IONA

fgl Orbix®

Administrator’'s Guide
Version 6.2, December 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-

tion and features described herein are subject to change without notice.

Copyright © 2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 23-Dec-2004

Contents

List of Figures
List of Tables

Preface

Part | Introduction

Chapter 1 The Orbix Environment

Basic CORBA Model

Simple Orbix Application
Portable Object Adapter

Broader Orbix Environment
Managing Object Availability
Scaling Orbix Environments with Configuration Domains
Using Dynamic Orbix Applications

Orbix Administration

Chapter 2 Selecting an Orbix Environment Model
Orbix Development Environment Models
Independent Development Environments
Distributed Development and Test Environments
Configuration Models
Getting the Most from Your Orbix Environment
Using Capabilities of Well-Designed Orbix Applications
Using the Right Data Storage Mechanism
Getting the Most from Orbix Configuration

XV

Xvii

XiX

CONTENTS

Part II Managing an Orbix Environment

Chapter 3 Managing Orbix Configuration
How an ORB Gets its Configuration
Locating the Configuration Domain
Obtaining an ORB’s Configuration
Configuration Variables and Namespaces
Managing Configuration Domains

Chapter 4 Managing Persistent CORBA Servers

Introduction

Registering Persistent Servers

Server Environment Settings
Windows Environment Settings
UNIX Environment Settings

Managing a Location Domain
Managing Server Processes
Managing the Locator Daemon
Managing Node Daemons
Listing Location Domain Data
Modifying a Location Domain
Ensuring Unique POA Names

Using Direct Persistence
CORBA Applications
Orbix Services

Chapter 5 Configuring Scalable Applications
Fault Tolerance and Replicated Servers
About Replicated Servers
Automatic Replica Failover
Direct Persistence and Replica Failover
Building a Replicated Server
Example 1: Building a Replicated Server to Start on Demand
Example 2: Updating a Replicated Server
Example 3: Dynamically Changing the Load Balancing Algorithm
Replicating Orbix Services
Master-Slave Replication

33
34
36
38
45
47

49
50
51
54
55
56
58
59
60
62
65
66
67
69
70
74

77
79
80
83
84
87
88
91
92
93
96

Active Connection Management
Setting Buffer Sizes

Chapter 6 Managing the Naming Service
Naming Service Administration
Naming Service Commands
Controlling the Naming Service
Building a Naming Graph
Creating Naming Contexts
Creating Name Bindings
Maintaining a Naming Graph
Managing Object Groups

Chapter 7 Managing an Interface Repository
Interface Repository
Controlling the Interface Repository Daemon
Managing IDL Definitions
Browsing Interface Repository Contents
Adding IDL Definitions
Removing IDL Definitions

Chapter 8 Managing the Firewall Proxy Service
Orbix Firewall Proxy Service
Configuring the Firewall Proxy Service
Known Restrictions

Chapter 9 Managing Orbix Service Databases
Berkeley DB Environment
Performing Checkpoints
Managing Log File Size
Troubleshooting Persistent Exceptions
Database Recovery for Orbix Services
Replicated Databases

Chapter 10 Configuring Orbix Compression
Introduction
Configuring Compression

CONTENTS

100
102

105
107
109
110
111
113
114
116
117

119
120
121
122
123
125
126

129
130
131
134

135
136
137
138
139
140
145

147
148
150

CONTENTS

Example Configuration
Message Fragmentation

Chapter 11 Configuring Advanced Features
Configuring Java NIO
Configuring Shared Memory
Configuring Bidirectional GIOP
Enabling Bidirectional GIOP
Migration and Interoperability Issues

Chapter 12 Orbix Mainframe Adapter
CICS and IMS Server Adapters
Using the Mapping Gateway Interface
Locating Server Adapter Objects Using itmfaloc

Part [l Monitoring Orbix Applications

Chapter 13 Setting Orbix Logging
Setting Logging Filters
Logging Subsystems
Logging Severity Levels
Redirecting Log Output

Chapter 14 Monitoring GIOP Message Content

Introduction to GIOP Snoop
Configuring GIOP Snoop
GIOP Snoop Output

Chapter 15 Debugging IOR Data

IOR Data Formats

Using iordump

iordump Output
Stringified Data Output
ASCII-Hex Data Output

Data, Warning, Error and Information Text
Errors

Vi

154
156

157
158
160
162
163
166

169
170
171
175

181
182
184
186
188

191
192
193
196

201
202
205
207
211
212
213
214

CONTENTS

Warnings 217

Part IV Command Reference

Starting Orbix Services 221
Starting and Stopping Configured Services 222
Starting Orbix Services Manually 223

itconfig_rep run 223
itlocator run 225
itnode_daemon run 226
ithaming run 227
itifr run 228
itevent run 229
itnotify run 230
Stopping Services Manually 232

Managing Orbix Services With itadmin 233
Using itadmin 234
Command Syntax 237
Services and Commands 240

Bridging Service 241

bridge create 242
bridge destroy 243
bridge list 243
bridge show 243
bridge start 243
bridge stop 243
bridge suspend 243
endpoint_admin show 244
endpoint destroy 244
endpoint list 244
endpoint show 245
JMS Broker 246
jms start 246

jms stop 246

vii

CONTENTS

Configuration Domain
Configuration Repository
config dump

config list_servers

config show_server

config stop

file_to_cfr.tcl
Namespaces

namespace create

namespace list

namespace remove

namespace show
Scopes

scope create

scope list

scope remove

scope show
Variables

variable create

variable modify

variable remove

variable show

Event Service

Event Service Management
event show
event stop

Event Channel
ec create
ec create_typed
ec list
ec remove
ec remove_typed
ec show
ec show_typed

Interface Repository
IDL Definitions

viii

247
248
248
249
249
250
250
252
252
253
254
254
255
255
255
256
256
257
257
259
260
260

261
262
262
263
264
264
265
265
266
266
266
267

269
270

idl -R=-v

Repository Management

ifr cd

ifr destroy_contents
ifr ifr2idl

ifr list

ifr pwd

ifr remove

ifr show

ifr stop

Location Domain
Locator Daemon

locator heartbeat _daemons
locator list

locator show

locator stop

Named Key

named_key create
named_key list
named_key remove
named_key show

Node Daemon

node_daemon list
node_daemon remove
node_daemon show
node_daemon stop
add_node_daemon.tcl

ORB Name

POA

orbname create
orbname list
orbname modify
orbname remove
orbname show

poa create
poa list
poa modify
poa remove

CONTENTS

270
271
271
272
272
272
272
273
273
273

275
276
276
277
277
278
279
280
280
281
281
282
282
283
283
284
284
286
286
287
287
288
289
290
290
292
293
294

CONTENTS

poa show

Server Process

Event Log

process create
process disable
process enable
process kill
process list
process modify
process remove
process show
process start
process stop

logging get
logging set

Mainframe Adapter

mfa add
mfa change
mfa delete
mfa -help
mfa list
mfa refresh
mfa reload
mfa resetcon
mfa resolve
mfa save
mfa stats
mfa stop
mfa switch

Naming Service
Names

ns bind

ns list

ns list_servers
ns newnc

295
296
296
299
299
299
300
301
303
304
304
305

307
307
308

309
311
311
312
312
312
313
313
313
314
314
315
315
315

317
318
318
319
319
320

CONTENTS

ns remove 320

ns resolve 320

ns show_server 321

ns stop 321

ns unbind 321
Object Groups 322
nsog add_member 323

nsog bind 323

nsog create 324

nsog list 324

nsog list._ members 324

nsog modify 325

nsog remove 325

nsog remove_member 326

nsog set_member_timeout 326

nsog show_member 327

nsog update_member load 328
Notification Service 329
Notification Service Management 330
notify checkpoint 330

notify post_backup 331

notify pre_backup 331

notify show 331

notify stop 333

Event Channel 334
nc create 334

nc list 335

nc remove 336

nc show 336

nc set_qos 337
Object Transaction Service 341
tx begin 341

tx commit 342

tx resume 342

tx rollback 343

tx suspend 343

Xi

CONTENTS

Object Transaction Service Encina

encinalog add
encinalog add_mirror
encinalog create
encinalog display
encinalog expand
encinalog init

encinalog remove_mirror

otstm stop

Persistent State Service

pss_db archive old logs

pss_db checkpoint

pss_db delete old logs

pss_db list_replicas
pss_db name

pss_db post_backup
pss_db pre_backup
pss_db remove_replica
pss_db show

Security Service

Xii

Logging On
admin_logon

Managing Checksum Entries
checksum confirm
checksum create
checksum list
checksum new_pw
checksum remove

Managing Pass Phrases
kdm_adm change pw
kdm_adm confirm
kdm_adm create
kdm_adm list
kdm_adm new_pw
kdm_adm remove

345
346
347
347
348
349
350
350
351

353
354
354
355
355
355
355
356
356
357

359
361
361
362
362
363
363
364
364
365
365
366
366
367
368
368

CONTENTS

Trading Service 369
Trading Service Administrative Settings 370
trd_admin get 370
trd_admin set 372
trd_admin stop 374
Federation Links 375
trd_link create 375
trd_link list 376
trd_link modify 376
trd_link remove 377
trd_link show 378
Regular Offers 379
trd_offer list 379
trd_offer remove 379
trd_offer show 380

Proxy Offers 381
trd_proxy list 381
trd_proxy remove 381
trd_proxy show 382

Type Repository 383
trd_type list 383
trd_type mask 383
trd_type remove 384
trd_type show 384
trd_type unmask 385

Part V Appendices

Appendix A Orbix Windows Services 389
Managing Orbix Services on Windows 391

Orbix Windows Service Commands 392
continue 392

help 393

install 393

pause 393

prepare 393

query 394

xiii

CONTENTS

run

stop

uninstall
Orbix Windows Service Accounts
Running Orbix Windows Services
Logging Orbix Windows Services
Uninstalling Orbix Windows Services
Troubleshooting Orbix/Windows Services

Appendix B Run Control Scripts for Unix Platforms
Solaris
AIX
HP-UX
IRIX
Red Hat Linux

Appendix C ORB Initialization Settings
Domains directory
Domain name
Configuration directory
ORB name
Initial reference
Default initial reference
Product directory

Appendix D Development Environment Variables
IT IDL_CONFIG_FILE
IT IDLGEN_CONFIG_FILE

Glossary

Index

Xiv

394
394
394
395
397
398
399
400

401
403
406
410
414
417

421
422
422
423
423
424
424
425

427
427
428

429

437

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure b:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Basic CORBA Model

Overview of a Simple Orbix Application

A POA’s Role in Client—Object Communication

Simple Configuration Domain and Location Domain
Multiple Configuration Domains

An Independent Development and Test Environment
Multiple Independent Development and Test Environments
A Distributed Development and Test Environment

Orbix Environment with Local Configuration

Figure 10: Orbix Environment with Centralized Configuration

Figure 11: How an Orbix Application Obtains its Configurations

Figure 12: Hierarchy of Configuration Scopes

Figure 13: Replicated Naming Service

Figure 14: Naming Context Graph

Figure 15: Overview of ZIOP Compression

Figure 16: Locator Service Details

12
13
19
20
22
24
25
34
38
94
111
148
395

Xv

LIST OF FIGURES

Xvi

List of Tables

Table 1: Configuration Domain Management Tasks
Table 2: Commands that List Location Domain Data
Table 3: Commands that Modify a Location Domain
Table 4: Commands that Remove Location Domain Components
Table 5: Naming Graph Maintenance Commands
Table 6: Orbix Logging Subsystems

Table 7: Orbix Logging Severity Levels

Table 8: Commands to Manually Start Orbix Services.
Table 9: Commands for Stopping Orbix Services
Table 10: Bridging Service Commands

Table 11: JMS Broker Commands

Table 12: Configuration Repository Commands
Table 13: Configuration Namespace Commands
Table 14: Configuration Scope Commands

Table 15: Configuration Variable Commands

Table 16: Event Service Commands

Table 17: Event Channel Commands

Table 18: Interface Repository Commands

Table 19: Locator Daemon Commands

Table 20: Named Key Commands

Table 21: Node Daemon Commands

Table 22: ORB Name Commands

Table 23: POA Commands

Table 24: Server Process Commands

Table 25: Event Log Commands

47

65

66

66
116
184
186
223
232
241
246
248
252
255
257
262
264
271
276
279
282
286
290
296
307

Xvii

LIST OF TABLES

Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:

xviii

Mainframe Adapter itadmin Commands
Naming Service Commands

Object Group Commands

Notification Service Commands

Event Channel Commands

Object Transaction Service Commands
Persistent State Service Commands
Checksum Entry Commands

Pass Phrase Commands

Trading Service Commands

Federation Link Commands

Regular Offer Commands

Proxy Offer Commands

Server Type Repository Commands

309
318
322
330
334
341
353
362
365
370
375
379
381
383

Preface

Introduction Orbix is a software environment for building and integrating distributed
object-oriented applications. Orbix provides a full implementation of the
Common Object Request Broker Architecture (CORBA) from the Object
Management Group (OMG). Orbix is compliant with version 2.4 of the
OMG'S CORBA specification. This guide explains how to configure and
manage the components of an Orbix environment.

Audience This guide is aimed at administrators managing Orbix environments, and
programmers developing Orbix applications.

Organization This guide is divided into the following parts:

® Introduction introduces the Orbix environment, and the basic concepts
required to understand how it works.

® Managing an Orbix Environment explains how to manage each
component of an Orbix environment. It provides task-based information
and examples.

® Command Reference provides a comprehensive reference for all Orbix
configuration variables and administration commands.

® Appendices explain how to use Orbix components as Windows NT
services. They also provide reference information for initialization
parameters and environment variables.

Xix

PREFACE

Related documentation

Additional resources

Document conventions

XX

Orbix documentation also includes the following related books:

® Management User’s Guide

® Deployment Guide

® CORBA Programmer’s Guide

® CORBA Programmer’s Reference

® CORBA Code Generation Toolkit Guide

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
support @ona. com Comments on IONA documentation can be sent to
docs- support @ona. com

This guide uses the following typographical conventions:

Constant wi dth

Italic

Code italic

Constant width font in normal text represents
commands, portions of code and literal names of
items (such as classes, functions, and variables). For
example, constant width text might refer to the

i tadnin orbnane create command.

Constant width paragraphs represent information
displayed on the screen or code examples. For
example the following paragraph displays output from
the i tadm n orbname |ist command:

ifr

nam ng

production.test.testngr

producti on. server

Italic words in normal text represent emphasis and
new terms (for example, location domains).

Italic words or characters in code and commands
represent variable values you must supply; for
example, process names in your particul ar system:

itadm n process create process-nane

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

Code bol d

PREFACE

Code bold font is used to represent values that you
must enter at the command line. This is often used in
conjunction with constant width font to distinguish
between command line input and output. For
example:

i tadm n process |ist

ifr

nam ng

ny_app

The following keying conventions are observed:

No prompt

%

{}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal ellipses in format and syntax descriptions
indicate that material has been eliminated to simplify
a discussion.

Italicized brackets enclose optional items in format
and syntax descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices.
Individual items can be enclosed in {} (braces) in
format and syntax descriptions.

XXi

PREFACE

XXii

Part |

Introduction

In this part This part contains the following chapters:

The Orbix Environment page 1

Selecting an Orbix Environment Model page 17

Overview

In this chapter

CHAPTER 1

The Orbix
Environment

Orbix is a network software environment that enables
programmers to develop and run distributed applications.

This chapter introduces the main components of an Orbix environment,
explains how they interact, and gives an overview of Orbix administration.

This chapter contains the following sections:

Basic CORBA Model page 2
Simple Orbix Application page 4
Broader Orbix Environment page 7
Orbix Administration page 15

CHAPTER 1 | The Orbix Environment

Basic CORBA Model

Overview

An Orbix environment is a networked system that makes distributed
applications function as if they are running on one machine in a single
process space. Orbix relies on several kinds of information, stored in various
components in the environment. When the environment is established,
programs and Orbix services can automatically store their information in the
appropriate components.

To establish and use a proper Orbix environment, administrators and
programmers need to know how the Orbix components interact, so that
applications can find and use them correctly. This chapter starts with a
sample application that requires a minimal Orbix environment. Gradually,
more services are added.

The basic model for CORBA applications uses an object request broker, or
ORB. An ORB handles the transfer of messages from a client program to an
object located on a remote network host. The ORB hides the underlying
complexity of network communications from the programmer. In the CORBA
model, programmers create standard software objects whose member
methods can be invoked by client programs located anywhere in the
network. A program that contains instances of CORBA objects is known as a
server.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 1, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Client Host

Basic CORBA Model

Server Host

Client

Object

Object Request Broker

Function Call

Figure 1: Basic CORBA Model

CHAPTER 1 | The Orbix Environment

Simple Orbix Application

Overview A simple Orbix application might contain a client and a server along with
one or more objects (see Figure 2). In this model, the client obtains
information about the object it seeks, using object references. An object
reference uniquely identifies a local or remote object instance.

Client Host Server Host

f\z\,

> 2

Service

Network

Figure 2: Overview of a Simple Orbix Application

How an ORB enables remote Figure 2 shows how an ORB enables a client to invoke on a remote object:

invocation 1. When a server starts, it creates one or more objects and publishes their

object references in a naming service. A naming service uses simple
names to make object references accessible to prospective clients.
Servers can also publish object references in a file or a URL.

2. The client program looks up the object reference by name in the
naming service. The naming service returns the server's object
reference.

3. Theclient ORB uses the object reference to pass a request to the server
object

Simple Orbix Application

Portable Object Adapter

Overview

POA functionality

For simplicity, Figure 2 on page 4 omits details that all applications require.
For example, Orbix applications use a portable object adapter, or POA, to
manage access to server objects. A POA maps object references to their
concrete implementations on the server, or servants. Given a client request
for an object, a POA can invoke the referenced object locally.

A POA can divide large sets of objects into smaller, more manageable
subsets; it can also group related objects together. For example, in a
ticketing application, one POA might handle reservation objects, while
another POA handles payment objects.

Figure 3 shows how the POA connects a client to a target object. In this
instance, the server has two POAs that each manage a different set of

objects.
Naming
Service

Process

Objects

Process

Network

Figure 3: A POA’s Role in Client-Object Communication

CHAPTER 1 | The Orbix Environment

POA names

Limitations of a simple application

Servers differentiate between several POAs by assigning them unique names
within the application. The object reference published by the server contains
the complete or fully qualified POA name (FQPN) and the object’s ID. The
client request embeds the POA name and object ID taken from the
published object reference. The server then uses the POA name to invoke
the correct POA. The POA uses the object ID to invoke the desired object, if
it exists on the server.

This simple model uses a naming service to pass object references to
clients. It has some limitations and does not support all the needs of
enterprise-level applications. For example, naming services are often not
designed to handle frequent updates. They are designed to store relatively
stable information that is not expected to change very often. If a process
stops and restarts frequently, a new object reference must be published with
each restart. In production environments where many servers start and stop
frequently, this can overwork a naming service. Enterprise applications also
have other needs that are not met by this simple model—for example,
on-demand activation, and centralized administration. These needs are met
in a broader Orbix environment, as described in the next section.

Broader Orbix Environment

Broader Orbix Environment

Overview

In this section

Along with the naming service, Orbix offers a number of features that are

required by many distributed applications, for flexibility, scalability, and

ease of use. These include:

® [ocation domains enable a server and its objects to move to a new
process or host, and to be activated on demand.

® Configuration domains let you organize ORBs into independently
manageable groups. This brings scalability and ease of use to the
largest environments.

® The interface repository allows clients to discover and use additional
objects in the environment—even if clients do not know about these
objects at compile time.

® The event service allows applications to send events that can be
received by multiple objects.

This section discusses the following topics:

Managing Object Availability page 8
Scaling Orbix Environments with Configuration Domains page 11
Using Dynamic Orbix Applications page 14

CHAPTER 1 | The Orbix Environment

Managing Object Availability

Overview

Transient and persistent objects

A system with many servers cannot afford the overhead of manually
assigned fixed port numbers, for several reasons:

Over time, hardware upgrades, machine failures, or site reconfiguration
require you to move servers to different hosts.

To optimize resource usage, rarely used servers only start when they
are needed, and otherwise are kept inactive.

To provide fault tolerance and high availability for critical objects, they
can be run within redundant copies of a server. In case of server
overload or failure, clients can transparently reconnect to another
server

Orbix location domains provide all of these benefits, without requiring
explicit programming.

A server makes itself available to clients by publishing interoperable object

references, or /ORs. An IOR contains an object’s identity and address. This

address can be of two types, depending on whether the object is transient or
persistent:

The I0Rs of transient objects always contain the server host machine’s
address. A client that invokes on this object sends requests directly to
the server. If the server stops running, the IORs of its transient objects
are no longer valid, and attempts to invoke on these objects raise the
CBJECT_NOT_EXI ST exception.

The IORs of persistent objects are exported from their server with the
address of the domain’s locator daemon. This daemon is associated
with a database, or implementation repository, which dynamically
maps persistent objects to their server's actual address.

Invocations on persistent objects

Locator daemon benefits

Broader Orbix Environment

When a client invokes on a persistent object, Orbix locates the object as

follows:

1. When a client initially invokes on the object, the client ORB sends the
invocation to the locator daemon.

2. The locator daemon searches the implementation repository for the
actual address of a server that runs this object in the implementation
repository. The locator daemon returns this address to the client.

3. The client connects to the returned server address and directs this and

all subsequent requests for this object to that address.

All of this work is transparent to the client. The client never needs to contact
the locator daemon explicitly to obtain the server's location.

Using the locator daemon provides two benefits:

By interposing the locator daemon between client and server, a
location domain isolates the client from changes in the server address.
If the server changes location—for example, it restarts on a different
host, or moves to another port— the 10Rs for persistent objects remain
valid. The locator daemon supplies the server's new address to clients.
Because clients contact the locator daemon first when they initially
invoke on an object, the locator daemon can launch the server on
behalf of the client. Thus, servers can remain dormant until needed,
thereby optimizing use of system resources.

CHAPTER 1 | The Orbix Environment

Components of an Orbix location
domain

10

An Orbix location domain consists of two components: a locator daemon
and a node daemon:

locator daemon: A CORBA service that acts as the control center for the

entire location domain. The locator daemon has two roles:

® Manage the configuration information used to find, validate, and
activate servers running in the location domain.

® Act as the contact point for clients trying to invoke on servers in the
domain.

node daemon: Acts as the control point for a single host machine in the
system. Every machine that runs an server must run a node daemon. The
node daemon starts, monitors, and manages servers on its machine. The
locator daemon relies on node daemons to start processes and tell it when
new processes are available.

Broader Orbix Environment

Scaling Orbix Environments with Configuration Domains

Overview

Grouping related applications

File- and repository-based
configurations

Small environments with a few applications and their ORBs can be easy to
administer manually: you simply log on to systems where the ORBs run and
adjust configuration files as needed. However, adding more ORBs can
substantially increase administrative overhead. With configuration domains,
you can scale an Orbix environment and minimize overhead.

Related application ORBs usually have similar requirements. A configuration
domain defines a set of common configuration settings, which specify
available services and control ORB behavior. For example, these settings
define libraries to load at runtime, and initial object references to services.

Configuration domain data can be maintained in two ways:

® As a set of files distributed among domain hosts.

® In a centralized configuration repository.

Each ORB gets its configuration data from a domain, regardless of how it is
implemented. Orbix environments can have multiple configuration domains
organized by application, by geography, by department, or by some other
appropriate criteria. You can divide large environments into smaller,
independently manageable Orbix environments.

11

CHAPTER 1 | The Orbix Environment

Simple configuration domain and Figure 4 shows a simple configuration, where all ORBs are configured by
location domain the same domain. Such a configuration is typical of small environments. In
fact, many environments begin with this configuration and grow from there.

Configuration Domain
& Location Domain

Configuration

Application
ORB
ORB ORB

Figure 4: Simple Configuration Domain and Location Domain

Multiple configuration and Figure 5 shows an environment with multiple configuration domains. This

location domains environment can be useful in a organization that must segregate user
groups. For example, separate configurations can be used for production
and finance departments, each with different security requirements. In this
environment, all clients and servers use the same locator daemon; thus, the
two configuration domains are encompassed by a single location domain.

12

Broader Orbix Environment

Location Domain
Locator used by

Configuration
Domains 1 and 2 T

Configuration Domain 1 Configuration Domain 2

Configuration
Configuration
Client

ORB
ORB ORB
ORB

Figure 5: Multiple Configuration Domains

13

CHAPTER 1 | The Orbix Environment

Using Dynamic Orbix Applications

Overview

Managing an interface repository

14

Within the CORBA model, client programs can invoke on remote objects,
even if those objects are written in a different programming language and
run on a different operating system. CORBA's Interface Definition Language
(/DL) makes this possible. IDL is a declarative language that lets you define
interfaces that are independent of any particular programming language and
operating system.

Orbix includes a CORBA IDL compiler, which compiles interface definitions
along with the client and server code. A client application compiled in this
way contains internal information about server objects. Clients use this
information to invoke on objects.

This model restricts clients to using only those interfaces that are known
when the application is compiled. Adding new features to clients requires
programmers to create new IDL files that describe the new interfaces and to
recompile clients along with the new IDL files.

Orbix provides an interface repository, which enables clients to call
operations on IDL interfaces that are unknown at compile time. The
interface repository (IFR) provides centralized persistent storage of IDL
interfaces. Orbix programs can query the interface repository at runtime, to
obtain information about IDL definitions.

Administrators and programmers can use interface repository management
commands to add, remove, and browse interface definitions in the
repository. Interfaces and types that are already defined in a system do not
need to be implemented separately in every application. They can be
invoked at runtime through the interface repository. For more details on
managing an interface repository, see Chapter 7.

Orbix Administration

Orbix Administration

Overview

Administration tasks

Orbix services, such as the naming service, and Orbix components, such as
the configuration repository, must be configured to work together with
applications. Applications themselves also have administration needs.

This section identifies the different areas of administration. It explains the
conditions in the environment and in applications that affect the kind of
administration you are likely to encounter. Orbix itself usually requires very
little administration when it is set up and running properly. Applications
should be easy to manage when designed with management needs in mind.

Orbix administration tasks include the following:
® Managing an Orbix environment

® Application deployment and management
® Troubleshooting

Managing an Orbix environment

This involves starting up Orbix services, or adding, moving, and removing
Orbix components. For example, adding an interface repository to a
configuration domain, or modifying configuration settings (for example,
initial references to Orbix services). Examples of location domain
management tasks include starting up the locator daemon and adding a
node daemon. See Part |l of this manual for more information.

Application deployment and management

An application gets its configuration from configuration domains, and finds
persistent objects through the locator daemon. Both the configuration and
location domains must be modified to account for application requirements.
For more information, see Chapter 3.

Troubleshooting

You can set up Orbix logging in order to collect system-related information,
such as significant events, and warnings about unusual or fatal errors. For
more information, see Chapter 13.

15

CHAPTER 1 | The Orbix Environment

Administration tools The Orbix i tadm n command interface lets you control all aspects of Orbix
administration. Administration commands can be executed from any host.
For detailed reference information about Orbix administration commands,
see Part IV of this manual.

16

CHAPTER 2

Selecting an Orbix
Environment

Model

This chapter shows different ways in which Orbix can be
configured in a network environment.

In this chapter This chapter contains the following sections:
Orbix Development Environment Models page 18
Configuration Models page 23
Getting the Most from Your Orbix Environment page 26
Getting the Most from Orbix Configuration page 30

17

CHAPTER 2 | Selecting an Orbix Environment Model

Orbix Development Environment Models

Overview

Orbix development environments

In this section

18

Business applications must be capable of scaling to meet enterprise level
needs. Such applications often extend beyond departments, and even
beyond corporate boundaries. Orbix domain and service infrastructures offer
a framework for building and running applications that range from small,
department-level applications to full-scale enterprise applications with
multiple servers and hundreds or thousands of clients.

This chapter offers an overview of Orbix environment models that can
handle one or many applications. It also explains Orbix configuration
mechanisms, and how to scale an Orbix environment to support more
applications, more users, and a wider geographical area. For detailed
information on how to set up your Orbix environment, see the Orbix
Deployment Guide.

Orbix development environments are used for creating or modifying Orbix
applications. A minimal Orbix development environment consists of the
Orbix libraries and the IDL compiler, along with any prerequisite C+ + or
Java files and development tools.

Application testing requires deployment of Orbix runtime services, such as
the configuration repository and locator daemon, naming service, and
interface repository.

In environments with multiple developers, each developer must install the
Orbix development environment, and the necessary C++ or Java tools.
Runtime services can either be installed in each development environment,
or distributed among various hosts and accessed remotely.

This section discusses the following topics:

Independent Development Environments page 19

Distributed Development and Test Environments page 22

Orbix Development Environment Models

Independent Development Environments

Overview

Testing and deployment
environment

This section discusses some typical models of Orbix development (and
testing) environments. Actual development environments might contain any
one or a blend of these models.

Figure 6 shows a simple environment that can support application
development and testing.

Windows NT

Orbix Runtime Services

Configuration

...... Orbix
— ‘ ------ “; Dev Kit
“ : Nam!ng : : TR :
. Service Co :

C++ or Java development tools (Note)

Note. C++ or Java tools must exist on each development platform.

A dotted outline indicates an optional runtime service.

Figure 6: An Independent Development and Test Environment

To test an application, it must first be deployed. This involves populating the
necessary Orbix repositories (for example, the configuration domain,
location domain, and naming service), with appropriate Orbix application
data.

This private environment is useful for testing applications on a local scale
before introducing them to an environment distributed across a network.
Figure 6 shows this environment on Windows NT, but it can be established
on any supported platform.

19

CHAPTER 2 | Selecting an Orbix Environment Model

Multiple private environments

20

Figure 7 is a variant of the model shown in Figure 6 on page 19. In this
model, multiple private environments are established on a single multi-user
machine. Each of these private environments can be used to create, deploy,
and test applications.

Multi-User Machine

Windows NT

Orbix Runtime Services

Configuration

C++ or Java development tools (Note)

Solaris

Orbix Runtime Services

Orbi
Dev

Configuration

Linux

Orbix Runtime Services

CNamiay T Dev
“ .Nam!ng_ R
. Service: - :

Configuration

C++ or Java development tools (Nete)

Note. C++ or Java tools must exist on each development platform.
[A dotted outline indicates an optional runtime service.

Figure 7: Multiple Independent Development and Test Environments

Setting up independent
environments

Orbix Development Environment Models

To establish independent development and test environments, first ensure
that the appropriate C++ or Java libraries are present. You should then
install Orbix on the desired platforms. For information on what C++ or Java

libraries are required, and instructions on how to install Orbix, see the Orbix
Installation Guide.

For information on how to configure and deploy Orbix runtime services in
your environment (for example, a locator daemon), see the Orbix
Deployment Guide.

21

CHAPTER 2 | Selecting an Orbix Environment Model

Distributed Development and Test Environments

Overview

22

Figure 8 on page 22 illustrates a runtime test environment shared by
multiple development platforms. This scenario more closely models the
distributed environments in which applications are likely to run. Most
applications should be tested in an environment like this before they are
deployed into a production environment.

To establish this environment, install the Orbix runtime services in your
environment. Ensure that the appropriate C++ or Java libraries are present
on your development platforms. Then install the Orbix developer's kit on
each platform. For information on how to configure and deploy Orbix
runtime services such as the interface repository in your environment, see
Orbix Deployment Guide.

Windows NT Solaris HP-UX

Orbix Runtime Services

Location
Service
Configuration

. IFR

A C++ or Java C++ or Java C++ or Java
development development development
: Naming tools tools tools

. Service

CORBA Transports

A dotted outline indicates an optional runtime service.

Figure 8: A Distributed Development and Test Environment

Configuration Models

Configuration Models

Overview

Local file-based configuration

Orbix provides two configuration mechanisms:
® Local file-based configuration
® Configuration repository

For information on managing Orbix configuration domains, see Chapter 3.

A local configuration model is suitable for environments with a small
number of clients and servers, or when configuration rarely changes. The
local configuration mechanism supplied by Orbix uses local configuration
files. Figure 9 on page 24 shows an example Orbix environment where the
configuration is implemented in local files on client and server machines.

The Orbix components in Figure 9 on page 24 consist of Orbix management
tools, the locator daemon, and configuration files that store the
configuration of the Orbix components. When Orbix is installed, it stores its
configuration in the same configuration file, but in a separate configuration
scope. Application clients store their configurations in files on their host
machines. Application clients and servers also include necessary Orbix
runtime components, but for simplicity these are not shown in Figure 9 on
page 24.

This simple model is easy to implement and might be appropriate for small
applications with just a few clients. Keeping these separate files properly
updated can become difficult as applications grow or more servers or clients
are added.

You can minimize administrative overhead by using a centralized
configuration file, which is served to many ORBs using NFS, Windows
Networking, or a similar network service. A centralized file is easier to
maintain than many local files, because only one file must be kept updated.

23

CHAPTER 2 | Selecting an Orbix Environment Model

Distribution CD i i
Orbix Runtime
Location Service, Configuration, Naming,
Interface Repository, Administration
(Mgmt) tools Host (NT)
Host (Solaris)

. Client

Config File

Host (NT)

Config File

CORBA Transports

Legend:
|:| Gray shapes identify Orbix components and files.

Dotted outlines identify application components (usually installed after Orbix is installed).

Figure 9: Orbix Environment with Local Configuration

Configuration repository A centralized configuration model is suitable for environments with a
potentially large number of clients and servers, or when configuration is
likely to change. The Orbix configuration repository provides a centralized
database for all configuration information.

The Orbix components in Figure 10 on page 25 consist of the Orbix
management tools, the locator daemon, and a configuration repository. The
configuration repository stores the configuration for all Orbix components.
When servers and clients are installed, they store their configuration in
separate configuration scopes in the configuration repository. Application
clients and servers also include their own Orbix runtime components, but
these are not shown.

24

Configuration Models

This model is highly scalable because more applications can be added to
more hosts in the environment, without greatly increasing administration
tasks. When a configuration value changes, it must be changed in one place
only. In this model, the host running Orbix, the configuration repository, and

locator daemon must be highly reliable and always available to all clients
and servers.

Distribution CD
Orbix Location Service, Configuration,
Naming, Interface Repository,
Administration tools

Host (HP/UX)

Abplicaﬁon“‘*
. Server .-

Host (NT) Host (NT)

“Client Client

Location
Service

CORBA Transports

Legend:
|:| Gray shapes identify Orbix components and files.
Dotted outlines identify application components .

Figure 10: Orbix Environment with Centralized Configuration

25

CHAPTER 2 | Selecting an Orbix Environment Model

Getting the Most from Your Orbix Environment

Overview As you add more or larger applications to your Orbix environment, scalability
becomes more crucial. This section discusses some Orbix features that
support scalability, and shows how to use them. The following topics are
discussed:

® “Using Capabilities of Well-Designed Orbix Applications” on page 27
® “Using the Right Data Storage Mechanism” on page 29

Moving other Orbix services (for example, a naming service), or moving
servers also requires some administration to ensure continuation of these

services. However, handling these changes is relatively simple and does not
involve much administration.

26

Getting the Most from Your Orbix Environment

Using Capabilities of Well-Designed Orbix Applications

Orbix optimizations

Special cases

Like a major highway, Orbix is designed to handle a lot of traffic. For
example, when Orbix clients seek their configuration from a centralized
configuration mechanism, they compare the version of the locally cached
configuration to the version of the live configuration. If versions match, the
client uses the cached version. Not reading the entire configuration from the
central repository saves time and network bandwidth. Many other
programmatic techniques are used throughout Orbix to make it efficient. On
the administrative side, proper domain management keeps applications and
their clients in an orderly, efficient, and scalable framework.

For such reasons, most applications and environments will not come close
to any limitations imposed by Orbix. It is more likely that other network or
host-related limitations will get in the way first. Nevertheless, extremely
large applications, or large environments with huge numbers of applications
and users, are special cases and there are guidelines for keeping such
applications and their environments running smoothly.

For example, imagine a very large database application with thousands of
POAs registered with the locator daemon. If a server restarts, programmatic
re-registering of POA state information with the locator daemon can take
some time, and even slow down other applications that are using the locator
daemon. In such cases, programmers should use the Orbix dynamic
activation capability to avoid an unnecessary server-side bottleneck. With
dynamic activation, POAs are registered during application deployment.
POA state information is handled only if an object is invoked, and only for
the POA that is hosting the object.

27

CHAPTER 2 | Selecting an Orbix Environment Model

Looking now at the client side of very large applications, imagine a locator
daemon with thousands of registered POAs (for example, an airline ticketing
application) handling thousands of client requests per minute.
Programmatic optimizations (for example, efficient use of threads, proper
organization of the application's POA system or load balancing) help to
minimize bottlenecks here. Administrators can take additional steps, such
as active connection management, to optimize performance.

Other issues Other application design issues include multi-threading, how to partition
objects across POAs, how to partition POAs across servers, and what POA
policies would be best to use under certain circumstances). For more
information, see the CORBA Programmer’s Guide.

28

Getting the Most from Your Orbix Environment

Using the Right Data Storage Mechanism

Overview

Orbix provides standard storage mechanisms for storing persistent data used
by Orbix and by applications. Access to these standard mechanisms uses
the CORBA persistent state service. This service allows alternative storage
mechanisms to be used within an environment for storing data for
configuration, location, and the naming service. If your applications
encounter limitations imposed by a specific storage mechanism, consider
moving to an industrial strength database (for example, Oracle or Sybase) at
the backend.

Information about implementing alternative storage mechanisms is outside
the scope of this guide. Consult your Orbix vendor for more information.

29

CHAPTER 2 | Selecting an Orbix Environment Model

Getting the Most from Orbix Configuration

Overview

Separate Orbix environments

Multiple configuration domains

30

This section answers some basic questions administrators might have about
using:

® Separate Orbix environments

® Multiple configuration domains

Companies can use separate Orbix environments to insulate development,
test, and production environments from each other. While you can use
separate configuration scopes for this, having separate sets of Orbix services
reduces the risk of development and test efforts interfering with production-
level Orbix services.

Development environments might use separate configuration domains to
isolate development and test efforts from one another. Security policies
might also require multiple configuration domains within a single customer
environment. For example, separate organizations in a company might have
different administrators with different network security credentials.

Geographic separation or network latency issues might also drive a decision
to have separate configuration domains.

Part ||

Managing an Orbix
Environment

In this part This part contains the following chapters:
Managing Orbix Configuration page 33
Managing Persistent CORBA Servers page 49
Configuring Scalable Applications page 77
Managing the Naming Service page 105
Managing an Interface Repository page 119
Managing the Firewall Proxy Service page 129
Managing Orbix Service Databases page 135
Configuring Orbix Compression page 147
Configuring Advanced Features page 157

In this chapter

CHAPTER 3

Managing Orbix
Configuration

All Orbix clients and servers, including Orbix services such as
the locator daemon or naming service, belong to a
configuration domain that supplies their configuration
settings.

Orbix identifies a client or server by the name of its ORB, which maps to a
configuration scope. This scope contains configuration variables and their
settings, which control the ORB’s behavior. Configuration domains can be
either based on a centralized configuration repository, or on configuration
files that are distributed among all application hosts. Both configuration
types operate according to the principles described in this chapter.

Note: For detailed information on how to set up an Orbix environment,
see the Orbix Deployment Guide.

This chapter contains the following sections:

How an ORB Gets its Configuration page 34
Locating the Configuration Domain page 36
Obtaining an ORB’s Configuration page 38
Managing Configuration Domains page 47

33

CHAPTER 3 | Managing Orbix Configuration

How an ORB Gets its Configuration

Overview Every ORB runs within a configuration domain, which contains variable
settings that determine the ORB’s runtime behavior. Figure 12 summarizes
how an initializing ORB obtains its configuration information in a
repository-based system, where services are distributed among various
hosts.

Host

Configuration
Repository

Standard orb plug-ins
orb_plugins = "iiop_profile, giop, iiop"

Standard initial references
initial_references:NamingService:reference ="IOR:0100..."
initial_references:InterfaceRepository:reference = "IOR"
initial_references:Locator:reference = "IOR:01000..."

Other configuration variables,
configuration scopes, and
ORB-specific variables.

Host
D

Locator

Naming
Service

T Host
Initializing

Configuration Domain File

plugins:iiop, giop

domain:itconfig:/IOR...
Interface

Figure 11: How an Orbix Application Obtains its Configurations

34

How an ORB Gets its Configuration

1. The initializing ORB reads the local configuration file, which is used to
contact the configuration repository.

Note: In repository-based configuration domains, the local
configuration file contains a domai n configuration variable, which is
set to the repository’s IOR. For example:

domai n = "itconfig://00034f 293b922. . . 00d3";

In a file-based configuration, the donai n- nane. cf g file does not
contain a domai n variable; instead, the local configuration file itself
contains all configuration data.

2. The ORB reads configuration data from the configuration repository,
and obtains settings that apply to its unique name. This establishes the
normal plug-ins and locates other CORBA services in the domain.

3. The fully initialized ORB communicates directly with the services
defined for its environment.

Configuration steps An initializing ORB obtains its configuration in two steps:
1. Locates its configuration domain.
2. Obtains its configuration settings.

The next two sections describe these steps.

35

CHAPTER 3 | Managing Orbix Configuration

Locating the Configuration Domain

C++ applications

Java applications

36

An ORB locates its configuration domain as described in the following
language-specific sections.

In C++ applications, the ORB obtains the domain name from one of the
following, in descending order of precedence:

1. The -CRBconfi g_domai n command-line parameter
2. The I T_OCON\FI G DOWAl N environment variable
3. default-domain.cfg

The domain is located in one of the following, in descending order of
precedence:

1. The path set in either the - ORBconf i g_domai ns_di r command line
parameter or the | T_CONFI G DOVAI NS_DI R.environment variable.

2. The domai ns subdirectory to the path set in either the -CRBconfi g_di r
command-line parameter or the | T_CONFI G_DIi Renvironment variable.

3. The default configuration directory:

UNIX
/etc/opt/iona
Windows

% T_PRCDUCT Dl RAetc

In Java applications, the ORB obtains the domain name from one of the
following, in descending order of precedence:

1. The -CRBconfi g_domai n command-line parameter.
2. The CRBconfi g_domai n Java property.

3. defaul t-donain. cfg.

How an ORB Gets its Configuration

The domain is located in one of the following, in descending order of

precedence:

1. The path set in either the - CRBconfi g_domai ns_di r command-line
parameter or the CRBconf i g_domai ns_di r Java property.

2. The domai ns subdirectory to the path set in either the -CRBconfi g_dir
command-line parameter or the CRBconfi g_di r Java property.

3. All directories specified in the classpath.

Note: Java properties can be set for an initializing ORB in two ways, in
descending order of precedence:

® As system properties.

® Intheiona. properties properties file. See “Java properties” on

page 421 for information on how an ORB locates this file.

37

CHAPTER 3 | Managing Orbix Configuration

Obtaining an ORB’s Configuration

Overview

Scope organization

38

All ORBs in a configuration domain share the same data source—either a
configuration file or a repository. Configuration data consists of variables
that determine ORB behavior. These are typically organized into a hierarchy
of scopes, whose fully-qualified names map directly to ORB names. By
organizing configuration variables into various scopes, you can provide
different settings for individual ORBs, or common settings for groups of
ORBs.

Configuration scopes apply to a subset of ORBs or a specific ORB in an
environment. Orbix services such as the naming service have their own
configuration scopes. Orbix services scopes are automatically created when
you configure those services into a new domain.

Applications can have their own configuration scopes and even specific
parts of applications (specific ORBs) can have ORB-specific scopes.

Figure 12 shows how a configuration domain might be organized into
several scopes:

company

—— operations

finance

hr

L production

Figure 12: Hierarchy of Configuration Scopes

Five scopes are defined:
® conpany

® conpany. producti on

Scope name syntax

ORB name mapping

How an ORB Gets its Configuration

® conpany. operations
® conpany. operations. fi nance
® conpany. operati ons. hr

Given these scopes, and the following ORB names:

conpany. oper ati ons. fi nance. ORBOO1
conpany. oper ati ons. f i nance. ORB002
conpany. operati ons. fi nance. ORBO03
conpany. oper at i ons. fi nance. ORB004

All ORBs whose names are prefixed with conpany. oper at i ons. fi nance
obtain their configuration information from the

conpany. oper at i ons. fi nance configuration scope.

Variables can also be set at a configuration’s root scope—that is, they are
set outside all defined scopes. Root scope variables apply to all ORBs that
run in the configuration domain.

An initializing ORB must be supplied the fully qualified name of its
configuration scope. This name contains the immediate scope name and the
names of all parent scopes, delimited by a period (.). For example:

conpany. oper at i ons. hr

An initializing ORB maps to a configuration scope through its ORB name.
For example, if an initializing ORB is supplied with a command-line

- CRBnare argument of conpany. oper ati ons, it uses all variable settings in
that scope, and the parent conpany and root scopes. Settings at narrower
scopes such as conpany. oper ati ons. fi nance, and settings in unrelated
scopes such as conpany. product i on, are unknown to this ORB and so have
no effect on its behavior.

If an initializing ORB doesn’t find a scope that matches its name, it
continues its search up the scope tree. For example, given the hierarchy
shown earlier, ORB name conpany. oper ati ons. fi nance. payrol | will fail to
find a scope that matches. An ORB with that name next tries the parent
scope conpany. oper ati ons. fi nance. In this case, ORB and scope names
match and the ORB uses that scope. If no matching scope is found, the
ORB takes its configuration from the root scope.

39

CHAPTER 3 | Managing Orbix Configuration

Defining configuration scopes

40

After you create a configuration domain, you can modify it to create the

desired scopes:

®* Afile-based configuration can be edited directly with any text editor, or
with i t adm n commands scope create and scope renove.

®* A repository-based configuration can only be modified with i t admi n

commands scope create and scope renove.

File-based configuration
In a file-based configuration, scopes are defined as follows:

scope- nane

{

vari abl e settings

nest ed- scope- nane
{

vari abl e settings

How an ORB Gets its Configuration

For example, the following file-based Orbix configuration information defines
the hierarchy of scopes shown in Figure 12 on page 38:

conpany-wi de settings

Settings common to both finance and hr

finance-specific settings

hr-specific settings

} # close operations scope

conpany
{
oper ati ons
{
fi nance
{
}
hr
{
}
producti on
{

production settings

}

} # cl ose conpany scope

itadmin commands

You can create the same scopes with i t adni n commands, as follows:

itadm n scope
itadm n scope
itadm n scope
itadm n scope
itadm n scope

create
create
create
create
create

conpany
conpany. producti on
conpany. oper at i ons
conpany. oper ati ons. f i nance
conpany. oper at i ons. hr

41

CHAPTER 3 | Managing Orbix Configuration

Precedence of variable settings

42

1

Configuration variables set in narrower configuration scopes override
variable settings in wider scopes. For example, the

conpany. oper ati ons. or b_pl ugi ns variable overrides

conpany. or b_pl ugi ns. Thus, the plug-ins specified at the conpany scope

apply to all ORBs in that scope, except those ORBs that belong specifically

to the conpany. oper at i ons scope and its child scopes, hr and fi nance.

Example 1 shows how a file-based configuration might implement settings

for the various configurations shown in Figure 12 on page 38:

Example 1: File-Based Configuration

conpany
{

conpany-wi de settings

Standard GRB pl ug-ins
orb_plugins =
["local | og_streanm¥, "iiop_profile", "giop", "iiop"];

Standard initial references.
initial _references: Root POA plugin = "poa";
initial _references: Confi gRepository:reference

= "1 CR 010000002000. . . 00900";

initial _references:|nterfaceRepository:reference

= "1 CR 010000002000. . . 00900";

Standard || CP configuration
policies:iiop:buffer_sizes_policy: nax_buffer_size = -1
oper ati ons

{

Settings common to both finance and hr

limt binding attenpts
max_binding_iterations = "3";
finance

{

finance-specific settings

set 5-second timeout on invocations

policies:rel ative_bindi ng_excl usi ve_request _tinmeout =
"5000"

How an ORB Gets its Configuration

Example 1: File-Based Configuration

hr
{
hr-specific settings
set 15-second tineout on invocations
policies:relative_bindi ng_excl usi ve_request _ti meout =
"15000"
}
} # cl ose operations scope
producti on
{

production settings
policies:iiop:buffer_sizes_policy: max_buffer_size =
"4096";

}

} # cl ose conpany scope

1.

The conpany scope sets the following variables for all ORBs within its
scope:

* or b_pl ugi ns specifies the plug-ins available to all ORBs.

. Sets initial references for several servers.

¢ Sets an unlimited maximum buffer size for the 1IOP transport.

ORB:s in the oper ati ons scope limit all invocations to three rebind
attempts.

All ORBs in the fi nance scope set invocation timeouts to 5 seconds.
All ORBs in the hr scope set invocation timeouts to 15 seconds.

The product i on scope overrides the conpany-scope setting on
policies:iiop:buffer_sizes_policy: max_buffer_size, and limits
maximum buffer sizes to 4096.

43

CHAPTER 3 | Managing Orbix Configuration

Sharing scopes

44

All ORBs in a configuration domain must have unique names. To share
settings among different ORBs, define a common configuration scope for
them. For example, given two ORBs with common configuration settings, a
file-based configuration might define their scopes as follows:

conmon {
common settings here
...
serverl {
#uni que settings to serverl
}
server2 {
#uni que settings to server2
}

} # cl ose common scope

Thus, the two ORBs—commmon. server 1 and common. ser ver 2—share cormon
scope settings.

If an ORB has no settings that are unique to it, you can omit defining a
unique scope for it. For example, if common. ser ver 2 has no unique settings,
you might modify the previous configuration as follows:

comon {
common settings here
...
serverl {
#uni que settings to serverl

}

} # cl ose cormon scope

When the common. server 2 ORB initializes, it fails to find a scope that
matches its fully qualified names. Therefore, it searches up the configuration
scope tree for a matching name, and takes its settings from the parent
scope, comon.

Configuration Variables and Namespaces

Configuration Variables and Namespaces

Variable components

Namespaces

Data types

Configuration variables determine an ORB's behavior, and are organized into
namespaces. For example, a configuration might contain the following
entry:

initial _references:| T _Locator:reference ="1CR 010000. .. 0900";

This variable consists of three components:

® Theinitial _references:|T_Locator namespace.
® The variable name ref erence.

® Astring value.

Configuration namespaces are separated by a colon (:). Configuration
namespaces group related variables together—in the previous example,
initial references. Orbix defines namespaces for its own variables. You can
define your own variables within these namespaces, or create your own
namespaces.

Each configuration variable has an associated data type that determines the
variable's value. When creating configuration variables, you must specify the
variable type.

Data types can be categorized into two types:

® Primitive types

® Constructed types

Primitive types

Three primitive types, bool ean, doubl e, and | ong, correspond to IDL types
of the same name. See the CORBA Programmer’s Guide for more
information.

Constructed types

Orbix supports two constructed types: string and Confi gLi st (a sequence
of strings).

45

CHAPTER 3 | Managing Orbix Configuration

Setting configuration variables

46

A string type is an IDL string whose character set is limited to the
character set supported by the underlying configuration domain type. For
example, a configuration domain based on ASCII configuration files could
only support ASCII characters, while a configuration domain based on a
remote configuration repository might be able to perform character set
conversion.

Variables of the string type also support string composition. A composed
string variable is a combination of literal values and references to other
string variables. When the value is retrieved, the configuration system
replaces the variable references with their values, forming a single complete
string.

The Confi gLi st type is simply a sequence of stri ng types. For example:

orb_plugins = ["local _| og_streant, "iiop_profile",
"giop", "iiop']:

i t admi n provides two commands for setting configuration domain variables:

® jtadnmin variabl e create creates a variable or namespace in the
configuration domain.

® itadmn variabl e nodi fy changes the value of a variable or
namespace in a configuration domain.

In a file-based domain, you can use these commands, or you can edit the

configuration file manually. In a file-based configuration, all variable values
must be enclosed in quotes ("") and terminated by a semi-colon (;).

Managing Configuration Domains

Managing Configuration Domains

Configuration management generally consists of the tasks outlined in

Table 1.

Table 1:

Configuration Domain Management Tasks

Perform this task...

By running...

Start the configuration repository

One of the following:

start_domai n- name_ser vi ces script
starts the configuration repository and
other domain services.

i tconfig_rep run starts the configuration
repository only.

Stop the configuration repository

itadmn

config stop

View configuration repository itadm n config dunp
contents
List all replicas of the itadmn config list_servers

configuration repository

Convert from a file to a
configuration repository

itadmn

file_to_cfr.tcl

Create scope itadmn scope create

List scopes i tadnmin scope |ist

View scope contents i tadm n scope show
Create namespace i tadm n namespace create

List namespaces

itadmn

namespace | i st

View namespace contents

itadmn

namespace show

Remove namespace

itadmn

namespace renove

Create variable

itadmn

variabl e create

View variable

itadmn

vari abl e show

47

CHAPTER 3 | Managing Orbix Configuration

Table 1: Configuration Domain Management Tasks

Perform this task... By running...
Modify variable itadm n variabl e nodify
Remove variable itadnin variabl e renove
Troubleshooting configuration By default, i t adni n manages the same configuration that it uses to initialize
domains itself. This can be problematic if you need to run i t adm n in order to repair a

configuration repository that is unable to run. In this case, you can run
i t adm n in another configuration domain by supplying the following
command-line parameters (or the equivalent environment variable or Java

property):

- CRBdomai n_nane Specifies the configuration for i t adm n.
This is typically a temporary file-based
configuration created for this purpose only.

