
COMet Programmer’s Guide
and Reference

Version 6.2, December 2004

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 04-Jul-2005

Contents

List of Figures xi

List of Tables xiii

Preface xv

Part 1 Introduction

Chapter 1 COM and CORBA Principles 3
Main Similarities and Differences 4
CORBA Overview 6
COM Overview 9

COM 10
Automation 13

Chapter 2 Introduction to COMet 17
The Interworking Model 18
How COMet Implements the Model 20
COMet System Components 24

Chapter 3 Usage Models and Bridge Locations 27
Automation Client to CORBA Server 28
COM Client to CORBA Server 31
iii

CONTENTS
Part 2 Programmer�s Guide

Chapter 4 Getting Started 35
Prerequisites 36
Developing Automation Clients 38

Introduction 39
Using the Visual Basic Genie 43
Writing a Visual Basic Client without the Genie 47
Writing a PowerBuilder Client 50
Running the Client 53

Using DCOM with COMet 54
Introduction 55
Launching the COMet Bridge Out-of-Process 57
DCOM Security 60

Using COMet with Internet Explorer 61
Specifying the Bridge Location 62
The Supplied Demonstration 64

Automation Dual Interface Support 68
Developing COM Clients 71

Generating Microsoft IDL from OMG IDL 72
Compiling Microsoft IDL 74
Writing a COM C++ Client 75

Priming the COMet Type Store Cache 78

Chapter 5 Developing an Automation Client 79
The Telephone Book Example 80
Using Automation Dual Interfaces 84
Writing the Client 85

Obtaining a Reference to a CORBA Object 86
The Visual Basic Client Code in Detail 89
The PowerBuilder Client Code in Detail 92

Building and Running the Client 95
 iv

CONTENTS
Chapter 6 Developing a COM Client 97
The Telephone Book Example 98
Prerequisites 101
Writing the Client 102

Obtaining a Reference to a CORBA Object 103
The COM C++ Client Code in Detail 107

Building and Running the Client 110

Chapter 7 Exception Handling 113
CORBA Exceptions 114
Example of a User Exception 115
Exception Properties 118

General Exception Properties 119
Additional System Exception Properties 120

Exception Handling in Automation 122
Exception Handling in Visual Basic 123
Inline Exception Handling 125
Using Type Information 128

Exception Handling in COM 131
Catching COM Exceptions 132
Using Direct-to-COM Support 134

Chapter 8 Client Callbacks 137
Introduction to Callbacks 138
Implementing Callbacks 139
Defining the OMG IDL Interfaces 140
Generating Stub Code for the Callback Objects 142
Implementing the Client 143

Implementing the Client in Visual Basic 144
Implementing the Client in PowerBuilder 146
Implementing the Client in COM C++ 148

Implementing the Server 150
v

CONTENTS
Chapter 9 Deploying a COMet Application 151
Deployment Models 152

Bridge In-Process to Each Client 153
Bridge Out-of-Process on Each Client Machine 155
Bridge on Intermediary Machine 157
Bridge on Server Machine 159
Internet Deployment 161

Deployment Steps 162
Minimizing the Client-Side Footprint 164
Deploying Multiple Hosts 166

Chapter 10 Development Support Tools 171
The COMet Type Store 173

The Central Role of the Type Store 174
The Caching Mechanism of the Type Store 176

The COMet Tools Window 178
Adding New Information to the Type Store 180

Using the GUI Tool 181
Using the Command Line 182

Deleting the Type Store Contents 184
Dumping the Type Store Contents 185
Creating a Microsoft IDL File 186

Using the GUI Tool 187
Using the Command Line 189

Creating a Type Library 190
Using the GUI Tool 191
Using the Command Line 193

Creating Stub Code for Client Callbacks 194
Replacing an Existing DCOM Server 196
Generating Visual Basic Client Code 199

Introduction 200
Using the GUI Tool 202
Using the Command Line 213
 vi

CONTENTS
Part 3 Programmer�s Reference

Chapter 11 COMet API Reference 217
Common Interfaces 218

IForeignObject 219
IMonikerProvider 221

Automation-Specific Interfaces 222
DICORBAAny 223
DICORBAFactory 228
DICORBAFactoryEx 230
DICORBAObject 232
DICORBAStruct 234
DICORBASystemException 235
DICORBATypeCode 236
DICORBAUnion 240
DICORBAUserException 241
DIForeignComplexType 242
DIForeignException 243
DIObject 244
DIObjectInfo 245
DIOrbixORBObject 246
DIORBObject 249

COM-Specific Interfaces 251
ICORBA_Any 252
ICORBAFactory 254
ICORBAObject 256
ICORBA_TypeCode 258
ICORBA_TypeCodeExceptions 262
IOrbixORBObject 263
IORBObject 266
vii

CONTENTS
Chapter 12 Introduction to OMG IDL 269
IDL 270
Modules and Name Scoping 271
Interfaces 272

Introduction to Interfaces 273
Interface Contents 275
Operations 276
Attributes 279
Exceptions 280
Empty Interfaces 281
Inheritance of Interfaces 282
Multiple Inheritance 283
Inheritance of the Object Interface 285
Inheritance Redefinition 286
Forward Declaration of IDL Interfaces 287
Local Interfaces 288
Valuetypes 290
Abstract Interfaces 291

IDL Data Types 292
Built-in Data Types 293
Extended Built-in Data Types 296
Complex Data Types 299
Enum Data Type 300
Struct Data Type 301
Union Data Type 302
Arrays 304
Sequence 305
Pseudo Object Types 306

Defining Data Types 307
Constants 308
Constant Expressions 311
 viii

CONTENTS
Chapter 13 Mapping CORBA to Automation 313
Mapping for Basic Types 315
Mapping for Strings 317
Mapping for Interfaces 318

Basic Interface Mapping 319
Mapping for Attributes 321
Mapping for Operations 323

Mapping for Interface Inheritance 325
Mapping for Single Inheritance 326
Mapping for Multiple Inheritance 328

Mapping for Complex Types 331
Creating Constructed OMG IDL Types 332
Mapping for Structs 333
Mapping for Unions 335
Mapping for Sequences 339
Mapping for Arrays 342
Mapping for System Exceptions 343
Mapping for User Exceptions 345
Mapping for the Any Type 347

Mapping for Object References 348
Mapping for Modules 351
Mapping for Constants 352
Mapping for Enums 353
Mapping for Scoped Names 355
Mapping for Typedefs 356

Chapter 14 Mapping CORBA to COM 357
Basic Types 359
Mapping for Strings 360
Mapping for Interfaces 361

Mapping Interface Identifiers 362
Mapping for Nested Types 363
Mapping for Attributes 364
Mapping for Operations 366

Mapping for Interface Inheritance 368
Mapping for Complex Types 372

Creating Constructed OMG IDL Types 373
Mapping for Structs 374
ix

CONTENTS
Mapping for Unions 376
Mapping for Sequences 378
Mapping for Arrays 380
Mapping for System Exceptions 381
Mapping for User Exceptions 385
Mapping for the Any Type 388

Mapping for Object References 390
Mapping for Modules 392
Mapping for Constants 393
Mapping for Enums 395
Mapping for Scoped Names 397
Mapping for Typedefs 398

Chapter 15 COMet Configuration 399
Overview 400
COMet:Config Namespace 401
COMet:Mapping Namespace 403
COMet:Debug Namespace 404
COMet:TypeMan Namespace 405
COMet:Services Namespace 409

Chapter 16 COMet Utility Arguments 411
Typeman Arguments 412
Ts2idl Arguments 414
Ts2tlb Arguments 415
Aliassrv Arguments 416
Custsur Arguments 417
Tlibreg Arguments 418
Idlgen vb_genie.tcl Arguments 419

Index 421
 x

List of Figures

Figure 1: Role of the ORB in Client-Server Communication 8

Figure 2: The Standard Interworking Model 18

Figure 3: COMet�s Implementation of the Interworking Model 21

Figure 4: View Object in COMet 22

Figure 5: Automation Client to CORBA Server 28

Figure 6: COM Client to CORBA Server 31

Figure 7: Visual Basic Client GUI for the COMet Grid Demonstration 41

Figure 8: PowerBuilder Client GUI for the COMet Grid Demonstration 42

Figure 9: Development Overview Using Code Generation 44

Figure 10: Telephone Book Example with Automation Client 81

Figure 11: Phone List Search Client GUI Interface 83

Figure 12: Binding to the CORBA PhoneBook Object 88

Figure 13: Telephone Book Example with COM Client 99

Figure 14: Binding to the CORBA PhoneBook Object 105

Figure 15: Bridge In-Process to Each Client 154

Figure 16: Bridge Out-Of-Process On Each Client Machine 156

Figure 17: Bridge on Intermediary Machine 158

Figure 18: Bridge on Server Machine 160

Figure 19: Deploying Multiple Hosts 166

Figure 20: COMet Type Store and the Development Utilities 174

Figure 21: COMet Tools Window 178

Figure 22: Creating a Microsoft IDL File from OMG IDL 188

Figure 23: Creating a Type Library from OMG IDL 191

Figure 24: Creating Stub Code for Callbacks 194

Figure 25: Aliasing the Bridge 197

Figure 26: Visual Basic Project Dialog Window 202
xi

LIST OF FIGURES
Figure 27: COMet Wizard - Introduction Window 203

Figure 28: COMet Wizard - Step 1 Window 204

Figure 29: Select the IDL File Window 205

Figure 30: Step 1 Window Displaying Full Path to the Selected File 206

Figure 31: COMet Wizard - Step 2 Window 207

Figure 32: COMet Wizard - Step 3 Window 208

Figure 33: Selecting a Folder 209

Figure 34: Step 3 Window Displaying Full Path to the Selected Folder 210

Figure 35: COMet Wizard - Finished Window 211

Figure 36: Example of a Generated Client Application 212

Figure 37: Inheritance Hierarchy for PremiumAccount Interface 284

Figure 38: Automation View of the Bank Interface 320

Figure 39: Example of a CORBA Interface Hierarchy 328

Figure 40: Automation View of the OMG IDL AccoutDetails Struct 334

Figure 41: Automation View of the OMG IDL Union, U 338

Figure 42: Automation View of Bank_Reject 346

Figure 43: Example of a CORBA Interface Hierarchy 369
 xii

List of Tables

Table 1: Main Differences between COM and CORBA 4

Table 2: Differences between COM and Automation Interfaces 14

Table 3: CORBA::LocalObject Pseudo-Operations and Return Values 289

Table 4: Built-in IDL Data Types, Sizes, and Values 293

Table 5: Extended built-in IDL Data Types, Sizes, and Values 296

Table 6: CORBA-to-Automation Mapping Rules for Basic Types 315

Table 7: CORBA-to-COM Mapping Rules for Basic Types 359

Table 8: Using Error Object for CORBA System Exceptions 382
xiii

LIST OF TABLES
 xiv

Preface
COMet combines the best of both the object management group (OMG)
common object request broker architecture (CORBA) and Microsoft
component object model (COM) standards. It provides a high performance
dynamic bridge, which enables transparent communication between COM
clients and CORBA servers.

COMet is designed to allow COM programmers�who use tools such as
Visual C++, Visual Basic, PowerBuilder, Delphi, or Active Server Pages on
the Windows desktop�to easily access CORBA applications running in
Windows, UNIX, or OS/390 environments. It means that COM programmers
can use the tools familar to them to build heterogeneous systems that use
both COM and CORBA components within a COM environment.

The interworking model and mapping standards described in this guide are
based on chapters 17, 18, and 19 of the OMG Common Object Request
Broker: Architecture and Specification at ftp://ftp.omg.org/pub/docs/
formal/01-12-35.pdf.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience This guide is intended for COM application programmers who want to use
COMet to develop and deploy distributed applications that combine CORBA
and COM components within a COM environment. This guide assumes that
the reader already has a working knowledge of COM-based and
Automation-based tools, such as Visual Basic, PowerBuilder, and Visual
C++. (See �COM Overview� on page 9 for a distinction between COM and
Automation.)
xv

mailto:support@iona.com
mailto:docs-support@iona.com

PREFACE
Organization of this guide This guide is divided as follows:

Part 1 �Introduction�

This part first provides an introductory overview of the main principles of
both COM and CORBA. It then provides an introduction to COMet and an
overview of the various ways you can use it in a distributed system.

Part 2 �Programmer�s Guide�

This part describes how to:

� Use COMet to develop COM and Automation clients that can
communicate with a CORBA server.

� Implement exception handling and client callbacks in your COMet
applications.

� Deploy a distributed COMet application.

� Use the various development utilities that are supplied with COMet.

Part 3 �Programmer�s Reference�

This part describes:

� The application programming interfaces (APIs) supplied with COMet.

� The semantics of CORBA IDL for defining interfaces to CORBA
applications.

� The rules for mapping CORBA IDL types to COM and Automation.

� The configuration variables associated with COMet.

� The arguments available with each COMet utility.

Related reading The following related reading material is recommended:

� The Common Object Request Broker: Architecture and Specification at
ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf.

� COM-CORBA Interoperability, Ronan Geraghty et al., (Prentice Hall,
1999).
 xvi

PREFACE
Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/knowledge_base/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/updates/

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
xvii

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xviii

Part 1
Introduction

In This Part This part contains the following chapters:

COM and CORBA Principles page 3

Introduction to COMet page 17

Usage Models and Bridge Locations page 27

CHAPTER 1

COM and CORBA
Principles
COMet is an implementation of the Object Management Group
(OMG) Interworking Architecture specification for allowing
component object model (COM) clients to communicate with
common object request broker architecture (CORBA) servers.1
Both CORBA and COM are standards for distributed object
technology. This chapter provides an introductory overview of
the main principles of both COM and CORBA.

In This Chapter This chapter discusses the following topics:

1. The Interworking Architecture specification is part of the CORBA Specification
available at ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf. COMet
is not a full implementation of the Interworking Architecture specification,
because it does not also allow CORBA clients to communicate with COM servers.

Main Similarities and Differences page 4

CORBA Overview page 6

COM Overview page 9

Note: A more in-depth study of COM and CORBA is outside the scope of
this guide.
3

CHAPTER 1 | COM and CORBA Principles
Main Similarities and Differences

Overview This section outlines the main similarities and differences between COM and
CORBA. The following topics are discussed:

� �Similarities� on page 4.

� �Differences� on page 4.

Similarities COM and CORBA share the following principles:

� The system architecture is based around the concept of objects.

� An object is a discrete unit of functionality.

� An object exposes its behavior through a set of well defined interfaces.

� The details of an object�s implementation are hidden from the clients
that want to make requests on it.

Differences Table 1 summarizes the main differences between COM and CORBA.

Table 1: Main Differences between COM and CORBA (Sheet 1 of 2)

COM CORBA

An object is typically a
subcomponent of an application
that represents a point of exposure
to other components of that
application, or to other
applications.

An object is an independent
component with a related set of
behaviors, transparently available
to any CORBA client, regardless of
where the object or client are
implemented in the system.

The domain of an object is
typically a single-user,
multitasking visual desktop
environment, such as Microsoft
Windows.

The domain of an object is
typically an arbitrarily scalable
distributed network.
 4

Main Similarities and Differences
The purpose of COM is to expedite
collaboration and information
sharing among applications using
the same desktop, by allowing a
user to manipulate visual elements
on the screen.

The purpose of CORBA is to allow
independent components of a
distributed system to be shared
among a wide variety of possibly
unrelated applications and objects
in that distributed system.

Table 1: Main Differences between COM and CORBA (Sheet 2 of 2)

COM CORBA
5

CHAPTER 1 | COM and CORBA Principles
CORBA Overview

Overview CORBA is a standard for distributed object technology from the OMG. This
section provides a brief overview of the fundamental principles of a CORBA
object management system. The following topics are discussed:

� �CORBA Objects� on page 6.

� �Object IDs and References� on page 6.

� �CORBA Object Interfaces� on page 6.

� �CORBA Client Requests� on page 7.

� �CORBA Object Lifetime� on page 7.

� �Object Request Broker� on page 7.

� �Multiple Inheritance� on page 8.

CORBA Objects A CORBA object is a discrete, independent unit of functionality, comprising
a related set of behaviors. A particular CORBA object can be described as an
entity that exhibits a consistency of interface, behavior (or functionality),
and state over its lifetime.

CORBA uses the concept of a portable object adapter (POA), which is used
to map abstract CORBA objects to their actual implementations. A CORBA
object can be implemented in any programming language that CORBA
supports, such as C++ or Java.

Object IDs and References A CORBA object has both an object ID and an object reference. An object ID
identifies an object with respect to a particular POA instance. An object
reference contains unique details about an object, including its object ID
and POA identifier, which can be used by clients to locate and invoke on
that object. See �CORBA Client Requests� on page 7 for more details about
the use of object references.

CORBA Object Interfaces A CORBA object presents itself to its clients through a published interface,
defined in OMG interface definition language (IDL). The concept of keeping
an object�s interface separate from its implementation means that a client
can make requests on an object without needing to know how or where that
object is implemented.
 6

CORBA Overview
The IDL interfaces for CORBA objects can be stored (registered) in an
interface repository. CORBA identifies an interface by means of an interface
repository ID. Even if you update a particular interface in some way, its
repository ID can remain the same.

CORBA Client Requests In CORBA, a client can access an object�s interface and its underlying
functionality by making one or more requests on that object. Each client
request is made on a specific instance of an object, which is identifiable and
contactable via an object reference that is unique to that object instance. An
object reference is a name that is used to consistently identify a particular
object during that object�s lifetime. An object reference in CORBA is roughly
equivalent to the concept of an interface pointer in COM.

CORBA client requests can contain parameters consisting of object
references or data values that correspond to particular types of data
supported by the system. A client request can be dynamically created at
runtime (rather than simply being statically defined at compile time) on any
object whose interfaces are stored in an interface repository.

CORBA Object Lifetime The in-memory lifetime of a CORBA object is independent of the lifetime of
any clients that hold a reference to it. This means that a client that is no
longer running can continue to maintain object references. It also means
that a server object can deactivate and remove itself from memory when it
becomes idle (although this does consequently mean that the server
application must be made to explicitly decide when this should happen).

Object Request Broker A CORBA system is based on an architectural abstraction called the object
request broker (ORB). An ORB allows for:

� Interception and transfer of client requests to servers across the
network, and the return of output from the server back to the client.

� Registration of data types and their interfaces, defined in OMG IDL.

� Registration of object instance identities, from which the ORB can
construct appropriate object references for use by clients that want to
make requests on those object instances.

� Location (and activation, if necessary) of objects.

Orbix is IONA�s implementation of an ORB.
7

CHAPTER 1 | COM and CORBA Principles
Figure 1 provides an overview of the role of the ORB in CORBA client-server
communication.

Multiple Inheritance CORBA supports the concept of multiple interface inheritance. This basically
means that a CORBA object interface can be extended by making it derive
from one or more other interfaces. The derived interface ends up having not
only its own defined functionality, but also the functionality of the
interface(s) from which it derives. Interfaces can also be evolved
dynamically at runtime, by having new interfaces derive from existing
interfaces.

A CORBA object reference refers to a CORBA object that exposes a single,
most-derived interface in which any and all parent interfaces are joined.
CORBA does not support the concept of objects with multiple, disjoint
interfaces. See �Introduction to OMG IDL� on page 269 for more details of
multiple inheritance.

Figure 1: Role of the ORB in Client-Server Communication

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code
 8

COM Overview
COM Overview

Overview For the purposes of clarity, this overview of COM is divided into two
subsections. The first provides an overview of COM itself, and the second
provides an overview of Automation, which is an extension of COM.

In This Section This section discusses the following topics:

COM page 10

Automation page 13
9

CHAPTER 1 | COM and CORBA Principles
COM

Overview COM is a standard for distributed object technology from Microsoft
Corporation. This subsection provides a brief overview of the fundamental
principles of a COM object management system. The following topics are
discussed:

� �Background� on page 10.

� �COM Objects� on page 10.

� �COM Class� on page 10.

� �COM Object Interfaces� on page 11.

� �COM Client Requests� on page 11.

� �COM Object Lifetime� on page 11.

� �Multiple Inheritance� on page 12.

Background COM is an object programming standard that evolved from the object linking
and embedding (OLE) standard, which specifies how an object created with
one end-user application could be linked or embedded within another
end-user application (for example, an Excel spreadsheet within a Word
document). This subsection provides a brief overview of the fundamental
principles of a COM object management system.

COM Objects A COM object is typically a subcomponent of an application, representing a
point of exposure to other components of the same application, or to other
applications. A particular COM object can be described as an active
instance of an implementation; an instance in this case can be described as
an entity whose interface (or one of whose interfaces) is returned by calling
the COM IClassFactory::CreateInstance method.

COM Class COM supports an implementation typing mechanism that is centered around
the concept of a COM class. A COM class implements an interface and has
a well-defined identity. Implementations are identified by class IDs. An
implementation repository, called the Windows system registry, maps
implementations to specific units of executable code that embody their
 10

COM Overview
actual code realizations. A single instance of a COM class can be registered
in COM�s active object registry. The only inherently available reference for a
COM instance is its Unknown pointer.

The identity and management of object state are generally kept separate
from the identity and lifecycle of COM class instances. For example, files
that contain the state of a document object are persistent. A single COM
instance of a document type could load, manipulate, and store several
different document files over its lifetime; similarly, multiple COM instances
of different object types could load and use the the same file.

COM Object Interfaces A COM object exposes its interfaces in a virtual function table (also called a
vtable), which contains entries corresponding to each operation defined in
an interface. COM interfaces are usually described in Microsoft interface
definition language (IDL). COM identifies an interface by means of a COM
interface ID (IID). If you update a COM interface in some way, it is normal
practice to use a different IID for the updated interface.

COM Client Requests In COM, a client can make a request on an object if it has both compile-time
knowledge of the object�s interface structure and a reference to an instance
offering that interface. A COM client can call the COM GetActiveObject
function to obtain an IUnknown pointer for an active object.

A COM client can use a COM interface pointer to make requests on an
object. Interface pointers in COM are roughly equivalent to the concept of
object references in CORBA. COM interfaces cannot be invoked by a client
that does not have compile-time knowledge of them.

COM Object Lifetime The in-memory lifetime of a COM object is linked to the lifetime of the
clients that hold a reference to it. This means that the object is destroyed
when no more clients are attached to it. This can lead to problems,
however, if a client crashes without releasing its references to the object. To
avoid this, COM provides support for clients to ping servers, so that if a
client ping is not received within a designated timeframe, the references it
held can then be released.

As an alternative to having clients ping servers, an alternative form of
binding can be used in COM, through the use of monikers (that is, persistent
interface references). Monikers are conceptually equivalent to CORBA object
references. Although the use of monikers can help in determining when
11

CHAPTER 1 | COM and CORBA Principles
deactivation should occur, it does, however, mean that a COM client must
be explicitly set up to use this alternative form of binding, to allow the server
to release its references if necessary.

Multiple Inheritance Unlike CORBA, COM does not support the concept of multiple interface
inheritance. This has consequences for the way in which multiply-inherited
CORBA interfaces are mapped to COM�see �Mapping for Interface
Inheritance� on page 368 for more details. You can use the COM
QueryInterface() method to find out and explore the interfaces that a
particular COM object supports.
 12

COM Overview
Automation

Overview This subsection provides a brief overview of the fundamental principles of
Automation. The following topics are discussed:

� �Extension of COM� on page 13.

� �Automation Object Interfaces� on page 13.

� �Automation Client Requests� on page 13.

� �Dual Interfaces� on page 14.

� �Automation Object Lifetime� on page 14.

� �Multiple Inheritance� on page 14.

� �Summary of Differences between COM and Automation� on page 14.

Extension of COM Automation is an extension of COM and is implemented through it.
Automation provides a mechanism for dynamic operation invocation at
runtime (unlike a pure COM call that relies on static information known at
compile time). However, the data types that Automation supports are only a
subset of the types supported by COM (for example, Automation does not
support complex, user-defined constructed types, such as structs or unions).
Microsoft Excel is an example of a typical Automation application.

Automation Object Interfaces Automation interfaces can be described in Microsoft object definition
language (ODL). Automation interfaces can be registered in a binary type
library, which allows for runtime checking of client requests.

Automation Client Requests Unlike COM interfaces, Automation interfaces can be invoked dynamically
at runtime, through a special COM interface, called IDispatch. This is also
known as late binding. An Automation client can use the Automation
GetObject function (equivalent to the COM GetActiveObject function) to
obtain an IUnknown pointer for an active object in COM�s active object
registry.
13

CHAPTER 1 | COM and CORBA Principles
Dual Interfaces Some Automation controllers (for example, Visual Basic) provide the option
of using either straight IDispatch interfaces or dual interfaces for invoking
on a server. An Automation dual interface is a COM vtable-based interface
that derives from the IDispatch interface. It is therefore a hybrid form of
interface, which supports both an Automation and a COM-like interface.

The use of dual interfaces means that client invocations can be routed
directly through the vtable. This is known as early binding, because
interfaces are known at compile time. One advantage to early binding is that
it removes the performance overhead associated with late binding at
runtime.

Automation Object Lifetime As for COM objects, the in-memory lifetime of an Automation object is
linked to the lifetime of the clients that hold a reference to it. See �COM
Object Lifetime� on page 11 for more details.

Multiple Inheritance Because COM does not support the concept of multiple interface
inheritance, neither does Automation. This has consequences for the way in
which multiply-inherited CORBA interfaces are mapped to Automation�see
�Mapping for Interface Inheritance� on page 325 for more details.

Automation objects typically provide all Automation operations in a single
IDispatch interface, in a flat format. In an Automation controller that
provides the option of using dual interfaces, you can use dual interfaces to
expose multiple IDispatch interfaces for a particular COM co-class. For
example, a Dim X as new Y statement in Visual Basic can be used to invoke
a QueryInterface() on the Y interface.

Summary of Differences between
COM and Automation

The following is a summary of the main differences between COM and
Automation interfaces:

Table 2: Differences between COM and Automation Interfaces

COM Interfaces Automation Interfaces

Support a full range of COM types,
including user-defined constructed
types such as unions or structs.

Support only a subset of COM
types. Automation does not, for
example, support user-defined
constructed types.
 14

COM Overview
Can only be invoked by clients
with compile-time knowledge of
them.

Can be invoked at runtime (if
required) through a special COM
interface, called IDispatch.

Define methods only. Define both properties and
methods.

Note: The interface syntax and semantics for COM and Automation are
not the same. The OMG therefore presents separate sets of rules for
mapping CORBA types to COM and for mapping CORBA types to
Automation. See �Mapping CORBA to COM� on page 357 and �Mapping
CORBA to Automation� on page 313 for more details of these rules.

Table 2: Differences between COM and Automation Interfaces

COM Interfaces Automation Interfaces
15

CHAPTER 1 | COM and CORBA Principles
 16

CHAPTER 2

Introduction to
COMet
COMet enables transparent communication between clients
that are running in a Microsoft COM environment and servers
that are running in a CORBA environment. This chapter
introduces COMet, first by outlining the concepts of the
standard interworking model on which it is based, and then by
describing how COMet implements these concepts.

In This Chapter This chapter discusses the following topics:

The Interworking Model page 18

How COMet Implements the Model page 20

COMet System Components page 24

Note: COMet supports development and deployment of COM or
Automation clients that can communicate with CORBA servers. Any
CORBA C++ server examples provided in this guide are supplied for
reference purposes only. It is assumed that you already have a CORBA
server implementation product. The examples provided are for use with
Orbix 6.1.
17

CHAPTER 2 | Introduction to COMet
The Interworking Model

Overview This section describes the principles of the interworking model on which
COMet is based. The following topics are discussed:

� �Interworking Architecture Specification� on page 18.

� �Overview of Interworking Model� on page 18.

� �Bridge� on page 19.

� �Bridge View of Target Object� on page 19.

Interworking Architecture
Specification

The Interworking Architecture specification, which is part of the OMG
Common Object Request Broker: Architecture and Specification at
ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf, defines the standard
interworking model that specifies how the integration between COM or
Automation clients and CORBA object models is achieved.

Overview of Interworking Model Figure 2 provides an overview of the interworking model, which involves a
client in one object system (in this case, COM or Automation) that wants to
send a request to an object in another object system (in this case, CORBA).

Figure 2: The Standard Interworking Model

Object model A (client) Object model B (server)

Object reference in

Target
Object

Bridge

View of
Target
object

Object reference in
 18

The Interworking Model
Bridge The interworking model shown in Figure 2 on page 18 provides a bridge
that acts as an intermediary between the two object systems. The bridge
provides the mappings that are required between the object systems. It
provides these mappings transparently, so that the client can make requests
in its familiar object model.

Bridge View of Target Object To effect the bridge, the interworking model provides an object called a view
in the client�s system. The view object exposes the interface of the target
foreign object in the model that is understood by the client. See Figure 4 on
page 22 for an overview of how the view object is implemented in COMet.

The client makes requests on the view object�s interface in the bridge. The
bridge then maps these requests into requests on the target object�s
interface, and forwards them to the target object across the system
boundary. The workings of the bridge are transparent to the client, so the
client does not have to know that the objects it is using belong to another
object system.

The bridge can consist of multiple view objects. Each view object in the
bridge is bound to an Orbix object reference that corresponds to a real target
object across the system boundary. See Figure 4 on page 22 for more
details.
19

CHAPTER 2 | Introduction to COMet
How COMet Implements the Model

Overview This section describes how COMet implements the interworking model. The
following topics are discussed:

� �Role of COMet� on page 20.

� �Graphical Overview of Role� on page 21.

� �COM View of CORBA Objects� on page 21.

� �Graphical Overview of View� on page 22.

� �Creating a View� on page 22.

� �Advantages for the COM Programmer� on page 23.

� �Supported Protocols� on page 23.

Role of COMet COMet supports application integration across network boundaries, different
operating systems, and different programming languages. It provides a high
performance dynamic bridge that enables integration between COM or
Automation and CORBA objects. It allows you to develop and deploy COM
or Automation client applications that can interact with existing CORBA
server applications that might be running on Windows or another platform.
 20

How COMet Implements the Model
Graphical Overview of Role Figure 3 provides a conceptual overview of how COMet implements the
interworking model.

Figure 3 shows no process boundary between the client and COMet, which
is the only supported scenario for COM clients. In the case of Automation
clients, however, you can choose to have a process and machine boundary
between the client and COMet, or to have no machine boundary between
COMet and the server. See �Usage Models and Bridge Locations� on
page 27 for more details.

COM View of CORBA Objects As explained in �Bridge View of Target Object� on page 19, the interworking
model provides the concept of a view object in the bridge, which allows a
client to make requests on an object in a foreign object system as if that
object were in the client�s own native system. It follows that COMet supports
the concept of COM or Automation views of CORBA objects.

Figure 3: COMet�s Implementation of the Interworking Model

CORBA Server

UNIX, OS/390,
Windows NT, Java,

and so on

Type Store (Machine/Process Boundary)

COM or Automation
Client

Visual Basic,
PowerBuilder,
C++, VJ++,

and so on

COMet
21

CHAPTER 2 | Introduction to COMet
This in turn means that a corresponding COM or Automation interface must
be generated for each CORBA interface that is implemented by the CORBA
objects a client wants to invoke. (COMet supplies utilities that allow you to
generate such COM or Automation interfaces from CORBA interfaces, and
these are described in more detail in �Development Support Tools� on
page 171.) At application runtime, a client can create and subsequently
invoke on view objects that implement and expose these COM or
Automation interfaces (see �Creating a View� on page 22 for more details).

Graphical Overview of View Figure 4 provides a graphical overview of how a view object is implemented
in COMet.

Creating a View A view object is created in the COMet bridge when a client calls the
COMet-supplied (D)ICORBAFactory::GetObject() method on a particular
CORBA object. As shown in Figure 4 on page 22, a view exposes COM or
Automation interfaces, which correspond to the CORBA interfaces on the
object that the client wants to invoke. The view object is automatically
bound on creation to an Orbix object reference for the target object. This
object reference is returned to the client, to allow it to invoke operations on

Figure 4: View Object in COMet

COMet Address Space

COM or Automation
View Object

COM Interface

Automation Interface

Orbix
Object

Reference

IIOP
 22

How COMet Implements the Model
the target object. See Part 2 �Programmer�s Guide� and �COMet API
Reference� on page 217 for more details of how to use
DICORBAFActory::GetObject().

Advantages for the COM
Programmer

COMet provides two main advantages to COM programmers:

1. COMet provides access to existing CORBA servers, which can be
implemented on any operating system and in any language supported
by a CORBA implementation. Orbix supports a range of operating
systems, such as Windows, UNIX, and OS/390. It also supports
different programming languages, including C++ and Java.

2. Using COMet, a COM programmer can use familiar COM-based and
Automation-based tools to build heterogeneous systems that use both
COM and CORBA components within a COM environment. COMet,
therefore, presents a programming model that is familiar to the COM
programmer.

Supported Protocols COMet supports both the internet inter-ORB protocol (IIOP) and Microsoft�s
distributed component object model (DCOM) protocol. This means that any
IIOP-compliant ORB can interact with a COMet application.

Note: All COM views that are mapped from a particular OMG IDL
interface must share the same COM IIDs. See �Mapping Interface
Identifiers� on page 362 for more details.

Note: There are some restrictions in the use of DCOM with COMet. These
are explained in more detail in �Usage Models and Bridge Locations� on
page 27. The recommended approach is to load the bridge in-process to
the client (that is, in the client�s address space) and hence allow the client
machine to use IIOP to communicate with the server.
23

CHAPTER 2 | Introduction to COMet
COMet System Components

Overview This section describes the various components that comprise a COMet
system. The following topics are discussed:

� �Bridge� on page 24.

� �Type Store� on page 24.

� �Automation Client� on page 24.

� �COM Client� on page 25.

� �COM Library� on page 25.

� �CORBA Server� on page 25.

Bridge The bridge is a synonym for COMet itself. It is implemented as a set of DLLs
that are capable of dynamically mapping requests from a COM or
Automation environment to a CORBA environment. The bridge provides the
mappings and performs the necessary translation between COM or
Automation and CORBA types.

As shown in Figure 4 on page 22, a view object in the bridge contains both
a COM/Automation object interface and an Orbix object interface. This
means that the bridge can expose an appropriate COM or Automation
interface to its clients.

Type Store As shown in Figure 3 on page 21, COMet uses a component called the type
store. The type store is used to hold a cache of information about all the
CORBA types in your system. COMet can retrieve this information from the
Interface Repository at application runtime, and then automatically update
the type store with this information for subsequent use, instead of having to
query the Interface Repository for it again. The type store holds its cache of
type information in a neutral binary format. See �Development Support
Tools� on page 171 for more details about the workings of the type store.

Automation Client An Automation client can use COMet to communicate with a CORBA server.
This is a regular Automation client written in a language such as Visual
Basic, PowerBuilder, or any other Automation-compatible language.
 24

COMet System Components
COM Client A COM client can use COMet to communicate with a CORBA server. This is
a pure COM client (that is, not an Automation-based client) written in C++
or any language that supports COM clients.

COM Library This is part of the operating system that provides the COM and Automation
infrastructure.

CORBA Server A CORBA server can be contacted by COM or Automation clients, using
COMet. This is a normal CORBA server written in any language and running
on any platform supported by an ORB. Depending on the location of the
COMet bridge in your system, the CORBA server might need to be running
on Windows (if so, preferably Windows 2000, for reasons of scalability).
See �Usage Models and Bridge Locations� on page 27 for more details.
25

CHAPTER 2 | Introduction to COMet
 26

CHAPTER 3

Usage Models and
Bridge Locations
You can use COMet to develop and deploy distributed
applications consisting of COM or Automation clients that can
call objects in a CORBA server. This chapter explains how
COMet supports this usage model for both COM and
Automation.

In This Chapter This chapter discusses the following topics:

Automation Client to CORBA Server page 28

COM Client to CORBA Server page 31

Note: See �Deploying a COMet Application� on page 151 for more details
and examples of the various ways you can use COMet when deploying
your applications.
27

CHAPTER 3 | Usage Models and Bridge Locations
Automation Client to CORBA Server

Overview This section describes a usage model involving an Automation client and a
CORBA server. The following topics are discussed:

� �Graphical Overview� on page 28.

� �Automation Client� on page 28.

� �Automation Client with Bridge In-Process� on page 29.

� �Automation Client with Bridge Out-of-Process� on page 29.

� �CORBA Server� on page 29.

� �Bridge� on page 30.

Graphical Overview Figure 5 shows a graphical overview of this usage model.

Automation Client An Automation client can be written in any Automation-based programming
language, such as Visual Basic or PowerBuilder. The client does not need to
know that the target object is a CORBA object.

An Automation client can have the bridge loaded in any of the following
ways:

� In-process (that is, in the client�s address space).

Figure 5: Automation Client to CORBA Server

Bridge

Automation Interface Pointer
(IDispatch pointer)

Automation View
 (a real Automation object)

CORBA Object Reference

CORBA Server

Target
CORBA
Object

IIOP

Automation Client

DCOM
 28

Automation Client to CORBA Server
� Out-of-process on the client machine.

� Out-of-process on a separate machine.

Automation Client with Bridge
In-Process

The recommended deployment scenario for an Automation client with
COMet is to load the bridge in-process (that is, in the client�s address
space). This involves the use of IIOP as the wire protocol for communication
between the Automation client machine and CORBA server.

When the bridge is loaded in-process, an Automation client can use dual
interfaces instead of IDispatch interfaces. COMet does not support the use
of dual interfaces when the bridge is loaded out-of-process. The use of either
dual interfaces or IDispatch interfaces determines whether early binding or
late binding is allowed. (See �Automation Client Requests� on page 13 and
�Dual Interfaces� on page 14 for a definition of early and late binding.)

Automation Client with Bridge
Out-of-Process

Figure 5 on page 28 shows a scenario where the Automation client is using
DCOM to communicate with the bridge, which means the bridge is loaded
out-of-process on a separate machine. Although this is a supported
deployment scenario for Automation clients, it is not recommended unless
the bridge machine is running on Windows 2000, because it otherwise
limits the number of clients that can be handled.

As shown in Figure 5 on page 28, the Automation client uses an IDispatch
pointer to make method calls on an Automation view object in the bridge.
The bridge uses a CORBA object reference to make a corresponding
operation call on the target object in the CORBA server.

The dynamic marshalling engine of COMet allows for automatic mapping of
IDispatch pointers to CORBA interfaces and object references at runtime.

CORBA Server The CORBA server presents an OMG IDL interface to its objects. The server
application can exist on platforms other than Windows. However, if you
choose to locate the bridge on the server machine, the server must be
running on Windows (preferably Windows 2000 for reasons of scalability).
It can be written in any language supported by a CORBA implementation,
such as C++ or Java.

Note: If you want to load the bridge out-of-process, your Automation
client must use IDispatch interfaces instead of dual interfaces.
29

CHAPTER 3 | Usage Models and Bridge Locations
Bridge The bridge can be located on the Automation client machine, on an
intermediary machine, or on the CORBA server machine. If the bridge is not
located on the client machine, the bridge machine must be running on
Windows (preferably Windows 2000 for reasons of scalability).

The bridge acts as an Automation server, because it accepts requests from
the Automation client. The bridge also acts as a CORBA client, because it
translates requests from the Automation client into requests on the CORBA
server.

If the bridge is not located on the client machine, the Automation client uses
DCOM to communicate with it. The bridge uses IIOP to communicate with
the CORBA server.
 30

COM Client to CORBA Server
COM Client to CORBA Server

Overview This section describes a usage model involving a COM client and a CORBA
server. The following topics are discussed:

� �Graphical Overview� on page 31.

� �COM Client� on page 31.

� �CORBA Server� on page 32.

� �Bridge� on page 32

Graphical Overview Figure 6 shows a graphical overview of this usage model.

COM Client The only supported deployment scenario for a COM client with COMet is to
load the bridge in-process (that is, in the client�s address space). This
involves the use of IIOP as the wire protocol for communication between the
COM client machine and CORBA server. Figure 6 provides a graphical
overview of this scenario.

Figure 6: COM Client to CORBA Server

Process

Bridge

COM Interface Pointer

COM View (a real COM object)

CORBA Object Reference

CORBA Server

Target
CORBA
Object

IIOP

COM Client

Client Process
31

CHAPTER 3 | Usage Models and Bridge Locations
The COM client can use a COM interface pointer to make method calls on a
COM view object in the bridge. The bridge uses a CORBA object reference to
make a corresponding operation call on the target object in the CORBA
server.

The dynamic marshalling engine of COMet allows for automatic mapping of
COM interface pointers to CORBA interfaces and object references at
runtime.

The client does not need to know that the target object is a CORBA object. A
COM client can be written in C++ or any language that supports COM
clients.

CORBA Server The CORBA server presents an OMG IDL interface to its objects. The server
application can exist on platforms other than Windows. It can be written in
any language supported by a CORBA implementation, such as C++ or
Java.

Bridge The bridge must be located in-process to the COM client. The bridge acts as
a COM server, because it accepts requests from the COM client. The bridge
also acts as a CORBA client, because it translates requests from the COM
client into requests on the CORBA server.
 32

Part 2
Programmer�s Guide

In This Part This part contains the following chapters:

Getting Started page 35

Developing an Automation Client page 79

Developing a COM Client page 97

Exception Handling page 113

Client Callbacks page 137

Deploying a COMet Application page 151

Development Support Tools page 171

CHAPTER 4

Getting Started
This chapter is provided as a means to getting started quickly
in application programming with COMet. It explains the basics
you need to know to develop a simple COMet application that
consists of a COM or Automation client, written in
PowerBuilder, Visual Basic, or COM C++, which can call
objects in an existing CORBA C++ server.

In This Chapter This chapter discusses the following topics:

Prerequisites page 36

Developing Automation Clients page 38

Using DCOM with COMet page 54

Using COMet with Internet Explorer page 61

Automation Dual Interface Support page 68

Developing COM Clients page 71

Priming the COMet Type Store Cache page 78
35

CHAPTER 4 | Getting Started
Prerequisites

Overview This section describes the prerequisites to starting application development
with COMet. The following topics are discussed:

� �Client-Side Requirements� on page 36.

� �Server-Side Requirements� on page 36.

� �Registering OMG IDL Type Information� on page 36.

� �Priming the Type Store� on page 37.

Client-Side Requirements Ensure that both Orbix and COMet are installed and configured correctly.
See the Orbix 6.1 Installation Guide for more details about installation. See
the Orbix 6.1 Deployment Guide and Configuration Reference for details
about configuring both Orbix and COMet.

Server-Side Requirements COMet requires no changes to existing CORBA servers. See the Orbix
documentation set for details of how to manage servers. This chapter
assumes that you are using Orbix as your server-side object request broker
(ORB).

Registering OMG IDL Type
Information

As explained in �How COMet Implements the Model� on page 20, COMet is
a fully dynamic bridge that enables integration between COM or Automation
clients and CORBA servers. The bridge is driven by OMG IDL type
information derived from a CORBA Interface Repository.

Before you run an application, ensure that your OMG IDL is registered in the
Interface Repository. This is because COMet is designed to automatically
retrieve the required type information from the Interface Repository at
application runtime. COMet then saves this information to the type store for
subsequent use. See the Orbix documentation set for details of how to
register OMG IDL.
 36

Prerequisites
Priming the Type Store As an alternative to having COMet retrieve the type information from the
Interface Repository at application runtime, you can manually configure the
type store with the required type information before the first run of an
application. This is also known as priming the cache and is described in
more detail in �Priming the COMet Type Store Cache� on page 78. This also
requires that the OMG IDL is registered in the Interface Repository.
37

CHAPTER 4 | Getting Started
Developing Automation Clients

Overview You can use COMet to develop Automation client applications, using any
Automation-based tool. This section describes how to use COMet to develop
Automation clients in Visual Basic and PowerBuilder.

In This Section This section discusses the following topics:

Introduction page 39

Using the Visual Basic Genie page 43

Writing a Visual Basic Client without the Genie page 47

Writing a PowerBuilder Client page 50

Running the Client page 53
 38

Developing Automation Clients
Introduction

Overview This subsection provides an introduction to the Automation client
demonstrations provided. The following topics are discussed:

� �The Grid Demonstration� on page 39.

� �OMG IDL grid Interface� on page 39.

� �Automation DIgrid Interface� on page 40.

� �Visual Basic Client GUI Interface� on page 41.

� �Location of Visual Basic Source Files� on page 41.

� �PowerBuilder Client GUI Interface� on page 42.

� �Location of PowerBuilder Source Files� on page 42.

The Grid Demonstration The examples developed in this section are Automation clients, written in
Visual Basic and PowerBuilder, which can access and modify values that
are assigned to cells within a grid that is implemented as an object in a
supplied CORBA server.

OMG IDL grid Interface The grid object in the CORBA server implements the following OMG IDL
grid interface:

// OMG IDL
interface grid {

readonly attribute short height;
readonly attribute short width;
void set(in short n, in short m, in long value);
long get(in short n, in short m);

};
39

CHAPTER 4 | Getting Started
Automation DIgrid Interface The corresponding Automation interface for the preceding OMG IDL
interface is called DIgrid, and is defined as follows:

The Automation view of the target CORBA object must implement the
DIgrid interface.

[odl,…]
interface DIgrid : IDispatch {
[id(0x00000001)]
HRESULT _stdcall get(
 [in] short n,
 [in] short m,
 [out, optional] VARIANT* excep_OBJ,
 [out, retval] long* val);
[id(0x00000002)]
HRESULT _stdcall set(
 [in] short n,
 [in] short m,
 [in] long value,
 [out, optional] VARIANT* excep_OBJ);
[id(0x00000003), propget]
HRESULT _stdcall height([out, retval] short* val);
[id(0x00000004), propget]
HRESULT _stdcall width([out, retval] short* val);
};
 40

Developing Automation Clients
Visual Basic Client GUI Interface Figure 7 shows the Visual Basic client GUI interface implemented in this
section.

Location of Visual Basic Source
Files

The source for the Visual Basic demonstration is in
install-dir\demos\comet\grid\vb_client, where install-dir represents
the Orbix installation directory.

Figure 7: Visual Basic Client GUI for the COMet Grid Demonstration
41

CHAPTER 4 | Getting Started
PowerBuilder Client GUI Interface Figure 8 shows the PowerBuilder client GUI interface implemented in this
section.

Location of PowerBuilder Source
Files

The source for the PowerBuilder demonstration is in
install-dir\demos\comet\grid\pb_client, where install-dir represents
the Orbix installation directory.

