
Orbix 3.3.14

OrbixSSL Programmer’s and
Administrator’s Guide Java Edition

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-04-25

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition i i i

Contents

Preface.. vii
Audience ... vii
Organization of this Guide ... vii
Document Conventions .. viii
Contacting Micro Focus .. viii

Part I Introduction

An Introduction to OrbixSSL..3
An Overview of OrbixSSL ..3
An Overview of SSL Security ..4

Authentication in SSL ..4
Privacy of SSL Communications ..6
Integrity of SSL Communications ..6

Getting Started with OrbixSSL...7
Overview of the Application ...7

Running the Application without SSL ...8
Running the Application with SSL ..8
Overview of the Certificates Used in the Example9

Adding SSL to the Example ...10
Adding SSL to the Server ...10
Adding SSL to the Client ..13

Running the Application ..15
Running the Orbix Daemon ..15

Working with Secure Applets ...16
Developing Secure Applets ...16
Deploying Secure Applets...17

Part II OrbixSSL Administration

Managing Certificates..21
Creating Certificates for an Application ..21

Overview of the OrbixSSL Demonstration Certificates22
Choosing a Certification Authority ...22

Commercial Certification Authorities ..23
Private Certification Authorities...23
Creating a Self-Signed Certificate and Private Key24

Publishing a Certification Authority Certificate ..26
Certificates Signed by Multiple Certification Authorities26

Signing Application Certificates ..26
Generating a Certificate Signing Request..26
Signing a Certificate ..27

iv OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Part III OrbixSSL Programming

Defining a Security Policy ... 31
Overview of the OrbixSSL API ..31
Configuring Server Authentication ..32

Specifying Protocols ..32
Specifying the Location of Certificates ..33
Specifying the Private Key File and Pass Phrase...................................33
Specifying Certificates to Accept..35

Configuring Client Authentication ..36
Configuring OrbixSSL Application Types ...36

Choosing Invocation Policies ...37
Setting an Invocation Policy..37
How Invocation Policies Affect OrbixSSL Communications38
Specifying Exceptions to an Invocation Policy......................................39

Configuring Ciphers ..40
OrbixSSL Session Caching Configuration ..41
Providing IORs with SSL Information ...42

Using the putit SSL Parameters...43

Validating Certificates... 45
Overview of Certificate Validation ...45
Introducing Additional Validation ..47
Examining the Contents of a Certificate ...48

Working with Distinguished Names ..50
Working with X.509 Extensions ...51

Example of a Certificate Validation Function ...52

Managing Pass Phrases .. 55
Using a Central Repository for Servers ..55

Overview of the Key Distribution Mechanism.......................................56
Configuring the Key Distribution Mechanism ...57
Running the Key Distribution Mechanism ...58

Maintaining the Database ...59
Verifying the Integrity of Server Executables59
Using the Key Distribution Mechanism..60

Part IV OrbixSSL Java Reference
Class IE.Iona.OrbixWeb.SSL.IT_AVA ...63
Class IE.Iona.OrbixWeb.SSL.IT_AVAList ..65
Class IE.Iona.OrbixWeb.SSL.IT_CertError ..69
Class IE.Iona.OrbixWeb.SSL.IT_CertValidity ...71
Class IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec73
Class IE.Iona.OrbixWeb.SSL.IT_Extension ...75
Class IE.Iona.OrbixWeb.SSL.IT_ExtensionList ...77
Class IE.Iona.OrbixWeb.SSL.IT_Format ...81
Class IE.Iona.OrbixWeb.SSL.IT_OID ...83
Class IE.Iona.OrbixWeb.SSL.IT_OID_Tag ...85
Class IE.Iona.OrbixWeb.SSL.IT_PublicKeyAlgorithm89
Class IE.Iona.OrbixWeb.SSL.IT_PublicKeyInfo ..91
Class IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory93
Class IE.Iona.OrbixWeb.SSL.IT_Signature ...95
Class IE.Iona.OrbixWeb.SSL.IT_SignatureAlgType97

OrbixSSL Programmer’s and Administrator’s Guide Java Edition v

Class IE.Iona.OrbixWeb.SSL.IT_SSL ... 99
Class IE.Iona.OrbixWeb.SSL.IT_SSLCacheOptions 117
Class IE.Iona.OrbixWeb.SSL.IT_SSLCipherSuite 119
Class IE.Iona.OrbixWeb.SSL.IT_SSLException .. 123
Class IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions 127
Class IE.Iona.OrbixWeb.SSL.IT_UTCTime .. 129
Interface IE.Iona.OrbixWeb.SSL.IT_ValidateX509CertCB 131
Class IE.Iona.OrbixWeb.SSL.IT_X509BadCertException 133
Class IE.Iona.OrbixWeb.SSL.IT_X509Cert ... 135
Class IE.Iona.OrbixWeb.SSL.IT_X509CertChain .. 139

Part V Appendices

Security Recommendations ...143

OpenSSL Utilities...145
Using OpenSSL Utilities ... 145

The x509 Utility Command... 146
The req Utility Command ... 148
The rsa Utility Command ... 150
The ca Utility Command... 152

The OpenSSL configuration file .. 153
[req] Variables ... 153
[ca] Variables... 154
[policy] Variables.. 155
Example openssl.cnf File.. 155

Troubleshooting OrbixSSL ...159

Index...163

vi OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition vii

Preface
OrbixSSL integrates Orbix, a Micro Focus implementation of the
CORBA standard, with the Secure Sockets Layer (SSL) protocol.
This integration allows Orbix C++ and Java Edition applications to
communicate using SSL security.
This guide presents details of the integration between Orbix Java
Edition and SSL and explains how to add SSL security to Orbix
Java Edition applications.

Audience
This guide is intended for programmers who wish to develop Orbix
Java Edition applications that communicate using SSL security.
This guide does not assume that the reader has any knowledge of
SSL security issues. This guide assumes that programmers have
significant knowledge of Orbix Java Edition programming.

Organization of this Guide
This guide is divided into four parts:
Part I “Introduction”
This part introduces SSL security, describes how OrbixSSL
applications use SSL, and shows you how to add security to an
existing Orbix Java Edition application. Read this part first.
Part II “OrbixSSL Administration”
This part describes the system administration tasks required when
running an OrbixSSL system.
Part III “OrbixSSL Programming”
This part introduces the OrbixSSL Java application programming
interface (API) and describes how you use it to control SSL
security in your applications.
Part IV “OrbixSSL Java Reference”
This part provides a complete reference for the Java classes
defined in the OrbixSSL API.
Part V “Appendices”
This part provides supplemental information about OrbixSSL
security and the SSL administration tools supplied with OrbixSSL.

 viii OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Document Conventions
This document uses the following typographical and keying
conventions:

This guide uses the following keying conventions:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.

Constant width Constant width words or characters represent
source code or system values you must use
literally, such as commands, options, and path
names.

Italic Italic words in normal text represent emphasis and
new terms.
Italic words or characters in code and commands
represent variable values you must supply, such as
arguments or commands or path names for your
particular system.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must choose
an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

http://www.microfocus.com

OrbixSSL Programmer’s and Administrator’s Guide Java Edition ix

Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-3.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-3.aspx
https://supportline.microfocus.com/productdoc.aspx

 x OrbixSSL Programmer’s and Administrator’s Guide Java Edition

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Introduction

In this part
This part contains the following:

An Introduction to OrbixSSL page 3

Getting Started with OrbixSSL page 7

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 3

An Introduction to
OrbixSSL
OrbixSSL integrates Orbix with Secure Sockets Layer (SSL)
security. Using OrbixSSL, distributed applications can transfer
confidential data securely across a network.

An Overview of OrbixSSL
Secure Sockets Layer (SSL) provides data security for applications
that communicate across networks. SSL is a transport layer
security protocol layered between application protocols and
TCP/IP.
Orbix applications communicate using the CORBA standard
Internet Inter-ORB Protocol (IIOP) or Micro Focus’s proprietary
Orbix protocol. These application-level protocols are layered above
the transport-level protocol TCP/IP. OrbixSSL applications
communicate using IIOP or the Orbix protocol layered above SSL.
Figure 1 on page 3 illustrates how the SSL protocol layer
integrates with Orbix communications.
All OrbixSSL components, including the Orbix daemon and Orbix
utilities, and all OrbixSSL applications can communicate using
SSL. OrbixSSL imposes few requirements on administrators and
programmers who wish to support SSL communications in Orbix
applications.

Figure 1: The Role of SSL in Orbix Client/Server Communications

 4 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

OrbixSSL administrators use a single configuration file to configure
a high-level security policy for a distributed system. OrbixSSL
programmers develop standard Orbix applications that
automatically communicate using SSL. The details of the SSL
protocol are hidden, but programmers can use the OrbixSSL
application programming interface (API) to customize SSL
communications.
OrbixSSL applications can be configured to support any or all of
the following options:

• IIOP
• IIOP over SSL
• Orbix Protocol
• Orbix Protocol over SSL
OrbixSSL acts as a dynamic upgrade to Orbix Java Edition.
Existing applications continue to work as before.

An Overview of SSL Security
SSL provides authentication, privacy, and integrity for
communications across TCP/IP connections. Authentication allows
an application to verify the identity of another application with
which it communicates. Privacy ensures that data transmitted
between applications can not be eavesdropped on or understood
by a third party. Integrity allows applications to detect if data was
modified during transmission.

Authentication in SSL
SSL uses Rivest Shamir Adleman (RSA) public key cryptography
for authentication. In public key cryptography, each application
has an associated public key and private key. Data encrypted with
the public key can be decrypted only with the private key. Data
encrypted with the private key can be decrypted only with the
public key.
Public key cryptography allows an application to prove its identity
by encoding data with its private key. As no other application has
access to this key, the encoded data must derive from the true
application. Any application can check the content of the encoded
data by decoding it with the application’s public key.

The SSL Handshake Protocol
Consider the example of two applications, a client and a server.
The client connects to the server and wishes to send some
confidential data. Before sending application data, the client must
ensure that it is connected to the required server and not to an
impostor.
When the client connects to the server, it confirms the server
identity using the SSL handshake protocol. A simplified
explanation of how the client executes this handshake in order to
authenticate the server is as follows:
1. The client initiates the SSL handshake by sending the initial

SSL handshake message to the server.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 5

2. The server responds by sending its certificate to the client.
This certificate verifies the server's identity and contains its
public key.

3. The client extracts the public key from the certificate and
encrypts a symmetric encryption algorithm session key with
the extracted public key.

4. The server uses its private key to decrypt the encrypted
session key which it will use to encrypt and decrypt
application data passing to and from the client. The client will
also use the shared session key to encrypt and decrypt
messages passing to and from the server.

For a complete description of the SSL handshake, refer to the TLS
v1.2 Specification, available from
https://tools.ietf.org/html/rfc5246.
The SSL protocol permits a special optimized handshake in which
a previously established session can be resumed. This has the
advantage of not needing expensive public key computations. The
SSL handshake also facilitates the negotiation of ciphers to be
used in a connection.
The SSL protocol also allows the server to authenticate the client.
Client authentication, which is supported by OrbixSSL, is optional
in SSL communications.
As any application can have a public and private key pair, the
transfer of the public key must be accompanied by additional
information that proves the key is associated with the true server
and not some other application. For this reason, the key is
transmitted as part of a certificate.

Certificates in SSL Authentication
The public key is transmitted as part of a certificate. A certificate
is used to ensure that the public key submitted is in fact the public
key which belongs to the submitter. For the certificate to be
acceptable to the client, it must have been digitally signed by a
certification authority (CA) that the client explicitly trusts.
The International Telecommunications Union (ITU)
recommendation X.509 defines a standard format for certificates.
SSL authentication uses X.509 certificates to transfer information
about an application’s public key.
An X.509 certificate includes the following data:

• The name of the entity identified by the certificate.
• The public key of the entity.
• The name of the certification authority that issued the

certificate.
The role of a certificate is to match an entity name to a public key.
A CA is a trusted authority that verifies the validity of the
combination of entity name and public key in a certificate. You
must specify trusted CAs in order to use OrbixSSL.
According to the SSL protocol, it is unnecessary for applications to
have access to all certificates. Generally, each application only
needs to access its own certificate and the corresponding issuing
certificates. Clients and servers supply their certificates to
applications that they want to contact during the SSL handshake.
The nature of the SSL handshake is such that there is nothing

https://tools.ietf.org/html/rfc5246

 6 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

insecure in receiving the certificate from an as yet untrusted peer.
The certificate will be checked to make sure that it has been
digitally signed by a trusted CA and the peer will have to prove its
identity during the handshake.

Privacy of SSL Communications
When a client authenticates a server, confidential data sent by the
client can be encoded by the server’s public key. It is only the
actual server application that will be able to decode this data,
using the corresponding private key.
Immediately after authentication, an SSL client application sends
an encoded data value to the server. This unique session encoded
value is a key to a symmetric cryptographic algorithm.
A symmetric cryptographic algorithm is an algorithm in which a
single key is used to encode and decode data. Once the server has
received such a key from the client, all subsequent
communications between the applications can be encoded using
the agreed symmetric cryptographic algorithm. This feature
strengthens SSL security.
Examples of symmetric cryptographic algorithms used to maintain
privacy in SSL communications are the Data Encryption Standard
(DES) and RC4.

Integrity of SSL Communications
The authentication and privacy features of SSL ensure that
applications can exchange confidential data that cannot be
understood by an intermediary. However, these features do not
protect against the modification of encrypted messages
transmitted between applications.
To detect if an application has received data modified by an
intermediary, SSL adds a message authentication code (MAC) to
each message. This code is computed by applying a function to
the message content and the secret key used in the symmetric
cryptographic algorithm.
An intermediary cannot compute the MAC for a message without
knowing the secret key used to encrypt it. If the message is
corrupted or modified during transmission, the message content
will not match the MAC. SSL automatically detects this error and
rejects corrupted messages.

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 7

Getting Started with
OrbixSSL
OrbixSSL provides SSL security for communications between
components of your CORBA applications. This chapter shows you
how to introduce SSL security to an existing application.

Using OrbixSSL, your CORBA applications benefit from the
authentication, privacy, and integrity of SSL communications.
When you create an OrbixSSL application, you must supply the
information necessary to complete the authentication process.
OrbixSSL then ensures the privacy and integrity of your
communications without any intervention from you.
The SSL handshake, described in “An Introduction to OrbixSSL”,
enables components of your OrbixSSL application to authenticate
each other. To ensure every SSL handshake completes
successfully, each authenticated component must be able to
access its certificate and private key.
To provide this information to OrbixSSL applications, you use the
OrbixSSL application programming interface (API). This chapter
uses an OrbixSSL demonstration program to show how you can
add SSL security to an existing Orbix Java Edition application.

Overview of the Application
The Orbix Java Edition grid demonstration implements a simple
CORBA application. In this application, an Orbix server creates a
single object that implements the IDL interface grid.
To begin communicating with the server, a client gets a reference
to the grid object. The client uses the grid object to read and
write numeric values stored in a two-dimensional grid.
The IDL definitions for this application are as follows:

// IDL
interface grid {

readonly attribute short height;
readonly attribute short width;

void set(in short row, in short col,
in long value);

long get(in short row, in short col);
};

 8 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Running the Application without SSL
Without SSL, this application runs as follows:
1. The client gets a reference to the grid object. Implicitly, the

client contacts the Orbix daemon, which launches the server.
2. The client calls an operation on the grid object. The server

processes this call.
3. The client calls further operations on the grid object.
These steps are illustrated in Figure 2. When the application runs
without SSL, all communications between parts of the application
are insecure.

Figure 2: Running the Grid Application

Running the Application with SSL
When using SSL, each component of the application that acts as a
server must be able to prove its identity. On first contact with
another component, a server must be able to supply its certificate
and encrypt messages with its private key. In this example, there
are two servers: the grid server and the Orbix daemon.
With SSL, the application runs as shown in Figure 3 on page 9:
1. The client gets a reference to the grid object. Implicitly, the

client contacts the Orbix daemon, which launches the server.
The Orbix daemon supplies its certificate to the client. The
client uses this certificate to check the identity of the daemon.

2. The client calls an operation on the grid object. The server
processes this call.
The server supplies its certificate to the client. The client uses
this certificate to check the identity of the server.

3. The client calls further operations on the grid object over a
secure connection.

Server Host

Client Host

Client

Orbix Daemon

Server

1

2

3

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 9

With SSL security, all the servers in the application can be
identified and all communications between application
components take place over secure connections.

Figure 3: Running the Grid Application with SSL Security

To develop this example, you must modify the client and server
programs. In the server, you must:

• Initialize OrbixSSL.
• Instruct OrbixSSL where to find the server certificate.
• Provide OrbixSSL with access to the server’s private key.
In the client, you must:

• Initialize OrbixSSL.
• Provide OrbixSSL with information about which certificates to

accept.
To run the example, you must use the SSL-enabled Orbix
daemon, orbixd, on the server host instead of the Orbix Java
Edition daemon, orbixdj. You must also provide the Orbix daemon
with access to its certificate and private key.

Overview of the Certificates Used in the Example
In the grid application, the server and Orbix daemon use
demonstration certificates installed with OrbixSSL. Each certificate
has a corresponding file in the OrbixSSL certificates directory.
The certificates for the grid application are shown in Table 1.

Server Host

Client Host

Client

Daemon
Certificate

Server
Certifcate

Orbix Daemon

Server

1

2

3

Table 1: Demonstration Certificates used by the Grid
Application

Server Certificate File

Grid demos/demo_server_1

Orbix daemon services/orbix

 10 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

The orbix certificate is a general demonstration certificate for use
with standard Orbix servers. The demo_server_1 certificate is a
demonstration certificate used with OrbixSSL server examples.
Each of the demonstration certificates is signed by the OrbixSSL
demonstration certificate authority (CA), called demo_ca_1.

Adding SSL to the Example
OrbixSSL includes a secure version of this example in the
OrbixSSL demos/OrbixSSL/securegrid/java directory. This section
describes the code changes introduced in this SSL-enabled version
of the demonstration.

Adding SSL to the Server
As described in “Running the Application with SSL” on page 8,
there are three steps required to add SSL security to the server
program:

• Initialize OrbixSSL.
• Instruct OrbixSSL where to find the server certificate.
• Provide OrbixSSL with access to the server’s private key.
This section describes each of these steps.

Initializing OrbixSSL
Every OrbixSSL program must initialize OrbixSSL using the
OrbixSSL API. To import the API classes used by all servers, use
the following statements:

import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_Format;
import IE.Iona.OrbixWeb.SSL.IT_X509Cert;

The OrbixSSL API contains a single initialization method that must
be called in all your OrbixSSL programs. This method is called
IT_SSL.init() and is defined as follows:

class IE.Iona.OrbixWeb.SSL.IT_SSL {
public:

public static synchronized IT_SSL init()
throws INITIALIZE;

...
};

WARNING: These certificates are completely insecure. Use
them for OrbixSSL demonstration programs only. Do not use
them in a deployed system. In a deployed system, you must
create your own customized certificates for components of your
application. The certificates for a deployed system should be
signed by a CA that you can trust. Never trust the CA demo_ca_1.
The process of creating and signing certificates is described in
detail in the chapter “Managing Certificates”.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 11

The SSL-enabled grid server calls this method as follows:
...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_Format;
import IE.Iona.OrbixWeb.SSL.IT_X509Cert;

public class javaserver1 {
...

public static void main(String args[]) {
org.omg.CORBA.ORB orb =

org.omg.CORBA.orb.init(args, null);
IT_SSL ssl = IT_SSL.init();
...

}
}

As shown here, you must call ORB.init() before calling
IT_SSL.init(). In addition, for OrbixSSL initialization to succeed,
you must call the method IT_SSL.init() before your OrbixSSL
program attempts to make any remote operation calls.

Specifying the Location of a Server Certificate
In SSL, each application certificate is signed by a certificate
authority (CA). The CA confirms that the identity of the application
corresponds to the public key in the certificate. The CA can, in
turn, be signed by another CA and this process continues until a
self-signed CA certificate is reached. This process is known as
certificate chaining.
Each OrbixSSL demonstration certificate has an associated
certificate file in the OrbixSSL certificates directory. The grid
server uses the demo_server_1 certificate, which is signed using the
self-signed certificate demo_ca_1. The files associated with these
certificates are demos/demo_server_1 and ca/demo_ca_1.
To specify the location of a server’s certificate files, you must
create an array that represents the server’s certificate chain. In
the case of the grid server, the demos/demo_server_1 certificate file
is element zero in the array and the file ca/demo_ca_1 is element
one.

 12 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

For example, if the OrbixSSL certificates directory is located in
/microfocus/OrbixSSL, create the certificate chain as follows:

...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_X509Cert;
import IE.Iona.OrbixWeb.SSL.IT_Format;

public class javaserver1 {

public static void main(String args[]) {
org.omg.CORBA.ORB orb =

org.omg.CORBA.ORB.init(args,null);
IT_SSL ssl = IT_SSL.init();
IT_X509Cert certChain[] = new IT_X509Cert[2];

try {
certChain[0] = new IT_X509Cert
 ("/microfocus/OrbixSSL/certificates/demos/
 demo_server_1", IT_Format.IT_FMT_PEM);
certChain[1] = new IT_X509Cert
 ("/microfocus/OrbixSSL/certificates/ca/
 demo_ca_1", IT_Format.IT_FMT_PEM);
ssl.setApplicationCertChain(certChain);
...

}
...

}

An object of type IT_X509Cert represents a single X.509 certificate.
An array of these objects represents a certificate chain. The
method IT_SSL.setApplicationCertChain() associates a certificate
chain with the server program.

Providing Access to a Server Private Key
In this example, the private key associated with the certificate file
demos/demo_server_1 is stored in the file demos/demo_server_1.jpk.
This private key file is stored in encrypted Privacy Enhanced Mail
(PEM) format. When a private key is encrypted in this way, you
can access it only using a corresponding pass phrase.
When you launch an OrbixSSL server, it must specify where to
locate its private key file and must supply the private key pass
phrase to OrbixSSL. This allows OrbixSSL to read the private key
and the server to encrypt data with this key, which is a critical
part of SSL authentication.
The OrbixSSL API includes methods that allows you to specify the
location of a private key file and the corresponding pass phrase.
These methods are IT_SSL.setPrivateKeyPassword() and
IT_SSL.setRsaPrivateKeyFromFile().

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 13

The demonstration server calls these methods as follows:
...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_X509Cert;
import IE.Iona.OrbixWeb.SSL.IT_Format;

public class javaserver1 {

public static void main(String args[]) {
org.omg.CORBA.ORB orb =

org.omg.CORBA.ORB.init(args,null);
IT_SSL ssl = IT_SSL.init();
IT_X509Cert certChain[] = new IT_X509Cert[2];

try {
// Set certificate chain.
...

// Set private key.
ssl.setPrivateKeyPassword("demopassword");
ssl.setRSAPrivateKeyFromFile(
 "/microfocus/OrbixSSL/certificates/demos/
 demo_server_1.jpk",IT_Format.IT_FMT_PEM);

}
...

}

In this example, the pass phrase is hard coded in the server
program. In fact, this is insecure and useful only for
demonstration purposes. In a deployed system, you must provide
a secure mechanism for retrieving the server pass phrase. For
example, you could request the pass phrase from the user.

Adding SSL to the Client
As described in “Running the Application with SSL” on page 8,
there are two steps required to add SSL security to the client
program:

• Initialize OrbixSSL.
• Provide OrbixSSL with information about which certificates to

accept.
This section describes each of these steps.

Initializing OrbixSSL
The steps required to initialize OrbixSSL in a client are the same
as those described in “Initializing OrbixSSL” on page 10, with the
exception that it is not necessary to use
IE.Iona.OrbixWeb.SSL.IT_X509Cert.

 14 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

The following code initializes OrbixSSL for a client:
...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_Format;

public class javaclient1 {
...

public static void main(String args[]) {
org.omg.CORBA.ORB orb =

org.omg.CORBA.orb.init(args, null);
IT_SSL ssl = IT_SSL.init();
...

}
}

Specifying which Certificates to Accept
Every certificate is signed by a CA. When a client receives a
certificate from a server, the client checks that the certificate is
signed by a trusted CA. If the client trusts the CA, it accepts the
certificate and continues to authenticate the server, otherwise it
rejects the certificate.
When running an OrbixSSL application, you must specify a list of
CAs that the application should accept. To do this, call the method
IT_SSL.addTrustedCert() for each trusted CA. This method takes
the location of the CA certificate file as a parameter.
The grid example uses the insecure OrbixSSL demonstration CA,
demo_ca_1. To specify that the client should accept certificates
signed by demo_ca_1, call IT_SSL.addTrustedCert() as follows:

...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_Format;

public class javaclient1 {
...

public static void main(String args[]) {
org.omg.CORBA.ORB orb =

org.omg.CORBA.orb.init(args, null);
IT_SSL ssl = IT_SSL.init();

try {
ssl.addTrustedCert
 ("/microfocus/OrbixSSL/certificates/ca/
 demo_ca_1", IT_Format.IT_FMT_PEM);

}
...

}
}

This code assumes that the OrbixSSL certificates directory is
located in /microfocus/OrbixSSL/certificates.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 15

Running the Application
After you modify the client and server programs, run the
application as follows:
1. On the client and server hosts, set the CLASSPATH to include

both the Orbix Java Edition classes directory and the Orbix
Java Edition lib/OrbixSSL.jar file.

2. On the server host, run the SSL-enabled Orbix daemon.
3. Register the server in the Implementation Repository with

server name SSLgrid1.
4. Run the client.
There are special considerations that you must take into account
when running the SSL-enabled Orbix daemon.

