object is
created, or an object’s existing marker is changed:

• If the specified marker is not null, Orbix Java checks if the
name is already in use in the process. If it is not in use, the
name is suggested to the loader (by calling record() or
rename()). The loader can accept the name by not changing it.
Alternatively, the loader can reject it by changing it to a new
name. If the loader changes the name, Orbix Java again
checks that the new name is not already in use within the
current process; if it is already in use, the object is not
correctly registered.

• If no name is specified or if the specified name is already in
use within the current process, Orbix Java passes a null value
to the loader (by calling record() or rename()) which must then
choose a name. Orbix Java then checks the chosen name; the
object is not correctly registered if this chosen name is
already in use.

Both record() and rename() can, if necessary, raise an exception.
The implementations of rename() and record() in LoaderClass both
return without changing the suggested name. Its implementations
of load() and save() perform no actions.
The default loader (associated with all objects not explicitly
associated with another loader) is an instance of NullLoaderClass,
a derived class of LoaderClass. This class inherits load(), save()
and rename() from LoaderClass. It implements record() so that if
no marker name is suggested it chooses a name that is a unique
string of decimal digits.

Loading Objects
When an object fault occurs, the load() method is called on each
loader in turn until one of them successfully returns the address of
the object, or until they have all returned null.
The responsibilities of the load() method are:

• To determine if the required object is to be loaded by the
current loader.

• If so, to re-create the object and assign the correct marker to
it.
 322 Orbix Programmer’s Guide Java Edition

The load() method is given the following information:

• The interface name.
• The target object’s marker.
• A boolean value, set as follows depending on why the object

fault occurred:

You can determine the interface name of the missing object as
follows:

• If an object fault occurs because of the call:
p = I1Helper.bind(<parameters>);

the interface name in load() will be “I1”.
If the first parameter to the bind() is a full object reference
string, Orbix Java returns an exception if the reference’s
interface field is not I1 or a derived interface of I1.

• If an object fault occurs during the call
p = _CORBA.Orbix.string_to_object

(<full object reference string>);

the interface name in load() is that extracted from the full
object reference string.

• If a loader is called because of a reference entering an
address space (as an in, out or inout parameter, a return
value, or as the target object of an operation call), the
interface name in load() is the interface name extracted from
the object reference.

Saving Objects
You can invoke the method _CORBA.Orbix.shutdown() before the
application exits. If this method is invoked, Orbix Java iterates
through all of the objects in its object table and calls the save()
method on the loader associated with each object. A loader can
save the object to persistent storage, either by calling a method
on the object, or by accessing the object’s data and writing this
data itself. The _save() method is also called if disconnect() or
dispose() is called for the object.
You can also explicitly cause the save() method to be called by
invoking an object’s _save() method. The _save() method calls the
save() method on the object’s loader. You must call the _save() in
the same address space as the target object: calling it in a client
process, on a proxy, has no effect.

true Because of a call to bind() or string_to_object() by the
process that contains the loader.

false Because of an object fault on the target object of an
incoming operation invocation, or on an in, out or
inout parameter or return value.
Orbix Programmer’s Guide Java Edition 323

The two alternative invocations of save() are distinguished by its
second parameter. This parameter is of type int, and takes one of
the following values:

Writing a Loader
To write a loader for a specific interface, you normally perform the
following actions:
1. Redefine the load() method to load the object on demand.

Normally, you use the object’s marker to find the object in the
persistent store.

2. Redefine the save() method so that it saves its objects on
process termination, and also when _save() is called.

3. Redefine the record() and rename() methods normally. Often,
record() chooses the marker for a new object; and rename() is
sometimes written to prevent an object’s marker being
changed. However, record() and rename() are sometimes not
redefined in a simple application, where the code that chooses
markers at the application level can be trusted to choose
correct values.

Example Loader
This section presents a simple loader for one IDL interface. A
version of the code for this example is given in the
demos\orbixjava\loaders_per_simp directory of your Orbix Java
installation.
There are two interfaces involved in the application:

// IDL
// In file bank.idl.

interface account {
readonly attribute float balance;
void makeLodgement(in float f);
void makeWithdrawal(in float f);

};

interface bank {
account newAccount(in string name);

};

This simple example assumes that these definitions are compiled
using the IDL
-jP switch as follows:

idlj -jP loaders_per_simp bank.idl

The classes output by the IDL compiler are within the scope of the
loaders_per_simp Java package.

_CORBA.processTermination The process is about to exit.
_CORBA.objectDeletion The method BOA.dispose or method

BOA.disconnect() has been called on the
object.

_CORBA.explicitCall The object’s _save() method has been
called.
 324 Orbix Programmer’s Guide Java Edition

Interfaces account and bank are implemented by classes
accountImplementation and bankImplementation, respectively.
Instances of class accountImplementation are made persistent
using a loader (of class Loader). The persistence mechanism used
is very primitive because it uses one file per account object.
Nevertheless, the example acts as a simple introduction to
loaders. The implementation of class Loader is shown later, but
first the implementations of classes accountImplementation and
bankImplementation are shown.
You can implement class accountImplementation as follows:

// Java

package loaders_per_simp;

import IE.Iona.OrbixWeb.Features.LoaderClass;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.Object;
public class accountImplementation

implements _accountOperations {
protected String m_name;
protected float m_balance;
protected String m_accountNr;

public accountImplementation
(float initialBalance, String name,

String nr) {
// Initialize member variable values.
// Details omitted.

}

// Methods to implement IDL operations:
public float balance () {

return m_balance;
}

public void makeLodgement (float f) {
m_balance += f;

}

public void makeWithdrawal (float f) {
m_balance -= f;

}

// Methods for supporting persistence.
public static Object loadMe

(String file_name, LoaderClass loader) {
// Details shown later.

}

public void saveMe (String file_name) {
// Details shown later.

}
};
Orbix Programmer’s Guide Java Edition 325

Two methods are added to the implementation class. The load()
method of the loader calls the static method loadMe(). This is
given the name of the file to load the account from. The method
saveMe() writes the member variables of an account to a specified
file. You can code these methods as follows:
public static Object loadMe

(String file_name, LoaderClass loader) {
...

RandomAccessFile file = null;
String name = null;
float bal = 0;

try {
file = new RandomAccessFile (file_name, "r");
name = file.readLine ();
bal = file.readFloat ();
file.close();

}
catch (java.io.IOException ex) {

...
System.exit (1);

}
accountImplementation aImpl = new
accountImplementation (bal, name, file_name);
account aRef = new

_tie_account (aImpl, file_name, loader);

return aRef;
}

public void saveMe (String file_name) {
...
RandomAccessFile file = null;

try {
file = new RandomAccessFile (file_name, "rw");
file.seek (0);
file.writeBytes (m_name + "\n");
file.writeFloat (m_balance);
f.close();

}
catch (java.io.IOException ex) {

...
System.exit(1);

}
}

The statement:
account aRef = new _tie_account (aImpl, file_name, loader);

in accountImplementation.loadMe() creates a new TIE for the
implementation object accImpl, and specifies its marker to be
file_name and its loader to be the loader object referenced by
parameter loader. Actually, this example creates only a single
loader object as shown in the next code sample.
 326 Orbix Programmer’s Guide Java Edition

Class bankImplementation is implemented as follows:
// Java

package loaders_per_simp;

import IE.Iona.OrbixWeb.Features.LoaderClass;
import org.omg.CORBA.SystemException;

public class bankImplementation
implements _bankOperations {
protected int m_sortCode;
protected int m_lastAc;
protected LoaderClass m_loader;

public bankImplementation (long sortCode,
LoaderClass loader) {
m_sortCode = sortCode;
m_loader = loader;
m_lastAc = 0; // Number of previous account.