Figure 8: PowerBuilder Client GUI for the COMet Grid Demonstration
 42

Developing Automation Clients
Using the Visual Basic Genie

Overview This subsection provides an introduction to using the supplied Visual Basic
genie for development of Automation clients. The following topics are
discussed:

� �Visual Basic Genie� on page 43.

� �C++ Genie� on page 43.

� �Overview of Client Development Process� on page 44.

� �Explanation of Client Development Process� on page 44.

� �Development Steps Using Code Generation� on page 45.

� �Files Generated by the Visual Basic Genie� on page 45.

Visual Basic Genie COMet is shipped with a Visual Basic code generation genie that can
automatically generate the bulk of the application code for a Visual Basic
client, based on OMG IDL definitions. Both a GUI and command-line
version of the genie are supplied. The use of the Visual Basic genie is not
compulsory for creating Visual Basic clients, using COMet. However, using
the genie makes the development of Visual Basic clients much faster and
easier.

C++ Genie The Visual Basic genie is designed to create Visual Basic clients that can
communicate with C++ servers that have been created using the C++
genie supplied with the CORBA Code Generation Toolkit. (See the CORBA
Code Generation Toolkit Guide for details about the C++ genie.)
43

CHAPTER 4 | Getting Started
Overview of Client Development
Process

Figure 9 provides an overview of how the client development process works
with the genie.

Explanation of Client
Development Process

Figure 9 on page 44 can be explained as follows:

1. The code generation genie takes the OMG IDL file as input and
generates a complete client program. See �Files Generated by the
Visual Basic Genie� on page 45 for details of the Visual Basic files that
the genie generates.

2. The client developer can then modify the client to complete the
application.

Figure 9: Development Overview Using Code Generation

Client
Developer

OMG IDL

Visual Basic
Client Program

Modified
Visual Basic

Client Program

Modifies

Visual
Basic
Genie

Note: The generated client is a dummy implementation that invokes
every operation on each interface in the IDL file exactly once. The
dummy client is a working application that can be built and run
immediately.
 44

Developing Automation Clients
Development Steps Using Code
Generation

The main steps to develop a client-server application, using code
generation, are as follows:

Files Generated by the Visual
Basic Genie

The Visual Basic genie creates the following files:

Step Action

1 Generate the CORBA server code, using the C++ genie
supplied with the CORBA Code Generation Toolkit. See the
CORBA Code Generation Toolkit Guide for more details.

2 Generate the Visual Basic client, using the Visual Basic genie
supplied with COMet. See �Generating Visual Basic Client
Code� on page 199 for details of how to use the genie.

3 Register the appropriate OMG IDL file with the Orbix Interface
Repository.a See the CORBA Administrator�s Guide for details.

4 Load the client.vbp file into the Visual Basic IDE. Then build
the client as normal.

a. You only need to perform this step if you are using the command-line version
of the genie. The GUI version of the genie automatically registers the OMG
IDL, if it has not already been registered.

client.vbp This is the Visual Basic project file for the client.

client.frm This is the main Visual Basic form for the client.

FindIOR.frm This form contains the functions needed by the client to
select a .ref file. The .ref file is written by the server
and contains the server object�s IOR.

Call_Funcs.bas This contains Visual Basic code for implementing the
operations defined in the selected interface(s).

Print_Funcs.bas This contains functions for printing the values of all the
CORBA simple types supported by COMet. It also
contains functions for printing any user-defined types
declared in the IDL file.

Random_Funcs.bas This contains functions for generating random values
for all the CORBA simple types supported by COMet. It
also contains functions for generating random values
for any user-defined types declared in the IDL file.
45

CHAPTER 4 | Getting Started
IT_Random.cls This class is a random number generator that is used in
the generated Random_Funcs.bas file.
 46

Developing Automation Clients
Writing a Visual Basic Client without the Genie

Overview This subsection describes the steps to use COMet to develop a simple Visual
Basic client of a CORBA server, if you are not using the code generation
genie. The steps are:

Any filenames mentioned in this subsection refer to files contained in the
install-dir\demos\comet\grid\vb_client directory.

Step 1�Declaring Global Data Start by declaring global variables for the bridge (bridge), the CORBA object
factory (fact), and the Automation view object (gridDisp).

Step 2�Connecting to Server and
Obtaining Object Reference

The following code is executed when you click Connect on the Visual Basic
client window shown in Figure 7 on page 41:

Step Action

1 Declare global data.

2 Connect to the Orbix grid server, and obtain an object
reference for the grid object.

3 Invoke operations on the grid object.

4 Disconnect.

' Visual Basic
Dim bridge As Object
Dim fact As Object
Dim gridDisp As Object

Example 1:

' Visual Basic
Private Sub Connect_Click()

1 Set fact = CreateObject("CORBA.Factory")
2 Set gridDisp = fact.GetObject("grid:" + sIOR)

width_val.Caption = gridDisp.Width
47

CHAPTER 4 | Getting Started
The preceding code can be explained as follows:

1. The call to CreateObject results in the creation of an instance of a
CORBA object factory in the bridge. It is assigned a ProgID,
CORBA.Factory.

2. After a CORBA.Factory object has been returned, the client can call
GetObject() on the object factory, to request a particular object. The
call to GetObject() achieves a connection between the client�s
gridDisp object reference (for the view) and the target grid object in
the server.

The call to GetObject() causes the following:

i. The object factory creates an Automation view object that
implements the DIgrid interface.

ii. The view object is bound to an instance of the CORBA grid
object named in the parameter for GetObject().

iii. The grid object is mapped onto a CORBA object reference. (This
object reference is then bound to the view.)

iv. A reference to the Automation view is returned to the client.

See �Obtaining a Reference to a CORBA Object� on page 86 and
�DICORBAFactory� on page 228 for more details about GetObject().

Step 3�Invoking Operations After calling GetObject(), the client can implement the Get and Set buttons
on the client GUI interface, by using the gridDisp object reference to invoke
the OMG IDL operations on the grid object in the server. For example:

height_val.Caption = gridDisp.Height
Command1.Enabled = False
Command2.Enabled = True
SetButton.Enabled = True
GetButton.Enabled = True
End Sub

Example 1:

…
…gridDisp.set(…)
…

 48

Developing Automation Clients
Step 4�Disconnecting When disconnecting, it is important to release all references to objects in the
bridge, to allow the process to terminate. In the grid demonstration, this is
performed by the following subroutine:

' Visual Basic
Private Sub Disconnect_Click()
Set gridDisp = Nothing
Set fact = Nothing
Set bridge = Nothing
End Sub
49

CHAPTER 4 | Getting Started
Writing a PowerBuilder Client

Overview This subsection describes the steps to use COMet to develop a simple
PowerBuilder client of a CORBA server. The steps are:

Any filenames mentioned in this subsection refer to files contained in the
install-dir\demos\comet\grid\pb_client directory.

Step 1�Declaring Global Data Start by declaring global variables for the bridge (bridge), the CORBA object
factory (fact), and the Automation view object (grid_client).

Step 2�Connecting to the Orbix
Grid Server

The following code is executed when you click Connect on the PowerBuilder
client window shown in Figure 8 on page 42:

Step Action

1 Declare global data.

2 Connect to the Orbix grid serverm and obtain an object
reference for the target CORBA grid object.

3 Invoke operations on the grid object.

4 Disconnect.

Note: There is no code generation genie available for PowerBuilder.

// PowerBuilder
OleObject bridge
OleObject fact
OleObject grid_client

Example 2:

// Powerscript
// create the CORBA factory object
fact = CREATE OleObject

1 fact.ConnectToNewObject("CORBA.Factory")
 50

Developing Automation Clients
The preceding code can be explained as follows:

1. The call to ConnectToNewObject results in the creation of an instance
of a CORBA object factory in the bridge. It is assigned a ProgID,
CORBA.Factory.

2. After a CORBA.Factory object has been returned, the client can call
GetObject() on the object factory, to request a particular object. The
call to GetObject() achieves a connection between the client�s
grid_client object reference (for the view) and the target grid object
in the server.

The call to GetObject() causes the following:

i. The object factory creates an Automation view object that
implements the DIgrid interface.

ii. The view object is bound to an instance of the CORBA grid
object named in the parameter for GetObject().

iii. The grid object is mapped onto a CORBA object reference. (This
object reference is then bound to the view.)

iv. A reference to the Automation view is returned to the client.

See �Obtaining a Reference to a CORBA Object� on page 86 and
�DICORBAFactory� on page 228 for more details about GetObject().

// Exception parameter in case a CORBA exception occurs
OleObject ex
ex = CREATE OleObject

grid_client = CREATE OleObject
2 grid_client = fact.GetObject("grid:" + sIOR)

height_val.Text = string(grid_client.Height)
width_val.Text = string(grid_client.Width)

connect_button.Enabled = False
unplug_button.Enabled = True
set_button.Enabled = True
get_button.Enabled = True

Example 2:
51

CHAPTER 4 | Getting Started
Step 3�Invoking Operations After calling GetObject(), the client can implement the Get and Set buttons
on the client GUI interface, by using the grid_client object reference to
invoke the OMG IDL operations on the grid object in the server. For
example:

Step 4�Disconnecting When disconnecting, it is important to release all references to objects in the
bridge, to allow the process to terminate. In the grid demonstration, this is
performed by the following subroutine:

…
…grid_client.set(…)
…

// PowerBuilder
grid_client.DisconnectObject()
DESTROY grid_client
fact.DisconnectObject()
DESTROY fact
bridge.DisconnectObject()
DESTROY bridge
 52

Developing Automation Clients
Running the Client

Overview This subsection describes the steps to run the client application.

Steps The steps to run the client are:

Step Action

1 If you are using:

� Visual Basic, run vbgrid.exe.

This opens the client window shown in Figure 7 on
page 41.

� PowerBuilder, run grid.exe.

This opens the client window shown in Figure 8 on
page 42.

2 Specify the hostname in the appropriate field and click
Connect. This contacts the supplied grid C++ server, and
obtains the width and height of the grid.

3 Type x and y values for the grid coordinates.

4 Click Set to modify values in the grid, or Get to obtain values
from the grid.

5 Click Disconnect when you are finished.
53

CHAPTER 4 | Getting Started
Using DCOM with COMet

Overview This section describes how to use COMet to develop Automation clients that
launch the COMet bridge out-of-process, and hence use DCOM as the wire
protocol for communication.

In This Section This section discusses the following topics:

Introduction page 55

Launching the COMet Bridge Out-of-Process page 57

DCOM Security page 60
 54

Using DCOM with COMet
Introduction

Overview This subsection provides an introduction to the concept of launching the
bridge out-of-process, and the mandates and recommendations associated
with it. The following topics are discussed:

� �In-Process versus Out-of-Process� on page 55.

� �Automation Clients versus COM Clients� on page 55.

� �IDispatch Interfaces� on page 55.

� �Windows 2000� on page 56.

In-Process versus Out-of-Process The examples provided in �Developing Automation Clients� on page 38
create an instance of the CORBA.Factory object in the Automation client�s
address space, which means the COMet bridge is launched in-process to the
client. Launching the bridge in-process is the recommended deployment
scenario with COMet, because it involves the use of IIOP as the wire
protocol for communication between the client machine and the CORBA
server.

Launching the bridge out-of-process involves the use of DCOM as the wire
protocol for communication between the client and the COMet bridge. If the
bridge is launched out-of-process on the same machine as the client, it is
referred to as a local server. If the bridge is launched on a separate machine,
it is referred to as a remote server. Launching the bridge out-of-process
comes with certain mandates and recommendations, which are described
next.

Automation Clients versus COM
Clients

COMet only allows Automation clients to launch the bridge out-of-process. It
does not support COM clients with the bridge loaded out-of-process. COM
clients must launch the bridge in-process.

IDispatch Interfaces If you want to launch the bridge out-of-process, your Automation clients
must use IDispatch interfaces. The use of dual interfaces is not supported
with DCOM.
55

CHAPTER 4 | Getting Started
Windows 2000 If you want to launch the bridge out-of-process, the bridge machine must be
running on Windows. For reasons of scalability, it is recommended that the
bridge machine is running on Windows 2000. Running the bridge on any
other version of Windows limits the number of clients that it can handle.
 56

Using DCOM with COMet
Launching the COMet Bridge Out-of-Process

Overview This subsection describes how to write a client that can launch the bridge
out-of-process. The following topics are discussed:

� �Example� on page 57.

� �Explanation� on page 58.

� �Required Setting� on page 58.

� �The custsur.exe Executable� on page 58.

� �The CreateObject() Method� on page 59.

Example Example 3 shows a sample Visual Basic client that can launch the bridge
out-of-process.

Example 3: Sample Visual Basic Client for Out-of-Process Launching

' Visual Basic
Private Sub ConnectBtn_Click()
On Error GoTo errortrap

1 If inprocess.Value <> Checked Then
2 set objFactory = CreateObject("CORBA.Factory", HostName.Text)

Else
 set objFactory = CreateObject("CORBA.Factory")
End If
inprocess.Enabled = False

3 Set srvObj = objFactory.GetObject("grid:" + sIOR)
StartBtn.Enabled = True
ConnectBtn.Enabled = False
Exit Sub
errortrap:
MsgBox (Err.Description & ", in " & Err.Source)
End Sub
57

CHAPTER 4 | Getting Started
Explanation The client code shown in Example 3 can be explained as follows:

1. The client implements a check button (inprocess), to let the user
decide at runtime whether to launch the bridge in-process or
out-of-process. Because the decision is controlled by a simple If…Else
statement, both configurations are equally easy to use from the client
programmer�s point of view.

2. The Visual Basic CreateObject() method allows you to specify a
hostname as an optional, extra parameter. The hostname specified is
the name of the machine on which you want to launch the bridge. The
call to CreateObject() creates an instance of the CORBA.Factory
object in the bridge.

The Visual Basic CreateObject() method is similar to the COM
CoCreateInstanceEx() method. Most Automation controllers allow
you to specify an optional hostname to their equivalent of the Visual
Basic CreateObject() method.

3. The client calls GetObject() on the object factory, to invoke on the
target grid object. The call to GetObject() achieves a connection
between the client�s srvObj object reference (for the view) and the
target grid object in the server.

Required Setting If you want to launch the bridge out-of-process, the install-dir\bin
directory must be set on the system path. This might already have been
done automatically at installation time. If not, you must do it manually.

The custsur.exe Executable When COMet is launched in-process to the client, the COMet DLLs are
hosted by a default surrogate executable, called DLLHOST.exe. However,
when COMet is launched out-of-process, the COMet DLLs are instead
hosted by a surrogate executable, called custsur.exe, on the bridge host.

The custsur.exe executable is supplied with your COMet installation. It is
indicated by the following Windows registry value that is set during
installation (where version represents the Orbix version number):

HKEY_CLASSES_ROOT\AppID\{A8B553C5-3B72-11CF-BBFC-444553540000}
[DllSurrogate] = install-dir\asp\version\bin\custsur.exe
 58

Using DCOM with COMet
The CreateObject() Method The Visual Basic CreateObject() method is completely independent of
COMet, and can therefore be used on dedicated DCOM client machines.
This is of particular use when you are using COMet with Internet Explorer.
See �Using COMet with Internet Explorer� on page 61 for more details.
59

CHAPTER 4 | Getting Started
DCOM Security

Overview This subsection addresses the subject of DCOM security, which is important
for launching the bridge out-of-process. The following topics are discussed:

� �Addressing Security Issues� on page 60.

� �For More Information� on page 60.

Addressing Security Issues Using DCOM as the wire protocol for communication between the client
machine and the bridge machine requires that DCOM security issues are
addressed. Security can be dealt with either by using DCOMCNFG.EXE, or
programmatically via API security functions, or using a combination of these
two approaches.

For More Information A full treatment of COM security is outside the scope of this guide. For more
details see the COM security FAQ at:

http://support.microsoft.com/support/kb/articles/q158/5/08.asp
 60

Using COMet with Internet Explorer
Using COMet with Internet Explorer

Overview This section describes how to use a tool such as VBScript to set up a
web-based Automation client that runs in Internet Explorer and uses COMet
to communicate with CORBA objects in a remote web server.

In This Section This section discusses the following topics:

Note: Before reading this section, ensure that you have read �Using
DCOM with COMet� on page 54.

Specifying the Bridge Location page 62

The Supplied Demonstration page 64
61

CHAPTER 4 | Getting Started
Specifying the Bridge Location

Overview This subsection describes how to specify the location of the bridge for use
with an Internet Explorer client. The following topics are discussed:

� �Supplied DLL� on page 62.

� �Referencing the DLL in HTML� on page 62.

� �Attributes for the OBJECT Tag� on page 63.

Supplied DLL Unlike the Visual Basic CreateObject() method, the CreateObject()
method used in VBScript does not have the ability to pass an optional
hostname parameter. COMet therefore supplies a file, called
IT_C2K_CCIExWrapper0_VC60.DLL, which contains an ActiveX control used
for wrapping the COM CoCreateInstanceEx() method. You can reference
the IT_C2K_CCIExWrapper0_VC60.DLL file in HTML, by using the OBJECT tag.

Referencing the DLL in HTML The following is an example of how to use the OBJECT tag in HTML, to
reference the IT_C2K_CCIExWrapper0_VC60.DLL file:

In the preceding example, install-dir represents the full path to your
installation, and x.x represents the Orbix version number.

<OBJECT ID="bridge" <
CLASSID="CLSID:3DA5B85F-F2FC-11D0-8D97-0060970557AC"
change this to reflect the location of
IT_C2K_CCIExWrapper0_VC60.DLL on your machine
CODEBASE="\\machine-name\install-dir\asp\x.x\bin\
 IT_C2K_CCIExWrapper0_VC60.DLL"
>
</OBJECT>
 62

Using COMet with Internet Explorer
Attributes for the OBJECT Tag The OBJECT tag that is used to reference the DLL contains attributes that can
be explained as follows:

ID The value for this attribute specifies the object name. In
the preceding example it is bridge.

CLASSID The value for this attribute specifies the object type (that
is, the object implementation). The syntax for this
attribute is CLSID:class-identifier for registered
ActiveX controls.

CODEBASE The value for this attribute specifies the object location,
by supplying a URL that identifies the codebase for the
object. You might need to modify the machine-name in
the HTML file before the demonstration can work.
63

CHAPTER 4 | Getting Started
The Supplied Demonstration

Overview This subsection describes the sample Internet Explorer client demonstration
supplied with your COMet installation. The following topics are discussed:

� �Downloading the HTML Demonstration� on page 64.

� �VBScript Example� on page 64.

� �VBScript Explanation� on page 65.

� �Location of the VBScript Example� on page 65.

� �Setting Internet Explorer Security� on page 65.

� �Specifying the Machine Name� on page 66.

� �Running the Demonstration� on page 66.

Downloading the HTML
Demonstration

When the HTML file for the supplied demonstration is first downloaded to
the client machine, the ActiveX control for wrapping CoCreateInstanceEx()
is also retrieved and registers itself on your client machine (provided you
agree, of course). This allows use of COMet from client machines, with no
configuration effort required on the client�s part.

The only requirement is that you must configure COMet on the server side
with respect to type information, access permissions, and so on, and place
the HTML file for the demonstration on the server where the bridge resides.

DCOM is used as the wire protocol for communication between the client
and the bridge.

VBScript Example The HTML file can contain VBScript or JavaScript for calling methods on the
remote CORBA objects. For the purposes of this example, it contains
VBScript. Example 4 shows the VBScript example. client connects to the
grid object on the "advice.iona.com" machine and obtains the height and
the width of the grid:

Example 4: Sample VBScript Client

<SCRIPT LANGUAGE="VBScript">
<!--

Dim Grid
Dim fact
 64

Using COMet with Internet Explorer
VBScript Explanation The code shown in Example 4 can be explained as follows:

1. The client creates an instance of the remote CORBA object factory on
the advice.iona.com machine (that is, the host on which the bridge is
to be launched).

2. The client calls GetObject() on the object factory, to invoke on the
target grid object. The call to GetObject() achieves a connection
between the client�s Grid object reference (for the view) and the target
grid object in the server.

Location of the VBScript Example The full version of the preceding VBScript example is supplied in
install-dir\demos\comet\grid\ie_client.

Setting Internet Explorer Security To use the supplied VBScript example, you must set your Internet Explorer
security settings to medium in your Windows Control Panel. A security
setting of medium means that you are prompted whenever executable

Sub btnConnect_Onclick
lblStatus.Value = "Connecting…"

DCOM on the wire…
the parameter should be the name of the
machine where the bridge is located

1 Set fact = bridge.IT_CreateRemoteFactory("advice.iona.com")

IIOP on the wire
Set fact = CreateObject("CORBA.Factory")

2 Set Grid = fact.GetObject("grid:" + sIOR)
lblStatus.Value = "Obtaining dimensions…"
sleWidth.Value = Grid.width
sleHeight.Value = Grid.height
lblStatus.Value = "Connected…"
End Sub

-->
</SCRIPT>

Example 4: Sample VBScript Client
65

CHAPTER 4 | Getting Started
content is being downloaded. That is all you need to do. You do not need to
have Orbix installed. You can now open the
install-dir\demos\comet\grid\ie_client\griddemo.htm file.

Specifying the Machine Name You must complete the following steps in the griddemo.htm file (where x.x
represents the Orbix version number), to specify the name of the machine
that is to be contacted (that is, the machine where the bridge is located)
when the demonstration is downloaded to a client:

When these changes have been made, the HTML file can be accessed from
any Windows machine with Internet Explorer. Neither Orbix nor COMet are
required on the client side for the demonstration to work.

Running the Demonstration The first time you access the HTML page, a dialog box opens to tell you that
unsigned executable content is being downloaded, which is acceptable in
this case. You should be presented with a simple GUI, similar to the Visual
Basic or PowerBuilder GUI screens in Figure 7 on page 41 and Figure 8 on
page 42. The steps to use the demonstration are:

Step Action

1 Edit the following line:

CODEBASE="\\machine-name\install-dir\asp\x.x\bin
 \IT_C2K_CCIExWrapper0_VC60.DLL"

2 Edit either of the following lines:

Set fact = bridge.IT_CreateInstanceEx("{A8B553C5-3B72-
 11CF-BBFC-444553540000}", "machine-name")

or

Set fact = bridge.IT_CreateRemoteFactory("machine-
 name")

Note: In the preceding example, IT_CreateInstanceEx takes
a stringified CLSID as the first parameter, which in this case is
the CLSID for CORBA.Factory. On the other hand, the CLSID for
CORBA.Factory is hard-coded in the implementations of
IT_CreateRemoteFactory.
 66

Using COMet with Internet Explorer
Step Action

1 Select Connect.

2 Type x and y values for the grid coordinates.

3 Select Set to modify values in the grid, or Get to obtain values
from the grid.

4 Select Disconnect when you are finished.
67

CHAPTER 4 | Getting Started
Automation Dual Interface Support

Overview Some Automation controllers (for example, Visual Basic) provide clients the
option of using either straight IDispatch interfaces or dual interfaces for
invoking on a server. This section describes the use of dual interfaces. The
following topics are discussed:

� �What is a Dual Interface?� on page 68.

� �Early Binding� on page 68.

� �Type Libraries� on page 69.

� �The ts2tlb Utility� on page 69.

� �Viewing the Type Library� on page 70.

� �Using the Type Library in a Client� on page 70.

� �Registering the Type Library� on page 70.

What is a Dual Interface? An Automation dual interface is a COM vtable-based interface that derives
from the IDispatch interface. The vtable, a standard feature of
object-oriented programming, is a function table that contains entries
corresponding to each operation defined in an interface. This means that its
methods can be either late-bound, using IDispatch::Invoke, or
early-bound through the vtable portion of the interface.

Early Binding The use of dual interfaces means that client invocations can be routed
directly through the vtable. This is known as early binding, because
interfaces are known at compile time. The alternative to early binding is late
binding, where client invocations are routed dynamically through IDispatch
interfaces at runtime. The advantage of using dual interfaces and early
binding is that it helps to avoid the IDispatch marshalling overhead at
runtime that can be associated with late binding.

Note: If you want to use dual interfaces with COMet, you must load the
bridge in-process to the client. COMet does not support the use of dual
interfaces with the bridge loaded out-of-process.
 68

Automation Dual Interface Support
Type Libraries The use of dual interfaces requires the use of a type library. To use dual
interfaces in an Automation client that wants to communicate with a
CORBA server, you must create a type library that is based on the OMG IDL
type information implemented by the target CORBA server. This allows the
Automation client to be presented with an Automation view of the target
CORBA objects.

The ts2tlb Utility COMet provides a type library generation tool, called ts2tlb, which
produces type libraries, based on OMG IDL type information in the COMet
type store. For example, the following ts2tlb command creates a grid.tlb
type library in the IT_grid library, based on the OMG IDL grid interface:

For more complicated OMG IDL interfaces (for example, those that pass
user-defined types as parameters), ts2tlb attempts to resolve all those
types from the disk cache, the Interface Repository, or both. It can only
create a type library, however, if it finds all the OMG IDL types it looks for.

ts2tlb -f grid.tlb -l IT_grid grid

Note: You must ensure that your OMG IDL is registered with the Interface
Repository before you add it to the type store and use ts2tlb to create
type libraries from it. See �Development Support Tools� on page 171 for
full details about ts2tlb and creating type libraries from OMG IDL.
69

CHAPTER 4 | Getting Started
Viewing the Type Library The generated type library, based on the OMG IDL grid interface, appears
as follows when viewed using oleview:

Using the Type Library in a Client Having created a reference to the type library, it can be used in Visual Basic,
for example, as follows:

Registering the Type Library If you want to register the generated type library in the Windows registry,
use the supplied tlibreg utility. You can also use tlibreg to unregister a
type library. See �COMet Utility Arguments� on page 411 for more details
about tlibreg.

[odl,…]
interface DIgrid : IDispatch {
[id(0x00000001)]
HRESULT _stdcall get(
 [in] short n,
 [in] short m,
 [out, optional] VARIANT* excep_OBJ,
 [out, retval] long* val);
[id(0x00000002)]
HRESULT _stdcall set(
 [in] short n,
 [in] short m,
 [in] long value,
 [out, optional] VARIANT* excep_OBJ);
[id(0x00000003), propget]
HRESULT _stdcall height([out, retval] short* val);
[id(0x00000004), propget]
HRESULT _stdcall width([out, retval] short* val);
};

Note: All UUIDs are generated by using the MD5 algorithm, which is
described in the OMG Interworking Architecture specification at
ftp://ftp.omg.org/pub/docs/formal/01-12-55.pdf.

' Visual Basic
Dim custGrid As IT_grid.DIgrid
 70

Developing COM Clients
Developing COM Clients

Overview COMet provides support for COM customized interfaces. In other words,
COMet not only supports standard Automation interfaces; it also supports
COM interfaces, with all the extended types that they provide. This support
is aimed primarily at C++ programmers writing COM clients who want to
make use of the full set of COM types, rather than being restricted to types
that are compatible with Automation. This section describes how to use
COMet to develop COM clients in C++.

In This Section This section discusses the following topics:

Generating Microsoft IDL from OMG IDL page 72

Compiling Microsoft IDL page 74

Writing a COM C++ Client page 75
71

CHAPTER 4 | Getting Started
Generating Microsoft IDL from OMG IDL

Overview The first step in implementing a COM client that can communicate with a
CORBA server is to generate the Microsoft IDL definitions required by the
COM client from existing OMG IDL for the CORBA objects. This allows the
COM client to be presented with a COM view of the target CORBA objects.

This subsection describes how to generate Microsoft IDL from OMG IDL.
The following topics are discussed:

� �The ts2idl Utility� on page 72.

� �OMG IDL grid Interface� on page 73.

� �Microsoft IDL Igrid Interface� on page 73.

The ts2idl Utility COMet provides a COM IDL generation tool, called ts2idl, which produces
Microsoft IDL, based on OMG IDL type information in the COMet type store.
For example, the following ts2idl command creates a grid.idl Microsoft
IDL file, based on the OMG IDL grid interface:

For more complicated OMG IDL interfaces that employ user-defined types,
you can specify a -r argument with ts2idl, to completely resolve those
types and to produce COM IDL for them also.

ts2idl -f grid.idl grid

Note: You must ensure that your OMG IDL is registered with the Interface
Repository before you add it to the type store and use ts2idl to create
COM IDL from it. See �Development Support Tools� on page 171 for full
details about ts2idl and creating COM IDL from OMG IDL.
 72

Developing COM Clients
OMG IDL grid Interface The grid object in the CORBA server implements the following OMG IDL
grid interface:

Microsoft IDL Igrid Interface The corresponding COM interface for the preceding OMG IDL interface is
called Igrid, and is defined as follows:

// OMG IDL
interface grid {
readonly attribute short height;
readonly attribute short width;
void set(in short n, in short m, in long value);
long get(in short n, in short m);
};

//Microsoft IDL
[object,…]
interface Igrid : IUnknown
{
 HRESULT get([in] short n,
 [in] short m,
 [out] long *val);
 HRESULT set([in] short n,
 [in] short m,
 [in] long value);
 HRESULT _get_height([out] short *val);
 HRESULT _get_width([out] short *val);
};
#endif
73

CHAPTER 4 | Getting Started
Compiling Microsoft IDL

Overview After generating the required Microsoft IDL definitions from OMG IDL, you
must compile the Microsoft IDL. This subsection describes how to compile it
and the resulting output. The following topics are discussed:

� �The midl.exe Compiler� on page 74.

� �Resulting Output� on page 74

� �Building the Proxy/Stub DLL� on page 74.

The midl.exe Compiler Use the midl.exe compiler to compile the Microsoft IDL.

Resulting Output The midl.exe compiler produces:

� The C++ interface definitions to be used within the COM client
application.

� A proxy/stub DLL to marshal the customized Microsoft IDL interface.

This procedure is standard practice when writing COM applications.

Building the Proxy/Stub DLL You can use ts2idl to produce a makefile that subsequently allows you to
build and register the proxy/stub DLL. The steps are:

Step Action

1 Use the -p argument with ts2idl to produce the makefile. For
example, the following command produces a grid.mk file in
addition to the grid.idl file already shown in �Generating
Microsoft IDL from OMG IDL� on page 72:

ts2idl -p -f grid.idl grid

The generated makefile contains information on how to build
and register the proxy/stub DLL.

2 Use the generated makefile to build the proxy/stub DLL as
normal.

Note: You need Visual C++ 6.0, to build the proxy/stub DLL.
 74

Developing COM Clients
Writing a COM C++ Client

Overview This subsection describes the steps to use COMet to write a COM C++
client of a CORBA server. The steps are:

Step 1�General Declarations Declare a reference to the CORBA object factory and to a grid COM view
object:

Step Action

1 Make general declarations.

2 Connect to the CORBA factory.

3 Connect to the CORBA server.

4 Invoke operations on the grid object.

Note: The source for this demonstration is in
install-dir\demos\comet\grid\com_client, where install-dir
represents the Orbix installation directory.

// COM C++
HRESULT hr = NOERROR;
IUnknown *pUnk = NULL;
ICORBAFactory *pCORBAFact = NULL;
DWORD ctx;
// our custom interface
Igrid *pIBasic = NULL;
MULTI_QI mqi;
75

CHAPTER 4 | Getting Started
Step 2�Connecting to the
CORBA Object Factory

Create a remote instance of the CORBA object factory, which implements
the ICORBAFactory interface, on the client machine. This involves calling the
COM CoCreateInstanceEx() method as normal, to obtain a pointer to
ICORBAFactory. The remote instance of the CORBA object factory is
assigned the IID_ICORBAFactory IID:

Step 3�Connecting to the
CORBA Server

Call GetObject() on the CORBA object factory, to get a pointer to the
IUnknown interface of the COM view of the target grid CORBA object.

In the preceding code, CheckErrorInfo() is a utility function used by the
demonstrations to check the thread�s ErrorInfo object after each call. This
is useful for obtaining information about, for example, a CORBA system
exception that might be raised during the course of a call. See �Exception
Handling� on page 113 for more details about exception handling.

See �Obtaining a Reference to a CORBA Object� on page 103 and
�ICORBAFactory� on page 254 for more details about GetObject().

// COM C++
// Call to CoInitialize(), some error handling,
// and so on, omitted for clarity

memset (&mqi, 0x00, sizeof (MULTI_QI));
mqi.pIID = &IID_ICORBAFactory;
ctx = CLSCTX_INPROC_SERVER;
hr = CoCreateInstanceEx(IID_ICORBAFactory, NULL, ctx, NULL, 1,

&mqi);
CheckHRESULT("CoCreateInstanceEx()", hr, FALSE);
pCORBAFact = (ICORBAFactory*)mqi.pItf;

// COM C++
sprintf(szObjectName,"grid:%s",sIOR);
hr = pCORBAFact->GetObject(szObjectName, &pUnk);
if(!CheckErrInfo(hr, pCORBAFact, IID_ICORBAFactory))
{
pCORBAFact->Release();
return;
}
pCORBAFact->Release();
 76

Developing COM Clients
Step 4�Invoking Operations on
the Grid Object

Call QueryInterface() on the pointer to the IUnknown interface of the COM
view object, to obtain a pointer to the customized Igrid interface. The client
can then use the pIF object reference to invoke operations on the target
grid object in the server:

// COM C++
short width, height;
Igrid *pIF= 0;
hr = pUnk->QueryInterface(IID_Igrid, (PPVOID)& pIF);

if(!CheckErrInfo(hr, pUnk, IID_Igrid))
{
pUnk->Release();
return;
}
hr = pIF->_get_width(&width);
CheckErrInfo(hr, pIF, IID_Igrid);
cout << "width is " << width << endl;
hr = pIF->_get_height(&height);
CheckErrInfo(hr, pIF, IID_Igrid);
cout << "height is " << height << endl;
pIF->Release();
77

CHAPTER 4 | Getting Started
Priming the COMet Type Store Cache

Overview This section describes the concept of priming the type store cache. The
following topics are discussed:

� �What is Priming?� on page 78.

� �Relevance of Priming� on page 78.

� �For More Information� on page 78.

What is Priming? When you are ready to run your application for the first time, you have the
option of improving the runtime performance by adding the OMG IDL type
information required by the application to the COMet type store. This is also
known as priming the type store cache. Priming the cache means that the
type store already holds the required OMG IDL type information in memory
before you run your application. Therefore, the application does not have to
keep contacting the Interface Repository for each IDL type required.

Relevance of Priming Priming the type store cache is a useful but optional step that is only
relevant before the first run of an application that will be using type
information previously unseen by the type store. On exiting an application,
new entries in the memory cache are written to persistent storage and are
automatically reloaded the next time the application is executed. Therefore,
the cache can satisfy all subsequent queries for previously obtained type
information.

For More Information See �Development Support Tools� on page 171 for details about the
workings of the COMet type store cache and how to prime it.
 78

CHAPTER 5

Developing an
Automation Client
This chapter expands on what you learned in �Getting Started�
on page 35. It uses the example of a distributed telephone
book application to show how to write Automation clients in
PowerBuilder or Visual Basic that can communicate with an
existing CORBA C++ server.

In This Chapter This chapter discusses the following topics:

The Telephone Book Example page 80

Using Automation Dual Interfaces page 84

Writing the Client page 85

Building and Running the Client page 95

Note: This chapter assumes that you are familiar with the CORBA
Interface Definition Language (OMG IDL). See �Introduction to OMG IDL�
on page 269 for more details.
79

CHAPTER 5 | Developing an Automation Client
The Telephone Book Example

Overview This section provides an introduction to the telephone book application
developed in this chapter. The following topics are discussed:

� �Application Summary� on page 80.

� �Graphical Overview� on page 81.

� �OMG IDL PhoneBook Interface� on page 81.

� �Location of Source Files� on page 82.

� �Client GUI Layout� on page 82.

Application Summary In the supplied telephone book application, the Automation client makes
requests on a PhoneBook object implemented in a CORBA C++ server. As
explained in �How COMet Implements the Model� on page 20, the client
actually makes its method calls on a view object in the COMet bridge. The
principal task of the Automation client in this example is, therefore, to
obtain a reference to an Automation PhoneBook view object in the bridge.

The PhoneBook view object exposes an Automation DIPhoneBook interface,
generated from the OMG IDL PhoneBook interface. (See �Mapping CORBA to
Automation� on page 313 for details of how CORBA types are mapped to
Automation.) When the client makes method calls on the PhoneBook view
object, the bridge forwards the client requests to the target CORBA
PhoneBook object.

Note: You do not need to understand how the demonstration server is
implemented, to follow the examples in this chapter.
 80

The Telephone Book Example
Graphical Overview Figure 10 provides a graphical overview of the components of the telephone
book application.

OMG IDL PhoneBook Interface The PhoneBook object in the CORBA server implements the following OMG
IDL PhoneBook interface:

Figure 10: Telephone Book Example with Automation Client

CORBA Server

Orbix Object
(Implemented in C++)

PhoneBook
Object

numberOfEntries ()
addNumber ()
lookupNumber ()

Automation
Client COMet

// OMG IDL
interface PhoneBook {

readonly attribute long numberOfEntries;

boolean addNumber(in string name, in long number);
long lookupNumber(in string name);

};
81

CHAPTER 5 | Developing an Automation Client
Automation DIPhoneBook
Interface

The corresponding Automation interface for the �OMG IDL PhoneBook
Interface� on page 81 is called DIPhoneBook, and is defined as follows:

Location of Source Files You can find versions of the Automation client application described in this
chapter at the following locations, where install-dir represents the Orbix
installation directory:

The CORBA server application is supplied in the
install-dir\demos\comet\phonebook\cxx_server directory.

Client GUI Layout Figure 11 shows the layout of the client GUI interface that is developed in
this chapter.

[odl,…]
interface DIPhoneBook : IDispatch {
[id(0x00000001)]
HRESULT addNumber(

[in] BSTR name,
[in] long number,
[in, out, optional] VARIANT* excep_OBJ,
[out, retval] VARIANT_BOOL* val);

[id(0x00000002)]
HRESULT lookupNumber(

[in] BSTR name,
[in, out, optional] VARIANT* excep_OBJ,
[out, retval] long* val);

[id(0x00000003), propget]
HRESULT numberOfEntries([out, retval] long* val);
};

Visual Basic install-dir\demos\comet\phonebook\vb_client

PowerBuilder install-dir\demos\comet\phonebook\pb_client

Internet Explorer install-dir\demos\comet\phonebook\ie_client
 82

The Telephone Book Example
Figure 11: Phone List Search Client GUI Interface
83

CHAPTER 5 | Developing an Automation Client
Using Automation Dual Interfaces

Overview This section describes the use of Automation dual interfaces. The following
topics are discussed:

� �IDispatch versus Dual Interfaces� on page 84.

� �Creating Type Libraries� on page 84.

IDispatch versus Dual Interfaces �Automation Dual Interface Support� on page 68 has already explained that,
when using an Automation client, you have the option in some controllers
(for example, Visual Basic) of using straight IDispatch interfaces or dual
interfaces, which determines whether your application can use early or late
binding.

Creating Type Libraries If you want to use dual interfaces, you must create a type library. To create
an Automation client that uses dual interfaces and communicates with a
CORBA server, you must create a type library that is based on the OMG IDL
interfaces exposed by the CORBA server. You can create a type library,
based on existing OMG IDL information in the type store, using either the
GUI or command-line version of the COMet ts2tlb utility. See �Creating a
Type Library� on page 190 for more details.

Note: The use of dual interfaces is only supported when the bridge is
loaded in-process to the client. If the bridge is loaded out-of-process, you
must use IDispatch.
 84

Writing the Client
Writing the Client

Overview This section describes how to write a Visual Basic version of the client,
without using the code generation genie. It also describes how to write a
PowerBuilder version of the client.

In This Section This section discusses the following topics:

Note: There is no code generation genie available for PowerBuilder. If you
want to use the code generation genie for Visual Basic, see �Using the
Visual Basic Genie� on page 43 for a detailed introduction, and
�Generating Visual Basic Client Code� on page 199 for full details of how
to use it.

Obtaining a Reference to a CORBA Object page 86

The Visual Basic Client Code in Detail page 89

The PowerBuilder Client Code in Detail page 92
85

CHAPTER 5 | Developing an Automation Client
Obtaining a Reference to a CORBA Object

Overview This subsection provides Visual Basic and PowerBuilder examples of the
client code that is used to obtain a reference to a CORBA object. See �The
Visual Basic Client Code in Detail� on page 89 and �The PowerBuilder
Client Code in Detail� on page 92 for the complete client code. The
following topics are discussed:

� �Visual Basic Example� on page 86.

� �PowerBuilder Example� on page 86.

� �Explanation of Examples� on page 87.

� �Format of Parameter for GetObject()� on page 87.

� �Purpose of GetObject()� on page 88.

� �Explanation of GetObject()� on page 88.

Visual Basic Example The following is a Visual Basic example of how to obtain a CORBA object
reference:

PowerBuilder Example The following is a PowerBuilder example of how to obtain a CORBA object
reference:

Example 5:

' Visual Basic
Dim ObjFactory As Object
Dim phoneBookObj As Object
…

1 Set ObjFactory = CreateObject("CORBA.Factory")
…

2 Set phoneBookObj = ObjFactory.GetObject("PhoneBook:" + sIOR)

Example 6:

// PowerBuilder
OleObject ObjFactory
OleObject phoneBookObj
…
ObjFactory = CREATE OleObject

1 ObjFactory.ConnectToNewObject("CORBA.Factory")
 86

Writing the Client
Explanation of Examples The preceding examples can be explained as follows:

1. The client instantiates a CORBA object factory in the bridge. The
CORBA object factory is a factory for creating view objects. It is
assigned the CORBA.Factory ProgID.

2. The client calls GetObject() on the CORBA object factory. It passes
the name of the PhoneBook object in the CORBA server in the
parameter for GetObject().

Format of Parameter for
GetObject()

The parameter for GetObject() takes the following format:

The TAG variable can be either of the following:

� IOR

In this case, Tag data is the hexadecimal string for the stringified IOR.

For example:

� NAME_SERVICE

In this case, Tag data is the Naming Service compound name
separated by ".". For example:

…
phoneBookObj = CREATE OleObject

2 phoneBookObj = ObjFactory.GetObject("PhoneBook:" + sIOR)

Example 6:

"interface:TAG:Tag Data"

fact.GetObject("employee:IOR:123456789…")

fact.GetObject("employee:NAME_SERVICE:IONA.staff.PD.Tom")

Note: If the interface is scoped (for example, "Module::Interface"), the
interface token is "Module/Interface".
87

CHAPTER 5 | Developing an Automation Client
Purpose of GetObject() The purpose of the call to GetObject() is to achieve the connection between
the client�s phoneBookObj object reference and the target PhoneBook object
in the server. Figure 12 shows how the call to GetObject() achieves this.

Explanation of GetObject() In Figure 12, GetObject():

1. Creates an Automation view object in the COMet bridge that
implements the DIPhoneBook dual interface.

2. Binds the Automation view object to the CORBA PhoneBook
implementation object named in the parameter for GetObject().

3. Returns a reference to the Automation view object.

After the call to GetObject(), the client in this example can use the
phoneBookObj object reference to invoke operations on the target PhoneBook
object in the server. This is further illustrated for Visual Basic in �Step 4�
Invoking Operations on the PhoneBook Object� on page 90 and for
PowerBuilder in �Step 4�Invoking Operations on the PhoneBook Object�
on page 93.

Figure 12: Binding to the CORBA PhoneBook Object

Automation Client

Automation
View

DIPhoneBook

Ref.
to

Factory

Ref.
to

PhoneBook

Factory
Object

To PhoneBook
object in remote
CORBA server

23

1

Bridge
 88

Writing the Client
The Visual Basic Client Code in Detail

Overview This subsection describes the steps to write the complete Visual Basic client
application. It shows how the Visual Basic code extracts shown in
�Obtaining a Reference to a CORBA Object� on page 86 fit into the overall
client program. The steps are:

Step 1�General Declarations Declare a reference to the object factory and to the phonebookObj
Automation view object:

Step 2�Connecting to the
CORBA Object Factory

Create an instance of the the CORBA object factory when the Visual Basic
form is created, and assign the ProgID, CORBA.Factory, to it:

Step Action

1 Make general declarations.

2 Create the form.

3 Connect to the CORBA server.

4 Invoke operations on the PhoneBook object.

5 Unload the form.

' Visual Basic
Dim ObjFactory As Object
Dim phoneBookObj As Object

' Visual Basic
Private Sub Form_Load()
Set ObjFactory = CreateObject("CORBA.Factory")
End Sub
89

CHAPTER 5 | Developing an Automation Client
Step 3�Connecting to the
CORBA Server

Implement the Connect button, call GetObject() on the CORBA object
factory, and pass the name of the PhoneBook object as the parameter to
GetObject():

In the preceding code, the implementation of the Connect button connects
to the PhoneBook object in the CORBA server. After the call to GetObject(),
the client can use the phoneBookObj object reference to invoke operations on
the target PhoneBook object in the server. This is illustrated next in �Step
4�Invoking Operations on the PhoneBook Object�.

Step 4�Invoking Operations on
the PhoneBook Object

Implement the Add, Lookup, and Update buttons, which call the OMG IDL
operations on the PhoneBook object in the CORBA server:

' Visual Basic
Private Sub ConnectBtn_Click()
Set phoneBookObj = ObjFactory.GetObject("PhoneBook:" + sIOR)
…
End Sub

' Visual Basic
Private Sub AddBtn_Click()
If phoneBookObj.addNumber(PersonalName.Text, Number.Text) Then
 MsgBox "Added " & PersonalName.Text & " successfully"
Else …
End If

' Update the display of the current number of
' entries in the phonebook
EntryCount.Caption = phoneBookObj.numberOfEntries
End Sub

Private Sub LookupBtn_Click()
Dim num
num = phoneBookObj.lookupNumber(PersonalName.Text)
…
End Sub

Private Sub UpdateBtn_Click()
' Update the display for the number of entries
' in the remote phonebook
EntryCount.Caption = phoneBookObj.numberOfEntries
End Sub
 90

Writing the Client
Step 5�Unloading the Form Release the CORBA object factory and the Automation view object, using
the Form_Unload() subroutine:

' Visual Basic
Private Sub Form_Unload(Cancel As Integer)
Set ObjFactory = Nothing
Set phoneBookObj = Nothing
End Sub
91

CHAPTER 5 | Developing an Automation Client
The PowerBuilder Client Code in Detail

Overview This subsection describes the steps to write the complete PowerBuilder
client application. It shows how the PowerBuilder code extracts shown in
�Obtaining a Reference to a CORBA Object� on page 86 fit into the overall
client program. The steps are:

Step 1�General Declarations Declare global variables for the object factory and the phonebookObj
Automation view object:

Step 2�Connecting to the
CORBA Object Factory

Create an instance of the CORBA object factory within the open event for
the Phone List Search Client window, and assign it ProgID, CORBA.Factory,
to it:

Step Action

1 Make general declarations.

2 Load the window.

3 Connect to the CORBA server.

4 Invoke operations on the PhoneBook object.

5 Unload the window.

// PowerBuilder
OleObject ObjFactory
OleObject phoneBookObj

// PowerBuilder
ObjFactory = CREATE OleObject
ObjFactory.ConnectToNewObject("CORBA.Factory")
 92

Writing the Client
Step 3�Connecting to the
CORBA Server

Implement the clicked event for the Connect button, call GetObject() on
the CORBA object factory, and pass the name of the PhoneBook object as
the parameter to GetObject():

In the preceding code, the clicked event for the Connect button connects to
the PhoneBook object in the CORBA server. After the call to GetObject(),
the client can use the phoneBookObj object reference to invoke operations on
the target PhoneBook object in the server. This is illustrated next in �Step
4�Invoking Operations on the PhoneBook Object�.

