
Orbix 6.3.11

Deployment Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2014-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Orbix are trademarks or
registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-01-31

Contents
Preface..1
Contacting Micro Focus ..3

Getting Started..5
Introduction ...5
Orbix Configuration Tool ..8
Running the Orbix Configuration Tool...9
Licensing your Orbix Environment ...14

Configuring and Deploying a Domain...................................17
Introduction ...17
Creating a New Domain ...18
Deploying a Distributed Domain ..23
Connecting a Client Machine to a Domain ...24
Localizing a Preconfigured Domain...26
Replicating Services in a Domain...27
Updating an Existing Domain ..28
Starting and Stopping Orbix Services...33
Setting Java ORB Classes ...34

Advanced Configuration and Deployment37
Creating a Domain in Expert Mode...37
Configuring a Machine with no GUI ..41
Deploying on Multi-homed Machines ..43
Configuring Orbix in a Cluster ...47
Configuring Services to Listen on Network Interfaces48
Specifying Custom Locations for Domain Files ...49
Specifying Custom Library Paths ...52
Using Custom XML Files ...53
Specifying Address Mode Policies...56
Specifying Custom Certificates ..61

Orbix Deployment Descriptors...63
Deployment Descriptor Structure ..63
Domain Configuration Elements ..65
Profile Configuration Elements ..68

Migrating Orbix Deployments ..73
Migrating from Orbix 5.1 Driver Files ...73
Conversion Process from Orbix 5.1 to an Orbix 6.x Descriptor75
Migrating from Orbix 6.x ..80

Orbix Deployment DTD ..83
Orbix Component Template Structure ..83

Glossary ..87
 Orbix Deployment Guide i i i

Index.. 93
iv Orbix Deployment Guide

Preface
Orbix enables you to develop and deploy enterprise-level
applications across different platform and programming language
environments. This guide explains how to setup an Orbix
environment, and examines the Orbix configuration and
deployment process in detail.

Audience
This guide is aimed at system administrators who are setting up
Orbix environments.
It is also aimed at programmers who are developing and
deploying Orbix applications. It contains advanced information
about customizing Orbix configuration and deployment. This guide
should be read in conjunction with the Orbix Administrator’s
Guide.

Related documentation
The document set for Orbix includes the following related
documentation:
• Orbix Administrator’s Guide
• Orbix Configuration Reference
• Orbix Management User’s Guide

Note: The scope of this guide is limited to the configuration and
deployment features that are supported by Micro Focus.
Unsupported configuration and deployment features are not
documented. These are proprietary features and are subject to
change without notice.
 Orbix Deployment Guide 1

Typographical conventions
This guide uses the following typographical conventions:

Keying conventions
This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal
text represents portions of code and literal
names of items such as classes, functions,
variables, or data structures. For example,
text might refer to the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:
#include <stdio.h>

Italic Italic words in normal text represent
emphasis and new terms.
Italic words or characters in code and
commands represent variable values you
must supply, such as arguments to
commands or path names for your
particular system. For example:
% cd /users/your_name
Note: Some command examples may use
angle brackets to represent variable values
you must supply. This is an older
convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX
command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command that
requires root privileges.

> The notation > represents the DOS or
Windows command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

[] Brackets enclose optional items in format
and syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.
 2 Orbix Deployment Guide

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The Product Updates section of the Micro Focus SupportLine

Web site, where you can download fixes and documentation
updates.

• The Examples and Utilities section of the Micro Focus Support-
Line Web site, including demos and additional product docu-
mentation.

To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page, then click Support.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Also, visit:
• The Micro Focus Community Web site, where you can browse

the Knowledge Base, read articles and blogs, find demonstra-
tion programs and examples, and discuss this product with
other users and Micro Focus specialists.

• The Micro Focus YouTube channel for videos related to your
product.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format
and syntax descriptions.
Orbix Deployment Guide 3

http://www.microfocus.com
http://www.microfocus.com

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
 4 Orbix Deployment Guide

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Getting Started
This chapter introduces Orbix configuration and deployment. It also
explains how to run the Orbix configuration tool and how to license your
Orbix installation.

Introduction
This section introduces Orbix configuration and deployment. It
includes the following topics:
• “Configuration and deployment process”
• “Orbix Configuration tool (itconfigure)”
• “Orbix deployment descriptor”
• “Orbix deployer and component XML files”
• “Deployed configuration models”
• “Implementation Repository”

Configuration and deployment process
Figure 1 shows a general overview of the Orbix configuration and
deployment process.

Figure 1 can be described as follows:
1. The Orbix configuration tool (itconfigure command) is used to

generate the domain deployment descriptor
(domain-name_dd.xml).

2. The deployer parses the deployment descriptor, taking input
from XML templates for the various Orbix components and
services.

Figure 1: Overview of Orbix Configuration and Deployment

_dd.xml

Deployer

itconfigure

CFR

IMR

.cfg file

component XML
 Orbix Deployment Guide 5

3. The deployer deploys the configuration domain into a
configuration domain file or the Configuration Repository
(CFR), and also into the Implementation Repository (IMR).

The components in Figure 1 are described in more detail in the
topics that follow.

Orbix Configuration tool (itconfigure)
The Orbix configuration tool (itconfigure command) guides you
through configuring Orbix components in your environment. You
can use it to perform tasks such as installing a license, creating a
configuration domain, or linking to an existing configuration
domain.
You can run the Orbix configuration tool in GUI and command-line
modes. You should create a domain deployment descriptor by
using this tool in GUI mode (shown in Figure 1).

GUI mode
The GUI creates a domain deployment descriptor file
(domain-name_dd.xml). You can create the configuration domain
specified by this deployment descriptor using the GUI.
Alternatively, you can save the descriptor and create your domain
later. GUI mode imposes constraints and performs validity
checking (for example, on the combinations of Orbix services that
are permitted).

Command-line mode
You can also create a configuration domain in command-line mode
by passing a previously created deployment descriptor to the
itconfigure command.
For detailed information on how to use the Orbix configuration
tool, see “Configuring and Deploying a Domain”.

Orbix deployment descriptor
The domain deployment descriptor (domain-name_dd.xml) describes
the contents of a configuration domain. For example, for a domain
named sample-domain, a deployment descriptor named
sample-domain_dd.xml specifies the services, components, features
and hosts that are included in that domain. By default, the
deployment descriptor file is stored in your etc\domains directory,
for example:
<install-dir>\etc\domains\sample-domain\sample-domain_dd.xml

The Orbix configuration GUI generates the deployment descriptor,
which it then uses to automatically deploy the specified
configuration into your environment (as shown in Figure 1).
Alternatively, you can also save the deployment descriptor before
it is deployed by the GUI, and then perform a command-line
deployment at a later stage. This is particularly useful if you want
to customize your configuration by editing your deployment
descriptor, or use multiple deployments with the same
configuration.
 6 Orbix Deployment Guide

For full details of how to perform a command-line deployment, see
“Configuring a Machine with no GUI” on page 41. For details on
the contents of the deployment descriptor file, see “Orbix
Deployment Descriptors”.

Orbix deployer and component XML files
The deployer parses the deployment descriptor produced by the
Orbix configuration GUI. It also takes input from the XML
templates for the various Orbix components and services (for
example, event_log.xml). By default, these XML templates are
stored in the following directory:
install-dir\asp\version\etc\conf
These template files all conform to a standard XML format as
specified by the ABDeploy.dtd file. For details of this DTD file, see
“Orbix Deployment DTD”.
You can also specify custom XML files to the deployer. For details,
see “Using Custom XML Files” on page 53.

Deployed configuration models
Depending on which option you chose in the configuration GUI,
the deployer gathers your configuration information into either a
configuration file or a Configuration Repository (CFR), and creates
scripts to start and stop the domain services.
The Interoperable Object References (IORs) that the deployer
obtains by preparing the domain services are an essential part of
this configuration domain data. If these are stored in a file, and
clients need access to these IORs, you need to make sure that this
file can be accessed by all clients (using NFS or similar network
services). If you are dealing with a larger number of clients, or
expect to modify configuration data, using a Configuration
Repository might be your preferred choice.
A Configuration Repository is a centralized database for all
configuration information. This centralized configuration model is
suitable for environments with a potentially large number of
clients and servers, or when configuration is likely to change.

Implementation Repository
The deployer also stores server process information in the
Implementation Repository (IMR). This specifies whether the
process can be started up on demand by a node daemon, and
includes details such as POA names, and ORB names.
For more details on Orbix configuration models and the IMR, see
the Orbix Administrator’s Guide.
Orbix Deployment Guide 7

Orbix Configuration Tool
The Orbix Configuration tool guides you through licensing and
configuring the components in your Orbix environment. You can
also use this tool to manage your environment at runtime. This
section includes the following:
• “Configuration setup tasks”
• “Runtime management tasks”
• “Example screen”

Configuration setup tasks
You can use the Orbix Configuration tool to perform basic setup
tasks such as the following:
• Install or update your license.
• Create a configuration domain.
• Deploy services into a configuration domain.
• Link to existing configuration domains.
• Create server replicas for clustering.
• Add services to existing configuration domains.
The Orbix configuration tool analyzes your installation and
provides you with the options available for your system.

Runtime management tasks
In addition, when you have set up your environment, you can use
this tool to perform runtime tasks such as the following:
• Start and stop your Orbix services.
• Open a command prompt configured for your domain.
• Launch the Administrator Web Console.
• Launch other configuration tools (for example, Orbix

Configuration Explorer).
• Open other GUI tools for specific Orbix services (for example,

Orbix Notification Service Console).
For information on using runtime tools such as the Administrator
Web Console and the Orbix Configuration Explorer, see the Orbix
Management User’s Guide.

Example screen
Figure 2 shows a newly created configuration domain named
my-domain. The left pane displays details such as the domain and
machine name, and all the services that have been configured.
The right pane displays summary information about the domain.
 8 Orbix Deployment Guide

While the toolbar across the top displays buttons for licensing and
various runtime options, such as starting services, and launching
other tools.

Running the Orbix Configuration Tool
This section explains the full syntax of the itconfigure command,
which is used to run the Orbix Configuration tool. It includes the
following:
• “Requirements”
• “Command syntax”
• “Orbix Configuration screen”

Requirements
Before you run the configuration tool, check the following system
requirements:
• Set JAVA_HOME so it points to your current Java installation.
• Set UNIX access permissions to account for the following

contingencies:
 The configuration tool must have write access to

directories /var/opt/iona and /etc/opt/iona. These
directories are usually restricted to accounts with
superuser privileges.

 The configuration tool prompts you to designate a user to
run domain services, and sets ownership of files and
directories accordingly.

• Set the IT_PRODUCT_DIR environment variable to point to the
latest Orbix installation on your system.

Figure 2: Orbix Configuration GUI
Orbix Deployment Guide 9

Command syntax
To run the configuration tool, use this command syntax:

The configuration tool options are described as follows:

itconfigure
 [-ORBproduct_dir install_dir]
 [-ORBlicense_file license_file]
 [-nogui]
 [-gui]
 [-load, -l domain_descriptor]
 [-deployed_descriptor, -d file]
 [-compatible]
 [-entities file]
 [-save, -s file]
 [-localize]
 [-from host]
 [-name domain_name]
 [-file, -f]
 [-cfr, -c]
 [-link, -i hostname]
 [-expert, -e]
 [-host, -h hostname]
 [-multihome hostname]
 [-corbalocs {true|false}]
 [-etc config_dir]
 [-var var_dir]
 [-range, -r base_port]
 [-port iiop_port]
 [-tlsport tls_port]
 [-ndport iiop_port]
 [-ndtlsport tls_port]
 [-credentials credentials]
 [-hostnamePolicy policy]
 [-libs, -L path]
 [-substitutions file]
 [-prefer_ipv6 {true|false}]
 [-prefer_ipv4 {true|false}]
 [-listen_address_list list]
 [-remove replica]
 [-reprepare service]
 [-service service]
 [-instance service]
 [-alt_master replica]
 [-jvm64]
 [-help, -?]
 [-demos]

-ORBproduct_dir
 install_dir

Specifies your installation directory when
Orbix is installed in a non-default location
and the IT_PRODUCT_DIR environment
variable is not set.
 10 Orbix Deployment Guide

-ORBlicense_file
license_file

Specifies your license directory when the
Orbix license file is not stored in the
default location and the IT_LICENSE_FILE
environment variable is not set. For more
details, see “Licensing your Orbix
Environment”.

-nogui Runs the configuration tool silently. This
option can be used with -load, -link, and
-save. For example, see “Replicating
Services in a Domain”.

-gui Runs the configuration tool GUI. This is the
default.

-load, -l
 domain_descriptor

Loads a preconfigured domain descriptor
file. When used in conjunction with -nogui,
silently deploys the local parts of the
configuration defined in the deployment
descriptor.
For more details, see “Deploying a
Distributed Domain”.

-deployed_descriptor,
 -d file

Specifies the deployment descriptor of an
existing configuration domain. This
enables you to add an additional service to
an existing domain.

-compatible For interoperability with previous versions,
this loads the specified file with the -load
option as an Orbix 5.x driver file. For more
details, see “Migrating from Orbix 5.1
Driver Files”.

-entities filename Uses the specified entities file when
loading the driver file specified with the
-load option. For more details, see
“Migrating from Orbix 5.1 Driver Files”.

-save, -s filename Saves a deployment descriptor in the
specified file. When used with -nongui, this
option will not deploy the saved
configuration.

-localize Replaces all deployment nodes in a
descriptor with the local host. For more
details, see “Localizing a Preconfigured
Domain”.

-from Specifies the deploy node to replace when
localizing a multi-profile descriptor.

-name domain_name Specifies the name of the domain. The
specified name overrides the name in a
loaded domain descriptor. For more
details, see “Changing the domain name”

-file, -f Creates a file based domain.
-cfr, -c Creates a cfr-based domain.
-link cfr_host Specifies the machine which hosts the

domain’s configuration repository.
-expert, -e Go straight into Expert mode.
Orbix Deployment Guide 11

-host, -h hostname Specifies the name of the domain’s host
machine. This setting overrides the setting
in a loaded domain descriptor.

-multihome hostname Denotes that the specified host is virtual
on a multi-homed host. For more details,
see “Deploying on Multi-homed Machines”.

-corbalocs
{true|false}

Use corbalocs instead of IORs where
possible. In non-GUI mode this supersedes
the settings in the loaded descriptor.

-etc etc_dir Specifies the directory where configuration
information is stored.

-var var_dir Specifies the directory where database
files are stored.

-range base_port Specifies the base port number from which
to begin allocating port numbers. This
option is only used in conjunction with
-nogui.

-port iiop_port Overrides the default CFR IIOP port when
used with -link.

-tlsport tls_port Overrides the default CFR TLS port when
used with -link.