Running the Orbix Daemon
The SSL-enabled Orbix daemon, orbixd, is located in the bin
directory of your Orbix installation. This daemon acts as an
OrbixSSL C++ server and requires some configuration, as
described in the OrbixSSL Programmer’s and Administrator’s
Guide C++ Edition.
To run the daemon, do the following on the server host:
1. Edit the file orbixssl.cfg, located in the cfg directory of your

OrbixSSL installation. Add the following text to this file:
OrbixSSL {

IT_CERTIFICATE_PATH =
OrbixSSL directory/certificates;

IT_CA_LIST_FILE =
OrbixSSL directory/ca_lists/demo_ca_list_1;

};

Orbix {
orbixd {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"services/orbix";

};
};

In this text, replace OrbixSSL directory with the actual path of
your OrbixSSL installation, for example /microfocus/OrbixSSL.

2. Set the environment variable IT_CONFIG_PATH to the location of
the Orbix configuration file, iona.cfg.

3. On UNIX, run the OrbixSSL update command to specify the
location of the OrbixSSL configuration file, orbixssl.cfg:
update library OrbixSSL_directory 2
Run this command for each of the OrbixSSL libraries,
replacing library with the library file name and
OrbixSSL_directory with the location of orbixssl.cfg.
On Windows, set the environment variable IT_SSL_CONFIG_PATH
to the location of orbixssl.cfg.

 16 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

4. Set the environment variable that locates dynamic libraries,
for example PATH on Windows, LD_LIBRARY_PATH on Solaris, or
SHLIB_PATH on
HP-UX, to include the Orbix lib directory.

5. Run the Orbix daemon:
orbixd

For more information about securing the SSL-enabled Orbix
daemon, refer to the OrbixSSL Programmer’s and
Administrator’s Guide C++ Edition.

Working with Secure Applets
Creating an applet version of an OrbixSSL Java application is
similar to creating an applet version of an Orbix Java Edition
application. The demos/OrbixSSL directory includes an applet
version of the grid demonstration, in a directory named
sslGridApplet. The installed makefile for this example describes
how to generate the signed applet and make it available through a
web browser.

Developing Secure Applets
It is important that applets shut down the ORB when they exit.
This ensures that connections are closed and resources are freed.
Failing to do this may result in the browser hanging on exit.
To ensure connections are properly closed, add the following line
to your applet’s destroy() method:

_CORBA.Orbix.shutdown(true);

Signed applets that are to run in Internet Explorer must assert
their requirement for full permission in four applet methods:
init(), start(), stop() and destroy(). When they are finished with
their full permissions, they must revoke them.
To assert a requirement for full permissions, use the following
code:

import com.ms.security.*;
...
PolicyEngine.assertPermission

(PermissionID.SYSTEM);

To revoke permissions granted using this code, use:
PolicyEngine.revertPermission

(PermissionID.SYSTEM);

OrbixSSL includes stub versions of the Microsoft classes used
here. This means that the same applet code can be used
irrespective of the target browser. The com.ms.security classes in
Microsoft Internet Explorer take precedence over the OrbixSSL
stub versions. In other browsers, the stub versions are used but
they initiate no action.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 17

Deploying Secure Applets
OrbixSSL can run in browsers only as a signed applet. This means
that it requires privileges over and above what the browser
sandbox permits. A number of applet signing techniques exist,
each targeted at a particular browser. Techniques to transparently
provide versions of an applet using different signing techniques
also exist.

 18 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Part II
OrbixSSL

Administration

In this part
This part contains the following:

Managing Certificates page 21

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 21

Managing Certificates
SSL authentication uses X.509 certificates. This chapter explains
how you can create X.509 certificates that identify your OrbixSSL
applications.

An X.509 certificate binds a name to a public key value. The role
of a certificate is to guarantee that the public key can be used to
verify the identity contained in the X.509 certificate.
Authentication of a secure application depends on the integrity of
the public key value in the application’s certificate. If an impostor
replaced the public key with its own public key, it could
impersonate the true application and gain access to secure data.
To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms
the integrity of the public key value in a certificate.
A CA signs a certificate by adding its digital signature to the
certificate. A digital signature is a message encoded with the CA’s
private key. The CA’s public key is made available to applications
by distributing a certificate for the CA. Applications verify that
certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.
Most of the demonstration certificates supplied with OrbixSSL are
signed by the CA demo_ca_1. This CA is completely insecure
because anyone can access its private key. To secure your
system, you must create new certificates signed by a trusted CA.
This chapter describes the certificates required by an OrbixSSL
application and shows you how to create those certificates.

Creating Certificates for an Application
To set up a fully secure OrbixSSL system, you must generate a full
set of certificates for the secure components of your system, such
as server, authenticated clients, the Orbix daemon, Orbix
services, and so on. There are three steps required to do this:
1. Set up a CA that you can trust.
2. Use the CA to create signed certificates.
3. Deploy the signed certificates.
If a component of your application must prove its identity during
SSL authentication, that component requires a certificate signed
by your chosen CA. In a secure system, this always includes the
Orbix daemon, the Orbix utilities, the Orbix services, and your
server programs. If you use client authentication, your clients also
require certificates.

 22 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Overview of the OrbixSSL Demonstration Certificates
The OrbixSSL certificates directory contains a set of
demonstration certificates that enable you to run the OrbixSSL
example applications. The certificates contained in the
certificates directory are described in Table 2.

The remainder of this chapter describes the steps involved in
setting up a CA and signing certificates. As an example, it then
shows you how to replace the demonstration certificates in the
OrbixSSL certificates directory with your own, secure
certificates.

Choosing a Certification Authority
A CA must be trusted to keep its private key secure. When setting
up an OrbixSSL system, it is important to choose a suitable CA,
make the CA certificate available to all applications, and then use
the CA to sign certificates for your applications.
There are two types of CA available. A commercial CA is a
company that signs certificates for many systems. A private CA is
a trusted node that you set up and use to sign certificates for your
system only.

Table 2: Demonstration Certificates Supplied with OrbixSSL

Certificate Description

ca/demo_ca_1
ca/demo_ca_2
ca/demo_ca_sha256
ca/demo_ca_dsa
ca/ demo_ca_ec

Contains the certificates for the example CAs
demo_ca_1,demo_ca_2,demo_ca_sha256, demo_ca_dsa
and demo_ca_ec. The CA list file, demo_ca_list_1, in
the OrbixSSL ca_lists directory, includes the
certificate for demo_ca_1. Programs that set the value
of IT_CA_LIST_FILE to this file accept only certificates
signed by demo_ca_1.

demos/bad_guy
demos/bank_customer_1
demos/bank_customer_1_ec.p12
demos/bank_customer_2
demos/secure_bank_server
demos/secure_bank_server_ec.p12
demos/demo_client
demos/demo_client_ca2
demos/demo_server
demos/demo_server_ca2
...

Example certificates used in the OrbixSSL
demonstration programs. These programs are
contained in the demos/OrbixSSL directory. These
certificates are signed by demo_ca_1, with the
exception of those with _ca2 appended to the file
name, which are signed by demo_ca_2. The
certificates with _ec.p12 appended to the file name
are elliptic curve certificates, which are signed by
demo_ca_ec.

services/orbix
services/orbix_events
services/orbix_manager
services/orbix_names
services/orbix_ots
services/orbix_trader

Example certificates used by Orbix services and
standard Orbix executable files, such as the Orbix
daemon, the Orbix utilities, and the Interface
Repository server.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 23

Commercial Certification Authorities
There are several commercial CAs available. The mechanism for
signing a certificate using a commercial CA depends on which CA
you choose.
An advantage of commercial CAs is that they are often trusted by
a large number of people. If your applications are designed to be
available to systems external to your organization, use a
commercial CA to sign your certificates. If your applications are
for use within an internal network, a private CA might be
appropriate.
Before choosing a CA, examine the certificate signing policies of
some commercial CAs and, if your applications are designed to be
available on an internal network only, review the potential costs of
setting up a private CA.

Private Certification Authorities
If you wish to take responsibility for signing certificates for your
system, set up a private CA. To set up a private CA, you require
access to a software package that provides utilities for creating
and signing certificates. Several packages of this type are
available.
One software package that allows you to set up a private CA is
OpenSSL. OpenSSL is an implementation of SSL. The OpenSSL
package includes basic command line utilities for generating and
signing certificates and these utilities are available with every
installation of OrbixSSL.
To set up a private CA using OrbixSSL, do the following:
1. Choose a suitable host to act as CA.
2. Install OrbixSSL on the CA host.
3. Use the OpenSSL utilities to create a certificate and private

key for the CA.
4. Copy the CA certificate and private key to the required

directories on the CA host.
When you complete these steps, you can use the OpenSSL utilities
to sign application certificates for your system.

Choosing a Host for a Private Certification Authority
Choosing a host is an important step in setting up a private CA.
The level of security associated with the CA host determines the
level of trust associated with certificates signed by the CA.
If you are setting up a CA for use in the development and testing
of OrbixSSL applications, use any host that the application
developers can access. However, when you create the CA
certificate and private key, do not make the CA private key
available on hosts where security-critical applications run.
If you are setting up a CA to sign certificates for applications that
you are going to deploy, make the CA host as secure as possible.
For example, take the following precautions to secure your CA:

• Do not connect the CA to a network.
• Restrict all access to the CA to a limited set of trusted users.

 24 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

• Protect the CA from radio-frequency surveillance using an
RF-shield.

When you choose a suitable host to act as the CA host, install
OrbixSSL and use the OpenSSL utilities to create the CA certificate
and private key.

Creating a Self-Signed Certificate and Private Key
A self-signed certificate is a CA certificate in which the issuer and
subject of the certificate are identical. It acts as the final authority
in a certificate chain. To create a self-signed certificate and private
key for your CA, use the OpenSSL utility openssl to run the
command req as follows:

openssl req -config openssl_config_file -days 365
-out ca_cert_file.pem -new -x509

The utility openssl is located in the OrbixSSL bin directory. Replace
openssl_config_file with the fully qualified name of the OpenSSL
configuration file openssl.cnf. By default, OrbixSSL installs this file
in the config directory of your Orbix installation.
The req command requests information that identifies the CA,
including your organization name, organization address, and so
on. This information comprises the CA’s distinguished name.
This command also asks you to specify a pass phrase with which
req will encrypt the private key for the CA. Note the pass phrase
and guard it carefully.
The req command outputs two files. The first output file is
ca_cert_file.pem, which contains the CA certificate in Privacy
Enhanced Mail (PEM) format. The second output file is named
privkey.pem (this default filename can be overridden using the
-keyout option) and contains the encrypted private key for your CA
in PEM format.

Note: The integrity of your private CA depends on the security of the
pass phrase used to encrypt the CA’s private key and the integrity
of the CA’s private key file. These should be available only to
trusted users of the CA.

An Example of Creating a Self-Signed Certificate and Private
Key
Consider the example of creating a certificate and private key for
a CA to be used in signing certificates within the finance
department of ABigBank plc.
If the openssl.cnf file is installed in the default directory, run req
as follows:

openssl req -config openssl config file -days 365
-X509 -new -out demo_ca_1 -keyout demo_ca_1.pk

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 25

The req command begins by generating the private key for your
CA. req prompts you to enter a pass phrase, which is used to
encrypt the private key:

Generating a 512bit private key
..............+++++
............+++++
writing new private key to 'privkey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

The default openssl.cnf file supplied with OrbixSSL configures the
key length to 512 bits. This should be increased to 1024 bits for
most live systems. When using 1024 bit keys, the initial SSL
handshake is a number of times slower than for 512 bit keys, but
the level of security obtained is very much greater.
The req command continues by requesting identification
information for your CA:

Country Name (2 letter code) []: IE
State or Province Name (full name) []: Co. Dublin
Locality Name (eg, city) []: Dublin
Organization Name (eg, company) []: ABigBank plc
Organizational Unit Name (eg, section) []: Finance
Common Name (eg, YOUR name) []: Gordon Brown
Email Address []: gbrown@abigbank.com

The input for these identification fields should clearly identify the
individual or group responsible for controlling the CA.
As a result of this operation, the req command outputs two files in
the local directory. The CA certificate file is called demo_ca_1. The
CA private key file is called demo_ca_1.pk.

Installing the Certificate and Private Key Files
To prepare the CA to sign certificates, do the following:
1. Ensure that the CA certificate file name matches the

certificate value in the openssl.cnf file.
2. On the CA host, copy the CA certificate file to the root

certificate directory. To locate this directory, consult the dir
entry in openssl.cnf.

3. Ensure that the name of the CA private key file matches the
private_key value in the openssl.cnf file.

4. On the CA host, copy the private key file to the directory
specified by the private_key entry in openssl.cnf.

When you complete these steps, the CA is ready to sign
application certificates.

 26 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Publishing a Certification Authority Certificate
To authenticate a certificate signed by a CA, an application
requires access to the CA’s own certificate. To install a CA
certificate on an OrbixSSL application host, copy the CA certificate
file to a directory on the local file system. Limit write access to this
file to a single trusted user. Do no make the CA private key file
available to hosts other than the CA itself.
The name of the CA certificate file must match the certificate
value in the openssl.cnf file. To indicate that it trusts the CA, the
application must call the method IT_SSL.addTrustedCert()
specifying the name of the CA file as a parameter.

Certificates Signed by Multiple Certification Authorities
A CA certificate may be signed by another CA. For example, an
application certificate may be signed by the CA for the finance
department of ABigBank plc, which in turn is signed by a
commercial CA.
This system of signing certificates is known as certificate chaining.
An application can accept a signed certificate if the CA certificate
for any CA in the signing chain is available in the certificate file in
the local root certificate directory.
To limit the length of certificate chains that an application accepts,
the application programmer calls the method
IT_SSL.setMaxChainDepth().

Signing Application Certificates
If using a commercial CA, you must follow the CA’s procedures for
obtaining signed certificates. If using a private CA, you can sign
application certificates for use in your system. The process for
generating a signed certificate is as follows:
1. An individual or group responsible for an application generates

a certificate signing request (CSR).
2. The CSR is submitted to the CA for signing.
3. The CA signs and returns the new certificate.
4. The certificate file is copied to the OrbixSSL certificates

directory on the host in which the application runs.
When this process is complete, the OrbixSSL application can use
the signed certificate to prove its identity to other applications.

Generating a Certificate Signing Request
To generate a certificate signing request (CSR), run the OpenSSL
command req as follows:

openssl req -nodes -config openssl config file -days 365
-new -out csr_file.pem

The req command requests information that identifies your
application. This information includes the components of the
distinguished name for your organization. The -nodes argument
ensures that the output private key is unencrypted. The ouput key
must not be encrypted as a Java application cannot understand

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 27

the OpenSSL encrypted private key format. Instead, you can
encrypt the output file using the keyenc command. See “Creating
a Private Key File for Java Programs” on page 28.
The req command outputs two files. The first output file is
csr_file.pem, which contains the CSR for your application. The
second output file is called privkey.pem. It is unencrypted and
contains the application private key. This output file must
immediately be encrypted using keyenc.
The file csr_file.pem should now be transferred to the CA for
signing.

An Example of Generating a Certificate Signing Request
Consider the example of generating a CSR for an OrbixSSL server
application with server name Bank. Run req as follows:

openssl req -nodes -config openssl config file -days 365
 -new -out Bank-csr.pem

The req command begins by generating a private key for your
application:

Generating a 512 bit private key
....+++++
..........+++++
writing new private key to 'privkey.pem'

The req command continues by requesting identification
information for your certificate:

Country Name (2 letter code) []:IE
State or Province Name (full name) []: Co. Dublin
Locality Name (eg, city) []: Dublin
Organization Name (eg, company) []: ABigBank plc
Organizational Unit Name (eg, section) []: Finance
Common Name (eg, YOUR name) []: CORBA Server:Bank
Email Address []: info@abigbank.com

Your organization should define a clear policy for the format and
content of the identification fields added to your application
certificates. Enter the requested fields according to this policy.

Signing a Certificate
To sign a certificate, run the ca command as follows:

openssl ca -config openssl config file -days 365
-in csr_file.pem > certname.pem

The ca command displays the identification information contained
in the CSR. It is critically important that you check that this
information is correct with respect to the application for which the
CSR was generated.
The ca command asks you if you wish to sign the application
certificate. If you sign the certificate, the ca command outputs the
certificate in PEM format to the file certname.pem. This
certname.pem file is supplied to the originator of the certificate
request.
To return the certificate to the person who issued the CSR, copy
the file to disk and transfer this file from disk to a location
accessible to that person. This certificate file can then be copied to
the certificates directory on the application host. To locate this
directory, consult the certs value in the local openssl.cnf file.

 28 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Creating a Private Key File for Java Programs
A Java program that needs to use certificates must be able to
access its private key in a special encrypted format. To create the
private key file for an authenticated Java program, run the
OrbixSSL utility keyenc on the unencrypted private key file output
by OpenSSL, for example:

keyenc privkey.pem privkey.jpk password
Replace pass phrase with a pass phrase that encodes the private
key. The program should call IT_SSL.setRSAPrivateKeyFromFile() to
use the private key stored in the output file privkey.jpk.

An Example of Signing a Certificate
Consider the example CSR described in “An Example of
Generating a Certificate Signing Request” on page 27. Sign this
certificate by running ca (on the CA host) as follows:

openssl ca -config openssl config file
-days 365 -in Bank-csr.pem -out Bank-cert.pem

The output from this command begins by requesting the pass
phrase used to encode the CA private key:

Enter PEM pass phrase:

If you enter the correct pass phrase, ca displays the identification
information contained in the CSR:

Check that the request matches the signature
Signature ok

The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'ABigBank'
organizationalUnitName :PRINTABLE:'Finance'
commonName :PRINTABLE:'CORBA Server:Bank'
emailAddress :IA5STRING:'info@abigbank.com'

Certificate is to be certified until Dec 12 14:11:12 1998
GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Check that the identification information contained in the CSR is
correct in accordance with the security policy of your organization.
If the information is correct, sign the certificate and commit the
operation when prompted.
This command produces a signed application certificate in the file
Bank-cert.pem. Use the keyenc command to encrypt the certificate
immediately after it is created. See “Creating a Private Key File for
Java Programs” on page 28.

Part III
OrbixSSL Programming

In this part
This part contains the following:

Defining a Security Policy page 31

Validating Certificates page 45

Managing Pass Phrases page 55

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 31

Defining a Security
Policy
Each installation of OrbixSSL includes a set of Java classes that allow
you to specify how your applications use SSL security. This chapter
describes how you can use these classes to configure SSL security
for each of your applications.

Defining a security policy means configuring your OrbixSSL
applications to achieve the level of security required by your
system. The OrbixSSL API includes methods that enable you to
specify the location of certificates, which certificates applications
should use, which certificates they should accept, and so on.
This chapter begins with an overview of the OrbixSSL API. It then
describes each of the method calls required to define a
comprehensive security policy. This guide provides a complete
reference for all the Java classes in the OrbixSSL API. Refer to this
part for more information about classes and methods introduced
in this chapter. More specifically, the classes described here allow
you to:

• Configure server authentication.
• Configure client authentication.
• Configure OrbixSSL types.
• Configure ciphers.
• Configure session caching.
• Provide IORs with security information. Non-Orbix clients can

sometimes require this information.

Overview of the OrbixSSL API
The OrbixSSL Java classes are located in the OrbixSSL classes
directory. These classes are defined in the package
IE.Iona.OrbixWeb.SSL.
In this package, the class IT_SSL provides the core features of the
OrbixSSL API. To access this class, first create an IT_SSL object
using the static method IT_SSL.init(), for example:

...
import IE.Iona.OrbixWeb.SSL.IT_SSL;

public class OrbixSSLExample {
public static void main(String args[]) {

org.omg.CORBA.ORB orb =
org.omg.CORBA.orb.init(args, null);

IT_SSL ssl = IT_SSL.init();
...

}
}

You must call the method ORB.init(), from package org.omg.CORBA,
before calling IT_SSL.init().

 32 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

In addition to class IT_SSL, most SSL programs use the OrbixSSL
class IT_Format. All authenticated applications also use the class
IT_X509Cert.

Configuring Server Authentication
When developing an OrbixSSL application, you must do the
following to ensure that server authentication succeeds:

• Specify which protocols are to be used
• Specify which certificate each server should use.
• Specify the private key file and pass phrase for each server.
• Specify which certificates each client should accept.
This section describes how to implement each of these tasks using
the OrbixSSL API. For the purposes of SSL communications, a
server is any Orbix Java Edition program that can accept operation
calls. This includes Orbix Java Edition servers and clients that
accept callbacks from servers.

Specifying Protocols
You can specify the security transport protocol version used by
setting the configuration variable OrbixSSL.IT_PROTOCOLS. The
OrbixSSL.IT_PROTOCOLS configuration variable is a
comma-separated list of security transports that the product will
try to use. Valid values are the strings:
• SSLv3 (no longer supported by default)
• TLSv1
• TLSv1.1

• TLSv1.2

The default security transport protocol version is TLSv1. This
represents a change from previous versions of Orbix 3.3, where
SSLv3 was the default.

Note: If you need to interoperate with previous Orbix versions,
it will be necessary to add SSLv3 to the list of enabled security
protocol versions in the orbixssl.cfg file. It is recommended that
you specify TLSv1 as the first option in the list of versions and
only enable support for SSLv3 when it is needed to interoperate
with previous Orbix versions, as illustrated in the following
example:

orbixssl.cfg for Orbix SSL C++ and Orbix SSL Java

OrbixSSL {
[SNIP…]

IT_PROTOCOLS = "TLS_V1”, “SSL_V3";
}

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 33

Specifying the Location of Certificates
To specify the location of the certificate files associated with a
server, you must create an array of IT_X509Cert objects that
represents the server’s certificate chain. You then pass this array
to the method IT_SSL.setApplicationCertChain().
For example, if your server uses the OrbixSSL demonstration
certificate file demos/demo_server_1, signed by the CA certificate in
file ca/demo_ca_1, use the following code in your server program:

...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_X509Cert;
import IE.Iona.OrbixWeb.SSL.IT_Format;

public class OrbixSSLExample {
public static void main(String args[]) {

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(args,null);

IT_SSL ssl = IT_SSL.init();
IT_X509Cert certChain[] = new IT_X509Cert[2];

try {
certChain[0] = new IT_X509Cert
 ("OrbixSSL directory/certs/demos/
 demo_server_1", IT_Format.IT_FMT_PEM);
certChain[1] = new IT_X509Cert
 ("OrbixSSL directory/certs/ca/demo_ca_1",
 IT_Format.IT_FMT_PEM);
ssl.setApplicationCertChain(certChain);
...

}
...

}

The method IT_SSL.setApplicationCertChain() accepts certificate
chains in which the certificate files are coded using one of the
following formats: ASN.1 Distinguished Encoding Rules (DER),
Privacy Enhanced Mail (PEM), or RSA Laboratories’ Public Key
Cryptography Standards #12 (PKCS#12). PKCS is a set of
informal standard protocols developed by RSA Laboratories for
exchanging security information on the Internet. Web browsers
commonly support certificate files in PKCS format.

Specifying the Private Key File and Pass Phrase
Each authenticated application has an associated certificate and
private key. In OrbixSSL for Java, the private key is stored in a file
separate from the certificate file. Consequently, you must use the
method IT_SSL.setRSAPrivateKeyFromFile() to specify the location
of the private key file.
For example, if your program uses the private key in the OrbixSSL
demos/demo_server_1.jpk file, call this method as follows:
IT_SSL ssl = IT_SSL.init();
...

try {
ssl.setRSAPrivateKeyFromFile(

 34 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

"/microfocus/OrbixSSL/certs/demos/demo_server_1.jpk",
IT_Format.IT_FMT_PEM);

}
...

In this example, the private key is stored in encrypted format, so
you must also provide the pass phrase used to encrypt the private
key. To do this, call the method IT_SSL.setPrivateKeyPassword().
For example:

...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_X509Cert;
import IE.Iona.OrbixWeb.SSL.IT_Format;

public class OrbixSSLExample {
public static void main(String args[]) {

...
IT_SSL ssl = IT_SSL.init();
...

try {
// Set private key.
ssl.setPrivateKeyPassword("demopassword");
ssl.setRSAPrivateKeyFromFile(

"/microfocus/OrbixSSL/certs/demo_server_1.jpk",
IT_Format.IT_FMT_PEM);

}
...

}

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 35

Specifying Certificates to Accept
The program that receives a certificate must validate it to ensure
the identity of the server. OrbixSSL does some basic validation,
and you can add more. To enable OrbixSSL to do this basic
validation, you provide some information about which certificates
your programs should accept.
The method IT_SSL.addTrustedCert() allows you to add a CA to the
list of CAs that a program trusts. When you call this method, you
pass the location of the CA certificate file as a parameter. This
certificate file must be available to the program.
For example, if CA newCA is identified by the certificate file
/local/certs/newCA, call IT_SSL.addTrustedCert() as follows:

...
import IE.Iona.OrbixWeb.SSL.IT_SSL;
import IE.Iona.OrbixWeb.SSL.IT_X509Cert;
import IE.Iona.OrbixWeb.SSL.IT_Format;

public class OrbixSSLExample {
public static void main(String args[]) {

...
IT_SSL ssl = IT_SSL.init();
...

try {
// Add trusted CA to list.
ssl.addTrustedCA("/local/certs/newCA",

IT_Format.IT_FMT_PEM);
}
...

}

Using certificate chaining, a CA certificate can be signed by
another CA. To ensure security for an application, it is often
necessary to limit the maximum number of certificates in a chain
in addition to specifying the list of trusted CAs.
To limit the default maximum chain depth that your program will
accept, call the method IT_SSL.setMaxChainDepth(). During
authentication, any certificate chain that exceeds the specified
depth will cause the SSL handshake to fail.
For example, to set the maximum chain depth to five, call
IT_SSL.setMaxChainDepth() as follows:

IT_SSL ssl = IT_SSL.init();
...

try {
ssl.setMaxChainDepth(5);

}
...

A chain depth of one indicates that a certificate can be signed by
one trusted CA only. A chain depth of two indicates that the CA
certificate can in turn be signed by a trusted CA. If any CA in the
chain is trusted, the application certificate is considered valid by
OrbixSSL.