Step 4�Invoking Operations on
the PhoneBook Object

Implement the clicked event for the Add, LookUp, and Update buttons,
which call the OMG IDL operations on the PhoneBook object in the CORBA
server:

// PowerBuilder
phoneBookObj = CREATE OleObject
phoneBookObj = ObjFactory.GetObject("PhoneBook:" + sIOR)
…

// PowerBuilder
// Add Button
If sle_phone.Text <> "" and sle_name.Text <> "" then
If phoneBookObj.addNumber(sle_name.Text, sle_phone.Text) Then
 MessageBox ("Success!", "Added " + sle_name.Text
 + " successfully.")
 EntryCount.Text = String(phoneBookObj.numberOfEntries)
 …
 End If
End if

// Lookup Button
if sle_name.Text <> "" then
…
Result = phoneBookObj.lookupNumber(sle_name)
…
end if

// Update Button
EntryCount.Text = String(phoneBookObj.numberOfEntries)
93

CHAPTER 5 | Developing an Automation Client
Step 5�Unloading the Window Release the CORBA object factory and the Automation view object when
unloading the window:

// PowerBuilder
ObjFactory.DisconnectObject()
DESTROY ObjFactory
DESTROY phoneBookObj
 94

Building and Running the Client
Building and Running the Client

Overview This section describes how to build and run the client. The following topics
are discussed:

� �Building the Client� on page 95.

� �Running the Client� on page 95.

Building the Client You can build your client executable as normal for the language you are
using.

Running the Client The steps to run the client are:

Step Action

1 Ensure that an activator daemon is running on the CORBA
server�s host. This allows the locator daemon to automatically
activate the server. (See the CORBA Administrator�s Guide for
more details.)

2 Register the CORBA server with the Implementation
Repository. (Usually, it is not necessary to register a server, if
the server has been written and registered by someone else.)
See the Orbix documentation set for more details.

3 Run the client.

On the Phone List Search Client screen, shown in Figure 11
on page 83, type the server�s hostname in the Host text box,
and select Connect. You can now add and look up telephone
book entries.

Note: If your client is inactive for some time, the PhoneBookSrv server is
timed-out and exits. It is reactivated automatically if the client issues
another request.
95

CHAPTER 5 | Developing an Automation Client
 96

CHAPTER 6

Developing a COM
Client
This chapter expands on what you learned in �Getting Started�
on page 35. It uses the example of a distributed telephone
book application to show how to write a COM C++ client that
can communicate with an existing CORBA C++ server.

In This Chapter This chapter discusses the following topics:

The Telephone Book Example page 98

Writing the Client page 102

Writing the Client page 102

Writing the Client page 102

Building and Running the Client page 110

Note: This chapter assumes that you are familiar with the CORBA
Interface Definition Language (OMG IDL). See �Introduction to OMG IDL�
on page 269 for more details.
97

CHAPTER 6 | Developing a COM Client
The Telephone Book Example

Overview This section provides an introduction to the telephone book application
developed in this chapter. The following topics are discussed:

�Application Summary� on page 98.

�Graphical Overview� on page 99.

�OMG IDL PhoneBook Interface� on page 99.

�Microsoft IDL IPhoneBook Interface� on page 100.

�Location of Source Files� on page 100.

Application Summary In the supplied telephone book application, the COM client makes requests
on a PhoneBook object implemented in a CORBA C++ server. As explained
in �How COMet Implements the Model� on page 20, the client actually
makes its method calls on a view object in the COMet bridge. The principal
task of the COM client in this example is, therefore, to obtain a reference to
a COM PhoneBook view object in the bridge.

The PhoneBook view object exposes a COM IPhoneBook interface, generated
from the OMG IDL PhoneBook interface. (See �Mapping CORBA to COM� on
page 357 for details of how CORBA types are mapped to COM.) When the
client makes method calls on the PhoneBook view object, the bridge
forwards the client requests to the target CORBA PhoneBook object.

Note: You do not need to understand how the demonstration server is
implemented, to follow the example in this chapter.
 98

The Telephone Book Example
Graphical Overview Figure 13 provides a graphical overview of the components of the telephone
book application.

OMG IDL PhoneBook Interface The PhoneBook object in the CORBA server implements the following OMG
IDL PhoneBook interface:

Figure 13: Telephone Book Example with COM Client

CORBA Server

Orbix Object
(Implemented in C++)

PhoneBook
Object

COM Client COMet

numberOfEntries ()
addNumber ()
lookupNumber ()

// OMG IDL
interface PhoneBook {

readonly attribute long numberOfEntries;

boolean addNumber(in string name, in long number);
long lookupNumber(in string name);

};
99

CHAPTER 6 | Developing a COM Client
Microsoft IDL IPhoneBook
Interface

The corresponding COM interface for the preceding OMG IDL interface is
called IPhoneBook, and is defined as follows:

Location of Source Files You can find a version of the COM client application described in this
chapter in install-dir\demos\comet\phonebook\cxx_client, where
install-dir represents the Orbix installation directory. This directory
contains Visual C++ COM client code.

The CORBA server application is supplied in the
install-dir\demos\comet\phonebook\cxx_server directory.

//COM IDL
[object,…]
interface IPhoneBook : IUnknown
{

HRESULT addNumber([in, string] LPSTR name,
 [in] long number,
 [out] boolean *val);
HRESULT lookupNumber([in, string] LPSTR name,
 [out] long *val);
HRESULT _get_numberOfEntries([out] long *val);

};
 100

Prerequisites
Prerequisites

Overview This section describes the prerequisities to writing a COM client with
COMet. The following topics are discussed:

� �Generating Microsoft IDL from OMG IDL� on page 101.

� �Building a Proxy/Stub DLL� on page 101.

Generating Microsoft IDL from
OMG IDL

As explained in �Generating Microsoft IDL from OMG IDL� on page 72, the
normal procedure for writing a client in COM is to first obtain a COM IDL
definition for the object interface. In this case, you want to create a COM
client that can communicate with a CORBA server, so you must create COM
IDL definitions that are based on the OMG IDL interfaces exposed by the
CORBA server.

You can generate COM IDL, based on existing OMG IDL information in the
type store, using either the GUI or command-line version of the COMet
ts2idl utility. See �Development Support Tools� on page 171 for details of
how to use it.

Building a Proxy/Stub DLL If the COMet bridge is not being loaded in-process to your COM client
application, you must create a standard DCOM proxy DLL for the interfaces
you are using. This is necessary to allow the DCOM protocol to correctly
make a connection to the remote COMet bridge from the client. You can use
the supplied ts2idl utility to create the sources for the proxy/stub DLL. For
this example, use the following command:

The -p argument with ts2idl creates a Visual C++ makefile that you can
use to compile your proxy/stub DLL. For this example, this makefile is called
Phonebookps.MK and is supplied in the
install-dir\demos\comet\phonebook\com_client directory.

ts2idl -f PhoneBook.idl -s -p PhoneBook
101

CHAPTER 6 | Developing a COM Client
Writing the Client

Overview The section describes how to write the COM C++ client.

In This Section This section discusses the following topics:

Obtaining a Reference to a CORBA Object page 103

The COM C++ Client Code in Detail page 107
 102

Writing the Client
Obtaining a Reference to a CORBA Object

Overview This subsection shows how the COM C++ client obtains a reference to a
CORBA object. See the �The COM C++ Client Code in Detail� on page 107
for the complete client code. The following topics are discussed:

� �Example� on page 103.

� �Explanation� on page 104.

� �Format of Parameter for GetObject()� on page 104.

� �Purpose of GetObject()� on page 105.

� �Explanation of GetObject()� on page 105.

� �Using CoCreateInstance()� on page 106.

Example The following is a COM C++ example of how to obtain a CORBA object
reference:

Example 7:

// COM C++
// General Declarations
IUnknown *pUnk=NULL;
IPhoneBook *pIPhoneBook=NULL;

// Connecting to the CORBA Factory
1 hr = CoCreateInstanceEx (IID_ICORBAFactory, NULL, ctx, NULL, 1,

 &mqi);
pCORBAFact = (ICORBAFactory*)mqi.pItf;

// Connecting to the CORBA Server
// Read IOR from file
// …
sprintf(szObjectName,"PhoneBook:%s", szIOR);

2 hr = pCORBAFact->GetObject(szObjectName, &pUnk);
hr = pUnk->QueryInterface(IID_IPhoneBook, (PPVOID)&pIPhoneBook);
103

CHAPTER 6 | Developing a COM Client
Explanation The preceding example can be explained as follows:

1. The client first instantiates a CORBA object factory in the bridge. The
CORBA object factory is a factory for creating view objects. It is
assigned the IID_ICORBAFactory IID.

2. The client then calls GetObject() on the CORBA object factory. It
passes the name of the PhoneBook object in the CORBA server in the
parameter for GetObject().

Format of Parameter for
GetObject()

The parameter for GetObject() takes the following format:

The TAG variable can be either of the following:

� IOR

In this case, Tag data is the hexadecimal string for the stringified IOR.
For example:

� NAME_SERVICE

In this case, Tag data is the naming service compound name
separated by ".". For example:

"interface:TAG:Tag Data"

fact.GetObject("employee:IOR:123456789…")

fact.GetObject("employee:NAME_SERVICE:IONA.staff.PD.Tom")

Note: If the interface is scoped (for example, "Module::Interface"), the
interface token is "Module/Interface".
 104

Writing the Client
Purpose of GetObject() The purpose of the call to GetObject() is to get a pointer to the IUnknown
interface (pUnk) of the COM view of the target PhoneBook object. Figure 14
shows how the call to GetObject() achieves this.

Explanation of GetObject() In Figure 14, GetObject():

1. Creates a COM view object in the COMet bridge that implements the
COM IPhoneBook interface.

2. Binds the COM view object to the CORBA PhoneBook implementation
object named in the parameter for GetObject().

3. Sets the pointer specified by the second parameter (pUnk) to point to
the IUnknown interface of the COM view object.

After the call to GetObject(), the client in this example can obtain a pointer
to the IPhoneBook interface (pIPhoneBook) by performing a
QueryInterface() on the pointer to the IUnknown interface of the COM view
object. The client can then use the pIPhoneBook object reference to invoke

Figure 14: Binding to the CORBA PhoneBook Object

IPhoneBook

Ref.
to

Factory

Ref.
to

PhoneBook

Factory
Object

To PhoneBook
object in remote
CORBA server

23

1

Bridge

COM Client

COM View
105

CHAPTER 6 | Developing a COM Client
operations on the target PhoneBook object in the server. This is further
illustrated in �Step 5�Invoking Operations on the PhoneBook Object� on
page 108.

Using CoCreateInstance() The CORBA object factory allows you to obtain a reference to a CORBA
object in a manner that is compliant with the OMG specification. However,
as an alternative, COMet also allows a COM client to use the standard
CoCreateInstance() COM API call, to connect directly to a CORBA server.
 106

Writing the Client
The COM C++ Client Code in Detail

Overview This subsection describes the steps to write the complete COM C++ client
application. It shows how the code extracts shown in �Obtaining a
Reference to a CORBA Object� on page 103 fit into the overall client
program. The steps are:

Step 1�Include Statements Include the phoneBook.h header file created from the MIDL file, which was
generated from the OMG IDL for the CORBA object in the type store:

Step 2�General Declarations Declare a reference to the CORBA object factory and to a PhoneBook COM
view object:

Step Action

1 Make include statements.

2 Make general declarations.

3 Connect to the CORBA factory.

4 Connect to the CORBA server.

5 Invoke operations on the PhoneBook object.

// COM C++
// Header file created from the MIDL file
// generated by the TypeStore Manager Tool
//
#include "phoneBook.h"

// COM C++
IUnknown*pUnk = NULL;
IPhoneBook*pIPhoneBook = NULL;
ICORBAFactory*pCORBAFact = NULL;
char szObjectName[128];
107

CHAPTER 6 | Developing a COM Client
Step 3�Connecting to the
CORBA Object Factory

Use the DCOM CoCreateInstanceEx() call to create a remote instance of
the CORBA object factory on the client machine, and assign it the
IID_ICORBAFactory IID.

Step 4�Connecting to the
CORBA Server

Call GetObject() on the CORBA object factory, and pass the name of the
PhoneBook object as the parameter:

After the call to GetObject(), the client in this example can obtain a pointer
to the IPhoneBook interface (pIPhoneBook) by performing a
QueryInterface() on the pointer to the IUnknown interface of the COM view
object. The client can then use the pIPhoneBook object reference to invoke
operations on the target PhoneBook object in the server. This is illustrated
next in �Step 5�Invoking Operations on the PhoneBook Object�.

Step 5�Invoking Operations on
the PhoneBook Object

Invoke operations on the PhoneBook object in the CORBA server, which
allow you to add a number to the telephone book and look up entries:

// COM ++
hr = CoCreateInstanceEx (IID_ICORBAFactory,
NULL, ctx, NULL, 1, &mqi);
pCORBAFact = (ICORBAFactory*)mqi.pItf;

// COM C++
sprintf(szObjectName,"PhoneBook:%s", szIOR);

hr = pCORBAFact->GetObject(szObjectName,&pUnk);
hr = pUnk->QueryInterface(IID_IPhoneBook, (PPVOID)&pIPhoneBook);
 108

Writing the Client
// COM C++
boolean lAdded=0;
cout << "About to add IONA Freephone USA" << endl;
hr = pIF->addNumber("IONA Freephone USA",6724948, &lAdded);
if (lAdded)
cout << "Successfully added the number" << endl;
else
cout << "Failed to add the number" << endl;

// see how many entries there are in the phonebook
long nNumEntries=0;
hr = pIF->_get_numberOfEntries(&nNumEntries);
cout << "There are " << nNumEntries << " entries" << endl;

// then lookup a couple of numbers
long phoneNumber=0;
pIF->lookupNumber("IONA Freephone USA", &phoneNumber);
cout << "The number for IONA Freephone USA is " << phoneNumber <<

endl;
109

CHAPTER 6 | Developing a COM Client
Building and Running the Client

Overview This section describes how to build and run the client. The following topics
are discussed:

� �Building the Client� on page 110.

� �Running the Client� on page 110.

� �Client Output� on page 111.

Building the Client You can now build your client executable as normal, by running the
makefile.

Running the Client The steps to run the client are:

Step Action

1 Ensure that an activator daemon is running on the CORBA
server�s host. This allows the locator daemon to automatically
activate the server. (See the CORBA Administrator�s Guide for
more details.)

2 Register the CORBA server with the Implementation
Repository. (Usually, it is not necessary to register a server, if
the server has been written and registered by someone else.)
See the Orbix documentation set for more details.

3 Run the client.
 110

Building and Running the Client
Client Output The client produces output such as the following:

%%% App beginning --
%%% Using in-process server
[392: New IIOP Connection (axiom:1570)]
[392: New IIOP Connection (192.122.221.51:1570)]
[392: New IIOP Connection (axiom:1607)]
[392: New IIOP Connection (192.122.221.51:1607)]
[392: New IIOP Connection (axiom:1611)]
[392: New IIOP Connection (192.122.221.51:1611)]
About to add IONA Freephone USA
Successfully added the number
There are 11 entries
The number for IONA Freephone USA is 6724948
%%% Test end
111

CHAPTER 6 | Developing a COM Client
 112

CHAPTER 7

Exception
Handling
Remote method calls are much more complex to transmit than
local method calls, so there are many more possibilities for
error. Exception handling is therefore an important aspect of
programming a COMet application. This chapter explains how
CORBA exceptions can be handled in a client, and how a server
can raise a user exception.

In This Chapter This chapter discusses the following topics:

CORBA Exceptions page 114

Example of a User Exception page 115

Exception Properties page 118

Exception Handling in Automation page 122

Exception Handling in COM page 131

Note: See the Orbix documentation set for details of system exceptions.
113

CHAPTER 7 | Exception Handling
CORBA Exceptions

Overview This section introduces the concept of CORBA exceptions. The following
topics are discussed:

� �Standard System Exceptions� on page 114

� �Application-Specific User Exceptions� on page 114.

� �Exception Handling versus Exception Raising� on page 114.

Standard System Exceptions CORBA defines a standard set of system exceptions that can be raised by
the ORB during the transmission of remote operation calls, and reported to a
client or server. COMet can raise system exceptions either during a remote
invocation or through calls to COMet. These exceptions range from reporting
network problems to failure to marshal operation parameters.

Application-Specific User
Exceptions

CORBA also allows users to define application-specific exceptions that allow
an application to define the set of exception conditions associated with it.
These user exceptions are defined in the raises clause of an OMG IDL
operation, and can be raised by a call to that OMG IDL operation. See the
Orbix documentation set for more details.

Exception Handling versus
Exception Raising

Applications do not (and should not) explicitly raise system exceptions.
However, client applications should be able to handle both standard system
exceptions and application-specific user exceptions. See �Exception
Handling in Automation� on page 122 and �Exception Handling in COM� on
page 131 for details of how clients can handle exceptions.
 114

Example of a User Exception
Example of a User Exception

Overview This section provides an example of a typical user exception. The following
topics are discussed:

� �OMG IDL Example� on page 115.

� �Explanation� on page 115.

� �Corresponding Automation Interface� on page 116.

� �Corresponding COM Interface� on page 117.

OMG IDL Example The following is an example of an OMG IDL Bank interface, which contains a
newAccount operation that raises a Reject exception:

An operation can raise more than one user exception. For example:

Explanation The preceding example can be explained as follows:

1. The Bank interface defines a user exception called Reject.

2. The Reject exception contains one member, of the string type, which
is used to specify the reason why the request for a new account was
rejected.

Example 8:

//OMG IDL
interface Bank {

1 exception Reject {
2 string reason;

};

3 Account newAccount(in string owner) raises (Reject);
…

};

Account newAccount(in string owner) raises (Reject, BankClosed);
115

CHAPTER 7 | Exception Handling
3. The newAccount() operation can raise the Reject user exception (for
example, if the bank cannot create an account, because the owner
already has an account at the bank).

Corresponding Automation
Interface

The Automation view of the preceding OMG IDL is as follows:

See �Mapping CORBA to Automation� on page 313 for details of how OMG
IDL interfaces and exceptions map to Automation.

Note: If COMet encounters some problem during the operation
invocation, the newAccount() operation can then, of course, raise a system
exception. However, system exceptions are not listed in a raises clause,
and user code should never explicitly raise a system exception.

// COM IDL
interface DIBank : IDispatch {

HRESULT newAccount(
 [in] BSTR owner,
 [optional,out] VARIANT* IT_Ex,
 [retval,out] IDispatch** IT_retval);
…

}
…
interface DIBank_Reject : DICORBAUserException {

[propput] HRESULT reason([in] BSTR reason);
[propget] HRESULT reason([retval,out] BSTR* IT_retval);

}

 116

Example of a User Exception
Corresponding COM Interface The COM view of the preceding OMG IDL is as follows:

See �Mapping CORBA to COM� on page 357 for details of how OMG IDL
interfaces and exceptions map to COM.

// COM IDL
interface IBank: IUnknown
{

typedef struct tagbank_reject
{
 LPSTR reason;
} bank_reject;
HRESULT deleteAccount([in] Iaccount *a);
HRESULT newAccount([in, string] LPSTR name,
 [out] Iaccount **val,
 [in,out,unique] bankExceptions **ppException);
HRESULT newCurrentAccount([in, string] LPSTR name,
 [in] float limit,
 {out] IcurrentAccount **val,
 [in,out,unique] bankExceptions **ppException);

};
117

CHAPTER 7 | Exception Handling
Exception Properties

Overview This section describes system and user exception properties.

In This Section This section discusses the following topics:

General Exception Properties page 119

Additional System Exception Properties page 120
 118

Exception Properties
General Exception Properties

Overview This subsection describes the general exception properties that allow you to
find information about a system or user exception that has occurred. The
following topics are discussed:

� �(D)IForeignException Definition� on page 119.

� �Explanation� on page 119.

(D)IForeignException Definition All exceptions expose the (D)IForeignException interface. It is defined as
follows:

Explanation The methods relating to (D)IForeignException can be described as follows:

interface DIForeignException : DIForeignComplexType {
[propget] HRESULT EX_majorCode([retval,out] long*

IT_retval);

[propget] HRESULT EX_Id([retval,out] BSTR* IT_retval);
};

EX_majorCode() This indicates the category of exception raised. It can be
any of the following, defined in the ITStdInterfaces.tlb
file:

EXCEPTION_NO
EXCEPTION_USER
EXCEPTION_SYSTEM

EX_Id() This indicates the type of exception raised. For example,
CORBA::COMM_FAILURE is an example of a system
exception. Bank::Reject is an example of a user
exception (based on the Bank interface in �Example of a
User Exception� on page 115).
119

CHAPTER 7 | Exception Handling
Additional System Exception Properties

Overview This subsection describes the additional system exception properties. The
following topics are discussed:

� �(D)ICORBASystemException Definition� on page 120.

� �Explanation� on page 120.

System exceptions have additional properties, which are defined in the
(D)ICORBASystemException interface.

(D)ICORBASystemException
Definition

Additional system exceptions are defined in the (D)ICORBASystemException
interface. It is defined as follows:

Explanation The methods relating to (D)ICORBASystemException can be described as
follows:

interface DICORBASystemException : DIForeignException {
[propget] HRESULT EX_minorCode([retval,out] long*

IT_retval);
[propget] HRESULT EX_completionStatus([retval,out] long*

IT_retval);
};

EX_completionStatus() This indicates the status of the operation at the
time the system exception is raised. The status
can be as follows:

COMPLETION_YES This means the operation had
completed before the exception
was raised.

COMPLETION_NO This means the operation had
not completed before the
exception was raised.

COMPLETION_MAYBEThis means the operation was
initiated, but it cannot be
determined whether or not it
had completed.
 120

Exception Properties
EX_minorCode() This returns a code describing the type of system
exception that has occurred. See the CORBA
Programmer�s Guide, C++ for details of minor
exception codes and their associated textual
descriptions.
121

CHAPTER 7 | Exception Handling
Exception Handling in Automation

Overview CORBA exceptions are mapped to Automation exceptions by the bridge.
This means that exceptions raised by calls to CORBA objects can be
handled in whatever way your development tool handles Automation
exceptions.

User exceptions can define members as part of their OMG IDL definition. For
example, in �Example of a User Exception� on page 115, the Reject
exception contains one member, which is called reason and is of the string
type. However, using Automation�s native exception handling, exception
members cannot be accessed by a client.

In This Section This section discusses the following topics:

Exception Handling in Visual Basic page 123

Inline Exception Handling page 125

Using Type Information page 128
 122

Exception Handling in Automation
Exception Handling in Visual Basic

Overview This subsection describes how to use the On Error GoTo clause and
standard Err object for exception handling, in a controller such as Visual
Basic. The following topics are discussed:

� �Example� on page 123.

� �Triggering an Automation Exception� on page 123.

� �The Err Object� on page 123.

Example In Visual Basic, exceptions can be trapped using the On Error GoTo clause,
and handled using the standard Err object. (See your Visual Basic
documentation for full details of the Err object.) The following Visual Basic
code shows how a client can trap and handle an exception:

Triggering an Automation
Exception

Even though the client cannot call the COM GetErrorInfo() function, to
retrieve the error information, most controllers can trigger an Automation
exception when the view calls the SetErrorInfo() function to populate the
Err object with exception details. In the case of Visual Basic, for example,
the currently active error trap is called and the Err object is used to contain
the details of the exception that occurred.

The Err Object The standard Err object contains properties that provide details of any
exception that occurs. These properties can be described as follows:

' Visual Basic
Dim accountObj As BankBridge.DIAccount
Dim bankObj As BankBridge.DIBank
On Error Goto errorTrap

' Obtain a reference to a Bank object:
Set bankObj = …
Set accountObj = bankObj.newAccount(owner)
…

Exit Sub
errorTrap:

MsgBox(Err.Description & " occurred in " & Err.Source)
End Sub
123

CHAPTER 7 | Exception Handling
Err.Description This provides details of the exception, including the name
of the exception; for example, CORBA::COMM_FAILURE or
Bank::Reject.

For a user exception, an example of the string in
Err.Description is as follows:

CORBA User Exception :[Bank::Reject]

For a system exception, an example of the string in
Err.Description is as follows:

CORBA System Exception :[CORBA::COMM_FAILURE]
minor code [10087][NO]

Err.Source This indicates the operation that raised the exception (for
example, Bank.newAccount).
 124

Exception Handling in Automation
Inline Exception Handling

Overview This subsection describes exception handling in Automation controllers that
do not support the concept of the standard Err object. The following topics
are discussed:

� �How It Works� on page 125.

� �Example� on page 125.

� �IT_Ex Parameter� on page 126.

� �Disabling Standard Exception Handling� on page 126.

� �Uses of Inline Exception Handling� on page 126.

How It Works Automation controllers that do not support the concept of the standard Err
object can use inline exception handling as an alternative. Inline exception
handling involves passing an additional parameter to each method, to
obtain any error information that might occur. Any exception that does
occur, in this case, is returned to the client via the DICORBASystemException
interface, whose properties allow access to the error information.

Example As described in �Mapping for System Exceptions� on page 343, an OMG
IDL operation maps to an Automation method that has an additional
optional parameter. For example:

1. Consider the following OMG IDL:

Note: You must use inline exception handling if you want to access the
members in a user exception. See �Mapping CORBA to Automation� on
page 313 for details of how OMG IDL user exceptions map to Automation.

// OMG IDL
interface Account {

…
void makeDeposit(in float amount, out float balance);

};
125

CHAPTER 7 | Exception Handling
2. This maps to the following COM IDL:

IT_Ex Parameter A client can pass the IT_Ex parameter, shown in the preceding example, in
a method call, and check to see if it contains an exception after the call. To
use exceptions in this manner, however, the IT_Ex parameter must first be
initialized to Nothing in the client code, as follows:

When the IT_Ex parameter is subsequently passed in a method call, COMet
does not translate any CORBA exceptions that might occur during the call
into an Automation exception. Instead, an instance of
DICORBASystemException is created and inserted into the IT_Ex parameter.
This means that the IT_Ex parameter is populated with error information
relating to any CORBA exception that occurs. This allows the client to
retrieve the exception parameter in the context of the invoked method.

Disabling Standard Exception
Handling

Passing the IT_Ex parameter means that standard Automation exception
handling is disabled, so the view makes no calls to SetErrorInfo(). The
corresponding operation returns HRESULT_FALSE, which prevents an active
error trap from being called.

Uses of Inline Exception Handling A user exception can define one or more members that translate to COM IDL
methods. The client can pass the IT_Ex parameter in calls to these
methods, so that if a user exception does occur, the IT_Ex parameter is
populated with additional error information that the client in turn can
extract.

// COM IDL
interface DIAccount : IDispatch {

…
HRESULT makeDeposit([in] float amount,
 [out] float* balance,
 [optional, in, out] VARIANT* IT_Ex);

}

…
Dim IT_Ex As Object
Set IT_Ex = Nothing
…

 126

Exception Handling in Automation
Because the error-handling code must be written inline, the value of the
exception can be examined inline. The ability to handle user exceptions
inline is useful, because user exceptions can be thrown to indicate logical
errors rather than unrecoverable errors.
127

CHAPTER 7 | Exception Handling
Using Type Information

Overview This subsection describes how you can use type information to check the
type of exception that occured. The following topics are discussed:

� �Example for Type Library Usage� on page 128.

� �Explanation� on page 129.

� �Example for Non-Usage of Type Library� on page 129.

Example for Type Library Usage Consider the following Visual Basic example, which assumes that a type
library is being used:

' Visual Basic
Dim ex As Variant
Set ex = Nothing

' Optional exception param passed, therefore COMet will not
' convert a CORBA exception into an Automation exception
Set accountDisp = bankObj.newAccount(Namebox.Text, ex)

' any exception occur?
If ex.EX_majorCode <> CORBA_ORBIX.EXCEPTION_NO Then
' Is it a user exception?
If TypeOf ex Is CORBA_ORBIX.DICORBAUserException Then

 ' Which user exception?
 If TypeOf ex Is IT_Library_bank.DIbank_reject Then
 Dim exReject As IT_Library_bank.DIbank_reject
 Set exReject = ex
 MsgBox exReject.EX_Id, "User Exception EX_Id :"
 MsgBox exReject.INSTANCE_repositoryId, , "User
 Exception INSTANCE_repositoryId :"
 MsgBox exReject.reason, , "User Exception reason :"
 End If

' Is it a system exception?
ElseIf TypeOf ex Is CORBA_ORBIX.DICORBASystemException Then
 Dim exSystemException As
 CORBA_ORBIX.DICORBASystemException
 Set exSystemException = ex
 128

Exception Handling in Automation
Explanation In the preceding example, ex is declared as a Variant type, and it is
initalized to Nothing. This sets up a variant that contains an object equal to
nothing. This is the correct way to interface from Visual Basic to COMet
when using late binding (that is, when using IDispatch interfaces) in an
Automation client.

Example for Non-Usage of Type
Library

The following Visual Basic example assumes that a type library is not being
used:

 MsgBox "System exception has occurred : " &
 exSystemException.EX_Id
 Select Case exSystemException.EX_completionStatus
 Case CORBA_ORBIX.COMPLETION_MAYBE
 MsgBox "System exception Completion Status : Maybe "
 Case CORBA_ORBIX.COMPLETION_NO
 MsgBox "System exception Completion Status : No "
 Case CORBA_ORBIX.COMPLETION_YES
 MsgBox "System exception Completion Status : Yes "
 Case Else
 MsgBox "Unknown System exception Completion Status"
 End Select
End If
End If
129

CHAPTER 7 | Exception Handling
' Visual Basic
Dim ex As Variant
Set ex = Nothing

' Optional exception param passed, therefore COMet will not
' convert a CORBA exception into an Automation exception
Set accountDisp = bankObj.newAccount(Namebox.Text, ex)

' any exception occur?
If ex.EX_majorCode <> CORBA_ORBIX.EXCEPTION_NO Then
' Is it a user exception?
If TypeOf ex Is CORBA_ORBIX.DICORBAUserException Then

 ' Which user exception?
 If ex.EX_Id = bank::reject
 MsgBox ex.EX_Id, "User Exception EX_Id :"
 MsgBox ex.INSTANCE_repositoryId, , "User
 Exception INSTANCE_repositoryId :"
 MsgBox ex.reason, , "User Exception reason :"
 End If

' Is it a system exception?
ElseIf TypeOf ex Is CORBA_ORBIX.DICORBASystemException Then
 Dim exSystemException As
 CORBA_ORBIX.DICORBASystemException
 Set exSystemException = ex

 MsgBox "System exception has occurred : " &
 exSystemException.EX_Id
 Select Case exSystemException.EX_completionStatus
 Case CORBA_ORBIX.COMPLETION_MAYBE
 MsgBox "System exception Completion Status : Maybe "
 Case CORBA_ORBIX.COMPLETION_NO
 MsgBox "System exception Completion Status : No "
 Case CORBA_ORBIX.COMPLETION_YES
 MsgBox "System exception Completion Status : Yes "
 Case Else
 MsgBox "Unknown System exception Completion Status"
 End Select
End If
End If
 130

Exception Handling in COM
Exception Handling in COM

Overview As explained in �Mapping for System Exceptions� on page 381, a CORBA
exception maps to a COM IDL interface and an exception structure that
appears as the last parameter of any mapped operation. This section
describes two alternative ways of handling exceptions in COM. The one you
use depends on how you build your COM client.

In This Section This section discusses the following topics:

Note: See the Orbix documentation set for details of system exceptions.

Catching COM Exceptions page 132

Using Direct-to-COM Support page 134
131

CHAPTER 7 | Exception Handling
Catching COM Exceptions

Overview This subsection describes the standard method of CORBA exception
handling in COM clients. The following topics are discussed:

� �How It Works� on page 132.

� �Example� on page 132.

� �Explanation� on page 133.

� �Memory Handling� on page 133.

How It Works COMet maps CORBA exceptions to standard COM exceptions. There are two
parts to the exception. The first part, HRESULT, gives the class of the
exception. The second part is a human-readable form of the exception,
which is exposed through the ISupportErrorInfo interface that is
supported by all COM views of CORBA objects.

Example Consider the following client example:

HRESULT hRes;
IErrorInfo *pIErrInfo = 0;
ISupportErrorInfo *pISupportErrInfo = 0;

if(SUCCEEDED(hr))
return TRUE;

if(SUCCEEDED(pUnk->QueryInterface(IID_ISupportErrorInfo,
PPVOID)&pISupportErrInfo)))

{
if(SUCCEEDED(pISupportErrInfo->InterfaceSupportsErrorInfo

(riid)))
{
 hRes = GetErrorInfo(0, &pIErrInfo);
 if(hRes == S_OK)
 {
 pIErrInfo->GetSource(&src);
 pIErrInfo->GetDescription(&desc);
 mbsrc = WSTR2CHAR(src);
 mbdesc = WSTR2CHAR(desc);
 SysFreeString(src);
 SysFreeString(desc);
 132

Exception Handling in COM
Explanation If the bridge makes a call to the server that subsequently raises a system or
user exception, the COM view in the bridge calls the COM SetErrorInfo()
function, to set the COM error object in the client thread. This allows the
client code to subsequently call the GetErrorInfo() function, to retrieve the
error object for reporting to the user.

The preceding code does the same as a COM client would do to report a
COM exception, if a COM server were using the COM SetErrorInfo()
method.

If no exception is raised, the COM view in the bridge calls SetErrorInfo()
with a null value for the ISupportErrInfo pointer parameter. This assures
the error object that the client thread is thoroughly destroyed.

The client can indicate that no exception information should be returned, by
specifying null as the value for the operation�s exception parameter.

Memory Handling If the client expects to receive exception information, it must pass the
address of a pointer to the memory in which the exception information is to
be placed. The client must subsequently release this memory when it is no
longer required.

The COM view is responsible for the allocation of memory used to hold
exception information being returned.

 mbmsg = new char [strlen(mbsrc) + strlen(mbdesc) + _
 strlen(“ : ”)+1];
 sprintf(mbmsg, “%s : %s”, mbsrc, mbdesc);
 pIErrInfo->Release();
 CheckHRESULT(mbmsg, hr);
 delete [] mbsrc;
 delete [] mbdesc;
 delete [] mbmsg;
 } else
 cout << “No error object found” << endl;

 } pISupportErrInfo->Release{};
} CheckHRESULT(“Error : ”, hr);
133

CHAPTER 7 | Exception Handling
Using Direct-to-COM Support

Overview This subsection describes an alternative to standard CORBA exception
handling in COM clients. The following topics are discussed:

� �How It Works� on page 134.

� �Example� on page 134.

� �Explanation� on page 135.

How It Works In some cases, the IDL for a CORBA operation can define that it raises only
one user exception, COM_ERROR. This happens, for example, in the case of a
CORBA implementation of an already existing COM interface. Specifying
COM_ERROR in an OMG IDL raises clause indicates that the operation was
originally defined as a COM operation.

Example Consider the following client example:In this case, CORBA exceptions are
mapped to the standard _com_error exception. For example:

Example 9: Using Direct-to-COM Exception Handling (Sheet 1 of 2)

try
{
short h, w;
DIbankPtr bank;
DIaccountPtr acc;
DICORBAFactoryPtr fact;

fact.CreateInstance("CORBA.Factory");
1 bank = fact->GetObject(szObjectName, NULL);

acc = bank->newAccount("Ronan", NULL);
cout << "Created new account ‘Ronan’" << endl;
acc->makeLodgement(100, NULL);
cout << “Deposited $100” << endl;
cout << “New balance is ” << acc->Getbalance() << endl;
bank->deleteAccount(acc, NULL);
cout << “Deleted account” << endl;
}

2 catch (_com_error &e)
{
print_error(e);
}

 134

Exception Handling in COM
Explanation 1. The szObjectName parameter to GetObject() takes the format
"bank:IOR:xxxxxxxx" (where xxxxxxxx represents the IOR string).

2. CORBA exceptions are mapped to, and caught by, the standard
_com_error exception.

catch (…)
{
cerr << “Caught unknown exception ” << endl;
}

Example 9: Using Direct-to-COM Exception Handling (Sheet 2 of 2)
135

CHAPTER 7 | Exception Handling
 136

CHAPTER 8

Client Callbacks
Usually, CORBA clients invoke operations on objects in CORBA
servers. However, CORBA clients can implement some of the
functionality associated with servers, and all servers can act
as clients. A callback invocation is a programming technique
that takes advantage of this. This chapter describes how to
implement client callbacks.

In This Chapter This chapter discusses the following topics:

Introduction to Callbacks page 138

Implementing Callbacks page 139

Defining the OMG IDL Interfaces page 140

Generating Stub Code for the Callback Objects page 142

Implementing the Client page 143

Implementing the Server page 150
137

CHAPTER 8 | Client Callbacks
Introduction to Callbacks

Overview This chapter introduces the concept of client callbacks. The following topics
are discussed:

� �What Is a Callback?� on page 138.

� �Typical Use� on page 138.

What Is a Callback? A callback is an operation invocation made from a server to an object that is
implemented in a client. A callback allows a server to send information to
clients without forcing clients to explicitly request the information.

Typical Use Callbacks are typically used to allow a server to notify a client to update
itself. For example, in the bank application, clients might maintain a local
cache to hold the balance of accounts for which they hold references. Each
client that uses the server�s account object maintains a local copy of its
balance. If the client accesses the balance attribute, the local value is
returned if the cache is valid. If the cache is invalid, the remote balance is
accessed and returned to the client, and the local cache is updated.

When a client makes a deposit to, or withdrawal from, an account, it
invalidates the cached balance in the remaining clients that hold a reference
to that account. These clients must be informed that their cached value is
invalid. To do this, the real account object in the server must notify (that is,
call back) its clients whenever its balance changes.

Note: The COMet bridge holds an Orbix proxy object, as well as a COM or
Automation view object, for each implementation object to which it has a
reference.
 138

Implementing Callbacks
Implementing Callbacks

Overview This section describes how to implement callbacks.

In This Section This section discusses the following topics:

Defining the OMG IDL Interfaces page 140

Generating Stub Code for the Callback Objects page 142

Implementing the Client page 143

Implementing the Server page 150

Note: A demonstration that implements callback functionality is provided
in install-dir\demos\corba\COMet\callback, where install-dir
represents your Orbix installation directory.
139

CHAPTER 8 | Client Callbacks
Defining the OMG IDL Interfaces

Overview This section describes the first step in implementing client callback
functionality, which is to define the OMG IDL interfaces for the server
objects and client objects. The following topics are discussed:

� �Client Interface Example� on page 140.

� �Client Interface Explanation� on page 140.

� �Server Interface Example� on page 140.

� �Server Interface Explanation� on page 140.

Client Interface Example The client implements an IDL interface that the server uses to call back
clients. A suitable IDL interface for the client might be defined as follows:

Client Interface Explanation In the preceding example, the notifyClient() operation is declared as
oneway, because it is important that the server is not blocked when it calls
back its clients.

Server Interface Example The server implements an IDL interface that allows it to maintain a list of
clients that should be notified of changes in its objects� data. A suitable IDL
interface for the server might be defined as follows:

Server Interface Explanation The preceding example can be explained as follows:

// OMG IDL
interface NotifyCallback{

oneway void notifyClient();
}

// OMG IDL
interface RegisterCallback{

void registerClient(in NotifyCallback client);
void unregisterClient(in NotifyCallback client);

}

 140

Defining the OMG IDL Interfaces
� The registerClient() operation registers a client with the server. The
parameter to registerClient() is of the NotifyCallback type, so that
the client can pass a reference to itself to the server. The server can
maintain this reference in a list of clients that should be notified of
events of interest.

� The unregisterClient() operation tells the server that the client is no
longer interested in receiving callbacks. The server can remove the
client from its list of interested clients.
141

CHAPTER 8 | Client Callbacks
Generating Stub Code for the Callback Objects

Overview After you have defined the OMG IDL interfaces for the server and client, you
can generate the stub code for the callback objects from the OMG IDL.

For More Information See �Creating Stub Code for Client Callbacks� on page 194 for full details of
how to do this.
 142

Implementing the Client
Implementing the Client

Overview To write a client, you must implement the NotifyCallback interface defined
for the client objects. You can use the generated stub code for the callback
objects as a starting point.

In This Section This section discusses the following topics:

Implementing the Client in Visual Basic page 144

Implementing the Client in PowerBuilder page 146

Implementing the Client in COM C++ page 148

Note: Because it implements an interface, the client is acting as a server.
However, the client does not have to register its implementation object
with the bridge, and it is not registered in the Implementation Repository.
Therefore, the server cannot bind to the client�s implementation object.
143

CHAPTER 8 | Client Callbacks
Implementing the Client in Visual Basic

Overview This subsection describes how to implement the client in Visual Basic. The
following topics are discussed:

� �Code for Generated Class File� on page 144.

� �Code for Client Form� on page 144.

� �Explanation� on page 145.

Code for Generated Class File The following is the code in the generated NotifyCallback.cls file:

Code for Client Form The following is the code in the client.frm file for the Visual Basic client�s
form:

' Visual Basic
Public Sub notifyClient(Optional ByRef IT_Ex As Variant)

… ' Your code goes here

End Sub
…

Example 10:

' Visual Basic
1 Dim clientObj as New NotifyCallback

Dim ObjFactory As Object
Set ObjFactory = CreateObject("CORBA.Factory")
…
Dim serverObj as clientBridge.DIRegisterCallback
Set serverObj =

2 ObjFactory.GetObject("RegisterCallback:"&IOR_file)
3 serverObj.registerClient clientObj
 144

Implementing the Client
Explanation The preceding client code can be explained as follows:

1. It creates an implementation object, clientObj, which is of the
NotifyCallback type.

2. It binds to an object of the RegisterCallback type in the server. At this
point, the client holds both of the following:

♦ An implementation object for the NotifyCallback type.

♦ A reference to an Automation view object, serverObj, for an
object of the RegisterCallback type.

3. To allow the server to invoke operations on the NotifyCallback object,
the client must pass a reference to its implementation object to the
server. Thus, the client calls the registerClient() operation on the
serverObj view object, and passes it a reference to its implementation
object, clientObj.
145

CHAPTER 8 | Client Callbacks
Implementing the Client in PowerBuilder

Overview This subsection describes how to implement the client in PowerBuilder. The
following topics are discussed:

� �Example� on page 146.

� �Explanation� on page 146.

Example The following is the code for the PowerBuilder client:

Explanation The preceding client code can be explained as follows:

1. It creates an implementation object, clientObj, which is of the
NotifyCallback type.

2. It binds to an object of the CallBack type in the server. At this point,
the client holds both of the following:

♦ An implementation object for the NotifyCallback type.

♦ A reference to an Automation view object, serverObj, for an
object of the CallBack type.

Example 11:

//PowerBuilder
integer success
OleObject clientObj
OleObject ObjFactory

1 success = clientObj.ConnectToNewObject
("PBcallback.NotifyCallback")

ObjFactory = CREATE OleObject
serverObj = CREATE OleObject

if success != 2 then
2 serverObj = ObjFactory.GetObject(“CallBack:"&IOR_file)
3 serverObj.Register(clientObj)
 146

Implementing the Client
3. To allow the server to invoke operations on the NotifyCallback object,
the client must pass a reference to its implementation object to the
server. Thus, the client calls the Register() operation on the
serverObj view object, and passes it a reference to its implementation
object, clientObj.
147

CHAPTER 8 | Client Callbacks
Implementing the Client in COM C++

Example The following is the code for the COM C++ client:

Example 12:

ICallBack *pIF = NULL;
…

hr = CoCreateInstanceEx (IID_ICORBAFactory, NULL, ctx, NULL, 1,
 &mqi);
CheckHRESULT("CoCreateInstanceEx()", hr, FALSE);

pCORBAFact = (ICORBAFactory*)mqi.pItf;

// connect to the target CORBA server
char *sIOR;
// read IOR
char *szObjectName;
// allocate memory for string
sprintf(szObjectName,"Callback:%s", sIOR);
hr = pCORBAFact->GetObject(szObjectName,&pUnk);
if(!CheckErrInfo(hr, pCORBAFact, IID_ICORBAFactory))
{

pCORBAFact->Release();
return;

}
pCORBAFact->Release();

hr = pUnk->QueryInterface(IID_ICallBack, (PPVOID)&pIF);
if(!CheckErrInfo(hr, pUnk, IID_ICallBack))
{

pUnk->Release();
return;

}
pUnk->Release();

// Create our implementation for the callback object
ICOMCallBackImpl * poImpl = ICOMCallBackImpl::Create();

// make the call to the server passing in our object
pIF->Register(poImpl);

// wait until we explicitly quit for the none console application
 148

Implementing the Client
StartCOMServerLOOP(10000);
poImpl->Release();

Example 12:
149

CHAPTER 8 | Client Callbacks
Implementing the Server

Overview This section describes the steps to implement a server for the purpose of
client callbacks. The steps are:

Step 1�Implementing the
RegisterCallback Interface

You must provide an implementation class for the RegisterCallback
interface. You can use the stub code generated for the callback objects as a
starting point to do this.

The implementation of the registerClient() operation receives an object
reference from the client. When this object reference enters the server
address space, a CORBA view for the client�s NotifyCallback object is
created in the client�s bridge.

The server uses the created view to call back to the client. The
implementation of the registerClient() operation should store the
reference to the view for this purpose.