- CRBadmi n_donai n_nane Specifies the configuration domain

repository to modify.

- CRBadm n_conf i g_donai ns_di r Specifies the directory in which to find the
the administered configuration. This
parameter is required only if the
configuration’s location is different from the
default domain’s directory.

For example, the following i t adnmi n command runs the i t adm n tool in the
t enp- donmai n domain, and adds the or b_pl ugi ns variable to the repository
of the acme- pr oduct s domain:

itadm n - CRBdonai n_nare t enp- donai n
- CRBadm n_donai n_name acne- product s
variable create -type |ist
-value iiop_profile, giop,iiop orb_plugins

48

In this chapter

CHAPTER 4

Managing
Persistent CORBA
Servers

Location and activation data for persistent CORBA servers are
maintained by the locator daemon in the implementation

repository.

This chapter explains how to register and manage server information in a
location domain. It contains the following sections:

Introduction page 50
Registering Persistent Servers page b1
Server Environment Settings page 54
Managing a Location Domain page 58
Using Direct Persistence page 69

49

CHAPTER 4 | Managing Persistent CORBA Servers

Introduction

Overview

Management tasks

itadmin commands

50

CORBA servers that export persistent objects must be registered with a
locator daemon using its implementation repository. Servers that are
registered with the same locator daemon comprise a location domain.
Through the implementation repository, a locator daemon can locate
persistent objects on any server in its domain. A server can also be
configured for automatic activation, if necessary, through a node daemon
that runs on each domain host.

After you register persistent servers in an implementation repository, servers

and clients use this repository transparently. A configured location domain

typically requires very little outside management. However, occasional

circumstances might require you to manage a location domain. For

example:

® The locator daemon stops and needs to be restarted, or runtime
parameters need to be updated.

® An application is installed, moved, or removed, and application data
needs to be updated.

® Activation parameters need to be changed—for example, the
command line arguments passed into a server.

i t adnmi n commands lets you update and view data in the implementation
repository. You can issue these commands manually from the command line
or the i t adni n command shell, or automatically through an application
setup script. You can execute these commands from any host that belongs
to the location domain.

Registering Persistent Servers

Registering Persistent Servers

A persistent server is one whose ORB contains persistent POAs. All
persistent POAs must be registered in the implementation repository of that
server's location domain. When the server initializes, the following occurs:
1. The server's ORB creates communication endpoints for its persistent
POAs, where POA managers listen for incoming object requests.

2. The ORB sends POA endpoint addresses to the locator daemon, which
registers them in the implementation repository against the
corresponding entry.

3. The locator daemon returns its own address to the server's ORB.
Persistent POAs that run in this ORB embed that address in all
persistent object references.

Because a persistent object’s IOR initially contains the locator daemon’s
address, the locator daemon receives the initial invocation and looks up the
object’s actual location in the implementation repository. It then returns this
address back to the client, which sends this and later invocations on the
object directly to the server.

By relying on the locator daemon to resolve their location, persistent objects
and their servers can exist anywhere in the location domain. Furthermore,
an implementation repository can register server processes for on-demand
activation.

In general, registration of a persistent server is a three-step process:
1. “Register the server process for on-demand activation”.

2. ‘“Register the ORB” that runs in that process.

3. “Register POAs” that run in the ORB.

The following sections show how to use i t adm n commands to perform
these tasks. These commands can be entered either at the command line,
or through a script.

51

CHAPTER 4 | Managing Persistent CORBA Servers

Register the server process for
on-demand activation

Register the ORB

52

i tadm n process create lets you register a process with a location domain
for on-demand activation. When a locator daemon receives an invocation for
an object whose server process is inactive, it contacts the node daemon that
is registered for that process, which activates the process.

The following example registers the ny_app server process with the or egon
node daemon:

itadmn process create
- node_daenon i ona_ser vi ces. node_daenon. or egon
- pat hnane "d:/ bi n/ nyapp. exe"
- start upnode on_denand
-args "training. persi stent.ny_server
- CRBnane ny_app. server_orb" ny_app

In this example, the process create command takes the following
parameters:

- node_daenon Specifies the node daemon that resides on the process’s
host. This node daemon is responsible for starting the
process.

- start upnode When set to on_denand, this specifies that the node
daemon restarts the server process when requested.

-args Specifies command-line arguments. Use the - args
argument to specify the ORB name and (for Java
executables) the Java class name. You can also use this
argument to set the Java class path.

For more about these and other parameters, see process create.

After you register a server process, associate it with the name of the ORB
that it initializes, using i t admi n or bnane creat e. This name must be the
same as - CRBnane argument that you supply the server during startup. For
example, the following command associates the registered process, ny_app,
with the ny_app. server _orb ORB:

itadm n orbname create -process ny_app ny_app. server_orb

Register POAs

Registering Persistent Servers

The ORB name must be unique in the location domain; otherwise an error is
returned.

Note: If you change an ORB name to make it unique in the location
domain, also be sure to change the ORB name that is specified for the
server. If an ORB-specific scope has been established in the configuration
domain, also change the configuration scope name.

After you register a server process and its ORB, register all persistent POAs
and their ancestors—whether persistent or transient—using i t adni n poa
creat e. Persistent POAs must be registered with the ORB name (or in the
case of replicated POAs, ORB names) in which they run. For example, the
following command registers the banki ng_ser vi ce/ account / checki ng
persistent POA and its immediate ancestors banki ng_ser vi ce/ checki ng
and banki ng_ser vi ce with the ny_app. server_orb ORB:

itadm n poa create -orbnane ny_app.server_orb \
banki ng_servi ce

itadmn poa create \
banki ng_servi ce/ account -transient

itadm n poa create -orbname ny_app.server_orb \
banki ng_ser vi ce/ account / checki ng

All POA names within a location domain must be unique. For more
information about avoiding name conflicts, see “Ensuring Unique POA
Names” on page 67.

Transient POAs

A transient POA does not require state information in the implementation
repository. However, you must register its POA name in the implementation
repository if it is in the path of any persistent POAs below it. In the previous
example, the banki ng_ser vi ce/ account transient POA is registered as the
parent of the banki ng_ser vi ce/ account / checki ng persistent POA.

POA replicas

Orbix implements server replication at the POA level. To create POA
replicas, specify the ORB names in which they run using the -repl i cas
argument. For more details, refer to “Building a Replicated Server” on
page 87.

53

CHAPTER 4 | Managing Persistent CORBA Servers

Server Environment Settings

Overview When a registered server process starts, it is subject to its current
environment.

In this section The following sections discuss:
Windows Environment Settings page 55
UNIX Environment Settings page 56

54

Server Environment Settings

Windows Environment Settings

Creation flag settings

Handle inheritance

Security

The following creation flag settings apply:

DETACHED_PROCESS for console processes, denies the newly created
process access to the console of the parent process.

CREATE_NEW_PROCESS_GROUP identifies the created process as the
root process of a new process group. The process group includes all
processes that are descendants of this root process.

CREATE_DEFAULT_ERROR_MODE specifies that the created process does
not inherit the error mode of the calling process.

NORMAL_PRIORITY_CLASS indicates a normal process with no special
scheduling needs.

Open handles are not inherited from the node daemon.

The new process’s handle and thread handle each get a default security
descriptor.

55

CHAPTER 4 | Managing Persistent CORBA Servers

UNIX Environment Settings

File access permissions

File creation permissions

56

You can set user and group IDs for new processes using the -user and
-group arguments to i tadm n process creat e. Before setting user or group
IDs for the target process, ensure that the following applies on the host
where the target process resides:

® The specified user exists in the user database.

® The specified group exists in the group database.

® The specified group matches the primary group of the specified user in
the user database.

If the specified group does not match the primary group in the users
database, the specified user must be a member of the specified group in the
group database.

Note: If you cannot edit the / et c/ gr oup file, specify the user's primary
group. This allows the server to operate normally, even if the / et ¢/ gr oup
file is not well maintained.

Before a server starts, the file access privilege of the activated process is
lowered if the node daemon is the superuser. If the node daemon is not the
superuser, the activated process has the same privileges as the node
daemon.

Check whether newly activated target processes have set - ui d/ set-gi d
permissions. These allow the server to change the effective user and group
IDs, enabling a possible breach of security.

The user and group ID settings affect the working directory settings (if
directory paths are created) and the open standard file-descriptor
processing.

The file mode creation mask is set by supplying the - umask argument to
itadnin process create. By default, the umask is 022 and the actual
creation mode is 755 (rwxr-xr-x).

The unask setting affects the current directory setting (if directory paths are
created) and the open standard file-descriptor processing.

Open file descriptors

Resource limits

Session leader

Signal disposition

Server Environment Settings

The activated server has only standard input, output, and error open for both
reading and writing, and is connected to / dev/ nul | instead of to a terminal.

Resource limits are inherited from the node daemon.

The activated server creates a new session and becomes leader of the
session and of a new process group. It has no controlling terminal.

All valid signals between 1 and NSI G 1 are set to their default dispositions
for the activated server.

57

CHAPTER 4 | Managing Persistent CORBA Servers

Managing a Location Domain

Management tasks

58

Location domain management generally consists of the following tasks:

Managing server processes.

Managing the locator daemon.

Managing node daemons.

Listing location domain data.

Modifying a location domain.

Ensuring that all POA names within a domain are unique.

Managing a Location Domain

Managing Server Processes

Starting and stopping registered
server processes

Securing server processes

Moving manually launched
processes

Server processes that are registered for on-demand activation do not require
any manual intervention. You only need to explicitly start and stop processes
that are not set for on-demand activation.

To manually start a registered target server process on a host where a node
daemon resides, use the i tadm n process start command. For example:

itadmn process start ny_app

To stop a registered target server process on the host where the node
daemon resides, use the i tadm n process stop command. For example:

itadm n process stop ny_app

You can specify that the node daemon can launch processes only from a list
of secure directories, in one of two ways:

® Set the i tnode_daenon run's - CRBsecur e_di rect ori es parameter.
® Set the secure_directories configuration variable.

Both specify a list of secure directories in which the node daemon can
launch processes. When the node daemon attempts to launch a registered
process, it checks its pathname against the secure_directories list. If a
match is found, the process is activated; otherwise, the node daemon
returns a Start ProcessFai | ed exception to the client.

A process that is not registered to be launched on demand can be moved to
a new host by stopping it on its current host, and restarting it on the new
host.

This behavior can be disabled by setting the following configuration variable
to fal se, and restarting the locator:
pl ugi ns: | ocat or: al | ow_node_daenon_change

Attempting to move a process that is already active or is registered to be
launched on demand results in an error.

59

CHAPTER 4 | Managing Persistent CORBA Servers

Managing the Locator Daemon

Overview

Starting a locator daemon

Stopping a locator daemon

60

A locator daemon enables clients to locate servers in a network
environment. Normally, a locator daemon runs as root on UNIX, or with
administrator privileges on Windows NT. To start and stop a locator
daemon, you must be logged on as UNIX root or with Windows NT
administrator privileges.

This section assumes that Orbix has been installed and configured to run
within your network environment. For more on configuring and deploying
Orbix, see Orbix Deployment Guide.

To start a locator daemon:

1.

On the machine where the locator daemon runs, log on as root or NT
administrator.

Open a terminal or command window.
Enteritlocator run
By default, this runs the locator daemon in the foreground.

Complete the appropriate actions for your platform as specified below.

Windows
Leave the command window open while the locator is running.

UNIX
Leave the terminal window open or use operating system commands to
run the process in the background.

Note: In a configuration repository domain, the configuration repository
must be running before starting the locator daemon.

To stop a locator daemon, use the itadm n | ocator stop command. This
command has the following syntax:

itadmn | ocator stop | ocator-nane

Stopping all daemons and
monitored processes

Restarting a locator daemon

Managing a Location Domain

To stop the locator, all registered node daemons, and monitored processes
running in the location domain, use the - al | domai n argument:

itadnmn | ocator stop -all domai n | ocat or - nane

If a locator daemon is stopped and restarted while server processes are
active, it recovers information about the active processes when it starts up
again. The locator daemon validates that server processes, ORBs and POAs
that were active when it was shutdown are still responding. If these server
processes are no longer running, the locator daemon can detect this.

61

CHAPTER 4 | Managing Persistent CORBA Servers

Managing Node Daemons

Overview

Starting a node daemon

62

In an Orbix location domain, the node daemon is responsible for activating

and managing server processes. Every host running an server must also run

a node daemon. The node daemon performs the following tasks:

® Starts processes on demand.

® Monitors all child processes of registered server processes, and informs
the locator daemon about any events relating to these child
processes—in particular, when a child process terminates. This
enables the locator daemon to remove the outdated dynamic process
state information from the implementation repository, and to restart
the process if necessary.

® Monitors all services via heartbeating. If a manually started service
crashes, the node daemon detects this and returns all requests routed
to this server with the appropriate exception.

® Acts as the contact point for servers starting on this machine. When an
server starts on a machine, it contacts the locally running node
daemon to announce its presence. The node daemon informs the
locator daemon of the new server’s presence.

Target server processes that are manually started do not need to register
their process information with the locator daemon. Even when process
information is not registered with the locator daemon, these processes
should behave normally with respect to other location domain capabilities
(for example, object location).

However, if you enter process information for a manually started server, you
can still use manual starting by setting its automatic start-up mode to
disabled. You might wish to store this information, to keep a record of all
processes installed in the location domain.

To start a node daemon, log on to the host where you want to run the
daemon and enter i t node_daenon run.

By default, at startup, the node daemon attempts to contact the CORBA
servers that it managed during the previous time it ran. If the node daemon
was managing a large number of CORBA servers, this can take up to several
minutes, and delay the node daemon from starting up.

Running multiple node daemons
on a single host

Managing a Location Domain

In certain circumstances—for example, restarting after a reboot—it is not
necessary for the node daemon to contact running CORBA servers. This is
because it can be guaranteed that those servers are not running. You can
use the following configuration variable to turn off this default behavior:

pl ugi ns: node_daenon: r ecover _processes="f al se";

This enables the node daemon to complete its initialization more quickly.
You should set this variable in the node daemon's configuration scope.

One node daemon can control multiple server processes; and normally one

node daemon runs on a given host. Sometimes an application might require

a separate node daemon (for example, to launch servers as different users).

In this case, you can run multiple node daemons on a single host. For

example, one node daemon might run as root, and another as a different

user with fewer privileges.

Multiple node daemons on the same host must have different names, which

should reflect their application name in some way.

To configure multiple node daemons, perform the following steps:

1. Inthe default node_daenon configuration scope, create a sub-scope (for
example, node_daenon. engi neer i ng).

2. Provide a value for the node daemon name configuration variable. For
example:

itadmn variabl e create -scope node_daenon. engi neeri ng
-type string -val ue "eng_node_daenon"
pl ugi ns: node_daenon: nane
3. Run the node daemon in the new scope, using the - CRBnane argument:

For example, the following commands start two node daemons on the
same host:

i t node_daenon
i t node_daenmon —CRBnane node_daenon. engi neeri ng

63

CHAPTER 4 | Managing Persistent CORBA Servers

Stopping a node daemon To terminate a node daemon, use i t adni n node_daenon st op. This
command also stops all the server processes that the node daemon
monitors. For example, the following command stops the node daemon on
al aska:

i tadm n node_daenon stop al aska

Viewing a node daemon’s Before you stop a node daemon, you might want to list all the active

processes processes that it currently monitors. To do so, run i tadmn process |i st
-active. For example, this command lists the active processes for the node
daemon on al aska:

itadmin process list -active -node_daenon al aska
ny_Ser ver _process

64

Managing a Location Domain

Listing Location Domain Data

With i t adm n commands, you can list the names and attributes of
registered entries in the implementation repository.

Table 2: Commands that List Location Domain Data

Command Action

process |ist Lists the names of all target processes registered in
the location domain.

process show Lists the attributes of server processes registered with
the locator daemon.

orbnane i st Lists all ORB names in the location domain.

or bname show Lists the attributes of ORB names registered with the
locator daemon.

poa |ist Lists the names of all POAs in the location domain.

poa show Lists the attributes of all registered POA names.

65

CHAPTER 4 | Managing Persistent CORBA Servers

Modifying a Location Domain

Overview With i t adnmi n commands, you can modify and remove registered processes,
ORB names, and POA names from the implementation repository. For
detailed information, see Chapter 22 on page 275.

Modifying entries The i t adni n commands listed in Table 3 modify entries for processes, ORB
names, and POA names that are registered with a location domain.

Table 3: Commands that Modify a Location Domain

Command Action
process nodify Modifies the specified process entry.
orbname nodi fy Associates an ORB name with the specified

process name.

poa nodi fy Modifies the specified POA name.

Removing entries You can remove any entry from the implementation repository, whether the
target object is running or not. The i t adm n commands listed in Table 4
remove entries for processes, ORB names, and POA names that are
registered with a location domain.

Table 4: Commands that Remove Location Domain Components

Command Action
process renove Removes a process entry.
or bnane renove Removes an ORB name from the location

domain. If there is an active ORB entry for the
ORB name in the locator's active ORB table,
this is also removed.

poa renove Removes the entry for the specified POA and its
descendants from the location domain. By
default, all active entries for the POA and its
descendants are also removed.

66

Managing a Location Domain

Ensuring Unique POA Names

Overview

Procedure

The locator daemon finds persistent objects by looking up their POA names
in the implementation repository. Consequently, POA names must be
unique in a location domain.

If you use a repository-based configuration, the implementation repository
prevents name duplication and raises the following error:

ERROR UWnable to add an inpl ementation repository entry for the
PQOA: EntryAl readyExi sts

If different Orbix applications use the same POA names, you can avoid
name conflicts by setting pl ugi ns: poa: r oot _nane. The r oot _nane variable
names the application’s root POA, which is otherwise unnamed. By setting
this variable for each application’s ORB to a unique string, you can ensure
unique names for all POAs.

The following procedure shows how to register a root POA’s name within a
location domain, and use it with all descendant persistent POAs:
1. To define a root POA name for a server, create a
pl ugi ns: poa: r oot _name configuration variable in the server ORB’s
configuration scope:

itadmn variable create
-scope production.test.servers.server001 -type string
-val ue "ny_app" plugi ns: poa: r oot _nane

When the server initializes, it reads its root POA name and applies this
to all its POA names.

2. Register the root POA’s name in the implementation repository:

itadm n poa create -transient ny_app

3. When you register persistent POAs for this server in the

implementation repository, prefix their names (and the names of all
ancestor POAs) with the root POA’s prefix. The following commands
register two persistent POAs:

67

CHAPTER 4 | Managing Persistent CORBA Servers

itadm n poa create -transient ny_app/poal
i tadm n poa create -orbname
production. test. servers. server 001 ny_app/ poal/ poa2

itadm n poa create -orbname
production. t est. servers. server 001 ny_app/ poal/ poa2/ poa3

68

Using Direct Persistence

Using Direct Persistence

In this section

Using direct persistence enables Orbix to bypass the locator daemon when
resolving persistent object references or contacting Orbix services.

This section discusses the following topics:

CORBA Applications page 70

Orbix Services page 74

69

CHAPTER 4 | Managing Persistent CORBA Servers

CORBA Applications

Requirements

70

In general, a CORBA applications rely on the location daemon to resolve
persistent object references. Alternatively, you might want to avoid the
overhead that is incurred by relying on the location daemon. In this case,
you can set up a server that generates direct persistent object references—
that is, object references whose IORs contain a well-known address for the
server process. This section includes:

“Requirements”.
“Example”.
“Setting direct persistence in configuration only”.

Two

requirements apply:

The server that generates the object references must set its POA
policies to PERSI STENT, Dl RECT_PERS| STENCE. The POA must also have
a WELL_KNOM _ADDRESSI NG PCLI CY whose value is set to prefi x (see
the CORBA Programmer’s Guide).

The configuration must contain a well-known address configuration
variable, with the following syntax:

address-prefix:: transport:addr_|ist=[address-spec [,...]]
where addr ess- spec has the following syntax:

"[+] host - spec: port - spec”

The plus (+) prefix is optional, and only applies to replicated servers,
where multiple addresses might be available for the same object
reference (see “Direct Persistence and Replica Failover” on page 84).

Note: These requirements involve setting direct persistence
programatically. As an alternative for C+ + servers, see also “Setting direct
persistence in configuration only”.

Example

Using Direct Persistence

For example, you might create a well-known address configuration variable
in scope MyConf i gApp as follows:

M/Confi gApp {
ny_server:iiop:addr_|ist=["host.com 1075"];

}

Given this configuration, a POA created in the MyConf i gApp ORB can have
its Pol i cyLi st set so it generates persistent object references that use direct
persistence, as follows:

C++

QCORBA: : Pol i cyLi st poli ci es;
policy. | ength(4);
QOORBA: : Any per si st ence_node_pol i cy;
QCRBA: : Any wel | _known_addr essi ng_pol i cy;
per si stence_node_pol i cy_val ue <<=
| T_Port abl eSer ver: : D RECT_PERS| STENCE;
wel | _known_addr essi ng_pol i cy_val ue <<=
QCRBA: : Any: : fromstring("wka", |T_TRUE);

pol i cy[0] = poa—>create_|ifespan_policy
(Port abl eSer ver : : PERS|I STENT) ;
pol i cy[1] = poa—>create_i d_assi gnment _pol i cy
(Portabl eServer:: USER I D);
policy[2] = orb->create_policy
(I T_Port abl eSer ver: : PERS| STENCE_ MDE PCLI CY_I D,
persi st ence_node_pol i cy) ;
policy[3] = orb->create_policy
(1 T_OCRBA: : WELL_KNOWN_ADDRESSI NG _PCLI CY_I D,
wel | _known_addr essi ng_pol i cy) ;

71

CHAPTER 4 | Managing Persistent CORBA Servers

Setting direct persistence in
configuration only

72

Java

inport comiona. corba. *;
import comiona.l T_CORBA *;
inport comiona.lT_Portabl eServer. *;

// Set up | ONA policies
org. ong. CORBA. Any per si st ent _node_pol i cy_val ue =
gl obal _orb. create_any();
or g. ong. OCRBA. Any wel | _known_addr essi ng_pol i cy_val ue =
gl obal _orb. create_any();
Per si st enceMbdePol i cyVal ueHel per. i nsert (
per si st ent _nmode_pol i cy_val ue,
Per si st enceMbdePol i cyVal ue. Dl RECT_PERS| STENCE) ;
wel | _known_addr essi ng_pol i cy_val ue.insert_string("wka");

org. ong. OCRBA Pol i cy[] polici es=new Policy][]
{
root _poa. create_lifespan_policy(
Li f espanPol i cyVal ue. PERS| STENT) ,
root _poa. creat e_i d_assi gnnent _pol i cy(
| dAssi gnrent Pol i cyVal ue. USER | D),
gl obal _orb. create_pol i cy(
PERSI STENCE_MCDE_PCLI CY_I D. val ue,
per si st ence_node_pol i cy_val ue),
gl obal _orb. create_pol i cy(
WELL KNOM ADDRESSI NG PCLI CY_I D. val ue,
wel | _known_addr essi ng_pol i cy_val ue),

Orbix has two configuration variables that enable POAs to use direct
persistence and well-known addressing, if the policies have not been set
programatically. Both variables specify the policy for individual POAs by
specifying the fully qualified POA name for each POA. They take the form of
poa: f gpn: vari abl e- nane (f gpn is frequently used POA name). For example,
to set the well-known address for a POA whose fully qualified POA name is
dar | een you would set the variable poa: dar| eeen: wel | _known_addr ess.

poa:fqpn:direct_persistent specifies if a POA runs using direct persistence.
If this is set to t rue the POA generates IORs using the well-known address
that is specified in the wel | _known_addr ess variable. Defaults to f al se.

Using Direct Persistence

poa:fqpn:well_known_address specifies the address used to generate IORs
for the associated POA when that POA’s di rect _per si st ent variable is set
to true.

For example, by default, the si npl e_per si st ent demo creates an indirect
persistent POA called si npl e_persi stent . If you want to run this server
using direct persistence, and well known addressing, add the following to
your configuration:
sinple_orb {
poa: si npl e_persi stent:direct_persistent = "true";
poa: si npl e_per si st ent: wel | _known_address = "si npl e_server";
sinpl e_server:iiop:port = "5555";
}
All object references created by the si npl e_persi st ent POA will now be
direct persistent containing the well known 1IOP address of port 5555.

Obviously, if your POA name was different the configuration variables would
need to be modified. The scheme used is the following:

poa: <FQPN>: di r ect _per si st ent =<BOCL>;

poa: <FQPN>: wel | _known_addr ess=<addr ess_pr ef i x>;
<address_prefix>:iiop: port =<LCNG>;

<FQ@PN> is the fully qualified POA name. Obviously this introduces the
restriction that your POA name can only contain printable characters, and
may not contain white space.

<addr ess_pr ef i x> is the string that gets passed to the well-known
addressing POA policy. Specify the actual port used using the variable
<address_prefix>:iiop:port. You can also useiiop_tls instead of ii op.

Note: This functionality is currently only implemented in the C++ ORB.
If you are using the Java ORB, you must set the direct persistence and well
known addressing policies programmatically.

73

CHAPTER 4 | Managing Persistent CORBA Servers

Orbix Services

Technical details

Performance issues

Configuration variables

74

In general, Orbix uses the locator daemon to resolve the initial reference for
each of the services. Alternatively, you might want to avoid the overhead
that is incurred by relying on the location daemon. In this case, you would
configure the service to run in direct persistence mode.

When a service runs in direct persistence mode it listens on a fixed host and
port number. This information is embedded into the IOR that the service
exports as an initial reference.

When a CORBA client asks for the service's initial reference, it receives the
IOR containing the host and port information for the service. The client uses
the embedded information to directly contact the service, bypassing the
locator and node daemon normally used by Orbix services.

While direct persistence reduces the overhead of using the locator and node
daemons, it also has a cost in terms of fault tolerance and flexibility. When
running in direct persistence mode a service cannot be started on demand
and it must always listen on the configured host and port number.

To configure a service to run in direct persistence mode, three configuration
variables need to be modified:

pl ugi ns: <service_name>: di rect _persi st ence Indicates whether the
service uses direct or indirect persistence. The default value is FALSE, which
indicates indirect persistence.

plugins: <service_name>:iiop:port Specifies the port number that the
service will listen on. If security is installed, then a TLS port is also required.

initial_references: <service_reference_string>:reference specifies the IOR
of the service.

If the service is clustered, pl ugi ns: <service_name>:ii op: host must also
be set.

Configuring direct persistence

Using Direct Persistence

To configure a service to run in direct persistence mode complete the
following steps:

1. If the service is running, shut it down.

2. Set pl ugi ns: <service_name>: di r ect _per si st ence to TRUE within the
service's configuration scope.

3. Within the same configuration scope, set
pl ugi ns: <service_name>:ii op: port to some open port number.

4. Prepare the service. This causes the service to generate a new I0R for
itself. The new IOR will be printed to the console. Save it for use in the
next step.

5. Within the same configuration scope as used in steps 2 and 3, replace
the value of
i nitial _references: <service_reference_string>: r ef er ence with the
IOR returned in step 4.

6. Restart the service.

75

CHAPTER 4 | Managing Persistent CORBA Servers

76

CHAPTER 5

Configuring
Scalable
Applications

Enterprise-scale systems, which are distributed across
multiple hosts, networks, and applications, must be designed
to handle a wide variety of contingencies.

For example, mechanical or electrical malfunctions can cause host
machines to stop working. A network can be cut apart by an excavator that
accidentally slices through phone lines. Operating systems can encounter
fatal errors and fail to reboot. Compiler or programming errors can cause
software applications to crash.

Poor design can also cause problems. For example, you might run multiple
copies of a web server to handle higher levels of browser activity. However,
if you run all copies on the same underpowered host machine, you may
reduce, rather than increase, system performance and scalability. Running
all web servers on the same host also makes the entire web site dependent
on that machine—if it fails, it brings down the entire site.

In general, a distributed enterprise system must facilitate reliability and
availability. Otherwise, users and applications are liable to encounter service
bottlenecks and outages.

77

CHAPTER 5 | Configuring Scalable Applications

In this chapter This chapter contains the following sections:
Fault Tolerance and Replicated Servers page 79
Building a Replicated Server page 87
Replicating Orbix Services page 93
Fault Tolerance and Replicated Servers page 79
Setting Buffer Sizes page 102
Further information See Chapter 11 for information on additional features that are designed to
enhance scalability and performance (for example, Java new 1/O and shared
memory).

78

Fault Tolerance and Replicated Servers

Fault Tolerance and Replicated Servers

Overview

Benefits

Reliable and available CORBA applications require an ORB that supports
fault tolerance—that is, an ORB that avoids any single point of failure in a
distributed application. With the enterprise edition of Orbix, you can protect
your system from single points of failure through replicated servers.

A replicated server is comprised of multiple instances, or replicas, of the
same server; together, these act as a single logical server. Clients invoke
requests on the replicated server, and Orbix routes the requests to one of the
member replicas. The actual routing to a replica is transparent to the client.

Orbix replicated servers provide the following benefits:

Client transparency: Client applications can invoke requests on replicated
servers without requiring any changes.

Transparent failover: If one replica in a replicated server fails, Orbix
automatically redirects clients to another replica, without the clients’
knowledge.

Dynamic management: You can modify a replicated server by adding or
removing replicas at runtime, without affecting client applications or other
replicas.

Replicated infrastructure: Critical services such as the locator daemon,
configuration repository, and naming service are configured as replicated
servers. This ensures that they are always available.

Load balancing: Client invocations can be routed to different replicas within
a replicated server, thus balancing the client load across all, and improving
system performance. Orbix provides out-of-the-box round robin and random
load-balancing strategies. The Orbix load-balancing framework is pluggable,
S0 you can easily implement your own strategies.

79

CHAPTER 5 | Configuring Scalable Applications

About Replicated Servers

Overview

POA replicas

Deployment of a replicated server

80

Orbix replicates servers with the same infrastructure that supports persistent
CORBA objects—that is, objects that are maintained in POAs with a lifetime
policy of PERSI STENT. Orbix locates persistent objects using the locator
daemon, which maintains their addresses on a physical server (see
“Managing Object Availability” on page 8). A client that invokes on a
persistent object for the first time sends its request to the locator daemon,
which redirects the request to the server's current host and port. Thus, a
client invoking on these objects is insulated from any knowledge of their
actual location.

Orbix uses the locator daemon to support replicated servers. If a persistent
object is instantiated on a replicated server, its references contain the
address of the locator daemon. The locator daemon is responsible for
redirecting client requests on that object to one of the server’s replicas.

Object persistence is always set by POA policies. Therefore, Orbix
implements replication through registration of multiple instances, or
replicas, of a POA, in a location domain’s implementation repository. This
provides the necessary level of granularity without adding significant
administrative overhead. POA replicas ensure continuous access to
persistent objects; and the Orbix infrastructure is required only to monitor
POA activity, which it does in any case.

For example, you might want to deploy a replicated server that implements
the replicated POA ozzy on hosts zep, fl oyd, and cream To do this,
complete the following steps:

Note: The following procedure assumes that a locator daemon and a
naming service are already deployed.

Replicated server startup

Invocations on replicated
persistent objects

Fault Tolerance and Replicated Servers

Register replicas of POA ozzy in the location domain’s implementation
repository. At runtime, each server sends the replica’s actual address
to the domain’s locator daemon. For details on registering POA
replicas, see “Example 1: Building a Replicated Server to Start on
Demand” on page 88.

Make persistent object references in a replicated server available to
prospective clients—typically, by advertising object references through
the CORBA naming service.

Ensure that the node daemon activates servers on the initial client
request. Otherwise, you must manually activate those servers.

When the servers start up, the following occurs:

1.

Each server's ORB creates communication endpoints for its persistent
POAs, where POA managers listen for incoming object requests.

The ORB sends POA endpoint addresses to the locator daemon, which
registers them in the implementation repository against the
corresponding POA entry. If a persistent POA is replicated across
multiple servers, each replica’s address is registered against the
corresponding replica entry. Thus, the locator daemon can maintain
multiple addresses for the same POA.

The locator daemon returns its own address to each ORB. Persistent
POAs that run in this ORB embed that address in all persistent object
references.

When a client invokes on a persistent object in the replicated server, the
following occurs:

1.

The client ORB sends a locate request to the object reference’s
communication endpoint, which is the locator daemon.

When the locator daemon receives the locate request, it searches the
implementation repository for the target object's POA. In this case, it
finds that the ozzy POA is replicated across three servers that run on
zep, fl oyd, and cream

81

CHAPTER 5 | Configuring Scalable Applications

82

3. The locator daemon uses the load-balancing algorithm that is
associated with the ozzy POA to determine which POA replica should
handle the request—for example, the replica on zep.

4. The locator daemon obtains the address to the ozzy POA on zep, and
returns a direct object reference that contains this address to the
requesting client's ORB.

5. The client's ORB sends another locate request for the object, this time
with the direct object reference, to zep. The replica confirms the
object’s existence with an obj ect - her e reply.

6. When the client ORB receives the obj ect - her e reply, it resends the
client's request to the object instantiated in the ozzy replica on zep.

Except for the original invocation, all steps in this process are transparent to

the client. Thus, clients can invoke on a server in exactly the same way,
whether it exists alone or as a replica within a replicated server.

Fault Tolerance and Replicated Servers

Automatic Replica Failover

Replica Failure

Replica restoration

Restarting on a different host

If a replica becomes unavailable—for example, because of machine or

network failure—another replica enables clients to access the same objects

as follows:

1. Assoon as a direct object reference fails, the client ORB retrieves the
object’s original IOR, and sends a locate request to the locator
daemon.

2. The locator daemon reapplies the load balancing algorithm for the
target POA against the remaining viable replicas, to determine which
one should handle requests on this object. It then returns a direct
object reference to the client for the chosen replica.

3. All client invocations on the object, including the forwarded one, are
handled by the new replica.

If a failed replica is restored, it can transparently rejoin the replicated server
by reregistering its address with the locator daemon. The locator daemon
reassociates that replica with the name of the replicated POA in its
database, thus making that replica available for subsequent client requests.

A replica must be restarted on the host with which it is registered. If the
failed replica needs to be restarted on a different host, you must modify the
replicas registration using the following command:

itadm n process nodi fy -node_daenmon <new node- daermon> <process>

Because persistent object references are addressed initially to the locator
daemon, it is always safe to remove replicas from a replicated server and
add new ones at runtime, without affecting client invocations.

83

CHAPTER 5 | Configuring Scalable Applications

Direct Persistence and Replica Failover

Overview

Requirements

Example configuration

84

The failover mechanism described thus far relies upon the locator daemon
to forward persistent object references from a failed replica to another
replica that is still active. However, you can also create a persistent POA
that circumvents the overhead of a locator daemon. This POA publishes
persistent object references that embed a well-known address—that is, the
address where the POA listens for incoming requests.

To ensure failover in a replicated POA with direct persistence, the following

requirements apply:

® The well-known address list that each replica obtains from its
configuration must specify all addresses for each replica, including its
own. Thus, the object references published by each replica must list
the addresses of all replicas.

® The well-known address list for a given replica must always single out
one address as its listening address. In the IORs that it generates, all
other addresses are for publication only.

When a client request uses a direct object reference, it is directed to the first
replica address in the list. If that replica is not available, it tries the next
replica in the list, and so on, until it finds an available replica.

For example, given replicas that are instantiated on host 1 and host 2, you
can create the following configuration for each replica as follows:

M/Gonfi gApp {

wka_1l1:iiop:addr_|ist=["host1. com 1075", "+host2.com 2075"];
wka_2:iiop:addr_list="+host 1. com 1075", "host2.com 2075"];

Example server code

Fault Tolerance and Replicated Servers

The plus (+) prefix indicates that an address is for publication only in the
IOR; a non-prefixed address is for publication and listening. Each POA
replica obtains a different listening address as follows:

® The replica on host 1 specifies well-known address prefix wka_1, so it

listens on the non-prefixed address host 1. com 1075.
The replica on host 2 specifies well-known address prefix wka_2, so it
listens on the non-prefixed address host 2. com 2075.

Note: For full details of all configuration required for direct persistence
and well-know addressing, see “Setting direct persistence in configuration
only” on page 72.

The server code shown earlier is modified on each host as follows:

C++

/1 on host 1:
...
OORBA: : Any wel | _known_addr essi ng_pol i cy_val ue;
wel | _known_addr essi ng_pol i cy_val ue <<=
QCRBA: : Any: : fromstring("wka_ 1", | T_TRUE);

/...

policies[3] = orb->create_policy(
| T_CORBA: : WELL_KNOAN_ADDRESSI NG PQLI CY_I D,
wel | _known_addr essi ng_pol i cy_val ue);

/1 on host2:
/...
OCRBA: : Any wel | _known_addr essi ng_pol i cy_val ue;
wel | _known_addr essi ng_pol i cy_val ue <<=
OCRBA: : Any: : fromstring("wka_2", |T_TRUE);

/...
policies[3] = orb->create_policy(

| T_CORBA: : WELL_KNOAN_ADDRESSI NG PCLI CY_I D,
wel | _known_addr essi ng_pol i cy_val ue);

85

CHAPTER 5 | Configuring Scalable Applications

86

Java

//on host 1:
...
Per si st enceMbdePol i cyVal ueHel per. i nsert (
per si stent _node_pol i cy_val ue,
Per si st enceMbdePol i cyVal ue. Dl RECT_PERS| STENCE) ;
wel | _known_addr essi ng_pol i cy_val ue. i nsert_stri ng(

"Wka_1")
/...

//on host 2:
/...

Per si st enceMbdePol i cyVal ueHel per. i nsert (
persi st ent _nmode_pol i cy_val ue,
Per si st enceMbdePol i cyVal ue. Dl RECT_PERS| STENCE) ;
wel | _known_addr essi ng_pol i cy_val ue. i nsert_stri ng(
"wka_2");
/...

The object references for both replicas contain the same address list. Thus,
requests on these IORs are first directed to host 1 address. If the replica on
host 1 is unavailable, the request is redirected to the address on host 2.

Building a Replicated Server

Building a Replicated Server

Overview

Sample code

The following sections walk you through the process of building a replicated
server, including the ability to load balance clients across multiple servers,
activate multiple servers in response to a single client request, and
dynamically change replicas in a replicated server.

These examples are based on several demos in the Orbix

denos\ cor ba\ ent er pri se\ cl ust eri ng directory. These demos consist of a
simple client and server. The server program exports a single object,

Si npl ed ust er edQoj ect , which has the following interface:

nodul e A ustering

{
interface Sinpled ustered;j ect
{
string
server _nane();
H
ik

Si npl ed ust er edoj ect has a single operation, server_nane(), which
returns the name of the server as passed on the server command line. This
is used to demonstrate the Orbix load-balancing features. Each server that
runs the simple object is passed a different server name on the command
line. Clients that connect to the object get and display the server name,
thereby showing the server that they have been connected to.

87

CHAPTER 5 | Configuring Scalable Applications

Example 1: Building a Replicated Server to Start on Demand

The following example shows how to register a replicated server for
on-demand activation in a location domain.

1. Build the application. For example:

$ cd c:\iona\asp\versi on\ denos\ ent er pri se\ cl ust eri ng
$ nnake

2. Start anitadm n session, and use the process create command to
create an entry in the implementation repository for each replica in a
replicated server:

$ itadmn
% process create \
- pat hnane
[opt /i onal asp/ ver si on/ denos/ ent er pri se/ cl ustering/ \
cxx_server/server \
-node_daenon daenon_nane \
-startuprmode on_denand \
-args "--CRBnane denwos. cl ustering.server_1 server_1" \
denos. cl usteri ng. server _process_1
%
% process create \
same argunents as before \
oo\
-args "--CRBnane denwos. cl ustering. server_2 server_2"\
denos. cl ust eri ng. server _process_2
%
% process create \
sane argunents as before \
-args "--CRBnane denws. cl ustering. server_3 server_3" \
denwos. cl ust eri ng. server _process_3
%

88

4.

Building a Replicated Server

These process creat e commands create entries for three servers to
start on demand. This command requires the following arguments:

+ The path name for the server executable.

. The name of the node daemon to start the server.

Note: The server must always be started on the same host as its
associated node daemon. Otherwise, you will receive a
PROCESS | N DI FFERENT NCDE_DAEMON exception.

+ Alist of command line arguments passed to the server using the
-args argument. These include a uniqgue ORB name that is
associated with each server replica.

Call or bnane creat e to associate an ORB name with each server
instance. The - process argument associates the new ORB name with
the corresponding process name created in step 3. The process name
must be the same one that specified the new ORB name:

% or bnane create \
- process denos. cl ustering. server_process_1 \
denos. cl ustering. server_1
% or bnane create
- process denos. cl ustering. server_process_2 \
denos. cl ust eri ng. server_2
% or bnane create \
- process denos. cl ustering. server_process_3 \
denos. cl ust eri ng. server_3

Call poa creat e to create a replicated POA, supplying two arguments:

* The -repl i cas argument replicates the POA Q ust er Deno on the
three ORB names created in step 3.

¢+ The -1 oad_bal ancer argument specifies the load-balancing
strategy to associate with the replicated POA; this tells the locator
daemon how to route requests to the POA replicas. In this case,
the randomstrategy is specified, which routes requests randomly
among the POA’s available replicas.

$ itadmn

% poa create -replicas denos.clustering.server_1, \
denos. cl ust eri ng. server_2, denos. clustering.server_3 \
- | oad_bal ancer random Q ust er Dermo

89

CHAPTER 5 | Configuring Scalable Applications

5. Run the servers.
Each server is passed an - CRBnane parameter to identify the server.
This parameter is passed to CRB i ni t (), which passes it on to the
locator to identify the server when it creates the POA. Each of the
servers must also be passed a server name parameter (for example,
server_1), which is returned to the client to identify the server.

The following shows how you might run these servers.

$ # cd $I T_PRODUCT_D R/ asp/ versi on/ deno/ cl ust eri ng
$./server -CRBnane denos. cl ustering.server_1 server_1

../lobject.ior &
$./server -CRBnanme denws. cl ustering. server_2 server_2 &
$./server -CRBnane denos. cl ustering.server_3 server_3 &

6. Run the client against the server.
The client output shows how the locator randomly selects a server for
each client that is running, load balancing the clients across the set of
servers. If you kill one of the servers, the locator continues to forward
clients to the remaining two servers, choosing between them at

random.

90

Building a Replicated Server

Example 2: Updating a Replicated Server

Orbix replication is implemented so that you can add new servers on-the-fly
without shutting down your system. The following commands add a server
replica to the set already registered in the cl ust eri ng demo:

Example 2: Commands for Updating a Replicated Server

1 process create \
- pat hname $server_nane \
-node_daenon $daenon_nare \
-startupnode on_dermand \
-args "--CRBnane denos. cl ustering.server_4 server_4" \
denos. cl ust eri ng. server_process_4
2 or bnane create
- process denos. cl ust eri ng. server_process_4
denos. cl ust eri ng. server_4
3 poa nodify \
-replicas \
denos. cl ustering. server_1, \
denos. cl ust eri ng. server_2, \
denwos. cl ust eri ng. server_3, \
denos. cl ust eri ng. server_4 \
d ust er Deno

1. process create registers a new location domain process,
denos. cl ust eri ng. server _process_4.
2. orbnane create associates a new ORB name,
denwos. cl ust eri ng. server _4, with the new process.
3. poa nodify redefines the A ust er Denmo POA, specifying a fourth POA
replica to run in the denos. cl ust eri ng. server _4 ORB.
After following these steps, run the clients against the server again. As
before, the client output shows how the locator randomly selects a server for
each client that is running, and eventually prints out the name of the fourth
server.

91

CHAPTER 5 | Configuring Scalable Applications

Example 3: Dynamically Changing the Load Balancing

Algorithm

92

Orbix enables you to dynamically change the load-balancing algorithm used
for a replicated POA. Orbix supports the following load-balancing
algorithms:

round_robin The locator uses a round-robin algorithm to select from the
list of active servers—that is, the first client is sent to the
first server, the second client to the second server, and so on

r andom The locator randomly selects an active server to handle the
client.

For example, you can change the load-balancing algorithm used by the
cl ust eri ng demo by issuing the following i t admi n poa nodi fy command:

$ itadm n poa nodi fy -1oad_bal ancer round_robin d usterDeno

You can verify this by running several clients. The names of the servers now
print out in the order in which they were started.

Replicating Orbix Services

Replicating Orbix Services

Overview

Replicating locator daemon and
naming service

Clients that use replicated Orbix services, such as the locator, are
automatically routed to the first available server. If a server fails, clients are
transparently rerouted to another server. Orbix services are normally
replicated across a number of hosts, but it is also possible to replicate
services on the same host.

The following Orbix services can be replicated:

® Locator daemon.

® Naming service.

® Configuration repository (CFR).

® Security service.

Figure 13 shows an example of a replicated naming service. This shows

updates being pushed across from the master naming service to the slave
naming service.

Continuous availability is especially important for the locator daemon and
naming service. Replicating these services ensures that:

® Clients can always access persistent servers.

® New persistent servers can be activated on demand.

® jtadnm n commands that read the implementation repository always
work (for example, i tadnmin poa list, anditadnin process show).

® Clients can always obtain object references from the naming service.

93

CHAPTER 5 | Configuring Scalable Applications

iona_service.naming.london iona_service.naming.newyork

Naming Service (A) Naming Service (B)

(Master)

UPDATE (Slave)
-

Updates
pushed
from master
to slaves

Berkeley DB - - Berkeley DB

[—] [——]
[— —
Figure 13: Replicated Naming Service
CFR-based versus file-based Orbix services can be replicated in both CFR-based domains and in

replication domains configuration file-based domains.

In a CFR-based domain, it is recommended that the CFR service is
replicated, in addition to any other replicated services (for example, the
security service). This ensures that all clients and servers can continue to
run in the event of a failure.

94

Replicating the security service

Master and slave replicas

Adding and removing replicas

Replicating Orbix Services

In a secure domain, replicating the security service is important to ensure
that all services are accessible even in the event of a host failure.

To replicate the security service, use the Orbix Configuration GUI tool to

specify a replica host, like with other services (see the Orbix Deployment
Guide). The generated configuration will contain the all relevant CORBA

clustering information. However, with the security service, you must also
edit your i s2. properti es file, and create a cl uster. properti es file. For
details on these files, see the Orbix Security Guide.

The locator daemon, naming service, and configuration repository use the
persistent state service (PSS) to replicate their state. The PSS uses a
master-slave model where a single replica is designated the master, and can
process both read and write operations. All other replicas are slaves and can
only process read operations. For more details, see “Master-Slave
Replication” on page 96.

Note: All replicas in a PSS-based replicated service must be run on
identical operating systems.

New server replicas can be added dynamically into a running system, and
existing replicas can also be removed. For more details, see the Orbix
Deployment Guide.

95

CHAPTER 5 | Configuring Scalable Applications

Master-Slave Replication

Overview

Startup of master-slave services

96

In PSS master-slave replication, one replica is designated as the master,
and the remaining replicas are designated as slaves. Only the master can
perform both read and write access, while slave replicas provide read-only
access. In addition, only the master can process any read operation that is
part of a distributed transaction.

If a slave replica receives a write or a read request in a distributed
transaction, this request is either delegated to the master, or rejected if there
is no master available. If the master fails, the remaining slaves hold an
election to determine the new master. The automatic promotion of a slave to
master is transparent to clients. This section includes the following:

® “Startup of master-slave services”.

® “Master election protocol”.

® “Setting replica priorities”.

® “Setting master heartbeats”.

® “Setting a refresh master interval”.

® “Relaxing majority rule”.

® “Replica administration”.

When a group of replicated services has been deployed, all services are
started as slaves. A majority of a service's replicas must have started before
an election to select the master replica can take place.

This means, for example, in a replica group with four replicas (including the
master), that at least three replicas must be running before an election can
take place and write requests are possible.

Having a majority of replicas running ensures that a network partition can
not result in duplicate masters. It also guarantees that previously committed
updates are not lost.

Master election protocol

Setting replica priorities

Setting master heartbeats

Replicating Orbix Services

When the master is unavailable, an election protocol is used to determine
the new master. If a majority of replicas are running, the slave that is most
up-to-date with updates from the master is elected as the new master. If
there is a tie, a priority system is used to elect the master. If there is still a
tie, a random selection is made.

To support the automatic promotion of a slave, the minimum number of
replicas in a group is three (one master and two slaves). For more details,
see “Relaxing majority rule”.

You can configure the priority of a replica in elections using the following
configuration variable:

pl ugi ns: pss_db: envs: env-nane: replica_priority = "1";

The default value is 1. Higher values mean a higher priority, and a priority of
0 means that slave is not to be promoted. For more details, see
pl ugi ns: pss_db: envs: env- nane in the Orbix Configuration Reference.

By default, the first replica deployed is given a higher priority than the
remaining replicas. This increases the likelihood that the first replica runs as
master when the services are started. This avoids unnecessary delegation for
write operations.

Replica priorities are more likely to be honoured if services are shutdown
cleanly (using the st op_domain_name_ser vi ces command).

Slave replicas monitor the health of the master using periodic heartbeat
messages. This enables a slave to be promoted in a timely manner. You can
configure the interval between these heartbeats using the following
configuration variable:

pl ugi ns: pss_db: envs: env- nane: nast er _heart beat _i nt erval = "10";

The Orbix Configuration tool (i t conf i gur e) sets the variable for each service
to 30 seconds. For example, the setting for the locator daemon is:

pl ugi ns: pss_db: envs:it_| ocator: master_heartbeat _interval = "30";

For more details, see pl ugi ns: pss_db: envs: env- nane in the Orbix
Configuration Reference.

97

CHAPTER 5 | Configuring Scalable Applications

Setting a refresh master interval

Relaxing majority rule

98

If is it necessary to disable heartbeats, you can set this variable to 0 (for
example, to reduce network traffic). Disabling heartbeats means that the
election of a new master normally occurs only when a slave attempts to
delegate a request to the failed master.

Each of the replicated Orbix services that use PSS replication enable you to
configure the amount of time that a slave replica waits for a new master to
be elected:

pl ugi ns: nam ng: ref resh_nast er _i nt er val
pl ugi ns: | ocat or: refresh_naster_i nt erval
pl ugi ns: confi g_rep: refresh_master_i nterval

This interval specifies the maximum number of seconds that a write request
is blocked at a slave while waiting for a master to be elected. For example,
to set a time limit on the naming service to 30 seconds:

pl ugi ns: nam ng: refresh_master_interval = “30";

For more details, see the following sections in the Orbix Configuration
Reference:

pl ugi ns: nam ng

pl ugi ns: | ocat or

pl ugi ns: config_rep

pl ugi ns: pss_db: envs: env- nane

To promote a slave, a majority of replicas must be running. This means that
in a replica group with two replicas (one master and one slave), the slave
can never be promoted. As a special case, it is possible to allow the slave to
be promoted. You can do this by setting the following variable to t rue:

pl ugi ns: pss_db: envs: env-nane: al |l ow mnority_master = "true";

For more details, see pl ugi ns: pss_db: envs: env- nane in the Orbix
Configuration Reference.

Replicating Orbix Services

Note: Setting all ow minority master to true means that it is possible
for duplicate masters to exist if there is a network partition. It also means
that updates may be lost if services are started in different orders. To
minimize the possibility of this, perform the following steps:

1. Only set the allow_minority_master variable to true on one replica (the
one most likely to be the slave).

2. The replica with this variable set to true should always be started
second.

3. If the master fails, and the slave is promoted, the previous master
must be restarted only when the new master is running.

Replica administration The i t adni n tool provides several commands to examine the state of
replicated services:

itadmn ns list_servers
itadm n ns show server
itadmn | ocator |ist_servers
itadmn | ocator show
itadmn config |list_servers
itadmn config show server
itadmn pss_db list_replicas
itadmn pss_db show

For more details on these i t adnmi n commands, see the following:
® “Naming Service” on page 317.

® “Location Domain” on page 275.

® “Configuration Domain” on page 247.

® ‘“Persistent State Service” on page 353.

In addition, for details on administration of PSS databases, see “Managing
Orbix Service Databases” on page 135.

929

CHAPTER 5 | Configuring Scalable Applications

Active Connection Management

Overview

Setting incoming server-side
connections

100

Orbix active connection management lets servers scale up to large numbers

of clients without encountering connection limits. Using active connection

management, Orbix recycles least recently used connections as new

connections are required.

You can control active connection management in Orbix with configuration

variables, that specify the maximum number of incoming and outgoing

client—server connections. Two settings are available for both client-side and

server-side connections:

® A hard limit specifies the number of connections beyond which no new
connections are permitted.

® A soft limit specifies the number of connections at which Orbix begins
closing connections.

