
ORBIX
®

PROGRESS
®

CORBA Programmer’s Guide,
C++

Version 6.3.5, July 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing
Architecture, EdgeXtend, Empowerment Center, Fathom, Fuse Media tion Router, Fuse
Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by
Progress, Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business
Empowerment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment,
WebSpeed, Xcalia (and design), and Your Software, Our Technology-Experience the
Connection are registered trademarks of Progress Software Corporation or one of its
affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard
Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk
Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward,
CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof,
GVAC, High Performance Integration, Object Store Inspector, ObjectStore Performance
Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress
CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/
Presentation, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, Smart Frame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business
Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous
Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server,
The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service
marks of Progress Software Corporation and/or its subsidiaries or affiliates in the U.S. and
other countries. Java is a registered trademark of Oracle and/or its affiliates. Any other
marks con tained herein may be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software
Foundation (http://www.apache.org). Such Apache Technology is subject to the following
terms and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001
The Apache Software Foundation. All rights reserved. Redistribution and use in source

and binary forms, with or without modification, are permitted provided that the following conditions are
met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the above copy right notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta Project",
"Struts", and "Apache Software Foundation" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DIS CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBU TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Apache" and "Apache Software Foundation" and "Apache BCEL" must
not be used to endorse or promote products derived from this software with out prior written permission.
For written permission, please contact apache@apache.org. 5. Products derived from this software may not
be called "Apache", "Apache BCEL", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
iii

CORBA Programmer’s Guide,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSI NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Founda tion. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistri bution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "The Jakarta Project", "Jakarta -Regexp", and "Apache Software
Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
 iv

developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "log4j" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written per mission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUD ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions: The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the fol lowing disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. 3. The end-user documentation included with the redistribution, if
any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Ant"
and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote products
derived from this software without prior writ ten permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
v

CORBA Programmer’s Guide,
of voluntary contri butions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Xalan" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contri butions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see <http://www.apache.org/
>.

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Xerces" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
 vi

called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Founda tion. For more information on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights
vii

CORBA Programmer’s Guide,
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "The Jakarta Project", "Tomcat" and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All
rights reserved. This software including the files in this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such
technology is subject to the following terms and conditions: The Apache Software License, Version 1.1
 viii

Copyright (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions
are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this
list of conditions and the follow ing disclaimer in the documentation and/or other materials provided with
the distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software
Foundation" must not be used to endorse or promote prod ucts derived from this software without prior
written permission. For written permission, please contact apache@apache.org. 5. Products derived from
this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
==
This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation and was originally based on software copyright (c) 1999, Lotus Development
Corporation., http://www.lotus.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following
terms and conditions: This software is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. The following terms apply to all files
associated with the software unless explicitly disclaimed in individual files. The authors hereby grant
permission to use, copy, modify, distribute, and license this software and its documentation for any purpose,
provided that existing copyright notices are retained in all copies and that this notice is included verbatim in
any distributions. No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and need not follow the licensing terms
described here, provided that the new terms are clearly indicated on the first page of each file where they
apply. IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. THE AUTHORS AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
ix

CORBA Programmer’s Guide,
THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND
DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE: If you are acquiring this software on
behalf of the U.S. government, the Government shall have only "Restricted Rights" in the software and
related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2).
If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S.
Government and others acting in its behalf permission to use and distribute the software in accordance with
the terms specified in this license.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the
following terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
The origin of this software must not be misrepresented; you must not claim that you wrote the original
software. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or
promote products derived from this software without specific prior written permission. THIS SOFTWARE
IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK.jseward@acm.org bzip2/libbzip2
version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose
compression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark
Adler. This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software. Permission is granted to anyone
to use this software for any purpose, including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions: 1. The origin of this software must not be mis represented; you
must not claim that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source
versions must be plainly marked as such, and must not be misrepresented as being the original software. 3.
This notice may not be removed or altered from any source distribution. Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu */
 x

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this
software must display the following acknowledgement: This product includes software devel oped by John
Wilson. The name of John Wilson may not be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbeta9 from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the
following disclaimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, this list
of conditions, and the dis claimer that follows these conditions in the documentation and/or other materials
provided with the distribu tion. 3. The name "JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation
provided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the
following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/
images/logos. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIA BLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
xi

CORBA Programmer’s Guide,
of voluntary contributions made by many individuals on behalf of the JDOM Project and was originally
created by Jason Hunter <jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>.
For more information on the JDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project
Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to
the following terms and conditions: The OpenSSL toolkit stays under a dual license, i.e. both the conditions
of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues
related to OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008
The OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted pro vided that the following conditions are met: 1. Redistributions of
source code must retain the above copy right notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. 3. All
advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project"
must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org. 5. Products derived from this
software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project. 6. Redistributions of any form whatsoever must retain the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL
PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAM AGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERV ICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This product includes cryp tographic software written by
Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com). - Original SSLeay License - Copyright (C) 1995-1998 Eric Young
(eay@crypt soft.com) All rights reserved. This package is an SSL implementation written by Eric Young
(eay@crypt soft.com). The implementation was written so as to conform with Netscapes SSL. This library
is free for commercial and non-commer cial use as long as the following conditions are aheared to. The
following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code;
not just the SSL code. The SSL documentation included with this distribution is covered by the same
copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right remains Eric
Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a
product, Eric Young should be given attribution as the author of the parts of the library used. This can be in
the form of a textual message at program startup or in documentation (online or textual) provided with the
package. Redistri bution and use in source and binary forms, with or with out modification, are permitted
 xii

provided that the follow ing conditions are met: 1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of con ditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. All advertising materials mention ing features or use of this
software must display the following acknowledge ment: "This product includes crypto graphic software
written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rou tines from
the library being used are not crypto graphic related :-). 4. If you include any Windows specific code (or a
deriv ative thereof) from the apps directory (application code) you must include an acknowledgement: "This
product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS SOFTWARE IS PROVIDED
BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE CIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for any publically
available version or deriva tive of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Orbix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:
PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is
distributed under the same terms as the software itself. The basic library functions are written in C and are
freestanding. Also included in the distribution is a set of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2008 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

xiii

CORBA Programmer’s Guide,
Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE
COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on all media and documentation and the software program in which this product is incorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone else except as
part of a product or program developed by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. This license is effective until termi nated by Sun for failure to comply with this license. Upon
termination, you shall destroy or return all code and documentation for the Interface Definition Language
CFE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES
OF ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF
DEALING, USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS
PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC TION,
MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES
SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS,
TRADE SECRETS OR ANY PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY
 xiv

PART THEREOF. IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND
CONSE QUENTIAL DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subpara graph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun logo are trademarks or registered
trademarks of Sun Microsys tems, Inc. SunSoft, Inc. 2550 Garcia Avenue, Mountain View, California
94043 NOTE: SunOS, Sun Soft, Sun, Solaris, Sun Microsystems or the Sun logo are trademarks or
registered trademarks of Sun Micro systems, Inc.

Progress Orbix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
list.c) covered by a similar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without
restriction, including with out limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions: The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Daniel
Veillard shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization from him.
=== trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER. ==== triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and dis tribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice appear in all
copies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND
CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS
IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A
xv

CORBA Programmer’s Guide,
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.
===== list.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission
to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE
IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER. ===
triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and
distribute this soft ware for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS
IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.
==== triostr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE IS PRO VIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orbix v6.3.5 incorporates ICU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documenta tion files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft ware is fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as
contained in this notice, the name of a copyright holder shall not be used in advertising or other wise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder. All trademarks and registered trademarks mentioned herein are the property of their respective
owners.
 xvi

Contents

List of Figures xxix

List of Tables xxxiii

Preface xxxv

Chapter 1 Introduction to Orbix 1
Why CORBA? 2

CORBA Objects 4
Object Request Broker 6

CORBA Application Basics 7
Servers and the Portable Object Adapter 8
Orbix Plug-In Design 10
Development Tools 12
Orbix Application Deployment 14
CORBA Features and Services 16

Chapter 2 Getting Started with Orbix 19
Creating a Configuration Domain 20
Setting the Orbix Environment 29
Hello World Example 30
Development Using the Client/Server Wizard 32
Development from the Command Line 43

Chapter 3 First Application 49
Development Using Code Generation 50
Development Without Using Code Generation 53
Locating CORBA Objects 55
Development Steps 57

Define IDL interfaces 58
Generate starting point code 60
Compile the IDL definitions 62
xvii

CONTENTS
Develop the server program 66
Develop the client program 73
Build the application 78
Run the application 79

Enhancing Server Functionality 81
Create a Termination Handler Object 82
Initialize the ORB 83
Create a POA for transient objects 84
Create servant objects 87
Activate CORBA objects 88
Export object references 90
Activate the POA manager 91
Shut down the ORB 92

Complete Source Code for server.cxx 94

Chapter 4 Defining Interfaces 99
Modules and Name Scoping 101
Interfaces 103

Interface Contents 105
Operations 106
Attributes 108
Exceptions 109
Empty Interfaces 110
Inheritance of IDL Interfaces 111
Forward Declaration of IDL Interfaces 115
Local Interfaces 116

Valuetypes 118
Abstract Interfaces 119
IDL Data Types 121

Built-in Types 122
Extended Built-in Types 124
Complex Data Types 127
Pseudo Object Types 132

Defining Data Types 133
Constants 134
Constant Expressions 137

Chapter 5 Developing Applications with Genies 139
 xviii

CONTENTS
Starting Development Projects 141
Genie Syntax 142
Specifying Application Components 144
Selecting Interfaces 146
Including Files 147
Implementing Servants 148
Implementing the Server Mainline 152
Implementing a Client 156
Generating a Makefile 157
Controlling Code Completeness 158
General Options 162
Compiling the Application 163

Generating Signatures of Individual Operations 164
Configuration Settings 165

Chapter 6 ORB Initialization and Shutdown 167
Initializing the ORB Runtime 168
Shutting Down the ORB 170

Shutting Down a Client 171
Shutting down a server 172

Chapter 7 Using Policies 175
Creating Policy and PolicyList Objects 177
Setting Orb and Thread Policies 179
Setting Server-Side Policies 181
Setting Client Policies 183

Setting Policies at Different Scopes 184
Managing Object Reference Policies 185

Getting Policies 188

Chapter 8 Developing a Client 191
Mapping IDL Interfaces to Proxies 192
Using Object References 194

Counting References 196
Nil References 198
Object Reference Operations 199
Using _ptr References 202
Using _var References 205
xix

CONTENTS
String Conversions 209
Initializing and Shutting Down the ORB 213
Invoking Operations and Attributes 214
Passing Parameters in Client Invocations 215

Simple Parameters 216
Fixed-Length Complex Parameters 217
Fixed-Length Array Parameters 219
String Parameters 221
_out Types 224
Variable-Length Complex Parameters 227
Variable-Length Array Parameters 229
Object Reference Parameters 231
Parameter-Passing Rules: Summary 233

Client Policies 236
RebindPolicy 237
SyncScopePolicy 238
Timeout Policies 239

Implementing Callback Objects 249

Chapter 9 Developing a Server 251
POAs, Skeletons, and Servants 253
Mapping Interfaces to Skeleton Classes 256
Creating a Servant Class 259
Implementing Operations 261
Activating CORBA Objects 262
Handling Output Parameters 264

Simple Parameters 265
Fixed-Length Complex Parameters 266
Fixed-Length Array Parameters 268
String Parameters 270
Variable-Length Complex Parameters 272
Variable-Length Array Parameters 274
Object Reference Parameters 276

Counting Servant References 278
Delegating Servant Implementations 279
Implementation Inheritance 281
Interface Inheritance 282
Multiple Inheritance 283
Explicit Event Handling 284
 xx

CONTENTS
Termination Handler 285
Compiling and Linking 287

Chapter 10 Managing Server Objects 289
Mapping Objects to Servants 291
Creating a POA 293

Setting POA Policies 295
Root POA Policies 299

Using POA Policies 300
Enabling the Active Object Map 301
Processing Object Requests 302
Setting Object Lifespan 304
Assigning Object IDs 307
Activating Objects with Dedicated Servants 308
Activating Objects 309
Setting Threading Support 310

Explicit Object Activation 311
Implicit Object Activation 312

Calling _this() Inside an Operation 313
Calling _this() Outside an Operation 314

Managing Request Flow 317
Work Queues 319

ManualWorkQueue 321
AutomaticWorkQueue 323
Using a WorkQueue 326

Controlling POA Proxification 329

Chapter 11 Managing Servants 331
Using Servant Managers 333

Servant Activators 335
Servant Locators 340

Using a Default Servant 345
Setting a Default Servant 348

Creating Inactive Objects 349

Chapter 12 Asynchronous Method Invocations 353
Implied IDL 356
Calling Back to Reply Handlers 357
xxi

CONTENTS
Interface-to-Reply Handler Mapping 358
Implementing a Client with Reply Handlers 361

Chapter 13 Exceptions 365
Exception Code Mapping 367
User-Defined Exceptions 368
Handling Exceptions 370

Handling User Exceptions 371
Handling System Exceptions 373
Evaluating System Exceptions 375

Throwing Exceptions 380
Exception Safety 381
Throwing System Exceptions 384

Chapter 14 Using Type Codes 385
Type Code Components 386
Type Code Operations 389

General Type Code Operations 390
Type Code Constants 396

Chapter 15 Using the Any Data Type 399
Inserting Typed Values Into Any 401
Extracting Typed Values From Any 404
Inserting and Extracting Booleans, Octets, Chars and WChars 407
Inserting and Extracting Array Data 408
Inserting and Extracting String Data 409
Inserting and Extracting Alias Types 412
Querying a CORBA::Any’s Type Code 414
Using DynAny Objects 415
Creating a DynAny 418

create_dyn_any() 419
create_dyn_any_from_type_code() 421

Inserting and Extracting DynAny Values 423
Insertion Operations 424
Extraction Operations 426
Iterating Over DynAny Components 428
Accessing Constructed DynAny Values 430
 xxii

CONTENTS
Chapter 16 Generating Interfaces at Runtime 439
Using the DII 441

Constructing a Request Object 443
_request() 444
_create_request() 447
Invoking a Request 450
Retrieving Request Results 451
Invoking Deferred Synchronous Requests 452

Using the DSI 453
DSI Applications 454
Programming a Server to Use DSI 455

Chapter 17 Using the Interface Repository 457
Interface Repository Data 459

Abstract Base Interfaces 460
Repository Object Types 461

Containment in the Interface Repository 467
Contained Interface 470
Container Interface 472

Repository Object Descriptions 474
Retrieving Repository Information 477
Sample Usage 480
Repository IDs and Formats 482
Controlling Repository IDs with Pragma Directives 484

Chapter 18 Naming Service 487
Naming Service Design 489
Defining Names 491

Representing Names as Strings 493
Initializing a Name 494
Converting a Name to a StringName 495

Obtaining the Initial Naming Context 496
Building a Naming Graph 497

Binding Naming Contexts 498
Binding Object References 502
Rebinding 503

Using Names to Access Objects 504
Exceptions Returned to Clients 507
xxiii

CONTENTS
Listing Naming Context Bindings 508
Using a Binding Iterator 509

Maintaining the Naming Service 512
Federating Naming Graphs 514
Sample Code 520
Object Groups and Load Balancing 523

Using Object Groups in Orbix 527
Load Balancing Example 530

Creating an Object Group and Adding Objects 532
Accessing Objects from a Client 539

Chapter 19 Persistent State Service 541
Introduction to the Persistent State Service 542
Defining Persistent Data 543

Datastore Model 544
Abstract Types and Implementations 546
Defining Storage Objects 547
Defining Storage Homes 549
Implementing Storage Objects 554
Implementing Storage Homes 556

Accessing Storage Objects 558
Creating Transactional Sessions 559
Using the SessionManager 562
Managing Transactional Sessions 569
Getting a Storage Object Incarnation 579
Querying Data 580
Associating CORBA and Storage Objects 581
Thread Safety 582

Using Replication 583
Delegating to the Master 584
Custom Delegation Interface 587
Configuring the Replica Group 589
Initializing the Replica Group 591
Operations that Support Replication 596

PSDL Language Mappings 601
abstract storagehome 603
abstract storagetype 604
Ref_var Classes 608
State Members 609
 xxiv

CONTENTS
Operation Parameters 611
storagetype 612
storagehome 614
Factory Native Types 616

Chapter 20 Event Service 617
Overview 618
Event Communication Models 620
Developing an Application Using Untyped Events 624

Obtaining an Event Channel 625
Implementing a Supplier 628
Implementing a Consumer 634

Developing an Application Using Typed Events 640
Creating the Interface 641
Obtaining a Typed Event Channel 642
Implementing the Supplier 646
Implementing the Consumer 650

Chapter 21 Portable Interceptors 655
Interceptor Components 657

Interceptor Types 658
Service Contexts 660
PICurrent 661
Tagged Components 663
Codec 664
Policy Factory 666
ORB Initializer 667

Writing IOR Interceptors 668
Using RequestInfo Objects 671
Writing Client Interceptors 673

Interception Points 675
Interception Point Flow 676
ClientRequestInfo 680
Client Interceptor Tasks 683

Writing Server Interceptors 687
Interception Points 688
Interception Point Flow 689
ServerRequestInfo 693
xxv

CONTENTS
Server Interceptor Tasks 696
Registering Portable Interceptors 700

Implementing an ORB Initializer 701
Registering an ORBInitializer 707

Setting Up Orbix to Use Portable Interceptors 708

Chapter 22 Bidirectional GIOP 709
Introduction to Bidirectional GIOP 710
Bidirectional GIOP Policies 712
Configuration Prerequisites 717
Basic BiDir Scenario 718

The Stock Feed Demonstration 719
Setting the Export Policy 722
Setting the Offer Policy 724
Setting the Accept Policy 726

Advanced BiDir Scenario 729
Interoperability with Orbix Generation 3 732

Chapter 23 Locating Objects with corbaloc 735
corbaloc URL Format 736
Indirect Persistence Case 740

Overview of the Indirect Persistence Case 741
Registering a Named Key at the Command Line 744
Registering a Named Key by Programming 746
Using the corbaloc URL in a Client 748

Direct Persistence Case 749
Overview of the Direct Persistence Case 750
Registering a Plain Text Key 752
Using the corbaloc URL in a Client 753

Named Keys and Plain Text Keys Used by Orbix Services 754

Chapter 24 Configuring and Logging 757
The Configuration Interface 758
Configuring 760
Logging 763

Chapter 25 Orbix Compression Plug-in 769
Introduction to the ZIOP Plug-In 770
 xxvi

CONTENTS
Configuration Prerequisites 772
Compression Policies 774
Programming Compression Policies 776
Implementing Custom Compression 779

The IT_Buffer Module 780
Implementing a Compressor 784
Implementing a Compressor Factory 790
Registering a Compressor Factory 795

Appendix A Orbix IDL Compiler Options 799
Command Line Switches 800
Plug-in Switch Modifiers 802
IDL Configuration File 807

Appendix B IONA Foundation Classes Library 811
Installed IFC Directories 812
Selecting an IFC Library 813

Appendix C Orbix C++ Libraries 815

Appendix D IONA Policies 819
Client Side Policies 820
POA Policies 823
Security Policies 825
Firewall Proxy Policies 827

Index 829
xxvii

CONTENTS
 xxviii

List of Figures

Figure 1: The nature of abstract CORBA objects 4

Figure 2: The object request broker 6

Figure 3: Invoking on a CORBA object 7

Figure 4: The portable object adapter 8

Figure 5: The Orbix Configuration Welcome Dialog Box 21

Figure 6: The Domain Type Window 22

Figure 7: The Service Startup Window 23

Figure 8: The Security Window 24

Figure 9: The Fault Tolerance Window 25

Figure 10: The Select Services Window 26

Figure 11: The Confirm Choices Window 27

Figure 12: Configuration Summary 28

Figure 13: Client makes a single operation call on a server 30

Figure 14: Simple strategy for passing object references to clients 56

Figure 15: Multiple inheritance of IDL interfaces 112

Figure 16: Reference count for Account proxy is set to one. 196

Figure 17: Reference for Account proxy is incremented to 2. 197

Figure 18: Multiple _ptr references to a proxy object can leave the reference count unchanged. 203

Figure 19: The server-side ORB conveys client requests to the POA via its manager, and the POA dispatches
the request to the appropriate servant. 255

Figure 20: A servant class can inherit base class implementations. 281

Figure 21: A servant class can implement operations of all base skeleton classes. 282

Figure 22: Inheritance options among servant and base skeleton classes. 283

Figure 23: A portable object adapter (POA) maps abstract objects to their concrete implementations
(servants) 291

Figure 24: On the first request on an object, the servant activator returns a servant to the POA, which
establishes the mapping in its active object map. 335
xxix

LIST OF FIGURES
Figure 25: The POA directs each object request to the servant locator, which returns a servant to the POA to
process the request. 340

Figure 26: Reply handler implementation 361

Figure 27: The C++ mapping arranges exceptions into a hierarchy 367

Figure 28: Interfaces that derive from the DynAny interface 415

Figure 29: Hierarchy of interface repository objects 463

Figure 30: A naming graph is a hierarchy of naming contexts 489

Figure 31: Checking context bound to initial naming context 499

Figure 32: Savings and Loans naming contexts bound to initial naming context 499

Figure 33: Binding an object reference to a naming context 502

Figure 34: Destroying a naming context and removing related bindings 513

Figure 35: A naming graph that spans multiple servers 515

Figure 36: Multiple naming graphs are linked by binding initial naming contexts of several servers to a root
server. 517

Figure 37: The root server’s initial naming context is bound to the initial naming contexts of other servers,
allowing clients to locate the root naming context. 518

Figure 38: Associating a name with an object group 524

Figure 39: Architecture of the stock market example 530

Figure 40: A server process uses sessions to establish a logical connection with a datastore and its contents
558

Figure 41: Transactional session states 573

Figure 42: No Delegation Required for Ordinary Read Operation 584

Figure 43: Delegation Required for Transactional Read Operation 585

Figure 44: Delegation Required for Write Operation 586

Figure 45: Suppliers and consumers communicating through an event channel 618

Figure 46: Event propagation in a CORBA system 619

Figure 47: Push model of event transfer 620

Figure 48: Pull Model suppliers and consumers communicating through an event channel 621

Figure 49: Push suppliers and pull consumers communicating through an event channel 622

Figure 50: Push consumers pushing typed events to typed push consumers 623
 xxx

LIST OF FIGURES
Figure 51: Client interceptors allow services to access outgoing requests and incoming replies. 659

Figure 52: PICurrent facilitates transfer of thread context data to a request or reply. 661

Figure 53: Client interceptors process a normal reply. 676

Figure 54: Client interceptors process a LOCATION_FORWARD reply. 677

Figure 55: send_request throws an exception in a client-side interceptor 678

Figure 56: Client interceptors can change the nature of the reply. 679

Figure 57: Server interceptors receive request and send exception thrown by target object. 690

Figure 58: receive_request_service_contexts throws an exception and interception flow is aborted. 691

Figure 59: Server interceptors can change the reply type. 692

Figure 60: Basic Bidirectional GIOP Scenario—Stock Feed 720

Figure 61: Advanced Bidirectional GIOP Scenario 729

Figure 62: Orbix 3 Client Receiving a Callback from an Orbix 6.1 Server 732

Figure 63: Using corbaloc with the Locator-Based Named Key Registry 742

Figure 64: Using corbaloc with the plain_text_key Plug-In 750

Figure 65: Overview of ZIOP Compression 770

Figure 66: Configuration file format 807

Figure 67: Distributed IDL configuration file 808
xxxi

LIST OF FIGURES
 xxxii

List of Tables

Table 1: CORBA::LocalObject pseudo-operation returns 117

Table 2: Built-in IDL types 122

Table 3: Extended built-in IDL types 124

Table 4: Component specifier arguments to cpp_poa_genie.tcl 142

Table 5: Optional switches to cpp_poa_genie.tcl 142

Table 6: Wildcard pattern matching to interface names 146

Table 7: Arguments that control servant generation 148

Table 8: Options affecting the server 152

Table 9: Parameter passing for low-level mapping 234

Table 10: Parameter passing with _var types 235

Table 11: Timeout Policies 239

Table 12: POA policy factories and argument options 296

Table 13: POA manager states and interface operations 317

Table 14: Reply Handler Operation Types for Normal Replies 359

Table 15: Reply Handler Operation Types for Exceptional Replies 359

Table 16: Base minor code values for Orbix subsystems 376

Table 17: Type Codes and Parameters 387

Table 18: Type-Specific Operations 392

Table 19: Information Obtained by Type-Specific Operations 394

Table 20: Interface Repository OIbject Types 461

Table 21: Container and Contained Objects in the Interface Repository 468

Table 22: SessionManager parameters 564

Table 23: ParameterList settings for a TransactionalSession 572

Table 24: Isolation levels 576

Table 25: PSDL Reference Mappings 607

Table 26: Mapping for PSDL parameters 611
xxxiii

LIST OF TABLES
Table 27: Portable Interceptor Timeout Attributes 672

Table 28: Client Interception Point Access to ClientRequestInfo 681

Table 29: Server Interception Point Access to ServerRequestInfo 694

Table 30: Levels of Granularity for Bidirectional Policies 716

Table 31: Named Keys and Plain Text Keys for Orbix Services 754

Table 32: Modifiers for all C++ plug-in switches 802

Table 33: Modifier for -base, -psdl, and -pss_r plug-in switches 804

Table 34: Modifiers for -jbase and -jpoa switches 804

Table 35: Modifiers for -poa switch 805
 xxxiv

Preface
Orbix is a full implementation from IONA Technologies of the Common Object
Request Broker Architecture (CORBA), as specified by the Object Management
Group. Orbix complies with the following specifications:

• CORBA 2.3

• GIOP 1.2 (default), 1.1, and 1.0

Audience The CORBA Programmer’s Guide is intended to help you become familiar with
Orbix, and show how to develop distributed applications using Orbix
components. This guide assumes that you are familiar with programming in
C++.

This guide does not discuss every API in great detail, but gives a general
overview of the capabilities of the Orbix development kit and how various
components fit together.

Organization of this guide Read Chapter 1 for an overview of Orbix. Chapter 2 shows how you can use
code-generation genies to build a distributed application quickly and easily.
Chapter 3 describes in detail the basic steps in building client and server
programs. Subsequent chapters expand on those steps by focusing on topics that
are related to application development.
xxxv

PREFACE
Additional resources The following additional resources are available:

• The Orbix technical documentation is available from:

http://communities.progress.com/pcom/docs/DOC-105215

• The Orbix Knowledge Base is a database of articles that contain practical

advice on specific development issues, contributed by developers, support

specialists, and customers. This is available from: http://

www.progress.com/orbix/orbix-support.html

• Contact Orbix technical support at:

 http://www.progress.com/orbix/orbix-support.html

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.
 xxxvi

http://communities.progress.com/pcom/docs/DOC-105215
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xxxvii

PREFACE
 xxxviii

CHAPTER 1

Introduction to
Orbix
With Orbix, you can develop and deploy large-scale
enterprise-wide CORBA systems in C++ and Java. Orbix has an
advanced modular architecture that lets you configure and change
functionality without modifying your application code, and a rich
deployment architecture that lets you configure and manage a
complex distributed system.

In this chapter This chapter contains the following sections:

Why CORBA? page 2

CORBA Application Basics page 7

Servers and the Portable Object Adapter page 8

Orbix Plug-In Design page 10

Development Tools page 12

Orbix Application Deployment page 14

CORBA Features and Services page 16
1

CHAPTER 1 | Introduction to Orbix
Why CORBA?

Overview Today’s enterprises need flexible, open information systems. Most enterprises
must cope with a wide range of technologies, operating systems, hardware
platforms, and programming languages. Each of these is good at some important
business task; all of them must work together for the business to function.

The common object request broker architecture—CORBA—provides the
foundation for flexible and open systems. It underlies some of the Internet’s
most successful e-business sites, and some of the world’s most complex and
demanding enterprise information systems.

What is CORBA? CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network using standard
protocols, regardless of the programming languages used to create objects or the
operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and are used to
integrate applications written in C, C++, Java, Ada, Smalltalk, and COBOL,
running on embedded systems, PCs, UNIX hosts, and mainframes. CORBA
objects running in these environments can cooperate seamlessly. Through
COMet, IONA’s dynamic bridge between CORBA and COM, they can also
interoperate with COM objects.

CORBA is widely available and offers an extensive infrastructure that supports
all the features required by distributed business objects. This infrastructure
includes important distributed services, such as transactions, security, and
messaging.
 2

Why CORBA?
Orbix Orbix provides a CORBA development platform for building high-performance
systems. Orbix’s modular architecture supports the most demanding
requirements for scalability, performance, and deployment flexibility. The Orbix
architecture is also language-independent and can be implemented in Java and
C++. Orbix applications can interoperate via the standard IIOP protocol with
applications built on any CORBA-compliant technology.
3

CHAPTER 1 | Introduction to Orbix
CORBA Objects
CORBA objects are abstract objects in a CORBA system that provide distributed
object capability between applications in a network. Figure 1 shows that any part
of a CORBA system can refer to the abstract CORBA object, but the object is
only implemented in one place and time on some server of the system.

An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object. CORBA
objects can be implemented by servers in any supported programming language,
such as C++ or Java.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in the
CORBA Interface Definition Language (IDL). The interface definition specifies
which member functions, data types, attributes, and exceptions are available to a
client, without making any assumptions about an object’s implementation.

Figure 1: The nature of abstract CORBA objects

A server implements a

CORBA object

IDL interface definitions specify

CORBA objects

Clients access

CORBA objects

via object

references
 4

Why CORBA?
With a few calls to an ORB’s application programming interface (API), servers
can make CORBA objects available to client programs in your network.

To call member functions on a CORBA object, a client programmer needs only
to refer to the object’s interface definition. Clients can call the member functions
of a CORBA object using the normal syntax of the chosen programming
language. The client does not need to know which programming language
implements the object, the object’s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation has
several advantages. For example, you can change the programming language in
which an object is implemented without affecting the clients that access the
object. You can also make existing objects available across a network.
5

CHAPTER 1 | Introduction to Orbix
Object Request Broker
CORBA defines a standard architecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.

An ORB lets you create standard software objects whose member functions can
be invoked by client programs located anywhere in your network. A program
that contains instances of CORBA objects is often known as a server. However,
the same program can serve at different times as a client and a server. For
example, a server program might itself invoke calls on other server programs,
and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Figure 2: The object request broker

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

Server
 6

CORBA Application Basics
CORBA Application Basics
You start developing a CORBA application by defining interfaces to objects in
your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler generates C++ or Java code from IDL definitions.
This code includes client stub code with which you develop client programs, and
object skeleton code, which you use to implement CORBA objects.

When a client calls a member function on a CORBA object, the call is
transferred through the client stub code to the ORB. Because the implemented
object is not located in the client’s address space, CORBA objects are
represented in client code by proxy objects.

A client invokes on object references that it obtains from the server process. The
ORB then passes the function call through the object skeleton code to the target
object.

Figure 3: Invoking on a CORBA object

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code

Server
7

CHAPTER 1 | Introduction to Orbix
Servers and the Portable Object Adapter
Server processes act as containers for one or more portable object adapters. A
portable object adapter, or POA, maps abstract CORBA objects to their actual
implementations, or servants, as shown in Figure 4. Because the POA assumes

responsibility for mapping servants to abstract CORBA objects, the way that you
define or change an object’s implementation is transparent to the rest of the
application. By abstracting an object’s identity from its implementation, a POA
enables a server to be portable among different implementations.

Figure 4: The portable object adapter

Client Host Server Host

Portable object
adapter

Client stub
code

Server
skeleton

Client

Object Request Broker

Servant
 8

Servers and the Portable Object Adapter
Depending on the policies that you set on a POA, object-servant mappings can
be static or dynamic. POA policies also determine whether object references are
persistent or transient, and the threading model that it uses. In all cases, the
policies that a POA uses to manage its objects are invisible to clients.

A server can have one or more nested POAs. Because each POA has its own set
of policies, you can group objects logically or functionally among multiple
POAs, where each POA is defined in a way that best accommodates the needs of
the objects that it processes.
9

CHAPTER 1 | Introduction to Orbix
Orbix Plug-In Design
Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete features
like specific network protocols, encryption mechanisms, and database storage is
packaged into plug-ins that can be loaded into the ORB based on runtime
configuration settings.

Plug-ins A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains objects
that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an application
starts up, or loaded on-demand while the application is running. This gives you
the flexibility to choose precisely those ORB features that you actually need.
Moreover, you can develop new features such as protocol support for direct
ATM or HTTPNG. Because ORB features are configured into the application
rather than compiled in, you can change your choices as your needs change
without rewriting or recompiling applications.

For example, an application that uses the standard IIOP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. No one transport is inherent to the ORB core; you simply load
the transport set that suits your application best. This architecture makes it easy
for IONA to support additional transports in the future such as multicast or
special purpose network protocols.

ORB core The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a local
C++ or Java object within the process. In fact it might be a local object, or a
remote object reached by some network protocol. It is the ORB’s job to get
application requests to the right objects no matter where they live.

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings—either on startup or on demand—as they are needed by
the application. For remote objects, the ORB intercepts local function calls and
turns them into CORBA requests that can be dispatched to a remote object.
 10

Orbix Plug-In Design
In order to send a request on its way, the ORB core sets up a chain of
interceptors to handle requests for each object. The ORB core neither knows nor
cares what these interceptors do, it simply passes the request along the
interceptor chain. The chain might be a single interceptor which sends the
request with the standard IIOP protocol, or a collection of interceptors that add
transaction information, encrypt the message and send it on a secure protocol
such as SSL. All of this is transparent to the application, so you can change the
protocol or services used by your application simply by configuring a different
set of interceptors.
11

CHAPTER 1 | Introduction to Orbix
Development Tools
The CORBA developer’s environment contains a number of facilities and
features that help you and your development team be more productive.

Code generation toolkit IONA provides a code generation toolkit that simplifies and streamlines the
development effort. You only need to define your IDL interfaces; out-of-the box
scripts generate a complete client/server application automatically from an IDL
file.

The toolkit also can be useful for debugging: you can use an auto-generated
server to debug your client, and vice versa. Advanced users can write code
generation scripts to automate repetitive coding in a large application.

For more information about the code generation toolkit, refer to the CORBA
Code Generation Toolkit Guide.

Multi-threading support Orbix provides excellent support for multi-threaded applications. Orbix libraries
are multi-threaded and thread-safe. Orbix servers use standard POA policies to
enable multi-threading. The ORB creates a thread pool that automatically grows
or shrinks depending on demand load. Thread pool size, growth and request
queuing can be controlled by configuration settings without any coding.

Of course, multi-threaded applications must themselves be thread-safe. This
usually means they need to use thread-synchronization objects such as mutexes
or semaphores. Although most platforms provide similar thread synchronization
facilities, the interfaces vary widely. Orbix includes an object-oriented thread
synchronization portability library which allows you to write portable
multi-threaded code.

Configuration and logging
interfaces

Applications can store their own configuration information in Orbix
configuration domains, taking advantage of the infrastructure for ORB
configuration. CORBA interfaces provide access to configuration information in
application code.

Applications can also take advantage of the Orbix logging subsystem, again
using CORBA interfaces to log diagnostic messages. These messages are logged
to log-stream objects that are registered with the ORB. Log streams for local
output, file logging and system logging (Unix syslogd or Windows Event
 12

Development Tools
Service) are provided with Orbix. You can also implement your own log
streams, which capture ORB and application diagnostics and send them to any
destination you desire.

Portable interceptors Portable interceptors allow an application to intervene in request handling. They
can be used to log per-request information, or to add extra “hidden” data to
requests in the form of GIOP service contexts⎯for example, transaction
information or security credentials.
13

CHAPTER 1 | Introduction to Orbix
Orbix Application Deployment
Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized domain
management allows servers and their objects to move among hosts within the
domain without disturbing clients that use those objects. Orbix supports load
balancing across object groups. A configuration domain provides the central
control of configuration for an entire distributed application.

Orbix offers a rich deployment environment that lets you structure and control
enterprise-wide distributed applications. Orbix provides central control of all
applications within a common domain.

Location domains A location domain is a collection of servers under the control of a single locator
daemon. The locator daemon can manage servers on any number of hosts across
a network. The locator daemon automatically activates remote servers through a
stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is a
database of available servers. The implementation repository keeps track of the
servers available in a system and the hosts they run on. It also provides a central
forwarding point for client requests. By combining these two functions, the
locator lets you relocate servers from one host to another without disrupting
client request processing. The locator redirects requests to the new location and
transparently reconnects clients to the new server instance. Moving a server does
not require updates to the naming service, trading service, or any other
repository of object references.

The locator can monitor the state of health of servers and redirect clients in the
event of a failure, or spread client load by redirecting clients to one of a group of
servers.
 14

Orbix Application Deployment
Configuration domains A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains.

Orbix supports two mechanisms to administer a configuration domain:

• During development, or for small-scale deployment, configuration can be

stored in an ASCII text file, which is edited directly.

• For larger deployments, Orbix provides a distributed configuration server

that enables centralized configuration for all applications spread across a

network.

The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as example
HTTP or third-party configuration systems.
15

CHAPTER 1 | Introduction to Orbix
CORBA Features and Services
Orbix fully supports the latest CORBA specification, and in some cases
anticipates features to be included in upcoming specifications.

Full CORBA 2.3 support and
interoperability

All CORBA 2.3 IDL data types are fully supported, including:

• Extended precision numeric types for 64 bit integer and extended floating

point calculations.

• Fixed point decimals for financial calculations.

• International character sets, including support for code-set negotiation

where multiple character sets are available.

• Objects by value: you can define objects that are passed by value as well as

the traditional pass-by-reference semantics of normal CORBA objects.

This is particularly relevant in Java based systems, but also supported for

C++ using object factories.

Orbix supports the most recent 1.2 revision of the CORBA standard General
Inter-ORB Protocol (GIOP) and Internet Inter-ORB Protocol (IIOP), and also
supports previous 1.1 and 1.0 revisions for backwards compatibility with
applications based on other ORBs. Orbix is interoperable with any
CORBA-compliant application that uses the standard IIOP protocol.

Asynchronous messaging and
quality of service

Orbix implements two key parts of the CORBA messaging specification that are
included in CORBA 3.0.

• Asynchronous messaging interfaces allow easy, type-safe asynchronous

calls to normal CORBA operations. This means that clients can make a

request on a remote service, and then carry on with other work until the

reply is ready.

• ORB quality-of-service policies provide finer standardized control over

how the ORB processes requests. For example, you can specify how

quickly a client resumes processing after sending one-way requests.
 16

CORBA Features and Services
Interoperable naming service and
load balancing extensions

Orbix supports the interoperable naming service specification. This is a superset
of the original CORBA naming service which adds some ease-of-use features
and provides a standard URL format for CORBA object references to simplify
configuration and administration of CORBA services.

The Orbix naming service also supports IONA-specific load-balancing
extensions of OrbixNames 3. A group of objects can be registered against a
single name; the naming service hands out references to clients so that the client
load is spread across the group.

Object transaction service Orbix includes the object transaction service (OTS) which is optimized for the
common case where only a single resource (database) is involved in a
transaction. Applications built against the single resource OTS can easily be
reconfigured to use a full-blown OTS when it is available, since the interfaces
are identical. With Orbix plug-in architecture, applications will not even need to
be recompiled. For the many applications where transactions do not span
multiple databases, the single-resource OTS will continue to be a highly efficient
solution, compared to a full OTS that performs extensive logging to guarantee
transaction integrity.

Event service Orbix supports the CORBA event service specification, which defines a model
for indirect communications between ORB applications. A client does not
directly invoke an operation on an object in a server. Instead, the client sends an
event that can be received by any number of objects. The sender of an event is
called a supplier; the receivers are called consumers. An intermediary event
channel takes care of forwarding events from suppliers to consumers.

Orbix supports both the push and pull model of event transfer, as defined in the
CORBA event specification. Orbix performs event transfer using the untyped
format, whereby events are based on a standard operation call that takes a
generic parameter of type any.

SSL/TLS Orbix SSL/TLS provides data security for applications that communicate across
networks by ensuring authentication, privacy, and integrity features for
communications across TCP/IP connections.

TLS is a transport layer security protocol layered between application protocols
and TCP/IP, and can be used for communication by all Orbix SSL/TLS
components and applications.
17

CHAPTER 1 | Introduction to Orbix
COMet OrbixCOMet provides a high performance dynamic bridge that enables
transparent communication between COM/Automation clients and CORBA
servers.

OrbixCOMet is designed to give COM programmers—who use tools such as
Visual C++, Visual Basic, PowerBuilder, Delphi, or Active Server Pages on the
Windows desktop—easy access to CORBA applications running on Windows,
UNIX, or OS/390 environments. COM programmers can use the tools familiar
to them to build heterogeneous systems that use both COM and CORBA
components within a COM environment.

Persistent state service Orbix includes the first implementation of the persistent state service (PSS). PSS
interposes a CORBA-based abstraction layer between a server and its persistent
storage. Orbix’s implementation of PSS is based on Berkeley DB, an efficient
embedded database that is included with Orbix. By adding new PSS driver
plug-ins, applications that use PSS can be reconfigured to store their data in any
database without code changes or recompilation.

Dynamic type support: interface
repository and dynany

Orbix has full support for handling data values that are not known at compile
time. The interface repository stores information about all CORBA types known
to the system and can be queried at runtime. Clients can construct requests based
on runtime type information using the dynamic invocation interface (DII), and
servers can implement “universal” objects that can implement any interface at
run time with the dynamic skeleton interface (DSI).

Although all of these features have been available since early releases of the
CORBA specification, they are incomplete without the addition of the DynAny
interface. This interface allows clients and servers to interpret or construct
values based purely on runtime information, without any compiled-in data types.

These features are ideal for building generic object browsers, type repositories,
or protocol gateways that map CORBA requests into another object protocol.
 18

CHAPTER 2

Getting Started
with Orbix
You can use the CORBA Code Generation Toolkit to develop an
Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the client
and server application code, including makefiles. You then complete the
distributed application by filling in the missing business logic.

In this chapter This chapter contains the following sections:

Creating a Configuration Domain page 20

Setting the Orbix Environment page 29

Hello World Example page 30

Development Using the Client/Server Wizard page 32

Development from the Command Line page 43
19

CHAPTER 2 | Getting Started with Orbix
Creating a Configuration Domain

Overview This section describes how to create a simple configuration domain, simple,
which is required for running basic demonstrations. This domain deploys a
minimal set of Orbix services.

Prerequisites Before creating a configuration domain, the following prerequisites must be
satisfied:

• Orbix is installed.

• Some basic system variables are set up (in particular, the IT_PRODUCT_DIR,

IT_LICENSE_FILE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing The location of the license file, licenses.txt, is specified by the
IT_LICENSE_FILE system variable. If this system variable is not already set in
your environment, you can set it now.

Steps To create a configuration domain, simple, perform the following steps:

1. Run itconfigure.

2. Choose the domain type.

3. Specify service startup options.

4. Specify security settings.

5. Specify fault tolerance settings.

6. Select services.

7. Confirm choices.

8. Finish configuration.
 20

Creating a Configuration Domain
Run itconfigure To begin creating a new configuration domain, enter itconfigure at a
command prompt. An Orbix Configuration Welcome dialog box appears, as
shown in Figure 5.

Select Create a new domain and click OK.

Figure 5: The Orbix Configuration Welcome Dialog Box
21

CHAPTER 2 | Getting Started with Orbix
Choose the domain type A Domain Type window appears, as shown in Figure 6.

In the Configuration Domain Name text field, type simple. Under
Configuration Domain Type, click the Select Services radiobutton.

Click Next> to continue.

Figure 6: The Domain Type Window
 22

Creating a Configuration Domain
Specify service startup options A Service Startup window appears, as shown in Figure 7.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

Figure 7: The Service Startup Window
23

CHAPTER 2 | Getting Started with Orbix
Specify security settings A Security window appears, as shown in Figure 8.

You can leave the settings in this Window at their defaults (no security).

Click Next> to continue.

Figure 8: The Security Window
 24

Creating a Configuration Domain
Specify fault tolerance settings A Fault Tolerance window appears, as shown in Figure 9.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

Figure 9: The Fault Tolerance Window
25

CHAPTER 2 | Getting Started with Orbix
Select services A Select Services window appears, as shown in Figure 10.

In the Select Services window, select the following services and components for
inclusion in the configuration domain: Location, Node daemon, Management,
CORBA Interface Repository, CORBA Naming, and demos.

Click Next> to continue.

Figure 10: The Select Services Window
 26

Creating a Configuration Domain
Confirm choices You now have the opportunity to review the configuration settings in the
Confirm Choices window, Figure 11. If necessary, you can use the <Back
button to make corrections.

Click Next> to create the configuration domain and progress to the next
window.

Figure 11: The Confirm Choices Window
27

CHAPTER 2 | Getting Started with Orbix
Finish configuration The itconfigure utility now creates and deploys the simple configuration
domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and
OrbixInstallDir/var directories.

If the configuration domain is created successfully, you should see a Summary
window with a message similar to that shown in Figure 12.

Click Finish to quit the itconfigure utility.

Figure 12: Configuration Summary
 28

Setting the Orbix Environment
Setting the Orbix Environment

Prerequisites Before proceeding with the demonstration in this chapter you need to ensure:

• The CORBA developer’s kit is installed on your host.

• Orbix is configured to run on your host platform.

• Your configuration domain is set (see).

The Administrator’s Guide contains more information on Orbix configuration,
and details of Orbix command line utilities.

Setting the domain The scripts that set the Orbix environment are associated with a particular
domain, which is the basic unit of Orbix configuration. See the Installation
Guide, and the Administrator’s Guide for further details on configuring your
environment.

To set the Orbix environment associated with the domain-name domain, enter:

Windows

UNIX

config-dir is the root directory where the Appliation Server Platform stores its
configuration information. You specify this directory while configuring your
domain. domain-name is the name of a configuration domain.

Note: OS/390, both native and UNIX system services, do not support the
code generation toolkit and distributed genies. For information about building
applications in a native OS/390 environment, see the readme files and JCL that
are supplied in the DEMO data sets of your iPortal OS/390 Server product
installation.

> config-dir\etc\bin\domain-name_env.bat

% . config-dir/etc/bin/domain-name_env
29

CHAPTER 2 | Getting Started with Orbix
Hello World Example
This chapter shows how to create, build, and run a complete client/server
demonstration with the help of the CORBA code generation toolkit. The
architecture of this example system is shown in Figure 13.

The client and server applications communicate with each other using the
Internet Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a client
invokes a remote operation, a request message is sent from the client to the
server. When the operation returns, a reply message containing its return values
is sent back to the client. This completes a single remote CORBA invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

The IDL declares a single Hello interface, which exposes a single operation
getGreeting(). This declaration provides a language neutral interface to
CORBA objects of type Hello.

The concrete implementation of the Hello CORBA object is written in C++ and
is provided by the server application. The server could create multiple instances
of Hello objects if required. However, the generated code generates only one
Hello object.

Figure 13: Client makes a single operation call on a server

Client Machine

Client Application

IDL Interface

Server Application

Server Machine

ORB ORB

Code Code

Operation Call

Result

CORBA
Object

//IDL
interface Hello {
 string getGreeting();
};
 30

Hello World Example
The client application has to locate the Hello object—it does this by reading a
stringified object reference from the file Hello.ref. There is one operation
getGreeting() defined on the Hello interface. The client invokes this operation
and exits.
31

CHAPTER 2 | Getting Started with Orbix
Development Using the Client/Server Wizard

Overview On the Windows NT platform, Orbix provides a wizard add-on to the Microsoft
Visual Studio integrated development environment (IDE) that enables you to
generate starting point code for CORBA applications.

If you are not working on a Windows platform or if you prefer to use a command
line approach to development, see “Development from the Command Line” on
page 43.

Installing the client/server wizard You can install the Orbix v6.3 Client/Server wizard into the Microsoft Visual
C++ 6.0 development environment either automatically or manually.

Automatic Install

To install the client/server wizard automatically, use Windows Explorer to
navigate to the following directory:

OrbixInstallDir\asp\6.3\etc\wizard

Double-click setup.exe in this directory to install the wizard files.

Manual Install

To install the client/server wizard manually, copy the following files from the
OrbixInstallDir\asp\6.3\etc\wizard directory:

it_artwiz5_vc60.awx
it_artwiz5_vc60.hlp

Paste these files into the VisualStudioInstallDir\Common\MSDev98\Template
directory. The value of VisualStudioInstallDir is usually C:\Program
Files\Microsoft Visual Studio.
 32

Development Using the Client/Server Wizard
Prerequisites You must ensure that the Orbix include and library directories are added to the
Microsoft Visual Studio configuration. Start up the Microsoft Visual C++ 6.0
IDE, select Tools|Options... from the menu bar, and click on the Directories
tab. Use this dialog box to add the following Orbix directories to the Visual
Studio configuration:

Orbix Include Directory

OrbixInstall\asp\6.3\include

Orbix Library Directory

OrbixInstall\asp\6.3\lib

Steps to implement Hello World You implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate the server.

3. Complete the server program by implementing the single IDL

getGreeting() operation.

4. Build the server program.

5. Generate the client.

6. Complete the client program by inserting a line of code to invoke the

getGreeting() operation.

7. Build the client program.

8. Run the demonstration.

Define the IDL interface Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

Create an IDL file C:\OCGT\HelloExample\hello.idl using a text editor.

Enter the following text into the hello.idl file:

> mkdir C:\OCGT\HelloExample

//IDL
interface Hello {
 string getGreeting();
};
33

CHAPTER 2 | Getting Started with Orbix
This interface mediates the interaction between the client and the server halves
of the distributed application.

Generate the server Generate files for the server application using the CORBA Code Generation
Toolkit.

To create a server project using the IONA Orbix client/server wizard:

1. Open the Microsoft Visual C++ 6.0 integrated development

environment (IDE).

2. From the Visual C++ menus, select File|New

3. In the New dialog, click on the Projects tab.

4. In the Projects tab, perform these actions:

♦ Select IONA Orbix v6.3 Client/Server Wizard

♦ In the Project name text box, enter server

♦ Under the Location text box, enter C:\OCGT\HelloExample\server

5. Click OK.

The client/server wizard dialog displays.
 34

Development Using the Client/Server Wizard
6. Answer two questions as follows:

♦ What CORBA IDL file would you like to use for this project?

Enter the location of hello.idl.

♦ Would you like to generate a working client or server?

Select Server

7. Advance to the next screen by clicking Next.
35

CHAPTER 2 | Getting Started with Orbix
8. The server wizard displays the following dialog:

9. Accept the default settings and click Finish to generate the server.

10. The New Project Information scrollbox tells you about the generated files.

Browse the information and select OK.

11. The server workspace is generated with the following source files:

12. Read the text file ReadmeOrbixServer.txt.
 36

Development Using the Client/Server Wizard
Complete the server program Complete the implementation class, HelloImpl by providing the definition of
getGreeting(). This method implements the IDL operation
Hello::getGreeting().

Delete the generated boilerplate code that occupies the body of
HelloImpl::getGreeting() and replace it with the highlighted line of code:

The function CORBA::string_dup() allocates a copy of the string on the free
store. This is needed to be consistent with the style of memory management used
in CORBA programming.

Build the server program From within the Visual C++ IDE select Build|Build server.exe to compile and
link the server.

By default, the project builds with debug settings and the server executable is
stored in C:\OCGT\HelloExample\server\Debug\server.exe.

Close the server workspace by selecting File|Close Workspace

Generate the client Generate files for the client application using the Orbix code generation toolkit.

To create a client project using the IONA Orbix client/server wizard:

1. Open the Microsoft Visual C++ 6.0 IDE.

2. From the Visual C++ menus, select File|New

3. In the New dialog, click on the Projects tab.

//C++
...
char*
HelloImpl::getGreeting()
{
 char* _result;

 _result = CORBA::string_dup("Hello World!");

 return _result;
}
...
37

CHAPTER 2 | Getting Started with Orbix
4. In the Projects tab, perform the following actions:

♦ Select IONA Orbix v6.3 Client/Server Wizard

♦ In the Project name text box, enter client

♦ Under the Location text box, enter C:\OCGT\HelloExample\client

5. Click OK.

6. The client/server wizard displays.
 38

Development Using the Client/Server Wizard
7. Answer two questions as follows:

♦ What CORBA IDL file would you like to use for this project?

Enter the location of hello.idl

♦ Would you like to generate a working client or server?

