
CORBA Tutorial Java
Version 6.1, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 26-Apr-2004

M 3 1 4 2

Contents

Chapter 1 Getting Started with Orbix 1

Creating a Configuration Domain 2
Setting the Orbix Environment 9
Setting ORB Properties for the Orbix ORB 10
Hello World Example 12
Development from the Command Line 14

Index 1
iii

CONTENTS
 iv

CHAPTER 1

Getting Started
with Orbix
You can use the CORBA Code Generation Toolkit to develop
an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the
client and server application code, including build files. You then complete
the distributed application by filling in the missing business logic.

In this chapter This chapter contains the following sections:

Creating a Configuration Domain page 2

Setting the Orbix Environment page 9

Setting ORB Properties for the Orbix ORB page 10

Hello World Example page 12

Development from the Command Line page 14
1

CHAPTER 1 | Getting Started with Orbix
Creating a Configuration Domain

Overview This section describes how to create a simple configuration domain, simple,
which is required for running basic demonstrations. This domain deploys a
minimal set of Orbix services.

Prerequisites Before creating a configuration domain, the following prerequisites must be
satisfied:

• Orbix is installed.

• Some basic system variables are set up (in particular, the
IT_PRODUCT_DIR, IT_LICENSE_FILE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing The location of the license file, licenses.txt, is specified by the
IT_LICENSE_FILE system variable. If this system variable is not already set
in your environment, you can set it now.

Steps To create a configuration domain, simple, perform the following steps:

1. Run itconfigure.

2. Specify the license location.

3. Choose expert mode and specify domain settings.

4. Specify services settings.

5. Review the summary window.

6. Finish configuration.
 2

Creating a Configuration Domain
Run itconfigure To begin creating a new configuration domain, enter itconfigure at a
command prompt. An Introduction window appears, as shown in Figure 1.

Figure 1: The itconfigure Introduction Window
3

CHAPTER 1 | Getting Started with Orbix
Specify the license location If you have not already specified the license location by setting the
IT_LICENSE_FILE environment variable (see “Licensing” on page 2), specify
the location now by clicking the License button on the Introduction window
(Figure 1 on page 3).

A License dialog box appears, as shown in Figure 2. Enter the license file
location in the License File text field or use the Browse button to select the
license file, then click OK.

Figure 2: The License Dialog Box
 4

Creating a Configuration Domain
Choose expert mode and specify
domain settings

From the Introduction window (Figure 1 on page 3), click Expert to begin
creating a configuration domain in expert mode. A Domain Settings window
appears, as shown in Figure 3.

In the Domain Name text field, type simple. Select the File Based Domain
option.

Make sure that the Allow Insecure Communication option is selected and
the Allow Secure Communication option is unselected.

Click Next> to continue.

Figure 3: The itconfigure Domain Settings Window
5

CHAPTER 1 | Getting Started with Orbix
Specify services settings A Services Settings window appears, as shown in Figure 4.

In the Services Settings window, select the following services and
components for inclusion in the configuration domain: Location, Node
daemon, Management, Distributed Transaction, CORBA Interface
Repository, CORBA Naming, and Demos.

Click Next> to continue.

Figure 4: The itconfigure Services Settings Window
 6

Creating a Configuration Domain
Review the summary window You now have the opportunity to review the configuration settings in the
Summary window, Figure 5. If necessary, you can use the <Back button to
make corrections.

Click Next> to create the configuration domain and progress to the next
window.

Figure 5: The itconfigure Summary Window
7

CHAPTER 1 | Getting Started with Orbix
Finish configuration The itconfigure utility now creates and deploys the simple configuration
domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and
OrbixInstallDir/var directories.

If the configuration domain is created successfully, you should see a
Complete window with a message similar to that shown in Figure 6.

Click Finish to quit the itconfigure utility.

Figure 6: Finishing Configuration
 8

Setting the Orbix Environment
Setting the Orbix Environment

Prerequisites Before proceeding with the demonstration in this chapter you need to
ensure:

• The CORBA developer’s kit is installed on your host.

• Orbix is configured to run on your host platform.

• Your Java development kit (JDK) is configured to use the Orbix ORB
runtime (see “Setting ORB Properties for the Orbix ORB” on page 10).

The Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Setting the Domain The scripts that set the Orbix environment are associated with a particular
domain, which is the basic unit of Orbix configuration. Consult the
Installation Guide, and the Administrator’s Guide for further details on
configuring your environment.

To set the Orbix environment associated with the domain-name domain,
enter:

Windows

UNIX

YourJdkDir is the root directory of the Java development kit that you want
to use with Orbix. See the Installation Guide for details of supported Java
platforms.

config-dir is the root directory where the Appliation Server Platform stores
its configuration information. You specify this directory while configuring
your domain. domain-name is the name of a configuration domain.