-ndport iiop_port Overrides the default node daemon IIOP
port when used with -link.

-ndtlsport tls_port Overrides the default node daemon TLS
port when used with -link.

-libs, -L path Prefixes the library path to the built-in
path used when preparing and running
Orbix services. For more details, see
“Specifying Custom Library Paths” on
page 52.

-substitutions file Specifies substitution file in properties file
syntax containing values for substitution
variables. For more details, see
“Specifying Custom Certificates” on
page 61.

-prefer_ipv6
{true|false}

Specifies deployment as IPv6 where
possible.

-prefer_ipv4
{true|false}

Specifies deployment as IPv4 where
possible.

-listen_address_list
list

Listen on specified addresses

-credentials Specifies credentials in the following
format: "username=<name>, \
password_file=<file>,domain=<domain>"
 12 Orbix Deployment Guide

-hostnamePolicy policy Specifies the address mode policy for
IORS. Value can be one of the following:
• ip (IP addresses)
• localhost ('localhost'),
• localhost_ip ('127.0.0.1'),
• long (fully qualified hostname),
• short (unqualified hostname—the

default).
For more details, see “Specifying Address
Mode Policies” on page 56.

[-remove replica] Permanently removes a replica service
from an existing domain (for example, a
replica locator). For more details, see
“Updating an Existing Domain” on
page 28.

[-reprepare service] Re-prepares an existing indirect persistent
service after creating or removing a replica
locator.

[-service service] Adds a service to an existing domain.
[-instance service] Adds a replica instance that was

configured as the preferred master replica
to an existing domain.

[-alt_master replica] Adds a new preferred master. This is used
when you remove a replica service from an
existing domain.

[-jvm64] Enables support for a 64-bit version of
Java by running the JVM with the '-d64"
switch. If the Orbix installation contains
64-bit versions of the services, this will
deploy using the 64-bit services.

-help, -? Displays an explanation of the command
flags.

-demos Specifies the configuration needed to run
the Orbix demos in the domain.
Orbix Deployment Guide 13

Orbix Configuration screen
When the Orbix configuration tool runs for the first time, it
displays a screen similar to that shown in Figure 3:

Using the Orbix Configuration Welcome dialog, you can
perform basic configuration setup tasks, such as create a new
configuration domain, or update an existing one. For detailed
information on how to perform all the main configuration tasks,
see “Configuring and Deploying a Domain”.

Licensing your Orbix Environment
The Orbix configuration tool enables you to specify the location of
your Orbix license file.

Figure 3: Main Configuration Window

Note: You must first specify your license details before
you can perform actions such as creating an Orbix
configuration domain.
 14 Orbix Deployment Guide

Specifying a license file
To specify a license file:
1. From the Orbix configuration tool main menu, select

Tools>License. Alternatively, click the License button in the
toolbar, shown in Figure 4:

2. This displays a dialog similar to that shown in Figure 5:

3. Enter the location of the license file that you wish to install in
the License File text box. Alternatively, use the Browse to
navigate to the file. You should have received this file from
your Micro Focus representative and stored it in a secure
location.
The default locations are as follows:

4. Click OK to return to the main screen.
The licenses.txt file is copied from your specified location. Any
existing license files are overwritten. When you have specified a
license file, you will not need to perform these steps again.

Figure 4: Orbix License Button

Figure 5: Entering the License File

Windows <install-dir>\etc\licenses.txt

UNIX <install-dir>/etc/opt/iona/licenses.txt
Orbix Deployment Guide 15

 16 Orbix Deployment Guide

Configuring and
Deploying a Domain
Orbix provides a GUI-based configuration tool to guide you through
generating an Orbix environment.

Introduction
A configuration domain contains all the configuration information
used by Orbix ORBs, services, and applications. The Orbix
Configuration tool configures and deploys Orbix components into a
configuration domain. It can also link a machine to an existing
configuration domain, or make updates to an existing domain.

Centralized domain design
The Orbix Configuration tool provides a centralized mechanism for
designing a distributed configuration domain. While designing
your domain, you specify all of the machines that are to host
services in your domain, which services are run on each machine,
and which machines, if any, host replicas. You can also deploy
location services onto machines that host custom servers.
When you have designed your configuration, you must then go to
each machine in the domain and deploy the configuration. This
populates each machine’s configuration databases and correctly
deploys the services on each machine.

Configuration setup options
The Orbix Configuration tool File>New menu provides the
following setup options:
• Standard: This enables you to create a new configuration

domain from scratch. It is used to determine the type of
configuration being created, what ports the core services use,
and what services will be deployed into the domain.

• Expert: This enables you to create a new configuration
domain from scratch. It is similar to using Standard, but it
provides access to advanced configuration options. This option
is recommended if you are familiar with Orbix administration.

• Deploy: This enables you to load and deploy a previously
created deployment descriptor, to deploy services on the host
machines in a domain, and to deploy replicated services in a
domain. For more information, see “Replicating Services in a
Domain”.

• Open: This enables you to open an existing configuration
domain, and make incremental changes as necessary. For
example, you may wish to add additional services to an
existing domain, or create replica servers.
 Orbix Deployment Guide 17

• Connect: This enables you to connect a client machine to an
existing configuration domain. The new machine will link to
the existing configuration repository to retrieve its
configuration information.

For details of other tasks that you can perform using the Orbix
Configuration tool, see “Runtime management tasks”.

Creating a New Domain
The Orbix Configuration tool’s File>New>Standard menu option
enables you to create a new configuration domain, or modify an
existing one, by walking you through the procedure and providing
basic configuration options.
For more advanced configuration options, use the
File>New>Expert option (explained in the next section).

Procedure
To create a configuration domain, follow these steps:
1. Start the Orbix Configuration tool using the itconfigure

command (see “Getting Started”).
2. From the main menu, select File>New>Standard. This

displays a screen similar to Figure 6.

Note: This option fails to create a domain if the
configuration repository is not running, or if the domain is
file based.

Figure 6: Domain Type Screen
 18 Orbix Deployment Guide

3. Specify the domain name. If you are creating a new domain,
this name must be unique among any pre-deployed
configuration domains. If it is not, the existing domain is
overwritten.

4. Set the level of services to deploy into the domain by selecting
one of the following options:
 All Licensed Services automatically deploys all services

for which you have purchased licenses.
 Select Services enables you to select which services you

wish to deploy into the domain on the particular machine.
5. Specify the directories where you would like configuration

data stored on this system. In most cases, the defaults are
sufficient.

6. Click Next to select how your services start. This displays a
screen similar to Figure 7.

7. Choose one of the following options:
 A minimal set of services launched by a script I can

run generates a script that starts the location service
and, if selected, the configuration repository. All other
deployed services will be started on demand.

Note: On AIX, if you wish Orbix services to be launched on
start up, the domain name must be no longer than seven
characters.

Figure 7: Startup Mode and Base Port

Note: When one of the following two options is selected,
the location service is deployed by default. You will not be
able to unselect it.
Orbix Deployment Guide 19

 A minimal set of services launched at machine
startup configures the location service and, if selected,
the configuration repository to start up when the machine
is booted. All other deployed services will be started on
demand.

 All services launched by a script I can run generates
a script that will start all deployed services.

8. Enter a number for the Base Port. This is the number from
which Orbix begins sequentially assigning listener ports for its
services. The default is 3075.

9. Click Next to configure your domain security features. This
displays a screen similar to Figure 8.

10. Select a protocol:
 Insecure communication (IIOP/HTTP) configures

your domain so that it does not use TLS or HTTPS
protocols. It rejects any attempts to make a secure
connection.

 Secure communication (TLS/HTTPS) configures your
system so that all communication is done securely. Any
attempts to make a connection using a protocol other
than TLS or HTTPS are be rejected.

 Secure and insecure communication configures your
system so that it can use IIOP, TLS, HTTP, and HTPS
protocols.

11. Select the security features you wish to enable in the domain:

Figure 8: Setting Security Features

Note: This is the only mode in which the Firewall Proxy Service
will run.

Note: This option is automatically selected if you configure the
IS2 Security Infastructure. You can only select secure
communication.
 20 Orbix Deployment Guide

 Expose services through Firewall configures your
domain to use the firewall proxy service.

 Security Service configures your domain to take
advantages of the ORBIX security platform. For more
information read the Security Guide.

 Enable Access Control for Core Services is only
available for use when the IS2 security infrastructure is
configured, For more information read the Security Guide.

12. Click Next to configure any replicas you wish to include in
your domain. This displays a screen similar to Figure 9.

13. To add a replica to the domain, click Add, and enter the
machine’s host name and a listener port in the Add Host
dialog, shown in Figure 10.

To remove a replica from the list, highlight its hostname and
click Remove. When you have specified all of the replicas for
your domain, click Next.

Note: This option is only available for insecure domains.

Note: This option forces you to use TLS and HTTPS. Therefore
the firewall proxy service is unavailable.

Figure 9: Replica Configuration

Figure 10: Add Host Dialog
Orbix Deployment Guide 21

14. If you chose to deploy only selected services, you will see a
screen similar to Figure 11.

If you chose to deploy all licensed services, go to step 16.
15. Select the services you wish deployed into your configuration.

When you have selected the desired services, click Next to
see a summary of the configuration options you have chosen.
This displays a screen similar to Figure 12.

Figure 11: Selecting Services to Deploy

Note: You must check Demos if you wish to use the demo
programs provided with Orbix.

Figure 12: Confirmation Screen
 22 Orbix Deployment Guide

16. If you have configured replicas for this domain, or have
configured services to run on a different host, you should save
the domain descriptor. To save a domain descriptor for this
domain, click Save.

17. Click Next to create the domain and deploy the local services.
18. When the domain is successfully created, the Finish button

becomes enabled. Click it to close the tool.

Deploying a Distributed Domain
When you have designed a distributed domain, you must deploy
the domain on all of the hosts that make up the domain. To do
this, you must take the deployment descriptor created when you
designed the domain and migrate it to each host machine.
The Orbix Configuration tool provides the following options for
deploying your domain on the remaining hosts:
• Use the File>Deploy option from the GUI main menu.
• Use the -load and -nogui command-line options.

Using the Deploy option
The simplest way to deploy the local part of a domain is to use the
Deploy option. To use this option, perform the following steps:
1. Select File>Deploy from the main menu.
2. Select the deployment descriptor from the file selection

dialog, and click Open.
3. A screen similar to Figure 13 on page 23 should appear. Enter

the location for the configuration databases to be stored,
verify the domain name, and click Next.

Note: The name of the domain descriptor must end in
"_dd".

Figure 13: Deploying a Domain
Orbix Deployment Guide 23

4. Verify that the configuration details displayed in the
Confirmation screen are accurate. If so, click Next to deploy
the local services.

5. When the domain has successfully deployed, click Finish to
exit.

Using the command line
If you can not or do not want to run the Orbix Configuration GUI,
you can deploy a your domain on the local host using the following
command line syntax:

This command deploys the specified domain and the services for
the local host.

Connecting a Client Machine to a Domain
You may often need to configure machines into a domain that only
run client programs. These client programs do not need to run any
CORBA services, however, they must access the domain’s
configuration. The Orbix Configuration tool enables you to connect
a new machine to an existing configuration domain. The new
machine retrieves and stores its configuration in the configuration
repository on the existing host machine.

Figure 14: Initializing a Domain

itconfigure -nogui -load deployment-descriptor

Note: The Connect wizard does not enable you to deploy
additional services on a machine. It only generates scripts
that enable the current machine to join an existing
configuration.
 24 Orbix Deployment Guide

There are two approaches to connecting a client machine to an
existing domain:
• “Connecting with a deployment descriptor”.
• “Connecting without a deployment descriptor”.

Connecting with a deployment descriptor
To connect a new machine to an existing domain using its
deployment descriptor file, perform the following steps:
1. Select File>Connect from the GUI main menu.
2. If you have access to a deployment descriptor, select Yes in

the dialog shown in Figure 15.

3. Select the deployment descriptor from the file selection
dialog, and click Open.

4. In the Connect to a Configuration Domain wizard, enter
the details for your link domain. For example, you can specify
General details such as the location of your configuration
files, and Node Daemon or Security details, if applicable.
This wizard is shown in Figure 16.

5. Click Next to confirm your input and view a summary of the
configuration in the Confirmation screen.

6. Click Next to create the local files needed to connect the
machine to the configuration domain and deploy the local
services.

Figure 15: Target Domain Dialog.

Figure 16: Connecting to a Domain
Orbix Deployment Guide 25

7. When the machine is successfully connected to the domain, in
the Summary screen, select Finish.

Connecting without a deployment
descriptor
Users without access to a a deployment descriptor can also
connect a new machine using the Connect to a Configuration
Domain wizard. To connect this way, perform the following steps:
1. Select File>Connect from the GUI main menu.
2. Because you do not have access to a deployment descriptor,

select No in the dialog shown in Figure 15.
3. In the Connect to a Configuration Domain wizard, enter

the hostname and port of the CFR to which you wish to
connect the new machine. If applicable, enter a location for
the configuration files, and Node Daemon or Security
details. The wizard is shown in Figure 16.

4. Click OK to confirm your input and view a summary of the
configuration.

5. Click Next to create the local files needed to connect the
machine to the configuration domain and deploy the local
services.

6. When the machine is successfully connected to the domain, in
the Summary screen, select Finish.

Localizing a Preconfigured Domain
You may need to create a duplicate configuration, one that is
identical, except for the hosts that it runs on. Some reasons for
doing this are:
• Creating test and production configurations that are identical

in everything but the host on which they run.
• Migrating a system from one machine to another.
• Packaging an Orbix installation with a software distribution.

You can then ship a configuration template that can be run on
each destination machine, with the services localized for that
host, rather than the host on which the configuration was
created.

If you wish to deploy a preconfigured domain, the Orbix
Configuration tool provides two options:
• Use the GUI in Expert mode, and select Localize.
• Run the itconfigure command with the -localize and -nogui

options.
 26 Orbix Deployment Guide

Using the GUI
To use the Orbix Configuration GUI to deploy a localized domain,
complete the following steps:
1. Select File>New>Expert from the main menu.
2. In the screen shown in Figure 14 on page 24, click Initialize,

located at the bottom left of the screen.
3. Select the preconfigured domain descriptor from the file

selection dialog.
4. Click Localize. This replaces the name of the host defined in

the original configuration with the local host name.
5. Click Next.
6. Click Finish.

Alternatively, you can make changes to suit the needs of your
environment (see “Deploying a Distributed Domain”).

Using the command line
If you can not or do not wish to run the GUI, you can deploy a
localized domain from the command line by running:

Running this command first replaces a deploy node in the
descriptor with the host specified in the -from host option or with
the local host. It then deploys an exact replica of the specified
domain on the new host.
The -from host option enables you to select the deploy node to
replace when localizing a multi-profile descriptor.
You can specify other changes to the deployed domain by using
other command-line options.