Select Client

8. To generate the client project, click Finish

9. The New Project Information scrollbox tells you about the generated files.

Browse the information and select OK

10. The client workspace is generated with the following source files:

11. Read the text file ReadmeOrbixClient.txt
39

CHAPTER 2 | Getting Started with Orbix
Complete the client program Complete the implementation of the client main() function in the client.cxx
file. You must add a couple of lines of code to make a remote invocation of the
operation getGreeting() on the Hello object.

Search for the line where the call_Hello_getGreeting() function is called.
Delete this line and replace it with the two lines of code highlighted in bold font
below:

The object reference Hello1 refers to an instance of a Hello object in the server
application. It is already initialized for you.

A remote invocation is made by invoking getGreeting() on the Hello1 object
reference. The ORB automatically establishes a network connection and sends
packets across the network to invoke the HelloImpl::getGreeting() function
in the server application.

The returned string is put into a C++ object, strV, of the type
CORBA::String_var. The destructor of this object will delete the returned string
so that there is no memory leak in the above code.

Build the client program From within the Visual C++ IDE select Build|Build client.exe to compile and
link the client.

By default, the project will build with debug settings and the client executable
will be stored in C:\OCGT\HelloExample\client\Debug\client.exe.

Close the client workspace by selecting File|Close Workspace.

//C++
//File: ‘client.cxx’
...
 if (CORBA::is_nil(Hello1))
 {
 cerr << "Could not narrow reference to interface "
 << "Hello" << endl;
 }
 else
 {
 CORBA::String_var strV = Hello1->getGreeting();
 cout << "Greeting is: " << strV << endl;
 }
...
 40

Development Using the Client/Server Wizard
Run the demonstration Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services

need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based

configuration, start up the basic Orbix services.

Where domain-name is the name of your configuration domain.

2. Set the Application Server Platform’s environment.

3. Run the server program.

A new window opens and the server outputs the following lines:

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to the

file C:\temp\Hello.ref.

♦ The server opens an IP port and begins listening on the port for

connection attempts by CORBA clients.

4. Run the client program.

> start_domain-name_services.bat

> domain-name_env.bat

> cd C:\OCGT\HelloExample\server\Debug
> start server.exe

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...

> cd C:\OCGT\HelloExample\client\Debug
> client.exe
41

CHAPTER 2 | Getting Started with Orbix
The client outputs the following lines to the screen:

The client performs the following steps when it is run:

♦ It reads the stringified object reference for the Hello object from the

C:\temp\Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking on

the object reference. This causes a connection to be established with

the server and the remote invocation to be performed.

5. When you are finished, terminate all processes.

♦ The server can be shut down by typing Ctrl-C in the window where

it is running.

6. Stop the Orbix services (if they are running).

From a DOS prompt enter:

Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

> stop_domain-name_services
 42

Development from the Command Line
Development from the Command Line
Starting point code for CORBA client and server applications can also be
generated using the idlgen command line utility, which offers equivalent
functionality to the client/server wizard presented in the previous section.

The idlgen utility can be used on Windows and UNIX platforms.

You implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate starting point code.

3. Complete the server program by implementing the single IDL

getGreeting() operation.

4. Complete the client program by inserting a line of code to invoke the

getGreeting() operation.

5. Build the demonstration.

6. Run the demonstration.

Define the IDL interface Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

Windows

UNIX

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.

Enter the following text into the file hello.idl:

> mkdir C:\OCGT\HelloExample

% mkdir -p OCGT/HelloExample

//IDL
interface Hello {
 string getGreeting();
};
43

CHAPTER 2 | Getting Started with Orbix
This interface mediates the interaction between the client and the server halves
of the distributed application.

Generate starting point code Generate files for the server and client application using the CORBA Code
Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample
(UNIX) enter the following command:

This command logs the following output to the screen while it is generating the
files:

You can edit the following files to customize client and server applications:

Client:

client.cxx

Server:

server.cxx
HelloImpl.h
HelloImpl.cxx

Complete the server program Complete the implementation class, HelloImpl, by providing the definition of
the HelloImpl::getGreeting() function . ThisC++ function provides the
concrete realization of the Hello::getGreeting() IDL operation.

idlgen cpp_poa_genie.tcl -all hello.idl

hello.idl:
cpp_poa_genie.tcl: creating it_servant_base_overrides.h
cpp_poa_genie.tcl: creating it_servant_base_overrides.cxx
cpp_poa_genie.tcl: creating HelloImpl.h
cpp_poa_genie.tcl: creating HelloImpl.cxx
cpp_poa_genie.tcl: creating server.cxx
cpp_poa_genie.tcl: creating client.cxx
cpp_poa_genie.tcl: creating call_funcs.h
cpp_poa_genie.tcl: creating call_funcs.cxx
cpp_poa_genie.tcl: creating it_print_funcs.h
cpp_poa_genie.tcl: creating it_print_funcs.cxx
cpp_poa_genie.tcl: creating it_random_funcs.h
cpp_poa_genie.tcl: creating it_random_funcs.cxx
cpp_poa_genie.tcl: creating Makefile
 44

Development from the Command Line
Edit the HelloImpl.cxx file, and delete most of the generated boilerplate code
occupying the body of the HelloImpl::getGreeting() function. Replace it
with the line of code highlighted in bold font below:

The function CORBA::string_dup() allocates a copy of the "Hello World!"
string on the free store. It would be an error to return a string literal directly from
the CORBA operation because the ORB automatically deletes the return value
after the function has completed. It would also be an error to create a copy of the
string using the C++ new operator.

Complete the client program Complete the implementation of the client main() function in the client.cxx
file. You must add a couple of lines of code to make a remote invocation of the
getGreeting() operation on the Hello object.

//C++
//File ’HelloImpl.cxx’
...
char *
HelloImpl::getGreeting() throw(
 CORBA::SystemException
)
{
 char * _result;

 _result = CORBA::string_dup("Hello World!");

 return _result;
}
...
45

CHAPTER 2 | Getting Started with Orbix
Edit the client.cxx file and search for the line where the
call_Hello_getGreeting() function is called. Delete this line and replace it
with the two lines of code highlighted in bold font below:

The object reference Hello1 refers to an instance of a Hello object in the server
application. It is already initialized for you.

A remote invocation is made by invoking getGreeting() on the Hello1 object
reference. The ORB automatically establishes a network connection and sends
packets across the network to invoke the HelloImpl::getGreeting() function
in the server application.

The returned string is put into a C++ object, strV, of the type
CORBA::String_var. The destructor of this object will delete the returned string
so that there is no memory leak in the above code.

Build the demonstration The Makefile generated by the code generation toolkit has a complete set of
rules for building both the client and server applications.

To build the client and server complete the following steps:

1. Open a command line window.

2. Go to the ../OCGT/HelloExample directory.

3. Enter:

Windows

//C++
//File: ‘client.cxx’
...
 if (CORBA::is_nil(Hello1))
 {
 cerr << "Could not narrow reference to interface "
 << "Hello" << endl;
 }
 else
 {
 CORBA::String_var strV = Hello1->getGreeting();
 cout << "Greeting is: " << strV << endl;
 }
...

> nmake
 46

Development from the Command Line
UNIX

Run the demonstration Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services

need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based

configuration, start up the basic Orbix services.

Open a DOS prompt in Windows, or xterm in UNIX. Enter:

Where domain-name is the name of the configuration domain.

2. Set the Application Server Platform’s environment.

3. Run the server program.

Open a DOS prompt, or xterm window (UNIX). From the

C:\OCGT\HelloExample directory enter the name of the executable file—

server.exe (Windows) or server (UNIX).The server outputs the

following lines to the screen:

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to the

local Hello.ref file.

♦ The server opens an IP port and begins listening on the port for

connection attempts by CORBA clients.

4. Run the client program.

% make -e

start_domain-name_services

> domain-name_env

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...
47

CHAPTER 2 | Getting Started with Orbix
Open a new DOS prompt, or xterm window (UNIX). From the

C:\OCGT\HelloExample directory enter the name of the executable file—

client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:

The client performs the following steps when it is run:

♦ It reads the stringified object reference for the Hello object from the

Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking on

the object reference. This causes a connection to be established with

the server and the remote invocation to be performed.

5. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is running.

6. Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:

The passing of the object reference from the server to the client in this way is
suitable only for simple demonstrations. Realistic server applications use the
CORBA naming service to export their object references instead.

Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

stop_domain-name_services
 48

CHAPTER 3

First Application
This chapter uses a simple application to describe the basic
programming steps required to define CORBA objects, write server
programs that implement those objects, and write client programs
that access them. The programming steps are the same whether the
client and server run on a single host or are distributed across a
network.

In this chapter This chapter covers the following topics:

Development Using Code Generation page 50

Development Without Using Code Generation page 53

Locating CORBA Objects page 55

Development Steps page 57

Enhancing Server Functionality page 81

Complete Source Code for server.cxx page 94
49

CHAPTER 3 | First Application
Development Using Code Generation

Overview With the code generation toolkit, you can automatically generate a large amount
of the code required for the client and server programs:
 50

Development Using Code Generation
First, you define a set of interfaces written in the OMG interface definition
language (IDL). The IDL forms the basis of development for both the client and
the server. The toolkit takes the IDL file as input and, based on the declarations
in the IDL file, generates a complete, working Orbix application. You can then
modify the generated code to add business logic to the application.

Client development Client development consists of the following steps:

1. An IDL compiler takes the IDL file as input and generates client stub code.

2. The code generation toolkit takes the IDL file as input and generates a

complete client application.

The generated client is a dummy implementation that invokes every

operation on each interface in the IDL file exactly once. The dummy client

is a working application that can be built and run right away.

3. You can modify the dummy client to complete the application.

You do not have to write boilerplate CORBA code.

4. You build the application.

A makefile is generated by the code generation toolkit.

Server development Server development consists of the following steps:

1. An IDL compiler takes the IDL file as input and generates server skeleton

code.

2. The code generation toolkit takes the IDL file as input and generates a

complete server application.

Dummy implementation classes are generated for each interface appearing

in the IDL file. The dummy server is a working application that can be

built and run right away.

3. You can modify the dummy server to complete the application logic.

You do not have to write boilerplate CORBA code.

The implementations of IDL interfaces can be modified by adding business

logic to the class definitions.

WARNING:OS/390, both native and UNIX system services, do not support
the code generation toolkit and distributed genies. You must develop Orbix
applications without the code generation toolkit (see page 53).
51

CHAPTER 3 | First Application
4. You build the application.

A makefile is generated by the code generation toolkit.
 52

Development Without Using Code Generation
Development Without Using Code Generation

Overview The following section outlines the steps for developing clients and servers
without using the code generation toolkit (see page 50):.

First, you define a set of interfaces written in the OMG interface definition
language (IDL). The IDL file forms the basis of development for both the client
and the server.
53

CHAPTER 3 | First Application
Client development Client development consists of the following steps:

1. An IDL compiler takes the IDL file as input and generates client stub code.

The client stub code is a set of files that enable clients to make remote

invocations on the interfaces defined in the IDL file.

2. You write the rest of the client application from scratch.

3. You build the application.

Typically, you write a customized makefile to build the client program.

Server development Server development consists of the following steps:

1. An IDL compiler takes the IDL file as input and generates server skeleton

code.

The server skeleton code is a set of files that enables the server to service

requests on the interfaces in the IDL file.

2. You write the rest of the server application from scratch.

You must write an implementation class for each interface appearing in the

IDL file.

3. You build the application.

You typically write a customized makefile to build the server program.
 54

Locating CORBA Objects
Locating CORBA Objects

Overview Before developing an Orbix application, you must choose a strategy for locating
CORBA objects.

To find a CORBA object, a client needs to know both the identity of the object
and the location of the server process that provides a home for that object. In
general, CORBA encapsulates both the identity and location of a CORBA object
inside an entity known as an object reference.

In this chapter, a simple strategy is adopted to pass the object reference from the
server to the client. The strategy, illustrated in Figure 14, has three steps:

1 The server converts the object reference into a string (stringified object
reference) and writes this stringified object reference to a file.

2 The client reads the stringified object reference from the file and converts it to a
real object reference.
55

CHAPTER 3 | First Application
3 The client can now make remote invocations by invoking on the object
reference.

This approach is convenient for simple demonstrations but is not recommended
for use in realistic applications. The CORBA naming service, described in
Chapter 18 on page 487, provides a more sophisticated and scalable approach to
distributing object references.

Figure 14: Simple strategy for passing object references to clients
 56

Development Steps
Development Steps

Overview You typically develop an Orbix application in the following steps:

1. Define IDL interfaces: Identify the objects required by the application and

define their public interfaces in IDL.

2. Generate starting point code: Use the code generation toolkit to generate

starting point code for the application. You can then edit the generated files

to add business logic.

3. Compile the IDL definitions: The compiler generates the C++ header and

source files that you need to implement client and server programs.

4. Develop the server program: The server acts as a container for a variety of

CORBA objects, each of which supports one IDL interface. You must add

code to provide the business logic for each type of CORBA object.

The server makes its CORBA objects available to clients by exporting

object references to a well-known location.

5. Develop the client program: The client uses the IDL compiler-generated

mappings to invoke operations on the object references that it obtains from

the server.

6. Build the application.

7. Run the application.
57

CHAPTER 3 | First Application
Define IDL interfaces

Overview Begin developing an Orbix enterprise application by defining the IDL interfaces
to the application’s objects. These interfaces implement CORBA distributed
objects on a server application. They also define how clients access objects
regardless of the object’s location on the network.

An interface definition contains operations and attributes:

• Operations correspond to methods that clients can call on an object.

• Attributes give you access to a single data value.

Each attribute corresponds either to a single accessor method (readonly

attribute) or an accessor method and a modifier method (plain attribute).

For example, the IDL code in Example 1 defines an interface for an object that
represents a building. This building object could be the beginning of a facilities
management application such as a warehouse allocation system.

The IDL contains these components:

1. The address attribute is preceded by the IDL keyword readonly, so

clients can read but can not set its value.

Example 1: IDL for the Building Interface

//IDL
//File: ’building.idl’
interface Building {

1 readonly attribute string address;

2 boolean available(in long date);
 boolean reserveDate(in long date, out long confirmation);
};
 58

Development Steps
2. The Building interface contains two operations: available() and

reserveDate(). Operation parameters can be labeled in, out, or inout:

♦ in parameters are passed from the client to the object.

♦ out parameters are passed from the object to the client.

♦ inout parameters are passed in both directions.

available() lets a client test whether the building is available on a given

date. This operation returns a boolean (true/false) value.

reserveDate() takes the date as input, returns a confirmation number as

an out parameter, and has a boolean (true/false) return value.

All attributes and operations in an IDL interface are implicitly public. IDL
interfaces have no concept of private or protected members.
59

CHAPTER 3 | First Application
Generate starting point code

Overview It’s recommended that you start developing a CORBA application by using the
code generation toolkit to generate starting point code. The toolkit contains two
key components:

The idlgen interpreter is an executable file that processes IDL files based on
the instructions contained in predefined code generation scripts.

A set of genies (code generation scripts) are supplied with the toolkit. Most
important of these is the cpp_poa_genie.tcl genie that is used to generate
starting point code for a C++ application.

Taking the building.idl IDL file as input, the cpp_poa_genie.tcl genie can
produce complete source code for a distributed application that includes a client
and a server program.

To generate starting point code, execute the following command:

idlgen cpp_poa_genie.tcl -all building.idl

This command generates all of the files you need for this application. The -all
flag selects a default set of genie options that are appropriate for simple
demonstration applications.

The main client file generated by the cpp_poa_genie.tcl genie is:

The main server files generated by the cpp_poa_genie.tcl genie are:

client.cxx Implementation of the client.

server.cxx Server main() containing the server
initialization code.

BuildingImpl.h Header file that declares the BuildingImpl
servant class.

BuildingImpl.cxx Implementation of the BuildingImpl servant
class.

it_servant_base_overrides.h Header file that declares a base class for all
servant classes. See page 314.

it_servant_base_overrides.cx
x

Implementation of the base class for all
servant classes. See page 314.
 60

Development Steps
A makefile is generated for building the application:

The following files are also generated and support a dummy implementation of
the client and server programs:

call_funcs.h
call_funcs.cxx
it_print_funcs.h
it_print_funcs.cxx
it_random_funcs.h
it_random_funcs.cxx

Dummy implementation of client
and server programs

The generated starting point code provides a complete dummy implementation
of the client and the server programs. The dummy implementation provides:

• A server program that implements every IDL interface.

Every IDL operation is implemented with default code that prints the in

and inout parameters to the screen when it is invoked. Return values,

inout and out parameters are populated with randomly generated values.

At random intervals a CORBA user exception might be thrown instead.

• A client program that calls every operation on every IDL interface once.

The dummy client and server programs can be built and run as they are.

Modifying dummy client and
server programs

Later steps describe in detail how to modify the generated code to implement the
business logic of the Building application.

In the code listings that follow, modifications are indicated as follows:

• Additions to the generated code are highlighted in bold font. You can

manually add this code to the generated files using a text editor.

• In some cases the highlighted additions replace existing generated code,

requiring you to manually delete the old code.

Makefile The generated makefile defines rules to build
both the client and the server.
61

CHAPTER 3 | First Application
Compile the IDL definitions

Overview This step is optional if you use the code generation toolkit to develop an
application. The Makefile generated by the toolkit has a rule to run the IDL
compiler automatically.

After defining your IDL, compile it using the CORBA IDL compiler. The IDL
compiler checks the validity of the specification and generates code in C++ that
you use to write the client and server programs.

Compile the Building interface by running the IDL compiler as follows:

idl -base -poa building.idl

The -base option generates client stub and header code in C++. The -poa option
generates server-side code for the portable object adapter (POA).

Run the IDL compiler with the -flags option to get a complete description of
the supported options.

Output from IDL compilation The IDL compiler produces several C++ files when it compiles the
building.idl file. These files contain C++ definitions that correspond to your
IDL definitions. You should never modify this code.

The generated files can be divided into two categories:

• Client stub code is compiled and linked with client programs, so they can

make remote invocations on Building CORBA objects.

• Server skeleton code is compiled and linked with server programs, so they

can service invocations on Building CORBA objects.

Client stub code

The stub code is used by clients and consists of the following files:

building.hh A header file containing definitions that
correspond to the various IDL type definitions.
Client source code must include this file using a
#include preprocessor directive.

buildingC.cxx A file containing code that enables remote access
to Building objects. This file must be compiled
and linked with the client executable.
 62

Development Steps
Any clients that want to invoke on CORBA objects that support the Building
interface must include the header file building.hh and link with the stub code
buildingC.cxx.

Server skeleton code

The skeleton code is used by servers and consists of the following files:

The skeleton code is a superset of the stub code. The additional files contain
code that allows you to implement servants for the Building interface.

Server files include the buildingS.hh header file, which recursively includes
the file building.hh. The server must be linked with both buildingC.cxx and
buildingS.cxx.

IDL to C++ mapping The IDL compiler translates IDL into stub and skeleton code for a given
language—in this case, C++. As long as the client and server programs comply
with the definitions in the generated header files, building.hh and
buildingS.hh, the runtime ORB enables type-safe interaction between the
client and the server.

buildingS.hh A header file containing type definitions for
implementing servant classes. Server source
code must include this file using a #include
preprocessor directive.

buildingS.cxx A file containing skeleton code that enables
servers to accept calls to Building objects.
This file must be compiled and linked with the
server executable.

building.hh A header file common to client stub code and
server skeleton code. This file is included by
buildingS.hh, so server files do not need to
explicitly include it.

buildingC.cxx Source file common to client stub code and
server skeleton code. This file must be
compiled and linked with the server
executable.
63

CHAPTER 3 | First Application
Both the client and the server source files include the generated header file
building.hh, which contains the C++ mappings for the Building interface (see
“Define IDL interfaces” on page 58):

The code can be explained as follows:

1. The Building class defines proxy objects for the Building interface. This

class includes member methods that correspond to the attributes and

operations of the IDL interface. When a client program calls methods on an

object of type Building, Orbix forwards the method calls to a server object

that supports the Building interface.

2. The C++ pure virtual member method address() maps to the readonly

IDL string attribute address. Clients call this method to get the attribute’s

current value, which returns the C++ type char*.

3. The pure virtual C++ member method available() maps to the IDL

operation of the same name. It returns type CORBA::Boolean, which maps

to the equivalent IDL type boolean. Its single parameter is of

CORBA::Long type, which is a typedef of a basic C++ integer type. This

maps to the operation parameter of IDL type long.

4. The operation reserveDate() has one input parameter, date, and one

output parameter, confirmation, both of IDL type long. The return type is

CORBA::Boolean. Input parameters (specified as IDL in parameters) are

passed by value in C++.

Output parameters are passed by reference. Every CORBA data type has a

corresponding _out type that is used to declare output parameters. For

Example 2: C++ Stub Code for the Building Interface

1 class Building : public virtual CORBA::Object
{
 public:
 ...

2 virtual char* address() = 0;
 ...

3 virtual CORBA::Boolean available(CORBA::Long date) = 0;
4 virtual CORBA::Boolean reserveDate(

 CORBA::Long date,
 CORBA::Long_out confirmation
) = 0;
 ...
};
 64

Development Steps
basic types, such as short and long, the _out type is a typedef of a

reference to the corresponding C++ type. For example, the

CORBA::Long_out type is defined in the CORBA namespace as:

typedef CORBA::Long& CORBA::Long_out;

Other helper data types and methods generated in this file are described when
they are used in this chapter.
65

CHAPTER 3 | First Application
Develop the server program
The main programming task on the server side is the implementation of servant
classes. In this demonstration there is one interface, Building, and one
corresponding servant class, BuildingImpl.

For each servant class, perform these tasks:

• Declare the servant class: The code generation toolkit generates an outline

servant header file for every interface. The BuildingImpl servant class is

declared in the header file BuildingImpl.h.

• Define the servant class: The code generation toolkit generates a dummy

definition of every servant class. The BuildingImpl servant class is

defined in the file BuildingImpl.cxx.

The other programming task on the server side is the implementation of the
server main(). For this simple demonstration, the generated server main() does
not require any modification. It is discussed in detail in “Enhancing Server
Functionality” on page 81.

Declare the servant class The code generation toolkit generates a header file, BuildingImpl.h, that
declares the BuildingImpl servant class. You can use this starting point code to
implement the Building interface.

Note: The name of the BuildingImpl servant class is not significant but
simply conforms to a naming convention that helps distinguish servant code
from other application code.

You can modify the generated code in BuildingImpl.h to add member
variables needed for the implementation. The code shown here provides a simple
implementation of BuildingImpl.

Manual additions to the generated code are shown in bold font.

Example 3: C++ BuildingImpl Servant Class Header

// File: ’BuildingImpl.h’
...

1 #include "buildingS.hh"
#include "it_servant_base_overrides.h"
 66

Development Steps
2 class BuildingImpl :
 public virtual IT_ServantBaseOverrides,
 public virtual POA_Building
{
public:
 BuildingImpl(PortableServer::POA_ptr);
 virtual ~BuildingImpl();

 // _create() -- create a new servant.
 static POA_Building* _create(PortableServer::POA_ptr);

 // IDL operations
 //

3 virtual CORBA::Boolean available(
 CORBA::Long date
) IT_THROW_DECL((CORBA::SystemException));

 virtual CORBA::Boolean reserveDate(
 CORBA::Long date,
 CORBA::Long_out confirmation
) IT_THROW_DECL((CORBA::SystemException));

 // IDL attributes
 //

4 virtual char* address()
 IT_THROW_DECL((CORBA::SystemException));

private:
5 //-----------------------

 // Private Member Variables
 //-----------------------
 CORBA::Long m_confirmation_counter;
 CORBA::Long m_reservation[366];

 // Instance variables for attributes.
6 CORBA::String_var m_address;

 ...
};

Example 3: C++ BuildingImpl Servant Class Header
67

CHAPTER 3 | First Application
This code can be described as follows:

1. Servers include the buildingS.hh skeleton file, which declares the C++

POA_Building class.

The POA_Building class is a class generated by the IDL compiler that

allows you to implement the Building interface using the inheritance

approach. In general, for any interface, InterfaceName, a corresponding

class, POA_InterfaceName, is generated by the IDL compiler.

2. The BuildingImpl servant class inherits from POA_Building and

IT_ServantBaseOverrides.

The POA_Building class is a standard name for the base class generated for

the Building interface. By inheriting from POA_Building, you are

indicating to the ORB that BuildingImpl is the servant class that

implements Building. This approach to associating a servant class with an

interface is called the inheritance approach.

The IT_ServantBaseOverrides class is used to override the definition of

some standard virtual methods. For a discussion of this class, see page 314.

3. A member method declaration is generated for each of the operations in the

Building interface.

Orbix uses the IT_THROW_DECL((exception-list)) macro to insulate

generated code from variations between C++ compilers. The macro maps

to throw(exception-list) for compilers that support exceptions, or to an

empty string, "", for compilers that do not.

4. Member method declarations are generated for each of the attributes in the

Building interface.

Read-only attributes require a single method that returns the current value

of the attribute. Read/write attributes require two methods: one that returns

the current value, and another that takes an input parameter to set the value.

5. The lines of code shown in bold font are added to the generated code to

complete the application. Two additional private member variables are

declared to store the state of a BuildingImpl object.

♦ The m_confirmation_counter index counter is incremented each

time a reservation is confirmed.

♦ The m_reservation array has 366 elements (representing the 365 or

366 days in a year). The elements are equal to zero when unreserved

or a positive integer (the confirmation number) when reserved.
 68

Development Steps
6. The m_address is a CORBA string that stores the address of the building.

The declared type of m_address, CORBA::String_var, is a smart pointer

type that functions as a memory management aid. String pointers declared

as CORBA::String_var are used in a similar way to plain char * pointers,

except that it is never necessary to delete the string explicitly.

Define the servant class The code generation toolkit also generates the BuildingImpl.cxx file, which
contains an outline of the method definitions for the BuildingImpl servant
class. You should edit this file to fill in the bodies of methods that correspond to
the operations and attributes of the Building interface. It is usually necessary to
edit the constructor and destructor of the servant class as well.

Manual additions made to the generated code are shown in bold font. In some
cases, the additions replace existing generated code requiring you to manually
delete the old code.

Note: The code generation toolkit automatically generates a private member
m_address to represent the state of the IDL address attribute. However, this
generated class member is not part of the standard IDL-to-C++ mapping. It is
generated solely for your convenience and you are free to remove this line
from the generated code if you so choose.

Example 4: C++ BuildingImpl Servant Implementation

// File: ’BuildingImpl.cxx’
...
#include "BuildingImpl.h"
// _create() -- create a new servant.
POA_Building*
69

CHAPTER 3 | First Application
1 BuildingImpl::_create(PortableServer::POA_ptr the_poa)
{
 return new BuildingImpl(the_poa);
}

// BuildingImpl constructor
//
// Note: since we use virtual inheritance, we must include an
// initialiser for all the virtual base class constructors that
// require arguments, even those that we inherit indirectly.
//
BuildingImpl::BuildingImpl(
 PortableServer::POA_ptr the_poa
) :
 IT_ServantBaseOverrides(the_poa),

2 m_address("200 West Street, Waltham, MA."),
 m_confirmation_counter(1)
{
 for (int i=0; i<366; i++) { m_reservation[i] = 0; }
}

// ~BuildingImpl destructor.
//

3 BuildingImpl::~BuildingImpl()
{
 // Intentionally empty.
}

// available() -- Implements IDL
// operation "Building::available()".
//
CORBA::Boolean
BuildingImpl::available(
 CORBA::Long date
) IT_THROW_DECL((CORBA::SystemException))
{

Example 4: C++ BuildingImpl Servant Implementation
 70

Development Steps
The code can be explained as follows:

1. _create() is a static member method of BuildingImpl that creates

BuildingImpl instances.

Note that _create() is not a standard part of CORBA. It is generated by

the code generation toolkit for convenience. You are free to call the

constructor directly, or remove the _create() method entirely.

4 if (1<=date && date<=366) {
 return (m_reservation[date-1]==0);
 }

 return 0;
}

// reserveDate() -- Implements IDL
// operation "Building::reserveDate()".
//
CORBA::Boolean
BuildingImpl::reserveDate(
 CORBA::Long date,
 CORBA::Long_out confirmation
) IT_THROW_DECL((CORBA::SystemException))
{

5 confirmation = 0;

 if (1<=date && date<=366) {
 if (m_reservation[date-1]==0) {
 m_reservation[date-1]=m_confirmation_counter;
 confirmation = m_confirmation_counter;
 m_confirmation_counter++;
 return 1;
 }
 }
 return 0;
}

// address() -- Accessor for IDL attribute "Building::address".
//
char *
BuildingImpl::address() IT_THROW_DECL((CORBA::SystemException))
{

6 return CORBA::string_dup(m_address);
}

Example 4: C++ BuildingImpl Servant Implementation
71

CHAPTER 3 | First Application
2. The BuildingImpl constructor is an appropriate place to initialize any

member variables. The three private member variables—m_address,

m_confirmation_counter and m_reservation—are initialized here.

3. The BuildingImpl destructor is an appropriate place to free any member

variables that were allocated on the heap. In this example it is empty.

4. A few lines of code are added here to implement the available()

operation. If an element of the array m_reservation is zero, that means the

date is available. Otherwise the array element holds the confirmation

number (a positive integer).

5. A few lines of code are added here to implement the reserveDate()

operation. Because confirmation is declared as an out parameter in IDL,

it is passed by reference in C++. The value assigned to it is therefore

readable by the code that called reserveDate().

6. CORBA::string_dup() is used to allocate a copy of the string m_address

on the free store.

It would be an error to return the private string pointer directly from the

operation because the ORB automatically deletes the return value after the

operation has completed.

It would also be an error to allocate the string copy using the C++ new

operator.
 72

Development Steps
Develop the client program

Overview The generated code in the client.cxx file takes care of initializing the ORB and
getting a Building object reference. This allows the client programmer to focus
on the business logic of the client application.

You modify the generated client code by implementing the logic of the client
program. Use the Bulding object reference to access an object’s attributes and
invoke its operations.

Client main() The code in the client main() initializes the ORB, reads a Building object
reference from the file Building.ref and hands over control to
run_warehouse_menu(), which is described in the next section. When
run_warehouse_menu() returns, the generated code shuts down the ORB.

Changes or additions to the code are shown in bold font.

Example 5: C++ Client main() Function

//File: ’client.cxx’
...
#include "building.hh"
...
// global_orb -- make ORB global so all code can find it.
//
CORBA::ORB_var

1 global_orb = CORBA::ORB::_nil();

// read_reference() -- read an object reference from file.
//
static CORBA::Object_ptr
73

CHAPTER 3 | First Application
2 read_reference(
 const char* file
)
{
 cout << "Reading stringified object reference from "
 << file << endl;
 ifstream ifs(file);
 CORBA::String_var str;
 ifs >> str;
 if (!ifs) {
 cerr << "Error reading object reference from "
 << file << endl;
 return CORBA::Object::_nil();
 }
 return global_orb->string_to_object(str);
}
...

// main() -- the main client program.
int
main(int argc, char **argv)
{
 int exit_status = 0;
 try
 {
 // For temporary object references.
 CORBA::Object_var tmp_ref;

 // Initialise the ORB.
 //

3 global_orb = CORBA::ORB_init(argc, argv);

 // Exercise the Building interface.
 //

4 tmp_ref = read_reference("Building.ref");
5 Building_var Building1 = Building::_narrow(tmp_ref);

 if (CORBA::is_nil(Building1))
 {
 cerr << "Could not narrow reference to interface "
 << "Building" << endl;
 }
 else
 {

Example 5: C++ Client main() Function
 74

Development Steps
The code can be explained as follows:

1. Declare the variable global_orb in the global scope so that all parts of the

program can easily access the ORB object.

The global_orb is temporarily set equal to the value

CORBA::ORB::_nil(), which represents a blank object reference of type

CORBA::ORB_ptr.

2. Define read_reference() to read an object reference from a file. This

method reads a stringified object reference from a file and converts the

stringified object reference to an object reference using

CORBA::ORB::string_to_object(). The return type of

read_reference() is CORBA::Object_ptr—the base type for object

references.

If there is an error, read_reference() returns CORBA::Object::_nil(),

which represents a blank object reference of type CORBA::Object_ptr.

3. Call CORBA::ORB_init() to get an object reference to the initialized ORB.

6 run_warehouse_menu(Building1);
 }
 }
 catch(CORBA::Exception &ex)
 {
 cerr << "Unexpected CORBA exception: " << ex << endl;
 exit_status = 1;
 }

 // Ensure that the ORB is properly shutdown and cleaned up.
 //
 try
 {

7 global_orb->shutdown(1);
 global_orb->destroy();
 }
 catch (...)
 {
 // Do nothing.
 }
 return exit_status;
}

Example 5: C++ Client main() Function
75

CHAPTER 3 | First Application
A client must associate itself with the ORB in order to get object references

to CORBA services such as the naming service or trader service.

4. Get a reference to a CORBA object by calling read_reference(), passing

the name of a file that contains its stringified object reference.

The tmp_ref variable is of CORBA::Object_var type. This is a smart

pointer type that automatically manages the memory it references.

5. Narrow the CORBA object to a Building object, to yield the Building1

object reference.

The mapping for every interface defines a static member method

_narrow() that lets you narrow an object reference from a base type to a

derived type. It is similar to a C++ dynamic cast operation, but is used

specifically for types related via IDL inheritance.

6. Replace the lines of generated code in the else clause with a single call to

run_warehouse_menu().

run_warehouse_menu() uses the Building1 object reference to make

remote invocations on the server.

7. The ORB must be explicitly shut down before the client exits.

CORBA::ORB::shutdown() stops all server processing, deactivates all POA

managers, destroys all POAs, and causes the run() loop to terminate. The

boolean argument, 1, indicates that shutdown() blocks until shutdown is

complete.

CORBA::ORB::destroy() destroys the ORB object and reclaims all

resources associated with it.

When an object reference enters a client’s address space, Orbix creates a proxy
object that acts as a stand-in for the remote servant object. Orbix forwards
method calls on the proxy object to corresponding servant object methods.

Client business logic You access an object’s attributes and operations by calling the appropriate
Building class methods on the proxy object. The proxy object redirects the C++
calls across the network to the appropriate servant method.

The following code uses the C++ arrow operator (->) on the Building_ptr
object warehouse to access Building class methods.

Additions to the code are shown in bold font.
 76

Development Steps
//File: ’client.cxx’
void
run_warehouse_menu(Building_ptr warehouseP)
{
 CORBA::String_var addressV = warehouseP->address();
 cout << "The warehouse address is:" << endl
 << addressV.in() << endl;

 CORBA::Long date;
 CORBA::Long confirmation;
 char quit = 'n';
 do {
 cout << "Enter day to reserve warehouse (1,2,...): ";
 cin >> date;
 if(warehouseP->available(date)) {
 if (warehouseP->reserveDate(date, confirmation))
 cout << "Confirmation number: "
 << confirmation << endl;
 else
 cout << "Reservation attempt failed!" << endl;
 }
 else {
 cout << "That date is unavailable." << endl;
 }
 cout << "Quit? (y,n)";
 cin >> quit;
 }
 while (quit == 'n');
}

77

CHAPTER 3 | First Application
Build the application
The makefile generated by the code generation toolkit has a complete set of rules
for building both the client and server applications.

To build the client and server, go to the example directory and at a command
line prompt enter:

Windows

> nmake

UNIX

% make -e
 78

Development Steps
Run the application

Prerequisites The prerequisites for running this application are:

• The Orbix deployment environment is installed on the machine where the

demonstration is run.

• Orbix has been correctly configured. See the Application Server Platform

Administrator’s Guide for details.

• Your classpath includes the necessary Orbix JAR files ().

This demonstration assumes that both the client and the server run in the same
directory.

Steps Perform the following steps to run the application:

1 Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services need to
run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new DOS prompt in Windows, or xterm in UNIX. Enter:

start_domain-name_services

where domain-name is the name of the default configuration domain.

2 Run the server program.

Open a new DOS prompt in Windows, or xterm in UNIX. The executable file is
called server.exe (Windows) or server (UNIX).

The server outputs the following lines to the screen:

At this point the server is blocked while executing CORBA::ORB::run().

3 Run the client program.

Initializing the ORB
Writing stringified object reference to Building.ref
Waiting for requests...
79

CHAPTER 3 | First Application
Open a new DOS prompt in Windows, or xterm in UNIX. The executable file is
called client.exe (Windows) or client (UNIX).

4 When you are finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where it is running.

5 Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:

stop_domain-name_services

where domain-name is the name of the default configuration domain.
 80

Enhancing Server Functionality
Enhancing Server Functionality

Overview In this demonstration, the default implementation of main() suffices so there is
no need to edit the server.cxx file.

However, for realistic applications, you need to customize the server main() to
specify what kind of POAs are created. You also need to select which CORBA
objects get activated as the server boots up.

The default server main() contains code to perform these tasks:

1. Create a Termination Handler Object

2. Initialize the ORB

3. Create a POA for transient objects.

4. Create servant objects.

5. Activate CORBA objects—the default server code activates one CORBA

object for each of the interfaces defined in the IDL file.

6. Export object references—an object reference is exported for each of the

activated CORBA objects.

7. Activate the POA manager—so it can process requests on the CORBA

objects it manages.

8. Shut down the ORB—shut down the ORB cleanly before exiting. Any

heap-allocated memory should be deleted.

In this demonstration, there is only one interface, Building, and a single
CORBA object of this type is activated.

The following subsections discuss the code in the server.cxx file piece by
piece. For a complete source listing of server.cxx, see page 94.
81

CHAPTER 3 | First Application
Create a Termination Handler Object

Overview Orbix provides its own IT_TerminationHandler class, which handles server
shutdown in a portable manner.

On UNIX, the termination handler handles the following signals:

SIGINT
SIGTERM
SIGQUIT

On Windows, the termination handler is just a wrapper around
SetConsoleCtrlHandler, which handles delivery of the following control
events:

CTRL_C_EVENT
CTRL_BREAK_EVENT
CTRL_SHUTDOWN_EVENT
CTRL_LOGOFF_EVENT
CTRL_CLOSE_EVENT

The main routine can create a termination handler object on the stack. On
POSIX platforms, it is critical to create this object in the main thread before
creation of any other thread, especially before calling ORBinit(), as follows:

You can create only one termination handler object in a program. The server
shutdown mechanism and termination_handler_callback() are discussed in
detail in “Shut down the ORB” on page 92.

int
main(int argc, char** argv)
{
 IT_TerminationHandler
 termination_handler(termination_handler_callback);
 // ...
}

 82

Enhancing Server Functionality
Initialize the ORB
Before a server can make its objects available to the rest of an enterprise
application, it must initialize the ORB:

The code can be explained as follows:

1. The type CORBA::ORB_var is a smart pointer class that can be used to refer

to objects of type CORBA::ORB. Syntactically, a CORBA::ORB_var is similar

to the pointer type CORBA::ORB*. The advantage of using a smart pointer is

that it automatically deletes the memory pointed at as soon as it goes out of

scope. This helps to prevent memory leaks.

The value CORBA::ORB::_nil() is an example of a nil object reference. A

nil object reference is a blank value that can legally be passed as a CORBA

parameter or return value.

2. CORBA::ORB_init() is used to create an instance of an ORB.

Command-line arguments can be passed to the ORB via argc and argv.

ORB_init() searches argv for arguments of the general form -ORBsuffix,

parses these arguments, and removes them from the argument list.

Example 6: C++ Initializing the ORB

...
// global_orb -- make ORB global so all code can find it.
CORBA::ORB_var

1 global_orb = CORBA::ORB::_nil();
...

int
main(int argc, char **argv)
{
 ...
 cout << "Initializing the ORB" << endl;

2 global_orb = CORBA::ORB_init(argc, argv);
 ...
83

CHAPTER 3 | First Application
Create a POA for transient objects
A simple POA object is created using the following lines of code:

The code can be explained as follows:

1. Get a reference to the root POA object by calling

resolve_initial_references("RootPOA") on the ORB.

resolve_initial_references() provides a bootstrap mechanism for

obtaining access to key Orbix objects. It contains a mapping of well-known

names to important objects such as the root POA (RootPOA), the naming

service (NameService), and other objects and services.

2. Narrow the root POA reference, tmp_ref, to the type

PortableServer::POA_ptr using PortableServer::POA::_narrow().

Because tmp_ref is of CORBA::Object type, which is the generic base

class for object references, methods specific to the PortableServer::POA

class are not directly accessible. It is therefore necessary to down-cast the

tmp_ref pointer to the actual type of the object reference using _narrow().

Example 7:

try {
 // For temporary object references.
 CORBA::Object_var tmp_ref;
 ...

1 tmp_ref = global_orb->resolve_initial_references("RootPOA");
2 PortableServer::POA_var root_poa =

 PortableServer::POA::_narrow(tmp_ref);
 assert(!CORBA::is_nil(root_poa));

3 PortableServer::POAManager_var root_poa_manager
 = root_poa->the_POAManager();
 assert(!CORBA::is_nil(root_poa_manager));

4 // Now create our own POA.
 PortableServer::POA_var my_poa =
 create_simple_poa("my_poa", root_poa, root_poa_manager);
 ...
}
...
 84

Enhancing Server Functionality
3. Obtain a reference to the root POA manager object.

A POA manager controls the flow of messages to a set of POAs. CORBA

invocations cannot be processed unless the POA manager is in an active

state (see page 91).

4. Create the my_poa POA as a child of root_poa. The my_poa POA becomes

associated with the root_poa_manager POA manager. This means that the

root_poa_manager object controls the flow of messages into my_poa.

create_simple_poa() The create_simple_poa() function is defined as follows:

A POA is created by invoking PortableServer::POA::create_POA() on an
existing POA object. The POA on which this method is invoked is known as the
parent POA and the newly created POA is known as the child POA.

create_POA() takes the following arguments:

• poa_name is the adapter name. This name is used within the ORB to

identify the POA instance relative to its parent.

PortableServer::POA_ptr
create_simple_poa(
 const char* poa_name,
 PortableServer::POA_ptr parent_poa,
 PortableServer::POAManager_ptr poa_manager
)
{
 // Create a policy list.
 // Policies not set in the list get default values.
 //
 CORBA::PolicyList policies;
 policies.length(1);
 int i = 0;
 // Make the POA single threaded.
 //
 policies[i++] = parent_poa->create_thread_policy(
 PortableServer::SINGLE_THREAD_MODEL
);
 assert(i==1);

 return parent_poa->create_POA(
 poa_name,
 poa_manager,
 policies);
}

85

CHAPTER 3 | First Application
• poa_manager is a reference to a POA manager object with which the newly

created POA becomes associated.

• policies is a list of policies that configure the new POA. For more

information, see “Using POA Policies” on page 300.

The POA instance returned by create_simple_poa() accepts default values for
most of its policies. The resulting POA is suitable for activating transient
CORBA objects. A transient CORBA object is an object that exists only as long
as the server process that created it. When the server is restarted, old transient
objects are no longer accessible.
 86

Enhancing Server Functionality
Create servant objects

Overview A number of servant objects must be created. A servant is an object that does the
work for a CORBA object. For example, the BuildingImpl servant class
contains the code that implements the Building IDL interface.

A single BuildingImpl servant object is created as follows:

In this example, _create() creates an instance of a BuildingImpl servant. The
POA reference my_poa that is passed to _create() must be the same POA that is
used to activate the object in the next section “Activate CORBA objects”.

_create() is not a standard CORBA method. It is a convenient pattern
implemented by the code generation toolkit. You can use the BuildingImpl
constructor instead, if you prefer.

#include <BuildingImpl.h>
...
// Note: PortableServer::Servant is a pointer type - it's
// actually a typedef for PortableServer::ServantBase*.
//
PortableServer::Servant the_Building = 0;
...
the_Building = BuildingImpl::_create(my_poa);
87

CHAPTER 3 | First Application
Activate CORBA objects

Overview A CORBA object must be activated before it can accept client invocations.
Activation is the step that establishes the link between an ORB, which receives
invocations from clients, and a servant object, which processes these
invocations.

In this step, two fundamental entities are created that are closely associated with
a CORBA object:

• An object ID.

This is a CORBA object identifier that is unique with respect to a particular

POA instance. In the case of a persistent CORBA object, the object ID is

often a database key that is used to retrieve the state of the CORBA object

from the database.

• An object reference.

This is a handle on a CORBA object that exposes a set of methods mapped

from the operations of its corresponding IDL interface. It can be stringified

and exported to client programs. Once a client gets hold of an object

reference, the client can use it to make remote invocations on the CORBA

object.

A single Building object is activated using the following code:

The code can be explained as follows:

1. Activate the CORBA object.

A number of things happen when activate_object() is called:

Example 8:

#include <BuildingImpl.h>
...
CORBA::Object_var tmp_ref;
...
PortableServer::ObjectId_var oid;
...

1 oid = my_poa->activate_object(the_Building);
2 tmp_ref = my_poa->id_to_reference(oid);
 88

Enhancing Server Functionality
♦ An unique object ID, oid, is automatically generated by my_poa to

represent the CORBA object’s identity. Automatically generated

object IDs are convenient for use with transient objects.

♦ The CORBA object becomes associated with the POA, my_poa.

♦ The POA records the fact that the the_Building servant provides the

implementation for the CORBA object identified by oid.

2. Use PortableServer::POA::id_to_reference() to generate an object

reference, tmp_ref, from the given object ID.

You can activate a CORBA object in various ways, depending on the policies
used to create the POA. For information about activating objects in the POA, see
“Activating CORBA Objects” on page 262; for information about activating
objects on demand, see Chapter 11 on page 331.
89

CHAPTER 3 | First Application
Export object references

Overview A server must advertise its objects so that clients can find them. In this
demonstration, the Building object reference is exported to clients using
write_reference():

write_reference(tmp_ref,"Building.ref");

This call writes the tmp_ref object reference to the Building.ref file.

write_reference() writes an object reference to a file in stringified form. It is
defined as follows:

The ref object reference is converted to a string, of type char * by passing ref
as an argument to CORBA::ORB::object_to_string() . The string is then
written to the objref_file file.

Note that a smart pointer of CORBA::String_var type is used to reference the
stringified object reference. The smart pointer automatically deletes the string
when it goes out of scope, thereby avoiding a memory leak.

CORBA clients can read the objref_file file to obtain the object reference.

This approach to exporting object references is convenient to use for this simple
demonstration. Realistic applications, however, are more likely to use the
CORBA naming service instead.

void
write_reference(
 CORBA::Object_ptr ref, const char* objref_file
)
{
 CORBA::String_var stringified_ref =
 global_orb->object_to_string(ref);
 cout << "Writing stringified object reference to "
 << objref_file << endl;

 ofstream os(objref_file);
 os << stringified_ref;
 if (!os.good())
 {
 cerr << "Failed to write to " << objref_file << endl;
 }
}

 90

Enhancing Server Functionality
Activate the POA manager

Overview After a server has set up the objects and associations it requires during
initialization, it must tell the ORB to start listening for requests:

The code can be explained as follows:

1. A POA manager acts as a gatekeeper for incoming object requests. The

manager can be in four different states: active, holding, discarding, or

inactive (see Table 13 on page 317). A POA manager can accept object

requests only after it is activated by calling

PortableServer::POAManager::activate().

2. CORBA::ORB::run() puts the ORB into a state where it listens for client

connection attempts and accepts request messages from existing client

connections.

CORBA::ORB::run() is a blocking method that returns only when

CORBA::ORB::shutdown() is invoked.

Example 9:

1 // Activate the POA Manager and let the ORB process requests.
//
root_poa_manager->activate();

2 global_orb->run();
91

CHAPTER 3 | First Application
Shut down the ORB

Overview The shutdown mechanism for the demonstration application uses Orbix’s own
IT_TerminationHandler class, which enables server applications to handle
delivery of CTRL-C and similar events in a portable manner (see page 82 and
“Termination Handler” on page 285).

Before shutdown is initiated, the server is blocked in the execution of
CORBA::ORB::run().

Shutdown is initiated when a Ctrl-C or similar event is sent to the server from
any source. You can shut down the server application as follows:

• On Windows platforms, switch focus to the MS-DOS box where the server

is running and type Ctrl-C.

• On UNIX platforms, switch focus to the xterm window where the server is

running and type Ctrl-C.

• On UNIX, send a signal to a background server process using the kill

system command.

The Orbix termination handler can handle a number of signals or events (see
“Create a Termination Handler Object” on page 82). As soon as the server
receives one of these signals or events, a thread started by Orbix executes the
registered termination handler callback, termination_handler_callback().

The termination handler function is defined as follows:

Example 10:

static void
termination_handler_callback(
 long signal
)
{

1 if (!CORBA::is_nil(orb))
 {

2 global_orb->shutdown(IT_FALSE);
 }
}

 92

Enhancing Server Functionality
The code executes as follows:

1. A check is made to ensure that the global_orb variable is initialized.

2. CORBA::ORB::shutdown() is invoked. It takes a single boolean argument,

the wait_for_completion flag.

When shutdown() is called with its wait_for_completion flag set to

false, a background thread is created to handle shutdown and the call

returns immediately. See “Explicit Event Handling” on page 284.

As soon as termination_handler() returns, the operating system returns to the
prior execution point and the server resumes processing in CORBA::ORB::run().

Server execution now reverts to main():

The code executes as follows:

1. After the termination handler completes shutdown, CORBA::ORB::run()

unblocks and returns.

2. The BuildingImpl servant must be explicitly deleted because it is not

referenced by a smart pointer.

3. CORBA::ORB::destroy() destroys the ORB object.

Example 11:

1 global_orb->run();
// Delete the servants.

2 delete the_Building;

// Destroy the ORB and reclaim resources.
try
{

3 global_orb->destroy();
}
catch (...)
{
 // Do nothing.
}
return exit_status;

Note: The shutdown() function is not called after CORBA::ORB::run()
returns, because shutdown() is already called in the signal handler. It is illegal
to call shutdown() more than once on the same ORB object.
93

CHAPTER 3 | First Application
Complete Source Code for server.cxx
//C++
//--

-
// Edit idlgen config file to get your own copyright notice
// placed here.
//--

-

// Automatically generated server for the following IDL
// interfaces:
// Building
//

#include "it_random_funcs.h"
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <it_ts/termination_handler.h>
#include <omg/PortableServer.hh>
#include "BuildingImpl.h"

// global_orb -- make ORB global so all code can find it.
//
CORBA::ORB_var
global_orb = CORBA::ORB::_nil();
 94

Complete Source Code for server.cxx
// termination handler callback handles Ctrl-C-like
signals/events

// by shutting down the ORB. This causes ORB::run() to return,
// and allows the server to shut down gracefully.

static void
termination_handler_callback(
 long signal
)
{

 cout << "Processing shutdown signal " << signal << endl;
 if (!CORBA::is_nil(orb))
 {
 cout << "ORB shutdown ... " << flush;
 orb->shutdown(IT_FALSE);
 cout << "done." << endl;
 }
}

// write_reference() -- export object reference to file.
// This is a useful way to advertise objects for simple tests and

demos.
// The CORBA naming service is a more scalable way to advertise

references.
//
void
write_reference(
 CORBA::Object_ptr ref,
 const char* objref_file
)
{
 CORBA::String_var stringified_ref =
 global_orb->object_to_string(ref);
 cout << "Writing stringified object reference to "
 << objref_file << endl;

 ofstream os(objref_file);
 os << stringified_ref;
 if (!os.good())
 {
 cerr << "Failed to write to " << objref_file << endl;
 }
}

95

CHAPTER 3 | First Application
// create_simple_poa() -- Create a POA for simple servant
management.

//
PortableServer::POA_ptr
create_simple_poa(
 const char* poa_name,
 PortableServer::POA_ptr parent_poa,
 PortableServer::POAManager_ptr poa_manager
)
{
 // Create a policy list.
 // Policies not set in the list get default values.
 //
 CORBA::PolicyList policies;
 policies.length(1);
 int i = 0;
 // Make the POA single threaded.
 //
 policies[i++] = parent_poa->create_thread_policy(
 PortableServer::SINGLE_THREAD_MODEL
);
 assert(i==1);

 return parent_poa->create_POA(poa_name,
 poa_manager,
 policies);
}

// main() -- set up a POA, create and export object references.
//
int
main(int argc, char **argv)
{
 int exit_status = 0; // Return code from main().