}

// Method to implement IDL operation:
public account newAccount (String name) {

String accountNr = new String ("a"
+ m_sortCode + "-" + (++m_lastAc));

accountImplementation aImpl = null;
try {

aImpl = new accountImplementation
(100, name, accountNr);

}
catch (SystemException se) {

...
}

account aRef = new _tie_account(aImpl, accountNr,
 m_loader);

return aRef;
}

}

The main method creates a single loader object, of class Loader,
and each account object created is assigned this loader. Each
bankImplementation object holds its sort code (a unique number for
each bank, for example 1234), and also a reference to the loader
object to associate with each account object as it is created. Each
account is assigned a unique account number, constructed from
its bank’s sort code and a unique counter value. The first account
in the bank with sort code 1234 is therefore given the number
“a1234-1”. The marker of each account is its account number, for
example “a1234-1”. This ability to choose markers is an important
feature for persistence.
Orbix Programmer’s Guide Java Edition 327

The statement:
account aRef =

new _tie_account (aImpl, accountNr, m_loader);

creates a new TIE for the accountImplementation object assigning
it the marker accountNr and the loader referenced by m_loader.
(The bank objects are not associated with an application level
loader, so they are implicitly associated with the Orbix Java
default loader.)
The server application class must create a loader and a bank; for
example:
// Java
package loaders_per_simp;

import org.omg.CORBA.SystemException;

public class bankServer {
public static void main (String args[]) {

Loader myLoader = new Loader ();
bankImplementation bankImpl =

new bankImplementation (1234, myLoader);
bank bRef;

try {
bRef = new _tie_bank (bankImpl, "b1234");

}
catch (SystemException se) {

...
}
...

}
}

Coding the Loader
You can implement class Loader as follows:
// Java
// In file Loader.java.
package loaders_per_simp;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.Object;
import IE.Iona.OrbixWeb.CORBA.Features.LoaderClass;
import IE.Iona.OrbixWeb._CORBA;
import IE.Iona.OrbixWeb._OrbixWeb;
class Loader extends LoaderClass {

public Loader() {
 super (true);

}

public Object load (String interfaceMarker,
String marker, boolean isBind) {
// There will always be an interface;
// but the marker may be the null string.
if (marker!=null && !marker.equals ("")

&& marker.charAt (0)==’a’ &&
interface.equals ("account"))
 328 Orbix Programmer’s Guide Java Edition

return accountImplementation.loadMe
(marker, this);

return null;
}

public void save (Object obj, int reason) {
String marker = _OrbixWeb.Object(obj)._marker ();

if (reason == _CORBA.processTermination) {
accountImplementation impl =

(accountImplementation)(((_tie_account)obj)._deref());

aImpl.saveMe (marker);
}

}
}

The constructor of LoaderClass takes a parameter indicating
whether or not the loader being created should be included in the
list of loaders tried when an object fault occurs. By default, this
value is false; so the loader class’s constructor passes a value of
true to the LoaderClass constructor to indicate that instances of
Loader should be added to this list.
The accountImplementation.loadMe() method assigns the correct
marker to the newly created object. If it failed to do this,
subsequent calls on the same object result in further object faults
and calls to the Loader.load() method.
It is possible for the Loader.load() method to read the data itself,
rather than calling the static method accountImplementation.
loadMe(). However, to construct the object, load() dependent on
there being a constructor on class accountImplementation that
takes all of an account’s state as parameters. Since this is not be
the case for all classes, it is safer to introduce a method such as
loadMe(). Equally, Loader.save() can access the account’s data and
write it out, rather than calling accountImplementation.saveMe().
However, it is then dependent on accountImplementation providing
some means to access all of its state.
In any case, having loadMe() and saveMe() within class
accountImplementation provides a sensible split of functionality
between the application level class, accountImplementation, and the
loader class.

Client Side
Loaders are transparent to clients. A client that wishes to create a
specific account could execute the following:

// Java

bank bRef;
account aRef;

try {
// Find the bank somehow; for example,
// using bind():
bRef = bankHelper.bind (b1234:per_simp”, host);

aRef = bRef.newAccount ("John");
}

Orbix Programmer’s Guide Java Edition 329

catch (SystemException se) {
...

}

A client that wishes to manipulate an account can execute the
following:

// Java
// To access account with account
// number "a1234-1".
account aRef;
float bal;

try {
aRef = accountHelper.bind

("a1234-1:per_simp", host);
bal = aRef.balance ();
aRef.makeWithdrawal (100.00);

}
catch (SystemException se) {

...
}

If the target account is not already present in the server then the
load() method of the loader object is called. If the loader
recognizes the object, it handles the object fault by re-creating
the object from the saved data. If the load request cannot be
handled by that loader, then the default loader is tried next and
this always indicates that it cannot load the object. This finally
results in an org.omg.CORBA.INV_OBJREF exception being returned to
the caller.

Polymorphism
Every loader you write should allow for polymorphism. In
particular, the interface name passed to a loader may be a base
interface of the actual interface that the target object implements.
This may arise, for example, when the client has bound to an
object using I1Helper.bind() but where the object’s actual
interface is in fact a derived interface of I1.
The class of the target object must therefore be determined either
from the marker passed to the loader, or from the data used to
load the target object. The demonstration code for loaders shows
the marker names being used to distinguish the real interface of
an object, using the first character of each marker. This is a
simple approach, but it is probably better in a large system to use
some information stored with the persistent data of each object.
You must also remember that it may not be necessary to
distinguish the real interface of an object in all applications and for
all interfaces. If you always use the correct interface name in calls
to bind() (that is, you always used I1Helper.bind() when binding
to an object with interface I1) handling polymorphism is not
required. This is also the case if you do not use bind() for a given
interface: for example, you may obtain all object references to
accounts by searching (say, using an owner name) in a bank,
rather than using bind().
It is however possible that, because of programmer error, the
actual interface of the target object is not the same or a derived
interface of the correct one. This should be detected by a loader.
 330 Orbix Programmer’s Guide Java Edition

Approaches to Providing Persistent Objects
There are many ways to use the support described so far in this
chapter. This section outlines some of the choices available.
The information provided to a loader on an object fault comprises
the object’s marker and the interface name. The loader must be
able to find the requested object using these two pieces of
information. It must also be able to determine the implementation
class of the target object—so that it can create an object of the
correct class. Naturally, this implementation class must implement
the required interface or one of its derived interfaces.
It is normal, therefore, to use the marker as a key to find the
object, and either to encode the target object’s implementation
class in the marker, or to first find the object’s persistent state
and determine the implementation class from that data.
For example, a prefix of the marker could indicate the
implementation class and the remainder of the marker could be
the name of the file that holds the object’s persistent state.
The following are some of the choices available when using
loaders to support persistent objects:

• You can store each object in its own file, or you may use a
record system in which one or more records represent an
object. You can store records, for example, in a relational
database management system, or by using lines of a normal
file.