To limit the number of incoming server-side connections, set the following
configuration variables:

plugins:iiop:incoming_connections:hard_limit specifies the maximum
number of incoming (server-side) connections permitted to IIOP. [IOP does
not accept new connections above this limit. This variable defaults to - 1
(disabled).

plugins:iiop:incoming_connections:soft_limit specifies the number of
connections at which 1lOP starts closing incoming (server-side) connections.
This variable defaults to - 1 (disabled).

For example, the following file-based configuration entry sets a server's hard
connection limit to 1024:

pl ugi ns:iiop:incom ng_connections: hard_| i mt=1024;
The following i t admi n command sets this variable:

itadmn variable create -type | ong -val ue 1024
pl ugi ns:iiop:incom ng_connections: hard_|imt

Setting outgoing client-side
connections

Active Connection Management

To limit the number of outgoing client-side connections, set the following
configuration variables:

plugins:iiop:outgoing_connections:hard_limit specifies the maximum
number of outgoing (client-side) connections permitted to I11OP. IIOP does
not allow new outgoing connections above this limit. This variable defaults
to - 1 (disabled).

plugins:iiop:outgoing_connections:soft_limit specifies the number of
connections at which [IOP starts closing outgoing (client-side) connections.
This variable defaults to - 1 (disabled).

For example, the following file-based configuration entry sets a hard limit for
outgoing connections to 1024:

pl ugi ns: i i op: out goi ng_connecti ons: hard_l i m t =1024;
The following i t adni n command sets this variable:

itadmn variable create -type long -val ue 1024
pl ugi ns: i i op: out goi ng_connecti ons: hard_|imt

101

CHAPTER 5 | Configuring Scalable Applications

Setting Buffer Sizes

Overview

C++ configuration

Java configuration

102

If the IIOP buffer size within an ORB is configured to a sufficiently large
number, fragmentation is not required by the ORB and does not occur. This
section describes how to set the buffer size in the C++ and Java CORBA
ORBs.

pol i ci es: <prot ocol - narme>: buf f er _si zes_pol i cy: def aul t _buffer_si ze

This variable is used as the initial size for the buffer and also as the
increment size if the buffer is too small.

For example, when sending a message of 60,000 bytes (including GIOP
header overhead, remember depending on the types used by GIOP, this
overhead may be large), if the def aul t _buf f er _si ze val ue is set to 10000,
the buffer is initially 10,000 bytes. The C++ ORB then sends out 6
message fragments of 10,000 bytes each. If the def aul t _buf f er _si ze
value is set to 64000, only one unfragmented message is sent out.

pol i ci es: <prot ocol - name>: buf f er _si zes_pol i cy: def aul t _buf f er _si ze

This variable is used as the initial size for the buffer unless it is less than the
system defined minimum buffer size.

pol i ci es: <pr ot ocol - narme>: buf f er _si zes_pol i cy: max_buf f er _si ze

This value is used as the initial size for the buffer if smaller than

def aul t _buf f er _si ze. For example, when sending a message with an
overall size of 60,000 bytes, if the lower of the buf f er _si ze values
mentioned above is set to 10000, the buffer is initially 10,000 bytes. The
Java ORB then sends out 6 message fragments of 10,000 bytes each. If the
lower of the buf f er _si ze values mentioned above is set to 64000, only one
unfragmented message is sent out.

Setting Buffer Sizes

Note: These configuration settings apply to secure or non-secure |10OP,
depending on whether the iiop oriiop_tls scope is used. For alignment
purposes, buffer size values should be a multiple of 8 (i.e. 32,000 or

64,000).

For a CORBA ORB to be considered compliant with the OMG GIOP 1.1
specification, the ORB implementation must support data fragmentation.

Some CORBA ORB implementations do not support data fragmentation but
claim GIOP 1.1 compliance. Orbix ORBs support fragmentation and are fully

compliant with the GIOP 1.1 specification.

Data fragmentation

103

CHAPTER 5 | Configuring Scalable Applications

104

In this chapter

CHAPTER 6

Managing the
Naming Service

The naming service lets you associate abstract names with
CORBA objects in your applications, enabling clients to locate
your objects.

The interoperable naming service is a standard CORBA service, defined in
the Interoperable Naming Specification. The naming service allows you to
associate abstract names with CORBA objects, and enables clients to find
those objects by looking up the corresponding names. This service is both
very simple and very useful. Most CORBA applications make some use of
the naming service. Locating a particular object is a common requirement in
distributed systems and the naming service provides a simple, standard way
to do this. The naming service is installed by default as part of every Orbix
installation.

In addition to naming service functionality, Orbix also provides
naming-based load balancing, using object groups. An object group is a
collection of objects that can increase or decrease in size dynamically. When
a bound object is an object group, clients can resolve object names in a
naming graph, and transparently obtain references to different objects.

This chapter contains the following sections:

Naming Service Administration page 107

105

CHAPTER 6 | Managing the Naming Service

106

Controlling the Naming Service page 110
Building a Naming Graph page 111
Maintaining a Naming Graph page 116
Managing Object Groups page 117

Naming Service Administration

Naming Service Administration

Overview

Typical administration tasks

The naming service maintains hierarchical associations of names and object
references. An association between a name and an object is called a
binding. A client or server that holds a CORBA object reference binds a
name to the object by contacting the naming service. To obtain a reference
to the object, a client requests the naming service to look up the object
associated with a specified name. This is known as resolving the object
name. The naming service provides interfaces, defined in IDL, that enables
clients and servers to bind to and resolve names to object references.

The naming service has an administrative interface and a programming
interface. These enable administrators and programmers to create new
bindings, resolve names, and delete existing bindings. For information about
the programming interface to the naming service, see the CORBA
Programmer’s Guide.

While most naming service operations are performed by programs,

administrative tasks include:

® Controlling the naming service (for example, starting and stopping the
naming service).

®* Viewing naming information (for example, bindings between names
and objects).

® Adding or modifying naming information that has not been properly
maintained by programs. For instance, you might need to remove
outdated information left behind by programs that have been moved or
removed from the environment.

You can perform these tasks administratively with i t adm n commands. This

is especially useful when testing applications that use the naming service.

You can use i t adm n commands to create, delete, and examine name
bindings in the naming service.

107

CHAPTER 6 | Managing the Naming Service

Name formats and naming graphs

108

Naming service names adhere to the CORBA naming service format for

string names. You can associate names with two types of objects: a naming

context or an application object. A haming context is an object in the

naming service within which you can resolve the names of application

objects.

Naming contexts are organized into a naming graph. This can form a

naming hierarchy, much like that of a filing system. Using this analogy, a

name bound to a naming context would correspond to a directory and a

name bound to an application object would correspond to a file.

The full name of an object, including all the associated naming contexts, is

known as a compound name. The first component of a compound name

gives the name of a naming context, in which the second component is

accessed. This process continues until the last component of the compound

name has been reached.

A compound name in the CORBA naming service can take two forms:

® An IDL sequence of name components

® A human-readable Stri ngNane in the Interoperable Naming Service
(INS) string name format

Naming Service Administration

Naming Service Commands
i t adm n provides commands for browsing and managing naming service
information. Many naming service commands take a pat h argument. This

specifies the path to the context or object on which the command is
performed.

Note: Many of these commands take object references as command-line
arguments. These object references are expected in the string format
returned from CCORBA: : CRB: : obj ect _to_string() . By default, this string
format represents an interoperable object reference (IOR).

For reference information about these i t admi n commands, see “Naming
Service” on page 317. The rest of this chapter uses i t adm n commands to
build an example naming graph and populate it with name bindings.

109

CHAPTER 6 | Managing the Naming Service

Controlling the Naming Service

Starting the naming service You must start up the naming service on the machine where it runs. To start
the naming service:

1. Loginasroot on UNIX, or as admi ni strat or on Windows NT.
2. Open a terminal or command window.

3. Enteritnamng run

4. Do the following depending on your platform:

Windows
Leave the command window open.

UNIX

Leave the terminal window open, or push the process into the
background and close the window.

Stopping the naming service itadnmin ns stop stops the naming service.

110

Building a Naming Graph

Building a Naming Graph

Overview A naming context is an object in the naming service that can contain the

names of application objects. Naming contexts are organized into a

hierarchical naming graph. This section uses i t adm n commands to build
the naming graph shown in Figure 14.

@ denotes a naming context

O denotes an application object
root

company

engineering

support

james. john. paula. john paula manager.
person person person person
james manager.
person

Figure 14: Naming Context Graph

111

CHAPTER 6 | Managing the Naming Service

Names are given in the INS string name format i d. ki nd (for example,
j ohn. person) . The ki nd component can be empty (for example, j ohn). The
combination of i d and ki nd fields must unambiguously specify the name.

In this section Using the example naming graph in Figure 14, this section explains the
following tasks:

® Creating Naming Contexts.

® Creating Name Bindings.

® Listing name bindings.

®* Finding object references by name.

® Removing name bindings.

Rebinding a name to an object or naming context

112

Building a Naming Graph

Creating Naming Contexts

Creating an unbound naming
context

i tadnin ns newnc provides the simplest way to create a naming context.
This command takes an optional pat h argument, which takes the form of an
INS string name. For example, the following command creates a new
context that is bound to a simple name with an i d of conpany, and an empty
ki nd value:

itadm n ns newnc conpany

The following example creates a new naming context that is bound to the
name conpany/ engi neer i ng; the context conpany must already exist.

itadmi n ns newnc conpany/engi neering

The following example creates a new context that is bound to the name
conpany/ engi neer i ng/ support ; the context conpany/ engi neeri ng must
already exist.

itadm n ns newnc conpany/ engi neeri ng/ support

You can also use i t adnmi n ns newnc to create an unbound context. If the
pat h argument is not specified, i t adm n ns newnc prints the IOR to
standard out. For example:

itadm n ns newnc
"1 CR 000000000002356702h4944c3a6f 6d672e6f 7267. ... "

On UNIX, to bind the context created with ns newnc, use the ns bi nd
-cont ext command, as follows:

itadmn ns bind -c -path conpany/staff ’itadm n ns newnc’

This binds the new context to the name conpany/ st af f .

113

CHAPTER 6 | Managing the Naming Service

Creating Name Bindings

114

To bind a name to an object, use i tadm n ns bind -obj ect. Given the
naming context graph shown in Figure 14 on page 111, this section
assumes the application objects are associated with the following object
reference strings:

j amres | CR 0000000037e276f 47a4b94874c64648e949. . .
j ohn | CR 0000028e276f 47a4009248474c64646F3ES. . .
paul a | CR 00000000569a2e8034b94874d6583f 09e24. . .

You can bind these objects to appropriate names within the conpany/ st af f
naming context, as follows:

itadmn ns bind -o -path conpany/staff/james. person
" CR 0000000037e276f 47a4b94874c64648e949. . . "

itadmin ns bind -o -path company/staff/john.person
"1 CR 0000028e276f 47a4009248474c64646F3E5. . . "

itadmin ns bind -o -path company/staff/paula.person
"1 GR 00000000569a2e8034b94874d6583f 09e24. . . "

These commands assign a ki nd of per son in the final component of each
employee name.

itadmn ns bind takes an IOR from the command line. For example, on
UNIX, if you have Paula’s IOR in a file named paul a. i or, you can bind it, as
follows:

itadmn ns bind -o -path conpany/ st aff/paul a. person ' cat
paul a.ior’

Building a Naming Graph

To build the naming graph further, create additional bindings that are based
on the departments that employees are assigned to. The following example
takes I0Rs from files printed to standard input.

itadmn ns bind -o -path
conpany/ engi neeri ng/ support/j ames. person 'cat janes.ior’

itadmn ns bind -o -path conpany/ engi neering/j ohn. person ' cat
john.ior’

itadmn ns bind -o -path conmpany/ engi neeri ng/ paul a. person ' cat
paul a.i or’

To enable an application to find the manager of a department easily, add
the following bindings:

itadmn ns bind -0 -path conpany/ engi neeri ng/ manager . per son ' cat
paul a.i or’

itadmn ns bind -o -path
conpany/ engi neer i ng/ support/ manager . person 'cat paul a.ior’

The following names now resolve to the same object:

conpany/ st af f/ paul a. per son

conpany/ engi neer i ng/ paul a. per son

conpany/ engi neer i ng/ manager . per son
conpany/ engi neer i ng/ suppor t/ manager . per son

The naming contexts and name bindings created by this sequence of
commands builds the complete naming graph shown in Figure 14 on
page 111.

115

CHAPTER 6 | Managing the Naming Service

Maintaining a Naming Graph

Maintenance commands After you create a naming graph, it is likely you will need to periodically
modify its contents—for example, remove bindings, or to change the
bindings for an object reference. Table 5 describes the i t adnmi n commands
that you can use to maintain naming contexts and bindings.

Table 5: Naming Graph Maintenance Commands

Command

Task

ns |ist

List all bindings in a naming context

ns resol ve

Print the object reference for the application object or
naming context to which a name is bound.

ns unbi nd

Unbind the binding for an object reference.

ns renove

Unbind and destroy a name binding.

Note: unbi nd and renove can be disabled by setting
pl ugi ns: nan ng: dest ruct i ve_net hods_al | owed to f al se.

Rebinding a name to an objector To change the binding for an object reference, perform the following steps:

naming context 1. Useitadnin ns resol ve to obtain the object reference bound to the
current path and write it to a file:

itadmn ns resolve path > file

The pat h argument takes the form of a string name.

2. Callitadmn ns unbind to unbind the current path:

i tadm n ns unbi nd path

3. Callitadmn ns bind to bind the saved object reference to the new
path. For example, on UNIX:

itadmn ns bind -c newpath 'cat file’

116

Managing Object Groups

Managing Object Groups

Overview

Creating an object group

Selection algorithms

An object group is a haming service object that provides transparent
naming-based load balancing for clients. An object group contains
application objects, and can increase or decrease in size dynamically when
member objects are added or removed.

An object group object can be bound to a path in a naming graph like any
other object. Each object group contains a pool of member objects
associated with it. When a client resolves the path that an object group is
bound to, the naming service returns one of the member objects according
to the group'’s selection policy.

You can create an object group using the i t adm n commands in the
following steps:
1. Create the object group using i tadni n nsog creat e and specify the
desired selection algorithm (see “Selection algorithms” on page 117).
2. Add application objects to the newly created object group using
i tadm n nsog add_menber on it.
3. Bind an existing naming context to the object group using i t admi n
nsog bi nd.

When you create the object group, you must supply a group identifier. This
identifier is a string value that is unique among other object groups.

Similarly, when you add a member to the object group, you must supply a
reference to the object and a corresponding member identifier. The member
identifier is a string value that must be unique within the object group.

Each object group has a selection algorithm that is set when the object
group is created. This algorithm is applied when a client resolves the name
associated with the object group. Three selection algorithms are supported:

® Round-robin
® Random
® Active load balancing

117

CHAPTER 6 | Managing the Naming Service

Active load balancing

Commands

118

The naming service directs client requests to objects according to the
group'’s selection algorithm.

In an object group that uses active load balancing, each object group
member is assigned a load value. The naming service satisfies client

resol ve() invocations by returning references to members with the lowest
load values.

Default load values can be set administratively using the configuration
variable pl ugi ns: nam ng: | b_defaul t _i ni tial _I oad. Thereafter, load
values should be updated programmatically by periodically calling

(bj ect @ oup: : updat e_nenber _| oad() . i t adm n provides an equivalent
command, nsog updat e _nenber | oad, in cases where manual intervention
is required.

You should also set or modify member timeouts using i t adm n nsog

set _nenber _ti neout, or programmatically using

(bj ect G oup: : set _nmenber _t i meout (). You can configure default timeout
values by updating pl ugi ns: nam ng: | b_defaul t _| oad_tineout. If a
member’s load value is not updated within its timeout interval, its object
reference becomes unavailable to client resol ve() invocations. This
typically happens because the object itself or an associated process is no
longer running, and therefore cannot update the object’s load value.

A member reference can be made available again to client resol ve()
invocations by resetting its load value using

(bj ect @ oup: : updat e_nenber _| oad() oritadm n nsog

updat e_nenber _| oad. In general, an object’s timeout should be set to an
interval greater than the frequency of load value updates.

“Object Groups” on page 322 describes the i t adni n commands that you
can use to create and administer object groups.

In this chapter

CHAPTER 7

Managing an
nterface
Repository

An interface repository stores information about IDL
definitions, and enables clients to retrieve this information at
runtime. This chapter explains how to manage the contents of
an interface repository.

This chapter contains the following sections:

Interface Repository page 120
Controlling the Interface Repository Daemon page 121
Managing IDL Definitions page 122

119

CHAPTER 7 | Managing an Interface Repository

Interface Repository

Overview

Interface repository
administration

120

An interface repository maintains information about the IDL definitions
implemented in your system. Given an object reference, a client can use the
interface repository at runtime to determine the object’s type and all
information about that type. Clients can also browse the contents of an
interface repository. Programmers can add sets of IDL definitions to an
interface repository, using arguments to the IDL compiler command.

An interface repository database is centrally located. When Orbix
environments have more than one interface repository, they are often
organized so that each application or set of related applications uses a
common interface repository. When an interface repository has been
configured, it requires minimal administrative intervention. Typical tasks
include stopping and restarting the interface repository, when necessary,
removing outdated definitions, when applications are removed, and
troubleshooting, when necessary.

This chapter provides information for administrators on how start and stop

the interface repository. It also provides information for programmers on
how to add, examine, and remove IDL definitions.

For details on advanced interface repository features, see the CORBA
Programmer’s Guide.

Controlling the Interface Repository Daemon

Controlling the Interface Repository Daemon

Overview The primary interface repository tasks for administrators are starting and
stopping the interface repository daemon.

Starting the interface repository Run the interface repository daemon on the machine where the interface
daemon repository runs. To start the interface repository:

1. Login as root on UNIX, or as administrator on Windows.
2. Open a terminal or command window.

3. Enteritifr run.

4. Follow the directions for your platform:

Windows
Leave the command window open.

UNIX
Leave the terminal window open, or push the process into the
background and close the window.

Stopping the interface repository itadnin ifr stop stops the interface repository daemon.
daemon

121

CHAPTER 7 | Managing an Interface Repository

Managing IDL Definitions

Overview

In this section

122

Orbix includes an API that offers applications complete programmatic
control over managing and accessing IDL definitions in the interface
repository. Occasionally, you might require manual control to list definitions,
remove invalid definitions, and so on. This is especially useful during
application development and troubleshooting.

The interface repository has a structure that mirrors the natural containment
of the IDL types in the repository. Understanding these types and their
relationships is key to understanding how to use the interface repository.
Refer to the CORBA Programmer’s Guide for more information.

This section provides information on using the interface repository to
perform the following tasks manually:

Browsing Interface Repository Contents page 123
Adding IDL Definitions page 125
Removing IDL Definitions page 126

For a complete reference of the commands used to manage the interface
repository, see “Repository Management” on page 271.

Managing IDL Definitions

Browsing Interface Repository Contents

Overview This section shows how to use i t adni n commands to perform these tasks:

® List the current container

® Display the containment hierarchy

®* Navigate to other levels of containment

The foo.idl interface provides a simple example of containment, in which
interface Foo contains a typedef and two operations:

/1 Begin foo.idl

interface Foo {
typedef |ong M/Long;
MLong opl();
voi d op2();

List the current container itadmnifr list lists the specified or current container’s contents.

itadmn ifr |ist
Foo/

Display the containment hierarchy itadmnifr showdisplays the entire containment hierarchy, beginning with

the current container. For example:

itadmn ifr show Foo
i nterface Foo

{
;. Foo: : M/Long
op1() ;
typedef | ong M/Long;
voi d
op2() ;
b

123

CHAPTER 7 | Managing an Interface Repository

Navigate to other levels of itadmnifr cd lets you navigate to other levels of containment. For
containment example:

itadmn ifr cd Foo

itadmn ifr |ist
opl M/Long op2

124

Managing IDL Definitions

Adding IDL Definitions

Overview

Procedure

Example

Adding IDL definitions to an interface repository makes application objects
available to other applications that have access to the same interface
repository.

You can add IDL definitions to the interface repository with the i dl -R=-v
command, as follows:

1. Go to the directory where the IDL files are located.
2. Enter the following command:

idl -R=-v filenane

The following example shows how to add a simple IDL interface definition to
the interface repository with the 1 DL command. The interface definition is:

/1 Begin foo.idl

interface Foo {
typedef | ong M/Long;
M/Long opl();
voi d op2();

ik

The command to add this IDL definition to the interface repository is:

$idl -R=-v foo.idl

O eated Alias M/Long.
Oreated Qperation opl.
Created Qperation op2.
Oeated I nterface Foo.
$

125

CHAPTER 7 | Managing an Interface Repository

Removing IDL Definitions

Overview

Removing an IDL definition

Removing the entire contents of
the IFR

126

You might wish to remove IDL definitions from the interface repository when
they are invalid, or make them unavailable to other applications. To remove
an IDL definition, useitadm nifr renove scoped- nane.

Alternatively, to remove the entire contents of the interface repository, use
itadmn ifr destroy_contents.

The following example removes the operation op2 from the f oo. i dI
definition:

itadmn ifr |ist

Foo/

itadmn ifr cd Foo
itadmn ifr list

opl M/Long op2
itadmn ifr renove op2
itadmn ifr list

opl M/Long

itadmn ifr quit

To remove the entire contents of the interface repository, useifr
destroy_contents. This destroys the entire contents of the interface
repository, leaving the repository itself intact.

If you have loaded a very large number of IDL interfaces into the interface
repository, and then want destroy the contents of the IFR, you should first
increase the value of the following configuration variable:

pl ugi ns: pss_db: envs:ifr_store: | k_nmax

This variable specifies the maximum number of locks available to the
Berkeley DB. The default is 1000.

Managing IDL Definitions

The following example increases this value to 10000
i ona_services {
ifr {
pl ugi ns: pss_db: envs:ifr_store: | k_max = "10000";
It
Bis

This prevents the IFR from crashing with the following entry in the IFR log
file:

ERROR DB del failed; env is ifr_store, dbis
| Rbj ect PSHonel npl : 1.0, errno is 12 (Not enough space)

127

CHAPTER 7 | Managing an Interface Repository

128

CHAPTER 8

Managing the
Firewall Proxy
Service

The Orbix firewall proxy service provides an added layer of
security to your CORBA servers by placing a configurable proxy
between the server and its clients.

In this chapter This chapter discusses the following topics:
Orbix Firewall Proxy Service page 130
Configuring the Firewall Proxy Service page 131
Known Restrictions page 134

129

CHAPTER 8 | Managing the Firewall Proxy Service

Orbix Firewall Proxy Service

Overview

Server registration

Request forwarding

Persistence of registrations

130

The main goal of the firewall proxy service is to enable the firewall
administrator to reduce the number of ports that need to be opened to
enable access from clients outside the firewall to services inside the firewall.
To accomplish this the firewall proxy service creates and registers a proxy for
each POA created by a server using the service. The proxies then intercept
requests made by clients and forwards the requests on to the appropriate
server.

Any server using the firewall proxy service will exchange IOR template
information with the firewall proxy service during a registration process that
is kicked off by the creation of a POA. When a server creates a new POA,
the firewall proxy service creates a separate proxy which will forward client
requests.

When a server has registered with the firewall proxy service, it will generate
IORs that point clients to proxies managed by the firewall proxy service.
When a client invokes a request on one of these IORs, the request is
intercepted by the firewall proxy service. The firewall proxy service then uses
the stored template information to forward the request to the appropriate
server.

The firewall proxy service maintains a persistent store of registration
information. When the firewall proxy service initializes, it recreates the
bindings for any server that registered with the service during a previous
execution. This assures that server registration is persistent across many
executions of the firewall proxy service.

Configuring the Firewall Proxy Service

Configuring the Firewall Proxy Service

Overview

Configuring a server to use the
firewall proxy service

Java libraries

The firewall proxy service is designed to act as an application level proxy
mechanism for servers configured to utilize the service at run time.
Configuration from the server's point of view is trivial and only requires that
a plug-in be initialized in the ORB.

Any server that wishes to use the firewall proxy service needs to include the
firewall proxy plug-in to the list of plug-ins that are loaded for the server's
ORB. You add the plug-in to the ORB’s plug-in list using i t adni n. The

i tadm n command is:

itadmn variable nodify -scope ORBNanme -type |list -value
iiop_profile,giop,iiop,fps orb_pl ugins

Once the firewall proxy plug-in has been added to the ORB's plug-in list and
the firewall proxy service is running, the server will automatically register
with the firewall proxy service and the service will relay requests on the
client’s behalf.

For example, you could configure the typetest demo to use the firewall proxy
service. To do this complete the following steps:

1. Create a configuration scope for the typetest demo.
itadm n scope create typetest
2. Add the ORB's plug-in list to the scope.

itadmn variable create -scope CRBNane -type |list -value
iiop_profile,giop,iiop,fps orb_pl ugins

3. Run the typetest demo server and specify the ORB name.

server -CRBnane typetest

To use Java services, such as trader, with the firewall proxy service, you
need to ensure that the firewall proxy service's registration agent’s jar file,
fps_agent.j ar, is added to the services CLASSPATH.

131

CHAPTER 8 | Managing the Firewall Proxy Service

Managing the number of proxies

Disabling POA registration

132

By default, the firewall proxy service imposes no restrictions on the number
of servers for which it will proxy requests. The maximum is a factor of
system resources. However, you can configure the firewall proxy service to
employ a least recently used (LRU) eviction algorithm to select which server
bindings to remove. The LRU eviction strategy has configurable soft and
hard limits that affect its behavior. The soft limit specifies the point at which
the firewall proxy service should proactively begin attempting to reclaim
resources. The hard limit specifies the point at which new registrations
should be rejected.

The limits are controlled by the following configuration variables:

fps: proxy_evictor:soft_limt
fps: proxy_evictor:hard_limt

Setting the hard limit to zero effectively disables the services resource
control features.

If you develop an application containing a number of “outward” facing
objects that you want to place behind the firewall proxy service as well as a
number of “inward” facing objects that do not need to be placed behind the
firewall proxy service, you can use the | NTERD CTI ON POA policy.

The | NTERDI CTI ON policy controls the behavior of the firewall proxy service
plug-in, if it is loaded. The | NTERD CTI CN policy has two settings:

ENABLE This is the default behavior of the firewall proxy service
plug-in. A POA with its | NTERDI CTI ON policy set to ENABLE
will be proxified.

D SABLE This setting tells the firewall proxy service plug-in to not
proxify the POA. POAs with their | NTERD CTI ON policy set
to DI SABLE will not use the firewall proxy service and
requests made on objects under its control will come
directly from the requesting clients.

The following code samples demonstrate how to set the | NTERDI CTI ON
policy on a POA. In the examples, the policy is set to D SABLE which
disables the proxification of the POA. For more information on POA policies
read the CORBA Programmer’s Guide.

Configuring the Firewall Proxy Service

Java

inport comiona.corba. | T_FPS *;

I/l Oeate a PREVENT interdiction policy.

Any interdiction = morb. create_any();

I nterdictionPolicyVal ueHel per.insert (interdiction,
I nterdictionPol i cyVal ue. Dl SABLE) ;

Policy[] policies = new Policy[1];
polices[0] = morb. create_policy(lNTERD CTI ON_PCLI CY_I D. val ue,
interdiction);

// Oeate and return new PQA
return mpoa.create POA("no_fps_poa", null, policies);

C++

#i ncl ude <or bi x/ f ps. hh>

/I Oreate a PREVENT interdiction policy.
OCRBA: : Any interdiction;
interdiction <<= | T_FPS:: D SABLE;

OCORBA: : Pol i cyLi st policies(1);

policies.length(1);

policies[0] =
m or b->create_policy(l T_FPS:: | NTERD CTI ON_PQLI CY_I D,
interdiction);

/1l Create and return new POA
return mpoa->create POA("no_fps_poa", 0, policies);

133

CHAPTER 8 | Managing the Firewall Proxy Service

Known Restrictions

134

The current implementation of the firewall proxy service has the following
known restrictions:

There have are problems using the firewall proxy service and POA
collocated calls on UNIX platforms. Calls which should be collocated
are being routed through the firewall proxy service in a CORBA
mediated call and the call being blocked. The work-around is to
remove PQA Col oc from the cl i ent _bi ndi ng_l i st configuration
parameter.

Transport Layer Security (TLS) is not supported by the firewall proxy
service. This means that the firewall proxy service does not work with
lona’s I1S2 security infastructure or any other systems that use TLS.
The J2EE portion of your systems cannot be hidden behind a proxy.

In this chapter

CHAPTER 9

Managing Orbix
Service Databases

This chapter explains how to manage databases that store
persistent data about Orbix services. It explains the Berkeley
DB database management system embedded in Orbix.

A number of Orbix services maintain persistent information (for example, the
locator daemon, node daemon, naming service, IFR and CFR). By default,
these Orbix services use an embedded Berkeley DB database management
system. Typically, Berkeley DB requires little or no administration. The
default settings are sufficient for most environments. Tasks that you might
want to perform include performing checkpoints, and managing backups,
recoveries and log files.

This chapter contains the following sections:

Berkeley DB Environment page 136
Performing Checkpoints page 137
Managing Log File Size page 138
Troubleshooting Persistent Exceptions page 139
Database Recovery for Orbix Services page 140
Replicated Databases page 145

135

CHAPTER 9 | Managing Orbix Service Databases

Berkeley DB Environment

Overview

Berkeley DB environment files

Storing environment files

136

A Berkeley DB environment consists of a set of database files and log files.
In Orbix, only a single Berkeley DB environment can be used by one process
at a time. Multiple processes using the same Berkeley DB environment
concurrently can lead to crashes and data corruption. This means that
different Orbix services must use different Berkeley DB environments.

This section explains Berkeley DB environment file types and how they
should be stored.

A Berkeley DB environment consists of two kinds of files:

Data files contain the real persistent data. By default, these files are stored
in the dat a subdirectory of the Berkeley DB environment home directory.
For example:

instal | -dir\var\ domai n- nane\ dbs\ | ocat or\ dat a

Transaction log files record changes made to the data files using
transactions. By default, these files are stored in the | ogs subdirectory of the
Berkeley DB environment home directory. For example:

instal | -dir\var\ domai n- nane\ dbs\ | ocat or\ | ogs

All Orbix services use only transactions to update their persistent data.

Transaction log files can be used to recreate the data files (for example, if
these files are corrupted or accidently deleted).

To maximize performance and facilitate recovery, store all the Berkeley DB
environment files on a file system that is local to the machine where the
Berkeley DB environment is used.

Log files are of more value than data files because data files can be
reconstructed from log files (but not vice-versa). Using different disks and
disk controllers for the data and the log files further facilitates recovery.

Performing Checkpoints

Performing Checkpoints

Overview

Using configuration variables

Using the command line

The Berkeley DB transaction logs must be checkpointed periodically to force
the transfer of updates to the data files, and also to speed up recovery. By
default, each Orbix service checkpoints the transaction logs of its Berkeley
DB environment every 15 minutes.

You can control checkpoint behavior using the following configuration
variables:

pl ugi ns: pss_db: envs: env_nane: checkpoi nt _peri od

pl ugi ns: pss_db: envs: env_nane: checkpoi nt _m n_si ze

For example, the following variable sets the checkpoint period for the locator
database to 10 minutes.

pl ugi ns: pss_db: envs: | ocat or: checkpoi nt _peri od = 10;

For more information, see the section on the pl ugi ns: pss_db namespace in
the Configuration Reference Guide.

You can also checkpoint the transaction logs of a Berkeley DB environment
using the i t adm n command. For example:

itadm n pss_db checkpoi nt env-hone/ env. i or
For more information, see “Persistent State Service” on page 353.

137

CHAPTER 9 | Managing Orbix Service Databases

Managing Log File Size

Setting log file size

Deleting and archiving old log files

138

The Berkeley DB transaction logs are not reused. They grow until they reach
a specified level. By default, a transaction log file grows until its size reaches
10 MB. Berkeley DB then creates a new transaction log file.

You can control the maximum size of transaction log files using the following
configuration variable:

pl ugi ns: pss_db: envs: env_nane: | g_nax

I g_max is measured in bytes and its value must be to the power of 2.

When a transaction log file does not contain any information pertaining to
active transactions, it can be archived or deleted by either of the following:

Using configuration settings By default, each Orbix service checks after
each periodic checkpoint to see if any transaction log files are no longer
used. By default, old log files are then deleted. You can disable the deletion
of old log files by setting the following configuration variable to f al se:

pl ugi ns: pss_db: envs: env_nane: checkpoi nt _del et es_ol d_| ogs

Old log files can also be archived (moved to the ol d_I ogs directory). To
archive old log files, set the following variable to true:

pl ugi ns: pss_db: envs: env_nane: checkpoi nt _ar chi ves_ol d_| ogs

Using itadmin commands You can also delete or archive the old
transaction logs of a Berkeley DB environment using i t adm n commands:

itadm n pss_db archive_ol d_| ogs env-hone/env.ior
itadmn pss_db del ete_ol d_| ogs env-hone/ env. i or

For more information, see “Persistent State Service” on page 353.

WARNING: Deleting old transaction log files can make recovery from a
catastrophic failure impossible. See “Database Recovery for Orbix
Services” on page 140.

Troubleshooting Persistent Exceptions

Troubleshooting Persistent Exceptions

Overview

PERSIST_STORE exception

How to recover from a
PERSIST_STORE error

This section explains what has happened if you received a PERSI ST_STCRE
exception from your Orbix service, and how to recover.

When you see an | DL: ong. or g/ OCRBAY PERSI ST_STCRE: 1. 0 error from an

Orbix service, it typically means that the service's persistent storage has

become corrupted. The exception is usually accompanied with a minor code

representing a Persistent State Service (PSS) exception (for example,

I T_PSS DB). Such an error is usually caused by some form of corruption in

the underlying database. This corruption can be caused by the following:

® Thereis limited space on the disk for the underlying database files, and
thus it is no longer possible to log transactions. If you find this to be
the problem, free disk space immediately and restart the service.

® Aservice has been shutdown ungracefully (without using the
st op_<domai n_name>_ser vi ces scripts). For example, this could be
caused by executing ki Il -9 on the service. This can possibly cause
corruption on the database due to unfinished transactions.

® You have put your Orbix services databases on an NFS mounted drive,
which is either not available, or your machine’s NFS client might have
a problem.

When the | DL: onyg. or g/ CCRBA/ PERSI ST_STCRE: 1. 0 error occurs, contact

IONA support with a copy of logs that show the exact exception, and a
description of any unusual activity that may have led up to the problem.

To recover from the PERSI ST_STCRE error, it is likely you will need to recover
the most recent stable state of your underlying database. If precautions are
taken beforehand, your system can be brought back to this stable state with
minimal downtime. It is important to determine the level of recovery that is
acceptable within your production environment.

For example, you may wish to recover all data prior to the system going
down. Alternatively, there may not be as much concern for loss of data, and
it may be satisfactory to simply get back to a stable state such that the
services can be restarted.

139

CHAPTER 9 | Managing Orbix Service Databases

Database Recovery for Orbix Services

Overview

Full backup

140

Each time you start an Orbix service that uses Berkeley DB, the service
performs a normal recovery. If the service was stopped in the middle of an
update, the transaction is rolled back, and the service persistent data is
restored to a consistent state.

In some cases, however, the data files or the log files are missing or
corrupted, and normal recovery is not sufficient. Then you must perform a
catastrophic recovery. This section explains how to back up your data and
log files and perform a full or incremental recovery. It includes the following:

® “Full backup”.

® “Performing a full backup”.

® “Full backup recovery”.

® “Incremental backup”.

® “Enabling incremental backup”.

® “Performing an incremental backup”.
® “Performing an incremental recovery”.

It is important that you archive a stable snapshot of your services database,
which can be used in case a recovery is needed. This is referred to as a full
backup and can be performed by making a backup of the entire dbs
directory. The purpose of this backup is that if a PERSI ST_STCRE error occurs
for any Orbix services, you can replace the corrupted directory with the
backup. The services should then start without a problem.

The backup can be made at any time. The only requirement is that the
service be in a stable state (can run and function without errors). You can
take the backup directly after configuring your domain, or after the system
has been running for a while. The backup that you make will determine the
snapshot that your system will return to in the case of a recovery. For
example, if you have numerous entries into the IMR (registered POAs,
ORBs, and so on), you may wish to add these entries before backing up the
locator database. This prevents you from having to do the extra
re-configuration if you ever need to recover.

Performing a full backup

Full backup recovery

Database Recovery for Orbix Services

To do a full backup, perform the following steps:

Note: If you can bring the services down before doing the backup, you
can skip the first step. If you have a live system, and are unable to bring
down the services, you can do a backup while the services are running.

1.

You must first disable the default periodic deletion and/or archival of
old log files during the period while you are backing up the database
To disable run the following command:

itadm n pss_db pre_backup env.ior

The env. i or represents a handle to the database. Each service should
have its corresponding env. i or file within the dbs/ <servi ce name>.

Make a backup of the following directories

dbs/ <servi ce nane>/data directory
dbs/ <servi ce name>/ |ogs directory

Store these backups in a safe location. After a successful full backup,
you can discard older full backups (if any).
Re-enable the default periodic deletion and/or archival of old log files:

itadm n pss_db post_backup env.ior

To do a full backup recovery, perform the following steps:

1.
2.
3.

6.

Determine which service is failing on startup.
Ensure that your Orbix services are stopped.

Make a temporary backup the dbs/ <ser vi ce_nane> directory for the
service you wish to recover.

Delete the dbs/ <ser vi ce_nane> directory for the service you wish to
recover.

Replace the deleted dbs/ <ser vi ce_nanme> directory in your
environment with the latest full backup of this directory.

Restart the services.

The environment should now be in the state that it was in at the time the
last full backup was performed.

141

CHAPTER 9 | Managing Orbix Service Databases

Incremental backup You should determine whether you also need to do regular incremental
backups. Generally, these are performed in an environment that requires a
large amount of additional configuration beyond initial domain creation, or
undergoes constant changes to the configuration. For example, it might
make sense to do incremental backups of the locator database in an
environment where POA and ORB names are being created or modified
constantly, and you need to be able to recover to the most recent state
possible. Similarly, if the naming service is constantly undergoing changes
of objects references, naming contexts, and so on, and any recovery needs
to reflect the most recent state of the underlying database. Another
candidate would be for a configuration repository where variables are added
or modified regularly.

Enabling incremental backup If you determine that you need to do regular incremental backups, you
should perform the following steps first. These steps apply to the locator,
but similarly can be applied to naming service, CFR, and so on.

1. To enable incremental backup, you should tell the service not to
automatically delete old log files. By default, old log files are
automatically deleted when it is determined the log file is no longer
being used. To disable this default behavior, set the following
configuration variable:
pl ugi ns: pss_db: envs:it_| ocat or: checkpoi nt_del etes_ol d_| ogs =

“fal se”
You can easily apply this to other services by changing it _I ocator to
another service (for example, i t _nami ng).

2. To enable the automatic archival of old log files, set the following
configuration variable:
pl ugi ns: pss_db: envs: it _| ocat or: checkpoi nt _ar chi ves_ol d_| ogs
This will specify whether old log files are automatically archived to the
ol d_I ogs directory. To archive old log files, set this variable to true.
This defaults to f al se.

3. To specify where the old log files get archived to, set a value for the
following:

pl ugi ns: pss_db: envs:it_|locator:old_logs_dir =
"<path/to/ ol d_| ogs>"

142

Performing an incremental
backup

Performing an incremental
recovery

Database Recovery for Orbix Services

The path is usually set relative to do_hone directory. You must ensure
you have sufficient space in the above directory, and also, in the
location specified by:

pl ugi ns: pss_db: envs:it_| ocat or: db_hone

Note: It is critical to the stability of your system that you have sufficient
space in these locations to hold the database files and transaction logs for
the service.

The following assumes that you have previously performed a complete
backup (see “Full backup” on page 140) at least once in your environment.
An incremental backup performs a backup of the log files that have changed
or have been created since the last full or incremental backup.

On a predetermined schedule (once a day or week), do a incremental
backup of each service as follows:

1.

Disable the default periodic deletion and/or archival of old log files
during the period while you are doing an incremental backup of the
database. To disable, run the following command:

itadm n pss_db pre_backup env.ior

The env.ior represents a handle to the database. Each service should
have its corresponding env. i or file within the dbs/ <servi ce name>.

Make a backup of files (if any) in <servi ce_name>/ ol d_| ogs directory.
When you have made the backup, it is then safe to remove the
contents of the <servi ce_name>/ ol d_I ogs directory in your production
database.

Make a backup of the <ser vi ce_nane>/ | ogs directory. This contains
the most recent (current) transaction log.

The following explains the steps needed to recover if data and/or log files
have been corrupted. These steps assume you have taken regular
incremental backups as described in “Incremental backup” on page 142.
Perform the following steps:

1.
2.

Determine which service is failing on startup.
Ensure that your Orbix services are stopped.

143

CHAPTER 9 | Managing Orbix Service Databases

Further information

144

3. Make a temporary backup the dbs/ <servi ce_name> directory for the
service you wish to recover.

4. Delete the dbs/ <ser vi ce_nanme> directory for the service you wish to
recover.

5. Replace the deleted dbs/ <ser vi ce_name> directory in your
environment with the latest full backup of this directory (see “Full
backup recovery” on page 141).

6. In the order of oldest to the newest, copy the files from
<servi ce_nane/ ol d_| ogs and <ser vi ce_nane>/ | ogs from each
incremental backup. Put the incremental backup versions of the log
files in <servi ce_name/ ol d_I ogs and <ser vi ce_nane>/ | ogs into the
dbs/ <ser vi ce_nanme>/ | ogs directory of your environment.

7. Set the following configuration variable to true:
pl ugi ns: pss_db: envs: env_narre: recover _f at al
Start the Orbix services.

9. Set the following configuration variable to false:
pl ugi ns: pss_db: envs: env_narre: recover _f at al

The environment should now be in the state it was in when the last archived

log file was written. These steps apply to the locator but similarly can be
applied to naming service, CFR, and so on.

For more information, SleepyCat Software provides full details of Berkeley
DB administration at http://www.sleepycat.com/docs/.

http://www.sleepycat.com/docs

Replicated Databases

Replicated Databases

Overview

Using configuration variables

Using the command line

The Berkeley DB supports replicated databases using the master-slave
model with automatic promotion of slaves. The following Orbix services use
this functionality to increase their availability:

® Locator daemon

® Naming service

® Configuration repository

You can control replicated databases with the following configuration
variables:

pss_db: envs: env- nane: al | ow m nority_naster
pss_db: envs: env- nane: al ways_downl oad

pss_db: envs: env- nane: el ecti on_backoff _rati o
pss_db: envs: env- nane: el ecti on_del ay

pss_db: envs: env-nane: el ection_init_tineout
pss_db: envs: env-nane: i nit_rep

pss_db: envs: env- nane: mast er _heart beat _i nt er val
pss_db: envs: env- nane: max_el ecti ons

pss_db: envs: env-nane: replica priority

For more details, see pl ugi ns: pss_db: envs: env- nane in the Orbix
Configuration Reference.

You can examine the state of a replicated database and remove replicas
using the i tadni n commands. For example:

itadmn pss_db |ist_replicas env-hone/ env.ior

For more details on these commands, see “Persistent State Service” on
page 353.

145

http://www.iona.com/support/docs/orbix/6.2/admin/config_ref/index.html
http://www.iona.com/support/docs/orbix/6.2/admin/config_ref/index.html

CHAPTER 9 | Managing Orbix Service Databases

146

In this chapter

CHAPTER 10

Configuring Orbix
Compression

This chapter explains how to configure the Orbix ZIOP
compression plug-in. This can enable significant performance
improvements on low bandwidth networks.

This chapter includes the following topics

Introduction page 148
Configuring Compression page 150
Example Configuration page 154
Message Fragmentation page 156.

147

CHAPTER 10 | Configuring Orbix Compression

Introduction

Overview

148

The Orbix ZIOP compression plug-in provides optional
compression/decompression of GIOP messages on the wire. Compressed
and uncompressed transports can be mixed together. This can enable
significant performance improvements on low bandwidth networks.

These performance improvements depend on the network and the message
data. For example, if the requests contain already compressed data, such as
. j peg images, there is virtually no compression. However, with repetitive
string data, there is good compression.

ZI0P stands for Zipped Inter-ORB Protocol, which is an proprietary IONA
feature. Figure 15 shows a simple overview of ZIOP compression in a
client-server environment.

Client Host Server Host

Client Object

ZIOP Compression

GIOP message

Figure 15: Overview of ZIOP Compression

Implementation

Additional components

Introduction

Orbix ZIOP compression has been implemented in both C++ and Java and
is available on all platforms. The Orbix compression plug-in (zi op) supports
the following compression algorithms:

* gp
® pkzip
® bzip2

The compression is performed using a configurable compression library.
Compression can be configured on a per-ORB basis, and also on a
per-binding basis (using ORB policies).

Per-ORB settings can be made in the client or server scope of your
configuration file (described in this chapter). More fine grained per-binding
settings can be made programmatically (see the Orbix CORBA
Programmer’s Guide for details).

The following Orbix components have also been updated for ZIOP

compression:

® The gi op_snoop plug-in has been updated to detect ZIOP compressed
messages.

® Theiordunp tool has been updated to parse the new IOR component
for ZIOP compression.

149

CHAPTER 10 | Configuring Orbix Compression

Configuring Compression

Overview Orbix uses symbolic names to configure plug-ins and then associates them
with a Java or a C++ implementation. The compression/decompression
plug-in is named zi op. This is implemented in Java by the

com i ona. cor ba. zi op. ZI CPPI ugl n class, and in C++ by theit_ziop
shared library.

This section shows how to configure the behavior of the compression plug-in
for your client or servers. It includes the following:

® “Configuring the ziop plug-in”.

® “Configuring binding lists”.

® “Enabling compression”.

“Setting the compression algorithm”.

® “Setting the compression level”.

® “Setting the compression threshold”.

Note: These settings must be added to your client or server configuration
Scope, as appropriate.

Configuring the ziop plug-in To configure the zi op plug-in, perform the following steps:

1. Ensure that the following entries are present in your Orbix configuration
file:

pl ugi ns: zi op: shl i b_nanme = "it_ziop";
pl ugi ns: zi op: d assNane = "com i ona. cor ba. zi op. ZI CPPl ugl n";

2. Include the zi op plug-in the ORB plug-ins list:

orb_plugins =[.... "ziop" ...];
For example:

orb_plugins = ["local _| og_streant, "iiop_profile", "giop",
"ziop", "iiop"]:

150

Configuring binding lists

Enabling compression

Configuring Compression

To enable compression/decompression for CORBA [IOP communication,
ensure that your binding lists contain the following entries.

For clients:

bi ndi ng: client_binding_|ist = ["A CP+ZI CP+l | OP'] ;

For servers:

pl ugi ns: gi op: message_server_binding list = ["ZI CP+@ CP'];

The client or server binding lists can be much more complicated than these
simple examples, although these are adequate for compressed GIOP/IIOP
communication. Here is an example of more complex binding lists:

bi ndi ng: client_binding_|ist = ["Ors+@ CP+Zl CP+l | CP_TLS",
"CSl +G CP+ZI OGP+l | CP_TLS", "G CP+ZI CP+l | CP_TLS",
"CSl +3@ CP+ZI CP+ZI CP+l 1 OP', "Q CP+ZI CP+I | CP'];

pl ugi ns: gi op: message_server_binding_list =["B Dr_QGC”,
"ZIcP+@ oPt, "adoP'];

To enable or disable compression, use the
pol i ci es: zi op: conpr essi on_enabl ed configuration variable. For example:

pol i ci es: zi op: conpr essi on_enabl ed = "true";

The default value is t rue. This means that even when this entry does not
appear in the configuration, compression is enabled. However, the zi op
plug-in must first be loaded in the or b_pl ugi ns list, and selected by a server
or client binding.

151

CHAPTER 10 | Configuring Orbix Compression

Setting the compression algorithm The default compression algorithm can be set using the

Setting the compression level

152

pol i ci es: zi op: conpressor _i d configuration variable. For example:
pol i ci es: zi op: conpressor _id = "1";

Possible values are as follows:

1 gzip algorithm
2 pkzip algorithm
3 bzi p2 algorithm

If this configuration variable is not specified, the default value is 1 (gzi p
compression).

The ZIOP compression plug-in can be extended with additional compression
algorithms using the | T_zI CP: : Conpr essi onManager API. See the Orbix
CORBA Programmer's Guide for details.

To set compression levels, use the
pol i ci es: zi op: conpr essor : compressor_id: | evel variable.

Using this variable, you can specify the compression level for each of the
algorithms registered in the zi op plug-in. The permitted values are specific
to the selected algorithm. For example:

pol i ci es: zi op: conpressor: 1: | evel = "9";

For the gzip and pkzip algorithms, possible values are in the range between
0 (no compression) and 9 (maximum compression). The default value is 9.

For the bzip2 algorithm, (conpressor_i d = 3), possible values are in the
range between 1 (least compression) and 9 (maximum compression). The
default value is 9.

Setting the compression threshold

Configuring Compression

The compression threshold defines the message size above which
compression occurs.

To specify the minimum message size that is compressed, use the
pol i ci es: zi op: conpr essi on_t hr eshol d variable. For example:

pol i ci es: zi op: conpr essi on_t hreshol d = "50";

Using this setting, messages smaller than 50 bytes are not compressed.The
default setting is 0, which means that all messages are compressed.

If you set this to a negative value, the compression threshold is equal to
infinity, which means that messages are never compressed. This can be of
use if you want to enable compression in one direction only. For example,
you can compress messages sent from the server to the client, while in the
other direction, messages from the client to the server remain
uncompressed.

153

CHAPTER 10 | Configuring Orbix Compression

Example Configuration

Overview

Standard ziop configuration

154

This section shows some example compression configurations. It includes
the following:

® “Standard ziop configuration”.
® “Debug configuration with giop_snoop”.

The following example shows a standard compression configuration in the
zi op_test configuration scope:

ziop_test {
#These settings are necessary for the ziop plug-in
pl ugi ns: zi op: A assNane = "com i ona. cor ba. zi op. ZI CPP ugl n";

pl ugi ns: zi op: shl i b_name = "it_ziop";
orb_plugins = ["local _|og_streant, "iiop_profile", "giop",
"ziop", "iiop"];

bi nding: client_binding_|list = ["A CP+ZI CP+l | OP'] ;
pl ugi ns: gi op: message_server_binding_list = ["ZI OP+@ CP'];

#These settings are optional

pol i ci es: zi op: conpr essi on_enabl ed = "true";
pol i ci es: zi op: conpressor _id = "1";

pol i ci es: zi op: conpressi on_| evel = "9";

pol i ci es: zi op: conpr essi on_t hreshol d = "80";

ik
Depending on the particular circumstances, these settings must be added to
the client or the server scope, as appropriate.

If you do not use a scope for your client or server, you can put the settings
into the global scope, however, this is not recommended.

Example Configuration

Debug configuration with The following example shows a debug configuration using the gi op_snoop
giop_snoop plug-in:
ziop_test {

pl ugi ns: zi op: A assNane = "com i ona. cor ba. zi op. ZI PP ugl n";
pl ugi ns: zi op: shli b_nane = "it_zi op";

pl ugi ns: gi op_snoop: shl i b_name = "it_gi op_snoop";
pl ugi ns: gi op_snoop: d assNane =
"com i ona. cor ba. gi op_snoop. @ CPSnoopPl ugl n";

orb_plugins = ["local _|og_streant, "iiop_profile", "giop",
"gi op_snoop", "ziop", "iiop"];

bi ndi ng: client_binding_ |ist = ["Q CP+ZlI GP+A CP_SNOCP+l | CP'] ;
pl ugi ns: gi op: nessage_server _bi nding_list =
["QA CP_SNOCP+ZI CP+d CP'] 5

event log:filters = ["IT_QQCP=*"];

pol i ci es: zi op: conpr essi on_enabl ed = "true";
pol i ci es: zi op: conpressor _id = "1";

pol i ci es: zi op: conpr essi on_| evel = "9";

pol i ci es: zi op: conpr essi on_t hreshol d = "80";

IE

Using this configuration, you can trace the compression/decompression
behavior. The gi op_snoop plug-in logs the parameters to standard out
before or after the zi op plug-in (depending on its position before or after the
ZI P plug-in).

To send the output to a file instead of standard out, use the following
setting:

pl ugi ns:local _|l og_streamfilename = "c:\tenp\test.|og";

155

CHAPTER 10 | Configuring Orbix Compression

Message Fragmentation

Overview

Increasing message fragment size

Fragmentation example

156

The GIOP/IIOP protocol from version 1.1 can fragment messages. The
default setting for Orbix is to use message fragmentation. The default
fragment size is 16 KB.

This is relevant to the zi op plug-in, because the compression algorithm can
access at most a single fragment at a time. The compression plug-in
therefore operates at the granularity of a single fragment. In this way,
message fragmentation can potentially have a large effect on the
compression rate.

Depending on the structure of your data, it might make sense to increase the
fragment size so that the compression algorithm is optimized for larger
blocks of data. You can configure the fragment size using the
policies:iiop:buffer_sizes_policy:defaul t_buffer_size configuration
variable. For example:

policies:iiop:buffer_sizes_policy:defaul t_buffer_size = "65536";

This sets the fragment size to 64 KB.