 36 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Configuring Client Authentication
Some secure applications, for example Internet banking systems,
require that clients can identify themselves to servers. These
applications use an extended SSL handshake, in which the server
validates the client certificate. Client authentication is optional in
SSL security.
To specify that a server should authenticate clients, call the
method IT_SSL.setClientAuthentication() with a true parameter
value:

IT_SSL ssl = IT_SSL.init();
...

try {
ssl.setClientAuthentication(true);

}
...

When you call this method, the server requires each secure client
to supply a certificate during the SSL handshake. If the server
cannot authenticate the client, the handshake fails.
If the server uses client authentication, it must call
IT_SSL.addTrustedCert() to establish a list of trusted CAs. A client
that communicates with the server must have an associated
certificate and private key.
In addition to servers, clients can use this method to authenticate
the suppliers of any callbacks they receive.

Configuring OrbixSSL Application Types
Orbix Java Edition defines two general application types: clients,
which call IDL operations on CORBA objects, and servers, which
contain those objects. However, these roles are sometimes
reversed. For example, in many applications, servers make
callbacks to objects located in clients.
In OrbixSSL, it is important to be aware that all programs can
potentially act as clients and servers. For each program, OrbixSSL
allows you to specify an invocation policy. This policy determines
whether the program uses SSL when connecting to a server and
whether it uses SSL when it accepts connection attempts from
clients. An invocation policy is a combination of these two
independent settings.
Possible settings for making connections are:

• Only make connections to servers using SSL.
• Only make connections to servers without using SSL.
• Make connections using SSL, but allow insecure connections

to specified interfaces or servers.
• Make connections to servers using SSL or without using SSL,

as required.
Possible setting for accepting connection attempts are:

• Accept only connection attempts that use SSL.
• Accept only connection attempts that do not use SSL.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 37

• Accept either connection attempts that use SSL or attempts
that do not. In this case, the client determines whether to use
SSL.

This chapter describes how you set the invocation policy for an
OrbixSSL program and how programs interact based on their
policy settings.

Choosing Invocation Policies
The most secure OrbixSSL system architecture is one in which all
applications connect using SSL. If SSL security is available to all
applications in your system, you should ensure that each
application has a fully secure policy for making and accepting
connections. This is the default setting for an OrbixSSL
application.
The least secure system architecture is one in which no
applications use SSL security. It is unlikely that your OrbixSSL
system will consist of only insecure applications, but it may be
acceptable for some of your applications to interact without using
SSL.
For example, in a secure system it is sometimes necessary to
accommodate existing applications that cannot communicate over
SSL. In this case, your system could consist of a combination of
fully secure applications, fully insecure applications, and
applications that combine secure communications with insecure
communications.

Setting an Invocation Policy
To specify the invocation policy for a program, call the method
IT_SSL.setInvocationPolicy(). This method is defined as follows:

class IE.Iona.OrbixWeb.SSL.IT_SSL {
public:

public void setInvocationPolicy(int pol)
throws IT_SSLException;

...
};

The parameter pol specifies which invocation policy the application
should use. This integer is a bitwise OR combination of the values
defined in the class IT_SSLInvocationOptions. These values are:

IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT
IT_INSECURE_CONNECT
IT_SECURE_CONNECT
IT_SPECIFIED_INSECURE_CONNECT
IT_SPECIFIED_SECURE_CONNECT

The values IT_SECURE_ACCEPT and IT_INSECURE_ACCEPT determine
how the program behaves when receiving operation calls. The
other values determine how the program behaves when making
operation calls.

 38 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

For example, to specify that a program should be able to receive
both secure and insecure operation calls, but should make only
secure operation calls, do the following:

IT_SSL ssl = IT_SSL.init();
...

try {
ssl.setInvocationPolicy(
IT_SSLInvocationOptions.IT_SECURE_ACCEPT |
IT_SSLInvocationOptions.IT_INSECURE_ACCEPT |
IT_SSLInvocationOptions.IT_SECURE_CONNECT);

}
...

You can specify only one connect option when calling this method.

How Invocation Policies Affect OrbixSSL Communications
Table 3 describes the set of client and target invocation policies
that communicate successfully and indicates the type of
communications associated with each case. The first column of the
table indicates the client policy of the application that attempts to
establish a connection. The second column indicates the target
policy of the application that receives this connection attempt.

Table 3: How Programs with Different Invocation Policies Communicate

Client Policy Target Policy Resulting Communications

IT_SECURE_CONNECT IT_SECURE_ACCEPT Secure.

IT_SECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Secure.

IT_SECURE_CONNECT IT_INSECURE_ACCEPT N/A.

IT_SPECIFIED_INSECURE_CONNECT IT_SECURE_ACCEPT Secure.

IT_SPECIFIED_INSECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Secure unless explicitly specified by
client.

IT_SPECIFIED_INSECURE_CONNECT IT_INSECURE_ACCEPT Insecure only if explicitly specified
by client; otherwise N/A.

IT_SPECIFIED_SECURE_CONNECT IT_SECURE_ACCEPT Secure only if explicitly specified by
client; otherwise N/A.

IT_SPECIFIED_SECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Insecure unless explicitly specified
by client; otherwise secure.

IT_SPECIFIED_SECURE_CONNECT IT_INSECURE_ACCEPT Insecure unless explicitly specified
by client; otherwise N/A.

IT_INSECURE_CONNECT IT_SECURE_ACCEPT N/A.

IT_INSECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Insecure.

IT_INSECURE_CONNECT IT_INSECURE_ACCEPT Insecure.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 39

Limitations Imposed by Incompatible Invocation Policies
Because of incompatible security capabilities, limitations exist on
the interaction between some programs. For example, an insecure
client cannot communicate with a fully secure server. Such
instances have the value N/A in the communications column of
Table 3.
If a secure client attempts to communicate securely with an
insecure target, for example by resolving a reference to an object
in the target program, the client application receives an
SSL_FAILURE exception.
If an insecure client attempts to communicate with a fully secure
target, the client receives a NO_PERMISSION exception, or a
communication failure.

Specifying Exceptions to an Invocation Policy
If your program has a client policy of
IT_SPECIFIED_INSECURE_CONNECT, it can make insecure calls to
specified interfaces or servers only. To specify the list of
interfaces, the client must call the function
IT_SSL.specifySecurityForInterfaces(). To specify the list of
servers, the client must call IT_SSL.specifySecurityForServers().
Similarly, if your program has a client policy of
IT_SPECIFIED_SECURE_CONNECT, it can make secure calls to specified
interfaces or servers only. The functions
IT_SSL.specifySecurityForInterfaces() and
IT_SSL.specifySecurityForServers() also allow a client to specify
these interfaces and servers.
It is important to limit use of IT_SPECIFIED_INSECURE_CONNECT or
IT_SPECIFIED_SECURE_CONNECT, because it is not difficult for a
program to change the server name or interface that it uses. If a
client passes sensitive data to a server, it should always use
IT_SECURE_CONNECT. If a client does not pass sensitive data to a
server, but the server passes sensitive data to the client, the
server should force the client to connect using SSL.

 40 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Configuring Ciphers
OrbixSSL allows you to specify which ciphers should be used for
SSL encryption. A cipher suite is a combination of the following
SSL settings:

• Specification of the key exchange algorithm.
RSA certificates are useful for key exchanges as RSA is a
widely used public-key algorithm that can be used for either
encryption or digital signing.
DHE_RSA, DHE_DSS, ECDHE_RSA, and ECDHE_ECDSA are
also supported. Note that DHE_DSS requires a DSA private
key, and ECDHE_ECDSA requires an elliptic curve private key.
Certificates with DSA private keys and certificates with elliptic
curve private keys must be in PKCS12 format.

• Specification of the cipher to be used.
Permitted ciphers are taken from the following list: RC4, DES,
3DES_EDE, AES_128, AES_256.

• Specification of the hash algorithm to be used.
Permitted hashes include MD5, SHA, SHA256 and SHA384. Note
that SHA256 and SHA384 hash algorithms are only available
with AES_128 and AES_256 ciphers.

The OrbixSSL class IT_SSLCipherSuite defines each of the cipher
suites permitted by OrbixSSL. These are:

IT_SSLV3_RSA_WITH_RC4_128_SHA
IT_SSLV3_RSA_WITH_RC4_128_MD5
IT_SSLV3_RSA_WITH_3DES_EDE_CBC_SHA
IT_SSLV3_RSA_WITH_DES_CBC_SHA

IT_SSLV3_RSA_EXPORT_WITH_DES40_CBC_SHA
IT_SSLV3_RSA_EXPORT_WITH_RC4_40_MD5
IT_RSA_WITH_AES_128_CBC_SHA
IT_RSA_WITH_AES_256_CBC_SHA
IT_RSA_WITH_AES_128_CBC_SHA256
IT_RSA_WITH_AES_256_CBC_SHA256

IT_RSA_WITH_AES_128_GCM_SHA256
IT_RSA_WITH_AES_256_GCM_SHA384

IT_DHE_RSA_WITH_AES_128_GCM_SHA256
IT_DHE_RSA_WITH_AES_256_GCM_SHA384

IT_DHE_DSS_WITH_AES_128_GCM_SHA256
IT_DHE_DSS_WITH_AES_256_GCM_SHA384

IT_ECDHE_RSA_WITH_RC4_128_SHA
IT_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
IT_ECDHE_RSA_WITH_AES_128_CBC_SHA
IT_ECDHE_RSA_WITH_AES_256_CBC_SHA
IT_ECDHE_RSA_WITH_AES_128_CBC_SHA256
IT_ECDHE_RSA_WITH_AES_256_CBC_SHA384
IT_ECDHE_RSA_WITH_AES_128_GCM_SHA256
IT_ECDHE_RSA_WITH_AES_256_GCM_SHA384

IT_ECDHE_ECDSA_WITH_RC4_128_SHA
IT_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
IT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 41

IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
IT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
IT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
IT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

To specify which cipher suites your application can use, first create
an array of IT_SSLCipherSuite objects, then set each element of
the array to a required cipher suite and pass the array to the
method IT_SSL.specifyCipherSuites(). For example:

IT_SSL ssl = IT_SSL.init();
...

IT_SSLCipherSuite ciphers[] =
new IT_SSLCipherSuite[2];

ciphers[0] = IT_SSLCipherSuite.
IT_SSLV3_RSA_WITH_DES_CBC_SHA;

ciphers[0] = IT_SSLCipherSuite.
IT_RSA_WITH_AES_128_CBC_SHA256;

try {
ssl.specifyCipherSuites(ciphers);

}
...

You cannot use any combination of ciphers other than those
defined in class IT_SSLCipherSuite.
If no cipher suites are configured, then all available cipher suites
will be used as a default.

OrbixSSL Session Caching Configuration
SSL session caching allows the reuse of information previously
agreed between a client and server thus enabling faster
subsequent reconnection. This can significantly increase server
throughput if clients repeatedly reconnect to the server.
The method IT_SSL.setCacheOptions() allows you to configure
session caching in your application. This method takes an integer
parameter that contains a bitwise OR combination of the values
defined in class IE.Iona.OrbixWeb.SSL.IT_SSLCacheOptions. This
class is defined as follows:

class IT.Iona.OrbixWeb.SSL.IT_SSL {
public:

public static final in IT_SSL_CACHE_NONE;
public static final in IT_SSL_CACHE_CLIENT;
public static final in IT_SSL_CACHE_SERVER;

}

These options control the use of SSL session caching as follows:

IT_SSL_CACHE_NONE This value means that OribxSSL clients and
servers will not use SSL session caching.
That is, they cannot accept re-used SSL
session IDs offered by SSL clients, and will
not offer to resume previously established
SSL sessions when contacting servers for a
second or subsequent time.

 42 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

It is important to note that for an OrbixSSL cache to be reused,
SSL session caching has to be enabled for clients and servers. This
applies to clients when they are receiving callbacks as well as to
pure clients.

Providing IORs with SSL Information
When a non-Orbix client wants to obtain a server IOR from the
Orbix daemon by means of IIOP, it is necessary to provide that
IOR with SSL information. You can do this by means of the putit
utility:
This is the full putit command syntax:
putit [-v] [-h <host>] [-per-client | -per-client-pid]
[[-shared | -unshared] [-marker <marker>]]
[-j | -java [-classpath <classpath> | -addpath <path>]]
[-oc <ORBclass> -os <ORBSingletonClass>] [-jdk2]
| [-per-method [-method <method>]]
[-port <iiop portnumber>]
[-n <number of servers>] [-l]
[-ssl_secure | -ssl_semi_secure [-ssl_client_auth]

[-ssl_support_null_enc | -ssl_support_null_enc_only]
[-ssl_support_null_auth | -ssl_support_null_auth_only]]

<serverName> [<commandLine> | -persistent]

The ssl parameters are described in Table 4. To use them, you
must specify either –ssl_secure or –ssl_semi_secure first.

IT_SSL_CACHE_CLIENT This value means that OrbixSSL client
programs will cache any sessions that are
successfully established with servers.
However, if subsequent attempts are made
to reconnect to the server, then the initial
session will be offered for reuse to the
server. Whether the session is actually
reused or not depends on the server’s
policy with respect to session caching. This
applies to servers when they are acting as
clients as well as pure clients.

IT_SSL_CACHE_SERVER This value means that servers of OrbixSSL
will cache any sessions that are successfully
established with clients. If subsequent
attempts are made to reconnect by clients,
then the previously established session that
is being offered by the client will be
accepted provided that it has not been
flushed from the OrbixSSL session cache.

Table 4: putit SSL Parameters

putit Flag Description

-ssl_client_auth Indicates that the server authenticates clients.

-ssl_support_null_enc This indicates that the NULL encryption SSL
ciphersuites (which do not support
confidentiality) are supported by the server.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 43

Using the putit SSL Parameters
There are four groups of SSL parameters. If you want to use
them, you must use one from Group 1, followed by one or none
from each of the other three groups:

Group 1
-ssl_secure
-ssl_semi_secure

Group 2
-ssl_support_null_enc
-ssl_support_null_enc_only

Group 3
-ssl_support_null_auth
-ssl_support_null_auth_only

Group 4
-ssl_client_auth

As OrbixSSL supports per server process security policy settings,
those settings specified by putit apply to all objects created by
the server.
The most common use cases are:
Putit –ssl_secure demo/grid grid.exe

-ssl_support_null_enc_only This indicates that only the server supports the
NULL encryption SSL ciphersuites..

-ssl_secure This is the minimal flag needed to indicate that
the server is SSL enabled. If this flag or –
ssl_semi_secure are not supplied then the server
is insecure and no SSL related data should be
written to the IR. One of these two flags must be
supplied before any other SSL flag is acceptable.
An error should be presented to the user if they
are not.

-ssl_semi_secure This indicates a SEMI_SECURE server policy. If this
flag or –ssl_secure are not supplied to putit then
the policy is INSECURE and no SSL related stuff
should be written to the IR. One of these two
flags must be supplied before any other SSL flag
is acceptable. An error should be presented to
the user if they are not.

-ssl_support_null_auth This flag indicates that the server supports null
authentication. OrbixSSL servers do not currently
support this.

-ssl_support_null_auth_only This flag indicates that the server supports null
authentication. OrbixSSL servers do not currently
support this.

Table 4: putit SSL Parameters

putit Flag Description

 44 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Putit –ssl_secure –ssl_client_auth demo/grid grid.exe
Putit –ssl_semi_secure demo/grid grid.exe

The following might be less common:
Putit –ssl_semi_secure –ssl_client_auth demo/grid grid.exe

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 45

Validating Certificates
During SSL authentication, OrbixSSL checks the validity of an
application’s certificate. This chapter describes how OrbixSSL
validates a certificate and how you can use the OrbixSSL API to
introduce additional validation to your applications.

The OrbixSSL API allows you to define functions that implement
custom validation of certificates. During SSL authentication,
OrbixSSL validates a certificate and then passes it to your custom
validation function for examination. This functionality is very
important in systems that log information about certificates or
have application-specific requirements for the contents of each
certificate.
An X.509 certificate contains information about the supplier and
the CA that issued the certificate. The structure of a certificate is
specified in Abstract Syntax Notation One (ASN.1), a standard
syntax for describing messages that can be sent or received on a
network.
OrbixSSL provides a set of Java classes that enable you to extract
the information from a certificate without a detailed understanding
of the corresponding ASN.1 definitions. When writing your
certificate validation functions, use these classes to examine the
certificate contents.

Overview of Certificate Validation
Figure 4 shows a server sending its certificate to a client during an
SSL handshake. OrbixSSL code at the server reads the certificate
from file and transmits it as part of the handshake. OrbixSSL code
at the client reads the certificate from the network, checks the
validity of its contents, and either accepts or rejects the
certificate.

Figure 4: OrbixSSL Validating a Certificate

Client

Application Code

OrbixSSL checks
certificate

OrbixSSL accepts
or rejects certificate

OrbixSSL Code
1

2

Server

Application Code

OrbixSSL Code

 46 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

The default certificate validation in OrbixSSL provides full security
for the application. OrbixSSL checks:

• That the certificate is a validly constructed X.509 certificate.
• That the signature is correct for the certificate.
• That the certificate chain is validly constructed, consisting of

the peer certificate plus valid issuer certificates up to the
maximum allowed chain depth.

For some applications, it is necessary to introduce additional
validation. For example, an application might require validation
based on detailed information stored in the certificate common
name, or some other certificate data.
Using OrbixSSL, you can register a method that carries out extra
validation on certificates. When OrbixSSL receives a certificate, it
validates it in the usual way and then passes it to your custom
validation method, with an error code indicating whether the
default validation succeeded or failed. You can then use the
OrbixSSL API to examine the full contents of the certificate and
instruct OrbixSSL whether to accept or reject it.
Figure 5 illustrates how a custom validation method interacts with
OrbixSSL code during an SSL handshake.

Figure 5: Using a Custom Validation Method

Client Server

Application Code Application Code

OrbixSSL checks
certificate

OrbixSSL accepts
or rejects certificate

Validation
method
accepts
or rejects
certificate

Validation method
checks certificate

OrbixSSL Code

Validation Method OrbixSSL Code

1

23

4

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 47

Introducing Additional Validation
OrbixSSL allows you to register two objects for additional
certificate validation: one for validating certificates received from
servers, and another for validating certificates received from
clients. These two types of certificate often require different
validation at the application level.
To register an object for server certificate validation, call the
method IT_SSL.setValidateServerCallback(). This method is
defined as:

class IE.Iona.OrbixWeb.SSL.IT_SSL {
public:

public synchronized void
setValidateServerCallback(
IT_ValidateX509CertCB cb);

...
};

To register an object for server certificate validation, call the
method IT_SSL.setValidateClientCallback(). This method is
defined as:

class IE.Iona.OrbixWeb.SSL.IT_SSL {
public:

public synchronized void
setValidateClientCallback(
IT_ValidateX509CertCB cb);

...
};

The single parameter to each of these methods is an object that
implements interface IT_ValidateX509CertCB. To create a callback
object, you define a class that implements this interface. The
interface contains a single method, called validateCert() that
OrbixSSL calls when it validates a certificate.
For example, you could use the following class to create a callback
object:

import IE.Iona.OrbixWeb.SSL.*;

public class CertCallBack implements
IT_ValidateX509CertCB {

public IT_CertValidity validateCert
(IT_CertValidity systemOpinion,
IT_X509CertChain peerCertChain) {
...

}
}

To register an object of this type as a server certificate callback
object, do the following:

IT_SSL ssl = IT_SSL.init();
...

try {
CertCallBack serverValidCB =

new CertCallBack();
ssl.setValidateServerCallback(serverValidCB);

}
...

 48 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

When OrbixSSL calls your validation method, validateCert(), it
supplies two parameters. The first parameter is of type
IT_CertValidity. This parameter indicates whether the default
certificate validation succeeded or failed. The class
IT_CertValidity defines the following values:

The second parameter is of type IT_X509CertChain. This parameter
provides access to the full certificate chain. “Examining the
Contents of a Certificate” on page 48 describes how you use this
parameter to examine the contents of the peer certificate.
Your custom validation method must return an IT_CertValidity
value. If this return value is IT_SSL_VALID_NO_APP_DECISION,
OrbixSSL rejects the certificate. If the return value is
IT_SSL_VALID_YES, OrbixSSL accepts the certificate. The return
value has no effect if the first parameter passed to the method is
IT_SSL_VALID_NO.
The OrbixSSL demonstration applications, located in the OrbixSSL
demos directory, provide basic examples of creating certificate
validation methods.

Examining the Contents of a Certificate
The role of a certificate is to associate an identity with a public key
value. In more detail, a certificate includes:

• X.509 version information.
• A serial number that uniquely identifies the certificate.
• A common name that identifies the supplier.
• The public key associated with the common name.
• The name of the user who created the certificate, which is

known as the subject name.
• Information about the certificate issuer.
• The signature of the issuer.
• Information about the algorithm used to sign the certificate.
• Some optional X.509 version three extensions. For example,

an extension exists that distinguishes between CA certificates
and end-entity certificates.

IT_SSL_VALID_YES Indicates that the default certificate
validation succeeded.

IT_SSL_VALID_NO_APP_DECISION Indicates the default certificate
validation failed, but the application
can chose whether to accept or
reject the certificate.

IT_SSL_VALID_NO Indicates the default certificate
validation failed, and the application
must reject the certificate.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 49

The second parameter to your custom validation method, of type
IT_X509CertChain, provides access to the certificate chain received
by OrbixSSL. Class IT_X509CertChain is defined as follows:

class IE.Iona.OrbixWeb.SSL.IT_X509CertChain {
public:

public IT_X509CertChain();
public void add(IT_X509Cert cert);
public IT_X509Cert getCert(int pos);
public IT_X509Cert getCurrentCert();
public int getCurrentDepth();
public IT_CertError getErrorInfo();
public int numCerts();
public String toString();

};

The method numCerts() indicates the number of certificates in the
certificate chain. For example, if the peer certificate is signed by a
single, self-signed CA, this method returns a value of two. The
method getCert() returns a certificate from a particular position in
the chain, starting at one. Repeated calls to getCurrentCert()
iterate through the certificate chain.
When you call getCert() or getCurrentCert(), you receive an object
of type IT_X509Cert that represents the required certificate. Class
IT_X509Cert is defined as follows:

class IE.Iona.OrbixWeb.SSL.IT_X509Cert {
public:

public IT_X509Cert(byte certData[])
throws IT_X509BadCertException;

public IT_X509Cert(String file,
IE_Format filetype)
throws IT_X509BadCertException,
java.io.FileNotFoundException,
java.io.IOException;

public byte[] convert(IT_Format f);
public IT_ExtensionList getExtensions();
public IT_AVAList getIssuer();
public IT_UTCTime getNotAfter();
public IT_UTCTime getNotBefore();
public java.math.BigInteger getSerialNumber();
public IT_Signature getSignature();
public IT_AVAList getSubject();
public IT_PublicKeyInfo getSubjectPublicKey();
public int getVersion();
public int length(IT_Format f);
public String toString();

};

This guide provides detailed information about the methods of this
class. These methods return Java types corresponding to the
ASN.1 types of the certificate contents. For example,
IT_X509Cert.getVersion() returns an integer value that indicates
the X.509 version number in use. In accordance with the X.509
standard, a value of 0 corresponds to version one, 1 corresponds
to version two, and 2 corresponds to version three.

 50 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Working with Distinguished Names
An X.509 certificate uses ASN.1 distinguished name structures to
store information about the certificate issuer and subject. A
distinguished name consists of a series of attribute value
assertions (AVAs). Each AVA associates a value with a field from
the distinguished name.
For example, the distinguished name for a certificate issuer could
be represented in string format as follows:

/C=IE/ST=Co.
Dublin/L=Dublin/O=ABigBank/OU=PD/CN=ABigBank

In this example, AVAs are separated by the / character. The first
field in the distinguished name is C, representing the country of
the issuer, and the corresponding value is the country code IE.
This example distinguished name contains six AVAs.
When you call the methods IT_X509Cert.getIssuer() or
IT_X509Cert.getSubject(), OrbixSSL returns the corresponding
distinguished name as an object of type IT_AVAList. Class
IT_AVAList is defined as follows:

class IE.Iona.OrbixWeb.SSL.IT_AVAList {
public:

public IT_AVAList();
public void add(IT_OID_Tag oid, IT_AVA ava);
public byte[] convert(IT_Format f);
public IT_AVA getAVA(int pos);
public IT_AVA getAVAByOID(int seq[]);
public IT_AVA getAVAByOIDTag(IT_OID_Tag t);

public int getNumAVAs();
public int length(IT_Format f);

};

To retrieve a particular AVA from a distinguished name, use the
IT_AVAList object that represents the name. Each AVA in a
distinguished name has an associated ASN.1 object identifier
(OID).
You can retrieve a particular field using any one of the following
three methods:

getAVA() Returns an AVA from a particular position in
the distinguished name. To use this, you
must understand the contents of the
distinguished name that you receive.

getAVAByOID() Returns an AVA associated with a particular
OID. To use this, you must know the OID of
the field you require.

getAVAByOIDTag() Returns an AVA associated with a particular
OID, but uses the tags defined in type
IT_OIDTag instead of the actual OID. Using
this method, you can access some of the
commonly required distinguished name fields
without knowing the corresponding OIDs or
positions in the distinguished name.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 51

Each of these functions returns an object of type IT_AVA. You can
then use the methods of class IT_AVA to convert the AVA to a
number of different formats, such as string format or DER format,
and retrieve the associated OID. Refer to class IT_AVA on page 63
for more details.