Step 2�Invoking the
notifyClient() Operation

After the COM or Automation view for the client�s NotifyCallback object
has been created in the server address space, the server can then invoke the
notifyClient() operation on the view.

Step Action

1 Implement the RegisterCallback interface.

2 Invoke the notifyClient() operation.

Note: See the CORBA Programmer�s Guide, C++ for more details of how
to implement servers.
 150

CHAPTER 9

Deploying a
COMet Application
This chapter provides examples of the various deployment
models you can adopt when deploying a distributed
application with COMet. It also describes the steps you must
follow to deploy a distributed COMet application.

In This Chapter This chapter discusses the following topics:

Deployment Models page 152

Deployment Steps page 162

Minimizing the Client-Side Footprint page 164

Deploying Multiple Hosts page 166
151

CHAPTER 9 | Deploying a COMet Application
Deployment Models

Overview �Usage Models and Bridge Locations� on page 27 outlines the various
deployment scenarios that are supported with COMet. When it comes to
Automation clients, COMet supports communication using either DCOM or
IIOP. When it comes to COM clients, COMet only supports communication
using IIOP. This means Automation clients enjoy a good deal of flexibility
about where the bridge can be installed, whereas COM clients enjoy no such
flexibility. This section provides some more details about the various
possible deployment scenarios that COMet offers.

In This Section This section discusses the following topics:

Bridge In-Process to Each Client page 153

Bridge Out-of-Process on Each Client Machine page 155

Bridge on Intermediary Machine page 157

Bridge on Server Machine page 159

Internet Deployment page 161
 152

Deployment Models
Bridge In-Process to Each Client

Overview This subsection describes a scenario where the bridge is loaded in-process
to each client. The following topics are discussed:

� �Details� on page 153.

� �Graphical Overview� on page 153.

Details This has the COMet bridge loaded in-process to each COM or Automation
client (that is, in each client�s address space). In this case:

� The bridge on each client machine uses IIOP to communicate with the
CORBA server.

� Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

� Each client can be COM-based or Automation-based.

� The CORBA server machine can be running on any platform, such as
Windows, UNIX, or OS/390.

For Automation clients, this is the recommended COMet deployment
scenario. For COM clients, this is the only supported COMet deployment
scenario.

Graphical Overview Figure 15 provides a graphical overview of a scenario where the COMet
bridge is loaded in-process to each COM or Automation client.
153

CHAPTER 9 | Deploying a COMet Application
Figure 15: Bridge In-Process to Each Client

COM or Automation Client Machine 1
(Windows NT, Windows 98, or Windows 2000)

Client Program
(Visual Basic,
PowerBuilder,
Visual C++,
and so on)

COMet

COM or Automation Client Machine 2
(Windows NT, Windows 98, or Windows 2000)

Server
Application

CORBA Server Machine
(Windows, UNIX, OS/390, and so on)

IIOP

IIOP

CORBA
Object

View
Object

Client Program
 (Visual Basic,
PowerBuilder,
 Visual C++,
 and so on)

COMet

View
Object

Client Process

Client Process
 154

Deployment Models
Bridge Out-of-Process on Each Client Machine

Overview This subsection describes a scenario where the bridge is launched
out-of-process on each client machine. The following topics are discussed:

� �Details� on page 155.

� �Graphical Overview� on page 155.

Details This has the COMet bridge launched out-of-process on each client machine.
In this case:

� The bridge is referred to as a local server.

� The bridge on each client machine uses IIOP to communicate with the
CORBA server.

� Each client machine should preferably be running on Windows 2000,
for reasons of scalability. Otherwise, it limits the number of clients that
can be handled.

� Each client must be Automation-based and using IDispatch interfaces
rather than dual interfaces.

� The CORBA server machine can be running on any platform, such as
Windows, UNIX, or OS/390.

Graphical Overview Figure 16 provides a graphical overview of a scenario where the COMet
bridge is loaded out-of-process on each Automation client machine.
155

CHAPTER 9 | Deploying a COMet Application
Figure 16: Bridge Out-Of-Process On Each Client Machine

Automation Client Machine 1
(Windows (2000 preferably))

Client Program
(Visual Basic,
PowerBuilder,

and so on)

COMet

Automation Client Machine 2
(Windows (2000 preferably))

Server
Application

CORBA Server Machine
(Windows, UNIX, OS/390, and so on)IIOP

IIOP

CORBA
Object

View
Object

Client Program
 (Visual Basic,
PowerBuilder,
 and so on)

COMet

View
Object

Client Process

Client Process
 156

Deployment Models
Bridge on Intermediary Machine

Overview This subsection describes a scenario where the bridge is launched on a
single intermediary machine. The following topics are discussed:

� �Details� on page 157.

� �Creating a Remote Instance of the CORBA Object Factory� on
page 157.

� �TYPEMAN_READONLY Configuration Setting� on page 158.

� �Graphical Overview� on page 158.

Details This has the COMet bridge launched on a single intermediary machine. In
this case:

� The bridge is referred to as a remote server.

� Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

� Each client must be Automation-based and using IDispatch interfaces
rather than dual interfaces.

� Each client uses DCOM to communicate with the bridge.

� The bridge machine must be running on Windows. It should preferably
be running on Windows 2000, for reasons of scalability. Otherwise, it
limits the number of clients that can be handled.

� The bridge uses IIOP to communicate with the CORBA server.

� The CORBA server machine can be running on any platform, such as
Windows, UNIX, or OS/390.

Creating a Remote Instance of the
CORBA Object Factory

For the purposes of this deployment scenario, you only need to be able to
create a remote instance of the CORBA object factory on your client
machines. This is normally done using the COM CoCreateInstanceEx()
method. Most Automation controllers now allow you to supply a hostname
as an optional extra parameter to their equivalent of the Visual Basic
CreateObject() method, similar to the CoCreateInstanceEx() method.
157

CHAPTER 9 | Deploying a COMet Application
TYPEMAN_READONLY
Configuration Setting

When using multiple DCOM clients with a single bridge, as shown in
Figure 17, the setting of the COMet.Typeman.TYPEMAN_READONLY
configuration variable is particularly important. See �COMet Configuration�
on page 399 for details.

Graphical Overview Figure 17 provides a graphical overview of a scenario where the COMet
bridge is installed on a single separate machine.

Figure 17: Bridge on Intermediary Machine

Server
Application

CORBA Server Machine
(Windows, UNIX, OS/390,

and so on)

DCOM

DCOM

Client Program
(Visual Basic,
 PowerBuilder,

 and so on)

Automation Client Machine 1
(Windows NT, Windows 98, or

Windows 2000)

COM
Object

COMet

COMet Bridge Machine
(Windows (2000 preferably))

Client Program
(Visual Basic,
 PowerBuilder,

 and so on)

IIOP

Automation Client Machine 2
(Windows NT, Windows 98, or

Windows 2000)

View
Object

CORBA
Object
 158

Deployment Models
Bridge on Server Machine

Overview This subsection describes a scenario where the bridge is launched on the
CORBA server machine. The following topics are discussed:

� �Details� on page 159.

� �Creating a Remote Instance of the CORBA Object Factory� on
page 159.

� �TYPEMAN_READONLY Configuration Setting� on page 159.

� �Graphical Overview� on page 160.

Details This has the COMet bridge installed on the CORBA server machine. In this
case:

� The bridge is referred to as a remote server.

� Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

� Each client must be Automation-based and using IDispatch interfaces
rather than dual interfaces.

� Each client uses DCOM to communicate with the CORBA server
machine.

� The CORBA server machine must be running on Windows. It should
preferably be running on Windows 2000, for reasons of scalability.
Otherwise, it limits the number of clients that can be handled.

Creating a Remote Instance of the
CORBA Object Factory

For the purposes of this deployment scenario, you only need to be able to
create a remote instance of the CORBA object factory on your client
machines. This is normally done using the COM CoCreateInstanceEx()
method. Most Automation controllers now allow you to supply a hostname
as an optional extra parameter to their equivalent of the Visual Basic
CreateObject() method, similar to the CoCreateInstanceEx() method.

TYPEMAN_READONLY
Configuration Setting

When using multiple DCOM clients with a single bridge, as shown in
Figure 18 on page 160, the setting of the
COMet.Typeman.TYPEMAN_READONLY configuration variable is particularly
important. See �COMet Configuration� on page 399 for details.
159

CHAPTER 9 | Deploying a COMet Application
Graphical Overview Figure 18 provides a graphical overview of a scenario where the COMet
bridge is installed on the CORBA server machine.

Figure 18: Bridge on Server Machine

DCOM

DCOM

Client Program
(Visual Basic,
PowerBuilder,

and so on)

Automation Client Machine 1
(Windows NT, Windows 98,

or Windows 2000)

CORBA Server Machine
(Windows (2000 preferably))

IIOP

Client Program
(Visual Basic,
PowerBuilder,

and so on)

Automation Client Machine 2
(Windows NT, Windows 98,

or Windows 2000)
View

Object

CORBA
Object

COMet Server Program
 160

Deployment Models
Internet Deployment

Overview This subsection discusses deploying a COMet application on the Internet.
There are two deployment options to choose from. The following topics are
discussed:

� �Dowloading the Bridge to the Client� on page 161.

� �Leaving the Bridge on the Internet Server� on page 161.

Dowloading the Bridge to the
Client

You can choose to download the entire COMet bridge to the client machine.
To do this, you can bundle the bridge files, for example, in a single CAB file.
In this case, your ActiveX control uses IIOP to communicate with your
Internet server.

Leaving the Bridge on the Internet
Server

You can alternatively choose to download only the
IT_C2K_CCIExWrapper0_VC60.DLL file and leave the bridge on the Internet
server. In this case, your ActiveX control uses DCOM to communicate with
your Internet server.
161

CHAPTER 9 | Deploying a COMet Application
Deployment Steps

Overview This section describes the steps you must follow to deploy a COMet
application. The following topics are discussed:

� �Installing Your Application Runtime� on page 162.

� �Installing the Development Language Runtime� on page 162.

� �Installing the Orbix Deployment Environment� on page 162.

� �Configuring COMet� on page 162.

� �Installing and Registering Type Libraries� on page 163.

Installing Your Application
Runtime

The components associated with your COMet application consist of:

� Your application executables.

� Any other DLLs needed by your application.

Installing the Development
Language Runtime

The runtime requirements for your development language normally consist
of:

� Runtime libraries (such as Visual Basic or PowerBuilder runtime
libraries).

� Support libraries (such as Roguewave tools or extra libraries).

See the documentation set for the specific development language you are
using for details of the runtime requirements of that language.

Installing the Orbix Deployment
Environment

Regardless of the model you adopt in deploying your COMet applications,
the Orbix deployment environment requirements remain the same. See the
Orbix 6.1 Deployment Guide for full details of Orbix deployment
environment requirements.

Configuring COMet You must set the COMet configuration variables required by your COMet
application at the location where the COMet runtime is installed. You must
modify the configuration entries in the configuration domain appropriately
for your system.
 162

Deployment Steps
When specifying a path name for a specific directory, you must provide the
full path name and ensure it is valid. You must also ensure the activator and
locator daemons have read/write permissions on the directories specified in
these path names.

See �COMet Configuration� on page 399 for details of the COMet
configuration variables. See the CORBA Administrator�s Guide for details of
the core Orbix configuration variables.

Installing and Registering Type
Libraries

If your client references any type libraries, they must be installed on the
client machine, and registered in the Windows registry. You can use the
supplied tlibreg utility to register a type library. See �Creating a Type
Library� on page 190 and �Tlibreg Arguments� on page 418 for more
details.
163

CHAPTER 9 | Deploying a COMet Application
Minimizing the Client-Side Footprint

Overview This section describes how to minimize the client-side footprint in your
COMet deployment. The following topics are discussed:

� �Zero-Install Configuration� on page 164.

� �Internet-Based Deployment� on page 164.

� �Automation-Based Clients� on page 164.

� �COM-Based Clients� on page 165.

Zero-Install Configuration In certain scenarios, COMet allows you to deploy your client application
without requiring any COMet footprint on the client machine. This is
normally referred to as a zero-install configuration. This means you can use
a centralised installation of the COMet bridge for your clients that provides
the deployment option of using DCOM as the wire protocol for
communication between the client and the bridge.

Internet-Based Deployment This deployment scenario allows you to download your client application
over the Internet. Because COMet supports the DCOM wire protocol, your
web-based clients can use DCOM to communicate with your installation of
COMet, which then forwards the calls to the appropriate CORBA server. If
your scripting language supports the creation of a remote DCOM object, no
COMet runtime needs to be downloaded to that machine.

Automation-Based Clients If you are developing client applications that use Automation late binding
(that is, they use IDispatch interfaces), you can choose to use DCOM as the
wire protocol. In this scenario, you do not need any COMet installation on
your client machine, provided the Automation language supports connection
to a remote DCOM object (which in this case is the COMet bridge).

If your client applications use early binding (that is, they use dual interfaces
rather than straight IDispatch interfaces), the type library that you created
via the COMetCfg tool or the ts2tlb command-line utility must be included
with your client application. (This means that the type library file must be
 164

Minimizing the Client-Side Footprint
copied along with the client executable file to any machine on which you
want to run the application.) This allows DCOM to use the standard type
library, Marshaller, to manage the client-side marshalling of your client.

COM-Based Clients The normal DCOM deployment rules state that you must deploy and register
a proxy/stub DLL for all the COM interfaces that your client uses. COMet can
automatically generate the COM IDL definitions and makefile, which are
needed to create this DLL, by using the COMetCfg tool or the ts2idl
command line tool.

If your COM client application uses the standard COMet interfaces, such as
ICORBAFactory, you must also include the COMet proxy/stub DLL. This is
called IT_C2K_PROXY_STUB5_VC60.DLL and is located in the
install-dir\asp\version\bin directory, where version represents the
Orbix version number.

If your COM client uses pure DCOM calls, you must register forwarding
entries in your client-side registry, to indicate the COMet CORBA location
information for your CORBA server. You can use the SrvAlias utility to
create the extra registry entries. For deployment purposes, you can use the
AliasSrv.exe to restore these settings during installation. See the
demo\COM\coCreate demonstration for an example. See �Replacing an
Existing DCOM Server� on page 196 for more details about the AliasSrv
and SrvAlias utilities.
165

CHAPTER 9 | Deploying a COMet Application
Deploying Multiple Hosts

Overview A typical scenario might involve multiple clients running simultaneously,
with each client configured to connect to a different server on a different
host. This section describes how this scenario can be easily achieved.

Graphical overview Figure 19 provides a graphical overview of a deployment scenario involving
different COMet clients, each of which contacts a different server host at
application runtime.

Figure 19: Deploying Multiple Hosts

Client

Client Program
(Visual Basic,
PowerBuilder,

and so on)

Client Machine 2

Client

Client Program
(Visual Basic,
PowerBuilder,

and so on)

Client Machine 3

Client

Client Program
(Visual Basic,
PowerBuilder,

and so on)

Client Machine 1

ClientServer Application

Development Machine

ClientServer Application

QA Machine

ClientServer Application

Production Machine

COMet bridge

COMet bridge

COMet bridge
 166

Deploying Multiple Hosts
Steps The steps to deploy this type of scenario are:

1. Ensure that your server-side configuration includes the Naming Service
and IFR. See the Orbix Deployment Guide and Orbix Administrator�s
Guide for more details of how to set up configuration domains and
configuration scopes. See the Orbix Configuration Reference for more
details of how to configure Orbix services such as the Naming Service
and IFR.

2. Ensure that your client program calls GetObject() to obtain the
relevant object references via the Naming Service. For example:

See �Format of Parameter for GetObject()� on page 87 for more details
of the format of the preceding example.

3. Ensure that your client-side configuration includes the
initial_references:NameService:reference and
initial_references:InterfaceRepository:reference configuration
items. The values that can be specified for these items can take either
of the following formats:

♦ "IOR:…"

In this case, the IOR string for the Naming Service or IFR can be
obtained from the server-side configuration.

♦ "corbaloc:iiop:host:port:/NameService" or
"corbaloc:iiop:host:port:/InterfaceRepository"

In this case, host and port specify where the locator daemon is
running. This format is particularly useful in allowing you to
quickly change the details of the host (for example, Development

Note: In reality, the COMet bridge could be deployed in a number of
different ways, as explained in �Deployment Models� on page 152. Even
though it is possible to deploy just one COMet bridge to mediate between
all clients and servers, this is not recommended because of the
performance overheads it could incur at application runtime.

// Visual Basic
…
obj = fact.GetObject("interface_type:NAME_SERVICE:name")
…

167

CHAPTER 9 | Deploying a COMet Application
machine, QA machine, Production machine) to which you want
to point the client.

By encapsulating these variables in configuration scopes specific to
each deployment scenario, as shown in the following example, it is
possible at runtime to dynamically change the configuration. For
example:

…
Development
{
host="123.45.67.89";
port="3075";
initial_references:NamingService:reference="corbaloc:iiop:"

+host+":"+port+"/NameService"
initial_references:InterfaceRepository:reference="corbaloc:

iiop:"+host+":"+port+"/InterfaceRepository";
};

QA
{
host="123.45.66.123";
port="3075";
initial_references:NamingService:reference="corbaloc:iiop:"

+host+":"+port+"/NameService"
initial_references:InterfaceRepository:reference="corbaloc:

iiop:"+host+":"+port+"/InterfaceRepository";
};

Production
{
host="123.45.70.14";
port="3075";
initial_references:NamingService:reference="corbaloc:iiop:"

+host+":"+port+"/NameService"
initial_references:InterfaceRepository:reference="corbaloc:

iiop:"+host+":"+port+"/InterfaceRepository";
};
…

Note: Any variable defined in the global configuration scope can also be
included within scopes such as those in the preceding example. This
allows you to fine-tune your configuration for specific clients.
 168

Deploying Multiple Hosts
4. To specify which ORB is to be used, ensure that the form load at the
start of your client program calls SetOrbName(), passing the name of
the relevant configuration scope (that is, "Development", "QA", or
"Production") as a parameter.

An alternative to setting the ORB name programatically is to set the
IT_ORB_NAME environment variable with the relevant ORB name. You
can set this environment variable either globally through the Windows
Control Panel or locally through a batch file.
169

CHAPTER 9 | Deploying a COMet Application
 170

CHAPTER 10

Development
Support Tools
This chapter first describes the central role played by the
COMet type store in terms of the development support tools
supplied with COMet. It then describes the tools you can use
to manage the type store cache and to generate Microsoft IDL
and type library information from existing OMG IDL, which is
necessary to allow COM or Automation clients to communicate
with CORBA servers. It also describes how to generate stub
code, if you want to avail of client callback functionality in
your applications. Finally, it describes the tools you can use
to generate Visual Basic code from OMG IDL, and to replace
an existing COM or Automation server with a CORBA server.

In This Chapter This chapter discusses the following topics:

The COMet Type Store page 173

The COMet Tools Window page 178

Adding New Information to the Type Store page 180

Deleting the Type Store Contents page 184

Dumping the Type Store Contents page 185
171

CHAPTER 10 | Development Support Tools
Creating a Microsoft IDL File page 186

Creating a Type Library page 190

Creating Stub Code for Client Callbacks page 194

Replacing an Existing DCOM Server page 196

Generating Visual Basic Client Code page 199

Note: The typeman, ts2idl, and ts2tlb command-line utilities described
in this chapter are located in install-dir\bin, where install-dir
represents your Orbix installation directory.
 172

The COMet Type Store
The COMet Type Store

Overview This section describes the COMet type store in terms of its role and how it
works.

In This Section This section discusses the following topics:

The Central Role of the Type Store page 174

The Caching Mechanism of the Type Store page 176
173

CHAPTER 10 | Development Support Tools
The Central Role of the Type Store

Overview This subsection describes the role of the type store. The following topics are
discussed:

� �Graphical Overview� on page 174.

� �Role� on page 175.

Graphical Overview Figure 20 provides a graphical overview of the central role played by the
type store in the use of the COMet development utilities.

Figure 20: COMet Type Store and the Development Utilities

idl -R=-v

OMG IDL

typeman

COMet
Type Store

Interface
Repository

ts2tlb

Type
Library

cometcfg

Stub for
CallbacksCOM IDL

ts2idl
 174

The COMet Type Store
Role As shown in Figure 20 on page 174, the type store plays a central role in
the use of the COMet development utilities. The typeman utility manages the
OMG IDL information in the type store cache. The ts2tlb, ts2idl, and
cometcfg utilities use the OMG IDL type information in the cache to
respectively generate the Microsoft IDL, type library information, and
callback stub code used by your COM or Automation clients for
communicating with CORBA servers.
175

CHAPTER 10 | Development Support Tools
The Caching Mechanism of the Type Store

Overview This subsection describes how type information is stored in the type store.
The following topics are discussed:

� �OMG IDL� on page 176.

� �Memory and Disk Cache� on page 176.

� �Type Information Management� on page 176.

OMG IDL OMG IDL files define the IDL interfaces for CORBA objects. (See
�Introduction to OMG IDL� on page 269 for more details.) As shown in
Figure 20 on page 174, you can register OMG IDL in a CORBA Interface
Repository, where it is stored in binary format. (See the Orbix
documentation set for full details of how to register OMG IDL.)

COMet uses the OMG IDL type information available in the Interface
Repository. The type information can consist of module names, interface
names, or data types.

Memory and Disk Cache A possible performance bottleneck might result at application runtime, if
COMet needs to contact the Interface Repository for each OMG IDL
definition. This is because every query might involve multiple remote
invocations.

To avoid any bottlenecks, COMet uses a memory and disk cache of type
information. The typeman utility converts OMG IDL type information into an
ORB-neutral binary format, and caches it in memory. The use of a memory
cache means that COMet has to query the Interface Repository only once for
each OMG IDL definition.

Type Information Management At application runtime, when COMet is marshalling information, and
method invocations are being made, the type store cache holds the required
type information in memory. The type information is handled on a
first-in-first-out basis in the memory cache. This means that the most
recently accessed information becomes the most recent in the queue.

On exiting the application process, or when the memory cache size limit has
been reached, new entries in the memory cache are written to persistent
storage, and are reloaded on the next run of a COMet application.
 176

The COMet Type Store
The memory cache and disk cache are quite separate. Initially, on starting
up, the memory cache is primed with the most recently accessed elements
of the disk cache. (The number of elements in the memory cache depends
on the configuration settings, as described in �COMet Configuration� on
page 399.) When lookups are performed, if the required type information is
not already in the memory cache, typeman pulls it out of the disk cache. If
the required type information is not in the disk cache, typeman pulls it out of
the Interface Repository. The related type information then becomes the
most recent item in the queue in the type store memory cache.
177

CHAPTER 10 | Development Support Tools
The COMet Tools Window

Overview This section describes the COMet Tools window, which allows you to:

� Add new OMG IDL information to the type store.

� Delete the type store contents.

� Create Microsoft IDL from cached OMG IDL.

� Create Automation type libraries from cached OMG IDL.

Window Layout Figure 21 shows the layout of the COMet Tools window.

Note: You can ignore this section if you intend using only the typeman,
ts2idl, and ts2tlb utilities from the command line.

Figure 21: COMet Tools Window
 178

The COMet Tools Window
Opening the COMet Tools Window To open the COMet Tools window, enter cometcfg on the command line, or
select the Configure COMet icon in the Orbix Configuration panel on
the IONA Central window. (You can open the IONA Central window by
entering itcentral on the command line.) When you open the COMet Tools
window, the TypeStore Contents panel automatically lists all the OMG IDL
type information that is currently held in the type store cache.

Viewing Command-Line Changes If you are using both the GUI and the typeman command-line utility to
manage the type store, changes made via the typeman command-line utility
do not appear automatically in the TypeStore Contents panel on the COMet
Tools window, shown in Figure 21 on page 178. In this case, you must
select Refresh Display, to allow the GUI tool to reflect any changes that
were made via the command line.
179

CHAPTER 10 | Development Support Tools
Adding New Information to the Type Store

Overview This section describes how to add new OMG IDL type information to the
COMet type store, by using either the GUI tool or the typeman command-line
utiilty.

�The Caching Mechanism of the Type Store� on page 176 describes how
the type store cache can obtain its information on an as-needed basis at
application runtime. However, users can choose to add the required OMG
IDL type information to the cache before the first run of an application. This
is known as priming the cache, and it can lead to a notable performance
improvement.

Priming the cache is a useful but optional step that helps to optimize the
first run of a COMet application that is using previously unseen OMG IDL
types. After COMet has obtained the type information from the Interface
Repository, either through cache priming or during the first run of an
application, all subsequent queries for that type information are satisfied by
the cache.

In This Section This section discusses the following topics:

Using the GUI Tool page 181

Using the Command Line page 182

Note: An OMG IDL interface must be registered in the Interface
Repository before you can add it to the COMet type store. See the CORBA
Administrator�s Guide for more details about registering OMG IDL.
 180

Adding New Information to the Type Store
Using the GUI Tool

Overview This subsection describes how to use the GUI tool to add OMG IDL type
information to the type store.

Steps The steps to add new information to the type store are:

Step Action

1 Open the COMet Tools window shown in Figure 21 on
page 178.

2 In the field beside the LookUp button, enter the name of an
OMG IDL interface that you want to add.

This enables the LookUp button.

3 Select the LookUp button.

COMet searches both the Interface Repository and the type
store cache for the specified name. If the relevant name is not
already in the cache, and it is found in the Interface Repository,
it is then automatically added to the cache.
181

CHAPTER 10 | Development Support Tools
Using the Command Line

Overview This section describes how to use the typeman command-line utility to add
OMG IDL type information to the type store. (See �COMet Utility Arguments�
on page 411 for details of each of the arguments available with typeman.)

Example The following command adds the grid interface to the type store:

Usage String You can call up the usage string for typeman as follows:

The usage string for typeman is:

typeman -e grid

typeman -?

TypeMan [filename | -e name|uuid|TLBName] [-v[s[i] method]]
 [options]

 filename: Name of input text file.
 -e: Look up entry (name, {uuid} or type library
 pathname).
 -c[n][u]: List disk cache contents, n: Natural order,
 u: display uuid.
 -w[m]: Delete (wipe) cache contents. [m]: Delete uuid-
 mapper contents.
 -f: List type store data files.
 -r: Resolve all references (use to generate static
 bridge compatible names for CORBA sequences).
 -i: Always connect to IFR (for performance comparisons).
 -v[s[i] method]: Log v-table for interface/struct.
 [s:search for method].
 [i]: Ignore case. Use -v with -e option.
 -b: Log mem cache hash-table bucket sizes.
 -h: Log cache hits/misses.
 -z: Log mem cache size after each addition.
 -l[+|tlb|union]: Log TS basic contents ['+' shows new's/
 delete's]. tlb: TypeLib, union: Logs OMG
 IDL for unions.

 -?2: Priming input file format info.
 182

Adding New Information to the Type Store
Priming the Type Store with an
Individual Entry

To prime the type store with the OMG IDL mygrid interface, enter:

In this case, the -e argument instructs typeman to query the Interface
Repository for the specified mygrid interface, and then add it to the type
store. Ensure that you enter the fully scoped name of the OMG IDL type, as
shown. This means you must precede the interface name with the module
name (that is, mymodule:: in the previous example).

Priming the Type Store with
Multiple Entries

To prime the type store with multiple OMG IDL entries simultaneously,
create a text file that lists any number of OMG IDL typenames. You can call
the text file any name you want (for example, prime.txt). Each entry in the
text file must be on a separate line. For example:

As shown in the preceding example, OMG IDL typenames must be fully
scoped (that is, precede the interface name with modulename::). You can
comment out a line by putting // at the start of it. If you insert a double
blank line, it is treated as the end of the text file. The -?2 option with
typeman allows you to view the format that the text file entries should take.

After you have created the text file, enter the following command (assuming
you have called the file prime.txt), to prime the cache with the type
information relating to the text file entries:

This can be a convenient way of managing the cache, and repriming it with
a modified list of types.

typeman -e mymodule::mygrid

MyAccount
Chat::ChatClient
Chat::ChatServer

typeman prime.txt
183

CHAPTER 10 | Development Support Tools
Deleting the Type Store Contents

Overview You can use either the GUI tool or the command-line utilities to delete the
entire contents of the type store. It is not possible to selectively delete only
some type store entries. To delete entries, you must delete the entire cache.

Using the GUI Tool To delete the entire contents of the cache, select Delete TypeStore on the
COMet Tools window shown in Figure 21 on page 178.

Using the Command Line Either of the following commands deletes the entire contents of the type
store:

or

In this case, the second command assumes that the typeman data files are
held in c:\temp. (The COMet.TypeMan.TYPEMAN_CACHE_FILE configuration
variable determines where the data files are stored. See �COMet
Configuration� on page 399 for more details.)

The typeman data files include:

typeman -wm

del c:\temp\typeman.*

typeman._dc This is the disk cache data file.

typeman.idc This is the disk cache index.

typeman.edc This is the disk cache empty record index.

typeman.map This is the UUID name mapper.

Note: The typeman -w command does not delete the typeman.map file.
You must specify typeman -wm to ensure that this file is also deleted.
 184

Dumping the Type Store Contents
Dumping the Type Store Contents

Overview The typeman utility is also a useful diagnostic utility, because it allows you to
dump the contents of the type store cache.

Example The following command prints the methods of the grid interface in both
alphabetic and vtable order (the vtable order is determined by the OMG
Interworking Architecture specifiction at
ftp://ftp.omg.org/pub/docs/formal/01-12-55.pdf):

[c:\] typeman -e grid -v

MD5/Name or IFR look up: grid

 Name sorted V-table DispId Offset

 get get 1 0
 height get set 2 1
 set height 3 2
 width get width 4 3

Note: The second column in the preceding example denotes operations
for the get attribute. The absence of height set and width set implies
that these are readonly attributes.
185

CHAPTER 10 | Development Support Tools
Creating a Microsoft IDL File

Overview The normal procedure for writing a COM or Automation client to
communicate with a CORBA server is to first obtain a Microsoft IDL
definition of the target CORBA interface, which the COM or Automation
client can understand. You can generate Microsoft IDL definitions from
existing OMG IDL information in the type store. To minimize manual
lookups, you should ensure that each IDL file contains a module.

In This Section This section discusses the following topics:

Note: Creating Microsoft IDL in this way allows you to create a standard
DCOM proxy/stub DLL that can be installed with a COM or Automation
client. This means that you do not have to install any CORBA components
on the client machine. In this case, the distribution model is exactly the
same as for a standard DCOM application. This means that it includes a
COM or Automation client and a proxy/stub DLL.

Using the GUI Tool page 187

Using the Command Line page 189
 186

Creating a Microsoft IDL File
Using the GUI Tool

Overview This subsection describes how to use the GUI tool to create a Microsoft IDL
file from OMG IDL.

Steps The steps to create a Microsoft IDL file are:

1. Open the COMet Tools window shown in Figure 21 on page 178.

2. From the TypeStore Contents panel, select the item of OMG IDL type
information on which you want to base the Microsoft IDL file.

3. Select Add. This adds the item to the Types to use panel.

Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the Microsoft IDL file.

4. Select Create MIDL. This opens the COMet ts2idl client window
shown in Figure 22 on page 188.

5. If you want to:

♦ Ensure that Microsoft IDL is created for all dependent types not
defined within the scope of (for example) your interface, select
the Resolve References check box.

♦ Copy the contents of the Microsoft IDL file to your development
environment, select the Copy All button.

♦ Refresh the window, select the Clear button.

♦ Assign a Microsoft IDL filename, select the Save As button.

6. Select the Generate IDL button. This creates the Microsoft IDL file.
187

CHAPTER 10 | Development Support Tools
COMet ts2idl Client Window Figure 22 shows the COMet ts2idl client window, which you can use to
create a Microsoft IDL file from OMG IDL.

Figure 22: Creating a Microsoft IDL File from OMG IDL
 188

Creating a Microsoft IDL File
Using the Command Line

Overview This subsection describes how to use the ts2idl command-line utility to
create a Microsoft IDL file from existing OMG IDL type information. (See
�COMet Utility Arguments� on page 411 for details of each of the arguments
available with ts2idl.)

Example The following command creates a grid.idl file, based on the OMG IDL
grid interface:

Usage String You can call up the usage string for ts2idl as follows:

The usage string for ts2idl is:

ts2idl -f grid.idl grid

ts2idl -v

Usage:
ts2idl [options] <type name | type library name> [[<type name>]

…]
Options:
 -c : Don’t connect to the IFR (e.g. if cache is fully primed).
 -r : Resolve referenced types.
 -m : Generate Microsoft IDL (default).
 -p : Generate makefile for proxy/stub DLL.
 -s : Force inclusion of standard types (ITStdcon.idl /
 orb.idl).
 -f : <filename>.
 -v : Print this message.

 Tip : Use -p to generate a makefile for the marshalling DLL.
189

CHAPTER 10 | Development Support Tools
Creating a Type Library

Overview When using an Automation client, you have the option in some controllers
(for example, Visual Basic) of using straight IDispatch interfaces or dual
interfaces.

Using IDispatch Interface If you want to develop an Automation client that is to only use the straight
IDispatch interface, there is no need to create a type library from existing
OMG IDL information in the type store. This is because COMet automatically
copies the related type information into the type store when it uses
GetObject to perform a lookup on the target CORBA object.

The following is a Visual Basic example of how an Automation client can
use GetObject() to get an object reference to a CORBA object:

Using Dual Interfaces If you want to develop an Automation client that uses dual interfaces,
instead of using the straight IDispatch interface, you must use either the
GUI tool or the ts2tlb command-line utility to create a type library from
existing OMG IDL information in the type store.

' Visual Basic requesting an Automation object
' reference to OMG IDL interface mod::CorbaSrv
srvobj = factory.GetObject ("mod/CorbaSrv")

Note: If you intend to use dual interfaces, the bridge must be loaded
in-process to the client (that is, in the client�s address space). The use of
dual interfaces is not supported with the bridge loaded out-of-process.
 190

Creating a Type Library
Using the GUI Tool

Overview This subsection describes how to use the GUI tool to create a type library
from OMG IDL.

Steps The steps to create a type library are:

1. Open the COMet Tools window shown in Figure 21 on page 178.

2. From the TypeStore Contents panel, select an item of OMG IDL type
information on which you want to base the type library.

3. Select Add. This adds the item to the Types to use panel.

Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the type library.

4. Select Create TLB. This opens the Typelibrary Generator window
shown in Figure 23.

Figure 23: Creating a Type Library from OMG IDL
191

CHAPTER 10 | Development Support Tools
5. In the Library Name field, type the internal library name. This can be
the same as the type library path name if you wish, but ensure that the
library does not have the same name as any of the types that it
contains.

6. In the Typelibrary pathname field, type the full path name for the type
library.

7. If you want interface prototypes to:

♦ Appear as IDispatch, select IDispatch only.

♦ Use the specific interface name, select Interface name.

8. To apply an identifier prefix to avoid name clashes, select the
corresponding check box. This helps to avoid potential name clashes
between OMG IDL and Microsoft IDL keywords.

9. Click Generate TLB. This creates the type library.
 192

Creating a Type Library
Using the Command Line

Overview This subsection describes how to use the ts2tlb command-line utility to
create a type library from existing OMG IDL type information. (See �COMet
Utility Arguments� on page 411 for details of each of the arguments
available with ts2tlb.)

Example The following command creates a grid.tlb file in the IT_grid library,
based on the OMG IDL grid interface:

Usage String You can call up the usage string for ts2tlb as follows:

The usage string for ts2tlb is:

ts2tlb -f grid.tlb -l IT_grid grid

ts2tlb -v

Usage:
ts2tlb [options] <type name> [[<type name>] …]
 -f : File name (defaults to <type name #1>.tlb).
 -l : Library name (defaults to IT_Library_<type name #1>).
 -p : Prefix parameter names with "it_".
 -i : Pass a pointer to interface Foo as IDispatch*
 rather than DIFoo* - necessary for some controllers.
 -v : Print this message.

 Tip : Use tlibreg.exe to register your type library.
193

CHAPTER 10 | Development Support Tools
Creating Stub Code for Client Callbacks

Overview When you want your application to have client callback functionality, you
must provide an implementation for the callback objects. This section
describes how to use the GUI tool to generate Visual Basic or PowerBuilder
stub code for callbacks.

Steps The steps to create stub code for callbacks are:

1. Open the COMet Tools window shown in Figure 21 on page 178.

2. From the TypeStore Contents panel, select the item of OMG IDL type
information on which you want to base the stub code.

3. Select the Add button. This adds the item to the Types to use panel.

Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the stub code.

4. Select the Create Stub button. This opens the Stub Code Generator
window shown in Figure 24.

Note: There is no equivalent command-line utility available for creating
stub code for callbacks.

Figure 24: Creating Stub Code for Callbacks
 194

Creating Stub Code for Client Callbacks
5. Select the radio button corresponding to the language you are using.

6. Select the output directory where you want the stub code to be saved.

7. Click Generate. This generates the stub code.
195

CHAPTER 10 | Development Support Tools
Replacing an Existing DCOM Server

Overview This section describes the concept of replacing an existing DCOM server
with a CORBA server, and how to do it. The following topics are discussed:

� �Background� on page 196.

� �The srvAlias Utility� on page 196.

� �The Server Aliasing Registry Editor Window� on page 197.

� �Using the Window� on page 197.

� �The aliassrv Utility� on page 198.

Background At some stage, it might become necessary to replace an existing COM or
Automation server with a CORBA server, without the opportunity to modify
existing COM or Automation clients. However, such clients are not aware of
the (D)ICORBAFactory interface that has so far been the usual way for clients
to obtain initial references to CORBA objects.

The solution is to allow such clients to continue to use their normal
CoCreateInstanceEx() or CreateObject() calls. This means that you must
retrofit the bridge to serve these clients� activation requests. In other words,
you must alias the bridge to the legacy COM or Automation server. This
ensures that when the client is subsequently run, the bridge is activated in
response to the client�s CoCreateInstanceEx() or CreateObject() calls.

The srvAlias Utility COMet supplies a srvAlias utility, which you can enter at the command
line, to open the Server Aliasing Registry Editor window shown in Figure 25
on page 197.
 196

Replacing an Existing DCOM Server
The Server Aliasing Registry
Editor Window

Figure 25 shows the layout of the Server Aliasing Registry Editor window,
which you can open by running srvAlias from the command line.

Using the Window The Server Aliasing Registry Editor window allows you to place some
entries in the registry, to allow server �aliasing�. You must enter the CLSID
for the server to be replaced, and then supply, in the appropriate text box,
the string that should be passed to (D)ICORBAFactory::GetObject() if the
CORBA factory were being used. This string is then stored in the registry
(under a COMetInfo subkey, under the server�s CLSID entries). In addition,
ITUnknown.dll is registered as the server executable. Nothing else is
required.

Figure 25: Aliasing the Bridge
197

CHAPTER 10 | Development Support Tools
The aliassrv Utility The srvAlias utility allows users to save the new registry entries in binary
format, so that an accompanying aliassrv utility can be used at application
deployment time to restore the entries on the destination machine. For
example, given a file called replace.reg, which contains the modified
registry entries, the following command aliases the specified CLSID to
COMet:

aliassrv -r replace.reg -c {F7B6A75E-90BF-11D1-8E10-0060970557AC}

The next time a DCOM client of the server is run, COMet is used instead.
 198

Generating Visual Basic Client Code
Generating Visual Basic Client Code

Overview This section describes how to use the Visual Basic genie, to generate Visual
Basic client code from OMG IDL definitions.

In This Section This section discusses the following topics:

Introduction page 200

Using the GUI Tool page 202

Using the Command Line page 213
199

CHAPTER 10 | Development Support Tools
Introduction

Overview This subsection provides an introduction to the concept of using the genie to
generate Visual Basic client code. The following topics are discussed:

� �Introduction to the Genie� on page 200.

� �Development Steps� on page 200.

� �Generated Files� on page 201.

Introduction to the Genie COMet is shipped with a Visual Basic code generation genie that can
automatically generate the bulk of the application code for a Visual Basic
client, based on OMG IDL definitions. The use of the Visual Basic genie is
not compulsory for creating Visual Basic clients with COMet. However,
using the genie makes the development of Visual Basic clients much faster
and easier.

The genie is designed to generate Visual Basic clients. These clients can
communicate with C++ servers that have been generated via the C++
genie supplied with the CORBA Code Generation Toolkit. (See the CORBA
Code Generation Toolkit Guide for more details about the C++ genie.)

Development Steps The steps to create and build a distributed COMet client-server application
via code generation are:

Step Action

1 Generate the CORBA server code, by using the idlgen
cpp_poa_genie supplied with the CORBA Code Generation
Toolkit. See the CORBA Code Generation Toolkit Guide for
more details.

2 Generate the Visual Basic client, by using the idlgen vb_genie
supplied with COMet. The following subsections describe how
to use either the command-line or GUI version of the genie to
do this. See �Generated Files� on page 201 for a list of the files
that the Visual Basic genie creates.
 200

Generating Visual Basic Client Code
Generated Files The files that the Visual Basic genie creates are:

3 Register the OMG IDL file with the Orbix Interface Repository.
This step is only required if using the command-line version of
the genie.

4 Load the client.vbp file into the Visual Basic IDE, and build
the client.

Step Action

client.vbp This is the Visual Basic project file for the client.

client.frm This is the main Visual Basic form for the client.

FindIOR.frm This form contains the functions needed by the client to
select a .ref file. The .ref file is written by the server
and contains the server object�s IOR.

Call_Funcs.bas This contains the Visual Basic code for implementing the
operations defined in the selected interface(s).

Print_Funcs.bas This contains functions for printing the values of all the
CORBA simple types supported by COMet. It also
contains functions for printing any user-defined types
declared in the IDL file.

Random_Funcs.basThis contains functions for generating random values for
all the CORBA simple types supported by COMet. It also
contains functions for generating random values for any
user-defined types declared in the IDL file.

IT_Random.cls This class is a random number generator that is used in
the generated Random_Funcs.bas file.
201

CHAPTER 10 | Development Support Tools
Using the GUI Tool

Overview This subsection describes the steps to use the GUI tool to generate Visual
Basic client code from existing OMG IDL are:

1 From the Visual Basic project dialog shown in Figure 26, select the COMet
Wizard icon.

This opens the COMet Wizard Introduction window shown in Figure 27 on
page 203.

Figure 26: Visual Basic Project Dialog Window
 202

Generating Visual Basic Client Code
2 Select the Next button on the COMet Wizard - Introduction window shown
in Figure 27.

This opens the COMet Wizard - Step 1 window shown in Figure 28 on
page 204.

Figure 27: COMet Wizard - Introduction Window
203

CHAPTER 10 | Development Support Tools
3 Select the Browse button on the COMet Wizard - Step 1 window in
Figure 28.

This opens the Select the IDL file window shown in Figure 29 on page 205.

Figure 28: COMet Wizard - Step 1 Window
 204

Generating Visual Basic Client Code
4 From the Select the IDL file window in Figure 29, select the OMG IDL file
on which you want to base the Visual Basic client.

The Filename field displays the full path to the OMG IDL file that you select.

5 Select the Ok button on the Select the IDL file window.

This opens the COMet Wizard - Step 1 window again, this time with the full
path to the selected OMG IDL file displayed, as shown in Figure 30 on
page 206.

Figure 29: Select the IDL File Window
205

CHAPTER 10 | Development Support Tools
6 Select the Next button on the COMet Wizard - Step 1 window in Figure 30.

This opens the COMet Wizard - Step 2 window shown in Figure 31 on
page 207.

Figure 30: Step 1 Window Displaying Full Path to the Selected File
 206

Generating Visual Basic Client Code
7 Select the appropriate radio button on the COMet Wizard - Step 2 window
in Figure 31, depending on whether you want to connect to the server by
using an IOR or the Naming Service.

8 Select the Next button on the COMet Wizard - Step 2 window.

This opens the COMet Wizard - Step 3 window shown in Figure 32 on
page 208.

Note: The option you choose must correspond with the option selected
for the C++ server when it was created via the CORBA Code Generation
Toolkit.

Figure 31: COMet Wizard - Step 2 Window
207

CHAPTER 10 | Development Support Tools
9 Select the Browse button on the COMet Wizard - Step 3 window in
Figure 32.

This opens the Select the Folder window shown in Figure 33 on page 209.

Figure 32: COMet Wizard - Step 3 Window
 208

Generating Visual Basic Client Code
10 From the Select the Folder window in Figure 33, select the path to the
folder in which you want to store your Visual Basic client project.

The Folder field displays the full path to the folder that you select.

11 Select the Ok button on the Select the Folder window.

This opens the COMet Wizard - Step 3 window again, this time with the full
path to the selected folder displayed, as shown in Figure 34 on page 210.

Figure 33: Selecting a Folder
209

CHAPTER 10 | Development Support Tools
12 Select the Next button on the COMet Wizard - Step 3 window in Figure 34.

This opens the COMet Wizard - Finished window shown in Figure 35 on
page 211.

Figure 34: Step 3 Window Displaying Full Path to the Selected Folder
 210

Generating Visual Basic Client Code
13 Select the Finish button on the COMet Wizard - Finished window in
Figure 35.

This automatically generates the Visual Basic client project for you. It also
automatically registers the corresponding OMG IDL file in the Interface
Repository.

When the genie has completed its processing, the generated client
application appears, as shown in Figure 36 on page 212.

Figure 35: COMet Wizard - Finished Window
211

CHAPTER 10 | Development Support Tools
Figure 36: Example of a Generated Client Application
 212

Generating Visual Basic Client Code
Using the Command Line
The idlgen vb_genie utility can create the bulk of a Visual Basic client
application from existing OMG IDL definitions. The command-line syntax for
the genie is as follows, where filename represents the name of the OMG
IDL file:

You can generate a Visual Basic client, based on any of the following:

� All interfaces in an OMG IDL file.

For example, the following command creates a Visual Basic client,
based on all the interfaces contained in the grid.idl file:

� A specific interface in an OMG IDL file.

For example, the following command creates a Visual Basic client,
based on the grid interface in the grid.idl file:

In this case, you must supply the fully scoped name of the interface
(that is, the interface name preceded by module name and ::).

� A range of selected interfaces in an OMG IDL file, by using wildcard
characters.