 // Instantiate termination handler
 IT_TerminationHandler
 termination_handler(termination_handler_callback);

 // Variables to hold our servants.
 // Note: PortableServer::Servant is a pointer type - it's
 // actually a typedef for PortableServer::ServantBase*.
 //
 PortableServer::Servant the_Building = 0;
 96

Complete Source Code for server.cxx
 try
 {
 // For temporary object references.
 CORBA::Object_var tmp_ref;

 // Initialise the ORB and Root POA.
 //
 cout << "Initializing the ORB" << endl;
 global_orb = CORBA::ORB_init(argc, argv);
 tmp_ref =
 global_orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(tmp_ref);
 assert(!CORBA::is_nil(root_poa));
 PortableServer::POAManager_var root_poa_manager
 = root_poa->the_POAManager();
 assert(!CORBA::is_nil(root_poa_manager));

 // Now create our own POA.
 //
 PortableServer::POA_var my_poa =
 create_simple_poa("my_poa", root_poa,

root_poa_manager);

 // Create servants and export object references.
 //
 // Note: _create is a useful convenience function
 // created by the genie; it is not a standard CORBA
 // function.
 //
 PortableServer::ObjectId_var oid;

 // Create a servant for interface Building.
 //
 the_Building = BuildingImpl::_create(my_poa);
 oid = my_poa->activate_object(the_Building);
 tmp_ref = my_poa->id_to_reference(oid);
 write_reference(tmp_ref,"Building.ref");
97

CHAPTER 3 | First Application
 // Activate the POA Manager and let the ORB process
 // requests
 //
 root_poa_manager->activate();
 cout << "Waiting for requests..." << endl;
 global_orb->run();
 }
 catch (CORBA::Exception& e)
 {
 cout << "Unexpected CORBA exception: " << e << endl;
 exit_status = 1;
 }

 // Delete the servants
 //
 delete the_Building;

 // Destroy the ORB and reclaim resources.
 //
 try
 {
 global_orb->destroy();
 }
 catch (...)
 {
 // Do nothing.
 }
 return exit_status;
}

 98

CHAPTER 4

Defining Interfaces
The CORBA Interface Definition Language (IDL) is used to
describe interfaces of objects in an enterprise application. An
object’s interface describes that object to potential clients—its
attributes and operations, and their signatures.

An IDL-defined object can be implemented in any language that IDL maps to,
such as C++, Java, and COBOL. By encapsulating object interfaces within a
common language, IDL facilitates interaction between objects regardless of their
actual implementation. Writing object interfaces in IDL is therefore central to
achieving the CORBA goal of interoperability between different languages and
platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, and Smalltalk. Each IDL mapping specifies
how an IDL interface corresponds to a language-specific implementation.
Orbix’s IDL compiler uses these mappings to convert IDL definitions to
language-specific definitions that conform to the semantics of that language.

This chapter describes IDL semantics and uses. For mapping information, refer
to language-specific mappings in the Object Management Group’s latest
CORBA specification.

In this chapter This chapter contains the following sections:

Modules and Name Scoping page 101

Interfaces page 103

Valuetypes page 118
99

CHAPTER 4 | Defining Interfaces
Abstract Interfaces page 119

IDL Data Types page 121

Defining Data Types page 133

Constants page 134

Constant Expressions page 137
 100

Modules and Name Scoping
Modules and Name Scoping
You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.

Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface. To resolve a name, the
IDL compiler conducts its search among the following scopes, in this order:

1. The current interface

2. Base interfaces of the current interface (if any)

3. The scopes that enclose the current interface

In the following example, two interfaces, Bank and Account, are defined within
module BankDemo:

Within the same module, interfaces can reference each other by name alone. If
an interface is referenced from outside its module, its name must be fully scoped
with the following syntax:

module-name::interface-name

For example, the fully scoped names of interfaces Bank and Account are
BankDemo::Bank and BankDemo::Account, respectively.

Nesting restrictions A module cannot be nested inside a module of the same name. Likewise, you
cannot directly nest an interface inside a module of the same name. To avoid
name ambiguity, you can provide an intervening name scope as follows:

module BankDemo
{
interface Bank {
 //...
 };

 interface Account {
 //...
 };
};
101

CHAPTER 4 | Defining Interfaces
module A
{
 module B
 {
 interface A {
 //...
 };
 };
};
 102

Interfaces
Interfaces
Interfaces are the fundamental abstraction mechanism of CORBA. An interface
defines a type of object, including the operations that the object supports in a
distributed enterprise application.

An IDL interface generally describes an object’s behavior through operations
and attributes:

• Operations of an interface give clients access to an object’s behavior.

When a client invokes an operation on an object, it sends a message to that

object. The ORB transparently dispatches the call to the object, whether it

is in the same address space as the client, in another address space on the

same machine, or in an address space on a remote machine.

• An IDL attribute is short-hand for a pair of operations that get and,

optionally, set values in an object.

For example, the Account interface in module BankDemo describes the objects
that implement bank accounts:

This interface declares two readonly attributes, AccountId and balance, which
are defined as typedefs of string and float, respectively. The interface also
defines two operations that a client can invoke on this object, withdraw() and
deposit().

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 typedef string AccountId; // Type for representing account

ids
 //...
 interface Account {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
 };
};
103

CHAPTER 4 | Defining Interfaces
Because an interface does not expose an object’s implementation, all members
are public. A client can access variables in an object’s implementations only
through an interface’s operations or attributes.

While every CORBA object has exactly one interface, the same interface can be
shared by many CORBA objects in a system. CORBA object references specify
CORBA objects—that is, interface instances. Each reference denotes exactly
one object, which provides the only means by which that object can be accessed
for operation invocations.
 104

Interfaces
Interface Contents
An IDL interface can define the following components:

• Operations

• Attributes

• Exceptions

• Types

• Constants

Of these, operations and attributes must be defined within the scope of an
interface; all other components can be defined at a higher scope.
105

CHAPTER 4 | Defining Interfaces
Operations
IDL operations define the signatures of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

• Return value data type

• Parameters and their direction

• Exception clause

A operation’s return value and parameters can use any data types that IDL
supports (see “Abstract Interfaces” on page 119).

For example, the Account interface defines two operations, withdraw() and
deposit(); it also defines the exception InsufficientFunds:

On each invocation, both operations expect the client to supply an argument for
parameter amount, and return void. Invocations on withdraw() can also raise
the exception InsufficientFunds, if necessary.

Parameter direction Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter passing modes clarify operation definitions
and allow the IDL compiler to map operations accurately to a target
programming language. At runtime, Orbix uses parameter passing modes to
determine in which direction or directions it must marshal a parameter.

A parameter can take one of three passing mode qualifiers:

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 //...
 interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
 };
};
 106

Interfaces
in: The parameter is initialized only by the client and is passed to the object.

out: The parameter is initialized only by the object and returned to the client.

inout: The parameter is initialized by the client and passed to the server; the
server can modify the value before returning it to the client.

In general, you should avoid using inout parameters. Because an inout
parameter automatically overwrites its initial value with a new value, its usage
assumes that the caller has no use for the parameter’s original value. Thus, the
caller must make a copy of the parameter in order to retain that value. By using
two parameters, in and out, the caller can decide for itself when to discard the
parameter.

One-way operations By default, IDL operations calls are synchronous—that is, a client invokes an
operation on an object and blocks until the invoked operation returns. If an
operation definition begins with the keyword oneway, a client that calls the
operation remains unblocked while the object processes the call.

Three constraints apply to a one-way operation:

• The return value must be set to void.

• Directions of all parameters must be set to in.

• No raises clause is allowed.

For example, interface Account might contain a one-way operation that sends a
notice to an Account object:

Orbix cannot guarantee the success of a one-way operation call. Because
one-way operations do not support return data to the client, the client cannot
ascertain the outcome of its invocation. Orbix only indicates failure of a one-way
operation if the call fails before it exits the client’s address space; in this case,
Orbix raises a system exception.

A client can also issue non-blocking, or asynchronous, invocations. For more
information, see Chapter 12 on page 353.

module BankDemo {
 //...
 interface Account {
 oneway void notice(in string text);
 //...
 };
};
107

CHAPTER 4 | Defining Interfaces
Attributes
An interface’s attributes correspond to the variables that an object implements.
Attributes indicate which variables in an object are accessible to clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which let client applications read and write attribute
values. An attribute that is qualified with the keyword readonly maps only to a
get function.

For example, the Account interface defines two readonly attributes, AccountId
and balance. These attributes represent information about the account that only
the object implementation can set; clients are limited to read-only access.
 108

Interfaces
Exceptions
IDL operations can raise one or more CORBA-defined system exceptions. You
can also define your own exceptions and explicitly specify these in an IDL
operation. An IDL exception is a data structure that can contain one or more
member fields, formatted as follows:

After you define an exception, you can specify it through a raises clause in any
operation that is defined within the same scope. A raises clause can contain
multiple comma-delimited exceptions:

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are accessible
only to operations within that interface.

For example, interface Account defines the exception InsufficientFunds with
a single member of data type string. This exception is available to any
operation within the interface. The following IDL defines the withdraw()
operation to raise this exception when the withdrawal fails:

For more about exception handling, see Chapter 13 on page 365.

exception exception-name {
 [member;]...
};

return-val operation-name([params-list])
 raises(exception-name[, exception-name]);

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 //...
 interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);
 //...
 };
};
109

CHAPTER 4 | Defining Interfaces
Empty Interfaces
IDL allows you to define empty interfaces. This can be useful when you wish to
model an abstract base interface that ties together a number of concrete derived
interfaces. For example, the CORBA PortableServer module defines the
abstract ServantManager interface, which serves to join the interfaces for two
servant manager types, servant activator and servant locator:

module PortableServer
{
 interface ServantManager {};

 interface ServantActivator : ServantManager {
 //...
 };

 interface ServantLocator : ServantManager {
 //...
 };
};
 110

Interfaces
Inheritance of IDL Interfaces
An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An interface
specifies the base interfaces from which it inherits as follows:

For example, the following interfaces, CheckingAccount and SavingsAccount,
inherit from interface Account and implicitly include all of its elements:

An object that implements CheckingAccount can accept invocations on any of
its own attributes and operations and on any of the elements of interface
Account. However, the actual implementation of elements in a
CheckingAccount object can differ from the implementation of corresponding
elements in an Account object. IDL inheritance only ensures type-compatibility
of operations and attributes between base and derived interfaces.

interface new-interface : base-interface[, base-interface]...
{...};

module BankDemo{
 typedef float CashAmount; // Type for representing cash
 interface Account {
 //...
 };

 interface CheckingAccount : Account {
 readonly attribute CashAmount overdraftLimit;
 boolean orderCheckBook ();
 };

 interface SavingsAccount : Account {
 float calculateInterest ();
 };
};
111

CHAPTER 4 | Defining Interfaces
Multiple inheritance The following IDL definition expands module BankDemo to include interface
PremiumAccount, which inherits from two interfaces, CheckingAccount and
SavingsAccount:

Figure 15 shows the inheritance hierarchy for this interface.

module BankDemo {
 interface Account {
 //...
 };

 interface CheckingAccount : Account {
 //...
 };

 interface SavingsAccount : Account {
 //...
 };

 interface PremiumAccount :
 CheckingAccount, SavingsAccount {
 //...
 };
};

Figure 15: Multiple inheritance of IDL interfaces

Account

SavingsAccountCheckingAccount

PremiumAccount
 112

Interfaces
Multiple inheritance can lead to name ambiguity among elements in the base
interfaces. The following constraints apply:

• Names of operations and attributes must be unique across all base

interfaces.

• If the base interfaces define constants, types, or exceptions of the same

name, references to those elements must be fully scoped.

Inheritance of the object interface All user-defined interfaces implicitly inherit the predefined interface Object.
Thus, all Object operations can be invoked on any user-defined interface. You
can also use Object as an attribute or parameter type to indicate that any
interface type is valid for the attribute or parameter. For example, the following
operation getAnyObject() serves as an all-purpose object locator:

Inheritance redefinition A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that are
inherited from a base interface cannot be changed. In the following example,
interface CheckingAccount modifies the definition of exception
InsufficientFunds, which it inherits from Account:

interface ObjectLocator {
 void getAnyObject (out Object obj);
};

Note: It is illegal IDL syntax to inherit interface Object explicitly.

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 //...
 interface Account {
 exception InsufficientFunds {};
 //...
 };
 interface CheckingAccount : Account {
 exception InsufficientFunds {
 CashAmount overdraftLimit;
 };
 };
 //...
};
113

CHAPTER 4 | Defining Interfaces
Note: While a derived interface definition cannot override base operations or
attributes, operation overloading is permitted in interface implementations for
those languages such as C++ that support it.
 114

Interfaces
Forward Declaration of IDL Interfaces
An IDL interface must be declared before another interface can reference it. If
two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

For example, IDL interface Bank defines two operations that return references to
Account objects—create_account() and find_account(). Because interface
Bank precedes the definition of interface Account, Account is forward-declared
as follows:

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 typedef string AccountId; // Type for representing account

ids

 // Forward declaration of Account
 interface Account;

 // Bank interface...used to create Accounts
 interface Bank {
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };

 Account
 find_account(in AccountId account_id)
 raises(AccountNotFound);

 Account
 create_account(
 in AccountId account_id,
 in CashAmount initial_balance
) raises (AccountAlreadyExists);
 };

 // Account interface...used to deposit, withdraw, and query
 // available funds.
 interface Account {
 //...
 };
};
115

CHAPTER 4 | Defining Interfaces
Local Interfaces
An interface declaration that contains the keyword local defines a local
interface. An interface declaration that omits this keyword can be referred to as
an unconstrained interface, to distinguish it from local interfaces. An object that
implements a local interface is a local object.

Local interfaces differ from unconstrained interfaces in the following ways:

• A local interface can inherit from any interface, whether local or

unconstrained. However, an unconstrained interface cannot inherit from a

local interface.

• Any non-interface type that uses a local interface is regarded as a local

type. For example, a struct that contains a local interface member is

regarded as a local struct, and is subject to the same localization constraints

as a local interface.

• Local types can be declared as parameters, attributes, return types, or

exceptions only in a local interface, or as state members of a valuetype.

• Local types cannot be marshaled, and references to local objects cannot be

converted to strings through ORB::object_to_string(). Attempts to do

so throw CORBA::MARSHAL.

• Any operation that expects a reference to a remote object cannot be

invoked on a local object. For example, you cannot invoke any DII

operations or asynchronous methods on a local object; similarly, you

cannot invoke pseudo-object operations such as is_a() or

validate_connection(). Attempts to do so throw

CORBA::NO_IMPLEMENT.

• The ORB does not mediate any invocation on a local object. Thus, local

interface implementations are responsible for providing the parameter copy

semantics that a client expects.

• Instances of local objects that the OMG defines as supplied by ORB

products are exposed either directly or indirectly through

ORB::resolve_initial_references().

Local interfaces are implemented by CORBA::LocalObject to provide
implementations of Object pseudo operations, and other ORB-specific support
mechanisms that apply. Because object implementations are language-specific,
the LocalObject type is only defined by each language mapping.
 116

Interfaces
The LocalObject type implements the following Object pseudo-operations to
throw an exception of NO_IMPLEMENT:

CORBA::LocalObject also implements the pseudo-operations shown in Table 1:

is_a()
get_interface()
get_domain_managers()
get_policy()
get_client_policy()
set_policy_overrides()
get_policy_overrides()
validate_connection()

Table 1: CORBA::LocalObject pseudo-operation returns

Operation Always returns:

non_existent() False

hash() A hash value that is consistent with the object’s
lifetime

is_equivalent() True if the references refer to the same
LocalObject implementation.
117

CHAPTER 4 | Defining Interfaces
Valuetypes
Valuetypes enable programs to pass objects by value across a distributed system.
This type is especially useful for encapsulating lightweight data such as linked
lists, graphs, and dates.

Valuetypes can be seen as a cross between data types such as long and string
that can be passed by value over the wire as arguments to remote invocations,
and objects, which can only be passed by reference. When a program supplies an
object reference, the object remains in its original location; subsequent
invocations on that object from other address spaces move across the network,
rather than the object moving to the site of each request.

Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is passed as
an argument to a remote operation, the receiving address space creates a copy it
of it. The copied valuetype exists independently of the original; operations that
are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are never
passed over the wire to a remote valuetype.

Valuetype implementations necessarily vary, depending on the languages used
on sending and receiving ends of the transmission, and their respective abilities
to marshal and demarshal the valuetype’s operations. A receiving process that is
written in C++ must provide a class that implements valuetype operations and a
factory to create instances of that class. These classes must be either compiled
into the application, or made available through a shared library. Conversely,
Java applications can marshal enough information on the sender, so the receiver
can download the bytecodes for the valuetype operation implementations.
 118

Abstract Interfaces
Abstract Interfaces
An application can use abstract interfaces to determine at runtime whether an
object is passed by reference or by value. For example, the following IDL
definitions specify that operation Example::display() accepts any derivation
of abstract interface Describable:

Given these definitions, you can define two derivations of abstract interface
Describable, valuetype Currency and interface Account:

Because the parameter for display() is defined as a Describable type,
invocations on this operation can supply either Account objects or Currency
valuetypes.

All abstract interfaces implicitly inherit from native type
CORBA::AbstractBase, and map to C++ abstract base classes. Abstract
interfaces have several characteristics that differentiate them from interfaces:

• The GIOP encoding of an abstract interface contains a boolean

discriminator to indicate whether the adjoining data is an IOR (TRUE) or a

value (FALSE). The demarshalling code can thus determine whether the

argument passed to it is an object reference or a value.

abstract interface Describable {
 string get_description();
};

interface Example {
 void display(in Describable someObject);
};

interface Account : Describable {
 // body of Account definition not shown
};

valuetype Currency supports Describable {
 // body of Currency definition not shown
};
119

CHAPTER 4 | Defining Interfaces
• Unlike interfaces, abstract interfaces do not inherit from CORBA::Object,

in order to allow support for valuetypes. If the runtime argument supplied

to an abstract interface type can be narrowed to an object reference type,

then CORBA::Object operations can be invoked on it.

• Because abstract interfaces can be derived by object references or by value

types, copy semantics cannot be guaranteed for value types that are

supplied as arguments to its operations.

• Abstract interfaces can only inherit from other abstract interfaces.
 120

IDL Data Types
IDL Data Types
In addition to IDL module, interface, valuetype, and exception types, IDL data
types can be grouped into the following categories:

• Built-in types such as short, long, and float

• Extended built-in types such as long long and wstring

• Complex data types such as enum and struct, and string

• Pseudo object types
121

CHAPTER 4 | Defining Interfaces
Built-in Types
Table 2 lists built-in IDL types.

Integer types IDL supports short and long integer types, both signed and unsigned. IDL
guarantees the range of these types. For example, an unsigned short can hold
values between 0-65535. Thus, an unsigned short value always maps to a native
type that has at least 16 bits. If the platform does not provide a native 16-bit type,
the next larger integer type is used.

Floating point types Types float and double follow IEEE specifications for single- and
double-precision floating point values, and on most platforms map to native
IEEE floating point types.

Table 2: Built-in IDL types

Data type Size Range of values

short 16 bits -215...215-1

unsigned short 16 bits 0...216-1

long 32 bits –231...231-1

unsigned long 32 bits 0...232-1

float 32 bits IEEE single-precision floating point numbers

double 64 bits IEEE double-precision floating point numbers

char 8 bits ISO Latin-1

string variable length ISO Latin-1, except NUL

string<bound> variable length ISO Latin-1, except NUL

boolean unspecified TRUE or FALSE

octet 8 bits 0x0 to 0xff

any variable length Universal container type
 122

IDL Data Types
char Type char can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are reserved for
special characters in various European languages, such as accented vowels.

String types Type string can hold any character from the ISO Latin-1 character set except
NUL. IDL prohibits embedded NUL characters in strings. Unbounded string
lengths are generally constrained only by memory limitations. A bounded string,
such as string<10>, can hold only the number of characters specified by the
bounds, excluding the terminating NUL character. Thus, a string<6> can contain
the six-character string cheese.

The declaration statement can optionally specify the string’s maximum length,
thereby determining whether the string is bounded or unbounded:

For example, the following code declares data type ShortString, which is a
bounded string whose maximum length is 10 characters:

octet Octet types are guaranteed not to undergo any conversions in transit. This lets
you safely transmit binary data between different address spaces. Avoid using
type char for binary data, inasmuch as characters might be subject to translation
during transmission. For example, if client that uses ASCII sends a string to a
server that uses EBCDIC, the sender and receiver are liable to have different
binary values for the string’s characters.

any Type any allows specification of values that express any IDL type, which is
determined at runtime. An any logically contains a TypeCode and a value that is
described by the TypeCode. For more information about the any data type, see
Chapter 15 on page 399.

string[<length>] name

typedef string<10> ShortString;
attribute ShortString shortName; // max length is 10 chars
123

CHAPTER 4 | Defining Interfaces
Extended Built-in Types
Table 3 lists extended built-in IDL types.

long long The 64-bit integer types long long and unsigned long long support numbers
that are too large for 32-bit integers. Platform support varies. If you compile IDL
that contains one of these types on a platform that does not support it, the
compiler issues an error.

long double Like 64-bit integer types, platform support varies for long double, so usage can
yield IDL compiler errors.

wchar Type wchar encodes wide characters from any character set. The size of a wchar
is platform-dependent.

wstring Type wstring is the wide-character equivalent of type string (see page 123).
Like string-types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

Table 3: Extended built-in IDL types

Data type Size Range of values

long long 64 bits –263...263-1

unsigned long long 64 bits 0...-264-1

long double 79 bits IEEE double-extended floating point number, with an
exponent of at least 15 bits in length and signed fraction of
at least 64 bits. long double type is currently not
supported on Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable length Arbitrary codesets

fixed Unspecified 31 significant digits
 124

IDL Data Types
fixed Type fixed provides fixed-point arithmetic values with up to 31 significant
digits. You specify a fixed type with the following format:

typedef fixed< digit-size, scale > name

digit-size specifies the number’s length in digits. The maximum value for
digit-size is 31 and must be greater than scale. A fixed type can hold any
value up to the maximum value of a double.

Scaling options

If scale is a positive integer, it specifies where to place the decimal point
relative to the rightmost digit. For example the following code declares fixed
data type CashAmount to have a digit size of 8 and a scale of 2:

Given this typedef, any variable of type CashAmount can contain values of up to
(+/-)99999999.99.

If scale is negative, the decimal point moves to the right scale digits, thereby
adding trailing zeros to the fixed data type’s value. For example, the following
code declares fixed data type bigNum to have a digit size of 3 and a scale of -4:

If myBigNum has a value of 123, its numeric value resolves to 1230000.
Definitions of this sort let you store numbers with trailing zeros efficiently.

Constant fixed types

Constant fixed types can also be declared in IDL, where digit-size and scale
are automatically calculated from the constant value. For example:

This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEEE floating-point values, type fixed is not subject to representational
errors. IEEE floating point values are liable to represent decimal fractions
inaccurately unless the value is a fractional power of 2. For example, the decimal

typedef fixed<10,2> CashAmount;

typedef fixed <3,-4> bigNum;
bigNum myBigNum;

module Circle {
 const fixed pi = 3.142857;
};
125

CHAPTER 4 | Defining Interfaces
value 0.1 cannot be represented exactly in IEEE format. Over a series of
computations with floating-point values, the cumulative effect of this
imprecision can eventually yield inaccurate results.

Type fixed is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.
 126

IDL Data Types
Complex Data Types
IDL provides the following complex data types:

• enum

• struct

• union

• multi-dimensional fixed-size arrays

• sequence

enum An enum (enumerated) type lets you assign identifiers to the members of a set of
values. For example, you can modify the BankDemo IDL with enum type
balanceCurrency:

In this example, attribute balanceCurrency in interface Account can take any
one of the values pound, dollar, yen, or franc.

The actual ordinal values of a enum type vary according to the actual language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus, in
the previous example, dollar is greater than pound, yen is greater than dollar,
and so on. All enumerators are mapped to a 32-bit type.

module BankDemo {
 enum Currency {pound, dollar, yen, franc};

 interface Account {
 readonly attribute CashAmount balance;
 readonly attribute Currency balanceCurrency;
 //...
 };
};
127

CHAPTER 4 | Defining Interfaces
struct A struct data type lets you package a set of named members of various types.
In the following example, struct CustomerDetails has several members.
Operation getCustomerDetails() returns a struct of type CustomerDetails
that contains customer data:

A struct must include at least one member. Because a struct provides a
naming scope, member names must be unique only within the enclosing
structure.

union A union data type lets you define a structure that can contain only one of several
alternative members at any given time. A union saves space in memory, as the
amount of storage required for a union is the amount necessary to store its
largest member.

You declare a union type with the following syntax:

All IDL unions are discriminated. A discriminated union associates a constant
expression (label1..labeln) with each member. The discriminator’s value
determines which of the members is active and stores the union’s value.

module BankDemo{
 struct CustomerDetails {
 string custID;
 string lname;
 string fname;
 short age;
 //...
 };

 interface Bank {
 CustomerDetails getCustomerDetails
 (in string custID);
 //...
 };
};

union name switch (discriminator) {
 case label1 : element-spec;
 case label2 : element-spec;
 [...]
 case labeln : element-spec;
 [default : element-spec;]
};
 128

IDL Data Types
For example, the following code defines the IDL union Date, which is
discriminated by an enum value:

Given this definition, if Date’s discriminator value is numeric, then
digitalFormat member is active; if the discriminator’s value is strMMDDYY or
strDDMMYY, then member stringFormat is active; otherwise, the default
member structFormat is active.

The following rules apply to union types:

• A union’s discriminator can be integer, char, boolean or enum, or an

alias of one of these types; all case label expressions must be compatible

with this type.

• Because a union provides a naming scope, member names must be unique

only within the enclosing union.

• Each union contains a pair of values: the discriminator value and the active

member.

• IDL unions allow multiple case labels for a single member. In the previous

example, member stringFormat is active when the discriminator is either

strMMDDYY or strDDMMYY.

• IDL unions can optionally contain a default case label. The

corresponding member is active if the discriminator value does not

correspond to any other label.

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
 short Day;
 short Month;
 short Year;
};

union Date switch (dateStorage) {
 case numeric: long digitalFormat;
 case strMMDDYY:
 case strDDMMYY: string stringFormat;
 default: DateStructure structFormat;
};
129

CHAPTER 4 | Defining Interfaces
arrays IDL supports multi-dimensional fixed-size arrays of any IDL data type, with the
following syntax:

dimension-spec must be a non-zero positive constant integer expression. IDL
does not allow open arrays. However, you can achieve equivalent functionality
with sequence types (see page 130).

For example, the following code fragment defines a two-dimensional array of
bank accounts within a portfolio:

An array must be named by a typedef declaration (see “Defining Data Types”
on page 133) in order to be used as a parameter, an attribute, or a return value.
You can omit a typedef declaration only for an array that is declared within a
structure definition.

Because of differences between implementation languages, IDL does not specify
the origin at which arrays are indexed. For example C and C++ array indexes
always start at 0, while Pascal uses an origin of 1. Consequently, clients and
servers cannot portably exchange array indexes unless they both agree on the
origin of array indexes and make adjustments as appropriate for their respective
implementation languages. Usually, it is easier to exchange the array element
itself instead of its index.

sequence IDL supports sequences of any IDL data type with the following syntax:

An IDL sequence is similar to a one-dimensional array of elements; however, its
length varies according to its actual number of elements, so it uses memory more
efficiently.

A sequence must be named by a typedef declaration (see “Defining Data
Types” on page 133) in order to be used as a parameter, an attribute, or a return
value. You can omit a typedef declaration only for a sequence that is declared
within a structure definition.

[typedef] element-type array-name [dimension-spec]...

typedef Account portfolio[MAX_ACCT_TYPES][MAX_ACCTS]

[typedef] sequence < element-type[, max-elements] >
sequence-name
 130

IDL Data Types
A sequence’s element type can be of any type, including another sequence type.
This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed
(unbounded):

• Unbounded sequences can hold any number of elements, up to the memory

limits of your platform.

• Bounded sequences can hold any number of elements, up to the limit

specified by the bound.

The following code shows how to declare bounded and unbounded sequences as
members of an IDL struct:

struct LimitedAccounts {
 string bankSortCode<10>;
 sequence<Account, 50> accounts; // max sequence length is 50
};

struct UnlimitedAccounts {
 string bankSortCode<10>;
 sequence<Account> accounts; // no max sequence length
};
131

CHAPTER 4 | Defining Interfaces
Pseudo Object Types
CORBA defines a set of pseudo object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL but do not have to follow the normal IDL mapping for
interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation
parameter types in an IDL specification:

To use these types in an IDL specification, include the file orb.idl in the IDL
file as follows:

This statement tells the IDL compiler to allow types NamedValue and TypeCode.

CORBA::NamedValue
CORBA::TypeCode

#include <orb.idl>
//...
 132

Defining Data Types
Defining Data Types
With typedef, you can define more meaningful or simpler names for existing
data types, whether IDL-defined or user-defined. The following IDL defines
typedef identifier StandardAccount, so it can act as an alias for type Account
in later IDL definitions:

module BankDemo {
 interface Account {
 //...
 };

 typedef Account StandardAccount;
};
133

CHAPTER 4 | Defining Interfaces
Constants
IDL lets you define constants of all built-in types except type any. To define a
constant’s value, you can either use another constant (or constant expression) or
a literal. You can use a constant wherever a literal is permitted.

The following constant types are supported:

• Integer

• Floating-point

• Character and string

• Wide character and string

• Boolean

• Octet

• Fixed-point

• Enumeration

Integer IDL accepts integer literals in decimal, octal, or hexadecimal:

Both unary plus and unary minus are legal.

Floating-point Floating-point literals use the same syntax as C++:

const short I1 = -99;
const long I2 = 0123; // Octal 123, decimal 83
const long long I3 = 0x123; // Hexadecimal 123, decimal 291
const long long I4 = +0xaB; // Hexadecimal ab, decimal 171

const float f1 = 3.1e-9; // Integer part, fraction part,
 // exponent
const double f2 = -3.14; // Integer part and fraction part
const long double f3 = .1 // Fraction part only
const double f4 = 1. // Integer part only
const double f5 = .1E12 // Fraction part and exponent
const double f6 = 2E12 // Integer part and exponent
 134

Constants
Character and string Character constants use the same escape sequences as C++:

Wide character and string Wide character and string constants use C++ syntax. Use Universal character
codes to represent arbitrary characters. For example:

Boolean Boolean constants use the keywords FALSE and TRUE. Their use is unnecessary,
inasmuch as they create needless aliases:

const char C1 = 'c'; // the character c
const char C2 = '\007'; // ASCII BEL, octal escape
const char C3 = '\x41'; // ASCII A, hex escape
const char C4 = '\n'; // newline
const char C5 = '\t'; // tab
const char C6 = '\v'; // vertical tab
const char C7 = '\b'; // backspace
const char C8 = '\r'; // carriage return
const char C9 = '\f'; // form feed
const char C10 = '\a'; // alert
const char C11 = '\\'; // backslash
const char C12 = '\?'; // question mark
const char C13 = '\''; // single quote
// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters
 // ('\xA' and 'B'),
 // not the single character '\xAB

const wchar C = L'X';
const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';
const wstring OMEGA_STR = L"Omega: \u3A9";

Note: IDL files themselves always use the ISO Latin-1 code set, they cannot
use Unicode or other extended character sets.

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing
135

CHAPTER 4 | Defining Interfaces
Octet Octet constants are positive integers in the range 0-255.

Fixed-point For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or D.
For example:

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and scale.
The decimal point is optional.

Enumeration Enumeration constants must be initialized with the scoped or unscoped name of
an enumerator that is a member of the type of the enumeration. For example:

const octet O1 = 23;
const octet O2 = 0xf0;

Note: Octet constants were added with CORBA 2.3, so ORBs that are not
compliant with this specification might not support them.

// Fixed point constants take digits and scale from the
// initialiser:
const fixed val1 = 3D; // fixed<1,0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

Note: Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

enum Size { small, medium, large };

const Size DFL_SIZE = medium;
const Size MAX_SIZE = ::large;

Note: Enumeration constants were added with CORBA 2.3, so ORBs that are
not compliant with this specification might not support them.
 136

Constant Expressions
Constant Expressions
IDL provides a number of arithmetic and bitwise operators.

Operator precedence The precedence for operators follows the rules for C++. You can override the
default precedence by adding parentheses.

Arithmetic operators The arithmetic operators have the usual meaning and apply to integral,
floating-point, and fixed-point types (except for %, which requires integral
operands). However, these operators do not support mixed-mode arithmetic; you
cannot, for example, add an integral value to a floating-point value. The
following code contains several examples:

Expressions are evaluated using the type promotion rules of C++. The result is
coerced back into the target type. The behavior for overflow is undefined, so do
not rely on it. Fixed-point expressions are evaluated internally with 62 bits of
precision, and results are truncated to 31 digits.

// You can use arithmetic expressions to define constants.
const long MIN = -10;
const long MAX = 30;
const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE_PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT);
137

CHAPTER 4 | Defining Interfaces
Bitwise operators The bitwise operators only apply to integral types. The right-hand operand must
be in the range 0–63. Note that the right-shift operator >> is guaranteed to inject
zeros on the left, whether the left-hand operand is signed or unsigned:

IDL guarantees two’s complement binary representation of values.

// You can use bitwise operators to define constants.
const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff
 138

CHAPTER 5

Developing
Applications with
Genies
The code generation toolkit is packaged with several genies that
can help your development effort get off to a fast start.

Two genies generate code that you can use immediately for application
development:

• cpp_poa_genie.tcl reads IDL code and generates C++ source files that

you can compile into a working application.

• cpp_poa_op.tcl generates the C++ signatures of specified operations and

attributes and writes them to a file. You can use this genie on new or

changed interfaces, then update existing source code with the generated

signatures.

In this chapter This chapter covers the following topics:

Note: OS/390, both native and UNIX system services, do not support the
code generation toolkit and distributed genies.

Starting Development Projects page 141
139

CHAPTER 5 | Developing Applications with Genies
Generating Signatures of Individual Operations page 164

Configuration Settings page 165
 140

Starting Development Projects
Starting Development Projects
The C++ genie cpp_poa_genie.tcl creates a complete, working client and
server directly from your IDL interfaces. You can then add application logic to
the generated code. This can improve productivity in two ways:

• The outlines of your application—class declarations and operation

signatures—are generated for you.

• A working system is available immediately, which you can incrementally

modify and test. With the generated makefile, you can build and test

modifications right away, thereby eliminating much of the overhead that is

usually associated with getting a new project underway.

In a genie-generated application, the client invokes every operation and each
attribute’s get and set methods, and directs all display to standard output. The
server also writes all called operations to standard output.

This client/server application achieves these goals:

• Demonstrates or tests an Orbix client/server application for a particular

interface or interfaces.

• Provides a starting point for your application.

• Shows the right way to initialize and pass parameters, and to manage

memory for various IDL data types.
141

CHAPTER 5 | Developing Applications with Genies
Genie Syntax
cpp_poa_genie.tcl uses the following syntax:

idlgen cpp_poa_genie.tcl component-spec [options] idl-file

You must specify an IDL file. You must also specify the application components
to generate, either all components at once, or individual components, with one of
the arguments in Table 4:

Each component specifier can take its own arguments. For more information on
these, refer to the discussion on each component later in this chapter.

You can also supply one or more of the optional switches shown in Table 5:

Table 4: Component specifier arguments to cpp_poa_genie.tcl

Component
specifier

Output

-all All components: server, servant, client, and makefile (see
page 144).

-servant Servant classes to implement the selected interfaces (see
page 148).

-server Server main program (see page 152)

-client Client main program (see page 156).

-makefile A makefile to compile server and client applications (see
page 157).

Table 5: Optional switches to cpp_poa_genie.tcl

Option Description

-complete/-incomplete Controls the completeness of the code that is
generated for the specified components (see
page 158).

-dir Specifies where to generate file output (see
page 162).
 142

Starting Development Projects
-include Specifies to generate code for included files
(see page 147).

-interface-spec Specifies to generate code only for the specified
interfaces (see page 146).

-v/-s Controls the level of verbosity (see page 162).

Table 5: Optional switches to cpp_poa_genie.tcl

Option Description
143

CHAPTER 5 | Developing Applications with Genies
Specifying Application Components
The -all argument generates the files that implement all application
components: server, servant, client, and makefile. For example, the following
command generates all the files required for an application that is based on
bankdemo.idl:

Alternatively, you can use cpp_poa_genie.tcl to generate one or more
application components. For example, the following command specifies to
generate only those files that are required to implement a servant:

By generating output for application components selectively, you can control
genie processing for each one. For example, the following commands specify
different -dir options, so that server and servant files are output to one
directory, and client files are output to another:

> idlgen cpp_poa_genie.tcl -all bankdemo.idl

bankdemo.idl:
idlgen: creating BankDemo_BankImpl.h
idlgen: creating BankDemo_BankImpl.cxx
idlgen: creating BankDemo_AccountImpl.h
idlgen: creating BankDemo_AccountImpl.cxx
idlgen: creating server.cxx
idlgen: creating client.cxx
idlgen: creating call_funcs.h
idlgen: creating call_funcs.cxx
idlgen: creating it_print_funcs.h
idlgen: creating it_print_funcs.cxx
idlgen: creating it_random_funcs.h
idlgen: creating it_random_funcs.cxx
idlgen: creating Makefile

> idlgen cpp_poa_genie.tcl -servant bankdemo.idl

bankdemo.idl:
idlgen: creating BankDemo_BankImpl.h
idlgen: creating BankDemo_BankImpl.cxx
idlgen: creating BankDemo_AccountImpl.h
idlgen: creating BankDemo_AccountImpl.cxx
idlgen: creating it_print_funcs.h
idlgen: creating it_print_funcs.cxx
idlgen: creating it_random_funcs.h
idlgen: creating it_random_funcs.cxx
 144

Starting Development Projects
> idlgen cpp_poa_genie.tcl -servant - server bankdemo.idl
 -dir c:\app\server
> idlgen cpp_poa_genie.tcl -client bankdemo.idl -dir

c:\app\client
145

CHAPTER 5 | Developing Applications with Genies
Selecting Interfaces
By default, cpp_poa_genie.tcl generates code for all interfaces in the specified
IDL file. You can specify to generate code for specific interfaces within the file
by supplying their fully scoped names. For example, the following command
specifies to generate code for the Bank interface in bankdemo.idl:

> idlgen cpp_poa_genie.tcl -all BankDemo::Bank bankdemo.idl

You can also use wildcard patterns to specify the interfaces to process. For
example, the following command generates code for all interfaces in module
BankDemo:

> idlgen cpp_poa_genie.tcl BankDemo::* bankdemo.idl

The following command generates code for all interfaces in foo.idl with names
that begin with Foo or end with Bar.

> idlgen cpp_poa_genie.tcl foo.idl "Foo*" "*Bar"

Note: For interfaces defined inside modules, the wildcard is matched against
the fully scoped interface name, so Foo* matches FooModule::Y but not
BarModule::Foo.

Pattern matching is performed according to the rules of the TCL string match
command, which is similar to Unix or Windows filename matching. Table 6
contains some common wildcard patterns:

Table 6: Wildcard pattern matching to interface names

Wildcard pattern Matches...

* Any string

? Any single character

[xyz] x, y, or z.
 146

Starting Development Projects
Including Files
By default, cpp_poa_genie.tcl generates code only for the specified IDL files.
You can specify also to generate code for all #include files by supplying the
-include option. For example, the following command specifies to generate
code from bankdemo.idl and any IDL files that are included in it:

> idlgen cpp_poa_genie.tcl -all -include bankdemo.idl

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_include.
147

CHAPTER 5 | Developing Applications with Genies
Implementing Servants
The -servant option generates POA servant classes that implement IDL
interfaces. For example, this command generates a class header and
implementation code for each interface that appears in IDL file bankdemo.idl:

idlgen cpp_poa_genie.tcl -servant bankdemo.idl

The genie constructs the implementation class name from the scoped name of
the interface, replacing double colons (::) with an underscore (_) and adding a
suffix—by default, Impl.. The default suffix is set in the configuration file
through default.cpp.impl_class_suffix.

For example, BankDemo::Account is implemented by class
BankDemo_AccountImpl. The generated implementation class contains these
components:

• A static _create() member method to create a servant.

• A member method to implement each IDL operation for the interface.

The -servant option can take one or more arguments, shown in Table 7, that let
you control how servant classes are generated:

Table 7: Arguments that control servant generation

Argument Purpose

-tie
-notie

Choose the inheritance or tie (delegation) method for
implementing servants.

-inherit
-noinherit

Choose whether implementation classes follow the
same inheritance hierarchy as the IDL interfaces they
implement.

-default_poa arg Determines the behavior of implicit activation, which
uses the default POA associated with a given servant.
default_poa can take one of these arguments:

• per_servant: Set the correct default POA for

each servant.

• exception: Throw an exception on all attempts

at implicit activation.

For more information, see page 312.
 148

Starting Development Projects
The actual content and behavior of member methods is determined by the
-complete or -incomplete flag. For more information, see “Controlling Code
Completeness” on page 158.

-tie/-notie A POA servant is either an instance of a class that inherits from a POA skeleton,
or an instance of a tie template class that delegates to a separate implementation
class. You can choose the desired approach by supplying -tie or -notie
options. The default for this option is set in the configuration file through
default.cpp_poa_genie.want_tie.

With -notie, the genie generates servants that inherit directly from POA
skeletons. For example:

class BankDemo_AccountImpl : public virtual POA_BankDemo::Account

The _create() method constructs a servant as follows:

With -tie, the genie generates implementation classes that do not inherit from
POA skeletons. The following example uses a _create method to create an
implementation object (1), and a tie (2) that delegates to it:

-refcount
-norefcount

Choose whether or not servants are reference
counted.

Table 7: Arguments that control servant generation

Argument Purpose

POA_BankDemo::Account*
BankDemo_AccountImpl::_create(PortableServer::POA_ptr the_poa)
{
 return new BankDemo_AccountImpl(the_poa);
}

Example 12: C++ Creating a TIE Object

POA_BankDemo::Account*
BankDemo_AccountImpl::_create(PortableServer::POA_ptr the_poa)
{

1 BankDemo_AccountImpl* tied_object =
 new BankDemo_AccountImpl();
149

CHAPTER 5 | Developing Applications with Genies
-inherit/-noinherit IDL servant implementation classes typically have the same inheritance
hierarchy as the interfaces that they implement, but this is not required.

• -inherit generates implementation classes with the same inheritance as

the corresponding interfaces.

• -noinherit generates implementation classes that do not inherit from each

other. Instead, each implementation class independently implements all

operations for its IDL interface, including operations that are inherited

from other IDL interfaces.

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_inherit.

-default_poa In the standard CORBA C++ mapping, each servant class provides a _this()
method, which generates an object reference and implicitly activates that object
with the servant. Implicit activation calls _default_POA() on the same servant
to determine the POA in which this object is activated. Unless you specify
otherwise, _default_POA() returns the root POA, which is typically not the
POA where you want to activate objects.

The code that cpp_poa_genie.tcl generates always overrides _default_POA()
in a way that prevents implicit activation. Applications generated by this genie
can only activate objects explicitly. Two options are available that determine
how to override _default_POA():

• per_servant: (default) Servant constructors and generated _create()

methods takes a POA parameter. For each servant, _default_POA()

returns the POA specified when the servant was created.

• exception: _default_POA() throws a CORBA::INTERNAL system

exception. This option is useful in a group development environment, in

that it allows tests to easily catch any attempts at implicit activation.

2 POA_BankDemo::Account* the_tie =
 new POA_BankDemo_Account_tie<BankDemo_AccountImpl>(
 tied_object,
 the_poa
);
 return the_tie;
}

Example 12: C++ Creating a TIE Object
 150

Starting Development Projects
For more information about explicit and implicit activation, see page 311.

-refcount/-norefcount Multi-threaded servers need to reference-count their servants in order to avoid
destroying a servant on one thread that is still in use on another. The POA
specification provides the standard functions _add_ref() and _remove_ref() to
support reference counting, but by default they do nothing.

• -refcount generates servants that inherit from the standard class

PortableServer::RefCountServantBase, which enables reference

counting. For example:

• -norefcount specifies that servants do not inherit from

RefCountServantBase.

The -refcount option is automatically enabled if you use the -threads option
(see page 153).

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_refcount.

Note: -refcount is invalid with -tie. The genie issues a warning if you
combine these options. Tie templates as defined in the POA standard do not
support reference counting, and the genie cannot change their inheritance. It is
recommended that you do not use the tie approach for multi-threaded servers.

class BankDemo_AccountImpl
 : public virtual POA_BankDemo::Account,
 public virtual PortableServer::RefCountServantBase
151

CHAPTER 5 | Developing Applications with Genies
Implementing the Server Mainline
The -server option generates a simple server mainline that activates and
exports some objects. For example, the following command generates a file
called server.cxx that contains a main program:

> idlgen cpp_poa_genie.tcl -server bankdemo.idl

The server program performs the following steps:

1. Initializes the ORB and POA.

2. Installs a signal handler to shut down gracefully if the server is killed via

SIGTERM on Unix or a CTRL-C event on Windows.

3. For each interface:

♦ Activates a CORBA object of that interface.

♦ Exports a reference either to the naming service or to a file,

depending on whether you set the option -ns or -nons.

4. Catches any exceptions and print a message.

The -server option can take one or more arguments, shown in Table 8, that let
you modify server behavior:

Table 8: Options affecting the server

Command line option Purpose

-threads
-nothreads

Choose a single or multi-threaded server. The
-threads argument also implies -refcount (see
page 151).

-strategy simple Create servants during start-up.

-strategy activator Create servants on demand with a servant
activator.

-strategy locator Create servants per call with a servant locator.

-strategy default_servant For each interface, generate a POA that uses a
default servant.
 152

Starting Development Projects
-threads/-nothreads You can specify the threads policy for all POAs in the server with one of these
options:

-nothreads sets the SINGLE_THREAD_MODEL policy on all POAs in the server,
which ensures that all calls to application code are made in the main thread. This
policy allows a server to run thread-unsafe code, but might reduce performance
because the ORB can dispatch only one operation at a time.

-threads sets the ORB_CTRL_MODEL policy on all POAs in the server, allowing the
ORB to dispatch incoming calls in multiple threads concurrently.

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_threads.

-strategy Options The POA is a flexible tool that lets servers manage objects with different
strategies. Some servers can use a combination of strategies for different objects.
You can use the genie to generate examples of each strategy, then cut-and-paste
the appropriate generated code into your own server.

You set a server’s object management strategy through one of the following
arguments to the -strategy option:

-ns
-nons

Determines how to export object references:

• -ns: use the naming service to publish

object references.

• -nons: write object references to a file.

Table 8: Options affecting the server

Command line option Purpose

Note: If you enable multi-threading, you must ensure that your application
code is thread-safe and application data structures are adequately protected by
thread-synchronization calls.
153

CHAPTER 5 | Developing Applications with Genies
-strategy simple: The server creates a POA with a policy of
USE_ACTIVE_OBJECT_MAP_ONLY (see page 302). For each interface in the IDL
file, the server main() creates a servant, activates it with the POA as a CORBA
object, and exports an object reference. After the ORB is shut down, main()
deletes the servants.

This strategy is appropriate for servers that implement a small, fixed set of
objects.

-strategy activator: The server creates a POA and a servant activator (see
“Servant Activators” on page 335). For each interface, the server exports an
object reference. The object remains inactive until a client first calls on its
reference; then, the servant activator is invoked and creates the appropriate
servant, which remains in memory to handle future calls on that reference. The
servant activator deletes the servants when the POA is destroyed.

This strategy lets the server start receiving requests immediately and defer
creation of servants until they are needed. It is useful for servers that normally
activate just a few objects out of a large collection on each run, or for servants
that take a long time to initialize.

-strategy locator: The server creates a POA and a servant locator (see “Servant
Locators” on page 340). The server exports references, but all objects are
initially inactive. For every incoming operation, the POA asks the servant
locator to select an appropriate servant. The generated servant locator creates a
servant for each incoming operation, and deletes it when the operation is
complete.

A servant locator is ideal for managing a cache of servants from a very large
collection of objects in a database. You can replace the preinvoke and
postinvoke methods in the generated locator with code that looks for servants
in a database cache, loads them into the cache if required, and deletes old
servants when the cache is full.

-strategy default_servant: The server creates a POA for each interface, and
defines a default servant for each POA to handle incoming requests. A server
that manages requests for many objects that all use the same interface should
probably have a POA that maps all these requests to the same default servant.
For more information about using default servants, see “Setting a Default
Servant” on page 348.
 154

Starting Development Projects
-ns/-nons Determines how the server exports object references to the application:

-ns: Use the naming service to publish object references. For each interface, the
server binds a reference that uses the interface name, in naming context
IT_GenieDemo. For example, for interface Demo_Bank, the genie binds the
reference IT_GenieDemo/BankDemo_Bank. If you use this option, the naming
service and locator daemon must be running when you start the server.

For more information about the naming service, see Chapter 18 on page 487.

-nons: Write stringified object references to a file. For each interface, the server
exports a reference to a file named after the interface with the suffix ref—for
example BankDemo_Bank.ref

The default for this option is set in the configuration file through
default.cpp_poa_genie.
155

CHAPTER 5 | Developing Applications with Genies
Implementing a Client
The -client option generates client source code in client.cxx. For example:

> idlgen cpp_poa_genie.tcl -client bank.idl

When you run this client, it performs the following actions for each interface:

1. Reads an object reference from the file generated by the server—for

example, BankDemo_Bank.ref.

2. If generated with the -complete option, for each operation:

♦ Calls the operation and passes random values.

♦ Prints out the results.

3. Catches raised exceptions and prints an appropriate message.
 156

Starting Development Projects
Generating a Makefile
The -makefile option generates a makefile that can build the server and client
applications. The makefile provides the following targets

• all: Compile and link the client and server.

• clean: Delete files created during compile and link.

• clean_all: Like clean, it also deletes all the source files generated by

idlgen, including the makefile itself.

To build the client and server, enter nmake (Windows) or make (UNIX).
157

CHAPTER 5 | Developing Applications with Genies
Controlling Code Completeness
You can control the extent of the code that is generated for each interface
through the -complete and -incomplete options. These options are valid for
server, servant, and client code generation.

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_complete.

For example, the following commands generate complete servant and client
code and incomplete server mainline code:

Setting the -complete option on servant, server, and client components yields a
complete application that you can compile and run. The application performs
these tasks:

• The client application calls every operation in the server application and

passes random values as in parameters.

• The server application returns random values for inout/out parameters

and return values.

• Client and server print a message for each operation call, which includes

the values passed and returned.

Using the -complete option lets you quickly produce a demo or
proof-of-concept prototype. It also offers useful models for typical coding tasks,
showing how to initialize parameters properly, invoke operations, throw and
catch exceptions, and perform memory management.

If you are familiar with calling and parameter passing rules and simply want a
starting point for your application, you probably want to use the -incomplete
option. This option produces minimal code, omitting the bodies of operations,
attributes, and client-side invocations.

> idlgen cpp_poa_genie.tcl -servant -complete bankdemo.idl
> idlgen cpp_poa_genie.tcl -client -complete bankdemo.idl
> idlgen cpp_poa_genie.tcl -server -incomplete bankdemo.idl
 158

Starting Development Projects
The sections that follow describe, for each application component, the
differences between complete and incomplete code generation. All examples
assume the following IDL for interface Account:

Servant code Qualifying the -servant option with -incomplete or -complete yields the
required source files for each IDL interface. Either option generate the following
files for interface Account:

BankDemo_AccountImpl.h
BankDemo_AccountImpl.cxx

Incomplete servant

The -incomplete option specifies to generate servant class
BankDemo_AccountImpl, which implements the BankDemo::Account interface.
The implementation of each operation and attribute throws a
CORBA::NO_IMPLEMENT exception.

For example, the following code is generated for the deposit() operation:

void
BankDemo_AccountImpl::deposit(
 BankDemo::CashAmount amount
) throw(
 CORBA::SystemException
)
{

// IDL:
module BankDemo
{
 // Other interfaces and type definitions omitted...
 interface Account
 {
 exception InsufficientFunds {};
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;
 void withdraw(
 in CashAmount amount
) raises (InsufficientFunds);

 void
 deposit(
 in CashAmount amount
);
 };
}

159

CHAPTER 5 | Developing Applications with Genies
 throw CORBA::NO_IMPLEMENT();
}

All essential elements of IDL code are automatically generated, so you can focus
on writing the application logic for each IDL operation.