> set JAVA_HOME=YourJdkDir
> config-dir\etc\bin\domain-name_env.bat

% JAVA_HOME=YourJdkDir ; export JAVA_HOME
% . config-dir/etc/bin/domain-name_env
9

CHAPTER 1 | Getting Started with Orbix
Setting ORB Properties for the Orbix ORB
SUN’s Java development kit (JDK) comes with a built-in ORB runtime that
is used by default. However, you cannot use SUN’s ORB runtime with Orbix
applications. You must configure the JDK to use the Orbix ORB runtime
instead by setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass to the appropriate values. You can set
the ORB properties in one of the following ways:

• Using the iona.properties file

• Using Java interpreter arguments

Using the iona.properties file Setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass in the iona.properties file is the
preferred way to configure your JDK to use the Orbix ORB runtime.

Location of the iona.properties file

The iona.properties file is located in the JDKHome/jre/lib directory,
where JDKHome is the JDK root directory.

Contents of the iona.properties file

The iona.properties file should contain the following two lines of text:

The first line sets org.omg.CORBA.ORBClass to the name of a class that
implements org.omg.CORBA.ORB.

org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl
org.omg.CORBA.ORBSingletonClass=
 com.iona.corba.art.artimpl.ORBSingleton
 10

Setting ORB Properties for the Orbix ORB
The second line sets org.omg.CORBA.ORBSingletonClass to the name of a
class that implements the static ORB instance returned from
org.omg.CORBA.ORB.init() (taking no arguments).

Using Java interpreter arguments You can use the -Dproperty_name=property_value option on the Java
Interpreter to specify the org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass properties. For example, to set the ORB
properties for an orbix_app Orbix application:

WARNING: By setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass in the iona.properties file, as
detailed above, you effectively specify the Orbix ORB classes as the ORB
runtime for the JDK. This might affect other applications that use the same
JDK but want to use different ORB classes—if this is the case, you should
consider using one of the alternative mechanisms for setting ORB
properties, given in the following sub-sections.

java -Dorg.omg.CORBA.ORB=com.iona.corba.art.artimpl.ORBImpl\
 -Dorg.omg.CORBA.ORBSingletonClass=\
 com.iona.corba.art.artimpl.ORBSingleton orbix_app
11

CHAPTER 1 | Getting Started with Orbix
Hello World Example
This chapter shows how to create, build, and run a complete client/server
demonstration with the help of the CORBA code generation toolkit. The
architecture of this example system is shown in Figure 7.

The client and server applications communicate with each other using the
Internet Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a
client invokes a remote operation, a request message is sent from the client
to the server. When the operation returns, a reply message containing its
return values is sent back to the client. This completes a single remote
CORBA invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

The IDL declares a single Hello interface, which exposes a single operation
getGreeting(). This declaration provides a language neutral interface to
CORBA objects of type Hello.

Figure 7: Client makes a single operation call on a server

C lien t M a ch in e

C lien t A p p lic a tio n

ID L In te r fa c e

S e r ve r A pp lic a tio n

S e r ve r M ach in e

O R B O R B

C o d e C od e

O p e ra tio n C a ll

R e su lt

C O R B A
O b je c t

//IDL
interface Hello {
 string getGreeting();
};
 12

Hello World Example
The concrete implementation of the Hello CORBA object is written in Java
and is provided by the server application. The server could create multiple
instances of Hello objects if required. However, the generated code
generates only one Hello object.

The client application has to locate the Hello object—it does this by reading
a stringified object reference from the file Hello.ref. There is one operation
getGreeting() defined on the Hello interface. The client invokes this
operation and exits.
13

CHAPTER 1 | Getting Started with Orbix
Development from the Command Line
Starting point code for CORBA client and server applications can be
generated using the idlgen command line utility.

The idlgen utility can be used on Windows and UNIX platforms.

You implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate starting point code.

3. Complete the server program by implementing the single IDL
getGreeting() operation.

4. Complete the client program by inserting a line of code to invoke the
getGreeting() operation.

5. Build the demonstration.

6. Run the demonstration.

Define the IDL interface Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

Windows

UNIX

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.

Enter the following text into the file hello.idl:

This interface mediates the interaction between the client and the server
halves of the distributed application.