Replicating Services in a Domain
You can use the Orbix Configuration tool to configure a machine to
use replicas of an existing CFR, locator, naming, and security
service. A machine configured to host replicas can also host
services as part of an existing configuration domain.

itconfigure -nogui -localize [-from host] -load
deployment-descriptor

Note: To configure a machine to host replica services, you
should have already specified that the domain include
replicas when you created it (Figure 9).
Orbix Deployment Guide 27

Deploying a CFR-based replica
To deploy a CFR-based replica, perform the following steps:
1. Copy the generated deployment descriptor from the host

machine to the replica machine that you wish to configure.
The deployment descriptor name is domain_name_dd.xml. For
example, the domain descriptor for a domain named Apollo
will be Apollo_dd.xml.

2. Run the Orbix Configuration tool. From the main menu,
select File>Deploy.

3. In the Load Descriptor dialog, select the domain descriptor
that you wish to replicate. Click Open.

4. A screen similar to Figure 13 on page 23 should appear. Enter
the location for the configuration databases to be stored,
verify the domain name, and click Next.

5. Verify that the configuration details displayed in the
Confirmation screen are accurate. If so, click Next to deploy
the local services.

6. When the replica is successfully deployed, click Finish.

Updating an Existing Domain
The Orbix Configuration tool enables you to perform dynamic
updates on an existing configuration domain (for example, add
services or replica services after the domain is created). You can
use the File>Open option to specify an existing domain descriptor
file. Alternatively, use the File>Reopen option to access the list
of recently used domains. This section includes the following:
• “Opening a domain”
• “Reopening a domain”
• “Adding a service”
• “Adding a replica service”
• “Repreparing a service”
• “Removing a replica service”
 28 Orbix Deployment Guide

Opening a domain
To open an existing domain, perform the following steps:
1. Select File>Open from the main menu.
2. Select the deployment descriptor using the Select

Descriptor dialog, shown in Figure 17.

This dialog also enables you to specify Standard Settings
and Advanced Settings for domains with non-default
locations.

3. Click OK. This loads up the domain and displays summary
information in the GUI, shown in Figure 18.

Figure 17: Select Descriptor Dialog

Figure 18: Loaded Domain
Orbix Deployment Guide 29

When the domain has been opened, you can then start or stop its
services, perform dynamic updates (for example, add a service or
replica service), or launch consoles for that domain.

Reopening a domain
The Reopen option enables you to select a domain from a list of
recently used domains, without having to specify a domain
descriptor.
To use this option, select File>Reopen from the main menu, and
select the domain that you wish to reopen.

Adding a service
To add a service to an existing domain, perform the following
steps,
1. Select the machine node on which you want to add the

service.
2. Right-click to select Add, and select the service that you

require. Figure 18 shows an example of adding a CORBA
Events service.

The domain services must be running, and you can only select
from services that are not already in the domain. You can only add
services on the host that the Orbix Configuration tool is run. To
extend a domain to include another host, create a link domain
(see “Connecting a Client Machine to a Domain”).

Note: In CFR or link domains, the effective deployment
descriptor for the domain is obtained from the CFR itself.
Therefore, to open a CFR domain, at least one CFR replica
must be running.

Figure 19: Adding a Service to a Domain
 30 Orbix Deployment Guide

When you add a new service, the local domain scripts,
configuration files, and log files are updated with details of the
new service. The domain scripts include the following:
• domain-name_env
• start_domain-name_services
• stop_domain-name_services

Adding a replica service
To add a replica service to an existing domain, perform the
following steps:
1. Select the machine node in the left pane, right click to select

Add, and select the replica service that you require. Figure 20
shows an example of adding a replica locator.

The domain services must be running, and you can only select
from services that are not already in the domain. You can only
add services on the host that the Orbix Configuration tool is
run. To extend a domain to include another host, create a link
domain (see “Connecting a Client Machine to a Domain” on
page 24

Figure 20: Adding a Replica Service to a Domain

Note: You can replicate the CFR, locator, and naming
services using the Orbix Configuration tool. Security
replicas must be configured manually (see the Security
Guide for details).
Orbix Deployment Guide 31

2. After selecting the replica service, you can specify details such
as the Instance Name and ports for your replica service.
Figure 21 shows an example of the Add Location Service
Replica dialog.

3. After adding the replica, you may be prompted to perform
additional steps. For example, after adding a replica locator,
you must reprepare any indirect persistent services. This
ensures that the object references for these services include
the address of the locator replica, and enables clients to be
correctly directed to these services.

Removing a replica service
To permanently remove a replica service from a domain, perform
the following steps:
1. Select the service in the left pane, and right click to select

Remove. When removing a replica, it must be running in the
domain.
This action removes details of the service from the domain
scripts (for example, start_my-domain_services).

2. After removing a replica, you may be prompted to perform
additional steps. For example, after removing a replica locator
you must reprepare any indirect persistent services. This
ensures that their object references do not include the
address of the removed locator.

Repreparing a service
After creating or removing a replica locator, you must first
reprepare any indirect persistent services. This ensures that the
object references for these services include the correct locator
address information.

Figure 21: Add Location Service Replica dialog
 32 Orbix Deployment Guide

For example, when creating a locator replica, an indirect
persistent service must be reprepared to ensure that its object
reference includes the address of the locator replica. When
removing a locator replica, repreparing ensures that it no longer
includes the address of the removed locator.
To reprepare a service, select the service in the left pane, and
right click to select Reprepare. Figure 18 shows an example.

Starting and Stopping Orbix Services
The Orbix Configuration tool automatically generates start and
stop scripts. These enable you to manually activate and deactivate
all services deployed on the configured host. You can activate
these scripts directly in the GUI or using the command line.

Starting Orbix domain services
To start all services for the current domain that are deployed on
this machine, select Run>Start from the main menu, or click the
Start button in the toolbar.
Alternatively, you can start all domain services using the following
command:

Stopping Orbix domain services
To stop all services for the current domain that are deployed on
this machine, select Run>Stop from the main menu, or click the
Stop button in the toolbar.

Figure 22: Repreparing a Service

config-dir/bin/start_domain-name_services
Orbix Deployment Guide 33

Alternatively, you can stop all domain services using the following
command:

Starting and stopping individual services
To start or stop an individual service, select the service in the left
pane, right click, and select Start or Stop.
For details of starting and stopping individual services on the
command line, see the Orbix Administrator’s Guide.

Setting your environment in a command
shell
To set your command shell to recognize a specific domain, select
Run>Command Shell.
Alternatively, you can set your environment using the following
command:

Setting Java ORB Classes

To run Java applications, Orbix must use its own ORB classes
instead of Sun ORB classes. You can ensure that Orbix finds the
correct classes one of the following ways:
• Use an iona.properties file.
• Use Java system properties when invoking the Java

interpreter.

Using an iona.properties file
You can create an iona.properties file in the JAVA_HOME/jre/lib
directory. This file should contain the following settings:

config-dir/bin/stop_domain-name_services

config-dir/bin/domain-name_env

Note: This section applies only to versions of Java earlier than
Java 11. From Java 11 onwards the following procedure is
unnecessary because of the removal of the Java CORBA module
in modern JDKs.

org.omg.CORBA.ORBCLASS=com.iona.corba.art.artimpl.ORBImpl
org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.

ORBSingleton

Note: The Orbix Configuration tool automatically creates an
iona.properties file in the install-dir\etc\domains\domain-name
directory. This file is added to the CLASSPATH set by your domain’s
initialization script.
 34 Orbix Deployment Guide

Using Java system properties
You can invoke the Java interpreter with the -D options as follows:

java
-Dorg.omg.CORBA.ORBCLASS=com.iona.corba.art.artimpl.ORBImpl

-Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.OR
BSingleton app-name
Orbix Deployment Guide 35

 36 Orbix Deployment Guide

Advanced
Configuration and
Deployment
This chapter explains advanced custom configuration and deployment
features offered by Orbix.

Creating a Domain in Expert Mode
Expert mode provides advanced users a more flexibility when
creating and modifying configuration domains. It enables you to
specify well-known addresses for Orbix services, and also to
configure the services to run using direct or indirect persistence.

Procedure
To create a configuration domain using expert mode, complete the
following steps:
1. From the main menu, select File>New>Expert.
2. In the Domain Details screen, enter a name for the domain

and specify if the domain is to be file-based or CFR-based,
shown in Figure 23.

Figure 23: Domain Details Screen
 Orbix Deployment Guide 37

3. Select the level of security for your domain:
 Allow Insecure Communication configures your

domain to allow communication over insecure protocols
such as HTTP.

 Allow Secure Communication configures your system
to allow secure communication using TLS or HTTPS.

4. To have the domain be started on system start-up place a
check next to Launch Domain Services on Machine
Startup.

5. If you wish to integrate your domain into an Enterprise
Management System (for example, IBM Tivoli, BMC Patrol, or
HP Openview), check Generate EMS configuration files.

6. Use the Address Mode Policy for Object References
drop-down box to select how services publish hostnames in
their object references. Select one of the following options:
 Short (unqualified) hostname
 Fully qualified hostname
 localhost (the default)
 IP Addresss
 127.0.0.1

7. Click Next to specify the location of the files associated with
your domain. The Storage Locations dialog is displayed,
shown in Figure 24.

8. If you wish to store your configuration and logging
information in non-default locations, you can specify these
using the Standard Settings and Advanced Settings.
Normally, databases and service log files are stored in the db
and log directories of the Data Directory. Configuration files
and scripts are stored in domain and bin directories of the
Configuration Directory.
If you want more fine-grained control over where the domain
service database and log files, and configuration scripts and
log files reside, specify the Advanced Settings. All required
directories are created if they do not already exist.

Note: If you choose to have the domain services launch at
machine startup as Windows services, the system path
needs to contain certain directories. For versions of Java
earlier than Java 11, these are:
• %IT_PRODUCT_DIR%\asp\6.3\bin
• %IT_PRODUCT_DIR%\bin
• %JAVA_HOME%\jre\bin\server

If you chose Set the variables for all users at installation,
then the path is already correctly set.
For Java 11 onwards, the necessary directories are:
• %IT_PRODUCT_DIR%\asp\6.3\bin
• %IT_PRODUCT_DIR%\bin
• %JAVA_HOME%\bin\server
 38 Orbix Deployment Guide

9. You can also initialize your domain’s service database and log
files with those of an existing domain. These domain files are
copied from the locations specified by the Import Databases
from field.

10. Click Next to select the services to deploy into the domain.
The Select Services screen is displayed, shown in Figure 25.

Figure 24: Storage Locations Screen

Note: To ensure data integrity, ensure that the other
domain’s services are shut down when this domain is being
deployed. Only databases created with Orbix 6 SP 1, or
later, can be imported.
Orbix Deployment Guide 39

11. In the Select Services screen, check the services that you
wish to deploy into the domain.

12. If you wish to deploy a service using non-default settings,
click the Edit button next to the service’s name. This displays
a dialog similar to Figure 26. This enables you to configure
options specifically for the service (for example, activation
modes, replication settings, and optional properties). When
you have selected the settings, click OK to return to the
Select Services screen.

Figure 25: Select Services Screen

Note: If you do not check Demos, the demo
programs included with the installation will not run
properly.

Figure 26: Location Settings Dialog
 40 Orbix Deployment Guide

Standalone Services are direct persistent and therefore are
all started individually at domain startup.
Launch Services on Domain Startup are indirect persistent
and are started individually with the domain start script.
The default is to start services as indirect persistent on
demand, via the locator and node daemon.

13. After selecting and configuring the desired services, click
Next to view the configuration options that you have chosen.
This displays a Confirmation screen similar to Figure 27.

14. If you have configured replicas for this domain or have
configured services to be run on different hosts you must save
a domain descriptor. To save a descriptor, click Save.

15. If you want to proceed to deploy, click Next to create the
domain and deploy any local services.

16. When the domain is successfully created, the Finish button
becomes enabled. Click Finish to exit.

Configuring a Machine with no GUI
You may need to occasionally configure and deploy an Orbix
domain on a machine with no GUI capabilities (for example, a
server on a remote site). The Orbix Configuration tool supports
this by enabling you to create a domain deployment descriptor on
one host, and then deploy it on another host.
Orbix provides a command-line version of the configuration tool
(itconfigure -nogui) for users who cannot deploy using a GUI
application. This parses a pre-existing deployment descriptor and
deploys the specified configuration domain.

Note: Some options may not be available for all
services (for example, replication is available for the
locator, CFR, security and naming services only).

Figure 27: Confirmation Screen
Orbix Deployment Guide 41

Creating the deployment descriptor
The recommended method of generating the deployment
descriptor is to first run the Orbix configuration tool on a
GUI-enabled machine, and then save the deployment descriptor
for later use in command-line mode. This ensures that the
generated XML document is valid.
To create the deployment descriptor, complete the following
steps:
1. On a machine with GUI capabilities, run the configuration GUI

and select File>New>Expert from main menu.
2. To design the domain, follow the steps outlined in “Creating a

Domain in Expert Mode”.
3. On the Select Services screen, click Settings. This displays

a dialog box similar to the one shown in Figure 28.
4. In the Host text box, enter the name of the remote host, and

click Apply.
5. In the Confirmation screen, click Save to save the

deployment descriptor.

Deploying on the command line
To deploy a deployment descriptor on the command line, perform
the following steps:
1. Copy your deployment descriptor file to the machine without

GUI capabilities.
2. At the command prompt, change directory to the location of

your domain deployment descriptor, for example:

Figure 28: Domain Defaults Dialog

<install-dir>\etc\domains\sample-domain
 42 Orbix Deployment Guide

3. Enter the following command:

itconfigure reads the specified deployment descriptor, finds
the profile matching the current host’s IP address and deploys
the services in this profile. If no such match is found,
itconfigure prints an information message and exits.

4. Repeat this process on any other hosts for which you have
configured services.

Localizing the domain
If the descriptor contains exactly one profile/node, and that node
does not match the local host, use the following command:

This replaces the name and IP address of the node specified in the
deployment descriptor with name and IP address of the local host.

Changing the domain name
If you wish to change the name of the configuration domain, use
following command:

The name specified using -name overrides the name specified in
the descriptor.