For example, the following command creates a Visual Basic client,
based on all interfaces in foo.idl that are within the Test module,
and which have names that begin with Foo or end with Bar:

idlgen vb_genie.tcl [options] filename.idl [interface wildcard]*

idlgen vb_genie.tcl grid.idl *

idlgen vb_genie.tcl modulename::grid grid.idl

idlgen vb_genie.tcl Test::* foo.idl "Foo*" "*Bar"

Note: Remember that the command-line version of the genie does not
automatically register OMG IDL in the Interface Repository. You must do
this manually after the genie has created the Visual Basic client
application. For example, to register the OMG IDL in a file called
grid.idl, enter the command idl -R=-v grid.idl.
213

CHAPTER 10 | Development Support Tools
You can call up the usage string for the genie as follows:

The usage string for the genie is:

See �Idlgen vb_genie.tcl Arguments� on page 419 for details of each of the
arguments available with the genie.

idlgen vb_genie -h

usage: idlgen vb_genie.tcl [options] file.idl [interface
wildcard]*

[options]

-I<directory> Passed to preprocessor.
-D<name>[=value] Passed to preprocessor.
-h Prints this help message.
-v Verbose mode.
-s Silent mode (opposite of -v option).
-dir <directory> Put generated files in the specified
 directory.
-include Process interfaces in #include’d file too.
-(no)ns Use the Naming Service (default no).
 214

Part 3
Programmer�s Reference

In This Part This part contains the following chapters:

COMet API Reference page 217

Introduction to OMG IDL page 269

Mapping CORBA to Automation page 313

Mapping CORBA to COM page 357

COMet Configuration page 399

COMet Utility Arguments page 411

CHAPTER 11

COMet API
Reference
This chapter describes the application programming interface
(API) for COMet, which is defined in Microsoft IDL.

In This Chapter This chapter discusses the following topics:

Common Interfaces page 218

Automation-Specific Interfaces page 222

COM-Specific Interfaces page 251
217

CHAPTER 11 | COMet API Reference
Common Interfaces

Overview This section describes the interfaces that are common to both COM and
Automation.

In This Section This section discusses the following topics:

IForeignObject page 219

IMonikerProvider page 221
 218

Common Interfaces
IForeignObject

Synopsis typedef [public] struct objSystemIDs {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
long * pValue;

} objSystemIDs;

[object, uuid(…), pointer_default(unique)]
interface IForeignObject : IUnknown
{
HRESULT GetForeignReference ([in] objSystemIDs systemIDs,

[out] long * systemID,
[out] LPSTR * objRef);

HRESULT GetUniqueId ([out] LPSTR * uniqueId);
};

Description Mapping object references through views, and passing those object
references back and forth through the bridge, could potentially lead to the
creation of indefinitely long chains of views that delegate to other views, and
so on indefinitely. The IForeignObject interface is provided as a deterrent
to this potential problem, in that it provides a mechanism to extract a valid
CORBA object reference from a view.

To effect this solution, each COM and Automation view object must map
onto one and only one CORBA object reference, and it must also expose the
IForeignObject interface. This in turn means that an unambiguous CORBA
object reference can be obtained via IForeignObject from any COM or
Automation view.

Note: The matching Automation interface for a constructed OMG IDL
type (such as struct, union, or exception) exposes DIForeignComplexType
instead of IForeignObject.
219

CHAPTER 11 | COMet API Reference
Methods The methods for the IForeignObject interface are:

UUID {204f6242-3aec-11cf-bbfc-444553540000}

Notes COM/CORBA-compliant.

GetForeignReference() This extracts an object reference in string form
from a proxy.

The systemIDs parameter is an array of long
values, where a value in the array identifies an
object system (for example, CORBA) for which
the caller is interested in obtaining object
references. The value for the CORBA object
system is the long value, 1. If the proxy is a proxy
for an object in more than one object system, the
order of IDs in the systemIDs array indicates the
caller�s order of preference.

The out parameter, systemID, identifies an object
system for which the proxy can produce an object
reference. If the proxy can produce a reference for
more than one object system, the order of
preference specified in the systemIDs parameter
is used to determine the value returned in this
parameter.

The out parameter, objRef, contains the object
reference in string form. In the case of the CORBA
object system, this is a stringified interoperable
object reference (IOR).

GetUniqueId() This returns a unique identifier for the object.
 220

Common Interfaces
IMonikerProvider

Synopsis [object, uuid(…)]
interface IMonikerProvider : IUnknown
{
HRESULT get_moniker([out] IMoniker ** val);
};

Description The COM standard does not provide any mechanism for clients to deal with
server objects that are inherently persistent (that is, server objects that store
their own state instead of having their state stored through an external
interface such as IPersistStorage). Databases are a typical example of
inherently persistent server objects. COM does have the concept of
monikers, which are the conceptual equivalent of CORBA persistent object
references, but they are used in only a limited capacity in the COM world.

The IMonikerProvider interface allows clients to obtain an IMoniker
interface pointer from COM and Automation views. The resulting moniker
can be used as a persistent reference to the CORBA object that relates to the
view from which the moniker was obtained.

Both COM and Automation views can support the IMonikerProvider
interface. It allows clients to persistently save object references for later use,
without needing to keep the view in memory.

Methods The methods for the IMonikerProvider interface are:

UUID {ecce76fe-39ce-11cf-8e92-080000970dac7}

Notes COM/CORBA-compliant.

get_moniker() This returns a moniker that allows the CORBA object to
be converted to persistent form for storage in a file, and
so on. Once it is stored in persistent form, by means of
this moniker, the CORBA object can be reconnected to
again, by using the standard COM moniker semantics.
221

CHAPTER 11 | COMet API Reference
Automation-Specific Interfaces

Overview This section describes the interfaces that are specific to Automation.

In This Section This section discusses the following topics:

DICORBAAny page 223

DICORBAFactory page 228

DICORBAFactoryEx page 230

DICORBAObject page 232

DICORBAStruct page 234

DICORBASystemException page 235

DICORBATypeCode page 236

DICORBAUnion page 240

DICORBAUserException page 241

DIForeignComplexType page 242

DIForeignException page 243

DIObject page 244

DIObjectInfo page 245

DIOrbixORBObject page 246

DIORBObject page 249
 222

Automation-Specific Interfaces
DICORBAAny

Synopsis typedef enum {
tk_null, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_octet, tk_any,
tk_typeCode, tk_principal, tk_objref, tk_struct,
tk_union, tk_enum, tk_string, tk_sequence, tk_array,
tk_alias, tk_except, tk_boolean, tk_char

} CORBATCKind;

[oleautomation,dual,uuid(…)]
interface DICORBAAny : DIForeignComplexType {

[id(0),propget] HRESULT value([retval,out] VARIANT*
IT_retval);

[id(0),propput] HRESULT value([in] VARIANT val);
[propget] HRESULT kind([retval,out] CORBATCKind* IT_retval);

// tk_objref, tk_struct, tk_union, tk_alias, tk_except
[propget] HRESULT id([retval,out] BSTR* IT_retval);
[propget] HRESULT name([retval,out] BSTR* IT_retval);

// tk_struct, tk_union, tk_enum, tk_except
[propget] HRESULT member_count([retval,out] long* IT_retval);
HRESULT member_name([in] long index, [retval,out] BSTR*

IT_retval);
HRESULT member_type([in] long index, [retval,out] VARIANT*

IT_retval);

// tk_union
HRESULT member_label([in] long index, [retval,out] VARIANT*

IT_retval);
[propget] HRESULT discriminator_type([retval,out] VARIANT*

IT_retval);
[propget] HRESULT default_index([retval,out] long*

IT_retval);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long* IT_retval);

// tk_array, tk_sequence, tk_alias
[propget] HRESULT content_type([retval,out] VARIANT*

IT_retval);

// tk_array, tk_sequence
223

CHAPTER 11 | COMet API Reference
HRESULT insert_safearray([in] VARIANT val, [in] BSTR
typeName);

};

Description The OMG IDL any type maps to the DICORBAAny Automation interface. You
can use DICORBAAny to find details about the type of value stored by an any.
The particular methods that you can call on DICORBAAny depend on the kind
of value it contains. A BadKind exception is raised if a method is called on
DICORBAAny that is not appropriate to the kind of value it contains.

You can use the kind() method to find the kind of value contained. The
kind() method returns an enumerated value of the CORBATCKind type. For
example, a DICORBAAny containing a struct is of the tk_struct kind; a
DICORBAAny containing an object is of the tk_objref kind; a DICORBAAny
containing a typedef is of the tk_alias kind.

Because DICORBAAny derives from the DIForeignComplexType interface,
objects that implement it are effectively pseudo-objects.

If the any contains a CORBA sequence or array type, the VARIANT value
property contains an Automation safearray or an OLE collection. If the any
contains a complex CORBA type, such as a struct or union, the VARIANT
value property contains an IDispatch pointer to the Automation interface to
which that type is mapped.

Methods The methods for the DICORBAAny interface are:

value() These propput and propget methods can be
called on every kind of DICORBAAny.

The propget method returns the actual value
stored in DICORBAAny.

The propput method inserts a value into a
DICORBAAny.

kind() This can be called on every kind of DICORBAAny.

It finds the type of OMG IDL definition described
by the any. It returns an enumerated value of the
CORBATCKind type. For example, an any that
contains a sequence is of the tk_sequence kind.
Once the kind of value stored by the any is known,
the methods that can be called on the any are
determined.
 224

Automation-Specific Interfaces
id() This can be called on a DICORBAAny of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, or tk_except kind. If called on a
DICORBAAny of a different kind, it raises a BadKind
exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires runtime access to the
Interface Repository.

name() This can be called on a DICORBAAny of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, or tk_except kind. If called on a
DICORBAAny of a different kind, it raises a BadKind
exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

member_count() This can be called on a DICORBAAny of the
tk_struct, tk_union, tk_enum, or tk_except kind.
If called on a DICORBAAny of a different kind, it
raises a BadKind exception.

It returns the number of members that make up
the type.

member_name() This can be called on a DICORBAAny of the
tk_struct, tk_union, tk_enum, or tk_except kind.
If called on a DICORBAAny of a different kind, it
raises a BadKind exception.

It returns the name of the member specified in the
index parameter. The returned name does not
contain any scoping information.

A Bounds exception is raised if the index
parameter is greater than or equal to the number
of members that make up the type. The index
starts at 0.
225

CHAPTER 11 | COMet API Reference
member_type() This can be called on a DICORBAAny of the
tk_struct, tk_union, or tk_except kind. If called
on a DICORBAAny of a different kind, it raises a
BadKind exception.

It returns the type of the member identified by the
index parameter.

A Bounds exception is raised if the index
parameter is greater than or equal to the number
of members that make up the type. The index
starts at 0.

member_label() This can be called on a DICORBAAny of the
tk_union kind. If called on a DICORBAAny of a
different kind, it raises a BadKind exception.

It returns the case label of the union member
identified by the index parameter. (The case label
is an integer, char, boolean, or enum type.)

A Bounds exception is raised if the index
parameter is greater than or equal to the number
of members that make up the type. The index
starts at 0.

discriminator_type() This can be called on a DICORBAAny of the
tk_union kind. If called on a DICORBAAny of a
different kind, it raises a BadKind exception.

It returns the type of the union�s discriminator.

default_index() This can be called on a DICORBAAny of the
tk_union kind. If called on a DICORBAAny of a
different kind, it raises a BadKind exception.

It returns the index of the default member; it
returns -1 if there is no default member.

length() This can be called on a DICORBAAny of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, it returns the
value of the bound; a return value of 0 indicates an
unbounded string or sequence. For an array, it
returns the length of the array.
 226

Automation-Specific Interfaces
UUID {A8B553C4-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

content_type() This can be called on a DICORBAAny of the
tk_sequence, tk_array, or tk_alias kind. If
called on a DICORBAAny of a different kind, it raises
a BadKind exception.

For a sequence or array, it returns the type of
element contained in the sequence or array. For
an alias, it returns the type aliased by the typedef
definition.

insert_safearray() This can be called on a DICORBAAny of the
tk_sequence or tk_array kind. If called on a
DICORBAANY of a different kind, it raises a BadKind
exception.

This is used to insert sequences or arrays into
anys. The typename of the sequence or array must
be supplied along with the array itself.
227

CHAPTER 11 | COMet API Reference
DICORBAFactory

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBAFactory : IDispatch
{
HRESULT GetObject([in] BSTR objectName,

 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] IDispatch** IT_retval);

}

Description The DICORBAFactory interface is used to make CORBA objects available to
Automation clients, in a manner that is similar to the GetActiveObject
method in Automation (already described in �COM and CORBA Principles�
on page 3). It is a factory class that allows an Automation client to create
new CORBA object instances and bind to existing CORBA objects. It is
designed to be similar to the Visual Basic CreateObject and GetObject
functions.

The Automation/CORBA-compliant ProgID for this class is CORBA.Factory.
An instance of this class must be registered in the Windows system registry
on the client machine.

In COMet, the name CORBA.Factory.Orbix is also registered as an alias for
CORBA.Factory. This allows access to the Orbix instance in the event of a
subsequent installation of an ORB other than Orbix.
 228

Automation-Specific Interfaces
Methods The methods for the DICORBAFactory interface are:

UUID {204F6241-3AEC-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

GetObject() This allows a client to specify the name of a target object
to which it wants to connect. It creates an Automation
view of the specified target object, binds this view to the
target, and provides the client with a reference to the
view, which the client can then use to makes its
requests.

The objectName parameter specifies the target CORBA
object to which the client wants to connect. In COMet,
the format of this parameter is as follows:

"interface:TAG:Tag data"

The interface component represents the IDL interface
that the target object supports. If the interface is scoped
(for example, "module_name::interface_name"), the
interface token is "module_name/interface_name".

The TAG component can be either of the following:

� IOR

In this case, the Tag data is the hexadecimal string
for the stringified IOR. For example:

fact.GetObject("employee:IOR:123456789…")

� NAME_SERVICE

In this case, the Tag data is the Naming Service
compound name separated by ".". For example:

fact.GetObject("employee:NAME_SERVICE:IONA.
 staff.PD.Tom")
229

CHAPTER 11 | COMet API Reference
DICORBAFactoryEx

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBAFactoryEx : DICORBAFactory {

HRESULT CreateType([in] IDispatch* scopingObj,
 [in] BSTR typeName,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] VARIANT* IT_retval);
HRESULT CreateTypeById([in] IDispatch* scopingObj,
 [in] BSTR repID,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] VARIANT* IT_retval);

};

Description DICORBAFactoryEx is a factory class that allows creation of Automation
objects that are instances of CORBA complex types, such as structs, unions,
and exceptions.

DICORBAFactoryEx derives from DICORBAFactory. You can call
DICORBAFactoryEx methods on an instance of DICORBAFactory.

Methods The methods for DICORBAFactoryEx are:

UUID {A8B553C5-3B72-11CF-BBFC-444553540000}

CreateType() This creates an Automation object that is an instance
of an OMG IDL complex type. The scopingObj
parameter indicates the scope in which the type
contained in the typeName parameter should be
interpreted. Global scope is indicated by passing the
Nothing parameter.

CreateTypeById() This creates an instance of a complex type, based on
its repository ID. The repository ID can be determined
by calling DIForeignComplexType::
INSTANCE_repositoryID().

This method requires runtime access to the Interface
Repository.
 230

Automation-Specific Interfaces
Notes Automation/CORBA-compliant. There is no corresponding ICORBAFactoryEx
COM API, because CORBA structures map to native COM structures.
231

CHAPTER 11 | COMet API Reference
DICORBAObject

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBAObject : IDispatch {

HRESULT GetInterface([optional,in,out] VARIANT* IT_Ex,
 [retval,out] IDispatch** IT_retval);
HRESULT GetImplementation([optional,in,out] VARIANT* IT_Ex,
 [retval,out] BSTR* IT_retval);
HRESULT IsA([in] BSTR repositoryID,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] VARIANT_BOOL* IT_retval);
HRESULT IsNil([optional,in,out] VARIANT* IT_Ex,
 [retval,out] VARIANT_BOOL* IT_retval);
HRESULT IsEquivalent([in] IDispatch* obj,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] VARIANT_BOOL* IT_retval);
HRESULT NonExistent([optional,in,out] VARIANT* IT_Ex,
 [retval,out] VARIANT_BOOL* IT_retval);
HRESULT Hash([in] long maximum,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] long* IT_retval);

};

Description All Automation views of CORBA objects expose the DICORBAObject
interface. It provides a number of Automation/CORBA-compliant methods
that all CORBA (and hence, Orbix) objects support.

An Automation client must call DIORBObject::GetCORBAObject(), to obtain
an IDispatch pointer to the DICORBAObject interface.

Methods The methods for the DICORBAObject interface are:

GetInterface() This returns a reference to an object in the Interface
Repository that provides type information about the
target object. This method requires runtime access
to the Interface Repository.

GetImplementation() This finds the name of the target object�s server, as
registered in the Implementation Repository. For a
local object in a server, it is that server�s name, if it
is known. For an object created in a client program,
it is the process identifier of the client process.
 232

Automation-Specific Interfaces
UUID {204F6244-3AEC-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

IsA() This returns true if the object is either an instance
of the type specified by the repositoryID
parameter, or an instance of a derived type of the
type contained in the repositoryID parameter.
Otherwise, it returns false.

IsNil() This returns true if an object reference is nil.
Otherwise, it returns false.

IsEquivalent() This returns true if the target object reference is
known to be equivalent to the object reference in the
obj parameter. A return value of false indicates
that the object references are distinct; it does not
necessarily mean that the references indicate
distinct objects.

NonExistent() This returns true if the object has been destroyed.
Otherwise, it returns false.

Hash() Every object reference has an internal identifier
associated with it�a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same
hashed value. However, if two object references
return different hash values, these object references
are for different objects.

The Hash() method allows you to partition the space
of object references into sub-spaces of potentially
equivalent object references.

The maximum parameter specifies the maximum
value that is to be returned by the Hash() method.
For example, by setting maximum to 7, the object
reference space is partitioned into a maximum of
eight sub-spaces (because the lower bound of the
method is 0).
233

CHAPTER 11 | COMet API Reference
DICORBAStruct

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBAStruct : DIForeignComplexType {};

Description The DICORBAStruct interface is used to show that an Automation interface
has been translated from an OMG IDL struct definition. Any Automation
interface that results from the translation of an OMG IDL struct supports
DICORBAStruct.

DICORBAStruct derives from the DIForeignComplexType interface. It has no
associated methods.

UUID {A8B553C1-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.
 234

Automation-Specific Interfaces
DICORBASystemException

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBASystemException : DIForeignException {

[propget] HRESULT EX_minorCode([retval,out] long* IT_retval);
[propget] HRESULT EX_completionStatus([retval,out] long*

IT_retval);
};

Description The DICORBASystemException interface is used to show that an Automation
interface has been translated from a CORBA system exception. (CORBA
system exceptions are not defined in OMG IDL.) Any Automation interface
that results from the translation of a CORBA system exception supports
DICORBASystemException, which in turn derives from DIForeignException.

Methods The methods for the DICORBASystemException interface are:

UUID {A8B553C9-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

EX_minorCode() This describes the system exception.

EX_completionStatus() This indicates the status of the operation at the
time the exception occurred. Possible return
values are:

COMPLETION_YES = 0 This indicates that the
operation had completed
before the exception was
raised.

COMPLETION_NO = 1 This indicates that the
operation had not
completed before the
exception was raised.

COMPLETION_MAYBE = 2 This indicates that it
cannot be determined at
what stage the exception
occurred.
235

CHAPTER 11 | COMet API Reference
DICORBATypeCode

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBATypeCode : DIForeignComplexType {
[propget] HRESULT kind ([retval,out] CORBA_TCKind * val);
// tk_objref, tk_struct,
// tk_union, tk_alias,
// tk_except
[propget] HRESULT id ([retval,out] BSTR * val);
[propget] HRESULT name ([retval,out] BSTR * val);

// tk_struct, tk_union,
// tk_enum, tk_except
[propget] HRESULT member_count ([retval,out] long* val);
HRESULT member_name ([in] long index, [retval,out] BSTR* val);
HRESULT member_type ([in] long index, [retval,out]

DICORBATypeCode** val);

// tk_union
HRESULT member_label ([in] long index,
 [retval,out] VARIANT* val);
[propget] HRESULT discriminator_type ([retval,out] IDispatch **

val);
[propget] HRESULT default_index ([retval,out] long* val);

// tk_string, tk_array,
// tk_sequence
[propget] HRESULT length ([retval,out] long* val);

// tk_array, tk_sequence,
// tk_alias
[propget] HRESULT content_type ([retval,out] IDispatch** val);
};

Description The DICORBATypeCode interface is used to show that an Automation
interface has been translated from an OMG IDL typecode definition. Any
Automation interface that results from the translation of an OMG IDL
typecode supports DICORBATypeCode, which in turn derives from
DIForeignComplexType.
 236

Automation-Specific Interfaces
Methods The methods for the DICORBATypeCode interface are:

kind() This can be called on all typecodes. It finds the type
of OMG IDL definition described by the typecode. It
returns an enumerated value of the CORBA_TCKind
type. For example, a typecode that contains a
sequence is of the tk_sequence kind. Once the kind
of value stored by the typecode is known, the
methods that can be called on the typecode are
determined.

id() This can be called on a DICORBATypeCode of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, or tk_except kind. If called on a
DICORBATypeCode of a different kind, it raises a
BadKind exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires runtime access to the
Interface Repository.

name() This can be called on a DICORBATypeCode of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, or tk_except kind. If called on a
DICORBATypeCode of a different kind, it raises a
BadKind exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

member_count() This can be called on a DICORBATypeCode of the
tk_struct, tk_union, tk_enum, or tk_except kind.
If called on a DICORBATypeCode of a different kind, it
raises a BadKind exception.

It returns the number of members that make up the
type.
237

CHAPTER 11 | COMet API Reference
member_name() This can be called on a DICORBATypeCode of the
tk_struct, tk_union, tk_enum, or tk_except kind.
If called on a DICORBATypeCode of a different kind, it
raises a BadKind exception.

It returns the name of the member identified by the
index parameter. The returned name does not
contain any scoping information.

A Bounds exception is raised if the index parameter
is greater than or equal to the number of members
that make up the type. The index starts at 0.

member_type() This can be called on a DICORBATypeCode of the
tk_struct, tk_union, or tk_except kind. If called
on a DICORBATypeCode of a different kind, it raises a
BadKind exception.

It returns the type of the member specified in the
index parameter.

A Bounds exception is raised if the index parameter
is greater than or equal to the number of members
that make up the type. The index starts at 0.

member_label() This can be called on a DICORBATypeCode of the
tk_union kind. If called on a DICORBATypeCode of a
different kind, it raises a BadKind exception.

The member_label() method returns the case label
of the union member specified in the index
parameter. (The case label is an integer, char,
boolean, or enum type.)

A Bounds exception is raised if the index parameter
is greater than or equal to the number of members
that make up the type. The index starts at 0.

discriminator_type() This can be called on a DICORBATypeCode of the
tk_union kind. If called on a DICORBATypeCode of a
different kind, it raises a BadKind exception.

It returns the type of the union�s discriminator.
 238

Automation-Specific Interfaces
UUID {A8B553C3-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

default_index() This can be called on a DICORBATypeCode of the
tk_union kind. If called on a DICORBATypeCode of a
different kind, it raises a BadKind exception.

The default_index() method returns the index of
the default member; it returns -1 if there is no
default member.

length() This can be called on a DICORBATypeCode of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, it returns the
bound value. A return value of 0 indicates an
unbounded string or sequence.

For an array, it returns the length of the array.

content_type() This can be called on a DICORBATypeCode of the
tk_sequence, tk_array, or tk_alias kind. If called
on a DICORBATypeCode of a different kind, it raises a
BadKind exception.

For a sequence or array, it returns the type of
element contained in the sequence or array. For an
alias, it returns the type aliased by the typedef
definition.
239

CHAPTER 11 | COMet API Reference
DICORBAUnion

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBAUnion : DIForeignComplexType {
[id(400)] HRESULT Union_d ([retval,out] VARIANT * val);
};

Description The DICORBAUnion interface is used to show that an Automation interface
has been translated from an OMG IDL union definition. Any Automation
interface that results from the translation of an OMG IDL union supports
DICORBAUnion, which in turn derives from DIForeignComplexType.

Methods The methods for the DICORBAUnion interface are:

UUID {A8B553C2-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

Union_d() This returns the current value of the union�s discriminant.
 240

Automation-Specific Interfaces
DICORBAUserException

Synopsis [oleautomation,dual,uuid(…)]
interface DICORBAUserException : DIForeignException {};

Description The DICORBAUserException interface is used to show that an Automation
interface has been translated from an OMG IDL user-defined exception. Any
Automation interface that results from the translation of an OMG IDL
user-defined exception supports DICORBAUserException, which in turn
derives from DIForeignException. DICORBAUserException has no
associated methods.

UUID {A8B553C8-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.
241

CHAPTER 11 | COMet API Reference
DIForeignComplexType

Synopsis [oleautomation,dual,uuid(…)]
interface DIForeignComplexType : IDispatch {

[propget] HRESULT INSTANCE_repositoryId([retval,out] BSTR*
IT_retval);

HRESULT INSTANCE_clone([in] IDispatch* obj,
 [optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

};

Description The DIForeignComplexType interface is used to show that an Automation
interface has been translated from an OMG IDL complex type (for example,
a struct, union, or exception). Any Automation interface that results from the
translation of an OMG IDL complex type supports DIForeignComplexType.

The interfaces that derive from DIForeignComplexType are DICORBAAny,
DICORBAStruct, DICORBATypeCode, DICORBAUnion, and DIForeignException
(that is, the matching Automation interface for any CORBA constructed
type).

Methods The methods for the DIForeignComplexType interface are:

UUID {A8B553C0-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

INSTANCE_repositoryId() This returns the repository ID of a complex type.
The DICORBAFactoryEx::CreateTypeById()
method can subsequently use the repository ID
to create an instance of a complex type, based
on the repository ID.

INSTANCE_clone() This creates a new instance that is an identical
copy of the target instance.

Note: Both of these methods are deprecated since CORBA 2.2. The
approved way to get a repository ID is to use DIObjectInfo::unique_id(),
and then use DIObjectInfo::clone().
 242

Automation-Specific Interfaces
DIForeignException

Synopsis [oleautomation,dual,uuid(…)]
interface DIForeignException : DIForeignComplexType {

[propget] HRESULT EX_majorCode([retval,out] long* IT_retval);
[propget] HRESULT EX_Id([retval,out] BSTR* IT_retval);

};

Description The DIForeignException interface is used to show that an Automation
interface has been translated from either an OMG IDL user-defined
exception or a CORBA system exception. Any Automation interface that
results from the translation of either an OMG IDL user-defined or system
exception supports DIForeignException.

The interfaces that derive from DIForeignException are
DICORBASystemException and DICORBAUserException The
DIForeignException interface in turn derives from DIForeignComplexType.

Methods The methods for the DIForeignException interface are:

UUID {A8B553C7-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

EX_majorCode() This defines the category of exception raised. Possible
return values are:

� IT_NoException

� IT_UserException

� IT_SystemException

EX_Id() This returns a unique string that identifies the exception.
243

CHAPTER 11 | COMet API Reference
DIObject

Synopsis [oleautomation,dual,uuid(…)]
interface DIObject : IDispatch {};

Description The DIObject interface is the object wrapper for the OMG IDL Object type.
It has no associated methods.

UUID {49703179-4414-a552-1ddf-90151ac3b54b}

Notes Automation/CORBA-compliant.
 244

Automation-Specific Interfaces
DIObjectInfo

Synopsis [oleautomation,dual,uuid(…)]
interface DIObjectInfo : DICORBAFactoryEx {

HRESULT type_name ([in] IDispatch* target,
 [optional,in,out] VARIANT * IT_Ex,
 [retval,out] BSTR* typeName);
HRESULT scoped_name ([in] IDispatch* target,
 [optional,in,out] VARIANT * IT_Ex,
 [retval,out] BSTR* repositoryID);
HRESULT unique_id ([in] IDispatch* target,
 [optional,in,out] VARIANT * IT_Ex,
 [retval,out] BSTR* uniqueID);
HRESULT clone ([in] IDispatch * target,
 [optional,in,out] VARIANT * IT_Ex,
 [retval,out] IDispatch ** resultObj);

};

Description The DIObjectInfo interface allows you to retrieve information about a
complex data type (such as a union, structure, or exception) that is held as
an IDispatch pointer. It derives from the DICORBAFactoryEx interface..

Methods The methods for the DIObjectInfo interface are:

UUID {6dd1b940-21a0-11d1-9d47-00a024a73e4f}

Notes Automation/CORBA-compliant.

Note: The recommended way to obtain a repository ID is to call
DIObjectInfo::unique_id(), followed by DIObjectInfo::clone().

type_name() This retrieves the simple type name of the data type.

scoped_name() This retrieves the scoped name of the data type.

unique_id() This retrieves the repository ID of the data type.

clone() This creates a new instance that is identical to the target
instance.
245

CHAPTER 11 | COMet API Reference
DIOrbixORBObject

Synopsis [oleautomation,dual,uuid(…)]
interface DIOrbixORBObject : DIORBObject {

HRESULT GetConfigValue([in] BSTR name, [out] BSTR *value,
 [in, out, optional] VARIANT *IT_Ex,
 [retval, out] VARIANT_BOOL * IT_retval);
HRESULT StartUp([in, out, optional] VARIANT *IT_Ex,
 [retval, out] VARIANT_BOOL * IT_retval);
HRESULT ShutDown([in, out, optional] VARIANT *IT_Ex,
 [retval, out] VARIANT_BOOL * IT_retval);
HRESULT RunningInIDE([in, out, optional] VARIANT *IT_Ex,
 [retval, out] VARIANT_BOOL * IT_retval);
HRESULT ReleaseCORBAView([in] IDispatch* poObj,
 [in] VARIANT_BOOL 1ToDestruction,
 [in, out, optional] VARIANT* IT_Ex,
 [retval, out] VARIANT_BOOL * IT_retval);
HRESULT ProcessEvents([in, out, optional] VARIANT* IT_Ex,
 [retval, out] VARIANT_BOOL * IT_retval);
HRESULT Narrow([in] IDispatch* poObj,
 [in] BSTR cNewIFaceName,
 [in, out, optional] VARIANT* IT_Ex,
 [out, retval] IDispatch** poDerivedObj);
HRESULT SetOrbName([in] BSTR strOrbName,
 [in, out, optional] VARIANT* IT_Ex,
 [out, retval] VARIANT_BOOL* IT_retval);

};

Description The DIOrbixORBObject interface provides Orbix-specific methods that allow
you to control some aspects of the ORB (that is, Orbix) or to request it to
perform actions. DIOrbixORBObject derives from DIORBObject. The
DIOrbixORBObject methods augment the Automation/CORBA-compliant
methods defined in DIORBObject.

The ORB has the CORBA.ORB.2 ProgID, which is the
Automation/CORBA-compliant name. In COMet, the CORBA.ORB.Orbix name
is registered as an alias for CORBA.ORB.2. This allows access to the Orbix
instance in the event of a subsequent installation of an ORB other than
Orbix.
 246

Automation-Specific Interfaces
Methods The methods for the DIOrbixORBObject interface are:

GetConfigValue() This obtains the value of the configuration entry
specified in the name parameter.

See the Orbix documentation set for information on
configuration values.

StartUp() This initializes the bridge. Invoking this method is
optional. If StartUp() is not invoked, the bridge is
automatically initialized when the first object is
created. However, it is a CORBA guideline that an
ORB should be initialized before being used.
Therefore, you should call this method before doing
anything else (that is, before you make any calls to
GetObject or CreateType on DICORBAFactory).

ShutDown() This shuts down the bridge. Invoking this method
might be necessary if, for example, you are
experiencing hang-on-exit problems or the
COMet.Config.COMET_SHUTDOWN_POLICY
configuration variable is set to Disabled. After this
method is called, no more invocations can be made
using CORBA.

RunningInIDE() This changes the internal shutdown policy, so
COMet can run in the Visual Basic studio debugger.
This call has no effect on the
COMet.Config.COMET_SHUTDOWN_POLICY
configuration variable.

ReleaseCORBAView() This is used by clients to free the CORBA view of a
DCOM callback object when receipt of callbacks is
no longer required.

ProcessEvents() This causes any outstanding CORBA events to be
dispatched to a client or server application for
processing. It might be necessary to call this method
in a client application, if the client is asynchronously
receiving callbacks from a server object. This
depends primarily on your development
environment.

If you want to use this method, set the
COMet.Config.SINGLE_THREADED_CALLBACK
configuration variable to YES.
247

CHAPTER 11 | COMet API Reference
UUID {036A6A33-0BB3-CF47-1DCB-A2C4E4C6417A}

Notes Automation/CORBA-compliant.

Narrow() A client that holds an object reference for an object
of one type, and knows that the (remote)
implementation object is a derived type, can narrow
the object reference to the derived type.

The following Visual Basic code shows how to use
this function:

Set objFact = CreateObject("CORBA.Factory")
Set orb = CreateObject("CORBA.ORB.2")
Set aObj = obj.Fact.GetObject("A:" + ior)
Set cObj = orb.Narrow(aObj, "C")
If cObj Is Nothing Then
 MsgBox "Error: narrow failed"
End If

SetOrbName() Every ORB is associated with a configuration
domain that provides it with configuration
information. A single configuration domain can hold
configuration information for multiple ORBs, with
each ORB using its ORB name as a "key" or
configuration scope in which the particular
configuration information relating to that ORB is
located.

This method lets you programmatically specify, in
the form load at the start of your applications, the
ORB name that you want your COMet applications
to use. This means that you can specify at runtime
what configuration information is to be used by your
COMet applications.

If you do not use this method to specify an ORB
name, the configuration information relating to the
default ORB name in the configuration repository is
used instead.

Note: Only one COMet ORB object should be
created in any COMet application. Therefore,
SetOrbName should only be called once during each
run of an application, and it should be the first call
that is made.
 248

Automation-Specific Interfaces
DIORBObject

Synopsis [oleautomation,dual,uuid(…)]
interface DIORBObject : IDispatch {

HRESULT ObjectToString([in] IDispatch* obj,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] BSTR* IT_retval);
HRESULT StringToObject([in] BSTR ref,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] IDispatch** IT_retval);
HRESULT GetInitialReferences([optional,in,out] VARIANT*

IT_Ex,
 [retval,out] VARIANT* IT_retval);
HRESULT ResolveInitialReference([in] BSTR name,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] IDispatch** IT_retval);
HRESULT GetCORBAObject([in] IDispatch* obj,
 [optional,in,out] VARIANT* IT_Ex,
 [retval,out] IDispatch** IT_retval);

};

Description All Automation views of CORBA objects expose the DIORBObject interface.
It provides Automation/CORBA-compliant methods that allow Automation
clients to request the ORB to perform various operations. You can call the
DICORBAFactory::GetObject() method, to obtain a reference to
DIORBObject.

The ORB has the CORBA.ORB.2 ProgID. In COMet, the CORBA.ORB.Orbix
name is registered as an alias for CORBA.ORB.2. This allows access to the
Orbix instance in the event of a subsequent installation of an ORB other
than Orbix.

Methods The methods for the DIORBObject interface are:

ObjectToString() This converts the target object�s reference to
an IOR.

StringToObject() This accepts a string produced by
ObjectToString() and returns the
corresponding object reference.
249

CHAPTER 11 | COMet API Reference
UUID {204F6246-3AEC-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

GetInitialReferences() The Interface Repository and the CORBA
services can only be used by first obtaining a
reference to an object, through which the
service can be used. The Automation/CORBA
standard defines GetInitialReferences() as
a way to list the available services.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service.)

ResolveInitialReference() This returns an object reference through which
a service (for example, the Interface
Repository or one of the CORBA services) can
be used. The name parameter specifies the
desired service. A list of supported services
can be obtained, using
DIORBObject::GetInitialReferences().

GetCORBAObject() This returns an object that allows access to
the methods defined on the DICORBAObject
interface, to gain access to operations on the
CORBA object reference interface.
 250

COM-Specific Interfaces
COM-Specific Interfaces

Overview This section describes the interfaces that are specific to COM.

In This Section This section discusses the following topics:

ICORBA_Any page 252

ICORBAFactory page 254

ICORBAObject page 256

ICORBA_TypeCode page 258

ICORBA_TypeCodeExceptions page 262

IOrbixORBObject page 263

IORBObject page 266
251

CHAPTER 11 | COMet API Reference
ICORBA_Any

Synopsis typedef [public,v1_enum] enum CORBAAnyDataTagEnum {
anySimpleValTag=0,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag,
anyObjectValTag

}CORBAAnyDataTag;

interface ICORBA_ANY;
interface ICORBA_TypeCode;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag whichOne) {
case anyAnyValTag:
 ICORBA_Any *anyVal;
case anySeqValTag:
 struct tagMultiVal {
 [string,unique] LPSTR repositoryId;
 unsigned long cbMaxSize;
 unsigned long cbLengthUsed;
 [size_is(cbMaxSize),length_is(cbLengthUsed),unique]
 union CORBAAnyDataUnion * pVal;
 } multiVal;
case anyUnionValTag:
 struct tagUnionVal {
 [string,unique] LPSTR repositoryId long disc;
 union CORBAAnyDataUnion * pVal;
 } unionVal;
case anyObjectValTag:
 struct tagObjectVal {
 [string,unique] LPSTR repositoryId VARIANT val;
 } objectVal;
case anySimpleValTag:
 VARIANT simpleVal;
} CORBAAnyData;

[object,uuid(…),pointer_default(unique)]
interface ICORBA_Any : IUnknown
{
HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData * val);
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
 252

COM-Specific Interfaces
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);
};

Description The OMG IDL any type maps to the ICORBA_Any COM interface. You can use
ICORBA_Any to get the type of an any, and to get or set its value.

Methods The methods for the ICORBA_Any interface are:

UUID {74105f50-3c68-11cf-9588-aa0004004a09}

Notes COM/CORBA-compliant.

_get_value() This returns the value of a CORBA any that can be
contained by a VARIANT (that is, if the value of the
any is a simple type or an interface pointer).

_put_value() This sets the value of a CORBA any that can be
contained by a VARIANT (that is, if the value of the
any is a simple type or an interface pointer).

_get_CORBAAnyData() This returns the value of a CORBA any that cannot
be contained by a VARIANT (that is, if the value of
the any is a complex type, such as a struct or
union).

_put_CORBAAnyData() This sets the value of a CORBA any that cannot be
contained by a VARIANT (that is, if the value of the
any is a complex type, such as a struct or union).

_get_typeCode() This returns the type of the any.
253

CHAPTER 11 | COMet API Reference
ICORBAFactory

Synopsis [object,uuid(…)]
interface ICORBAFactory : IUnknown
{

HRESULT GetObject ([in] LPSTR objectName, [out] IUnknown **
val);

};

Description The ICORBAFactory interface is used to make CORBA objects available to
COM clients, in a manner that is similar to GetObject method in COM
(already described in �COM and CORBA Principles� on page 3). It is a
factory class that allows a COM client to create new CORBA object
instances and bind to existing CORBA objects.

An instance of this class must be registered in the Windows system registry
on the client machine, using the following settings:

Your COM clients can obtain a pointer to ICORBAFactory, by making the
COM CoCreateInstanceEx() call as normal. The IID that the client assigns
to the factory (for example, IID_ICORBAFactory) is specified in the
parameter to CoCreateInstanceEx(). The call to CoCreateInstanceEx()
creates a remote instance of the CORBA object factory on the client
machine.

{913D82C0-3B00-11cf-BBFC-444553540000}
DEFINE_GUID(IID_ICORBAFactory, 0x913d82c0, 0x3b00, 0x11cf, 0xbb,

0xfc, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0);
"CORBA.Factory.COM"
 254

COM-Specific Interfaces
Methods The methods for the ICORBAFactory interface are:

UUID {204F6240-3AEC-11CF-BBFC-444553540000}

Notes COM/CORBA-compliant.

GetObject() This allows a client to specify the name of a target object
to which it wants to connect. It creates a COM view of
the specified target object, binds this view to the target,
and sets up a pointer to the IUnknown interface of the
view object. After calling GetObject(), the COM client
can then call QueryInterface() on the pointer to
IUnknown, to obtain a reference to the view, which the
client can then use to makes its requests.

The objectName parameter specifies the target CORBA
object to which the client wants to connect. In COMet,
the format of this parameter is as follows:

"interface:TAG:Tag data"

The interface component represents the IDL interface
that the target object supports. If the interface is scoped
(for example, "Module::Interface"), the interface token
is "Module/Interface".

TAG can be either of the following:

� IOR

In this case, the Tag data is the hexadecimal string
for the stringified IOR. For example:

fact.GetObject("employee:IOR:123456789…")

� NAME_SERVICE

In this case, the Tag data is the Naming Service
compound name separated by ".". For example:

fact.GetObject("employee:NAME_SERVICE:IONA.
staff.PD.Tom")
255

CHAPTER 11 | COMet API Reference
ICORBAObject

Synopsis [object,uuid(…)]
interface ICORBAObject : IUnknown
{

HRESULT GetInterface ([out] IUnknown ** val);
HRESULT GetImplementation ([out] LPSTR * val);
HRESULT IsA ([in] LPSTR repositoryID, [out] boolean* val);
HRESULT IsNil ([out] boolean* val);
HRESULT IsEquivalent ([in] IUnknown* obj, [out] boolean*

val);
HRESULT NonExistent ([out] boolean* val);
HRESULT Hash ([in] long maximum, [out] long* val);

};

Description All COM views of CORBA objects expose the ICORBAObject interface. It
provides a number of COM/CORBA-compliant methods that all CORBA (and
hence, Orbix) objects support.

ICORBAObject allows COM clients to have access to operations on the
CORBA object references, which are defined on the CORBA::Object
pseudo-interface. A COM client can call QueryInterface() to obtain a
pointer to ICORBAObject.

Methods The methods for the ICORBAObject interface are:

GetInterface() This returns a reference to an object in the Interface
Repository that provides type information about the
target object. This method requires runtime access
to the Interface Repository.

GetImplementation() This finds the name of the target object�s server, as
registered in the Implementation Repository. For a
local object in a server, it is that server�s name, if it
is known. For an object created in a client program,
it is the process identifier of the client process.

IsA() This returns true if the object is either an instance
of the type specified in the repositoryID parameter,
or an instance of a derived type of the type specified
in the repositoryID parameter. Otherwise, it
returns false.
 256

COM-Specific Interfaces
UUID {204F6243-3AEC-11CF-BBFC-444553540000}

Notes COM/CORBA-compliant.

IsNil() This returns true if an object reference is nil.
Otherwise, it returns false.

IsEquivalent() This returns true if the target object reference is
known to be equivalent to the object reference
specified in the obj parameter.

A return value of false indicates that the object
references are distinct; it does not necessarily mean
that the references indicate distinct objects.

NonExistent() This returns true if the object has been destroyed.
Otherwise, it returns false.

Hash() Every object reference has an internal identifier
associated with it�a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same
hashed value. However, if two object references
return different hash values, these object references
are for different objects.

The Hash() method allows you to partition the
space of object references into sub-spaces of
potentially equivalent object references.

The maximum parameter specifies the maximum
value that is to be returned from the Hash() method.
For example, by setting maximum to 7, the object
reference space is partitioned into a maximum of
eight sub-spaces (because the lower bound value of
the method is 0).
257

CHAPTER 11 | COMet API Reference
ICORBA_TypeCode

Synopsis [uuid(…), object, pointer_default(unique)]
interface ICORBA_TypeCode : IUnknown
{

HRESULT equal ([in] ICORBA_TypeCode * pTc,
 [out] boolean * pval,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT kind ([out] CORBA_TCKind * pval,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT id ([out] LPSTR * pId,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT name ([out] LPSTR * pName,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT member_count ([out] unsigned long * pCount,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT member_name ([in] unsigned long nIndex,
 [out] LPSTR * pName,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT member_type ([in] unsigned long nIndex,
 [out] ICORBA_TypeCode ** pRetval,
 [out] CORBATypeCodeExceptions ** ppExcept);
HRESULT member_label ([in] unsigned long nIndex,
 [out] ICORBA_Any ** pRetval,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT discriminator_type ([out] ICORBA_TypeCode ** pRetval,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT default_index ([out] unsigned long * pRetval,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT length ([out] unsigned long * nLen,
 [out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT content_type ([out] ICORBA_TypeCode ** pRetval,
 [out] CORBA_TypeCodeExceptions ** ppExcept);

};

Description The ICORBA_TypeCode interface is used to show that a COM interface has
been translated from an OMG IDL typecode definition. Any COM interface
that results from the translation of an OMG IDL typecode supports
ICORBA_TypeCode. It describes arbitrarily complex OMG IDL type structures
at runtime.
 258

COM-Specific Interfaces
Methods The methods for the ICORBA_TypeCode interface are:

equal() This returns true if the typecodes are equal.
Otherwise, it returns false.

kind() This can be called on all typecodes. It finds the
type of OMG IDL definition described by the
typecode. It returns an enumerated value of the
CORBA_TCKind type. For example, a typecode that
contains a sequence is of the tk_sequence kind.
Once the kind of value stored by the typecode is
known, the methods that can be called on the
typecode are determined.

id() This can be called on an ICORBA_TypeCode of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, or tk_except kind. If called on an
ICORBA_TypeCode of a different kind, it raises a
BadKind exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires runtime access to the
Interface Repository.

name() This can be called on an ICORBA_TypeCode of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, or tk_except kind. If called on an
ICORBA_TypeCode of a different kind, it raises a
BadKind exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

member_count() This can be called on an ICORBA_TypeCode of the
tk_struct, tk_union, tk_enum, or tk_except kind.
If called on an ICORBA_TypeCode of a different kind,
it raises a BadKind exception.

It returns the number of members that make up the
type.
259

CHAPTER 11 | COMet API Reference
member_name() This can be called on an ICORBA_TypeCode of the
tk_struct, tk_union, tk_enum, or tk_except kind.
If called on an ICORBA_TypeCode of a different kind,
it raises a BadKind exception.

The member_name() method returns the name of
the member specified in the nIndex parameter. The
returned name does not contain any scoping
information.

A Bounds exception is raised if the nIndex
parameter is greater than or equal to the number of
members that make up the type. The index starts
at 0.

member_type() This can be called on an ICORBA_TypeCode of the
tk_struct, tk_union, or tk_except kind. If called
on an ICORBA_TypeCode of a different kind, it raises
a BadKind exception.

It returns the type of the member specified in the
nIndex parameter.

A Bounds exception is raised if the nIndex
parameter is greater than or equal to the number of
members that make up the type. The index starts
at 0.

member_label() This can be called on an ICORBA_TypeCode of the
tk_union kind. If called on an ICORBA_TypeCode of
a different kind, it raises a BadKind exception.