> mkdir C:\OCGT\HelloExample

% mkdir -p OCGT/HelloExample

//IDL
interface Hello {
 string getGreeting();
};
 14

Development from the Command Line
Generate starting point code Generate files for the server and client application using the CORBA Code
Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample
(UNIX) enter the following command:

This command logs the following output to the screen while it is generating
the files:

You can edit the following files to customize client and server applications:

Client:
HelloExample/client.java

Server:
HelloExample/server.java
HelloExample/HelloImpl.java

Complete the server program Complete the implementation class, HelloImpl, by providing the definition
of the HelloImpl.getGreeting() method. This Java method provides the
concrete realization of the Hello::getGreeting() IDL operation.

idlgen java_poa_genie.tcl -all -jP HelloExample hello.idl

hello.idl:
java_poa_genie.tcl: creating idlgen/RandomFuncs.java
java_poa_genie.tcl: creating

idlgen/HelloExample/RandomHello.java
java_poa_genie.tcl: creating idlgen/RandomHelloExample.java
java_poa_genie.tcl: creating HelloExample/HelloCaller.java
java_poa_genie.tcl: creating HelloExample/client.java
java_poa_genie.tcl: creating HelloExample/HelloImpl.java
java_poa_genie.tcl: creating HelloExample/server.java
java_poa_genie.tcl: creating build.xml
15

CHAPTER 1 | Getting Started with Orbix
Edit the HelloImpl.java file, and delete most of the generated boilerplate
code occupying the body of the HelloImpl.getGreeting method Replace it
with the line of code highlighted in bold font below:

Complete the client program Complete the implementation of the client main() function in the
client.java file. You must add a couple of lines of code to make a remote
invocation of the getGreeting() operation on the Hello object.

//Java
//File ’HelloImpl.java’
...
 public java.lang.String getGreeting()
 throws org.omg.CORBA.SystemException
 {
 java.lang.String _result;

 _result = "Hello World!";

 return _result;
 }
...
 16

Development from the Command Line
Edit the client.java file and search for the line where the
HelloExample.HelloCaller.getGreeting() method is called. Delete this
line and replace it with the line of code highlighted in bold font below:

The object reference Hello1 refers to an instance of a Hello object in the
server application. It is already initialized for you.

A remote invocation is made by invoking getGreeting() on the Hello1
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the
HelloImpl.getGreeting() method in the server application.

Build the demonstration The itant utility—a Java-based build tool—is used to build the generated
Java code. For more details about itant, see http://jakarta.apache.org/ant.
The itant utility is bundled with Orbix.

The generated file build.xml is used to build this demonstration. This file
contains the rules for building the Hello World! application in an XML format
that is understood by the itant utility.

To build the client and server complete the following steps:

1. Open a command line window.

2. Go to the ../OCGT/HelloExample directory.

//Java
//File: ’client.java’
...
 try
 {
 ...
 // Exercise interface HelloExample.Hello.
 //
 tmp_ref = read_reference("Hello.ref");
 HelloExample.Hello Hello1 =
 HelloExample.HelloHelper.narrow(tmp_ref);
 System.out.println("Greeting is: " +

Hello1.getGreeting());

 }
 catch(Exception ex)
 {
 System.out.println("Unexpected CORBA exception: " + ex);
 }
...
17

http://jakarta.apache.org/ant

CHAPTER 1 | Getting Started with Orbix
3. Enter:

Run the demonstration Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a DOS prompt in Windows, or xterm in UNIX. Enter:

Where domain-name is the name of the configuration domain.

2. Set the Appliation Server Platform’s environment.

3. Run the server program.

Open a DOS prompt, or xterm window (UNIX). Enter the following
command:

The server outputs the following lines to the screen:

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to
the local Hello.ref file.

> itant

start_domain-name_services

> domain-name_env

itant runserver

Buildfile: build.xml

runserver:
 [java] Initializing the ORB
 [java] Writing stringified object reference to Hello.ref
 [java] Waiting for requests...
 18

Development from the Command Line
♦ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

4. Run the client program.

Open a new DOS prompt, or xterm window (UNIX). Enter the following
command:

The client outputs the following lines to the screen:

The client performs the following steps when it is run:

♦ It reads the stringified object reference for the Hello object from
the Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking
on the object reference. This causes a connection to be
established with the server and the remote invocation to be
performed.

5. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is
running.

6. Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:

The passing of the object reference from the server to the client in this way
is suitable only for simple demonstrations. Realistic server applications use
the CORBA naming service to export their object references instead (see
Chapter 17).

itant runclient

Buildfile: build.xml

runclient:
 [java] Reading stringified object reference from Hello.ref
Greeting is: Hello World!

Total time: 3 seconds

stop_domain-name_services
19

CHAPTER 1 | Getting Started with Orbix
 20

Index

A
Application

running 17

B
build.xml 17
building applications 17

C
Client

generating 15
implementing 16

Code generation toolkit
idlgen utility 15

G
Genie-generated application

package name 15

H
Hello World! example 12

J
java_poa_genie.tcl 15

O
Object reference

passing as a string 13
ORBClass 10
org.omg.CORBA.ORBClass 10
org.omg.CORBA.ORBSingletonClass 11

P
Package name 15

S
Server

generating 15
implementing 15

Services 18, 19
1

INDEX
 2

	CORBA Tutorial Java
	Getting Started with Orbix
	Creating a Configuration Domain
	Setting the Orbix Environment
	Setting ORB Properties for the Orbix ORB
	Hello World Example
	Development from the Command Line

	Index