• An object can be loaded when a request arrives for it; or all of
the required objects can be loaded when the first request is
made. For example, in the bank application, an account object
can be loaded when an invocation is made on it, or all of the
accounts controlled by a bank can be loaded when the bank,
or any of its accounts, is first interacted with.

• An object can be saved to the persistent store at the
termination of the process, or it can be saved before that
time: for example, at the end of the method call that caused it
to be loaded, or if the object has not been used for some
period of time.

Many different arrangements are possible for the loaders
themselves, for example:

• A process can have a single loader to handle all of the
interfaces that it supports. However, it is difficult to maintain
such a loader for many interfaces.

• A process can have one loader to handle each interface, or
each separate hierarchy of interfaces.

If one loader per interface is used, each loader’s load() method is
called in turn until one indicates that it can load the target object.
Although this approach is simple to implement, such a linear
search may be inefficient if a process handles a large number of
interfaces. One efficient mechanism is to install a master loader,
with which the other loaders can register. Each registration gives
some key indicating when the registering loader’s load() method
is to be called by the master loader; a key can be a marker prefix
and an interface name.
Orbix Programmer’s Guide Java Edition 331

Another reason for having more than one loader is that a process
may use objects from separate subsystems—each of which installs
its own loader(s). These loaders must be able to distinguish
requests to load their own objects. You can avoid confusion if the
subsystems handle disjoint interfaces, since the interface name is
passed to a loader; however, some co-operation between the
subsystems is required if they handle the same interfaces, or
interfaces which have a common base interface. Each subsystem
must be able to distinguish its objects based on their markers or
their persistent state.
If I1 is a base interface of I2 and I3, the objects of interfaces I2
and I3 must be distinguishable to avoid confusion when “I1” is
passed as an interface name to load().
In particular, the subsystems must choose disjoint markers.

Disabling the Loaders
On occasion, it is useful to be able to disable the loaders for a
period. If, when binding to an object, the caller knows that the
object already loaded if it exists, it might be worthwhile to avoid
involving the loaders if the object cannot be found.
You can disable the loaders by calling the following method:

// Java
// In package IE.Iona.OrbixWeb.CORBA
// in class BOA.
public boolean enableLoaders (boolean b)

on the _CORBA.Orbix object, with a false parameter value. This
returns the previous setting; the default is to have loaders
enabled.
 332 Orbix Programmer’s Guide Java Edition

Opaque Types
Orbix Java provides an extension to IDL that allows you to define
opaque data types. Opaque data types can be passed by value
through an IDL definition. This chapter describes how to use opaque
data types with Orbix Java.

In accordance with the CORBA standard, Orbix Java objects are
passed to and from IDL operations by reference. Orbix Java
objects are described by an interface which is defined in IDL.
These objects are created in a server. Object references rather
than actual copies of the objects are passed to clients.
This model applies to the majority of applications that use an ORB.
However, in some cases, you may wish to pass objects across a
CORBA IDL interface by value rather than by reference. Passing an
object by value means that the internal state of the object is
included in an operation parameter or return value. A copy of the
object is constructed in the process.
In addition, there has been demand for a mechanism that allows
existing objects to be passed across an IDL interface without
having to retrospectively define IDL interfaces for these objects.
Such a mechanism allows the integration of IDL types with
non-IDL data types within a CORBA environment.
Opaque types address both of these issues. A new opaque keyword
identifies a IDL data type as opaque. This means that nothing is
known at the IDL level. A type defined to be opaque behaves like
an interface type. This means that it may be passed as a
parameter or return value to an IDL operation. It may also be
used as an attribute type or as a member of a struct or exception.
An opaque type is always passed to and from IDL operations by
value. You must supply the following:

• A Java class that implements the opaque object.
• The opaque's Helper class that implements the stream-based

marshalling and unmarshalling of the opaque object.

Possible Alternative Solutions
As outlined in the previous section, the Orbix approach to passing
objects between client and server processes by value is to
introduce a new type constructor at the IDL level.
It is possible to achieve similar results without extending the IDL
language. One solution to transmitting an object by value is to
define its state in an IDL struct definition. This solution is
unsatisfactory for two reasons: first, you are forced to separate
state information from interface information; second, you must
make explicit in the IDL definition information that properly
belongs to the implementation.
A second solution is to pass an object’s state information in binary
form, as a sequence<octet>. This mechanism does not make
explicit the type of the information transmitted, so it does not
violate the privacy of the object. However, no marshalling or
unmarshalling is performed on a sequence<octet>, so
byte-swapping and other data-conversion becomes the
 Orbix Programmer’s Guide Java Edition 333

responsibility of the programmer. Further, in stripping the
interface of type information, the ORB assumes the role of an RPC
package.

Note: Because of the Orbix Java-specific nature of opaques, you cannot
use opaque types with the CORBA-defined Interface Repository.

Using Opaque Types
This section demonstrates how to use the opaque mechanism to
pass a user-defined type by value in IDL operations. The sample
code described in this section is available in the demos/orbixjava/Date
directory of your Orbix Java installation.

IDL Definition
The example used here defines an IDL interface Calendar that
makes use of the opaque type Date. The IDL definitions are as
follows:

// IDL
// In file calendar.idl.

opaque Date;

interface Calendar {
// Today's date.
readonly attribute Date today;

// Length of time from given date until today.
unsigned long daysSince(in Date d);

};

The opaque data type is introduced by the keyword opaque,
denoting a new IDL type. An opaque type may be defined at file
level scope or within a module, at the same level as an interface
definition. In this example, the new Date type is used as an
attribute type and as an in parameter.

Compiling the IDL Definition
You can compile IDL definitions using the -K switch, as follows:

idlj -jPopaqueDateDemo -K calendar.idl

opaque is not a keyword in CORBA IDL. The -K switch to the IDL
compiler indicates that support for opaque types is required.
 334 Orbix Programmer’s Guide Java Edition

Mapping of Opaque Types to Java
The following template classes are generated by the IDL compiler:
// the date class
_DateTemplate.java

// the Holder class
_DateHolderTemplate.java

// the Helper class
_DateHelperTemplate.java

Implementing the Opaque Type
The generated file _DateTemplate.java contains the template Date
implementation class. You should change the name of
_DateTemplate.java to Date.java. The following is an example
implementation for the Date class:
// Java
// In file _DateTemplate.java.

package opaqueDateDemo;

public class Date {

public Date () {}

public Date (int day, String month, int year) {
this.day = day;
this.month = month;
this.year = year;

}
public String toString() {

return("Date ==> " + day + " " + month + " " + year);
}

public int day;
public String month;
public int year;

}

Orbix Programmer’s Guide Java Edition 335

The Helper Class
The generated file _DateHelperTemplate.java contains the code you
must use to stream information into and out of the Date objects.
This involves implementing read() and write() methods to
marshal and unmarshal the objects. The
org.omg.CORBA.portable.InputStream and OutputStream interfaces
are use for this:
// Java
// In file _DateHelperTemplate.java.

package opaqueDateDemo;

import IE.Iona.OrbixWeb._OrbixWeb;

public class DateHelper {

public static Date read
(org.omg.CORBA.portable.InputStream _stream) {

Date value = new Date();
value.day = _stream.read_long();
value.month = _stream.read_string();
value.year = _stream.read_short();
return value;

}

public static void write
org.omg.CORBA.portable.OutputStream _stream, Date value)

{
_stream.write_long(value.day);
_stream.write_string(value.month);
_stream.write_long(value.year);

}
...