It returns the case label of the union member
specified in the nIndex parameter. (The case label
is an integer, char, boolean, or enum type.)

A Bounds exception is raised if the nIndex
parameter is greater than or equal to the number of
members that make up the type. The index starts
at 0.

discriminator_type() This can be called on an ICORBA_TypeCode of the
tk_union kind. If called on an ICORBA_TypeCode of
a different kind, it raises a BadKind exception.

It returns the type of the union�s discriminator.
 260

COM-Specific Interfaces
UUID {9556EA21-3889-11cf-9586AA0004004A09}

Notes COM/CORBA-compliant.

default_index() This can be called on an ICORBA_TypeCode of the
tk_union kind. If called on an ICORBA_TypeCode of
a different kind, it raises a BadKind exception.

The default_index() method returns the index of
the default member; it returns -1 if there is no
default member.

length() This can be called on an ICORBA_TypeCode of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, it returns the
bound value. A return value of 0 indicates an
unbounded string or sequence.

For an array, it returns the length of the array.

content_type() This can be called on an ICORBA_TypeCode of the
tk_sequence, tk_array, or tk_alias kind. If called
on an ICORBA_TypeCode of a different kind, it raises
a BadKind exception.

For a sequence or array, it returns the type of
element contained in the sequence or array. For an
alias, it returns the type aliased by the typedef
definition.
261

CHAPTER 11 | COMet API Reference
ICORBA_TypeCodeExceptions

Synopsis typedef struct tagTypeCodeBounds {long 1;} TypeCodeBounds;
typedef struct tagTypeCodeBadKind {long 1;} TypeCodeBadKind;

[object, uuid(…), pointer_default(unique)]
interface ICORBA_TypeCodeExceptions : IUnknown
{

HRESULT _get_Bounds([out] TypeCodeBounds * pExceptionBody);
HRESULT _get_BadKind([out] TypeCodeBadKind * pExceptionBody);

};
typedef struct tagCORBA_TypeCodeExceptions
{

CORBA_ExceptionType type;
LPSTR repositoryId;
ICORBA_TypeCodeExceptions *pUserException;

} CORBA_TypeCodeExceptions;

Description The ICORBA_TypeCodeExceptions interface allows for the raising of
exceptions that can occur with ICORBA_TypeCode at runtime.

Methods The methods for the ICORBA_TypeCodeExceptions interface are:

UUID {9556ea20-3889-11cf-9586-aa0004004a09}

Notes COM/CORBA-compliant.

_get_Bounds() This returns a Bounds exception, which results if the
nIndex parameter is greater than or equal to the number
of members that make up the type.

_get_BadKind() This returns a BadKind exception, which results from
performing a method call on an ICORBA_TypeCode that
has the wrong kind for that method.
 262

COM-Specific Interfaces
IOrbixORBObject

Synopsis [object, uuid(…)]
interface IOrbixORBObject : IORBObject {

HRESULT GetConfigValue([in] LPSTR name,
 [out] LPSTR *value,
 [out] BOOLEAN * IT_retval);
HRESULT StartUp([out] BOOLEAN * IT_retval);
HRESULT ShutDown([out] BOOLEAN * IT_retval);
HRESULT ReleaseCORBAView([in IDispatch * poObj,
 [in] VARIANT_BOOL 1ToDestruction,
 [optional,in,out] VARIANT *IT_Ex,
 [retval,out] VARIANT_BOOL * IT_retval);
HRESULT ProcessEvents(in, out, optional] VARIANT* IT_Ex,
 [retval, out] VARIANT_BOOL * IT_retval);
HRESULT SetOrbName([in] LPSTR strOrbName,
 [out] BOOLEAN * IT_retval);

};

Description The IOrbixORBObject interface provides Orbix-specific methods that allow
you to control some aspects of the ORB (that is, Orbix) or to request it to
perform actions. IOrbixORBObject derives from IORBObject. The
IOrbixORBObject methods augment the COM/CORBA-compliant methods
defined in the IORBObject interface.

The ORB has the CORBA.ORB.2 ProgID, which is the COM/CORBA-compliant
name. In COMet, the name CORBA.ORB.Orbix is registered as an alias for
CORBA.ORB.2. This allows access to the Orbix instance in the event of a
subsequent installation of an ORB other than Orbix.

Methods The methods for the IOrbixORBObject interface are:

GetConfigValue() This obtains the value of the configuration entry
specified in the name parameter.

See the Orbix documentation set for information on
configuration values.
263

CHAPTER 11 | COMet API Reference
StartUp() This initializes the bridge. Invoking this method is
optional. If StartUp() is not invoked, the bridge is
automatically initialized when the first object is
created. However, it is a CORBA guideline that an
ORB should be initialized before being used.
Therefore, you should call this method before doing
anything else (that is, before you make any calls to
GetObject() or CreateType() on ICORBAFactory).

ShutDown() This shuts down the bridge. Invoking this method
might be necessary if, for example, you are
experiencing hang-on-exit problems or the
COMet:Config:COMET_SHUTDOWN_POLICY configuration
variable is set to Disabled. After this method is
called, no more invocations can be made using
CORBA.

ReleaseCORBAView() This is used by clients to free the CORBA view of a
DCOM callback object when receipt of callbacks is no
longer required.

ProcessEvents() This causes any outstanding CORBA events to be
dispatched to a client or server application for
processing. It might be necessary to call this method
in a client application, if the client is asynchronously
receiving callbacks from a server object. This depends
primarily on your development environment.

If you want to use this method, set the
COMet.Config.SINGLE_THREADED_CALLBACK
configuration variable to YES.
 264

COM-Specific Interfaces
UUID {036A6A33-0BB3-CF47-1DCB-A2C4E4C6417A}

Notes Automation/CORBA-compliant.

SetOrbName() Every ORB is associated with a configuration domain
that provides it with configuration information. A
single configuration domain can hold configuration
information for multiple ORBs, with each ORB using
its ORB name as a "key" or configuration scope in
which the particular configuration information relating
to that ORB is located.

This method lets you programmatically specify the
ORB name that you want your COMet applications to
use. This means that you can specify at runtime what
configuration information is to be used by your COMet
applications.

If you do not use this method to specify an ORB
name, the configuration information relating to the
default ORB name in the configuration repository is
used instead.

Note: Only one COMet ORB object should be created
in any COMet application. Therefore, SetOrbName
should only be called once during each run of an
application, and it should be the first call that is
made.
265

CHAPTER 11 | COMet API Reference
IORBObject

Synopsis [public] typedef struct tagCORBA_ORBObjectIdList {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
 LPSTR *pValue;

} CORBA_ORBObjectIdList;

[object, uuid(…)]
interface IORBObject : IUnknown
{

HRESULT ObjectToString ([in] IUnknown* obj,
 [out] LPSTR* val);
HRESULT StringToObject ([in,string] LPSTR cStr,
 [out] IUnknown ** val);
HRESULT GetInitialReferences ([out] CORBA_ORBObjectIdList*

val);
HRESULT ResolveInitialReference ([in,string] LPSTR name,
 [out] IUnknown** IT_retval);

};

Description All COM views of CORBA objects expose the IORBObject interface. It
provides COM/CORBA-compliant methods that allow COM clients to request
the ORB to perform various operations. You can call the
ICORBAFactory::GetObject() method, to obtain a reference to IORBObject.

The ORB has the CORBA.ORB.2 ProgID. In COMet, the CORBA.ORB.Orbix
name is registered as an alias for CORBA.ORB.2. This allows access to the
Orbix instance in the event of a subsequent installation of an ORB other
than Orbix.

Methods The methods for the IORBObject interface are:

ObjectToString() This converts the target object�s reference to
an IOR.

StringToObject() This accepts a string produced by
ObjectToString() and returns the
corresponding object reference.
 266

COM-Specific Interfaces
UUID {204F6245-3AEC-11CF-BBFC-444553540000}

Notes COM/CORBA-compliant.

GetInitialReferences() The Interface Repository and the CORBA
services can only be used by first obtaining an
object reference to an object through which
the service can be used. The COM/CORBA
standard defines GetInitialReferences() as
a way to list the available services.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service
and Event Service.)

ResolveInitialReference() This returns an object reference through
which a service (for example, the Interface
Repository or one of the CORBA services) can
be used. The name parameter specifies the
desired service. A list of supported services
can be obtained via
DIORBObject::GetInitialReferences().
267

CHAPTER 11 | COMet API Reference
 268

CHAPTER 12

Introduction to
OMG IDL
An object�s interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes the semantics and uses of the CORBA
Interface Definition Language (OMG IDL), which is used to
describe the interfaces to CORBA objects.

In This Chapter This chapter discusses the following topics:

IDL page 270

Modules and Name Scoping page 271

Interfaces page 272

IDL Data Types page 292

Defining Data Types page 307

Note: COMet does not support all the OMG IDL types described in this
chapter. See �Mapping CORBA to Automation� on page 313 and
�Mapping CORBA to COM� on page 357 for details of the OMG IDL types
that COMet supports.
269

CHAPTER 12 | Introduction to OMG IDL
IDL

Overview An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, COBOL, and PL/I. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

IDL Standard Mappings CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, COBOL, and PL/I. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbix 2000 IDL compiler uses these mappings to
convert IDL definitions to language-specific definitions that conform to the
semantics of that language.

Overall Structure You create an application�s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

IDL Definition Structure In the following example, two interfaces, Bank and Account, are defined
within the BankDemo module:

module BankDemo
{
interface Bank {

 //…
};

interface Account {
 //…
};

};
 270

Modules and Name Scoping
Modules and Name Scoping

Resolving a Name To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.

2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Referencing Interfaces Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped, with the following syntax:

For example, the fully scoped names of the Bank and Account interfaces
shown in �IDL Definition Structure� on page 270 are, respectively,
BankDemo::Bank and BankDemo::Account.

Nesting Restrictions A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

module-name::interface-name

module A
{

module B
{
 interface A {
 //…
 };
};

};
271

CHAPTER 12 | Introduction to OMG IDL
Interfaces

Overview This section provides details about OMG IDL interfaces.

In This Section The following topics are discussed in this section:

Introduction to Interfaces page 273

Interface Contents page 275

Operations page 276

Attributes page 279

Exceptions page 280

Empty Interfaces page 281

Inheritance of Interfaces page 282

Multiple Inheritance page 283
 272

Interfaces
Introduction to Interfaces

Overview This subsection provides an introductory overview of OMG IDL interfaces.

What Are Interfaces? Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Objects and Interfaces Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Public Members Because an interface does not expose an object�s implementation, all
members are public. A client can access variables in an object�s
implementation only through an interface�s operations and attributes.

Operations and Attributes An IDL interface generally defines an object�s behavior through operations
and attributes:

� Operations of an interface give clients access to an object�s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,
whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

� An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.
273

CHAPTER 12 | Introduction to OMG IDL
Account Interface IDL Sample In the following example, the Account interface in the BankDemo module
describes the objects that implement the bank accounts:

Code Explanation This interface has two readonly attributes, AccountId and balance, which
are respectively defined as typedefs of the string and float types. The
interface also defines two operations, withdraw() and deposit(), which a
client can invoke on this object.

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; // Type for representing account
 // ids
//…
interface Account {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
};

};
 274

Interfaces
Interface Contents

IDL Interface Components An IDL interface definition typically has the following components.

� Operation definitions.

� Attribute definitions

� Exception definitions.

� Type definitions.

� Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.
275

CHAPTER 12 | Introduction to OMG IDL
Operations

Overview Operations of an interface give clients access to an object�s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

Operation Components IDL operations define the signature of an object�s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

� Return value data type.

� Parameters and their direction.

� Exception clause.

An operation�s return value and parameters can use any data types that IDL
supports.

Operations IDL Sample In the following example, the Account interface defines two operations,
withdraw() and deposit(), and an InsufficientFunds exception:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//...
interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
};

};
 276

Interfaces
Code Explanation On each invocation, both operations expect the client to supply an argument
for the amount parameter, and return void. Invocations on the withdraw()
operation can also raise the InsufficientFunds exception, if necessary.

Parameter Direction Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The COBOL runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

Parameter-Passing Mode
Qualifiers

There are three parameter-passing mode qualifiers:

In general, you should avoid using inout parameters. Because an inout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter�s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, in and out, the caller can decide for
itself when to discard the parameter.

One-Way Operations By default, IDL operations calls are synchronous�that is, a client invokes
an operation on an object and blocks until the invoked operation returns. If
an operation definition begins with the keyword oneway, a client that calls
the operation remains unblocked while the object processes the call.

The COBOL runtime cannot guarantee the success of a one-way operation
call. Because one-way operations do not support return data to the client,
the client cannot ascertain the outcome of its invocation. The COBOL

in This means that the parameter is initalized only by the client and is
passed to the object.

out This means that the parameter is initialized only by the object and
returned to the client.

inout This means that the parameter is initialized by the client and
passed to the server; the server can modify the value before
returning it to the client.
277

CHAPTER 12 | Introduction to OMG IDL
runtime indicates failure of a one-way operation only if the call fails before it
exits the client�s address space; in this case, the COBOL runtime raises a
system exception.

A client can also issue non-blocking, or asynchronous, invocations. See the
CORBA Programmer�s Guide, C++ for more details.

One-Way Operation Constraints Three constraints apply to a one-way operation:

� The return value must be set to void.

� Directions of all parameters must be set to in.

� No raises clause is allowed.

One-Way Operation IDL Sample In the following example, the Account interface defines a one-way operation
that sends a notice to an Account object:

module BankDemo {
//…
interface Account {
 oneway void notice(in string text);
 //…
};

};
 278

Interfaces
Attributes

Attributes Overview An interface�s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are accessible
to clients.

Qualified and Unqualified
Attributes

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the readonly keyword
maps only to a get function.

IDL Readonly Attributes Sample For example the Account interface defines two readonly attributes,
AccountId and balance. These attributes represent information about the
account that only the object�s implementation can set; clients are limited to
readonly access:

Code Explanation The Account interface has two readonly attributes, AccountId and balance,
which are respectively defined as typedefs of the string and float types.
The interface also defines two operations, withdraw() and deposit(),
which a client can invoke on this object.

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; //Type for representing account

ids
//…
interface Account {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
};

};
279

CHAPTER 12 | Introduction to OMG IDL
Exceptions

IDL and Exceptions IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

The raises Clause After you define an exception, you can specify it through a raises clause in
any operation that is defined within the same scope. A raises clause can
contain multiple comma-delimited exceptions:

Example of IDL-Defined
Exceptions

The Account interface defines the InsufficientFunds exception with a
single member of the string data type. This exception is available to any
operation within the interface. The following IDL defines the withdraw()
operation to raise this exception when the withdrawal fails:

exception exception-name {
[member;]…

};

return-val operation-name([params-list])
raises(exception-name[, exception-name]);

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//…
interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);
 //…
};

};
 280

Interfaces
Empty Interfaces

Defining Empty Interfaces IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces.

IDL Empty Interface Sample In the following example, the CORBA PortableServer module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, ServantActivator and ServantLocator:

module PortableServer
{

interface ServantManager {};

interface ServantActivator : ServantManager {
 //…
};

interface ServantLocator : ServantManager {
 //…
};

};
281

CHAPTER 12 | Introduction to OMG IDL
Inheritance of Interfaces

Inheritance Overview An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

Inheritance Interface IDL Sample In the following example, the CheckingAccount and SavingsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

Code Sample Explanation An object that implements the CheckingAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a CheckingAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

interface new-interface : base-interface[, base-interface]…
{…};

module BankDemo{
typedef float CashAmount; // Type for representing cash
interface Account {
 //…
};

interface CheckingAccount : Account {
 readonly attribute CashAmount overdraftLimit;
 boolean orderCheckBook ();
};

interface SavingsAccount : Account {
 float calculateInterest ();
};

};
 282

Interfaces
Multiple Inheritance

Multiple Inheritance IDL Sample In the following IDL definition, the BankDemo module is expanded to include
the PremiumAccount interface, which inherits from the CheckingAccount and
SavingsAccount interfaces:

Multiple Inheritance Constraints Multiple inheritance can lead to name ambiguity among elements in the
base interfaces. The following constraints apply:

� Names of operations and attributes must be unique across all base
interfaces.

� If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Inheritance Hierarchy Diagram Figure 37 shows the inheritance hierarchy for the Account interface, which
is defined in �Multiple Inheritance IDL Sample� on page 283.

module BankDemo {
interface Account {
 //…
};

interface CheckingAccount : Account {
 //…
};

interface SavingsAccount : Account {
 //…
};

interface PremiumAccount :
 CheckingAccount, SavingsAccount {
 //…
};

};
283

CHAPTER 12 | Introduction to OMG IDL
Figure 37: Inheritance Hierarchy for PremiumAccount Interface

Account

SavingsAccountCheckingAccount

PremiumAccount
 284

Interfaces
Inheritance of the Object Interface

User-Defined Interfaces All user-defined interfaces implicitly inherit the predefined Object interface.
Thus, all Object operations can be invoked on any user-defined interface.
You can also use Object as an attribute or parameter type, to indicate that
any interface type is valid for the attribute or parameter.

Object Locator IDL Sample For example, the following getAnyObject() operation serves as an
all-purpose object locator:

interface ObjectLocator {
void getAnyObject (out Object obj);

};

Note: It is illegal in IDL syntax to explicitly inherit the Object interface.
285

CHAPTER 12 | Introduction to OMG IDL
Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance Redefinition IDL
Sample

In the following example, the CheckingAccount interface modifies the
definition of the InsufficientFunds exception, which it inherits from the
Account interface:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//…
interface Account {
 exception InsufficientFunds {};
 //…
};
interface CheckingAccount : Account {
 exception InsufficientFunds {
 CashAmount overdraftLimit;
 };
};
//…

};

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C++, that support it.
However, COBOL does not support operation overloading.
 286

Interfaces
Forward Declaration of IDL Interfaces

Overview An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface�s name; the interface�s actual
definition is deferred until later in the module.

Forward Declaration IDL Sample In the following example, the Bank interface defines a create_account()
and find_account() operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 typedef string AccountId; //Type for representing account ids

 // Forward declaration of Account
 interface Account;

 // Bank interface...used to create Accounts
 interface Bank {
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };

 Account
 find_account(in AccountId account_id)
 raises(AccountNotFound);

 Account
 create_account(
 in AccountId account_id,
 in CashAmount initial_balance
) raises (AccountAlreadyExists);
 };

 // Account interface…used to deposit, withdraw, and query
 // available funds.
 interface Account { //…
 };
};
287

CHAPTER 12 | Introduction to OMG IDL
Local Interfaces

Overview An interface declaration that contains the IDL local keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An
object that implements a local interface is a local object.

Characteristics Local interfaces differ from unconstrained interfaces in the following ways:

� A local interface can inherit from any interface, whether local or
unconstrained. Unconstrained interfaces cannot inherit from local
interfaces.

� Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

� Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.

� Local types cannot be marshalled, and references to local objects
cannot be converted to strings through ORB::object_to_string(). Any
attempts to do so throw a CORBA::MARSHAL exception.

� Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DII
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such as is_a() or
validate_connection(). Any attempts to do so throw a
CORBA::NO_IMPLEMENT exception.

� The ORB does not mediate any invocations on a local object. Thus,
local interface implementations are responsible for providing the
parameter copy semantics that a client expects.

� Instances of local objects that the OMG defines, as supplied by ORB
products, are exposed either directly or indirectly through
ORB::resolve_initial_references().
 288

Interfaces
Implementation Local interfaces are implemented by CORBA::LocalObject to provide
implementations of Object pseudo-operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the LocalObject type is only defined by each language
mapping.

Local Object Pseudo-Operations The LocalObject type implements the Object pseudo-operations shown in
Table 3.

Table 3: CORBA::LocalObject Pseudo-Operations and Return Values

Operation Always returns

is_a() An exception of NO_IMPLEMENT.

get_interface() An exception of NO_IMPLEMENT.

get_domain_managers() An exception of NO_IMPLEMENT.

get_policy() An exception of NO_IMPLEMENT.

get_client_policy() An exception of NO_IMPLEMENT.

set_policy_overrides() An exception of NO_IMPLEMENT.

get_policy_overrides() An exception of NO_IMPLEMENT.

validate_connection() An exception of NO_IMPLEMENT.

non_existent() False.

hash() A hash value that is consistent
with the object�s lifetime.

is_equivalent() True, if the references refer to the
same LocalObject
implementation.
289

CHAPTER 12 | Introduction to OMG IDL
Valuetypes

Overview Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Characteristics Valuetypes can be seen as a cross between the following:

� Data types, such as long and string, which can be passed by value
over the wire as arguments to remote invocations.

� Objects, which can only be passed by reference.

When a program supplies an object reference, the object remains in its
original location; subsequent invocations on that object from other address
spaces move across the network, rather than the object moving to the site of
each request.

Valuetype Support Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is
passed as an argument to a remote operation, the receiving address space
creates a copy of it. The copied valuetype exists independently of the
original; operations that are invoked on one have no effect on the other.

Valuetype Invocations Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

Valuetype Implementations Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype�s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.
 290

Interfaces
Abstract Interfaces

Overview An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

IDL Abstract Interface Sample In the following example, the IDL definitions specify that the
Example::display() operation accepts any derivation of the abstract
interface, Describable:

Abstract Interface IDL Sample Based on the preceding IDL, you can define two derivations of the
Describable abstract interface�the Currency valuetype and the Account
interface:

abstract interface Describable {
string get_description();

};

interface Example {
void display(in Describable someObject);

};

interface Account : Describable {
// body of Account definition not shown

};

valuetype Currency supports Describable {
// body of Currency definition not shown

};

Note: Because the parameter for display() is defined as a Describable
type, invocations on this operation can supply either Account objects or
Currency valuetypes.
291

CHAPTER 12 | Introduction to OMG IDL
IDL Data Types

In This Section The following topics are discussed in this section:

Data Type Categories In addition to IDL module, interface, valuetype, and exception types, IDL
data types can be grouped into the following categories:

� Built-in types such as short, long, and float.

� Extended built-in types such as long long and wstring.

� Complex types such as enum, struct, and string.

� Pseudo objects.

Built-in Data Types page 293

Extended Built-in Data Types page 296

Complex Data Types page 299

Enum Data Type page 300

Struct Data Type page 301

Union Data Type page 302

Arrays page 304

Sequence page 305

Pseudo Object Types page 306
 292

IDL Data Types
Built-in Data Types

List of Types, Sizes, and Values Table 4 shows a list of CORBA IDL built-in data types (where the ≤ symbol
means �less than or equal to�).

Floating Point Types The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

Table 4: Built-in IDL Data Types, Sizes, and Values

Data type Size Range of values

short ≤ 16 bits -215...215-1

unsigned short ≤ 16 bits 0...216-1

long ≤ 32 bits �231...231-1

unsigned long ≤ 32 bits 0...232-1

float ≤ 32 bits IEEE single-precision floating
point numbers

double ≤ 64 bits IEEE double-precision
floating point numbers

char ≤ 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound> Variable length ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE

octet ≤ 8 bits 0x0 to 0xff

any Variable length Universal container type
293

CHAPTER 12 | Introduction to OMG IDL
Char Type The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

String Type The string type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as string<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL
character. Thus, a string<6> can contain the six-character string, cheese.

Bounded and Unbounded Strings The declaration statement can optionally specify the string�s maximum
length, thereby determining whether the string is bounded or unbounded:

For example, the following code declares the ShortString type, which is a
bounded string with a maximum length of 10 characters:

Octet Type Octet types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, because characters might be subject to
translation during transmission. For example, if a client that uses ASCII
sends a string to a server that uses EBCDIC, the sender and receiver are
liable to have different binary values for the string�s characters.

Any Type The any type allows specification of values that express any IDL type, which
is determined at runtime, thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this

string[length] name

typedef string<10> ShortString;
attribute ShortString shortName; // max length is 10 chars
 294

IDL Data Types
call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the typecode. See
the CORBA Programmer�s Guide, C++ for more details about the any type.
295

CHAPTER 12 | Introduction to OMG IDL
Extended Built-in Data Types

List of Types, Sizes, and Values Table 5 shows a list of CORBA IDL extended built-in data types (where the
≤ symbol means �less than or equal to�).

Long Long Type The 64-bit integer types, long long and unsigned long long, support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

Table 5: Extended built-in IDL Data Types, Sizes, and Values

Data Type Size Range of Values

long longa ≤ 64 bits �263...263-1

unsigned long longa ≤ 64 bits 0...-264-1

long doubleb ≤ 79 bits IEEE double-extended
floating point number, with
an exponent of at least 15
bits in length and a signed
fraction of at least 64 bits.
The long double type is
currently not supported on
Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable
length

Arbitrary codesets

fixedc Unspecified ≤ 31significant digits

a. Due to compiler restrictions, the COBOL range of values for the long long
and unsigned long long types is the same range as for a long type (that
is, 0�231-1).

b. Due to compiler restrictions, the COBOL range of values for the long double
type is the same range as for a double type (that is, ≤ 64 bits).

c. Due to compiler restrictions, the COBOL range of values for the fixed type is
≤ 18 significant digits.
 296

IDL Data Types
Long Double Type Like 64-bit integer types, platform support varies for the long double type,
so its use can yield IDL compiler errors.

Wchar Type The wchar type encodes wide characters from any character set. The size of
a wchar is platform-dependent. Because Orbix 2000 currently does not
support character set negotiation, use this type only for applications that are
distributed across the same platform.

Wstring Type The wstring type is the wide-character equivalent of the string type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

Fixed Type IDL specifies that the fixed type provides fixed-point arithmetic values with
up to 31 significant digits. However, due to restrictions in the COBOL
compiler for OS/390, only up to 18 significant digits are supported.

You specify a fixed type with the following format:

The format for the fixed type can be explained as follows:

� The digit-size represents the number�s length in digits. The
maximum value for digit-size is 31 and it must be greater than
scale. A fixed type can hold any value up to the maximum value of a
double type.

� If scale is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount, to have a digit size of 10 and a
scale of 2:

Given this typedef, any variable of the CashAmount type can contain
values of up to (+/-)99999999.99.

typedef fixed<digit-size,scale> name

typedef fixed<10,2> CashAmount;
297

CHAPTER 12 | Introduction to OMG IDL
� If scale is a negative integer, the decimal point moves to the right by
the number of digits specified for scale, thereby adding trailing zeros
to the fixed data type�s value. For example, the following code declares
a fixed type, bigNum, to have a digit size of 3 and a scale of -4:

If myBigNum has a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant Fixed Types Constant fixed types can also be declared in IDL, where digit-size and
scale are automatically calculated from the constant value. For example:

This yields a fixed type with a digit size of 7, and a scale of 6.

Fixed Type and Decimal Fractions Unlike IEEE floating-point values, the fixed type is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value, 0.1, cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fixed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

typedef fixed <3,-4> bigNum;
bigNum myBigNum;

module Circle {
const fixed pi = 3.142857;

};
 298

IDL Data Types
Complex Data Types

IDL Complex Data Types IDL provide the following complex data types:

� Enums.

� Structs.

� Multi-dimensional fixed-sized arrays.

� Sequences.
299

CHAPTER 12 | Introduction to OMG IDL
Enum Data Type

Overview An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

Enum IDL Sample For example, you can modify the BankDemo IDL with the balanceCurrency
enum type:

In the preceding example, the balanceCurrency attribute in the Account
interface can take any one of the values pound, dollar, yen, or franc.

Ordinal Values of Enum Type The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dollar is greater than pound, yen is greater than
dollar, and so on. All enumerators are mapped to a 32-bit type.

module BankDemo {
enum Currency {pound, dollar, yen, franc};

interface Account {
 readonly attribute CashAmount balance;
 readonly attribute Currency balanceCurrency;
 //…
};

};
 300

IDL Data Types
Struct Data Type

Overview A struct type lets you package a set of named members of various types.

Struct IDL Sample In the following example, the CustomerDetails struct has several members.
The getCustomerDetails() operation returns a struct of the
CustomerDetails type, which contains customer data:

module BankDemo{
struct CustomerDetails {
 string custID;
 string lname;
 string fname;
 short age;
 //…
};

interface Bank {
 CustomerDetails getCustomerDetails(in string custID);
 //…
};

};

Note: A struct type must include at least one member. Because a struct
provides a naming scope, member names must be unique only within the
enclosing structure.
301

CHAPTER 12 | Introduction to OMG IDL
Union Data Type

Overview A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

Union Declaration Syntax You declare a union type with the following syntax:

Discriminated Unions All IDL unions are discriminated. A discriminated union associates a
constant expression (label1…labeln) with each member. The
discriminator�s value determines which of the members is active and stores
the union�s value.

IDL Union Date Sample The following IDL defines a Date union type, which is discriminated by an
enum value:

union name switch (discriminator) {
case label1 : element-spec;
case label2 : element-spec;
[…]
case labeln : element-spec;
[default : element-spec;]

};

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
short Day;
short Month;
short Year;

};
union Date switch (dateStorage) {

case numeric: long digitalFormat;
case strMMDDYY:
case strDDMMYY: string stringFormat;
default: DateStructure structFormat;

};
 302

IDL Data Types
Sample Explanation Given the preceding IDL:

� If the discriminator value for Date is numeric, the digitalFormat
member is active.

� If the discriminator�s value is strMMDDYY or strDDMMYY, the
stringFormat member is active.

� If neither of the preceding two conditions apply, the default
structFormat member is active.

Rules for Union Types The following rules apply to union types:

� A union�s discriminator can be integer, char, boolean, enum, or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

� Because a union provides a naming scope, member names must be
unique only within the enclosing union.

� Each union contains a pair of values: the discriminator value and the
active member.

� IDL unions allow multiple case labels for a single member. In the
previous example, the stringFormat member is active when the
discriminator is either strMMDDYY or strDDMMYY.

� IDL unions can optionally contain a default case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.
303

CHAPTER 12 | Introduction to OMG IDL
Arrays

Overview IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where dimension-spec must be a non-zero positive
constant integer expression):

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

Array IDL Sample For example, the following defines a two-dimensional array of bank
accounts within a portfolio:

Array Indexes Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C++
array indexes always start at 0, but COBOL, PL/I, and Pascal always start at
1. Consequently, clients and servers cannot exchange array indexes unless
they both agree on the origin of array indexes and make adjustments, as
appropriate, for their respective implementation languages. Usually, it is
easier to exchange the array element itself, instead of its index.

[typedef] element-type array-name [dimension-spec]…

typedef Account portfolio[MAX_ACCT_TYPES][MAX_ACCTS]

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.
 304

IDL Data Types
Sequence

Overview IDL supports sequences of any IDL data type with the following syntax:

[typedef] sequence < element-type[, max-elements] > sequence-name

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration. You can omit a
typedef declaration only for a sequence that is declared within a structure
definition.

A sequence�s element type can be of any type, including another sequence
type. This feature is often used to model trees.

Bounded and Unbounded
Sequences

The maximum length of a sequence can be fixed (bounded) or unfixed
(unbounded):

� Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

� Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

Bounded and Unbounded IDL
Definitions

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimitedAccounts {
string bankSortCode<10>;
sequence<Account, 50> accounts; // max sequence length is 50

};

struct UnlimitedAccounts {
string bankSortCode<10>;
sequence<Account> accounts; // no max sequence length

};
305

CHAPTER 12 | Introduction to OMG IDL
Pseudo Object Types

Overview CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

Defining You can use only the following pseudo-object types as attribute or operation
parameter types in an IDL specification:

To use these types in an IDL specification, include the orb.idl file in the
IDL file as follows:

This statement instructs the IDL compiler to allow the NamedValue and
TypeCode types.

CORBA::NamedValue
CORBA::TypeCode

#include <orb.idl>
//…
 306

Defining Data Types
Defining Data Types

Overview With typedef, you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or
user-defined.

The following code defines the typedef identifier, StandardAccount, so that
it can act as an alias for the Account type in later IDL definitions:

In This Section This section contains the following subsections:

module BankDemo {
interface Account {
 //…
};

typedef Account StandardAccount;
};

Constants page 308

Constant Expressions page 311
307

CHAPTER 12 | Introduction to OMG IDL
Constants

Overview IDL lets you define constants of all built-in types except the any type. To
define a constant�s value, you can use either another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

Integer Constants IDL accepts integer literals in decimal, octal, or hexadecimal:

Both unary plus and unary minus are legal.

Floating-Point Constants Floating-point literals use the same syntax as C++:

const short I1 = -99;
const long I2 = 0123; // Octal 123, decimal 83
const long long I3 = 0x123; // Hexadecimal 123, decimal 291
const long long I4 = +0xaB; // Hexadecimal ab, decimal 171

const float f1 = 3.1e-9; // Integer part, fraction part,
 // exponent
const double f2 = -3.14; // Integer part and fraction part
const long double f3 = .1 // Fraction part only
const double f4 = 1. // Integer part only
const double f5 = .1E12 // Fraction part and exponent
const double f6 = 2E12 // Integer part and exponent
 308

Defining Data Types
Character and String Constants Character constants use the same escape sequences as C++:

Wide Character and String
Constants

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean Constants Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

const char C1 = 'c'; // the character c
const char C2 = '\007'; // ASCII BEL, octal escape
const char C3 = '\x41'; // ASCII A, hex escape
const char C4 = '\n'; // newline
const char C5 = '\t'; // tab
const char C6 = '\v'; // vertical tab
const char C7 = '\b'; // backspace
const char C8 = '\r'; // carriage return
const char C9 = '\f'; // form feed
const char C10 = '\a'; // alert
const char C11 = '\\'; // backslash
const char C12 = '\?'; // question mark
const char C13 = '\''; // single quote
// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters
 // ('\xA' and 'B'),
 // not the single character '\xAB'

const wchar C = L'X';
const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';
const wstring OMEGA_STR = L"Omega: \u3A9";

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing
309

CHAPTER 12 | Introduction to OMG IDL
Octet Constants Octet constants are positive integers in the range 0-255.

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

Fixed-Point Constants For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration Constants Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

const octet O1 = 23;
const octet O2 = 0xf0;

// Fixed point constants take digits and scale from the
// initializer:
const fixed val1 = 3D; // fixed<1,0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

enum Size { small, medium, large }

const Size DFL_SIZE = medium;
const Size MAX_SIZE = ::large;
 310

Defining Data Types
Constant Expressions

Overview IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for %, which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

Arithmetic Operators The following code contains several examples of arithmetic operators:

Evaluating Expressions for
Arithmetic Operators

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

Bitwise Operators Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

// You can use arithmetic expressions to define constants.
const long MIN = -10;
const long MAX = 30;
const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE_PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT);

// You can use bitwise operators to define constants.
const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff
311

CHAPTER 12 | Introduction to OMG IDL
IDL guarantees two�s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.
 312

CHAPTER 13

Mapping CORBA
to Automation
CORBA types are defined in OMG IDL. Automation types are
defined in object definition language (ODL). To allow
interworking between Automation clients and CORBA servers,
Automation clients must be presented with ODL versions of
the interfaces exposed by CORBA objects. Therefore, it must
be possible to translate CORBA types to ODL. This chapter
outlines the CORBA-to-Automation mapping rules.

In This Chapter This chapter discusses the following topics:

Mapping for Basic Types page 315

Mapping for Strings page 317

Mapping for Interfaces page 318

Mapping for Complex Types page 331

Mapping for Object References page 348

Mapping for Modules page 351

Mapping for Constants page 352

Mapping for Enums page 353
313

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Scoped Names page 355

Mapping for Typedefs page 356

Note: For the purposes of illustration, this chapter describes a textual
mapping between OMG IDL and COM IDL. COMet itself does not require
this textual mapping to take place, because it includes a dynamic
marshalling engine. The textual mappings shown in this chapter are
automatically performed by COMet at application runtime.
 314

Mapping for Basic Types
Mapping for Basic Types

Overview OMG IDL basic types translate to compatible types in Automation.

Mapping Rules Table 6 shows the mapping rules for each basic type.

Limitations The types supported by OMG IDL and Automation do not correspond
exactly, because Automation offers a more limited support for basic types.
For example, Automation does not support unsigned types (that is, unsigned
short or unsigned long). In some cases, the mapping rules involve a type
promotion, to avoid data loss (for example, translating OMG IDL unsigned

Table 6: CORBA-to-Automation Mapping Rules for Basic Types

OMG IDL Description COM IDL Description

boolean Unsigned char, 8-bit

0 = FALSE
1 = TRUE

VARIANT_BOOL 16-bit integer

0 = FALSE
1 = TRUE

char 8-bit quantity UI1a 8-bit unsigned
integer

double IEEE 64-bit float double IEEE 64-bit float

float IEEE 32-bit float float IEEE 32-bit float

long 32-bit integer long 32-bit integer

octet 8-bit quantity UI1 8-bit unsigned
integer

short 16-bit integer short 16-bit integer

unsigned

long

32-bit integer long 32-bit integer

unsigned

short

16-bit integer long 32-bit integer

a. UI1 is supported in Windows 32-bit programs.
315

CHAPTER 13 | Mapping CORBA to Automation
short to Automation long.) In other cases, the mapping rules involve a type
demotion (for example, translating OMG IDL unsigned long to Automation
long.)

Bidirectional Translation An Automation view interface provides an Automation client with an
Automation view of a CORBA object. An operation of an Automation view
interface uses the mapping rules shown in Table 6 on page 315, to perform
bidirectional translation of parameters and return types between Automation
and CORBA. It translates in parameters from Automation to CORBA, and
translates out parameters from CORBA back to Automation.

Runtime Errors Because there is not an exact correspondence between the types supported
by Automation and CORBA, the following translations performed by an
Automation view operation result in a runtime error:

� Translating an in parameter of the Automation long type to the OMG
IDL unsigned long type, if the value of the Automation long parameter
is a negative number.

� Demoting an in parameter of the Automation long type to the OMG
IDL unsigned short type, if the value of the Automation long
parameter is either negative or greater than the maximum value of the
OMG IDL unsigned short type.

� Demoting an out parameter of the OMG IDL unsigned long type back
to the Automation long type, if the value of the OMG IDL unsigned
long parameter is greater than the maximum value of the Automation
long type.
 316

Mapping for Strings
Mapping for Strings

Overview OMG IDL bounded and unbounded strings map to an Automation BSTR.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following COM IDL:

Note: A runtime error occurs when mapping a fixed-length OMG IDL
string, if the BSTR exceeds the maximum length of the OMG IDL string.

// OMG IDL
// This definition might appear within a struct definition.
string name<20>;
string address;

// COM IDL
BSTR name;
BSTR address;
317

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Interfaces

Overview This section describes how OMG IDL interfaces map to Automation.

In This Section This section discusses the following topics:

Basic Interface Mapping page 319

Mapping for Attributes page 321

Mapping for Operations page 323
 318

Mapping for Interfaces
Basic Interface Mapping

Overview An OMG IDL interface maps to an Automation view interface.

Example The example can be broken down as follows:

1. Consider the following OMG IDL interface, Bank:

2. The preceding OMG IDL maps to the following Automation view
interface, DIBank:

The DIBank Interface As shown in Figure 38 on page 320, the Automation view in the bridge
supports the DIBank interface. Any Automation controller can use the
DIBank interface to invoke operations on the Automation view. The view
forwards the request to the target Bank object in the CORBA server.

The DIBank interface is an Automation dual interface. A dual interface is a
COM vtable-based interface that derives from IDispatch. This means that
its methods can be either late-bound, using IDispatch::Invoke, or
early-bound through the vtable portion of the interface.

Standard Automation View
Interfaces

The Automation view also supports the following interfaces, by default:

� IUnknown and IDispatch, required by all Automation objects.

// OMG IDL
interface Bank
{

// Attributes and operations here;
…

};

// COM IDL
// Definitions that are not of interest here.

[oleautomation, dual, uuid(…)]
interface DIBank : IDispatch
{

// Properties and methods here.
…

}

319

CHAPTER 13 | Mapping CORBA to Automation
� DIForeignObject, required by all views.

� DICORBAObject, required by all CORBA objects.

� DIOrbixObject, supported by all Orbix objects.

Graphical Overview Figure 38 provides a graphical overview of the interfaces that the
Automation view object supports, based on the example of the OMG IDL
Bank interface.

Figure 38: Automation View of the Bank Interface

IDispatch

1ForeignObject

DICORBAObject

DIOrbixObject

IUnknown
 320

Mapping for Interfaces
Mapping for Attributes

Overview An OMG IDL attribute maps to an Automation property, as follows:

� A normal attribute maps to a property that has a method to set the
value and a method to get the value.

� A readonly attribute maps to a property that only has a method to get
the value.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following in Automation:

// OMG IDL
interface Account
{

attribute float balance;
readonly attribute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);

};

// COM IDL
[oleautomation, dual, uuid(…)]
interface DIAccount : IDispatch
{

HRESULT makeLodgement ([in] float amount,
 [out] float * balance,
 [optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal ([in] float amount,
 [out] float * balance,
 [optional, out] VARIANT * excep_OBJ);
[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner([retval,out] BSTR * val);

}

Note: The get method returns the attribute value contained in the
[retval,out] parameter.
321

CHAPTER 13 | Mapping CORBA to Automation
Visual Basic Example The following is a Visual Basic example of how to set and get the balance of
an account object, accountObj:

PowerBuilder Example The following is a PowerBuilder example of how to set and get the balance
of an account object, accountObj:

' Visual Basic
Set accountObj = … ' Get a reference to an Account object.

Dim myBalance as Single

' Set the balance of accountObj:
accountObj.balance = 150.22

' Get the balance of accountObj:
myBalance = accountObj.balance

// PowerBuilder
… // Get a reference to an Account object.

integer myBalance

myBalance = accountObj.balance
accountObj.balance myBalance
 322

Mapping for Interfaces
Mapping for Operations

Overview An OMG IDL operation maps to an Automation method.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following in Automation:

Rules for Parameter Passing The following mapping rules apply for parameter-passing modes:

� An OMG IDL in parameter maps to an Automation [in] parameter.

� An OMG IDL out parameter maps to an Automation [out] parameter.

� An OMG IDL inout parameter maps to an Automation [in,out]
parameter.

Rules for Return Types The following mapping rules apply for return types:

� An OMG IDL void return type does not need any translation.

// OMG IDL
interface Account {

void makeDeposit(in float amount, out float balance);
float calculateInterest();
…

};

// COM IDL
[oleautomation, dual,uuid(…),helpstring("Account")]
interface DIAccount : IDispatch {

[id(100)] HRESULT makeDeposit (
 [in] float it_amount,
 [in,out] float *it_balance,
 [optional,in,out] VARIANT *IT_Ex);
[id(101)] HRESULT calculateInterest (
 [optional,in,out] VARIANT *IT_Ex,
 [retval,out] float *IT_retval);

}

323

CHAPTER 13 | Mapping CORBA to Automation
� An OMG IDL return type that is not void maps to an Automation
[retval,out] parameter. A CORBA operation�s return value is
therefore mapped to the last argument in the corresponding operation
of the Automation view interface.

� All operations on the Automation view interface have an optional out
parameter of the VARIANT type. This parameter appears before the
return type and is used to return exception information. See �Mapping
for System Exceptions� on page 343 for more information.

� If the CORBA operation has no return value, the optional out
parameter of the VARIANT type is the last parameter in the
corresponding Automation operation. If the CORBA operation does
have a return value, the optional parameter appears directly before the
return value in the corresponding Automation operation. This is
because the return value must always be the last parameter.

Visual Basic Example The following is a Visual Basic example, based on the generated definitions
in the preceding COM IDL example:

' Visual Basic
Dim interest, amount As Single
…
' Get a reference to an Account object:
accountObj.makeDeposit amount, balance
interest = accountObj.calculateInterest
 324

Mapping for Interface Inheritance
Mapping for Interface Inheritance

Overview This section describes the CORBA-to-Automation mapping rules for both
single and multiple interface inheritance.

In This Section This section discusses the following topics:

Mapping for Single Inheritance page 326

Mapping for Multiple Inheritance page 328
325

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Single Inheritance

Overview A hierarchy of singly-inherited OMG IDL interfaces maps to an identical
hierarchy of Automation view interfaces.

Example The example can be broken down as follows:

1. Consider the following OMG IDL interface, account, and its derived
interface, checkingAccount:

2. The preceding OMG IDL maps to the following Automation view
interfaces:

// OMG IDL
{

interface account
{
 attribute float balance;
 readonly attribute string owner;
 void makeLodgement(in float amount, out float balance);
 void makeWithdrawal(in float amount, out float
 theBalance);
};

interface checkingAccount:account
{
readonly attribute float overdraftLimit;
boolean orderChequeBook();
};

};
 326

Mapping for Interface Inheritance
// COM IDL
[oleautomation, dual, uuid(…)]
interface account:IDispatch
{

HRESULT makeLodgement ([in] float amount,
 [out] float * balance),
 [optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal ([in] float amount,
 [out] float * balance),
 [optional, out] VARIANT * excep_OBJ);
 [propget] HRESULT balance([retval,out] float * val);
 [propput] HRESULT balance([in] float balance);
 [propget] HRESULT owner([retval,out] BSTR * val);

};
[oleautomation, dual, uuid(…)]
interface checkingAccount:account
{

HRESULT orderChequeBook ([optional, out] VARIANT *
excep_OBJ,

 [retval, out] short * val);
[propget] HRESULT overdraftLimit ([retval, out] short *

val);
};
327

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Multiple Inheritance

Overview Automation does not support multiple inheritance. Therefore, a direct
mapping of a CORBA inheritance hierarchy using multiple inheritance is not
possible. This mapping splits such a hierarchy, at the points of multiple
inheritance, into multiple singly-inherited strands. The mechanism for
determining which interfaces appear on which strands is based on a
left-branch traversal of the inheritance tree.

Interface Hierarchy Example Figure 39 provides a graphical example of a CORBA interface hierarchy.

Interface Hierarchy Explanation In Figure 39, the hierarchy can be read as follows:

� Account and Simple derive from Bank.

� CheckingDetails derives from Account and Simple.

� Miscellaneous derives from CheckingDetails.

Figure 39: Example of a CORBA Interface Hierarchy

Bank

Account Simple

CheckingDetails

Miscellaneous
 328

Mapping for Interface Inheritance
In this example, CheckingDetails is the point of multiple inheritance. The
CORBA hierarchy maps to two Automation single-inheritance hierarchies
(that is, Bank-Account-CheckingDetails and Bank-Simple. The leftmost
strand is the main strand, which is Bank-Account-CheckingDetails.