Only the overall message size is transmitted. For example, if the message is
only 4 KB, only these 4 KB are transmitted. Only if the message is larger
than the maximum fragment size will it be transmitted in fragments.

For example, if the maximum fragment size is 16 KB. And the message size

is 44 KB. The message will be sent in fragments of 16 KB, 16 KB, and 12
KB.

In this chapter

CHAPTER 11

Configuring
Advanced
Features

This chapter explains some how to configure advanced
features such as Java new I/O, shared memory, and
bidirectional GIOP.

This chapter includes the following topics

Configuring Java NIO page 158
Configuring Shared Memory page 160
Configuring Bidirectional GIOP page 162

157

CHAPTER 11 | Configuring Advanced Features

Configuring Java NIO

Overview

ATLI2/Java NIO

Requirements

158

Java’s new /0 (NIO) provides enhanced connection scalability. It enables
you to manage more connections with fewer resources (specifically, fewer
threads). This section includes the following:

® “ATLI2/Java NIO".

® “Requirements”.

¢ “Enabling Java NIO".
® “Further information”.

IONA'’s current transport layer implementation is called the Abstract
Transport Layer Interface, version 2 (ATLI2). Orbix offers an ATLI2
implementation based on Java NIO. The default ATLI2 plugin is based on
Java classic I/0 (CIO).

In addition to allowing more connections to be managed with fewer threads,
ATLI2/Java NIO also performs better than ATLI2/Java CIO in the presence of
many incoming connections.

To use ATLI2/Java NIO, you must have JDK version 1.4.x installed.

Note: Applications that use either Transport Layer Security (TLS) or
Endpoint Granularity Multicast Inter-ORB Protocol (EGMIOP) must use the
default Java CIO. Java NIO does not support Java Secure Socket
Extensions (JSSE) or multicast sockets.

Configuring Java NIO

Enabling Java NIO To enable Java NIO, change the pl ugi ns: atli 2_i p: d assNane
configuration variable setting from the following:

plugi ns: atli 2_i p: d assNane
=com i ona. corba. atli 2. i p. ci 0. CRBPI ugl nl npl

to the following:

plugi ns: atli 2_i p: d assNane
=com i ona. corba. atli 2. i p. ni 0. CRBPI ugl nl npl

Further information For more information about Java NIO, see the Sun web site:

http://java. sun. conl j 2se/ 1. 4. 1/ docs/ gui de/ ni o/

159

http://java.sun.com/j2se/1.4.1/docs/guide/nio/

CHAPTER 11 | Configuring Advanced Features

Configuring Shared Memory

Overview Shared memory is an inter-process communication mechanism, available on
certain operating systems. It provides an efficient means of passing data
between programs that are executing on the same host. One process creates
a memory portion that other processes can access.

When the client and server are located on the same host, using shared
memory to communicate is usually faster than using network calls. This
section includes the following:

® “Shared memory segment size”.
® “Enabling shared memory”.

® “Shared memory logging”.

® “Shared memory segment size”.

Platform availability The shared memory plug-in is available for C++ ORBs on the following
platforms:

® Solaris
®* HP-UX
® Windows

Note: Java ORBs can not read their or b_pl ugi ns list if it specifies the
shared memory plug-in. For this reason, a shared memory configuration
domain should not be shared between C++ and Java ORBs.

Enabling shared memory Orbix provides the shm op transport plugin, which uses shared memory as
its underlying communication mechanism.

To use shared memory with Orbix, perform the following steps:

1. Modify the orb_pl ugi ns list in your configuration to include the
SHMIOP plugin. For example:

orb_plugins = ["local | og_streant, "iiop_profile", "giop",
"iiop", "shmop'];

160

Shared memory logging

Shared memory segment size

Further information

Configuring Shared Memory

2. On the client side, add the shmi op plugin to the cli ent _bi nding_| i st,
for example:

binding:client_binding_list = ["G CP+SHM CP", "A CP+l | CP'];

When the cli ent _bi nding_li st is set, Orbix first attempts to bind to
the server using the faster shared memory transport. If this is
unsuccessful—for example, if the server is not on the same host as the
client—Orbix then uses the standard [IOP transport as normal.

To enable logging output from the shared memory plugin, turn on the log
stream, and add the following filter in your configuration:

event _log:filters = ["IT_ATLI 2_SHW*"];

IONA’s transport layer implementation is referred to as the Abstract
Transport Layer Interface, version 2 (ATLI2).

You can configure the size of the shared memory segment created (for
example, in the call to mmap on Solaris). You can set this using the following
configuration variable:

plugi n: atli2_shm shared_nenory_si ze

The default value is 8*1024* 1024. This size should be larger than the largest
data payload passed between a client and server. If the setting is too small,
the shared memory transport will run out of memory, and will be unable to
marshal the data. If there is danger of this occurring, add @ GP+I | CP to your
client_binding_list setting. This enables the ORB to use the normal
network transport if a large payload can not make it through shared
memory.

For information on additional shared memory configuration variables, see
the pl ugi n: atli 2_shmand pol i ci es: shm op hamespaces in the
Configuration Reference. The default configuration settings are sufficient for
most cases.

161

CHAPTER 11 | Configuring Advanced Features

Configuring Bidirectional GIOP

Overview This section explains how to set up your system to use bidirectional GIOP.
This allows callbacks to be made using a connection opened by the client,
instead of requiring the server to open a new connection for the callback.

Bidirectional GIOP is decoupled from [IOP, and is applicable over arbitrary
connection-oriented transports (for example, IOP/TLS or SHMIOP).
Bidirectional GIOP may be used regardless of how the callback IOR is
passed to the server. For example, it can be passed over an IDL interface,
using a shared file, or using a naming or trader service.

GIOP specifications Orbix supports bidirectional GIOP (General Inter-ORB Protocol), as
described in the firewall submission:

htt p: // waw. ong. or g/ docs/ or bos/ 01- 08- 03. pdf .

As originally specified, GIOP connections were restricted to unidirectional.
This proved to be very inconvenient in certain deployment scenarios where
the callback pattern was in use, and clients could not accept incoming
connections (for example, due to sandbox restrictions on Java applets, or
the presence of client-side firewalls). This restriction was relaxed for GIOP
1.2, allowing bidirectional connections to be used under certain conditions.
This section includes the following:

® ‘“Enabling Bidirectional GIOP” on page 163.

® “Migration and Interoperability Issues” on page 166.

162

http://www.omg.org/docs/orbos/01-08-03.pdf

Configuring Bidirectional GIOP

Enabling Bidirectional GIOP

Overview

Set the export policy to allow

Set the offer policy to allow

Bidirectional GIOP is enabled by overriding policies in the client and server
applications. To enable bidirectional GIOP, perform the following steps:

1. “Set the export policy to allow”.
2. “Set the offer policy to allow”.

3. “Set the accept policy to allow”.

The POA used to activate the client-side callback object must have an
effective Bi Di rPol i cy: : Bi D r Export Pol i cy set to Bi Di rPol i cy: : ALLON
You can do this programmatically by including this policy in the list that is
passed to POA : create_PQA(). Alternatively, you can do this in
configuration, using the following setting:

pol i ci es: gi op: bi di recti onal _export_pol i cy="ALLON;

This results in including an 1 OP: : TAG Bl _DI R @ CP component in the
callback IOR. This indicates that bidirectional GIOP is enabled and
advertising a @ CP: : Bi Di r 1 d generated for that POA.

If necessary, you can control the lifespan of the Bi D r I d by using the
proprietary I T_Bi Di rPol i cy: : Bi Di rI dGener at i onPol i cy, either allowing
random or requiring repeatable IDs be generated. This is only an issue if the
callback POA is persistent, in which case repeatable IDs are required. This
would be unusual because callbacks are usually purely transient, in which
case the default Bi Di r1 dGener at i onPol i cy is appropriate.

Note: Setting policies programatically gives more fine-grained control
than setting policies in configuration. See “Implications for pre-existing
application code” on page 166 for more details.

A bidirectional offer is triggered for an outgoing connection by setting the
effective BiDirPolicy::BiDrOferPolicy to ALLONoOr an invocation. This
policy may be overridden in the usual way—in descending order of

163

CHAPTER 11 | Configuring Advanced Features

Set the accept policy to allow

Confirming bidirectional GIOP is
in use

Server and client binding lists

164

precedence, either on the object reference, current thread, ORB policy
manager. Alternatively, you can do this in configuration, using the following
setting:

pol i ci es: gi op: bi di rectional _of fer_policy="ALLON;

The client _pol i cy demo illustrates the different ways of overriding client
policies. This results in an 1 CP: : Bl _DI R @ CP_CFFER service context being
passed with the request, unless the policies effective for the callback POA
conflict with the outgoing connection (for example, if the former requires
security but the latter is insecure).

On the server side, the effective Bi Dir Pol i cy: : Bi Di r Accept Pol i cy for the
callback invocation must be set to ALLOWN You can do this in configuration,
using the following setting:

pol i ci es: gi op: bi di recti onal _accept _pol i cy="ALLON ;

This accepts the client's bidirectional offer, and uses an incoming
connection for an outgoing request, as long the policies effective for the
invocation are compatible with the connection.

The simplest way to check that bidirectional GIOP is in use is to examine
your log file. First, ensure that the level configured for the IT_ G P
sub-system includes | NFO_LOwevents, for example:

event log:filters = ["I T_Q CP=I NFO LOMWRNFERRCRFFATAL", ...]:

For each client binding established, LocateRequest/Request and/or
LocateReply/Reply sent or received in the bidirectional sense, the log
message includes a [bi di recti onal] suffix.

You can also use the i or dunp utility to check that the TAGBI_D R G CP

component is present in the callback IOR. For information on using i or dunp,
see Appendix 15 on page 201.

In a generated configuration domain, by default, your client and server
binding lists are set to include Bi Dir_G CP. You do not have to configure
these configuration settings manually. The default settings are explained as
follows:

Configuring Bidirectional GIOP

On the server-side, the bi ndi ng: cl i ent _bi ndi ng_l i st includes an
entry for Bi D r_Q CP, for example:

bi nding:client_binding list = ["OIStBiDr_Q G,
"BiDr_Q@oP, "OISt@CP+ I OP', "AdCP+HICP, ...];

This enables the existing incoming message interceptor chain to be
re-used, so that the outgoing client binding dispatches the callback
invocation.

On the client-side, the pl ugi ns: gi op: nessage_ser ver _bi ndi ng_l i st
includes an entry for Bi Dir_Q CP, for example:

pl ugi ns: gi op: message_server_bi nding_|ist=
["BiDr_AdCP,"ACP];

This enables the existing outgoing message interceptor chain to be
re-used for an incoming server binding.

165

CHAPTER 11 | Configuring Advanced Features

Migration and Interoperability Issues

Overview

Implications for pre-existing
application code

Incompatible ORBs

166

This section includes the following bidirectional GIOP issues:
® “Implications for pre-existing application code”.

® “Incompatible ORBs".

®* ‘“Interoperability with Orbix 3".

® “Orbix 6.x restrictions”.

There are no implications for existing applications that do not need
bidirectional GIOP. This feature is disabled by default.

Otherwise, the code impact can be minimized by setting the relevant
policies using configuration, as explained “Enabling Bidirectional GIOP” on
page 163. However, this is quite a coarse grained approach, and often its
not necessary or desirable to enable bidirectional GIOP for the entire ORB.
The recommended approach is to selectively override the relevant
programmatic policies in a fine-grained manner on exactly those elements
(POAs, ORBs, threads, object references) that require it.

Also, currently existing persistent callback I0Rs (for example, those bound
in the naming service) must be regenerated to include the TAGBI_D R G CP
component. However, this is unlikely to impact many real applications as
callback references are usually transient and regenerated every time the
client application is run.

There are several incompatible bidirectional schemes in use. For example,
Orbacus uses a proprietary mechanism, and several commercial and open
source ORBs support the soon-to-be obsolete bidirectional standard; while
Orbix 2000 and Orbix E2A 5.x/6.0 do not have any analogous functionality.
All of these schemes are mutually incompatible and non-interoperable.
Hence, Orbix 6.x reverts to unidirectional GIOP when interoperating with
any of these ORB:s.

Interoperability with Orbix 3

Configuring Bidirectional GIOP

Orbix 6.x includes support for interoperability with Orbix 3.x (Generation 3).
This enables an Orbix 6.x server to invoke on an Orbix 3.x callback reference
in a bidirectional fashion. To configure interoperability with Orbix 3.x,
perform the following steps:

1.

Setthe I T_Bi DirPol i cy: : Bi directi onal Gen3Accept Pol i cy to ALLON
This is a proprietary policy analogous to

Bi DirPol i cy::Bidirectional Accept Pol i cy. It enables an Orbix 6.x
server to accept an Orbix 3.x bidirectional offer.

You can do this either programmatically or using the following
configuration setting:

pol i ci es: gi op: bi di recti onal _gen3_accept _pol i cy="ALLON;

Include the appropriate Bi D r_Gen3 entry in the server's configured
bi ndi ng: cl i ent _bi ndi ng_l i st. For example,
bi nding: client_binding_list =
["OTS+BiDir GCP', "BiDr_QCP', "BiDr_Gen3",
"OTS+t@ QP+ I CP', "d P+ I P, ...];

For more details, see “Server and client binding lists” on page 164.

Orbix 3 restrictions The following restrictions apply to bidirectional GIOP in
Orbix 3:

Orbix 3 bidirectional callback references may only be passed to the
server as a request parameter. Orbix 6.x bidirectional callback
references can be passed in any way (for example, using the naming
service, or a shared file).

Orbix 3 bidirectional callback references may only be invoked on in a
bidirectional fashion during the lifetime of the connection over which it
was received. Orbix 6.x bidirectional invocations may be made after
the connection is reaped by Active Connective Management and
re-established.

The Orbix 6.x and Orbix 3 bidirectional mechanisms will co-exist peacefully.
An incoming connection can only be considered for bidirectional invocations
by, at most, one of the two schemes, depending on whether the client is
based on Orbix 6.x or Orbix 3.x.

167

CHAPTER 11 | Configuring Advanced Features

Orbix 6.x restrictions

168

Orbix 6.x includes the following restrictions:

Orbix 6.x support for Orbix 3 bidirectional GIOP is asymmetric. An
Orbix 6.x server can invoke on a Orbix 3 callback reference using
bidirectional GIOP. However, an Orbix 6.x client can not produce a
callback reference that an Orbix 3 server could invoke on using
bidirectional GIOP.

To be compatible with GIOP 1.2 (that is, not be dependent on GIOP
1.4 Negot i at eSessi on messages), only weak Bi D r I ds are used, and
the challenge mechanism to detect client spoofing is not supported.
This functionality will be added in a future release, when GIOP 1.4 is
standardized.

In this chapter

CHAPTER 12

Orbix Mainframe
Adapter

The Orbix Mainframe Adapter (MFA) plugin enables you to
communicate with Orbix Mainframe CICS and IMS server
adapters from Windows and UNIX. It includes a Mapping
Gateway interface and an itmfaloc URL resolver. This chapter
introduces the CICS and IMS server adapters, and explains
how to use the Mapping Gateway interface and the itmfaloc
URL resolver.

This chapter contains the following sections:

CICS and IMS Server Adapters page 170
Using the Mapping Gateway Interface page 171
Locating Server Adapter Objects Using itmfaloc page 175

Note: In addition to Orbix, you must have Orbix Mainframe installed and
running before you can use the MFA.

169

CHAPTER 12 | Orbix Mainframe Adapter

CICS and IMS Server Adapters

Overview

CICS server adapter

IMS server adapter

More information

170

The Orbix Mainframe product includes a CICS server adapter and an IMS
server adapter. This section gives a brief description of each of these
adapters and includes the following to topics:

® CICS server adapter

® |MS server adapter

® More information

The Orbix CICS server adapter is an Orbix Mainframe service that can be
deployed in either a native 0S/390 or UNIX System Services environment.
The CICS server adapter acts as a bridge between CORBA/EJB clients and
CICS servers. It enables you to set up a distributed system that combines
the powerful online transaction processing capabilities of CICS with the
consistent and well-defined structure of a CORBA environment.

The Orbix IMS server adapter is an Orbix Mainframe service that can be
deployed in a native 0S/390 or UNIX System Services environment. It
provides a simple way to integrate distributed CORBA and EJB clients on
various platforms with existing and new IMS transactions running on
0S/390. The IMS server adapter allows you to develop and deploy Orbix
COBOL and PL/I servers in IMS, and to integrate these IMS servers with
distributed CORBA clients running on various platforms. It also facilitates
the integration of existing IMS transactions, not developed using Orbix, with
distributed CORBA clients, without the need to change these existing
transactions.

For more information, see the Orbix Mainframe CICS Adapters
Administrator’s Guide and IMS Adapters Administrator’s Guide, which are
available on the IONA documentation web pages at:

http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml

http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml

Using the Mapping Gateway Interface

Using the Mapping Gateway Interface

Overview

In this section

The Mapping Gateway interface is used to control CICS or IMS server
adapters running on the mainframe. You can use the Mapping Gateway
interface to list the transaction mappings that the server adapter supports,
to add or delete individual interfaces and operations, or to change the
transaction that an operation is mapped to. A new mapping file can be read,
or the existing mappings can be written to a new file. Access to the Mapping
Gateway interface using i t adni n is provided as a plug-in. This plug-in is
selected with the nf a keyword.

This section provides some examples of how you can to use the i tadmin
nfa plugin to control CICS and IMS server adapters running on the
mainframe. The following topics are covered:

® Configuring the Mapping Gateway interface

® Listing itadmin mfa commands

® Printing a list of supported mappings

® Changing an operation’s transaction mapping

Saving mappings to a specified file and reloading current mappings
® Switching the mapping file

® |nvoking on exported interfaces

® Selecting a specific server adapter

171

CHAPTER 12 | Orbix Mainframe Adapter

Configuring the Mapping Gateway = The Mapping Gateway interface is configured by default. The following

interface configuration values are added to the configuration file:
pl ugi ns: nfa_adm grammar _db = "admin_plugins = [..., "nfa_adn];
pl ugins: nfa_admshlib _name = "it_nfa_adni;

pl ugi ns: nfa_adm gramrar _db = "nfa_adm gramar.txt";
pl ugi ns: nfa_adm hel p_db = "nfa_adm hel p. txt";

You must, however, add the mainframe IOR to the configuration file as
follows:

initial _references: | T_MAreference = "ICR "

For details of how to obtain the IOR, see the CICS Adapters Administrator’s
Guide and the IMS Adapters Administrator’s Guide.

Listing itadmin mfa commands To obtain a list of all the commands provided by the i t adm n nfa plug-in,
use the following command:

$ itadmn nfa —hel p

The output is follows:

nfa |ist
add -interface <name> -operati on <nane> <nmapped val ue>
change -interface <name> -operation <nane> <mapped val ue>
delete -interface <name> -operation <nane>

resol ve <interface name>

refresh [-operation <nane>] <interface name>
rel oad

save [<mappi ng_fil e name>]

switch <mapping_fil e nane>

stats

reset con

st op

Iltems shown in angle brackets (<..») must be supplied and items shown in
square brackets ([.]) are optional. Modules names form part of the
interface name and are separated from the interface name with a /
character. For detailed information on these commands, see Chapter 24.

172

Printing a list of supported
mappings

Changing an operation’s
transaction mapping

Saving mappings to a specified file
and reloading current mappings

Using the Mapping Gateway Interface

To print a list of the mappings (interface, operation and name) that the
server adapter supports, use the following command:

itadmn nfa |ist

For example, the output is as follows:

Si npl e/ Si npl ehj ect, cal | _ne, S| MPLESV
nest ed_seqs, t est _bounded, NSTSEQBV
nest ed_segs, t est _unbounded, NSTSEQSV

You can use the nfa change command to change the transaction to which
an existing operation is mapped. For example, to change the transaction to
which the cal | _ne operation is mapped, from SI MPLESV to NSTSEQBV, use
the following command:

itadmn nfa change -interface Sinple/S npl eChject -operation
cal | _me NSTSEQSV

To view the result, use the nfa |i st command:
itadmn nfa |ist
For example, the output is as follows:

Si npl e/ Si npl eChj ect, cal | _me, NSTSEQEV
nest ed_seqs, t est _bounded, NSTSECBV
nest ed_segs, t est _unbounded, NSTSEQSV

You can use the nfa save command to get the server adapter to save its
current mappings to either its current mapping file or to a filename that you
provide. For example, to cause the server adapter to save its current
mappings to a file called nyMappi ngs. map, but reload the list of mappings
from its mapping file, use the following commands:

itadm n nfa save "c:\nyMappi ngs. map"
itadmn nfa rel oad

To view the result, use the nfa |i st command:

itadmn nfa |ist

173

CHAPTER 12 | Orbix Mainframe Adapter

Switching the mapping file

Invoking on exported interfaces

Selecting a specific server adapter

174

For example, the output is as follows:

Si npl e/ Si npl ehj ect, cal | _ne, S| MPLESV
nest ed_segs, t est _bounded, NSTSEQBV
nest ed_seqs, t est _unbounded, NSTSEQSV

You can get the server adapter to switch to using a new mapping file and
export only the mappings contained within it. For example, to get the server
adapter to switch from its current mapping file to nyMappi ngs. map, use the
following command:

itadnmin nfa swtch "c:\nyMappi ngs. map"

To view the result, use the nfa 1i st command:
itadmn nfa |ist
The output looks as follows:

Si npl e/ Si npl e(hj ect, cal | _nme, NSTSEQSV
nest ed_segs, t est _bounded, NSTSEQBV
nest ed_seqs, t est _unbounded, NSTSEQBV

The Mapping Gateway interface provides the means by which 1IOP clients
can invoke on the exported interfaces. Using the resol ve operation, an IOR
can be retrieved for any exported interface. This IOR can then be used
directly by IIOP clients, or registered with an Orbix naming service as a way
of publishing the availability of the interface. For example, to retrieve an IOR
for Si npl e IDL, use the following command:

itadmn nfa resol ve S npl e/ Si npl eChj ect

To select a specific server adapter, provide the CRBnane for the server
adapter on a request. For example, to specify the CICS server adapter and
obtain the IOR for the Si npl e interface, use the following command:

itadmn -CRBnane iona_utilities.cicsa nfa resol ve
Si npl e/ S npl e(oj ect

Locating Server Adapter Objects Using itmfaloc

Locating Server Adapter Objects Using

itmfaloc

Overview

In this section

Locating server adapters using
IORs

The CICS and IMS server adapter maintains object references that identify
CORBA server programs running in CICS and IMS respectively. A client must
obtain an appropriate object reference in order to access the target server.
The i tnfal oc URL resolver plug-in facilitates and simplifies this task.

Note: The itmfaloc URL resolver is only available in C++.

This section discusses how you can use the i t nfal oc URL resolver as an
alternative to the i tadm n nfa resol ve command. The following topics are
covered:

® Llocating server adapters using IORs
® Locating objects using itmfaloc

® Format of an itmfaloc URL

® What happens when itmfaloc is used
® Example of using itmfaloc

One way of obtaining an object reference for a target server, managed by the
CICS or IMS server adapter, is to retrieve the IOR using the i t adm n tool.
This calls the resol ve() method on the server adapter's Mapping Gateway
interface and returns a stringified IOR. For example, to retrieve an IOR for
Si npl e IDL, use the following command:

itadmn nfa resol ve S npl e/ Si npl eChj ect

When retrieved, the IOR can be distributed to the client and used to invoke
on the target server running inside CICS.

175

CHAPTER 12 | Orbix Mainframe Adapter

Locating objects using itmfaloc

Format of an itmfaloc URL

What happens when itmfaloc is
used

176

In some cases, the use of i t admi n and the need to persist stringified IORs is
not very manageable, and a more dynamic approach is desirable. The

i tnfal oc URL resolver is designed to provide an alternative approach. It
follows a similar scheme to that of the corbaloc URL technique.

In this way, the Orbix CORBA client can specify a very simple URL format
which identifies the target service required. This text string can be used
programmatically in place of the rather cumbersome stringified IOR
representation.

Anitnfal oc URL is a string of the following format:
i tnfal oc: <I nt erf aceNarme>

<l nt er f aceNane> is the fully-scoped name of the IDL interface implemented
by the target server (as specified in the server adapter mapping file).

When anitnfal oc URL is used in place of an IOR, the Orbix client
application contacts the server adapter to attain an object reference for the
desired CICS or IMS server. The i t nfal oc URL string only encodes the
interface name and not the server adapter’s location. To establish the initial
connection to the server adapter, the value of the

I T_MFA i nitial _references variable is used.

If multiple server adapters are deployed, the client application must specify
the correct | T_MFA i ni ti al _ref erences setting in order to contact the
correct server adapter. You can do this by specifying the appropriate ORB
name, which represents the particular configuration scope. For example, for
the CICS server adapter, - CRBnane iona_utilities.cicsa

If the client application successfully connects to the server adapter, it calls
the resol ve() operation on the Mapping Gateway object reference,
retrieving an object reference for the target server managed by the server
adapter.

Example of using itmfaloc

Locating Server Adapter Objects Using itmfaloc

The simple demo client code that is shipped with Orbix uses a file-based
mechanism to access the target server's stringified I0OR. If the target server
resides in CICS or IMS, an alternative approach is to specify an i t nfal oc
URL string in the stri ng-t o- obj ect call; for example:

objref = orb->string_to_object("itnfal oc: Si npl e/ Si npl eChj ect");
if (OORBA: :is_nil(objref))
{
return 1,

}
sinple = Sinple:: S npl eChj ect:: _narrow objref);

177

CHAPTER 12 | Orbix Mainframe Adapter

178

In this part

Part 11l

Monitoring Orbix
Applications

This part contains the following chapters:

Setting Orbix Logging page 181

Monitoring GIOP Message Content page 191

Debugging IOR Data page 201

In this chapter

CHAPTER 13

Setting Orbix
Logging

Orbix logging lets you collect system-related information, such
as significant events, and warnings about unusual or fatal
errors.

Through a configuration domain’s logging variables, you can specify the
kinds of messages to collect, and where to direct them.

Note: For information on logging Orbix Windows NT Services, refer to
“Logging Orbix Windows Services” on page 398.

This chapter covers the following topics:

Setting Logging Filters page 182
Logging Subsystems page 184
Logging Severity Levels page 186
Redirecting Log Output page 188

181

CHAPTER 13 | Setting Orbix Logging

Setting Logging Filters

Overview

Set in a configuration file

182

The event _| og: fil ters configuration variable sets the level of logging for
specified subsystems, such as POAs or the naming service. This variable is
set to a list of filters, where each filter sets logging for a specified subsystem
with the following format:

subsyst enrseverity-| evel [+severity-level]...

For example, the following filter specifies that only errors and fatal errors for
the naming service should be reported:

I T_NAM NG=ERR+FATAL

The subsyst emfield indicates the name of the Orbix subsystem that reports

the messages (see Table 6 on page 184). The severi ty field indicates the

severity levels that are logged by that subsystem (see Table 7 on page 186).

You can set this variable by directly editing a configuration file, or using

i t admi n commands. In the examples that follow, logging is enabled as

follows:

® For POAs, enable logging of warnings, errors, fatal errors, and
high-priority informational messages.

® For the ORB core, enable logging of all events.

® For all other subsystems, enable logging of warnings, errors, and fatal
errors.

In a configuration file, event _l og: filters is set as follows:
event _log:filters=["log-filter"[,"log-filter"]...]

The following entry in a configuration file explicitly sets message severity
levels for the POA and ORB core, and all other subsystems:

event _log:filters = ["IT_POA=I NFO H +WARN+ERRCR+FATAL"
"I T_OORE=*", " *=WARN+ERR+FATAL"] ;

Setting Logging Filters

Set with itadmin You can use i t adm n commands vari abl e create and vari abl e nodi fy to
set and modify event 1 og: filters. For example, the following command
creates the same setting as shown before, this time specifying to set this
logging for the locator daemon:

itadmn variable nodify -scope |ocator -type |ist -val ue\
| T_PQA=I NFO_ H +WARN+ERROR+FATAL, \
I T_OCRE=*, \
* =WARNHERRHFATAL \
event log:filters

183

CHAPTER 13 | Setting Orbix Logging

Logging Subsystems

You can apply one or more logging severity levels to any or all ORB
subsystems. Table 6 shows the available ORB subsystems. By default,
Orbix logs warnings, errors, and fatal errors for all subsystems.

184

Table 6: Orbix Logging Subsystems

Subsystem Description
* All logging subsystems.
| T_ACTI VATCR Activator daemon.
IT ATLI2 ICP Abstract Transport Layer Inter-ORB Protocol.
I T_ATLI2_IP Abstract Transport Layer Internet Protocol Plug-in.
| T_ATLI 2_I TWP Abstract Transport Layer Multicast Plug-in.
| T_ATLI 2_I TRP Abstract Transport Layer Reliable Multicast Plug-in.
| T_ATLI 2_SHM Abstract Transport Layer Shared Memory Plug-in.
I T_ATLI _TLS Abstract Transport Layer (secure).

| T_A asslLoadi ng

Classloading plug-in (Java).

| T_OCDESET Internationalization plug-in.

| T_OONFI G_REP Configuration repository.

I T_OCRE Core ORB.

I T_CSI Common Secure Interoperability.

ITAdCP General Inter-Orb Protocol (transport layer).
I T_GSP Generic Security Plug-in.

IT_IFR Interface repository.

ITIICP Internet Inter-Orb Protocol (transport layer).

I T_I'1 CP_PRCFI LE

Internet Inter-Orb Protocol profile (transport layer).

Logging Subsystems

Table 6: Orbix Logging Subsystems
Subsystem Description
IT_ 11 CP_TLS Internet Inter-Orb Protocol (secure transport layer).

| T_JAVA SERVER

Java server plug-in

| T_LEASE Session management service.

| T_LOCATCR Server locator daemon.

| T_MaVT Management instrumentation plug-in.
| T_MaVI_SVC Management service.

| T_NAM NG Naming service.

I T_NOTI FI CATI ON

Event service.

| T_NodeDaeron Node daemon.
IT_OrS LITE Object transaction service.
I T_PQOA Portable object adapter.

| T_POA LOCATCR

Server locator daemon (POA specific).

I T_PSS Persistent state service.

I T_PSS DB Persistent state service (raw database layer).
IT PSS R Persistent state service (database driver).

| T_SCHANNEL Microsoft Schannel (Windows only).

IT_TLS Transport Layer Security.

ITTS Threading/synchronization package.

I T XA X/Open XA standard (transactions).

185

CHAPTER 13 | Setting Orbix Logging

Logging Severity Levels

Overview

Informational

Warning

Error

Fatal error

186

Orbix supports four levels of message severity:
® Informational

® Warning

® Error

® Fatal error

Informational messages report significant non-error events. These include
server startup or shutdown, object creation or deletion, and information
about administrative actions.

Informational messages provide a history of events that can be valuable in
diagnosing problems. Informational messages can be set to low, medium, or
high verbosity.

Warning messages are generated when Orbix encounters an anomalous
condition, but can ignore it and continue functioning. For example,
encountering an invalid parameter, and ignoring it in favor of a default value.

Error messages are generated when Orbix encounters an error. Orbix might
be able to recover from the error, but might be forced to abandon the current
task. For example, an error message might be generated if there is
insufficient memory to carry out a request.

Fatal error messages are generated when Orbix encounters an error from
which it cannot recover. For example, a fatal error message is generated if
the ORB cannot connect to the configuration domain.

Table 7 shows the syntax used to specify Orbix logging severity levels.

Table 7: Orbix Logging Severity Levels

Severity Level Description

INFO LW Low verbosity informational messages.

Logging Severity Levels

Table 7: Orbix Logging Severity Levels

Severity Level Description
I NFO MED] | UM Medium verbosity informational messages.
INFOH[G&H High verbosity informational messages.
I NFO ALL All informational messages.
WARN | NG Warning messages.
ERR R Error messages.
FATAL[_ERRCR| Fatal error messages.
* All messages.

187

CHAPTER 13 | Setting Orbix Logging

Redirecting Log Output

Overview

Setting the output stream to a
local file

188

By default, Orbix is configured to log messages to standard error. You can
change this behavior for an ORB by setting a logstream plug-in to be loaded

by the ORB. For example, you can set the output stream to a local file
owned by the ORB, or to the host’s system error log.

As with all other configuration variables, these can be set using the i t admi n

commands vari abl e create and vari abl e nodi fy.

This section includes the following:

“Setting the output stream to a local file”.

“Using rolling log files”.

“Setting the output stream to the system log”.
“Buffering the output stream before writing to a file”.

To set the output stream to a local file, set the following configuration
variable:

pl ugi ns: | ocal _| og_streamfil enane = fil enanme

The following example uses the i tadmi n vari abl e nodi fy command:

itadmn variable nodify -type string -val ue

If your configuration domain is file-based, you can also set this variable in

"/var/adm nyl ocal .| og" pl ugins:|ocal | og _streamfil enanme

your configuration file. For example:

pl ugi ns: |l ocal _| og_streamfil enane = "/var/adm nyl ocal .| og";

Using rolling log files

Setting the output stream to the
system log

Buffering the output stream before
writing to a file

Redirecting Log Output

Normally, the local log stream uses a rolling file to prevent the log from
growing indefinitely. In this model, the stream appends the current date to
the configured filename. This produces a complete filename (for example,
/var/adniart .| og. 02172002) . A new file begins with the first event of the
day and ends at 23:59:59 each day.

You can disable rolling file behavior by setting the rol i ng_fi | e variable to
false. For example:

plugi ns:local _log_streamrolling_file = "fal se";

The system log stream reports events to the host's system log—sysl og on
UNIX, and the event log on Windows. Each log entry is tagged with the
current time and logging process ID, and the event priority is translated into
a format appropriate for the native platform.

To set the output stream to the system log, add the system | og_stream
value to the orb_pl ugi ns configuration variable. You can use the

system | og_st r eamoutput stream concurrently with the I ocal _| og_st r eam
if necessary.

The following or b_pl ugi ns variable includes the syst em | og_st r eamvalue:

orb_pl ugi ns=["system| og_streant, "iiop_profile", "giop",
"tiop",[;

You can also set the output stream to a buffer before writing to a local log
file. Use the pl ugi ns: 1 ocal _| og_stream buffer_fil e configuration
variable to specify this behavior. When this variable is set to true, by default,
the buffer is output to the local file every 1000 milliseconds when there are
more then 100 messages logged. The log interval and the number of log
elements can also be configured.

For example, the following configuration writes the log output to the
/var/adniart.| og file every 400 milliseconds if there are more then 20 log
messages in the buffer.

pl ugi ns:local _|l og_streamfil ename = "/var/adm art.| og";
pl ugi ns: | ocal _| og_streambuffer_file = "true";

pl ugi ns: | ocal _|l og_streamm||iseconds_to_| og = "400";
pl ugi ns: |l ocal _| og_stream| og_el enents = "20";

189

CHAPTER 13 | Setting Orbix Logging

190

CHAPTER 14

Monitoring GIOP
Message Content

Orbix includes the GIOP Snoop tool for intercepting and
displaying GIOP message content.

In this chapter This chapter contains the following sections:
Introduction to GIOP Snoop page 192
Configuring GIOP Snoop page 193
GIOP Snoop Output page 196

191

CHAPTER 14 | Monitoring GIOP Message Content

Introduction to GIOP Snoop

Overview

GIOP plug-ins

192

GIOP Snoop is a GIOP protocol level plug-in for intercepting and displaying
GIOP message content. This plug-in implements message level interceptors
that can participate in client and/or server side bindings over any
GIOP-based transport. The primary purposes of GIOP Snoop are to provide a
protocol level monitor and debug aid.

The primary protocol for inter-ORB communications is the General
Inter-ORB Protocol (GIOP) as defined the CORBA Specification. Orbix
provides several GIOP based plug-ins that map GIOP to a number of
transports. For example, CORBA I1OP (for TCP/IP), and proprietary IONA
transport mappings, such as SIOP (a shared memory transport), and MPI (a
multicast transport for GIOP). GIOP Snoop may be used with these (and any
future) GIOP-based plug-ins.

Configuring GIOP Snoop

Configuring GIOP Snoop

Overview

Loading the GIOP Snoop plug-in

GIOP Snoop can be configured for debugging in client, server, or both
depending on configuration. This section includes the following
configuration topics:

® “Loading the GIOP Snoop plug-in”.

® “Client-side snooping”.

® “Server-side snooping”.

® “GIOP Snoop verbosity levels”.

® “Directing output to a file”.

® “Using the Java version of GIOP Snoop”

For either client or server configuration, the GIOP Snoop plug-in must be
included in the Orbix or b_pl ugi ns list (. . . denotes existing configured
settings):

orb_plugins =[..., "giop_snoop", ...];

In addition, the gi op_snoop plug-in must be located and loaded using the
following settings:

/] C++
pl ugi ns: gi op_snoop: shl i b_name = "it_gi op_snoop";

/1l Java

pl ugi ns: gi op_snoop: A assNane =
"com i ona. cor ba. gi op_snoop. @ GPSnoopPl ugl n*;

193

CHAPTER 14 | Monitoring GIOP Message Content

Client-side snooping

Server-side snooping

GIOP Snoop verbosity levels

194

To enable client-side snooping, include the @ CP_SNOCP factory in the client
binding list. In this example, GIOP Snoop is enabled for 110P-specific
bindings:

bi ndi ng: client_binding list =
[..., "G CP+A@ CP_SNOCPHI I COP, ...];

To enable server-side snooping, include the @ GP_SNOCP factory in the server
binding list.

pl ugi ns: gi op: message_server_binding_list =
[..., "@CP_sSNooP+@ oP, ... 1;

Note: For Orbix 6.x, the ordering of this setting has been reversed to
correct consistency issues in previous releases of Orbix across Java and
C++ configuration.

You can use the following variable to control the GIOP Snoop verbosity level:
pl ugi ns: gi op_snoop: verbosity = "1";

The verbosity levels are as follows:

LOWV

MED UM
HG
VERY H CH

A W N P

These verbosity levels are explained with examples in “GIOP Snoop Output”
on page 196.

Directing output to a file

Using the Java version of GIOP
Snoop

Configuring GIOP Snoop

By default, output is directed to standard error (st derr). However, you can
specify an output file using the following configuration variable:

pl ugi ns: gi op_snoop: fil ename = "<sone-fil e-pat h>";

A month/day/year time stamp is included in the output filename with the
following general format:

<fi | enane>. MMDDYYYY

As a result, for a long running application, each day results in the creation of
a new log file. To enable administrators to control the size and content of
output files GIOP Snoop does not hold output files open. Instead, it opens
and then closes the file for each snoop message trace. This setting is
enabled with:

pl ugi ns: gi op_snoop: rol ling_file = "true";

To use the Java version of the GIOP Snoop plug-in, add the gi op_snoop. j ar
file to your classpath. For example:

UNIX

export CLASSPATH=
$CLASSPATH $I T_PRODUCT_DI R/ asp/ 6. 0/ | i b/ asp- cor ba. j ar

Windows

set CLASSPATH=
YELASSPATHY % T_PRCDUCT_DI R asp\ 6. O\ | i b\ asp- cor ba. j ar

195

CHAPTER 14 | Monitoring GIOP Message Content

GIOP Snoop Output

Overview The output shown in this section uses a simple example that shows
client-side output for a single binding and operation invocation. The client
establishes a client-side binding that involves a message interceptor chain
consisting of IIOP, GIOP Snoop, and GIOP. The client then connects to the
server and first sends a [Locat eRequest] to the server to test if the target
object is reachable. When confirmed, a two-way invocation [Request] is
sent, and the server processes the request. When complete, the server
sends a [Repl y] message back to the client.

Output detail varies depending on the configured verbosity level. With level
1 (LOW, only basic message type, direction, operation name and some GIOP
header information (version, and so on) is given. More detailed output is
possible, as described under the following examples.

LOW verbosity client-side An example of LOMverbosity output is as follows:
snooping

[Conn: 1] Qut:(first for binding) [LocateRequest] MsglLen: 39 Reqgld: O
[Conn:1] In: (first for binding) [LocateReply] MsglLen: 8 Regld: O
Locate status: CBIECT_HERE
[Conn: 1] Qut: [Request] MsgLen: 60 Regld: 1 (two-way)
Qperation (len 8) 'null _op'
[Conn: 1] In: [Reply] MsgLen: 12 Reqld: 1
Reply status (0) NO EXCEPTI ON

This example shows an initial conversation from the client-side perspective.
The client transmits a [Locat eRequest] message to which it receives a

[Locat eRepl y] indicates that the server supports the target object. It then
makes an invocation on the operation nul | _op.

The Conn indicates the logical connection. Because GIOP may be mapped to
multiple transports, there is no transport specific information visible to
interceptors above the transport (such as file descriptors) so each
connection is given a logical identifier. The first incoming and outgoing GIOP
message to pass through each connection are indicated by (first for

bi ndi ng) .

196

GIOP Snoop Output

The direction of the message is given (Qut for outgoing, I n for incoming),
followed by the GIOP and message header contents. Specific information
includes the GIOP version (version 1.2 above), message length and a unique
request identifier (Regl d), which associates [Locat eRequest] messages
with their corresponding [Locat eRepl y] messages. The (two-way) indicates
the operation is two way and a response (Repl y) is expected. String lengths
such as | en 8 specified for Qper at i on includes the trailing null.

MEDIUM verbosity client-side An example of MEDl UMverbosity output is as follows:

snooping

16:

16:

16:

16:

24:39 [Conn: 1] Qut:(first for binding) [LocateRequest] AQCPvl. 2 MglLen: 39
Endian: big Regld: O

Target Address (0: KeyAddr)

Chj Key (len 27) ':>.11........ VAL !

24:39 [Conn: 1] In: (first for binding) [LocateReply] AQCPvl.2 MglLen: 8
Endian: big Regld: O
Locate status: OBIECT_HERE

24:39 [Conn: 1] Qut: [Request] AdCP vl.2 MgLen: 60
Endian: big Regld: 1 (two-way)

Target Address (0: KeyAddr)

Chj Key (len 27) '":>.11........ VAL !

Qperation (len 8) 'null_op'

24:39 [Conn: 1] In: [Repl y] dCP vl.2 MglLen: 12
Endian: big Regld: 1
Reply status (0) NO _EXCEPTI ON

For MEDl UMverbosity output, extra information is provided. The addition of

time stamps (in hh: mm ss) precedes each snoop line. The byte order of the
data is indicated (Endi an) along with more detailed header information such
as the target address shown in this example. The target address is a GIOP

1.2 addition in place of the previous object key data.

197

CHAPTER 14 | Monitoring GIOP Message Content

HIGH verbosity client side The following is an example of H GH verbosity output:
snooping

16:24:39 [Conn: 1] Qut: (first for binding) [LocateRequest] AQCP vl.2 MgLen: 39
Endian: big Reqld: O
Target Address (0: KeyAddr)
oj Key (len 27) '":>11........... AL '
A CP Hdr (len 12): [47][49][4f][50][01][02][00][03][00][00][00][27]
Mg Hdr (len 39): [00][00][00][00][00][00][00][00][00][00][00][1b][3a][3e]
[02] [31][31] [Oc] [00] [00] [00] [00] [00] [00] [Of] [05] [00] [00] [41] [6] [08][00] [00] [00]
[00] [00] [00] [00] [00]
[---- end of message ----]

16:31: 37 [Conn: 1] In: (first for binding) [LocateReply] QCP vl.2 MglLen: 8
Endian: big Reqgld: O
Locate status: CBIECT HERE
A CP Hdr (len 12): [47][49][4f][50][01][02][00][04][00][00][00][08]
Msg Hdr (len 8): [00][00][00][00][00][00][00][01]
[---- end of message ----]

16: 31: 37 [Conn: 1] Qut: [Request] QCP vl.2 MgLen: 60

Endian: big Regld: 1 (two-way)

Target Address (0: KeyAddr)

ChjKey (len 27) ':>11........... Ao '

Qperation (len 8) 'null _op'

No. of Service Contexts: O

A CP Hir (len 12): [47][49][4f][50][01][02][00][00][00][00][00][3c]

Msg Hdr (len 60): [00][00][00][01][03][00][00][00][00][00][00][00][00][00]
[00] [1b][3a] [3e] [02][31] [31][Oc][00] [00] [0C][00][00][00][Of][05][00][00][41][c6]
[08] [00] [00] [00] [0C][00] [00] [0O] [00] [0] [00] [00] [00] [08] [6€] [75] [6¢][6¢] [5F] [6f]
[70] [00] [00] [00] [00] [00]

[---- end of message ----]

16:31: 37 [Conn: 1] In: [Repl y] AdCcP vl.2 MgLen: 12
Endian: big Reqld: 1
Reply status (0) NO _EXCEPTI ON
No. of Service Contexts: O
G CP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][O0c]
Mg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
[---- end of message ----]

This level of verbosity includes all header data, such as service context data.
ASCII-hex pairs of GIOP header and message header content are given to
show the exact on-the-wire header values passing through the interceptor.
Messages are also separated showing inter-message boundaries.

198

GIOP Snoop Output

VERY HIGH verbosity client side This is the highest verbosity level available. Displayed data includes H GH

snooping level output and in addition the message body content is displayed. Because
the plug-in does not have access to IDL interface definitions, it does not
know the data types contained in the body (parameter values, return values
and so on) and simply provides ASCII-hex output. Body content display is
truncated to a maximum of 4 KB with no output given for an empty body.
Body content output follows the header output, for example:

é CP Hir (len 12): [47][49][4f][50][01][02][00][01][00][00][00][Oc]
Msg Hdr (len 12): [00][0O0] [00][01][00][00][00][00][00][00][00][00]
Msg Body (len <x>): <content>

199

CHAPTER 14 | Monitoring GIOP Message Content

200

CHAPTER 15

Debugging IOR
Data

Orbix includes iordump tool for analyzing IOR data and finding
possible causes for badly formed IORs.

In this chapter This chapter contains the following sections:
IOR Data Formats page 202
Using iordump page 205
iordump Output page 207
Data, Warning, Error and Information Text page 213

201

CHAPTER 15 | Debugging IOR Data

IOR Data Formats

Overview

Stringified IOR data

IDL definition

202

CORBA Inter-operable Object Reference (IOR) data can be presented in one

of two forms:

® Stringified form which is coded by converting each binary byte of
coded data into an ASCII pair of characters representing the hex
equivalent in readable form.

® CDR encoded (and aligned) binary data, which encodes each CORBA
defined data type on its natural boundary. Short values are encoded on
a 2-byte boundary, long values on a 4-byte boundary and, so on. Data
contains padding between data types in order to ensure aligned data.

Stringified I0R data is in the format | R followed by a series of hex value
pairs. For example:

| CR 010000001c00000049444¢3a53696d706c652f 53696d706c654f 626a6

It is best known as the CORBA IOR: URL passed to the IDL operation
QOCRBA: : CRB: : string_to_obj ect (). The stringified IOR data format of an
encoded IOR can be obtained by using the IDL operation

QCRBA: : CRB: : obj ect _to_string().

Raw IOR data is encoded as the CDR representation of the IOR structure,
defined in the CORBA GIOP specification, declared by the IDL shown in
Example 3:

IOR Data Formats

Example 3: /OR data IDL definition

/1 1DL
t ypedef unsigned | ong Profileld,;

const Profileld TAG | NTERNET_I CP = O;
const Profileld TAG MLTI PLE COVPONENTS = 1,

/1l A TaggedProfile contai ns opaque profile and conponent
// data and a tag to indicate the type and format of the data.
struct TaggedProfile

{

Profileld tag;

sequence <octet> profil e_dat a;

I

// 1R is a sequence of object specific protocol profiles
I/ (TaggedProfiles) plus a type id.
struct ICR

{
string type_id;
sequence <TaggedProfile> profiles;

}

/1 A MiltipleConponentProfile is contained in a TaggedProfile
/] with the tag TAG MULTI PLE COMPCNENTS.
typedef unsigned | ong Conponent| d;

struct TaggedConponent

{
Conponent | d t ag;
sequence <oct et> conponent _dat a;

}

typedef sequence <TaggedConponent> Ml ti pl eConponent Profil e;

203

CHAPTER 15 | Debugging IOR Data

204

Example 3: /OR data IDL definition

// This declares |1 CP ProfileBody data contained in a

/1 TaggedProfile with the tag TAG | NTERNET_| CP.

// 11CP 1.0/1.1/1.2 revisions are given.
struct Version

{

octet major;

octet mnor;

}

struct ProfileBody 1 O
{
Version iiop_version;
string host;
unsi gned short port;
sequence <oct et > obj ect _key;

b

struct ProfileBody_1 1
{
Version iiop_version;
string host;
unsi gned short port;
sequence <oct et > obj ect _key;

sequence <I CP:: TaggedConponent > conponent s;

15

typedef ProfileBody_1 1 ProfileBody_1 2;

/] Added in 1.1

/] Sane as 1.1

Using iordump

Using iordump

Overview i ordunp is a utility that decodes CORBA inter-operable object reference
(IOR) content and presents it in readable format through st dout. This
utility’s output also includes debugging information to assist in analyzing the
cause of malformed IOR data.

Synopsis i ordunp [-no_host_check] {file | -}
i ordunp [-no_host_check] ICR ...

Description i or dunp reads the IOR data either from a specified file (- for st di n), or given
as a command line argument, and prints the detailed contents of the IOR
data. The IOR may be specificed either in the standard CORBA defined
stringified form or raw binary CDR encoded data. The IOR content is displayed
in both stringified and ASCII-hex formats. The tools emphasis is on reporting
all possible erroneous values or suspect data, while also displaying the
meaning and value of each data item.

Parameters i or dunp takes the following parameters:

-no_host _check The default behavior is to attempt a host lookup on each
host specified in the IOR. This option prevents this host
lookup check.

file Specifies the name of the file from which to read the IOR
data.

Specifies that the IOR data is to be read from st di n.
IR ... Specifies the IOR to decode on the command line.

205

CHAPTER 15 | Debugging IOR Data

Examples

Notes

206

To analyze the contents of a stringified IOR read from st di n:

> echo “ICR..."” | iordunp -

To analyze the contents of the IOR generated by the simple CORBA demo:
> jordunp sinplel.ior

To analyze the contents of a stringified IOR specified as a command line
argument:

> jordunp | GR 000001.....

Data other than a single IOR in a file will result in the whole data being
analyzed as a single IOR. Only in the case of stringified IORs are trailing
newlines, carriage returns and nulls removed.

iordump Output

iordump Output, .,

Byte order of ICR (1) Little Endian
>> +1 [00] [00] [00] I

. (paddi ng)
Overview >> +4 [1c] [00] [00] [00] en
Typel d I ength: 28 bytes (including null)
>> 48 I
[49][44][4c] [3a] [53][69] [6d][70][6c] [65][2f][53][69][6d][70][in
6¢] [65] [4f]1[62][6a][65][63][74][3a][31][2€][30][00]
Typeld value: '1DL:Sinple/SinpleCject:1.0."
>> +36 [01] [00] [00] [00] I
Example Nurber of tagged profiles: 1

Example 4: Sample iordump Output
C \>i ordunp sinplel.ior

Stringified ICRis: ([string/coded data] |ength: 312 / 154 bytes)

>>
| CR 010000001c00000049444¢3a53696d706c652f 53696d706c654f 626a6
563743a312e300001000000000000006a000000010102000e00000036332¢
36352e3133332e32353000a70f 1b0000003a3e0231310c00000000ec09000
08d2000000800000000000000000002000000010000001800000001000000
0100010000000000000101000100000009010100060000000600000001000
0001100

207

CHAPTER 15 | Debugging IOR Data

208

>>

>>

>>

>>

>>

+0 [01]
Byte order of ICR (1) Little Endian
+1 [00] [00] [00]
(paddi ng)
+4 [1c][00] [00] [00]
Typel d I ength: 28 bytes (including null)
+8
[49][44][4c] [3a] [53][69] [6d][70][6c] [65][2f][53][69][6d][70][
6¢] [65] [4f]1[62][6a][65][63][74][3a][31][2€][30][00]
Typeld value: '1DL:Sinple/SinpleCject:1.0."
+36 [01] [00] [00] [00]
Nunber of tagged profiles: 1

iordump Output

Example 4: Sample iordump Output

>>

>>

>>

>>

>>

>>

>>

>>

>>

Profile 1:
+40 [00] [00] [00] [00]
Tag: (0) TAG.| NTERNET_I| CP
+44 [6a] [00] [00] [00]
Profile I ength: 106 bytes
+48 [01]
Byte Order: (1) Little Endian
+49 [01] [02]
Version: 1.2
+52 [0e] [00] [00] [00]
Host length: 14 bytes (including null)
+56 [36][33][2e][36][35][2e][31][33][33][2e][32][35][30][00]
Host string: '63.65.133.250."
* host | P address | ookup succeeded, but failed to
find a host nane (war ni ng)
+70 [a7][Of]
Port: 4007
+72 [1b] [00] [00] [00]
Cbj ect Key length: 27 bytes (including any
trailing null)
+76
[3a] [3e] [02] [31][31] [0c] [00] [00] [00] [00] [ec] [09] [00][00] [8d][
20] [00] [00] [

08] [00] [00] [00] [00] [0] [00] [00] [0O]

>>

>>

Chject key data: ':>11.......... '
(looks like an Orbix ART Transient key)
+103 [00]
(paddi ng)
+104 [02] [00] [00] [00]
Nunber of tagged conponents: 2

209

CHAPTER 15 | Debugging IOR Data

210

Example 4: Sample iordump Output

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

Conponent 1:

+108 [01] [00] [00] [00]

Tag: (1) OCDE_SETS
+112 [18][00] [00] [00]

Conponent | ength: 24 bytes
+116 [01]

Conponent Byte Order: (1) Little Endian
+117 [00] [00] [00]

(paddi ng)

+120 [01] [00] [01] [00]

Native CodeSet id (for char): 65537

(1'SO 8859-1:1987; Latin Al phabet No. 1)
+124 [00] [00] [00] [00]

Nunber of conversion code sets (CCS): 0
+128 [00] [01] [01] [00]

Native CodeSet id (for wchar): 65792

(1'SQ'I EC 10646-1: 1993; UCS-2, Level 1)
+132 [01] [00] [00] [00]

Nunber of conversion code sets (CCS): 1
+136 [09][01] [01] [00]

OCS(1) CodeSet |d 65801

(1'SQ'I EC 10646-1: 1993; UTF- 16, UCS
Transformati on Fornat 16-bit form)

Conponent 2:

+140 [06] [00] [00] [00]

Tag: (6) ENDPQ NT_I D _PCSI TI ON
+144 [06] [00] [00] [00]

Conponent | ength: 6 bytes
+148 [01]

Conponent Byte Order: (1) Little Endian
+149 [00]

(paddi ng)

+150 [00] [00]

Endpoi nt1d begin (index): O
+152 [11] [00]

Endpoi nt1d end (index): 17

iordump Output

Stringified Data Output

All output begins with the stringified IOR such as:

Stringified ICRis: ([string/coded data] |ength: 312 / 154 bytes)

>>
| CR 010000001c00000049444¢3a53696d706c652f 53696d706c654f 626a6
563743a312e300001000000000000006a000000010102000e00000036332¢
36352e3133332e32353000a70f 1b0000003a3e0231310c00000000ec09000
08d2000000800000000000000000002000000010000001800000001000000
0100010000000000000101000100000009010100060000000600000001000
0001100

The first line gives the string length as the number of characters in the
following IOR string, including the | R prefix. The coded data length
indicates the number of bytes of encoded data which is represented by the
stringified IOR, as per the CDR rules for encoding IOR data.