}

You should change the name of_DateHelperTemplate.java to
DateHelper.java.
 336 Orbix Programmer’s Guide Java Edition

The Holder Class
The generated file _DateHolderTemplate.java is the Holder for Date.
You can avoid implementing the marshalling again by invoking the
Helper class read() and write() methods as follows:
// Java
// In file _DateHolderTemplate.java.

package opaqueDateDemo;

import IE.Iona.OrbixWeb._OrbixWeb;

public final class DateHolder
implements org.omg.CORBA.portable.Streamable {

public Date value;

public DateHolder() {
value = new Date();

}

public DateHolder(Date value) {
this.value = value;

}

public void _read
(org.omg.CORBA.portable.InputStream _stream) {
DateHelper.read(_stream);

}

public void _write
(org.omg.CORBA.portable.OutputStream _stream) {
DateHelper.write(_stream, value);

}
...

}

You should also change the name of this file from
_DateHolderTemplate.java to DateHolder.java.
Refer to the demos/orbixjava/Date directory of your Orbix Java
installation for an example client/server application that uses the Date
type.
Orbix Programmer’s Guide Java Edition 337

 338 Orbix Programmer’s Guide Java Edition

Transforming Requests
This chapter describes how you can modify the data buffers
containing Orbix Java operation call information immediately before
and after transmission across the network.

In Orbix Java, an operation invocation or an operation reply is
transmitted between a client and a server in a
org.omg.CORBA.Request object. Using the Dynamic Invocation
Interface, an org.omg.CORBA.Request is explicitly created. A static
invocation results in the implicit creation of a
org.omg.CORBA.Request object.
This chapter describes how you can modify an Orbix Java Request
data buffer and allow a client or server process to specify what
modifications to the buffer should occur when requests or replies
are transmitted to other processes. The ability to modify this data
just before its transmission, or just after its reception means that
you can add additional information to the data stream. For
example, you can add information identifying the participants in
the communication or encrypt the data stream for security
purposes. The process of modifying the data buffer is known as
transforming the data buffer.
The functionality provided by transformers is at a lower level than
that provided by filters, since it allows access to the actual data
buffer transmitted in a Request.

Transforming Request Data
You can transform a Requestdata buffer using a transformer
object. To obtain a new transformer object, perform the following
steps:
1. Define a class which inherits from the class

IE.Iona.OrbixWeb.Features.IT_reqTransformer.
2. Create an instance of this class.
3. Register this instance with the Orbix Java runtime.

You can register the transformer object so that it performs
transformations on all communications to and from the
process that contains the transformer object. Alternatively,
you can register it so that transformations are performed only
on communications to and from a particular server on a
particular host that contains the transformer.

Note: Because transformations are applied when an operation invocation
leaves or arrives at an address space, no transformations are
applied when the caller and invoked object are collocated.
 Orbix Programmer’s Guide Java Edition 339

The IE.Iona.OrbixWeb.Features.IT_reqTransformer Class
The IT_reqTransformer class defines the interface to transformer
objects. This class is defined as follows:

// Java

package IE.Iona.OrbixWeb.Features;

public class IT_reqTransformer {

public boolean transform(octetSeqHolder data,
String host,
boolean is_send,
org.omg.CORBA.Request req) {

 return true;
 }

public String transform_error() {
return null;

 }
}

A class derived from IT_reqTransformer can access a data buffer
just before transmission and can therefore manipulate or
transform the data as required. The derived class must, at least,
override the transform() method. Refer to the Orbix
Programmer’s Reference Java Edition for full details of the
IT_reqTransformer class.
The transform() method is called by Orbix Java immediately prior
to transmitting the data in a Request out of an address space and
immediately subsequent to receiving a Request from another
address space. The derived class can allocate new storage to
handle any alteration in the data size caused by the
transformation.
The transform() method can indicate that a
org.omg.CORBA.COMM_FAILURE system exception should be raised by
Orbix Java by returning false.
A derived class may implement the transform_error() method to
return a string containing suitable error text.
The req parameter in the transform() method holds a reference to
the Request object when an outgoing transform() is called. This has
a value of null for all incoming transform operations.
 340 Orbix Programmer’s Guide Java Edition

Registering a Transformer
Orbix Java provides two methods to register a transformer object
(an instance of IT_reqTransformer). You can call both on the ORB
object:

• setMyReqTransformer()

• setReqTransformer()

setMyReqTransformer()
This method is defined as follows:

// Java
// In class IE.Iona.OrbixWeb.CORBA.ORB

IT_reqTransformer setMyReqTransformer(
IT_reqTransformer transformer)

setMyReqTransformer() registers a transformer object as the
default transformer for all Requests entering and leaving an
address space.

setReqTransformer()
This method is defined as follows:

// Java
// In class IE.Iona.OrbixWeb.ORB.

void setReqTransformer(
IT_reqTransformer transformer,
String server,
String host)

setReqTransformer() registers a transformer object for all
Requests destined for a specific server and host and for all Requests
received from a specific server and host. You can call this method
more than once to register different server/host pairs.
A transformer registered using setReqTransformer() overrides any
default transformer registered with setMyReqTransformer().

Note: At most, one transformation is applied to any Request—the default
transformation registered with setMyReqTransformer() or overriding
specific transformation registered with setReqTransformer().