Deploying on Multi-homed Machines
You may need to configure and deploy an Orbix domain on a
multi-homed server machine. This is a machine that has more
than one IP address and corresponding hostname, and where only
one address/hostname is configured as the default.
If you want to use a non-default Orbix hostname, you can supply
it explicitly to the Orbix Configuration tool. This provides a
-multihome command-line option, where the alternate hostname
can be specified.
Specifying the -multihome option to itconfigure instructs
Orbix-supplied services, such as the locator, to use the specified
hostname when listening on a host:port and embedding a host into
an IOR.

itconfigure -load sample-domain_dd.xml -nogui

itconfigure -load sample-domain_dd.xml -nogui -localize

itconfigure -load sample-domain_dd.xml -nogui -name my-domain

Note: On AIX, if you wish Orbix services to be launched at start
up, the domain name must be no longer than seven characters.
Orbix Deployment Guide 43

Multi-homed deployment process
When you click the configuration tool’s Finish button, the
behavior in GUI mode is identical with command-line mode. The
configuration tool has a deployment descriptor loaded in memory,
and must decide which services to deploy. The selection process is
as follows:
• The configuration tool looks for the host node that matches

the localhost IP address, using
InetAddress.getLocalHost().getHostAddress().

• If a matching host is found, the configuration tool deploys the
services specified in this node’s profile.

• If no matching host is found, the configuration tool displays a
dialog that enables you to deploy on another hostname. For
example, Figure 29 shows the dialog displayed when there are
more than two nodes.

You can choose to deploy the services for one of these nodes. This
only succeeds if you are on a multi-homed machine, and the
selected node’s IP address/name maps to another non-default
network interface on this machine. The exception is when there is
no interaction between the services on the selected node.
For more information on deployment descriptor nodes and
profiles, see “Orbix Deployment Descriptors”.

Deploying on the command line
On the command line, you can specify the host to consider as the
local node to itconfigure. This avoids the step described in
“Multi-homed deployment process”.
If the deployment descriptor has a <dd:node> name attribute set to
the name of a virtual or additional network adapter (for example,
othello), you can deploy the services for this node using the
following command:

The -multihome option instructs itconfigure to look for a node
matching the specified -multihome value instead of finding one that
matches the localhost’s default IP address.

Figure 29: Dialog for More than Two Nodes

itconfigure -nogui -multihome othello -load
<descriptor-name>
 44 Orbix Deployment Guide

Deploying with the GUI
In GUI mode, you can also use the -multihome option when
starting the GUI to avoid the step described in “Multi-homed
deployment process”. When you click Finish, itconfigure
initializes the default host with the one specified by -multihome.
Unless you manually alter the host field(s), no dialog appears
when you click Finish because there is no conflict to resolve.
To configure and deploy a domain on a multi-homed machine
using the GUI, complete the following steps:
1. On a multi-homed machine, run the configuration tool with

the -multihome command-line option, and specify the alternate
hostname. For example, on a multi-homed machine with
primary hostname orion, and an alternate hostname othello,
use the following command:

2. Select File>New>Expert from main menu, and follow the
steps outlined in “Creating a Domain in Expert Mode” on
page 37.

3. In the Select Services dialog, click Settings. This displays a
dialog box similar to the one shown in Figure 28 on page 42.

4. The Host box should match the hostname specified by the
multihome parameter on the command line.

5. Click Apply.
6. Because the configuration tool has been informed of the

alternate hostname, deployment can then proceed as normal
(see “Creating a Domain in Expert Mode” on page 37).

Modifying hostnames without the
-multihome option
If you do not use the -multihome option, and you modify the
content of the hosts field, itconfigure displays the dialog shown in
Figure 30.

itconfigure -multihome othello
Orbix Deployment Guide 45

If you click Yes, the services are deployed. The last sentence in
this message shows that this conflict can also arise when the host
is a truly remote machine, and forcing local deployment would not
make sense.

Configuring your Orbix applications for
multi-homed hosts
Specifying the -multihome option to itconfigure instructs
Orbix-supplied services, such as the locator, to use the specified
hostname when listening on a host:port, and embedding a host
into an IOR. However, by default, Orbix applications written by the
user still use the default hostname.
To use a multi-homed hostname with your Orbix application, you
must specify values for the following configuration variables in
your application configuration scope:
• policies:iiop:client_address_mode_policy:local_hostname
• policies:iiop:server_address_mode_policy:local_hostname

For example, the following itadmin commands show examples of
setting both these variables:

These settings configure applications listening on random ports to
use the specified hostname. The most common use case is when
the domain is for a single host. In this case, you can create these
variables in the global configuration scope.

Figure 30: Multi-homed Message

itadmin variable create –scope ApplicationScope \
 –type string –value Hostname \
 policies:iiop:client_address_mode_policy:local_hostname

itadmin variable create –scope ApplicationScope \
 –type string –value Hostname \
 policies:iiop:server_address_mode_policy:local_hostname
 46 Orbix Deployment Guide

Configuring Orbix in a Cluster
A cluster is a group of two or more machines, in which the
following applies:
• Each machine has its own hostname.
• There is also a virtual hostname/IP address, but this is

assigned to only one machine at a time.
• A shared disk drive can be mounted by only one machine at a

time
A cluster is a means of providing failover. Software, configuration
files, databases, and so on, can be stored on the shared disk.
While server applications always advertise themselves using the
virtual hostname.
Clustering software is used to monitor the health of software
running on the active computer. If something goes wrong, a
failover is made to another computer in the cluster. This section
explains how to set up a cluster in an Orbix environment.

Configure a multi-homed Orbix host
On the currently active machine in the cluster, install Orbix on the
shared disk, and run the following command:

This configures Orbix services such as the locator for use on a
multi-homed host. For full details, see “Deploying on Multi-homed
Machines” on page 43.

Configure your Orbix applications as
multi-homed
To use a multi-homed hostname with Orbix applications you have
written, specify values for the following configuration variables in
your application configuration scope:
• policies:iiop:client_address_mode_policy:local_hostname
• policies:iiop:server_address_mode_policy:local_hostname

This instructs your applications listening on random ports to use
the specified hostname. For more details, see “Configuring your
Orbix applications for multi-homed hosts” on page 46.

Write shell scripts for Orbix services and
applications
Write shell scripts that do the following:
• Start Orbix services and user-written Orbix server

applications.
• Stop your Orbix server applications and Orbix services.
• Check the health of Orbix services and Orbix server

applications (for example, using ps and grep).

itconfigure –multihome virtual-hostname
Orbix Deployment Guide 47

For more details, see “Starting and Stopping Orbix Services” on
page 33.

Register your shell scripts
Finally, you must register your Orbix shell scripts with the
clustering software used in your environment.

Configuring Services to Listen on Network
Interfaces

By default, itconfigure generates domains in which services are
configured to listen on all interfaces on that host. This behavior
can be changed by explicitly specifying a list of listen addresses as
a comma-separated list of hostnames or IP addresses. Using
dedicated listen addresses is useful for example if you want to set
up to domains on the same host listening on the same ports,
where each domain's services would receive client requests from
independent networks.

Specifying address lists using the Expert
wizard
You can specify a listen address list on the first page of the Expert
wizard. The value entered in this text field will be used in set the
following configuration variable:

In this syntax, the publish address is the address (as hostname or
IP address, depending on the selection of the address mode
policy) the server uses when it publishes object references. See
also section “Specifying Address Mode Policies” on page 56.

Example
When specifying a listen address list of 10.2.3.57 and deploying a
locator, using insecure transports only and the default IIOP port,
on host orion, the following variable will be defined for the locator:

Specifying address lists on the command
line
You can also specify the listen addresses on the command line,
using the -listen_address_list List option:

wka:transport:addr_list = ["publish address(listen address
list):port"];

plugins:locator:iiop:addr_list =
["orion(10.2.3.57):3075"];
 48 Orbix Deployment Guide

For example:

In either case, the addresses are used only if and when
deployment takes place. They are not stored in the deployment
descriptor because they are not portable (i.e. they usually become
meaningless if the descriptor is localized on another host).

Specifying Custom Locations for Domain Files
This section explains how to specify custom locations for all your
configuration domain’s files by passing properties to itconfigure.
It includes the following topics:
• “Configuration domain files”
• “Command-line options for custom locations”
• “Setting all locations on the command line”
• “Partially setting custom locations”
• “Redeploying an existing domain”

Configuration domain files
Orbix configuration domain files include start, stop, and _env
scripts, domain databases, domain log files, and configuration
(.cfg) files.
Specifying custom locations for these domain files enables you to
use a directory structure such as the following:
• domains/bin/*_env|start*|stop*
• domains/config/*.cfg|cfr-*.cfg
• domains/dbs/<domain>/<service>/...
• domains/logs/<domain>/...

Command-line options for custom
locations
By default, domain start/stop and environment scripts are stored
in the bin subdirectory of your <config_dir>. Domain configuration
files are stored in the domains subdirectory in your <config_dir>.
By default, database files are stored in the <domain_name>/dbs
subdirectory of your <var_dir>. Service log files are stored in the
<domain_name>/logs subdirectory of your <var_dir>.

itconfigure -nogui -load sample_dd.xml
-listen_address_list 10.2.3.57

Note: You can also set these custom locations using the
Orbix Configuration GUI. For more details, see the
Advanced Settings in “Creating a Domain in Expert
Mode” on page 37.
Orbix Deployment Guide 49

The default locations for <config_dir> and <var_dir> are shown in
Table 1. These locations can be overwritten using the
command-line options to itconfigure and properties displayed in
Table 1.

Setting all locations on the command line
The itconfigure command enables you to specify the custom
locations for the domain log, data, script and configuration files.
The configuration GUI also provides feedback on locations that are
passed to itconfigure as properties. If all four configuration file
locations are set, the GUI does not prompt for the config and var
directories. Instead, it displays the values for these four
directories in non-editable text fields.
To deploy your custom locations, specify your custom locations to
itconfigure on the command line for example:

Table 1: Properties and Options for Custom Directory Locations

Location for Property Comma
nd line
option

Default location

Configuration
files and scripts
for all domains
(<config_dir>)

com.iona.deploy.config.dir -etc Windows:
%IT_PRODUCT_DIR%\etc

UNIX:
/opt/etc/iona,
$IT_PRODUCT_DIR/etc or $HOME/etc

Database and
log files for all
domains
(<var_dir>)

com.iona.deploy.data.dir -var Windows:
%IT_PRODUCT_DIR%\var

UNIX:
/opt/var/iona,
$IT_PRODUCT_DIR/var or $HOME/var

e:\Program Files\iona\asp\version\bin>itconfigure –name -nogui d1\
-Dcom.iona.deploy.config.bin.dir=e:\domains\bin \
-Dcom.iona.deploy.config.domains.dir=e:\domains\config \
-Dcom.iona.deploy.domain.db.dir=e:\domains\dbs\d1 \
-Dcom.iona.deploy.domain.log.dir=e:\domains\log\d1
 50 Orbix Deployment Guide

This provides more fine-grained control. The command-line
properties are explained in Table 2.

Partially setting custom locations
If all four custom locations have not been set, a value for the
configuration and/or data directories is required, so that the
missing value can be replaced with a subdirectory of the
configuration or data directory. The GUI displays the configuration
and data directories in editable text fields, and displays the
directories that have already been set in non-editable text fields.
For example, specify the following on the command line:

This will be displayed in the Storage Locations screen. You can
select the default configuration directory (for example,
e:\program_files\iona), or overwrite this value with a custom
location. If you click Next and continue to select and deploy
services, your domain files will be located as follows:

Table 2: Properties for Custom File Locations

Location for Property Default location

Domain start/stop and
env scripts

com.iona.deploy.config.bin.dir <config_dir>/bin

Domain configuration
files

com.iona.deploy.config.domains.dir <config_dir>/domains

Domain data files com.iona.deploy.domain.db.dir <var_dir>/<domain_name>/dbs

Domain log files com.iona.deploy.domain.log.dir <var_dir>/<domain_name>/logs

Note: If all four properties are specified, values for the etc
and var directories do not need to be specified (their
default values are not relevant). However, if any of these
values is not specified, it defaults to a subdirectory of the
var or the etc directory.

e:\Program Files\iona\asp\version\bin>itconfigure \
-Dcom.iona.deploy.domain.db.dir=e:\domains\dbs\d1 \
-Dcom.iona.deploy.domain.log.dir=e:\domains\log\d1

scripts e:\Program Files\iona\etc\bin

configuration files e:\Program Files\iona\etc\domains

databases e:\domains\dbs\d1

service and deployer log
files

e:\domains\log\d1

Note: If the etc directory does not exist and needs to be
created, itconfigure requires your confirmation. However,
it does not require confirmation to create the domain log
and domain database directories.
Orbix Deployment Guide 51

Redeploying an existing domain
Before deploying, the configuration tool checks for existing scripts
in the bin directory, configuration files (and sub-directories named
<domain_name>) in the domains directory, databases in the dbs
directory, and logs in the log directory.
If any such files exist, this indicates that a domain with the same
name already exists. The configuration tool only continues and
deletes the existing files after your confirmation. This has the
same effect as in the default case. For example, domain log files
and domain databases are located in <var
directory>/<domain_name>/dbs and <var_directory>/<domain_name>/logs.
Only the sub-directories are deleted, leaving the <var
directory>/<domain_name> directory.

Specifying Custom Library Paths
This section explains how to specify a custom library path on the
command-line or using the configuration GUI.
This enables you to put shared libraries in different directories and
still deploy, without needing to change system defaults that may
need root/administrator permissions.

Using the command line
The -libs (shorthand -L) option to the itconfigure command has
the following syntax:
-libs <library-path>

 or
-L <library-path>

Specifying this option causes itconfigure to pass the supplied
library path to the deployer. The deployer then prepends the path
to the built-in path used when preparing and running Orbix
services.
The library path argument is a list of directories to be searched for
shared libraries when a service is run. The syntax of the list is the
same as the platform-specific path syntax, as shown in the
following examples.
UNIX:

Windows:

itconfigure -load sample_dd.xml -libs
/usr/my_libs:/home/me/lib -nogui

itconfigure -load sample_dd.xml -libs
c:\usr\my_libs;d:\me\lib -nogui
 52 Orbix Deployment Guide

Using the configuration tool
You can also use the Orbix Configuration tool to specify library
paths to the deployer.

To specify a library path, perform the following steps:
1. Select Tools>Options to display the Options dialog.
2. Enter your path in the Library Path field, for example:
c:\usr\my_libs;d:\me\lib

If you are using a multi-homed machine, you can enter the
required machine name in the Host field.

Using Custom XML Files
This section explains how to automate the process of deploying an
Orbix configuration domain, and subsequently add or modify some
of its configuration data (for example, adding a scope for a service
developed at your site).
In previous versions of Orbix (for example 5.x), you could only do
this by manually modifying the ABDriver.dtd and
<domain_name>_driver.xml files generated by the itconfigure tool.
Orbix 6.0.2 and higher enable you to do this by passing a system
property to the itconfigure command. This section includes the
following topics:
• “Passing custom XML to itconfigure”
• “Deploying custom XML with the GUI”
• “Custom XML example”
• “Rules for writing XML files”

Passing custom XML to itconfigure
To use custom XML files, you must first supply the path to the
directory containing your files to the itconfigure tool. You can do
this by passing a system property to itconfigure, for example:

Figure 31: Options dialog

itconfigure –
Dcom.iona.deploy.custom.xml.dir=e:\custom\conf
Orbix Deployment Guide 53

The specified directory should exist and contain at least one file
with the .xml extension.