Working with X.509 Extensions
Some X.509 version three certificates include extensions. These
extensions can contain several different types of information. If
you wish to extract information from the extensions included in a
certificate, call IT_X509Cert.getExtensions() on the certificate
object.
This method returns an object of type of type IT_ExtensionList.
This class is defined as follows:

class IT_ExtensionList {
public:

virtual int convert(char* buf, IT_Format f);
virtual unsigned int getNumExtensions();
virtual int getExtension(int pos,

IT_Extension& retExt);
virtual int getExtensionByOID(IT_OID oid);
virtual int getExtensionByOIDTag(

IT_OID_Tag oid);
virtual int length(IT_Format f);

};

Like AVAs, each possible extension is associated with an ASN.1
OID. Given a list of extensions, you can retrieve the extension you
require using any one of the following three methods:

Each of these functions returns an object of type IT_Extension. You
can then use the methods in class IT_Extension to convert the
extension information to a number of different formats, such as
string format or DER format, and retrieve the associated OID.

getExtension() Returns an extension from a particular
position in the extension list. To use this,
you must understand the list of
extensions included in the certificate.

getExtensionByOID() Returns an extension associated with a
particular OID. To use this, you must
know the OID of the extension you
require. Use this method only when the
extension you require is not available
from getExtensionByOIDTag().

getExtensionByOIDTag() Returns an extension associated with a
particular OID, but uses the tags defined
in type IT_OIDTag instead of the actual
OID. Using this method, you can access
some extensions without knowing the
corresponding OIDs or positions in the
extension list.

 52 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Example of a Certificate Validation Function
This section describes a simple validation function, registered in
an OrbixSSL client, that prints the common name (CN) of a server
to which the client connects. The code for this function is as
follows:

...
import IE.Iona.OrbixWeb.SSL.*;

public class CertCallBack implements
IT_ValidateX509CertCB {

public IT_CertValidity validateCert
(IT_CertValidity systemOpinion,

 IT_X509CertChain peerCertChain) {

IT_CertValidity certValidity =
systemOpinion;

if (systemOpinion.equals
(IT_CertValidity.IT_SSL_VALID_YES)) {
if (peerCertChain.getCurrentDepth() == 0){

IT_X509Cert peerCert =
peerCertChain.getCurrentCert();

1 IT_AVAList subject = peerCert.getSubject();
2 IT_AVA commonName = subject.getAVAByOIDTag

(IT_OID_Tag.IT_OIDT_commonName);
System.out.println

("Common Name is" + commonName);
String acceptableServerCN =

"OrbixSSL for Java Demo " +
"Certificate(no warranty!)";

String daemonCN = "Orbix";
String commonNameStr =

commonName.toString();
if (commonNameStr.equals

(acceptableServerCN) ||
commonNameStr.equals (daemonCN)) {
certValidity =

IT_CertValidity.IT_SSL_VALID_YES;
}
else {

certValidity =
IT_CertValidity.IT_SSL_VALID_NO;

}
}

}

return certValidity;
}

}

The code is explained as follows:
1. The getSubject() method returns the subject’s distinguished

name field from an X.509 certificate.
2. The common name field is extracted from the subject name.

The common name field is the name of the entity to whom the
certificate was issued.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 53

To specify that this class validates incoming server certificates,
include the following code in the client:
CertCallBack certCallback = new CertCallBack();
_CORBA.Orbix.SSL.setValidateServerCertCallback(certCallback);

 54 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 55

Managing Pass Phrases
Every server secured with OrbixSSL has an associated certificate
and private key. To access its private key, and use it to encrypt
messages, a server must retrieve the associated pass phrase. This
chapter shows you how to use OrbixSSL administration to supply
pass phrases to servers.

As described in the chapter “Getting Started with OrbixSSL”, a
programmer can use the OrbixSSL API to specify the pass phrase
associated with the private key of any OrbixSSL program. For
example, the programmer might request the pass phrase from the
user and then supply this to OrbixSSL.
One problem with this approach is that many OrbixSSL servers are
launched automatically by the Orbix daemon. Ideally, such
servers would not require user intervention to obtain a pass
phrase.
For this reason, OrbixSSL provides an administrative solution to
the problem of providing private key pass phrases to servers. The
OrbixSSL server key distribution mechanism (KDM) is a utility that
enables you to supply pass phrases to servers at runtime.

Using a Central Repository for Servers
The OrbixSSL server key distribution mechanism (KDM) allows an
administrator to maintain a database of servers and their
associated private key pass phrases. When the Orbix daemon
launches an OrbixSSL server, OrbixSSL uses the KDM to retrieve
the pass phrase.
This section describes the KDM in detail. It explains how the KDM
works, how you can maintain the database of server pass phrases,
and how you can replace the KDM with other key distribution
systems.

 56 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Overview of the Key Distribution Mechanism
The KDM is a single process that runs on each server host in your
secure system. The KDM stores an encrypted repository of server
names and their associated pass phrases. When a client connects
to an OrbixSSL server, the Orbix daemon uses the KDM to provide
the correct pass phrase to the server.

Figure 6: Role of the Key Distribution Mechanism

As shown in Figure 6, the following events happen when a client
connects to a server that uses the KDM:
1. The client contacts the Orbix daemon on the server host.
2. The Orbix daemon requests security details for the server

from the KDM.
3. The Orbix daemon launches the server, and simultaneously

sends the pass phrase to the server.
All communications between the Orbix daemon and the KDM use
SSL security. To ensure that only the Orbix daemon has access to
server pass phrases, the KDM always uses client authentication. If
another process requests a pass phrase from the KDM, this
authentication fails. The configuration variable IT_KDM_CLIENT
COMMON _NAMES described on page 58 specifies which clients can talk
to the KDM.
Communications between the Orbix daemon and the server is
secure. This ensures that an external process cannot read the
server pass phrase when the daemon transfers it to the server
process.

Server Host

Client Host

Client

Orbix Daemon

Server

1 2

3

KDM
Repository

KDM

4

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 57

Configuring the Key Distribution Mechanism
Before running the KDM, add the following settings to the
OrbixSSL configuration file on your server host:

OrbixSSL {
IT_KDM_ENABLED = "TRUE";
IT_KDM_REPOSITORY = "repository directory";
IT_KDM_SERVER_PORT = "server port";

};

KDM {
server {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +

"KDM server cert file";
};
putkdm {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"KDM client cert file";

};
};

These configuration settings do the following:

OrbixSSL.IT_KDM_ENABLED Enables the KDM. If the value of
this variable is TRUE, all
automatically launched servers
on the host use the KDM.
Otherwise, no servers use the
KDM.

OrbixSSL.IT_KDM_REPOSITORY Specifies the absolute path of
the directory in which the KDM
stores its database of pass
phrases. The user that runs the
KDM should have full read and
write access to this directory.

OrbixSSL.IT_KDM_SERVER_PORT Specifies the port number on
which the KDM listens for
incoming communications. You
can use any available port for
this value.

KDM.server.IT_CERTIFICATE_FILE Specifies the certificate file that
the KDM server should use to
prove its identity. If you are
using the OrbixSSL
demonstration certificates, set
this variable to the file
services/kdm_server in the
OrbixSSL certificates directory.

 58 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Configuring Client Authentication
To ensure that the KDM supplies accepts pass phrases from the
putkdm utility only and supplies pass phrases to the Orbix daemon
only, the KDM server always uses client authentication. To
configure client authentication, add the following setting to the
OrbixSSL configuration file:

OrbixSSL {
IT_KDM_CLIENT_COMMON_NAMES =

"Orbix daemon CN, putkdm CN";
};

Replace Orbix daemon CN with the common name from the Orbix
daemon certificate. Replace putkdm CN with the common name
from the certificate used by putkdm. For example, if you are using
the OrbixSSL demonstration certificates, the required values are
as follows:

OrbixSSL {
IT_KDM_CLIENT_COMMON_NAMES =

"Orbix, KDM Client";
};

If you have replaced the demonstration certificates, these
common names must be the same as those you entered when
creating your Orbix daemon and putkdm certificates.

Running the Key Distribution Mechanism
The KDM is an OrbixSSL server that the Orbix daemon contacts
using an IDL interface. The KDM server executable is called kdm
and is located in the bin directory of your installation.
Although the KDM is an OrbixSSL server, it is unlike a normal
server in one respect: you can run the KDM before running the
Orbix daemon. The KDM must be started before any automatically
launched secure servers. To run the KDM:
1. Add the OrbixSSL bin directory to your path.
2. Run the following command:

kdm

3. The KDM requests the pass phrase associated with its
certificate.
If the KDM server uses the demonstration certificate
services/kdm_server, enter demopassword as the pass phrase. If
the KDM uses another certificate, enter the pass phrase for
the associated private key.

KDM.putkdm.IT_CERTIFICATE_FILE Specifies the certificate file that
the KDM utility putkdm should use
to prove its identity to the KDM
server. If you are using the
OrbixSSL demonstration
certificates, set this variable to
the file services/kdm_client in
the OrbixSSL certificates
directory.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 59

Maintaining the Database
Before the Orbix daemon launches a server that uses the KDM,
you must ensure that the server has a corresponding entry in the
KDM database. To add an entry to the database, use the putkdm
command:

putkdm server_name pass_phrase
The server name must match the name used to register the server
in the Implementation Repository. The private key pass phrase
must be at least six characters in length.

Verifying the Integrity of Server Executables
As an optional feature, the KDM allows you to ensure that the
Orbix daemon only supplies pass phrases to the correct server
executables. This prevents a malicious user from replacing a
server executable with another program.
To support this feature, OrbixSSL provides a command-line utility,
called ccsit, that takes a server executable file as input and
outputs a cryptographic checksum based on the contents of the
file. If the file is changed, the checksum becomes invalid.
Before running the ccsit utility, add the following settings to the
OrbixSSL configuration file:

OrbixSSL {
IT_CHECKSUMS_ENABLED = "TRUE";
IT_CHECKSUMS_REPOSITORY = "checksums directory";

};

Replace checksums directory with a directory that can contain the
checksums created by ccsit. In a production system, limit write
access to your checksums directory to a single trusted user.
To register a checksum for a server, run the ccsit utility as
follows:

ccsit server_file server_name
Replace server_file with the fully qualified name of the server
executable. Replace server_name with the name used to register
the server in the Implementation Repository.

 60 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Using the Key Distribution Mechanism
When the Orbix daemon launches a server and supplies its pass
phrase using the KDM, it is not necessary for the server to call the
API function IT_SSL::setPrivateKeyPassword(). If the server calls
this function, it overrides the value supplied by the KDM. For
information about how to write server code that uses the KDM
when available, but supplies a password explicitly when the KDM
is not available, refer to “Specifying the Private Key File and Pass
Phrase” on page 33.
An IT_SSL object can use the hasPassword() method to determine
whether a KDM password is available. For example, if an IT_SSL
object sslObj has been initialized, the following code sample can
make use of KDM:
if(!sslObj.hasPassword())
{

read_password(): //user supplied
}
else
{

//do nothing unless you want to override the
//KDM-supplied password

}

Part IV
OrbixSSL Java

Reference

In this part

This part contains the following:

Class IE.Iona.OrbixWeb.SSL.IT_AVA page 63

Class IE.Iona.OrbixWeb.SSL.IT_AVAList page 65

Class IE.Iona.OrbixWeb.SSL.IT_CertError page 69

Class IE.Iona.OrbixWeb.SSL.IT_CertValidity page 71

Class IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec page 73

Class IE.Iona.OrbixWeb.SSL.IT_Extension page 75

Class IE.Iona.OrbixWeb.SSL.IT_ExtensionList page 77

Class IE.Iona.OrbixWeb.SSL.IT_Format page 81

Class IE.Iona.OrbixWeb.SSL.IT_OID page 83

Class IE.Iona.OrbixWeb.SSL.IT_OID_Tag page 85

Class IE.Iona.OrbixWeb.SSL.IT_PublicKeyAlgorithm page 89

Class IE.Iona.OrbixWeb.SSL.IT_PublicKeyInfo page 91

Class IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory page 93

Class IE.Iona.OrbixWeb.SSL.IT_Signature page 95

Class IE.Iona.OrbixWeb.SSL.IT_SignatureAlgType page 97

Class IE.Iona.OrbixWeb.SSL.IT_SSL page 99

Class IE.Iona.OrbixWeb.SSL.IT_SSLCacheOptions page 117

Class IE.Iona.OrbixWeb.SSL.IT_SSLCipherSuite page 119

Class IE.Iona.OrbixWeb.SSL.IT_SSLException page 123

Class IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions page 127

Class IE.Iona.OrbixWeb.SSL.IT_UTCTime page 129

Interface IE.Iona.OrbixWeb.SSL.IT_ValidateX509CertCB page 131

Class IE.Iona.OrbixWeb.SSL.IT_X509BadCertException page 133

Class IE.Iona.OrbixWeb.SSL.IT_X509Cert page 135

Class IE.Iona.OrbixWeb.SSL.IT_X509CertChain page 139

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 63

Class IE.Iona.OrbixWeb.SSL.IT_AVA
Synopsis As described in the chapter “Validating Certificates”, an IT_AVAList

is an abstraction of a distinguished name from a certificate. An
IT_AVAList consists of a number of IT_AVA objects.
Individual IT_AVA objects represent an element of the
distinguished name such as the common name field (CN) or
organization unit (OU). You can retrieve a desired IT_AVA object
can using the IT_AVAList class.
IT_AVA objects can be converted to a number of different forms
such as string format or DER format. For more information on
these formats, refer to convert() on page 63 and length() on
page 63.

Java class IE.Iona.OrbixWeb.SSL.IT_AVA {
public:

public byte[] convert(IT_Format f);
public int length(IT_Format f);
public String toString();

};

IT_AVA.convert()

Synopsis public byte[] convert(IT_Format f);

Description This method converts data (Attribute Value Assertions or AVAs) to
an another data format.

Parameters

Return Value Returns an array of bytes that store the result of the conversion.
Returns null if the required conversion is not supported.

IT_AVA.length()

Synopsis public int length(IT_Format f);

Description This method obtains the number of bytes required to store the
result of converting to the format specified.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

IT_AVA.toString()

Synopsis public String toString();

Description This method returns a string representation of the object. It
overrides toString() in class Object.

f The format of the required conversion. Currently, the only
format supported is IT_Format.IT_FMT_DER.

f The format of the required conversion. Currently, the only
format supported is IT_Format.IT_FMT_DER.

 64 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 65

Class IE.Iona.OrbixWeb.SSL.IT_AVAList
Synopsis An IT_AVA_List consists of a number of IT_AVA objects and is an

abstraction of the distinguished name fields in a certificate. This
class provides a number of methods for obtaining individual IT_AVA
objects.
A distinguished name is composed of a number of Attribute Value
Assertions (AVAs). Each IT_AVA instance represents one
component of the distinguished name. IT_AVA instances may be
selected from an IT_AVAList using IT_OID_Tag values as keys, or by
using an integer array that represents the ASN.1 object identifier.
It is also possible to iterate over the list.

Java class IE.Iona.OrbixWeb.SSL.IT_AVAList {
public:

public IT_AVAList();
public void add(IT_OID_Tag oid, IT_AVA ava);
public byte[] convert(IT_Format f);
public IT_AVA getAVA(int pos);
public IT_AVA getAVABYOID(int seq[]);
public IT_AVA getAVAByOIDTag(IT_OID_Tag t);
public int getNumAVAs();
public int length(IT_Format f);

};

See Also IE.Iona.OrbixWeb.SSL.IT_AVA
IE.Iona.OrbixWeb.SSL.IT_Format
IE.Iona.OrbixWeb.SSL.IT_OID_Tag

IT_AVAList.IT_AVAList()

Synopsis public IT_AVAList();

Description This method constructs an empty AVA list.

IT_AVAList.add()

Synopsis public void add(IT_OID_Tag oid, IT_AVA ava);

Description This method adds an AVA to the list using the supplied ASN.1
object identifier as a key.

Parameters

oid The object identifier associated with the AVA.
ava The AVA instance to be added.

 66 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_AVAList.convert()

Synopsis public byte[] convert(IT_Format f);

Description This method converts to an alternate data format.

Parameters

Return Value Returns an array of bytes that store the result of the conversion.
Returns null if the required conversion is not supported.

See Also class IE.Iona.OrbixWeb.SSL.IT_Format

IT_AVAList.getAVA()

Synopsis public IT_AVA getAVA(int pos);

Description This method obtains the AVA at the specified index.

Parameters

Return Value Returns the AVA at the index pos, if pos is a valid index. Returns
null otherwise.

IT_AVAList.getAVAByOID()

Synopsis public IT_AVA getAVAByOID(int seq[]);

Description This method obtains the IT_AVA element of the IT_AVAList that has
the requested object identifier. An ASN.1 object identifier is a
sequence of numbers that identify a component in a hierarchical
structure.

Parameters

Return Value Returns the AVA associated with the OID seq. Returns null if there
is no AVA associated with the supplied OID.

See Also IE.Iona.OrbixWeb.SSL.IT_OID
IE.Iona.OrbixWeb.SSL.IT_OID_Tag
IE.Iona.OrbixWeb.SSL.IT_AVAList.getAVAByOIDTag()
IE.Iona.OrbixWeb.SSL.IT_AVA.OID()

IT_AVAList.getAVAByOIDTag()

Synopsis public IT_AVA getAVAByOIDTag(IT_OID_Tag t);

Description This method obtains the IT_AVA that corresponds to the requested
IT_OID_Tag value.

Parameters

Return Value Returns the AVA associated with the OID t. Returns null if there is
no AVA associated with t.

f The format of the required conversion. Currently, the only
format supported is IT_Format.IT_FMT_DER.

pos The index position of the required AVA.

seq An ASN.1 OID.

t A tag corresponding to an ASN.1 OID.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 67

IT_AVAList.getNumAVAs()

Synopsis public int getNumAVAs();

Description This method obtains the number of AVA instances contained in
this IT_AVAlist.

Return Value Returns the number of AVA elements.

IT_AVAList.length()

Synopsis public int length(IT_Format f);

Description This method returns the number of bytes required to store the
result of converting to a specified format.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

See Also class IE.Iona.OrbixWeb.SSL.IT_Format

f The format of the required conversion. Currently, the only
format supported is IT_Format.IT_FMT_DER.

 68 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 69

Class IE.Iona.OrbixWeb.SSL.IT_CertError
Synopsis This class is used to obtain error information gathered during

certificate chain processing.

Java class IE.Iona.OrbixWeb.SSL.IT_CertError {
public:

public IT_CertError(int errorCode, int depth);
public int depth;
public int errorCode;

};

IT_CertError.IT_CertError()

Synopsis public IT_CertError(int errorCode, int depth);

Description Constructs an IT_CertError instance that holds error information
gathered during certificate chain processing.

Parameters

See Also IE.Iona.OrbixWeb.SSL.IT_ValidateX509CertCB
IE.Iona.OrbixWeb.SSL.IT_X509CertChain.getErrorInfo()
IE.Iona.OrbixWeb.SSL.IT_SSL.setServerCertValidationCB()
IE.Iona.OrbixWeb.SSL.IT_SSL.setClientCertValidationCB()

depth This field refers to the depth in the certificate chain at
which point the error was encountered.

errorCode This field contains the error code that OrbixSSL has
associated with the certificate chain during validation
of the certificate.
Refer to Class IE.Iona.OrbixWeb.SSL.IT_Extension
for a complete list of error codes.

 70 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 71

Class IE.Iona.OrbixWeb.SSL.IT_CertValidity
Synopsis This class maintains constants used to indicate acceptance or

rejection of a peer certificate during certificate validation.
Specifically, it is used in certificate validation callbacks where
OrbixSSL passes an instance of this class to the callback. If this
instance indicates that OrbixSSL did not accept the certificate, you
can get more information by calling
IT_X509CertChain.getErrorInfo().

Java class IE.Iona.OrbixWeb.SSL.IT_CertValidity {
public:

public static final IT_CertValidity IT_SSL_VALID_NO;
public static final IT_CertValidity

IT_SSL_VALID_NO_APP_DECISION;
public static final IT_CertValidity IT_SSL_VALID_YES;

};

See Also IE.Iona.OrbixWeb.SSL.IT_ValidateX509CertCB

IT_CertValidity.IT_SSL_VALID_NO

Synopsis public static final IT_CertValidity IT_SSL_VALID_NO;

Description IT_SSL_VALID_NO indicates that OrbixSSL has rejected the
certificate.

IT_CertValidity.IT_SSL_VALID_NO_APP_DECISION

Synopsis public static final IT_CertValidity
IT_SSL_VALID_NO_APP_DECISION;

Description IT_SSL_VALID_NO_APP_DECISION indicates that OrbixSSL has rejected
the certificate, but the application can choose to accept it.

IT_CertValidity.IT_SSL_VALID_YES

Synopsis public static final IT_CertValidity IT_SSL_VALID_YES;

Description IT_SSL_VALID_YES indicates that OrbixSSL has accepted the
certificate, but the application can choose to reject it.

 72 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 73

Class
IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec
Synopsis This class represents the name of an IDL interface or server and

whether it is designated secure or insecure.

Java class IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec {
public:

IT_CommsSecuritySpec(String, IT_Sec_CommsCategory);
public string id;
public IT_SecCommsCategory commsCat;

};

See Also IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory

IT_CommsSecuritySpec.IT_CommsSecuritySpec()

Synopsis public IT_CommsSecuritySpec
(String id, IT_Sec_CommsCategory commsCat);

Description This method constructs IT_CommsSecuritySpec with the specified
interface and security.

Parameters

See Also IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory

id This parameter specifies the name of the target IDL
interface or server.

commsCat This parameter specifies whether the interface or server
is secure or insecure.

 74 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 75

Class IE.Iona.OrbixWeb.SSL.IT_Extension
Synopsis This class and class IE.Iona.OrbixWeb.SSL.IT_ExtensionList provide

the OrbixSSL developer with an interface to any X.509 version
three extensions that an X.509 certificate can include. The
extension may be critical or it may be optional. The method
getExtensions() in class IE.Iona.OrbixWeb.SSL.IT_X509Cert is used
to obtain an IT_ExtensionList object. This class has a number of
methods for retrieving individual extensions.
Class IE.Iona.OrbixWeb.SSL.IT_Extension allows you to access the
data for an extension. Using the convert() and length() methods
in class IE.Iona.OrbixWeb.SSL.IT_Extension, you can convert the
extension data into a number of representations.

Java class IE.Iona.OrbixWeb.SSL.IT_Extension {
public:

public IT_Extension(byte data[],
boolean critical, int asnOid[]);

public byte[] convert(IT_Format f);
public boolean critical();
public IT_OID oid();
public int length(IT_Format f);

};

IT_Extension.IT_Extension()

Synopsis IT_Extension(byte data[], boolean critical, int asnOid[]);

Description This method constructs an extension containing the specified data,
whether the extension is critical, and the specified ASN.1 object
identifier. The data value should be DER encoded.

Parameters

IT_Extension.convert()

Synopsis public byte[] convert(IT_Format f);

Description This method converts extension data to an alternate data format.

Parameters

Return Value Returns an array of bytes that store the result of the conversion.
Returns null if the required conversion is not supported.

data The data to be added to the X.509 certificate.
critical This parameter should be true if the extension is

required; false if the extension is optional.
asnOID The ASN.1 object identifier.

f The format of the required conversion.

 76 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_Extension.critical()

Synopsis public boolean critical();

Description This method determines whether or not this extension has been
designated as critical. A critical extension must be present in the
certificate.

IT_Extension.length()

Synopsis public int length(IT_Format f);

Description This method obtains the number of bytes required to store the
result of converting to the specified format.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

IT_Extension.oid()

Synopsis public IT_OID oid();

Description This method obtains the ASN.1 object identifier associated with
this extension.

Return Value Returns an instance of IT_OID that makes the ASN.1 object
identifier available as an array of int.

f The format of the required conversion.

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 77

Class IE.Iona.OrbixWeb.SSL.IT_ExtensionList
Synopsis This class and class IE.Iona.OrbixWeb.SSL.IT_Extension provide the

OrbixSSL developer with an interface to any X.509 version three
extensions that an X.509 certificate can include.
The method getExtensions() in class
IE.Iona.OrbixWeb.SSL.IT_X509Cert is used to obtain an
IT_ExtensionList object. This class has a number of methods for
retrieving individual IT_Extension extensions.
Class IE.Iona.OrbixWeb.SSL.IT_Extension provides an interface to
accessing the data for one extension. Class
IE.Iona.OrbixWeb.SSL.IT_ExtensionList provides methods to
retrieve IT_Extension instances using object identifiers, and using
integer indices.

Java class IE.Iona.OrbixWeb.SSL.IT_ExtensionList {
public:

public IT_ExtensionList();
public void add(IT_OID_Tag tag, IT_Extension extension);
public byte[] convert(IT_Format f);
public IT_Extension getExtension(int pos);
public IT_Extension getExtensionByOID(int seq[]);
public IT_Extension getExtensionByOIDTag(IT_OID_Tag t);
public int getNumExtensions();
public int length(IT_Format f);

};

IT_ExtensionList.IT_ExtensionList()

Synopsis public IT_ExtensionList();

Description Constructs an empty extension list.

IT_ExtensionList.add()

Synopsis public void add(IT_OID_Tag tag, IT_Extension extension);

Description This method adds an extension associated with the supplied object
identifier to the list.

Parameters

tag The object identifier to be associated with extension.
This object identifier may be used later to retrieve
the extension instance.

extension The extension to store in the list.

 78 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_ExtensionList.convert()

Synopsis public byte[] convert(IT_Format f);

Description This method converts to an alternate data format.

Parameters

Return Value Returns an array of bytes that store the result of the conversion.
Returns null if the required conversion is not supported.

See Also class IE.Iona.OrbixWeb.SSL.IT_Format

IT_ExtensionList.getExtension()

Synopsis public IT_Extension getExtension(int pos);

Description This method obtains the extension at the specified index in the
list.

Parameters

Return Value Returns the extension at index pos, if pos is a valid index. Returns
null otherwise.

IT_ExtensionList.getExtensionByOID()

Synopsis public IT_Extension getExtensionByOID(int seq[]);

Description This method obtains the extension associated with the specified
object identifier. This differs from getExtensionsByOIDTag() in that
the object identifier is specified as an int array.

Parameters

Return Value Returns the extension associated with seq. Returns null if there is
no extension associated with the supplied object identifier.