An Example Transformer
This section presents a simple example of a transformer that adds
the name of the sending host to a Request’s buffer when sending a
Request out of a process and removes the host name from a
Request’s buffer when receiving a Request containing an operation
reply.
Orbix Programmer’s Guide Java Edition 341

The transformer is implemented as follows:
// Java
...

public boolean transform(octetSeqHolder data,
String host,
boolean is_send
org.omg.CORBA.Request req)

{
if (is_send) {byte[] buf = new

 byte[data.value.length + host.length() + 4];

// insert the host name length
buf[0] = (byte)((host.length() >> 24) &

0x000000ff);
buf[1] = (byte)((host.length() >> 16) &

0x000000ff);
buf[2] = (byte)((host.length() >> 8) &

0x000000ff);
buf[3] = (byte)(host.length() & 0x000000ff);

// insert the host name
System.arraycopy(host.getBytes(), 0, buf,

4, host.getBytes().length);

// add the Orbix Java data buffer
System.arraycopy(data.value, 0, buf, 4 +

host.length(), data.value.length);
data.value = buf;

}
else {

// extract the host name length
int l = ((((int)data.value[0]) << 24) &

0xff000000) |
((((int)data.value[1]) << 16) &

0x00ff0000) |
 ((((int)data.value[2]) << 8) &

0x0000ff00) |
 (((int)data.value[3]) & 0x000000ff);

// extract the host name
String h = new String(data.value, 4, l);
int len = data.value.length - h.length() - 4;

// extract the Orbix Java data buffer
byte[] buf = new byte[len];
System.arraycopy(data.value, 4 +

host.length(), buf, 0, len);
data.value = buf;

 }
return true;

}

java.lang.String transform_error() {
return “Error in Transformer”;

}

// Create a Transformer:
Transformer transformer = new Transformer();
 342 Orbix Programmer’s Guide Java Edition

The transform() method uses the parameter is_send. This
indicates whether the Request is incoming or outgoing, to
determine whether to add or remove the host name from the
Request’s buffer.

Registering the Transformer
The following call registers this transformer as the default
transformer for a client or server process:

ORB.setMyReqTransformer(transformer);

To register a transformer that acts on Requests going to or
received from a specific server on a specific host, make the
following call:

// Register a transformer that transforms data
// sent to or received from myServer on host
// alpha.

ORB.setReqTransformer(
transformer,"myServer", "alpha");
Orbix Programmer’s Guide Java Edition 343

 344 Orbix Programmer’s Guide Java Edition

Part VI
Appendix

In this part
This part contains the following:

IDL Compiler Switches page 347

IDL Compiler Switches
This appendix describes the command-line switches to the IDL
Compiler.

The IDL Compiler supports the following switches to the idlj
command:

-D name Pre-define the macro name to be 1 within the
IDL file.

-D name=definition Pre-define the macro name to be definition.
-E Only run the Orbix Java IDL pre-processor.

Do not pass the output of the pre-processor
to the Orbix Java IDL compiler, but output
the pre-processed file to standard output.
By default, the output of the Orbix Java IDL
pre-processor is sent to the Orbix Java IDL
compiler.

-F Generate per-object filtering code.
-flags Display the command-line usage summary.
-I directory Specify an include file directory for use with

IDL include directives of the form
#include<filename>.
You can specify more than one -I switch.

-jc Generate support for client-side
functionality only. By default, the IDL
compiler generates both client-side and
server-side support. This involves the
creation of several server-specific source
files that are not required by client
programmers. This switch suppresses the
generation of these files.

-jNoC Specify that the generated constructors for
TIE and Implbase classes do not implicitly
call _CORBA.Orbix.connect().
The default is that the generated
constructors implicitly call
_CORBA.Orbix.connect().
If this switch is used an application must
explicitly connect the newly created
implementation object before use.

-jO directory Specify a target directory for the file
structure output by the IDL compiler. The
directory path may be absolute or relative.
The default directory for IDL compiler
output is java_output.
 Orbix Programmer’s Guide Java Edition 347

-jOMG Ensure the generated code is OMG-mapping
compliant by suppressing the addition of
Orbix Java -specific functionality. This
functionality includes bind() and additional
constructors that require marker, loader or
orb parameters.
Calling this switch also has the same effect
as calling -jNoC.

-jP [package |
module=package]

Specify a Java package name within which
all IDL generated Java code is placed, or an
IDL module that should be mapped to a
specific package name.
By default, generated code is placed within
the global package, so the use of this switch
is generally recommended to avoid naming
clashes.

-jQ Generate support for the equals() method
in all IDL-produced Java classes.

-juATC Creates an alias TypeCode for the specified
file. This contains the TypeCode’s Repository
ID, name and original type.
Alias Typecodes are required for ORB
interoperability.

-K Required if the IDL file uses the opaque type
specifier.

-m <IIOPonly> Generate marshalling code for the CORBA
Internet Inter-ORB Protocol (IIOP) only.
By default, code generated by the IDL
Compiler supports both IIOP and the Orbix
protocol.

-N Specify that the IDL compiler is to compile
and produce code for included files (files
included using the #include directive).
Without the -N switch, included files are
compiled but no code is output. The use of
the -N flag is not encouraged as it
complicates the use of the Interface
Repository.
The -N flag also has the restriction that the
compilation must be invoked from the same
directory as the root IDL file to retain
compatibility with the Interface Repository
server.

-U name Do not pre-define the macro name. If -U is
specified for a macro name, that macro
name is not defined even if -D is used to
define it.

-v Print version information. The version
information includes the IDL compiler
release and the target JDK version number.
 348 Orbix Programmer’s Guide Java Edition

Note: You must process each IDL file through the IDL compiler.
Including an IDL file in another (using #include) does not produce
output for the included file (unless the -N switch is specified to the
compiler). Otherwise, Java code generation occurs more than
once for a file that is included in more than one file.
Orbix Programmer’s Guide Java Edition 349

 350 Orbix Programmer’s Guide Java Edition

Index
A
activation

information for servers 199
activation modes 190

primary 190
per-method 190
shared 190
unshared 190

secondary 191
multiple-client 191
per-client 191
per-client-process 191

activation orders 192
Advanced Orbix C++ Programming 289,

345
any 229–233

constructing
insertion methods 229

constructors 233
interpreting

extraction methods 231
mapping for 70

applets
clients 184

ARG_IN 247
ARG_INOUT 247
ARG_OUT 247
arguments() 250
Arrays

mapping for 97
arrays

IDL definitions 63
attributes 13

readonly 14
authentication filters 303

B
banking example 13, 35, 103, 143, 151
basic types

mapping for 69
bind() 139–141

parameters to 140–??
to proxy objects 139

examples 140
exceptions 141

binding 118, 139–141
to objects 138

BOA
methods

disconnect() 324
dispose() 324
impl_is_ready() 114
myActivationMode() 200
myImplementationName() 200
myMarkerName() 200
myMarkerPattern() 200
myMethodName() 200

BOAImpl Approach 106

C
callbacks

avoiding deadlock 165–168
examples 161–179
from servers to clients 161–179
implementing 161–165

casting
object references 87

catitj 195
CDR 213
chmoditj 195
chownitj 195
clients

applets
loading from a Web servers 185
loading from files 184
security issues 185

debugging 186
multi-threaded 306
possible platform dependencies 186
running 183–186

Common Data Representation 213
components 134
compound name 134
ConstantDef 259
context 134
_CORBA

constants
ARG_IN 247
ARG_INOUT 247
ARG_OUT 247
explicitCall 324
IT_DEFAULT_TIMEOUT 115
IT_INFINITE_TIMEOUT 115
IT_INTEROPERABLE_OR_KIND 128
objectDeletion 324
processTermination 324