Complete servant

The -complete option specifies to generate several files that provide the
functionality required to generate random values for parameter passing, and to
print those values:

Client Code In a completely implemented client, cpp_poa_genie.tcl generates the client
source file call_funcs.cxx, which contains method calls that invoke on all
operation and attributes of each object. Each method assigns random values to
the parameters of operations and prints out the values of parameters that they

it_print_funcs.h
it_print_funcs.cxx
it_random_funcs.h
it_random_funcs.cxx

Member methods are fully implemented to print parameter values and, if
required, return a value to the client. For example, the following code is
generated for the deposit() operation:

void
BankDemo_AccountImpl::deposit(
 BankDemo::CashAmount amount
) throw(
 CORBA::SystemException
)
{
 // Diagnostics: print the values of "in" and "inout"

parameters
 cout << "BankDemo_AccountImpl::deposit(): "
 << "called with..."
 << endl;
 cout << "\tamount = ";
 IT_print_BankDemo_CashAmount(cout, amount, 3);
 cout << endl;

 // Diagnostics.
 cout << "BankDemo_AccountImpl::deposit(): returning"
 << endl;

}

 160

Starting Development Projects
send, and those that are received back as out parameters. Utility methods to
assign random values to IDL types are generated in the file
it_random_funcs.cxx, and utility methods to print the values of IDL types are
generated in the file it_print_funcs.cxx.

An incomplete client contains no invocations.

Both complete and incomplete clients catch raised exceptions and print
appropriate messages.
161

CHAPTER 5 | Developing Applications with Genies
General Options
You can supply switches that control cpp_poa_genie.tcl genie output:

-dir: By default, cpp_poa_genie.tcl writes all output files to the current
directory. With the -dir option, you can explicitly specify where to generate file
output.

-v/-s: By default, cpp_poa_genie.tcl runs in verbose (-v) mode. With the -s
option, you can silence all messaging.
 162

Starting Development Projects
Compiling the Application
To compile a genie-generated application, Orbix must be properly installed on
the client and server hosts:

1. Build the application using the makefile.

2. In separate windows, run first the server, then the client applications.
163

CHAPTER 5 | Developing Applications with Genies
Generating Signatures of Individual
Operations

IDL interfaces sometimes change during development. A new operation might
be added to an interface, or the signature of an existing operation might change.
When such a change occurs, you must update existing C++ code with the
signatures of the new or modified operations. You can avoid much of this work
with the cpp_poa_op.tcl genie. This genie prints the C++ signatures of
specified operations and attributes to a file. You can then paste these operations
back into the application source files.

For example, you might add a new operation close() to interface
BankDemo::Account. To generate the new operation, run the cpp_poa_op.tcl
genie:

> idlgen cpp_poa_op.tcl bankdemo.idl "*::close"

idlgen: creating tmp
Generating signatures for BankDemo::Account::close

As in this example, you can use wildcards to specify the names of operations or
attributes. If you do not explicitly specify any operations or attributes, the genie
generates signatures for all operations and attributes.

By default, wild cards are matched only against names of operations and
attributes in the specified IDL file. If you specify the -include option, wildcards
are also matched against all operations and attributes in the included IDL files.

By default, cpp_poa_op.tcl writes generated operations to file tmp. You can
specify a different file name with the -o command-line option:

> idlgen cpp_poa_op.tcl bankdemo.idl -o ops.txt "*::close"

bankdemo.idl:
idlgen: creating ops.txt
Generating signatures for BankDemo::Account::close
 164

Configuration Settings
Configuration Settings
The configuration file idlgen.cfg contains default settings for the C++ genie
cpp_poa_genie.tcl at the scope default.cpp_poa_genie.

Some other settings are not specific to cpp_poa_genie.tcl but are used by the
std/cpp_poa_boa_lib.tcl library, which maps IDL constructs to their C++
equivalents. cpp_poa_genie.tcl uses this library extensively, so these settings
affect the output that it generates. They are held in the scope default.cpp.

For a full listing of these settings, refer to the CORBA Code Generation Toolkit
Guide.
165

CHAPTER 5 | Developing Applications with Genies
 166

CHAPTER 6

ORB Initialization
and Shutdown
The mechanisms for initializing and shutting down the ORB on a
client and a server are the same.

Overview The main() of both sever and client must perform these steps:

• Initialize the ORB by calling CORBA::ORB_init().

• Shut down and destroy the ORB, by calling shutdown() and destroy() on

the ORB.

Orbix also provides its own IT_TerminationHandler class, which enables
applications to handle delivery of Ctrl-C and similar events in a portable
manner. For more information, see “Termination Handler” on page 285.

In this chapter This chapter contains the following sections:

Initializing the ORB Runtime page 168

Shutting Down the ORB page 170
167

CHAPTER 6 | ORB Initialization and Shutdown
Initializing the ORB Runtime

Overview Before an application can start any CORBA-related activity, it must initialize the
ORB runtime by calling ORB_init(). ORB_init() returns an object reference to
the ORB object; this, in turn, lets the client obtain references to other CORBA
objects, and make other CORBA-related calls.

Calling within main() It is common practice to set a global variable with the ORB reference, so the
ORB object is accessible to most parts of the code. However, you should call
ORB_init() only after you call main() to ensure access to command line
arguments. ORB_init() scans its arguments parameter for command-line
options that start with -ORB and removes them. The arguments that remain can
be assumed to be application-specific.

Supplying an ORB name You can supply an ORB name as an argument; this name determines the
configuration information that the ORB uses. If you supply null, Orbix uses the
ORB identifier as the default ORB name. ORB names and configuration are
discussed in the Application Server Platform Administrator’s Guide.

C++ mapping ORB_init() is defined as follows:

ORB_init() expects a reference to argc and a non-constant pointer to aaccv.
ORB_init() scans the passed argument vector for command-line options that
start with -ORB and removes them.

namespace CORBA {

// ...
 ORB_ptr ORB_init(
 int & argc,
 char ** aaccv,
 const char * orb_identifier = ""
);
 // ...
}

 168

Initializing the ORB Runtime
Registering portable interceptors During ORB initialization, portable interceptors are instantiated and registered
through an ORB initializer. The client and server applications must register the
ORB initializer before calling ORB_init(). For more information, see
“Registering Portable Interceptors” on page 700.
169

CHAPTER 6 | ORB Initialization and Shutdown
Shutting Down the ORB

Overview For maximum portability and to ensure against resource leaks, a client or server
must always shut down and destroy the ORB at the end of main():

• shutdown() stops all server processing, deactivates all POA managers,

destroys all POAs, and causes the run() loop to terminate. shutdown()

takes a single Boolean argument; if set to true, the call blocks until the

shutdown process completes before it returns control to the caller. If set to

false, a background thread is created to handle shutdown, and the call

returns immediately.

• destroy() destroys the ORB object and reclaims all resources associated

with it.

In this section This section discusses the following topics:

Shutting Down a Client page 171

Shutting down a server page 172
 170

Shutting Down the ORB
Shutting Down a Client
A client is a CORBA application that does not call CORBA::ORB::run() and
does not process incoming CORBA invocations.

Example 13 shows how a client is shut down:

1. A client calls shutdown() with the argument 1(TRUE), causing the

shutdown() operation to remain blocked until ORB shutdown is complete.

2. The last thing the client does is to call destroy(). You are required to call

destroy() for full CORBA compliancy.

Example 13: Shutting down a CORBA client

// C++
int main(int argc, char* argv[])
{
 CORBA::ORB_var orb;
 try
 {
 // ORB initialization not shown
 ...
 ...

1 // SHUTDOWN
 orb->shutdown(1);

2 orb->destroy();
 return 0;
 }
 catch (const CORBA::Exception& e)
 {
 cout << "Exception occurred: " << e << endl;
 return 1;
 }
}

Note: The destroy() function has no effect in Orbix. Hence, it can be
omitted without affecting the runtime behavior of an Orbix application.
171

CHAPTER 6 | ORB Initialization and Shutdown
Shutting down a server

Overview Because servers typically process invocations by calling CORBA::ORB::run(),
which blocks indefinitely, CORBA::ORB::shutdown() cannot be called from the
main thread. The following are the main ways of shutting down a server:

• Call shutdown(0) from a signal handler.

• Call shutdown(0) from a subthread.

• Call shutdown(0) in the context of an operation invocation.

Using a signal handler Example 14 illustrates shutting down a CORBA server using a signal handler:

Example 14: Shutting down a server from a signal handler

// C++
CORBA::ORB_var global_orb;

void termination_handler_callback(long sig_type)
{
 if (!CORBA::is_nil(global_orb))
 {
 cout << "Shutting down ORB." << endl;
 global_orb->shutdown(0);
 }
 else
 {
 cout << "ORB not initialised, aborting." << endl;
 abort();
 }
}
int main(int argc, char* argv[])
{
 IT_TerminationHandler

termination_handler(termination_handler_callback);

 global_orb = CORBA::ORB_init(argc, argv);
 ...
 ...
 global_orb->run();
 global_orb->destroy();
 return 0;
}

 172

Shutting Down the ORB
In this example, CORBA::ORB::shutdown() is called with a 0 (FALSE)
argument from a signal handler. The shutdown() operation is not called at the
end of main().

See “Create a Termination Handler Object” on page 82 for a detailed description
of the shutdown procedure for a server that uses a signal handler.

Note: Pay attention to the value of the flag passed to shutdown(). You can
easily cause deadlock in a server by calling shutdown(1) which forces
shutdown() to block until the ORB shutdown is complete. In a server,
shutdown(0), which returns immediately, is the appropriate form.
173

CHAPTER 6 | ORB Initialization and Shutdown
 174

CHAPTER 7

Using Policies
Orbix supports a number of CORBA and proprietary policies that
control the behavior of application components.

Most policies are locality-constrained; that is, they apply only to the server or
client on which they are set. Therefore, policies can generally be divided into
server-side and client-side policies:

• Server-side policies generally apply to the processing of requests on object

implementations. Server-side policies can be set programmatically and in

the configuration, and applied to the server’s ORB and its POAs.

• client-side policies apply to invocations that are made from the client

process on an object reference. Client-side policies can be set

programmatically and in the configuration, and applied to the client’s

ORB, to a thread, and to an object reference.

The procedure for setting policies programmatically is the same for both client
and server:

1. Create the CORBA::Policy object for the desired policy.

2. Add the Policy object to a PolicyList.

3. Apply the PolicyList to the appropriate target—ORB, POA, thread, or

object reference.

In this chapter This chapter discusses issues that are common to all client and server policies.

Creating Policy and PolicyList Objects page 177

Setting Orb and Thread Policies page 179
175

CHAPTER 7 | Using Policies
For detailed information about specific policies, refer to the chapters that cover
client and POA development: “Developing a Client” on page 191, and
“Managing Server Objects” on page 289.

Setting Server-Side Policies page 181

Setting Client Policies page 183

Getting Policies page 188
 176

Creating Policy and PolicyList Objects
Creating Policy and PolicyList Objects
Two methods are generally available to create policy objects:

• To apply policies to a POA, use the appropriate policy factory from the

PortableServer::POA interface.

• Call ORB::create_policy() on the ORB.

 After you create the required policy objects, you add them to a PolicyList. The
PolicyList is then applied to the desired application component.

Using POA policy factories The PortableServer::POA interface provides factories for creating
CORBA::Policy objects that apply only to a POA (see Table 12 on page 296).
For example, the following code uses POA factories to create policy objects that
specify PERSISTENT and USER_ID policies for a POA, and adds these policies to
a PolicyList.

Orbix also provides several proprietary policies to control POA behavior (see
page 177). These policies require you to call create_policy() on the ORB to
create Policy objects, as described in the next section.

Calling create_policy() You call create_policy() on the ORB to create Policy objects. For example,
the following code creates a PolicyList that sets a SyncScope policy of
SYNC_WITH_SERVER; you can then use this PolicyList to set client policy
overrides at the ORB, thread, or object scope:

CORBA::PolicyList policies;
policies.length (2);

// Use root POA to create POA policies
policies[0] = poa–>create_lifespan_policy
 (PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy
 (PortableServer::USER_ID)
177

CHAPTER 7 | Using Policies
#include <omg/messaging.hh>;
// ...
CORBA::PolicyList policies(1);
policies.length(1);
CORBA::Any policy_value;
policy_any <<= Messaging::SYNC_WITH_SERVER;

policies[0] = orb->create_policy(
 Messaging::SYNC_SCOPE_POLICY_TYPE, policy_value);
 178

Setting Orb and Thread Policies
Setting Orb and Thread Policies
The CORBA::PolicyManager interface provides the operations that a program
requires to access and set ORB policies. CORBA::PolicyCurrent is an empty
interface that simply inherits all PolicyManager operations; it provides access to
client-side policies at the thread scope.

ORB policies override system defaults, while thread policies override policies
set on a system or ORB level. You obtain a PolicyManager or PolicyCurrent
through resolve_initial_references():

• resolve_initial_references ("ORBPolicyManager") returns the

ORB’s PolicyManager. Both server- and client-side policies can be applied

at the ORB level.

• resolve_initial_references ("PolicyCurrent") returns a thread’s

PolicyCurrent. Only client-side policies can be applied to a thread.

The CORBA module contains the following interface definitions and related
definitions to manage ORB and thread policies:

module CORBA {
 // ...

 enum SetOverrideType
 {
 SET_OVERRIDE,
 ADD_OVERRIDE
 };

 exception InvalidPolicies
 {
 sequence<unsigned short> indices;
 };
179

CHAPTER 7 | Using Policies
set_policy_overrides() overrides policies of the same PolicyType that are set at
a higher scope. The operation takes two arguments:

• A PolicyList sequence of Policy object references that specify the policy

overrides.

• An argument of type SetOverrideType:

ADD_OVERRIDE adds these policies to the policies already in effect.

SET_OVERRIDE removes all previous policy overrides and establishes the

specified policies as the only override policies in effect at the given scope.

set_policy_overrides() returns a new proxy that has the specified policies in
effect; the original proxy remains unchanged.

To remove all overrides, supply an empty PolicyList and SET_OVERRIDE as
arguments.

get_policy_overrides() returns a PolicyList of object-level overrides that are
in effect for the specified PolicyTypes. The operation takes a single argument, a
PolicyTypeSeq that specifies the PolicyTypes to query. If the PolicyTypeSeq
argument is empty, the operation returns with all overrides for the given scope.
If no overrides are in effect for the specified PolicyTypes, the operation returns
an empty PolicyList.

After get_policy_overrides() returns a PolicyList, you can iterate through
the individual Policy objects and obtain the actual setting in each one by
narrowing it to the appropriate derivation (see “Getting Policies” on page 188).

 interface PolicyManager {
 PolicyList
 get_policy_overrides(in PolicyTypeSeq ts);

 void
 set_policy_overrides(
 in PolicyList policies,
 in SetOverrideType set_add
) raises (InvalidPolicies);
 };

 interface PolicyCurrent : PolicyManager, Current
 {
 };
 // ...
}

 180

Setting Server-Side Policies
Setting Server-Side Policies
Orbix provides a set of default policies that are effective if no policy is explicitly
set in the configuration or programmatically. You can explicitly set server
policies at three scopes, listed in ascending order of precedence:

1. In the configuration, so they apply to all ORBs that are in the scope of a

given policy setting. For a complete list of policies that you can set in the

configuration, refer to the Application Server Platform Administrator’s

Guide.

2. On the server’s ORB, so they apply to all POAs that derive from that

ORB’s root POA. The ORB has a PolicyManager with operations that let

you access and set policies on the server ORB (see “Setting Orb and

Thread Policies” on page 179).

3. On individual POAs, so they apply only to requests that are processed by

that POA. Each POA can have its own set of policies (see “Using POA

Policies” on page 300).

You can set policies in any combination at all scopes. If settings are found for
the same policy type at more than one scope, the policy at the lowest scope
prevails.
181

CHAPTER 7 | Using Policies
Most server-side policies are POA-specific. POA policies are typically attached
to a POA when it is created, by supplying a PolicyList object as an argument to
create_POA(). The following code creates POA persistentPOA as a child of
the root POA, and attaches a PolicyList to it:

In general, you use different sets of policies in order to differentiate among
various POAs within the same server process, where each POA is defined in a
way that best accommodates the needs of the objects that it processes. So, a
server process that contains the POA persistentPOA might also contain a POA
that supports only transient object references, and only handles requests for
callback objects.

For more information about using POA policies, see page 300.

//get an object reference to the root POA
CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = POA::_narrow(obj);

//create policy object
CORBA::PolicyList policies;
policies.length (2);

// set policy object with desired policies
policies[0] = poa–>create_lifespan_policy
 (PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy
 (PortableServer::USER_ID)

//create a POA for persistent objects
poa = poa->create_POA("persistentPOA", NULL, policies);
 182

Setting Client Policies
Setting Client Policies
Orbix provides a set of default policies that are effective if no policy is explicitly
set in the configuration or programmatically. Client policies can be set at four
scopes, listed here in ascending order of precedence:

1. In the configuration, so they apply to all ORBs that are in the scope of a

given policy setting. For a complete list of policies that you can set in the

configuration, refer to the Application Server Platform Administrator’s

Guide.

2. On the client’s ORB, so they apply to all invocations. The ORB has a

PolicyManager with operations that let you access and set policies on the

client ORB (see “Setting Orb and Thread Policies” on page 179).

3. On a given thread, so they apply only to invocations on that thread. Each

client thread has a PolicyCurrent with operations that let you access and set

policies on that thread (see page 179).

4. On individual object references, so they apply only to invocations on those

objects. Each object reference can have its own set of policies; the Object

interface provides operations that let you access and set an object

reference’s quality of service policies (see “Managing Object Reference

Policies” on page 185).
183

CHAPTER 7 | Using Policies
Setting Policies at Different Scopes
You can set policies in any combination at all scopes. If settings are found for
the same policy type at more than one scope, the policy at the lowest scope
prevails.

For example, the SyncScope policy type determines how quickly a client
resumes processing after sending one-way requests. The default SyncScope
policy is SYNC_NONE: Orbix clients resume processing immediately after sending
one-way requests.

You can set this policy differently on the client’s ORB, threads, and individual
object references. For example, you might leave the default SyncScope policy
unchanged at the ORB scope, set a thread to SYNC_WITH_SERVER; and set certain
objects within that thread to SYNC_WITH_TARGET. Given these quality of service
settings, the client blocks on one-way invocations as follows:

• Outside the thread, the client never blocks.

• Within the thread, the client always blocks until it knows whether the

invocations reached the server.

• For all objects within the thread that have SYNC_WITH_TARGET policies, the

client blocks until the request is fully processed.
 184

Setting Client Policies
Managing Object Reference Policies
The CORBA::Object interface contains the following operations to manage
object policies:

get_client_policy() returns the policy override that is in effect for the specified
PolicyType. This method obtains the effective policy override by checking each
scope until it finds a policy setting: first at object scope, then thread scope, and
finally ORB scope. If no override is set at any scope, the system default is
returned.

get_policy() returns the object’s effective policy for the specified PolicyType.
The effective policy is the intersection of values allowed by the object’s
effective override —as returned by get_client_policy()—and the policy that
is set in the object’s IOR. If the intersection is empty, the method raises
exception INV_POLICY. Otherwise, it returns a policy whose value is legally
within the intersection. If the IOR has no policy set for the PolicyType, the
method returns the object-level override.

interface Object {
 // ...
 Policy
 get_client_policy(in PolicyType type);

 Policy
 get_policy(in PolicyType type);

 PolicyList
 get_policy_overrides(in PolicyTypeSeq ts);

 Object
 set_policy_overrides(
 in PolicyList policies,
 in SetOverrideType set_add
) raises (InvalidPolicies);

 boolean
 validate_connection(out PolicyList inconsistent_policies);
};
185

CHAPTER 7 | Using Policies
get_policy_overrides() returns a PolicyList of overrides that are in effect for
the specified PolicyTypes. The operation takes a single argument, a
PolicyTypeSeq that specifies the PolicyTypes to query. If the PolicyTypeSeq
argument is empty, the operation returns with all overrides for the given scope.
If no overrides are in effect for the specified PolicyTypes, the operation returns
an empty PolicyList.

After get_policy_overrides() returns a PolicyList, you can iterate through
the individual Policy objects and obtain the actual setting in each one by
narrowing it to the appropriate derivation (see “Getting Policies” on page 188).

set_policy_overrides() overrides policies of the same PolicyType that are set at
a higher scope, and applies them to the new object reference that it returns. The
operation takes two arguments:

• A PolicyList sequence of Policy object references that specify the policy

overrides.

• An argument of type SetOverrideType:

♦ ADD_OVERRIDE adds these policies to the policies already in effect.

♦ SET_OVERRIDE removes all previous policy overrides and establishes

the specified policies as the only override policies in effect at the

given scope.

To remove all overrides, supply an empty PolicyList and SET_OVERRIDE as
arguments.

validate_connection() returns true if the object’s effective policies allow
invocations on that object. This method forces rebinding if one of these
conditions is true:

• The object reference is not yet bound.

• The object reference is bound but the current policy overrides have

changed since the last binding occurred; or the binding is invalid for some

other reason.

The method returns false if the object’s effective policies cause invocations to
raise the exception INV_POLICY. If the current effective policies are
incompatible, the output parameter inconsistent_policies returns with a
PolicyList of those policies that are at fault.

If binding fails for a reason that is unrelated to policies,
validate_connections() raises the appropriate system exception.
 186

Setting Client Policies
A client typically calls validate_connections() when its RebindPolicy is set
to NO_REBIND.
187

CHAPTER 7 | Using Policies
Getting Policies
As shown earlier, CORBA::PolicyManager, CORBA::PolicyCurrent, and
CORBA::Object each provide operations that allow programmatic access to the
effective policies for an ORB, thread, and object. Accessor operations obtain a
PolicyList for the given scope. After you get a PolicyList, you can iterate
over its Policy objects. Each Policy object has an accessor method that
identifies its PolicyType. You can then use the Policy object’s PolicyType to
narrow to the appropriate type-specific Policy derivation—for example, a
SyncScopePolicy object. Each derived object provides its own accessor method
that obtains the policy in effect for that scope.

The Messaging module provides these PolicyType definitions:

module Messaging
{
 // Messaging Quality of Service

 typedef short RebindMode;

 const RebindMode TRANSPARENT = 0;
 const RebindMode NO_REBIND = 1;
 const RebindMode NO_RECONNECT = 2;

 typedef short SyncScope;

 const SyncScope SYNC_NONE = 0;
 const SyncScope SYNC_WITH_TRANSPORT = 1;
 const SyncScope SYNC_WITH_SERVER = 2;
 const SyncScope SYNC_WITH_TARGET = 3;

 // PolicyType constants

 const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
 const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;

 // Locally-Constrained Policy Objects

 // Rebind Policy (default = TRANSPARENT)
 readonly attribute RebindMode rebind_mode;
 };
 188

Getting Policies
For example, the following code gets the ORB’s SyncScope policy:

 interface RebindPolicy : CORBA::Policy {
 // Synchronization Policy (default = SYNC_WITH_TRANSPORT)

 interface SyncScopePolicy : CORBA::Policy {
 readonly attribute SyncScope synchronization;
 };
 ...
}

#include <omg/messaging.hh>
...
// get reference to PolicyManager

CORBA::Object_var object;
object = orb->resolve_initial_references("ORBPolicyManager");

// narrow
CORBA::PolicyManager_var policy_mgr =
 CORBA::PolicyManager::_narrow(object);

// set SyncScope policy at ORB scope (not shown)
// ...

// get SyncScope policy at ORB scope
CORBA::PolicyTypeSeq types;
types.length(1);
types[0] = SYNC_SCOPE_POLICY_TYPE;

// get PolicyList from ORB’s PolicyManager
CORBA::PolicyList_var pList =
 policy_mgr->get_policy_overrides(types);

// evaluate first Policy in PolicyList
Messaging::SyncScopePolicy_var sync_p =
 Messaging::SyncScopePolicy::_narrow(pList[0]);

Messaging::SyncScope sync_policy = sync_p->synchronization();

cout << "Effective SyncScope policy at ORB level is "
 << sync_policy << endl;
189

CHAPTER 7 | Using Policies
 190

CHAPTER 8

Developing a
Client
A CORBA client initializes the ORB runtime, handles object
references, invokes operations on objects, and handles exceptions
that these operations throw.

In this chapter This chapter covers the following topics:

For information about exception handling, see Chapter 13.

Mapping IDL Interfaces to Proxies

Using Object References

Initializing and Shutting Down the ORB

Invoking Operations and Attributes

Passing Parameters in Client Invocations

Client Policies

Implementing Callback Objects
191

CHAPTER 8 | Developing a Client
Mapping IDL Interfaces to Proxies
When you compile IDL, the compiler maps each IDL interface to a client-side
proxy class of the same name. Proxy classes implement the client-side call stubs
that marshal parameter values and send operation invocations to the correct
destination object. When a client invokes on a proxy method that corresponds to
an IDL operation, Orbix conveys the call to the corresponding server object,
whether remote or local.

The client application accesses proxy methods only through an object reference.
When the client brings an object reference into its address space, the client
runtime ORB instantiates a proxy to represent the object. In other words, a proxy
acts as a local ambassador for the remote object.

For example, interface Bank::Acount has this IDL definition:

module BankDemo
{
 typedef float CashAmount;
 exception InsufficientFunds {};
 // ...
 interface Account{
 void withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 // ... other operations not shown
 };
};
 192

Mapping IDL Interfaces to Proxies
Given this IDL, the IDL compiler generates the following proxy class definition
for the client implementation:

This proxy class demonstrates several characteristics that are true of all proxy
classes:

• Member methods derive their names from the corresponding interface

operations—in this case, withdrawal().

• The proxy class inherits from CORBA::Object, so the client can access all

the inherited functionality of a CORBA object.

• Account::withdrawal and all other member methods are defined as pure

virtual, so the client code cannot instantiate the Account proxy class or any

other proxy class. Instead, clients can access the Account object only

indirectly through object references.

namespace BankDemo
{
 typedef CORBA::Float CashAmount;
 // ...

 class Account : public virtual CORBA::Object
 {
 // ...
 virtual void withdraw(CashAmount amount) = 0;
 }
 // other operations not shown ...
}

193

CHAPTER 8 | Developing a Client
Using Object References
For each IDL interface definition, a POA server can generate and export
references to the corresponding object that it implements. To access this object
and invoke on its methods, a client must obtain an object reference—generally,
from a CORBA naming service.For each generated proxy class, the IDL
compiler also generates two other classes: interface_var and interface_ptr,
where interface is the name of the proxy class. Briefly, _ptr types are
unmanaged reference types, while _var types can be characterized as smart
pointers.

Both reference types support the indirection operator ->; when you invoke an
operation on a _var or _ptr reference, the corresponding proxy object redirects
the C++ call across the network to the appropriate member method of the
object’s servant.

While _ptr and _var references differ in a number of ways, they both act as
handles to the corresponding client proxy. The client code only needs to obtain
an object reference and use it to initialize the correct _ptr or _var reference. The
underlying proxy code and ORB runtime take all responsibility for ensuring
transparent access to the server object

For example, given the previous IDL, the IDL compiler generates two object
reference types to the CORBA object, Bank::Account: Account_ptr and
Account_var. You can use either reference type to invoke operations such as
withdrawal() on the Bank::Account object. Thus, the following two
invocations are equivalent:

// ...
// withdraw_amt is already initialized

// Use a _ptr reference
Account_ptr accp = ...; // get reference...
balance = accp->withdrawal(withdraw_amt);

// Use a _var reference
Account_var accv = ...; // get reference...
balance = accv->withdrawal(withdraw_amt);
 194

Using Object References
Note: Because _ptr types are not always implemented as actual C++
pointers, you should always use the _ptr definition. Regardless of the
underlying mapping, a _ptr type is always guaranteed to behave like a pointer,
so it is portable across all platforms and language mappings.
195

CHAPTER 8 | Developing a Client
Counting References
When you initialize a _var or _ptr reference with an object reference for the
first time, the client instantiates a proxy and sets that proxy’s reference count to
one. Each proxy class has a _duplicate() method, which allows a client to
create a copy of the target proxy. In practice, this method simply increments the
reference count on that proxy and returns a new _ptr reference to it. Actual
methods for copying _ptr and _var references differ and are addressed
separately in this chapter; conceptually, however, the result is the same.

For example, given an object reference to the Account interface, the following
client code initializes a _ptr reference as follows:

Account_ptr accp1 = ...; // get reference somehow

This instantiates an Account object proxy and automatically sets its reference
count to one:

The following code copies accp1 into reference accp2, thus incrementing the
Account proxy’s reference count to 2

Account_ptr accp2 = Account::_duplicate(accp1);

Figure 16: Reference count for Account proxy is set to one.

Account

1
accp1
 196

Using Object References
The client now has two initialized _ptr references, accp1 and accp2. Both refer
to the same proxy, so invocations on either are treated as invocations on the
same object.

When you release a reference, the reference count of the corresponding proxy is
automatically decremented. When the reference count is zero, Orbix deallocates
the proxy. You can release references in any order, but you can only release a
reference once, and you must not use any reference after it is released.

Figure 17: Reference for Account proxy is incremented to 2.

Account

2
accp1

accp2

Note: A server object is completely unaware of its corresponding client
proxy and its life cycle. Thus, calling release() and _duplicate() on a
proxy reference has no effect on the server object.
197

CHAPTER 8 | Developing a Client
Nil References
Nil references are analogous to C++ null pointers and contain a special value to
indicate that the reference points nowhere. Nil references are useful mainly to
indicate “not there” or optional semantics. For example, if you have a lookup
operation that searches for objects via a key, it can return a nil reference to
indicate the “not found” condition instead of raising an exception. Similarly,
clients can pass a nil reference to an operation to indicate that no reference was
passed for this operation—that is, you can use a nil reference to simulate an
optional reference parameter.

You should only use the CORBA::is_nil() method to test whether a reference is
nil. All other attempts to test for nil have undefined behavior. For example, the
following code is not CORBA-compliant and can yield unpredictable results:

You cannot invoke operations on a nil reference. For example, the following
code has undefined behavior:

Object_ptr ref = ...;
if (ref != 0) { // WRONG! Use CORBA::is_nil
 // Use reference...
}

Account_ptr accp = Account::_nil();
// ...
CORBA::CashAmount bal = accp->balance(); // Crash imminent!
 198

Using Object References
Object Reference Operations
Because all object references inherit from CORBA::Object, you can invoke its
operations on any object reference. CORBA::Object is a pseudo-interface with
this definition:

Mappings In C++, these operations are mapped to CORBA::Object member methods as
follows:is_nil() is discussed earlier in this chapter (see page 198).

_duplicate(), and release() are discussed later in this chapter (see page 202).

Operation descriptions The following sections describe the remaining operations.

module CORBA{ //PIDL
// ..
 interface Object{
 Object duplicate()
 void release();
 boolean is_nil();
 boolean is_a(in string repository_id);
 boolean non_existent();
 boolean is_equivalent(in Object other_object);
 boolean hash(in unsigned long max);
 // ...
 }
};

// In namespace CORBA:

class Object {
public:
 static Object_ptr _duplicate(Object_ptr obj);
 void release(Type_ptr);
 Boolean is_nil(Type_ptr p);
 Boolean _is_a(const char * repository_id);
 Boolean _non_existent();
 Boolean _is_equivalent(Object_ptr other_obj);
 ULong _hash(ULong max);
 // ...
};
199

CHAPTER 8 | Developing a Client
_is_a() is similar to _narrow() in that it lets you to determine whether an object
supports a specific interface. For example:

The test for nil in this code example prevents the client program from making a
call via a nil object reference.

_is_a() lets applications manipulate IDL interfaces without static knowledge of
the IDL—that is, without having linked the IDL-generated stubs. Most
applications have static knowledge of IDL definitions, so they never need to call
_is_a(). In this case, you can rely on _narrow() to ascertain whether an object
supports the desired interface.

_non_existent() tests whether a CORBA object exists. _non_existent()
returns true if an object no longer exists. A return of true denotes that this
reference and all copies are no longer viable and should be released.

If _non_existent() needs to contact a remote server, the operation is liable to
raise system exceptions that have no bearing on the object’s existence—for
example, the client might be unable to connect to the server.

If you invoke a user-defined operation on a reference to a non-existent object,
the ORB raises the OBJECT_NOT_EXIST system exception. So, invoking an
operation on a reference to a non-existent object is safe, but the client must be
prepared to handle errors.

_is_equivalent() tests whether two references are identical. If
_is_equivalent() returns true, you can be sure that both references point to the
same object.

A false return does not necessarily indicate that the references denote different
objects, only that the internals of the two references differ in some way. The
information in references can vary among different ORB implementations. For
example, one vendor might enhance performance by adding cached information
to references, to speed up connection establishment. Because
_is_equivalent() tests for absolute identity, it cannot distinguish between
vendor-specific and generic information.

CORBA::Object_ptr obj = ...; // Get a reference

if (!CORBA::is_nil(obj) &&
obj->_is_a("IDL:BankDemo/Account:1.0"))

 // It's an Account object...
else
 // Some other type of object...
 200

Using Object References
_hash() returns a hash value in the range 0..max-1. The hash value remains
constant for the lifetime of the reference. Because the CORBA specifications
offer no hashing algorithm, the same reference on different ORBs can have
different hash values.

_hash() is guaranteed to be implemented as a local operation—that is, it will not
send a message on the wire.

_hash() is mainly useful for services such as the transaction service, which must
be able to determine efficiently whether a given reference is already a member
of a set of references. _hash() permits partitioning of a set of references into an
arbitrary number of equivalence classes, so set membership testing can be
performed in (amortized) constant time. Applications rarely need to call this
method.
201

CHAPTER 8 | Developing a Client
Using _ptr References
The IDL compiler defines a _ptr reference type for each IDL interface. In
general, you can think of a _ptr reference as a pointer to a proxy instance, with
the same semantics and requirements as any C++ pointer.

Duplicating and releasing
references

To make a copy of a _ptr reference, invoke the static _duplicate() member
method on an existing object reference. For example:

_duplicate() makes an exact copy of a reference. The copy and the original are
indistinguishable from each other. As shown earlier (see “Counting References”
on page 196), _duplicate() also makes a deep copy of the target reference, so
the reference count on the proxy object is incremented. Consequently, you must
call release() on all duplicated references to destroy them and prevent memory
leaks.

To destroy a reference, use the release method. For example:

_duplicate() is type safe. To copy an Account reference, supply an Account
reference argument to _duplicate(). Conversely, the CORBA namespace
contains only one release() method, which releases object references of any
type.

Widening and narrowing _ptr
references

Proxy classes emulate the inheritance hierarchy of the IDL interfaces from
which they are generated. Thus, you can widen and narrow _ptr references to
the corresponding proxies.

Widening assignments Object references to proxy instances conform to C++ rules for type
compatibility. Thus, you can assign a derived reference to a base reference, or
pass a derived reference where a base reference is expected.

Account_ptr acc1 = ...; // Get ref from somewhere...
Account_ptr acc2; // acc2 has undefined contents
acc2 = Account::_duplicate(acc1); // Both reference same

Account

Account_ptr accp = ...; // Get reference from somewhere...
// ...Use accp
CORBA::release(accp); // Don't want to use Account anymore
 202

Using Object References
For example, the following IDL defines the CheckingAccount interface, which
inherits from the Account interface shown earlier:

Given this inheritance hierarchy, the following widening assignments are legal:

Ordinary assignments between _ptr references have no effect on the reference
count. Thus, the assignments shown in the previous code can be characterized as
shown in Figure 18:

Because the reference count is only 1, calling release() on any of these
references decrements the proxy reference count to 0, causing Orbix to
deallocate the proxy. Thereafter, all references to this proxy are invalid.

interface CheckingAccount : Account {
 exception InsufficientFunds {};
 readonly attribute CashAmount overdraftLimit;
 boolean orderCheckBook ();
};

CheckingAccount_ptr ck = ...; // Get checking account
reference

Account_ptr accp = ck; // Widening assignment
CORBA::Object_ptr obj1 = ck; // Widening assignment
CORBA::Object_ptr obj2 = accp; // Widening assignment

Note: Because all proxies inherit from CORBA::Object, you can assign any
type of object reference to Object_ptr, such as _ptr references obj1 and
obj2.

Figure 18: Multiple _ptr references to a proxy object can leave the reference
count unchanged.

Account

1

obj2

ck

accp

obj1
203

CHAPTER 8 | Developing a Client
Type-safe narrowing of _ptr
references

For each interface, the IDL compiler generates a static _narrow() method that
lets you down-cast a _ptr reference at runtime. For example, the following code
narrows an Account reference to a CheckingAccount reference:

Because _narrow() calls _duplicate(), it increments the reference count on
the Account proxy—in this example, to 2. Consequently, the code must release
both references.

BankDemo::Account_ptr accp = ..; // get a reference from
somewhere

BankDemo::CheckingAccount_ptr ckp =
 BankDemo::CheckingAccount::_narrow(accp);
if (CORBA::is_nil(ckp))
{
 // accp is not of type CheckingAccount
}
else
{
 // accp is a CheckingAccount type, so ckp is a valid

reference
}
// ...
// release references to Account proxy
CORBA::release(ckp);
CORBA::release(accp);
 204

Using Object References
Using _var References
The IDL compiler defines a _var class type for each IDL interface, which lets
you instantiate _var references in the client code. Each _var references takes
ownership of the reference that it is initialized with, and calls
CORBA::release() when it goes out of scope.

If you initialize a _var reference with a _ptr reference, you cannot suffer a
resource leak because, when it goes out of scope, the _var reference
automatically decrements the reference count on the proxy.

_var references are also useful for gaining exception safety. For example, if you
keep a reference you have just obtained as a _var reference, you can throw an
exception at any time and it does not leak the reference because the C++ run
time system calls the _var’s destructor as it unwinds the stack

_var class member methods Given the Account interface shown earlier, the IDL compiler generates an
Account_var class with the following definition:

Account_var(): The default constructor initializes the private _ptr reference to
nil.

Account_var(Account_ptr &): Constructing a _var from a _ptr reference
passes ownership of the _ptr reference to the _var. This method leaves the
proxy reference count unchanged.

class Account_var{
public:
 Account_var();
 Account_var(Account_ptr &);
 Account_var(const Account_var &);
 ~Account_var();
 Account_var & operator=(Account_ptr &);
 Account_var & operator=(const Account_var &);
 operator Account_ptr & ();
 Account_ptr in() const;
 Account_ptr & in inout();
 Account_ptr & in out();
 Account_ptr _retn();

private:
 Account_ptr p; //actual reference stored here
};
205

CHAPTER 8 | Developing a Client
Account_var(const Account_var &): Copy-constructing a _var makes a deep
copy by calling _duplicate() on the source reference. This method increments
the proxy reference count.

~Account_var(): The destructor decrements the proxy reference count by
calling release().

Account_var & operator=(Account_ptr &) / Account_var & operator=(const
Account_var &): Assignment from a pointer passes ownership and leaves the
proxy reference count unchanged; assignment from another Account_var makes
a deep copy and increments the reference count.

operator Account_ptr &(): This conversion operator lets you pass a _var
reference where a _ptr reference is expected, so use of _var references is
transparent for assignment and parameter passing.

Account_ptr operator->() const: The indirection operator permits access to the
member methods on the proxy via a _var by returning the internal _ptr
reference.

Account_ptr in() const / Account_ptr & inout() / Account_ptr & out():

Explicit conversion operators are provided for compilers that incorrectly apply
C++ argument-matching rules.

Account_ptr _retn(): The _retn() method removes ownership of a reference
from a _var without decrementing the reference count. This is useful if a method
must allocate and return a _var reference, but also throws exceptions.

Widening and narrowing _var
References

You can copy-construct and assign from _var references, but only if both
references are of the same type. For example, the following code is valid:

Account_var accv1 = ...; // get object reference
Account_var accv2(accv1); // Fine, deep copy
accv1 = accv2; // Fine, deep assignment
 206

Using Object References
Unlike _ptr references, _var references have no inheritance relationship, so
implicit widening among _var references is not allowed. For example, you
cannot use a CheckingAccount_var to initialize an Account_var:

To widen a _var reference, you must first call _duplicate() on the original
_var. Although _duplicate() expects a _ptr reference, a _var can be supplied
in its place, as with any method that expects a _ptr reference. _duplicate()
returns a _ptr reference that can then be implicitly widened.

For example, in the following statement, _duplicate() receives a
CheckingAccount_var:

Account_var accv1(CheckingAccount::_duplicate(ckv));

_duplicate() returns a CheckingAccount_ptr that is implicitly widened to an
Account_ptr as the argument to the Account_var constructor. The constructor
in turn takes ownership, so the copy made by _duplicate() is not leaked.

In the next statement, _duplicate() expects an Account_ptr:

Account_var accv2(Account::_duplicate(ckv));

In fact, a CheckingAccount_var argument is supplied, which has a conversion
operator to CheckingAccount_ptr. A CheckingAccount_ptr can be passed
where an Account_ptr is expected, so the compiler finds an argument match.
_duplicate() makes a copy of the passed reference and returns it as an
Account_ptr, which is adopted by the Account_var, and no leak occurs.

You can also use _duplicate() for implicit _var widening through assignment,
as in these examples:

You can freely mix _ptr and _var references; you only need to remember that
when you give a _ptr reference to a _var reference, the _var takes ownership:

CheckingAccount_var ckv = ...; // get object reference
accv1 = ckv; // Compile-time error
Account_var accv3(ckv); // Compile-time error

accv1 = CheckingAccount::_duplicate(ckv);
accv2 = Account::_duplicate(ckv);
207

CHAPTER 8 | Developing a Client
// Be careful of ownership when mixing _var and _ptr:
{
 CheckingAccount_var ckv = ...; // Get reference...
 Account_ptr accp = ckv; // OK, but ckv still has

ownership

 // Can use both ckv and accp here...

 CheckingAccount_ptr ckp = ...; // Get reference...
 ckv = ckp; // ckv now owner, accp dangles

 level = accp->balance(); // ERROR - accp dangles
} // ckv automatically releases its reference, ckp dangles!
level = ckp->balance() // ERROR -ckp dangles
 208

Using Object References
String Conversions
Object references can be converted to and from strings, which facilitates
persistent storage. When a client obtains a stringified reference, it can convert
the string back into an active reference and contact the referenced object. The
reference remains valid as long as the object remains viable. When the object is
destroyed, the reference becomes permanently invalid.

Operations The object_to_string() and string_to_object() operations are defined in
C++ as follows:

object_to_string() For example, the following code stringifies an Account object reference:

The example puts the return value from object_to_string in a String_var.
This ensures that the string is not leaked. This code prints an IOR (interoperable
reference) string whose format is similar to this:

IOR:
010000002000000049444c3a61636d652e636f6d2f4943532f436f6e74726f6c

// In <corba/orb.hh>:
namespace CORBA {
 // ...
 class ORB {
 public:
 char * object_to_string(Object_ptr op);
 Object_ptr string_to_object(const char *);
 // ...
 };
 // ...
}

BankDemo::Account_ptr accp = ...; // Account reference

// Write reference as a string to stdout
//
try {
 CORBA::String_var str = orb->object_to_string(accp);
 cout << str << endl;
} catch (...) {
 // Deal with error...
}

209

CHAPTER 8 | Developing a Client
c65723a312e300001000000000000004a000000010102000e0000003139322e3
36382e312e3231300049051b0000003a3e0231310c01000000c7010000234800
008000000000000000000010000000600000006000000010000001100

The stringified references returned by object_to_string() always contain the
prefix IOR:, followed by an even number of hexadecimal digits. Stringified
references do not contain any unusual characters, such as control characters or
embedded newlines, so they are suitable for text I/O.

string_to_object() To convert a string back into a reference, call string_to_object():

The CORBA specification defines the representation of stringified IOR
references, so it is interoperable across all ORBs that support the Internet
Inter-ORB Protocol (IIOP).

Although the IOR shown earlier looks large, its string representation is
misleading. The in-memory representation of references is much more compact.
Typically, the incremental memory overhead for each reference in a client can
be as little as 30 bytes.

You can also stringify or destringify a nil reference. Nil references look like one
of the following strings:

IOR:00000000000000010000000000000000
IOR:01000000010000000000000000000000

// Assume stringified reference is in aaccv[1]

try {
 CORBA::Object_ptr obj;
 obj = orb->string_to_object(accv[1]);
 if (CORBA::is_nil(obj))
 throw 0; // accv[1] is nil

 BankDemo::Account_ptr accp = BankDemo::Account::_narrow(obj);
 if (CORBA::is_nil(accp))
 throw 0; // Not an Account reference

 // Use accp reference...

 CORBA::release(accp); // Avoid leak

} catch (...) {
 // Deal with error...
}

 210

Using Object References
Constraints IOR string references should be used only for these tasks:

• Store and retrieve an IOR string to and from a storage medium such as disk

or tape.

• Conversion to an active reference.

It is inadvisable to rely on IOR string references as database keys for the
following reasons:

• Actual implementations of IOR strings can vary across different ORBs—

for example, vendors can add proprietary information to the string, such as

a time stamp. Given these differences, you cannot rely on consistent string

representations of any object reference.

• The actual size of IOR strings—between 200 and 600 bytes— makes them

prohibitively expensive to use as database keys.

In general, you should not compare one IOR string to another. To compare
object references, use is_equivalent() (see page 200).

Note: Stringified IOR references are one way to make references to initial
objects known to clients. However, distributing strings as e-mail messages or
writing them into shared file systems is neither a distributed nor a scalable
solution. More typically, applications obtain object references through the
naming service (see Chapter 18 on page 487).

Using corbaloc URL strings string_to_object() can also take as an argument a corbaloc-formatted URL,
and convert it into an object reference. A corbaloc URL denotes objects that can
be contacted by IIOP or resolve_initial_references().

A corbaloc URL uses one of the following formats:

rir-argument: A value that is valid for resolve_initial_references(), such
as NameService.

iiop-address: Identifies a single IIOP address with the following format:

[iiop]:[major-version-num.minor-version-num@]host-spec[:port-num]

IIOP version information is optional; if omitted, version 1.0 is assumed.
host-spec can specify either a DNS-style host name or a numeric IP address;
specification of port-num is optional.

corbaloc:rir:/rir-argument
corbaloc:iiop-address[, iiop-address].../key-string
211

CHAPTER 8 | Developing a Client
key-string: corresponds to the octet sequence in the object key member of a
stringified object reference, or an object’s named key that is defined in the
implementation repository.

For example, if you register the named key BankService for an IOR in the
implementation repository, a client can access an object reference with
string_to_object() as follows:

// assume that xyz.com specifies a location domain’s host
global_orb->string_to_object
 ("corbaloc:iiop:xyz.com/BankService");

The following code obtains an object reference to the naming service:

global_orb->string_to_object("corbaloc:rir:/NameService");

You can define a named key in the implementation repository through the
•itadmin named_key create command. For more information, see the
Application Server Platform Administrator’s Guide.
 212

Initializing and Shutting Down the ORB
Initializing and Shutting Down the ORB
Before a client application can start any CORBA-related activity, it must
initialize the ORB runtime by calling ORB_init(). ORB_init() returns an object
reference to the ORB object; this, in turn, lets the client obtain references to
other CORBA objects, and make other CORBA-related calls.

Procedures for ORB initialization and shutdown are the same for both servers
and clients. For detailed information, see “ORB Initialization and Shutdown” on
page 167.
213

CHAPTER 8 | Developing a Client
Invoking Operations and Attributes
For each IDL operation in an interface, the IDL compiler generates a method
with the name of the operation in the corresponding proxy. It also maps each
unqualified attribute to a pair of overloaded methods with the name of the
attribute, where one method acts as an accessor and the other acts as a modifier.
For readonly attributes, the compiler generates only an accessor method.

An IDL attribute definition is functionally equivalent to a pair of set/get
operation definitions, with this difference: attribute accessors and modifiers can
only raise system exceptions, while user exceptions apply only to operations.

For example, the following IDL defines a single attribute and two operations in
interface Test::Example:

The IDL compiler maps this definition’s members to the following methods in
the C++ proxy class Example. A client invokes on these methods as if their
implementations existed within its own address space:

module Test {

 interface Example {
 attribute string name;
 oneway void set_address(in string addr);
 string get_address();
 };
};

namespace Test {
// ...
class Example : public virtual CORBA::Object
 {
 public:
 // ...
 virtual char* name() = 0;
 virtual void name(const char* _itvar_name) = 0;
 virtual void set_address(const char* addr) = 0;
 virtual char* get_address() = 0;
 // ...
 };
};
 214

Passing Parameters in Client Invocations
Passing Parameters in Client Invocations
The C++ mapping has strict rules on passing parameters to operations. Several
objectives underlie these rules:

• Avoid data copying.

• Deal with variable-length types, which are allocated by the sender and

deallocated by the receiver.

• Map the source code so it is location-transparent; source code does not

need to consider whether or not client and server are collocated.

In general, a variable-length parameter is always dynamically allocated, and the
receiver of the value is responsible for deallocation. For variable-length out
parameters and return values, the server allocates the value and the client
deallocates it.

For string, reference, and variable-length array inout parameters, the client
dynamically allocates the value and passes it to the server. The server can either
leave the initial value’s memory alone or it can deallocate the initial value and
allocate a different value to return to the client; either way, responsibility for
deallocation of a variable-length inout parameter remains with the client.

All other parameters are either fixed-length or in parameters. For these, dynamic
allocation is unnecessary, and parameters are passed either by value for small
types, or by reference for complex types.
215

CHAPTER 8 | Developing a Client
Simple Parameters
For simple fixed-length types, parameters are passed by value if they are in
parameters or return values, and are passed by reference if they are inout or out
parameters.

For example, the following IDL defines an operation with simple parameters:

The proxy member method signature is the same as the signature of any other
C++ method that passes simple types in these directions:

For example, a client can invoke op as follows:

The client passes the constant 500 as the in parameter. For the inout parameter,
the client passes the initial value 99, which the server can change. No
initialization is necessary for the out parameter and the return value. No
dynamic allocation is required; the client can pass variables on the stack, on the
heap, or in the data segment (global or static variables).

interface Example {
 long op(
 in long in_p, inout long inout_p, out long out_p
);
};

virtual CORBA::Long
op(
 CORBA::Long in_p,
 CORBA::Long & inout_p,
 CORBA::Long & out_p
) = 0;

Example_var ev = ...; // Get reference

CORBA::Long inout = 99; // Note initialization
CORBA::Long out; // No initialization needed
CORBA::Long ret_val;

ret_val = ev->op(500, inout, out); // Invoke CORBA operation

cout << "ret_val: " << ret_val << endl;
cout << "inout: " << inout << endl;
cout << "out: " << out << endl;
 216

Passing Parameters in Client Invocations
Fixed-Length Complex Parameters
For fixed-length complex types such as fixed-length structures, parameters are
passed by reference or constant reference and are returned by value.

For example, the following IDL defines an operation with fixed-length complex
parameters:

The corresponding proxy method has the following signature:

Using the generated proxy method in the client is easy, and no dynamic memory
allocations are required:

struct FLS { // Fixed-Length Structure
 long long_val;
 double double_val;
};

interface Example {
 FLS op(in FLS in_p, inout FLS inout_p, out FLS out_p);
};

typedef FLS & FLS_out;
// ...
virtual FLS
op(const FLS & in_p, FLS & inout_p, FLS_out out_p) = 0;

Example_var ev = ...; // Get reference

FLS in; // Initialize in param
in.long_val = 99;
in.double_val = 33.0;

FLS inout; // Initialize inout param
inout.long_val = 33;
in.double_val = 11.0;
217

CHAPTER 8 | Developing a Client
FLS out; // Out param
FLS ret_val; // Return value

ret_val = op(in, inout, out); // Make call

// inout may have been changed, and out and ret_val
// contain the values returned by the server.
 218

Passing Parameters in Client Invocations
Fixed-Length Array Parameters
Fixed-length array parameters follow the same parameter-passing rules as other
fixed-length types. However, an array that is passed in C++ degenerates to a
pointer to the first element, so the method signature is expressed in terms of
pointers to array slices.

For example, the following IDL defines an operation with fixed-length array
parameters:

The IDL compiler maps this IDL to the following C++ definitions:

For in, inout, and out parameters, memory is caller-allocated and need not be
on the heap; the method receives and, for inout and out parameters, modifies
the array via the passed pointer. For the return value, a pointer must be returned
to dynamically allocated memory, simply because there is no other way to return
an array in C++. Therefore, the client must deallocate the return value when it is
no longer wanted:

typedef long Larr[3];

interface Example {
 Larr op(in Larr in_p, inout Larr inout_p, out Larr out_p);
};

typedef CORBA::Long Larr[3];
typedef CORBA::Long Larr_slice;
typedef Larr_slice * Larr_out;
// ...
virtual Larr_slice * op(
 const Larr in_p, Larr_slice * inout_p, Larr_out out_p
) = 0;

Example_var ev = ...; // Get reference

Larr in = { 1, 2, 3 }; // Initialize in param
Larr inout = { 4, 5, 6 }; // Initialize inout param
Larr out; // out param
Larr_slice * ret_val; // return value
ret_val = ev->op(in, inout, out); // Make call

// Use results...
Larr_free(ret_val); // Must deallocate here!
219

CHAPTER 8 | Developing a Client
In the previous example, the call to Larr_free is required to prevent a memory
leak. Alternatively, you can use _var types to avoid the need for deallocation.
So, you can rewrite the previous example as follows:

_var types are well-suited to manage the transfer of memory ownership from
sender to receiver because they work transparently for both fixed- and
variable-length types.