See Also IE.Iona.OrbixWeb.SSL.IT_OID
IE.Iona.OrbixWeb.SSL.IT_OID_Tag
IE.Iona.OrbixWeb.SSL.IT_ExtensionList.getExtension()
IE.Iona.OrbixWeb.SSL.IT_Extension.OID()

f The format of the required conversion.
Currently, no formats are supported. If conversion is
required, individual extensions should be retrieved and
converted instead.

pos The index position of the required extension in this list.

seq The object identifier of the extension required.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 79

IT_ExtensionList.getExtensionByOIDTag()

Synopsis public IT_Extension getExtensionByOIDTag(IT_OID_Tag t);

Description This method obtains the extension associated with the specified
object identifier.

Parameters

Return Value Returns the extension associated with t. Returns null if there is no
extension associated with the supplied object identifier.

See Also IE.Iona.OrbixWeb.SSL.IT_OID
IE.Iona.OrbixWeb.SSL.IT_OID_Tag
IE.Iona.OrbixWeb.SSL.IT_ExtensionList.getExtension()
IE.Iona.OrbixWeb.SSL.IT_Extension.OID()

IT_ExtensionList.getNumExtensions()

Synopsis public int getNumExtensions();

Description This method obtains the number of extension instances in the list.

Return Value Returns the number of extension instances in the list.

IT_ExtensionList.length()

Synopsis public int length(IT_Format f);

Description This method obtains the number of bytes required to store the
result of converting to a specified format.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

See Also IE.Iona.OrbixWeb.SSL.IT_Format
IE.Iona.OrbixWeb.SSL.IT_ExtensionList.convert()

t The object identifier of the extension required.

f The format of the required conversion.
Currently, no formats are supported. Individual extensions
should be retrieved and converted instead.

 80 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 81

Class IE.Iona.OrbixWeb.SSL.IT_Format
Synopsis This class maintains a list of options for the convert() and length()

methods found in several OrbixSSL classes. Each option signifies a
different type of conversion that convert() can implement. When
passed to the length() method, the number of bytes required to
store the result of the required conversion is returned.

Java class IE.Iona.OrbixWeb.SSL.IT_Format {
public:

public static final IT_Format IT_FMT_DER;
public static final IT_format IT_FMT_PEM;
public String toString();

};

IT_Format.IT_FMT_DER

Synopsis public static final IT_Format IT_FMT_DER;

Description This option represents DER encoding; that is, bytes of raw data in
ASN.1 (DER) format.

IT_Format.IT_FMT_PEM

Synopsis public static final IT_Format IT_FMT_PEM;

Description This option represents PEM format. In this format, the certificate
description precedes the certificate PEM data. PEM format is an
ASCII encoding that is suitable for transmission in e-mail.

IT_Format.toString()

Synopsis public String toString();

Description This method returns a string representation of the object. It
overrides toString() in class Object.

 82 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 83

Class IE.Iona.OrbixWeb.SSL.IT_OID
Synopsis This class is used by OrbixSSL to hold information identifying an

ASN.1 object. An ASN.1 object identifier is a sequence of integer
values used to identify certificate components. ASN.1 is the
low-level format in which X.509 certificates are stored. This class
maintains an array of integers corresponding to the ASN.1
sequence of integers in an object identifier (OID).
OrbixSSL handles object identifiers as follows:
1. It provides an IE.Iona.OrbixWeb.SSL.IT_OID_Tag class which

has values for a number of common objects. For example,
IT_OIDT_commonName identifies the common name (CN)
component of a subject field in a certificate. Use of this class
is sufficient for most OrbixSSL developer requirements.

2. If class IE.Iona.OribxWeb.SSL.IT_OID_Tag does not list the
desired OIDs, developers can directly supply the sequence of
integers that corresponds to an OID.

For simplicity, the data members of this class are made public.

Java class IE.Iona.OrbixWeb.SSL.IT_OID {
public:

public int OID[];
public IT_OID_Tag tag;

};

IT_OID.IT_OID()

Synopsis public IT_OID(int oid[]);

Description This method constructs an OID with the specified ASN.1 object
identifier sequence.

See Also IE.Iona.OrbixWeb.SSL.IT_OID_Tag

 84 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 85

Class IE.Iona.OrbixWeb.SSL.IT_OID_Tag
Synopsis IT_OID_Tag is a value that is used to identify an OID. Accessing a

certificate component using an IT_OID_Tag is more convenient than
using a raw sequence of integers.

Java class IE.Iona.OrbixWeb.SSL.IT_OID_Tag {
public:

public static final IT_OID_Tag ASNOidToITOid(int ANSOid[]);
public static final IT_Oid_Tag ASNOidToITOid(String ASNOid);
public String toString();

public static final IT_OID_Tag
IT_OIDT_authority_key_identifier;

public static final IT_OID_Tag IT_OIDT_basic_constraints;
public static final IT_OID_Tag IT_OIDT_bf_cbc;
public static final IT_OID_Tag IT_OIDT_bf_cfb64;
public static final IT_OID_Tag IT_OIDT_bf_ecb;
public static final IT_OID_Tag IT_OIDT_bf_ofb64;

public static final IT_OID_Tag IT_OIDT_certificate_policies;
public static final IT_OID_Tag IT_OIDT_commonName;
public static final IT_OID_Tag IT_OIDT_countryName;
public static final IT_OID_Tag IT_OIDT_crl_number;

public static final IT_OID_Tag IT_OIDT_des_cbc;
public static final IT_OID_Tag IT_OIDT_des_cfb64;
public static final IT_OID_Tag IT_OIDT_des_ecb;
public static final IT_OID_Tag IT_OIDT_des_ede;

public static final IT_OID_Tag IT_OIDT_des_ede3;
public static final IT_OID_Tag IT_OIDT_des_ede3_cbc;
public static final IT_OID_Tag IT_OIDT_des_ede3_cfb64;
public static final IT_OID_Tag IT_OIDT_des_ede3_ofb64;

public static final IT_OID_TAG IT_OIDT_des_ede_cbc;
public static final IT_OID_Tag IT_OIDT_des_ede_cfb64;
public static final IT_OID_Tag IT_OIDT_des_ede_ofb64;
public static final IT_OID_Tag IT_OIDT_des_ofb64;
public static final IT_OID_Tag IT_OIDT_desx_cbc;
public static final IT_OID_Tag IT_OIDT_dhKeyAgreement;
public static final IT_OID_Tag IT_OIDT_dsa;
public static final IT_OID_Tag IT_OIDT_dsaWithSHA;
public static final IT_OID_Tag IT_OIDT_dsaWithSHA1;

public static final IT_OID_Tag IT_OIDT_idea_cbc;
public static final IT_OID_Tag IT_OIDT_idea_cfb64;
public static final IT_OID_Tag IT_OIDT_idea_ecb;
public static final IT_OID_Tag IT_OIDT_idea_ofb64;

public static final IT_OID_Tag IT_OIDT_issuer_alt_name;
public static final IT_OID_Tag IT_OIDT_key_usage;
public static final IT_OID_Tag IT_OIDT_ld_ce;
public static final IT_OID_Tag IT_OIDT_localityName;

public static final IT_OID_Tag IT_OIDT_md2;
public static final IT_OID_Tag IT_OIDT_md2WithRSAEncryption;
public static final IT_OID_Tag IT_OIDT_md5;
public static final IT_OID_Tag IT_OIDT_md5WithRSAEncryption;

 86 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

public static final IT_OID_Tag IT_OIDT_mdc2;
public static final IT_OID_Tag IT_OIDT_mdc2WithRSA;

public static final IT_OID_Tag IT_OIDT_netscape;
public static final IT_OID_Tag IT_OIDT_netscape_base_url;
public static final IT_OID_Tag

IT_OIDT_netscape_ca_policy_url;
public static final IT_OID_Tag

IT_OIDT_netscape_ca_revocation_url;

public static final IT_OID_Tag
IT_OIDT_netscape_cert_extension;
public static final IT_OID_Tag

IT_OIDT_netscape_cert_sequence;
public static final IT_OID_Tag IT_OIDT_netscape_cert_type;
public static final IT_OID_Tag IT_OIDT_netscape_comment;
public static final IT_OID_Tag IT_OIDT_netscape_data_type;
public static final IT_OID_Tag IT_OIDT_netscape_renewal_url;
public static final IT_OID_Tag

IT_OIDT_netscape_revocation_url;
public static final IT_OID_Tag

IT_OIDT_netscape_ssl_server_name;

public static final IT_OID_Tag
IT_OIDT_organisationalUnitName;
public static final IT_OID_Tag IT_OIDT_organisationName;
public static final IT_OID_Tag IT_OIDT_pbeWithMD2AndDES_CBC;
public static final IT_OID_Tag IT_OIDT_pbeWithMD5AndDES_CBC;
public static final IT_OID_Tag IT_OIDT_pbeWithSHA1AndRC4;
public static final IT_OID_Tag

 IT_OIDT_pbeWithSHA1AndRC2_CBC;
public static final IT_OID_Tag IT_OIDT_pkcs;
public static final IT_OID_Tag IT_OIDT_pkcs3;

public static final IT_OID_Tag IT_OIDT_pkcs7;
public static final IT_OID_Tag IT_OIDT_pkcs7_data;
public static final IT_OID_Tag IT_OIDT_pkcs7_digest;
public static final IT_OID_Tag IT_OIDT_pkcs7_encrypted;
public static final IT_OID_Tag IT_OIDT_pkcs7_enveloped;
public static final IT_OID_Tag IT_OIDT_pkcs7_signed;
public static final IT_OID_Tag

IT_OIDT_pkcs7_signedAndEnveloped;

public static final IT_OID_Tag IT_OIDT_pkcs9;
public static final IT_OID_Tag

IT_OIDT_pkcs9_challengePassword;
public static final IT_OID_Tag IT_OIDT_pkcs9_contentType;
public static final IT_OID_Tag

 IT_OIDT_pkcs9_countersignature;
public static final IT_OID_Tag IT_OIDT_pkcs9_emailAddress;
public static final IT_OID_Tag

IT_OIDT_pkcs9_extCertAttributes;
public static final IT_OID_Tag IT_OIDT_pkcs9_messageDigest;
public static final IT_OID_Tag IT_OIDT_pkcs9_signingTime;
public static final IT_OID_Tag

IT_OIDT_pkcs9_unstructuredAddress;
public static final IT_OID_Tag

IT_OIDT_pkcs9_unstructuredName;

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 87

public static final IT_OID_Tag
IT_OIDT_private_key_usage_period;

public static final IT_OID_Tag IT_OIDT_rc2_cbc;
public static final IT_OID_Tag IT_OIDT_rc2_cfb64;
public static final IT_OID_Tag IT_OIDT_rc2_ecb;
public static final IT_OID_Tag IT_OIDT_rc2_ofb64;
public static final IT_OID_Tag IT_OIDT_rc4;
public static final IT_OID_Tag IT_OIDT_rsa;
public static final IT_OID_Tag IT_OIDT_rsadsi;
public static final IT_OID_Tag IT_OIDT_rsaEncryption;

public static final IT_OID_Tag IT_OIDT_sha;
public static final IT_OID_Tag IT_OIDT_sha1;
public static final IT_OID_Tag

IT_OIDT_sha1WithRSAEncryption;
public static final IT_OID_Tag IT_OIDT_shaWithRSAEncryption;
public static final IT_OID_Tag IT_OIDT_stateOrProvinceName;
public static final IT_OID_Tag IT_OIDT_subject_alt_name;
public static final IT_OID_Tag

IT_OIDT_subject_key_identifier;
public static final IT_OID_Tag IT_OIDT_UNKNOWN;
public static final IT_OID_Tag IT_OIDT_X500;
public static final IT_OID_Tag IT_OIDT_X509;

};

See Also IE.Iona.OrbixWeb.SSL.IT_OID

IT_OID_Tag.ASNOidToITOid()

Synopsis public static final IT_OID_Tag ASNOidToITOid(int ASNOid[]);

Description This method converts an ASN.1 object identifier to the equivalent
OrbixSSL object identifier.

Parameters

ASNOidToITOid()

Synopsis public static final IT_OID_Tag ASNOidToITOid(String ASNOid);

Description This method converts an ASN.1 object identifier to the equivalent
OrbixSSL object identifier.

Parameters

IT_OID_Tag.toString()

Synopsis public String toString();

Description This method obtains a string representation of the object. It
overrides toString() in class Object.

Return Value Returns the string representation of the object.

ASNOid[] A specified ASN.1 object identifier.

ASNOid A specified ASN.1 object identifier.

 88 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 89

Class
IE.Iona.OrbixWeb.SSL.IT_PublicKeyAlgorithm
Synopsis This class defines the a public key algorithm used for

authentication purposes.

Java class IE.Iona.OrbixWeb.SSL.IT_PublicKeyAlgorithm {
public:

public static final IT_PublicKeyAlgorithm IT_RSA;
};

IT_PublicKeyAlgorithm.IT_RSA

Synopsis public static final IT_PublicKeyAlgorithm IT_RSA;

Description OrbixSSL uses Rivest Shamir Adleman (RSA) public key
cryptography for authentication purposes.

 90 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 91

Class IE.Iona.OrbixWeb.SSL.IT_PublicKeyInfo
Synopsis Public key information is contained in this class. In particular, this

class maintains the methods used for accessing the public key’s
exponent and modulus, and the algorithm used to generate the
key. It also provides a method to convert to an instance of
java.security.PublicKey.

Java class IE.Iona.OrbixWeb.SSL.IT_PublicKeyInfo{
public:

public IT_PublicKeyInfo(java.security.PublicKey key);
public byte[] convert(IT_Format f);
public IT_PublicKeyAlgorithm getAlgorithm();
public java.math.BigInteger getExponent();
public BigInteger getModulus();
public int length(IT_Format f);
public java.security.PublicKey toPublicKey();

};

IT_PublicKeyInfo.IT_PublicKeyInfo()

Synopsis public IT_PublicKeyInfo(java.security.PublicKey key);

Description This method constructs a public key based on the
java.security.PublicKey provided.

Parameters

IT_PublicKeyInfo.convert()

Synopsis public byte[] convert(IT_Format f);

Description This method converts to an alternate data format.

Parameters

Return Value Returns an array of bytes that store the result of the conversion.
Returns null if the required conversion is not supported.

IT_PublicKeyInfo.getAlgorithm()

Synopsis public IT_PublicKeyAlgorithm getAlgorithm();

Description This method returns the algorithm used to generate the public
key.

IT_PublicKeyInfo.getExponent()

Synopsis public java.math.BigInteger getExponent();

Description This method returns the public key exponent.

key A public key.

f The format of the required conversion. (Currently, no formats
are supported.)

 92 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_PublicKeyInfo.getModulus()

Synopsis public BigInteger getModulus();

Description This method returns the public key modulus. (Currently, this is not
implemented.)

IT_PublicKeyInfo.length()

Synopsis public int length(IT_Format f);

Description This method returns the number of bytes required to store the
result of converting to the format specified.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

IT_PublicKeyInfo.toPublicKey()

Synopsis public java.security.PublicKey toPublicKey();

Description This method converts to an instance of java.security.PublicKey.

f The format of the required conversion. (Currently, no
formats are supported.)

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 93

Class
IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory
Synopsis This class contains constants to specify whether an interface or

server is secure or not.

Java class IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory {
public:

public static final IT_SecCommsCategory
 IT_COMMS_CAT_INSECURE;

public static final IT_SecCommsCategory IT_COMMS_CAT_SECURE;
};

See Also IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec

IT_SecCommsCategory.IT_COMMS_CAT_INSECURE

Synopsis public static final IT_SecCommsCategory IT_COMMS_CAT_INSECURE;

Description This option allows insecure communications.

IT_SecCommsCategory.IT_COMMS_CAT_SECURE

Synopsis public static final IT_SecCommsCategory IT_COMMS_CAT_SECURE;

Description This option allows secure communication.

 94 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 95

Class IE.Iona.OrbixWeb.SSL.IT_Signature
Synopsis This class contains information on a certificate signature and the

algorithm used to generate it.

Java class IE.Iona.OrbixWeb.SSL.IT_Signature {
public:

public IT_Signature(IT_SignatureAlgType);
public IT_SignatureAlgType getSignatureAlgType();

};

IT_Signature.IT_Signature()

Synopsis public IT_Signature(IT_SignatureAlgType);

Description This method constructs a signature generated by the specified
signature algorithm.

Parameters

IT_Signature.getSignatureAlgType()

Synopsis public IT_SignatureAlgType getSignatureAlgType();

Description This method retrieves the algorithm generated by the specified
signature.

Parameters

IT_SignatureAlgType A specified signature algorithm.

IT_SignatureAlgType A specified signature algorithm.

 96 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 97

Class IE.Iona.OrbixWeb.SSL.IT_SignatureAlgType
Synopsis This class contains a list of algorithms used to generate

signatures.

Java class IE.Iona.OrbixWeb.SSL.IT_SignatureAlgType {
public:

public static final IT_SignatureAlgType IT_SIG_MD5_WITH_RSA
};

IT_SignatureAlgType.IT_SIG_MD5_WITH_RSA

Synopsis public static final IT_SignatureAlgType IT_SIG_MD5_WITH_RSA;

Description This value represents an algorithm used to generate signatures.

 98 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 99

Class IE.Iona.OrbixWeb.SSL.IT_SSL
Synopsis Class IE.Iona.OrbixWeb.SSL.IT_SSL is the primary interface to

OrbixSSL. For example, it provides methods to load an
application’s certificate and private key, it allows you to configure
a comprehensive security policy for an application, and it allows
you to introduce customized validation of certificates. Before using
the other methods of this class, you must call the method
IT_SSL.init().

Java // Java
class IE.Iona.OrbixWeb.SSL.IT_SSL {
public:

public static synchronised IT_SSL init() throws INITIALIZE;
public static synchronized IT_SSL init(ORB orb)

throws INITIALIZE;

public static boolean isSSLInstalled();

public synchronized void setValidateClientCertCallback
(IT_ValidateX509CertCB cb);

public synchronized void setValidateServerCertCallback
(IT_ValidateX509CertCB cb);

public IT_X509Cert getPeerCert(Socket socket)
throws IT_SSLException;

public IT_X509Cert getPeerCert(Object obj)
throws IT_SSLException;

public IT_X509Cert getPeerCert(Request req)
throws IT_SSLException;

 public IT_SSLCipherSuite getNegotiatedCipherSuite(Object
 obj)

throws IT_SSLException;
public IT_SSLCipherSuite getNegotiatedCipherSuite(Request

req)
throws IT_SSLException;

public IT_SSLCipherSuite getNegotiatedCipherSuite(Socket s)
throws IT_SSLException;

public synchronized int getInvocationPolicy();
public void setInvocationPolicy(int pol)

throws IT_SSLException;

public void specifySecurityForInterfaces
(IT_CommsSecuritySpec specList[]);

public void specifySecurityForServers
(IT_CommsSecuritySpec specList[]);

public synchronized IT_SSLCipherSuite[] specifyCipherSuites
(IT_SSLCipherSuite[]);

public synchronized void setApplicationCertChain
(IT_X509CertChain) throws IT_SSLException;

public synchronized void setApplicationCertChain
(IT_X509Cert certChain[]) throws IT_SSLException;

public synchronized IT_X509Cert[] loadCertChain
(String, IT_Format) throws IT_X509BadCertException,
IOException, FileNotFoundException, IT_SSLException;

 100 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

public synchronized boolean getClientAuthentication();
public synchronized boolean setClientAuthentication(boolean

b);

public synchronized int getMaxChainDepth();
public synchronized int setMaxChainDepth(int depth);

public synchronized void addTrustedCert(IT_X509Cert cert)
throws IT_SSLException;

public synchronized void addTrustedCert(byte derData[])
throws IT_X509BadCertException, KeyManagementException,
IT_SSLException;

public synchronized void addTrustedCert(String file,
IT_Format f) throws IT_X509BadCertException,
KeyManagementException, IOException,

FileNotFoundException, IT_SSLException;

public synchronized int getCacheOptions();
publice sysnchronized void setCacheOptions(int opts);

public synchronized void setPrivateKeyPassword
(String password);

public synchronized void setRSAPrivateKeyFromDER
(byte derData[]) throws IT_SSL_Exception;

public synchronized void setRSAPrivateKeyFromFile
(String file, IT_Format f) throws IT_SSLException;

public synchronized void setPrivateKeyFromFile
 (String file, IT_Format f)

throws IT_SSLException, IOException;

};

IT_SSL.addTrustedCert()

Synopsis public synchronized void addTrustedCert(IT_X509Cert cert)
throws IT_SSLException;

Description This method adds a certificate to the list of CA certificates.
Certificates issued by the owners of one of the trusted certificates
will be acceptable to the application.

Parameters

Exceptions Throws an IT_SSLException exception if there is a problem adding
the certificate.

See Also addTrustedCert() in class IE.Iona.OrbixWeb.SSL.IT_SSL

cert The certificate of a trusted CA.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 101

IT_SSL.addTrustedCert()

Synopsis public synchronized void addTrustedCert(byte derData[])
throws IT_X509BadCertException, KeyManagementException,
IT_SSLException;

Description This method adds a certificate to the list of CA certificates.

Parameters

Exceptions Throws an IT_X509BadCertException exception if derData does not
yield a valid certificate.
Throws a KeyManagementException exception if the public key
contained in derData is invalid.
Throws an IT_SSLException if there is a problem adding the
certificate to the list.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.addTrustedCert()

IT_SSL.addTrustedCert()

Synopsis public synchronized void addTrustedCert(String file,
IT_Format f) throws IT_X509BadCertException,
KeyManagementException, IOException, FileNotFoundException,
IT_SSLException;

Description This method adds a certificate to the list of CA certificates.

Parameters

Exceptions Throws an IT_X509BadCertException exception if the data contained
in file yields a corrupt or invalid certificate.
Throws a KeyManagementException exception if the data contained in
file yields a corrupt or invalid public key.
Throws an IOException exception if file cannot be used.
Throws a FileNotFoundException exception if file cannot be
located.
Throws an IT_SSLException if there is a problem adding the
certificate to the list.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.addTrustedCert()

derData The certificate data in DER encoded format.

file The path to the file containing the application’s certificate
data.

f The format of the data in the file. For example:
IT_Format.IT_FMT_PEM (PEM format).
IT_Format.IT_FMT_DER (DER encoding).

 102 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSL.getCacheOptions()

Synopsis public synchronized int getCacheOptions();

Description This method obtains the current setting for the OrbixSSL cache
options. Cache options are contained in the returned integer as a
bitwise OR combination.

Return Value Returns the current setting for the OrbixSSL cache.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setCacheOptions()
IE.Iona.OrbixWeb.SSL.IT_SSLCacheOptions

IT_SSL.getClientAuthentication()

Synopsis public synchronized boolean getClientAuthentication();

Description This method is used to determine whether client certificate
authentication is enabled or not.

Return Value This method returns true to signify that client authentication is
enabled. Otherwise, it returns false.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setClientAuthentication()

IT_SSL.getInvocationPolicy()

Synopsis public synchronized int getInvocationPolicy();

Description This method obtains the invocation policy settings for an OrbixSSL
application. When called, it returns the current invocation policy
settings for how clients and servers can accept and create SSL
connections. The invocation policy for an OrbixSSL application
specifies, for example, whether clients support or require SSL for
incoming and outgoing connections.

Return Value The integer returned is a bitwise OR of options in class
IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions.

See Also IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions
IE.Iona.OrbixWeb.SSL.IT_SSL.setInvocationPolicy()

IT_SSL.getMaxChainDepth()

Synopsis public synchronized int getMaxChainDepth();

Description This method returns the maximum depth allowed for certificate
chains. Applications can change the maximum certificate chain
depth by calling setMaxChainDepth().

Return Value Returns a numeric value specifying the allowed maximum depth of
the certificate chain.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setMaxChainDepth()

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 103

IT_SSL.getNegotiatedCipherSuite()

Synopsis public IT_SSLCipherSuite getNegotiatedCipherSuite(Object obj)
throws IT_SSLException;

Description This method allows OrbixSSL applications to query the ciphersuite
that was chosen for connection to the specified peer. It does this
by requesting the ciphersuite used by the SSL session which is
associated with the specified remote object, obj.

Parameters

Return Value Returns the SSL ciphersuite associated with obj if the ciphersuite
is known and available. Otherwise, it returns null.

Exceptions Throws an IT_SSLException exception if there is a problem
returning the negotiated ciphersuite. The exception can be queried
to find the specific error code. Possible error codes include
IT_SSL_ERR_INSECURE_CONNECTION and IT_SSL_ERR_NO_CONNECTION. For
further information on error codes, refer to class
IE.Iona.OrbixWeb.SSL.IT_SSLException.

See Also specifyCipherSuites() in class IE.Iona.OrbixWeb.SSL.IT_SSL

IT_SSL.getNegotiatedCipherSuite()

Synopsis public IT_SSLCipherSuite getNegotiatedCipherSuite(Request req)
throws IT_SSLException;

Description This method allows OrbixSSL applications to query the ciphersuite
that was chosen for connection to the specified peer. It does this
by requesting the ciphersuite used by the SSL session associated
with the specified request.

Parameters

Return Value Returns the SSL ciphersuite associated with req if the ciphersuite
is known and available. Otherwise, it returns null.

Exceptions Throws an IT_SSLException exception if there is a problem
returning the negotiated ciphersuite. The exception can be queried
to find the specific error code. Refer to class
IE.Iona.OrbixWeb.SSL.IT_SSLException on page 75 for further
information on error codes.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.specifyCipherSuites()

obj A remote object.

req A request received from a connection.

 104 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSL.getNegotiatedCipherSuite()

Synopsis public IT_SSLCipherSuite getNeogotiatedCipherSuite(Socket s)
throws IT_SSLException;

Description This method allows OrbixSSL applications to query the ciphersuite
that was chosen for connection to the specified peer. It does this
by requesting the ciphersuite used by the SSL session associated
with the specified socket.

Parameters

Return Value Returns the SSL ciphersuite associated with s if the ciphersuite is
known and available. Otherwise, it returns null.