To accomodate access to all of the object�s methods, the operations of the
secondary strands are aggregated into the interface of the main strand at the
points of multiple inheritance. The operations of the Simple interface are
therefore added to CheckingDetails. This means CheckingDetails has all
the methods of the hierarchy, and an Automation controller holding a
reference to CheckingDetails can access all the methods of the hierarchy
without having to call QueryInterface.

Code Example The example can be broken down as follows:

1. Consider the following OMG IDL, which represents an interface
hierarchy based on the example shown in Figure 39 on page 328:

2. The preceding OMG IDL maps to the following two Automation view
hierarchies:

// OMG IDL
{

interface Bank {
 void OpBank();
};
interface Account : Bank {
 void OpAccount();
};
interface Simple : Bank {
 void OpSimple();
};
interface CheckingDetails : Account, Simple {
 void OpCheckingDetails();
};
interface Miscellaneous : CheckingDetails {
 void OpMiscellaneous();
};

};
329

CHAPTER 13 | Mapping CORBA to Automation
// COM IDL
// strand 1:Bank-Account-CheckingDetails
[oleautomation, dual, uuid(…)]
interface Bank:IDispatch
{

HRESULT OpBank([optional, out] VARIANT * excep_OBJ);
}
[oleautomation, dual, uuid(…)]
interface Account:Bank
{

HRESULT OpAccount([optional, out] VARIANT * excep_OBJ);
}
[oleautomation, dual, uuid(…)]
interface CheckingDetails:Account
{

// Aggregated operations of Simple
HRESULT OpSimple([optional, out] VARIANT * excep_OBJ);
// Normal operations of CheckingDetails
HRESULT OpCheckingDetails([optional, out] VARIANT *

excep_OBJ);
}

// strand 2:Bank-Simple
[oleautomation, dual, uuid(…)]
interface Simple:Bank
{

HRESULT OpSimple([optional, out] VARIANT * excep_OBJ);
}

 330

Mapping for Complex Types
Mapping for Complex Types

Overview Translation is straightforward where there is a direct Automation counterpart
for a CORBA type. However, Automation has no data type corresponding to
a user-defined complex type. CORBA complex types are therefore mapped
to Automation view interfaces. Each element in the complex type maps to a
property in the Automation view, with a get method to retrieve its value,
and a set method to alter its value.

In This Section This section discusses the following topics:

Creating Constructed OMG IDL Types page 332

Mapping for Structs page 333

Mapping for Unions page 335

Mapping for Sequences page 339

Mapping for Arrays page 342

Mapping for System Exceptions page 343

Mapping for User Exceptions page 345

Mapping for the Any Type page 347

Note: There is no standard CORBA-to-Automation mapping specified for
OMG IDL context clauses.
331

CHAPTER 13 | Mapping CORBA to Automation
Creating Constructed OMG IDL Types

Pseudo-Automation Interfaces OMG IDL constructed types such as struct, union, and exception map to
pseudo-Automation interfaces. The OMG Interworking Architecture
specification at ftp://ftp.omg.org/pub/docs/formal/01-12-55.pdf chose
this translation, because Automation does not allow Automation constructed
types as valid parameter types.

Pseudo-Objects Pseudo-objects, which implement pseudo-Automation interfaces, do not
expose the IForeignObject interface. Instead, the matching Automation
interface for a constructed type exposes the DIForeignComplexType
interface.

The CreateType() Method To create a complex OMG IDL type, you can use the CreateType() method,
which is defined on the DICORBAFactoryEx interface. The CreateType()
method creates an Automation object that is an instance of an OMG IDL
constructed type.

Prototype for CreateType() The prototype for CreateType() is:

Parameters for CreateType() The parameters for CreateType() can be explained as follows:

� The scope parameter refers to the scope in which the type should be
interpreted. To indicate global scope, pass Nothing in this parameter.

� The typename parameter is the name of the complex type you want to
create.

You can create an object that represents an OMG IDL constructed type in a
client, to pass it as an in or inout parameter to an OMG IDL operation. You
can create an object that represents an OMG IDL constructed type in a
server, to return it as an out or inout parameter, or return value, from an
OMG IDL operation.

See �Mapping for Structs� on page 333, �Mapping for Unions� on
page 335, and �Mapping for System Exceptions� on page 343 for examples
of how to use CreateType() to create structs, unions, and exceptions.

CreateType([in] IDispatch* scope, [in] BSTR typename)
 332

Mapping for Complex Types
Mapping for Structs

Overview An OMG IDL struct maps to an Automation interface of the same name that
supports the DICORBAStruct interface. DICORBAStruct, in turn, derives from
the DIForeignComplexType interface. DICORBAStruct does not define any
methods. It is used to identify that the interface is mapped from a struct.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL is mapped as if it were defined as follows:

// OMG IDL
struct AccountDetails
{

long number;
float balance;

};

// OMG IDL
interface AccountDetails
{

attribute long number;
attribute float balance;

};
333

CHAPTER 13 | Mapping CORBA to Automation
Graphical Overview Figure 40 provides a graphical overview of the interfaces that the
Automation view object supports, based on the example of the OMG IDL
AccountDetails struct.

Visual Basic Example The following is a Visual Basic example, based on the preceding OMG IDL
definition:

Figure 40: Automation View of the OMG IDL AccoutDetails Struct

1Dispatch

D1ForeignComplexType

DICORBAStruct

1Unknown

' Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactoryEx
Dim details As BankBridge.DIAccountDetails
…
Set details = ObjFactory.CreateType(Nothing, "AccountDetails")

details.balance = 1297.66
details.number = 109784
 334

Mapping for Complex Types
Mapping for Unions

Overview An OMG IDL union maps to an Automation interface that exposes the
DICORBAUnion interface. DICORBAUnion, in turn, derives from the
DIForeignComplexType interface. DICORBAUnion does not define any
methods. It is used to identify that the interface is translated from a union.

DICORBAUnion Interface The following is a synopsis of the DICORBAUnion interface:

DICORBAUnion has one method, Union_d, which returns the current value of
the union�s discriminant.

DICORBAUnion2 Interface The DICORBAUnion2 interface is defined to describe CORBA union types that
support multiple case labels for each union branch. All mapped unions
should support the DICORBAUnion2 interface.The DICORBAUnion2 provides
two additional accessor methods, as follows:

DICORBAUnion2 Methods The methods provided by DICORBAUnion2 can be described as follows:

[oleautomation,dual,uuid(…)]
interface DICORBAUnion : DIForeignComplexType {
[id(400)] HRESULT Union_d ([retval,out] VARIANT * val);
};

// COM IDL
[oleautomation, dual, uuid(…)]
interface DICORBAUnion2:DICORBAUnion
{

HRESULT SetValue([in] long disc, [in] VARIANT val);
[propget, id(-4)]
HRESULT CurrentValue([out, retval] VARIANT * val);

};

SetValue This can be used to set the discriminant and value
simultaneously.

CurrentValue This uses the current discriminant value to initialize the
VARIANT with the union element.
335

CHAPTER 13 | Mapping CORBA to Automation
Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Automation
pseudo-union::

3. The following Visual Basic example is based on the preceding COM
IDL:

// OMG IDL
interface A {…};

union U switch(long) {
case 1: long l;
case 2: float f;
default: A obj;

};

// COM IDL
interface DIU : DICORBAUnion2{

[propget] HRESULT get_UNION_d([retval,out] long * val);
[propget] HRESULT 1([retval,out] long * 1);
[propget] HRESULT 1([in] long 1);
[propget] HRESULT f([retval,out] float * f);
[propget] HRESULT f([in] float f);
[propget] HRESULT A([retval,out] DIA ** val);
[propget] HRESULT A([in] DIA * val);

};

' Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactoryEx
Dim myUnion As DIU

…

Set myUnion = ObjFactory.CreateType(Nothing, "U")

myUnion.s = "This is a string"

Select Case(myUnion.UNION_d())
Case 1: MsgBox ("Union (long):" & Str$(myUnion.l)
Case 2: MsgBox ("Union (float):" & Str$(myUnion.f)
Case Else : MsgBox ("Union contains object reference")

End Select
 336

Mapping for Complex Types
Explanation The preceding COM IDL example in point 2 can be explained as follows:

� The mapped Automation dual interface derives from the
DICORBAUnion2 interface. The UNION_d property returns the value of
the discriminant. The discriminant indicates the type of value that the
union holds. In this example, the value of UNION_d is 2, if the union, U,
contains a float type.

� For each member of the union, a property is generated in the matching
COM IDL interface to read the value of the member and to set the
value of the member. The property to set the value of a union member
also sets the value of the discriminant. Do not try to read the value of a
member, using a method that does not match the type of the
discriminant.

� The mapping for the OMG IDL default label is ignored, if the cases are
exhaustive over the permissible cases (for example, if the switch type
is boolean, and a case TRUE and a case FALSE are both defined).

Graphical Overview Figure 41 provides a graphical overview of the interfaces that the
Automation view object supports, based on the example of the OMG IDL
union, U.
337

CHAPTER 13 | Mapping CORBA to Automation
Figure 41: Automation View of the OMG IDL Union, U

IDispatch

D1ForeignComplexType

DICORBAUnion

DICORBAUnion2

IUnknown
 338

Mapping for Complex Types
Mapping for Sequences

Overview An OMG IDL sequence maps to an Automation SafeArray.

Mapping to SafeArrays An OMG IDL sequence maps to a VARIANT type containing an Automation
SafeArray. An OMG IDL bounded sequence maps to a fixed-size SafeArray. If
you pass a SafeArray that contains a different number of elements than that
required by the bounded sequence, it is automatically resized to the correct
size. An OMG IDL unbounded sequence maps to an empty SafeArray that
can grow or shrink to any size.

The COMet.Mapping.SAFEARRAYS_CONTAIN_VARIANTS configuration value
maps a sequence of any type to a SafeArray of VARIANT types containing the
real type.

Example The example can be broken down as follows:

1. Consider the following OMG IDL, which defines both a bounded and
unbounded sequence:

OMG IDL
module ModBank {

interface Transaction {…};

// A bounded sequence
typedef sequence<Transaction, 30> TransactionList;

interface Account {
 readonly attribute TransactionList statement;
 readonly attribute float balance;
 …
};

// An unbounded sequence
typedef sequence<Account> AccountList;

interface Bank {
 readonly attribute AccountList personalAccounts;
 AccountList sortAccounts(in AccountList toSort)
 …
};

};
339

CHAPTER 13 | Mapping CORBA to Automation
2. The preceding OMG IDL maps to the following in Automation:

// COM IDL
typedef [public] VARIANT ModBank_TransactionList

[oleautomation, dual, uuid(…)]
interface DIModBank_Transaction: IDispatch {}

typedef [public] VARIANT ModBank_AccountList;
[oleautomation, dual, uuid(…)]
interface DIModBank_Account: IDispatch {

[propget] HRESULT statement ([retval, out] IDispatch**
 IT_retval);
[propget] HRESULT balance ([retval, out] float*

IT_retval);
};

[oleautomation, dual, uuid(…)]
interface DIModBank_Bank: IDispatch {

[propget] HRESULT personalAccounts ([retval,out]
IDispatch** IT_reval);

HRESULT sortAccounts ([in] IDispatch* toSort,
 [optional, out] VARIANT* IT_Ex,
 [retval, out] IDispatch** IT_retval);

};
 340

Mapping for Complex Types
3. The following Visual Basic example is based on the preceding COM
IDL:

' Visual Basic
Dim myBank As IT_Library_Bank.DIModBank_Bank
Dim myAccounts As Variant
Dim tmpAccount As IT_Library_Bank.DIModBank_Account
Dim myBalance As Single

' Obtain a reference to a Bank object
Set myBank = …
Set myAccounts = ORBFactory.CreateType (Nothing,

“ModBank/AccountsList”)

For Each acc in myAccounts
acc.balance = 0.00

Next acc

' Access a member of myAccounts
myBalance = myAccounts(4).balance

' Obtain a reference to a member of myAccounts
Set tmpAccount = myAccounts(7)
myBalance = tmpAccount.balance
341

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Arrays

Overview The mapping for an OMG IDL array is similar to that for an OMG IDL
sequence. OMG IDL arrays can map to either Automation SafeArrays or OLE
collections.

Mapping to SafeArrays Multidimensional OMG IDL arrays map to VARIANT types containing
multidimensional SafeArrays. The order of dimensions in the OMG IDL
array, from left to right, corresponds to the ascending order of dimensions in
the SafeArray. An error occurs if the number of dimensions in an input
SafeArray does not match the CORBA type.

Mapping to OLE Collections Only single-dimension arrays can be supported when mapping to OLE
collections.
 342

Mapping for Complex Types
Mapping for System Exceptions

Overview The CORBA model uses exceptions to report error information. System
exceptions can be raised by any operation. However, system exceptions are
not defined at the OMG IDL level. A standard set of system exceptions is
defined by CORBA, and Orbix provides a number of additional system
exceptions. See the Orbix documentation set for details of the system
exceptions available.

A CORBA system exception maps to the DICORBASystemException
Automation interface, which is a pseudo-Automation interface (or
pseudo-exception) that derives from DIForeignException. See �COMet API
Reference� on page 217 for more details of these interfaces.

Example Consider the following example of how a CORBA system exception is
defined in Automation:

Explanation The attributes shown in the preceding example for system exceptions can be
described as follows:

// COM IDL
[oleautomation, dual, uuid(…)]
interface DICORBASystemException : DIForeignException
{

[propget] HRESULT EX_minorCode([retval,out] long * val);
[propget] HRESULT EX_completionStatus([retval,out] long *

val);
};

EX_minorCode This defines the type of system exception raised.
343

CHAPTER 13 | Mapping CORBA to Automation
EX_completionStatus This takes one of the following values:

� COMPLETION_YES = 0

� COMPLETION_NO = 1

� COMPLETION_MAYBE = 2

These values are specified as an enum in the type
library information, as follows:

typedef enum {COMPLETION_YES, COMPLETION_NO,
COMPLETION_MAYBE}

CORBA_CompletionStatus;
 344

Mapping for Complex Types
Mapping for User Exceptions

Overview The CORBA model uses exceptions to report error information. User
exceptions are defined in OMG IDL, and an OMG IDL operation can
optionally specify that it might raise a specific set of user exceptions.

An OMG IDL user-defined exception maps to an Automation interface that
has a corresponding property for each member of the exception. The
Automation interface derives from the DICORBAUserException interface.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following in Automation:

Graphical Overview for User
Exceptions

Figure 42 provides a graphical overview of the interfaces that the
Automation view object supports, based on the example of the OMG IDL
Bank::Reject exception.

// OMG IDL
exception Reject
{

string reason;
};

// COM IDL
[oleautomation, dual, uuid(…)]
interface DIreject : DICORBAUserException
{

[propget] HRESULT reason([retval,out] BSTR reason);
}

345

CHAPTER 13 | Mapping CORBA to Automation
Figure 42: Automation View of Bank_Reject

1Dispatch

D1ForeignComplexType

DIForeignException

1Unknown
 346

Mapping for Complex Types
Mapping for the Any Type

Overview The OMG IDL any type translates to an OLE VARIANT type.

Containing a Simple Type If the any contains a simple data type, it maps to a VARIANT type that
contains a corresponding simple type. See Table 6 on page 315 for details
of the mappings for basic types.

Containing a Complex Type If the any contains a complex type, the VARIANT type contains an IDispatch
view of the CORBA type.

Containing a Sequence or Array If the any contains a CORBA sequence or array type, the VARIANT type
contains an Automation SafeArray. See �Mapping for Sequences� on
page 339 and �Mapping for Arrays� on page 342 for more details.
347

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Object References

Overview When an OMG IDL operation returns an object reference, or passes an
object reference as an operation parameter, this is mapped as a reference to
an IDispatch interface in COM IDL.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

// OMG IDL
interface Simple
{

attribute short shortTest;
};
interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest, out Simple outTest,
 inout Simple inoutTest);
};

};
 348

Mapping for Object References
2. The preceding OMG IDL maps to the following in Automation:

IForeignObject Interface An Automation view interface must expose the IForeignObject interface in
addition to the interface that is isomorphic to the mapped CORBA interface.
IForeignObject provides a mechanism to extract a valid CORBA object
reference from a view object.

Consider an Automation view object, B, that is passed as an in parameter to
an operation, M, in view A. The M operation must somehow convert the B
view to a valid CORBA object reference. The sequence of events involving
IForeignObject::GetForeignReference is as follows:

1. The client calls Automation-View-A::M, passing an IDispatch-derived
pointer to Automation-View-B.

2. Automation-View-A::M calls IDispatch::QueryInterface for
IForeignObject.

3. Automation-View-A::M calls IForeignObject::GetForeignReference
to get the reference to the CORBA object of the B type.

4. Automation-View-A::M calls CORBA-Stub-A::M with the reference,
narrowed to the B interface type, as the object reference in parameter.

Visual Basic Example The following Visual Basic example is based on the preceding mapping rules
for object references:

// COM IDL
[oleautomation, dual, uuid(…)]
interface DISimple : IDispatch
{

[propget] HRESULT shortTest([retval,out] short * val);
[propput] HRESULT shortTest([in] short shortTest);

};
[oleautomation, dual, uuid(…)]
interface DIObjRefTest : IDispatch
{

HRESULT simpleOp([in] DISimple *inTest,
 [out] DISimple **outTest,
 [in,out] DISimple **inoutTest,
 [optional,out] VARIANT * excep_OBJ,
 [retval,out] DISimple ** val);
[propget] HRESULT simpleTest([retval,out] DISimple ** val);
[propput] HRESULT simpleTest ([in] DISimple * simpleTest);

};
349

CHAPTER 13 | Mapping CORBA to Automation
' Visual Basic
Dim bankObj As BankBridge.DIBank
Dim accountObj As BankBridge.DIAccount

' Get a reference to a Bank object
Set bankObj = …

' Get a reference to an Account object as a return value
Set accountObj = bankObj.newAccount "John"

' Use the returned object reference
accountObj.makeDeposit 231.98

' finished, delete the account
bankobj.deleteAccount accountObj
 350

Mapping for Modules
Mapping for Modules

Overview An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding Automation definition, by prefixing the name of
the Automation type definition with the name of the module.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following in Automation:

3. The preceding example can then be used as follows, for example, in
Visual Basic:

// OMG IDL
module Finance {

interface Bank {
…
};

};

// COM IDL
[oleautomation, dual, uuid(…), helpstring("Finance_Bank")]
interface DIFinance_Bank : IDispatch {

…
}

' Visual Basic
Dim bankObj As DIFinance_Bank
351

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Constants

Overview There is no Automation definition generated for an OMG IDL constant
definition, because Automation does not have the concept of a constant.
However, code can be generated for an Automation controller, if
appropriate.

If an OMG IDL constant is contained within an interface or module, its
translated name is prefixed by the name of the interface or module in the
Automation controller language. (See �Mapping for Scoped Names� on
page 355 for more details.)

Example The example can be broken down as follows:

1. Consider the following OMG IDL constant definition:

2. The preceding constant definition can be represented as follows in
Visual Basic:

Alternatively, the preceding constant definition in point 1 can be
represented as follows in PowerBuilder:

// OMG IDL
const long Max = 1000;

' Visual Basic
' In .BAS file
Global Const Max = 1000

// PowerBuilder
CONSTANT long Max=1000
 352

Mapping for Enums
Mapping for Enums

Overview A CORBA enum maps to an Automation enum.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following in Automation:

Runtime Errors Because Automation maps enum parameters to the platform�s integer type,
a runtime error occurs in the following situations:

� If the number of elements in the CORBA enum exceeds the maximum
value of an integer.

� If the actual parameter applied to the mapped parameter in the
Automation view interface exceeds the maximum value of the enum.

// OMG IDL
{
enum colour { white, blue, red };

interface foo
{
 void op1(in colour col);
};

};

// COM IDL
typedef [public,v1_enum] { white, blue, red } colour;
[oleautomation, dual, uuid(…)]
interface foo:IDispatch
{

HRESULT op1([in] colour col, [optional, out] VARIANT *
excep_OBJ);

}

353

CHAPTER 13 | Mapping CORBA to Automation
Enums within an Interface or
Module

If an OMG IDL enum is contained within an interface or module, its
translated name is prefixed with the name of the interface or module in the
Automation controller language. (See �Mapping for Scoped Names� on
page 355 for more details.)

Enums at Global Scope If an OMG IDL enum is declared at global OMG IDL scope, the name of the
enum should also be included in the constant name.
 354

Mapping for Scoped Names
Mapping for Scoped Names

Overview An OMG IDL scoped name maps to an Automation identifier where the
scope operator, ::, is replaced with an underscore.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL yields the scoped name,
Finance::Bank::PersonnelRecord.

3. The preceding scoped name maps to the Automation identifier,
Finance_Bank_PersonnelRecord.

// OMG IDL
module Finance {

interface Bank {
 struct PersonnelRecord {
 …
 };
 void addRecord(in PersonnelRecord r);
…
};

};
355

CHAPTER 13 | Mapping CORBA to Automation
Mapping for Typedefs

Overview The mapping of an OMG IDL typedef to Automation depends on the OMG
IDL type for which the typedef is defined. A typedef definition is most often
used for array and sequence definitions.

There is no mapping provided for typedefs for the basic OMG IDL types
listed in Table 6 on page 315. Therefore, a Visual Basic programmer cannot
make use of these typedef definitions for basic types.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL can be used as follows in Visual Basic:

// OMG IDL
module MyModule{

module Module2{
 module Module3{
 interface foo{};
 };
};

};
typedef MyModule::Module2::Module3::foo bar;

' Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule/Module2/Module3/foo”)
' Release the object
Set a = Nothing
' Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)
 356

CHAPTER 14

Mapping CORBA
to COM
CORBA types are defined in OMG IDL. COM types are defined
in Microsoft IDL. To allow interworking between COM clients
and CORBA servers, COM clients must be presented with
Microsoft IDL versions of the interfaces exposed by CORBA
objects. Therefore, it must be possible to translate CORBA
types to Microsoft IDL. This chapter outlines the
CORBA-to-COM mapping rules.

In This Chapter This chapter discusses the following topics:

Basic Types page 359

Mapping for Strings page 360

Mapping for Interfaces page 361

Mapping for Complex Types page 372

Mapping for Object References page 390

Mapping for Modules page 392

Mapping for Constants page 393

Mapping for Enums page 395
357

CHAPTER 14 | Mapping CORBA to COM
Mapping for Scoped Names page 397

Mapping for Typedefs page 398

Note: For the purposes of illustration, this chapter describes a textual
mapping between OMG IDL and Microsoft IDL. COMet itself does not
require this textual mapping to take place, because it includes a dynamic
marshalling engine. The textual mappings shown in this chapter are
actually performed by COMet at runtime.
 358

Basic Types
Basic Types

Overview OMG IDL basic types translate to compatible types in COM.

Mapping Rules Table 7 shows the mapping rules for each basic type.

Table 7: CORBA-to-COM Mapping Rules for Basic Types

OMG IDL Description Microsoft
IDL

Description

boolean Unsigned char, 8-bit

0 = FALSE
1 = TRUE

boolean 16-bit integer

0 = FALSE
1 = TRUE

char 8-bit quantity char 8-bit quantity

double IEEE 64-bit float double IEEE 64-bit float

float IEEE 32-bit float float IEEE 32-bit float

long 32-bit integer long 32-bit integer

octet 8-bit quantity unsigned

char

8-bit quantity

short 16-bit integer short 16-bit integer

unsigned

long

32-bit integer unsigned

long

32-bit integer

unsigned

short

16-bit integer unsigned

short

16-bit integer

unsigned

char

8-bit quantity unsigned

char

8-bit quantity
359

CHAPTER 14 | Mapping CORBA to COM
Mapping for Strings

Overview An OMG IDL string maps to a Microsoft IDL LPSTR, which is a
null-terminated 8-bit character string.

Example for Unbounded Strings The example can be broken down as follows:

1. Consider the following OMG IDL definition for an unbounded string:

2. The preceding OMG IDL maps to the following Microsoft IDL:

Example for Bounded Strings The example can be broken down as follows:

1. Consider the following OMG IDL definition for a bounded string:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
typedef string UNBOUNDED_STRING;

// Microsoft IDL
typedef [string, unique] char * UNBOUNDED_STRING;

// OMG IDL
const long N = …;
typdef string<N>BOUNDED_STRING;

// Microsoft IDL
const long N = …;
typdef [string, unique] char (*BOUNDED_STRING) [N];
 360

Mapping for Interfaces
Mapping for Interfaces

Overview This section describes how OMG IDL interfaces map to COM.

In This Section This section discusses the following topics:

Mapping Interface Identifiers page 362

Mapping for Nested Types page 363

Mapping for Attributes page 364

Mapping for Operations page 366
361

CHAPTER 14 | Mapping CORBA to COM
Mapping Interface Identifiers

Overview An OMG IDL repository ID maps to a Microsoft IDL IID. All COM views that
are mapped from a particular CORBA interface must share the same COM
IID.

MD5 Algorithm The mapping for interface identifiers is achieved by using a derivative of the
RSA Data Security Inc. MD5 Message-Digest algorithm. The repository ID
for the CORBA interface is fed into the algorithm to produce the IID, which
is a 128-bit hash identifier. (A hash is a number generated by a formula
from a text string.) The generated IID is then used for a COM view of a
CORBA interface.

DCE UUID One exception to the rule is if the repository ID is a DCE UUID, and the IID
generated is for a COM interface (as opposed to an Automation or
Automation dual interface). In this case, the DCE UUID (and not the
generated IID) is used as the IID. This is to allow a scenario where CORBA
server developers can implement existing COM interfaces.

Implicit Assumption The mapping for interface identifiers implicitly assumes that repository IDs
are identical across ORBs for the same interface, and unique across ORBs
for different interfaces. This is necessary if IIOP is to function correctly
across ORBs.
 362

Mapping for Interfaces
Mapping for Nested Types

Overview OMG IDL and Microsoft IDL do not share the same rules for the scoping
level of types declared within interfaces. OMG IDL considers a type to be
scoped within its enclosing module or interface. Microsoft IDL considers all
types to be declared at global scope. To avoid accidental name collisions,
therefore, types declared within OMG IDL interfaces and modules must be
fully qualified in Microsoft IDL.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
module MyModule {

interface MyInterface {
 enum type {TYPE1, TYPE2};
 struct MyStruct {
 string mystring;
 float myfloat;
 type mykind;
 };
 void myop (in MyStruct val);
};

// Microsoft IDL
[uuid(…), object]
interface IMyModule MyInterface : IUnknown {
 typedef [v1 enum] enum

 {MyModule MyInterface TYPE1,
 MyModule MyInterface TYPE2} MyModule MyInterface type;

 typedef struct {
 LPTSTR account;
 MyModule MyInterface type mykind;
 } MyModule MyInterface MyStruct;
 HRESULT myop (in MyModule MyInterface MyStruct *val);
};
363

CHAPTER 14 | Mapping CORBA to COM
Mapping for Attributes

Overview An OMG IDL attribute maps to a Microsoft IDL attribute, as follows:

� A normal attribute maps to a property that has a method to set the
value and a method to get the value.

� A readonly attribute maps to a property that only has a method to get
the value.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

// OMG IDL
struct CustomerData
{

CustomerId Id;
string Name;
string SurName;

};

#pragma ID “BANK::Account” “IDL:BANK/Account:3.1”
interface Account
{

readonly attribute float Balance;
float Deposit(in float amount) raises(InvalidAmount);
float Withdrawal(in float amount) raises(InsufFunds,
 InvalidAmount);
float Close();

};

#pragma ID “BANK::Customer” “IDL:BANK/Customer:1.2”
interface Customer
{

attribute CustomerData Profile:
};
 364

Mapping for Interfaces
2. The Profile attribute in the preceding OMG IDL maps to the following
Microsoft IDL:

The readonly attribute, Balance, in the preceding OMG IDL in point 1
maps to the following Microsoft IDL:

// Microsoft IDL
[object,uuid(…),pointer_default(unique)]
interface IBANK_Customer: IUnknown
{

HRESULT _get_Profile([out] BANK CustomerData * val);
HRESULT _put_Profile([in] BANK CustomerData * val);

};

// Microsoft IDL
[object,uuid(..)]
interface IBANK Account: IUnknown
{

HRESULT _get_Balance([out] float * val);
};

Note: The get method returns the attribute value contained in the [out]
parameter.
365

CHAPTER 14 | Mapping CORBA to COM
Mapping for Operations

Overview An OMG IDL operation maps to a Microsoft IDL method.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

Rules for Parameter Passing and
Return Types

The following mapping rules apply for parameter-passing modes and return
types:

� An OMG IDL in parameter maps to a Microsoft IDL [in] parameter.

� An OMG IDL out parameter maps to a Microsoft IDL [out] parameter.

� An OMG IDL inout parameter maps to a Microsoft IDL [in,out]
parameter.

// OMG IDL
#pragma ID “BANK::Teller” “IDL:BANK/Teller:1.2”
interface Teller
{

Account OpenAccount(in float StartingBalance,
 in AccountTypes AccountType);
void Transfer(in Account Account1,
 in Account Account2,
 in float Amount) raises (InSufFunds);

};

// Microsoft IDL
[object,uuid(…),pointer_default(unique)]
interface IBANK_Teller: IUnknown
{

HRESULT OpenAccount([in] float StartingBalance,
 [in] IBANK_AccountTypes AccountType,
 [out] IBANK_Account ** ppiNewAccount);
HRESULT Transfer([in] IBANK_Account * Account1,
 [in] IBANK_Account * Account2,
 [in] float Amount,
 [out] BANK_TellerExceptions ** ppException);

};
 366

Mapping for Interfaces
� An OMG IDL return type maps to a Microsoft IDL [out] parameter as
the last parameter in the signature.

Indirection Levels for Parameters The following rules exist for operation parameters in terms of indirection
levels:

� Integral types (for example, long, char, enum) are passed by value as
in parameters, and are passed by reference as out parameters.

� Strings are passed as LPSTR as in parameters, and are passed as
LPSTR* as out parameters.

� Complex types (for example, union, struct, exception) are always
passed by reference.

� Optional parameters are passed using double indirection (for example,
IntfException ** val).

Operations with Oneway Attribute An OMG IDL operation that is defined with the oneway attribute maps to
Microsoft IDL in the same way as an operation that has no output
arguments.
367

CHAPTER 14 | Mapping CORBA to COM
Mapping for Interface Inheritance

Overview CORBA and COM have different models for inheritance. CORBA interfaces
can be multiply inherited, but COM does not support multiple interface
inheritance.

Mapping Rules The CORBA-to-COM mapping rules for an interface hierarchy are as follows:

� Each OMG IDL interface name is preceded by the letter I in the
corresponding Microsoft IDL definition.

� If the interface is scoped by OMG IDL modules, using ::, this is
replaced by an underscore in Microsoft IDL (for example,
mymodule::myinterface maps to Imymodule_myinterface).

� Each OMG IDL interface that does not have a parent maps to a
Microsoft IDL interface derived from the IUnknown interface.

� Each OMG IDL interface that inherits from a single parent interface
maps to a Microsoft IDL interface derived from the mapping for the
parent interface.

� Each OMG IDL interface that inherits from multiple parent interfaces
maps to a Microsoft IDL interface derived from the IUnknown interface.
This Microsoft IDL interface then aggregates both base interfaces.

� For each CORBA interface, the mapping for operations precedes the
mapping for attributes.

� Operations are sorted in ascending order, based on the ISO Latin-1
encoding values of the respective operation names.

� Attributes are sorted in ascending order, based on the ISO Latin-1
encoding values of the respective attribute names. For read-write
attributes, the get_attribute_name method immediately precedes the
set_attribute_name method.
 368

Mapping for Interface Inheritance
Interface Hierarchy Example Figure 43 shows an example of a CORBA interface hierarchy.

Interface Hierarchy Explanation The hierarchy in Figure 43 can be explained as follows:

� Account and Simple derive from Bank.

� CheckingDetails derives from Account and Simple.

� Miscellaneous derives from CheckingDetails.

Figure 43: Example of a CORBA Interface Hierarchy

Bank

Account Simple

CheckingDetails

Miscellaneous
369

CHAPTER 14 | Mapping CORBA to COM
Code Example The example can be broken down as follows:

1. Consider the following OMG IDL, which represents an interface
hierarchy based on the example shown in Figure 43 on page 369:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
interface Bank
{

void opBank();
attribute long val;

};
interface Account : Bank
{

void opAccount();
};
interface Simple : Bank
{

void opSimple();
};
interface CheckingDetails : Account, Simple
{

void opCheckingDetails();
};
interface Miscellaneous : CheckingDetails
{

void opMiscellaneous();
};
 370

Mapping for Interface Inheritance
// Microsoft IDL
[object,uuid(…)]
interface IBank: IUnknown
{

HRESULT opBank();
HRESULT get val([out] long * val);
HRESULT set val([in] long val);

};
[{object,uuid(…)]
interface IAccount: IBank
{

HRESULT opAccount();
};
[object,uuid(…)]
interface ISimple: IBank
{

HRESULT opSimple();
};
[object,uuid(…)]
interface ICheckingDetails: IUnknown
{

HRESULT opCheckingDetails();
};
[object,uuid(…)]
interface IMiscellaneous: IUnknown
{

HRESULT opMiscellaneous();
};
371

CHAPTER 14 | Mapping CORBA to COM
Mapping for Complex Types

Overview OMG IDL includes a number of types that do not have counterparts in
Microsoft IDL. This section describes the CORBA-to-COM mapping rules for
these complex types.

In This Section This section discusses the following topics:

Creating Constructed OMG IDL Types page 373

Mapping for Structs page 374

Mapping for Unions page 376

Mapping for Sequences page 378

Mapping for Arrays page 380

Mapping for System Exceptions page 381

Mapping for User Exceptions page 385

Mapping for the Any Type page 388

Note: There is no standard CORBA-to-COM mapping specified for OMG
IDL context clauses.
 372

Mapping for Complex Types
Creating Constructed OMG IDL Types

Overview OMG IDL constructed types such as struct, union, sequence, and
exception map to corresponding struct types in Microsoft IDL.

To create a complex OMG IDL type, you should simply instantiate an
instance of its Microsoft IDL struct type. You must create an object
representing an OMG IDL constructed type in a client, to pass it as an in or
inout parameter to an OMG IDL operation. You can create an object
representing an OMG IDL constructed type in a server, to return it as an out
or inout parameter, or return value, from an OMG IDL operation.
373

CHAPTER 14 | Mapping CORBA to COM
Mapping for Structs

Overview An OMG IDL struct maps to a Microsoft IDL struct.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
typedef … T0;
typedef … T1;
typedef … T2;
…
typedef … Tn;
struct STRUCTURE
{

T0 m0;
T1 m1;
T2 m2;

…
Tn mN;

};

// Microsoft IDL
typedef … T0;
typedef … T1;
typedef … T2;
…
typedef … Tn;
typedef struct

{
 T0 m0;
 T1 m1;
 T2 m2;
 …
 Tn mN;
 }

 STRUCTURE;
 374

Mapping for Complex Types
Example for Self-Referential
Types

Self-referential data types are expanded in the same manner as in the
previous example. For example:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
struct A
{

sequence<A> v1;
};

// Microsoft IDL
typedef struct A
{

struct
{
 unsigned long cbMaxSize;
 unsigned long cbLengthUsed;
 [size_is(cbMaxSize), length_is(cbLengthUsed),
 unique]
 struct A * pValue;
} v1;

} A;
375

CHAPTER 14 | Mapping CORBA to COM
Mapping for Unions

Overview A discriminated union in OMG IDL maps to an encapsulated union in
Microsoft IDL.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
enum UNION_DISCRIMINATOR
{

dChar=0;
dShort,
dLong,
dFloat,
dDouble};

union UNION_OF_CHAR_AND_ARITHMETIC
switch (UNION_DISCRIMINATOR)
{
 case dChar: char c;
 case dShort: short s;
 case dLong: long l;
 case dFloat: float f:
 case dDouble: double d;

 default: octet v[8]; };
 376

Mapping for Complex Types
// Microsoft IDL
typedef enum [v1_enum,public]
{

dchar=o,
dshort,
dLong,
dFloat,
dDouble,

} UNION_DISCRIMINATOR;
typedef union switch (UNION_DISCRIMINATOR DCE_d)

{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];

} UNION_OF_CHAR_AND_ARITH
377

CHAPTER 14 | Mapping CORBA to COM
Mapping for Sequences

Overview OMG IDL sequences have no direct corresponding type in COM. An OMG
IDL sequence can be bounded (that is, of fixed length) or unbounded (that
is, of variable length). An OMG IDL sequence maps to a COM structure.

Example for Unbounded
Sequences

The example can be broken down as follows:

1. Consider the following OMG IDL, which defines an unbounded
sequence of some type, T:

2. The preceding OMG IDL maps to the following Microsoft IDL, which
defines a COM structure containing a pointer to the first element, with
a length and member indicating the total number of elements in the
sequence:

Explanation for Unbounded
Sequences

In the preceding example, the encoding for the unbounded OMG IDL
sequence of type T is that of a Microsoft IDL struct that contains a unique
pointer to a conformant array of type U, where U is the Microsoft IDL
mapping of T. The enclosing struct in the Microsoft IDL mapping is
necessary, to provide a scope in which extent and data bounds can be
defined.

// OMG IDL
typedef … T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

// Microsoft IDL
typedef … U;
typedef struct
{

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique] U

*pValue;
} UNBOUNDED_SEQUENCE;
 378

Mapping for Complex Types
Example for Bounded Sequences The example can be broken down as follows:

1. Consider the following OMG IDL, which defines a bounded sequence of
some type, T, which can grow to be N size:

2. The preceding OMG IDL maps to the following Microsoft IDL, which
defines a COM structure containing a fixed-size array of data elements:

// OMG IDL
const long N = …;
typedef … T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

// Microsoft IDL
const long N = …;
typedef … U;
typedef struct
{

unsigned long reserved;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value N;

} BOUNDED_SEQUENCE_OF_N;

Note: The maximum size of the bounded sequence is declared in the
declaration of the array. A [size_is()] attribute is therefore not needed.
379

CHAPTER 14 | Mapping CORBA to COM
Mapping for Arrays

Overview OMG IDL arrays map to corresponding COM arrays. The array element types
follow their standard mapping rules.

Example The example can be broken down as follows:

1. Consider the following OMG IDL, which defines an array of some type,
T:

2. The preceding OMG IDL maps to the following Microsoft IDL, which
defines an array of type U:

Explanation In the preceding example, the Microsoft IDL array of type U is the result of
mapping the OMG IDL, T, into Microsoft IDL.

If the ellipsis (that is, …) shown in the preceding example represents octet in
the OMG IDL, the ellipsis must be byte in the Microsoft IDL. This is why the
types of the array elements have different names in the OMG IDL and
Microsoft IDL defintions.

// OMG IDL
const long N = …;
typedef … T;
typedef T ARRAY_OF_T[N];

// Microsoft IDL
const long N = …;
typedef … U;
typedef U ARRAY_OF_U[N];
 380

Mapping for Complex Types
Mapping for System Exceptions

Overview The CORBA model uses exceptions to report error information. System
exceptions can be raised by any operation, regardless of the interface on
which the operation was invoked. A standard set of system exceptions is
defined by CORBA, and Orbix provides a number of additional system
exceptions. See the Orbix documentation set for details about the system
exceptions available.

Rules There are two aspects to the mapping of CORBA system exceptions to COM:

� Exceptions must be returned to COM clients via the COM HRESULT
return type. Therefore, the CORBA exception is mapped to one of the
standard COM HRESULT values. When a CORBA system exception is
raised, the COM view in the bridge returns the HRESULT to the client.

� Additional information pertaining to the system exception (for example,
its minor code and repository ID) cannot be mapped to the HRESULT
value. Instead, additional information can be returned to the client via
a standard COM error object. Writing information to an error object is,
however, optional.

Error Object Because it is not possible to map information such as a CORBA system
exception�s minor code and repository ID to the HRESULT value, you can
choose to have this additional exception information written to a COM error
object, and returned to the client that way.

If you use an error object, the COM view must support the
ISupportErrorInfo interface. If a COM client call results in a system
exception, the COM view must call the COM SetErrorInfo() function, to
set the error object to the client�s calling thread. This allows the client to
retrieve the error object, to report the error to the user. Even if no system
exception occurs, the COM view must still call SetErrorInfo(), this time
with a null value for the IErrorInfo pointer parameter, to ensure that the
error object on that thread is destroyed.
381

CHAPTER 14 | Mapping CORBA to COM
Error Object Properties The properties of the error object are set as shown in Table 8.

Table 8: Using Error Object for CORBA System Exceptions

Property Description

bstrSource This takes the following format:

interfacename.operationname

The interface and operation name pertain to the
CORBA interface that the view represents.

bstrDescription This takes the following format:

CORBA System Exception: [repository ID]

minor code[minor code][completion status]

The repository ID and minor code are those of
the system exception. The completion status
can be YES, NO, or MAYBE, depending on the value
of the system exception�s CORBA completion
status.

bstrHelpFile This is unspecified.

dwHelpContext This is unspecified.

GUID This is the IDD of the COM view interface.
 382

Mapping for Complex Types
Example The example can be broken down as follows:

1. Consider the following COM C++ code for a COM view that supports
error objects:

2. The following COM C++ client code shows how a client can access
the error object:

// COM C++
SetErrorInfo(OL,NULL); //Initialise the thread-local error

object
try
{

// Call the CORBA operation
}
catch(…)
{

…
CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(…);
pICreateErrorInfo->SetDescription(…);
pICreateErrorInfo->SetGUID(…);
pICreateErrorInfo->QueryInterface(IID_IErrorInfo,

&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();
…

}

383

CHAPTER 14 | Mapping CORBA to COM
// COM C++
// After obtaining a pointer to an interface on the COM View, the
// client does the following one time
pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,

&pISupportErrorInfo);
hr = pISupportErrorInfo->InterfaceSupportsErrorInfo

(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
…
// Call to the COM operation…
HRESULT hrOperation = pIMyMappedInterface->…
if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);
// S_FALSE means that error data is not available
// NO ERROR means it is available
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(…);
// Has repository id and minor code
// hrOperation has the completion status encoded into it
pIErrorInfo->GetDescription(…);
}

}

 384

Mapping for Complex Types
Mapping for User Exceptions

Overview The CORBA model uses exceptions to report error information. User
exceptions are defined in OMG IDL. An OMG IDL operation can optionally
specify that it might raise a specific set of user exceptions. An OMG IDL
operation might also raise a system exception, but this is not defined at the
OMG IDL level.

An OMG IDL user-defined exception maps to a Microsoft IDL interface and
an exception structure that describes the body of information to be returned
for the exception to the client.

For the purpose of allowing access to user exception information, a
Microsoft IDL interface is defined for each OMG IDL interface that can raise
a user exception. The name of the Microsoft IDL interface is based on the
fully scoped name of the OMG IDL interface on which the exception is
raised.

An exception structure is defined for each user exception. The exception
structure is specified as an output parameter, and it appears as the last
parameter of any COM operation signature that has been mapped from any
OMG IDL operation with a raises clause. For example, if an operation in
MyModule::MyInterface raises a user exception, an exception structure
named MyModule_MyInterfaceExceptions is created and mapped as an
output parameter to Microsoft IDL. This extra parameter is passed by
indirect reference, to allow it to be treated as optional by the target server
side.

Exception Structure Although a COM view can call SetErrorInfo() to indicate a CORBA user
exception has occurred (as in the case of a CORBA system exception), there
is no mechanism in COM to allow for accessing the additional data
members defined on a user exception object. The additional error
information is therefore mapped to an exception structure instead.

The exception structure contains:

� Members indicating the exception type.

� The repository ID for the exception definition in the CORBA Interface
Repository.

� A pointer to the exception data.
385

CHAPTER 14 | Mapping CORBA to COM
Mapped Operations Each exception that can be raised by an operation is mapped to an
operation on the Exception interface. The mapped operation name is
constructed by prefixing the exception name with get_. Each mapped
operation takes one output parameter, of the struct type, which is used to
return the exception information. Each mapped operation is defined to
return a HRESULT value, for which the exact value depends on the type of
exception raised and whether a structure has been specified by the client.

HRESULT for Successful
Operations

If the call to a particular operation is successful and does not raise a user
exception, a HRESULT value of S_OK is returned, to indicate that the operation
has been successful.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
module BANK
{
…
exception InsufficientFunds {float balance};
exception InvalidAmount {float amount};

interface Account
{
exception NotAuthorised{};
float Deposit(in float Amount) raises(InvalidAmount);
float Withdraw(in float Amount) raises(InvalidAmount,

NotAuthorised);
};

};
 386

Mapping for Complex Types
// Microsoft IDL
struct BANK_InsufficientFunds
{

float balance;
};
struct BANK_InvalidAmount
{

float amount;
};
struct BANK_Account_NotAuthorised
{
};

interface IBANK_AccountUserExceptions: IUnknown
{

HRESULT get_InsufficientFunds([out] BANK_InsufficientFunds
*exceptionBody);

HRESULT get_InvalidAmount([out] BANK_InvalidAmount
*exceptionBody);

HRESULT get_NotAuthorised([out] BANK_Account_NotAuthorised
*exceptionBody);

};
typedef struct
{

ExceptionType type;
LPSTR repositoryId;
IBANK_AccountUserExceptions * piUserException;

} BANK_AccountExceptions
387

CHAPTER 14 | Mapping CORBA to COM
Mapping for the Any Type

Overview The OMG IDL any type does not map directly to COM.