Example_var ev = ...; // Get reference

Larr in = { 1, 2, 3 }; // Initialize in param
Larr inout = { 4, 5, 6 }; // Initialize inout param
Larr out; // out param, note _var type!
Larr_var ret_val; // return value

ret_val = ev->op(in, inout, out); // Make call

// Use results...

// No need to deallocate anything here, ret_val takes care of it.
 220

Passing Parameters in Client Invocations
String Parameters
The C++ mapping does not encapsulate strings in a class, so string parameters
are passed as char *. Because strings are variable-length types, the following
memory management issues apply:

• in strings are passed as const char *, so the callee cannot modify the

string’s value. The passed string need not be allocated on the heap.

• inout strings must be allocated on the heap by the caller. The callee

receives a C++ reference to the string pointer. This is necessary because

the callee might need to reallocate the string if the new value is longer than

the initial value. Passing a reference to the callee lets the callee modify the

bytes of the string and the string pointer itself. Responsibility for

deallocating the string remains with the caller.

• out strings are dynamically allocated by the callee. Responsibility for

deallocating the string passes to the caller.

• Strings returned as the return value behave like out strings: they are

allocated by the callee and responsibility for deallocation passes to the

caller.

For example, the following IDL defines an operation with string parameters:

The IDL compiler maps this interface to the following class, in which string
parameters are passed as char *:

interface Example {
 string op(
 in string in_p,
 inout string inout_p,
 out string out_p
);
};

class String_out; // In the CORBA namespace
//...
virtual const char *
op(
 const char * in_p,
 char * & inout_p,
 CORBA::String_out out_p
) = 0;
221

CHAPTER 8 | Developing a Client
The following example shows how to invoke an operation that passes a string in
each possible direction:

This example illustrates the following points:

• The in parameter can be allocated anywhere; the example passes a string

literal that is allocated in the data segment.

• The caller must pass a dynamically allocated string as the inout parameter,

because the callee assumes that it can, if necessary, deallocate that

parameter.

• The caller must deallocate the inout and out parameter and the return

value.

The following example shows the same method call as before, but uses
String_var variables to deallocate memory:

Example_var ev = ...; // Get ref

char * inout = CORBA::string_dup("Hello"); // Initialize
char * out;
char * ret_val;

ret_val = ev->op("Input string", inout, out); // Make call

// Use the strings...

CORBA::string_free(inout); // We retain ownership
CORBA::string_free(out); // Caller passed responsibility
CORBA::string_free(ret_val); // Caller passed responsibility

Example_var ev = ...;

CORBA::String_var inout = CORBA::string_dup("Hello");
CORBA::String_var out;
CORBA::String_var ret_val;

ret_val = ev->op("Input string", inout, out);

// Use the strings...

// No need to deallocate there because the String_var
// variables take ownership.
 222

Passing Parameters in Client Invocations
Be careful not to pass a default-constructed String_var as an in or inout
parameter:

In this example, in and inout are initialized to the null pointer by the default
constructor. However, it is illegal to pass a null pointer across an interface; code
that does so is liable to crash or raise an exception.

Example_var ev = ...;

CORBA::String_var in; // Bad: no initialization
CORBA::String_var inout; // Bad: no initialization
CORBA::String_var out;
CORBA::String_var ret_val;

ret_val = ev->op(in, inout, out); // Oops :-(

Note: This restriction applies to all types that are passed by pointer, such as
arrays and variable-length types. Never pass a null pointer or an uninitialized
pointer. Only one exception applies: you can pass a nil reference, even if nil
references are implemented as null pointers.
223

CHAPTER 8 | Developing a Client
_out Types
IDL out parameters result in proxy signatures that use C++ _out types. _out
types ensure correct deallocation of previous results for _var types.

For example, the following IDL defines a single out parameter:

The IDL compiler generates the following class:

The following code fragment uses the Person interface, but leaks memory:

Because variable-length out parameters are dynamically allocated by the proxy
stub, the second call to get_name() causes the result of the first get_name call to
leak.

interface Person {
 void get_name(out string name);
 // ...
};

class Person {
public:
 void get_name(CORBA::String_out name);
 // ...
};

char * name;
Person_var person_1 = ...;
Person_var person_2 = ...;

person_1->get_name(name);
cout << "Name of person 1: " << name << endl;

person_2->get_name(name); // Bad news!
cout << "Name of person 2: " << name << endl;

CORBA::string_free(name); // Deallocate
 224

Passing Parameters in Client Invocations
The following code corrects this problem by deallocating variable-length out
parameters between invocations:

However, if we use _var types, no deallocation is required at all:

When the name variable is passed to get_name a second time, the mapping
implementation transparently deallocates the previous string. However, how
does the mapping manage to avoid deallocation for pointer types but deallocates
the previous value for _var types?

char * name;
Person_var person_1 = ...;
Person_var person_2 = ...;

person_1->get_name(name);
cout << "Name of person 1: " << name << endl;
CORBA::String_free(name); // Much better!

person_2->get_name(name); // No problem
cout << "Name of person 2: " << name << endl;
CORBA::String_free(name); // Deallocate

CORBA::String_var name; // Note String_var
Person_var person_1 = ...;
Person_var person_2 = ...;

person_1->get_name(name);
cout << "Name of person 1: " << name << endl;

person_2->get_name(name); // No leak here
cout << "Name of person 2: " << name << endl;

// No need to deallocate name
225

CHAPTER 8 | Developing a Client
The answer lies in the formal parameter type CORBA::String_out, which is a
class as outlined here:

This implementation of CORBA::String_out shows how char * out parameters
are left alone, but _var out parameters are deallocated.

If you pass a char * as an out parameter, the compiler looks for a way to
convert the char * into a String_out object. The single-argument constructor
for char * acts as a user-defined conversion operator, so the compiler finds an
argument match by constructing a temporary String_out object that is passed to
the method. Note that the char * constructor is passed a reference to the string,
which it binds to the private member variable m_ref. The constructor body then
assigns zero to the m_ref member. m_ref is a reference to the passed string, so
construction from a char * clears (sets to null) the actual argument that is
passed to the constructor, without deallocating the previous string.

On the other hand, if you pass a String_var as an out parameter, the compiler
uses the second constructor to construct the temporary String_out. That
constructor binds the m_ref member variable to the passed String_var’s
internal pointer and deallocates the current string before setting the passed string
pointer to null.

_out types are generated for all complex types, such as strings, sequences, and
structures. If a complex type has fixed length, then the generated _out type is
simply an alias for a reference to the actual type (see “Fixed-Length Complex
Parameters” on page 217 for an example).

class String_out { // In the CORBA namespace
public:
 String_out(char * & s): m_ref(s) { m_ref = 0 }
 String_out(String_var & s): m_ref(s.m_ref) {
 string_free(m_ref);
 m_ref = 0;
 }
 // Other member methods here...
private:
 char * & m_ref;
};

Note: You can ignore most of the implementation details for _out types. It is
only important to know that they serve to prevent memory leaks when you pass
a _var as an out parameter.
 226

Passing Parameters in Client Invocations
Variable-Length Complex Parameters
The parameter-passing rules for variable-length complex types differ from those
for fixed-length complex types. In particular, for out parameters and return
values, the caller is responsible for deallocating the value.

For example, the following IDL defines an operation with variable-length
complex parameters:

The IDL compiler maps this IDL to the following C++ definitions:

The following code calls the op() operation:

struct VLS { // Variable-Length Structure
 long long_val;
 string string_val;
};

interface Example {
 VLS op(in VLS in_p, inout VLS inout_p, out VLS out_p);
};

class VLS_out;
// ...
virtual VLS *
op(const VLS & in_p, VLS & inout_p, VLS_out out_p) = 0;

Example_var ev = ...; // Get reference

VLS in; // Initialize in param
in.long_val = 99;
in.string_val = CORBA::string_dup("Ninety-nine");

VLS inout; // Initialize inout param
inout.long_val = 86;
in.string_val = CORBA::string_dup("Eighty-six");

VLS * out; // Note *pointer* to out param
VLS * ret_val; // Note *pointer* to return value

ret_val = op(in, inout, out); // Make call
227

CHAPTER 8 | Developing a Client
As with fixed-length complex types, in and inout parameters can be ordinary
stack variables. However, both the out parameter and the return value are
dynamically allocated by the call. You are responsible for deallocating these
values when you no longer require them.

You can also use _var types to take care of the memory-management chores for
you, as in this modified version of the previous code:

// Use values...

delete out; // Make sure nothing is leaked
delete ret_val; // Ditto...

Example_var ev = ...; // Get reference

VLS in; // Initialize in param
in.long_val = 99;
in.string_val = CORBA::string_dup("Ninety-nine");

VLS inout; // Initialize inout param
inout.long_val = 86;
in.string_val = CORBA::string_dup("Eighty-six");

VLS_var out; // Note _var type
VLS_var ret_val; // Note _var type

ret_val = op(in, inout, out); // Make call

// Use values...

// No need to deallocate anything here

Note: Type Any is passed using the same rules—that is, out parameters and
return values are dynamically allocated by the stub and must be deallocated by
the caller. Of course, you can use CORBA::Any_var to achieve automatic
deallocation.
 228

Passing Parameters in Client Invocations
Variable-Length Array Parameters
Variable-length arrays are passed as parameters in the same way as fixed-length
arrays, except for out parameters: these are passed as a reference to a pointer. As
for strings, the generated _out class takes care of deallocating values from a
previous invocation held in _var types.

For example, the following IDL defines an operation with variable-length string
array parameters:

The IDL compiler maps this IDL to the following C++ definitions:

The following code calls the op() operation:

typedef string Sarr[3];

interface Example {
 Sarr op(in Sarr in_p, inout Sarr inout_p, out Sarr out_p);
};

typedef CORBA::String_mgr Sarr[3];
typedef CORBA::String_Mgr Sarr_slice;
class Sarr_out;
// ...
virtual Sarr_slice * op(
 const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) = 0;

Example_var ev = ...; // Get reference

Sarr in;
in[0] = CORBA::string_dup("Bjarne");
in[1] = CORBA::string_dup("Stan");
in[2] = CORBA::string_dup("Andrew");

Sarr inout;
inout[0] = CORBA::string_dup("Dennis");
inout[1] = CORBA::string_dup("Ken");
inout[2] = CORBA::string_dup("Brian");

Sarr_slice * out; // Pointer to array slice
Sarr_slice * ret_val; // Pointer to array slice
229

CHAPTER 8 | Developing a Client
As always, you can rewrite the code to use _var types, and so prevent memory
leaks:

ret_val = ev->op(in, inout, out); // Make call

// Use values...

Sarr_free(out); // Deallocate to avoid leak
Sarr_free(ret_val); // Ditto...

Example_var ev = ...; // Get reference

Sarr in;
in[0] = CORBA::string_dup("Bjarne");
in[1] = CORBA::string_dup("Stan");
in[2] = CORBA::string_dup("Andrew");

Sarr inout;
inout[0] = CORBA::string_dup("Dennis");
inout[1] = CORBA::string_dup("Ken");
inout[2] = CORBA::string_dup("Brian");

Sarr_var out; // Note _var type
Sarr_var ret_val; // Note _var type

ret_val = ev->op(in, inout, out); // Make call

// Use values...

// No need to free anything here
 230

Passing Parameters in Client Invocations
Object Reference Parameters
You pass object references as parameters as you do strings. For inout reference,
the caller must pass a C++ reference to a _ptr reference. For an out parameters
and return values, the caller is responsible for deallocation.

For example, the following IDL defines an operation with object reference
parameters:

The IDL compiler maps this IDL to the following C++ definitions:

The following code calls the op() operation:

Note that the code explicitly releases the references returned as the out
parameter and the return value.

interface Example {
 string greeting();
 Example op(
 in Example in_p,
 inout Example inout_p,
 out Example out_p
);
};

class Example_out;
// ...
virtual Example_ptr op(
 Example_ptr in_p, Example_ptr & inout_p, Example_out out_p
) = 0;

Example_var ev = ...;
Example_var in = ...; // Initialize in param
Example_var inout = ...; // Initialize inout param
Example_ptr out; // Note _ptr reference
Example_ptr ret_val; // Note _ptr reference

ret_val = ev->op(in, inout, out);

// Use references...

CORBA::release(out); // Deallocate
CORBA::release(ret_val); // Ditto...
231

CHAPTER 8 | Developing a Client
You can also rewrite this code to use _var references in order to avoid memory
leaks:

Example_var ev = ...;
Example_var in = ...; // Initialize in param
Example_var inout = ...; // Initialize inout param
Example_var out; // Note _var reference
Example_var ret_val; // Note _var reference

ret_val = ev->op(in, inout, out);

// Use references...

// No need to deallocate here
 232

Passing Parameters in Client Invocations
Parameter-Passing Rules: Summary
The following sections summarize the parameter-passing rules for the C++
mapping.

Never pass null or uninitialized pointers as in or inout parameters. As
shown earlier (see page 223), it is illegal to pass null pointers or uninitialized
pointers as inout or in parameters. The most likely outcome of ignoring this
rule is a core dump.

Nil object references are exempt from this rule, so it is safe to pass a nil
reference as a parameter.

Do not ignore variable-length return values. Ignoring return values can leak
memory. For example, the following interface defines operation
do_something() to return a string value:

The following client call on do_something() erroneously ignores its return
value:

Be careful never to ignore the return, because the memory that the stub allocates
to the return value can never be reclaimed.

Allocate string and reference inout parameters on the heap and deallocate
them after the call. String and reference inout parameters must be allocated on
the heap; ownership of the memory remains with the caller.

Deallocate variable-length return values and out parameters.

Variable-length types passed as return values or out parameters are passed by
pointer and are dynamically allocated by the stub. You must deallocate these
values to avoid memory leaks.

// interface Example {
// string do_something();
// };

Example_var ev = ...; // Get reference
ev->do_something(); // Memory leak!
233

CHAPTER 8 | Developing a Client
Use _var types for complex inout and out parameters and return values.

Always use a _var type when a value must be heap-allocated. This includes any
complex or variable-length inout or out parameter or return value. After you
have assigned a parameter to a _var type, you don’t have to worry about
deallocating memory.

For example, the following interface defines three operations:

// Some sample IDL to show how _var types make life easier.
interface Example {
 string get_string();
 void modify_string(inout string s);
 void put_string(in string s);
};

Because _var types convert correctly to pass in any direction, the following
code does exactly the right things:

// _var automates memory management.
{
 Example_var ev = ...; // Get reference
 CORBA::String_var s; // Parameter

 s = ev->get_string(); // Get value
 ev->modify_string(s); // Change it
 ev->put_string(s); // Put it somewhere
}
// Everything is deallocated here

Table 9 summarizes parameter-passing rules. It does not show that out
parameters are passed as _out types. Instead, it shows the corresponding alias
for fixed-length types, or the type of constructor argument for the _out type for
variable-length types.

Table 9: Parameter passing for low-level mapping

IDL Type in inout out Return Value

simple simple simple & simple & simple

enum enum enum & enum & enum

fixed const Fixed & Fixed & Fixed & Fixed

string const char * char * & char * & char *

wstring const WChar * WChar * & WChar * & WChar *

any const Any & Any & Any * & Any *
 234

Passing Parameters in Client Invocations
As Table 9 shows, the parameter type varies for both out parameters and return
values, depending on whether a complex structure, union, or array is variable
length or fixed length. Table 10 shows the considerably simpler
parameter-passing rules for _var types:

 _var types are carefully crafted so that parameter passing is uniform, regardless
of the underlying type. This aspect of _var types, together with their automatic
deallocation behavior, makes them most useful for parameter passing.

objref objref_ptr objref_ptr & objref_ptr & objref_ptr

sequence const sequence & sequence & sequence * & sequence *

struct, fixed const struct & struct & struct & struct

union, fixed const union & union & union & union

array, fixed const array array_slice * array_slice * array_slice *

struct, variable const struct & struct & struct * & struct *

union, variable const union & union & union * & union *

array, variable const array array_slice * array_slice * & array_slice *

Table 9: Parameter passing for low-level mapping

IDL Type in inout out Return Value

Table 10: Parameter passing with _var types

IDL Type in inout/out Return Value

string const String_var & String_var & String_var

wstring const WString_var & WString_var & WString_var

any const Any_var & Any_var & Any_var

objref const objref_var & objref_var & objref_var

sequence const sequence_var & ssequence_var & sequence_var

struct const struct_var & struct_var & struct_var

union const union_var & union_var & union_var

array const array_var & array_var & array_var
235

CHAPTER 8 | Developing a Client
Client Policies
Orbix supports a number of quality of service policies, which can give a client
programmatic control over request processing:

• RebindPolicy specifies whether the ORB transparently reopens closed

connections and rebinds forwarded objects.

• SyncScopePolicy determines how quickly a client resumes processing after

sending one-way requests.

• Timeout policies offer different degrees of control over the length of time

that an outstanding request remains viable.

You can set quality of service policies at three scopes, in descending order of
precedence:

1. On individual objects, so they apply only to invocations on those objects.

2. On a given thread, so they apply only to invocations on that thread

3. On the client ORB, so they apply to all invocations.

You can set policies in any combination at all three scopes; the effective policy is
determined on each invocation. If settings are found for the same policy type at
more than one scope, the policy at the lowest scope prevails.

For detailed information about setting these and other policies on a client, see
“Setting Client Policies” on page 183.

Note: Because all policy types and their settings are defined in the Messaging
module, client code that sets quality of service policies must include
omg/messaging.hh.
 236

Client Policies
RebindPolicy
A client’s RebindPolicy determines whether the ORB can transparently
reconnect and rebind. A client’s rebind policy is set by a RebindMode constant,
which describes the level of transparent binding that can occur when the ORB
tries to carry out a remote request:

TRANSPARENT The default policy: the ORB silently reopens closed
connections and rebinds forwarded objects.

NO_REBIND The ORB silently reopens closed connections; it disallows
rebinding of forwarded objects if client-visible policies have changed since the
original binding. Objects can be explicitly rebound by calling
CORBA::Object::validate_connection() on them.

NO_RECONNECT The ORB disallows reopening of closed connections and
rebinding of forwarded objects. Objects can be explicitly rebound by calling
CORBA::Object::validate_connection() on them.

Note: Currently, Orbix requires rebinding on reconnection. Therefore,
NO_REBIND and NO_RECONNECT policies have the same effect.
237

CHAPTER 8 | Developing a Client
SyncScopePolicy
A client’s SyncScopePolicy determines how quickly it resumes processing after
sending one-way requests. You specify this behavior with one of these
SyncScope constants:

SYNC_NONE The default policy: Orbix clients resume processing immediately
after sending one-way requests, without knowing whether the request was
processed, or whether it was even sent over the wire.

SYNC_WITH_TRANSPORT The client resumes processing after a transport
accepts the request. This policy is especially helpful when used with
store-and-forward transports. In that case, this policy offer clients assurance of a
high degree of probable delivery.

SYNC_WITH_SERVER The client resumes processing after the request finds
a server object to process it—that is, the server ORB sends a NO_EXCEPTION
reply. If the request must be forwarded, the client continues to block until
location forwarding is complete.

SYNC_WITH_TARGET The client resumes processing after the request
processing is complete. This behavior is equivalent to a synchronous (two-way)
operation. With this policy in effect, a client has absolute assurance that a its
request has found a target and been acted on. The object transaction service
(OTS) requires this policy for any operation that participates in a transaction.

Note: This policy only applies to GIOP 1.2 (and higher) requests.
 238

Client Policies
Timeout Policies
A responsive client must be able to specify timeouts in order to abort
invocations. Orbix supports several standard OMG timeout policies, as specified
in the Messaging module; it also provides proprietary policies in the IT_CORBA
module that offer more fine-grained control. Table 11 shows which policies are
supported in each category:

If a request’s timeout expires before the request can complete, the client receives
the system exception CORBA::TIMEOUT.

Table 11: Timeout Policies

OMG Timeout
Policies

RelativeRoundtripTimeoutPolicy
ReplyEndTimePolicy
RelativeRequestTimeoutPolicy
RequestEndTimePolicy

Proprietary
Timeout
Policies

BindingEstablishmentPolicy
RelativeBindingExclusiveRoundtripTimeoutPoli

cy
RelativeBindingExclusiveRequestTimeoutPolicy
RelativeConnectionCreationTimeoutPolicy
InvocationRetryPolicy

Note: When using these policies, be careful that their settings are consistent
with each other. For example, the RelativeRoundtripTimeoutPolicy
specifies the maximum amount of time allowed for round-trip execution of a
request.

Orbix also provides its own policies, which let you control specific segments
of request execution—for example, BindingEstablishmentPolicy lets you
set the maximum time to establish bindings.

It is possible to set the maximum binding time to be greater than the maximum
allowed for roundtrip request execution. Although these settings are
inconsistent, no warning is issued; and Orbix silently adheres to the more
restrictive policy.
239

CHAPTER 8 | Developing a Client
Setting absolute and relative times Two policies, RequestEndTimePolicy and ReplyEndTimePolicy, set absolute
deadlines for request and reply delivery, respectively, through the
TimeBase::UtcT type. Other policies set times that are relative to a specified
event—for example, RelativeRoundtripTimeoutPolicy limits how much time
is allowed to deliver a request and its reply, starting from the request invocation.

The Orbix libraries include helper class IT_UtcT, which provides ease-of-use
operators and methods for working with the types defined in the TimeBase
module. For example, you can use IT_UtcT::current() and
IT_UtCT::operator+() to obtain an absolute time that is relative to the current
time.You can specify absolute times in long epoch (15 Oct. 1582 to ~30000AD)
Universal Time Coordinated (UTC), or relative times in 100 nano-seconds units
using the OMG Time Service’s TimeBase::UtcT type. You can also convert
times to short epoch (Jan. 1 1970 to ~2038) UTC in millisecond units. All times
created have zero displacement from GMT.

For more information, refer to the CORBA Programmer’s Reference.

Policies RelativeRoundtripTimeoutPolicy specifies how much time is allowed to
deliver a request and its reply. Set this policy’s value in 100-nanosecond units.
No default is set for this policy; if it is not set, a request has unlimited time to
complete.

The timeout countdown begins with the request invocation, and includes the
following activities:

• Marshalling in/inout parameters

• Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of reply data,
all received reply data is discarded. In some cases, the client might attempt to
cancel the request by sending a GIOP CancelRequest message.

Note: The programmatic timeout unit (100-nanosecond unit) differs from the
configuration timeout unit (millisecond unit).
 240

Client Policies
For example, the following code sets a RelativeRoundtripTimeoutPolicy
override on the ORB PolicyManager, setting a four-second limit on the time
allowed to deliver a request and receive the reply:

ReplyEndTimePolicy sets an absolute deadline for receipt of a reply. This
policy is otherwise identical to RelativeRoundtripTimeoutPolicy. Set this
policy’s value with a TimeBase::UtcT type (see “Setting absolute and relative
times” on page 240).

No default is set for this policy; if it is not set, a request has unlimited time to
complete.

RelativeRequestTimeoutPolicy specifies how much time is allowed to deliver
a request. Request delivery is considered complete when the last fragment of the
GIOP request is sent over the wire to the target object. The timeout-specified

TimeBase::TimeT relative_expiry = 4L * 10000000L; // 4 seconds
try{
 CORBA::Any relative_roundtrip_timeout_value;
 relative_roundtrip_timeout_value <<= relative_expiry;
 CORBA::PolicyList policies(1);
 policies.length(1);
 policies[0] = orb->create_policy(
 Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE,
 relative_roundtrip_timeout_value
);
 policy_manager->set_policy_overrides(
 policies,
 CORBA::ADD_OVERRIDE
);
}
catch (CORBA::PolicyError& pe){
 return 1;
}
catch (CORBA::InvalidPolicies& ip){
 return 1;
}
catch (CORBA::SystemException& se){
 return 1;
}

241

CHAPTER 8 | Developing a Client
period includes any delay in establishing a binding. This policy type is useful to
a client that only needs to limit request delivery time. Set this policy’s value in
100-nanosecond units.

No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

For example, the following code sets a RelativeRequestTimeoutPolicy
override on the ORB PolicyManager, setting a three-second limit on the time
allowed to deliver a request:

RequestEndTimePolicy sets an absolute deadline for request delivery. This
policy is otherwise identical to RelativeRequestTimeoutPolicy. Set this
policy’s value with a TimeBase::UtcT type (see “Setting absolute and relative
times” on page 240).

Note: The programmatic timeout unit (100-nanosecond unit) differs from the
configuration timeout unit (millisecond unit).

TimeBase::TimeT relative_expiry = 3L * 10000000L; // 3 seconds
try{
 CORBA::Any relative_request_timeout_value;
 relative_request_timeout_value <<= relative_expiry;
 CORBA::PolicyList policies(1);
 policies.length(1);
 policies[0] = orb->create_policy(
 Messaging::RELATIVE_REQ_TIMEOUT_POLICY_TYPE,
 relative_request_timeout_value
);
 policy_manager->set_policy_overrides(
 policies,
 CORBA::ADD_OVERRIDE
);
}
catch (CORBA::PolicyError& pe){
 return 1;
}
catch (CORBA::InvalidPolicies& ip){
 return 1;
}
catch (CORBA::SystemException& se){
 return 1;
}

 242

Client Policies
No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

BindingEstablishmentPolicy limits the amount of effort Orbix puts into
establishing a binding. The policy equally affects transparent binding (which
results from invoking on an unbound object reference), and explicit binding
(which results from calling Object::_validate_connection().

A client’s BindingEstablishmentPolicy is determined by the members of its
BindingEstablishmentPolicyValue, which is defined as follows:

• relative_expiry limits the amount of time allowed to establish a binding.

Set this member in 100-nanosecond units. The default value is infinity.

• max_binding_iterations limits the number of times the client tries to

establish a binding. Set to -1 to specify unlimited retries. The default value

is 5.

• max_forwards limits the number of forward tries that are allowed during

binding establishment. Set to -1 to specify unlimited forward tries. The

default value is 20.

struct BindingEstablishmentPolicyValue
{
 TimeBase::TimeT relative_expiry;
 unsigned short max_binding_iterations;
 unsigned short max_forwards;
 TimeBase::TimeT initial_iteration_delay;
 float backoff_ratio;
};

Note: The programmatic timeout unit (100-nanosecond unit) differs
from the configuration timeout unit (millisecond unit).

Note: If location forwarding requires that a new binding be established
for a forwarded IOR, only one iteration is allowed to bind the new IOR. If
the first binding attempt fails, the client reverts to the previous IOR. This
allows a load balancing forwarding agent to redirect the client to another,
more responsive server.
243

CHAPTER 8 | Developing a Client
• initial_iteration_delay sets the amount of time, in 100-nanosecond

units, between the first and second tries to establish a binding. The default

value is 0.1 seconds.

• backoff_ratio lets you specify the degree to which delays between

binding retries increase from one retry to the next. The successive delays

between retries form a geometric progression:

The default value is 2.

For example, the following code sets an BindingEstablishmentPolicy
override on an object reference:

Note: The programmatic timeout unit (100-nanosecond unit) differs
from the configuration timeout unit (millisecond unit).

0,
initial_iteration_delay x backoff_ratio0,
initial_iteration_delay x backoff_ratio1,
initial_iteration_delay x backoff_ratio2,
...,
initial_iteration_delay x backoff_ratio(max_binding_iterations -

2)

try{
 CORBA::Any bind_est_value;

 IT_CORBA::BindingEstablishmentPolicyValue val;
 val.rel_expiry = (TimeBase::TimeT)30 * 10000000; // 30s
 val.max_rebinds = (CORBA::UShort)5; // 5 binding tries
 val.max_forwards = (CORBA::UShort)20; // 20 forwards
 val.initial_iteration_delay
 = (TimeBase::TimeT)1000000; // 0.1s delay
 val.backoff_ratio = (CORBA::Float)2.0; // back-off

ratio

 bind_est_value <<= val;

 CORBA::PolicyList policies(1);
 policies.length(1);
 policies[0] = orb->create_policy(
 IT_CORBA::BINDING_ESTABLISHMENT_POLICY_ID,
 bind_est_value
);
 244

Client Policies
RelativeBindingExclusiveRoundtripTimeoutPolicy limits the amount of time
allowed to deliver a request and receive its reply, exclusive of binding attempts.
The countdown begins immediately after a binding is obtained for the
invocation. This policy’s value is set in 100-nanosecond units.

RelativeBindingExclusiveRequestTimeoutPolicy limits the amount of time
allowed to deliver a request, exclusive of binding attempts. Request delivery is
considered complete when the last fragment of the GIOP request is sent over the
wire to the target object. This policy’s value is set in 100-nanosecond units.

RelativeConnectionCreationTimeoutPolicy specifies how much time is
allowed to resolve each address in an IOR, within each binding iteration.
Defaults to 8 seconds.

An IOR can have several TAG_INTERNET_IOP (IIOP transport) profiles, each
with one or more addresses, while each address can resolve via DNS to multiple
IP addresses. Furthermore, each IOR can specify multiple transports, each with
its own set of profiles.

 CORBA::Object_var obj = slave->_set_policy_overrides(
 policies,
 CORBA::ADD_OVERRIDE
);

 lots_of_retries_slave = ClientPolicy::Slave::_narrow(obj);
}
catch (CORBA::PolicyError& pe){
 return 1;
}
catch (CORBA::InvalidPolicies& ip){
 return 1;
}
catch (CORBA::SystemException& se){
 return 1;
}

Note: The programmatic timeout unit (100-nanosecond unit) differs from the
configuration timeout unit (millisecond unit).

Note: The programmatic timeout unit (100-nanosecond unit) differs from the
configuration timeout unit (millisecond unit).
245

CHAPTER 8 | Developing a Client
This policy applies to each IP address within an IOR. Each attempt to resolve an
IP address is regarded as a separate attempt to create a connection. The policy’s
value is set in 100-nanosecond units.

InvocationRetryPolicy applies to invocations that receive the following
exceptions:

• A TRANSIENT exception with a completion status of COMPLETED_NO triggers

a transparent reinvocation.

• A COMM_FAILURE exception with a completion status of COMPLETED_NO

triggers a transparent rebind attempt.

A client’s InvocationRetryPolicy is determined by the members of its
InvocationRetryPolicyValue, which is defined as follows:

• max_retries limits the number of transparent reinvocation that are

attempted on receipt of a TRANSIENT exception. The default value is 5.

• max_rebinds limits the number of transparent rebinds that are attempted on

receipt of a COMM_FAILURE exception. The default value is 5.

Note: The programmatic timeout unit (100-nanosecond unit) differs from the
configuration timeout unit (millisecond unit).

struct InvocationRetryPolicyValue
{
 unsigned short max_retries;
 unsigned short max_rebinds;
 unsigned short max_forwards;
 TimeBase::TimeT initial_retry_delay;
 float backoff_ratio;
};

Note: If an application uses the InvocationRetryPolicyValue structure
type, all members must be assigned an appropriate value. The defaults are only
applied, if you choose to use this policy without setting the
InvocationRetryPolicyValue structure.

Note: This setting is valid only if the effective RebindPolicy is
TRANSPARENT; otherwise, no rebinding occurs.
 246

Client Policies
• max_forwards limits the number of forward tries that are allowed for a

given invocation. Set to -1 to specify unlimited forward tries. The default

value is 20.

• initial_retry_delay sets the amount of time, in 100-nanosecond units,

between the first and second retries. The default value is 0.1 seconds.

This setting only affects the delay between transparent invocation retries; it

has no affect on rebind or forwarding attempts.

• backoff_ratio lets you specify the degree to which delays between

invocation retries increase from one retry to the next. The successive

delays between retries form a geometric progression:

The default value is 2.

For example, the following code sets an InvocationRetryPolicy override on
an object reference:

Note: The delay between the initial invocation and first retry is always
0.

0,
initial_iteration_delay x backoff_ratio0,
initial_iteration_delay x backoff_ratio1,
initial_iteration_delay x backoff_ratio2,
...,
initial_iteration_delay x backoff_ratio(max_retries - 2)

try{
 CORBA::Any lots_of_retries_value;

 IT_CORBA::InvocationRetryPolicyValue val;
 val.max_retries = (CORBA::UShort)10000; // 10000 retries
 val.max_rebinds = (CORBA::UShort)5; // 5 rebinds
 val.max_forwards = (CORBA::UShort)20; // 20 forwards
 val.initial_retry_delay
 = (TimeBase::TimeT)1000000; // 0.1s delay
 val.backoff_ratio = (CORBA::Float)2.0; // back-off

ratio

 lots_of_retries_value <<= val;
247

CHAPTER 8 | Developing a Client
 CORBA::PolicyList policies(1);
 policies.length(1);
 policies[0] = orb->create_policy(
 IT_CORBA::INVOCATION_RETRY_POLICY_ID,
 lots_of_retries_value
);

 CORBA::Object_var obj = slave->_set_policy_overrides(
 policies,
 CORBA::ADD_OVERRIDE
);

 lots_of_retries_slave = ClientPolicy::Slave::_narrow(obj);
}

catch (CORBA::PolicyError& pe){
 return 1;
}
catch (CORBA::InvalidPolicies& ip){
 return 1;
}
catch (CORBA::SystemException& se){
 return 1;
}

 248

Implementing Callback Objects
Implementing Callback Objects
Many CORBA applications implement callback objects on a client so that a
server can notify the client of some event. You implement a callback object on a
client exactly as you do on a server, by activating it in a client-side POA (see
“Activating CORBA Objects” on page 262). This POA’s LifeSpanPolicy should
be set to TRANSIENT. Thus, all object references that the POA exports are valid
only as long as the POA is running. This ensures that a late server callback is not
misdirected to another client after the original client shuts down.

It is often appropriate to use a client’s root POA for callback objects, inasmuch
as it always exports transient object references. If you do so, make sure that your
callback code is thread-safe; otherwise, you must create a POA with policies of
SINGLE_THREAD_MODEL and TRANSIENT.
249

CHAPTER 8 | Developing a Client
 250

CHAPTER 9

Developing a
Server
This chapter explains how to develop a server that implements
servants for CORBA objects.

Server tasks A CORBA server performs these tasks:

• Uses a POA to map CORBA objects to servants, and to process client

requests on those objects.

• Implements CORBA objects as POA servants.

• Creates and exports object references for these servants.

• Manages memory for POA servants and object references.

• Initializes and shuts down the runtime ORB.

• Passes parameters to server-side operations.

For an overview of server code requirements, see “Enhancing Server
Functionality” on page 81. Although throwing exceptions is an important aspect
of server programming, it is covered separately in Chapter 13.

For information on ORB initialization and shutdown, see “ORB Initialization
and Shutdown” on page 167.

In this chapter This chapter contains the following sections:

POAs, Skeletons, and Servants
251

CHAPTER 9 | Developing a Server
Mapping Interfaces to Skeleton Classes

Creating a Servant Class

Implementing Operations

Activating CORBA Objects

Handling Output Parameters

Counting Servant References

Delegating Servant Implementations

Implementation Inheritance

Interface Inheritance

Multiple Inheritance

Explicit Event Handling

Termination Handler

Compiling and Linking
 252

POAs, Skeletons, and Servants
POAs, Skeletons, and Servants
CORBA objects exist in server applications. Objects are implemented, or
incarnated, by language-specific servants. Objects and their servants are
connected by the portable object adapter (POA). The POA provides the
server-side runtime support that connects server application code to the
networking layer of the ORB.

POA tasks A POA has these responsibilities:

• Create and destroy object references.

• Convert client requests into appropriate calls to application code.

• Synchronize access to objects.

• Cleanly start up and shut down applications.

For detailed information about the POA, see Chapter 9.

POA skeleton class For each IDL interface, the IDL compiler generates a POA_ skeleton class that
you compile into the server application. Skeleton classes are abstract base
classes. You implement skeleton classes in the server application code with
servant classes, which define the behavior of the pure virtual methods that they
inherit. Through a servant’s inherited connection to a skeleton class, ORB
runtime connects that servant back to the CORBA object that it incarnates.

TIE class The IDL compiler can also generate a TIE class, which lets you implement
CORBA objects with classes that are unrelated (by inheritance) to skeleton
classes. For more information, see “Delegating Servant Implementations” on
page 279.

Note: The POA_ prefix only applies to the outermost naming scope of an IDL
construct. So, if an interface is nested in a module, only the outermost module
gets the POA_ prefix; constructs nested inside the module do not have the
prefix.
253

CHAPTER 9 | Developing a Server
 254

POAs, Skeletons, and Servants
Server request handling Figure 19 shows how a CORBA server handles an incoming client request, and
the stages by which it dispatches that request to the appropriate servant. The
server’s ORB runtime directs an incoming request to the POA where the object
was created. Depending on the POA’s state, the request is either processed or
blocked. A POA manager can block requests by rejecting them outright and
raising an exception in the client, or by queueing them for later processing.

Figure 19: The server-side ORB conveys client requests to the POA via its
manager, and the POA dispatches the request to the appropriate servant.

POA

Servants
Server

Request

ORB

P
O

A
m

an
ag

er
255

CHAPTER 9 | Developing a Server
Mapping Interfaces to Skeleton Classes
When the ORB receives a request on a CORBA object, the POA maps that
request to an instance of the corresponding servant class and invokes the
appropriate method. All operations are represented as virtual member methods,
so dynamic binding ensures that the proper method in your derived servant class
is invoked.

For example, interface Account is defined as follows:

module BankDemo
{
 typedef float CashAmount; // type represents cash
 typedef string AccountId; // Type represents account IDs
 // ...
 interface Account
 {
 exception InsufficientFunds {};

 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
 };
 256

Mapping Interfaces to Skeleton Classes
The IDL compiler maps the Account interface to skeleton class
POA_BankDemo::Account. For purposes of simplification, only methods that
map directly to IDL operations and attribute are shown:

The following points are worth noting about the skeleton class:

• POA_BankDemo::Account inherits from PortableServer::ServantBase.

All skeleton classes inherit from the ServantBase class for two reasons:

♦ ServantBase provides functionality that is common to all servants.

♦ Servants can be passed generically—you can pass a servant for any

type of object as a pointer or reference to ServantBase.

• The names of the skeleton class and the corresponding client-side proxy

class are different. In this case, the fully scoped name of the skeleton class

is POA_BankDemo::Account, while the proxy class name is

BankDemo::Account.

This differentiation is important if client and server are linked into the

same program, because it avoids name clashes for multiply defined

symbols. It also preserves location transparency because it guarantees that

collocated calls are always dispatched by an intervening proxy object, and

namespace POA_BankDemo
{
 class Account :
 virtual public PortableServer::ServantBase

 {
 virtual ::BankDemo::AccountId
 account_id() IT_THROW_DECL((CORBA::SystemException)) = 0;

 virtual ::BankDemo::CashAmount
 balance() IT_THROW_DECL((CORBA::SystemException)) = 0;

 virtual void
 withdraw(
 ::BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException,
 BankDemo::Account::InsufficientFunds)) = 0;

 virtual void
 deposit(
 ::BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException)) = 0;
 };
257

CHAPTER 9 | Developing a Server
are never dispatched as a direct virtual method call from client to servant.

So, if the server decides to delete an object and a collocated client attempts

to make a call on the deleted object, the proxy raises an OBJECT_NOT_EXIST

exception instead of attempting to access deallocated memory and causing

the program to crash.

• The skeleton class defines methods that correspond to the interface

operations and attributes.

• Methods are all defined as pure virtual, so you cannot instantiate a skeleton

class. Instead, you must derive from the skeleton a concrete servant class

that implements the pure virtual methods that it inherits.

• Each method has an exception specification. Orbix generates exception

specifications only for skeleton classes. In this example, the methods throw

system exceptions and, in the case of withdraw(), the user exception

InsufficientFunds.

• The throw clause prevents methods from throwing illegal exceptions. For

example, if deposit() throws an exception other than

CORBA::SystemException, the C++ run time calls the unexpected method

(which, by default, aborts the process).

• Apart from the exception specification, the signature of each skeleton class

method is the same as the corresponding proxy class method.

Identical signatures preserve location transparency. If the server and client

are collocated, the proxy can delegate calls directly to the skeleton without

translating or copying data. It also simplifies client and server application

development in that one set of parameter passing rules apply to both.
 258

Creating a Servant Class
Creating a Servant Class
Each servant class inherits from a skeleton class. The following code defines
servant class AccountImpl, which derives from skeleton class
POA_BankDemo::Account. Unlike the skeleton class methods, the AccountImpl
methods that map to IDL operations and attributes are not pure virtual, so a
server can instantiate AccountImpl as a servant.

Servant class requirements The following requirements and recommendations apply to servant class
definitions:

#include "BankDemoS.hh" // Generated server-side header

class AccountImpl : public POA_BankDemo::Account {
public:
 // Inherited IDL operations

 virtual BankDemo::AccountId
 account_id() IT_THROW_DECL((CORBA::SystemException));

 virtual BankDemo::CashAmount
 balance() IT_THROW_DECL((CORBA::SystemException));

 virtual void
 withdraw(
 BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException,
 BankDemo::Account::InsufficientFunds));

 virtual void
 deposit(
 BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException));

 // other members here ...

private:
 // Prevent copying and assigment of servants
 AccountImpl(const AccountImpl &);
 void operator=(const AccountImpl &);
};
259

CHAPTER 9 | Developing a Server
• The code must include the generated server header file—in this case,

BankDemoS.hh.

• AccountImpl inherits from POA_BankDemo::Account through virtual

inheritance. If, as in this case, the servant class inherits from only one

source, it is unimporant to specify virtual inheritance. However, a servant

class that inherits from multiple skeleton classes should always use virtual

inheritance to prevent errors.

• The choice of name for servant classes is purely a matter of convention.

The examples here and elsewhere apply the Impl suffix to the original

interface name, as in AccountImpl. It is always good practice to have a

naming convention and use it consistently in your code.

• The copy constructor and assignment operator for the servant class are

private to prevent copying and assignment of servant instances.

Servants should not be copied or assigned; only one servant should

incarnate any given CORBA object; otherwise, it is unclear which servant

should handle requests for that object. It is always good practice to hide a

servant’s copy constructor and assignment operator.

The preceding AccountImpl class is a complete and functional servant class. It
only remains to implement the pure virtual methods that are inherited from the
skeleton. You can also can add other member variables and methods, public and
private, that can help implement a servant. For example, it is typical to add a
constructor and destructor, and private member variables to hold the state of the
object while the servant is in memory.
 260

Implementing Operations
Implementing Operations
Most work in developing a servant consists of implementing each inherited pure
virtual method. Because the application code controls the body of each
operation, it largely determines the application’s overall behavior. The following
code outlines an implementation of the withdraw() method:

void
AccountImpl::withdraw(
 BankDemo::CashAmount amount
) IT_THROW_DECL((
 CORBA::SystemException,
 BankDemo::Account::InsufficientFunds
))
{
 // ... database connection (via PSS) code omitted here

 // get a PSS reference to corresponding database object
 IT_PSS_RefVar<BankDemoStore_AccountBaseRef> ref =
 my_state(accounts_home_obj.in());

 BankDemo::CashAmount new_balance = ref->balance() - amount;

 if (new_balance < 0.0F)
 {
 cout << " throwing InsufficientFunds" << endl;
 throw BankDemo::Account::InsufficientFunds();
 }

 ref->balance(new_balance);
 // ...

 cout << " withdrew $" << amount << endl;
}

261

CHAPTER 9 | Developing a Server
Activating CORBA Objects
In order to enable clients to invoke on CORBA operations, a server must create
and export object references. These object references must point back to a
CORBA object that is active through its incarnation by a C++ or Java servant.

Activation of a CORBA object is a two-step process:

1. Instantiate the CORBA object’s servant. Instantiating a servant does not by

itself activate the CORBA object. The ORB runtime remains unaware of

the existence of the servant and the corresponding CORBA object.

2. Register the servant and the object’s ID in a POA.

this() The simplest way to activate a CORBA object is by calling _this() on the
servant. The IDL compiler generates a _this() method for each servant
skeleton class. _this() performs two separate tasks:

• Checks the POA to determine whether the servant is registered with an

existing object. If not, _this() creates an object from the servant’s

interface, registers a unique ID for this object in the POA’s active object

map, and maps this object ID to the servant’s address.

• Generates and returns an object reference that includes the object’s ID and

POA identifier.

In other words, the object is implicitly activated in order to return an object
reference.

servant_to_reference() You can also implicitly activate an object by calling servant_to_reference()
on the desired POA. This requires you to narrow to the appropriate object;
however, there can be no ambiguity concerning the POA in which the object is
active, as can happen through using _this() (see page 312).

Explicit activation methods Alternatively, you can explicitly activate a CORBA object: call
activate_object() or activate_object_with_id() on the POA. You can
then obtain an object reference by calling _this() on the servant. Because the
servant is already registered in the POA with an object ID, the method simply
returns an object reference.
 262

Activating CORBA Objects
The ability to activate an object implicitly or explicitly depends on a POA’s
activation policy. For more information on this topic, see “Using POA Policies”
on page 300.

Note: The object reference returned by _this() is independent of the servant
itself; you must eventually call release() on the object or hold it in a _var
reference in order to avoid resource leaks. Releasing the object reference has no
effect on the corresponding servant.
263

CHAPTER 9 | Developing a Server
Handling Output Parameters

Server-side rules Server-side rules for passing output (in/inout) parameters and return values to
the client complement client-side rules. For example, if the client is expected to
deallocate a variable-length return value, the server must allocate that value.

In general, these rules apply:

• If the type to pass is variable-length, the server dynamically allocates the

value and the client deallocates it.

• String, reference, and variable-length array types are dynamically allocated

and deallocated by the client. Strings and references can be reallocated by

the server.

Other types are passed by value or reference.

The following sections show the server-side rules for passing output parameters
and return values of various IDL types.
 264

Handling Output Parameters
Simple Parameters
Simple IDL types such as short or long are passed by value. For example, the
following IDL defines operation Example::op(), which passes three long
parameters:

The corresponding servant class contains this signature for op():

Implementation example This example has the same mapping as the client, where CORBA::Long_out type
is simply an alias for CORBA::Long &. You might implement this operation as
follows:

The method simply sets output parameters and return values; the changes are
automatically propagated back to the client.

interface Example {
 long
 op(in long in_p, inout long inout_p, out long out_p);
};

virtual CORBA::Long
op(
 CORBA::Long in_p,
 CORBA::Long & inout_p,
 CORBA::Long_out out_p
) throw(CORBA::SystemException);

CORBA::Long
ExampleImpl::op(
 CORBA::Long in_p, CORBA::Long & inout_p, CORBA::Long_out out_p
) throw(CORBA::SystemException)
{
 inout_p = 2 * inout_p; // Change inout_p.
 out_p = in_p * in_p; // Set out_p
 return in_p / 2; // Return in_p
}

265

CHAPTER 9 | Developing a Server
Fixed-Length Complex Parameters
Fixed-length complex parameters are passed by value or by reference. For
example, the following IDL defines a fixed-length structure that operation
Example::op() uses in its return value and parameters:

The corresponding servant class contains this signature for op():

Implementation example The following code implements the servant operation. No memory management
issues arise; the method simply assigns the values of output parameters and the
return value:

struct FLS { // Fixed-Length Structure
 long long_val;
 double double_val;
};

interface Example {
 FLS op(in FLS in_p, inout FLS inout_p, out FLS out_p);
};

typedef FLS & FLS_out;
// ...
virtual FLS
op(const FLS & in_p, FLS & inout_p, FLS_out out_p)
throw(CORBA::SystemException);

FLS
ExampleImpl::op(const FLS & in_p, FLS & inout_p, FLS_out out_p)
throw(CORBA::SystemException)
{
 cout << in_p.long_val << endl; // Use in_p
 cout << in_p.double_val << endl; // Use in_p
 cout << inout_p.double_val << endl; // Use inout_p
 266

Handling Output Parameters
 // Change inout_p
 inout_p.double_val = inout_p.long_val * in_p.double_val;

 out_p.long_val = 99; // Initialize out_p
 out_p.double_val = 3.14;

 FLS ret_val = { 42, 42.0 }; // Initialize return value
 return ret_val;
}

267

CHAPTER 9 | Developing a Server
Fixed-Length Array Parameters
Fixed-length arrays are passed as pointers to array slices. The return value is
dynamically allocated. For example, the following IDL defines a fixed-length
array that operation Example::op() uses in its return value and parameters:

The corresponding servant class contains this signature for op():

Implementation example In the following implementation, the generated Larr_alloc() method
dynamically allocates the return value:

typedef long Larr[3];

interface Example {
 Larr op(in Larr in_p, inout Larr inout_p, out Larr out_p);
};

typedef CORBA::Long Larr[3];
typedef CORBA::Long Larr_slice;
typedef Larr_slice * Larr_out;
// ...
virtual Larr_slice *
op(const Larr in_p, Larr_slice * inout_p, Larr_out out_p)
throw(CORBA::SystemException);

Larr_slice *
ExampleImpl::
op(const Larr in_p, Larr_slice * inout_p, Larr_out out_p)
throw(CORBA::SystemException)
{
 int len = sizeof(in_p) / sizeof(*in_p);

 // Use incoming values of in_p and inout_p...

 // Modify inout_p
 inout_p[1] = 12345;
 268

Handling Output Parameters
 // Initialize out_p
 for (int i = 0; i < len; i++)
 out_p[i] = i * i;

 // Return value must be dynamically allocated
 Larr_slice * ret_val = new Larr_alloc();
 for (int i = 0; i < len; i++)
 ret_val[i] = i * i * i;

 return ret_val;
}

269

CHAPTER 9 | Developing a Server
String Parameters
String-type output parameters and return values must be dynamically allocated.
For example, the following IDL defines a fixed-length array that operation
Example::op() uses in its return value and parameters:

The corresponding servant class contains this signature for op():

Memory requirements The server is constrained by the same memory requirements as the client:

• Strings are initialized as usual.

• inout strings are dynamically allocated and initialized by the client. The

servant can change an inout string by modifying the bytes of the inout

string in place, or shorten the inout string in place by writing a terminating

NUL byte into the string. To return an inout string that is longer than the

initial value, the servant must deallocate the original copy and allocate a

longer string.

• out strings must be dynamically allocated.

• Return value strings must be dynamically allocated.

Implementation example The following code implements the servant operation:

interface Example {
 string op(
 in string in_p,
 inout string inout_p,
 out string out_p
);
};

virtual const char *
op(
 const char * in_p,
 char * & inout_p,
 CORBA::String_out out_p
) throw(CORBA::SystemException);
 270

Handling Output Parameters
const char *
ExampleImpl::
op(
 const char * in_p,
 char * & inout_p,
 CORBA::String_out out_p
) throw(CORBA::SystemException)
{

 cout << in_p << endl; // Show in_p
 cout << inout_p << endl; // Show inout_p

 // Modify inout_p in place:
 //
 char * p = inout_p;
 while (*p != '\0')
 toupper(*p++);

 // OR make a string shorter by writing a terminating NUL:
 //
 *inout_p = '\0'; // Set to empty string.

 // OR deallocate the initial string and allocate a new one:
 //

 CORBA::string_free(inout_p);
 inout_p = CORBA::string_dup("New string value");

 // out strings must be dynamically allocated.
 //
 out_p = CORBA::string_dup("I am an out parameter");

 // Return value strings must be dynamically allocated.
 //
 char * ret_val
 = CORBA::string_dup("In Xanadu did Kubla Khan..."));

 return ret_val;
}

271

CHAPTER 9 | Developing a Server
Variable-Length Complex Parameters
out parameters and return values of variable-length complex types must be
dynamically allocated; in and inout parameters are passed by reference.

For example, the following IDL defines a variable-length structure that
operation Example::op() uses in its return value and parameters:

The corresponding servant class contains this signature for op():

Implementation example The following code implements the servant operation:

struct VLS { // Variable-length structure
 long long_val;
 string string_val;
};

interface Example {
 VLS op(in VLS in_p, inout VLS inout_p, out VLS out_p);
};

class VLS_out { /* ... */ };
// ...
virtual VLS *
op(const VLS & in_p, VLS & inout_p, VLS_out out_p)
throw(CORBA::SystemException);

VLS *
ExampleImpl::
op(const VLS & in_p, VLS & inout_p, VLS_out out_p)
throw(CORBA::SystemException)
{
 cout << in_p.string_val << endl; // Use in_p
 cout << inout_p.long_val << endl; // Use inout_p
 inout_p.long_val = 99; // Modify inout_p
 out_p = new VLS; // Allocate out param
 out_p->long_val = 1; // Initialize...
 out_p->string_val = CORBA::string_dup("One");
 272

Handling Output Parameters
 VLS * ret_val = new VLS; // Allocate return value
 ret_val->long_val = 2; // Initialize...
 ret_val->string_val = CORBA::string_dup("Two");

 return ret_val;
}

273

CHAPTER 9 | Developing a Server
Variable-Length Array Parameters
Like fixed-length arrays, variable-length arrays are passed as pointers to array
slices. out parameters and the return value must be dynamically allocated.