CORBA
interfaces

object 129
ObjectRef 129

CORBA::
IT_reqTransformer 340

CORBA::ORB::
setMyReqTransformer() 341
setReqTransformer() 341

CORBA::ServerRequest 237
Orbix Programmer’s Guide Java Edition 351

CORBA Module
mapping for 71

_create_request() 248
ctx() 250

D
daemon

IDL interface to 200
deadlock

avoiding in callback models 165–168
debugging

clients 186
deferred synchronous invocations 167, 252
diagnostics

diagnostics levels 223
diagnostics log 223–225
setDiagnostics() 225

DII ??–254
steps in using 242
using CORBA based approach 243
using filters with 254
using with the Interface Repository 250

disconnect() 324
dispose() 324
documentation

.pdf format xii
updates on the web xii

DSI 235–240
DynamicImplementation 236

E
event processing

in threads 167
examples

banking 13, 35, 103, 143, 151
exceptions 144
inheritance 151
Interface Repository 274

ExceptionDef 259
exceptions 143, 147

handling 146
in filters 299
system exceptions 146

explicitCall 324

F
filter 295

methods
inReplyFailure() 296
inReplyPostMarshal() 296
inReplyPreMarshal() 296
inRequestPostMarshal() 296
inRequestPreMarshal() 296
outReplyFailure() 296
outReplyPostMarshal() 296
outReplyPreMarshal() 296
outRequestPostMarshal() 295
outRequestPreMarshal() 295

filters ??–305
authentication 303
filter points

in reply failure 293
in reply post marshal 293
in reply pre marshal 292
in request post marshal 293
out reply failure 293
out reply post marshal 293
out reply pre marshal 292
out request post marshal 293
out request pre marshal 292
per-object post 295
per-object pre 295

multiple ORB support 291
per-object 295, 304–305

examples 304–305
per-process 295–303

chain of 292
examples 297
installing 299

piggybacking data on requests 301, 302
raising exceptions in 299, 300
retrieving request buffer size 303
using with the DII 254

fixed data type 64
fixed data types 64
flags 247
format

of names 134

G
General Inter-ORB Protocol 213
get_response() 252
gid of server 199
GIOP 213

message formats 214
overview 213

I
IDL

arrays 95, 97
basic types 69
compiler

switches to 347
constants 96
data types 58

basic types 59
constructed types 59

enums 88
exceptions 97, 143
fixed 95
inheritance 84
interfaces 69, 71
modules 52, 70
object references 82
opaque 334
operations 53

oneway 54
orb.idl 65
pseudo types 64
sequences 93
string 92
structs 89, 96
 352 Orbix Programmer’s Guide Java Edition

unions 90
_ids() 238
IIOP 215–221

configuring server port 220
examples 216

ImplBase approach 109, 160
Implementation Repository 120, 189–195

entries 192
impl_is_ready() 114
include files

-I switch to IDL compiler 347
inheritance 151, 160

implementation classes 156
mapping for 84
multiple inheritance 159, 160
single inheritance

examples 157
in-process activation 207
inReplyFailure() 296
inReplyPostMarshal() 296
inReplyPreMarshal() 296
inRequestPostMarshal() 296
inRequestPreMarshal() 296
InterfaceDef 259
Interface Repository 243, ??–277

example 274
installing 256

interfaces
implementing 105

BOAImpl approach 106
comparison of approaches 124
example 103
ImplBase approach 106
multiple interfaces per
implementation 125

providing multiple
implementations 124

steps involved 103
TIE approach 105, 106

mapping for 69
multiple inheritance of 159

interoperability
of ORBs 213

invoke() 238
IORs (Interoperable Object
References) 128, 215
format of 128

Istring 134
IT_DEFAULT_CLASSPATH 189
IT_DEFAULT_TIMEOUT 115
IT_INFINITE_TIMEOUT 115
IT_INTEROPERABLE_OR_KIND 128
IT_JAVA_INTERPRETER 189
IT_reqTransformer 340

J
Java daemon

configuring 205
in-process activation 207
scope of 210
using 203

K
killitj 195

L
load() 319, 322
load balancing

using smart proxies 313
LoaderClass

methods
load() 319, 322
record() 320, 322
rename() 320, 322
save() 319, 323

loaders 319–332
creating a loader 319
disabling 332
examples 324–330
multiple ORB support 320
polymorphism in 330
relationship to object naming 321
specifying for an object 320

lsitj 195

M
mapping

arrays 95, 97
basic types 69
constants 96
CORBA module 71
enums 88
exceptions 97
fixed 95
inheritance 84
interfaces 69, 71
naming conventions 99
object references 82
sequence 93
string 92
strings 92
structs 89, 96
type any 70
unions 90

_marker() 130
markers 129–131
mkdiritj 195
module

CORBA 71
modules 52
multiple-client activation mode 191
multiple implementations

of interfaces 124
multiple inheritance

See inheritance, multiple inheritance
using the ImplBase approach 160
using the TIE approach 160

multiple interfaces
per implementation 125

multiple ORB support 291, 313, 320
myActivationMode() 200
myImplementationName() 200
myMarkerName() 200
Orbix Programmer’s Guide Java Edition 353

myMarkerPattern() 200
myMethodName() 200

N
names

format 134
name space 137
NamingContext 134
Naming Service

examples 217, 219
narrow() 87
narrowing

object references 87
New() 313

O
object 129
object deletion 324
object faults 319
_ObjectRef

methods
_marker() 130
_request() 244
_save() 319, 324

object references
casting 87
IOR format 128
mapping for 82
naming 321
narrowing 87
obtaining 132
publishing 132

object reference strings 141
objects

connection 113
comparison of methods 115
impl_is_ready() 114

creating 19
creating in servers 112
initialisation 113
initialization of 128
lifecycle 121
naming 129
persistent 331
references to 19

oneway operations 166
opaque types 333–336
OperationDef 259
operations 13

invoking 119
non-blocking invocations 166
oneway operations 166

ORB
connect() 113
disconnect() 113
methods

pingDuringBind() 141
shutdown() 319

ORB.connect() 113
ORBClass 11
Orbix 129

orbixd
See daemon 200

orbixdj
See Java daemon 203

orbixusr 199
org.omg.CORBA.ORBClass 11
org.omg.CORBA.ORBSingletonClass 12
outReplyFailure() 296
outReplyPostMarshal() 296
outReplyPreMarshal() 296
outRequestPostMarshal() 295
outRequestPreMarshal() 295
owjavac 26