Exceptions Throws an IT_SSLException exception if there was a problem
returning the negotiated ciphersuite. The exception can be queried
to find the specific error code. Refer to Class
IE.Iona.OrbixWeb.SSL.IT_Extension for further information on
error codes.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.specifyCipherSuites()

IT_SSL.getPeerCert()

Synopsis public IT_X509Cert getPeerCert(Object obj) throws
IT_SSLException;

Description This method allows OrbixSSL applications to query peer
certificates. The certificate of the peer application is returned by
retrieving the peer certificate information associated with the
remote object, obj.

Parameters

Return Value Returns the certificate belonging to the server implementing obj if
the certificate is available. Otherwise it returns null.

Exceptions Throws an IT_SSLException exception if there is a problem
returning the peer certificate. This exception can be queried to
find the specific error code. Refer to Class
IE.Iona.OrbixWeb.SSL.IT_Extension for further information on
error codes.

See Also class IE.Iona.OrbixWeb.SSL.IT_X509Cert

s A socket associated with a connection.

obj A remote object.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 105

IT_SSL.getPeerCert()

Synopsis public IT_X509Cert getPeerCert(Request req)
throws IT_SSLException;

Description This method allows an OrbixSSL application to request the
certificate of a peer. The certificate of the peer application is
returned by retrieving the peer certificate information associated
with the specified connection, req.

Parameters

Return Value Returns the certificate associated with req if the certificate is
available. Otherwise it returns null.

Exceptions Throws an IT_SSLException exception if there is a problem
returning the peer certificate. This exception can be queried to
find the specific error code. For further information, refer to Class
IE.Iona.OrbixWeb.SSL.IT_Extension.

IT_SSL.getPeerCert()

Synopsis public IT_X509Cert getPeerCert(Socket socket)
throws IT_SSLException;

Description This method allows OrbixSSL applications to query peer
certificates. The certificate of the peer application is returned by
retrieving the peer certificate information associated with the
socket (socket) for a particular connection.

Parameters

Return Value Returns the peer certificate if available. Otherwise it returns null.

Exceptions Throws IT_SSLException if there is a problem returning the peer
certificate. This exception can be queried to find the specific error
code. For further information, refer to Class
IE.Iona.OrbixWeb.SSL.IT_Extension.

See Also class IE.Iona.OrbixWeb.SSL.IT_X509Cert

req A request received from another application.

socket The socket over which this application is communicating
to its peer. A certificate can be returned only if socket is
associated with an SSL connection.

 106 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSL.init()

Synopsis public static synchronised IT_SSL init() throws INITIALIZE;

Description This method is responsible for initializing the class. It must be
called by the application before any communications take place
and before invoking any other IT_SSL methods.
This method creates and initializes an instance of IT_SSL and
makes it available as _CORBA.Orbix.SSL. All subsequent SSL related
operations should be called on this instance, which is returned by
init().
You must call ORB.init() before calling IT_SSL.init().

Return Value Returns an instance of IT_SSL that you can use to call IT_SSL
methods.

Exceptions Throws an INITIALIZE exception if there is an error during
initialization. Possible causes of initialization failure include SSL
being unavailable or disabled, or ORB.init() not being called. The
exception message contains explanatory text.

IT_SSL.init()

Synopsis public static synchronized IT_SSL init(ORB orb)
throws INITIALIZE;

Description This method is an alternative to the version of init() that takes no
parameters. One of these methods must be called by the
application before any communications take place and before
invoking any other IT_SSL methods.
This method creates and initializes an instance of IT_SSL. It
associates the IT_SSL object with a particular ORB object. You can
use this approach with OrbixWeb 3.1 and later. The IT_SSL object
associated with each ORB is entirely independent of any other.
You must call ORB.init() before calling IT_SSL.init().

Return Value Returns an instance of IT_SSL that you can use to call IT_SSL
methods.

Exceptions Throws an INITIALIZE exception if there is an error during
initialization. Possible causes of initialization failure include SSL
being unavailable or disabled, or ORB.init() not being called. The
exception message contains explanatory text.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 107

IT_SSL.loadCertChain()

Synopsis public synchronized IT_X509Cert[] loadCertChain
(String file, IT_Format f) throws IT_X509BadCertException,
IOException, FileNotFoundException, IT_SSLException;

Description This method loads a certificate chain from a file. You can then use
this certificate chain to identify your application. To do this, pass
the returned array to setApplicationCertChain(). You can also use
this function to load the certificates of trusted CAs before calling
addTrustedCA().
This function supports files in PKCS#12 format. This format is
commonly used by web browsers.

Parameters

Return Value Returns an array of certificates representing the certificate chain
read from file.

Exceptions Throws an IT_X509BadCertException exception if the data contained
in file yields a corrupt or invalid certificate.
Throws an IOException exception if file cannot be used.
Throws a FileNotFoundException exception if file cannot be
located.
Throws an IT_SSLException if there is a problem creating the
certificate array.

IT_SSL.isSSLInstalled()

Synopsis public static boolean isSSLInstalled();

Description This method indicates if SSL security is available to your OrbixWeb
application.

Return Value Returns true if SSL security is available. Otherwise, it returns
false.

file The path to the file containing the application’s certificate
data.

f The format of the data in the file. For example:
IT_Format.IT_FMT_PEM (PEM format).
IT_Format.IT_FMT_DER (DER encoding).
IT_Format.IT_FMT_PKCS12 (PKCS#12 format).

 108 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSL.setApplicationCertChain()

Synopsis public synchronized void setApplicationCertChain
(IT_X509Cert certChain[]) throws IT_SSLException;

Description This method sets the application certificate and specifies a chain of
CA certificates that sign the application certificate. Element 0 of
certChain must be the application certificate. Each subsequent
certificate must belong to the CA that issued the previous
certificate.
Calling the method setApplicationCertChain() overwrites the
current certificate chain. The private key, however, will be
retained. If the peer certificate in certChain is associated with a
private key other than that currently specified, reset the key using
one of the private key methods.

Parameters

Exceptions Throws an exception of type IT_SSLException if each certificate in
the chain, starting with the second, does not belong to the CA that
issued the previous certificate.

IT_SSL.setApplicationCertChain()

Synopsis public synchronized void setApplicationCertChain
(IT_X509CertChain certChain) throws IT_SSLException;

Description This method uses an IT_X509CertChain object to set the application
certificate chain.
Calling the method setApplicationCertChain() overwrites the
current certificate chain. The private key, however, will be
retained. If the peer certificate in certChain is associated with a
private key other than that currently specified, reset the key using
one of the private key methods.

Parameters

Exceptions Throws an exception of type IT_SSLException if each certificate in
the chain, starting with the second, does not belong to the CA that
issued the previous certificate.

IT_SSL.setCacheOptions()

Synopsis public synchronized void setCacheOptions(int opts);

Description This method configures the OrbixSSL session caching mechanism.
Caching may be disabled entirely, enabled for clients only,
enabled for servers, or enabled for both clients and servers.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.getCacheOptions()
IE.Iona.OrbixWeb.SSL.IT_SSLCacheOptions

certChain The certificate chain for the application.

certChain The certificate chain for the application.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 109

IT_SSL.setClientAuthentication()

Synopsis public synchronized boolean setClientAuthentication(boolean b);

Description This method enables or disables authentication of client
certificates by a server. A server requests a peer certificate chain
from a client only if this method is set to true. This method is
primarily used by servers, but can be used by clients to
authenticate any callbacks they receive.

Parameters

Return Value This method returns the previous setting for client certificate
authentication.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.getClientAuthentication()

IT_SSL.setInvocationPolicy()

Synopsis public void setInvocationPolicy(int pol) throws IT_SSLException;

Description This method specifies client and server access to the security
policy, how clients and servers can accept and create SSL
connections, and whether clients support or require SSL for
incoming and outgoing connections. Applications have separate
control with respect to using OrbixSSL security to establish
connections and with respect to using OrbixSSL security to accept
connection attempts.
The setInvocationPolicy() method sets the invocation policy for an
OrbixSSL application as secure, insecure, or a combination of
both. Using specifySecurityForServers() or
specifySecurityForInterfaces(), you can make the invocation
policy generally secure with specific exceptions. Similarly, you can
make the invocation policy generally insecure but secure for
specified servers and interfaces.
You can specify only one connect option in pol. Specifying more
than one causes an exception to be thrown.

Parameters

b Setting this parameter to true enables client certificate
authentication. Setting this parameter to false disables client
certificate authentication.

pol An integer value which is the bitwise OR combination of the
following IT_SSLInvocationOptions flags:
IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

IT_SPECIFIED_INSECURE_CONNECT

IT_INSECURE_CONNECT

IT_SECURE_CONNECT

IT_SPECIFIED_SECURE_CONNECT

 110 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

The options are explained as follows:

• IT_SECURE_ACCEPT

This option means that the server will accept SSL connections.
If the IT_INSECURE_ACCEPT option is not also specified, it will
only accept SSL connections and reject non-SSL connections.
It rejects non SSL connections by sending a
org.omg.CORBA.NO_PERMISSION exception to the initiator and
closing the connection.

• IT_INSECURE_ACCEPT
This option means that the server is capable of accepting
connections from non-SSL clients. If IT_SECURE_ACCEPT and
IT_INSECURE_ACCEPT are both specified, the server will serve
both secure and insecure clients. This type of server offers an
optional connection authentication, privacy and integrity to
clients that wish to avail of it. It should not be specified for
servers whose services are regarded as sensitive and to which
access should be restricted.

• IT_SECURE_CONNECT
This option means that the client is capable of initiating SSL
connections. Target servers should have a secure invocation
policy. If this is not the case, an org.omg.CORBA.NO_PERMISSION
exception will be thrown.

• IT_SPECIFIED_INSECURE_CONNECT
For some secure client applications it may be too restrictive to
allow only secure connections to all servers. When you choose
this option, your attempts to connect to specified insecure
interfaces or to specified insecure servers will be allowed.
Refer to specifySecurityForInterfaces() on page 114 and
specifySecurityForServers() on page 115 for further
information.

• IT_SPECIFIED_SECURE_CONNECT
This option means that the client try to communicate
insecurely with all servers except when connecting through
explicitly specified secure interfaces, or explicitly specified
secure servers. When this option is specified, the client also
attempts to use SSL when the server’s IOR indicates that it
requires SSL.

Note: This currently is only possible if the client uses a server IOR that
contains a TAG_SSL_SEC_TRANS structure, indicating that the server
supports or requires SSL. OrbixSSL automatically includes this tag
in IORs that are generated by SSL servers.

• IT_INSECURE_CONNECT
This option indicates that your client is capable of initiating
insecure connections and that the client side of the application
has no security requirements.

Exceptions Throws an IT_SSLException exception if more than one connect
option is specified by pol.

See Also IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions()
IE.Iona.OribxWeb.SSL.IT_SSL.setClientAuthentication()
IE.Iona.OrbixWeb.SSL.IT_SSL.specifyCipherSuites()
IE.Iona.OrbixWeb.SSL.IT_SSL.specifySecurityForInterfaces()
IE.Iona.OrbixWeb.SSL.IT_SSL.specifySecurityForServers()

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 111

IT_SSL.setMaxChainDepth()

Synopsis public synchronized int setMaxChainDepth(int depth);

Description This method allows individual applications to set or change the
maximum depth allowed for certificate chains. During an SSL
handshake, any peer certificate chains that exceed the specified
depth causes the handshake to fail and an exception to be thrown.

Parameters

Return Value Returns the previous maximum certificate chain depth setting.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.getMaxChainDepth()

IT_SSL.setPrivateKeyPassword()

Synopsis public synchronized void setPrivateKeyPassword(String password);

Description This method specifies the password used to decrypt the private
key. Private keys stored in PEM format may be stored in encrypted
form and loaded using the method setRSAPrivateKeyFromFile(). If
the file is found to be encrypted, this password is used to decrypt
it.
This method must be called before using
setRSAPrivateKeyFromFile() with encrypted keys.

Parameters

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setRSAPrivateKeyFromFile()

IT_SSL.setRSAPrivateKeyFromDER()

Synopsis public synchronized void setRSAPrivateKeyFromDer
(byte[] derData[]) throws IT_SSLException;

Description This method allows you to specify the private key to an OrbixSSL
application. Private keys are used by OrbixSSL applications for
authentication purposes.

Parameters

Exceptions Throws an IT_SSLException exception if derData does not yield a
valid key.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setRSAPrivateKeyFromFile()

depth Numeric value specifying the current acceptable
maximum certificate chain depth.

password The password used to decrypt the private key.

derData The private key data in DER encoded format.

 112 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSL.setRSAPrivateKeyFromFile()

Synopsis public synchronized void setRSAPrivateKeyFromFile
(String file, IT_Format f) throws IT_SSLException;

Description This method allows you to directly specify the private key to an
OrbixSSL application. Private keys are used by OrbixSSL
applications for authentication purposes.

Parameters

Exceptions Throws an IT_SSLException exception if there was a problem
setting the key. For example, if the data contained in file yields a
corrupt or invalid private key.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setRSAPrivateKeyFromFile()

IT_SSL.setPrivateKeyFromFile()

Synopsis int setPrivateKeyFromFile(char* file, IT_Format f);

Description setPrivateKeyFromFile() is a member function allowing you to
supply private keys directly to Orbix. Private keys are used by
OrbixSSL applications for authentication purposes.
If the private key is encrypted, you must call
setPrivateKeyPassword() before calling this function.
Use this function to specify:
• A certificate with an elliptic curve private key
• A certificate with a DSA private key
The FileName must be in PKCS12 format. The PKCS12 file should
contain the private key. It may optionally also contain the
certificate and CA, but they will be ignored by this API call.

Parameters

Return Value Returns IT_SSL_SUCCESS if successful in supplying a private key.
Returns IT_SSL_ERR_USING_PRIVATE_KEY (that is, a private key file
was read but could not be used) or IT_SSL_FAILURE otherwise.

See Also IT_SSL::setPrivateKeyPassword()

file The path to the file containing the private key data. If the
file contains bad key data, an IT_SSLException is thrown.

f The format of the data in the file. For example:
IT_Format.IT_FMT_PEM (PEM format).
IT_Format.IT_FMT_DER (DER encoding).

file The filename of the private key file.
f The format of the data in the file. Only PKCS12 format is

supported. For example:
IT_Format IT_FMT_PKCS12 (PKCS12 format).

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 113

IT_SSL.setValidateClientCertCallback()

Synopsis public Synchronized void setValidateClientCertCallback
(IT_ValidateX509CertCB cb);

Description This method enables you to validate client certificates by
specifying an application-level certificate validation method. It
allows servers or clients acting as servers to validate the peer
certificate chain and to decide if a connection should be
established. You can register methods to process server or client
certificates separately, or the same method for both.
 Passing null to this method disables client certificate validation.

Parameters

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setValidateServerCertCallback()

IT_SSL.setValidateServerCertCallback()

Synopsis public synchronized void setValidateServerCertCallback
(IT_ValidateX509CertCB cb);

Description This method is used to validate server certificates. It specifies an
application-level certificate validation method for server
certificates, and allows clients or servers acting as clients to
validate the peer chain and decide whether the connection should
be established.
Passing null to this method disables server certificate validation.

Parameters

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.getPeerCert()
IE.Iona.OrbixWeb.SSL.IT_SSL.setValidateServerCertCallback()

IT_SSL.specifyCipherSuites()

Synopsis public synchronized IT_SSLCipherSuite[] specifyCipherSuites
(IT_SSLCipherSuite suite[]);

Description An application uses this method to specify the set of ciphersuites
that it is prepared to use. By default, all ciphersuites defined in
class IE.Iona.OrbixWeb.SSL.IT_SSLCipherSuite are enabled.
Applications that require a more focused set of ciphersuites to be
made available, however, should use
IT_SSL.specifyCipherSuites().

Parameters

Return Value Returns the set of ciphersuites that will be used.

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.getNegotiatedCipherSuite()

cb This class implements interface IT_ValidateX509certCB. The
method validateCert() is used to validate peer certificates.

cb This class implements interface IT_ValidateX509certCB. The
method validateCert() is used to validate peer certificates.

suite The set of ciphersuites to be used.

 114 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSL.specifySecurityForInterfaces()

Synopsis public void specifySecurityForInterfaces
(IT_CommsSecuritySpec specList[]);

Description This method allows clients and servers acting as clients to specify
particular security requirements for interfaces. This method is
used with the invocation policies
IT_SSLInvocationOptions.IT_SPECIFIED_INSECURE_CONNECT and
IT_SSLInvocationOptions.IT_SPECIFIED_SECURE_CONNECT.

Note: This method is applicable only when a connection to a server is
being established. Once a connection to a server has been
established, this connection can be used to access other interfaces
in that server without reference to the list of specified interfaces.
The main use anticipated for this method is to provide a means to
allow insecure connections to be established through a specified
insecure interface.

Parameters

See Also class IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec
class IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory

specList An array specifying interfaces and their associated
security category.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 115

IT_SSL.specifySecurityForServers()

Synopsis public void specifySecurityForServers
(IT_CommsSecuritySpec specList[]);

Description This method allows clients and servers acting as clients to specify
particular security requirements for servers. This method is used
with the invocation policies
IT_SSLInvocationOptions.IT_SPECIFIED_INSECURE_CONNECT and
IT_SSLInvocationOptions.IT_SPECIFIED_SECURE_CONNECT.

Parameters

See Also IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec
IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory

specList An array specifying servers and associated security
categories.

 116 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 117

Class IE.Iona.OrbixWeb.SSL.IT_SSLCacheOptions
Synopsis This class sets the current settings for the OrbixSSL session cache

options. Caching can be enabled for clients only, enabled for
servers only, enabled for both clients and servers, or disabled.

Java class IE.Iona.OrbixWeb.SSL.IT_SSL {
public:

public static final int IT_SSL_CACHE_CLIENT;
public static final int IT_SSL_CACHE_NONE;
public static final int IT_SSL_CACHE_SERVER;

};

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setCacheOptions()
IE.Iona.OrbixWeb.SSL.IT_SSL.getCacheOptions()

IT_SSLCacheOptions.IT_SSL_CACHE_CLIENT

Synopsis public static final int IT_SSL_CACHE_CLIENT;

Description This value means that there is to be SSL caching for OrbixSSL
clients only. It may be combined with IT_SSL_CACHE_SERVER to
enable caching for clients and servers.

IT_SSLCacheOptions.IT_SSL_CACHE_NONE

Synopsis public static final int IT_SSL_CACHE_NONE;

Description This value means that there is to be no SSL session caching.

IT_SSLCacheOptions.IT_SSL_CACHE_SERVER

Synopsis public static final int IT_SSL_CACHE_SERVER;

Description This value means that there is to be SSL caching for OrbixSSL
servers only. It may be combined with IT_SSL_CACHE_CLIENT to
enable caching for clients and servers.

 118 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 119

Class IE.Iona.OrbixWeb.SSL.IT_SSLCipherSuite
Synopsis This class maintains a list of ciphersuites supported by OrbixSSL.

Using methods defined in class IE.Iona.OrbixWeb.SSL.IT_SSL, these
ciphersuites can be enabled or disabled.
The list of ciphersuites supported by OrbixSSL is as follows:

IT_SSLV3_RSA_WITH_RC4_128_SHA
IT_SSLV3_RSA_WITH_RC4_128_MD5
IT_SSLV3_RSA_WITH_3DES_EDE_CBC_SHA
IT_SSLV3_RSA_WITH_DES_CBC_SHA
IT_SSLV3_RSA_EXPORT_WITH_DES40_CBC_SHA
IT_SSLV3_RSA_EXPORT_WITH_RC4_40_MD5
IT_RSA_WITH_AES_128_CBC_SHA
IT_RSA_WITH_AES_256_CBC_SHA
IT_RSA_WITH_AES_128_CBC_SHA256
IT_RSA_WITH_AES_256_CBC_SHA256
IT_RSA_WITH_AES_128_GCM_SHA256
IT_RSA_WITH_AES_256_GCM_SHA384
IT_DHE_RSA_WITH_AES_128_GCM_SHA256
IT_DHE_RSA_WITH_AES_256_GCM_SHA384
IT_DHE_DSS_WITH_AES_128_GCM_SHA256
IT_DHE_DSS_WITH_AES_256_GCM_SHA384
IT_ECDHE_RSA_WITH_RC4_128_SHA
IT_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
IT_ECDHE_RSA_WITH_AES_128_CBC_SHA
IT_ECDHE_RSA_WITH_AES_256_CBC_SHA
IT_ECDHE_RSA_WITH_AES_128_CBC_SHA256
IT_ECDHE_RSA_WITH_AES_256_CBC_SHA384
IT_ECDHE_RSA_WITH_AES_128_GCM_SHA256
IT_ECDHE_RSA_WITH_AES_256_GCM_SHA384
IT_ECDHE_ECDSA_WITH_RC4_128_SHA
IT_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
IT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
IT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
IT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
IT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

All of these ciphersuites comprise the following components:

• Specification of the key exchange algorithm.
RSA certificates are useful for key exchanges as RSA is a
widely used public-key algorithm that can be used for either
encryption or digital signing. DHE_RSA, DHE_DSS, ECDHE_RSA, and
ECDHE_ECDSA are also supported. Note that DHE_DSS requires a
DSA private key, and ECDHE_ECDSA requires an elliptic curve
private key. Certificates with DSA private keys and certificates
with elliptic curve private keys must be in PKCS12 format.

• Specification of cipher to be used.
Permitted ciphers are taken from the following list: RC4, DES,
3DES_EDE, AES_128, AES_256.

• Specification of the hash algorithm to be used.
Permitted hashes include MD5, SHA, SHA256 and SHA_384. Note
that SHA256 hash algorithms are only available with AES_128
and AES_256 ciphers.

 120 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Only specific combinations of these options are available as listed,
and one combination is referred to as a CipherSuite.

Java class IE.Iona.OrbixWeb.SSL.IT_SSLCipherSuite {
public:

public String toString();
public static final IT_SSLCipherSuite

IT_SSLV3_RSA_WITH_RC4_128_SHA;
public static final IT_SSLCipherSuite

IT_SSLV3_RSA_WITH_RC4_128_MD5;
public static final IT_SSLCipherSuite

IT_SSLV3_RSA_WITH_3DES_EDE_CBC_SHA;

public static final IT_SSLCipherSuite
IT_SSLV3_RSA_WITH_DES_CBA_SHA;

public static final IT_SSLCipherSuite
IT_SSLV3_RSA_EXPORT_WITH_DES40_CBC_SHA;

public static final IT_SSLCipherSuite
IT_SSLV3_RSA_EXPORT_WITH_RC4_40_MD5;

public static final IT_SSLCipherSuite
IT_RSA_WITH_AES_128_CBC_SHA;

public static final IT_SSLCipherSuite
IT_RSA_WITH_AES_256_CBC_SHA;

public static final IT_SSLCipherSuite
IT_RSA_WITH_AES_128_CBC_SHA256;

public static final IT_SSLCipherSuite
IT_RSA_WITH_AES_256_CBC_SHA256;

public static final IT_SSLCipherSuite
IT_RSA_WITH_AES_128_GCM_SHA256;

public static final IT_SSLCipherSuite
IT_RSA_WITH_AES_256_GCM_SHA384;

public static final IT_SSLCipherSuite
IT_DHE_RSA_WITH_AES_128_GCM_SHA256;

public static final IT_SSLCipherSuite
IT_DHE_RSA_WITH_AES_256_GCM_SHA384;

public static final IT_SSLCipherSuite
IT_DHE_DSS_WITH_AES_128_GCM_SHA256;

public static final IT_SSLCipherSuite
IT_DHE_DSS_WITH_AES_256_GCM_SHA384;

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_RC4_128_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_RC4_128_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_AES_128_CBC_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_AES_256_CBC_SHA;

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256;

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384;

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 121

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_AES_128_CBC_SHA256;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_AES_256_CBC_SHA384;

public static final IT_SSLCipherSuite
IT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_AES_128_GCM_SHA256;

public static final IT_SSLCipherSuite
IT_ECDHE_RSA_WITH_AES_256_GCM_SHA384;

See Also specifyCipherSuites() in class IE.Iona.OrbixWeb.IT_SSL

IT_SSLCipherSuite.toString()

Synopsis public String toString()

Description This method overrides toString() in class Object.

 122 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 123

Class IE.Iona.OrbixWeb.SSL.IT_SSLException
Synopsis OrbixSSL can throw exceptions of this type when errors occur.

This class contains a list of possible OrbixSSL error codes.

Java class IE.Iona.OrbixWeb.SSL.IT_SSLException {
public IT_SSLException(int errorCode);
public int getErrorCode();
public String getErrorMessage();
public String toString();

public static final int IT_SSL_ERR_CERT_NOT_ISSUER;
public static final int IT_SSL_ERR_HANDSHAKE_TIMEOUT;
public static final int IT_SSL_ERR_INSECURE_CONNECTION;
public static final int IT_SSL_ERR_INVALID_OPT_COMBO;
public static final int IT_SSL_ERR_NO_CONNECTION;
public static final int IT_SSL_ERR_ORB_NOT_INITIALISED;
public static final int IT_SSL_ERR_SECURITY_INACTIVE;
public static final int IT_SSLV_ERR_CERT_CHAIN_TOO_LONG;
public static final int IT_SSLV_ERR_CERT_HAS_EXPIRED;
public static final int IT_SSLV_ERR_CERT_NOT_YET_VALID;
public static final int IT_SSLV_ERR_CERT_SIGNATURE_FAILURE;

}

IT_SSLException.IT_SSLException()

Synopsis public IT_SSLException(int errorCode);

This method constructs an exception with the specified error code.
You can examine the error message associated with the error code
by calling IT_SSLException.getErrorMessage().

IT_SSLException.getErrorCode()

Synopsis public int getErrorCode();

Description This method returns the error code associated with this exception.

IT_SSLException.getErrorMessage()

Synopsis public String getErrorMessage();

Description This method returns the error message associated with this
exception.