For example, the following IDL defines a variable-length array that operation
Example::op() uses in its return value and parameters:

The corresponding servant class contains this signature for op():

Implementation example The following code implements the servant operation. As with all nested strings,
string elements behave like a String_var, so assignments make deep copies or,
if a pointer is assigned, take ownership:

typedef string Sarr[3];

interface Example {
 Sarr op(in Sarr in_p, inout Sarr inout_p, out Sarr out_p);
};

typedef CORBA::String_mgr Sarr[3];
typedef CORBA::String_Mgr Sarr_slice;
class Sarr_out { /* ... */ };
// ...
virtual Sarr_slice * op(
 const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) throw(CORBA::SystemException);

typedef CORBA::String_mgr Sarr[3];
typedef CORBA::String_Mgr Sarr_slice;
class Sarr_out;
// ...

Sarr_slice *
ExampleImpl::
op(
 const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) throw(CORBA::SystemException)
 274

Handling Output Parameters
{
 cout << in_p[1] << endl; // Use in_p
 cout << inout_p[0] << endl; // Use inout_p
 inout_p[1] = in_p[0]; // Modify inout_p

 out_p = Sarr_alloc(); // Allocate out param
 out_p[0] = CORBA::string_dup("In Xanadu did Kubla Khan");
 out_p[1] = CORBA::string_dup("A stately pleasure-dome
 out_p[2] = CORBA::string_dup("decree: Where Alph...");

 // Allocate return value and initialize...
 //
 Sarr_slice * ret_val = Sarr_alloc();
 ret_val[0] = out_p[0];
 ret_val[1] = inout_p[1];
 ret_val[2] = in_p[2];

 return ret_val; // Poor Coleridge...
}

275

CHAPTER 9 | Developing a Server
Object Reference Parameters
Object references are passed as _ptr references. The following memory
management rules apply to object reference parameters:

• in parameters are initialized by the caller and must not be released; the

caller retains ownership of the in parameter.

• inout parameters are initialized by the caller. To change the value of an

inout parameter, you must call release() on the original value and use

_duplicate() to obtain the new value.

• out parameters and return values must be allocated by _duplicate() or

_this(), which calls _duplicate() implicitly.

For example, the following IDL defines interface Example; operation
Example::op() specifies this interface for its return value and parameters:

The corresponding servant class contains this signature for op():

Implementation example The following implementation dynamically allocates the new value of inout_p
after releasing the previous value. The return value is dynamically allocated
because _this() calls _duplicate() implicitly.

As shown in this example, you should always test for nil before making a call on
a passed in or inout reference. Otherwise, your servant is liable to make a call
on a nil reference and cause a core dump.

interface Example {
 string greeting();
 Example op(
 in Example in_p,
 inout Example inout_p,
 out Example out_p
);
};

class Example_out { /* ... */ };
// ...
virtual Example_ptr op(
 Example_ptr in_p, Example_ptr & inout_p, Example_out out_p
) throw(CORBA::SystemException);
 276

Handling Output Parameters
Example_ptr
ExampleImpl::
op(
 Example_ptr in_p, Example_ptr & inout_p, Example_out out_p
) throw(CORBA::SystemException)
{
 // Use in_p.
 //
 if (!CORBA::is_nil(in_p)) {
 CORBA::String_var s = in_p->greeting();
 cout << s << endl;
 }

 // Use inout_p.
 //
 if (!CORBA::is_nil(inout_p)) {
 CORBA::String_var s = inout_p->greeting();
 cout << s << endl;
 }

 // Modify inout_p to be the same as in_p.
 //
 CORBA::release(inout_p); // First deallocate,
 inout_p = Example::_duplicate(in_p); // then assign.

 // Set return value.
 //
 return _this(); // Return reference to self.
}

Note: This example is unrealistic in returning a reference to self, because in
order to invoke the operation, the caller must hold a reference to this object
already.
277

CHAPTER 9 | Developing a Server
Counting Servant References
Multi-threaded servers need to reference-count their servants in order to avoid
destroying a servant on one thread that is still in use on another. In general, you
should enable reference counting for servants that are activated in a POA with a
policy of ORB_CTRL_MODEL.

Enabling reference counting The POA specification provides the standard methods _add_ref() and
_remove_ref() to support reference counting, but by default they do nothing.
You can enable reference counting by inheriting the standard class
PortableServer::RefCountServantBase in servant implementations. For
example:

Implicit reference counting With reference counting enabled, the POA calls _add_ref() when it holds a
pointer to a servant in any thread, and calls _remove_ref() when it is finished
with that servant. POA methods that return servants to user code call
_add_ref() before they deliver the servant, so the same code should call
_remove_ref() on the result when it is finished.

Explicit reference counting In your own code, you should call _add_ref() for each additional pointer to a
servant, and _remove_ref() when you are done with that pointer (rather than
delete it). Doing so ensures that the servant is deleted when no pointers are held
to that servant either in your own code or in the POA.

Reference counting is ignored by tie-based servants. Tie templates, as defined in
the POA standard, do not support reference counting, Therefore, it is not
recommended that you use the tie approach for multi-threaded servers.

class BankDemo_AccountImpl
 : public virtual POA_BankDemo::Account,
 public virtual PortableServer::RefCountServantBase
 278

Delegating Servant Implementations
Delegating Servant Implementations
Previous examples show how Orbix uses inheritance to associate servant classes
and their implementations with IDL interfaces. By inheriting from IDL-derived
skeleton classes, servants establish their connection to the corresponding IDL
interfaces, and thereby make themselves available to client requests.

Alternatively, you can explicitly associate, or tie a servant and its operations to
the appropriate IDL interface through tie template classes. The tie approach lets
you implement CORBA objects with classes that are unrelated (by inheritance)
to skeleton classes.

In most cases, inheritance and tie approaches are functionally equivalent; only
programming style preferences determine whether to favor one approach over
the other. For more on the comparative merits of each approach, see “Tie versus
inheritance” on page 280.

Creating tie-based servants Tie-based servants rely on two components:

• A tie object implements the CORBA object; however, unlike the inherited

approach, the class that it instantiates does not inherit from any of the

IDL-generated base skeleton classes.

• A tie servant instantiates a tie template class, which the IDL compiler

generates when you run it with the -xTIE switch. The POA regards a tie

servant as the actual servant of an object. Thus, all POA operations on a

servant such as activate_object() take the tie servant as an argument.

The tie servant receives client invocations and forwards them to the tie

object.

To create a tie servant and associate it with a tie object:

1 Instantiate the tie object

2 Pass the tie object’s address to the tie object constructor with this syntax:

tie-template-class<impl-class> tie-servant(tied-object);
279

CHAPTER 9 | Developing a Server
Example For example, given an IDL specification that includes interface
BankDemo::Bank, the IDL compiler can generate tie template class
POA_BankDemo::Bank_tie. This class supplies a number of operations that
enable its tie servant to control the tie object.

Given implementation class BankImpl, you can instantiate a tie object and create
tie servant bank_srv_tie for it as follows:

Given this tie servant, you can use it to create an object reference:

When the POA receives client invocations on the bankref object, it relays them
to tie servant bank_srv_tie, which delegates them to the bank tie object for
processing.

Removing tie objects and servants You remove a tie servant from memory like any other servant—for example,
with PortableServer::POA::deactivate_object(). If the tie servant’s tie
object implements only a single object, the tie object is also removed.

Tie versus inheritance The tie approach can be useful where implementations must inherit from an
existing class framework, as often occurs with OODB systems. In this case, you
can create object implementations only with the tie approach. Otherwise, the tie
approach has several drawbacks:

• Because the tie approach requires two C++ instances for each CORBA

object, it uses up more resources.

• Tie-based servants ignore reference counting; therefore, you should not use

the tie approach for multi-threaded servers.

• The tie approach adds an unnecessary layer of complexity to application

code.

In general, unless you have a compelling reason to use the tie approach, you
should favor the inheritance approach in your code.

// instantiate tie object and create its tie servant
POA_BankDemo::Bank_tie<BankImpl> bank_srv_tie(new BankImpl);

//create an object reference for bank servant
bank_var bankref = bank_srv_tie._this();
 280

Implementation Inheritance
Implementation Inheritance
IDL inheritance does not constrain your options for implementing servant
classes. In Figure 20, shaded classes represent the skeleton abstract base classes
generated by the IDL compiler; non-shaded classes represent the servant classes
that you provide

CheckingAccountImpl inherits from AccountImpl, so CheckingAccountImpl
needs only to implement the two pure virtual methods that it inherits from
CheckingAccount: overdraftLimit() and orderCheckBook(). Functions in
base interface Account such as balance() are already implemented in and
inherited from AccountImpl.

Figure 20: A servant class can inherit base class implementations.

AccountImpl

CheckingAccountImpl

POA_BankDemo::CheckingAccount

POA_BankDemo::Account
281

CHAPTER 9 | Developing a Server
Interface Inheritance
You can choose not to derive CheckingAccountImpl() from AccountImpl(). If
all methods in POA_BankDemo::CheckingAccount are defined as pure virtual,
then CheckingAccountImpl must implement the methods that it inherits from
POA_BankDemo::Account, as well as those inherited from
POA_BankDemo::CheckingAccount, as shown in Figure 21

Interface inheritance facilitates encapsulation. With interface inheritance, the
derived class servant is independent of the base class servant. This might be
desirable if you plan to split a single server into two servers: one that implements
base objects and another that implements derived objects.

This model also serves any application design that requires all base classes to be
abstract, while it retains interface inheritance.

Figure 21: A servant class can implement operations of all base skeleton
classes.

AccountImpl

CheckingAccountImpl

POA_BankDemo::CheckingAccount

POA_BankDemo::Account
 282

Multiple Inheritance
Multiple Inheritance
Implementation and interface inheritance extend to multiple inheritance. In
Figure 22, solid arrows indicate inheritance that is mandated by the C++
mapping. The dotted arrows indicate that the servants allow either
implementation or interface inheritance.

Given this hierarchy, it is also possible to leave POA_BankDemo::Account
without an implementation, inasmuch as it is an IDL abstract base class. In this
case, CheckingAccountImpl and SavingsAccountImpl must provide the
required virtual method implementations.

Figure 22: Inheritance options among servant and base skeleton classes.

POA_BankDemo::SavingsAccount

POA_BankDemo::Account

POA_BankDemo::NOWAccount

POA_BankDemo::CheckingAccount

SavingsAccountImpl

AccountImpl

NOWAccountImpl

CheckingAccountImpl
283

CHAPTER 9 | Developing a Server
Explicit Event Handling
When you call ORB::run(), the ORB gets the thread of control to dispatch
events. This is acceptable for a server that only processes CORBA requests.
However, if your process must also support a GUI or uses another networking
stack, you also must be able to monitor incoming events that are not CORBA
client requests.

The ORB interface methods work_pending() and perform_work() let you poll
the ORB’s event loop for incoming requests:

• work_pending() returns true if the ORB’s event loop has at least one

request ready to process.

• perform_work() processes one or more requests before it completes and

returns the thread of control to the application code. The amount of work

processed by this call depends on the threading policies and the number of

queued requests; however, perform_work() guarantees to return

periodically so you can handle events from other sources.
 284

Termination Handler
Termination Handler
Orbix provides its own IT_TerminationHandler class, which enables server
applications to handle delivery of Ctrl-C and similar events in a portable
manner. On UNIX, the termination handler handles the following signals:

SIGINT
SIGTERM
SIGQUIT

On Windows, the termination handler is just a wrapper around
SetConsoleCtrlHandler, which handles delivery of the following control
events:

CTRL_C_EVENT
CTRL_BREAK_EVENT
CTRL_SHUTDOWN_EVENT
CTRL_LOGOFF_EVENT
CTRL_CLOSE_EVENT

You can create only one termination handler object in a program.

Example In the following example, the main routine creates a termination handler object
on the stack. On POSIX platforms, it is critical to create this object in the main
thread before creation of any other thread, especially before calling ORBinit().
The IT_TerminationHandler destructor deregisters the callback, in order to
avoid calling it during static destruction.

static void
termination_handler_callback(
 long signal
)
{
int
main(int argc, char** argv)
{
 IT_TerminationHandler
 termination_handler(termination_handler_callback);
}

285

CHAPTER 9 | Developing a Server
 cout << "Processing shutdown signal " << signal << endl;
 if (!CORBA::is_nil(orb))
 {
 cout >> "ORB shutdown ... " << flush;
 orb->shutdown(IT_FALSE);
 cout << "done." << endl;
 }
}

 286

Compiling and Linking
Compiling and Linking
Server compile and link requirements are almost the same as the client, except
that it also requires the server-side skeleton code, which has the format
idl-nameS.cxx—for example, BankDemoS.cxx. You also must link with the poa
library, which contains the server-side run-time support for the POA.

Details for compiling and linking a server differ among platforms. For more
information about platform-specific compiler flags and libraries, refer to the
demo makefiles in your Orbix distribution.
287

CHAPTER 9 | Developing a Server
 288

CHAPTER 10

Managing Server
Objects
A portable object adapter, or POA, maps CORBA objects to
language-specific implementations, or servants, in a server
process. All interaction with server objects takes place via the POA.

A POA identifies objects through their object IDs, which are encapsulated
within the object requests that it receives. Orbix views an object as active when
its object ID is mapped to a servant; the servant is viewed as incarnating that
object. By abstracting an object’s identity from its implementation, a POA
enables a server to be portable among different implementations.

In this chapter This chapter shows how to create and manage a POA within a server process,
covering the following topics:

Mapping Objects to Servants page 291

Creating a POA page 293

Using POA Policies page 300

Explicit Object Activation page 311

Implicit Object Activation page 312

Managing Request Flow page 317

Work Queues page 319
289

CHAPTER 10 | Managing Server Objects
Controlling POA Proxification page 329
 290

Mapping Objects to Servants
Mapping Objects to Servants
Figure 23 shows how a POA manages the relationship between CORBA
objects and servants, within the context of a client request. A client references an
object or invokes a request on it through an interoperable object reference (IOR).
This IOR encapsulates the information required to find the object, including its
server address, POA, and object ID—in this case, A. On receiving the request,
the POA uses the object’s ID to find its servant. It then dispatches the requested
operation to the servant via the server skeleton code, which extracts the
operation’s parameters and passes the operation as a language-specific call to the
servant.

Figure 23: A portable object adapter (POA) maps abstract objects to their
concrete implementations (servants)

Object IDs encapsulated
within IORs

Server

POA

Servant

A

Client request

Servant

Object ID

Skeleton

A

291

CHAPTER 10 | Managing Server Objects
Depending on a POA’s policies, a servant can be allowed to incarnate only one
object; or it can incarnate multiple objects. During an object’s lifetime, it can be
activated multiple times by successive servant incarnations.

Mapping options A POA can map between objects and servants in several ways:

• An active object map retains object-servant mappings throughout the

lifetime of its POA, or until an object is explicitly deactivated. Before a

POA is activated, it can anticipate incoming requests by mapping known

objects to servants, and thus facilitate request processing.

• A servant manager maps objects to servants on demand, either on the

initial object request, or on every request. Servant managers can enhance

control over servant instantiation, and help avoid or reduce the overhead

incurred by a static object-servant mapping.

• A single default servant can be used to handle all object requests. A POA

that uses a default servant incurs the same overhead no matter how many

objects it processes.

Depending on its policies, a POA can use just one object-mapping method, or
several methods in combination. For more information, see “Enabling the Active
Object Map” on page 301.
 292

Creating a POA
Creating a POA
All server processes in a location domain use the same root POA, which you
obtain by calling resolve_initial_references("POA"). The root POA has
predefined policies which cannot be changed (see page 299). Within each server
process, the root POA can spawn one or more child POAs. Each child POA
provides a unique namespace; and each can have its own set of policies, which
determine how the POA implements and manages object-servant mapping.
Further, each POA can have its own POA manager and servant manager.

Using multiple POAs A number of objectives can justify the use of multiple POAs within the same
server. These include:

• Partition the server into logical or functional groups of servants. You can

associate each group with a POA whose policies conform with the group’s

requirements. For example, a server that manages Customer and Account

servants can provide a different POA for each set of servants.

You can also group servants according to common processing

requirements. For example, a POA can be configured to generate object

references that are valid only during the lifespan of that POA, or across all

instantiations of that POA and its server. POAs thus offer built-in support

for differentiating between persistent and transient objects.

• Independently control request processing for sets of objects. A POA

manager’s state determines whether a POA is active or inactive; it also

determines whether an active POA accepts incoming requests for

processing, or defers them to a queue (see “Processing Object Requests”

on page 302). By associating POAs with different managers, you can gain

finer control over object request flow.

• Choose the method of object-servant binding that best serves a given POA.

For example, a POA that processes many objects can map all of them to the

same default servant, incurring the same overhead no matter how many

objects it processes.
293

CHAPTER 10 | Managing Server Objects
Procedure for creating a POA Creating a POA consists of these steps:

1. Set the POA policies.

Before you create a POA, establish its desired behavior through a CORBA

PolicyList, which you attach to the new POA on its creation. Any policies

that are explicitly set override a new POA’s default policies (refer to

Table 12 on page 296).

2. Create the POA by calling create_POA() on an existing POA.

3. If the POA has a policy of USE_SERVANT_MANAGER, register its servant

manager by calling set_servant_manager() on the POA.

4. Enable the POA to receive client requests by calling activate() on its

POA manager.
 294

Creating a POA
Setting POA Policies
A new POA’s policies are set when it is created. You can explicitly set a POA’s
policies through a CORBA PolicyList object, which is a sequence of Policy
objects.

Creating Policy objects The PortableServer::POA interface provides factories to create CORBA
Policy object types (see Table 12 on page 296). If a Policy object type is
proprietary to Orbix, you must create the Policy object by calling
create_policy() on the ORB (see “Setting proprietary policies for a POA” on
page 297). In all cases, you attach the PolicyList object to the new POA. All
policies that are not explicitly set in the PolicyList are set to their defaults.

For example, the following code creates policy objects of PERSISTENT and
USER_ID:

With the PERSISTENT policy, a POA can create object references that remain
valid across successive instantiations of this POA and its server process. The
USER_ID policy requires the application to autoassign all object IDs for a POA.

Attaching policies to a POA After you create a PolicyList object, you attach it to a new POA by supplying it
as an argument to create_POA(). The following code creates POA
persistentPOA as a child of the root POA, and attaches to it the PolicyList
object just shown:

CORBA::PolicyList policies;
policies.length (2);
policies[0] = poa–>create_lifespan_policy
 (PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy
 (PortableServer::USER_ID)

//get an object reference to the root POA
CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = POA::_narrow(obj);

//create policy object
CORBA::PolicyList policies;
policies.length (2);
295

CHAPTER 10 | Managing Server Objects
In general, POA policies let you differentiate among various POAs within the
same server process, where each POA is defined in a way that best
accommodates the needs of the objects that it processes. For example, a server
process that contains the POA persistentPOA might also contain a POA that
supports only transient object references, and only handles requests for callback
objects.

POA Policy factories The PortableServer::POA interface contains factory methods for creating
CORBA Policy objects:

// set policy object with desired policies
policies[0] = poa–>create_lifespan_policy
 (PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy
 (PortableServer::USER_ID)

//create a POA for persistent objects
poa = poa->create_POA("persistentPOA", NULL, policies);

Note: Orbix automatically removes policy objects when they are no longer
referenced by any POA.

Table 12: POA policy factories and argument options

POA policy factories Policy options

create_id_assignment_policy() SYSTEM_ID (default)
USER_ID

create_id_uniqueness_policy() UNIQUE_ID (default)
MULTIPLE_ID

create_implicit_activation_policy() NO_IMPLICIT_ACTIVATION (default)
IMPLICIT_ACTIVATION

create_lifespan_policy() TRANSIENT (default)
PERSISTENT

create_request_processing_policy() USE_ACTIVE_OBJECT_MAP_ONLY (default)
USE_DEFAULT_SERVANT
USE_SERVANT_MANAGER
 296

Creating a POA
For specific information about these methods, refer to their descriptions in the
CORBA Programmer’s Reference.

Setting proprietary policies for a
POA

Orbix provides several proprietary policies to control POA behavior. To set
these policies, call create_policy() on the ORB to create Policy objects with
the desired policy value, and add these objects to the POA’s PolicyList.

For example, Orbix provides policies that determine how a POA handles
incoming requests for any object as it undergoes deactivation. You can specify a
DISCARD policy for a POA so it discards all incoming requests for deactivating
objects:

Orbix-proprietary policies You can attach the following Orbix-proprietary Policy objects to a POA’s
PolicyList:

ObjectDeactivationPolicy controls how the POA handles requests that are
directed at deactivating objects. This policy is valid only for a POA that uses a
servant activator to control object activation. For more information, see “Setting
deactivation policies” on page 339.

create_servant_retention_policy() RETAIN (default)
NON_RETAIN

create_thread_policy() ORB_CTRL_MODEL (default)
SINGLE_THREAD_MODEL

Table 12: POA policy factories and argument options

POA policy factories Policy options

CORBA::PolicyList policies;
policies.length (1);
CORBA::Any obj_deactivation_policy_value;
obj_deactivation_policy_value <<= IT_PortableServer::DISCARD;

policies[0] = orb->create_policy(
 (IT_PortableServer::OBJECT_DEACTIVATION_POLICY_ID,
 obj_deactivation_policy_value);
297

CHAPTER 10 | Managing Server Objects
PersistenceModePolicy can specify a policy of DIRECT_PERSISTENCE, so that
the POA uses a well-known address in the IORs that it generates for persistent
objects. This policy is valid only for a POA that has a PERSISTENT lifespan
policy. For more information, see “Direct persistence” on page 304.

WellKnownAddressingPolicy sets transport configuration data—for example,
address information for persistent objects that use a well-known address, or IIOP
buffer sizes. For more information, see “Direct persistence” on page 304.

DispatchWorkQueuePolicy specifies the work queue used to process requests
for a POA whose threading policy is set to ORB_CTRL_MODEL. All requests for the
POA are dispatched in a thread controlled by the specified work queue. For more
information, see “Work Queues” on page 319.

WorkQueuePolicy specifies the work queue used by network transports to read
requests for the POA. For more information, see “Work Queues” on page 319.

InterdictionPolicy disables the proxification of the POA when using the Iona
firewall proxy service. A POA with this policy set to DISABLE will never be
proxified. For more information, see “Controlling POA Proxification” on
page 329.
 298

Creating a POA
Root POA Policies
The root POA has the following policy settings, which cannot be changed:

Policy Default setting

Id Assignment SYSTEM_ID

Id Uniqueness UNIQUE_ID

Implicit Activation IMPLICIT_ACTIVATION

Lifespan TRANSIENT

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY

Servant Retention RETAIN

Thread ORB_CTRL_MODEL
299

CHAPTER 10 | Managing Server Objects
Using POA Policies

Overview A POA’s policies play an important role in determining how the POA
implements and manages objects and processes client requests. While the root
POA has a set of predefined policies that cannot be changed, any POA that you
create can have its policies explicitly set.

In this section The following sections describe POA policies and setting options:

Enabling the Active Object Map page 301

Processing Object Requests page 302

Setting Object Lifespan page 304

Assigning Object IDs page 307

Activating Objects with Dedicated Servants page 308

Activating Objects page 309

Setting Threading Support page 310
 300

Using POA Policies
Enabling the Active Object Map
A POA’s servant retention policy determines whether it uses an active object
map to maintain servant-object associations. Depending on its request
processing policy (see page 302), a POA can rely exclusively on an active object
map to map object IDs to servants, or it can use an active object map together
with a servant manager and/or default servant. A POA that lacks an active object
map must use either a servant manager or a default servant to map between
objects and servants.

You specify a POA’s servant retention policy by calling
create_servant_retention_policy() with one of these arguments:

RETAIN: The POA retains active servants in its active object map.

NON_RETAIN: The POA has no active object map. For each request, the POA
relies on the servant manager or default servant to map between an object and its
servant; all mapping information is destroyed when request processing returns.
Thus, a NON_RETAIN policy also requires that the POA have a request
processing policy of USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER (see
“Processing Object Requests” on page 302).

Servant manager and servant
retention policy

If a POA has a policy of USE_SERVANT_MANAGER, its servant retention policy
determines whether it uses a servant activator or servant locator as its servant
manager. A RETAIN policy requires the use of a servant activator; a NON_RETAIN
policy requires the use of a servant locator. For more information about servant
managers, see Chapter 11.
301

CHAPTER 10 | Managing Server Objects
Processing Object Requests
A POA's request processing policy determines how it locates a servant for object
requests. Four options are available:

• Maintain a permanent map, or active object map, between object IDs and

servants and rely exclusively on that map to process all object requests.

• Activate servants on demand for object requests.

• Locate a servant for each new object request.

• Map object requests to a single default servant.

For example, if the application processes many lightweight requests for the same
object type, the server should probably have a POA that maps all these requests
to the same default servant. At the same time, another POA in the same server
might be dedicated to a few objects that each use different servants. In this case,
requests can probably be processed more efficiently if the POA is enabled for
permanent object-servant mapping.

You set a POA’s request processing policy by calling
create_request_processing_policy() and supplying one of these arguments:

• USE_ACTIVE_OBJECT_MAP_ONLY

• USE_SERVANT_MANAGER

• USE_DEFAULT_SERVANT

USE_ACTIVE_OBJECT_MAP_ONLY: All object IDs must be mapped to a
servant in the active object map; otherwise, Orbix returns an exception of
OBJECT_NOT_EXIST to the client.

During POA initialization and anytime thereafter, the active object map is
populated with all object-servant mappings that are required during the POA’s
lifetime. The active object map maintains object-servant mappings until the
POA shuts down, or an object is explicitly deactivated through
deactivate_object().

Typically, a POA can rely exclusively on an active object map when it processes
requests for a small number of objects.

This policy requires POA to have a servant retention policy of RETAIN. (see
“Enabling the Active Object Map” on page 301).
 302

Using POA Policies
USE_SERVANT_MANAGER: The POA’s servant manager finds a servant
for the requested object. Depending on its servant retention policy, the POA can
implement one of two servant manager types, either a servant activator or a
servant locator:

• A servant activator can be registered with a POA that has a RETAIN policy.

The servant activator incarnates servants for inactive objects on receiving

an initial request for them. The active object map retains mappings

between objects and their servants; it handles all subsequent requests for

this object.

• If the POA has a policy of NON_RETAIN (the POA has no active object

map), a servant locator must find a servant for an object on each request;

otherwise, an OBJ_ADAPTER exception is returned when clients invoke

requests.

USE_SERVANT_MANAGER requires the application to register a servant manager
with the POA by calling set_servant_manager().

For more information about servant managers, see Chapter 11.

USE_DEFAULT_SERVANT: The POA dispatches requests to the default
servant when it cannot otherwise find a servant for the requested object. This can
occur because the object’s ID is not in the active object map, or the POA’s
servant retention policy is set to NON_RETAIN.

Set this policy for a POA that needs to process many objects that are instantiated
from the same class, and thus can be implemented by the same servant.

This policy requires the application to register the POA’s default servant by
calling set_servant() on the POA; it also requires the POA’s ID uniqueness
policy to be set to MULTIPLE_ID, so multiple objects can use the default servant.
303

CHAPTER 10 | Managing Server Objects
Setting Object Lifespan
A POA creates object references through calls to create_reference() or
create_reference_with_id(). The POA’s lifespan policy determines whether
these object references are persistent—that is, whether they outlive the process
in which they were created. A persistent object reference is one that a client can
successfully reissue over successive instantiations of the target server and POA.

You specify a POA’s lifespan policy by calling create_lifespan_policy()
with one of these arguments

TRANSIENT: (default policy) Object references do not outlive the POA in
which they are created. After a transient object’s POA is destroyed, attempts to
use this reference yield the exception CORBA::OBJECT_NOT_EXIST.

PERSISTENT: Object references can outlive the POA in which they are
created.

Transient object references When a POA creates an object reference, it encapsulates it within an IOR. If the
POA has a TRANSIENT policy, the IOR contains the server process’s current
location—its host address and port. Consequently, that object reference is valid
only as long as the server process remains alive. If the server process dies, the
object reference becomes invalid.

Persistent object references If the POA has a PERSISTENT policy, the IOR contains the address of the
location domain’s implementation repository, which maps all servers and their
POAs to their current locations. Given a request for a persistent object, the
location daemon uses the object’s “virtual” address first, and looks up the server
process’s actual location via the implementation repository.

Direct persistence Occasionally, you might want to generate persistent object references that avoid
the overhead of using the location daemon. In this case, Orbix provides the
proprietary policy of DIRECT_PERSISTENCE. A POA with policies of
PERSISTENT and DIRECT_PERSISTENCE generates IORs that contain a
well-known address list for the server process.

A POA that uses direct persistence must also indicate where the configuration
sets the well-known address list to be embedded in object references. In order to
do this, two requirements apply:
 304

Using POA Policies
• The configuration must contain a well-known address configuration

variable, with this syntax:

prefix:transport:addr_list=[address-spec [,...]]

• The POA must have a WELL_KNOWN_ADDRESSING_POLICY whose value is

set to prefix.

For example, you might create a well-known address configuration variable in
name scope MyConfigApp as follows:

Given this configuration, a POA is created in the ORB MyConfigApp can have its
PolicyList set so it generates object references that use direct persistence, as
follows:

Object lifespan and ID assignment A POA’s lifespan and ID assignment policies have dependencies upon one
another.

MyConfigApp {
 ...
 wka:iiop:addr_list=["host.com:1075"];
 ...
}

CORBA::PolicyList policies;
policies.length (4);
CORBA::Any persistence_mode_policy_value;
CORBA::Any well_known_addressing_policy_value;

persistence_mode_policy_value
 <<= IT_PortableServer::DIRECT_PERSISTENCE;
well_known_addressing_policy_value <<=
 CORBA::Any::from_string("wka", IT_TRUE);

policies[0] = poa–>create_lifespan_policy
 (PortableServer::PERSISTENT);
policies[1] = poa–>create_id_assignment_policy
 (PortableServer::USER_ID);
policies[2] = orb->create_policy(
 (IT_PortableServer::PERSISTENCE_MODE_POLICY_ID,
 persistence_mode_policy_value);
policies[3] = orb->create_policy(
 IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
 well_known_addressing_policy_value);
305

CHAPTER 10 | Managing Server Objects
TRANSIENT and SYSTEM_ID are the default settings for a new POA, becuase
system-assigned IDs are sufficient for transient object references. The appication
does not need tight control over the POA’s ID becuase the POA’s object
reference is only valid for the POA’s current incarnation.

However, PERSISTENT and USER_ID policies are usually set together, because
applications require explicit control over the object IDs of its persistent object
references. When using persistent object references the POA’s name is part of
the information used to resolve an object’s IOR. For this reason, there is a
possibility of conflicts when using multiple POA’s with the same name and a
lifespan policy of PERSISTENT. This is particularly true when using indirect
persistent IORs.
 306

Using POA Policies
Assigning Object IDs
The ID assignment policy determines whether object IDs are generated by the
POA or the application. Specify the POA’s ID assignment policy by calling
create_id_assignment_policy() with one of these arguments:

SYSTEM_ID: The POA generates and assigns IDs to its objects. Typically, a
POA with a SYSTEM_ID policy manages objects that are active for only a short
period of time, and so do not need to outlive their server process. In this case, the
POA also has an object lifespan policy of TRANSIENT. Note, however, that
system-generated IDs in a persistent POA are unique across all instantiations of
that POA.

USER_ID: The application assigns object IDs to objects in this POA. The
application must ensure that all user-assigned IDs are unique across all
instantiations of the same POA.

USER_ID is usually assigned to a POA that has an object lifespan policy of
PERSISTENT—that is, it generates object references whose validity can span
multiple instantiations of a POA or server process, so the application requires
explicit control over object IDs.
307

CHAPTER 10 | Managing Server Objects
Activating Objects with Dedicated Servants
A POA’s ID uniqueness policy determines whether it allows a servant to
incarnate more than one object. You specify a POA’s ID uniqueness policy by
calling create_id_uniqueness_policy() with one of these arguments:

UNIQUE_ID: Each servant in the POA can be associated with only one object
ID.

MULTIPLE_ID: Any servant in the POA can be associated with multiple
object IDs.

Note: If the same servant is used by different POAs, that servant conforms to
the uniqueness policy of each POA. Thus, it is possible for the same servant to
be associated with multiple objects in one POA, and be restricted to one object
in another.
 308

Using POA Policies
Activating Objects
A POA’s activation policy determines whether objects are explicitly or
implicitly associated with servants. If a POA is enabled for explicit activation,
you activate an object by calling activate_object() or
activate_object_with_id() on the POA. A POA that supports implicit
activation allows the server application to call the _this() function on a servant
to create an active object (see “Implicit Object Activation” on page 312).

The activation policy determines whether the POA supports implicit activation
of servants.

Specify the POA’s activation policy by supplying one of these arguments:

NO_IMPLICIT_ACTIVATION: (default) The POA only supports explicit
activation of servants.

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants.
This policy requires that the POA’s object ID assignment policy be set to
SYSTEM_ID, and its servant retention policy be set to RETAIN.

For more information, see “Implicit Object Activation” on page 312.
309

CHAPTER 10 | Managing Server Objects
Setting Threading Support
Specify the POA’s thread policy by supplying one of these arguments:

ORB_CTRL_MODEL: The ORB is responsible for assigning requests for an
ORB-controlled POA to threads. In a multi-threaded environment, concurrent
requests can be delivered using multiple threads.

SINGLE_THREAD_MODEL: Requests for a single-threaded POA are
processed sequentially. In a multi-threaded environment, all calls by a
single-threaded POA to implementation code (servants and servant managers)
are made in a manner that is safe for code that does not account for
multi-threading.

Multiple single-threaded POAs might need to cooperate to ensure that calls are
safe when they share implementation code such as a servant manager.

Default work queues Orbix maintains for each ORB two default work queues, one manual and the
other automatic. Depending on its thread policy, a POA that lacks its own work
queue uses one of the default work queues to process requests:

• A POA with a threading policy of SINGLE_THREAD_MODEL uses the manual

work queue. To remove requests from the manual work queue, you must

call either ORB::perform_work() or ORB::run() within the main thread.

• A POA with a threading policy of ORB_CTRL_MODEL uses the automatic

work queue. Requests are automatically removed from this work queue;

however, because ORB::run() blocks until the ORB shuts down, an

application can call this method to detect when shutdown is complete.

Both threading policies assume that the ORB and the application are using
compatible threading synchronization. All uses of the POA within the server
must conform to its threading policy.

For information about creating a POA workqueue, see page 319.
 310

Explicit Object Activation
Explicit Object Activation
If the POA has an activation policy of NO_IMPLICIT_ACTIVATION, the server
must call either activate_object() or activate_object_with_id() on the
POA to activate objects. Either of these calls registers an object in the POA with
either a user-supplied or system-generated object ID, and maps that object to the
specified servant.

After you explicitly activate an object, you can obtain its object reference in two
ways:

• Use the object’s ID to call id_to_reference() on the POA where the

object was activated. id_to_reference() uses the object’s ID to obtain

the information needed to compose an object reference, and returns that

reference to the caller.

• Call _this() on the servant. Because the servant is already registered in

the POA with an object ID, the function composes an object reference from

the available information and returns that reference to the caller.
311

CHAPTER 10 | Managing Server Objects
Implicit Object Activation
A server activates an object implicitly by calling _this() on the servant
designated to incarnate that object. _this() is valid only if the POA that
maintains these objects has policies of RETAIN, SYSTEM_ID, and
IMPLICIT_ACTIVATION; otherwise, it raises a WrongPolicy exception. Thus,
implicit activation is generally a good option for a POA that maintains a
relatively small number of transient objects.

Calling _this() _this() performs two separate tasks:

• Checks the POA to determine whether the servant is registered with an

existing object. If it is not, _this() creates an object from the servant’s

interface, registers a new ID for this object in the POA’s active object map,

and maps this object ID to the servant.

• Generates and returns an object reference.

In other words, the object is implicitly activated in order to return an object
reference.

You can call _this() on a servant in two ways:

• Within an operation that is invoked on the servant’s object.

• Outside an operation.
 312

Implicit Object Activation
Calling _this() Inside an Operation
If called inside an operation, _this() returns a reference to the object on which
the operation was invoked. Thus, a servant can always obtain a reference to the
object that it incarnates—for example, in order to register the object as a
callback with another object.

The following interface defines the get_self() operation, whose
implementation returns a reference to the same interface:

You might implement this operation as follows:

interface Whatever {
 Whatever get_self();
};

Whatever_ptr
WhateverImpl::get_self() throw(CORBA::SystemException)
{
 return _this(); // Return reference to self
}

313

CHAPTER 10 | Managing Server Objects
Calling _this() Outside an Operation
You can activate an object and obtain a reference to it by calling _this() on a
servant. This object reference must include information that it obtains from the
POA in which the object is registered: the fully qualified POA name, protocol
information, and the object ID that is registered in the POA’s active object map.
_this() determines which POA to use by calling _default_POA() on the
servant.

_default_POA() is inherited from the ServantBase class:

Servant inheritance of
_default_POA() implementation

All skeleton classes and the servants that implement them derive from
ServantBase, and therefore inherit its implementation of _default_POA(). The
inherited _default_POA() always returns the root POA. Thus, calling _this()
on a servant that does not override _default_POA() returns a transient object
reference that points back to the root POA. All invocations on that object are
processed by the root POA.

As seen earlier, an application typically creates its own POAs to manage objects
and client requests. For example, to create and export persistent object
references, you must create a POA with a PERSISTENT lifespan policy and use it
to generate the desired object references. If this is the case, you must be sure that
the servants that incarnate those objects also override _default_POA();
otherwise, calling _this() on those servants returns transient object references
whose mappings to servants are handled by the root POA.

class ServantBase {
public:
 virtual POA_ptr _default_POA();
 // ...
};

Note: To avoid ambiguity concerning the POA in which an object is
implicitly activated, call servant_to_reference() on the desired POA
instead of _this(). While using servant_to_reference() requires you to
narrow to the appropriate object, the extra code is worth the extra degree of
clarity that you achieve.
 314

Implicit Object Activation
Overriding _default_POA() To ensure that _this() uses the right POA to generate object references, an
application’s servants must override the default POA. You can do this three
ways:

Override _default_POA() to throw a system exception. For example,
_default_POA() can return system exception CORBA::INTERNAL. This prevents
use of _this() to generate any object references for that servant.

By overriding _default_POA() to throw an exception, you ensure that attempts
to use _this() yield an immediate error instead of a subtly incorrect behavior
that must be debugged later. Instead, you must create object references with calls
to either create_reference() or create_reference_with_id() (see
page 349), then explicitly map objects to servants—for example, through a
servant manager, or via the active object map by calling
activate_object_with_id.().

Disabling _default_POA() also prevents you from calling _this() to obtain an
existing object reference for a servant. To obtain the reference, you must call
servant_to_reference().

Override _default_POA() in each servant to return the correct POA. Calls
to _this() are guaranteed to use the correct POA. This approach also raises a
WrongPolicy exception if the POA that you set for a servant has invalid policies
for implicit activation. such as USER_ID.

This approach requires the application to maintain a reference for the servant’s
POA. If all servants use the same POA, you can set the reference in a global
variable or a static private member. However, if a server uses unique POAs for
different groups of servants, each servant must carry the overhead of an
additional (non-static) data member.

Override _default_POA() in a common base class. Servant classes that need
to override _default_POA() can inherit from a common base class that contains
an override definition. This approach to overriding _default_POA() has two
advantages:

• You only need to write the overriding definition of _default_POA() once.

• If you define a servant class that inherits from multiple servant classes, you

avoid inheriting conflicting definitions of the _default_POA() method.
315

CHAPTER 10 | Managing Server Objects
Example Orbix’s cpp_poa_genie.tcl genie generates servant code that overrides
_default_POA() in the common base class IT_ServantBaseOverrides. This
class overrides _default_POA() as follows:

The code executes as follows:

1. IT_ServantBaseOverrides inherits from

PortableServer::ServantBase, which is the base class for all servant

classes.

2. The constructor is passed a reference to a POA object, which it stores in

private member variable m_poa.

3. IT_ServantBaseOverrides::_default_POA() overrides the definition

inherited from PortableServer::ServantBase. It returns a copy of the

POA reference stored in m_poa.

4. The m_poa private member is used to stores the POA reference.

For more information about using the IT_ServantBaseOverrides class, See
page 49.

Example 15: Overriding _default_POA() in a common base class

//File: it_servant_base_overrides.h
...
class IT_ServantBaseOverrides :

1 public virtual PortableServer::ServantBase
{
public:

2 IT_ServantBaseOverrides(
 PortableServer::POA_ptr
);

 virtual
 ~IT_ServantBaseOverrides();

 virtual PortableServer::POA_ptr

3 _default_POA();

private:

4 PortableServer::POA_var m_poa;
 ...
};
 316

Managing Request Flow
Managing Request Flow
Each POA is associated with a POAManager object that determines whether the
POA can accept and process object requests. When you create a POA, you
specify its manager by supplying it as an argument to create_POA(). This
manager remains associated with the POA throughout its life span.

create_POA() can specify either an existing POA manager, or NULL to create a
POAManager object. You can obtain the POAManager object of a given POA by
calling the_POAManager() on it. By creating POA managers and using existing
ones, you can group POAs under different managers according to their request
processing needs. Any POA in the POA hierarchy can be associated with a given
manager; the same manager can be used to manage POAs in different branches.

POA manager states A POA manager can be in four different states. The POAManager interface
provides four operations to change the state of a POA manager, as shown in
Table 13.

Table 13: POA manager states and interface operations

State Operation Description

Active activate() Incoming requests are accepted for processing. When a
POA manager is created, it is initially in a holding state.
Until you call activate() on a POA’s manager, all
requests sent to that POA are queued.

Holding hold_requests() All incoming requests are queued. If the queue fills to
capacity, incoming requests are returned with an
exception of TRANSIENT.
317

CHAPTER 10 | Managing Server Objects
Holding state The POA manager of the root POA is initially in a holding state, as is a new
POA manager. Until you call activate() on a POA’s manager, all requests sent
to that POA are queued. activate() can also reactivate a POA manager that has
reverted to a holding state (due to a hold_requests() call) or is in a discarding
state (due to a discard_requests() call).

If a new POA is associated with an existing active POA manager, it is
unnecessary to call activate(). However, it is generally a good idea to put a
POA manager in a holding state before creating a new POA with it.

The queue for a POA manager that is in a holding state has limited capacity, so
this state should be maintained for a short time only. Otherwise, the queue is
liable to fill to capacity with pending requests. When this happens, all
subsequent requests return to the client with a TRANSIENT exception.

Discarding discard_requests() All incoming requests are refused and a system
exception of TRANSIENT is raised to clients so they can
reissue their requests. A POA manager is typically in a
discarding state when the application detects that an
object or the POA in general cannot keep pace with
incoming requests. A POA manager should be in a
discarding state only temporarily. On resolution of the
problem that required this call, the application should
restore the POA manager to its active state with
activate().

Inactive deactivate() The POA manager is shutting down and destroying all
POAs that are associated with it. Incoming requests are
rejected with the exception CORBA::OBJ_ADAPTER.

Table 13: POA manager states and interface operations

State Operation Description
 318

Work Queues
Work Queues

Overview Orbix provides two proprietary policies, which allow you to associate a
WorkQueue with a POA and thereby control the flow of incoming requests for
that POA:

DispatchWorkQueuePolicy associates a work queue with an ORB_CTRL_MODEL
POA. All work items for the POA are processed by the work queue in a thread
owned by the work queue.

WorkQueuePolicy associates a work queue with any POA. The specified work
queue will be used by the underlying network transports for reading requests
from the POA.

Interface A work queue has the following interface definition:

// IDL
interface WorkQueue
{
 readonly attribute long max_size;
 readonly attribute unsigned long count;

 boolean enqueue(in WorkItem work, in long timeout);

 boolean enqueue_immediate(in WorkItem work);

 boolean is_full();

 boolean is_empty();

 boolean activate();

 boolean deactivate();

 boolean owns_current_thread();

 void flush();
};
319

CHAPTER 10 | Managing Server Objects
WorkQueue types You can implement your own WorkQueue interface, or use IONA-supplied
WorkQueue factories to create one of two WorkQueue types:

• ManualWorkQueue

• AutomaticWorkQueue
 320

Work Queues
ManualWorkQueue

Overview A ManualWorkQueue is a work queue that holds incoming requests until they are
explicitly dequeued. It allows the developer full control over how requests are
processed by the POA.

IDL The interface is defined as follows:

Creating You create a ManualWorkQueueFactory by calling
resolve_initial_references("IT_ManualWorkQueueFactory"). The
ManualWorkQueueFactory has the following interface:

create_work_queue takes the following argument:

max_size is the maximum number of work items that the queue can hold. If the
queue becomes full, the transport considers the server to be overloaded and tries
to gracefully close down connections to reduce the load.

\\ IDL
interface ManualWorkQueue : WorkQueue
{
 boolean dequeue(out WorkItem work, in long timeout);

 boolean do_work(in long number_of_jobs, in long timeout);

 void shutdown(in boolean process_remaining_jobs);
};

interface ManualWorkQueueFactory
{
 ManualWorkQueue create_work_queue(in long max_size);
};
321

CHAPTER 10 | Managing Server Objects
How requests are processed Applications that use a ManualWorkQueue must periodically call dequeue() or
do_work() to ensure that requests are processed. The developer is in full control
of time between calls and if the events are processed by multiple threads or in a
single thread. If the developer chooses a multithreaded processing method, they
are responsible for ensuring that the code is thread safe.

A false return value from either do_work() or dequeue() indicates that the
timeout for the request has expired or that the queue has shut down.
 322

Work Queues
AutomaticWorkQueue

Overview An AutomaticWorkQueue is a work queue that feeds a thread pool. Automatic
work queues process requests in the same way that the standard ORB does;
however, it does allow the developer to assign a customized thread pool to a
particular POA. Also, the developer can implement several automatic work
queues to process different types of requests at different priorities.

IDL The interface is defined as follows:

// IDL
interface AutomaticWorkQueue : WorkQueue
{
 readonly attribute unsigned long threads_total;
 readonly attribute unsigned long threads_working;

 attribute long high_water_mark;
 attribute long low_water_mark;

 void shutdown(in boolean process_remaining_jobs);
};
323

CHAPTER 10 | Managing Server Objects
Creating You create an AutomaticWorkQueue through the AutomaticWorkQueueFactory,
obtained by calling
resolve_initial_references("IT_AutomaticWorkQueue"). The
AutomaticWorkQueueFactory has the following interface:

create_work_queue() takes these arguments:

max_size is the maximum number of work items that the queue can hold. To
specify an unlimited queue size, supply a value of -1.

initial_thread_count is the initial number of threads in the thread pool; the
ORB automatically creates and starts these threads when the workqueue is
created.

high_water_mark specifies the maximum number of threads that can be
created to process work queue items. To specify an unlimited number of threads,
supply a value of -1.

low_water_mark lets the ORB remove idle threads from the thread pool, down
to the value of low_water_mark. The number of available threads is never less
than this value.

If you wish to have greater control of the size of the work queue’s thread stack,
use create_work_queue_with_thread_stack(). It adds one argument,
thread_stack_size, to the end of the argument list. This argument specifies the
size of the workqueues thread stack.

interface AutomaticWorkQueueFactory
{
 AutomaticWorkQueue create_work_queue(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark);

 AutomaticWorkQueue create_work_queue_with_thread_stack_size(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark,
 in long thread_stack_size);
};
 324

Work Queues
How requests are processed Applications that use an AutomaticWorkQueue do not need to explicitly dequeue
work items; instead, work items are automatically dequeued and processed by
threads in the thread pool.

If all threads are busy and the number of threads is less than high_water_mark,
the ORB can start additional threads to process items in the work queue, up to
the value of high_water_mark. If the number of threads is equal to
high_water_mark and all are busy, and the work queue is filled to capacity, the
transport considers the server to be overloaded and tries to gracefully close down
connections to reduce the load.
325

CHAPTER 10 | Managing Server Objects
Using a WorkQueue

Creating the WorkQueue To create a POA with a WorkQueue policy, follow these steps:

1. Create a work queue factory by calling resolve_initial_references()

with the desired factory type by supplying an argument of

IT_AutomaticWorkQueueFactory or IT_ManualWorkQueueFactory.

2. Set work queue parameters.

3. Create the work queue by calling create_work_queue() on the work

queue factory.

4. Insert the work queue into an Any.

5. Add a work queue policy object to a POA’s PolicyList.

Example 16 illustrates these steps:

Example 16: Creating a POA with a WorkQueue policy

1 // get an automatic work queue factory
CORBA::Object_var obj =
 resolve_initial_references("IT_AutomaticWorkQueueFactory");
IT_WorkQueue::AutomaticWorkQueueFactory_var wqf =
 AutomaticWorkQueueFactory::_narrow(obj);

2 // set work queue parameters
CORBA::Long max_size = 20;
CORBA::Long init_thread_count = 1;
CORBA::Long high_water_mark = 20;
CORBA::Long low_water_mark = 2;

3 // create work queue
IT_AutomaticWorkQueue_var wq = wqf->create_work_queue(max_size,

init_thread_count, high_water_mark, low_water_mark);

4 // insert the work queue into an any
CORBA::Any work_queue_policy_val;
work_queue_policy_val <<= wq;

// create PolicyList
CORBA::PolicyList policies;
policies.length(1);
 326

Work Queues
Processing events in a manual
work queue

When using a manual work queue, the developer must implement the loop which
removes requests from the queue.

Example 17 demonstrates one way to remove requests from a manual work
queue. The code loops indefinitely and continuously polls the queue for
requests. When there are requests on the queue, they are removed from the
queue using the dequeue() method and then they processed with the execute()
method of the WorkItem object returned from dequeue().

Alternatively, you remove requests from the queue using the do_work() method.
The difference is that using do_work() you can process several requests at one
time.

5 // add work queue policy object to POA’s PolicyList
policies[0]=orb->create_policy(
 IT_PortableServer::DISPATCH_WORKQUEUE_POLICY_ID,
 work_queue_policy_val);

Example 16: Creating a POA with a WorkQueue policy

Example 17: Removing requests from a work queue.

WorkQueue::WorkItem work_item;

while (1)
{
 if (wq->is_empty())
 {
 // Since there are no requests to process
 // the object can sleep, or do whatever other work
 // the developer needs done.

 }
 else
 {
 manual_work_queue->dequeue(work_item, 5000);
 work_item->execute();
 // no need to explicitly destroy as execute deletes the
 // work item once completed.
 }
}

327

CHAPTER 10 | Managing Server Objects
Processing events in an automatic
work queue

Automatic work queues handle request processing under the covers. Therefore,
the developer does not need to implement any request handling logic.
 328

Controlling POA Proxification
Controlling POA Proxification

Overview The Iona firewall proxy service, if it is activated, default behavior is to proxify
all POAs. This can consume resources and degrade performance of a system if a
large number of POAs are placed behind the firewall proxy service. In many
instances only specific POAs will need to face outside the firewall. Using the
InterdictionPoilcy you can control if a specific POA is proxified.

Policy The InterdictionPolicy controls the behavior of the firewall proxy service
plug-in, if it is loaded. The policy has two settings:

Example The following code samples demonstrate how to set the InterdictionPolicy
on a POA. In the examples, the policy is set to DISABLE.

C++

ENABLE This is the default behavior of the firewall proxy service
plug-in. A POA with its InterdictionPolicy set to ENABLE
will be proxified.

DISABLE This setting tells the firewall proxy service plug-in to not
proxify the POA. A POA with its InterdictionPolicy set
to DISABLE will not use the firewall proxy service and
requests made on objects under its control will come directly
from the requesting clients.

#include <orbix/fps.hh>

// Create a PREVENT interdiction policy.
CORBA::Any interdiction;
interdiction <<= IT_FPS::DISABLE;

CORBA::PolicyList policies(1);
policies.length(1);
policies[0] =

m_orb->create_policy(IT_FPS::INTERDICTION_POLICY_ID,
interdiction);

 // Create and return new POA.
return m_poa->create_POA("no_fps_poa", 0, policies);
329

CHAPTER 10 | Managing Server Objects
 330

CHAPTER 11

Managing Servants
A POA that needs to manage a large number of objects can be
configured to incarnate servants only as they are needed.
Alternatively, a POA can use a single servant to service all
requests.