211

CHAPTER 15 | Debugging IOR Data

ASCIll-Hex Data Output

Display format

Example

212

All ASCII-hex pairs are printed as [ab] pairs in the output, where ab is a
character pair in the range 00 to FF.

Each line of ASCII-hex output contain segments of ASCII-hex data taken
from the stringified IOR, including the byte offset of the data relative to the
start of the equivalent binary coded I0R, beginning at byte zero:

>> +offset [ab][ab][abl]...

For example, the following output text:
>> +4 [00] [00] [00] [18]

indicates the four ASCII pairs which are coded four bytes into the IOR binary
data, in this case being the Typel d string length value of 24 bytes.

Note also that all printed data is shown in the byte order as coded into the
IOR. The above, for example, is the value 24 as coded on a Big Endian
machine and is displayed as such regardless of the byte order of the
machine iordump is running on. lordump only byte-swaps the values, if
needed, in order to decode and print their actual value.

Data, Warning, Error and Information Text

Data, Warning, Error and Information Text

Overview

Example

In this section

All other output consists of data text for each data type and its value, and
any relevant text to inform of errors, warnings or simple informative message
text of conditions detected for each specific data item.

For example, the following output shows the data type/value output Typel d
length:... and an error message indicating an invalid data value.

>> +4 [40][32] [40][32]
Typel d | engt h: 843067968 bytes (including null)
* bad Typeld sequence | ength (843067968)

This section discusses the following topics:

Errors page 214

Warnings page 217

213

CHAPTER 15 | Debugging IOR Data

Errors

214

The errors include the following:

* unknown General error indicating the specified data value is not a known
or standard value. This typically includes Tag values and other well known
values.

* number of profiles is zero (should at least have one!) The IOR

TaggedPr of i | e sequence length value indicates there are no tagged profiles,
only a Typel d string. If this is not the case, the length value may be set
incorrectly to zero.

* empty profile (zero length); skip to next profile ATaggedPr ofi | e is of zero
length. This may be possible although it is currently flagged as a possible
error.

* gone beyond the end of the profile data; must exit (number of profiles
suggests more data) The number of profiles value has caused i or dunp to
skip beyond the end of the data. The tool expects to see more profiles. This
occurs because the value is corrupt or has been coded in the IOR
incorrectly. A few reasons for this error is: a value is encoded using the
wrong alignment, or a value is decoded based on an incorrect byte order
setting, or the wrong value was encoded.

* unknown IIOP version (attempting to read as 1.0 data) TheProfi | eBody
is not one of the supported [IOP versions recognized by i or dunp. An attempt
is made to interpret the initial part of the data as 1.0 IIOP profile data.

* unknown profile tag/format The profile tag is unknown, either because it
is corrupt or because it is an unknown vendor-defined tag not registered
with the OMG.

* gone beyond the end of the component data; skip component An invalid
length has caused the component data to be exhausted. If possible, i or dunp
will skip the invalid component data and move onto the next to the next
component.

Data, Warning, Error and Information Text

* only one ORB_TYPE component allowed The OMG specification only
allows one TAG CRB_TYPE component per profile, so the IOR is not
OMG-compliant.

* missing CodeSetComponent for wchar / * missing conversion code sets

for wchar ATAG CCDE_SETS component consists of two CodeSet Conponent s,
one for char conversions and one for wchar conversions. Each

CodeSet Conponent is a struct containing a native CodeSet I d, specified as a
ul ong and conversion code sets, specified as a sequence of CodeSet I d. The
encapsulated data contained in the tagged component is a

CodeSet Conponent | nf o which is defined as follows:

typedef unsi gned | ong CodeSet | d;
struct CodeSet Conponent

{
CodeSet | d native_code_set;
sequence<CodeSet | d> conver si on_code_set s;
IE

struct CodeSet Conponent | nf o
{

CodeSet Conponent For Char Dat a;
CodeSet Conponent For W har Dat a;

}

These errors are reported if part of this data structure is missing from the
IOR tagged component.

* null wchar native code set; client will throw INV_OBJREF The CORBA
specification includes a requirement that a native code set is specified at
least for a server that supports the IDL wchar type because there is no
default wchar conversion code set. If the native code set for wchar is set to
zero this is an error and according to the spec; the client will throw an

I N\V_CBIREF exception.

* a zero string length is illegal, client will throw MARSHAL A string is
encoded as <l engt h><char act er s> where the length includes a terminating
nul I . All strings contain a nul | , therefore a zero length is illegal.

* should be 0 or 1; assuming (1) Little Endian The oct et containing the

byte order flag in an IOR may only contain the values 0 or 1 to indicate Big
or Little Endian.

215

CHAPTER 15 | Debugging IOR Data

216

* bad <data type> sequence length (<n>) The length check on a
sequence<oct et > coded length value indicates an invalid length field.

* stringified IOR should have an even length; added trailing’0’ to continue

The stringified IOR always contains an even number of characters because it
contains ASCII-Hex pairs. An additional 0 is added to the data to allow it to
be decoded and analyzed. Possible errors will result when analyzing the last
bytes.

* tried to skip <n> byte(s) of padding beyond the remaining data; exit..

Tried to align for a data type when the alignment has skipped beyond the
amount of remaining data.

* attempt to read <n> byte data type, only <m> remaining; exit.. After
skipping padding bytes and aligning to read the next data item, a check is
also made that the number of bytes required to read the data type does not
exceed what data is actually left to read.

* no more data; exit.. Unexpectedly ran over the end of data.

Data, Warning, Error and Information Text

Warnings

The warnings include the following.

* non zero padding (warning) This indicates that unused oct et s in the data
contain non-zero values. Unused bytes exist because of required padding
bytes between data values in order to maintain the correct data alignment.
The CORBA specification does not insist on having all padding zeroed
although this potentially creates problems when an IOR is published, or
used for hashing, or any situation which results in two IORs being
considered different simply because of differences in unused padding data.

* no null character at end (warning) In some cases, a sequence<oct et >
may be used to store string values. This warning indicates that a data value
that can be interpreted as a string does not contain a terminating nul I . If
the data is meant to be used as a string, this can cause problems when
trying to decode and use the string. An example is the use of strings to
represent the object key by some vendors. Otherwise, this warning may be
ignored.

A simple mistake made when coding such a string is in using the string
length given by strlen(1) to code the sequence length, without adding 1
for the nul | .

* should Typeld begin with 'IDL:’ prefix? (warning) A check was made on
the Typel d string and the expected I DL: prefix was not found.

* num profiles sounds excessive, only printing <n> If the value containing
the number of profiles exceeds a reasonable limit (100 as set by i or dunp),

only the number of profiles up to the limit is printed.

* IOR contains <n> garbage trailing byte(s): Any remaining bytes in the
data, beyond the last decoded data value are printed before exit.

* empty component data, zero length (warning) A TaggedConponent length
field indicates a zero length component.

217

CHAPTER 15 | Debugging IOR Data

218

* previous component sequence length may be wrong (warning) The
sequence length of a previous component may be wrong and caused the
data of the following component to be considered part of it. This is only a
possible explanation for a missing component, particularly if the previous
component reported an unknown or illegal data value.

* host unknown; possibly unqualified (warning) An attempt is made to do
a lookup of the host contained in an IlOP profile. If the host lookup fails, this
is printed as a warning. This would result if the host is really unknown, or is
not fully qualified with the complete domain.

* host name lookup succeeded, but failed to find an IP address (warning)

The specified host lookup succeeded, but an attempt to lookup the IP
address mapping for the specified host failed.

* host IP address lookup succeeded, but failed to find a hostname (warning)

The specified IP address lookup succeeded, but an attempt to lookup the
host mapping for the specified address failed.

Part IV

Command Reference

In this part This part contains the following chapters:

Starting Orbix Services page 221

Managing Orbix Services With itadmin page 233

CHAPTER 16

Starting Orbix
Services

This chapter describes commands that start Orbix services. For
information on starting Orbix services as Windows NT services,
see Appendix A on page 389.

In this chapter This chapter contains the following sections:
Starting and Stopping Configured Services page 222
Starting Orbix Services Manually page 223
Stopping Services Manually page 232

221

CHAPTER 16 | Starting Orbix Services

Starting and Stopping Configured Services

Start and stop scripts The Orbix configuration tool generates two scripts that start and stop all
configured Orbix services:

UNIX

start _donai n- name_ser vi ces. sh
st op_donai n- nane_ser vi ces. sh

Windows

start _donai n- name_ser vi ces. bat
st op_donai n- nane_ser vi ces. bat

The startup script starts all Orbix services you configured using the
configuration tool. For example, given a domain name of AcneSer vi ces, the
following command starts all services on Windows:

start_AcmeServi ces_servi ces. bat

Start-up order Orbix services, when configured, start up in the following order:
Configuration repository

Locator daemon

Node daemon

Naming service

Interface repository

ARSI S A

Event service

For example, you might decide to configure the event service but not the
naming service. In this case, the event service takes a priority of 5.

222

Starting Orbix Services Manually

Starting Orbix Services Manually

Orbix also provides separate commands for starting each service manually,
with the following syntax:

i tservice-nane [run]

run is optional. For example, the following commands both start the
interface repository:

itifr
itifr run

Table 8 lists all commands for running services manually:

Table 8: Commands to Manually Start Orbix Services.

Command Starts
itconfig_rep run Configuration repository
itlocator run Locator daemon
i t node_daenon run A node daemon
i tnamng run Naming service database
itifr run Interface repository
itevent run Event service
itnotify run Notification service

Note: In a repository-based configuration domain, the configuration
repository must be running before starting additional services.

itconfig_rep run

Synopsis itconfig_rep - ORBdonai n_nane cfr-domai n-nane [- CRBnane ORB- hane]
[run] [-background]

223

CHAPTER 16 | Starting Orbix Services

Description Starts the configuration repository. The configuration repository must already
be configured in your Orbix environment. This command requires you to be
logged in as administrator (Windows) or root (UNIX).

UNIX
You can push the process into the background.

Windows
Leave the command window open.

Options

- CRBdonai n_nane The configuration repository’s domain file name,
cfr-domain-nane which is generated when you create the domain.
The generated configuration domain file has the

name cfr - domai n- nane. cf g.

For example, given configuration domain
acnepr oduct s, the configuration repository
initializes itself from cf r - acnepr oduct s. cf g.

- CRBnane CRB- name Directs the initializing configuration repository to
retrieve its configuration from the specified
configuration scope.

By default, this is the confi g_rep scope. Use the
- CRBnare argument to specify a different
configuration scope. For example:

itconfig_rep -CRBname config_rep.config2 run

- backgr ound Runs the configuration repository in the
background. Control returns to the command line
only after the service successfully launches. If you
omit the - backgr ound argument, the configuration
repository runs in the foreground. This argument
can be abbreviated to - bg. For example:
itconfig_rep run -bg
The - backgr ound argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

224

itlocator run

Synopsis

Description

Options

Starting Orbix Services Manually

itlocator [-CRBnane CRB-nane] run [-background]

Starts the locator daemon. The locator daemon must already be configured
in your Orbix environment. In a location domain, the locator daemon controls
read and write operations to the implementation repository. By default,
entering i t1 ocat or without specifying the run command starts the default

locator daemon.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

- CRBnane CRB- hane

- backgr ound

Directs the initializing locator daemon to retrieve its
configuration from the specified configuration
scope.

By default, this is the | ocat or scope. Use the
- CRBnare argument to specify a different
configuration scope. For example:

itlocator -CRBnane |ocator.locator2 run

Runs the locator daemon in the background.
Control returns to the command line only after the
service successfully launches. If you omit the

- backgr ound argument, the locator daemon runs in
the foreground. You can abbreviate this argument
to - bg. For example:

itlocator run -bg

The - backgr ound argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

225

CHAPTER 16 | Starting Orbix Services

itnode_daemon run

Synopsis

Description

Options

226

i tnode_daenon [-CRBnane CRB-nane] run [-background]

Starts a node daemon. A node daemon controls registered server processes
to ensure that they are always running, starts processes on demand, or
disables them from starting. The node daemon also monitors all child
processes of registered server processes, and informs the locator daemon
about any events relating to these child processes—in particular, when a child
process terminates. By default, entering i t node_daenon without specifying
the run command starts the default node daemon.

UNIX
You can push the process into the background.

Windows
Leave the command window open.

- CRBnane CRB- nane Directs the initializing node daemon to retrieve its
configuration from the specified configuration
scope.

By default, this is the
i ona_ser vi ces. node_daenon scope. Use the
- CRBnane argument to specify a different
configuration scope. For example:
i t node_daenon - CRBnane
i ona_servi ces. node_daenon. nd2 run

- backgr ound Runs the node daemon in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
- backgr ound argument, the node daemon runs in
the foreground. You can abbreviate this argument
to - bg. For example:
i t node_daeron run -bg
The - backgr ound argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

itnaming run

Synopsis

Description

Options

Starting Orbix Services Manually

- CRBsecure_di rectori es Specifies a list of secure directories in which the

node daemon launches processes. This overrides
the path specified for the registered process. For
example:

i t node_daenon - CRBsecure_directories
[c:\ Acne\ bi n, c:\ ny_app]

You must enclose the directory list in square

brackets. If you omit this argument, the node

daemon launches processes from the path

specified in the location domain.

i tnam ng [-ORBnarme CRB-nane] run

Starts the naming service, assuming it is already configured in your Orbix
environment. By default, entering i t nani ng without specifying the run
command starts the naming service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

- CRBnane CRB- name

Directs the initializing naming service to retrieve its
configuration from the specified configuration
scope.

By default, this is the nam ng scope. Use the

- CRBnare argument to specify a different
configuration scope. For example:

i t nam ng - GRBname nani ng. nam ng2 run

227

CHAPTER 16 | Starting Orbix Services

- backgr ound Runs the naming service in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
- background argument, the naming service runs in
the foreground. You can abbreviate this argument
to - bg. For example:
itnaming run -bg
The - backgr ound argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

itifr run

Synopsis itifr [-CRBnane CRB-nane] run [-background]

Description Starts the interface repository daemon. The interface repository must already
be configured in your Orbix environment. By default, entering i ti fr without
specifying the run command starts the interface repository.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

- CRBnane CRB- nane

228

Directs the initializing interface repository to
retrieve its configuration from the specified
configuration scope.

By default, this is the i fr scope. Use the - CRBnane
argument to specify a different configuration scope.
For example:

itifr -CRBnane ifr.ifr2 run

- backgr ound

Starting Orbix Services Manually

Runs the interface repository in the background.
Control returns to the command line only after the
service successfully launches. If you omit the

- backgr ound argument, the interface repository
runs in the foreground. You can abbreviate this
argument to - bg. For example:

itifr run -bg

The - backgr ound argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

itevent run

Synopsis i tevent [-CRBname CRB-name] run [-background]

Description Starts the event service. The event service must already be configured in your
Orbix environment. By default, entering i t event without specifying the run
command starts the event service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

- CRBnane CRB- nane

Directs the initializing event service to retrieve its
configuration from the specified configuration
scope.

By default, this is the event scope. Use the

- CRBnare argument to specify a different
configuration scope. For example:

itevent -CRBnane event.event2 run

229

CHAPTER 16 | Starting Orbix Services

- backgr ound Runs the event service in the background. Control
returns to the command line only after the service
successfully launches. If you omit the - backgr ound
argument, the event service runs in the foreground.
You can abbreviate this argument to - bg. For
example:
itevent run -bg
The - backgr ound argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

itnotify run

Synopsis itnotify [-CRBname CRB-nane] run [-background]

Description Starts the notification service. The notification service must already be
configured in your Orbix environment. By default, entering i t not i fy without
specifying the run command starts the event service.

UNIX
You can push the process into the background.

Windows
Leave the command window open.

Options

- CRBnane CRB- nane Directs the initializing notification service to
retrieve its configuration from the specified
configuration scopes.

By default, this is the noti fy scope. Use the
- CRBnare argument to specify a different
configuration scope. For example:

itnotify -CRBnane notify.notify2 run

230

- backgr ound

Starting Orbix Services Manually

Runs the notification service in the background.
Control returns to the command line only after the
service successfully launches. If you omit the

- backgr ound argument, the notification service
runs in the foreground. You can abbreviate this
argument to - bg. For example:

itnotify run -bg

The - backgr ound argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

231

CHAPTER 16 | Starting Orbix Services

Stopping Services Manually

Any service that can be started manually can also be stopped manually
using i t adni n commands. The order in which you shut down services
should be determined by the dependencies among them. For example, in a
repository-based domain, you should not shut down the configuration
repository until all other services are shut down.

Shut-down commands have the following syntax:
itadm n service-nanme stop
Table 9 lists the i t adni n commands for shutting down Orbix services:

Table 9: Commands for Stopping Orbix Services

Service Shut-down command
Configuration repository itadmn config stop
Locator itadmn | ocator stop
Node daemon i tadm n node_daenon stop
Naming service itadmn ns stop
Interface repository itadnmin ifr stop
Event service itadmn event stop

232

CHAPTER 17

Managing Orbix
Services With
itadmin

This chapter provides an overview of using the command-line
tool itadnin to manage Orbix services. Typical management
tasks in Orbix include creating, viewing, and removing data
stored in service repositories.

In this chapter This chapter contains the following sections:

Using itadmin page 234
Command Syntax page 237
Services and Commands page 240

233

CHAPTER 17 | Managing Orbix Services With itadmin

Using itadmin

Overview

Command-line utility

Command shell

234

i t adni n lets you manage information used by Orbix services. You can use
i tadni n in various modes and contexts:

® Command-line utility
® Command shell

® Tcl script

® Transactions

To use i tadm n as a command-line utility, simply enter the appropriate
command at the command prompt. For example, the following command
registers an ORB name with the locator daemon:

itadm n orbname create ny_orb_nane

In command-line mode, you must specify the i t admi n prefix before each
command. For a list of itadmin commands, see “Services and Commands”
on page 240.

To use the i t admi n shell, enter i t adm n at the command line. The i tadmn
prompt is displayed. Once you have entered the command shell, you do not
need to enter i t adni n before each command. For example:

itadm n
% or bnane create ny_orb_nane

To leave the i t admi n shell mode, enter exit.

Nested itadmin commands

In shell and Tcl script mode, you can use nested i t adm n commands by
enclosing each command in square brackets. When i t adni n commands are
nested, innermost command are executed first.

Tcl script

Using itadmin

You can write your own Tcl scripts that incorporate i t adm n commands. For
example, you could develop a Tcl script called ny_scri pt that contains one
i tadm n command per line. You would invoke this script by entering:

itadmn ny_script.tcl

You can use Tcl scripts at the command prompt and in the command shell.
Incorporating i t adni n commands in reusable Tcl scripts provides an
extremely powerful way of automating administration tasks (for example,
populating a configuration domain or location domain).

Sample scripts

The following example shows the contents of a simple Tcl script that calls
anitadnmin variabl e create command:

if { [catch {variable create -type string -val ue poa
initial _references: POAQurrent: plugin} result] } {
puts $result
fl ush stdout
exit 1

}

This command creates a configuration variable named

initial _references: PQAQurrent: pl ugi n and assigns it a value of poa. The
remaining Tcl in this simple example is used for Tcl script management. For
example, cat ch prevents a Tcl stack dump if an exception is thrown during
execution.

235

CHAPTER 17 | Managing Orbix Services With itadmin

Transactions

Multiple itadmin sessions

236

The following is a more realistic example of how to use i t adm n commands

within Tcl scripts:

do_cnd installs an exception handl er for each itadmn comand

proc do_cnd {cmd} {
set fail [catch {eval $cnd} result]
if {$fail} {
puts stderr "Problemin \"$cno\": $resul t"”
flush stderr
exit 1
}
}

Each itadnmin command is sent as a parameter to do_cnd

do_cnd {variable create -type string -val ue poa
initial _references: Root POA pl ugi n}

do_cnd {variable create -type string -val ue poa
initial _references: POAQurrent: pl ugi n}

do_cnd {variable nodify ... }

do_cnd {poa create ...}

exit 0

The do_cnud procedure installs an exception handler for each i t adni n
command. Each i tadm n command is in turn sent as a parameter to
do_cnd. For example, the first call to do_cnd creates

initial _references: Root POA pl ugi n and assigns it a value of poa.

i t adm n supports the object transaction service (OTS). Using i t admin

commands in transactions provides i t adni n with multiple undo capability.

Orbix provides i t adm n commands to start, commit, rollback, suspend, and
resume transactions. This enables you to use other i t adm n commands in
transactional mode. For more details, see “Object Transaction Service” on

page 341.-

i t adni n does not perform any record locking while it is making changes to
the configuration database. Therefore, running multiple sessions of i t adni n

in parallel will corrupt your Orbix configuration.

Command Syntax

Command Syntax

Overview

In this section

Specifying lists

i t adni n syntax takes the following general form:
actor [actor nodifiers] action [action nodifiers] [target]

For example, the following command registers a process name with the
locator daemon:

orbname create -process process-nane CRB-nane

In this example, the act or is or bnane, the acti on is creat e, the action
nodi fi er is - process, and the tar get is CRB- nane.

Note: The order of i t adm n components is significant. Each component
must be separated by a space.

The following topics are discussed in this section:

Specifying lists page 237
Specifying negative values page 238
Abbreviating command parameters page 238
Obtaining help page 239

When a command takes a list, separate the list elements with spaces and
enclose the entire list in double quotation marks. For example, the following
command creates a server process entry in the location domain with the
specified environment values:

% process create -env "node=listen priority=l ow startup=yes"
process- nanme

In this example, the value of the - env modifier is a list with three elements,
and the equal sign is treated as a character.

237

CHAPTER 17 | Managing Orbix Services With itadmin

Specifying negative values

Abbreviating command
parameters

238

Double quotation marks group a set of elements into a single entity in which
spaces are not significant. For example, the - ar gs argument to the process
creat e command is treated as a single list element, which must be enclosed
by double quotes:

% process create -args "foo bar baz" process-name

When using i t admi n in command line mode, the quotation marks must be
escaped or they will be stripped away by the command line interpreter. It is
unnecessary to escape the quotation marks when using i t adni n in shell or
script modes.

When the first character of a value supplied to an argument is a minus sign
or hyphen, you must supply an additional hyphen. For example:

-nodifier --3

When the first character is not a hyphen, an additional hyphen is not
necessary. For example:

-nodifier 4,-1,99

You must supply an additional hyphen even if the first character is enclosed
in quotation marks. For example:

%variabl e create -type long -value "--99" ny vari abl e

You can abbreviate all i t adm n command parameters. For example, the
following commands all have the same effect:

% orbnane |ist -p process-nanme
% orbnane |ist -pr process-nane
% orbnane |ist -pro process-name

% orbnane |ist -process process-nanme

Abbreviations must be unique. For example, if two parameters begin with
the same letter, their abbreviations must use at least the minimum number
of letters that differentiate between them.

Obtaining help

Command Syntax

To obtain command line help for i t adm n, enter:

itadmn -help

You can obtain context-sensitive help by entering a command (in its
entirety, or in part) and adding the keyword hel p. For example, for help on
the orbnane creat e command, enter any of the following:

% or bnanme
% or bname
% or bnane
% or bname
% or bname
% or bnane

-hel p

create -help
create -process
create -process
create -process
create CRB-name

-hel p

pr ocess- nare - hel p

process- name CRB-nane - hel p
-hel p

239

CHAPTER 17 | Managing Orbix Services With itadmin

Services and Commands

In this section

240

The following sections group i t adm n commands according to Orbix

services:
Bridging Service page 241
Configuration Domain page 247
Event Log page 307
Event Service page 261
Interface Repository page 269
Location Domain page 275
Naming Service page 317
Notification Service page 329
Object Transaction Service page 341
Object Transaction Service Encina page 345
Persistent State Service page 353
Security Service page 359
Trading Service page 369

Overview

Bridging Service

The bridge service allows JMS and CORBA notification clients to share
messages. i t adm n provides a set of commands for managing the bridging
service:

Table 10: Bridging Service Commands

bridge create Creates a bridge.

bri dge destroy Destroys a bridge.

bridge |ist Lists all of the instantiated bridges in
a deployment.

bridge show Displays the status of a bridge.

bridge start Starts the flow of messages through a
bridge.

bri dge stop Stops the flow of messages through a
bridge.

bri dge suspend Suspends the flow of messages

through a bridge.

endpoi nt _adni n show Displays a bridge’s endpoint admin’s
name and the type of endpoints it
supports.

endpoi nt destroy Destroys an endpoint.

endpoi nt |ist Lists the endpoints associated with

an endpoint admin.

endpoi nt show Display the status and attributes of a
particular endpoint for the specified
bridge.

241

CHAPTER 18 | Bridging Service

bridge create

Synopsis

Description

Arguments

242

bridge create [-source_admn | CR| INT_REF_KEY] [-source_typetopic
| queue | channel] -source_name source nane [-sink_admn IR |
INT_REF_KEY] -sink_type [topic | queue | channel] -sink_nane sink
name bridge nane

Creates a bridge.

—sour ce_adni n The IOR or initial reference of the administrative object
used to connect to the message source. To use the
default notification endpoint admin use
“I' T_NotificationEndpoi nt Adni n”; to use the
default JMS endpoint admin use
"1 T_JMSEndpoi nt Adm n".

-source_type The type of object that passes messages into the bridge.
It can take one of three values: topic if the messages
originate from a JMS topic, queue if the messages
originate from a JMS queue and channel if the
messages originate from a notification channel.

- sour ce_nane The name of the object that passes messages to the
bridge.
-sink_admn The IOR or initial reference of the administrative object

used to connect to where messages are being
forwarded. If the message source is a notification
channel, the message sink should be a JMS

Dest i nat i on. To use the default notification admin use
"I T_NotificationEndpoi nt Adni n"; to use the
default JMS admin use "I T_JMSEndpoi nt Admi n".

-sink_type The type of object that receives messages from the
bridge. It can take one of three values: topic if the
messages are being forwarded to a JMS topic, queue if
the messages are being forwarded to a JMS queue and
channel if the messages are being forward to a
notification channel.

- si nk_nane The name of the object that receives messages from the
bridge.
bri dge nane The name of the bridge. This must be a unique string

value that is used to identify this bridge.

bridge destroy

Synopsis

Description

bridge list

Synopsis

Description

bridge show

Synopsis

Description

bridge start

Synopsis

Description

bridge stop

Synopsis

Description

bridge suspend

Synopsis

Description

bridge destroy bridge name

Destroys a bridge.

bridge |ist

Lists all of the instantiated bridges in a deployment.

bri dge show bri dge nane

Displays the status of a bridge.

bridge start bridge nane

Starts the flow of messages through a bridge.

bridge stop bridge name

Stops the flow of messages through a bridge.

bridge suspend bridge nare

Suspends the flow of messages through a bridge.

243

CHAPTER 18 | Bridging Service

endpoint_admin show

Synopsis endpoi nt _adnmin show [ICR | I N T_REF_KEY]
Description Displays a bridge’s endpoint admin’s name and the type of endpoints it
supports.

endpoint destroy

Synopsis endpoi nt destroy [-source | -sink] [-admn|CR| | N T_REF_KEY] bridge
name

Description Destroys an endpoint.

Arguments

-source | -sink Specify whether the endpoint is a message source or a
message sink.

-admn Specify what type of admin object with which it is
associated.
endpoint list
Synopsis endpoint list [-source | -sink] [-adnmin ICR| | N T_REF _KEY]
Description Lists the endpoints associated with an endpoint admin.
Arguments

—-source | -sink Specify whether the endpoint is a message source or a
message sink.

-adnin Specify what type of admin object with which it is
associated.

244

endpoint show

Synopsis endpoi nt show [-source | -sink] [-adnin ICR| INT_REF_KEY] bridge
name

Description Display the status and attributes of a particular endpoint for the specified
bridge.

Arguments

-source | -sink Specify whether the endpoint is a message source or a
message sink.

-admn Specify what type of admin object with which it is
associated.

245

CHAPTER 18 | Bridging Service

JMS Broker

Overview

jms start

Synopsis

Description

jms stop

Synopsis

Description

246

The Java Messaging Service (JMS) provides a native mechanism for Java
applications to participate in messaging systems.

i t adm n provides a set of commands for managing the JMS broker:

Table 11: JMS Broker Commands

jms start Starts the JMS broker.
jms stop Shuts down the JMS broker.
jms start

Starts the JMS broker.

jms stop

Shuts down the JMS broker.

Configuration
Domain

Overview A subset of i t adnmi n commands let you manage a configuration domain,
both file-based and configuration repository-based. These commands
manage the following components of a configuration domain:

Configuration Repository page 248
Namespaces page 252
Scopes page 255
Variables page 257

Note: To useitadnin in a repository-based configuration domain, the
configuration repository must be running (see “Starting Orbix Services” on
page 221).

247

CHAPTER 19 | Configuration Domain

Configuration Repository

Overview The following commands enable you to manage the configuration repository
(CFR):

Table 12: Configuration Repository Commands

config dunp Displays the entire contents of the
configuration domain.

config list_servers Shows all deployed replicas of the
configuration repository.

config stop Stops the configuration repository.

file to cfr.tcl Converts from a file-based to a CFR-based
configuration.

config dump

Synopsis config dunp [-conpati bl e]

-conpati bl e Formats the CFR configuration so that it can
be used in a file-based configuration. You can
copy the output into a configuration file.

Description Outputs the entire contents of the configuration domain to st dout in a form
similar to a configuration file.

248

Configuration Repository

Examples The following extract shows the values of some initial object references and
plug-ins in the i ni ti al _ref er ences configuration namespace:

itadmn config dunp

initial _references:|T_Locator:reference =
"| CR 010000002500000049444c3a696. . . 723a312e300000000001000000
00001a00"

initial _references: POAQurrent: pl ugin = "poa"

initial _references: NameServi ce: reference =
"1 CR 010000002f 00000049444c3a696f 6e61. . . 2e6362f 49545f 4e616d69
6e606000000010000003500"

initial_references: DynAnyFactory: plugin = "it_dynany"

initial _references: Confi gRepository:reference =
"| CR 010000002000000049444c3a495000002000. . . 00006000000010000

000900"
config list_servers
Synopsis config list_servers [-active]
Description Shows all active deployed replicas of the configuration repository.

Arguments

-active Displays the total number of active deployed replicas.

config show_server

Synopsis config show server cfr replica nane

Description Displays runtime information about the specified CFR server.

249

CHAPTER 19 | Configuration Domain

config stop

Synopsis

Description

Arguments

file_to_cfr.tcl

Synopsis

Description

Examples

250

config stop [replica-name | -ior replica-ior]

Stops the configuration repository. An unqualified confi g st op command
stops all running replicas of the configuration repository.

repl i ca- nane Stops the specified replica of the configuration
repository. You can obtain the replica’s name with
itadmn config list.

-ior replica-ior Stops the specified replica, as specified by its IOR.

file to cfr.tcl [-scope scope] [-output_to file file]

Converts from a file-based configuration to a CFR-based configuration.
Running this script createsi t adni n vari abl e cr eat e arguments in the output
file, which you can then run against a CFR.

The recommended way to run this is to set $I T_DOvAl N_NAME to your file-based
domain name, and execute the script. Then set $I T_Daval N_NAME to your CFR
domain name, and finally run the generated output script.

Because a file-based configuration contains no data type information, the
file_to_cfr.tcl script must make educated guesses about the types being
processed. However, you can edit the generated script to ensure that the
correct data types were chosen before running it against your CFR.

Note: Because this tcl script creates a temporary file, the user will need
write access to the current directory.

Configuration Repository

Arguments

- scope Processes configuration in the specified scope
only.

-output _to_file <filename>Specifies the newly generated script used to
populate a CFR.

If the - scope argument is omitted, the script processes the whole
configuration. If the -out put _to_fil e argument is omitted, the output goes
to stdout instead.

251

CHAPTER 19 | Configuration Domain

Namespaces

Overview The following commands let you manage configuration namespaces:

Table 13: Configuration Namespace Commands

nanespace create Creates namespaces in the specified scope.

nanespace | i st Lists the namespaces in the given hamespace or
configuration scope.

nanespace renove Removes a namespace and all its contained
namespaces and variables from the configuration
domain.

nanespace show Displays all sub-namespaces, variables and their
values contained within a hamespace.

namespace create

Synopsis nanespace create [-scope scoped-nane] namespace
Description Creates a namespace and any intermediate namespaces, if they do not already
exist.
Arguments
-scope Creates the namespace in the specified scope. If you omit
this argument, the namespace is created in the root
scope.
Examples The following example creates the pl ugi ns: | ocal _| og_st reamnamespace

within the node_daenon configuration scope:

i tadm n namespace create -scope node_daenon
pl ugi ns: | ocal _| og_stream

252

namespace list

Synopsis

Description

Arguments

Examples

Namespaces

namespace |ist [-scope scoped-name] [nhanespace]

Lists the namespaces in the specified namespace or configuration scope. If
you specify a namespace, i t adm n lists only the namespaces nested within
it; otherwise, it shows all namespaces within the specified or root scope.

- scope Narrows the namespaces to a specific configuration
scope. If you omit this argument, namespaces in the root
scope are listed.

The following example lists namespaces in the root configuration scope:

i tadm n namespace |i st
bi ndi ng

pl ugi ns

url _protocol s

url _resol vers

domai n_pl ugi ns

initial _references

The following example lists namespaces nested within the
i nitial_references namespace:

itadm n namespace list initial_references
PSS

Root POA

Pl Current

| T_Locat or
PQOACur r ent
NaneSer vi ce
XAConnect or
Event Servi ce
I T_Acti vat or
DynAnyFact ory
| T_NodeDaenon

I T_MilticastReliabilityProtocol

253

CHAPTER 19 | Configuration Domain

namespace remove

Synopsis
Description

Arguments

namespace show

Synopsis

Description

Arguments

Examples

254

namespace renove [-scope scoped- nane] namespace

Removes a namespace.

- scope Removes the namespace from the specified scope. If you
omit this argument, the namespace is removed from the
root scope.

namespace show [-scope scoped-name] nanespace

Displays all namespaces, variables and their values within the specified
namespace.

- scope Narrows the namespaces to a specific scope. If you omit
this argument, namespaces and their contents in the root
scope are displayed.

The following example shows the contents of the i niti al _references
namespace in the root configuration scope:

i tadm n namespace show initial _references

nitial _references: Root POA plugin = "poa";

nitial _references: POAQurrent: plugin = "poa";

nitial _references: DynAnyFactory: plugin = "it_dynany";

nitial _references: Transacti onQurrent:plugin = "ots_lite";

nitial _references: Transacti onFactory:plugin = "ots_lite";

nitial _references: PSS: pl ugin = "pss_db";

nitial _references: NaneServi ce: reference = "| GR 0100. . . 00900";
nitial _references: Confi gRepository:reference="|1 CR 0100. .. 00900"

nitial _references:| T Locator:reference = "1 CR 0100. ..00900";

Scopes

Scopes

Overview

scope create

Synopsis

Description

Examples

scope list

Synopsis

Description

The following commands let you manage configuration scopes:

Table 14: Configuration Scope Commands

scope create Creates a configuration scope.
scope |ist Displays all sub-scopes defined within a scope.
scope renove Removes a configuration scope and all its contained

namespaces, variables, and scopes.

scope show Displays all namespaces, variables, and their values
defined within a scope.

scope create scoped- name

Creates a configuration scope. Unless qualified by higher-level scope names,
the scope is created in the root configuration scope. To create a scope in a
scope other than the root, specify its fully qualified name.

For example, the following command creates the t est scope within
conpany. product i on:

itadm n scope create conpany. producti on.t est

After you create the scope, add the desired namespaces and variables
within it with i tadnin variabl e create and itadm n nanespace create.

scope |ist [scoped-nane]

Lists all the sub-scopes in the specified configuration scope. If no scope is
specified, this command lists the sub-scopes in the root scope.

255

CHAPTER 19 | Configuration Domain

Examples

scope remove

Synopsis

Description

scope show

Synopsis

Description

Arguments

Examples

256

The following command lists all the sub-scopes defined within the
node_daenon configuration scope:

itadm n scope |ist node_daenon
node_daenon2
node_daenon3

scope renove scoped- name

Removes the specified scope from the configuration. This includes all its
contained namespaces, variables, and configuration scopes.

scope show [scoped-nane] [-conpatible] [-output_to file filename]

Displays all sub-namespaces, variables, and their values in the specified
configuration scope. If no scope is specified, this command displays the
contents of the root scope.

-conpati bl e Formats the displayed configuration so that it
can be used in a file-based configuration. This
enables you to produce file-based
configuration segments from a scope (rather
than the entire CFR).

-output _to_file <filename>Directs the output to the specified file.

The following command displays the contents of the node_daenon
configuration scope:

itadm n scope show node_daenon
orb_plugins = local _|og_stream iiop_profile, giop, iiop;
event _| og: filters=lT_NCDE_DAEMON=I NFO_ALL-+WARN+ERRCR+FATAL ;

pl ugi ns: node_daenon: shli b_nane = "it_node_daenon_svr";

pl ugi ns: node_daenon: nt _servi ce_dependencies = "I T | ocat or
or bi x2000";

pl ugi ns: node_daenon: nane = "it_node_daenon";

Variables

Variables

Overview

variable create

Synopsis

Description

Arguments

The following commands let you manage configuration variables:

Table 15: Configuration Variable Commands

vari abl e create

Creates a variable or namespace within the
configuration domain.

vari abl e nodify

Changes one or more variable values.

vari abl e renove

Removes a variable from the configuration
domain.

vari abl e show

Displays a variable and its value.

variabl e create [-scope scoped-nane] -type |ong|bool|list]|string

-val ue val ue var - name

Creates the specified variable in the configuration domain. Any configuration
namespaces specified in the variable name that do not exist are also created.

The following arguments are supported:

-scope scoped- name

-type type

The configuration scope in which to define the
variable. If you omit this argument, the variable is
created in the root configuration scope.

The type of the variable. Supply one of the
following types:

® long

® bool

® |ist (acomma-separated list of strings)
® string

For more about variable types, see “Data types” on
page 45.

257

CHAPTER 19 | Configuration Domain

Examples

258

-val ue val ue The variable’s value. The value must match the
type specified by the -t ype switch.

The following values are valid for the specified
type:
long: any signed long value

bool: true or fal se

list: list items must be separated by commas.
Empty elements or list items containing spaces
must be quoted—for example:

f 0o, "bar none", baz

See “Specifying lists” on page 237 for more
details.

string: Enclose values in double quotes.

The following example creates a variable named or b_pl ugi ns in the root
configuration scope:

itadmn variable create -type list -value |l CP, A CP, PSS
orb_pl ugi ns

The following example creates variable servi ce_nane in scope | FR:

itadmn variable create -scope |FR -type string -val ue "ARTI FR'
servi ce_name

The following example creates a namespace in the root configuration scope:
itadmn variable create -type string -val ue
"1 CR 004332434235234235933. . . "

initial _references:|ntefaceRepository:reference

Note: In shell mode, do not specify I0ORs to the - val ue argument.
Specify IORs in command-line and script modes only.

variable modify

Synopsis

Description

Arguments

Examples

Variables

variabl e modi fy [-scope scoped-nane] -type |ong|bool|list]|string
-val ue val ue var-nane

Modifies the value of a variable or namespace in the configuration domain in

the specified scope.

The following arguments are supported:

-scope scoped- nanme

-type type

-val ue val ue

The configuration scope in which to modify the
variable or namespace. The default is the root
configuration scope.

The type of the variable. Supply one of the following
types:

® long

® bool

® |ist (acomma-separated list of strings)
® string

The variable’s value. The value must match the
type specified by the -t ype switch.

The following values are valid for the specified type:
long: any signed long value
bool: true or fal se

list: list items must be separated by commas.
Empty elements or list items containing spaces
must be quoted—for example:

f 0o, "bar none", baz
See “Specifying lists” on page 237 for more details.

string: Enclose values in double quotes.

The following example modifies the event log filters for the naming service:

itadmn variable nodify -scope namng -type list -val ue
| T_NAM NG=ERR+FATAL event | og:filters

259

CHAPTER 19 | Configuration Domain

variable remove

Synopsis

Description

Arguments

variable show

Synopsis

Description

Arguments

Examples

260

vari abl e renove [-scope scoped-nane] var-nane

Removes the specified variable from the configuration domain. This operation
does not remove a configuration namespace.

-scope scoped- name The configuration scope from which to remove
the variable. If you omit this argument, the
variable is removed from the root scope.

vari abl e show [- scope scoped- nare] var-nane

Displays the specified variable and its value, within the specified scope. The
default is the root configuration scope.

- scope Narrows the displayed variable to a specific configuration
scope.

The following example shows a variable in the default root configuration
scope:

itadmn variabl e show orb_pl ugi ns
orb _plugins = iiop_profile, giop, iiop

The following example shows the same variable as it is set for the event
service in the configuration scope event :

itadmn variabl e show - scope iona_services. event orb_pl ugi ns
orb_plugins = iiop_profile, giop, iiop

Overview

Event Service

The event service is a CORBA service that enables applications to send
events that can be received by any number of objects. For more about the
event service, see the CORBA Programmer’s Guide.

i t admi n commands let you manage the following event service components:

Event Service Management page 262

Event Channel page 264

261

CHAPTER 20 | Event Service

Event Service Management

Overview The following commands let you manage an event service instance:

Table 16: Event Service Commands

event show | Displays the attributes of the specified event service.

event stop Stops an instance of the event service.

event show

Synopsis event show

Description Displays the attributes of the default event service.
Multiple instances of the event service are also supported. To show the
attributes of a non-default event service, specify the ORB name used to start
the event service (using the - CRBname parameter to i t adni n).

Examples The following command shows the attributes of a default event service:

itadm n event show
Event Service Nane: | T_Event NanedRoot
Host Name: podge
Event Channel Name List:
ny_channel

The following command shows the attributes of a non-default event service:

itadm n - CRBnane event.event2 event show
Event Service Nane: | T_Event NanedRoot 2
Host Name: rodge
Event Channel Nane List:
ny_channel
ny_channel 2

Each event service instance must have a unique name. You can specify this
is in your configuration, using the pl ugi ns: poa: r oot _name variable. The
event service uses named roots to support multiple instances.

262

Event Service Management

In this example, the pl ugi ns: poa: r oot _nare variable is set to
| T_Event NamredRoot 2 in the event . event 2 configuration scope:

event {
pl ugi ns: poa: root _name = "I T_Event NanmedRoot " ;
event 2

{
pl ugi ns: poa: root _name = "|T_Event NamedRoot 2";

b

event stop

Synopsis event stop

Description Stops the default event service.

Multiple instances of the event service are also supported. To stop a
non-default event service, qualify the i t adm n command with the - CRBname
argument and supply the ORB name used to start the event service.

To start the event service, use the i t event command. You can also use the
start_donai n- name_ser vi ces command. For more information, see
“Starting Orbix Services” on page 221.

Examples The following command stops the default event service.
itadm n event stop

The following command stops the event service that was started with ORB
name event . event 2:

itadm n - CRBnane event.event2 event stop

263

CHAPTER 20 | Event Service

Event Channel

ec create

Synopsis

Description

Examples

264

The following commands let you manage an event channel:

Table 17: Event Channel Commands

ec create Creates an untyped event channel with the
specified name.

ec create_typed Creates a typed event channel with the specified
name.

ec |ist Displays all untyped event channels managed by
the event service.

ec renove Removes the specified untyped event channel.

ec renove_typed Removes the specified typed event channel.

ec show Displays all attributes of the specified untyped
event channel.

ec show typed Displays all attributes of the specified typed event
channel.

ec create channel - name

Creates an untyped event channel with the specified name. If specified with
an unqualified itadmin command, the event channel is created in the default
event service. You can create an event channel in another (non-default) event
service by qualifying the i t adm n command with the - CRBnane argument and
supplying the ORB name used to start the service.

The following command creates an untyped event channel, ny_channel :

itadmin ec create ny_channel

ec create_typed

Synopsis

Description

ec list

Synopsis
Description

Arguments

Examples

Event Channel

The following command creates an untyped event channel (for a non-default
event service) named ny_channel 2:

itadm n - CRBnane event.event2 ec create ny_channel 2

ec create_typed channel _nane

Creates a typed event channel with the specified name.

ec list [-count]

Displays all the untyped event channels managed by an event service.

- count Displays the total number of untyped event channels.

The following example displays the untyped event channels that are in the
default event service:

itadmn ec list
ny_channel

nkt _channel
eng_channel

The following example displays the untyped event channels that are in a
non-default event service:

itadm n - CRBnanme event.event2 ec |ist
ny_channel

ny_channel 2

nkt _channel

eng_channel

The following example displays the number of untyped event channels
managed by an event service:

itadmn ec list -count
3

265

CHAPTER 20 | Event Service

ec remove

Synopsis
Description

Examples

ec remove_typed

Synopsis

Description

ec show

Synopsis
Description

Examples

266

ec renmove channel - name
Removes the specified untyped event channel.

The following command removes untyped event channel ny_channel :
itadmn ec renmove ny_channel

The following command removes untyped event channel ny_channel 2 from
a non-default event service:

itadm n - CRBnane event.event2 ec renove ny_channel 2

ec renove_typed channel _nane

Removes the specified typed event channel.

ec show channel - name
Displays all attributes of the specified untyped event channel.

The following command displays the attributes of ny_channel :

itadm n ec show ny_channel
Channel Nane: ny_channel
Channel ID 1
Event Communi cation: Untyped

Event Channel

The following command displays the attributes of ny_channel 2 from a
non-default event service:

itadm n - CRBnane event.event2 ec show ny_channel 2
Channel Nane: ny_channel 2

Channel ID 2

Event Conmmuni cati on: Untyped

Note: For information about event service configuration variables, see the
section on the pl ugi ns: not i fi cati on namespace in the Orbix
Configuration Reference.

ec show_typed

Synopsis ec show typed channel _nane

Description Displays all attributes of the specified typed event channel.

267

CHAPTER 20 | Event Service

268

Overview

logging get

Synopsis
Description

Arguments

Examples

Event Log

The event log commands enable the Orbix event log filters to be displayed or
updated dynamically using the i t adm n command line. You can also
perform these actions using the IONA Administrator Web Console:

Table 25: Event Log Commands

| oggi ng get Displays the event log filter settings.

| oggi ng set Updates the event log filter.

| oggi ng get -orbname orb_nare

Displays the event log filter settings for the specified ORB name.

- or bnare The specified ORB name of the event log to display.

itadm n | oggi ng set -orbnane iona_services. nan ng

This command displays the event log filter settings that are used by the
currently running naming service.

307

CHAPTER 23 | Event Log

logging set

Synopsis
Description

Arguments

Examples

308

| oggi ng set -orbname orb_name -val ue new event _|og_filter

Updates the event log filter settings for the specified ORB name.

- or bname The specified ORB name of the event log to update.
-val ue The new event log setting.

itadmn | oggi ng set -orbnane iona_services. naning -val ue
I T_QOP=*, | T_MaVIr=*

This command updates the event log filters that are used by the currently
running naming service.

Interface
Repository

Overview A subset of i t adni n commands let you create, browse, and remove IDL
definitions from the interface repository. You can manage the following
interface repository components:

IDL Definitions page 270

Repository Management page 271

269

CHAPTER 21 | Interface Repository

IDL Definitions

Overview

idl -R=-v

Synopsis

Description

Examples

270

i t adni n provides a single i t adni n i dil command, which lets you modify the
contents of an interface repository with new IDL definitions.

idl -R=-v idl-filenane

Writes IDL definitions from a single IDL source file into the interface repository.
The - R=-v argument setting causes the interface repository to use verbose
mode to indicate command progress. Thei dl -fi | enane argument names the
IDL file. You must execute the i di command from the command line.

The following example writes the IDL definitions in the foo. i dl file to the
interface repository:

bash $ idl -R=-v foo.idl
O eated Alias M/Long.
Oreated Qperation opl.
O eated Qperation op2.
O eated | nterface Foo.

Note: Theid -R=-v command does not require the i t adm n command.

Repository Management

Repository Management

Overview The following commands let you browse and modify the contents of an
interface repository:

Table 18: Interface Repository Commands

ifr cd Changes the current container (in shell
mode).

ifr destroy contents Destroys the contents of the interface
repository.

ifr ifr2idl Outputs the contents of the interface
repository to the specified file.

ifr list Lists the contents of the current container.

ifr pwd Prints the name of the current container (in
shell mode).

ifr renove Removes an IDL definition from the interface
repository.

ifr show Prints specified IDL definitions contained in

the interface repository.

ifr stop Stops the interface repository.
ifr cd
Synopsis ifr cd [scoped-name | ..]
Description Changes the current container to the specified scoped name. Using the
argument “. . " changes the current container to the next outermost container.

If no arguments are given, i fr cd changes the current container to the
interface repository. Use i fr cd in command shell mode only.

271

CHAPTER 21 | Interface Repository

Examples

ifr destroy_contents

Synopsis

Description

ifr ifr2idl

Synopsis

Description

ifr list

Synopsis

Description

Arguments

ifr pwd

Synopsis

Description

272

The following command changes to the specified scoped name:

itadmn ifr cd MYGQ PRCDUCTI ON TOCLS

ifr destroy_contents

Destroys the entire contents of the interface repository, leaving the repository
itself intact.

ifr ifr2id filename

Converts the entire contents of the interface repository to text and writes it to
the specified fi | enane.

ifr list [-1] [scoped-name | .]

Lists the contents of the specified container. If no container name is provided,
this command lists the contents of the current container.

- Lists the contents in long form: absolute name, kind,
repository ID.

scoped- nane Specifies the container to list the contents of. The
default is the root name.

. (dot) Specifies the current container.

ifr pwd

Displays the name of the current container. Use i fr pwd in command shell
mode only. Command-line mode does not store persistent state.

ifr remove

Synopsis

Description

ifr show

Synopsis

Description

ifr stop

Synopsis

Description

Repository Management

ifr renove scoped-nane

Removes the scoped name by invoking the function I RObj ect : : dest roy() on
the scoped name. The scoped- nane argument is the name of the interface
repository entry to be removed, and is relative to the current container.

i fr show scoped- name

Displays the scoped name in IDL format. The scoped- name argument is
relative to the current container.

ifr stop

Stops the interface repository.

273

CHAPTER 21 | Interface Repository

274

Location Domain

Overview This section describes i t adnmi n commands that manage a location domain
and its components. Some commands modify static information in the
implementation repository; others affect runtime components.

i t admi n commands let you manage the following location domain

components:
Locator Daemon page 276
Named Key page 279
Node Daemon page 282
ORB Name page 286
POA page 290
Server Process page 296

275

CHAPTER 22 | Location Domain

Locator Daemon

Overview The following commands manage locator daemons:

Table 19: Locator Daemon Commands

I ocat or Pings all the of the node daemons known to
heartbeat _daemons | the specified locator, removing those that are
no longer active.

locator Iist Displays all locators in the location domain.
| ocator show Displays all attributes of the specified locator
daemon.
| ocator stop Stops the locator daemon.
Locator daemon name Most commands require you to supply the locator daemon name. The

default name has the following format:
i ona_servi ces. | ocat or _daenon. unqual i fi ed- host name
For example:

i ona_servi ces. | ocat or _daenon. or egon

locator heartbeat_daemons

Synopsis | ocat or heartbeat _daenons | ocat or _name

Description Pings all the of the node daemons known to the specified locator, removing
those that are no longer active.