Deploying custom XML with the GUI
To deploy custom XML files, perform the following steps:
1. Select File>New>Expert from main menu.
2. Click Next to display the Storage Locations screen
3. Click Next to display then Select Services screen, shown in

Figure 32. The Custom Components checkbox at the bottom
right of the screen is disabled. This is unchecked when no
custom components are selected.

4. Click the Select button on the right of the Custom
Components checkbox to display the Select Custom
Components dialog, shown in Figure 33. This enables you to
select components from your specified directory.

5. Click OK. The Custom Components checkbox is then
displayed as checked.

Figure 32: Custom Components in Select Services
 54 Orbix Deployment Guide

Custom XML example
For example, if you select the custom XML file with the following
content:

Figure 33: Select Custom Components

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ABDeploy SYSTEM "ABDeploy.dtd">
<ABDeploy>
 <service>
 <dataId>example_using_custom_xml_files</dataId>
 </service>

 <process>
 <stage action="filePopulate">
 <source>
 <Dsection>main</Dsection>
 </source>
 </stage>
 </process>

 <section name="main">
 <configScope>
 <dataId>custom</dataId>
 </configScope>

 <configData scope="custom">
 <dataId>custom:example:var</dataId>
 <dataType>list</dataType>
 <dataValue>This</dataValue>
 <dataValue>is</dataValue>
 <dataValue>just</dataValue>
 <dataValue>an</dataValue>
 <dataValue>example!</dataValue>
 </configData>
 </section>
</ABDeploy>
Orbix Deployment Guide 55

Then the generated configuration will include the following
fragment:

Rules for writing XML files
If you write your own XML files, you should obey the following
rules:
• Only use a simple service element (one with just a dataId

child).
• Use simple process elements and stages with one of the

following actions only: filePopulate, configPopulate.
• Do not use constraints.
• Use configData elements with a dataType of list, string, or

long.
• Do not use external entities.

Specifying Address Mode Policies
This section explains how to use address mode policies to control
the way in which host names and/or IP addresses are published in
IORs. In previous versions of Orbix, you could do this by
specifying the host DNS alias or IP address. Orbix 6.0 and later
use policies. These are portable and enable you to design your
configuration domain on one host (run itconfigure in GUI mode
and save the descriptor), and deploy it elsewhere, without the
need to supply actual hostnames or IP addresses at that later
stage.
This section includes the following topics:
• “Selecting an address mode”
• “Specifying a fully-qualified hostname”
• “Persistence of address mode policies”
• “Restrictions and special cases”
• “Node daemon address mode policies”
• “Leaving the node daemon name unset”

custom
{
 custom:example:var = ["This", "is", "just", "an", "example!"];
};

Note: If you select more than one custom component, the
order in which they are deployed is non-deterministic. Do
not make any assumptions about the order in which
custom components are deployed, except that they are
deployed after all Orbix services and components.

WARNING: The schema for the Orbix deployer XML files
is not fully documented. A subset of the complete DTD is
supported and documented. Unsupported features are
subject to change without notice. For details, see “Orbix
Deployment DTD”.
 56 Orbix Deployment Guide

• “Assigning a node daemon name other than the hostname”

Selecting an address mode
To select an address mode, perform the following steps:
1. Run the configuration GUI using the itconfigure command.
2. Select File>New>Expert from main menu. This displays the

Domain Details screen.
3. Select your preferred policy using the Address mode policy

for Object References drop-down box, shown in Figure 34.

Specifying a fully-qualified hostname
To use fully qualified hostnames in IORs, you must ensure that
itconfigure knows the fully qualified host name. Depending on
your network configuration, this cannot always be obtained with
JDK 1.3 APIs.
However, you can do this by invoking the itconfigure command
using the –host option, for example:

Figure 34: Selecting an Address Mode Policy

itconfigure –host orion.dublin.emea.iona.com
Orbix Deployment Guide 57

Alternatively, you can edit the host field in the Domain Defaults
dialog shown in Figure 35. This dialog is displayed opens when
you click Settings on the Service Settings screen, shown in
Figure 35:

Persistence of address mode policies
If you chose not to deploy now, and save the descriptor to deploy
on other hosts, you can still use the selected address mode policy
on the other hosts because the policy is persisted by the
descriptor.
The descriptor stores addresses as policies (instead of literal string
IP addresses or names). This enables you to apply the same policy
on other hosts, using the –localize option to itconfigure. For
more information, see “Replicating Services in a Domain” on
page 27.

Restrictions and special cases
While the deployment descriptor schema supports node-specific
address mode policies, the Orbix configuration GUI only allows
you to specify the address mode policy on a global level—for all
nodes.
If you must use different policies on different nodes, please refer
to “Orbix Deployment Descriptors”, and manually edit the
descriptor. The same applies if you want one more level of
granularity and specify address mode policies on a per-service
basis. There is one case, however, where you can specify address
mode policies on a per-service basis. The Orbix configuration tool
enables you to set service-specific address mode policies for the
node daemon.

Figure 35: Specifying a Hostname
 58 Orbix Deployment Guide

Node daemon address mode policies
The Node Daemon Settings dialog, shown in Figure 36, enables
you to specify the address mode policy for node daemons:

Therefore, if you want all services, except for the node daemon, to
publish fully qualified host names, you must first change the
global address mode policy to fully qualified hostname. For the
node daemon, you can override this with the localhost IP policy
(127.0.0.7).

Leaving the node daemon name unset
It is also possible (but not recommended) to avoid giving the node
daemon an explicit name. The default is node daemon name is
iona_services.node_daemon.<hostname>, which corresponds to the
ORB name and configuration scope. For example:

To leave the node daemon name unset, check Don't set variable
plugins:node_daemon:name, displayed in Figure 36.

Figure 36: Node Daemon Settings Dialog

Note: This policy is used for all node daemons in the
domain. itconfigure does not allow you to interactively
specify the node daemon's address mode policy on a per
instance basis.

iona_services.node_daemon.my_hostname {
 plugins:node_daemon:name =

"iona_services.node_daemon.my_hostname";
 ...
}

Orbix Deployment Guide 59

If a node daemon does not have a name configured, at startup, it
registers itself with the locator, and identifies itself as a node
daemon named <host>, where <host> is obtained by gethostname().
This value depends on the host on which the node daemon is
started.

Assigning a node daemon name other
than the hostname
You can also assign a node-daemon name that is not related to
the hostname. You can do this by editing the node details in the
deployment descriptor file. The recommended approach is to
deploy using itconfigure, update the deployment descriptor, and
then re-deploy with the new descriptor file.
The following example shows these steps in more detail:
1. Deploy as normal using itconfigure. However, you must

choose the IP address mode policy (see “Selecting an address
mode”). For example, for a machine named spring, the
deployment descriptor would include:

2. Update the deployment descriptor to remove any relation
between the hostname (spring) and the node name (in this
case, summer). For example:

Note: This may break the mapping between a process and
node daemon. A process that is registered to be monitored
and started on demand by node daemon <activating host>
can only be activated if a node daemon with the name
<activating host> exists. In addition, generated start and
stop scripts will not stop such a node daemon.

<dd:nodes>
 <dd:node name="spring" ip="10.5.1.101"

profile="spring">
 <dd:policies>
 <dd:policy name="address_mode" value="ip"/>
 </dd:policies>
 </dd:node>
</dd:nodes>
<dd:profile id="spring">

<dd:nodes>
 <dd:node name="summer" ip="10.5.1.101"

profile="summer">
 <dd:policies>
 <dd:policy name="address_mode" value="ip"/>
 </dd:policies>
 </dd:node>
</dd:nodes>
<dd:profile id="summer">
 60 Orbix Deployment Guide

The values of the profile and node name attributes can be
different, for example:

In addition, for a node on which a locator is running, the value
of the ip attribute can be an IP alias instead of an IP address,
for example:

3. Finally, re-deploy the domain with the updated deployment
descriptor:

Specifying Custom Certificates
The Orbix Configuration tool can process custom values for any
substitution variables. These are variables that have been defined
in the substitute_vars section of the XML files in your
install-dir/asp/version/etc/conf directory. This section shows how
to use substitution variables to specify custom security
certificates. It includes the following:
• “Substitution variable file”
• “Using the GUI”
• “Using the command line”

<dd:nodes>
 <dd:node name="summer" ip="10.5.1.101"

profile="profile_1">
 <dd:policies>
 <dd:policy name="address_mode" value="ip"/>
 </dd:policies>
 </dd:node>
</dd:nodes>
<dd:profile id="profile_1">

<dd:node name="1" ip="001my.intra.net"
profile="profile_loc_1">

 <dd:policies>
 <dd:policy name="address_mode" value="ip" />
 <dd:policy name="use_corbalocs" value="true" />
 </dd:policies>
 <dd:resource name="iiop" value="17701" />
 <dd:resource name="iiop_secure" value="17702" />
</dd:node>

itconfigure -nogui -load <deployment_descriptor_name_dd.xml>
Orbix Deployment Guide 61

Substitution variable file
When using substitution variables, you must pass a substitution
variable file to itconfigure. This file contains replacement values
for all defined substitution variables. This file should be specified
in property file format, for example:

Each value must be enclosed in quotes as shown in this example
file.

Using the GUI
In the Orbix Configuration GUI tool, the Substitutions button
is displayed at the bottom of the Expert panel (see Figure 34 on
page 57). When the Substitutions button is clicked, this launches
a dialog that enables you to enter the location of the substitution
file.

Using the command line
On the command line, you can use the -substitutions option to
pass the substitution file location to itconfigure, for example:

ROOT_TRUSTED_CA_LIST_POLICY="C:\\orbix\\custom_certs\\calist.pem"

ITADMIN_ADMIN_CERT_ROOT_DIR="C:\\orbix\\custom_certs"

SERVICES_AUTH_METHOD_DATA=["filename=C:\\orbix\\custom_certs\\administrator.p12",
"password_file=C:\\orbix6\\custom_certs\\administrator.pwf"]

UTILITIES_AUTH_METHOD_DATA=["filename=C:\\orbix\\custom_certs\\utilities.p12",
"password_file=C:\\orbix6\\custom_certs\\utilities.pwf"]

KDM_AUTH_METHOD_DATA=["filename=C:\\orbix\\custom_certs\\kdmadministrator.p12",
"password_file=C:\\orbix6\\custom_certs\\kdmadministrator.pwf"]

KDM_CERT_CONSTRAINTS=["C=US,O=ABigBank*,CN=abc*","C=US,O=ABigBank*,CN=xyz*"]

KDM_ADM_CERT_CONSTRAINTS=["C=US,O=ABigBank*,CN=abc*"]

itconfigure -nogui -load descriptor -substitutions properties file

WARNING: When using the -substitutions option to configure
custom certificates for a deployed system, the substitutions file
should not contain the pass phrase directly.
Instead, it should contain the location of the password files
containing the pass phrases (see “Substitution variable file” on
page 62).
Because the password file(s) stores the pass phrase in plain text,
such files should not be readable by anyone except the
administrator.
 62 Orbix Deployment Guide

Orbix Deployment
Descriptors
This chapter explains the data structure and grammar of the Orbix
domain deployment descriptor.

Deployment Descriptor Structure
The Orbix domain deployment descriptor (domain-name_dd.xml)
describes the contents of a configuration domain. This section
outlines the overall structure of this file. It includes the following
topics:
• “Document structure”
• “Recommended deployment descriptor generation”
• “Validating manual changes to a deployment descriptor”

Document structure
The <domain-name>_dd.xml file must conform to the following
document structure:

Example 1: Deployment Descriptor Structure

 <?xml version="1.0" encoding="UTF-8"?>
1 <dd:descriptor xmlns:dd="http://ns.iona.com/aspdd">

 <!--This deployment descriptor version 1.0 has been generated
by Orbix tools-->

2 <dd:configuration>
 <dd:domain>domain-name</dd:domain>
 ...
 </dd:configuration>

 <!--Concrete node information for this deployment-->

3 <dd:nodes>
 <dd:node name="hostname" ip="ip-address" profile="hostname"
 <dd:resource name="some-resource" value="some-value" />
 ...
 <dd:policies>
 <dd:policy name="some-policy" value="some-value" />
 </dd:policies>
 ...
 </dd:node>
 ...
 </dd:nodes>

4 <dd:feature id="feature-name">
 <dd:resource type="directory" name="some-resource" />
 </dd:feature>

 <!--The following profiles will be deployed-->
5 <dd:profile id="hostname">
 Orbix Deployment Guide 63

This deployment descriptor structure is described as follows:
1. The <dd:descriptor> element is the containing root element of

the deployment descriptor XML vocabulary. It specifies an
XML namespace named dd. This element indicates what
version of the deployment descriptor XML vocabulary is being
used. In this case, the absence of a version attribute indicates
that this is version 1.0.

2. The <dd:configuration> element specifies the general
configuration information for the domain (for example, its
name, type, and location domain).

3. The <dd:nodes> element specifies information about the host
machines included in the domain. Each <dd:nodes> element
one or more <dd:node> element, one for each host machine. A
<dd:node> element can include optional <dd:resource> and
<dd:policies> elements. A <dd:resource> element specifies
resources used by domain-level features; while dd:policies
specifies policies that apply to all services on that node.

4. The <dd:feature> element specifies information about
domain-level features.

5. The <dd:profile> element specifies a logical group of services
and components that maps to a particular node.

6. The <dd:service> element specifies the details for a particular
service (for example, the naming service).

7. The <dd:component> element specifies the details for a
particular component (for example, Orbix demos). The
difference between a component and a service is that services
maintain live database information as part of the domain
state, whereas a component does not.

These elements are described in more detail with examples in the
sections that follow.

Recommended deployment descriptor
generation
The recommended method of generating a deployment descriptor
is to run the Orbix configuration tool on a GUI-enabled machine,
and, if necessary, save the deployment descriptor for later use in
command-line. Generating the descriptor in GUI mode ensures
that the generated XML document is valid, and checked for
dependencies.

6 <dd:service name="service-name" ... >
 ...
 </dd:service>
 ...

7 <dd:component />
 ...
 </dd:profile>
</dd:descriptor>

Example 1: Deployment Descriptor Structure
 64 Orbix Deployment Guide

Certain combinations of services and features are not permitted.
For example, a descriptor that contains an indirect persistent,
on-demand naming service, but no node-daemon, is invalid. Using
different transports for different services is also invalid. Lastly, a
descriptor with a node daemon that has secure endpoints only,
and a locator with insecure endpoints only is not valid. This is
because the locator would not be able to communicate with the
node daemon.