Example The following is the Microsoft IDL interface definition to which the OMG IDL
any type is mapped:

// Microsoft IDL
typedef [v1_enum, public]
enum CORBAAnyDataTagEnum{

anySimpleValTag=0,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion
switch(CORBAAnyDataTag whichOne){
 case anyAnyValTag:ICORBA_Any *anyVal;
 case anySeqValTag:
 case anyStructValTag:
 struct {
 [string, unique] char * repositoryId;
 unsigned long cbMaxSize;
 unsigned long cbLength-Used;
 [size_is(cbMaxSize), length_is(cbLengthUsed),
 unique] union CORBAAnyDatUnion *pVal;
 multiVal;
 case anyUnionValTag;
 struct{
 [string, unique] char * repositoryId;
 long disc;
 union CORBAAnyDataUnion *value;
 unionVal;
 case anyObjectValTag:
 struct{
 [string, unique] char * repositoryId;
 VARIANT val;
 objectVal;
 case anySimpleValTag: //All other types
 VARIANT simpleVal;
 } CORBAAnyData;
 388

Mapping for Complex Types
…uuid[…]
interface ICORBA_Any: IUnknown
{
HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData * val);
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);
}

389

CHAPTER 14 | Mapping CORBA to COM
Mapping for Object References

Overview When an OMG IDL operation returns an object reference, or passes an
object reference as an operation parameter, this is mapped to a reference to
an IUnknown-based interface in Microsoft IDL.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

3. The following COM C++ code is based on the preceding Microsoft IDL
definition:

// OMG IDL
interface Account {

…
};
interface Bank {

Account newAccount(in string name);
deleteAccount(in Account a);

};

// Microsoft IDL
[object, uuid(…)]
interface IBank : IUnknown {

HRESULT newAccount ([in] LPSTR it_name, [out] IAccount **
value);

HRESULT deleteAccount ([in] IAccount * account);
};
 390

Mapping for Object References
// COM C++
// Get a pointer to the Bank interface (pIF) using the GetObject
// method of ICORBAFactory
HRESULT hr = NOERROR;
LPSTR szName = “John Smith”;
float balance = 0, deposit = 10.0;
IAccount *pAcc = 0;
hr = pIF->newAccount(szName, &pAcc, NULL);
hr = pAcc->makeLodgement(deposit);
hr = pAcc->_get_balance(&balance);
cout << “balance is” << balance << endl;
hr = pIF->deleteAccount(pAcc);
pAcc->Release();
391

CHAPTER 14 | Mapping CORBA to COM
Mapping for Modules

Overview An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding Microsoft IDL definition, by prefixing the name of
the Microsoft IDL type definition with the name of the module.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
module Finance {

interface Bank {
…
};

};

// Microsoft IDL
[object, uuid(…), helpstring("Finance_Bank")]
interface IFinance_Bank : IUnknown {

…
}

 392

Mapping for Constants
Mapping for Constants

Overview An OMG IDL const type maps to a Microsoft IDL const type.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
const short S = …;
const long L = …;
const unsigned short US = …;
const unsigned long UL = …;
const float F = …;
const double D = …;
const char C = …;
const boolean B = …;
const string STR = “…”;

// Microsoft IDL
const short S = …;
const long L = …;
const unsigned short US = …;
const unsigned long UL = …;
const float F = …;
const double D = …;
const char C = …;
const boolean B = …;
const LPSTR STR = “…”;
393

CHAPTER 14 | Mapping CORBA to COM
Scoping of Constant Declarations CORBA observes scoping of constant declarations, but COM ignores such
scoping and always treats a constant declaration as though it were globally
defined. To avoid potential name clashes, mapped constants in Microsoft
IDL are prefixed with the enclosing type in which they are declared. For
example, consider the following OMG IDL:

The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
module PhoneCompany {

interface CustomerServices {
 const float CallRate = 11.7;
};

};

// Microsoft IDL
const float PhoneCompany_CustomerServices_CallRate = 11.7;
 394

Mapping for Enums
Mapping for Enums

Overview A CORBA enum maps to a COM enum.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

Values and Ordering CORBA has enums that are not explicitly tagged with values. On the other
hand, Microsoft IDL supports enums that are explicitly tagged with values.
Therefore, any language mapping that permits two enums to be compared,
or which defines successor or predecessor functions on enums, must
conform to the ordering of the enums as specified in OMG IDL.

Scoping CORBA observes scoping of enum declarations, but COM ignores such
scoping and always treats an enum declaration as though it were globally
defined. To avoid potential name clashes, translated enums in Microsoft IDL
are prefixed with the enclosing type in which they are declared. Therefore, in
the preceding example, the OMG IDL A_or_B_or_C enum is mapped to
MyIntf_A_or_B_or_C.

// OMG IDL
interface MyIntf
{

enum A_or_B_or_C {A,B,C};
};

// Microsoft IDL
[uuid(…), …]
interface IMyIntf
{

typedef [v1_enum, public]
enum MyIntf_A_or_B_or_C {MyIntf_A = 0, MyIntf_B, MyIntf_C}

MyIntf_A_or_B_or_C;
};
395

CHAPTER 14 | Mapping CORBA to COM
Transmitting as 32-Bit The Microsoft IDL keyword, v1_enum, is required for an enum to be
transmitted as 32-bit values. Microsoft recommends that this keyword is
used on 32-bit platforms, because it increases the efficiency of marshalling
and unmarshalling data when such an enum is embedded in a structure or
union.

Truncation of Identifiers CORBA supports enums with up to 232 identifiers, but Microsoft IDL only
supports 216 identifiers. Truncation might therefore result.
 396

Mapping for Scoped Names
Mapping for Scoped Names

Overview An OMG IDL scoped name must be fully qualified in Microsoft IDL, to
prevent accidental name collisions.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
module Bank {

interface ATM {
 enum type {CHECKS,CASH];
 struct DepositRecord {
 string account;
 float amount;
 type kind;
 };
 void deposit(in DepositRecord val);

};

Microsoft IDL
[uuid(…), object]
interface IBANK_ATM: IUnknown {

typedef [v1 enum] enum BANK_ATM_type
 {BANK_ATM_CHECKS, BANK_ATM_CASH} BANK_ATM_type;
typedef struct
{
 LPSTR account;
 float amount;
 BANK_ATM_type kind;
}
BANK_ATM_DepositRecord;
HRESULT deposit(in BANK_ATM_DepositRecord * val);

};
397

CHAPTER 14 | Mapping CORBA to COM
Mapping for Typedefs

Overview A CORBA typedef maps to a Microsoft IDL typedef. A typedef definition is
most often used for array and sequence definitions.

Example The example can be broken down as follows:

1. Consider the following OMG IDL:

2. The preceding OMG IDL maps to the following Microsoft IDL:

// OMG IDL
interface Account {…};

typedef sequence<Account, 100> AccountList;

// Microsoft IDL
[object, UUID(…)]
interface IAccount : IUnknown {…};
Typedef struct {
…
} AccountList;
 398

CHAPTER 15

COMet
Configuration
This chapter describes the configuration variables that are
specific to COMet, and their associated values.

In This Chapter This chapter discusses the following topics:

Overview page 400

COMet:Config Namespace page 401

COMet:Mapping Namespace page 403

COMet:Debug Namespace page 404

COMet:TypeMan Namespace page 405

COMet:Services Namespace page 409
399

CHAPTER 15 | COMet Configuration
Overview

Configuration Domains Configuration variables are stored in a configuration domain. A configuration
domain can be based on one of two distinct configuration models,
depending on whether your deployment needs are small scale or large scale.
For small-scale deployment, you can implement a configuration domain as
an ASCII text file that is stored locally on each machine and edited directly.
For large-scale deployment, Orbix provides a distributed configuration
repository server that enables centralized configuration for all applications
spread across a network.

The COMet: Scope Configuration variables specific to COMet are grouped within various
namespaces within a COMet: scope, as follows:

� COMet:Config:…

� COMet:Mapping:…

� COMet:Debug:…

� COMet:Typeman:�

� COMet:Services:�

See the CORBA Administrator�s Guide for details of CORBA configuration
variables.
 400

COMet:Config Namespace
COMet:Config Namespace

Overview This section describes the configuration variables within the COMet:Config:
namespace.

COMET_SHUTDOWN_POLICY The default setting for this variable is:

The valid settings for this variable are:

SINGLE_THREADED_CALLBACK The default setting for this variable is:

The valid settings for this variable are:

COMet:Config:COMET_SHUTDOWN_POLICY="implicit"

"implicit" This means that COMet shuts down the first time
DllCanUnloadNow is about to return yes.

"explicit" This means that you must make a call to
ORB::ShutDown() to force COMet to shut down.

"Disabled" This means that COMet does not shut down the ORB
when it thinks it is about to unload. That is, the DLL is
not unloaded when DllCanUnloadNow is called by the
COM runtime. Visual Basic and Internet Explorer do this
to cache the DLLs.

A problem arises, however, if the DLL is re-used, because
Orbix has already been shut down.

"atExit" This means that the COMet bridge only shuts down at
process-exit time. This is the recommended setting when
running in the Visual Basic development environment.

COMet:Config:SINGLE_THREADED_CALLBACK="NO"

"NO" This means that COMet dispatches callbacks as they arrive.

"YES" This means that you can implement your own event loop for
processing callbacks.
401

CHAPTER 15 | COMet Configuration
USE_INTERFACE_IN_IOR The default setting for this variable is:

The valid settings for this variable are:

COMet:Config:USE_INTERFACE_IN_IOR="YES"

"YES" This means that COMet uses the type ID that is embedded
in the IOR as the interface name when narrowing to derived
interfaces. This can help to improve performance at
application runtime.

"NO" This means that COMet must make remote calls to
get_interface() and possibly repeated calls on the IFR
when narrowing to derived interfaces. This might have an
adverse affect on performance at application runtime.
 402

COMet:Mapping Namespace
COMet:Mapping Namespace

Overview This section describes the configuration variables within the
COMet:Mapping: namespace.

SAFEARRAYS_CONTAIN_VARIANT The default setting for this variable is:

There is a problem in Visual Basic when dealing with SafeArrays as out
parameters. Visual Basic does not correctly check the V_VT type of the
SafeArray contents and automatically assumes they are of the VARIANT type.
When constructing the out parameter, COMet cannot tell if the parameter
type has been declared (using the dim statement) as the real type from the
type library or simply as SAFEARRAY.

The valid settings for this variable are:

KEYWORDS An example setting for this variable is:

This variable allows you to specify a list of words that are to be prefixed with
IT_, to avoid clashes when using ts2idl to generate Microsoft IDL from
existing OMG IDL type information in the type store.

COMet:Mapping:SAFEARRAYS_CONTAIN_VARIANTS="yes"

"yes" This means that COMet should treat, for example, a
sequence of long types as mapping to a SafeArray of
VARIANT types, where each VARIANT contains a long.

"no" This means that COMet should treat, for example, a
sequence of long types as mapping to a SafeArray of
long types.

COMet:Mapping:KEYWORDS="grid, DialogBox, bar, Foobar, height"
403

CHAPTER 15 | COMet Configuration
COMet:Debug Namespace

Overview This section describes the configuration variable within the COMet:Debug:
namespace.

MessageLevel An example setting for this variable is:

This variable can take any value in the range 0�255. The higher the value,
the more logging information is available. In the preceding example, a value
of 255 means that all messages are logged, in the specified comet.log file.

COMet:Debug:MessageLevel="255, c:\temp\comet.log"
 404

COMet:TypeMan Namespace
COMet:TypeMan Namespace

Overview This section describes the configuration variables within the
COMet:TypeMan: namespace.

TYPEMAN_CACHE_FILE The default setting for this variable is:

COMet uses a memory and disk cache for efficient access to type
information. This entry specifies the name and location of the file used. It is
automatically set by the configuration script. In the preceding example,
install-dir represents the Orbix installation directory, and domainname
represents your domain name.

TYPEMAN_DISK_CACHE_SIZE The default setting for this variable is:

This variable is used in conjunction with TYPEMAN_MEM_CACHE_SIZE. It
specifies the maximum number of entries allowed in the disk cache. When
this value is exceeded, entries can be flushed from the cache. The nature of
the applications using the bridge affects the value that should be assigned to
this variable. However, as a general rule, the disk cache size should be
about eight to ten times greater than the the memory cache. (See
�TYPEMAN_MEM_CACHE_SIZE� on page 406 for more details about setting
the maximum number of entries for the memory cache.)

A cache �entry� in this case corresponds to a user-defined type. For
example, a union defined in OMG IDL results in one entry in the cache. An
interface containing the definition of a structure results in two entries.

A good rule of thumb is that 1000 cache entries (given a representative
cross section of user-defined types) corresponds to approximately 2
megabytes of disk space. Therefore, the default disk cache size of 2000
allows for a maximum disk cache file size of approximately 4 megabytes.

COMet:TypeMan:TYPEMAN_CACHE_FILE="install-dir\var\it_domainname\
dbs\comet"

COMet:TypeMan:TYPEMAN_DISK_CACHE_SIZE="2000"
405

CHAPTER 15 | COMet Configuration
When the cache is primed with type libraries for DCOM servers, the size
could be considerably larger. It depends on the size of the type libraries, and
this can vary considerably. Typically, a primed type library is more than
three times the size of the original type library, because the information is
stored in a format that optimizes speed.

TYPEMAN_MEM_CACHE_SIZE The default setting for this variable is:

This variable is used in conjunction with TYPEMAN_DISK_CACHE_SIZE. It
specifies the maximum number of entries allowed in the memory cache.
When this value is exceeded, entries can be flushed from the cache. The
nature of the applications using the bridge affects the value that should be
assigned to this variable. However, as a general rule, the disk cache size
should be about eight to ten times greater than the the memory cache.
Furthermore, to avoid unnecessary swapping into and out from disk, you
should ensure the memory cache size is no smaller than 100. See
“TYPEMAN_DISK_CACHE_SIZE” on page 405 for more details.

TYPEMAN_IFR_IOR_FILENAME The default setting for this variable is:

When the dynamic marshalling engine in COMet encounters a type for
which it cannot find corresponding type information in the type store, it
must then retrieve the type information from the Interface Repository. The
order in which COMet attempts to connect to the Interface Repository is as
follows:

� If a name is specified in the COMet:TypeMan:TYPEMAN_IFR_NS_NAME
variable, COMet looks up that name in the Naming Service to connect
to the Interface Repository.

� If a name is not specified in COMet:TypeMan:TYPEMAN_IFR_NS_NAME,
COMet checks to see if an IOR is specified in the
initial_references:InterfaceRepository:reference variable. If so,
it uses the Interface Repository associated with that IOR.

COMet:TypeMan:TYPEMAN_MEM_CACHE_SIZE="250"

COMet:TypeMan:TYPEMAN_IFR_IOR_FILENAME=" "
 406

COMet:TypeMan Namespace
� If an IOR is not specified in
initial_references:InterfaceRepository:reference, COMet
checks to see if a filename is specified in the
TYPEMAN_IFR_IOR_FILENAME variable.

Consequently, you must set the TYPEMAN_IFR_IOR_FILENAME variable if you
do not set COMet:TypeMan:TYPEMAN:IFR_NS_NAME or
initial_references:InterfaceRepository:reference. In this case, the
value required is the full pathname to the file that contains the IOR for the
Interface Repository you want to use.

TYPEMAN_IFR_NS_NAME The default setting for this variable is:

This variable is needed if you are using the Naming Service to resolve the
Interface Repository. It specifies the name of the Interface Repository in the
Naming Service. You should register an IOR for the Interface Repository in
the Naming Service under a compound name. This variable should contain
that compound name. As explained in “TYPEMAN_IFR_IOR_FILENAME” on
page 406, this is the first configuration variable that COMet always checks if
it needs to contact the Interface Repository for type information that it
cannot find in the type store.

TYPEMAN_READONLY The default setting for this variable is:

The valid settings for this variable are:

This variable specifies whether clients have write access or readonly access
to the type store. If you have a scenario involving multiple Automation
clients sharing a single out-of-process bridge, it means that all your clients
are using one central type store. If clients are granted write access to the

COMet:TypeMan:TYPEMAN_IFR_NS_NAME=" "

COMet:TypeMan:TYPEMAN_READONLY="no"

"no" This means that clients have write access to the type
store.

"yes" This means that clients have readonly access to the type
store.
407

CHAPTER 15 | COMet Configuration
type store, the type store is blocked whenever it is in use by a particular
client, and all other clients must wait until that client is finished using it.
This can have a negative impact on both performance and scalability. It is
therefore recommended that you set this configuration variable to "yes", to
only allow clients readonly access to the type store.

TYPEMAN_LOGGING The default setting for this variable is:

The valid settings for this variable are:

TYPEMAN_LOG_FILE An example setting for this variable is:

If the value of the TYPEMAN_LOGGING variable is set to "file", this variable
specifies the full path to that output file for typeman logging information.

COMet:TypeMan:TYPEMAN_LOGGING="none"

"none" This means that no logging information is output for the
COMet type store manager (typeman).

"stdout" This means that logging information is used only with
typeman.exe.

"DBMon" This means that logging information is output to
DBMon.exe.

"file" This means that logging information is output to the file
specified by the COMet:Typeman:TYPEMAN_LOG_FILE
variable.

COMet:TypeMan:TYPEMAN_LOG_FILE="c:\temp\typeman.log"
 408

COMet:Services Namespace
COMet:Services Namespace

Overview This section describes the configuration variable within the
COMet:Services: namespace.

NameService The default setting for this variable is:

By default, COMet uses the Naming Service that is specified in the Orbix
initial_references:NameService: configuration scope. If (and only if) the
value specified for that configuration variable is blank, or it relates to an
invalid IOR, COMet then uses the Naming Service that is specified by the
COMet:Services:NameService configuration variable. The value specified is
the full pathname to the file that contains the IOR for the Naming Service
you want to use.

COMet:Services:NameService=" "
409

CHAPTER 15 | COMet Configuration
 410

CHAPTER 16

COMet Utility
Arguments
This chapter describes the various arguments that are
available with each of the COMet command-line utilities.

In This Chapter This chapter discusses the following topics:

Typeman Arguments page 412

Ts2idl Arguments page 414

Ts2tlb Arguments page 415

Aliassrv Arguments page 416

Custsur Arguments page 417

Tlibreg Arguments page 418

Idlgen vb_genie.tcl Arguments page 419
411

CHAPTER 16 | COMet Utility Arguments
Typeman Arguments

Overview This section describes the arguments available with the typeman utility,
which manages the COMet type store.

Summary of Arguments The arguments available with typeman are:

-b This allows you to view the bucket sizes in the memory cache hash
table.

-c This allows you to view the contents of the type store disk cache.
You can specify -cn to view the contents in the order in which they
have been added to the cache. You can specify -cu to view the UUID
of each type listed. (Every type in the type store has an associated
UUID. COMet generates UUIDs for OMG IDL types, using the MD5
algorithm, as specified by the OMG.)

-e This instructs typeman to search the Interface Repository or a type
library for a specific item of type information, and then add it to the
type store cache. You must qualify -e with an OMG IDL interface
name, a full type library pathname, the UUID of a COM IDL
interface, or the name of a text file that lists the aforementioned in
any combination. See �Adding New Information to the Type Store�
on page 180 for details of how to specify each.

If you specify an OMG IDL interface name that is not already in the
cache, typeman looks up the Interface Repository. If you specify a
type library pathname or UUID that is not already in the cache,
typeman looks up the relevant type library. Regardless of where the
type information originates, typeman then copies it to the type store
cache.

-f This allows you to view the type store data files. These include the
disk cache data file (typeman._dc), the disk cache index file
(typeman.idc), the disk cache empty record index file
(typeman.edc), and the UUID name mapper file (typeman.map).

-h This instructs typeman to display "Cache miss" on the screen, if a
type it is looking for is not already in the cache. If the type is already
in the cache, typeman displays "Mem cache hit" on the screen.
 412

Typeman Arguments
-i This instructs typeman to always query the Interface Repository for
an item of OMG IDL type information. This can be used to compare
the performance of different ORBs, and so on.

-l This logs the type store basic contents to the screen. Enter -l+ to log
newly added and deleted entries. Enter -l tlb to log type library
information. Enter -l union to log OMG IDL information for unions.

-r This generates static bridge compatible names for OMG IDL
sequences.

-v This allows you to view the v-table contents for an interface or struct.
This option provides output such as the following:

Name Sorted V-table DispId Offset
balance get makeLodgement 1 0
makeLodgement makeWithdrawal 2 1
makeWithdrawal balance 3 2
overdraftLimit get overdraftLimit 4 3

-w This deletes the type store contents. This means that it deletes the
disk cache data file (typeman._dc), the disk cache index file
(typeman.idc), and the disk cache empty record index file
(typeman.edc). If you also want to delete the UUID name mapper
file (typeman.map), you must enter -wm instead. Deleting the type
store contents is useful when you want to reprime the cache. You
might want to reprime the cache, for example, if it contains type
information for an interface that has subsequently been modified.

-z This allows you to view the actual size to which the memory cache
temporarily grows when typeman is loading in a containing type
(such as a module) to retrieve a contained type (such as an interface
within that module).

-? This outputs the usage string for typeman.

-?2 This allows you to view the format of the entries that you can include
in a text file, which you can specify with the -e option, if you want to
prime the cache simultaneously with any number and combination
of type names, type library pathnames, and COM UUIDs.
413

CHAPTER 16 | COMet Utility Arguments
Ts2idl Arguments

Overview This section describes the arguments available with the ts2idl
utility, which allows you to create COM IDL definitions, based on
existing OMG IDL type information in the type store.

Summary of Arguments The arguments available with ts2idl are:

-c This instructs ts2idl not to query the Interface Repository for the
specified OMG IDL interface. In this case, ts2idl searches only the
type store for the relevant information.

-f Use this to specify the name of the IDL file to be created. You must
qualify this option with the filename (for example, grid.idl). In
turn, you must qualify the filename with the name of the item of type
information on which it is being based. For example:

ts2idl -f grid.idl grid

-m This instructs ts2idl to generate a COM IDL file, based on OMG IDL
information in the type store. This is a default option. You do not
have to specify -m, to create a COM IDL file.

-p You can use this option when generating COM IDL, based on OMG
IDL information in the type store. It is a useful labor-saving device
that produces a makefile for building the proxy/stub DLL, which
subsequently marshals requests from the COM client to CORBA
objects.

-r You can use this option when generating COM IDL based on OMG
IDL interfaces that employ user-defined types. This option
completely resolves those types and produces COM IDL for them.

-s This forces inclusion of standard types from ITStdcon.idl and
orb.idl.

-v This outputs the usage string for ts2idl. You can also use -? for
this.
 414

Ts2tlb Arguments
Ts2tlb Arguments

Overview This section describes the arguments available with the ts2tlb utility,
which allows you to create a type library, based on existing OMG IDL type
information in the type store.

Summary of Arguments The arguments available with ts2tlb are:

-f Use this to specify the name of the type library to be created. You
must qualify this option with the type library filename. The default is
to use the type name on which the type library is based, with a .tlb
suffix (for example, grid.tlb).

-i This indicates that interface prototypes are to appear as IDispatch,
instead of using the specific interface name. If you do not specify this
option, the specific interface name is used.

-l Use this to specify the internal library name in which the type library
is to be created. You must qualify this option with the library name.
The default is to use the type name on which the type library is
based, with an IT_Library_ prefix (for example, IT_Library_grid).

-p This prefixes parameter names with it_.

-v This outputs the usage string for ts2tlb. You can also use -? for
this.
415

CHAPTER 16 | COMet Utility Arguments
Aliassrv Arguments

Overview This section describes the arguments available with the aliassrv utility,
which is used in association with the srvAlias GUI tool, to allow you to
replace a legacy DCOM server with a CORBA server. See �Replacing an
Existing DCOM Server� on page 196 for more details.

Summary of Arguments The arguments available with aliassrv are:

-c This indicates the CLSID of the legacy DCOM server that is being
replaced. You must qualify this argument with the actual CLSID
enclosed in opening and closing braces (that is, { and }).

-d This deletes the registry key denoted by the specified CLSID. You
must qualify -d with the -c argument, which in turn must be
qualified with the CLSID.

-r This aliases the specified CLSID to COMet, so that the next time you
run a DCOM client of the legacy server whose CLSID is specified,
COMet is used instead of the legacy server. You must qualify -r with
the name of the file that contains the modified registry entries, to
restore the registry entries on the destination machine. For example:

aliassrv -r replace.reg -c {CLSID}

-v This outputs the usage string for aliassrv. You can also use -? for
this.
 416

Custsur Arguments
Custsur Arguments

Overview This section describes the arguments available with the custsur utility,
which is a generic surrogate program that hosts the COMet DLLs when the
bridge is loaded out-of-process. You can use custsur to generate IORs for
non-Orbix clients.

Summary of Arguments The arguments available with custsur are:

-f This specifies the filename to which the IOR is to be written.

-g This instructs custsur to generate an IOR.
-i This specifies the interface name for which the IOR is to be created.

-m This specifies the marker name.

-s This specifies the name of the server.

-t This specifies a timeout value, in milliseconds, for the server being
implemented by custsur.

-v This outputs the usage string for custsur. You can also use -? for
this.
417

CHAPTER 16 | COMet Utility Arguments
Tlibreg Arguments

Overview This section describes the arguments available with the tlibreg utility,
which allows you to register and unregister a type library that you have
generated from OMG IDL via ts2tlb. The tlibreg utility registers the type
library with the Windows registry.

Summary of Arguments The arguments available with tlibreg are:

-u This unregisters a type library. You must qualify this option with the
full type library pathname.

-v This outputs the usage string for ts2sp. You can also use -? for this.
 418

Idlgen vb_genie.tcl Arguments
Idlgen vb_genie.tcl Arguments

Overview The Visual Basic code generation genie allows for quick, easy, and
automatic development of Visual Basic clients from existing OMG IDL
definitions. It can be run from the command line, using the following
command format:

In the preceding format, filename represents the name of the OMG IDL file
from which the Visual Basic code is generated.

Summary of Arguments The arguments available with idlgen vb_genie.tcl are:

idlgen vb_genie.tcl [options] filename.idl [interface wildcard]*

-I Before idlgen parses an IDL file, it sends the IDL file through
an IDL preprocessor. The -I argument is one of two arguments
that allow you to pass information to the IDL preprocessor.
Specifically, -I lets you specify the include path for the
preprocessor. For example:

idlgen vb_genie.tcl -I/inc -I…/std/inc bank.idl

-D The -D argument also allows you to pass information to the IDL
preprocessor. Specifically, -D lets you define additional
preprocessor symbols. For example:

idlgen vb_genie.tcl -I/inc -DDEBUG

-h This outputs the usage string for idlgen vb_genie.tcl.

-v This indicates that the genie is to run in verbose mode (that is,
diagnostic messages are written to standard output when the
genie is generating an output file).

-s This indicates that the genie is to run in silent mode (that is,
diagnostic messages are not written to standard output when
the genie is generating an output file).

-dir This specifies the directory path to which the generated file is to
be output. This option must be qualified by a full directory path.
If -dir is not specified, all output files are written to the current
directory.
419

CHAPTER 16 | COMet Utility Arguments
-include By default, the genie generates client code for the specified IDL
files only. This argument allows you to specify that the genie
must also generate code for all #include files specifed in the
IDL. For example:

idlgen vb_genie.tcl -all -include grid.idl

The preceding example specifies that the genie is to generate
Visual Basic client code from grid.idl and any IDL files that
are included in it.

-nons This indicates that stringified object references are to be written
to an IOR file, instead of using the Naming Service. This is the
default setting. The IOR filename consists of the interface name
and .ref suffix. This argument is mutually exclusive with the
-ns argument.

Specify this argument only if it was also specified when
generating the CORBA server with the CORBA Code Generation
Toolkit.

-ns This indicates that the Naming Service is to be used to publish
object references, instead of writing them to an IOR file by
default. This argument is mutually exclusive with the -nons
argument.

Specify this argument only if it was also specified when
generating the CORBA server with the CORBA Code Generation
Toolkit.
 420

Index

A
abstract interfaces in IDL 291
activator daemon 95, 110
algorithm, MD5 70, 362
aliassrv 198

options 416
any type

in IDL 294
any type (in OMG IDL) 224, 253

CORBA-to-Automation mapping 347
CORBA-to-COM mapping 388

API reference
Automation 222�250
COM 251�267

application runtime, installing 162
applications, deploying 151�165
Application Server Platform Deployment

Environment, installing 162
array type

in IDL 304
array type (in OMG IDL)

CORBA-to-Automation mapping 342
CORBA-to-COM mapping 380

attributes
in IDL 279

attributes (in OMG IDL)
CORBA-to-Automation mapping 321
CORBA-to-COM mapping 364

Automation clients
building 95
implementing in PowerBuilder 50, 92
implementing in Visual Basic with code

generation 43, 85
implementing in Visual Basic without code

generation 47, 89
introduction to 24
running 95

Automation interfaces
DICORBAAny 223
DICORBAFactory 228
DICORBAFactoryEx 230
DICORBAObject 232
DICORBAStruct 234
DICORBASystemException 235
DICORBATypeCode 236
DICORBAUnion 240
DICORBAUserException 241
DIForeignComplexType 242
DIForeignException 243
DIObject 244
DIObjectInfo 245
DIOrbixORBObject 246
DIORBObject 249

Automation view interface 316

B
basic types

in IDL 293
basic types (in OMG IDL)

CORBA-to-Automation mapping 315
CORBA-to-COM mapping 359

binding, early and late 14, 29, 68
bitwise operators 311
bounded sequences 379
bridge

aliasing 196
introduction to 24

bridge locations
client machines 153
intermediary machine 157
introduction to 30, 32
server machine 159

built-in types in IDL 293

C
caching mechanism 176
callbacks 137�??

generating stub code for 142
implementing 139

char type
in IDL 294

clients
writing 143

clients. See Automation clients, COM clients
client-side footprint, minimizing 164
421

INDEX
clone() 245
CLSID 197
CoCreateInstance() 106
COM clients

building 110
implementing in C++ 71
introduction to 25
running 110

cometcfg 179
COM exceptions, catching 132
COM IDL, creating from OMG IDL 72, 101, 186
COM interfaces

ICORBA_Any 252
ICORBAFactory 254
ICORBAObject 256
ICORBA_TypeCode 258
ICORBA_TypeCodeExceptions 262
IMonikerProvider 221
IOrbixORBObject 263
IORBObject 266

COM library 25
command options 411�420
commands

aliassrv 198, 416
custsur 58, 417
idlgen vb_genie 213, 419
srvAlias 196, 416
tlibreg 70, 418
ts2idl 189, 414
ts2tlb 193, 415
typeman 182, 412

COM-to-CORBA model
implementation of 20
introduction to 18

configuration domain 400
configuration namespaces

Config 401
Debug 404
Mapping 403
Services 409
TypeMan 405

configuration repository 400
configuration variables 399�409

COMET_SHUTDOWN_POLICY 401
KEYWORDS 403
MessageLevel 404
NameService 409
SAFEARRAYS_CONTAIN_VARIANTS 403
SINGLE_THREADED_CALLBACK 401, 402
 422
TYPEMAN_CACHE_FILE 405
TYPEMAN_DISK_CACHE_SIZE 405
TYPEMAN_IFR_IOR_FILENAME 406
TYPEMAN_IFR_NS_NAME 407
TYPEMAN_LOG_FILE 408
TYPEMAN_LOGGING 408
TYPEMAN_MEM_CACHE_SIZE 406
TYPEMAN_READONLY 407

constant definitions in IDL 308
constant expressions in IDL 311
constant fixed types in IDL 298
constant types (in OMG IDL)

CORBA-to-Automation mapping 352
CORBA-to-COM mapping 393

constructed types (in OMG IDL)
CORBA-to-Automation mapping 332
CORBA-to-COM mapping 373
in Automation 230, 332
in COM 373

content_type() 227, 239, 261
context clause (in OMG IDL) 348, 390
CORBA complex types 331, 372
CORBA exceptions

handling in Automation 122
handling in COM 131
properties of 118

CORBA interface hierarchy 328, 368
CORBA servers

introduction to 25
registering 95, 110
replacing DCOM servers with 196, 416

CORBA-to-Automation mapping 313�356
anys 347
arrays 342
attributes 321
basic types 315
constants 352
constructed types 332
enums 353
exceptions 343
interfaces 318
modules 351
object references 348
operations 323
scoped names 355
sequences 339
strings 317
structs 333
typedefs 356

INDEX
unions 335
CORBA-to-COM mapping 357�398

anys 388
arrays 380
attributes 364
basic types 359
constants 393
constructed types 373
enums 395
exceptions 381
inheritance 368
interfaces 361
modules 392
object references 390
operations 366
scoped names 397
sequences 378
strings 360
structs 374
typedefs 398
unions 376

CreateType() 230, 332
CreateTypeById() 230
custsur 58

options 417

D
daemons 95, 110
data types, defining in IDL 307
DCOM

limitations of 23
using with COMet 54

DCOM proxy DLL 101, 186
DCOM servers, replacing with CORBA servers 196,

416
decimal fractions 298
default_index() 226, 239, 261
deploying applications 151�165
deployment

recommended scenario for 55
scenario recommended for Automation 29
scenario supported for COM 31

deployment models
bridge on each client machine 153
bridge on server machine 159
bridge shared by multiple clients 157
internet 161

DICORBAAny 223
DICORBAFactory 196, 228
DICORBAFactoryEx 230, 332
DICORBAObject 232
DICORBAStruct 234, 333
DICORBASystemException 120, 235, 343
DICORBATypeCode 236
DICORBAUnion 240, 335
DICORBAUserException 241
DIForeignComplexType 242, 332
DIForeignException 119, 243
DIObject 244
DIObjectInfo 245
DIOrbixORBObject 246
DIORBObject 249
direct-to-COM support, using in Visual C++ 134
discriminator_type() 226, 238, 260
disk cache 177
dual interfaces 14, 29, 68, 319

E
early binding 14, 29, 68
empty interfaces in IDL 281
enum type

in IDL 300
ordinal values of 300

enum type (in OMG IDL)
CORBA-to-Automation mapping 353
CORBA-to-COM mapping 395

equal() 259
equivalence of object references 233
Err object 123
error-handling code 127
exception handling 113�135
exceptions, in IDL 280

 See also system exceptions, user exceptions
exceptions See also system exceptions

CORBA-to-Automation mapping 343
CORBA-to-COM mapping 381
handling in Automation 122
handling in COM 131
properties of 118

exception type (in OMG IDL)
in Automation 230, 332
in COM 373

EX_completionStatus() 235
EX_Id() 243
EX_majorCode() 243
EX_minorCode() 235
extended built-in types in IDL 296
423

INDEX
F
factory. See object factory
fixed type

in IDL 297
floating point type in IDL 293
footprint, minimizing client-side 164
forward declaration of interfaces in IDL 287

G
genies

C++ 43
Visual Basic 43, 85

get_BadKind() 262
get_Bounds() 262
GetConfigValue() 247, 263
get_CORBAAnyData() 253
GetCORBAObject() 250
GetForeignReference() 220
GetImplementation() 232, 256
GetInitialReferences() 250, 267
GetInterface() 232, 256
get_moniker() 221
GetObject() 229, 255

COM C++ example 103
example 144
PowerBuilder example 87
Visual Basic example 86

get_typeCode() 253
GetUniqueId() 220
get_value() 253

H
Hash() 233, 257
hierarchy of interfaces in OMG IDL

mapping to Automation 328
mapping to COM 368

I
ICORBA_Any 252
ICORBAFactory 196, 254
ICORBAObject 256
ICORBA_TypeCode 258
ICORBA_TypeCodeExceptions 262
id() 225, 237, 259
IDispatch, use in late binding 68
IDispatch interfaces

use in deployment 29
IDL
 424
abstract interfaces 291
arrays 304
attributes 279
built-in types 293
constant definitions 308
constant expressions 311
creating COM IDL from 72, 102, 186
creating type libraries from 68, 84, 190
empty interfaces 281
enum type 300
exceptions 280
extended built-in types 296
forward declaration of interfaces 287
inheritance redefinition 286
interface inheritance 282
local interfaces 288
modules and name scoping 271
multiple inheritance 283
object interface inheritance 285
operations 276
pseudo object types 306
registering 180
sequence type 305
struct type 301
structure 270
union type 302
valuetypes 290

idlgen vb_genie.tcl 213, 419
IIOP 23

use in deployment 27, 152
IMonikerProvider 221
Implementation Repository 95, 110
implementing

callbacks 139
server for client callbacks 150

inheritance (in OMG IDL)
CORBA-to-Automation mapping 325
CORBA-to-COM mapping 368
multiple 328

inheritance redefinition in IDL 286
inline exception handling in Automation 125
insert_safearray() 227
INSTANCE_clone() 242
INSTANCE_repositoryId() 242
interface (in OMG IDL)

CORBA-to-Automation mapping 318
CORBA-to-COM mapping 361

interface hierarchy (in OMG IDL)
CORBA-to-Automation mapping 328

INDEX
CORBA-to-COM mapping 368
interface inheritance in IDL 282
internet deployment 161
Internet Explorer 61
Internet Explorer security settings 65
Internet Inter-ORB Protocol. See IIOP
IOrbixORBObject 263
IORBObject 266
IsA() 233, 256
IsEquivalent() 233, 257
IsNil() 233, 257

K
kind() 224, 237, 259

L
late binding 13, 29, 68
length() 226, 239, 261
local interfaces in IDL 288
local object pseudo-operations 289
locator daemon 95, 110
long double type in IDL 297
long long type in IDL 296

M
MD5 algorithm 70, 362
member_count() 225, 237, 259
member_label() 226, 238, 260
member_name() 225, 238, 260
member_type() 226, 238, 260
memory cache 177
module (in OMG IDL)

CORBA-to-Automation mapping 351
CORBA-to-COM mapping 392

modules and name scoping in IDL 271
multiple inheritance 328
multiple inheritance in IDL 283

N
name() 225, 237, 259
Narrow() 248
nil object references 233
NonExistent() 233, 257

O
object factory 87, 104

creating remote instance of 157, 159
object interface inheritance in IDL 285
object references

Automation 86
COM 103
converting to strings 249, 266
CORBA-to-Automation mapping 348
CORBA-to-COM mapping 390
equivalent 233
foreign 220
nil 233

ObjectToString() 249, 266
octet type

in IDL 294
OLE collections 342
OMG IDL See IDL
operation (in OMG IDL)

CORBA-to-Automation mapping 323
CORBA-to-COM mapping 366

operations
in IDL 276

P
parameter-passing modes

CORBA-to-Automation mapping 323
CORBA-to-COM mapping 366

PowerBuilder
example of GetObject() 87
runtime 162
writing clients in 50, 92

ProcessEvents() 247, 264
properties of CORBA exceptions 118
protocols

introduction to 23
limitations in using DCOM 29

pseudo object types in IDL 306
put_CORBAAnyData() 253
put_value() 253

R
references. See object references
ReleaseCORBAView() 247, 264
ResolveInitialReference() 250, 267
return types

CORBA-to-Automation mapping 323
CORBA-to-COM mapping 366

RunningInIDE() 247
runtime errors, mapping from CORBA to

Automation 316
425

INDEX
runtime requirements 162

S
SafeArrays 339, 342
scoped_name() 245
scoped names (in OMG IDL)

CORBA-to-Automation mapping 355
CORBA-to-COM mapping 397

self-referential data types 375
sequence type

in IDL 305
sequence type (in OMG IDL)

CORBA-to-Automation mapping 339
CORBA-to-COM mapping 378

servers
implementing for client callbacks 150
replacing DCOM with CORBA 196

SetOrbName() 248, 265
ShutDown() 247, 264
single inheritance 326
srvAlias 196, 416
StartUp() 247, 264
stringified object references 249, 266
StringToObject() 249, 266
string type

in IDL 294
string type (in OMG IDL)

CORBA-to-Automation mapping 317
CORBA-to-COM mapping 360

struct type
in IDL 301

struct type (in OMG IDL)
CORBA-to-Automation mapping 333
CORBA-to-COM mapping 374
in Automation 230, 332
in COM 373

stub code
generating for callbacks 142

system exceptions 120
CORBA-to-Automation mapping 343
CORBA-to-COM mapping 383
properties of 120

T
target object

binding view object to 88, 105
tlibreg 70

options 418
 426
ts2idl 189
location of 172
options 414

ts2tlb 193
location of 172
options 415

typedef (in OMG IDL)
CORBA-to-Automation mapping 356
CORBA-to-COM mapping 398

type libraries
creating from OMG IDL 68, 84, 190
registering 70, 418

typeman 182
location of 172
options 412

type_name() 245
type store

adding OMG IDL to 180
caching mechanism 176
central role of 174
creating COM IDL from 186
creating type libraries from 190
deleting contents of 184
dumping contents of 185
priming 180

U
unbounded sequences 378
Union_d() 240
union type

in IDL 302
union type (in OMG IDL)

CORBA-to-Automation mapping 335
CORBA-to-COM mapping 376
in Automation 230, 332
in COM 373

unique_id() 245
usage models 27�32

Automation client to CORBA server 28
COM client to CORBA server 31

user exceptions
CORBA-to-Automation mapping 345
CORBA-to-COM mapping 383, 386

UUIDs, generating 70

V
value() 224
valuetypes in IDL 290

INDEX
view object
binding to target object 88, 105
introduction to 19
obtaining reference to in Automation 80
obtaining reference to in COM 98

Visual Basic
example of GetObject() 86
generating clients in, using genie 43
runtime 162
writing clients in 47, 89

Visual C++, using direct-to-COM support in 134
vtable 14, 68, 319

W
wchar type in IDL 297
writing a client 143
wstring type in IDL 297

Z
zero install configuration 164
427

INDEX
 428

	Introduction
	COM and CORBA Principles
	Main Similarities and Differences
	CORBA Overview
	COM Overview
	COM
	Automation

	Introduction to COMet
	The Interworking Model
	How COMet Implements the Model
	COMet System Components

	Usage Models and Bridge Locations
	Automation Client to CORBA Server
	COM Client to CORBA Server

	Programmer’s Guide
	Getting Started
	Prerequisites
	Developing Automation Clients
	Introduction
	Using the Visual Basic Genie
	Writing a Visual Basic Client without the Genie
	Writing a PowerBuilder Client
	Running the Client

	Using DCOM with COMet
	Introduction
	Launching the COMet Bridge Out-of-Process
	DCOM Security

	Using COMet with Internet Explorer
	Specifying the Bridge Location
	The Supplied Demonstration

	Automation Dual Interface Support
	Developing COM Clients
	Generating Microsoft IDL from OMG IDL
	Compiling Microsoft IDL
	Writing a COM C++ Client

	Priming the COMet Type Store Cache

	Developing an Automation Client
	The Telephone Book Example
	Using Automation Dual Interfaces
	Writing the Client
	Obtaining a Reference to a CORBA Object
	The Visual Basic Client Code in Detail
	The PowerBuilder Client Code in Detail

	Building and Running the Client

	Developing a COM Client
	The Telephone Book Example
	Prerequisites
	Writing the Client
	Obtaining a Reference to a CORBA Object
	The COM C++ Client Code in Detail

	Building and Running the Client

	Exception Handling
	CORBA Exceptions
	Example of a User Exception
	Exception Properties
	General Exception Properties
	Additional System Exception Properties

	Exception Handling in Automation
	Exception Handling in Visual Basic
	Inline Exception Handling
	Using Type Information

	Exception Handling in COM
	Catching COM Exceptions
	Using Direct-to-COM Support

	Client Callbacks
	Introduction to Callbacks
	Implementing Callbacks
	Defining the OMG IDL Interfaces
	Generating Stub Code for the Callback Objects
	Implementing the Client
	Implementing the Client in Visual Basic
	Implementing the Client in PowerBuilder
	Implementing the Client in COM C++

	Implementing the Server

	Deploying a COMet Application
	Deployment Models
	Bridge In-Process to Each Client
	Bridge Out-of-Process on Each Client Machine
	Bridge on Intermediary Machine
	Bridge on Server Machine
	Internet Deployment

	Deployment Steps
	Minimizing the Client-Side Footprint
	Deploying Multiple Hosts

	Development Support Tools
	The COMet Type Store
	The Central Role of the Type Store
	The Caching Mechanism of the Type Store

	The COMet Tools Window
	Adding New Information to the Type Store
	Using the GUI Tool
	Using the Command Line

	Deleting the Type Store Contents
	Dumping the Type Store Contents
	Creating a Microsoft IDL File
	Using the GUI Tool
	Using the Command Line

	Creating a Type Library
	Using the GUI Tool
	Using the Command Line

	Creating Stub Code for Client Callbacks
	Replacing an Existing DCOM Server
	Generating Visual Basic Client Code
	Introduction
	Using the GUI Tool
	Using the Command Line

	Programmer’s Reference
	COMet API Reference
	Common Interfaces
	IForeignObject
	IMonikerProvider

	Automation-Specific Interfaces
	DICORBAAny
	DICORBAFactory
	DICORBAFactoryEx
	DICORBAObject
	DICORBAStruct
	DICORBASystemException
	DICORBATypeCode
	DICORBAUnion
	DICORBAUserException
	DIForeignComplexType
	DIForeignException
	DIObject
	DIObjectInfo
	DIOrbixORBObject
	DIORBObject

	COM-Specific Interfaces
	ICORBA_Any
	ICORBAFactory
	ICORBAObject
	ICORBA_TypeCode
	ICORBA_TypeCodeExceptions
	IOrbixORBObject
	IORBObject

	Introduction to OMG IDL
	IDL
	Modules and Name Scoping
	Interfaces
	Introduction to Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	Mapping CORBA to Automation
	Mapping for Basic Types
	Mapping for Strings
	Mapping for Interfaces
	Basic Interface Mapping
	Mapping for Attributes
	Mapping for Operations

	Mapping for Interface Inheritance
	Mapping for Single Inheritance
	Mapping for Multiple Inheritance

	Mapping for Complex Types
	Creating Constructed OMG IDL Types
	Mapping for Structs
	Mapping for Unions
	Mapping for Sequences
	Mapping for Arrays
	Mapping for System Exceptions
	Mapping for User Exceptions
	Mapping for the Any Type

	Mapping for Object References
	Mapping for Modules
	Mapping for Constants
	Mapping for Enums
	Mapping for Scoped Names
	Mapping for Typedefs

	Mapping CORBA to COM
	Basic Types
	Mapping for Strings
	Mapping for Interfaces
	Mapping Interface Identifiers
	Mapping for Nested Types
	Mapping for Attributes
	Mapping for Operations

	Mapping for Interface Inheritance
	Mapping for Complex Types
	Creating Constructed OMG IDL Types
	Mapping for Structs
	Mapping for Unions
	Mapping for Sequences
	Mapping for Arrays
	Mapping for System Exceptions
	Mapping for User Exceptions
	Mapping for the Any Type

	Mapping for Object References
	Mapping for Modules
	Mapping for Constants
	Mapping for Enums
	Mapping for Scoped Names
	Mapping for Typedefs

	COMet Configuration
	Overview
	COMet:Config Namespace
	COMet:Mapping Namespace
	COMet:Debug Namespace
	COMet:TypeMan Namespace
	COMet:Services Namespace

	COMet Utility Arguments
	Typeman Arguments
	Ts2idl Arguments
	Ts2tlb Arguments
	Aliassrv Arguments
	Custsur Arguments
	Tlibreg Arguments
	Idlgen vb_genie.tcl Arguments