276

locator list

Synopsis
Description

Arguments

locator show

Synopsis
Description

Arguments

Examples

Locator Daemon

locator list [-count] [-active]

Displays all locators in the location domain.

-count Displays the number of locators in the location domain.

-active Displays all active locators in the location domain.

| ocator show [-ior] | ocator-name

Displays all attributes of the specified locator.

-ior Indicates that the target is an IOR, rather than the name of the
Locator.

The following example shows the attributes displayed for a default locator:

itadmn | ocat or show i ona_servi ces. | ocat or. w ckl ow

Locat or Nane: i ona_servi ces. | ocat or
Donai n name: enterprise_services
Host nare: wi ckl ow

Start tine: Sun, 05 Aug 2001 07:55:59. 5380000 +0500
Replica type: Master

The following example shows the attributes for a locator running on
wi ckl ow, port 3076.

itadmn | ocator show -ior corbal oc:: 1. 2@\ ckl ow 3076/ 1 T_Locat or

Locat or Name: i ona_ser vi ces. | ocat or
Donmai n name: enterprise_services
Host nane: wi ckl ow

Start time: Sun, 05 Aug 2001 07:55:59. 5380000 +0500
Replica type: Master

277

CHAPTER 22 | Location Domain

locator stop

Synopsis
Description

Arguments

278

| ocator stop [-alldonain] [-ior] |ocator-name

Stops the specified locator daemon.

-al | domai n Stops the locator, all registered node daemons, and
monitored processes running in a location domain.

-ior Indicates that the target is an IOR, rather than the name of
the Locator.

Named Key

Named Key

Overview

Commands

Named keys allow users to specify human readable URLs in place of a
server's IOR. Named keys work best when used with persistent objects. If
the object’s IOR changes, the named key will need to recreated.

To pass the IOR of a server to a client using a named key, the user will need
to supply an address is the following format:

cor bal oc: i i op: ver @ost : port/ named_key

ver The IIOP version the server uses to communicate.

host The hostname for the machine running the locator
daemon.

port The port used by the locator.

named_key The named key created for the server.

For example, the corbaloc reference for a replicated locator daemon would
look like:

corbal oc:iiop:1.2@ox: 8035, i i op: 1. 2@ound: 8035/ hunt er

One instance of the locator daemon is hosted on f ox and listens on port
8035. The other instance is hosted on hound and also listens on port 8035.
The named key associated with this replicated locator daemon'’s IOR is
hunter.

For more information on corbaloc references read section 13.6.10, “Object
URLs,” of the OMG CORBA specification.

The following commands let you manage named keys:

Table 20: Named Key Commands

naned_key create | Creates an association between a specified
well-known object key and a specified object
reference.

279

CHAPTER 22 | Location Domain

named_key create

Synopsis

Description

Examples

named_key list

Synopsis
Description

Arguments

280

Table 20: Named Key Commands

naned_key |i st Lists all well known object keys that are registered
with the locator daemon.

naned_key remove | Removes the specified obj ect - key from the
location domain.

named_key show Displays the object reference associated with the
given key.

nanmed_key create -key object-key object-reference

Associates a well-known object key name with an object reference. The - key
argument specifies the human-readable string name of the key to use when
referring to the specified obj ect - r ef er ence.

After entering this command, object requests destined for the specified
object key are forwarded to the specified object reference.

Use named_key creat e in command-line mode only.

The following example shows the named key created for the default naming
service when Orbix is installed:

i tadm n naned_key create -key NaneServi ce | CR 010000002. ..003500

named_key list [-count]

Lists all well-known object keys registered in the location domain.

-count Displays the number of well-known object keys in the location
domain.

Examples

named_key remove

Synopsis

Description

named_key show

Synopsis

Description

Examples

Named Key

The following command lists the named keys that are created in a default
Orbix environment:

itadm n named key |i st
NaneSer vi ce
I nt er f aceReposi tory

named_key renove obj ect - key

Removes the specified human-readable obj ect - key from the location
domain.

narmed_key show obj ect - key

Displays the object reference associated with the specified human-readable
obj ect - key.

i tadm n nanmed_key show NaneServi ce
Naned (bj ect Key : NameServi ce
Associ ated (bj ect Ref erence:

| CR01000002f 0000004944. . . 00100003500

281

CHAPTER 22 | Location Domain

Node Daemon

Overview The following commands manage node daemons:

Table 21: Node Daemon Commands

node_daenon | i st Displays all node daemon names implicitly
registered with the locator daemon.

node_daenon renove Removes a node daemon from the location
domain that is created implicitly when the
specified node daemon starts.

node_daenmon show Displays all attributes of the specified node
daemon.
node_daenon st op Stops the node daemon.

add_node_daeron. tcl | Adds node daemons to a host.

Node daemon name Most commands require you to supply the node daemon name. The default
name has the following format:

i ona_servi ces. node_daenon. unqual i f i ed- host nane
For example:

i ona_servi ces. node_daenon. or egon

node_daemon list

Synopsis node_daenon 1ist [-count]

Description Displays all node daemon names implicitly registered with the locator
daemon. Node daemon entries are implicitly created in the implementation
repository (IMR) when the specified node daemon starts.

282

Arguments

node_daemon remove

Synopsis

Description

node_daemon show

Synopsis
Description

Examples

Node Daemon

-count Displays the total node daemon count.

node_daenon renove node- daenon- nane

Removes a node daemon entry from the implementation repository. Node
daemon entries are created implicitly when the specified node daemon starts.

Use this command only when the specified node daemon shuts down
prematurely due to a host crash or termination signal.

WARNING: Do not use node_daenon renove on a running node daemon.

node_daenon show node- daenon- name
Displays the attributes for the specified node daemon.

The following example shows the attributes displayed for the node daemon
on host dal i :

i tadm n node_daenon show dal i
Node Daenon Nane: dali
Host Name: dali
Fil e Access Perm ssions:
User: nst ephens
Q oup: o2kadm
Start time: Mon, 06 Aug 2001 06:55: 53. 4480000 +0500

The default node name is host . To change the default name, modify
pl ugi ns: node_daenon: nane, usingitadmn variable nodify. In a
file-based configuration domain, you can also edit this variable in your
configuration file.

283

CHAPTER 22 | Location Domain

node_daemon stop

Synopsis

Description

add_node _daemon.tcl

Synopsis

Arguments

284

node_daenon stop node- daenon- nane
Stops the specified node daemon. This command also stops all the processes
monitored by that node daemon.

To view all processes monitored by the specified node daemon, use process
l'i st -node_daenon.

i tadm n add_node_daenon. tcl -nunber<add> -port <base_ port>
-script_dir <script_dir> [-host <cluster>] [-out <ICRfile>]

add The number of node daemons to add to the host.

base_port The port number to be used by the first new node daemon.
Each additional node daemon will be assigned a port numbers
incrementing upward by one.

script _di r The directory where the domain’s start and stop scripts reside.
This is typically, <i nstal I _di r>\ et c\ bi n.

cluster Indicates the name of the cluster or federated name of which
the host is associated. This parameter is optional.

IR file The full path name of the file store the IORs of the new node
daemons. This parameter is optional and the default location is
<current _wor ki ng_di r >\ node_daenons. i or .

Node Daemon

To add node daemons to a host:

1.

Ensure that the domain to which additional node daemons are to be
added is running.

Source the <domai n>_env file to set the configuration environment
variables.

Run the command. It silently configures and deploys the new node
daemons into the running configuration. The domain start and stop
scripts will be modified to include the new node daemons.

Once the command finishes, stop the domain’s services using the
domain’s stop script, st op_<donai n>_ser vi ces.

Manually modify the value of

initial _references: | T_NodeDaenon: r ef er ence for the CORBA
servers you want to use the additional node daemons so that it
contains a reference to the new node daemon.

If the servers are started on demand, you must also modify their
process information to reflect the server's new node daemon.

Restart the domain using its start script, st art_<domai n>_ser vi ces.

285

CHAPTER 22 | Location Domain

ORB Name

Overview The following commands manage ORB names:

Table 22: ORB Name Commands

orbnane create Creates an ORB name in the location domain.

orbnane |ist Displays all ORB names in the location domain.

or bnarme nodi fy Modifies the specified ORB name entry either by
associating it with another process entry, or by
disassociating it from any process.

or bnane renove Removes an ORB name from the location domain.

or bname show Displays attributes for the specified ORB name.
orbname create
Synopsis orbname create [-process process-nanme] ORB-nane
Description Creates the specified ORB name in the location domain. This designates a

server-side ORB that is subject to POA or process activation. In the location
domain, the ORB name is associated with a POA name and is used for process

activation.
Arguments
-process Associates the ORB name with the specified process. The
process name must previously be registered with the locator
daemon (see “process create” on page 296).
Examples The following command creates a scoped ORB name:

i tadm n orbname create Mitual Funds. Tr acki ng. @ ol nc. St ocks

286

orbname list

Synopsis
Description

Arguments

Examples

orbname modify

Synopsis

Description

Arguments

ORB Name

orbname list [-active] [-count] [-process process-nane]

Lists all ORB names in the location domain.

-active Lists only the name in the locator's active ORB table.
- count Lists the total number of ORB names in the location domain.

-process Lists only the ORB name entries that are associated with
process- narne.

The following example lists all registered ORB names in the location domain:

itadm n orbnane |i st
ifr

nam ng

production. test.testngr
product i on. server

orbname modi fy [-process process-nanme] ORB-nane

Modifies the specified ORB name entry by associating it with the specified
process name. If the process name is omitted, the ORB name is disassociated
from any process.

pr ocess- name The name of the process to which the ORB name will be
associated.

287

CHAPTER 22 | Location Domain

orbname remove

Synopsis

Description

Arguments

Examples

288

orbname renove [-active|-deep|-force] CRB-name

Removes an ORB name from the location domain. You might need to remove
an ORB name, if its application is removed from the environment, or if the

ORB name has changed, or to prevent process activation.

If there is an active ORB entry for the ORB name in the locator's active ORB
table, this is also removed.

An ORB name can be the same as the CRB_i d (used to identify an ORB
within a process) and has the following syntax:

CRBNanreSegrent . CRBNaneSegnent . CRBNamreSegnent

The following arguments are mutually exclusive:

-active Removes only the active ORB entry from the locator's active ORB
table, and does not remove the ORB name.

- deep Removes the ORB name and all POA names in the location
domain that refer to it.

-force Forces ORB name removal, even though some POA names in the
location domain might have references to it.

The following example removes the production. test ORB name:

itadm n orbnane |i st
ifr

nam ng

production. test.testngr
product i on. server

itadm n orbname renove -active production.test.testngr

itadm n orbname |i st
ifr

nam ng

pr oduct i on. ser ver

ORB Name

orbname show

Synopsis or bnarme show CRB- nane

Description Displays all the attributes for the specified ORB name.

Examples The following example displays the attributes for the conpany. sal es ORB
name:

i tadm n orbname show conpany. sal es
CRB Nane: conpany. sal es

Process Name: sal es_process
Active: yes

289

CHAPTER 22 | Location Domain

POA

Overview The following commands manage POA entries:

Table 23: POA Commands

poa create Creates a POA name in the location domain.

poa |ist Displays POA names in the location domain.

poa nodi fy Modifies the indicated POA name as specified.

poa renove Removes a POA name from the location domain.

poa show Displays all data that is entered for POA- nare.

poa create

Synopsis poa create [-orbname CRB-nane] [-replicas replica-list]
[-persistent] [-transient] [-allowdynam c]
[-al l ondynreplicas] [-clear_replicas]
[-1 oad_bal ancer |b-name] FQPN
Registers a POA in the location domain. The required FQPN argument is the
fully-qualified POA name. An FQPN has the following syntax:

FCPNsegrent / FQPNsegnent / FQPNsegnent

Arguments

-orbnarme CRB-nane Associates an ORB name with the specified POA. This
argument requires an CRB- nane argument with the
following syntax:

CRBNarnreSegrrent . CRBNaneSegnent . CRBNameSegnent

-orbname cannot be combined with - persi stent,
-replicas, or -transi ent

290

-replicas
replica-list

- per si st ent

-transi ent

-al | ondynam c

-al I owdynrepl i cas

-1 oad_bal ancer
| b- narre

POA

Associates the specified POA with multiple ORBs
specified inreplica-list, wherereplica-list isa
comma-delimited list of ORBs:

orb[,orb]...

-repl i cas cannot be combined with - persi stent,
-orbnane, or -transient.

Marks the POA as persistent without associating it with
an ORB.

-per si stent cannot be combined with -repli cas,
-or bnane, or -transient.

Marks the POA as transient.

-transi ent cannot be combined with -repli cas,
-or bname, or -per si st ent

Enables dynamic registration of a POA in the location
domain. The default is no dynamic registration.
Enabling dynamic creation allows servers to register
information (although administrators must create the
top-level name manually).

Must be set to yes or no:

® vyes: (default) Any ORB creating the POA is
automatically added to the POA's replica list.

® no: Only those ORBs that are configured in the
cluster through replicas are allowed to create the
POA.

Determines the load balancer used to select a replica

response to client requests. If a load balancer is not

specified, requests will be routed to the first server that
creates the POA.

The Orbix distribution provides support for the following

algorithms:

® round_robin: the locator uses a round-robin
algorithm to select from the list of active servers—
that is, the first client is sent to the first server, the
second client to the second server, and so on.

® random the locator randomly selects an active
server to handle the client.

291

CHAPTER 22 | Location Domain

Examples The following command creates a transient POA name in the location domain:
itadm n poa create -transi ent banki ng_service

The following command creates a persistent POA name in the location
domain:

itadm n poa create -orbnanme banki ng_servi ces_app
banki ng_ser vi ce/ account

The following command creates a persistent POA name associated with
multiple ORBs:

itadmn poa create -replicas bank_server_1, bank_server_2
-1 oad_bal ancer round_robi n banki ng_servi ce/ account

poa list
Synopsis poa list [-active] [-children FQPN] [-count] [-persistent]
[-transient]
Description Shows all POA names in the location domain.
Arguments
-active Lists only entries for POAs that are currently active.
-active and -transi ent parameters are mutually
exclusive.
-chi l dren FQPN Lists only entries for child POAs of the specified
parent POA.
- count Lists the total number of POA names in the location
domain.
- per si st ent Lists only POA names for persistent POAs.
-transi ent Lists only POA names for transient POAs. -t ransi ent

and - acti ve arguments are mutually exclusive.

292

Examples

poa modify

Synopsis

Description

Arguments

POA

itadmn poa |list

banki ng_servi ce

banki ng_ser vi ce/ account

banki ng_ser vi ce/ account / checki ng

banki ng_ser vi ce/ account / checki ng/ deposi t

poa nodi fy [-al |l owdynam c] [-all owdynreplicas]
[- orbnane CORB- nane]
[-replicas replica-list]
[-clear_replicas]
[-1 oad_bal ancer | b-name] FQPN

Modifies the specified POA name. The required FGPN argument is the
fully-qualified POA name. A FQPN has the following syntax:

FQPNsegrent / FQPNsegnent / FQPNsegnent

-al | ondynam c Enables dynamic registration of a POA in the location
domain. The default is no dynamic registration.
Enabling dynamic creation allows servers to register
information (although administrators must create the
top-level name manually).

-al l owdynrepl i cas Must be set to yes or no:
® vyes: (default) Any ORB creating the POA is
automatically added to the POA's replica list.
®* no: Only those ORBs that are explicitly configured
in the cluster through replicas are allowed to
create the POA.

-orbname CRB-nanme Associates the specified ORB name with the specified
POA. This argument requires an CRB- nane argument
with the following syntax:

CRBNamreSegrrent . CRBNanmeSegnent . CRBNaneSegnent

293

CHAPTER 22 | Location Domain

-replicas Associates the specified POA with multiple ORBs
replica-list specified inreplica-list, wherereplica-list isa
comma-delimited list of ORBs:
orb[,orb]...
-repl i cas cannot be combined with - or bnane.
-clear_replicas Disassociates the POA from any ORBs.

-1 oad_bal ancer Determines the load balancer used to select a replica
response to client requests. If a load balancer is not
specified, requests will be routed to the first server that
creates the POA.

The Orbix distribution provides support for the following

algorithms:

® round_robi n: the locator uses a round-robin
algorithm to select from the list of active servers—
that is, the first client is sent to the first server, the
second client to the second server, and so on.

® random: the locator randomly selects an active
server to handle the client.

poa remove

Synopsis poa renove [-active|-allactive] FQPN

Description Removes the entry for the specified POA and its descendants from the location
domain. By default, all active entries for the POA and its children are also
removed. Use the - acti ve argument to remove only the active entry for the
specified POA.

Arguments

-active Removes currently active entries for the specified POA only.
-active and -al | acti ve arguments are mutually exclusive.

-allactive Removes only active entries for the specified POA and all its
children.

294

Examples

poa show

Synopsis

Description

Examples

POA

The following example removes the specified POA and its children:

itadmn

% poa | i st

banki ng_servi ce

banki ng_ser vi ce/ account

banki ng_ser vi ce/ account / checki ng

banki ng_ser vi ce/ account / checki ng/ deposi t

% poa renove banki ng_servi ce/ account / checki ng
% poa |i st

banki ng_servi ce

banki ng_ser vi ce/ account

poa show FCPN

Displays all the attributes for the specified POA name. A FQPN (fully-qualified
POA name) has the following syntax:

FQPNsegrrent / FQPNsegnent / FQPNsegnent

The following example shows the attributes for the | FR POA name:

itadm n poa show | FR
FQPN I FR
Active: no
Li f espan: per si st ent
CRB Nanes:
i ona_services.ifr
Al ow Replicas outside this list: no
Load Bal ancing Algorithm <NONE>
Al ow Dynam ¢ Regi stration: no
Parent FQPN <NONE>
Chi | dren FQPN <NONE>

295

CHAPTER 22 | Location Domain

Server Process

Overview The following commands let you manage server process entries:

Table 24: Server Process Commands

process create Creates a server process name in the location
domain.
process disabl e Disables the specified server process for process
activation, using the node daemon.
process enabl e Enables a target server process for on-demand
activation by the node daemon.
process kill Kills the specified process that was started by its
associated node daemon.
process |ist Lists names of server processes in the location
domain.
process nodify Modifies the process as specified.
process renove Removes a server process name from the location
domain.
process show Displays a complete server process entry.
process start Starts a registered server process.
process stop Stops a registered server process.
process create
Synopsis process create -args '-CRBnane orb-name [arg-list]"

296

[-description] [-startuprmode node]

[- node_daenon node- daenon- nare] [- pat hnane pat hnane]

[-directory dir] [-env env] [-group group] [-user user]

[-unask unask] process-nane

Server Process

Description Registers a server process in a location domain’s implementation’s repository.
Arguments The following arguments apply to all platforms.
-args Arguments supplied to the process when it starts. At a

-description

- start upnode

-node_daenon

- pat hnane

minimum, supply the - CRBnane argument with the name of
the ORB associated with this server process.

Enclose all arguments within quotation marks, and separate
multiple arguments with spaces. For example:

itadmn process create -args '-CRBnane
conpany. producti on. sver 1" ny_app

If you are registering a Java server, the argument list

generally includes the class path.

A brief description of the target process. Enclose the

description in double quotes.

Specifies whether to enable automatic startup of the target

process:

® on_denand (default) starts the process when requested
by a client.

® disabl e disables automatic startup.

The name of the node daemon that starts or modifies this

process.

The full pathname of the executable to start when the

process is activated.

On Windows platforms, specify a drive letter if not the
current drive of the node daemon. Windows paths can be
expressed with one forward slash separator or two backward
slashes.

297

CHAPTER 22 | Location Domain

298

-directory

-env

- group

Specifies the working directory to which the target process
writes output files, error logs, and so on.

On UNIX the default current working directory is set to the
root file system. On Windows, the default current drive is
the node daemon’s drive, and the current directory is set to
the root directory.

On Windows, specify a drive letter if the working directory
drive differs from the node daemon’s current drive. Windows
paths can be expressed with one forward slash separator or
two backward slashes.

On UNIX, if the current working directory path does not
exist, it is created automatically with permissions

Use this argument in order to:

® Ensure that the server runs in a directory that is in the
root file system. This avoids problems with running
servers in mounted file systems.

® Use relative path names. This means that
administrators can set the working directory for the
activated server, without having to define other paths
and directories.

® Ensure that core files cannot overwrite each other if the
server is configured to run somewhere other than the
root directory.

Explicitly sets the process environment. This argument takes

an list of space-delimited vari abl e=val ue pairs, enclosed in
quotation marks:

env "D SPLAY=ci rcus: 0.0 CLOM=Bozo HOME=/tent"

This option overrides any environment variables set by the
node daemon. By default, the server inherits its environment
from the node daemon. If you use this option, you must
specify all environment variables that the server requires.

For more information about environment settings, see
“Server Environment Settings” on page 54.

Group name that starts the target process. The default is
nobody. For more information, see page 56.

process disable

Synopsis

Description

process enable

Synopsis

Description

process Kkill

Synopsis

Description

Arguments

Server Process

- user User name that starts the target process. The default is
nobody. For more information, see page 56.

- unask File mode creation mask for the activated target process.
Specify as three octal digits ranging from 000 to 777. The
default is 022 (maximum file permissions: 755, or
I VKT - XT - X).

process di sabl e process-nanme

Disables on-demand activation of the specified server pr ocess- nane.

process enabl e process- nane

Enables on-demand activation of the specified server pr ocess- nane.

process kill [-signal signal _nunber] [-force] process_nane

Kills the specified process that was started by its associated node daemon.
The -si gnal argument specifies the UNIX signal number to kill the process.
This command has the following effects:

UNIX Sends a signal to the process. The default is 9.

Windows Calls Ter ni nat ePr ocess() .

This command only works for processes activated by the node daemon. For
manually launched processes, it has no effect.

- si gnal Specifies the UNIX signal number to kill a process. The
default is 9.

299

CHAPTER 22 | Location Domain

process list

Synopsis

Description

Arguments

Examples

300

-force

Forces the removal of the persistent data for the specified
process from the implementation repository (IMR). This can
be used when a previously active process has died or been
killed, and the persistent data in the IMR was not cleaned up
correctly. If the persistent data held by the locator and node
daemon was not correctly cleaned up, there may be issues
when trying to restart the process.

Note: This command should be used with caution, and only
if the normal cleanup mechanisms have failed for some
unknown reason.

process list [-count] [-node_daemon node- daenon-nane] [-active]

Lists the target process names of all processes registered in the location
domain. Listing process names is useful for verifying a target process name

or its status.

- count

Displays the total number of process names in the location

domain.

-node_daenon Lists all monitored processes for a given node daemon.

-active

The following example lists all registered process names in a location domain

This is useful if you want to perform the node_daenon st op

command.
Lists all currently active processes.

itadmn process |ist

if
nam ng
_app

Server Process

process modify

Synopsis process nodi fy -args '-CRBnane orb-name [arg-list]"

[-description] [-startuprode node]

[- node_daenmon node- daenon- nane]

[- pat hname pat hnane] [-directory dir]
[-env env] [-group group] [-user user]
[-unask unask] process-nane

Description Modifies the specified process entry in the implementation repository.

Arguments

-args

-description

- start upnode

- node_daenon

- pat hnane

Arguments supplied to the process when it starts. At a
minimum, supply the - CRBnane argument with the name
of the ORB associated with this server process.

Enclose all arguments with quotation marks, and separate
multiple arguments with spaces. For example:

itadmn process create -args "-CRBnane
conpany. producti on. sver 1" ny_app

If you are registering a Java server, the argument list
generally includes the class path.

A brief description of the target process.

Specifies when to start the target process using one of
these arguments:

® on_denmand (default) starts the process when
requested by a client.
® disabl e disables the process from starting.

The name of the node daemon that will start or modify
this process.

The complete pathname of the executable that will be
started when the process is activated.

For Windows platforms, specify a drive letter if the
executable is not the same as the current drive of the
node daemon. Windows paths can be expressed with one
forward slash separator or two backward slashes.

301

CHAPTER 22 | Location Domain

302

-directory

-env

- group

Specifies the working directory where the target process
writes output files, error logs, and so on.

On UNIX the default current working directory is set to the
root file system. On Windows, the default current drive is
the node daemon'’s drive, and the current directory is set
to the root directory.

On Windows, specify a drive letter if the working directory
drive differs from the node daemon'’s current drive.
Windows paths can be expressed with one forward slash
separator or two backward slashes.

On UNIX, if the current working directory path does not
exist, it is created automatically with permissions

Use this argument in order to:

® Ensure that the server runs in a directory that is in
the root file system. This avoids problems with
running servers in mounted file systems.

® Use relative path names. This means that
administrators can set the working directory for the
activated server without having to define other paths
and directories.

® Ensure that core files cannot overwrite each other if
the server is configured to run somewhere other than
the root directory.

Explicitly sets the process environment. This argument

takes a list of space-delimited vari abl e=val ue pairs,
enclosed in quotation marks:

env "D SPLAY=ci rcus: 0. 0 CLOM=Bozo HOME=/tent"

This option overrides any environment variables set by the
node daemon. By default, the server inherits its
environment from the node daemon. If you use this
option, you must specify all environment variables that
the server requires.

For more information about environment settings, see
“Server Environment Settings” on page 54.

Group name that starts the target process. The default is
nobody. For more information, see page 56.

process remove

Synopsis

Description

Arguments

Examples

Server Process

- user User name that starts the target process. The default is
nobody. For more information, see “File access
permissions” on page 56.

- unmask File mode creation mask for the activated target process.
Specify as three octal digits, ranging from 000 to 777. The
default is 022 (maximum file permissions: 755, or
I KT - XT - X).

process renove [-force|-deep|-active] process-nane

Removes a process implementation repository entry created using process
create. If you omit the -f or ce or - deep switch, POA entries that reference
this process are not removed and an error is reported.

Removing a process also removes the active process entry from the locator's
active process table. The - act i ve argument removes only an active process
entry from the locator's active process table; the process remains registered
with the implementation repository.

The following arguments are mutually exclusive. Choose one:
-active Removes only the active process entry from the locator's active
process table.

- deep Removes the process entry and all object adapter
implementation repository entries that refer to it.

-force Forces process removal even if other implementation repository
entities have references to it.

The following example removes the ny_app server process name:

itadmn process |ist

ifr

nam ng

ny_app

itadmn process renove -force ny_app

itadmn process |ist

ifr

nam ng

303

CHAPTER 22 | Location Domain

process show

Synopsis

Description

Examples

process start

Synopsis

Description

304

process show process- name

Displays all process data entered for the specified pr ocess- nane. If the process
is active, process showdisplays the active node daemon name. Viewing a
target process is useful for verifying whether a process name is registered and
has the appropriate settings.

The following example shows the information registered with the locator
daemon for a target process:

itadm n process show ny_app
Process Nane: ny_app
Descri ption: Unknown services provi ded.
Startup Mde: on_denand
Node Daenon List:
Node Daenon Nane: oregon
Host Name: oregon
Max. Retries: 3
Retry Interval: 2
Pat h Nanme: c:\ Program Fi | es\ Acne\ bi n\ ny_app. exe
Argunents: -safe -sane
Envi ronment Vari abl es: | nherited from node daenon
Fil e Access Perm ssions:
User: nstephen
G oup: PG GROP
File Oeation Perm ssions:
Urask: 022
Qurrent Directory: /
Resource Limts: Inherited fromnode daenon

process start process-nane

Starts a target process on the host where the node daemon configured for the
process resides.

Server Process

process stop

Synopsis process stop [-signal nunber] process-name

Arguments Stops the specified process that was started by its associated node daemon.
Depending on the environment used, this command has the following effect:

UNIX/C++ Sends a SI @ NT (2) signal to the process.
Windows/C++ Calls Gener at eConsol eCt r | Event (CTRL_BREAK_EVENT, 0).
Java Calls systemexit (0).

Arguments

-signal Specifies the UNIX signal number to stop a process.

WARNING: The signal number is ignored for a Windows NT process.

305

CHAPTER 22 | Location Domain

306

Overview

Mainframe
Adapter

The following i t adni n commands enable you to use the mapping gateway
interface of the Orbix Mainframe Adapter (MFA).

These commands enable you to list transaction mappings supported by your
CICS or IMS server adapter, add or delete interfaces and operations, and
change transactions that operations are mapped to. A new mapping file can
be read, or the existing mappings can be written to a new file.

Table 26: Mainframe Adapter itadmin Commands

nfa add Adds a new mapping.

nfa change Changes the transaction to which an existing
operation is mapped.

nfa delete Causes the server adapter to stop exporting a
specified operation.

nfa -hel p Prints a list of the operations that the nfa
pl ugi n supports.

nfa list Prints a list of the mappings (interface,

operation, and name) that the server adapter
supports.

nfa refresh

Causes the server adapter to obtain
up-to-date type information for the specified
operation.

nfa rel oad

Causes the server adapter to reload the list
of mappings from its mapping file.

nfa resetcon

If the IMS server adapter is using OTMA to
communicate with IMS, this command
causes the server adapter to close its
connection and to reconnect.

Has no effect on the CICS server adapter.

309

CHAPTER 24 | Mainframe Adapter

310

Table 26: Mainframe Adapter itadmin Commands

nfa resol ve

Prints a stringified IOR for the object in the
server adapter that supports the specified
interface.

nfa save

Causes the server adapter to save its current
mappings to either its current mapping file
or to a filename that you provide.

nfa stats

Causes the server adapter to switch over to a
new mapping file, and to export only the
mappings contained within it.

nfa stats

Displays statistical information on the
running server adapter.

nfa stop

Instructs the server adapter to shut down.

Note: The add, change, and del et e operations only update the CICS or
IMS server adapter internal information. If, however, you use the save
operation the new details are written to the server adapter mapping file.

mfa add

Synopsis
Description

Parameters

Examples

mfa change

Synopsis
Description

Parameters

Examples

nfa add -interface <name> -operation <nanme> <napped val ue>
Adds a new mapping.

You must supply the name of the interface, name of the operation and the
mapped value that you want added. Module names form part of the interface
name and are separated from the interface name with a / character.

For example, to add a new Si npl e/ Si npl eCbj ect mapping, use the following
command:

itadmn nfa add -interface Sinple/S npl eChject -operation
call _me S| MPLESV

nfa change -interface <name> -operation <name> <napped val ue>
Changes the transaction to which an existing operation is mapped.

You must supply the name of the interface, name of the operation and the
mapped value that you want added. Module names form part of the interface
name and are separated from the interface name with a / character.

For example, to change the transaction to which the cal | _me operation is
mapped to SI MPLESV, use the following command:

itadmn nfa change -interface Sinple/S npl eChj ect -operation
call _me SI MPLESV

311

CHAPTER 24 | Mainframe Adapter

mfa delete

Synopsis
Description

Parameters

Examples

mfa -help

Synopsis

Description

mfa list

Synopsis

Description

Parameters

312

nfa del ete -interface <nanme> -operation <name>
Stops the server adapter exporting the specified operation.

You must supply the interface name and the operation name that you want
the server adapter to stop exporting. Module names form part of the interface
name and are separated from the interface name with a / character.

For example, to stop the server adapter exporting the cal | _ne operation, use
the following command:

itadmn nfa delete -interface Sinple/S npl eChject -operation
call _ne

nfa -hel p

Lists all the operations provided by the nfa itadni n plugin.

nfa list

Prints a list of the mappings (interface, operation and name) that the adapter
server supports.

You must supply the interface name. Module names form part of the interface
name and are separated from the interface name with a / character.

mfa refresh

Synopsis

Description

Parameters

Examples

mfa reload

Synopsis

Description

mfa resetcon

Synopsis

Description

nfa refresh [-operation <name>] <interface nane>

Causes the server adapter to obtain up-to-date type information for the
specified interface.

You must supply the interface name. Module names form part of the interface
name and are separated from the interface name with a / character. The
- oper at i on <nane> argument is optional. If you omit the - oper at i on <nane>
argument, all operations mapped in the specified interface are refreshed.

For example, to cause the server adapter to get up-to-date type information
for the Si npl e interface, use the following command:

itadmn nfa refresh S npl e/ S npl eChj ect

nfa rel oad

Causes the server adapter to reload the list of mappings from its mapping file.

nfa resetcon

If the IMS server adapter is using OTMA to communicate with IMS, when this
operation is called on the Mapping Gateway interface, the server adapter
closes its connection with OTMA and reconnects. This is done in such a way
that it does not affect any clients connected to the server adapter by briefly
queueing client requests in the server adapter until the connection is
re-established. The purpose of this operation is to free any cached security
ACEE's on the OTMA connection. You should, therefore, use this operation
after changes that affect users access to IMS have been made to user security
profiles in the 0S/390 security package; for example, RACF.

Note: This command has no effect on the CICS server adapter.

313

CHAPTER 24 | Mainframe Adapter

mfa resolve

Synopsis

Description

Examples

mfa save

Synopsis

Description

Parameters

Examples

314

nfa resolve <interface nane>

Prints a stringified I0R for the object in the server adapter that supports the
specified interface. This IOR string can then be given to clients of that
interface, or stored in an Orbix naming service. The IOR produced contains
the TCP/IP port number for the locator if the server adapter is running with
direct persistence set to no. Otherwise, it contains the server adapter's port
number.

For example, to retrieve an IOR for Si npl e IDL, use the following command:
itadmn nfa resol ve S npl e/ Si npl eChj ect

Once retrieved, the IOR can be distributed to the client and used to invoke
on the target server running inside CICS or IMS.

nfa save [<mappi ng_fil e name>]

Causes the server adapter to save its current mappings to either its current
mapping file, or to a file name that you provide.

The [<mappi ng_fil e name>] argument is optional. You need only provide it
if you want the server adapter to save its current mappings to a specified file.

For example, to get the server adapter to save its current mappings to a
nyMappi ngs. map file, use the following command:

itadmn nfa save "C \nyMappi ngs. map"

mfa stats

Synopsis

Description

mfa stop

Synopsis

Description

mfa switch

Synopsis

Description
Parameters

Examples

nfa stats

Displays some statistical information on the running server adapter.
Information includes the current time according to the server adapter, the
pending request queue length, the total number of worker threads, worker
threads currently active, total number of requests processed by the server
adapter since startup and the server adapter startup time.

nfa stop

Causes the server adapter to shut down.

nfa sw tch <mappi ng_file name>

Causes the server adapter to switch over to a new mapping file, and to export
only the mappings contained in it.

You must provide the name of the mapping file that you want the server
adapter to switch over to.

For example, to get the server adapter to switch over to a nyMappi ngs. nmap
mapping file, use the following command:

itadmin nfa swtch "c:\nyMappi ngs. map"

315

CHAPTER 24 | Mainframe Adapter

316

Overview

Naming Service

A subset of i t adni n commands let you manage the naming service and its
contents. You can use these commands to create, list, and remove naming
contexts, objects, and object groups from the naming service.

All paths and compound names in the naming service conform to the
CORBA Interoperable Naming Service (INS) string name format.

Naming service commands operate on two components:

Names page 318

Object Groups page 322

317

CHAPTER 25 | Naming Service

Names

Overview The following ns commands let you manage and browse the naming service:

Table 27: Naming Service Commands

ns bi nd Creates an association between a context or
object reference and the specified compound
name.

ns |list Lists the contents of the specified path.

ns |ist_servers Lists all active naming servers.

ns newnc Creates a new naming context or object and binds

it to the specified path.

ns renove Removes the specified context or object.

ns resol ve Displays a resolved string name form of the IOR
for a specified path.

ns show server Displays the naming server details for the server
name specified.

ns stop Stops the naming service.
ns unbi nd Unbinds the path-specified context or object.
ns bind
Synopsis ns bind {-context | -object} -path path IR
Description Creates an association between a context or object reference and the
pat h-specified compound name. Use this command in command-line mode
only.
Arguments
- cont ext Binds a context
- obj ect Binds an object.

318

Examples

ns list

Synopsis

Description

Examples

ns list_servers

Synopsis
Description

Arguments

Names

-path Specifies an INS string name as the path to the new binding.

The following example binds an object to the name j anes. per son,in the
conpany/ st af f naming context:

itadnmin ns bind -o -path conpany/ staff/james. person
"| CR 0000000037e276f 47a4b94874c64648e949. . . "

ns list [path]

Displays the contents of the specified path. If pat h resolves to a context, its
contents are displayed. If pat h resolves to an object, the object is displayed.
If no path is specified, the contents of the initial naming context are displayed.
The pat h argument takes the form of an INS string name.

The type of the binding is also listed. A binding of type bj ect names an
object. A binding of type Cont ext names a naming context.

The following command lists the bindings in conpany/ engi neeri ng in the
naming service:

itadmn ns |ist conpany/engineering
paul a (Cbj ect)

producti on (Cont ext)

john ((pj ect)

manager (Qbj ect)

ns list_servers [-active]

Lists all the active servers.

-active Displays all active naming servers.

319

CHAPTER 25 | Naming Service

ns newnc

Synopsis

Description

Examples

ns remove

Synopsis

Description

Arguments

Examples

ns resolve

Synopsis

320

ns newnc [path]

Creates a naming context or object and binds it to the specified path. If pat h
is not specified, ns newnc prints the IOR to standard out. The pat h argument
takes the form of an INS string name.

itadmn

% ns newnc foo. bar/fo03. bar3
%ns |ist foo.bar

/ f 002. bar 2 Cont ext

/ f003. bar 3 Cont ext

ns renmove [-recursive] path

Unbinds the specified context or object. If pat h is a context, the context is
also destroyed. The ns renove command checks whether a context is empty
before destroying it. If the context is empty, ns renove destroys it and then
unbinds it. If the context is not empty and you omit the - r ecur si ve argument,
ns renove displays an error message. The required pat h argument specifies
an INS string name.

-recursive Recursively destroys and unbinds a context or object if the
context is not empty.

For example, the following commands destroy the nanager bindings:

itadm n ns remove conpany/ engi neeri ng/ manager . per son
itadm n ns remove conpany/ engi neeri ng/ support/ manager . per son

ns resol ve path

Description

Examples

ns show_server

Synopsis

Description

ns stop

Synopsis

Description

ns unbind

Synopsis

Description

Names

Prints the resolved string form of the IOR for a given path specified by an INS
string name. If a path is not specified, the string form of the root naming
context is displayed. The pat h argument takes the form of an INS string name.

For example:

itadm n ns resol ve conpany/ engi neeri ng
"I CR 00030322720d9218a35d9614357f 87¢93800d7. . . 6f 3"

The following examples show that the names conpany/ st af f / paul a. per son
and conpany/ engi neer i ng/ manager . per son resolve to the same object:

itadmn ns resol ve conpany/ st af f/ paul a. per son
"| CR 00000000569a2e8034b94874d6583f 09e24. . . "

itadm n ns resol ve conpany/ engi neeri ng/ manager . per son
"| CR 00000000569a2e8034b94874d6583f 09e24. . . "

ns show server server_name

Displays the naming server details for the server name specified.

ns stop server_nane

Stops the naming service.

ns unbi nd path

Unbinds the context or object specified by pat h. The pat h argument takes the
form of an INS string name.

321

CHAPTER 25 | Naming Service

Object Groups

Overview The following nsog commands let you manage object groups:

Table 28: Object Group Commands

nsog add_menber Adds the specified member object to the
specified object group.

nsog bi nd Binds the specified object group to the
specified path.

nsog create Creates the specified object group, with
the specified selection policy.

nsog |i st Lists all object groups currently existing
in the naming service.

nsog |ist_menbers Lists the names of members belonging to
the specified object group.

nsog nodi fy Modifies the selection policy for the
specified object group.

nsog renove Removes the specified object group from
the naming service.

nsog renove_nenber Removes the specified member object
from the specified object group.

nsog set_menber _ti nmeout Sets the load timeout period for a
member of an active object group.

nsog show nmenber Displays the object reference that
corresponds to the specified member of
an object group.

nsog updat e_renber _| oad Updates the load value of a member of
an active object group.

322

nsog add_member

Synopsis

Description

Arguments

Examples

nsog bind

Synopsis

Description

Arguments

Examples

Object Groups

nsog add_nenber -og_nane group-nane -nenber_name nenber - nane | CR

Adds an object to the specified object group. After being added, the object is
available for selection.

The following arguments are all required:
- 0g_nare Specifies the object group to which the member is added.
gr oup- nane

- menber _name Specifies a unique group member name.
nenber - narre

IR Specifies the member’s object reference.

The following command adds a member, paul a, to the engi neer s object group
with an object reference of | CR 0001def. . . :

itadm n nsog add_nenber -og_name engi neers -menber_nanme paul a
1 CR 0001def. ..

nsog bi nd -og_name group-name path

Binds the specified object group to the specified path in the naming service.
When clients resolve that path, they transparently obtain a member of the
specified object group.

- 0g_nare Specifies the name of the object group to bind.
gr oup- nane

pat h SPecifies the INS path to bind the object group.

The following example binds the engi neer s object group to the path
conpany/ engi neer i ng/ engi neers. pool :

itadm n nsog bind -og_name engi neers
conpany/ engi neer i ng/ engi neer s. pool

The conpany/ engi neeri ng context must be already created.

323

CHAPTER 25 | Naming Service

nsog create

Synopsis

Description

Arguments

Examples

nsog list

Synopsis
Description

Examples

nsog list_ members

Synopsis

324

nsog create -type sel ection-policy group-name

Adds the named object group gr oup- nare to the naming service with the
specified selection policy. On creation, an object group contains no member
objects.

The naming service directs client requests to object group members
according to the specified selection algorithm. For more about active load
balancing, see “Active load balancing” on page 118.

-type Specifies the object group’s selection algorithm with
sel ection-policy one of the following values:

rr: round-robin
rand: random
acti ve: active load balancing

gr oup- nane Specifies the name of the new object group.

The following example creates an object group, engi neer s, with a random
selection policy:

itadmn nsog create -type rand engi neers

nsog |i st

Displays all object groups that currently exist in the naming service.

itadmn nsog |i st

Random @ oups: engi neers

nsog |ist_menbers -og_name group-name

Description

Arguments

Examples

nsog modify

Synopsis

Description

Arguments

Examples

nsog remove

Synopsis

Description

Object Groups

Lists the members of the specified object group.

- 0g_nare Specifies the target object group.
gr oup- nane

The following example lists the members of the engi neer s object group:

itadm n nsog |ist_nenbers engineers

nsog nodi fy -type sel ection-policy group-name

Changes the selection algorithm for the specified object group. An object
group's selection algorithm determines how the naming service directs client
requests to object group members (see “Selection algorithms” on page 117).

-type Specifies the object group’s selection algorithm with one
sel ection-po of the following values:
i
el rr: round-robin
rand: random

acti ve: active load balancing (see “Active load
balancing” on page 118).

gr oup- nane Specifies the object group to modify.

The following command changes the object group engi neers'’s selection
algorithm:

itadm n nsog nodify -type rr engineers

Nsog remove group- name

Removes the specified object group from the naming service.

325

CHAPTER 25 | Naming Service

Examples

nsog remove_member

Synopsis

Description

Arguments

Examples

nsog set_member_timeout

Synopsis

Description

326

The following example removes and unbinds the engi neer s object group:

itadm n nsog renove engi neers
itadm n unbi nd conpany/ engi neeri ng/ engi neer s. pool

Note: If the object group is bound in a naming graph, you must also
unbind it, as shown in this previous example.

nsog renove_nenber -0g_name group- name nenber - nane

Removes an object group member. You might wish to remove a member of
an object group if it no longer participates in the group—for example, the
service it references is inaccessible.

- 0g_narre The target object group.
gr oup- nane
menber - narre The member to remove from gr oup- nane.

The following example removes paul a from the engi neer s object group:

itadm n nsog renove_nenber -og_name engi neers paul a

nsog set_nenber_timeout -og_nane group-nane -nenber_name menber
tineout - val ue

Specifies how long an object group member is eligible for load updates, in an
object group that has active load balancing. If the member’s load value is not
updated before ti neout - val ue elapses, the member is removed from the
object group’s selection pool.

This command has no effect on round-robin and random groups. However,
the member timeout is stored and put to use if the object group’s selection
algorithm is modified to active load balancing (see “nsog modify” on

page 325).

Arguments

Examples

nsog show_member

Synopsis

Description

Examples

Object Groups

- 0g_nare Specifies the target object group.
gr oup_nane

- nenber _nane Specifies the target object.
nenber

timeout-value Specifies the timeout value in seconds. A value of - 1 sets
an infinite timeout value.

The following command sets the load timeout period to 30 seconds for member
gat e3 in the gat eway active object group:

nsog set_nenber _tinmeout -og_name gateway -nenber_nane gate3 30

nsog show menber -og_nane group-nane nenber - namre

Displays the object reference that corresponds to the specified member of the
specified object group.

For example, to display the IOR of member paul a in the object group
engi neers:

itadm n nsog show nmenber -og_nane engi neers paul a
"| CR 00000000569a2e8034b94874d6583f 09e24. . . "

327

CHAPTER 25 | Naming Service

nsog update_member_load

Synopsis

Description

Examples

328

nsog updat e_nenber _| oad - og_name group_name - nenber _narme
menber _nane | oad_val ue

Updates the load value for the specified member of an active object group.

This load value is valid for a period of time specified by the timeout assigned
to that member (see “nsog set_member_timeout” on page 326). In an active
selection policy, the naming service selects the group member with the lowest
load value.

This command has no effect on round-robin and random object groups. The
naming service makes no interpretation of a member's load value, and only
uses this information to select the lowest loaded member.

The following command updates the load value to 2. 0 for nenber 1 in the
webr out er active object group:

nsog updat e_nenber _| oad -og_name webrouter -menber_nane nenberl
2.0

Notification
Service

Overview The CORBA notification service enables applications to send events to any
number of objects. For more details, see the Orbix Enterprise Messaging
Guide.
Orbix i tadm n commands enable you to manage the following components
of a notification service:

Notification Service Management page 330

Event Channel page 334

329

CHAPTER 26 | Notification Service

Notification Service Management

The following commands let you manage an notification service instance.

Table 29: Notification Service Commands

notify checkpoi nt Performs checkpoint operations on the
notification service’s Berkeley DB database.

notify post_backup Performs post-backup operations on the
notification service database.

notify pre_backup Performs pre-backup operations on the
notification service database.

notify show Displays the attributes of the specified
notification service.
notify stop Stops a notification service.
notify checkpoint
Synopsis notify checkpoi nt
Description Performs checkpoint operations on the notification service’s Berkeley DB
database.

When using transactions, Berkeley DB maintains transaction log files. Each
time a transaction commits, data is appended to the transaction log files,
and the database files are not modified. Data in transaction log files is then
transferred periodically to the database files. This transfer is called a
checkpoint. You can specify the checkpoint interval with the following
configuration variable:

pl ugi ns: not i fy: dat abase: checkpoi nt _i nt er val

The checkpoint operation performs a Berkeley DB checkpoint. The following
configuration variable determines whether to delete the old log files, or move
them to another directory:

pl ugi ns: noti fy: dat abase: checkpoi nt _del et es_ol d_| ogs

330

notify post_backup

Synopsis

Description

notify pre_backup

Synopsis

Description

notify show

Synopsis

Description

Examples

Notification Service Management

The following configuration variable specifies the directory to which log files
should be moved:

pl ugi ns: noti fy: dat abase: ol d_| og_di r

notify post_backup

Performs post-backup operations on the notification service database.
When backing up data files, it is important that no checkpoint occurs during

the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

notify pre_backup

Performs pre-backup operations on the notification service database.

When backing up data files, it is important that no checkpoint occurs during
the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

notify show

Displays the attributes of the default notification service.

Multiple instances of the notification service are also supported. To show
the attributes of a non-default notification service, specify the ORB name
used to start the notification service (using the - CRBnarme parameter to

i t admi n).

The following command shows the attributes of a default notification service:

itadmn notify show
Notification Service Name: | T_NotifyNanmedRoot
Host Nane: podge
Notificati on Channel Name List:
ny_channel

331

CHAPTER 26 | Notification Service

The following command shows the attributes of the specified non-default
notification service:

itadmn -CRBnane notify.notify2 notify show

Notification Service Name: | T_NotifyNanmedRoot 2
Host Name: rodge

Noti fication Channel Name List:
ny_channel
ny_channel 2

The notification service name must be unique for each notification service
instance. You can specify this is in your configuration, by setting

pl ugi ns: poa: r oot _name. The notification service uses hamed roots to
support multiple instances.

In the following example, pl ugi ns: poa: r oot _nane is set to
I T_Noti f yNamedRoot 2 in the noti fy. noti f y2 configuration scope:

event {

pl ugi ns: poa: root _nane = "I T_NotifyNanedRoot ";
notify2
{
pl ugi ns: poa: root _nanme = "I T_Noti fyNanmedRoot 2";
ik
}

332

notify stop

Synopsis

Description

Examples

Notification Service Management

notify stop
Stops the default notification service.

Multiple instances of the notification service are also supported. To stop a
non-default notification service, specify the ORB name used to start the
notification service (using the - CRBname parameter to i t adni n).

To start the notification service, use the i tnotify run command. You can
also use the start_donai n- nane_ser vi ces command. For more
information, see “Starting Orbix Services” on page 221.

The following command stops the default notification service:
itadmn notify stop

The following command stops a notification service that was started with an
ORB name of noti fy. notify2:

itadmn -CRBnane notify.notify2 notify stop

333

CHAPTER 26 | Notification Service

Event Channel

The following commands enable you to manage a notification service's event
channel:

Table 30: Event Channel Commands

nc create Creates an untyped event channel with the
specified name.

nc |list Displays all untyped event channels managed by
the notification service.

nc renove Removes the specified untyped event channel.

nc show Displays all attributes of the specified untyped
event channel.

nc set_gos Specifies qualities of service for the specified event
channel.
nc create
Synopsis nc create -event_reliability -connection_reliability channel - name
Creates an untyped event channel, in the default notification service, with
the specified name.
Arguments

-event _reliability Specifies the level of guarantee given on the
delivery of individual events. Possible values are
best _effort or persistent.

-connection_reliability Specifies the level of guarantee given on the
persistence of a clients connection to its
notification channel. Possible values are
best _effort or persistent.

334

Examples

nc list

Synopsis

Description

Examples

Event Channel

The following command creates an untyped event channel named
ny_channel :

itadmn nc create -event_reliability persistent
-connection_reliability persistent ny_channel

The following command creates an untyped event channel named
ny_channel 2 in the noti fy. noti fy2 notification service:

itadmn -CRBnane notify.notify2 nc create -event _reliability
persi stent -connection_reliability persistent ny_channel 2

The event reliability and connection reliability must be set at the time of
creation. When these values are set, they cannot be changed.

nc list -count

Displays all the untyped event channels managed by the notification service.

To display the total number of untyped event channels, specify the - count
argument. No value argument is required.

The following command displays the untyped event channels managed by a
default notification service:

itadmn nc |ist
ny_channel

nkt _channel
eng_channel

335

CHAPTER 26 | Notification Service

The following command displays the untyped event channels managed by a
non-default notification service:

itadmn -ORBnane notify.notify2 nc |ist
ny_channel

ny_channel 2

nkt _channel

eng_channel

The following command displays the number of untyped event channels
managed by a notification service:

itadmn nc list -count

3

nc remove

Synopsis nc renove channel - nane

Description Removes the specified untyped event channel.

Examples The following command removes an untyped event channel named
ny_channel :
itadmn nc renmove ny_channel
The following command removes an untyped event channel (from a
non-default notification service) named ny_channel 2:
itadmn -CRBnane notify.notify2 nc renmove ny_channel 2

nc show

Synopsis nc show channel - namre

Description Displays all attributes of the specified untyped event channel.

336

Examples

nc set_qos

Synopsis

Event Channel

The following command displays all the attributes of an event channel named
ny_channel :

i tadm n nc show ny_channel
Channel Nane: ny_channel
Channel 1D 1
Event Conmmuni cati on: Untyped

The following command displays the attributes of an event channel (from a
non-default notification service) named ny_channel 2:

itadnmn -CRBnane notify.noti fy2 nc show ny_channel 2
Channel Nane: ny_channel 2

Channel 1D 2

Event Communi cati on: Untyped

Note: For information about notification service configuration variables,
see the section discussing the pl ugi ns: not i fi cati on namespace in the
Orbix Configuration Reference.

nc set_qos

[-priority] [-order_policy] [-discard_policy]
[-start_time_supported] [-stop_time_supported]

[- max_event s_per_consuner] [-max_batch_size] [-nax_retries]
[-pacing_interval] [-tineout] [-pull _interval] [-retry_tinmeout]
[-max_retry _tinmeout] [-request_timeout] [-retry_multiplier]

channel nane

Specifies various qualities of service (QoS) for the specified event channel
name. Values of existing QoS properties can be changed, and new QoS
properties can be added. All set _qos arguments are optional.