IT_SSLException.toString()

Synopsis public String toString();

Description This method returns a short description of this object. It overrides
toString() in class Throwable.

IT_SSLException.IT_SSL_ERR_CERT_NOT_ISSUER

Synopsis public static final int IT_SSL_ERR_CERT_NOT_ISSUER;

This error code signifies the failure of an attempt to add a CA to
the end of a certificate chain. This can happen if that CA did not
sign the previous certificate in the chain.

 124 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSLException.IT_SSL_ERR_INSECURE_CONNECTION

Synopsis public static final int IT_SSL_ERR_INSECURE_CONNECTION;

Description This error code signifies that an attempt was made to make a
secure operation call on an insecure connection.

IT_SSLException.IT_SSL_ERR_INVALID_OPT_COMBO

Synopsis public static final int IT_SSL_ERR_INVALID_OPT_COMBO;

Description This error code signifies that an illegal combination of options was
specified as a parameter to a method. For example, this can occur
if more than one connect option is specified to
setInvocationPolicy().

IT_SSLException.IT_SSL_ERR_NO_CONNECTION

Synopsis public static final int IT_SSL_ERR_NO_CONNECTION;

Description This error code signifies an attempt to invoke an operation where
there was no connection.

IT_SSLException.IT_SSL_ERR_ORB_NOT_INITIALISED

Synopsis public static final int IT_SSL_ERR_ORB_NOT_INITIALISED;

Description This error code signifies that ORB.init() was not called before
IT_SSL.init().

IT_SSLException.IT_SSL_ERR_SECURITY_INACTIVE

Synopsis public static final int IT_SSL_ERR_SECURITY_INACTIVE;

Description This error code signifies that SSL is not available or not activated.

IT_SSLException.IT_SSLV_ERR_CERT_CHAIN_TOO_LONG

Synopsis public static final int IT_SSLV_ERR_CERT_CHAIN_TOO_LONG;

Description This error code signifies that the certificate chain depth exceeds
the maximum specified by IT_SSL.setMaxChainDepth().

IT_SSLException.IT_SSLV_ERR_CERT_HAS_EXPIRED

Synopsis public static final int IT_SSLV_ERR_CERT_HAS_EXPIRED;

Description This error code signifies that the certificate expiry date is earlier
than the current date.

IT_SSLException.IT_SSLV_ERR_CERT_NOT_YET_VALID

Synopsis public static final int IT_SSLV_ERR_CERT_NOT_YET_VALID;

This error code signifies that the date at which the certificate
becomes valid is later than the current date.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 125

IT_SSLException.IT_SSLV_ERR_CERT_SIGNATURE_FAILURE

Synopsis public static final int IT_SSLV_ERR_CERT_SIGNATURE_FAILURE;

This error code signifies that the signature of a certificate is invalid
when decoded using the public key of the following certificate in
the certificate chain.

 126 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 127

Class
IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions
Synopsis This class is used by an OrbixSSL application to provide the

invocation options for the invocation policy of an application. The
invocation policy for an OrbixSSL application specifies how the
application uses SSL to communicate with other applications.
This class contains constants that allow you to specify how clients
and servers accept and create OrbixSSL connections. The values
detailed in this class are passed to setInvocationPolicy() in class
IE.Iona.OrbixWeb.SSL.IT_SSL.

Note: Applications have separate control with respect to using OrbixSSL
security to make connections and to accept connection attempts.

Java class IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions {
public:

public static final int IT_INSECURE_ACCEPT;
public static final String IT_INSECURE_ACCEPT_STRING;
public static final int IT_INSECURE_CONNECT;
public static final String IT_INSECURE_CONNECT_STRING;
public static final int IT_SECURE_ACCEPT;
public static final String IT_SECURE_ACCEPT_STRING;
public static final int IT_SECURE_CONNECT;
public static final String IT_SECURE_CONNECT_STRING;
public static final int IT_SPECIFIED_INSECURE_CONNECT;
public static final String

IT_SPECIFIED_INSECURE_CONNECT_STRING;
public static final int IT_SPECIFIED_SECURE_CONNECT;
public static final String

IT_SPECIFIED_SECURE_CONNECT_STRING;
};

IT_SSLInvocationOptions.IT_INSECURE_ACCEPT

Synopsis public static final int IT_INSECURE_ACCEPT;

Description This option means that the server is capable of accepting
connections from insecure clients. It should not be specified for
servers whose services are regarded as sensitive and to which
access should be restricted.

IT_SSLInvocationOptions.IT_INSECURE_CONNECT

Synopsis public static final int IT_INSECURE_CONNECT;

Description This option means that the client is capable of initiating insecure
connections.

IT_SSLInvocationOptions.IT_SECURE_ACCEPT

Synopsis public static final int IT_SECURE_ACCEPT;

Description This option means the server can accept SSL connections. If
IT_INSECURE_ACCEPT is also specified, only SSL connections are
accepted. In such a case, non SSL connections are rejected by
sending a NO_PERMISSION exception to the initiator and closing the
connection.

 128 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_SSLInvocationOptions.IT_SECURE_CONNECT

Synopsis public static final int IT_SECURE_CONNECT;

Description This option means that the client is capable of initiating SSL
connections.

IT_SSLInvocationOptions.IT_SPECIFIED_INSECURE_CONNECT

Synopsis public static final int IT_SPECIFIED_INSECURE_CONNECT;

Description This option allows connections through specified insecure
interfaces, or to specified insecure servers.

IT_SSLInvocationOptions.IT_SPECIFIED_SECURE_CONNECT

Synopsis public static final int IT_SPECIFIED_SECURE_CONNECT;

Description This option means that the client communicates insecurely with all
servers, except those explicitly specified.

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 129

Class IE.Iona.OrbixWeb.SSL.IT_UTCTime
Synopsis This class represents a time value and is used to specify certificate

validity. You can convert this type to an instance of java.util.Date
or to a string.

Java class IE.Iona.OrbixWeb.SSL.IT_UTCTime {
public:

java.util.Date toDate()
public Date toDate();
public String toString();

};

IT_UTCTime.toDate()

Synopsis public Date toDate();

Description This method converts the time value to an instance of
java.util.Date.

IT_UTCTime.toString()

Synopsis public String toString();

Description This method converts the time value to a string. It overrides
toString() in class Object.

 130 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 131

Interface
IE.Iona.OrbixWeb.SSL.IT_ValidateX509CertCB
Synopsis This interface is used to validate client and server certificates.

When OrbixSSL completes its validation of a certificate in a
certificate chain, it calls the method validateCert(). You can
implement this method to provide additional certificate validation.
OrbixSSL calls this method once for each certificate in the chain,
passing the chain as a parameter and incrementing the chain
depth each time. The peer certificate is set at element 0.
Subsequent certificates make up a CA chain.
User implementations of this method may validate the certificate
in whatever manner is appropriate to the application. The method
should return IT_CertValidity.IT_SSL_VALID_YES if the certificate is
valid; IT_CertValidity.IT_SSL_VALID_NO if the certificate is invalid.
The parameter systemOpinion contains the result of OrbixSSL
validation. Your custom validation method should examine the
value of this parameter before returning a decision on the validity
of a certificate.

Java interface IE.Iona.OrbixWeb.SSL.IT_ValidateX509CertCB {
public IT_CertValidity validateCert

(IT_CertValidity systemOpinion,
 IT_X509CertChain peerCertChain);

}

See Also IE.Iona.OrbixWeb.SSL.IT_SSL.setValidateClientCertCallback()
IE.Iona.OrbixWeb.SSL.IT_SSL.setValidateServerCertCallback()

IT_ValidateX509CertCB.validateCert()

Synopsis public abstract ITCertValidity validateCert
(IT_CertValidity systemOpinion,
 IT_X509CertChain peerCertChain);

Description This method determines the validity of the certificate.

Parameters

Return Value Returns IT_CertValidity.IT_SSL_VALID_YES if the certificate is
deemed valid.
Returns IT_CertValidity.IT_SSL_VALID_NO if the certificate is
deemed to be invalid.
Returns IT_CertValidity.IT_SSL_VALID_NO_APP_DECISION if the
validity of the certificate cannot be determined.

peerCertchain The peer certificate chain.
systemOpinion This parameter contains OrbixSSL’s opinion of the

validity of the certificate.

 132 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 133

Class
IE.Iona.OrbixWeb.SSL.IT_X509BadCertException
Synopsis This class is used to indicate bad certificate data.

Java class IE.Iona.OrbixWeb.SSL.IT_X509BadCertException {
public:

public IT_X509BadCertException();
public IT_X509CertException(String text);

}

IT_X509BadCertException.IT_X509BadCertException()

Synopsis public IT_X509BadCertException();

Description This method constructs an exception with the default error
message.

IT_X509BadCertException.IT_X509BadCertException()

Synopsis public IT_X509CertException(String text);

Description This method constructs an exception with the error message
provided.

Parameters

text An error message.

 134 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 135

Class IE.Iona.OrbixWeb.SSL.IT_X509Cert
Synopsis This class provides an interface to a certificate. It is the primary

interface for retrieving information about a certificate issuer, the
subject’s public key, certificate extensions, and other certificate
attributes.

Java class IE.Iona.OrbixWeb.SSL.IT_X509Cert {
public:

public IT_X509Cert(byte certData[])
throws IT_X509BadCertException;

public IT_X509Cert(String file, IE_Format filetype)
throws IT_X509BadCertException,
java.io.FileNotFoundException,

java.io.IOException;
public byte[] convert(IT_Format f);
public IT_ExtensionList getExtensions();
public IT_AVAList getIssuer();
public IT_UTCTime getNotAfter();
public IT_UTCTime getNotBefore();
public java.math.BigInteger getSerialNumber();
public IT_Signature getSignature();
public IT_AVAList getSubject();
public IT_PublicKeyInfo getSubjectPublicKey();
public int getVersion();
public int length(IT_Format f);
public String toString();

};

IT_X509Cert.IT_X509Cert()

Synopsis public IT_X509Cert(byte certData[])
throws IT_X509BadCertException;

Description This method constructs an IT_X509Cert from the given byte array,
which must contain DER-encoded certificate data.

Parameters

Exceptions Throws an IT_X509BadCertException exception if certData contains
invalid certificate data.

IT_X509Cert.IT_X509Cert()

Synopsis public IT_X509Cert(String file, IE_Format filetype)
throws java.io.FileNotFoundException,
java.io.IOException, IT_X509BadCertException;

Description This method constructs an IT_X509Cert from the data in the
specified file. Specifying the format of data, the parameter
filetype takes the value IT_Format.IT_FMT_PEM or
IT_Format.IT_FMT_DER.

Parameters

certData An X.509 certificate containing certificate data.

file A specified file.
filetype A specified file type.

 136 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Exceptions Throws an IT_X509BadCertException exception if file contains
invalid certificate data.
Throws a java.io.FileNotFoundException exception if file cannot
be located.
Throws a java.io.IOException exception if there is a problem using
file.

IT_X509Cert.convert()

Synopsis public byte [] convert(IT_Format f);

Description This method converts this certificate to the format specified by f.
If the value of f is IT_Format.IT_FMT_DER, the returned byte array
contains the certificate represented as DER-encoded data.

Parameters

Return Value Returns the certificate converted to the specified format f.
Returns null if the required conversion is not supported.

See Also IE.Iona.OrbixWeb.SSL.IT_Format

IT_X509Cert.getExtensions()

Synopsis public IT_ExtensionList getExtensions();

Description This method retrieves the list of extensions that this certificate can
include. Individual extensions can be retrieved from the returned
IT_ExtensionList as IT_Extension instances. You can then retrieve
the extension data from the IT_Extension objects.

Returns A populated extension list, if extensions exist. Returns null
otherwise.

IT_X509Cert.getIssuer()

Synopsis public IT_AVAList getIssuer();

Description This method retrieves the distinguished name of the certificate
issuer (CA) as an IT_AVAList instance. Individual components of
the distinguished name (for example, the common name or the
organization name) can be retrieved from the IT_AVAList instance.

See Also IE.Iona.OrbixWeb.SSL.IT_AVAList
IE.Iona.OrbixWeb.SSL.IT_AVA

IT_X509Cert.getNotAfter()

Synopsis public IT_UTCTime getNotAfter();

Description This method returns the time after which this certificate is invalid.

See Also IE.Iona.OrbixWeb.SSL.IT_UTCTime

f A specified format.

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 137

IT_X509Cert.getNotBefore()

Synopsis public IT_UTCTime getNotBefore();

Description This method returns the time before which this certificate is
invalid.

See Also IE.Iona.OrbixWeb.SSL.IT_UTCTime

IT_X509Cert.getSerialNumber()

Synopsis public java.math.BigInteger getSerialNumber();

Description This method returns the serial number of the certificate.

IT_X509Cert.getSignature()

Synopsis public IT_Signature getSignature();

Description This method returns the certificate signature as an instance of
IT_Signature. The algorithm used to generate the signature can be
obtained from this instance.

See Also IE.Iona.OrbixWeb.SSL.IT_Signature

IT_X509Cert.getSubject()

Synopsis public IT_AVAList getSubject();

Description This method retrieves the distinguished name of the entity that
this certificate identifies as an IT_AVAList instance. Individual
components of the distinguished name (common name or
organization name, for example) can be retrieved from the
IT_AVAList instance.

See Also IE.Iona.OrbixWeb.SSL.IT_AVA
IE.Iona.OrbixWeb.SSL.IT_AVAList

IT_X509Cert.getSubjectPublicKey()

Synopsis public IT_PublicKeyInfo getSubjectPublicKey();

Description This method retrieves the public key of the entity that this
certificate identifies. The algorithm used to generate the key, the
key modulus and exponent can all be retrieved from the returned
IT_PublicKeyInfo instance. This instance may also be converted to
an instance of java.security.PublicKey.

See Also IE.Iona.OrbixWeb.SSL.IT_PublicKey
IE.Iona.OrbixWeb.SSL.IT_PublicKeyInfo

IT_X509Cert.getVersion()

Synopsis public int getVersion();

Description This method obtains the X.509 version of the certificate

Return Value Returns the X.509 version of the certificate. In accordance with
the X.509 specification, a value of 0 indicates version one, a value
of 1 indicates version two and a value of 2 indicates version three.

 138 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_X509Cert.length()

Synopsis public int length(IT_Format f);

Description This method obtains the number of bytes required to store the
result of converting this certificate to the format specified by f.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported
otherwise.

See Also IE.Iona.OrbixWeb.SSL.IT_AVA.length()

IT_X509Cert.toString()

Synopsis public String toString();

Description This method obtains the String representation of the certificate,
which includes all X.509 certificate attributes. It overrides
toString() in class Object.

pos The specified index position of the required extension in this
list.

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 139

Class IE.Iona.OrbixWeb.SSL.IT_X509CertChain
Synopsis This class represents a chain of certificates. The first certificate in

the chain is the certificate authenticating the SSL client or server.
Each subsequent certificate signs the previous one. An instance of
this class is supplied as a parameter to verify certificate callbacks
and is used to obtain the peer certificate and its issuer certificates.

Java class IE.Iona.OrbixWeb.SSL.IT_X509CertChain {
public:

public IT_X509CertChain();
public void add(IT_X509Cert cert);
public IT_X509Cert getCert(int pos);
public IT_X509Cert getCurrentCert();
public int getCurrentDepth();
public IT_CertError getErrorInfo();
public int numCerts();
public String toString();

};

See Also IE.Iona.OrbixWeb.SSL.IT_X509Cert

IT_X509CertChain.IT_X509CertChain()

Synopsis public IT_X509CertChain();

Description This method constructs an empty certificate chain.

IT_X509CertChain.add()

Synopsis public void add (IT_X509Cert cert);

Description This method adds the supplied certificate to the end of the list.

Parameters

IT_X509CertChain.getCert()

Synopsis public IT_X509Cert getCert(int pos);

Description This method obtains the certificate at the specified index in the
chain.

Parameters

Return Value Returns the certificate at index pos, if it is a valid index. Returns
null otherwise.

IT_X509CertChain.getCurrentCert()

Synopsis public IT_X509Cert getCurrentCert();

Description This method returns the certificate that is marked as current in
the chain. This certificate is always the one at the current depth.
Functionally, this is equivalent to getCert(getCurrentDepth()).

cert The supplied certificate.

pos The index position in the chain of the required certificate.

 140 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

IT_X509CertChain.getCurrentDepth()

Synopsis public int getCurrentDepth();

Description This method obtains the current depth of the certificate chain.

Return Value Returns the current depth of the certificate chain.

IT_X509CertChain.getErrorInfo()

Synopsis public IT_CertError getErrorInfo();

Description This method returns information on the last error associated with
the certificate chain.

IT_X509CertChain.numCerts()

Synopsis public int numcerts();

Description This method obtains the number of certificates in this chain.

Return Value Returns the number of certificates in this chain.

IT_X509CertChain.toString()

Synopsis public String toString();

Description This method provides a detailed string representation of the
certificate chain’s content. It overrides toString() in class Object.

Part V
Appendices

In this part
This part contains the following:

Security Recommendations page 143

OpenSSL Utilities page 145

Troubleshooting OrbixSSL page 159

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 143

Security
Recommendations
Some general recommendations for increasing the security of
OrbixSSL applications are as follows:

• Use SSL security for every application where possible. This
means specifying SECURE_DAEMON as your daemon policy, and
using the default invocation policy for all OrbixSSL
applications. Under these conditions, no unauthorized
applications can access your servers or be accessed by your
applications.

• Replace the demonstration certificates that are installed with
OrbixSSL. These must be replaced by a set of certificates and
private keys that have been securely generated. Refer to the
chapter “Managing Certificates” for more information.
You should also change the pass phrases used to protect
private keys. Do not reuse the pass phrases that were used
for the example private keys.

• Do not enable the default certificate, and do not issue a
default certificate for live systems.
The use of a default certificate is generally not appropriate in
a production system because access to the dynamic library of
the OrbixSSL version installed on the system would allow any
client to use the default certificate, even a client from another
machine. The OrbixSSL dynamic libraries in effect contain the
default pass phrase that protects the private key of the
default certificate.

• If your application requires some interoperability with
insecure applications, only allow specifically listed servers and
interfaces to be contacted insecurely by your clients. Use
secure callbacks for clients wherever possible as this is the
default setting for OrbixSSL.

• Where it is necessary for remote insecure clients to contact
OrbixSSL servers that are capable of accepting secure and
insecure connections, set the daemon policy to
RESTRICTED_SEMI_SECURE_DAEMON (instead of SEMI_SECURE_DAEMON).

• The OrbixSSL installation modifies the existing Orbix binaries
so that they can use the Orbix binary certificate for
authentication purposes. The permissions on these binaries
are readable only by root, but executable by everybody. Do
not change the permissions to be readable by everybody.

• Use the 128 bit , 256 bit or triple DES cipher suites exclusively
where possible. The extra time taken to perform the more
secure bulk cipher computations does not impact the overall
performance of OrbixSSL applications significantly.
The security of an SSL application is only as strong as the
weakest cipher suite that it is prepared to support. Consider
the presence of stronger cipher suites as an optional service
for more discerning applications that wish to communicate
with your application.

 144 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

• An RSA key size of at least 1024 bits is recommended for
most secure applications. 2048-bit key sizes can also be used.
1024/2048 bit keys are significantly slower to use than 512 bit
keys but they greatly increase the security of systems. The
use of SSL session caching helps to minimize the number of
public key computations.

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 145

OpenSSL Utilities
OrbixSSL ships a version of the openssl program that is available
from the OpenSSL project. OpenSSL is a publicly available
implementation of the SSL protocol. Consult the notices.txt file
that is provided with OrbixSSL for information about the copyright
terms of OpenSSL.
The openssl program consists of a large number of utilities that
have been combined into one program. This appendix describes
how you use the openssl program with OrbixSSL when managing
X.509 certificates and private keys.
A number of examples using openssl commands are described in
the chapter “Managing Certificates”. Read this chapter before
consulting this appendix.
This appendix describes four openssl utility commands:

Using OpenSSL Utilities
An openssl utility command line takes the following form:

openssl command arguments
For example:

openssl x509 -in OrbixCA -text

Each command is individually described in this appendix. To get a
list of the arguments associated with a particular command, use
the -help option as follows:

openssl command -help
For example:

openssl x509 -help

x509 Manipulates X.509 certificates.
req Creates and manipulates certificate signing requests, and

self-signed certificates.
rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).

 146 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

The x509 Utility Command
In OrbixSSL the x509 utility command is mainly used for:

• Printing text details of certificates you wish to examine.
• Converting certificates to different formats.
The options supported by the openssl x509 utility command are as
follows:

-inform arg - input format; default PEM
(one of DER, NET or PEM)

-outform arg - output format; default PEM
(one of DER, NET or PEM)

-keyform arg - private key format; default PEM
-CAform arg - CA format; default PEM
-CAkeyform arg - CA key format; default PEM
-in arg - input file; default stdin
-out arg - output file; default stdout
-passin arg - private key password source
-serial - print serial number value
-subject_hash - print subject hash value
-subject_hash_old - print old-style (MD5) subject hash value
-issuer_hash - print issuer hash value
-issuer_hash_old - print old-style (MD5) issuer hash value
-hash - print serial number value
-subject - print subject DN
-issuer - print issuer DN
-startdate - notBefore field
-enddate - notAfter field
-purpose - print out certificate purposes
-dates - both Before and After dates
-modulus - print the RSA key modulus
-pubkey - output the public key
-fingerprint - print the certificate fingerprint
-alias - output certificate alias
-noout - no certificate output
-ocspid - print OCSP hash values for the subject name

and public key
-ocsp_uri - print OCSP Responder URL(s)
-trusted - output a "trusted" certificate
-clrtrust - clear all trusted purposes
-clrreject - clear all rejected purposes
-addtrust arg - trust certificate for a given purpose
-addreject arg - reject certificate for a given purpose
-setalias arg -s set certificate alias

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 147

-days arg - How long till expiry of a signed certificate;
default is 30 days

-checkend arg - check whether the cert expires in the next arg
seconds: exit 1 if so, 0 if not

-signkey arg - self sign cert with arg
-x509toreq - output a certification request object
-req - input is a certificate request, sign and output
-CA arg - set the CA certificate, must be PEM format
-CAkey arg - set the CA key, must be PEM format. If

missing it is assumed to be in the CA file
-CAcreateserial - create serial number file if it does not exist
-CAserial - serial file
-set_serial - serial number to use
-text - print the certificate in text form
-C - print out C code forms
-md2/-md5/-sha1/
-mdc2

- digest to do an RSA sign with

-extfile - a configuration file with X509V3 extensions to
add

-extensions - section from the configuration file with X509V3
extensions to add

-clrext - delete extensions before signing and input
certificate

-nameopt arg - various certificate name options
-engine e - use engine e, possibly a hardware device
-certopt arg - various certificate text options
-checkhost host - check that the certificate matches "host"
-checkemail email - check that the certificate matches "email"
-checkip ipaddr - check that the certificate matches "ipaddr"

 148 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

Using the x509 Utility Command
To print the text details of an existing PEM-format X.509
certificate, use the x509 utility command as follows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509
certificate, use the x509 utility command as follows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the
x509 utility command as follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER
-out MyCert.der

The req Utility Command
The req utility command is used to generate a self-signed
certificate or a certificate signing request (CSR). A CSR contains
details of a certificate to be issued by a CA. When creating a CSR,
the req command prompts you for the necessary information from
which a certificate request file and an encrypted private key file
are produced. The certificate request is then submitted to a CA for
signing.
If the -nodes (no DES) parameter is not supplied to req, you are
prompted for a pass phrase which will be used to protect the
private key.

Note: It is important to specify a validity period (using the -days
parameter). If the certificate expires, applications that are using
that certificate will not be authenticated successfully.
The options supported by the openssl req utility command are as
follows:

-inform arg input format - one of DER TXT PEM
-outform arg output format - one of DER TXT PEM
-in arg inout file
-out arg output file
-text text form of request
-pubkey output public key
-noout do not output REQ
-verify verify signature on REQ
-modulus RSA modulus
-nodes do not encrypt the output key
-engine e use engine e, possibly a hardware device
-subject output the request's subject
-passin private key password source
-key file use the private key contained in file
-keyform arg key file format
-keyout arg file to send the key to
-rand file:file:... load the file (or the files in the directory) into

the random number generator

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 149

Using the req Utility Command
To create a self signed certificate with an expiry date a year from
now, the req utility command can be used as follows to create the
certificate CA_cert.pem and the corresponding encrypted private
key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem
and the corresponding encrypted private key file
MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

-newkey rsa:bits generate a new RSA key of bits in size
-newkey dsa:file generate a new DSA key, parameters taken

from CA in file
-newkey ec:file generate a new EC key, parameters taken

from CA in file
-[digest] Digest to sign with (md5, sha1, md2, mdc2)
-config file request template file
-subj arg set or modify request subject
-multivalue -rdn enable support for multivalued RDNs
-new new request
-batch do not ask anything during request generation
-x509 output an x509 structure instead of a

certificate req. (Used for creating self signed
certificates)

-days number of days an x509 generated by -x509 is
valid for

-set_serial serial number to use for a certificate
generated by -509

-newhdr output "NEW" in the header lines
-asn1-kludge Output the request in a format that is wrong,

but which some CAs have been reported as
requiring. [This option is now always turned
on but can be turned off with -no-asn1-kludge]

-extensions .. specify certificate extension section (overrides
the value in the configuration file)

-reqexts .. specify request extension section (overrides
the value in the configuration file)

-utf8 input characters are UTF8 (by default,
characters are ASCII)

-nameopt arg various certificate name options
-reqopt arg various request text options

 150 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

The rsa Utility Command
The rsa command is a useful utility for examining and modifying
RSA private key files. Generally RSA keys are stored encrypted
with a symmetric algorithm using a user-supplied pass phrase.
The OpenSSL req command prompts the user for a pass phrase in
order to encrypt the private key. By default, req uses the triple
DES algorithm. The rsa command can be used to change the
password that protects the private key and to convert the format
of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase
used to encrypt it.
The options supported by the openssl rsa utility command are as
follows:

Using the rsa Utility Command
Converting a private key to PEM format from DER format involves
using the rsa utility command as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out
MyKey.pem

Changing the pass phrase which is used to encrypt the private key
involves using the rsa utility command as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey.pem -des3

-inform arg input format - one of DER, TXT, or PEM
-outform arg output format - one of DER, TXT, or PEM
-in arg inout file
-sgckey use IIS SGC key format
-passin arg input file pass phrase source
-out arg output file
-passout arg output file pass phrase source
-des encrypt PEM output with cbc des
-des3 encrypt PEM output with ede cbc des using

168 bit key
-seed encrypt PEM output with cbc seed
-aes128, -aes192,
-aes256

encrypt PEM output with cbc aes

 -camellia128,
-camellia192,
-camellia256

encrypt PEM output with cbc camellia

-text print the key in text
-noout do not print key out
-modulus print the RSA key modulus
-check verify key consistency
-pubin expect a public key in input file
-pubout output a public key
-engine e use engine e, possibly a hardware device

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 151

Removing encryption from the private key (which is not
recommended) involves using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey2.pem

Note: Do not specify the same file for the -in and -out parameters,
because this may corrupt the file.