Validating manual changes to a
deployment descriptor
You can edit the domain deployment descriptor file to meet your
requirements using any text editor. However, any changes you
make must be checked for validity and dependencies.
Running the Orbix configuration tool enforces consistency on a
deployment descriptor that has inconsistent relationships between
services, or has incorrect container descriptions. You can validate
manual changes to a deployment descriptor by running the
following command:

If the descriptor is correct, descriptor.xml and somefile.xml will be
identical in structure. Otherwise, the configuration tool reports an
error message, and exits without saving to the specified document
(somefile.xml).

Domain Configuration Elements
This section explains the domain-specific information contained in
an example deployment descriptor file. It includes the following
topics:
• “Example descriptor”
• “Domain elements”

itconfigure -nogui -load descriptor.xml -save
somefile.xml
Orbix Deployment Guide 65

Example descriptor
The following extract from a deployment descriptor file named
my-domain_dd.xml shows some example domain-specific elements:

Domain elements
The following table explains all the domain-specific elements:

Example 2: Domain-Specific Configuration

<?xml version="1.0" encoding="UTF-8"?>
<dd:descriptor xmlns:dd="http://ns.iona.com/aspdd">
 <!--This deployment descriptor version 1.0 has been

generated by Orbix tools-->
 <dd:configuration>
 <dd:domain>my-domain</dd:domain>
 <dd:source>file</dd:source>

<dd:location_domain>my-domain.location</dd:location_do
main>

 </dd:configuration>
 <!--Concrete node information for this deployment-->
 <dd:nodes>
 <dd:node name="summer" ip="10.2.4.82"

profile="summer" />
 </dd:nodes>
 <!--The following profiles will be deployed-->
 <dd:profile id="summer">
 ...
 </dd:profile
</dd:descriptor>

Table 3: Domain-Specific Elements

Element Description

<dd:descriptor> Specifies the XML namespace details for the deployment
descriptor.

<dd:configuration> Specifies the general configuration information for the domain
(for example, its name, type, and location domain)

<dd:domain> Specifies the configuration domain name (in this case,
my-domain).

<dd:source> Specifies the configuration domain type. Can be either file,
cfr, or link (.cfg text file, Configuration Repository, or a link
domain).

<dd:location_domain> Specifies the location domain name. This takes the form
<domain-name>.location (for example, my-domain.location).
A location domain is a group of servers that are registered with
the same locator daemon.
 66 Orbix Deployment Guide

<dd:nodes> This is a container for all host machines in a configuration
domain that belong to the same dns domain. It has a single dns
attribute (for example, dns="dublin.emea.myco.com").
There can be multiple <dd:nodes> in one deployment
descriptor. For example:
<dd:nodes dns="dublin.emea.myco.com">
 <dd:node name="summer" ip="10.2.4.82"

profile="summer.dublin.emea.myco.com"/>
 <dd:node name="onion" ip="10.2.1.101"

profile="onion.dublin.emea.myco.com" />
</dd:nodes>

<dd:nodes dns="boston.amer.mycorp.com">
 <dd:node name="jupiter" ip="10.5.3.18"

profile="jupiter.boston.amer.mycorp.com" />
</dd:nodes>

<dd:node> Specifies the identity of a particular host machine in the
domain. It has three attributes:
• name specifies the hostname.
• ip specifies the IP address.
• profile specifies a logical group of services and

components to deploy on the specified node.
A <dd:node> element can also include optional <dd:resource> and
<dd:policies> elements.

<dd:profile> Specifies a logical group of services and components. Its id
attribute corresponds to the <dd:node profile> attribute. In this
version of Orbix, only one profile per node is supported.

<dd:feature> Specifies information about optional domain-level features.
These are implemented separately from the deployer and
invoked at the end of the deployment process. The following
example is for integration with IBM Tivoli management:
<dd:descriptor ...
 <dd:feature
 xmlns:dd="http://ns.iona.com/aspdd"
 id="tivoli-integration">
 <dd:resource type="directory"
 name="configuration-files" />
 </dd:feature>
 ...
</dd:descriptor>

<dd:resource> Specifies resources used by domain-level features. For
example:
<dd:resource type="directory"
 name="configuration-files" />

This specifies a resource that is a file system directory named
configration-files.

Table 3: Domain-Specific Elements

Element Description
Orbix Deployment Guide 67

Profile Configuration Elements
A profile specifies a group of configured services and components
for a particular node. This section explains the profile-specific
information contained in an example deployment descriptor file. It
includes the following topics:
• “Example descriptor”
• “Service elements”
• “Service and component XML Files”

<dd:policies> As a child of the <dd:node> element, specifies policies that
apply to all services on that node. Currently, there is only one
available policy:
address_mode

For example:
<dd:nodes>
 <dd:node name=”orion2” ip=”10.2.1.101”>
 <dd:policies>
 <dd:policy name=”address_mode”
 value=”ip” />
 </dd:policies>
 </dd:node>
</dd:nodes>

For more details on this example, see “Conversion Process
from Orbix 5.1 to an Orbix 6.x Descriptor” on page 75.
Policies can also be specified on a per-service bases (see
“Profile Configuration Elements” on page 68). Service-specific
policies override node-specific policies.

Table 3: Domain-Specific Elements

Element Description
 68 Orbix Deployment Guide

Example descriptor
The following is a complete listing of a deployment descriptor file
named my-domain_dd.xml. It shows an entire profile configured for
a default domain:

Example 3: Profile Configuration

<?xml version="1.0" encoding="UTF-8"?>
<dd:descriptor xmlns:dd="http://ns.iona.com/aspdd">
 <!--This deployment descriptor has been generated by ASP

tools-->
 <dd:configuration>
 <dd:domain>my-domain</dd:domain>
 <dd:source>file</dd:source>

<dd:location_domain>my-domain.location</dd:location_do
main>

 </dd:configuration>

 <!--Concrete node information for this deployment-->
 <dd:nodes>
 <dd:node name="summer" ip="10.2.4.83"

profile="summer" />
 </dd:nodes>
 <!--The following profiles will be deployed-->
 <dd:profile id="summer">
 <dd:service name="locator">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="3075" />
 </dd:service>

 <dd:service name="node_daemon">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="53079" />
 </dd:service>
 <dd:service name="naming">
 <dd:activation mode="on_demand" />
 <dd:run mode="indirect_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="0" />
 </dd:service>
 <dd:service name="management">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="53085" />
 <dd:endpoint protocol="http" port="53185" />
 </dd:service>
 <dd:component name="demos" />
 </dd:profile>
</dd:descriptor>
Orbix Deployment Guide 69

Service elements
The following table explains the profile-specific elements

Table 4: Profile-Specific Elements

Element Description

<dd:service> Specifies the identity of a service. Its name attribute is
the service name (for example, locator).

<dd:activation> Specifies how a service is activated. Its single mode
attribute has the following possible values:
• manual specifies that it must be activated using a

start command or a script.
• on_demand means that the node daemon starts the

service when requested by a client.
• system_service specifies that the service will be

started at boot time.
On Windows, the service will be installed as an NT
service.
On Unix, appropriate run control scripts will be
created. For more details, see the Orbix
Administrator's Guide.

<dd:run> Specifies how a service is run. It has the following
attributes, all of which are optional:
• mode specifies whether the service uses the locator to

resolve persistent object references (indirect
persistence), or its IOR contains a well-known
address for the server process (direct persistence).
Possible values are indirect_persistent or
direct_persistent. Defaults to indirect_persistent.

• proxified specifies whether service is registered with
the Firewall Proxy Server. Possible values are true or
false. This attribute is optional. Defaults to false.

• managed specifies whether service is registered with
the management service. Possible values are true or
false. Defaults to false.

• authenticated specifies whether the service is
registered with the security service. Possible values
are true or false. Defaults to false.

• perflog specifies whether the service is configured
for performance logging. This is necessary for
integration with Enterprise Management Systems
(for example, IBM Tivoli). Possible values are true
or false. Defaults to false.

• dynlog specifies whether the service is configured for
dynamic logging. For details on dynamic logging,
see the Orbix Administrator's Guide.
 70 Orbix Deployment Guide

<dd:endpoint> Specifies details of a service communication endpoint. It
has three attributes:
• protocol specifies the protocol used by the service.

Possible values are iiop and http, as well as fps<n>,
where <n> is the number of the proxy group. The
fps<n> protocol is only used by the Firewall Proxy
Service to indicate its proxy ports.

• port specifies the port number used by the service
(for example, 9000).

• secure specifes if the endpoint is secure. Values are
true or false. A secure endpoint is one that includes
TLS (Transport Layer Security). For example, if
secure="true" is set on an endpoint where
protocol="http", a https endpoint is configured.

<dd:configuratio
n>

Specifies configuration overrides for the service. This
enables you to change a small number of configuration
settings in your domains, at the scope of a service,
without modifying the shared description.
<dd:service name="..." ... >
 <dd:configuration
 name="variable-name"
 value="value" action="set"
 stage="preprepare" />
 <dd:configuration
 name="variable-name"
 action="unset" />
 ...
</dd:service>

Available actions are set and unset. The default is set, so
the action attribute can be omitted. Configuration
overrides only change the value at the service instance
scope.

<dd:policies> Specifies information about any policy overrides for that
service. Currently, there is only one available policy:
address_mode

Specified values must match those already specified in
the <dd:node> element (see “Domain Configuration
Elements” on page 65).
The following example shows policy overrides for
address modes and ORB hostnames:
 <dd:service ... >
 <dd:policies>
 <dd:policy name=”address_mode”
 value=”ip” />
 </dd:policies>
</dd:service>

For more details on this example, see “Conversion
Process from Orbix 5.1 to an Orbix 6.x Descriptor” on
page 75.

Table 4: Profile-Specific Elements

Element Description
Orbix Deployment Guide 71

Service and component XML Files
<dd:service> and <dd:component> elements have corresponding
XML source documents containing the data needed to deploy the
configuration domain. Many of these XML source documents
correspond to Orbix services. Other XML documents contain core
information that is needed for all configurations.

<dd:component> Specifies a component for the profile. It has a single name
attribute. An example value is demos.

Table 4: Profile-Specific Elements

Element Description

Note: These XML source documents are proprietary IONA
documents. These XML source documents and their XML
schema are not fully documented and subject to change
without notice.
However, to enable you to write and use your own custom
XML source documents, a subset of the schema is
documented and supported. Custom XML files that comply
with this partial schema will continue to work with future
versions of Orbix, even though the overall schema may
change. For details of the partial schema, see “Orbix
Deployment DTD”.
 72 Orbix Deployment Guide

Migrating Orbix
Deployments
For users who have modified Orbix 5.1 driver files, this chapter shows
how to migrate to Orbix 6.x, and explains the automated conversion
process in detail. For users with existing Orbix 6.x deployments, this
chapter explains how to import existing domain information into an Orbix
6.3 domain.

Migrating from Orbix 5.1 Driver Files
This section explains how to migrate from Orbix 5.1 driver files to
an Orbix 6.x deployment descriptor. This applies to customers
who have modified ABDriver.dtd and/or <domain>_driver.xml files. It
includes the following topics:
• “Approach to migration”
• “Using the itconfigure command line”
• “Using the itconfigure GUI”
• “Migrating custom XML”
• “Adding new Orbix 6.x features”

Approach to migration
The approach used is to generate an Orbix 6.x deployment
descriptor by retrieving the domain topology (selected domain
services) from the driver file, and the service details (for example,
port numbers) from the ABDriver.dtd file. This descriptor is then
passed to the itconfigure tool, as if it had been created by
itconfigure. This enables migration of domain topology only, no
domain data is migrated (for example, database and log files).
The implementation is limited to driver files for domains without
replicated services. Driver file entries with the component
attribute role=replica result in an exception. The deployer also
rejects driver files for link domains (links can always be
recreated), and driver files for domains that include a J2EE
application server.
 Orbix Deployment Guide 73

Using the itconfigure command line
For example, to generate an Orbix 6.x deployment descriptor
using the command line, enter the following:

Using the itconfigure GUI
For example, to generate an Orbix 6.x deployment descriptor
using the configuration GUI, enter the following:

The services specified in the driver file are displayed as selected in
the GUI, with their service details as specified in the ABDriver.dtd
file. You can subsequently add more services, or change the
details for the pre-selected services in the GUI, before proceeding
to deploy the domain.

Migrating custom XML
Migration can also be used in conjunction with custom component
files (see “Using Custom XML Files” on page 53).
If your Orbix 5.1 driver files specify one or more components that
are not recognized as Orbix components, and you pass the
directory containing these XML files using the –
Dcom.iona.deploy.custom.xml.dir property, the deployment will
also include your custom components.
If you use configuration tool in GUI mode, and save the
descriptor, this descriptor also includes your custom components.

Adding new Orbix 6.x features
Because address mode policies (and hostname policies for the
ORB) are now persisted in the deployment descriptors, you can
migrate 5.1 domains, and also add Orbix 6.x features and services
to your domains, without losing what has been extracted from the
driver and entities files.
The following steps show how to migrate and add new features at
the same time:
1. Convert the driver and/or entities file to a descriptor, without

deploying the services, as follows:
itconfigure –nogui –compatible –load <driver> -entities <entities>

E:\Program Files\IONA\asp\version\bin>itconfigure -nogui
-compatible \ -load e:\drivers\my-domain_driver.xml \
-entities e:\drivers\ABDriver.dtd \
-etc e:\etc -var e:\var

E:\Program Files\IONA\asp\version\bin>itconfigure
-compatible \

-load e:\drivers\my-domain_driver.xml \
-entities e:\drivers\ABDriver.dtd \
-etc e:\etc -var e:\var
 74 Orbix Deployment Guide

2. Process the descriptor using proprietary tools to add the new
feature (for example, a security service).

3. Deploy the extended descriptor using the following command:
itconfigure –nogui –load <extended_descriptor> -etc <etc_dir> -var

<var_dir>

Conversion Process from Orbix 5.1 to an Orbix 6.x
Descriptor

This section explains the Orbix 5.1 to Orbix 6.x conversion process
in more detail. It shows how the Orbix configuration tool
constructs an Orbix 6.x deployment descriptor from an Orbix 5.1
<domain_name>_driver.xml and ABDriver.dtd file. It includes the
following topics:
• “Stage 1—Constructing an empty descriptor”
• “Stage 2—Parsing of driver files and construction of node

profiles”
• “Stage 3—Obtaining the service details from ABDriver.dtd”
• “Stage 4—Obtaining the address mode policy”
• “Rules for inferring the address mode policy”
• “Ensuring ORB name compatibility”
• “Example conversion”
• “Conversion for virtual hosts”

Stage 1—Constructing an empty
descriptor
An empty deployment descriptor is constructed with a domain
name and location domain name, as found in the ABDriver.dtd file.
If no definition for the config.domain.name entity is found, an
exception is thrown. If no value for the location_domain_name entity
is found, the Orbix 6.x default is used (<domain_name>.local).
Initially, the domain type is file-based.