337

CHAPTER 26 | Notification Service

Arguments

338

-priority

-order_policy

-di scard_pol i cy

-start_time_supported

-stop_time_supported

- max_event s_per _consuner

Specifies the order that events are delivered to
a consumer whose -order_pol i cy is set to
priority_order. It also affects the order that
events are dequeued for consumers whose
-di scard_policy is settopriority_order.

The -priority indicates the relative priority of
the event compared to other events in the
channel. Values can be in the range of - 32, 767
and 32, 767. Higher priority events are
delivered before lower. The default is 0.

Specifies the order to queue events for
delivery. Possible values are:

any_or der
fifo_order
priority_order
deadl i ne_or der

Specifies the order that events are discarded
when - max_event s_per _consuner has been
reached. Possible values are:

any_or der
fifo_order
priority_order
deadl! i ne_or der

Specifies whether start time is supported. This
is an absolute time (e.g., 20/12/04 at 11:15)
that determines the earliest time a channel
can deliver the event. If set to t rue, the event
is held until the specified time is reached.

Specifies whether stop time is supported. This
is an absolute time (e.g., 20/12/04 at 11:15)
that determines the latest time a channel can
deliver the event. If set to true, events later
than the specified stop time are not sent.

Specifies the maximum number of events that
a channel queues for a consumer before it
starts discarding them. Events are discarded in
the order specified by - di scard_policy. A
setting of 0 specifies the channel to queue an
unlimited number of events.

- max_bat ch_si ze

-max_retries

- paci ng_i nt erval

-ti meout

-pul | _interval

-retry_timeout

-max_retry_tineout

-request _ti meout

Event Channel

Specifies the maximum number of structured
events sent in a sequence to consumers.

Specifies the maximum number of times that a
proxy push supplier calls push() on its
consumer before it gives up. The default value
is 0, which means an infinite number of
retries.

Specifies the maximum amount of time that a
channel is given to assemble structured events
in a sequence, before delivering the sequence
to consumers.

The default value is 0, which specifies an
unlimited time.

Specifies how long an event remains viable
after the channel receives it. After the

-ti meout value expires, the event is discarded.
The default is 0, which means that events
have an infinite lifetime.

Specifies how much time elapses between
attempts by a proxy pull consumer to call

pul | () ortry pull() on its supplier. The
default value is 1 second.

Specifies how much time elapses between
attempts by a proxy push supplier to call
push() on its consumer. The default is 1
second.

Specifies the ceiling for -retry_ti neout . This
applies to timeouts directly assigned by
developers as well as values reached by the
multiplication of -retry multiplier
and-retry_timeout. The default value is 60
seconds.

Specifies how much time is permitted to a
channel object to perform an operation on a
client.

If the operation does not return within the
specified limit, the operation throws a
QOCRBA: : TRANSI ENT system exception.

339

CHAPTER 26 | Notification Service

-retry _multiplier Specifies the number by which the current
value of -retry_timeout is multiplied to
determine the next -retry_ti meout value. The
-retry_mul tiplier value is applied until
either the push() is successful or
-max_retry_tineout is reached. The default
value is 1. 0.

Examples The following simple example sets the order and discard policies for an event
channel named ny_channel :

itadmn nc set_qos -order_policy fifo_order -discard_policy
fifo_order ny_channel

The following example sets the order policy and the priority for an event
channel named sal es_channel .

itadmn nc set_qos -order_policy priority_order sal es_channel
itadmn nc set_qos -priority 3 sal es_channel

The following enables start time for an event channel named
product i on_channel :

itadmn nc set_qos -start_tine_supported true production_channel

340

Overview

tx begin

Synopsis

Description

Object Transaction
Service

i t adm n supports the object transaction service (OTS). Using i tadm n
commands in transactional mode ensures consistency and reliability in a
distributed environment.

With i t adm n, you can start, commit, rollback, suspend, and resume
transactions. This lets you use other i t adm n commands in transactional
mode—for example, process create, or or bnane nodify.

A service can have several readers but only one writer. A transaction takes
the writer thread. So, if you start a transaction in a service and then do not
commit, roll back, or suspend the transaction, the service blocks until the
timeout period expires (30 seconds). The transaction is then rolled back.

Similarly, if a transaction involving a service and the client (i t adm n in this
case) is terminated, the service is unaware of this and must be terminated.

You can manage transactions with the following i t adni n commands:

Table 31: Object Transaction Service Commands

tx begin Starts a transaction.

tx commit Commits a transaction.

tx resune Resumes a transaction.

tx rol | back Rolls back a transaction.

tx suspend Suspends a transaction.
tx begin

Starts a transaction. To usei t adni ncommands in a transaction, call t x begi n
followed by the other i t admi n commands you wish to execute (for example,
orbnare create).

341

CHAPTER 27 | Object Transaction Service

Examples

tx commit

Synopsis

Description

Examples

tx resume

Synopsis

Description

Examples

342

You must finalize the execution of these commands, using tx commit, or
undo them, using tx rol | back.

The following example starts a transaction, and then creates an ORB name:
itadmn

%tx begin

% or bnane create Mitual Funds. Tr acki ng. G ol nc. St ocks

tx conmm t

Commits a transaction. The commands executed after the transaction started
using tx begi n are finalized.

The following example commits the transaction:

itadnin

%tx begin

% or bnane create Mitual Funds. Tr acki ng. G ol nc. St ocks
%tx conm t

tx resune

Resumes a suspended transaction. Commands that occur after t x r esune are
part of the context of the transaction and are committed or rolled back at the
conclusion of the transaction.

The following example resumes the transaction:

itadm n

%tx begin

% or bnane create Mitual Funds. Tr acki ng. G ol nc. St ocks
%t x suspend

%tx resune

Note: You can not use more than one transaction at a time. You can not
begin a transaction, suspend it and then begin another transaction. The t x
suspend command should be only used to do non-transactional work
before a subsequent t x resume command.

tx rollback

Synopsis

Description

Examples

tx suspend

Synopsis

Description

Examples

tx roll back

Rolls back a transaction. The effects of commands executed after the
transaction started using t x begi n are undone.

The following example rolls back the transaction:

i tadmn

%tx begin

% or bnane create Mitual Funds. Tracki ng. G ol nc. St ocks
%tx roll back

tx suspend

Suspends a transaction. Commands that occur between t x suspend and t x
resune are not part of the transaction, and are not committed or rolled back
at the end of the transaction.

The following example suspends the transaction:
itadmn
%tx begin

% or bnane create Mitual Funds. Tracki ng. G ol nc. St ocks
%t x suspend

343

CHAPTER 27 | Object Transaction Service

344

Overview

Object Transaction
Service Encina

A subset of i t admi n commands support the object transaction service (OTS)
Encina plug-in.

In order to support the two-phase commit (2PC) protocol, an Encina OTS
server needs a medium to log information about transactions—for example,
IORs of the resources participating in a transaction. This medium is the
transaction log, a logical entity consisting of or mirrored by one or more
(physical) Encina volumes. Each volume in turn consists of one or more files
or raw disks, which are said to back up the volume. Each of these volumes,
or mirrors, contain the same information. This ensures recovery in case of
failure of a machine that hosts some or all of a volume’s constituent
files/raw disks.

Transaction logs contain metadata, such as number and location of files or

raw disks backing up the physical volumes that mirror the transaction log.

Two files maintain this information:

® Restart file identifies an initialized transaction log.

® Backup restart file provides a backup to the restart file in case it is lost
or corrupted by hardware failure.

For full information about two-phase commit and the Encina plug-in, see the

CORBA OTS Guide.

You can manage the OTS Encina plug-in with the following i t adm n
commands:

enci nal og add Adds a file/raw disk to the list of files/raw disks
backing up a physical volume of an Encina
transaction log.

enci nal og Creates a new physical volume and adds this to the
add_m rror list of volumes mirroring an Encina transaction log.

enci nal og create Creates a file for use in a transaction log—that is, a
file that can be used to back up a physical volume
mirroring an Encina transaction log.

encinal og display Displays information about the physical volumes of
an Encina transaction log.

345

CHAPTER 28 | Object Transaction Service Encina

encinalog add

Synopsis

Description

Arguments

Examples

346

enci nal og expand Expands an Encina transaction log.

enci nal og init Initializes an Encina transaction log, thereby creating
restart and backup restart files.
enci nal og Removes a physical volume from an Encina
renmove_mrror transaction log.
ot st m st op Stops the otstm service.

Note: The commands described in this chapter assume the use of the
i tadnmi n command shell unless stated otherwise.

encinal og add —restart restart-file [-backup backup-file] [-vol
vol -spec] [-silent] file-spec

Adds a file/raw disk to the list of files/raw disks that back up the physical
volume vol - spec, thereby increasing the total size of this volume.

If you omit the - vol argument, the file/raw disk is added to the list of
files/raw disks backing up volume I ogVol _physi cal Vol 1.

—restart restart-file |dentifies the target transaction log.

-backup backup-file Optionally identifies the target transaction log. If
no backup restart file is specified, the default path
is derived from restart-fil e. bak.

-vol vol - spec Specifies a physical volume other than the default
one.

-silent Suppresses the display of the completion status.

fil e-spec The path to an existing file (created with encinalog

create) or raw disk.

The following example adds the file ot s2. 1 og to the physical volume
I ogVol _physi cal Vol 2 which mirrors the transaction log identified by restart
file ots. restart and backup restart file ot s. backup:

itadmn encinal og add —restart ots.restart -backup ots.backup —
vol | ogVol _physical Vol 2 ots2. 1 og

encinalog add_mirror

Synopsis

Description

Arguments

Examples

encinalog create

Synopsis

Description

Note: Use the enci nal og di spl ay command to list the named of the
individual physical volumes mirroring the transaction log.

encinalog add_mrror —-restart restart-file -backup backup-file
[-silent] file-spec

Creates a physical volume backed up by fi | e- spec, and adds it to the list of
physical volumes mirroring the transaction log.

The new physical volume is named | ogVol _physi cal Vol n, where n is the
lowest number for which there is no physical volume mirroring the
transaction log.

—restart Identifies the target transaction log.
restart-file

- backup Optionally identifies the target transaction log. If no
backup-file backup restart file is specified, the default path is
derived from restart-fil e. bak.

-si | ent Suppresses the display of the completion status.

file-spec The path name of a file or raw disk created with
enci nal og create.

The following example adds a physical volume backed up by file
otsnirror. | og to the to the list of volumes mirroring the transaction log
identified by restart file ot s. restart and backup restart file ot s. backup:

itadmn encinalog add mrror -restart ots.restart -backup
ot s. backup otsmrror. | og

encinalog create [-size-type file-size] [-replace] [-silent]
file-spec

Creates a file, fil e- spec, which can be used to back up a physical volume
of an Encina transaction log. The default size is 4 megabytes.

347

CHAPTER 28 | Object Transaction Service Encina

Arguments

Examples

encinalog display

Synopsis
Description

Arguments

348

-si ze-type
file-size

—-repl ace

—-si |l ent

Specifies a non-default size, where - si ze- t ype is one of
the following literals:

® -nsize specifies the size in megabytes.
® -ksize specifies the size in kilobytes.
® -size specifies the size in bytes.

The minimum size is 1 megabyte; the maximum size is
16 megabytes.

Overwrites an existing file.
Suppresses the display of the completion status.

The following example creates a file of size 2 megabytes and overwrites an
existing file of the same name:

itadm n encinal og create —nsize 2 -repl ace ots. | og

enci nal og display -restart restart-file [-backup backup-file]

Displays information on the physical volumes mirroring the transaction log.

—restart
restart-file

- backup
backup-file

Identifies the target transaction log.

Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is
derived from restart-fil e. bak.

Examples

encinalog expand

Synopsis

Description

Arguments

Examples

The following example displays information on the physical volumes of a
transaction log identified by ot s. restart and the backup restart file
ot s. backup:

itadmn encinal og display -restart ots.restart —backup

ot s. backup

%

Logi cal Vol une: | og\Vol

Free Pages: 960

Total Nunber of Pages: 1016

Physi cal Vol une: | ogVol _physi cal Vol 1
File Name: /tnp/ots.|og

Physi cal Vol une: | ogVol _physi cal Vol 2
File Name: /tnp/otsmrror.|og

enci nal og expand —restart restart-file [-backup backup-file]
[-silent]

Expands the transaction log to its maximum size, which is the minimum of
the individual physical volume sizes. These, in turn, are the accumulated sizes
of the files/raw disks backing up the individual physical volumes. The
operation is necessary after the size of all physical volumes has been increased
by adding files/raw disks to the volumes.

-restart Identifies the transaction log to expand
restart-file

- backup Optionally identifies the transaction log to expand. If no
backup-file packup restart file is specified, the default path is
derived from restart-fil e. bak.

—si | ent Suppresses the display of the completion status.

The following example expands the logical volume associated with
ots.restart and the backup restart file ot s. backup:

itadm n encinal og expand —restart ots.restart -mrror ots.backup

349

CHAPTER 28 | Object Transaction Service Encina

encinalog init

Synopsis

Description

Arguments

Examples

encinalog remove_mirror

Synopsis

Description

Arguments

350

encinalog init [-replace] [-restart restart-file] [-backup
backup-file] [-silent] file-spec

Initializes an Encina transaction log, mirrored by one physical volume

I ogVol _physi cal Vol 1, and backed up by the file/raw disk fi | e- spec.

The command also creates restart and backup files. You can explicitly name
these files; otherwise, the default restart file and backup restart file names
are file-spec_restart and fil e-spec_restart. bak, respectively.

-restart Specifies the restart file name.
restart-file

- backup Optionally identifies the transaction log to initialize. If
backup-file no backup restart file is specified, the default path is
derived from restart-fil e. bak.

—repl ace Overwrites the existing restart files.

-sil ent Suppresses the display of the completion status.

The following example initializes a transaction log using alternative names for
the restart and backup restart files:

itadmn encinalog init -restart ots.restart —backup ots. backup
ots.|og

encinal og remove_mirror —restart restart-file [-backup
backup-file] [-silent] vol-spec

Removes the physical volume vol - spec from the list of volumes mirroring the
transaction log.

—restart Identifies the target transaction log.
restart-file

- backup Optionally identifies the target transaction log. If no
backup-file backup restart file is specified, the default path is
derived from restart-fil e. bak.

—si |l ent Suppresses the display of the completion status.

Examples The following example removes the physical volume | ogVol _physi cal Vol 1
from the transaction log identified by ots.restart and backup restart file
ot s. backup:

itadm n encinal og renove_nirror —restart ots.restart -backup
ot s. backup | ogVol _physi cal Vol 1

Note: See encinal og init and enci nal og add_mrror for the possible
names of a physical volume, or use the enci nal og di spl ay command to
get the names of the physical volumes mirroring a transaction log.
Because a transaction log needs at least one mirror, renmove_m rror will
not allow you to remove a physical volume if it is the only volume.

otstm stop
Synopsis ot st m st op
Description Stops the otstm service.

351

CHAPTER 28 | Object Transaction Service Encina

352

Overview

Persistent State

Service

A subset of i t adnmi n commands let you manage the persistent state service
(PSS). PSS is a CORBA service for building CORBA servers that access
persistent data and include transactional support. PSS is for use with C++
applications only. For more details about PSS, see the CORBA
Programmer’s Guide.

You can manage a PSS database using the following commands:

Table 32: Persistent State Service Commands

pss_db archive_ol d_l ogs | Archives old log files for the specified IOR.

pss_db checkpoi nt Performs checkpoint operations on the
database referenced in the specified file.

pss_db del ete ol d_| ogs Deletes old log files for specified I0R.

pss_db list_replicas Lists the replicas for the specified I0R.

pss_db name Returns the name of the object reference
to the database.

pss_db post_backup Performs post-backup operations on the

database referenced in the specified file.

pss_db pre_backup Performs pre-backup operations on the
database referenced in the specified file.

pss_db renove_replica Removes a replica from the database’s
replica group.

pss_db show Returns replication related information for

the specified IOR.

353

CHAPTER 29 | Persistent State Service

pss_db archive _old_logs

Synopsis

Description

pss_db checkpoint

Synopsis

Description

354

pss_db archive_old_logs IORfile

Archives old log files for the specified IOR. The | GR-fi | e argument specifies
the full pathname to the file that contains the object reference.

pss_db checkpoint ICRfile

Performs checkpoint operations on the database referenced in the file. The
| CR-fil e argument specifies the full pathname to the file that contains the
object reference.

When using transactions, Berkeley DB maintains transaction log files. Each
time a transaction commits, data is appended to the transaction log files,
and the database files are not modified. Data in transaction log files is then
transferred periodically to the database files. This transfer is called a
checkpoint. You can specify the checkpoint interval, using the following
configuration variable:

pl ugi ns: pss_db: envs: env_nane: checkpoi nt _i nt er val

For example, pl ugi ns: pss_db: envs: | ocat or : checkpoi nt _i nt erval .

The checkpoint operation performs a Berkeley DB checkpoint. The following
configuration variable specifies whether to delete the old log files, or move
them to another directory:

pl ugi ns: pss_db: envs: env_nane: checkpoi nt _del et es_ol d_| ogs

The following configuration variable specifies the directory to which log files
should be moved:

pl ugi ns: pss_db: envs: env_nane: ol d_| og_di r

For more details on these configuration variables, see the section discussing
the pl ugi ns: pss_db namespace in the Orbix Configuration Reference.

pss_db delete old_logs

Synopsis

Description

pss_db list_replicas

Synopsis

Arguments

pss_db name

Synopsis

Description

pss_db post_backup

Synopsis

Description

pss_db delete_old_logs | CRfile

Deletes old log files for specified IOR. The | CR-fi | e argument specifies the
full pathname to the file that contains the object reference.

pss_db list_replicas [-active] ICRfile
Returns the names of all replicas for the database specified in the file
containing the object reference.

-active

ICRfile

List only active replicas.

Specifies the full pathname to file that contains the
object reference.

pss_db nane IR file

Returns the name of the object reference to the persistent state database.

The I R fi | e argument specifies the full pathname to the file that contains
the object reference.

pss_db post_backup IOR-file

Performs post-backup operations on the database referenced in the file. The
I R-fil e argument specifies the full pathname to the file that contains the
object reference.

When backing up data files, it is important that no checkpoint occurs during
the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

355

CHAPTER 29 | Persistent State Service

pss_db pre_backup

Synopsis

Description

pss_db remove_replica

Synopsis

Description

Arguments

356

pss_db pre_backup IR file

Performs pre-backup operations on the database referenced in the file. The
| OR-fi | e argument specifies the full pathname to file that contains the object
reference.

When backing up data files, it is important that no checkpoint occurs during

the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

pss_db renove_replica [-iorfile IORfile] [-envhorme env-dir]

repl i ca-nane

Removes the replica specified r epl i ca- name from the replica group. The
—iorfil e orenvhone argument must be specified, depending on whether the
service containing the database is running or not.

The renove_repl i ca command should only be used when removing a
service's replica. See the Orbix Deployment Guide for more details.

-iorfile Specifies the path to the file containing the
databases reference. This argument is used to
remove a replica when the replica group is running.

- envhore Specifies the path to the database root directory.
This argument is used when the service containing
the database is not running. It only removes the
replica from the local database.

pss_db show

Synopsis pss_db show | CR-file

Description Returns information about the specified database. This includes:
¢ database name
® whether the database is replicated

® database replica name

® whether the database is a master or slave.

The | OR-fi | e argument specifies the full pathname to file that contains the
object reference.

357

CHAPTER 29 | Persistent State Service

358

Overview

Key distribution management

KDM database

Security Service

The i t adm n tool supports security commands to administer the key
distribution management (KDM) database, which is part of SSL/TLS for
CORBA. The KDM is a security feature that enables automatic activation of
secure Orbix servers—see the CORBA SSL/TLS Guide for details.

Key distribution management (KDM) is a mechanism that distributes pass
phrases to a secure server during automatic activation. Without the KDM, it
is impossible to activate a secure server automatically because pass phrases
must be supplied manually when the server starts up.

The KDM also protects a server's implementation repository (IMR) entry
from unauthorized tampering. Whenever a process IMR entry is updated,
the KDM requires a security checksum to be generated (using the checksum
creat e command). The process IMR entry is the part of an IMR record that
stores the server executable location. Before activating a secure server, the
KDM checks that the stored checksum matches the current checksum for
the process IMR entry.
The KDM framework consists of the following elements:
® A KDM server provides security attributes to the locator on request.
®* A KDM database is used by the KDM server to store security attributes.
® A KDM administration plug-in provides the security commands
described in this section and communicates directly with the KDM
server. SSL/TLS installs a secure KDM administration plug-in the
i tadm n utility.

The KDM database stores the following kinds of security attributes:

® Pass phrases are associated with an ORB name and stored as a
security attribute in the KDM database. The pass phrases are supplied
to a secure server during automatic activation.

® Checksums are associated with a process name and stored as a
security attribute in the KDM database. The checksum is tested
against the current process IMR record before a server is automatically
activated.

359

CHAPTER 30 | Security Service

Commands

360

The process IMR record used by the checksum algorithm includes all of the
fields associated with the i t adm n process command except the process
description.

The security commands are mainly concerned with managing the entries in
the KDM database—creating, updating, and removing security attributes.

All of these commands require a secure connection to the KDM database. It
is therefore necessary to log on to the KDM server, using admi n_| ogon, prior
to issuing any of the security commands.

i t adm n commands let you manage the following security service activities:

Logging On page 361
Managing Checksum Entries page 362
Managing Pass Phrases page 365

Logging On

Logging On

admin_logon

Synopsis

Description

Arguments

Examples

You log on to the KDM server with the i t adm n adni n_| ogon command.

adm n_logon login [-password pass-phrase] identity

Logs an administrator on to the KDM server. This command must be issued
prior to any of the other secure commands (kdm admor checksum.

I ogin This argument specifies the name of an X.509 certificate that
identifies the administrator.
The i dentity parameter specifies the name of a PKCS#12
certificate file, i denti ty. p12, located in the directory
specified by the i t adm n_x509_cert _root configuration
variable.

- passwor d This argument lets you specify the pass phrase for the
i dentity. pl2 certificate on the same line as the command,
instead of being prompted for it.

This argument is provided for scripting in a development
environment and should not be used in a live system.

To log on to the KDM server, before issuing any secure commands, enter the
following at the command line:

itadm n

% adm n_| ogon login ny_admn_id

Pl ease enter password for identity ny_admn_id:
%

The Enter password prompt lets you enter the pass phrase for the
ny_admi n_i d. p12 certificate without echoing to the screen.

361

CHAPTER 30 | Security Service

Managing Checksum Entries

Overview

checksum confirm

Synopsis

Description

Arguments

362

The following i t adni n commands let you manage checksum entries:

Table 33: Checksum Entry Commands

checksum confirm Confirms that the process IMR entry for the
specified process has not been changed since
the checksum was created.

checksum creat e Creates a checksum for the specified process
IMR entry and store the checksum in the KDM
database.

checksum i st Lists process names that have security

checksum information in the KDM database.

checksum r enove Removes a security checksum entry from the
KDM database.

checksum confi rm - process process- name

Confirms that the process IMR entry for pr ocess- nare has not been modified
since the checksum entry in the KDM database was created.

-process Specifies the name, process- nane, of a process IMR entry.

Managing Checksum Entries

Examples To confirm that the checksum previously stored for the ny_pr ocess_nane
process agrees with the checksum for the current ny_pr ocess_nane IMR entry,
enter the following at the command line:

itadmn

% adm n_| ogon | ogi n ny_adm n_i d

Pl ease enter password for identity ny_admn_id:
% checksum confi rm - process ny_process_nane
The checksumis valid.

%

checksum create

Synopsis checksum create -process process-nane

Description Creates a checksum entry in the KDM database for the process pr ocess- nane.
The checksum must be recreated whenever the process IMR entry for the
specified process is madified.

Arguments

- process Specifies the name, process- nane, of a process IMR entry.

Examples To create a checksum entry in the KDM database for ny_pr ocess_nane, enter
the following at the command line:

itadmn

% adm n_| ogon | ogin ny_admn_id

Pl ease enter password for identity ny_admn_id:
% checksum creat e - process ny_process_nane

%

checksum list

Synopsis checksum i st [-count]

Description Lists the names of all processes that have checksum entries in the KDM
database.

Arguments

- count Returns a count of the number of checksum entries, instead of
listing them.

363

CHAPTER 30 | Security Service

Examples

checksum new_pw

Synopsis

Description

checksum remove

Synopsis

Description

Arguments

Examples

364

To list all process names with checksum entries in the KDM database, enter
the following at the command line:

itadm n

% adm n_| ogon | ogin ny_admn_id

Pl ease enter password for identity ny_adm n_id:
% checksum | i st

si npl e_process

%

checksum new_pw

Password protects the checksum entry in the KDM database.

checksumrenove - process process-nane

Removes the checksum entry associated with the pr ocess- name process
name from the KDM database.

-process Specifies the name, process- nane, of a process IMR entry.

To remove the checksum entry associated with ny_pr ocess_name from the
KDM database, enter the following at the command line:

itadnn

% adm n_| ogon | ogin ny_admn_id

Pl ease enter password for identity ny admn_id:

% checksum renove - process ny_process_name

Security checksum associ ated with process ny_process_name has
been renoved.

%

Managing Pass Phrases

Managing Pass Phrases

Overview

kdm_adm change_pw

Synopsis

Description

The following i t adni n commands let you manage pass phrases:

Table 34: Pass Phrase Commands

kdm adm change_pw

Changes the pass phrase for encrypting the
KDM database.

kdm adm confirm

Confirms that the pass phrase associated with
the specified ORB name has the value you
expect.

kdm adm creat e

Creates an entry in the KDM database that
associates a pass phrase with the specified ORB
name.

kdm adm | i st

Lists the ORB names that have pass phrase
information in the KDM database.

kdm adm new_pw

Creates a new pass phrase for encrypting the
KDM database.

kdm adm r enove

Removes an entry from the KDM database
associated with the specified ORB name.

kdm adm change_pw

Changes the pass phrase used to encrypt the KDM database. The command
prompts you for the current pass phrase and then prompts you twice for the
new pass phrase (to ensure it was entered correctly).

365

CHAPTER 30 | Security Service

Examples To change the KDM database pass phrase, enter the following at the
command line:

itadm n

% adm n_| ogon | ogin ny_admn_id

Pl ease enter password for identity ny_adm n_id:
% kdm adm change_pw

Pl ease enter the current KDM passwor d:

Pl ease enter the new KDM passwor d:

Pl ease confirmthe new KDM passwor d:

%

After entering the adni n_| ogon command, you are prompted for the
ny_adni n_i d. p12 certificate pass phrase.

After entering the kdm adm change_pwcommand, you are prompted three
times for pass phrases. In response to the first Enter password prompt,
enter the current KDM database pass phrase. In response to the second and
third Enter password prompts, enter the new KDM database pass phrase.

kdm_adm confirm

Synopsis kdm adm confi rm - or bnanme CRB- nane

Description Confirms the pass phrase associated with the specified ORB name, CRB- nane.
The command prompts you for the pass phrase associated with CRB- nane and
tells you whether or not you entered the correct pass phrase.

Examples To confirm the pass phrase associated with the ny_or b_nanme ORB name, enter
the following at the command line:

itadnin

% adm n_| ogon | ogin ny_admn_id

Pl ease enter password for identity ny_adm n_id:
% kdm adm conf i rm - or bnane ny_orb_nare

Pl ease enter password for orb ny_orb_nane :
The password is correct.

%

kdm_adm create

Synopsis kdm adm creat e -orbname CRB-nane [-password pass-phrase]

366

Description

Arguments

Examples

kdm_adm list

Synopsis

Arguments

Managing Pass Phrases

Creates an entry in the KDM database to associate a pass phrase with the
specified ORB name, GRB- nane. Just one pass phrase can be associated with
an ORB name. If the - passwor d argument is omitted, the command prompts
you for a pass phrase which is not echoed to the screen.

- or bnare Specifies the ORB name, CRB- nane, with which the new pass
phrase is associated.

-password Lets you specify a new pass phrase. This argument is provided
for scripting purposes during development and should not be
used in a live system.

To associate a pass phrase with the ny_orb_nane ORB name and store the
association in the KDM database, enter the following at the command line:

itadmn

% adm n_| ogon | ogin ny_admn_id

Pl ease enter password for identity ny_admn_id:
% kdm adm creat e -orbnane ny_orb_nane

Pl ease enter password for orb ny_orb_nane :

%

kdmadmlist [-count]
Lists all ORB names that have associated pass phrases stored in the KDM
database.

- count Returns a count of the number of ORB name entries instead of
listing them.

367

CHAPTER 30 | Security Service

Examples

kdm_adm new_pw

Synopsis

Description

kdm_adm remove

Synopsis

Description

Examples

368

To list all ORB names that have associated pass phrases, enter the following
at the command line:

itadm n

% adm n_| ogon | ogin ny_admn_id

Pl ease enter password for identity ny_adm n_id:
% kdm adm | i st

ny_orb_nane

%

kdm adm new_pw

Creates a new pass phrase for encrypting the KDM database.

kdm adm r enove - or bnane CRB- nane

Removes the security entry in the KDM database associated with the CRB- nane
ORB name.

To remove the security entry associated with the ny_or b_nane ORB name,
enter the following at the command line:

itadmn

% adm n_| ogon | ogi n ny_admn_i d

Pl ease enter password for identity ny_adm n_id:

% kdm adm r enove -or bnane ny_or b_nane

Security attributes associ ated with orbnane ny_orb_nane have been
renoved.

%

Trading Service

Overview i t adni n provides a set of commands for managing the following trading
service components:

Trading Service Administrative Settings page 370
Federation Links page 375
Regular Offers page 379
Proxy Offers page 381
Type Repository page 383

369

CHAPTER 31 | Trading Service

Trading Service Administrative Settings

Overview The following commands let you mange trading service administrative
settings:

Table 35: Trading Service Commands

trd_adm n get Displays administrative settings.
trd_admn set Modifies administrative settings.
trd_adm n stop Stops the trading service.
trd_admin get
Synopsis trd_admin get arg
Description Displays administrative settings.
Arguments Supply one of the following arguments:
-request _i d_stem Displays the request id stem assigned to this
instance of the trading service.
-def _search_card Displays the default search cardinality-the
default upper bound of offers to be searched.
- max_sear ch_card Displays the maximum search
cardinality-maximum upper bound of offers to be
searched.
-def _match_card Displays the default match cardinality-default

upper bound of matched offers to be ordered.

- max_nat ch_card Displays the maximum match
cardinality-maximum upper bound of matched
offers to be ordered.

-def _return_card Displays the default return cardinality-default
upper bound of ordered offers to be returned.

-max_return_card Displays the maximum return
cardinality-maximum upper bound of ordered
offers to be returned.

370

Trading Service Administrative Settings

-max_| i st Displays the upper bound on the size of any list
returned by the trading service, namely the
returned offers parameter in query, and the
next_n operations in Cfferlterator and
Cferldlterator.

-nodi fiabl e_properties Displays whether the trading service supports
properties modification.

-dynami c_properties Displays whether the trading service supports
dynamic properties.

-proxy offers Displays whether the trading service supports
proxy offers.

- def _hop_count Displays the default hop count-default upper
bound of depth of links to be traversed in a
federated query.

- max_hop_count Displays the maximum hop count-maximum
upper bound of depth of links to be traversed in a
federated query.

-def _fol |l ow pol i cy Displays the default federation link follow policy.

-max_fol | ow pol i cy Displays the limiting link follow policy for all links
of the trader. This setting overrides both link and
importer policies.

-max_l i nk_fol I ow _pol i cy Displays the most permissive follow policy
allowed when creating new links.

-type_repos Displays the stringified IOR of the service type
type repository.

Examples

>itadmn trd_adnin get -type_ repos
| R 0000000000000036494. ...

> jtadmn trd_admn get -proxy_offers
yes

>itadmn trd_adnin get -def_follow policy
al ways

>itadmn trd_admn get -max_list
2147483647

371

CHAPTER 31 | Trading Service

trd_admin set

Synopsis
Description

Arguments

372

trd_admn set arg

Modifies administrative settings.

Supply one of the following arguments:

-request _id_stemid_stem

-def _search_card val ue

-nmax_search_card val ue

-def _mat ch_card val ue

-nax_mat ch_card val ue

-def _return_card val ue

-nmax_return_card val ue

-max_list val ue

Modifies the request id stem of this
instance of the trading service.

Modifies the default search cardinality-the
default upper bound of offers to be
searched. The value must be a positive
integer.

Modifies the maximum search
cardinality-the maximum upper bound of
offers to be searched. The value must be
a positive integer.

Modifies the default match cardinality-the
default upper bound of matched offers to
be ordered. The value must be a positive
integer.

Modifies the maximum match
cardinality-the maximum upper bound of
matched offers to be ordered. The value
must be a positive integer.

Modifies the default return cardinality-the
default upper bound of ordered offers to
be returned. The value must be a positive
integer.

Modifies the maximum return
cardinality-the maximum upper bound of
ordered offers to be returned. The value
must be a positive integer.

Modifies the upper bound on the size of
any list returned by the trading service,
namely the returned offers parameter in
query, and the next_n operations in
Cferlterator and Offerlditerator.
The value must be a positive integer.

-nodi fiabl e_properties
bool ean-val ue

-dynam c_properties
bool ean- val ue

- proxy_of fers bool ean-val ue

-def _hop_count val ue

- max_hop_count

-def _foll ow policy policy

-max_fol l ow policy policy

-max_| i nk_fol | ow policy
pol i cy

-type_repos | CR

Trading Service Administrative Settings

Specifies whether to enable support of
modifiable properties.

Specifies whether to enable support of
dynamic properties.

Specifies whether to enable support of
proxy offers.

Sets the default hop count-the default
upper bound of depth of links to be
traversed in a federated query. The value
must be a positive integer.

Sets the maximum hop count-the
maximum upper bound of depth of links
to be traversed in a federated query.

Sets the default federation link follow
policy with one of the following values:

® local _only
® if_no_local
® always

Sets the limiting link follow policy for all
links of the trader. This setting overrides
both link and importer policies. Supply
one of the following values:

® local _only
® if_no_local
® always

Specifies the most permissive follow
policy allowed when creating new links
with one of the following values:

® local _only
® if_no_local
® always

Sets the IOR, in string format, of the
service type repository.

373

CHAPTER 31 | Trading Service

Examples

>itadmn trd_admin set -def_search_card 12
def _search_card set to 12

trd_admin stop

Stops the trading service.

374

Federation Links

Federation Links

Overview The following commands let you mange federation links:

Table 36: Federation Link Commands

trd_link create Creates a federation link.

trd_link list Lists all federation links.

trd_link nodify Modifies a federation link.

trd_link renove Removes a federation link.

trd_link show Displays the details on a federation link.
trd_link create
Synopsis trd_link create

-target IR

-def _pass_on_follow rule rule
-limting_followrule rule

I'i nk- name
Description Creates a federation link.
Arguments
-target ICR Defines the trading service instance the link

points to. An IOR to a CosTr adi ng: : Lookup
interface is expected.

-def _pass_on_follow rule Defines default link-follow behavior to pass
rule on for a particular link, if an importer does
not specify its i nk_f ol | ow_rul e; it must
not exceed limting_fol l ow rul e. Supply
one of the following values for r ul e:

® local _only
® if_no_local
® always

375

CHAPTER 31 | Trading Service

Examples

trd_link list

Synopsis
Description

Examples

trd_link modify

Synopsis

Description

376

-limting_followrule rule Defines limiting link follow behavior for a

particular link. Supply one of the following
values for rul e:

® local _only
® if_no_local
® always
|'i nk- nare A string that uniquely identifies the new link

in the trading service instance.

Sitadmn trd_link create -target 'cat ./trader_B | ookup.i or’
-def _pass_on_follow rule always -limting followrul e al ways
Link to _Trader B

created link Link_to Trader_B

trd_link Iist

Lists names of all federation links in the trading service instance.

Sitadmn trd_link |ist
Link to Trader B

trd_link nodify
-def _pass_on_follow rule rule
-limting_followrule rule
I'i nk- narre

Modifies an existing federation link.

Federation Links

Argunent s
-def _pass_on_fol l ow rul e Defines the default link-follow behavior to be
rule passed on for a particular link if an importer
does not specify its I'i nk_f ol | ow r ul e; it must
not exceed limiting_foll ow rule. Supply
one of the following values for rul e:
® Jlocal _only
® if_no_local
® always
-limting_fol low rule rul eDefines limiting link follow behavior for a
particular link. Supply one of the following
values for rul e:
® local _only
® if_no_local
® always
I'i nk- narre A string that uniquely identifies the new link in
the trading service instance.
Examples

>itadmn trd_link nodify -def_pass_on_followrule if_no_|ocal
-limting_followrule always Link_to _Trader_B
nodi fied |ink Link_to_Trader_B

trd_link remove

Synopsis trd_link renove |ink-nane
Description Removes the specified federation link.
Argurrent s

l'ink-name A string that uniquely identifies the link to be removed from
the trading service instance.

Examples

>itadmn trd_|link remove Link_to_Trader_B
renoved |ink Link_to_Trader_B

377

CHAPTER 31 | Trading Service

trd_link show

Synopsis
Description

Argunent s

Examples

378

trd_link show | ink-nane

Displays details on the specified federation link.

link-name A string that uniquely identifies the link whose details are to
be displayed.

>itadmn trd_|ink show Li nk_to_Trader_B
nane:
Link_to_Trader B
def _pass_on_fol | ow rul e:
i f_no_| ocal
limting_foll ow rule:
al ways
target:
limting_ foll ow rule:
| CR 000000000000002249...

Regular Offers

Regular Offers

Overview The following commands let you mange regular offers:

Table 37: Regular Offer Commands

trd_offer list Lists all regular offers.

trd_offer renove Removes a regular offer.

trd_of fer show Displays details on a regular offer.
trd_offer list
Synopsis trd_offer list
Description Lists the offer IDs of all regular (non-proxy) offers.

Examples

>itadmn trd _offer |ist

Printer~1~0
trd_offer remove
Synopsis trd offer renove offer-id
Description Removes (withdraws) the specified offer.
Argurrent s
offer-id Offer ID of an existing offer.
Examples

>itadmn trd_offer renove Printer~1~0
of fer Printer~1~0 renoved

379

CHAPTER 31 | Trading Service

trd_offer show

Synopsis trd_offer show offer-id
Description Displays details on the specified offer.
Argunent s

offer-id Offer ID of an existing offer.
Examples

>itadmn trd_offer show Printer~1~0
offer id:

Printer~1~0
obj ect :

| CR 00000000000000224...
servi ce type:

Printer
properties:

bool ean col or TRUE

|l ong dpi 3200

short ppm 30

380

Proxy Offers

Proxy Offers

Overview

trd_proxy list

Synopsis
Description

Examples

trd_proxy remove

Synopsis
Description

Argurrent s

Examples

The following commands let you manage proxy offers:

Table 38: Proxy Offer Commands

trd_proxy list Lists all proxy offers.

trd_proxy renove Removes a proxy offer.

trd_proxy show

Displays details on a proxy offer.

trd_proxy list

Lists the offer IDs of all proxy offers

>itadmn trd_proxy |ist
Print er~2~0

trd_proxy renove offer-id

Removes (withdraws) the specified proxy offer.

offer-id Offer ID of an existing proxy offer

>itadmn trd_proxy renove Printer~2~0
proxy offer Printer~2~0 renoved

381

CHAPTER 31 | Trading Service

trd_proxy show

Parameters

Description

Argunent s

Examples

382

trd_proxy show of fer-id

Displays details on the specified proxy offer.

offer-id

>itadm n trd_proxy show Printer~2~0

offer id:
Print er~2~0
servi ce type:
Printer
target:

| CR 00000000000000224...
if match all:

TRUE
constraint recipe:

ppm > 20
policies to pass on:

bool ean bool _pol i cy FALSE
properties:

bool ean col or FALSE

I ong dpi 3200

short ppm 12

Offer ID of an existing proxy offer

Type Repository

Type Repository

Overview

trd_type list

Synopsis
Description

Examples

trd_type mask

Synopsis
Description

Examples

They following commands effect the server type repository:

Table 39: Server Type Repository Commands

trd type list Lists all service types in the service type
repository.

trd type mask Masks a service type.

trd_type renove Removes a service type from the service type
repository.

trd_type show Displays details on a given service type.

trd_type unmask Unmasks a service type.

trd_type list

Lists all service types in the service type repository.

>itadmn trd_type |ist
Printer

trd_type mask service-type-name

Masks a service type.

>itadmn trd_type mask Printer
servi ce type Printer masked

383

CHAPTER 31 | Trading Service

trd_type remove

Synopsis trd_type renove service-type-name
Description Removes a service type from the service type repository.
Examples

>itadmn trd_type renove Printer
service type Printer renoved

trd_type show

Synopsis trd_type show servi ce-type-nane
Description Displays details on a given service type.
Examples

>itadmn trd_type show Printer
nane:
Printer
interface:
IDL: PrintServer:1.0
nasked:
no
i ncarnati on nunber:
{0, 1}
super types:
none
properties:
mandat ory read-only bool ean col or
nmandat ory | ong dpi
nmandatory read-only short ppm

384

Type Repository

trd_type unmask

Synopsis trd_type unnmask service-type- name
Description Unmasks a service type.
Examples

>itadmn trd_type unnmask Printer
servi ce type Printer unmasked

385

CHAPTER 31 | Trading Service

386

Part V

Appendices

In this part This part contains the following:
Orbix Windows Services page 389
Run Control Scripts for Unix Platforms page 401
ORB Initialization Settings page 421
Development Environment Variables page 427
Debugging IOR Data page 201

In this appendix

APPENDIX A

Orbix Windows
Services

During configuration, Orbix services are installed as Windows
services that start up automatically at system startup.

T

his appendix describes how you can manage Orbix services as Windows

services, and offers solution to typical problems. These services include:

Configuration repository
Locator daemon

Node daemon

Naming service

Interface repository

Event and notification services
JMS

Object transaction service

This appendix discusses the following topics:

Managing Orbix Services on Windows page 391
Orbix Windows Service Commands page 392
Orbix Windows Service Accounts page 395
Running Orbix Windows Services page 397

389

CHAPTER A | Orbix Windows Services

Logging Orbix Windows Services page 398
Uninstalling Orbix Windows Services page 399
Troubleshooting Orbix/Windows Services page 400

390

Managing Orbix Services on Windows

Managing Orbix Services on Windows

Overview

Identifying Orbix services as
Windows services

If you choose to install Orbix services as Windows services, you can use the
control panel’s Services dialog to start, pause, continue, and stop any of the
installed services. Equivalent functionality is provided through Orbix
commands (see “Orbix Windows Service Commands”).

Note: In order to install and uninstall Orbix services as Windows services,
you must execute the i nstal | and uni nstal | commands.

Each installed Orbix service executable name has a Windows service name.
This is a unique identifier for each service used by the Windows Service
control manager. By default, a Windows service name has the following
format:

I T ORB-nane donai n- nane
Each service can create sub-keys under the following registry key:
HKEY_LOCAL_NMACH NE/ SYSTEM Qur rent Cont r ol Set/ Ser vi ces

A Windows service name is used internally and must be unique. A Windows
display name is shown in the Services dialog only. By default, the Windows
service name and display name are the same.

391

CHAPTER A | Orbix Windows Services

Orbix Windows Service Commands

Overview You can manage Orbix services from the command-line. Service commands
have the following syntax:

exec- nane [CRB-argunents] [exec-arguments] Wn-servi ce- conmand
[Wn- servi ce- ar gunent s]

CRB- ar gunent s can be any of the ORB initialization parameters that are
documented in Appendix C on page 421. In general, ORB-ar gunent s is
required only for the configuration repository. Because the configuration
repository has its own domain, any service command that applies to the
configuration repository must supply the - CRBnane argument.

For example, the following command installs the configuration repository as
a Windows service in the cf r- AcmePr oduct s configuration repository
domain:

itconfig_rep - CRBname i ona_servi ces. confi g_rep - CRBdomai n_nane
cfr-AcmeProducts install

You can execute the following commands on any Orbix Windows service:

conti nue

hel p

install
aus

:

continue

Synopsi s execut abl e- nane conti nue

Description Resumes execution of the background service from its paused state.

392

help

Synopsi s

Description

install

Synopsi s
Description

pause

Synopsi s

Description

prepare

Synopsi s
Description

Orbix Windows Service Commands

execut abl e- nane hel p

Prints a description message for the specified service.

execut abl e-nane install [-description=service-description]

Installs the specified Orbix service as a Windows service. Because the Orbix
configuration tool automatically installs the desired services as Windows
services, you should rarely need to use this command to install a service
manually.

The Windows service control manager starts installed Orbix services
automatically during system startup. The i nstal | command specifies a
Windows 32-bit service that runs in its own process.

Use the -descri pti on argument to change a display name for each service
used by the Windows Service control manager. This leaves unchanged the
internal service name used in the Windows registry key.

Note: In general, it is recommended that you always install Orbix
Windows services by running the Orbix configuration tool.

execut abl e- nane pause

Pauses execution of the specified background service.

execut abl e-nane prepare [-publish_to_file=nane]

Prepares the specified Orbix service for running, creating databases and initial
object references. Use the - publ i sh_to_fil e argument to write object
references to a specified file; otherwise, st dout is used. This command is
implicitly performed when Orbix is configured.

393

CHAPTER A | Orbix Windows Services

query

Synopsi s

Description

run

Synopsi s
Description

stop

Synopsi s

Description

uninstall

Synopsi s
Description

394

execut abl e- nane query

For the specified service, outputs current status, configuration parameters,
and dependencies on other services.

execut abl e-nane run -service

Runs the specified Orbix service as a Windows service. The specified service
must already be installed.

execut abl e- narre st op

Stops execution of the specified service. You must stop a service before you
can uninstall it.

execut abl e- name uni nstal |

Uninstalls the specified Orbix service as a Windows service. See “Uninstalling
Orbix Windows Services” on page 399 for more details.

Orbix Windows Service Accounts

Orbix Windows Service Accounts

Overview

By default, Orbix installs services on Windows under a Local Syst emaccount
that has no interaction with the desktop. You can change the
donai n/ user / passwd with the Windows service control manager.

To change this password, use the Services options in the Windows Control
Panel. You can also enable interaction with the desktop for a Local Syst em
account only. Figure 16 shows details displayed for the locator service on
Windows 2000.

IT iona_services.locator.SUMMER sample-domai 2lx|

General LogOn |F|ec:0very| Dependencies'

Laog on as:

= Local System acoount
¥ sl service bo interact with deskiop

T ILocaISystem Erowse... |

Pazsword:

LConfirm paszword:

“fou can enable or dizable this service for the hardware profiles listed belaw:

Hardware Profile | Service |

Enabled

Enable | Dizable |
ok I Cancel | Lpply |

Figure 16: Locator Service Details

395

CHAPTER A | Orbix Windows Services

Setting service security

396

A service running under the Local Syst emaccount has no user account
information associated with it. As a result, the service might have limited
access to network resources. If this is not desired, use the Services options
available in the Windows Control Panel to change the user/ group and
passwd for the service.

Orbix node daemons run under the Local Syst emaccount and activate other
processes as the Local Syst emaccount. If this is not desired, use the
Services options available in the Windows Control Panel to change the
user/ group and passwd for this service.

Running Orbix Windows Services

Running Orbix Windows Services

Overview

Running in a configuration
repository domain

Running in a file-based domain

Before you can run an Orbix Windows service, the specified service must
already be installed. You must supply the - servi ce parameter to run as a
Windows service.

When Orbix Windows services are installed, the order in which they must be
run depends on whether your configuration domain is configuration
repository-based or file-based.

When running Orbix Windows services in a configuration repository domain,
run the services in the following order:

1.

Configuration repository. For example:

i tconfig_rep - ORBdomai n_nane cfr-AcmeProducts run -service
Locator daemon. For example:

itlocator run -service

Any other persistent service—interface repository, node daemon,
naming service. For example:

itifr run -service

When running Orbix services as Windows services in a file-based domain,
run Orbix services in the following order:

1.

Locator daemon. For example:
itlocator run -service

Any other persistent service—interface repository, node daemon,
naming service. For example:

i t node_daenon run -service

397

CHAPTER A | Orbix Windows Services

Logging Orbix Windows Services

Overview In a configuration domain, logging is written to a file located in the same
directory as the services, by default. By default, logging shows all
informational messages, warnings, errors, and fatal errors.

The default log file name has the following format:
servi ce- nane. | og. ti nest anp
For example, the locator's log file might have the following name:

| ocat or. | og. 18012000

Setting user-defined logging To change the logging output stream to a different file, set the following
configuration variable in the configuration scope for each service:

pl ugi ns: | ocal _| og_stream fil| ename=fi | enane

To add this variable to your configuration domain, use the i t adm n
vari abl e create command. You must set this variable in the configuration
scope for each service; for example, in the | ocat or configuration scope:
itadmn variable create -scope iona_services. | ocator

-type string -value "c:tenp\it_| ocator.|og"

pl ugi ns: | ocal _| og_stream fil ename

If your configuration domain is file based, you can manually add variables to
your configuration file in the appropriate configuration scope. For example,
to set logging for the node daemon, add the following in the node_daenon
Sscope:

plugi ns:local _|l og_streamfil ename="c:\tenp\it_node_daenon. | og";

See Chapter 13 on page 181 for more information on Orbix logging.

398

Uninstalling Orbix Windows Services

Uninstalling Orbix Windows Services

Overview

Commands for uninstalling
services

In order to cleanly remove any version of Orbix from your system, you should
first uninstall all Orbix services from the Windows host.

In a configuration repository-based domain, complete the following
procedure:

1. Stop and uninstall all services while the configuration repository and
locator daemon are still running.

2. Stop and uninstall the locator daemon.
3. Stop and uninstall the configuration repository.

The following series of commands show how you should stop and uninstall
Orbix Windows services:

i t node_daenon st op
i t node_daenon uni nst al |

itifr stop
itifr uninstall

i tnam ng stop
itnam ng uninstall

itevent stop
itevent uninstall

itlocator stop
itlocator uninstall

itconfig_rep - ORBdonmai n_nane cfr-AcnmeProducts stop

itconfig_rep - ORBdomai n_nane cfr-AcmeProducts uni nstal |

399

CHAPTER A | Orbix Windows Services

Troubleshooting Orbix/Windows Services

The following sections describe several common problems related to
Orbix/Windows services, and how to resolve them.

Handling log-off events in A node daemon that is installed as a Windows service continues to run in

activated servers the background after users log off. It also activates server processes under
the Local Syst emaccount. In order to shield these processes from log-off
events (CTRL_LOGOFF_EVENT), the activated processes must have control
handlers; otherwise, the logoff causes them to shut down.

Configuring for slow service Occasionally, Windows services might require extra time to restart after
startup system reboot. This might be due to a slow system, or to recovery of
service-related databases.

Two changes in the configuration can help resolve this problem:

® Reduce the value set for max_bi ndi ng_i terati ons, as in the following
example:

pol i ci es: bi ndi ng_est abl i shnent : max_bi nding_i terations = "1";

® Increase the wait time for a service’s pending operations (for example,
start, pause, resume). The default wait time for all services is set to
900 seconds (15 minutes):

pl ugi ns: pl ugi n- nane: nt _servi ce_pendi ng_op_wait = "900";

Reset this variable for services, as necessary. For example, the
following variable increases the locator's wait time to 20 minutes:

pl ugi ns: | ocat or: nt _servi ce_pendi ng_op_wait = "1200";

400

Overview

APPENDIX B

Run Control
Scripts for Unix
Platforms

Orbix services can be configured to start when the operating
system enters the default run level and to shut down when the
operating system leaves the default run level.

This appendix provides details on how Orbix registers its services with the
operating system for automated startup and shutdown. Procedures for
disabling, enabling and removal of automated startup registration are also
covered.

Sometimes UNIX system administrators choose to customize run levels and
run control scripts of their operating systems. If your run levels are
customized, the details in this appendix will help you manually register your
Orbix services for automated startup and shutdown or to use run control
scripts generated by Orbix as a starting point for customization.

Note: For reliable startup and shutdown of Orbix services, it is
recommended that you install the Java runtime, the Orbix components,
the license file, the domain configuration files, the service databases and
the log files on locally mounted filesystems.

You must have root privileges to perform tasks described in this appendix.

401

CHAPTER B | Run Control Scripts for Unix Platforms

Operating Systems

402

Follow the links below for details on your operating system:

Solaris page 403
AIX page 406
HP-UX page 410
IRIX page 414
Red Hat Linux page 417

For additional details on run levels and run control scripts refer to your

operating system’s documentation.

Solaris

Solaris

Run level

Run control scripts

The default run level is 3; this includes all services from run level 2.

For a domain, <domai n>, the following run control scripts are generated:

/etc/init.dlitsvs_<domai n>

/etc/rcO. d/ K27i t svs_<dormai n> -> /etc/init.d/itsvs_<donai n>
/etc/rcl. d/ K27i t svs_<domai n> -> /etc/init.d/itsvs_<donai n>
/etc/rc2.d/ S97i tsvs_<domain> -> /etc/init.d/itsvs_<donai n>
/etc/rcS. d/ K27i t svs_<domai n> -> /etc/init.d/itsvs_<donai n>

/etc/init.d/itsvs_<domai n>contains the following:

#!'/ bi n/ sh

#

Copyright (c) 1993-2002 | ONA Technol ogi es PLC
Al R ghts Reserved.