A POA’s default request processing policy is USE_ACTIVE_OBJECT_MAP_ONLY.
During POA initialization, the active object map must be populated with all
object-servant mappings that are required during the POA’s lifetime. The active
object map maintains object-servant mappings until the POA shuts down, or an
object is explicitly deactivated.

For example, you might implement the BankDemo::Account interface so that at
startup, a server instantiates a servant for each account and activates all the
account objects. Thus, a servant is always available for any client invocation on
that account—for example, balance() or withdraw().

Drawbacks of active object map
usage

Given the potential for many thousands of accounts, and the likelihood that
account information changes—accounts are closed down, new accounts are
created—the drawbacks of this static approach become obvious:

• Code duplication: For each account, the same code for servant creation and

activation must be repeated, increasing the potential for errors.

• Inflexibility: For each change in account information, you must modify

and recompile the server code, then stop and restart server processes.

• Startup time: The time required to create and activate a large number of

servants prolongs server startup and delays its readiness to process client

requests.
331

CHAPTER 11 | Managing Servants
• Memory usage: An excessive amount of memory might be required to

maintain all servants continuously.

This scenario makes it clear that you should usually configure a POA to rely
exclusively on an active object map only when it maintains a small number of
objects.

Policies for managing many
objects

If a POA is required to maintain a large number of objects, you should set its
request processing policy to one of the following:

• USE_SERVANT_MANAGER specifies that servants are instantiated on demand.

• USE_DEFAULT_SERVANT specifies a default servant that handles requests for

any objects that are not registered in the active object map, or for all

requests in general.

This chapter shows how to implement both policies.

In this chapter This chapter contains the following sections:

Using Servant Managers page 333

Using a Default Servant page 345

Creating Inactive Objects page 349
 332

Using Servant Managers
Using Servant Managers

Servant manager types A POA whose request processing policy is set to USE_SERVANT_MANAGER
supplies servants on demand for object requests. The POA depends on a servant
manager to map objects to servants. Depending on its servant retention policy,
the POA can implement one of two servant manager types, either a servant
activator or servant locator:

• A servant activator is registered with a POA that has a RETAIN policy. The

servant activator supplies a servant for an inactive object on receiving an

initial request for it. The active object map retains the mapping between the

object and its servant until the object is deactivated.

• A servant locator is registered with a POA that has a policy of NON_RETAIN.

The servant locator supplies a servant for an inactive object each time the

object is requested. In the absence of an active object map, the servant

locator must deactivate the object and delete the servant from memory

after the request returns.

Because a servant activator depends on the active object map to maintain the
servants that it supplies, its usefulness is generally limited to minimizing an
application’s startup time. In almost all cases, you should use a servant locator
for applications that must dynamically manage large numbers of objects.

Registering a servant manager An application registers its servant manager —whether activator or locator—
with the POA by calling set_servant_manager() on it; otherwise, an
OBJ_ADAPTER exception is returned to the client on attempts to invoke on one of
its objects.

The following sections show how to implement the BankDemo::Account
interface with a servant activator and a servant locator. Both servant manager
types activate account objects with instantiations of servant class
SingleAccountImpl, which inherits from skeleton class
POA_BankDemo::Account:
333

CHAPTER 11 | Managing Servants
class SingleAccountImpl :
 public POA_BankDemo::Account
{
 public:
 SingleAccountImpl(
 const char* account_id,
 AccountDatabase& account_db
);

 ~SingleAccountImpl();

 void withdraw(BankDemo::CashAmount amount) throw(
 CORBA::SystemException,
 BankDemo::Account::InsufficientFunds);

 void deposit(BankDemo::CashAmount amount) throw(
 CORBA::SystemException);

 char* account_id() throw(CORBA::SystemException);

 BankDemo::CashAmount balance()
 throw(CORBA::SystemException);

 private:
 CORBA::String_var m_account_id;
 BankDemo::CashAmount m_balance;
 AccountDatabase& m_account_db;
};
 334

Using Servant Managers
Servant Activators
A POA with policies of USE_SERVANT_MANAGER and RETAIN uses a servant
activator as its servant manager. The POA directs the first request for an inactive
object to the servant activator. If the servant activator returns a servant, the POA
associates it with the requested object in the active object map and thereby
activates the object. Subsequent requests for the object are routed directly to its
servant.

Servant activators are generally useful when a server can hold all its servants in
memory at once, but the servants are slow to initialize, or they are not all needed
each time the server runs. In both cases, you can expedite server startup by
deferring servant activation until it is actually needed.

Figure 24: On the first request on an object, the servant activator returns a
servant to the POA, which establishes the mapping in its active object map.

POA

servant
activatorInitial object requests are

directed to servant activator

servant-object ID
mappings

Subsequent requests on
activated objects
are routed through
the active
object map

active object
map

servants

1

3

Servant activator activates
servants on
demand

object IDs

2

335

CHAPTER 11 | Managing Servants
ServantActivator interface The PortableServer::ServantActivator interface is defined as follows:

A POA can call two methods on its servant activator:

• incarnate() is called by the POA when it receives a request for an

inactive object, and should return an appropriate servant for the requested

object.

• etherealize() is called by the POA when an object is deactivated or the

POA shuts down. In either case, it allows the application to clean up

resources that the servant uses.

Implementing a servant activator You can define a servant activator as follows:

interface ServantActivator : ServantManager
{
 Servant
 incarnate(
 in ObjectId oid,
 in POA adapter
 raises (ForwardRequest);

 void
 etherealize(
 in ObjectId oid,
 in POA adapter,
 in Servant serv,
 in boolean cleanup_in_progress,
 in boolean remaining_activations
 ;
};

Example 18: Servant activator class definition

#include <omg/PortableServerS.hh>
#include "account_db.h"

class AccountServantActivatorImpl :
 public PortableServer::ServantActivator,
 public CORBA::LocalObject
{

 336

Using Servant Managers
In this example, the servant activator’s constructor takes a single argument, an
AccountDatabase object, to enable interaction between Account objects and
persistent account data.

Activating objects incarnate() instantiates a servant for a requested object and returns the servant
to the POA. The POA registers the servant with the object’s ID, thereby
activating the object and making it available to process requests on it.

In the implementation shown in Example 19 , incarnate() performs these
tasks:

1. Takes the object ID of a request for a BankDemo::Account object, and the

POA that relayed the request.

2. Instantiates an SingleAccountImpl servant, passing account information

to the servant’s constructor, and returns the servant to the POA.

 public:
 AccountServantActivatorImpl(AccountDatabase& account_db);

 PortableServer::Servant incarnate(
 const PortableServer::ObjectId & oid,
 PortableServer::POA_ptr adapter
) throw(CORBA::SystemException,
 PortableServer::ForwardRequest);

 void etherealize(
 const PortableServer::ObjectId & oid,
 PortableServer::POA_ptr adapter,
 PortableServer::Servant serv,
 CORBA::Boolean cleanup_in_progress,
 CORBA::Boolean remaining_activations
) throw(CORBA::SystemException);

Example 18: Servant activator class definition

Example 19: Servant activator implementation

// servant activator constructor
AccountServantActivatorImpl::AccountServantActivatorImpl(
 AccountDatabase& account_db) : m_account_db(account_db)
{ // ... }

PortableServer::Servant
337

CHAPTER 11 | Managing Servants
Deactivating objects The POA calls etherealize() when an object deactivates, either because the
object is destroyed or as part of general cleanup when the POA itself deactivates
or is destroyed.

The following implementation of etherealize() checks the
remaining_activations parameter to ensure that the servant does not incarnate
another object before it deletes the servant. Implementations can also check the
cleanup_in_progress parameter to determine whether etherealization results
from POA deactivation or destruction; this lets you differentiate between this
and other reasons to etherealize a servant.

1 AccountServantActivatorImpl::incarnate(
 const PortableServer::ObjectId & oid,
 PortableServer::POA_ptr adapter
) throw(CORBA::SystemException, PortableServer::ForwardRequest)
{
 CORBA::String_var account_id =
 PortableServer::ObjectId_to_string(oid);

2 return new SingleAccountImpl(account_id, m_account_db);
}

Example 19: Servant activator implementation

Example 20: Implementation of etherealize() method

void
AccountServantActivatorImpl::etherealize(
 const PortableServer::ObjectId & oid,
 PortableServer::POA_ptr poa,
 PortableServer::Servant servant,
 CORBA::Boolean cleanup_in_progress,
 CORBA::Boolean remaining_activations
) throw((CORBA::SystemException))
{
 if (remaining_activations == 0)
 delete serv;
}

 338

Using Servant Managers
Setting deactivation policies By default, a POA that uses a servant activator lets an object deactivate (and its
servant to etherealize) only after all pending requests on that object return. You
can modify the way the POA handles incoming requests for a deactivating object
by creating an Orbix-proprietary ObjectDeactivationPolicy object and
attaching it to the POA’s PolicyList (see “Setting proprietary policies for a
POA” on page 297).

Three settings are valid for this Policy object:

DELIVER: (default) The object deactivates only after processing all pending
requests, including any requests that arrive while the object is deactivating. This
behavior complies with CORBA specifications.

DISCARD: The POA rejects incoming requests with an exception of
TRANSIENT. Clients should be able to reissue discarded requests.

HOLD: Requests block until the object deactivates. A POA with a HOLD policy
maintains all requests until the object reactivates. However, this policy can cause
deadlock if the object calls back into itself.

Setting a POA’s servant activator The following example shows how you can establish a POA’s servant activator
in two steps:

1. Instantiate the servant activator.

2. Call set_servant_manager() on the target POA and supply the servant

activator.

Example 21: C++ Setting the POA’s Servant Activator

...
AccountDatabase account_database = new AccountDatabase();

1 // instantiate servant activator
AccountServantActivatorImpl activator_impl(account_database);

2 // Associate the activator with the accounts POA
acct_poa->set_servant_manager(&activator_impl);
339

CHAPTER 11 | Managing Servants
Servant Locators
A server that needs to manage a large number of objects might only require
short-term access to them. For example, the operations that are likely to be
invoked on most customer bank accounts—such as withdrawals and deposits—
are usually infrequent and of short duration. Thus, it is unnecessary to keep
account objects active beyond the lifetime of any given request. A POA that
services requests like this can use a servant locator, which activates an object for
each request, and deactivates it after the request returns.

Required policies A POA with policies of USE_SERVANT_MANAGER and NON_RETAIN uses a servant
locator as its servant manager. Because the POA lacks an active object map, it
directs each object request to the servant locator, which returns a servant to the
POA in order to process the request. The POA calls the request operation on the
servant; when the operation returns, the POA deactivates the object and returns
control to the servant locator. From the POA’s perspective, the servant is active
only while the request is being processed.

Figure 25: The POA directs each object request to the servant locator, which
returns a servant to the POA to process the request.

POA servant
locator

{
preinvoke()

postinvoke()

operation()

{
preinvoke()

postinvoke()

operation()

servant

servant

object
request

object
request
 340

Using Servant Managers
Controlling servant lifespan An application that uses a servant locator has full control over servant creation
and deletion, independently of object activation and deactivation. Your
application can assert this control in a number of ways. For example:

• Servant caching: A servant locator can manage a cache of servants for

applications that have a large number of objects. Because the locator is

called for each operation, it can determine which objects are requested

most recently or frequently and retain and remove servants accordingly.

• Application-specific object map: A servant locator can implement its own

object-servant mapping algorithm. For example, a POA’s active object

map requires a unique servant for each interface. With a servant locator, an

application can implement an object map as a simple fixed table that maps

multiple objects with different interfaces to the same servant. Objects can

be directed to the appropriate servant through an identifier that is

embedded in their object IDs. For each incoming request, the servant

locator extracts the identifier from the object ID and directs the request to

the appropriate servant.

ServantLocator interface The PortableServer:ServantLocator interface is defined as follows:

interface ServantLocator : ServantManager
{
 native Cookie;
 Servant
 preinvoke(
 in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 out Cookie the_cookie
 raises (ForwardRequest);

 void
 postinvoke(
 in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 in Cookie the_cookie,
 in Servant the_servant
 ;
};
341

CHAPTER 11 | Managing Servants
A servant locator processes each object request with a pair of methods,
preinvoke() and postinvoke():

• preinvoke() is called on a POA’s servant locator when the POA receives

a request for an object. preinvoke() returns an appropriate servant for the

requested object.

• postinvoke() is called on a POA’s servant locator to dispose of the

servant when processing of the object request is complete. The

postinvoke() implementation can either delete the servant, or cache it for

later reuse.

Implementing a servant locator The following code defines a servant locator that handles account objects:

Each request is guaranteed a pair of preinvoke() and postinvoke() calls. This
can be especially useful for applications with database transactions. For
example, a database server can use a servant locator to direct concurrent
operations to the same servant; each database transaction is opened and closed
within the preinvoke() and postinvoke() operations.

Example 22: Servant locator class definition

class AccountServantLocatorImpl :
 public PortableServer::ServantLocator,
 public CORBA::LocalObject
{
 public:
 AccountServantLocatorImpl(AccountDatabase& account_db);

public:
 PortableServer::Servant preinvoke(
 const PortableServer::ObjectId &id,
 PortableServer::POA_ptr poa,
 const char *operation,
 PortableServer::Cookie &cookie)
 throw(CORBA::SystemException);

 void postinvoke (
 const PortableServer::ObjectId &id,
 PortableServer::POA_ptr poa,
 const char *operation,
 PortableServer::Cookie &cookie,
 PortableServer::Servant the_servant)
 throw(CORBA::SystemException);
 342

Using Servant Managers
The signatures of preinvoke() and postinvoke() are differentiated from those
of invoke() and incarnate() by two parameters, the_cookie and operation:

the_cookie lets you explicitly map data between preinvoke() and its
corresponding postinvoke() call. This can be useful in a multi-threaded
environment and in transactions where it is important to ensure that a pair of
preinvoke() and postinvoke() calls operate on the same servant. For example,
each preinvoke() call can set its the_cookie parameter to data that identifies
its servant; the postinvoke() code can then compare that data to its
the_servant parameter.

operation contains the name of the operation that is invoked on the CORBA
object, and thus provides the context of the servant’s instantiation. The servant
can use this to differentiate between different operations and execute the
appropriate code.

Incarnating objects with a servant
locator

The following implementation of preinvoke()is functionally identical to the
incarnate() implementation shown in Example 19.

Example 23: Implementation of preinvoke() method

PortableServer::Servant
MyAcctLocator::preinvoke(
 const PortableServer::ObjectID &id,
 PortableServer::POA_ptr poa
 const char *operation
 PortableServer::Cookie &cookie)
throw(CORBA::SystemException)
{
 CORBA::String_var str =
 PortableServer::ObjectId_to_string(id);

 // look up account ID in accounts database,
 // make sure it it exists
 CORBA::Long acctId = acct_lookup(str);

 if (acctId == -1)
 throw CORBA::OBJECT_NOT_EXIST ();

 return new SingleAccountImpl(str);
}

343

CHAPTER 11 | Managing Servants
Etherealizing objects with a
servant locator

The following implementation of postinvoke() is similar to the
etherealize() implementation shown in Example 20, with one significant
difference: because each servant is bound to a single request, postinvoke() has
no remaining activations to check.

Setting a POA’s servant locator You establish a POA’s servant locator in two steps, as shown in the following
example:

1. Instantiate the servant locator.

2. Call set_servant_manager() on the target POA and supply the servant

locator.

Example 24: Implementation of postinvoke() method

PortableServer::Servant
MyAcctLocator::postinvoke(
 const PortableServer::ObjectID &id,
 PortableServer::POA_ptr poa,
 const char *operation,
 PortableServer::Cookie &cookie,
 PortableServer::Servant the_servant)
throw(CORBA::SystemException)
{
 delete servant;
}

Example 25: C++ Setting a POA’s Servant Locator

1 AccountServantLocatorImpl locator_impl(account_database);

2 // Associate the locator with the accounts POA
acct_poa->set_servant_manager(&locator_impl);
 344

Using a Default Servant
Using a Default Servant
If a number of objects share the same interface, a server can most efficiently
handle requests on them through a POA that provides a single default servant.
This servant processes all requests on a set of objects. A POA with a request
processing policy of USE_DEFAULT_SERVANT dispatches requests to the default
servant when it cannot otherwise find a servant for the requested object. This can
occur because the object’s ID is not in the active object map, or the POA’s
servant retention policy is set to NON_RETAIN.

For example, all customer account objects in the bank server share the same
BankDemo::Account interface. Instead of instantiating a new servant for each
customer account object as in previous examples, it might be more efficient to
create a single servant that processes requests on all accounts.

Obtaining the current object A default servant must be able to differentiate the objects that it is serving. The
PortableServer::Current interface offers this capability:

You can call a PortableServer::Current operation only in the context of
request processing. Thus, each Bank::Account operation such as deposit() or
balance() can call PortableServer::Current::get_object_id() to obtain
the current object’s account ID number.

Implementing a default servant To implement a default servant for account objects, modify the code as follows:

• The SingleAccountImpl constructor identifies the ORB instead of an

object’s account ID.

module PortableServer
{
 interface Current : CORBA::Current
 {
 exception NoContext{};
 POA get_POA () raises (NoContext);
 ObjectID get_object_id() raises (NoContext);
 };
 ...
}

345

CHAPTER 11 | Managing Servants
• Each Account operation calls resolve_initial_references() on the

ORB to obtain a reference to the PortableServer::Current object, and

uses this reference to identify the current account object.

So, you might use the following servant code to implement an account object:

Example 26: Implementation of a default servant

class SingleAccountImpl : public virtual POA_BankDemo::Account{

public:
 // constructor
 SingleAccountImpl (CORBA::ORB_ptr orb) : orb_ (orb) {}

 // get account holder’s name
 char * name() throw(CORBA::SystemException){

 CORBA::String_var acct = get_acct_id();
 // rest of function not shown
 }

 // get account balance
 CORBA::Float balance() throw(CORBA::SystemException){

 CORBA::String_var acct = get_acct_id();
 // rest of function not shown
 }

 // similar processing for other operations

private:
 char *get_acct_id(void){
 CORBA::Object_var obj =
 orb_->resolve_initial_references("POACurrent");
 PortableServer::Current_var cur =
 PortableServer::Current::_narrow(obj);
 try {
 PortableServer::ObjectID_var id =
 cur->get_object_id();
 return PortableServer::ObjectID_to_string(id);
 } catch (const PortableServer::Current::NoContext &) {
 cerr << "NoContext error" << endl;
 }
 }
}

 346

Using a Default Servant
In this implementation, the servant constructor takes a single argument, a pointer
to the ORB. Each method such as balance() calls the private helper method
get_account_id(), which obtains a reference to the current object
(PortableServer::Current) and gets its object ID. The method converts the
object ID to a string (PortableServer::ObjectID_to_string), and returns
with this string.

This implementation assumes that account object IDs are generated from
account ID strings. See “Creating Inactive Objects” on page 349 to see how you
can create object IDs from a string and use them to generate object references.
347

CHAPTER 11 | Managing Servants
Setting a Default Servant
You can establish a POA’s default servant by instantiating the desired servant
class and supplying it as an argument to set_servant(), which you invoke on
that POA. The following code fragment from the server’s main() instantiates
servant def_serv from servant class SingleAccountImpl, and sets this as the
default servant for POA acct_poa:

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Instantiate default account object servant
SingleAccountImpl def_serv(orb);
...

// Set default servant for POA
acct_poa->set_servant(&def_serv);
 348

Creating Inactive Objects
Creating Inactive Objects
An application that uses a servant manager or default servant typically creates
objects independently of the servants that incarnate them. The various
implementations shown earlier in this chapter assume that all account objects are
available before they are associated with servants in the POA. Thus, the account
objects are initially inactive—that is, servants are unavailable to process any
requests that are invoked on them.

You can create inactive objects by calling either create_reference() or
create_reference_with_id() on a POA. In the next example, the POA that is
to maintain these objects has an ID assignment policy of USER_ID; therefore, the
server code calls create_reference_with_id() to create objects in that POA:

Note: The repetitive mechanism used in this example to create objects is used
only for illustrative purposes. A real application would probably use a factory
object to create account objects from persistent data.

int main(int argc, char **argv) {
 // initialize ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // get object reference to the root POA
 CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = POA::_narrow(obj);

 // set policies for persistent POA that uses servant locator
 CORBA::PolicyList policies;
 policies.length (2);
 policies[0] = poa–>create_lifespan_policy
 (PortableServer::PERSISTENT)
 policies[1] = poa–>create_id_assignment_policy
 (PortableServer::USER_ID)
 policies[2] = poa–>create_servant_retention_policy
 (PortableServer::NON_RETAIN)
 policies[3] = poa–>create_request_processing_policy
 (PortableServer::USE_SERVANT_MANAGER)
349

CHAPTER 11 | Managing Servants
As shown, main() executes as follows:

1. Creates all account objects in acct_poa without incarnating them.

2. Calls run() on the ORB so it starts listening to requests.

3. As the POA receives requests for objects, it passes them on to the servant

locator. The servant locator instantiates a servant to process each request.

 // create the POA
 poa = poa->create_POA("acct_poa", NULL, policies);

 AccountDatabase account_database = new AccountDatabase();

 AccountServantLocatorImpl locator_impl(account_database);

 // Associate the locator with the accounts POA
 acct_poa->set_servant_manager(&locator_impl);

 // Set Bank Account interface repository ID
 const char *repository_id = "IDL:BankDemo/Account:1.0";

 // create account object
 PortableServer::ObjectId_var acct_id =
 PortableServer::string_to_ObjectId("112-1110001");
 CORBA::Object_var acctObj =
 acct_poa->create_reference_with_id(
 acct_id, repository_id);

 // Export object reference to Naming Service (not shown)

 // create another account object
 PortableServer::ObjectId_var acct_id =
 PortableServer::string_to_ObjectId("112-1110002");
 CORBA::Object_var acctObj =
 acct_poa->create_reference_with_id(
 acct_id, repository_id);

 // Export object reference to Naming Service (not shown)

 // Repeat for each account object...

 // Start ORB
 orb->run();
 return 0;
}

 350

Creating Inactive Objects
4. After the request returns from processing, the servant locator destroys its

servant.
351

CHAPTER 11 | Managing Servants
 352

CHAPTER 12

Asynchronous
Method Invocations
Orbix support for asynchronous method invocations allows a client
to continue other work while it awaits responses from previous
requests.

Examples of client implementations in earlier chapters show client invocations
that follow a synchronous two-way model—that is, after a client sends a request,
it blocks on that thread until it receives a reply. If single-threaded, the client is
generally unable to perform any other work while it awaits a response. This can
be unacceptable in an application that requires clients to issue requests in rapid
succession and needs to process replies as soon as they become available.

Callbacks to reply handlers To avoid this problem, Orbix supports asynchronous method invocations (AMI)
through callbacks to reply handlers. In its invocation, the client supplies an
object reference to the appropriate reply handler. When it is ready to reply, the
server invokes on this object reference. The client ORB dispatches the
invocation to the reply handler servant.

In most cases, AMI usage affects only client implementations; servers are
unaware that an invocation is synchronous or asynchronous. Client asynchrony
matters only to transactional servers, and in this case can require changes to the
server.
353

CHAPTER 12 | Asynchronous Method Invocations
Example IDL The examples in this chapter use the following IDL, which queries banking
institutions for current lending rates:

Client implementations must be able to invoke the get_loan_rate() operation
asynchronously on multiple lenders, so that information from each one can be
reviewed as soon as it is available, without waiting for previous queries to
return. Each implementation uses the following global variables:

module LoanSearch
{
 // nonexistent Bank
 exception InvalidBank{};
 // invalid loan type
 exception InvalidLoanType{};

 interface LoanRates{
 float get_loan_rate(
 in string bank_name,
 in string loan_type
) raises (InvalidBank, InvalidLoanType);
 };
 // ...
};

static const char *banks[] =
{
 "Fleet",
 "Citizens",
 "BkBoston",
 "USTrust",
 //...
}
static const int MAX_BANKS = (sizeof(banks)/sizeof(const char *);
static const int replies_left = MAX_BANKS;

static const char *loan_types[] =
{
 "AUTO",
 "MORTGAGE",
 "EQUITY",
 "PERSONAL",
 "BUSINESS",
 // ...
}

 354

In this chapter This chapter contains the following sections:

Implied IDL page 356

Calling Back to Reply Handlers page 357
355

CHAPTER 12 | Asynchronous Method Invocations
Implied IDL
In order to support AMI, the IDL compiler provides the -xAMICallbacks option.
This generates an implied IDL sendc_ operation for each interface operation and
attribute, which supports AMI callbacks. You must supply the -xAMICallbacks
modifier with both -base and -poa switches, as in the following example:

IDL -poa:-xAMICallbacks -base:-xAMICAllbacks LoanSearch.idl

For example, given the get_loan_rate() operation, the IDL compiler generates
an implied IDL sendc_get_loan_rate() operation that it adds to the
LoanRates interface. The compiler then generates stub and skeleton code from
the entire set of explicit and implicit IDL.

Mapping operations to implied
IDL

In general, each in and inout parameter in an IDL operation is mapped to an
argument of the same name and type in the corresponding sendc_ operation.
sendc_ operations return void and supply as their first argument an object
reference to the client-implemented reply handler. They have the following
syntax

void sendc_op-name(
 reply-hdlr-ref,
 [type argument[,type argument]...);

Mapping attributes to implied IDL Each IDL attribute is mapped to a sendc_get_ operation which takes an object
reference to its reply handler. If the attribute is not read-only, the IDL compiler
also generates a sendc_set_ operation, which takes an addition argument of the
same name and type as the attribute.

sendc_get_ and sendc_set_ operations return void and supply as their first
argument an object reference to the client-implemented reply handler. They have
the following syntax:

void sendc_get_attribute-name(reply-hdlr-ref);
void sendc_set_attribute-name(
 reply-hdlr-ref,
 type attribute-name);
 356

Calling Back to Reply Handlers
Calling Back to Reply Handlers
For each IDL operation and attribute, the IDL compiler generates:

• A sendc_ operation that supports AMI callbacks.

• A reply handler class for each interface, derived from

Messaging::ReplyHandler.

The generated reply handler class name uses the following convention:

AMI_interface-nameHandler

For example, all send_c invocations on interface LoanRates take a reference to
an instance of AMI_LoanRatesHandler as their first argument.

The client instantiates reply handlers like any servant, and registers them with a
client-side POA. If a reply handler serves time-independent invocations, its
object reference must be persistent.

For each sendc_ invocation on the interface, the following events occur:

1. The client supplies an object reference to the invocation’s reply handler.

2. The invocation returns immediately to the client, which can continue

processing other tasks while it awaits a reply.

3. The reply handler is invoked when a reply is ready.

Note: A client-side POA has the same requirements as a POA that is
implemented on a server—for example, the POAManager must be in an active
state before the client can process reply handler callbacks.
357

CHAPTER 12 | Asynchronous Method Invocations
Interface-to-Reply Handler Mapping
The client can implement a reply handler for each interface. For each interface
operation and attribute, a reply handler provides two types of operations: one to
handle normal replies and another to handle exceptions.

For example, when you run the IDL compiler on interface
LoanSearch::LoanRates (shown earlier), it generates skeleton class
LoanSearch::AMI_LoanRatesHandler:

LoanRates contains only one operation, get_loan_rate(), which maps to AMI
operation sendc_get_loan_rate(). The reply handler AMI_LoanRatesHandler
therefore has two operations:

• get_loan_rate_complete() handles normal replies to

sendc_get_loan_rate().

• get_loan_rate_excep() handles exceptions that might be raised by

sendc_get_loan_rate().

So, if the client invokes sendc_get_loan_rate() and supplies a valid bank
name and loan type, the client ORB invokes an implementation of
AMI_LoanRatesHandler::get_loan_rate_complete() to handle the reply.
However, if either argument is invalid, the client ORB invokes
AMI_LoanRatesHandler::get_loan_rate_excep().

namespace POA_LoanSearch{
 class AMI_LoanRatesHandler
 : public POA_Messaging::ReplyHandler{
 public:
 // ...
 virtual void get_loan_rate_complete(
 CORBA::Float ami_return_val)
 IT_THROW_DECL((CORBA::SystemException)) = 0;
 // ...
 virtual void get_loan_rate_excep(
 Messaging::ExceptionHolder* ami_holder)
 IT_THROW_DECL((CORBA::SystemException)) = 0;
 };
}

 358

Calling Back to Reply Handlers
Normal replies A reply handler can contain up to three types of operations to handle normal
replies—that is, replies on invocations that raise no exceptions:

If the operation has a return value, it is the first argument of op-name_complete.
In addition, an argument is included for each out or inout parameter in the IDL
definition. All arguments have the same type as the original IDL. Arguments
have the same order as in the original IDL.

Exceptional replies A reply handler can contain up to three types of operations to handle exceptional
replies:

Table 14: Reply Handler Operation Types for Normal Replies

For invocations
on...

The reply handler uses...

Operations An operation with the same name:

void op-name_complete(
[type ami_return_val
[,type argument]...
);

Read-only attributes A get_ operation:

void get_attr-name(type ami_return_val);

Read/write attributes A set_ operation:

void set_attr-name(type attr-name);

Table 15: Reply Handler Operation Types for Exceptional Replies

For invocations
on...

The reply handler uses...

Operation void op-name_excep(
 Messaging::ExceptionHolder*
 ami_holder);

Read-only attribute void get_attr-name_excep(
 Messaging::ExceptionHolder*
 ami_holder);
359

CHAPTER 12 | Asynchronous Method Invocations
All three operations has a single argument of type
Messaging::ExceptionHolder*, which contains the exception raised by the
original client invocation. You access this exception using get_exception().
The call returns an Any* from which the exception can be extracted.

Read/write attribute void set_attr-name_excep(
 Messaging::ExceptionHolder*
 ami_holder);

Table 15: Reply Handler Operation Types for Exceptional Replies

For invocations
on...

The reply handler uses...
 360

Calling Back to Reply Handlers
Implementing a Client with Reply Handlers
As shown earlier, the reply handler AMI_LoanRatesHandler for interface
LoanRates contains two operations to handle normal and exceptional replies to
sendc_get_loan_rate(). The client implementation of this reply handler might
look like this:

Figure 26: Reply handler implementation

class MyLoanRatesHandler :
 public POA_LoanSearch::AMI_LoanRatesHandler{
public:
 // handler constructor
 MyLoanRatesHandler(const char *bank_name,
 const char *loan_type) :
 bank_name_(CORBA::string_dup(bank_name)),
 loan_type_(CORBA::string_dup(loan_type))
 { }
 ~MyLoanRatesHandler(void)
 { }

 // process normal replies
 virtual void get_loan_rate_complete(CORBA::Float reply_val)
 {
 cout << loan_type_
 << "loan: from "
 << bank_name_
 << " Current rate is "
 << reply_val
 << endl;

 // Decrement the number of replies still pending
 replies_left--;
 }
361

CHAPTER 12 | Asynchronous Method Invocations
 // process exceptional replies
 virtual void get_loan_rate_excep(Messaging::ExceptionHolder*

ami_holder)
 {
 CORBA::Any* tmp = ami_holder->get_exception();
 LoanSearch::InvalidBank* ex_invalid_bank;
 if ((*tmp) >>= ex_invalid_bank)
 {
 cerr << bank_name_
 << " is not a valid bank name."
 << endl;
 }
 else
 {
 LoanSearch::InvalidLoan* ex_invalid_loan;
 if((*tmp) >>= ex_invalid_loan)
 {
 cerr << loan_type_
 << " is not a valid loan type."
 << endl;
 }
 else
 {
 cerr << "get_loan_rate() raised exception "
 << tmp
 << " for "
 << bank_name_
 << " and "
 << loan_type_
 << endl;
 }
 }

 // Decrement the number of replies still pending
 replies_left--;
 }

private:
 CORBA::String_var bank_name_, loan_type_ ;
};

Figure 26: Reply handler implementation
 362

Calling Back to Reply Handlers
Given this reply handler, a client can call get_latest_rates(), which is
implemented as follows:

1. The client call to get_latest_rates() supplies it with three arguments: a

pointer to the client ORB, an object reference to the LoanSearch object,

and the desired loan type.

2. The method calls the callback operation sendc_get_loan_rates()

repeatedly, once for each bank. Each call to sendc_get_loan_rates()

supplies an AMI_LoanRatesHandler reply handler argument.

Example 27:

1 void get_latest_rates(
 CORBA::ORB_ptr,
 LoanSearch::LoanRates_ref,
 CORBA::String loan_type)
{
 // array of pointers to bank reply handlers
 MyLoanRatesHandler *handlers[MAX_BANKS];

 // create object references for each reply handler
 LoanSearch::AMI_LoanRatesHandler_ptr

*handler_refs[MAX_BANKS];

 int i;

 // instantiate reply handler servants
 for(i = 0; i < MAX_BANKS; i++)
 handlers[i] = new MyLoanRatesHandler(
 banks[i], loan_types[i]);

 // get object references to reply handlers
 for(i = 0; i < MAX_BANKS; i++)
 handler_refs[i] = handlers[i]->_this();

2 // Issue asynchronous calls via callbacks
 for(i = 0; i < MAX_BANKS; i++)
 LoanRates_ref->sendc_get_loan_rate(
 handler_refs[i], banks[i], loan_type);
}

363

CHAPTER 12 | Asynchronous Method Invocations
 364

CHAPTER 13

Exceptions
Implementations of IDL operations and attributes throw exceptions
to indicate when a processing error occurs.

An IDL operation can throw two types of exceptions:

• User-defined exceptions are defined explicitly in your IDL definitions.

• System exceptions are predefined exceptions that all operations can throw.

While IDL operations can throw user-defined and system exceptions, accessor
methods for IDL attributes can only throw system-defined exceptions.

Example IDL This chapter shows how to throw and catch both types of exceptions. The Bank
interface is modified to include two user-defined exceptions:

AccountNotFound is defined by find_account().

AccountAlreadyExists is defined by create_account().
365

CHAPTER 13 | Exceptions
The account_id member in both exceptions indicates an invalid account ID:

In this chapter This chapter contains the following sections:

module BankDemo
{
 ...
 interface Bank {
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };

 Account find_account(in AccountId account_id)
 raises(AccountNotFound);

 Account create_account(
 in AccountId account_id,
 in CashAmount initial_balance
) raises (AccountAlreadyExists);
 };
};

Exception Code Mapping page 367

User-Defined Exceptions page 368

Handling Exceptions page 370

Throwing Exceptions page 380

Exception Safety page 381

Throwing System Exceptions page 384
 366

Exception Code Mapping
Exception Code Mapping
The C++ mapping arranges CORBA exceptions into the hierarchy shown in
Figure 27. Abstract base class CORBA::Exception is the root of the hierarchy
tree. Base abstract classes SystemException and UserException derive from
CORBA::Exception and provide the base for all concrete system and user
exceptions:

Given this hierarchy, you can catch all CORBA exceptions in a single catch
handler. Alternatively, you can catch system and user exceptions separately, or
handle specific exceptions individually.

Figure 27: The C++ mapping arranges exceptions into a hierarchy

CORBA::Exception

CORBA::SystemException

CORBA::TRANSIENT

CORBA::OBJ_ADAPTER

CORBA::BAD_PARAM

CORBA::UserException

Bank::AccountAlreadyExists

Bank::AccountNotFound
367

CHAPTER 13 | Exceptions
User-Defined Exceptions
Operations are defined to raise one or more user exceptions to indicate
application-specific error conditions. An exception definition can contain
multiple data members to convey specific information about the error, if desired.
For example, you might include a graphic image in the exception data in order to
display an error icon.

Exception design guidelines When you define exceptions, be sure to follow these guidelines:

Exceptions are thrown only for exceptional conditions. Do not throw
exceptions for expected outcomes. For example, a database lookup operation
should not throw an exception if a lookup does not locate anything; it is normal
for clients to occasionally look for things that are not there. It is harder for the
caller to deal with exceptions than return values, because exceptions break the
normal flow of control. Do not force the caller to handle an exception when a
return value is sufficient.

Exceptions carry complete information. Ensure that exceptions carry all the
data the caller requires to handle an error. If an exception carries insufficient
information, the caller must make a second call to retrieve the missing
information. However, if the first call fails, it is likely that subsequent calls will
also fail.

Exceptions only carry useful information. Do not add exception members that
are irrelevant to the caller.

Exceptions carry precise information Do not lump multiple error conditions
into a single exception type. Instead, use a different exception for each semantic
error condition; otherwise, the caller cannot distinguish between different causes
for an error.
 368

User-Defined Exceptions
C++ mapping for user exceptions When you run the IDL compiler on IDL interface Bank, it translates user
exceptions into C++ classes. For example, the compiler translates
Bank::AccountAlreadyExists into a C++ class of the same name:

The AccountAlreadyExists class is nested within class Bank. Each C++ class
that corresponds to a IDL exception has a constructor that takes a parameter for
each exception member. Because the AccountAlreadyExists exception has one
AccountId member, class Bank::AccountAlreadyExists has a constructor that
allows it to be initialized.

class Bank : public virtual CORBA::Object
{
public:
...
 class AccountAlreadyExists: public CORBA::UserException
 {
 public:

 AccountAlreadyExists();
 AccountAlreadyExists(const char* _itfld_account_id);
 ...
 // string manager
 ITGenAccountId_mgr account_id;

 static AccountAlreadyExists* _downcast(
 CORBA::Exception* exc
);

 static const AccountAlreadyExists* _downcast(
 const CORBA::Exception* exc
);
 ...
 virtual void _raise() const;
 ...
 };
 ...
};
369

CHAPTER 13 | Exceptions
Handling Exceptions

Overview Client code uses standard try and catch blocks to isolate processing logic from
exception handling code. You can associate multiple catch blocks with each
try block. You should write the code so that handling for specific exceptions
takes precedence over handling for other unspecified exceptions.

In this section This section contains the following subsections:

Handling User Exceptions page 371

Handling System Exceptions page 373

Evaluating System Exceptions page 375
 370

Handling Exceptions
Handling User Exceptions
If an operation might throw a user exception, its caller should be prepared to
handle that exception with an appropriate catch clause.

Example 28 shows how you might program a client to catch exceptions. In it, the
handler for the AccountAlreadyExists exception outputs an error message and
exits the program. The code follows standard C++ practice by passing the
parameter to the catch clause by reference. The operator<<() that is defined
on class SystemException outputs a text description of the individual system
exception that was thrown.

Example 28: Programming a client to catch user exceptions

void
BankMenu::do_create()
 throw(CORBA::SystemException)
{
 cout << "Enter account name: " << flush;
 char name[1024];
 cin >> name;
 cout << "Enter starting balance: " << flush;
 BankDemo::CashAmount amount;
 cin >> amount;

 // try/catch to handle user exception, system exceptions are
 // handled in the main menu loop
 try
 {
 BankDemo::Account_var account =
 m_bank->create_account(name, amount);

 // start a sub-menu with the returned account reference
 AccountMenu sub_menu(account);
 sub_menu.run();

 // _var types automatically clean up on return
 // or exception
 }
371

CHAPTER 13 | Exceptions
 catch (
 const BankDemo::Bank::AccountAlreadyExists& already_exists)
 {
 cout << "Account already exists: "
 << already_exists.account_id << endl;
 }
}

Example 28: Programming a client to catch user exceptions
 372

Handling Exceptions
Handling System Exceptions
A client often provides a handler for a limited set of anticipated system
exceptions. It also must provide a way to handle all other unanticipated system
exceptions that might occur.

Precedence of exception handlers The handler for a specific system exception must appear before the handler for
CORBA::SystemException. C++ catch clauses are attempted in the order
specified, and the first matching handler is called. Because of implicit casting, a
handler for CORBA::SystemException matches all system exceptions (all
system exception classes are derived from class CORBA::SystemException), so
it should appear after all handlers for specific system exceptions.

If you want to know the type of system exception that occurred, use the message
output by the proprietary operator<<() function on class
CORBA::SystemException. Handlers for individual system exceptions are
necessary only when they require a specific action.

The following client code specifically tests for a COMM_FAILURE exception; it can
also handle any other system exceptions:

Example 29: Handling system exception COMM_FAILURE

void
BankMenu::run() {
 // make sure bank reference is valid
 if (CORBA::is_nil(m_bank)) {
 cout << "Cannot proceed - bank reference is nil";
 }
 else {
 // loop printing the menu and executing selections
 for (; ;) {
 cout << endl;
 cout << "0 - quit" << endl;
 cout << "1 - create_account" << endl;
 cout << "2 - find_account" << endl;
 cout << "Selection [0-2]: " << flush;
 int selection;
 cin >> selection;

373

CHAPTER 13 | Exceptions
 try {
 switch(selection) {
 case 0: return;
 case 1: do_create(); break;
 case 2: do_find(); break;
 }
 }
 catch (CORBA::COMM_FAILURE& e) {
 cout << "Communication failure exception: "
 << e << endl;
 return;
 }
 catch (const CORBA::SystemException& e) {
 cout << "Unexpected exception: " << e << endl;
 return;
 }
 }
 }
}

Example 29: Handling system exception COMM_FAILURE
 374

Handling Exceptions
Evaluating System Exceptions
System exceptions have two member methods, completed() and minor(), that
let a client evaluate the status of an invocation:

• completed() returns an enumerator that indicates how far the operation or

attribute call progressed.

• minor() returns an IDL unsigned long that offers more detail about the

particular system exception that was thrown.

Obtaining invocation completion
status

Each standard exception includes a completion_status code that takes one of
the following integer values:

COMPLETED_NO: The system exception was thrown before the operation or
attribute call began to execute.

COMPLETED_YES: The system exception was thrown after the operation or
attribute call completed execution.

COMPLETED_MAYBE: It is uncertain whether or not the operation or
attribute call started to execute, and if so, whether execution completed. For
example, the status is COMPLETED_MAYBE if a client’s host receives no indication
of success or failure after transmitting a request to a target object on another
host.

Evaluating minor codes minor() returns an IDL unsigned long that offers more detail about the
particular system exception thrown. For example, if a client catches a
COMM_FAILURE system exception, it can access the system exception’s minor
field to determine why this occurred

All standard exceptions have an associated minor code that provides more
specific information about the exception in question. Given these minor codes,
the ORB is not required to maintain an exhaustive list of all possible exceptions
that might arise at runtime.

Minor exception codes are defined as an unsigned long that contains two
components:

• 20-bit vendor minor code ID (VMCID)

• Minor code that occupies the 12 low order bits
375

CHAPTER 13 | Exceptions
All minor codes are based on the IONA vendor minor code ID (IONA_VMCID),
which is 0x49540000. The space reserved to IONA ends at 0x49540FFF.

The VMCID assigned to OMG standard exceptions is 0x4f4d000. You can
obtain the minor code value for any exception by OR'ing the VMCID with the
minor code for the exception in question. All minor code definitions are
associated with readable strings.

Subsystem minor codes Orbix defines minor codes within each subsystem. When an exception is thrown,
the current subsystem associates the exception with a valid minor code that maps
to a unique error condition. Table 16 lists Orbix subsystems and base values for
their minor codes:

Table 16: Base minor code values for Orbix subsystems

Subsystem Logging ID Minor Code ID

IT_ACTIVATOR IT_ACTIVATOR IONA_VMCID + 0xD00

IT_ARM IT_ARM IONA_VMCID + 0xE80

IT_ATLI_IOP None IONA_VMCID + 0x440

IT_ATLI_MULTICAST IT_ATLI_MULTICAST IONA_VMCID + 0x980

IT_ATLI_SHM IT_ATLI_SHM IONA_VMCID + 0x880

IT_ATLI_TCP IT_ATLI_TCP IONA_VMCID + 0x480

IT_ATLI2_HTTP IT_ATLI2_HTTP IONA_VMCID + 0x7C0

IT_ATLI2_IOP IT_ATLI2_IOP IONA_VMCID + 0x4C0

IT_ATLI2_IP IT_ATLI2_IP IONA_VMCID + 0x3C0

IT_ATLI2_SHM IT_ATLI2_SHM IONA_VMCID + 0x5C0

IT_ATLI2_ITRP IT_ATLI2_ITRP IONA_VMCID + 0x6C0

IT_ATLI2_SOAP IT_ATLI2_SOAP IONA_VMCID + 0xAC0

IT_ATLI2_TLS IT_ATLI2_TLS IONA_VMCID + 0x7C0

IT_CODESET IT_CODESET IONA_VMCID + 0x280

IT_CONFIG_REP IT_CONFIG_REP IONA_VMCID + 0x140

IT_Core IT_CORE IONA_VMCID + 0x100
 376

Handling Exceptions
IT_CPLM IT_CPLM IONA_VMCID + 0xF40

IT_CSI IT_CSI IONA_VMCID + 0xD80

IT_Daemon IT_DAEMON IONA_VMCID + 0xE00

IT_EGMIOP IT_EGMIOP IONA_VMCID + 0xC80

IT_EGMIOP_Component IT_EGMIOP_COMPONENT IONA_VMCID + 0xB80

IT_EVENT IT_EVENT IONA_VMCID + 0x2C0

IT_FPS IT_FPS IONA_VMCID + 0xD40

IT_GIOP IT_GIOP IONA_VMCID + 0x200

IT_GSP IT_GSP IONA_VMCID + 0x1C0

IT_IFR IT_IFR

IT_IIOP IT_IIOP IONA_VMCID + 0x300

IT_IIOP_PROFILE IT_IIOP_PROFILE IONA_VMCID + 0x400

IT_IIOP_TLS IT_IIOP_TLS IONA_VMCID + 0xA40

iPAS subsystems IT_iPAS_* IONA_VMCID + 0x740

IT_JAVA_SERVER IT_JAVA_SERVER None

IT_JTA IT_JTA IONA_VMCID + 0xE40

IT_KDM IT_KDM IONA_VMCID + 0xC40

IT_LEASE IT_LEASE None

IT_LOCATOR IT_LOCATOR IONA_VMCID + 0xB00

IT_ManagementLogging IT_MANAGEMENT_LOGGING IONA_VMCID + 0x8C0

IT_MANAGEMENT_MBEAN_MONITORING IT_MANAGEMENT_MBEAN_MONITORING IONA_VMCID + 0xDC0

IT_MGMT IT_MGMT None

IT_MGMT_SVC IT_MGMT_SVC None

IT_MVS IT_MVS IONA_VMCID + 0xF80

Table 16: Base minor code values for Orbix subsystems

Subsystem Logging ID Minor Code ID
377

CHAPTER 13 | Exceptions
IT_NAMING IT_NAMING IONA_VMCID + 0xF00

IT_NodeDaemon IT_NODE_DAEMON IONA_VMCID + 0xB40

IT_NOTIFICATION IT_NOTIFICATION IONA_VMCID + 0x840

IT_OTS IT_OTS IONA_VMCID + 0x900

IT_OTS_Encina IT_OTS_ENCINA IONA_VMCID + 0x680

IT_OTS_Lite IT_OTS_LITE IONA_VMCID + 0xA00

IT_OTS_RRS IT_OTS_RRS IONA_VMCID + 0xBC0

IT_OTS_TM IT_OTS_TM IONA_VMCID + 0x580

IT_POA IT_POA IONA_VMCID + 0x500

IT_POA_LOCATOR IT_POA_LOCATOR IONA_VMCID + 0xC00

IT_PortableInterceptor IT_PORTABLE_INTERCEPTOR IONA_VMCID + 0x540

IT_PSS IT_PSS IONA_VMCID + 0x800

IT_PSS_DB IT_PSS_DB IONA_VMCID + 0x700

IT_PSS_R IT_PSS_R IONA_VMCID + 0x600

IT_Rmi IT_RMI IONA_VMCID + 0xFC0

IT_SCHANNEL IT_SCHANNEL None

IT_SHMIOP IT_SHM_IOP IONA_VMCID + 0x780

IT_SOAP IT_SOAP IONA_VMCID + 0x080

IT_SOAP_Profile IT_SOAP_PROFILE IONA_VMCID + 0x180

IT_TLS IT_TLS IONA_VMCID + 0x940

Thread/Synch Package IT_TS IONA_VMCID + 0x240

IT_WSDL IT_WSDL IONA_VMCID + 0x380

IT_XA IT_XA IONA_VMCID + 0x640

IT_ZIOP IT_ZIOP IONA_VMCID + 0xCC0

Table 16: Base minor code values for Orbix subsystems

Subsystem Logging ID Minor Code ID
 378

Handling Exceptions
For example, the locator subsystem defines a number of minor codes for the
BAD_PARAM standard exception. These distinguish among the various conditions
under which the locator might throw the BAD_PARAM exception.

Definitions for all subsystem minor codes can be found in the following
directory:

OrbixInstallDir/asp/Version/doc/minor_codes

Note: OMG minor code constants are Orbix-specific mappings to minor
codes that are set by the OMG. If you define minor codes for your own
application, make sure that they do not overlap the ranges that are reserved for
IONA-defined minor codes.
379

CHAPTER 13 | Exceptions
Throwing Exceptions
Client code uses standard C++ syntax to initialize and throw both user-defined
and system exceptions.

This section modifies BankImpl::create_account() to throw an exception.
You can implement create_account() as follows:

Example 30: Throwing an exception

// create a new account given an id and initial balance
// throw AccountAlreadyExists if account already in database

BankDemo::Account_ptr BankImpl::create_account(
 const char* account_id,
 CashAmount initial_balance) throw(
 CORBA::SystemException,

BankDemo::Bank::AccountAlreadyExists)
{
 // create new account in database, then return a new
 // reference to that account
 if (!m_account_db.create_account(account_id,

initial_balance))
 {
 throw BankDemo::Bank::AccountAlreadyExists(account_id);
 }

 return create_account_ref(account_id);
}

 380

Exception Safety
Exception Safety
You should be careful that your code does not throw user exceptions that are not
part of the operation’s raises expression. Doing so can throw an UNKNOWN
exception, or cause the program to terminate abruptly.

Throwing illegal exceptions For example, the following IDL defines operations some_operation() and
some_helper():

The following implementation of some_operation() incorrectly calls
some_helper():

At some point during runtime, some_helper() is liable to throw an exception of
DidntWork back to some_operation(), which is unable to handle it, and causing
the server process to die.

exception Failed {};
interface Example {
 void some_operation() raises(Failed);
};

exception DidntWork {};
interface Helper {
 void some_helper() raises(Failed, DidntWork);
};

void ExampleImpl::some_operation()
 throw(CORBA::SystemException, Failed) {
 // do some work...
 // call helper operation.
 Helper_var help = ...;
 help->some_helper(); // BAD!
 // do remainder of work...
}

381

CHAPTER 13 | Exceptions
Catching illegal exceptions If an operation calls helper operations on other objects, make sure that it can
handle illegal exceptions. For example, the following example modifies
some_operation() so that it can translate DidntWork into a legal exception:

Avoiding resource leaks Be careful also to avoid resource leaks in the presence of exceptions. For
example, the IDL for some_operation() is modified here to return a string as an
out parameter:

The following implementation incorrectly leaks the string that is allocated to the
out parameter:

void ExampleImpl::some_operation()
 throw(CORBA::SystemException, Failed) {
 // do some work...
 // call helper operation.
 Helper_var help = ...;
 try {
 help->some_helper();
 }
 catch (const DidntWork &) {
 throw Failed; // translate into legal exception
 }
 // do remainder of work...
 return;
}

exception Failed {};
interface Example {
 void some_operation(out string s) raises(Failed);
};

void ExampleImpl::some_operation(CORBA::String_out s)
 throw(CORBA::SystemException, Failed) {

 // do some work to get the string value to be returned...
 char * str = some_function();
 s = CORBA::string_dup(str); // assign out param

 // call helper operation to do something else
 Helper_var help = ...;
 try {
 help->some_helper(); // memory leak!
 }
 382

Exception Safety
You can correct this problem by explicitly deallocating the parameter again, as
in the following example:

 catch (const DidntWork &) {
 throw Failed; // memory leak!
 }
 // do remainder of work...
}

void ExampleImpl::some_operation(CORBA::String_out s)
 throw(CORBA::SystemException, Failed) {

 // do some work to get the string value to be returned...
 char * str = some_function();
 s = CORBA::string_dup(str); // assign out param

 // call helper operation to do something else
 Helper_var help = ...;
 try {
 help->some_helper();
 }
 catch (const DidntWork &) {
 CORBA::string_free(s.ptr()); // clean up
 throw Failed; // translate
 }
 catch (const CORBA::Exception & e) {
 CORBA::string_free(s.ptr()); // clean up
 throw; // rethrow
 }
 // do remainder of work...
}

383

CHAPTER 13 | Exceptions
Throwing System Exceptions
Occasionally, a server program might need to throw a system exception.
Specific system exceptions such as COMM_FAILURE inherit the SystemException
constructor:

The following code uses this constructor to throw a COMM_FAILURE exception
with minor code SOCKET_WRITE_FAILED and completion status COMPLETED_NO:

class SystemException : public Exception {
 public:
 SystemException();
 SystemException(const SystemException &);
 SystemException(
 ULong minor_id, CompletionStatus completed_status);

class COMM_FAILURE : public SystemException { ... };

throw CORBA::COMM_FAILURE(HOST_LOOKUP_FAILED, COMPLETED_NO);
 384

CHAPTER 14

Using Type Codes
Orbix uses type codes to describe IDL types. The IDL pseudo
interface CORBA::TypeCode lets you describe and manipulate type
code values.