P
parameters

passing modes in IDL 14
pattern matching 195
per-client activation mode 191
per-client-process activation mode 191
per-method activation mode 190
PerObjectServiceContextHandler 286
PerObjectServiceContextHandlerList 286
PerRequestServiceContextHandler 286
PerRequestServiceContextHandlerList 286
persistent objects 331
piggybacking data on requests 301, 302
pingDuringBind() 141
pingitj 195
poll_response() 252
polymorphism

in loaders 330
processTermination 324
proxies 311
proxy 22, 41
proxy classes 314
ProxyFactory 312

methods
New() 313

proxy objects
creating 141

psitj 195
putitj 120, 193–194, 195

examples 194

R
readonly attributes 14
record() 320, 322
references, object 19
registering

a request transformer 341
registering servers

See servers, registration of
registration commands 195

catitj 195
chmoditj 195
chownitj 195
killitj 195
lsitj 195
mkdiritj 195
pingitj 195
 354 Orbix Programmer’s Guide Java Edition

psitj 195
putitj

See putitj
rmdiritj 195
rmitj 195

remote invocations 119
rename() 320, 322
request

methods
arguments() 250
_create_request() 248
ctx() 250
get_response() 252
poll_response() 252
reset() 251
result() 250
send_deferred() 252

transforming request data 339
_request() 244
requests

adding a context parameter 250
constructing 243

using _create_request() 248
using _request() 245

invoking 249
piggybacking data on 301, 302
reading and writing attributes 250
resetting for reuse 251
retrieving buffer size 303
retrieving operation names 251
retrieving results

using arguments() and results() 250
retrieving target objects 251

reset() 251
result() 250
rmdiritj 195
rmitj 195
runtime information 256

S
_save() 319, 324
save() 319, 323
security

caller identity 198
effective uid/gid 199
of client applets 185
of servers 198

send_deferred() 252
ServerRequest 237
servers

activation information 199
activation of 120
configuring IIOP ports 220
creating objects 112
initalisation 114
in-process

developing 208
multi-threaded 306
registration of 120
security of 198
uid and gid 199

ServiceContext
ServiceContext per object 285
ServiceContext per request 282

ServiceContextHandler 279
example 283
incomingReplyHandler() 286
incomingRequestHandler() 285
outboundReplyHandler() 286
outboundRequestHandler() 285
using with filter points 286

ServiceContextList 280
service contexts 279–287
setDiagnostics() 206, 223, 225
setMyReqTransformer() 341
setReqTransformer() 341
shared activation mode 190
shutdown() 319
signals

SIGINT 257
smart proxies 311–318

examples 314–318
factory classes 311
implementation steps 312
multiple ORB support 313

smart proxy factory classes
See smart proxies, factory classes

Strings
mapping for 92

string_to_object() 141
Structs

mapping for 96
SystemException 146
system exceptions

See exceptions, system

T
threads

event processing in 167
TIE approach 106, 160

examples 108
transformers

implementing 340
registering 341

transforming request data 339
TypeDef 259

U
uid of server 199
unregistered servers 197, 204
unshared activation mode 190
user-defined exceptions 143

W
Wrapper Utilities

alternative standard method 188
owjava 186
owjavac 186
Orbix Programmer’s Guide Java Edition 355

 356 Orbix Programmer’s Guide Java Edition

	Preface
	Audience
	Organization of the Orbix Java Edition Documentation
	Organization of this Guide
	Document Conventions
	Contacting Micro Focus

	Getting Started
	Introduction to CORBA and Orbix Java
	CORBA and Distributed Object Programming
	The Role of an Object Request Broker
	The Structure of a CORBA Application
	The Structure of a Dynamic CORBA Application
	Interoperability between Object Request Brokers

	The Object Management Architecture
	The CORBAservices
	The CORBAfacilities

	How Orbix Java Implements CORBA

	Getting Started with Orbix Java
	Prerequisites
	Setting ORB Properties for the Orbix ORB
	Using the orb.properties File
	Using Java Interpreter Arguments

	Developing Applications with Orbix Java
	Developing a Distributed Application with Orbix Java
	Defining IDL Interfaces
	Compiling IDL Interfaces
	Checking your Configuration
	Running the IDL Compiler
	Implementing IDL Interfaces

	Writing an Orbix Java Server Application
	Initializing the ORB
	Creating an Implementation Object
	Registering an Object with the Naming Service
	Error Handling for Server Applications

	Writing the Client Application
	Initializing the ORB
	Getting a Reference to an Object
	Invoking IDL Attributes and Operations

	Compiling the Client and Server
	Compiling the Server Application
	Compiling the Client Application

	Registering the Server
	Running the Orbix Java Daemon
	Using Putitj

	Running the Client Application
	Summary of the Programming Steps
	Orbix Java IDL Compilation
	Examining the Generated Interfaces and Classes

	Developing Applets with Orbix Java
	Review of Orbix Java Programming Steps
	Providing a Server
	Writing a Client Applet
	Creating the User Interface
	Adding Orbix Java Client Functionality
	Getting a Reference to an Object
	Invoking IDL Attributes and Operations
	Handling Exceptions in Orbix Java Client Applets
	Creating the Applet
	Initializing the ORB

	Adding the Applet to a HTML File
	Compiling the Client Applet
	Running the Client Applet
	Security Issues for Java Applets

	Learning more about Orbix Java

	CORBA Programming with Orbix Java
	Introduction to CORBA IDL
	IDL Modules and Scoping
	Defining IDL Interfaces
	IDL Attributes
	IDL Operations
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces

	Overview of the IDL Data Types
	IDL Basic Types
	IDL Constructed Types
	IDL Template Types
	Arrays
	Fixed Types
	IDL Pseudo-Object Types
	Defining Aliases and Constants

	IDL to Java Mapping
	Overview of IDL to Java Mapping
	Mapping for Basic Data Types
	Mapping for Modules
	Scoped Names
	The CORBA Module

	Mapping for Interfaces
	Client Mapping
	Helper Classes for Type Manipulation
	Holder Classes and Parameter Passing
	Server Implementation Mapping
	Approaches to Interface Implementation
	Object References
	Mapping for Derived Interfaces

	Mapping for Constructed Types
	Enums
	Structs
	Unions

	Mapping for Strings
	Mapping for Sequences
	Mapping for Arrays
	Mapping for Fixed Types
	Mapping for Constants
	Mapping for Typedefs
	Mapping for Exception Types
	System Exceptions
	User-Defined Exceptions

	Naming Conventions
	Parameter Passing Modes and Return Types

	Using and Implementing IDL Interfaces
	Overview of an Example Application
	Overview of the Programming Steps
	Defining IDL Interfaces to Application Objects
	Compiling IDL Interfaces
	Implementing the IDL Interfaces
	The TIE Approach to Implementing Interfaces
	The ImplBase Approach to Implementing Interfaces

	Developing the Server Application
	Implementing the Bank Interface
	Implementing the Account Interface
	Writing the Server
	Object Initialization and Connection
	Comparison of Methods for Connecting to the ORB

	Developing the Client Application
	Obtaining a Reference to a Bank Object
	Alternatives to the Naming Service
	Making Remote Invocations

	Registration and Activation
	Execution Trace
	Comparison of the ImplBase and TIE Approaches
	Providing Different Implementations of the Same Interface
	Providing Different Interfaces to the Same Implementation

	Making Objects Available in Orbix Java
	Identifying CORBA Objects
	Interoperable Object References
	Orbix Java Object References
	Accessing Object References
	Assigning Markers to Orbix Java Objects

	Using the CORBA Naming Service
	The Interface to the Naming Service
	Format of Names within the Naming Service
	Making Contact with the Naming Service
	Associating Names with Objects
	Using Names to Find Objects
	Associating a Compound Name with an Object
	Federation of Name Spaces