#

<depl oynent - speci fic portion>

DOVAI N=boot

DOVAI NS ETC D R=/ et c/ opt/i ona
DOVAI NS VAR D R=/ var/ opt/i ona
</ depl oynent - speci fic porti on>

DOVAI N_START _SCR! PT=

${DOVAINS_ETC DR/ bi n/tart _${DOVAl N} _ser vi ces
DOMAl N_STCP_SCR! PT=

${DOVAI NS ETC DI R}/ bi n/ st op_${ DOVAI N} _ser vi ces

403

CHAPTER B | Run Control Scripts for Unix Platforms

rval =0
case "$1" in
"start')
if [-x ${DOVAI N START SCR PT}]; then
echo "Starting | ONA O bi x services for domai n ${ DOVAI N} "
${ DOVAlI N_START_SCR PT}

el se
echo “ERRCR Failed to start |ONA O bi x services for donai n
${DOVAI N} - \

donai n start script ${DOVAI N START_SCR PT} does not
exi st or is not executable"
rval =1
fi

'stop')

if [-x ${DOMAIN STCP_SCR PT} |; then
echo "Stoppi ng | ONA Q bi x services for domain ${ DOVAI N} "
${DOVAl N_STCP_SCR! PT}

el se
echo “ERRCR Failed to stop | ONA O bi x services for donain
${DOVAIN} - \

donai n stop script ${DOVAI N STCP_SCR PT} does not exi st

or is not executable"
rval =1
f

)

echo "I ONA O bix run control script for domain ${DOVAI N}”
echo “Usage: $0 { start | stop }"

rval =1

esac

exit $rval

Disabling automatic services To temporarily disable automatic startup and shutdown for domain
<dorai n>:

1. Stop <domai n> services by running

> st op_<domai n>_servi ces

404

Solaris

2. Rename the following symbolic links by prepending a _ to their names:

/et c/rc0. d/ K27i t svs_<donai n>
/etc/rcl. d/ K27i t svs_<donai n>
/etc/rc2.d/ S97i t svs_<dormai n>
/etc/rcS. d/ K27i t svs_<donai n>

Enabling automatic service To enable automatic startup and shutdown for <domai n>:

1. Rename the following symbolic links by removing leading _ from their
names:

/etc/rc0.d _K27itsvs_<domai n>
/etc/rcl. d/ _K27i t svs_<donai n>
/etc/rc2.d/l _S97it svs_<domai n>
/etc/rcS. d/l _K27i t svs_<donai n>

2. Start domain services by running:

> start_<domai n>_servi ces

Unregistering automatic services To unregister automatic startup and shutdown for <donai n>:
1. Stop <domai n> services by running:
> st op_<domai n>_ser vi ces
2. Remove the following files:
/et c/rcO0. d/ K27i t svs_<dormai n>
/etc/rcl. d/ K27i t svs_<domai n>
/etc/rc2.d/ S97i t svs_<donai n>

/etc/rcS. d/ K27i t svs_<domai n>
/etc/init.d/itsvs_<domai n>

405

CHAPTER B | Run Control Scripts for Unix Platforms

AlIX

Run level

Actions

406

The default run level is 2.

For a domain named <domai n>, Orbix performs the following actions:

® Makes an entry in /etc/inittab with /usr/sbin/ nki t ab:

itsvs_<domain>:2:wait:/etc/rc.itsvs_<donai n> start >/ dev/consol e
2>&1 # I ONA Orbi x services for domai n <domai n>

® Creates a run control script /et ¢/ rc. i t svs_<donai n> that contains the

following:
#!/ bi n/ sh
#
Copyright (c) 1993-2002 | CNA Technol ogi es PLC.
Al R ghts Reserved.
#

<depl oynent - speci fi c portion>
DOVAI N=boot

DOVAI NS ETC D R=/ et c/ opt/i ona
DOVAI NS VAR D R=/ var/ opt/i ona

</ depl oynent - speci fic portion>

#
DOMVAI N_START_SCR! PT=

${DOVAI NS ETC DI R}/ bin/start_${DAQVAl N} _servi ces
DOMAI N_STCP_SCR! PT=

${DOVAI NS _ETC DI R}/ bi n/ st op_${ DOVAI N} _ser vi ces

AIX

rval =0

case "$1" in

"start')

if [-x ${DOVAI N START_SCRIPT}] ; then

echo "Starting IONA O bi x services for donain ${DOVAI N} *

${ DOVAl N_START_SCR PT}

el se

echo " ERRCR Failed to start | ONA O bi x services for donain
${DOVAINF - \

domain start script ${DOVAI N START_SCR PT}

does not exist or is not executable"

rval =1

fi

'stop')

if [-x ${DOVAIN STCP_SCR PT}] ; then

echo "Stopping | ONA O bi x services for donmai n <donai n>"

${DOVAI N_STCP_SCR PT}

el se

echo "Can not stop |ONA Orbi x servies for domain <domai n> - \

domai n stop script ${DAOVAI N STOP_SCR PT} does not exi st

or is not executable"

rval =1

fi

*)

echo "I ONA O bi x run control script for domai n ${DCQVAI N}”

echo "UWsage: $0 { start | stop }"

rval =1

esac

exit $rval

407

CHAPTER B | Run Control Scripts for Unix Platforms

® Creates /etc/ rc. shut down if it does not exist, and adds the following
code:

#<I ONA O bi X <donmai n> >

if [-x /etc/rc.itsvs_<domain>]; then

letc/rc.itsvs_<domai n> stop

el se

echo "ERRCR Failed to stop | ONA O bi x services for donain
<domai n> - \

letc/rc.itsvs_<domai n> does not exist or is not

execut abl e"

fi

#</| ONA O bi x <donai n> >

exit 0

Note: /etc/rc. shut down must return O, otherwise the AlX shutdown
sequence is interrupted.

Disable automatic services To temporarily disable automatic startup and shutdown for <domai n>:

1. Stop domain services by running
> st op_<domai n>_servi ces

2. Comment out the i t svs_<domai n> entry in /et c/inittab.

3. Comment out the code between <I ONA Orbi x <domai n> > and </ | CNA
QO bi x <domai n> >tags in /et c/rc. shut down.

Enable automatic services To enable automatic startup and shutdown for <domai n>:

1. Uncomment the code between <I ONA O bi x <domai n> > and </ 1 ONA
Q bi x <domai n> > tags in /et c/ rc. shut down.

Uncomment the i t svs_<donmai n> entry in /etc/inittab.

Start domain services by running

> start_<domai n>_servi ces

408

AIX

Unregister automatic services To unregister automatic startup and shutdown for <domai n>:
1. Remove the i t svs_<domai n> entry from /etc/inittab by running

> rmtab itsvs_<donai n>

2. If <domai n> is the only Orbix domain registered for automatic startup
and shutdown, remove file / et ¢/ r c. shut down. Otherwise, remove the
code between <1 ONA O bi x <domai n> > and </ I ONA O bi x <donai n> >
tags in/ et ¢/ rc. shut down.

3. Remove/etc/rc.itsvs_<domai n>.

409

CHAPTER B | Run Control Scripts for Unix Platforms

HP-UX

Run level

Run control scripts

410

The default run level is 3. See the output of run control scripts for the last
boot of the machine in /et c/rc. 1 og. The previous boot log is in
/etc/rc.log.old.

For a domain, <domai n>, the following files are generated:

/ sbi n/rc2. d/ K270i t svs_<domai n> -> /sbin/init.d/itsvs_<donai n>
/ sbi n/rc3. d/ S970i t svs_<donmai n> -> /sbin/init.d/itsvs_<domai n>
/sbin/init.d/itsvs_<donai n>

/etc/rc.config.d/itsvs_<domai n>

The contents of /sbin/init.d/itsvs_<domai n> is as follows:

#!/ bi n/ sh

#

Copyright (c) 1993-2002 | ONA Technol ogi es PLC
Al R ghts Reserved

#

<depl oyment - speci fi c portion>

DOVAl N=boot

DOVAI NS ETC D R=/ et c/ opt/i ona
DOVAI NS VAR D R=/ var/ opt/i ona
</ depl oynent - speci fic portion>

DOMVAI N_START_SCR! PT=

${DOVAI NS ETC DI R}/ bi n/ start_${ DOVAI N} _ser vi ces
DAVAI N_STCP_SCRI PT=

${DOVAI NS_ETC DI R}/ bi n/ st op_${ DOVAI N} _ser vi ces

if [-r /etc/rc.config.d/itsvs_ ${DOVAIN}]
then . /etc/rc.config.d/itsvs_${DOVA Nt

el se
echo "WARNING /etc/rc.config.d/itsvs_${DOVAI N} configuration
file is mssing or is not readable"

fi

HP-UX

rval =0

case "$1" in
"start_mnsg')
echo "Starting | ONA O bi x services for domai n ${ DOVAI N} *

1

'stop_nsg')
echo "Stopping | ONA O bi x services for domai n ${ DOVAI N} "

1

"start')
if [“ITSVS ${DOVMAINI" -eq 1]; then
if [-x ${DOVAI N START _SCR PT}]; then
echo "Starting I ONA Obi x services for domai n ${DOVAI N} "
${ DOVAl N_START_SCR PT}
rval =4
el se
echo "ERROR Failed to start I ONA Orbix services for domain
${DOVAIN} - \ domain start script ${DOVAI N START_SCRI PT} does
not exist or is not executable"
rval =1
fi
el se
domai n is disabl ed
rval =2
fi

'stop')
if [“ITSVS ${DOVAINI" -eq 1]; then
if [-x ${DOVAI N STCP_SCRI PT}]; then
echo "Stopping O bix services for the ${DOVAI N} donai n"
${ DOVAI N_STCP_SCR PT}
rval =4
el se
echo "ERROR Failed to start I ONA Orbix services for domain
${DOVAIN} - \ domain stop script ${DOVAIN STCP_SCR PT} does
not exist or is not executable"
rval =1
fi
el se
domain is disabl ed
rval =2
fi

411

CHAPTER B | Run Control Scripts for Unix Platforms

*)
echo "I ONA O bix run control script for domain ${DOVAI N}”
echo “Usage: $0 { start | stop }"
rval =1
esac
exit $rval

/etc/rc. config.d/itsvs_<domai n> contains the following:

Copyright (c) 1993-2002 | ONA Technol ogi es PLC

Al R ghts Reserved

I ONA Orbi x services, domain <donmai n> configuration

I TSVS <DOVAIN>: set to 1 to enable O bix services for
donai n <donai n>

B H HHH

| TSVS <DOMVAI N>=1

Disable automatic services To temporarily disable automatic startup and shutdown for <domai n>:

1. Stop domain services by running
> st op_<domai n>_servi ces

2. Set1TSVS <DOVAIN>to O in/etc/rc. config. d/itsvs_<donai n>.

Enable automatic services To enable automatic startup and shutdown for <domai n>:
1. SetITSvs <DOVW N>to 1 in/etc/rc. config. d/itsvs_<donai n>.
2. Start domain services by running

> start_<domai n>_servi ces

412

HP-UX

Unregister automatic services To unregister automatic startup and shutdown for <domai n>:
1. Stop domain services by running

> st op_<donai n>_servi ces

2. Remove the following files:

/ sbi n/rc2. d/ K270i t svs_<donai n>
/ sbi n/rc3. d/ S970i t svs_<donai n>

/sbin/init.d/itsvs_<domai n>
/etc/rc.config.ditsvs_<domai n>

413

CHAPTER B | Run Control Scripts for Unix Platforms

IRIX

Run level The default run level is 2.

Run control scripts For a domain, <domai n>, the following files are generated:

/etc/init.dlitsvs_<domai n>
/etc/r0.d/ K27i t svs_<donai n> -> /etc/init.d/itsvs_<donai n>
/etc/r2.d/ S97itsvs_<domai n> -> /etc/init.d/itsvs_<domai n>
/var/config/itsvs_<domai n>

letclinit.dlitsvs_<domai n> contains the following:

#!/ bi n/ sh

#

Copyright (c) 1993-2002 | ONA Technol ogi es PLC
Al R ghts Reserved.

#

<depl oyment - speci fi ¢ portion>
DOVAI N=boot

DOVAI NS ETC D R=/ et c/ opt/i ona
DOVAI NS VAR D R=/ var/ opt/i ona

</ depl oynent - speci fic portion>

DOVAI N_START_SCR! PT=

${DOVAI NS ETC DI R}/ bi n/start_${DAQVAl N} _servi ces
DOMAI N_STCP_SCR! PT=

${DOVAI NS _ETC DI R}/ bi n/ st op_${ DOVAI N} _ser vi ces

rval =0

if [! /shin/chkconfig itsvs_${DCVMAIN}]; then
domain is disabled

exit $rval
fi

414

Disable automatic services

IRIX

case "$1" in
‘start')

if [-x ${DOVAl N START_SCR PT}]; then
echo "Starting Obix services for domai n ${ DOVAI N} "
${ DOVAI N_START_SCR PT}

el se
echo "ERRCR Failed to start | ONA O bi x services for donai n
${DOVAIN - "

echo "domai n start script ${DOVAI N START SCR PT} does not exi st
or is not executabl e"
rval =1
fi

1

'stop')
if [-x ${DOVAIN STCP_SCR PT}] ; then
echo "Stopping I ONA O bi x services for donmai n ${DOVAl N} *
${ DOVAI N_STCP_SCR PT}
el se
echo "ERROR Failed to stop | ONA O bi x servies for domain
${DOVAIN - "
echo "donain stop script ${DOVAIN STCP_SCR PT} does not exi st
or is not executable"
rval =1
fi
*

echo "I ONA Orbix run control script for domain ${DOVAI N}”
echo “Usage: $0 { start | stop }"

rval =1

esac

exit $rval

To temporarily disable automatic startup and shutdown for <donai n>:
1. Stop domain services by running

> st op_<donai n>_ser vi ces
2. Run

> /[shi n/ chkconfig itsvs_<domai n> of f

415

CHAPTER B | Run Control Scripts for Unix Platforms

Enable automatic services To enable automatic startup and shutdown for <domai n>:
1. Run

> /[shi n/ chkconfi g itsvs_<domai n> on
2. Start domain services by running

> start_<domai n>_servi ces

Unregister automatic services To unregister automatic startup and shutdown for <domai n>:
1. Stop domain services by running

> st op_<donai n>_servi ces
2. Remove the following files:

/var/config/itsvs_<donmai n>
/etc/r0.d/ K27i t svs_<donai n>
/etc/r2.dl S97i t svs_<donai n>
letc/init.d/itsvs_<domai n>

416

Red Hat Linux

Red Hat Linux

Run level

Run control scripts

The default run level is either 3 or 5. Orbix determines the default run level.

Run control scripts generated by the Orbix configuration tool are compatible
with chkconfi g(8) and I i nuxconf .

For a domain named <domai n>, the following files are generated by the
Orbix configuration tool:

/etc/rc0.d/ K27i t svs_<domain> -> /etc/rc.d/init.d/itsvs_<donai n>

/etc/rcl. d/ K27i t svs_<domain> -> /etc/rc.d/init.d/itsvs_<donai n>

/etc/rc2.d/ K27itsvs_<domai n> -> /etc/rc.d/init.d/itsvs_<domai n>

letc/rc[3]5].d S97i t svs_<donai n> ->
/etc/rc.d/init.dlitsvs_<domai n>

/etc/rc6. d/ K27i t svs_<domain> -> /etc/rc.d/init.d/itsvs_<donai n>

letc/rec.dlinit.ditsvs_<donai n> contains the following:

#! [bi n/ bash

#

Copyright (c) 1993-2002 | ONA Technol ogi es PLC
Al R ghts Reserved

#

chkconfi g: [3]5] 27 97

description: |ONA Obix services, domain <domai n>
#

<depl oynent - speci fic portion>
DOVAI N=boot

DOVAI NS ETC D R=/ et c/ opt/i ona
DOVAI NS VAR D R=/ var/ opt/i ona

</ depl oynent - speci fic porti on>

DOVAl N_START_SCR! PT=

${DOVAI NS ETC DR}/ bi n/ start_${DOVAI N} _ser vi ces
DOMAI N_STCP_SCR! PT=

${DOVAI NS_ETC DI R/ bi n/ st op_${ DOVAI N} _ser vi ces
DOVAI N LOCK _FI LE=/ var /| ock/ subsys/ i t svs_${ DOVAI N}

417

CHAPTER B | Run Control Scripts for Unix Platforms

418

rval =0
case "$1" in
"start')
check if the domain is running
[-f "${DOVAIN LOXK FILE}"] & exit $rval
if [-x ${DOVAI N_START_SCR PT}]; then
echo "Starting |ONA O bi x services for domai n <donai n>"
${ DOVAl N_START_SCR PT}
touch ${DOVAI N LOCK FI LE}
el se
echo "ERRCR Failed to start IONA O bix services for domain
<dormai n> - "
echo "donai n start script ${DOVAI N START_SCR PT} does not exi st
or is not executabl e"
rval =1
fi

1

'stop')
check if the donmain is not running
[' -f "${DOVAIN LOK FILE}"] & exit $rval
if [-x ${DOVAIN STCP_SCR PT}]; then
echo "Stopping | ONA O bi x services for domai n <donai n>"
${ DOVAl N_STCP_SCR! PT}
el se
echo "ERROR Failed to stop | ONA O bi x services for donain
<domai n> - "
echo "domain stop script ${DOVAIN STCP_SCR PT} does not exi st
or is not executable"
fi
rm-f ${DOVAI N LOXK Fl LE}

1

*)
echo "I ONA O bix run control script for domai n ${DOVAI N}”
echo “Usage: $0 { start | stop }"
rval =1

esac
exit $rval

Disable automatic services

Enable automatic services

Unregister automatic services

Red Hat Linux

To temporarily disable automatic startup and shutdown for <donai n>:

1. Stop domain services by running
> st op_<donai n>_servi ces
2. Run

> chkconfig —del itsvs_<donai n>

To enable automatic startup and shutdown for <domai n>:
1. Run

> chkconfig —add itsvs_<donai n>
2. Start domain services by running

> start_<domai n>_servi ces

To unregister automatic startup and shutdown for <donmai n>:
1. Stop domain services by running

> st op_<donai n>_servi ces

2. Run

> chkconfi g —del itsvs_<donai n>
3. Remove the following files:

letc/rc.d/init.d/itsvs_<domai n>
/var/| ock/ subsys/ it svs_<donai n>

419

CHAPTER B | Run Control Scripts for Unix Platforms

420

Precedence of settings

Java properties

APPENDIX C

ORB Initialization
Settings

Initialization settings can be set for an ORB through
command-line arguments, which are passed to the initializing
ORB.

In most cases, equivalent environment variables or Java properties are
available. In the absence of command-line arguments, these are used by the
initializing ORB.

Initialization parameters pertain to the immediate requirements of the
initializing ORB; for example, the name of its configuration domain and
location, and the naming scope in which to find the ORB’s configuration.
The ORB's behavior is further defined by its configuration, as set by
configuration variables. For more information about these, refer to the
Configuration Reference.

Most initialization parameters can be set in one of the following ways, in
descending order of precedence:

® Command-line arguments.

® Environment variables or Java properties.

® Default values.

Java properties can be set for an initializing ORB in two ways, in descending
order of precedence:

421

CHAPTER C | ORB Initialization Settings

Domains directory

Domain name

422

® Set as system properties. For example:
j ava - DCRBdonai n_nane fi nance cor porat e. fi nance_app

® Set in the properties file i ona. properti es.

An initializing ORB searches for the properties file in the following locations,
in this order:

1. Current directory.
2. Directories on the classpath.
3. Jars on the classpath.

The directory that contains the target configuration file; set with:
Command-line argument: - CRBconfi g_domai ns_dir
Environment variable: | T_CONFI G DOVAINS DI R

Java property: CRBconf i g_donai ns_di r

This directory typically stores a file for each accessible configuration domain
name.

For example:
ny_app - CRBconfi g_donai ns_dir c:\iona\etc\domains

Nothing else should be stored in this directory. This enables tools to easily
enumerate the list of available domains.

The configuration domains directory defaults to CRBconf i g_di r/ domai ns on
UNIX, and CRBconfi g_di r\ domai ns on Windows.

The name of the configuration domain to use; set with:

Command-line argument: - CRBdonai n_nane
Environment variable: | T_DOVAI N_NAME
Java property: CRBdonai n_nane

Configuration directory

ORB name

For example:

_app - ORBdonai n_nare ny_donai n

The root configuration directory; set with:

Command-line argument: -CRBconfig_dir
Environment variable: I T CONFIGDR
Java property: CRBconfig_dir

Specifies the root configuration directory. The default root configuration
directory is /et c/ opt /i ona on UNIX, and product - di r\ et c on Windows.

The ORB name, which specifies the configuration scope for this ORB; set
with:

Command-line argument only: - CRBnane
The following application takes it configuration from the ny_or b scope:
ny_app - CRBnane ny_orb

You can also use the - CRBnane parameter to specify non-default
configuration scopes for Orbix services. For example:

itconfig rep - CRBname config_rep.config2 run

423

CHAPTER C | ORB Initialization Settings

Initial reference

An initial object reference for a service using the interoperable naming
service format; set with:

Command-line argument only: - CRBI ni t Ref
For example:

- CRBI ni t Ref NaneSer vi ce=l CR0O0023445AB. . .
- CRBI ni t Ref

Not i fi cati onServi ce=cor bal oc: 5550bj s. coni Not i fi cati onServi ce

-CRBI ni t Ref Tradi ngSer vi ce=cor banane: 5550bj s. com Dev/ Tr ader

Default initial reference

An initial object reference to a service if none is explicitly specified by
- CRBI ni t Ref ; set with:.

Command-line argument only: - CRBDef aul t I ni t Ref

This parameter takes a URL, which forms a new URL identifying an initial
object reference. For example:

ny_app - CRBDef aul t| ni t Ref corbal oc: 5550bj s. com

A callto resol ve_initial _references("NotificationService") with the
following argument results in a new URL:

cor bal oc: 555. obj s. comi Not i fi cati onServi ce

The new URL has a /' character and a stringified object key appended.

424

Product directory

The directory in which IONA products are installed, set with:

Command-line argument: - CRBproduct _di r

Environment variable: | T_PRODUCT_ DR
Java property: CORBpr oduct _di r
For example:

_app - CRBproduct _dir c:\iona

This directory is read-only and location independent. This enables it to be
shared across systems even if mounted at different locations.

The directory in which products are installed defaults to / opt/i ona on
UNIX, and 9%®yst enbri ve% Program Fi | es\ | ONA on Windows.

425

CHAPTER C | ORB Initialization Settings

426

IT_IDL_CONFIG_FILE

APPENDIX D

Development
Environment
Variables

For C++ installations, you can specify several environment
variables that pertain to development environments only.

Specifies the configuration file for the IDL compiler.

UNIX
Defaults to $I T_I NSTALL_DI R asp/ versi on/etc/idl . cfg.

Windows
Defaults to % T_I NSTALL_DI Rv asp\ versi on\etc\idl . cfg.

Note: Do not modify the default IDL configuration file. This affects demo
programs and other applications. Instead, use this variable to point the
IDL compiler to a customized file if necessary.

427

CHAPTER D | Development Environment Variables

IT_IDLGEN_CONFIG_FILE

Specifies the configuration file for the Orbix code generation toolkit.

UNIX
Defaults to $I T_I NSTALL_D R asp/ versi on/ et ¢/ i dl gen. cf g.

Windows
Defaults to % T_I NSTALL_DI R asp\ ver si on\ et c\i dl gen. cf g.

428

Glossary

administration
All aspects of installing, configuring, deploying, monitoring, and managing a
system.

ART

Adaptive Runtime Technology. IONA’s modular, distributed object
architecture, which supports dynamic deployment and configuration of
services and application code. ART provides the foundation for IONA software
products.

ATLI2

Abstract Transpot Layer Interface, version 2. IONA'’s current transport layer
implementation.

Certificate Authority

Certificate Authority (CA). A trusted third-party organization or company that
issues digital certificates used to create digital signatures and public-private
key pairs. The role of the CA in this process is to guarantee that the individual
granted the unique certificate is, in fact, who he or she claims to be. CAs are
a crucial component in data security and electronic commerce because they
guarantee that the two parties exchanging information are really who they
claim to be.

CFR
See configuration repository.

client

An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from
CORBA objects.

configuration
A specific arrangement of system elements and settings.

429

GLOSSARY

430

configuration domain

Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralized Orbix configuration repository
or as a set of files distributed among domain hosts. Configuration domains
let you organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration file and
configuration repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.

configuration repository
A centralized store of configuration information for all Orbix components
within a specific configuration domain. See also configuration domain.

configuration scope

Orbix configuration is divided into scopes. These are typically organized into
a root scope and a hierarchy of nested scopes, the fully-qualified names of
which map directly to ORB names. By organizing configuration properties into
various scopes, different settings can be provided for individual ORBs, or
common settings for groups of ORB. Orbix services, such as the naming
service, have their own configuration scopes.

CORBA

Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The
CORBA specification is produced and maintained by the OMG. See also OMG.

CORBA naming service

An implementation of the OMG Naming Service Specification. Describes how
applications can map object references to names. Servers can register object
references by name with a naming service repository, and can advertise those

GLOSSARY

names to clients. Clients, in turn, can resolve the desired objects in the naming
service by supplying the appropriate name. The Orbix naming service is an
example.

CORBA objects

Self-contained software entities that consist of both data and the procedures
to manipulate that data. Can be implemented in any programming language
that CORBA supports, such as C++ and Java.

CORBA transaction service

An implementation of the OMG Transaction Service Specification. Provides
interfaces to manage the demarcation of transactions and the propagation of
transaction contexts. Orbix OTS is such as service.

CSlv2

The OMG Common Secure Interoperability protocol v2.0, which can be used
to provide the basis for application-level security in both CORBA and J2EE
applications. The IONA Security Framework implements CSIv2 to transmit
usernames and passwords, and to assert identities between applications.

deployment
The process of distributing a configuration or system element into an
environment.

HTTP

HyperText Transfer Protocol. The underlying protocol used by the World Wide
Web. It defines how files (text, graphic images, video, and other multimedia
files) are formatted and transmitted. Also defines what actions Web servers
and browsers should take in response to various commands. HTTP runs on
top of TCP/IP.

431

GLOSSARY

432

IDL

Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public APl that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.

IFR
See interface repository.

IIOP

Internet Inter-ORB Protocol. The CORBA standard messaging protocol,
defined by the OMG, for communications between ORBs and distributed
applications. IIOP is defined as a protocol layer above the transport layer,
TCP/IP.

implementation repository

A database of available servers, it dynamically maps persistent objects to their
server's actual address. Keeps track of the servers available in a system and
the hosts they run on. Also provides a central forwarding point for client
requests. See also location domain and locator daemon.

IMR
See implementation repository.

installation
The placement of software on a computer. Installation does not include
configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

GLOSSARY

interface repository

Provides centralized persistent storage of IDL interfaces. An Orbix client can
query this repository at runtime to determine information about an object’s
interface, and then use the Dynamic Invocation Interface (DII) to make calls
to the object. Enables Orbix clients to call operations on IDL interfaces that
are unknown at compile time.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

location domain

A collection of servers under the control of a single locator daemon. Can span
any number of hosts across a network, and can be dynamically extended with
new hosts. See also locator daemon and node daemon.

locator daemon

A server host facility that manages an implementation repository and acts as
a control center for a location domain. Orbix clients use the locator daemon,
often in conjunction with a naming service, to locate the objects they seek.
Together with the implementation repository, it also stores server process data
for activating servers and objects. When a client invokes on an object, the
client ORB sends this invocation to the locator daemon, and the locator
daemon searches the implementation repository for the address of the server
object. In addition, enables servers to be moved from one host to another
without disrupting client request processing. Redirects requests to the new
location and transparently reconnects clients to the new server instance. See
also location domain, node daemon, and implementation repository.

naming service
See CORBA naming service.

433

GLOSSARY

434

node daemon

Starts, monitors, and manages servers on a host machine. Every machine
that runs a server must run a node daemon.

object reference

Uniquely identifies a local or remote object instance. Can be stored in a
CORBA naming service, in a file or in a URL. The contact details that a client
application uses to communicate with a CORBA object. Also known as
interoperable object reference (IOR) or proxy.

OMG

Object Management Group. An open membership, not-for-profit consortium
that produces and maintains computer industry specifications for
interoperable enterprise applications, including CORBA. See www.omg.com.

ORB

Object Request Broker. Manages the interaction between clients and servers,
using the Internet Inter-ORB Protocol (IIOP). Enables clients to make requests
and receive replies from servers in a distributed computer environment. Key
component in CORBA.

OTS
See CORBA transaction service.

POA

Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all
objects used by an application, manages object state, and provides the
infrastructure to support persistent objects and the portability of object
implementations between different ORB products. Can be transient or
persistent.

protocol
Format for the layout of messages sent over a network.

http://www.omg.com

GLOSSARY

server

A program that provides services to clients. CORBA servers act as containers
for CORBA objects, allowing clients to access those objects using IDL
interfaces.

SSL

Secure Sockets Layer protocol. Provides transport layer security—
authenticity, integrity, and confidentiality—for authenticated and encrypted
communications between clients and servers. Runs above TCP/IP and below
application protocols such as HTTP and IIOP.

SSL handshake

An SSL session begins with an exchange of messages known as the SSL
handshake. Allows a server to authenticate itself to the client using public-key
encryption. Enables the client and the server to co-operate in the creation of
symmetric keys that are used for rapid encryption, decryption, and tamper
detection during the session that follows. Optionally, the handshake also
allows the client to authenticate itself to the server. This is known as mutual
authentication.

TCP/IP
Transmission Control Protocol/Internet Protocol. The basic suite of protocols
used to connect hosts to the Internet, intranets, and extranets.

TLS

Transport Layer Security. An IETF open standard that is based on, and is the
successor to, SSL. Provides transport-layer security for secure
communications. See also SSL.

435

GLOSSARY

436

Index

A

active connection management 100
client-side configuration 101
server-side configuration 100

active load balancing 118

admin_logon 361

algorithms, compression 149

ATLI2 158

B
backups
full 140
incremental 142
bandwidth 147
Berkeley DB environment 136
checkpoints 137
data files 136
file types 136
recovery 140
store environment files 136
transaction log files 136
archive 138
delete 138
size 138
bidirectional GIOP 162
BiDir_Gen3 167
BiDir_GIOP 165
BiDirldGenerationPolicy 163
BiDirPolicy::ALLOW 163
BiDirPolicy::BiDirAcceptPolicy 164
BiDirPolicy::BidirectionalAcceptPolicy 167
BiDirPolicy::BiDirExportPolicy 163
BiDirPolicy::BiDirOfferPolicy 163
binding:client_binding_list 151, 161, 165
buffered logging 189
bzip2 149

c

catastrophic recovery 140
checkpoints

Berkeley DB 137
checksum 359

confirm 362
create 363
list 363
list all processes 363
manage 362
remove 364
CICS server adapter
Mapping Gateway interface 171
client_binding_list 161
cluster.properties file 95
command-line parameters
-ORBadmin_config_domains_dir 48
-ORBadmin_domain_name 48
-ORBconfig_domain 36
-ORBdomain_name 48
compression plug-in 147
config dump 248
config list 249
config stop 250
configuration
convert from file to CFR 250
default directory 36
file-based 23
itadmin commands 247
namespace management 252
repository-based 24
scope management 255
variable management 257
configuration domain
obtain for ORB 34
C++ applications 36
Java applications 36
troubleshoot 48
configuration repository 24
converting from file to 250
dump contents 248
list replicas 249
manage 248
start 224
stop 250
configuration scope 38
define 40
file-based configuration 40

437

INDEX

itadmin commands 41
map to ORB name 39
name 39
share 44
configuration variables
components 45
data type 45
constructed 45
namespace 45
precedence of settings 42
set value 46
CREATE_DEFAULT_ERROR_MODE 55
CREATE_NEW_PROCESS_GROUP 55

D
data files

Berkeley DB 136
decompression 148
default-domain.cfg 36
DETACHED _PROCESS 55
direct persistence

failover 84

E
ec
create 264
list 265
remove 266
show 266
EGMIOP 158
election protocol 97
encinalog
add 346
add_mirror 347
create 347
display 348
expand 349
init 350
remove_mirror 350
Encina transactions
add backup files 346
add mirror volume 347
create log backup 347
display mirror volume data 348
expand transaction log 349
initialize transaction log 350
remove mirror 350
stop service 351

438

environment variables
development 428
ORB initialization 421
event
show 262
stop 263
event channel
create 264, 334, 337
list all 265, 335
manage 264, 334
remove 266, 336
show attributes 266, 336
event log 307
event_log:filters 161, 164
event service
itadmin commands 261
manage 262
show attributes 262
start 229
stop 263
export policy 163

F
failover 79, 83

direct persistence 84
federation links,manage 375
file-based configuration 23
filename 188
file_to_cfr.tcl 250
filters 182
firewall proxy plug-in 131
firewall proxy service 129
fps 131
fps:proxy_evictor:hard_limit 132
fps:proxy_evictor:soft_limit 132
fps_agent.jar 131
FQPN 6
fragmentation 156
full backup 140

G

General Inter-ORB Protocol 162
GenerateConsoleCtrlEvent() 305
GIOP, bidirectional 162
GIOP::BiDirld 163

GIOP Snoop 149, 191

gzip 149

H
hard_limit

IIOP 100, 101
heatbeats, master 97
host, moving to a new 59

|
IDL 14
compile 14
IDL definitions, manage 122, 270
ifr
cd 271, 312
destroy_contents 126, 272
ifridl 272, 311
list 272, 312
pwd 272, 314
remove 126, 273, 313
show 273, 313
stop 121, 273, 314
IIOP plug-in configuration
hard connection limit
client 101
server-side 100
soft connection limit
client 101
server 100
implementation repository 8
IMS server adapter
Mapping Gateway interface 171
incremental backups 142
initial_references:|IT_MFA:reference 172
INTERDICTION policy 132
Interface Definition language. See IDL
interface repository
add IDL definitions 125, 270
browse contents 123
destroy contents 272
display containment hierarchy 123
itadmin commands 269, 309
list container contents 123, 272, 312
list current container 272, 314
maintain 14
manage 269, 309

navigate to other containment levels 124, 271,

312
remove definitions 126, 273, 313
show scoped name 273, 313
start 121

start daemon 228

stop daemon 121, 273, 314

usage 14

write contents to file 272, 311
interfaces

add to interface repository 125, 270

define 14

obtain from interface repository 14

INDEX

remove definitions from interface repository 126

interoperable object reference. See I0R
IOP::BI_DIR_GIOP_OFFER 164
[OP::TAG_BI_DIR_GIOP 163
IOR 8
iordump 149, 164
is2.properties file 95
IT_ACTIVATOR 184
itadmin commands 234

abbreviations 238

command-line usage 234

configuration domain 247

event service 261

help 239

interface repository 269, 309

lists 237

location domain 275

logging 307

mainframe adapter 172

naming service 318

negative values 238

nested 234

notification service 329

object group 322

0TS 341

OTS Encina 345

PSS 353

shell usage 234

SSU/TLS 359

syntax 237

Tcl scripts 235

trading service 241, 307, 369

undo 236
IT_ATLI2_IOP 184
IT_ATLI2_IP 184
IT_ATLI2_ITMP 184
IT_ATLI2_ITRP 184
IT_ATLI2_SHM 184
IT_ATLI_TLS 184

IT_BiDirPolicy::BidirectionalGen3AcceptPolicy 167

IT_BiDirPolicy::BiDirldGenerationPolicy 163

439

INDEX

IT_ClassLoading 184 Java NIO 158
IT_ CODESET 184
IT_CONFIG_DIR 423 K
IT_CONFIG_DOMAIN 36 KDM 359
IT_CONFIG_DOMAINS DIR 422 database 359
IT_ CONFIG_REP 184
itconfig_rep run 224 log on 361
IT CORE 184 kdm_adm change_pw 365
T CSI 184 Egm_agm confltrm3gg6

- m_adm create
DA e 422 kdm_adm list 367
IT_ GIOP 184 kdm_adm remove 368
IT_GSP 184
IT_IDL_CONFIG_FILE 427 L
IT_IDLGEN_CONFIG_FILE 428 load balancing
IT IFR 184 B active selection 118
itifr run 121, 228 replicated servers 79
IT IIOP 184 selection strategies 117, 324, 325
IT_IIOP_PROFILE 184 LocateReply 196
IT IIOP TLS 185 LocateRequest 196
IT_JAVA SERVER 185 location domain
IT_LEASE 185 daemon. See locator daemon
IT_LOCATOR 185 implementation repository 8
itlocator run 60, 225 itadmin commands 275
itmfaloc 176 list registered entries 65
itmfaloc URL resolver 175 modify entries 66
IT MGMT 185 register ORB 52
IT_MGMT_SVC 185 register POA 53
IT NAMING 185 register server process 52
itnaming run 110, 227 remove entries 66
IT_NODE_DAEMON 185 locator
itnode_daemon run 62, 226 list 277
IT_NOTIFICATION 185 show 277
itnotify run 230 stop 60, 278
IT OTS LITE 185 locator daemon 8
IT_POA 185 list all 277
IT_POA LOCATOR 185 manage 276
IT_PRODUCT DIR 425 restart 61
IT_ PSS 185 ~ show attributes 277
IT_ PSS DB 139, 185 start 60, 225
IT PSS R 185 stop 60, 278
IT_SCHANNEL 185 usage 10
IT_TLS 185 locator daemon configuration
IT TS 185 find persistent objects 9
IT_ XA 185 logging
it ziop 150 buffered 189

- configuration 188
J get 307
Java ClO 158 local file 188

440

message severity levels 186
output to local file 188
output to system log 189
rolling_file 189
set 308
set filters for subsystems 182
subsystems 184

low bandwidth 147

M
Mainframe Adapter 169
itmfaloc URL resolver 175
Mapping Gateway interface 171
mainframe adapter
itadmin commands 309
majority rule
replicas 98
Mapping Gateway interface 171
IOR 174
master
election protocol 97
heartbeats 97
master-slave replication 95
message fragmentation 156
mfa 171
add 311
change 311
delete 312
list 312
refresh 313
reload 313
resetcon 313
resolve 314
save 314
stats 315
stop 315
switch 315
MPI 192

N
name
bind to object 318
rebind 116
named_key
create 280
list 280
remove 281
show 281

INDEX

named keys
create 280
list all 280
manage 279
remove 281
show object reference 281
namespace
create 252
list 253
remove 254
show 254
namespaces
create 252
list 253
manage 252
remove from configuration 254
show contents 254
naming context
create 113
unbound 113
naming graph 108
build 111
naming service 4
administer 107
bind name 318
bind name to object 114
build naming graph 111
itadmin commands 318
list contents 319
manage 318
naming context
create 113
unbound 113
naming graph 108
new context 320
object groups 117, 322
rebind name 116
resolve name 320
start 110, 227
stop 110, 321
unbind 320, 321
nc
create 334, 337
list 335
remove 336
set_qos 337
show 336
NegotiateSession 168
NIO

441

INDEX

new /0 158
node daemon 62
list 282
list active processes 64
manage 282
remove 283
run several on host 63
show attributes 283
start 62, 226
stop 64, 284
usage 10
node_daemon
list 282
remove 283
show 283
stop 64, 284
NORMAL_PRIORITY_CLASS 55
normal recovery 140
notification service
checkpoint operations 330
itadmin commands 329
manage 330
post-backup operations 331
pre-backup operations 331
show attributes 331
start 230
stop 333
notify
checkpoint 330
post_backup 331
pre_backup 331
show 331
stop 333
ns
bind 114, 318
list 319
newnc 113, 320
remove 320
resolve 116, 320
stop 110, 321
unbind 116, 321
nsog
add_member 323
bind 323
create 324
list 324
list members 324
modify 325
remove 325

442

remove_member 326
set_member_timeout 326
show_member 327
update_member_load 328

o

object group 117
active load balancing 118
add member 323
bind 323
create 117, 324
identifier 117
itadmin commands 322
list all 324
list members 324
manage 322
member identifiers 117
member IOR 327
member load value updates 328
member timeout 326
modify selection strategy 325
remove 325
remove member 326

selection strategies 117, 324, 325

OBJECT_NOT_EXIST exception 8
object references 4
client invocations on 4
map to servants 5
object request broker. See ORB
objects
persistent 8
transient 8
on-demand activation 52
replicated server 88
ORB
configuration 38
initialization 35, 421

map name to configuration scope 39

register in location domain 52
register root POA name 67
server 2

share configuration scope 44

-ORBadmin_config_domains_dir 48

-ORBadmin_domain_name 48
-ORBconfig_dir 423
ORBconfig_dir Java property 423
-ORBconfig_domain 36

ORBconfig_domain Java property 36

-ORBconfig_domains_dir 422

ORBconfig_domains_dir Java property 422

-ORBDefaultInitRef 424
-ORBdomain_name 48, 422

ORBdomain_name Java property 422

ORB initialization 421
configuration directory 423
default initial reference 424
domain name 422
domains directory 422
initial reference 424
Java properties 421
ORB name 423
precedence of settings 421
product directory 425

-ORBInitRef 424

Orbix services
order of startup 222
start and stop scripts 222
start commands 223
stop commands 232

Orbix services, replication 93

-ORBname 423

ORB name 423
create 286
list all 287
manage 286
modify 287
remove 288
show attributes 289

orbname
create 52, 286

register replicated server 89
list 287
modify 287
remove 288
show 289

orb_plugins 160, 193

-ORBproduct_dir 425

ORBproduct_dir Java property 425

0S/390 170

0TS
itadmin commands 341
manage 341

OTS Encina
itadmin commands 345
manage 345

otstm stop 351

INDEX

P
pass phrases 359
change 365
confirm 366
create 366
list 367
manage 365
remove 368
persistent objects 8
direct persistence
and failover 84
invoke on 9
locate 51
replicated 81
PERSIST_STORE exception 139
pkzip 149
plugin:atli2_shm:shared_memory_size 161
plugins:atli2_ip:ClassName 159
plugins:config_rep:refresh_master_interval 98
plugins:giop:message_server_binding_list 151, 165
plugins:giop_snoop:ClassName 193
plugins:giop_snoop:filename 195
plugins:giop_snoop:rolling_file 195
plugins:giop_snoop:shlib_name 193
plugins:giop_snoop:verbosity 194
plugins:local_log_stream:buffer file 189
plugins:local_log_stream:filename 155, 189
plugins:local_log_stream:log_elements 189
plugins:local_log_stream:milliseconds_to_log 189
plugins:locator:allow _node_daemon_change 59
plugins:locator:refresh_master_interval 98
plugins:naming:refresh_master_interval 98
plugins:node_daemon:recover_processes 63
plugins:pss_db:envs
env-name:replica_priority 97
plugins:pss_db:envs:env-name:allow_minority mast
er 98
plugins:pss_db:envs:env-name:master_heartbeat_int
erval 97
plugins:pss_db:envs:env_name:recover_fatal 144
plugins:pss_db:envs:ifr_store:lk_max 126, 127
plugins:pss_db:envs:it_locator:checkpoint_archives_
old_logs 142
plugins:pss_db:envs:it_locator:checkpoint_deletes ol
d_logs 142
plugins:pss_db:envs:it_locator:db_home 143
plugins:pss_db:envs:it_locator:master_heartbeat_int
erval 97
plugins:pss_db:envs:it_locator:old_logs_dir 142

443

INDEX

plugins:ziop

shlib_name 150
plugins:ziop:ClassName 150
POA 5

FQPN 6

list 292

manage 290

modify 293

name root POA 67

names 6

persistent 51

register in location domain 53, 290

remove 294

replicas 53, 80

show attributes 295

transient 53
POA::create POA() 163
poa:fgpn:direct_persistent 72
poa:fgpn:well_known_address 73
poa create 53, 290

replicated POA 89
poa list 292
poa modify 293
poa remove 294
poa show 295
policies:giop:bidirectional _accept_policy 164
policies:giop:bidirectional_export_policy 163
policies:giop:bidirectional_gen3_accept_policy 167
policies:giop:bidirectional_offer_policy 164
policies:iiop:buffer_sizes_policy:default_buffer_size

156

policies:ziop:compression_enabled 151
policies:ziop:compression_threshold 153
policies:ziop:compressor:compressor_id:level 152
policies:ziop:compressor_id 152
portable object adapter. See POA
priorities, replica 97
process

create 52, 296

disable 299

enable 299

list 64, 300

modify 301

moving to a new host 59

remove 303

show 304

start 59, 304

stop 59, 305
proxy offers, manage 381

444

PSS

checkpoint 354

itadmin commands 353

manage 353

obtain IOR to 355

post-backup operations 355

pre-backup operations 356
pss_db

checkpoint 354

name 355

post backup 141, 355

pre_backup 143, 356
pss_db archive_old_logs 354
pss_db checkpoint 354
pss_db delete old_logs 355
pss_db list_replicas 355
pss_db name 355
pss_db post_backup 355
pss_db pre_backup 356
pss_db remove_replica 356
pss_db show 357

Q
QoS 337
qualities of service, event channel 337

R
recovery
Berkeley DB 140
refresh master interval 98
regular offers, manage 379
replicated servers 79
add server replicas 91
build 87
deploy 80
failover 83
load balancing 83
change strategy 92
specifying strategy 89
on-demand activation 88
register ORB names 89
register POA 89
register processes 88
startup 81
replication
Orbix services 93
priorities 97
security service 95

Reply 196
repository-based configuration 24
Request 196
rolling_file 189
root_name 67
root POA
register name 67

S
scope
create 255
list 255
list sub-scopes 255
manage 255
remove 256
show 256
show contents 256
scope See configuration scope
secure_directories 59
security service
replication 95
Server process
disable on-demand activation 299
enable on-demand activation 299
list 300
manage 296
modify 301
moving to a new host 59
register 296
register for on-demand activation 52
on replicated server 88
remove 303
secure directories 59
show attributes 304
start 304
start and stop 59
stop 305
servers, reactivate with node daemon 10
shared memory 160
shmiop plugin 160
simple_persistent demo 73
SIOP 192
soft_limit
IIOP 100, 101
SSL/TLS
itadmin commands 359
KDM 359
manage 359

INDEX

T
TAG_BI_DIR_GIOP 164, 166
Tcl scripts, itadmin commands 235
TerminateProcess() 299
trading service
create federation link 375
federation links 375
itadmin commands 241, 307, 369
list federation links 376
list offer IDs 379
list proxy offer IDs 381
list service types 383
manage 241, 307, 369
mask service type 383
modify administrative settings 372
modify federation link 376
obtain administrative settings 370
proxy offers 381
regular offers 379
remove federation link 377
remove offer 379
remove proxy offer 381
remove service type 384
show federation link attributes 378
show offer attributes 380
show proxy offer attributes 382
show service type attributes 384
stop 374
type repositories 383
unmask service type 385
transaction
begin 341
commit 342
resume 342
roll back 343
suspend 343
transaction log files 136
transient objects 8
trd_admin
get 370
set 372
stop 374
trd_link
create 375
list 376
modify 376
remove 377
show 378
trd_offer

445

INDEX

list 379
remove 379
show 380
trd_proxy
list 381
remove 381
show 382
trd_type
list 383
mask 383
remove 384
show 384
unmask 385
X
begin 341
commit 342
resume 342
rollback 343
suspend 343

type repository, manage 383

u

UNIX System Services 170

\'

variable
create 257

manage in configuration 257

modify 259
remove 260
show 260

show setting 260

W

WELL_KNOWN_ADDRESSING_POLICY 70
Windows NT services 389

accounts 395

commands 392

identify Orbix services 391

install Orbix service 393

logging 398
manage 391

obtain data 394
obtain help on service 393
pause background service 393
prepare Orbix service 393
run 394, 397

in file-based configuration 397

446

in repository-based configuration 397
security 396
stop Orbix service 394
troubleshoot 400
uninstall service 394, 399

Z

ZIOP compression 147
ziop plug-in 150

	List of Figures
	List of Tables
	Preface
	Introduction
	The Orbix Environment
	Basic CORBA Model
	Simple Orbix Application
	Portable Object Adapter

	Broader Orbix Environment
	Managing Object Availability
	Scaling Orbix Environments with Configuration Domains
	Using Dynamic Orbix Applications

	Orbix Administration

	Selecting an Orbix Environment Model
	Orbix Development Environment Models
	Independent Development Environments
	Distributed Development and Test Environments

	Configuration Models
	Getting the Most from Your Orbix Environment
	Using Capabilities of Well-Designed Orbix Applications
	Using the Right Data Storage Mechanism

	Getting the Most from Orbix Configuration

	Managing an Orbix Environment
	Managing Orbix Configuration
	How an ORB Gets its Configuration
	Locating the Configuration Domain
	Obtaining an ORB’s Configuration

	Configuration Variables and Namespaces
	Managing Configuration Domains

	Managing Persistent CORBA Servers
	Introduction
	Registering Persistent Servers
	Server Environment Settings
	Windows Environment Settings
	UNIX Environment Settings

	Managing a Location Domain
	Managing Server Processes
	Managing the Locator Daemon
	Managing Node Daemons
	Listing Location Domain Data
	Modifying a Location Domain
	Ensuring Unique POA Names

	Using Direct Persistence
	CORBA Applications
	Orbix Services

	Configuring Scalable Applications
	Fault Tolerance and Replicated Servers
	About Replicated Servers
	Automatic Replica Failover
	Direct Persistence and Replica Failover

	Building a Replicated Server
	Example 1: Building a Replicated Server to Start on Demand
	Example 2: Updating a Replicated Server
	Example 3: Dynamically Changing the Load Balancing Algorithm

	Replicating Orbix Services
	Master-Slave Replication

	Active Connection Management
	Setting Buffer Sizes

	Managing the Naming Service
	Naming Service Administration
	Naming Service Commands

	Controlling the Naming Service
	Building a Naming Graph
	Creating Naming Contexts
	Creating Name Bindings

	Maintaining a Naming Graph
	Managing Object Groups

	Managing an Interface Repository
	Interface Repository
	Controlling the Interface Repository Daemon
	Managing IDL Definitions
	Browsing Interface Repository Contents
	Adding IDL Definitions
	Removing IDL Definitions

	Managing the Firewall Proxy Service
	Orbix Firewall Proxy Service
	Configuring the Firewall Proxy Service
	Known Restrictions

	Managing Orbix Service Databases
	Berkeley DB Environment
	Performing Checkpoints
	Managing Log File Size
	Troubleshooting Persistent Exceptions
	Database Recovery for Orbix Services
	Replicated Databases

	Configuring Orbix Compression
	Introduction
	Configuring Compression
	Example Configuration
	Message Fragmentation

	Configuring Advanced Features
	Configuring Java NIO
	Configuring Shared Memory
	Configuring Bidirectional GIOP
	Enabling Bidirectional GIOP
	Migration and Interoperability Issues

	Orbix Mainframe Adapter
	CICS and IMS Server Adapters
	Using the Mapping Gateway Interface
	Locating Server Adapter Objects Using itmfaloc

	Monitoring Orbix Applications
	Setting Orbix Logging
	Setting Logging Filters
	Logging Subsystems
	Logging Severity Levels
	Redirecting Log Output

	Monitoring GIOP Message Content
	Introduction to GIOP Snoop
	Configuring GIOP Snoop
	GIOP Snoop Output

	Debugging IOR Data
	IOR Data Formats
	Using iordump
	iordump Output
	Stringified Data Output
	ASCII-Hex Data Output

	Data, Warning, Error and Information Text
	Errors
	Warnings

	Command Reference
	Starting Orbix Services
	Starting and Stopping Configured Services
	Starting Orbix Services Manually
	Stopping Services Manually

	Managing Orbix Services With itadmin
	Using itadmin
	Command Syntax
	Services and Commands

	Bridging Service
	JMS Broker

	Configuration Domain
	Configuration Repository
	Namespaces
	Scopes
	Variables

	Event Service
	Event Service Management
	Event Channel

	Event Log
	Interface Repository
	IDL Definitions
	Repository Management

	Location Domain
	Locator Daemon
	Named Key
	Node Daemon
	ORB Name
	POA
	Server Process

	Mainframe Adapter
	Naming Service
	Names
	Object Groups

	Notification Service
	Notification Service Management
	Event Channel

	Object Transaction Service
	Object Transaction Service Encina
	Persistent State Service
	Security Service
	Logging On
	Managing Checksum Entries
	Managing Pass Phrases

	Trading Service
	Trading Service Administrative Settings
	Federation Links
	Regular Offers
	Proxy Offers
	Type Repository

	Appendices
	Orbix Windows Services
	Managing Orbix Services on Windows
	Orbix Windows Service Commands
	Orbix Windows Service Accounts
	Running Orbix Windows Services
	Logging Orbix Windows Services
	Uninstalling Orbix Windows Services
	Troubleshooting Orbix/Windows Services

	Run Control Scripts for Unix Platforms
	Solaris
	AIX
	HP-UX
	IRIX
	Red Hat Linux

	ORB Initialization Settings
	Development Environment Variables

	Glossary
	Index