Stage 2—Parsing of driver files and
construction of node profiles
The <domain_name>_driver.xml files are parsed to enable the
construction of service entries for the deployment descriptor’s
local node profile. Any constraints and the ordering of the driver
file entries are ignored. Orbix 6.x does not depend on the order of
the entries in a deployment descriptor when deploying a domain—
it automatically constructs it correctly. Driver component entries
are processed as follows:

CFR domains A component named config_rep.xml causes the
descriptor’s domain type to be changed to CFR
based, and adds a service element into the
descriptor’s local node profile.
Orbix Deployment Guide 75

Stage 3—Obtaining the service details
from ABDriver.dtd
For every driver component entry for which a corresponding
service element has been added to the descriptor’s local node
profile, ABDriver.dtd is consulted to determine the service details:

Direct/Indirect Persistence: cfr, management, locator and
node_daemon service elements are always set to be direct
persistent—regardless of the constraints in the driver component
element and the content of ABDriver.dtd.
For all other services, if the <service_name>.direct_persistence
entity is defined in ABDriver.dtd, and if its value is true or yes, the
service is set to be direct persistent. The default for a service
element is indirect persistent.

Start Mode: cfr, management, locator and node_daemon service
elements are always set to be started manually—regardless the
constraints of the driver component element and the content of
ABDriver.dtd.
For all other services, if the <service_name>.mode entity is defined in
ABDriver.dtd, and if its value is manual or boot, the service is set to
be started manually (default for a service element is on demand).
Subsequently, if the config.daemon.install entity is defined in
ABDriver.dtd and if its value is true, the startup mode of a service
is promoted to system service, if it had been manual. On Windows
it is installed as an NT service.

Ports: If the component’s security attribute in the
<domain_name>_driver.xml file is set to iiopOnly or iiopTls, and if the
<service_name>.port entity is defined (is a number and not zero), an
endpoint element is created in the corresponding service element
in the descriptor.

Ignored
components

Components named init.xml, init_svcs.xml,
file_core.xml, file_svcs.xml, comet.xml. admin.xml,
tool_corba.xml are ignored

Link domains A component named link.xml results in an
exception (no conversion of driver files for link
domains).

Replicas A component with the role attribute set to replica
results in an exception (no conversion of driver files
for domains with replicas).

Demos A component named demos.xml results in a
component element being added to the descriptor’s
local node profile.

Others All other components, provided they are known
Orbix components, result in a service element
being added to the descriptor’s local node profile. If
they are not known Orbix components (for
example, custom.xml), a component element is added
to the descriptors local node profile.
 76 Orbix Deployment Guide

If the component’s security attribute in the
<domain_name>_driver.xml file is set to iiopTls or tlsOnly, and if the
entity <service_name>.tls.port is defined (is a number and not
zero), a secure endpoint element is created in the corresponding
service element in the descriptor.
If no port entities can be found for a service (other than the
management service) that is marked as direct persistent, an
exception is thrown.
For the management service, the <domain_name>_driver.xml and
ABDriver.dtd files may have specified this as an indirect persistent
service, and therefore no non-zero IIOP ports for the management
service are defined in ABDriver.dtd. Instead of throwing an
exception, default endpoints elements are created in the
descriptor (IIOP port 53086, IIOP TLS port 53086, HTTP port 53185,
HTTPS port 53186). This is necessary because the management
service in Orbix 6.x is always direct persistent.
Lastly, if the manage_services entity is defined in ABDriver.dtd and
if its value is true, or if the <service_name>.managed entity is defined
and its value is true, the corresponding service element in the
descriptor is set to be managed.

Stage 4—Obtaining the address mode
policy
The default behavior of the deployer towards address mode
policies (whether hostnames or IP addresses used in IORs) is to
use the unqualified host name, and to assume all services and
components are to be deployed on the localhost. The name and IP
address of the localhost are obtained by
InetAddress.getLocalHost().
If the host.hostname_for_iors entity is present in ABDriver.dtd, this
default behavior is overwritten as follows:
• If the deployer fails to obtain the InetAddress of the host

identified by the value of host.hostname_for_iors
(InetAddress.getByName() throws an UnknownHostException), the
conversion fails.

• Otherwise the converter creates a dd:nodes element in the
descriptor, and sets its dns attribute set to the DNS domain
name. This is obtained from the InetAddress object’s
hostname, after stripping off the first part of the name, so this
may be an empty string.

For example, the following entry in ABDriver.dtd:
<!ENTITY host.hostname_for_iors = “orion.dublin.emea.iona.com”>

results in: <dd:nodes dns=”dublin.emea.iona.com”>.
If the entity value is an IP address, or an unqualified host name, it
depends on your network configuration whether a DNS name is
specified.
Next, a dd:node element is created as a child of the dd:nodes
element. The value for the name attribute of dd:node is obtained as
the hostname member of the above InetAddress object, and the
Orbix Deployment Guide 77

value for the ip attribute as the host address member of the
InetAddress object. For example, the following entry in
ABDriver.dtd:
<!ENTITY host.hostname_for_iors “10.2.1.101”>

results in:

Rules for inferring the address mode
policy
By comparing the value of the dns attribute (of dd:nodes), and the
values of the name and ip attributes (of dd:node) with the original
entity value, the address mode policy is inferred. If this is not
short, it is stored as a dd:policy element under the dd:node
element. The rules for this process are as follows:
• If the entity value is the literal localhost, the address mode

policy is set to localhost.
• Otherwise, if the entity value is the literal 127.0.0.1, the

address mode policy is set to localhost_ip.
• Otherwise, if the entity value matches the value for ip

attribute on the dd:node element, the address mode policy is
set to ip.

• Otherwise, if the entity value matches the string obtained by
concatenating the value of the name attribute on the dd:node
element with (a dot and) the value of the dns attribute of the
dd:nodes element, the address mode policy is set to long.

• Otherwise, the address mode policy is short.
If the entity value specifies the IP address of the localhost, the
value of the name attribute on the dd:node element may not be
identical with the default name of the localhost. This is the case
for example, if on the network, IP address 10.2.1.101 is known to
belong to host orion, but the DNS resolution on orion has a
different virtual name for this host (for example, orion-2).

Ensuring ORB name compatibility
By default, the value dd:node element’s name attribute is used to
determine host-qualified service ORB names. This may result in
different ORB names in the 6.x domain than those in the 5.1
domain. To prevent this—and to allow for hostnames used in ORB
names that are not the name of an existing host (5.1 accepted
any string entered in the What is the unqualified hostname?
text box)—the converter also checks if any of the following entities
are defined:

<dd:nodes>
 <dd:node name=”orion” ip=”10.2.1.101” profile=”orion” />
</dd:nodes>

cfr.orbname
locator.orbname
node_daemon.orbname
naming.orbname
 78 Orbix Deployment Guide

To ensure ORB name compatibility between Orbix 5.1 and Orbix
6.x, the last part of the name in the value of the first entity
found—if different from the dd:node element’s name attribute—is
also recorded as a policy under the dd:node element.

Example conversion
Assume the following contents of
c:\winnt\system32\drivers\etc\hosts on host orion (IP address
10.2.1.101):

and the following in the ABDriver.dtd file:

In this case, InetAddress.getByName(“10.2.1.101”).getHostName()
returns orion2.
And InetAddress.getByName(“10.2.1.101”).getHostAddress() returns
10.2.1.101.
To ensure that in Orbix 6.x the same address mode policy and
ORB names are used as were used in the Orbix 5.1 domain, the
descriptor has the following entries:

Conversion for virtual hosts
Changes in the conversion process for hostnames and address
mode policies ensure that you can migrate 5.1 driver and entity
files that used virtual hostnames/IP addresses. See “Deploying on
Multi-homed Machines” on page 43 for more details.
One important difference however is that—while the actual
conversion of the driver and entities files from a remote host may
succeed as it did in Orbix 6.0.2—subsequent deployment can fail
because services might not be able to communicate with each
other. For example, a locator is prepared and subsequently
started on the localhost (for example, orion), but when the node
daemon is started it fails to communicate with the locator, which

127.0.0.1 localhost
orion2

<!ENTITY host.hostname_for_iors “10.2.1.101”>
<!ENTITY naming.orbname “iona_services.naming.orion”>

<dd:nodes>
 <dd:node name=”orion2” ip=”10.2.1.101”>
 <dd:policies>
 <dd:policy name=”address_mode” value=”ip” />
 <dd:policy name=”hostname_for_orbs” value=”orion”

/>
 </dd:policies>
 </dd:node>
</dd:nodes>
Orbix Deployment Guide 79

listens on a network address on the remote host. In practice, you
should avoid such conversions, because they will not yield the
expected results.

Migrating from Orbix 6.x
This section explains how to import existing Orbix 6.x service
databases into an Orbix 6.3 domain. You can do this using the
Expert mode of the Orbix Configuration tool. This enables you
to initialize a new Orbix 6.3 domain with existing service database
files.

Before you begin
You must ensure that all service databases that use the Persistent
State Service (PSS) have been check pointed. This applies to the
following services:
• locator daemon
• node daemon
• naming service
• interface repository (IFR)
• configuration repository (CFR)
For details on check pointing databases, see the Managing Orbix
Service Databases chapter in the Orbix Administrator’s Guide.

Note: All other entities (apart from those needed to
resolve references in <domain_name>_driver.xml) are ignored.
All path related entities (<service_name>.bin.dir, and the
associated parameter entity %binDir) are ignored. Address
list entities are ignored because the deployer reconstructs
that information when processing the generated descriptor.

Note: Only databases created using Orbix 6.0 SP1 or later
can be imported.

Note: When importing data from a CFR-based domain,
you must ensure that the ports used for the CFR, locator,
and naming service remain unchanged.
 80 Orbix Deployment Guide

Importing an Orbix 6.x descriptor
To import Orbix 6.x service database and log files into Orbix 6.3,
perform the following steps:
1. Start the Orbix configuration tool using the itconfigure

command.
2. Select File>New>Expert from the main menu. This displays

the Domain Details screen shown in Figure 37.

3. Click Initialize, located at the bottom left of the screen. This
opens a file selection dialog, which enables you to browse to
the domain descriptor from your existing domain.

4. Click Open to select your existing domain descriptor.

5. When you have initialized your domain, click Next. This
displays the Storage Locations screen, shown in Figure 38.

Figure 37: Domain Details Screen

Note: You must use the same location domain name and
transports to ensure that indirect persistent object
references continue to work. Services such as the security
service or firewall proxy service should not be added or
removed. In general, you should not make changes to the
domain.
Orbix Deployment Guide 81

6. Select the Import Databases From checkbox at the bottom
left of the screen.

7. Click the button on the bottom right to browse to the location
of the existing service database (dbs) directory. Click Open.
Figure 39 shows an example.

This initializes your new domain’s service database with those
of the existing domain. These domain files are copied from the
locations specified in the Import Databases from field.

8. Click Finish to deploy the new domain based on your existing
database and log files.
Alternatively, click Next, and follow the steps in the wizard.

Figure 38: Storage Locations Screen

Figure 39: Open dialog

Note: To ensure data integrity, all services in the existing
domain must be shutdown when the new domain is
deployed.
 82 Orbix Deployment Guide

Orbix Deployment DTD
This appendix lists the supported DTD for the Orbix component XML
templates. These XML template files are used to deploy Orbix components
and services. The supported DTD is a subset of the complete DTD.
Unsupported features are not documented.

Orbix Component Template Structure
The Orbix component XML template documents use a Document
Type Definition (DTD) document to define the tags and values that
make up the data and the structure the data takes. The DTD
defining the configuration data is ABDeploy.dtd.
All XML documents used as source for an Orbix configuration must
specify ABDeploy.dtd as its DTD, and conform to the structure it
defines.

ABDeploy.dtd
Example 4 shows the subset the ABDeploy.dtd file that is supported
by Micro Focus. This file defines the structure of configuration XML
component templates.

WARNING: The schema for the Orbix deployer XML files
is not fully documented. Only a subset of the complete DTD
is supported and documented. Unsupported features are
not documented, and are subject to change without notice.

Example 4: The DTD defining Orbix configuration source documents.

<!-- Application Builder Data Deployment Definition -->

<!ENTITY % ABDriver SYSTEM "ABDriver.dtd">
<!ENTITY % DynamicDriver SYSTEM "dynamic_deploy.dtd">

1 <!ELEMENT ABDeploy (service?, process?, section*)>
<!ELEMENT configData (dataType, (dataValue?)>
<!ATTLIST configData
 scope CDATA #IMPLIED>
<!ELEMENT dataId (#PCDATA)>
<!ELEMENT dataType (#PCDATA)>
<!ELEMENT dataValue (#PCDATA)>

2 <!-- service -->
<!ELEMENT service (data)>

3 <!-- process -->
<!ELEMENT process (stage*)>
 Orbix Deployment Guide 83

The numbered elements in Example 4 are explained as follows:
1. <ABDeploy> is the root element of every Orbix configuration

document. It must be the first tag and is required for the
document to be valid.
<ABDeploy> can contain one <service> element, <process>
element, and any number of <section> elements.

2. <service> specifies information about a service that the
deployer needs to deploy it.
This element must be present in custom XML files to satisfy
the more general syntax. Aside from using its id attribute to
identify the custom component for your own documentation
purposes, it is of no further relevance to custom XML files.

3. <process> specifies when and how certain <section> elements
are processed. Can contain any number of <stage> elements.

4. A <stage> element can reference one or multiple sections that
can reside in one or more XML files. A <stage> element has
one or more <source> elements.
The action attribute of the stage determines the target
location of the configuration data processed in the <stage>. It
decides where the configuration data specified in the
configData elements in the stage’s sections will be placed.

4 <!ELEMENT stage (source*)>
<!ATTLIST stage
 action (populate | prepare | ntInstall | ntUninstall

 | removeReplica | run | templates | filePopulate
 | configPopulate | populateHandler) #REQUIRED

 store (environment | properties | domain |
bootDomain
 | adminDomain | cfrDomain | imr | tmp) "domain"

 domain (domain | cfrDomain | adminDomain) "domain">
5 <!ELEMENT source (file?, Dsection*)>

<!ELEMENT file (#PCDATA)>
6 <!ELEMENT Dsection (#PCDATA)>

<!ATTLIST Dsection
 os NMTOKENS #IMPLIED
 os_family (unix | windows) #IMPLIED
 security (iiopOnly | iiopTls | tlsOnly | is2_iiop |
 is2_semi | is2_tls) #IMPLIED

7 <!-- section -->
<!ELEMENT section ((configScope | configData)*)>
<!ELEMENT configScope (dataId)>

<!-- -->
%DynamicDriver;
%ABDriver;

Example 4: The DTD defining Orbix configuration source documents.
 84 Orbix Deployment Guide

The attributes store and domain have default values.