	Binding to Objects in Orbix Java Servers
	The bind() Method
	Example Calls to bind()
	Binding and Exceptions

	Using Object Reference Strings to Create Proxy Objects

	Exception Handling
	User-Defined Exceptions
	The IDL Definitions
	The Generated Java Code

	System Exceptions
	Obtaining Information from System Exceptions

	Example of Server-Side Exception Handling
	Example of Client-Side Exception Handling
	Handling Specific System Exceptions

	Using Inheritance of IDL Interfaces
	Single Inheritance of IDL Interfaces
	The IDL Interfaces
	The Client-Side Generated Types

	Using Inheritance in a Client
	Using Inheritance in a Server
	The TIE Approach
	The ImplBase Approach

	Multiple Inheritance of IDL Interfaces
	Implementing Multiple Inheritance

	Callbacks from Servers to Clients
	Implementing Callbacks in Orbix Java
	Defining the IDL Interfaces
	Writing a Client
	Writing a Server

	Callbacks and Bidirectional Connections
	Avoiding Deadlock in a Callback Model
	Using Non-Blocking Operation Invocations
	Using Multiple Threads of Execution

	An Example Callback Application
	The IDL Specification
	The Client Application
	The Central Server Application

	Running Orbix Java Programs
	Running Orbix Java Clients
	Running Client Applications
	Running Orbix Java Client Applets
	Loading a Client Applet from a File
	Loading a Client Applet from a Web Server
	Security Issues for Client Applets

	Debugging Orbix Java Clients
	Possible Platform Dependencies in Orbix Java Clients
	Using the Orbix Java Wrapper Utilities
	Using owjava as a Front End to the Java Interpreter
	Using owjavac as a Front End to the Java Compiler
	Using the Interpreter and Compiler without the Wrapper Utilities

	Registration and Activation of Servers
	The Implementation Repository
	Activation Modes
	Primary Activation Modes
	Secondary Activation Modes
	Persistent Server Mode
	Implementation Repository Entries

	The Orbix Java Putitj Utility for Server Registration
	Examples of Using Putitj

	Additional Registration Commands
	Activation and Pattern Matching
	Persistent Servers
	Unregistered Servers
	Activation Issues Specific to IIOP Servers
	Security Issues for Orbix Java Servers
	Identity of the Caller of an Operation
	Server Security

	Activation and Concurrency
	Activation Information for Servers
	IDL Interface to the Implementation Repository
	Using the Server Manager
	About the Java Daemon (orbixdj)

	Using the Orbix Java Daemon
	Overview of the Java Daemon
	Features of the Java Daemon

	Using the Java Daemon
	Starting the Java Daemon
	Configuring the Java Daemon
	Viewing Output with the Graphical Console

	In-Process Activation of Servers
	Guidelines for Developing In-Process Servers

	Scope of the Java Daemon
	Activation
	Java Version
	IT_daemon Interface
	Utilities
	Markers and the Implementation Repository
	Security
	Server Names
	In-Process Servers

	ORB Interoperability
	Overview of GIOP
	Coding
	Message Formats

	Internet Inter-ORB Protocol (IIOP)
	IIOP in Orbix Java
	Example using IIOP in a Platform-Independent Application
	Configuring an IIOP Port Number for an Orbix Java Server

	Interoperability between Orbix and Orbix Java

	Orbix Java Diagnostics
	Setting Diagnostics
	Diagnostics Levels
	Alternative Approaches to Setting Diagnostics

	Advanced CORBA Programming
	Type any
	Constructing an Any Object
	Inserting Values into an Any Object
	Extracting Values from an Any Object
	Any as a Parameter or Return Value
	Additional Methods

	Dynamic Skeleton Interface
	Uses of the DSI
	Using the DSI
	Creating DynamicImplementation Objects

	Example of Using the DSI

	Dynamic Invocation Interface
	Using the DII
	Programming Steps for Using the DII
	Examples of Clients Using the DII

	The CORBA Approach to Using the DII
	Creating a Request
	Setting up a Request Using _request()
	Alternative approach
	Compact Syntax
	Setting up a Request Using _create_request()
	Invoking a Request
	Using the DII with the Interface Repository
	Setting up a Request to Read or Write an IDL Attribute
	Operation Results
	Interrogating a Request
	Resetting a Request Object for Reuse

	Deferred Synchronous Invocations
	Using Filters with the DII

	The Interface Repository
	Configuring the Interface Repository
	Runtime Information about IDL Definitions
	Using the Interface Repository
	Installing the Interface Repository

	Structure of the Interface Repository Data
	Simple Types

	Abstract Interfaces in the Interface Repository
	Class Hierarchy and Abstract Base Interfaces
	Interface IRObject

	Containment in the Interface Repository
	The Contained Interface
	The Container Interface
	Containment Descriptions

	Type Interfaces in the Interface Repository
	Named Types
	Unnamed Types

	Retrieving Information from the Interface Repository
	Example of Using the Interface Repository
	Repository IDs
	OMG IDL Format
	Pragma Directives

	Service Contexts
	The Orbix Java Service Context API
	Service Context Handlers
	Service Context Lists
	ORB Interfaces

	Using Service Contexts in Orbix Java Applications
	ServiceContext Per Request Model
	ServiceContext Per-Object Model
	Service Context Main Components

	Service Context Handlers and Filter Points

	Advanced Orbix Java Programming
	Filters
	Introduction to Per-Process Filters
	Pre-Marshalling Filter Points
	Post-Marshalling Filter Points
	Failure Points

	Introduction to Per-Object Filters
	Using Per-Process Filters
	An Example Per-Process Filter
	Installing a Per-Process Filter
	How to Create a System Exception
	Piggybacking Extra Data to the Request Buffer
	Retrieving the Size of a Request Buffer
	Defining an Authentication Filter

	Using Per-Object Filters
	IDL Compiler Switch to Enable Object Filtering

	Thread Filters
	Multi-Threaded Clients and Servers
	Thread Programming in Orbix Java
	Models of Threading
	Implementing Threads in Orbix Java

	Smart Proxies
	Proxy Classes and Smart Proxy Classes
	Proxy Classes
	Smart Proxy Classes
	Requirements for Smart Proxies
	Creating a Smart Proxy
	Benefits of Using Smart Proxies

	Using Smart Proxies
	Creating a Smart Proxy
	A Sample Client

	Loaders
	Overview of Creating a Loader
	Specifying a Loader for an Object
	Connection between Loaders and Object Naming
	Loading Objects

	Saving Objects
	Writing a Loader
	Example Loader
	Coding the Loader

	Polymorphism
	Approaches to Providing Persistent Objects
	Disabling the Loaders

	Opaque Types
	Using Opaque Types
	IDL Definition
	Compiling the IDL Definition
	Mapping of Opaque Types to Java
	Implementing the Opaque Type
	The Helper Class
	The Holder Class

	Transforming Requests
	Transforming Request Data
	The IE.Iona.OrbixWeb.Features.IT_reqTransformer Class
	Registering a Transformer

	An Example Transformer

	Appendix
	IDL Compiler Switches

	Index