 152 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

The ca Utility Command
You can use the ca command to create X.509 certificates by
signing existing signing requests. It is imperative that you check
the details of a certificate request before signing. Your
organization should have a policy with respect to the issuing of
certificates. Before implementing CAs, refer to the chapter
“Managing Certificates” for more information.
The ca command is used to sign certificate requests thereby
creating a valid X.509 certificate which can be returned to the
request submitter. It can also be used to generate Certificate
Revocation Lists (CRLS). For information on the ca -policy and
-name options, refer to “The OpenSSL configuration file” on
page 153.
To create a new CA using the openssl ca utility command, two files
(serial and index.txt) need to be created in the location specified
by the OpenSSL configuration file that you are using.
The options supported by the OpenSSL ca utility command are as
follows:

-verbose - Talk a lot while doing things
-config file - a config file
-name arg - the particular CA definition to use
-gencrl - generate a new CRL
-crldays days - days is when the next CRL is due
-crlhours hours - hours is when the next CRL is due
 -startdate
YYMMDDHHMMSSZ

- certificate validity notBefore

 -enddate
YYMMDDHHMMSSZ

- certificate validity notAfter (overrides -days)

-days arg - number of days to certify the certificate for
-md arg - md to use, one of md2, md5, sha or sha1
-policy arg - the CA policy to support
-keyfile arg - PEM private key file
-keyform arg - private key file format (PEM or ENGINE)
-key arg - key to decode the private key if it is

encrypted
-cert - the CA certificate
-selfsign - sign a certificate with the key associated with

it
-in file - the input PEM-encoded certificate request(s)
-out file - where to put the output file(s)
-outdir dir - where to put output certificates
-infiles.... - The last argument, requests to process
-spkac file - File contains DN and signed public key and

challenge
-ss_cert file - file contains a self-signed certificate to sign
-preserveDN - Do not re-order the DN

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 153

Note: Most of the above parameters have default values as defined in
openssl.cnf.

Using the ca Utility Command
Converting a private key to PEM format from DER format involves
using the ca utility command as shown in the following example.
To sign the supplied CSR MyReq.pem to be valid for 365 days and
create a new X.509 certificate in PEM format, use the ca utility as
follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

The OpenSSL configuration file
A number of OpenSSL commands (for example, req and ca) take a
-config parameter that specifies the location of the OpenSSL
configuration file. This section provides a brief description of the
format of the configuration file and how it applies to the req and ca
commands. An example configuration file is listed at the end of
this section.
The openssl.cnf configuration file consists of a number of sections
that specify a series of default values which are used by the
OpenSSL commands.

[req] Variables
The req section contains the following settings:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name

-noemailDN - don't add the EMAIL field into the certificate's
subject

-batch - do not ask questions
-msie_hack - msie modifications to handle all those

universal strings
-revoke file - revoke a certificate (given in file)
-subj arg - use arg instead of the request’s subject
-utf8 - input characters are UTF8 (by default

characters are ASCII)
-multivalue -rdn - enable support for multivalued RDNs
-extensions .. - extension section (overrides the value in the

configuration file)
-extfile file - configuration file with X509v3 extensions to

add
-crlexts .. - CRL extension section (overrides the value in

the configuration file)
-engine e - use engine e, possibly a hardware device
-status serial - shows certificate status given the serial

number
-updatedb - updates the database for expired certificates

 154 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

attributes = req_attributes

The default_bits setting is the default RSA key size that you wish
to use. Other possible values are 512, 2048, 4096.
The default_keyfile value is default name for the private key file
created by req.
The distinguished_name value specifies the section in the
configuration file that defines the default values for components of
the distinguished name field. The req_attributes variable specifies
the section in the configuration file that defines defaults for
certificate request attributes.

[ca] Variables
You can configure the file openssl.cnf to support a number of CAs
that have different policies for signing CSRs. The -name parameter
to the ca command specifies which CA section to use. For
example:

openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not
supplied to the ca command, the CA section used is the one
indicated by the default_ca variable. In the “Example openssl.cnf
File” on page 155, this is set to CA_default (which is the name of
another section listing the defaults for a number of settings
associated with the ca command). Multiple different CAs can be
supported in the configuration file, but there can be only one
default CA.
Possible [ca] variables include the following:

dir: The location for the CA database

The database is a simple text database containing the
following tab separated fields

status: A value of ‘R’ - revoked, ‘E’
-expired or ‘V’ valid

issued date: When the certificate was
certified

revoked date: When it was revoked, blank if not
revoked

serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial field should be unique as should the
CN/status combination. The ca program checks these at
startup.

certs: This is where all the previously
issued certificates are kept

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 155

[policy] Variables
The policy variable specifies the default policy section to be used if
the -policy argument is not supplied to the ca command. The CA
policy section of a configuration file identifies the requirements for
the contents of a certificate request which must be met before it is
signed by the CA.
There are 2 policies defined in the “Example openssl.cnf File” on
page 155: policy_match and policy_anything.
Consider the following value:

countryName = match

This means that the country name must match the CA certificate.
Consider the following value:

organisationalUnitName = optional

This means that the organisationalUnitName does not have to be
present.
Consider the following value:

commonName = supplied

This means that the commonName must be supplied in the certificate
request.
The policy_match section of the example openssl.cnf file specifies
the order of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

Example openssl.cnf File
##
OpenSSL example configuration file.
This is mostly used for generation of certificate requests.
##
[ca]
default_ca = CA_default # The default ca section
##

[CA_default]

dir =/opt/microfocus/OrbixSSL1.0c/certs # Where everything is
kept

certs = $dir # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file
new_certs_dir = $dir/new_certs # default place for new

 certs
certificate = $dir/CA/OrbixCA # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/CA/OrbixCA.pk # The private key

 156 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

RANDFILE = $dir/.rand # private random number file
default_days = 365 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = md5 # which message digest to use
preserve = no # keep passed DN ordering

A few different ways of specifying how closely the request
should conform to the details of the CA

policy = policy_match

For the CA policy [policy_match]

countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
stateOrProvinceName = State or Province Name (full

 name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg,

company)
organizationalUnitName = Organizational Unit Name (eg,

 section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName = An optional company name

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 157

 158 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

 OrbixSSL Programmer’s and Administrator’s Guide Java Edition 159

Troubleshooting
OrbixSSL
This is a checklist to help you make sure that OrbixSSL is installed
and configured correctly:

• Ensure that your application works without OrbixSSL, by
disabling all OrbixSSL calls in the application. If the
application does not work, OrbixSSL is not causing the
problem.

• Check whether your application works using the Default Cert
mechanism provided by OrbixSSL. Disable all OrbixSSL calls
in the application and specify IT_ENABLE_DEFAULT_CERT TRUE in
the orbixssl.cfg OrbixSSL policy file. If the application now
works, any problem is likely to be caused by either OrbixSSL
code in the application, or by the certificate or private key that
your application is using.

The rest of the suggestions in this appendix assume that your
OrbixSSL code is not disabled.

• Insure that IT_SSL::init() is called and the return value
checked. Also ensure that the return value of all OrbixSSL
functions is carefully examined.

• Set export IT_SSL_TRACE_LEVEL=1
This will give some high level handshake information.

• Set IT_SSL_TRACEFILE to point to a debug file for a process. The
process can now write additional very detailed SSL debug
information to this file. Set IT_SSL_TRACEFILE to a different file
for each process, so that the output of two processes are not
confused.

• Use -Djavax.net.debug=all on the java command for clients
and servers. This will produce detailed SSL debug information.

• Check that the certificates, private keys and passwords are
correct. For example:
openssl x509 -in MyCert -text

This should display the text details of the certificate.
openssl rsa -in MyKey -text

This should display the text details of the private key, if the
private key is encrypted (which it normally should be). You
are asked for a pass-phrase –input the pass-phrase that the
OrbixSSL application is attempting to use to decrypt the
private key.

• Investigate whether the openssl s_client or openssl s_server
utilities provided with OrbixSSL can communicate using the
same certificates and keys that they are trying to use with the
OrbixSSL applications. If this is not the case then there is a
problem with the keys, certificates, or pass-phrases. The
customer should recheck them. For example:
openssl s_client -ssl3 -host SomeHost
-port SomeServerPort -CAfile SomeCAFile
-cert SomeClientCert -debug

 160 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

openssl s_server -accept MyServerPort -ssl3 -CAfile
SomeCAFile -cert SomeClientCert -debug -Verify 2

The argument -Verify enforces client authentication. It is
followed by an integer that determines the maximum chain
depth allowed. You can also use -verify can be instead of
-Verify which will not reject the connection if a client cert is
not available.
If openssl_server is interrupted the port number it was using
can become unavailable for a period of time. Simply use
another port when trying again. The openssl s_client port
parameter must change to match.
There is no support for SSL Version 2.0 in OrbixSSL. It
supports SSL Version 3.0 only. It does not issue or accept
Version 2.0 hello messages. This behavior can be simulated in
openssl s_client and openssl s_server by the use of the -ssl3
parameter shown above.
You can also use openssl s_client and openssl s_server can be
used to establish SSL connections with OrbixSSL servers. For
example, you can specify the OrbixSSL server port to openssl
s_client, and it then attempts to handshake with the
OrbixSSL server.
You can also use s_server to simulate an OrbixSSL server by
running it on the SSL port specified in the IOR that an
OrbixSSL client uses. Use IORDump see the port.

• If you are an experienced progammer, examine the output of
operating system diagnostic tools such as truss (Solaris) or
trace (HP-UX) for the client, server and daemon separately.

Summary of Useful Output to Gather
If you have problems with OrbixSSL and must make a support
call, he following can be very helpful:

• Separate files for the Daemon, client and server of the
following output having specified IT_SSL_TRACE_LEVEL=1:
The stdout and stderr (for example, & on Unix)
daemon.out
client.out
server.out

• Separate IT_SSL_TRACE_FILE output for the daemon, client and
server:
daemon.log
client.log
server.log

• Separate truss (or trace) output for the daemon, client and
server. For Multi-threaded applications use trace -l on Solaris
to show the system calls per thread.
daemon.trc
client.trc
server.trc

• The OrbixSSL Security config file orbixssl.cfg
• The root CA file that is referenced by orbixssl.cfg

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 161

• If appropriate the certificates and private key files with
passwords can be useful, in order to attempt to reproduce the
problem exactly.

Note: Do not send us the password and private keys for a Live system!

• If possible the complete source for a minimal test case.
• If this is not possible then include the excerpts of the client

and server programs which make OrbixSSL calls.
• A core dump, and a text stack trace, if the problem causes the

program to dump core.

 162 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 163

Index

A
addTrustedCert() 14, 35
API, OrbixSSL 7
applets, creating secure 16
asymmetric cryptography 5
Attribute Value Assertions 50
authentication 4, 32, 45

client 36
AVA 50

C
CA 5, 21

choosing a host 22, 23
commercial CAs 23
demonstration 9
multiple 26
private CAs 23
publishing 26
publishing a certificate for 26
specifying trusted CAs 11, 14, 35

caching, session 41
ca utility 27
ccsit utility 59
certificates 5, 33

certificate signing request 26
chaining 26, 35

setting maximum depth 26
chaining of 11
classes 49
demonstration 9
installing 25
self-signed 11
signing 26, 27, 28
validating 45

Certification Authority. See CA
chaining, certificate 11, 26, 35

setting maximum depth 26
checksums, cryptographic 59
ciphers 40
class IE.Iona.OrbixWeb.SSL

IT_AVA 63
IT_AVAList 73
IT_CertError 73
IT_CertValidity 73
IT_Extension 77
IT_ExtensionList 77
IT_Format 83
IT_OID 83
IT_OID_Tag 85
IT_PublicKeyAlgorithm 91
IT_PublicKeyInfo 91
IT_SecCommsCategory 93
IT_SSL 119

IT_SSLCacheOptions 119
IT_SSLCipherSuite 119
IT_SSLException 123
IT_SSLInvocationOptions 127
IT_X509Cert 135
IT_X509CertChain 131

CLASSPATH variable 15
client authentication 36

in the KDM 58
configuration

file 15
creating

a certificate 24
a private key 24

cryptographic checksums 59
cryptography

asymmetric 5
RSA. See RSA cryptography
symmetric 5, 6

CSRs 26

D
daemon, Orbix 15
Data Encryption Standard 6
depth, certificate chain 26
DER 33
DES 6
Distinguished Encoding Rules 33
distinguished names 50
documentation

.pdf format ix
updates on the web ix

E
example, grid 7
extensions 51

F
file, configuration 15

G
grid example 7

H
handshake, SSL 4–5
hashes 40

I
IIOP 3, 42
init() 10, 31
initializing SSL support 10, 13
installing

 164 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

certificates 25
private key files 25

integrity 6
interface
IE.Iona.OrbixWeb.SSL.IT_ValidateX509
CertCB 131

International Telecommunications
Union 5

Internet Inter-ORB Protocol. See IIOP
invocation policies 36
IT_AVA

convert() 63
length() 63
toString() 63

IT_AVAList
add() 65
convert() 66
getAVA() 66
getAVAByOID() 66
getAVAByOIDTag() 66
getNumAVAs() 67
IT_AVAList 65
length() 67

IT_CA_LIST_FILE 15
IT_CertError 73
IT_CERTIFICATE_PATH 15
IT_CertValidity

IT_SSL_VALID_NO 71
IT_SSL_VALID_NO_APP_DECISION 71
IT_SSL_VALID_YES 71

IT_CHECKSUMS_ENABLED 59
IT_CHECKSUMS_REPOSITORY 59
IT_CONFIG_PATH 15
IT_Extension

convert() 75
critical() 76
IT_Extension() 75
length() 76
oid() 76

IT_ExtensionList
add() 77
convert() 78
getExtension() 78
getExtensionByOID() 78
getExtensionByOIDTag() 79
getNumExtensions() 79
IT_ExtensionList() 77
length() 79

IT_Format 10
IT_FMT_DER 81
IT_FMT_PEM 81
toString() 81

IT_INSECURE_ACCEPT 38
IT_KDM_CLIENT_COMMON_NAMES 58
IT_KDM_ENABLED 57
IT_KDM_REPOSITORY 57
IT_KDM_SERVER_PORT 57
IT_OID_Tag

ASNOidToITOid() 87
toString() 87

IT_PublicKeyAlgorithm
IT_RSA 89

IT_PublicKeyInfo
convert() 91
getAlgorithm() 91
getExponent() 91
getModulus() 92
IT_PublicKeyInfo() 91
length() 92
toPublicKey() 92

IT_SecCommsCategory
IT_COMMS_CAT_INSECURE 93
IT_COMMS_CAT_SECURE 93

IT_SECURE_ACCEPT 38
IT_SECURE_CONNECT 38
IT_Signature

getSignatureAlgType() 95
IT_Signature() 95

IT_SignatureAlgType
IT_SIG_MD5_WITH_RSA 97

IT_SPECIFIED_INSECURE_CONNECT 38
IT_SPECIFIED_SECURE_CONNECT 38
IT_SSL 10, 31

addTrustedCert() 14, 35, 100, 101
getClientAuthentication() 102
getInvocationPolicy() 102
getMaxChainDepth() 102
getNegotiatedCipherSuite() 103, 104
getPeerCert() 104, 105
init() 10, 31, 106
isSSLInstalled() 107
loadCertChain() 107
setApplicationCertChain() 12, 33, 108
setCacheOptions 108
setClientAuthentication() 36, 109
setInvocationPolicy() 109
setMaxChainDepth() 111
setPrivateKeyFromFile() 112
setPrivateKeyPassword() 12, 111
setRSAPrivateKeyFromDER() 111
setRSAPrivateKeyFromFile() 12, 28, 112
setRsaPrivateKeyFromFile() 33
setValidateClientCertCallback() 113
setValidateServerCallback() 47
setValidateServerCertCallback() 113
specifyCipherSuites() 113
specifySecurityForInterfaces() 114
specifySecurityForServers() 115

IT_SSL_CACHE_CLIENT 42
IT_SSL_CACHE_NONE 41
IT_SSLCacheOptions

IT_SSL_CACHE_CLIENT 117
IT_SSL_CACHE_NONE 117
IT_SSL_CACHE_SERVER 117

IT_SSL_CACHE_SERVER 42
IT_SSL_CONFIG_PATH 15
IT_SSLException

getErrorCode() 123
getErrorMessage() 123
IT_SSL_ERR_CERT_NOT_ISSUER 123
IT_SSL_ERR_INSECURE_CONNECTION

124
IT_SSL_ERR_INVALID_OPT_COMBO 12

4

OrbixSSL Programmer’s and Administrator’s Guide Java Edition 165

IT_SSL_ERR_NO_CONNECTION 124
IT_SSL_ERR_ORB_NOT_INITIALISED 1

24
IT_SSL_ERR_SECURITY_INACTIVE 124
IT_SSLException() 123, 124, 125
IT_SSLV_ERR_CERT_CHAIN_TOO_LON
G 124

IT_SSLV_ERR_CERT_HAS_EXPIRED 12
4

IT_SSLV_ERR_CERT_NOT_YET_VALID
124

IT_SSLV_ERR_CERT_SIGNATURE_FAIL
URE 125

toString() 123
IT_SSLInvocationOptions

IT_INSECURE_ACCEPT 127
IT_INSECURE_CONNECT 127
IT_SECURE_ACCEPT 127
IT_SECURE_CONNECT 128
IT_SPECIFIED_INSECURE_CONNECT 1

28
IT_SPECIFIED_SECURE_CONNECT 128

ITU 5
IT_UTCTime

toDate() 129
toString() 129

IT_ValidateX509CertCB 47
validateCert() 131

IT_X509Cert 10, 12
convert() 136
getExtensions() 136
getIssuer() 136
getNotAfter() 136
getNotBefore() 137
getSerialNumber() 137
getSignature() 137
getSubject() 137
getSubjectPublicKey() 137
getVersion() 137
IT_X509Cert() 135
length() 138
toString() 138

IT_X509CertChain
add() 139
getCert() 139
getCurrentCert() 139
getCurrentDepth() 140
getErrorInfo() 140
IT_X509CertChain() 139
numCerts() 140
toString() 140

K
KDM 55

client authentication 58
putkdm utility 59
server 58

key distribution mechanism. See KDM
keyenc utility 28
key exchange algorithm 40
keys

private 5, 12, 55
encrypting 28
pass phrases for 12
supplying from files 12

public 5

L
LD_LIBRARY_PATH 16

M
MAC 6
message authentication code 6

N
names, distinguished 50
non-Orbix clients 42

O
Orbix daemon 15
OrbixSSL

certification authorities 23
orbixssl.cfg 15
OrbixSSL API 7

P
pass phrase, specifying 12
pass phrases 55
PATH 16
PEM 12, 33
PKCS#12 33
policies, invocation 36
privacy 6
Privacy Enhanced Mail 12, 33
private key

creating 24
private keys 5, 12, 55

encrypting 28
pass phrases for 12
supplying from files 12

protocol, SSL handshake 4–5
Public Key Cryptography Standards 33
public keys 5
publishing CAs 26
putit 42, 43
putkdm utility 59

R
RC4 6
req utility 24
Rivest Shamir Adleman cryptography.
See RSA cryptography

RSA cryptography 4, 40

S
Secure Sockets Layer. See SSL
self-signed certificates 11
server, KDM 58
session caching 41
setApplicationCertChain() 12, 33
setClientAuthentication() 36

 166 OrbixSSL Programmer’s and Administrator’s Guide Java Edition

setPrivateKeyPassword() 12
setRSAPrivateKeyFromFile() 12, 28
setRsaPrivateKeyFromFile() 33
setValidateServerCallback() 47
SHLIB_PATH 16
signing certificates 26, 27, 28
SSL

adding to an application 7
authentication 4, 32, 45

client 36
handshake 4–5
initializing 10, 13
integrity 6
overview 3
privacy 6

SSLeay
configuration file 26
utilities 145

ca 27
req 24

ssleay.cnf 26
ssleay.cnf example file 155
SSLv3 32
supplying private keys 12
symmetric cryptography 6

T
TCP/IP 3
TLSv1 32

U
utilities 145

V
validating certificates 45
variables

CLASSPATH 15
IT_CONFIG_PATH 15
LD_LIBRARY_PATH 16
PATH 16
SHLIB_PATH 16

X
X.509 5

certificates. See certificates

	Preface
	Audience
	Organization of this Guide
	Document Conventions
	Contacting Micro Focus

	Introduction
	An Introduction to OrbixSSL
	An Overview of OrbixSSL
	An Overview of SSL Security
	Authentication in SSL
	Privacy of SSL Communications
	Integrity of SSL Communications

	Getting Started with OrbixSSL
	Overview of the Application
	Running the Application without SSL
	Running the Application with SSL
	Overview of the Certificates Used in the Example

	Adding SSL to the Example
	Adding SSL to the Server
	Adding SSL to the Client

	Running the Application
	Running the Orbix Daemon

	Working with Secure Applets
	Developing Secure Applets
	Deploying Secure Applets

	OrbixSSL Administration
	Managing Certificates
	Creating Certificates for an Application
	Overview of the OrbixSSL Demonstration Certificates

	Choosing a Certification Authority
	Commercial Certification Authorities
	Private Certification Authorities
	Creating a Self-Signed Certificate and Private Key

	Publishing a Certification Authority Certificate
	Certificates Signed by Multiple Certification Authorities

	Signing Application Certificates
	Generating a Certificate Signing Request
	Signing a Certificate

	OrbixSSL Programming
	Defining a Security Policy
	Overview of the OrbixSSL API
	Configuring Server Authentication
	Specifying Protocols
	Specifying the Location of Certificates
	Specifying the Private Key File and Pass Phrase
	Specifying Certificates to Accept

	Configuring Client Authentication
	Configuring OrbixSSL Application Types
	Choosing Invocation Policies
	Setting an Invocation Policy
	How Invocation Policies Affect OrbixSSL Communications
	Specifying Exceptions to an Invocation Policy

	Configuring Ciphers
	OrbixSSL Session Caching Configuration
	Providing IORs with SSL Information
	Using the putit SSL Parameters

	Validating Certificates
	Overview of Certificate Validation
	Introducing Additional Validation
	Examining the Contents of a Certificate
	Working with Distinguished Names
	Working with X.509 Extensions

	Example of a Certificate Validation Function

	Managing Pass Phrases
	Using a Central Repository for Servers
	Overview of the Key Distribution Mechanism

	Configuring the Key Distribution Mechanism
	Running the Key Distribution Mechanism
	Maintaining the Database
	Verifying the Integrity of Server Executables
	Using the Key Distribution Mechanism

	OrbixSSL Java Reference
	Class IE.Iona.OrbixWeb.SSL.IT_AVA
	Class IE.Iona.OrbixWeb.SSL.IT_AVAList
	Class IE.Iona.OrbixWeb.SSL.IT_CertError
	Class IE.Iona.OrbixWeb.SSL.IT_CertValidity
	Class IE.Iona.OrbixWeb.SSL.IT_CommsSecuritySpec
	Class IE.Iona.OrbixWeb.SSL.IT_Extension
	Class IE.Iona.OrbixWeb.SSL.IT_ExtensionList
	Class IE.Iona.OrbixWeb.SSL.IT_Format
	Class IE.Iona.OrbixWeb.SSL.IT_OID
	Class IE.Iona.OrbixWeb.SSL.IT_OID_Tag
	Class IE.Iona.OrbixWeb.SSL.IT_PublicKeyAlgorithm
	Class IE.Iona.OrbixWeb.SSL.IT_PublicKeyInfo
	Class IE.Iona.OrbixWeb.SSL.IT_SecCommsCategory
	Class IE.Iona.OrbixWeb.SSL.IT_Signature
	Class IE.Iona.OrbixWeb.SSL.IT_SignatureAlgType
	Class IE.Iona.OrbixWeb.SSL.IT_SSL
	Class IE.Iona.OrbixWeb.SSL.IT_SSLCacheOptions
	Class IE.Iona.OrbixWeb.SSL.IT_SSLCipherSuite
	Class IE.Iona.OrbixWeb.SSL.IT_SSLException
	Class IE.Iona.OrbixWeb.SSL.IT_SSLInvocationOptions
	Class IE.Iona.OrbixWeb.SSL.IT_UTCTime
	Interface IE.Iona.OrbixWeb.SSL.IT_ValidateX509CertCB
	Class IE.Iona.OrbixWeb.SSL.IT_X509BadCertException
	Class IE.Iona.OrbixWeb.SSL.IT_X509Cert
	Class IE.Iona.OrbixWeb.SSL.IT_X509CertChain

	Appendices
	Security Recommendations
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility Command
	The req Utility Command
	The rsa Utility Command
	The ca Utility Command

	The OpenSSL configuration file
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Troubleshooting OrbixSSL
	Index