A custom XML file's <stage> element should rarely have more
than one <section> child element.

5. <source> has an optional attribute file, the value of which, if
specified, indicates in which XML file the sections referred to in
the CDATA of the<Dsection> child elements can be found.
Custom XML files most likely specify their sections locally, so
this attribute is not needed.
A <source> element can have one or several <Dsection> child
elements.

6. A <Dsection> element is a reference to a set of <configData>
elements which is itself contained in a <section>. The
Dsection's CDATA provides the mapping.
It is an error if a <Dsection> element references a
<section>that cannot be found (in the local file, or in the file
denoted by its parent source element.
While DScections in XML files can have constraint attributes
(meaning the data in the references sections is processed only
if the constraint is met), custom XML files should not use
these constraint attributes.

7. A <section> element is a container for a set of <configScope>
and/or <configData> elements. It has one mandatory name
attribute, which is used to map to <Dsection> elements
appearing in the as child elements of a <process> element. A
<section> element must contain at least one <configScope> or
<configData> element.
<section> elements are used to support multiple installation
and configuration scenarios.

Summary
In practice the full complexity described in Example 4 is rarely
needed. Most custom XML files will provide sufficient functionality
if the following conditions are met:
• The <process> element contains one <stage> element (the

action attribute of which is set to configPopulate).
• The <stage> element contains one <source> element, without

the file attribute being set.

Note: The values filePopulate, configPopulate and
populateHandler for attribute action are now deprecated.
They are still supported to protect investment in any custom
XML files that may have been written against the former
DTD, and map internally to the following combination of
values for the action and store attributes:
filePopulate - action="populate" store="domain"
configPopulate - action="populate" store="domain"
populateHandler - action="populate" store="bootDomain".

Newly written custom XML files should use these
combinations instead of the deprecated values.
Orbix Deployment Guide 85

• The <source> element contains one <Dsection> element
(without any attributes), and this <Dsection> element's CDATA
is the same as the name of a <section> to be found further on
in the document.

• The document contains one <section> element.
• The <section> element contains any number of <configData>

elements.
• A <configData> element and its child elements hold the

equivalent information to an itadmin variable create
command—they specify variable scope, name, type and
value(s).
 86 Orbix Deployment Guide

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and
managing a system.

ART
Adaptive Runtime Technology. A modular, distributed object
architecture, which supports dynamic deployment and configuration
of services and application code. ART provides the foundation for
ORBIX software products.

ATLI2
Abstract Transpot Layer Interface, version 2. The current transport
layer implementation used in ORBIX.

C Certificate Authority
Certificate Authority (CA). A trusted third-party organization or
company that issues digital certificates used to create digital
signatures and public-private key pairs. The role of the CA in this
process is to guarantee that the individual granted the unique
certificate is, in fact, who he or she claims to be. CAs are a crucial
component in data security and electronic commerce because they
guarantee that the two parties exchanging information are really
who they claim to be.

CFR
See configuration repository.

client
An application (process) that typically runs on a desktop and
requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a
program that requests services from CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services
and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior.
This information consists of configuration variables and their values.
Configuration domain data can be implemented and maintained in
a centralized Orbix configuration repository or as a set of files
distributed among domain hosts. Configuration domains let you
organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration
file and configuration repository.
 Orbix Deployment Guide 87

configuration file
A file that contains configuration information for Orbix components
within a specific configuration domain. See also configuration
domain.

configuration repository
A centralized store of configuration information for all Orbix
components within a specific configuration domain. See also
configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically
organized into a root scope and a hierarchy of nested scopes, the
fully-qualified names of which map directly to ORB names. By
organizing configuration properties into various scopes, different
settings can be provided for individual ORBs, or common settings
for groups of ORB. Orbix services, such as the naming service, have
their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard
that enables objects to communicate with one another regardless
of what programming language they are written in, or what
operating system they run on. The CORBA specification is produced
and maintained by the OMG. See also OMG.

CORBA naming service
An implementation of the OMG Naming Service Specification.
Describes how applications can map object references to names.
Servers can register object references by name with a naming
service repository, and can advertise those names to clients.
Clients, in turn, can resolve the desired objects in the naming
service by supplying the appropriate name. The Orbix naming
service is an example.

CORBA objects
Self-contained software entities that consist of both data and the
procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and
Java.

CORBA transaction service
An implementation of the OMG Transaction Service Specification.
Provides interfaces to manage the demarcation of transactions and
the propagation of transaction contexts. Orbix OTS is such as
service.

CSIv2
The OMG’s Common Secure Interoperability protocol v2.0, which
can be used to provide the basis for application-level security in
both CORBA and J2EE applications. The IONA Security Framework
implements CSIv2 to transmit user names and passwords, and to
assert identities between applications.
 88 Orbix Deployment Guide

D deployment
The process of distributing a configuration or system element into
an environment.

H HTTP
HyperText Transfer Protocol. The underlying protocol used by the
World Wide Web. It defines how files (text, graphic images, video,
and other multimedia files) are formatted and transmitted. Also
defines what actions Web servers and browsers should take in
response to various commands. HTTP runs on top of TCP/IP.

I IDL
Interface Definition Language. The CORBA standard declarative
language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose
in a server application. Clients use these interfaces to access server
objects across a network. IDL interfaces are independent of
operating systems and programming languages.

IFR
See interface repository.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging
protocol, defined by the OMG, for communications between ORBs
and distributed applications. IIOP is defined as a protocol layer
above the transport layer, TCP/IP.

implementation repository
A database of available servers, it dynamically maps persistent
objects to their server’s actual address. Keeps track of the servers
available in a system and the hosts they run on. Also provides a
central forwarding point for client requests. See also location
domain and locator daemon.

IMR
See implementation repository.

installation
The placement of software on a computer. Installation does not
include configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

interface repository
Provides centralized persistent storage of IDL interfaces. An Orbix
client can query this repository at runtime to determine information
about an object’s interface, and then use the Dynamic Invocation
Interface (DII) to make calls to the object. Enables Orbix clients to
call operations on IDL interfaces that are unknown at compile time.

invocation
A request issued on an already active software component.
Orbix Deployment Guide 89

IOR
Interoperable Object Reference. See object reference.

L location domain
A collection of servers under the control of a single locator daemon.
Can span any number of hosts across a network, and can be
dynamically extended with new hosts. See also locator daemon and
node daemon.

locator daemon
A server host facility that manages an implementation repository
and acts as a control center for a location domain. Orbix clients use
the locator daemon, often in conjunction with a naming service, to
locate the objects they seek. Together with the implementation
repository, it also stores server process data for activating servers
and objects. When a client invokes on an object, the client ORB
sends this invocation to the locator daemon, and the locator daemon
searches the implementation repository for the address of the
server object. In addition, enables servers to be moved from one
host to another without disrupting client request processing.
Redirects requests to the new location and transparently reconnects
clients to the new server instance. See also location domain, node
daemon, and implementation repository.

N naming service
See CORBA naming service.

node daemon
Starts, monitors, and manages servers on a host machine. Every
machine that runs a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored
in a CORBA naming service, in a file or in a URL. The contact details
that a client application uses to communicate with a CORBA object.
Also known as interoperable object reference (IOR) or proxy.

OMG
Object Management Group. An open membership, not-for-profit
consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including
CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients
and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a
distributed computer environment. Key component in CORBA.

OTS
See CORBA transaction service.
 90 Orbix Deployment Guide

http://www.omg.com

P POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object
references to all objects used by an application, manages object
state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB
products. Can be transient or persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as
containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

SSL
Secure Sockets Layer protocol. Provides transport layer security—
authenticity, integrity, and confidentiality—for authenticated and
encrypted communications between clients and servers. Runs
above TCP/IP and below application protocols such as HTTP and
IIOP.

SSL handshake
An SSL session begins with an exchange of messages known as the
SSL handshake. Allows a server to authenticate itself to the client
using public-key encryption. Enables the client and the server to
co-operate in the creation of symmetric keys that are used for rapid
encryption, decryption, and tamper detection during the session
that follows. Optionally, the handshake also allows the client to
authenticate itself to the server. This is known as mutual
authentication.

T TCP/IP
Transmission Control Protocol/Internet Protocol. The basic suite of
protocols used to connect hosts to the Internet, intranets, and
extranets.

TLS
Transport Layer Security. An IETF open standard that is based on,
and is the successor to, SSL. Provides transport-layer security for
secure communications. See also SSL.
Orbix Deployment Guide 91

 92 Orbix Deployment Guide

Index
A
ABDeploy.dtd 7, 83
ABDeploy element 84
ABDriver.dtd 73
Add Location Service Replica dialog 32
Add menu option 30
Address Mode Policy for Object
References field 38

Address mode policy for Object
References field 57

Advanced Settings 29, 38
authenticated attribute 70

B
Base Port 20
bin directory 49

C
certificates 61
-cfr 11
cluster 47
-compatible 11
config.daemon.install entity 76
configData element 56
config directory 49
configPopulate 85
configPopulate action 56
configuration

file 7
overrides 71
repository (CFR) 7

configuration domain
create 17
replicate 27

configuration program. See Orbix
Configuration tool

Confirmation screen 41
Connect menu option 18, 25
Connect to a Configuration Domain 26
-credentials 12
custom certificates 61
Custom Components checkbox 54
custom directories 49
custom XML files 53

D
dataId element 56
dataType 56
dbs directory 49
dd:activation element 70
dd:component element 64, 72
dd:configuration element 64, 66, 71
dd:descriptor element 64, 66
dd:domain element 66
dd:endpoint element 71
dd:feature element 64, 67
dd:location_domain element 66
dd:node element 64, 67, 78
dd:nodes element 64, 67, 78
dd:policies element 68, 71
dd:policy element 78
dd:profile element 64, 67
dd:resource element 67
dd:run element 70
dd:service element 64, 70
dd:source element 66
-demos 13
-deployed_descriptor 11
deployer 7
deployment descriptor

overview 6
structure 63

Deploy menu option 17, 23, 28
dns attribute 67
documentation

.pdf format 4
updates on the web 4

Domain Details screen 37, 57
Don’t set variable plugins

node_daemon
name field 59

dynlog 70

E
-entities 11
-etc 12
-expert 11
Expert menu option 17, 37

F
-file 11
filePopulate 85
filePopulate action 56
fps 71
fully qualified hostname 59

G
Generate EMS configuration files field 38
getHostAddress() function 44
gethostname() function 60
getLocalHost() function 77
-gui 11

H
-help 13
Orbix Deployment Guide 93

-host 12
host.hostname_for_iors entity 77
-hostnamePolicy 13
http 71

I
iiop 71
implementation repository (IMR) 7
Import Databases from field 39
incremental configuration 28
InetAddress object 77
interoperable object reference (IOR) 7
iona.properties file 34
ip attribute 67, 78
itconfigure 6, 10, 17

-cfr 11
-compatible 11, 74
-credentials 12
-demos 13
-deployed_descriptor 11
-entities 11, 74
-etc 12
-expert 11
-file 11
-gui 11
-help 13
-host 12, 57
-hostnamePolicy 13
JAVA_HOME setting 9
-L 52
-libs 12, 52
-link 11
-load 11
-localize 11
-multihome 12, 44
-name 11
-ndport 12
-ndtlsport 12
-nogui 11, 44, 65
-ORBlicense_file 11
-ORBproduct_dir 10
-port 12
-range 12
-save 11, 65
syntax 10
-tlsport 12
UNIX access permissions 9
-var 12

J
JAVA_HOME 9
Java interpreter 35

L
-libs 12
License File 15
licenses.txt 15
-link 11
-load 11, 24
Load Descriptor dialog 28
localhost IP policy 59

-localize 11
Localize menu 26
location_domain_name entity 75
logs directory 49

M
managed attribute 70
manage_services entity 77
manual attribute 70
mode attribute 70
-multihome 12
multi-homed machines 43

N
-name 11
name attribute 44, 67, 70, 72
-ndport 12
-ndtlsport 12
Node Daemon Settings dialog 59
-nogui 11, 24

O
on_demand attribute 70
Open menu option 17, 28
Options dialog 53
Orbix Configuration tool 8
Orbix Configuration Welcome dialog 14
Orbix services

start and stop scripts 33
-ORBlicense_file 11
-ORBproduct_dir 10

P
perflog attribute 70
policies:iiop:client_address_mode_policy:
local_hostname 46, 47

policies:iiop:server_address_mode_policy
:local_hostname 46, 47

populateHandler 85
-port 12
port attribute 71
process element 56, 84
profile attribute 67
protocol attribute 71
proxified attribute 70

R
-range 12
Reopen menu option 28
replicated servers

IONA services 27
replicated services

configuration repository 27
location daemon 27
set up 27

Reprepare menu option 33

S
-save 11
section element 85
secure attribute 71
 94 Orbix Deployment Guide

Select Custom Components dialog 54
Select Descriptor dialog 29
Select Services 42, 45, 54
service element 84
Service Settings dialog 40
service-specific address mode 58
source element 85
stage element 56, 84
Standard menu option 17
Standard Settings 29
Start menu option 33
start scripts 49
Stop menu option 33
stop scripts 49
Storage Locations 51
Storage Locations dialog 38
substitute_vars 61
Substitutions 62
-substitutions 62
substitution variables 61
system_service attribute 70

T
-tlsport 12

V
-var 12
Orbix Deployment Guide 95

 96 Orbix Deployment Guide

	Preface
	Contacting Micro Focus

	Getting Started
	Introduction
	Orbix Configuration Tool
	Running the Orbix Configuration Tool
	Licensing your Orbix Environment

	Configuring and Deploying a Domain
	Introduction
	Creating a New Domain
	Deploying a Distributed Domain
	Connecting a Client Machine to a Domain
	Localizing a Preconfigured Domain
	Replicating Services in a Domain
	Updating an Existing Domain
	Starting and Stopping Orbix Services
	Setting Java ORB Classes

	Advanced Configuration and Deployment
	Creating a Domain in Expert Mode
	Configuring a Machine with no GUI
	Deploying on Multi-homed Machines
	Configuring Orbix in a Cluster
	Configuring Services to Listen on Network Interfaces
	Specifying Custom Locations for Domain Files
	Specifying Custom Library Paths
	Using Custom XML Files
	Specifying Address Mode Policies
	Specifying Custom Certificates

	Orbix Deployment Descriptors
	Deployment Descriptor Structure
	Domain Configuration Elements
	Profile Configuration Elements

	Migrating Orbix Deployments
	Migrating from Orbix 5.1 Driver Files
	Conversion Process from Orbix 5.1 to an Orbix 6.x Descriptor
	Migrating from Orbix 6.x

	Orbix Deployment DTD
	Orbix Component Template Structure

	Glossary
	Index