Type codes are essential for the DII and DSI, to specify argument types. The
interface repository also relies on type codes to describe types in IDL
declarations. In general, type codes figure importantly in any application that
handles CORBA::Any data types.

In this chapter This chapter contains the following sections:

Type Code Components page 386

Type Code Operations page 389

Type Code Constants page 396
385

CHAPTER 14 | Using Type Codes
Type Code Components
Type codes are encapsulated in CORBA::TypeCode pseudo objects. Each
TypeCode has two components:

kind: A CORBA::TCKind enumerator that associates the type code with an IDL
type. For example, enumerators tk_short, tk_boolean, and tk_sequence
correspond to IDL types short, boolean, and sequence, respectively.

description: One or more parameters that supply information related to the type
code’s kind. The number and contents of parameters varies according to the type
code.

• The type code description for IDL type fixed<5,3> contains two

parameters, which specify the number of digits and the scale.

• The type code description for a string or wstring contains a single

parameter that specifies the string’s bound, if any.

• Type codes for primitive types require no description, and so have no

parameters associated with them—for example, tk_short and tk_long.

TCKind enumerators The CORBA::TCKind enumeration defines all built-in IDL types:

Most of these are self-explanatory—for example, a type code with a TCKind of
tk_boolean describes the IDL type boolean. Some, however, have no direct
association with an IDL type:

tk_alias describes an IDL type definition such as typedef string.

// In module CORBA
enum TCKind {
 tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char, tk_octet, tk_any,
 tk_TypeCode, tk_Principal, tk_objref, tk_struct, tk_union,
 tk_enum, tk_string, tk_sequence, tk_array, tk_alias,
 tk_except, tk_longlong, tk_ulonglong, tk_longdouble,

tk_wchar,
 tk_wstring, tk_fixed, tk_value, tk_value_box, tk_native,
 tk_abstract_interface
};
 386

Type Code Components
tk_null describes an empty value condition. For example, if you construct an
Any with the default constructor, the Any’s type code is initially set to tk_null.

tk_Principal is deprecated for applications that are compliant with CORBA 2.3
and later; retained for backward compatibility with earlier applications that use
the BOA.

tk_TypeCode describes another type code value.

tk_value describes a value type.

tk_value_box describes a value box type.

tk_void is used by the interface repository to describe an operation that returns
no value.

Table 17 shows type code parameters. The table omits type codes with an empty
parameter list.

Table 17: Type Codes and Parameters

TCKind Parameters

tk_abstract_interface repository-id, name

tk_alias repository-id, name, type-code

tk_array type-code, length...

tk_enum repository-id, name, { member-name }...

tk_except repository-id, name,
 { member-name, member-type-code }...

tk_fixed digits, scale

tk_native repository-id, name

tk_objref repository-id, name

tk_sequence element-type-code, max-lengtha

tk_string
tk_wstring

max-lengtha

tk_struct repository-id, name,
 { member-name, member-type-code }...
387

CHAPTER 14 | Using Type Codes
tk_union repository-id, name, switch-type-code, default-index,
 { member-label, member-name, member-type-code }...

tk_value repository-id, name, type-modifier, type-code,
 { member-name, member-type-code, visibility }...

tk_value_box repository-id, name,
 { member-name, member-type-code} ...

a. For unbounded sequences, strings, and wstrings, this value is 0

Table 17: Type Codes and Parameters

TCKind Parameters
 388

Type Code Operations
Type Code Operations
The CORBA::TypeCode interface provides a number of operations that you can
use to evaluate and compare TypeCode objects. These operations can be divided
into two categories:

• General type code operations that can be invoked on all TypeCode objects.

• Type-specific operations that are associated with TypeCode objects of a

specific TCKind, and raise a BadKind exception if invoked on the wrong

type code.
389

CHAPTER 14 | Using Type Codes
General Type Code Operations
The following operations are valid for all TypeCode objects:

• equal(), equivalent()

• get_compact_typecode()

• kind()

equal(), equivalent()

boolean equal(in TypeCode tc);
boolean equivalent(in TypeCode tc);

equal() and equivalent() let you evaluate a type code for equality with the
specified type code, returning true if they are the same:

equal() requires that the two type codes be identical in their TCKind and all
parameters—member names, type names, repository IDs, and aliases.

equivalent() resolves an aliased type code (TCKind = tk_alias) to its base, or
unaliased type code before it compares the two type codes’ TCKind parameters.
This also applies to aliased type codes of members that are defined for type
codes such as tk_struct.

For both operations, the following parameters are always significant and must be
the same to return true:

• Number of members for TCKinds of tk_enum, tk_excep, tk_struct, and

tk_union.

• Digits and scale for tk_fixed type codes.

• The value of the bound for type codes that have a bound parameter—

tk_array, tk_sequence, tk_string and tk_wstring.

• Default index for tk_union type codes.

• Member labels for tk_union type codes. Union members must also be

defined in the same order.

Both equal() and equivalent() can take a type code constant as an
argument—for example, _tc_short or _tc_float for IDL types short or float
respectively. For more information about type code constants, see page 396.
 390

Type Code Operations
You must use equal() and equivalent() to evaluate a type code. For example,
the following code is illegal:

You can correct this code as follows:

get_compact_typecode()

TypeCode get_compact_typecode();

get_compact_typecode() removes type and member names from a type code.
This operation is generally useful only to applications that must minimize the
size of type codes that are sent over the wire.

kind()

TCKind kind();

CORBA::Any another_any;
another_any <<= "Hello world";
CORBA::TypeCode_ptr t = another_any.type();

if (t == CORBA::_tc_string) { ... } // Bad code!!

CORBA::Any another_any;
another_any <<= "Hello world";
CORBA::TypeCode_ptr t = another_any.type();

// use equal or equivalent to evaluate type code
if (t->equivalent(CORBA::_tc_string)) { ... }
if (t->equal(CORBA::_tc_string)) { ... }
391

CHAPTER 14 | Using Type Codes
kind() returns the TCKind of the target type code. You can call kind() on a
TypeCode to determine what other operations can be called for further
processing—for example, use the TCKind return as a switch discriminator:

Type-Specific Operations

Table 18 shows operations that can be invoked only on certain type codes. In
general, each operation gets information about a specific type-code parameter. If
invoked on the wrong type code, these operations raise an exception of BadKind.

CORBA::Any another_any = ...;
CORBA::TypeCode_var t = another_any.type();

switch(t->kind()){
case CORBA::tk_short:
...
case CORBA::tk_long:
...
// continue for all tk_ values
default:
...
}

Table 18: Type-Specific Operations

TCKind Operations

tk_alias id()
name()
content_type()

tk_array length()
content_type()

tk_enum id()
name()
member_count()
member_name()

tk_except id()
name()
member_count()
member_name()
member_type()
 392

Type Code Operations
tk_fixed fixed_digits()
fixed_scale()

tk_native id()
name()

tk_objref id()
name()

tk_sequence length()
content_type()

tk_string
tk_wstring

length()

tk_struct id()
name()
member_count()
member_name()
member_type()

tk_union id()
name()
member_count()
member_name()
member_label()
discriminator_type()
default_index()

tk_value id()
name()
member_count()
member_name()
member_type()
type_modifier()
concerte_base_type()
member_visibility()

tk_value_box id()
name()
member_name()

Table 18: Type-Specific Operations

TCKind Operations
393

CHAPTER 14 | Using Type Codes
Table 19 briefly describes the information that you can access through type
code-specific operations. For detailed information about these operations, see
the CORBA Programmer’s Reference.

Table 19: Information Obtained by Type-Specific Operations

Operation Returns:

concrete_base_type() Type code of the concrete base for the target type
code; applies only to value types.

content_type() For aliases, the original type. For sequences and
arrays, the specified member’s type.

default_index() Index to a union’s default member. If no default
is specified, the operation returns -1.

discriminator_type() Type code of the union’s discriminator.

fixed_digits() Number of digits in a fixed-point type code.

fixed_scale() Scale of a fixed-point type code.

id() Type code’s repository ID.

length() Value of the bound for a type code with TCKind
of tk_string, tk_wstring, tk_sequence, or
tk_array.

member_count() Number of members in the type code.

member_label() An Any value that contains the value of the union
case label for the specified member.

member_name() Name of the specified member. If the supplied
index is out of bounds (greater than the number
of members), the function raises the
TypeCode::Bounds exception.

member_type() Type code of the specified member. If the
supplied index is out of bounds (greater than the
number of members), the function raises the
TypeCode::Bounds exception.
 394

Type Code Operations
member_visibility() The Visibility (PRIVATE_MEMBER or
PUBLIC_MEMBER) of the specified member.

name() Type code’s user-assigned unscoped name.

type_modifier() Value modifier that applies to the value type that
the target type code represents.

Table 19: Information Obtained by Type-Specific Operations

Operation Returns:
395

CHAPTER 14 | Using Type Codes
Type Code Constants
Orbix provides type code constants that you can use to evaluate and compare
type code objects:

• Built-in type code constants are provided for each TCKind enumerator (see

page 386).

• User-defined type code constants are generated by the IDL compiler for

IDL types that you declare in your application code.

Built-in type code constants Orbix provides predefined CORBA::TypeCode object reference constants that let
you access type codes for standard types.

User-defined type code constants The IDL compiler generates type code constants for declarations of these types:

interface
typedef
struct
union
enum
valuetype
valuebox

CORBA::_tc_any
CORBA::_tc_boolean
CORBA::_tc_char
CORBA::_tc_double
CORBA::_tc_float
CORBA::_tc_long
CORBA::_tc_longdouble
CORBA::_tc_longlong
CORBA::_tc_null
CORBA::_tc_octet
CORBA::_tc_short

CORBA::_tc_string
CORBA::_tc_ulong
CORBA::_tc_ulonglong
CORBA::_tc_ushort
CORBA::_tc_void
CORBA::_tc_wchar
CORBA::_tc_wstring
CORBA::_tc_Object
CORBA::_tc_TypeCode
CORBA::_tc_ValueBase
 396

Type Code Constants
For each user-defined type that is declared in an IDL file, the IDL compiler
generates a CORBA::TypeCode_ptr that points to a type code constant. These
constants have the format _tc_type where type is the user-defined type. For
example, given the following IDL:

the IDL compiler generates the following CORBA::TypeCode_ptr constants:

• _tc_Interesting

• Interesting::_tc_longType

• Interesting::_tc_Useful

interface Interesting {
 typedef long longType;
 struct Useful
 {
 longType l;
 };
};
397

CHAPTER 14 | Using Type Codes
 398

CHAPTER 15

Using the Any Data
Type
IDL’s any type lets you specify values that can express any IDL
type.

This allows a program to handle values whose types are not known at compile
time. The any type is most often used in code that uses the interface repository or
the dynamic invocation interface (DII).

IDL-C++ mapping The IDL any type maps to the C++ CORBA::Any class. Conceptually, this class
contains the following two instance variables:

type is a TypeCode object that provides full type information for the value
contained in the any. The Any class provides a type() method to return the
TypeCode object.

value is the internal representation used to store Any values and is accessible via
standard insertion and extraction methods.
399

CHAPTER 15 | Using the Any Data Type
For example, the following interface, AnyDemo, contains an operation that
defines an any parameter:

Given this interface, a client that calls passSomethingIn()constructs an any that
specifies the desired IDL type and value, and supplies this as an argument to the
call. On the server side, the AnyDemo implementation that processes this call can
determine the type of value the any stores and extract its value.

In this chapter This chapter covers the following topics:

// IDL
interface AnyDemo {
 // Takes in any type that can be specified in IDL
 void passSomethingIn (in any any_type_parameter);

 // Passes out any type specified in IDL
 any getSomethingBack();

 ...
};

Inserting Typed Values Into Any page 401

Extracting Typed Values From Any page 404

Inserting and Extracting Booleans, Octets, Chars and WChars page 407

Inserting and Extracting Array Data page 408

Inserting and Extracting String Data page 409

Inserting and Extracting Alias Types page 412

Querying a CORBA::Any’s Type Code page 414

Using DynAny Objects page 415

Creating a DynAny page 418

Inserting and Extracting DynAny Values page 423
 400

Inserting Typed Values Into Any
Inserting Typed Values Into Any
The insertion operator <<= lets you set an any’s value and data type. The
insertion operator sets a CORBA::Any value and its data type property
(CORBA::TypeCode). Thus set, you can extract an any’s value and data type
through the corresponding extraction operator (see page 404).

Type-specific insertion operator
functions

The C++ class CORBA::Any contains predefined overloaded versions of the
insertion operator function operator<<=(). Orbix provides insertion operator
functions for all IDL types that map unambiguously to C++ types, such as long,
float, or unbounded string. For a full listing of these functions and their data
types, refer to CORBA::Any::operator<<=(). The IDL compiler also generates
an insertion operator for each user-defined type.

For example, CORBA::Any contains the following insertion operator function for
short data types:

void operator<<=(CORBA::Short s);

Given this function, you can use the insertion operator to supply a short data
type to passSomethingIn() as follows:

Type safety Insertion operators provide a type-safe mechanism for inserting data into an any.
The type of value to insert determines which insertion operator is used. Attempts
to insert a value that has no corresponding IDL type yield compile-time errors.

Memory management of inserted
data

Depending on the type of the data, insertion using an operator<<=() has one of
the following effects:

void AnyDemo::do_send_short() {
 try {
 AnyDemo_var x = ...;
 CORBA::Any a;
 CORBA::Short toPass;
 toPass = 26;
 a <<= toPass;
 x->passSomethingIn(a);
 }
 catch (CORBA::SystemException &sysEx) {
 ...
}

401

CHAPTER 15 | Using the Any Data Type
• _duplicate() is called on an object reference.

• _add_ref() is called on a valuetype.

• a deep copy is made for all other data types.

When the Any is subsequently destroyed, the Any destructor performs one of the
following actions, depending on the Any.type() field:

• CORBA::release() is called on an object reference.

• _remove_ref() is called on a valuetype.

• delete is called on all other data types.

Inserting user-defined types The IDL shown earlier can be modified to include this typedef declaration:

// IDL
typedef sequence<long> LongSequence;

Given this statement, the IDL compiler generates the following insertion
operator function for LongSequence data types:

void operator<<=(CORBA::Any& a, const LongSequence& t);

Clients that call passSomethingIn() can use the insertion operator to insert
LongSequence data into the function’s any parameter:

Example 31: Inserting user-defined type

void AnyDemo::do_send_sequence() {
 try {
 CORBA::Any a;

 // Build a sequence of length 2
 LongSequence sequence_to_insert(2);
 sequence_to_insert.length(2);

 // Initialize the sequence values
 sequence_to_insert[0] = 1;
 sequence_to_insert[1] = 2;
 402

Inserting Typed Values Into Any
 // Insert sequence into the any
 a <<= sequence_to_insert;
 ...
 // Call passSomethingIn and supply any data as argument
 m_any_demo->passSomethingIn (a);
 }
 catch (CORBA::SystemException &sysEx) {
 ...
 }
}

Example 31: Inserting user-defined type
403

CHAPTER 15 | Using the Any Data Type
Extracting Typed Values From Any
The extraction operator >>= lets you get the value that a CORBA::Any contains
and returns a CORBA::Boolean: true (1) if the any’s TypeCode matches the
extraction operation’s target operand, or false (0) if a mismatch occurs.

Type-specific extraction operator
functions

The C++ class CORBA::Any contains predefined overloaded versions of the
extraction operator function operator>>=(). Orbix provides extraction operator
functions for all IDL types that map unambiguously to C++ types, such as long,
float, or unbounded string. For a full listing of these functions and their data
types, refer to CORBA::Any::operator>>=(). The IDL compiler also generates
an extraction operator for each user-defined type.

For example, CORBA::Any contains the following extraction operator function
for short data types:

CORBA::Boolean operator>>=(CORBA::Short& s) const;

Given this function, a server implementation of passSomethingIn() can use the
extraction operator to extract a short from the function’s parameter anyIn:

Memory management of extracted
data

When a user-defined type is extracted from an Any, the data is not copied or
duplicated in any way. The extracted data is, therefore, subject to the following
restrictions:

• No modifications to the extracted data are allowed. The extracted data is

read-only.

void AnyDemo_i::passSomethingIn(const CORBA::Any& anyIn) {

 CORBA::Short toExtract = 0;

 if (anyIn >>= toExtract) {
 // Print the value
 cout << "passSomethingIn() returned a string:"
 << toExtract << endl << endl;
 }
 else {
 cerr << "Unexpected value contained in any" << endl;
 }
}

 404

Extracting Typed Values From Any
• Deallocation of the extracted data is not allowed. The Any retains

ownership of the data.

To overcome the restrictions on extracted data, you must explicitly make a copy
of the data and modify the new copy instead.

Extracting user-defined types More complex, user-defined types can be extracted with the extraction operators
generated by the IDL compiler. For example, the IDL shown earlier can be
modified to include this typedef declaration:

Given this statement, the IDL compiler generates the following extraction
operator function for LongSequence data types:

The generated extraction operator for user-defined types takes a pointer to the
generated type as the second parameter. If the call to the operator succeeds, this
pointer points to the memory managed by the CORBA::Any. Because a
CORBA::Any manages this memory, it is not appropriate to extract its value into a
_var variable—attempting to do so results in a compile-time error.

You can extract a LongSequence from a CORBA::Any as follows:

// IDL
typedef sequence<long> LongSequence;

CORBA::Boolean operator >>= (CORBA::Any& a, LongSequence*& t)
const;

Example 32: Extracting a LongSequence

void AnyDemo::do_get_any() {
 CORBA::Any_var a;
 cout << "Call getSomethingBack" << endl;
 a = m_any_demo->getSomethingBack();

 LongSequence* extracted_sequence = 0;

 if (a >>= extracted_sequence) {
 cout << "returned any contains sequence with value :"
 << endl;
 print_sequence(extracted_sequence);
 }
405

CHAPTER 15 | Using the Any Data Type
 else {
 cout << "unexpected value contained in any" << endl;
 }
}

Note: It is an error to attempt to access the storage associated with a
CORBA::Any after the CORBA::Any variable has been deallocated.

Example 32: Extracting a LongSequence
 406

Inserting and Extracting Booleans, Octets, Chars and WChars
Inserting and Extracting Booleans, Octets,
Chars and WChars

Orbix’s IDL to C++ mapping for IDL types char, wchar, boolean and octet
prevents the overloaded insertion and extraction operators from distinguishing
between these four data types. Consequently, you cannot use these operators
directly to insert and extract data for these three IDL types.

The CORBA::Any class contains a set of insertion and extraction operator
functions that use helper types for char, wchar, boolean, and octet types:

You can use these helper types as in the following example:

void operator<<=(CORBA::Any::from_char c);
void operator<<=(CORBA::Any::from_wchar wc);
void operator<<=(CORBA::Any::from_boolean b);
void operator<<=(CORBA::Any::from_octet o);

Boolean operator>>=(CORBA::Any::to_char c) const;
Boolean operator>>=(CORBA::Any::to_wchar wc) const;
Boolean operator>>=(CORBA::Any::to_boolean b) const;
Boolean operator>>=(CORBA::Any::to_octet o) const;

Example 33: Inserting and extracting boolean types

CORBA::Any a;

// Insert a boolean into CORBA::Any a
CORBA::Boolean b = 1;
a <<= CORBA::Any::from_boolean(b);

// Extract the boolean
CORBA::Boolean extractedValue;
if (a >>= CORBA::Any::to_boolean(extractedValue)){
 cout << "Success!" << endl;
}

407

CHAPTER 15 | Using the Any Data Type
Inserting and Extracting Array Data
IDL arrays map to regular C++ arrays. Because arrays can have different lengths
and an array variable points only to the array’s first element, the IDL compiler
generates a distinct C++ type for each IDL array. The type name is concatenated
from the array name and the suffix _forany.

For example, the IDL shown earlier can be modified to include this
two-dimensional array definition:

// IDL
typedef long longArray[2][2];

Given this typedef statement, the IDL compiler generates a longArray_forany
type. The following example shows how to use insertion and extraction
operators to move data between this type and a CORBA::Any:

Like array _var types, _forany types provide an operator[]() function to
access array members. However, when a _forany type is destroyed, the storage
that is associated with the array remains intact. This is consistent with the
behavior of the extraction operator >>=, where the CORBA::Any retains
ownership of the memory that the operator returns. Thus, the previous code is
safe from memory leaks.

Example 34: Inserting and extracting array data

longArray m_array = { {14, 15}, {24, 25} };

// Insertion
CORBA::Any a;
a <<= longArray_forany(m_array);

// Extraction
longArray_forany extractedValue;
if (a >>= extractedValue) {
 cout << "Element [1][2] is "
 << extractedValue[1][2] << endl;
}

 408

Inserting and Extracting String Data
Inserting and Extracting String Data
Helper types are also provided for insertion and extraction of string and
wstring types.

Inserting strings The from_string and from_wstring struct types are used in combination with
the insertion operator >>= to insert strings and wide strings. Two constructors are
provided for the from_string type:

The constructor parameters can be explained as follows:

s is a pointer to the string to be inserted.

b specifies the bound of a bounded string (0 implies unbounded).

nocopy specifies whether the string is copied before insertion (0 implies
copying, 1 implies no copying and adoption).

Analogous constructors are provided for the from_wstring type:

CORBA::Any::from_string(
 char* s,
 CORBA::ULong b,
 CORBA::Boolean nocopy = 0
)
CORBA::Any::from_string(const char* s, CORBA::ULong b)

CORBA::Any::from_wstring(
 CORBA::WChar* s,
 CORBA::ULong b,
 CORBA::Boolean nocopy = 0
)
CORBA::Any::from_wstring(const CORBA::WChar* s, CORBA::ULong b)
409

CHAPTER 15 | Using the Any Data Type
Examples of inserting bounded and unbounded string types are shown in the
following code:

Insertion of wide strings is performed in an analogous manner using the
CORBA::Any::from_wstring type.

Extracting strings The to_string and to_wstring struct types are used in combination with the
extraction operator >>= to extract strings and wide strings. One constructor is
provided for the to_string type:

The constructor parameters can be explained as follows:

s is a place holder that will point to the extracted string after a successful
extraction is made.

b specifies the bound of a bounded string (0 implies unbounded).

Example 35: Inserting bounded and unbounded strings

// Insert a copy of an unbounded string, ’string’.
CORBA::Any a1;
a1 <<= CORBA::Any::from_string("Unbounded string", 0);
...
// Insert a copy of a bounded string, ’string<100>’.
CORBA::Any a2;
a2 <<= CORBA::Any::from_string("Bounded string", 100);
...

// Insert an unbounded string, ’string’, passing
// ownership to the ’CORBA::Any’.
CORBA::Any a3;
char * unbounded = CORBA::string_dup("Unbounded string");
a3 <<= CORBA::Any::from_string(unbounded, 0, 1);
...
// Insert a bounded string, ’string<100>’, passing
// ownership to the ’CORBA::Any’.
CORBA::Any a4;
char * bounded = CORBA::string_dup("Bounded string");
a3 <<= CORBA::Any::from_string(bounded, 100, 1);

CORBA::Any::to_string(const char*& s, CORBA::ULong b);
 410

Inserting and Extracting String Data
An analogous constructor is provided for the to_wstring type:

Examples of extracting bounded and unbounded string types are shown in the
following code:

Extraction of wide strings is performed in an analogous manner using the
CORBA::Any::to_wstring type.

CORBA::Any::to_wstring(const CORBA::WChar*& s, CORBA::ULong b);

Example 36: Extracting bounded and unbounded strings

// Extract an unbounded string, ’string’.
CORBA::Any a1;
const char * readonly_s;
if (a1 >>= CORBA::Any::to_string(readonly_s, 0)) {
 // process string, ’readonly_s’
}
...

// Extract a bounded string, ’string<100>’.
CORBA::Any a2;
const char * readonly_bs;
if (a2 >>= CORBA::Any::to_string(readonly_bs, 100)) {
 // process bounded string, ’readonly_bs’
}

411

CHAPTER 15 | Using the Any Data Type
Inserting and Extracting Alias Types
The insertion and extraction operators <<= and >>= are invalid for alias types.
An alias type is a type defined using a typedef.

For example, a bounded string alias is a type defined by making a typedef of a
bounded string:

//IDL
typedef string<100> BoundedString;

This is mapped by the IDL compiler to a C++ typedef as follows:

A C++ alias, such as BoundedString, cannot be used to distinguish an
overloaded operator because it is not a distinct C++ type. This is the reason why
the <<= and >>= operators cannot be used with alias types.

Inserting alias types The BoundedString alias type can be inserted into an Any as follows:

The code executes as follows:

1. The data is inserted using the <<= operator and the from_string helper

type. Initially, the Any’s type code is set equal to that of a bounded string

with bound 100 (the type code for string<100>). There is no type code

constant available for the string<100> type—the <<= operator creates one

on the fly and uses it.

2. CORBA::Any::type() corrects the Any’s type code, setting it equal to the

_tc_BoundedString type code.

// Stub code generated by the IDL compiler.
typedef char* BoundedString;
...

Example 37: Inserting an alias type

CORBA::Any a;
BoundedString bs = "Less than 100 characters.";

1 a <<= CORBA::Any::from_string(bs, 100);
2 a.type(_tc_BoundedString); // Correct the type code!
 412

Inserting and Extracting Alias Types
It is not permissible to use type() to reset the type code to arbitrary

values—the new type code must be equivalent to the old one. Attempting

to reset the type code to a non-equivalent value raises the BAD_TYPECODE

system exception.

For example, calling type() with the _tc_BoundedString argument

succeeds because the BoundedString type is equivalent to the

string<100> type.

Extracting alias types The BoundedString alias type can be extracted from an Any as follows:

1. The pointer to receive the extracted value, bs, is declared as const char*.

You cannot declare bs as const BoundedString because that means a

const pointer to char, or char* const which is not the same as const

char* (pointer to const char).

2. The to_string constructor manufactures a type code for a string<100>

bounded string and compares this type with the Any’s type code. If the

type codes are equivalent, the extraction succeeds.

Example 38: Extracting an alias type

CORBA::Any a;
// The any ’a’ is initialized with a ’BoundedString’ alias
// (as shown previously)
...

1 // Extract the ’BoundedString’ type
const char * bs;

2 if (a >>= CORBA::Any::to_string(bs, 100)) {
 cout << "Bounded string is: \"" << bs << "\"" << endl;
}

413

CHAPTER 15 | Using the Any Data Type
Querying a CORBA::Any’s Type Code
Type code operations are commonly used to query a CORBA::Any for its type at
runtime. For example, given this interface definition:

the IDL compiler generates the CORBA::TypeCode_ptr constant _tc_Example.

Assuming this interface definition:

a client might invoke operation op() as follows:

The server can then query the actual type of the parameter to op() as follows:

// IDL
struct Example {
 long l;
};

// IDL
interface Bar {
 void op(in any a);
};

// Client code
Bar_var bVar;
CORBA::Any a = ... ; // somehow initialize
...
bVar->op(a);

Example 39: Querying a Any’s type code

// Server code
void Bar_i::op(const CORBA::Any& a) {
 CORBA::TypeCode_var t(a->type());
 if(t->equivalent(_tc_Example)) {
 cerr << "Don’t like struct Example!" << endl;
 }
 else... // Continue processing here.
}

 414

Using DynAny Objects
Using DynAny Objects
The DynAny interface allows applications to compose and decompose any type
values dynamically. With DynAny, you can compose a value at runtime whose
type was unknown when the application was compiled, and transmit that value
as an any. Conversely, an application can receive a value of type any from an
operation, and interpret its type and extract its value without compile-time
knowledge of its IDL type.

Interface hierarchy The DynAny API consists of nine interfaces. One of these, interface
DynAnyFactory, lets you create DynAny objects. The rest of the DynAny API
consists of the DynAny interface itself and derived interfaces, as shown in
Figure 28.

The derived interfaces correspond to complex, or constructed IDL types such as
array and struct. Each of these interfaces contains operations that are specific
to the applicable type.

The DynAny interface contains a number of operations that apply to all DynAny
objects; it also contains operations that apply to basic IDL types such as long
and string.

The DynStruct interface is used for both IDL struct and exception types.

Figure 28: Interfaces that derive from the DynAny interface

DynAny::

DynFixed

DynStruct

DynSequence

DynArray

DynUnion

DynEnum

DynValue

DynValueBox
415

CHAPTER 15 | Using the Any Data Type
Generic operations The DynAny interface contains a number of operations that can be invoked on
any basic or constructed DynAny object:

assign() initializes one DynAny object’s value from another. The value must be
compatible with the target DynAny’s type code; otherwise, the operation raises an
exception of TypeMismatch.

copy() creates a DynAny whose value is a deep copy of the source DynAny’s
value.

destroy() destroys a DynAny and its components.

equal() returns true if the type codes of the two DynAny objects are equivalent
and if (recursively) all component DynAny objects have identical values.

from_any() initializes a DynAny object from an existing any object. The source
any must contain a value and its type code must be compatible with that of the
target DynAny; otherwise, the operation raises an exception of TypeMismatch.

to_any() initializes an any with the DynAny’s value and type code.

interface DynAny {
 exception InvalidValue{};
 exception TypeMisMatch {};
 // ...

 void assign(in DynAny dyn_any) raises (TypeMismatch);
 DynAny copy();
 void destroy();

 boolean equal(in DynAny da);

 void from_any(
 in any value) raises(TypeMismatch, InvalidValue);
 any to_any();

 CORBA::TypeCode type();
 // ...
};
 416

Using DynAny Objects
type() obtains the type code associated with the DynAny object. A DynAny
object’s type code is set at the time of creation and remains constant during the
object’s lifetime.
417

CHAPTER 15 | Using the Any Data Type
Creating a DynAny
The DynAnyFactory interface provides two creation operations for DynAny
objects:

Create operations The create operations return a DynAny object that can be used to manipulate any
objects:

create_dyn_any() is a generic create operation that creates a DynAny from an
existing any and initializes it from the any’s type code and value.

The type of the returned DynAny object depends on the any’s type code. For
example: if the any contains a struct, create_dyn_any() returns a DynStruct
object.

create_dyn_any_from_type_code() creates a DynAny from a type code. The
value of the DynAny is initialized to an appropriate default value for the given
type code. For example, if the DynAny is initialized from a string type code, the
value of the DynAny is initialized to "" (empty string).

Returned types The type of the returned DynAny object depends on the type code used to
initialize it. For example: if a struct type code is passed to
create_dyn_any_from_type_code(), a DynStruct object is returned.

If the returned DynAny type is one of the constructed types, such as a DynStruct,
you can narrow the returned DynAny before processing it further.

module DynamicAny {
 interface DynAny; // Forward declaration

 //...
 interface DynAnyFactory
 {
 exception InconsistentTypeCode {};

 DynAny create_dyn_any(in any value)
 raises (InconsistentTypeCode);
 DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)
 raises (InconsistentTypeCode);
 };
};
 418

Creating a DynAny
create_dyn_any()
create_dyn_any() is typically used when you need to parse an any to analyse
its contents. For example, given an any that contains an enum type, you can
extract its contents as follows:

Example 40: Creating a DynAny

//C++
#include <omg/DynamicAny.hh>
//...
void get_any_val(const CORBA::Any& a){

1 // Get a reference to a ’DynamicAny::DynAnyFactory’ object
 CORBA::Object_var obj =
 global_orb->resolve_initial_references("DynAnyFactory");
 DynamicAny::DynAnyFactory_var dyn_fact =
 DynamicAny::DynAnyFactory::_narrow(obj);
 if (CORBA::is_nil(dyn_fact)) {
 // error: throw exception
 }

 // Get the Any’s type code
 CORBA::TypeCode_var tc = a.type();

2 switch (tc->kind()){
 // ...
 case CORBA::tk_enum: {

3 DynamicAny::DynAny_var da =
 dyn_fact->create_dyn_any(a);
 DynamicAny::DynEnum_var de =
 DynamicAny::DynEnum::_narrow(da);
 // ...

4 de->destroy();
 }
 break;
 }
}

419

CHAPTER 15 | Using the Any Data Type
The code executes as follows:

1. Call resolve_initial_references("DynAnyFactory") to obtain an

initial reference to the DynAnyFactory object.

It is assumed that global_orb refers to an existing CORBA::ORB object that

has been initialized prior to this code fragment.

Narrow the CORBA::Object_ptr object reference to the

DynamicAny::DynAnyFactory_ptr type before it is used.

2. Analysis of a type code is begun by branching according to the value of its

kind field. A general purpose subroutine for processing DynAnys would

require case statements for every possible IDL construct. Only the case

statement for an enum is shown here.

3. The DynAny created in this step is initialized with the same type and value

as the given CORBA::Any data type.

Because the any argument of create_dyn_any() contains an enum, the

return type of create_dyn_any() is DynamicAny::DynEnum_ptr. The

return value can therefore be narrowed to this type.

4. destroy() must be invoked on the DynAny object when you are finished

with it.
 420

Creating a DynAny
create_dyn_any_from_type_code()
create_dyn_any_from_type_code() is typically used to create an any when
stub code is not available for the particular type.

For example, consider the IDL string<128> bounded string type. In C++ you
can insert this anonymous bounded string using the CORBA::Any::from_string
helper type. Alternatively, you can use the DynamicAny programming interface
as follows:

Example 41: Inserting an anonymous bounded string.

//C++
#include <omg/DynamicAny.hh>
//...
// Get a reference to a ’DynamicAny::DynAnyFactory’ object

1 CORBA::Object_var obj
 = global_orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var dyn_fact
 = DynamicAny::DynAnyFactory::_narrow(obj);
if (CORBA::is_nil(dyn_fact)) {
 // error: throw exception
}

// Create type code for an anonymous bounded string type
CORBA::ULong bound = 128;

2 CORBA::TypeCode_var tc_v = global_orb->create_string_tc(bound);

// Initialize a ’DynAny’ containing a bounded string
3 DynamicAny::DynAny_var dyn_bounded_str

 = dyn_fact->create_dyn_any_from_type_code(tc_v);
4 dyn_bounded_str->insert_string("Less than 128 characters.");

// Convert ’DynAny’ to a plain ’any’
5 CORBA::Any_var a = dyn_bounded_str->to_any();

//...
// Cleanup ’DynAny’

6 dyn_bounded_str->destroy();
421

CHAPTER 15 | Using the Any Data Type
The code executes as follows:

1. The initialization service gets an initial reference to the DynAnyFactory

object by calling resolve_initial_references("DynAnyFactory").

It is assumed that global_orb refers to an existing CORBA::ORB object that

has been initialized prior to this code fragment.

The plain CORBA::Object_ptr object reference must be narrowed to the

DynamicAny::DynAnyFactory_ptr type before it is used.

2. The CORBA::ORB class supports a complete set of functions for the dynamic

creation of type codes. For example, create_string_tc() creates

bounded or unbounded string type codes. The argument of

create_string_tc() can be non-zero, to specify the bound of a bounded

string, or zero, for unbounded strings.

3. A DynAny object, called dyn_bounded_str, is created using

create_dyn_any_from_type_code(). The dyn_bounded_str is initialized

with its type equal to the given bounded string type code, and its value

equal to a blank string.

4. The value of dyn_bounded_str is set equal to the given argument of the

insert_string() operation. Insertion operations, of the form

insert_BasicType, are defined for all basic types as described in

“Accessing basic DynAny values” on page 423.

5. The dyn_bounded_str object is converted to a plain any that is initialized

with the same type and value as the DynAny.

6. destroy() must be invoked on the DynAny object when you are finished

with it.

7.

Note: A DynAny object’s type code is established at its creation and cannot be
changed thereafter.
 422

Inserting and Extracting DynAny Values
Inserting and Extracting DynAny Values
The interfaces that derive from DynAny such as DynArray and DynStruct handle
insertion and extraction of any values for the corresponding IDL types. The
DynAny interface contains insertion and extraction operations for all other basic
IDL types such as string and long.

Accessing basic DynAny values The DynAny interface contains two operations for each basic type code, to insert
and extract basic DynAny values:+

• An insert operation is used to set the value of the DynAny. The data being

inserted must match the DynAny’s type code.

The TypeMismatch exception is raised if the value to insert does not match

the DynAny’s type code.

The InvalidValue exception is raised if the value to insert is

unacceptable—for example, attempting to insert a bounded string that is

longer than the acceptable bound. The InvalidValue exception is also

raised if you attempt to insert a value into a DynAny that has components

when the current position is equal to -1. See “Iterating Over DynAny

Components” on page 428.

• Each extraction operation returns the corresponding IDL type.

The DynamicAny::DynAny::TypeMismatch exception is raised if the value

to extract does not match the DynAny’s type code.

The DynamicAny::DynAny::InvalidValue exception is raised if you

attempt to extract a value from a DynAny that has components when the

current position is equal to -1. See “Iterating Over DynAny Components”

on page 428.

It is generally unnecessary to use a DynAny object in order to access any values,
as it is always possible to access these values directly (see page 401 and see
page 404). Insertion and extraction operations for basic DynAny types are
typically used in code that iterates over components of a constructed DynAny, in
order to compose and decompose its values in a uniform way (see page 430).

The IDL for insertion and extraction operations is shown in the following
sections.
423

CHAPTER 15 | Using the Any Data Type
Insertion Operations
The DynAny interface supports the following insertion operations:

void insert_boolean(in boolean value)
 raises (TypeMismatch, InvalidValue);
void insert_octet(in octet value)
 raises (TypeMismatch, InvalidValue);
void insert_char(in char value)
 raises (TypeMismatch, InvalidValue);
void insert_short(in short value)
 raises (TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)
 raises (TypeMismatch, InvalidValue);
void insert_long(in long value)
 raises (TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)
 raises (TypeMismatch, InvalidValue);
void insert_float(in float value)
 raises (TypeMismatch, InvalidValue);
void insert_double(in double value)
 raises (TypeMismatch, InvalidValue);
void insert_string(in string value)
 raises (TypeMismatch, InvalidValue);
void insert_reference(in Object value)
 raises (TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)
 raises (TypeMismatch, InvalidValue);
void insert_longlong(in long long value)
 raises (TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)
 raises (TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)
 raises (TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)
 raises (TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)
 raises (TypeMismatch, InvalidValue);
void insert_any(in any value)
 raises (TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)
 raises (TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)
 raises (TypeMismatch, InvalidValue);
 424

Inserting and Extracting DynAny Values
For example, the following code fragment invokes insert_string() on a
DynAny to create an any value that contains a string:

Example 42: Creating an any with insert_string()

#include <omg/DynamicAny.hh>
//...
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
CORBA::Object_var obj
 = global_orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var dyn_fact
 = DynamicAny::DynAnyFactory::_narrow(obj);
if (CORBA::is_nil(dyn_fact)) {
 // error: throw exception
}

// create DynAny with a string value
DynamicAny::DynAny_var dyn_a;
dyn_a = dyn_fact->create_dyn_any_from_type_code(
 CORBA::_tc_string
);
dyn_a->insert_string("not to worry!");

// convert DynAny to any
CORBA::Any_var a;
a = dyn_a->to_any();
//...
// destroy the DynAny
dyn_a->destroy();
425

CHAPTER 15 | Using the Any Data Type
Extraction Operations
The IDL extraction operations supported by the DynAny interface are:

boolean get_boolean()
 raises (TypeMismatch, InvalidValue);
octet get_octet()
 raises (TypeMismatch, InvalidValue);
char get_char()
 raises (TypeMismatch, InvalidValue);
short get_short()
 raises (TypeMismatch, InvalidValue);
unsigned short get_ushort()
 raises (TypeMismatch, InvalidValue);
long get_long()
 raises (TypeMismatch, InvalidValue);
unsigned long get_ulong()
 raises (TypeMismatch, InvalidValue);
float get_float()
 raises (TypeMismatch, InvalidValue);
double get_double()
 raises (TypeMismatch, InvalidValue);
string get_string()
 raises (TypeMismatch, InvalidValue);
Object get_reference()
 raises (TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()
 raises (TypeMismatch, InvalidValue);
long long get_longlong()
 raises (TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()
 raises (InvalidValue,TypeMismatch);
long double get_longdouble()
 raises (TypeMismatch, InvalidValue);
wchar get_wchar()
 raises (TypeMismatch, InvalidValue);
wstring get_wstring()
 raises (TypeMismatch, InvalidValue);
any get_any()
 raises (TypeMismatch, InvalidValue);
DynAny get_dyn_any()
 raises (TypeMismatch, InvalidValue);
ValueBase get_val()
 raises (TypeMismatch, InvalidValue);
 426

Inserting and Extracting DynAny Values
For example, the following code converts a basic any to a DynAny. It then
evaluates the DynAny’s type code in a switch statement and calls the appropriate
get_ operation to obtain its value:

Example 43: Converting a basic any to a DynAny.

#include <omg/DynamicAny.hh>
//...
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
CORBA::Object_var obj
 = global_orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var dyn_fact
 = DynamicAny::DynAnyFactory::_narrow(obj);
if (CORBA::is_nil(dyn_fact)) {
 // error: throw exception
}

CORBA::Any a = ...; // get Any from somewhere

// create DynAny from Any
DynamicAny::DynAny_var dyn_a = dyn_fact->create_dyn_any(a);

// get DynAny’s type code
CORBA::TypeCode_var tcode = dyn_a->type();

// evaluate type code
switch(tcode->kind()){
case CORBA::tk_short:
 {
 CORBA::Short s = dyn_a->get_short();
 cout << "any contains short value of " << s << endl;
 break;
 }
case CORBA::tk_long:
 {
 CORBA::Long l = dyn_a->get_long();
 cout << "any contains long value of " << l << endl;
 break;
 }
// other cases follow
...
} // end of switch statement

dyn_a->destroy(); // cleanup
427

CHAPTER 15 | Using the Any Data Type
Iterating Over DynAny Components
Five types of DynAny objects contain components that must be accessed to insert
or extract values: DynStruct, DynSequence, DynArray, DynUnion, and
DynValue. On creation, a DynAny object holds a current position equal to the
offset of its first component. The DynAny interface has five operations that let
you manipulate the current position to iterate over the components of a complex
DynAny object:

component_count() returns the number of components of a DynAny. For simple
types such as long, and for enumerated and fixed-point types, this operation
returns 0. For other types, it returns as follows:

• sequence: number of elements in the sequence.

• struct, exception and valuetype: number of members.

• array: number of elements.

• union: 2 if a member is active; otherwise 1.

current_component() returns the DynAny for the current component:

DynAny current_component()

You can access each of the DynAny’s components by invoking this operation in
alternation with the next() operation. An invocation of current_component()
alone does not advance the current position.

If an invocation of current_component() returns a derived type of DynAny, for
example, DynStruct, you can narrow the DynAny to this type.

If you call current_component() on a type that has no components, such as a
long, it raises the TypeMismatch exception.

module DynamicAny {
 //...
 interface DynAny{
 // ...
 // Iteration operations
 unsigned long component_count();
 DynAny current_component() raises (TypeMismatch);
 boolean seek(in long index);
 boolean next();
 void rewind();
 };
};
 428

Inserting and Extracting DynAny Values
If you call current_component() when the current position of the DynAny is -1,
it returns a nil object reference.

next() advances the DynAny’s current position to the next component, if there is
one:

The operation returns true if another component is available; otherwise, it
returns false. Thus, invoking next() on a DynAny that represents a basic type
always returns false.

seek() advances the current position to the specified component:

Like next(), this operation returns true if the specified component is available;
otherwise, it returns false.

rewind() resets the current position to the DynAny object’s first component:

It is equivalent to calling seek() with a zero argument.

Undefined current position In some circumstances the current position can be undefined. For example, if a
DynSequence object contains a zero length sequence, both the current
component and the value of the DynAny’s current position are undefined.

The special value -1 is used to represent an undefined current position.

When the current position is -1, an invocation of current_component() yields a
nil object reference.

The current position becomes undefined (equal to -1) under the following
circumstances:

• When the DynAny object has no components.

For example, a DynAny containing a zero-length sequence or array would

have no components.

• Immediately after next() returns false.

• If seek() is called with a negative integer argument, or with a positive

integer argument greater than the largest valid index.

boolean next();

boolean seek (in long index);

void rewind();
429

CHAPTER 15 | Using the Any Data Type
Accessing Constructed DynAny Values
Each interface that derives from DynAny, such as DynArray and DynStruct,
contains its own operations which enable access to values of the following
DynAny types:

• DynEnum

• DynStruct

• DynUnion

• DynSequence and DynArray

• DynFixed

• DynValue

• DynValueBox

DynEnum The DynEnum interface enables access to enumerated any values:

The DynEnum interface defines the following operations:

get_as_string() and set_as_string() let you access an enumerated value by its
IDL string identifier or its ordinal value. For example, given this enumeration:

set_as_string("NASD") sets the enum’s value as NASD, while you can get its
current string value by calling get_as_string().

get_as_ulong() and set_as_ulong() provide access to an enumerated value by
its ordinal value.

module DynamicAny {
 //...
 interface DynEnum : DynAny {
 string get_as_string();
 void set_as_string(in string val) raises(InvalidValue);
 unsigned long get_as_ulong();
 void set_as_ulong(in unsigned long val)
 raises(InvalidValue);
 };
};

enum Exchange{ NYSE, NASD, AMEX, CHGO, DAX, FTSE };
 430

Inserting and Extracting DynAny Values
The following code uses a DynEnum to decompose an any value that contains an
enumeration:

Example 44: Using DynEnum

void extract_any(const CORBA::Any * a){
 //...
 // Get a reference to a ’DynamicAny::DynAnyFactory’ object
 CORBA::Object_var obj
 =

global_orb->resolve_initial_references("DynAnyFactory");
 DynamicAny::DynAnyFactory_var dyn_fact
 = DynamicAny::DynAnyFactory::_narrow(obj);
 if (CORBA::is_nil(dyn_fact)) {
 // error: throw exception
 }

 DynamicAny::DynAny_var dyn_a = dyn_fact->create_dyn_any(*a);
 CORBA::TypeCode_var tcode = dyn_a->type();

 switch(tcode->kind()){
 case CORBA::tk_enum:
 {
 DynamicAny::DynEnum_var dyn_e =
 DynamicAny::DynEnum::_narrow(dyn_a);
 CORBA::String_var s = dyn_e->get_as_string();
 cout << s << endl;
 dyn_e->destroy();
 }

 // other cases follow
 // ...
 }
}

431

CHAPTER 15 | Using the Any Data Type
DynStruct The DynStruct interface is used for struct and exception types. The interface
is defined as follows:

The DynStruct interface defines the following operations:

• set_members() and get_members() are used to get and set member
values in a DynStruct. Members are defined as a NameValuePairSeq
sequence of name-value pairs, where each name-value pair consists
of the member’s name as a string, and an any that contains its value.

• current_member_name() returns the name of the member at the
current position, as established by DynAny base interface operations.
Because member names are optional in type codes,
current_member_name() might return an empty string.

module DynamicAny {
// ...
 typedef string FieldName;

 struct NameValuePair{
 FieldName id;
 any value;
 };
 typedef sequence<NameValuePair> NameValuePairSeq;

 struct NameDynAnyPair {
 FieldName id;
 DynAny value;
 };
 typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

 interface DynStruct : DynAny{
 FieldName current_member_name()
 raises(TypeMismatch, InvalidValue);
 CORBA::TCKind current_member_kind()
 raises(TypeMismatch, InvalidValue);
 NameValuePairSeq get_members();
 void set_members (in NameValuePairSeq value)
 raises(TypeMismatch, InvalidValue);
 NameDynAnyPairSeq get_members_as_dyn_any();
 void set_members_as_dyn_any(
 in NameDynAnyPairSeq value
) raises(TypeMismatch, InvalidValue);
 };
};
 432

Inserting and Extracting DynAny Values
• current_member_kind() returns the TCKind value of the current

DynStruct member’s type code.

• get_members_as_dyn_any() and set_members_as_dyn_any() are

functionally equivalent to get_members() and set_members(),

respectively. They operate on sequences of name-DynAny pairs. Use these

operations if you work extensively with DynStruct objects; doing so

allows you to avoid converting a constructed DynAny into an any before

using the operations to get or set struct members.

The following code iterates over members in a DynStruct and passes each
member over to eval_member()for further decomposition:

DynUnion The DynUnion interface enables access to any values of union type:

Example 45: Using a DynStruct

DynamicAny::DynStruct_var dyn_s = ...;
CORBA::TypeCode_var tcode = dyn_s->type();
int counter = tcode->member_count();

for (int i = 0; i < counter; i++) {
 DynamicAny::DynAny_var member = dyn_s->current_component();
 eval_member(member);
 dyn_s->next();
}

module DynamicAny {
 //...
 typedef string FieldName;

 interface DynUnion : DynAny {
 DynAny get_discriminator();
 void set_discriminator(in DynAny d) raises(TypeMismatch);
 void set_to_default_member() raises(TypeMismatch);
 void set_to_no_active_member() raises(TypeMismatch);
 boolean has_no_active_member() raises(InvalidValue);
 CORBA::TCKind discriminator_kind();
 DynAny member() raises(InvalidValue);
 FieldName member_name() raises(InvalidValue);
 CORBA::TCKind member_kind() raises(InvalidValue);
 };
};
433

CHAPTER 15 | Using the Any Data Type
The DynUnion interface defines the following operations:

get_discriminator() returns the current discriminator value of the DynUnion.

set_discriminator() sets the discriminator of the DynUnion to the specified
value. If the type code of the parameter is not equivalent to the type code of the
union’s discriminator, the operation raises TypeMismatch.

set_to_default_member() sets the discriminator to a value that is consistent
with the value of the default case of a union; it sets the current position to zero
and causes component_count to return 2. Calling set_to_default_member()
on a union that does not have an explicit default case raises TypeMismatch.

set_to_no_active_member() sets the discriminator to a value that does not
correspond to any of the union’s case labels; it sets the current position to zero
and causes component_count to return 1. Calling set_to_no_active_member()
on a union that has an explicit default case or on a union that uses the entire
range of discriminator values for explicit case labels raises TypeMismatch.

has_no_active_member() returns true if the union has no active member (that
is, the union’s value consists solely of its discriminator, because the
discriminator has a value that is not listed as an explicit case label). Calling this
operation on a union that has a default case returns false. Calling this operation
on a union that uses the entire range of discriminator values for explicit case
labels returns false.

discriminator_kind() returns the TCKind value of the discriminator’s TypeCode.

member() returns the currently active member. If the union has no active
member, the operation raises InvalidValue. Note that the returned reference
remains valid only as long as the currently active member does not change.
Using the returned reference beyond the life time of the currently active member
raises OBJECT_NOT_EXIST.

member_name() returns the name of the currently active member. If the
union’s type code does not contain a member name for the currently active
member, the operation returns an empty string. Calling member_name() on a
union that does not have an active member raises InvalidValue.
 434

Inserting and Extracting DynAny Values
member_kind() returns the TCKind value of the currently active member’s
TypeCode. Calling this operation on a union that does not have a currently active
member raises InvalidValue.

DynSequence and DynArray The interfaces for DynSequence and DynArray are virtually identical:

You can get and set element values in a DynSequence or DynArray with
operations get_elements() and set_elements(), respectively. Members are
defined as an AnySeq sequence of any objects.

Operations get_elements_as_dyn_any() and set_elements_as_dyn_any()
are functionally equivalent to get_elements() and set_elements(); unlike
their counterparts, they return and accept sequences of DynAny elements.

DynSequence has two of its own operations:

get_length() returns the number of elements in the sequence.

set_length() sets the number of elements in the sequence.

module DynamicAny {
 //...
 typedef sequence<any> AnySeq;
 typedef sequence<DynAny> DynAnySeq;

 interface DynArray : DynAny {
 AnySeq get_elements();
 void set_elements(in AnySeq value)
 raises (TypeMismatch, InvalidValue);
 DynAnySeq get_elements_as_dyn_any();
 void set_elements_as_dyn_any(in DynAnySeq value)
 raises (TypeMismatch, InvalidValue);
 };

 interface DynSequence : DynAny {
 unsigned long get_length();
 void set_length(in unsigned long len)
 raises(InvalidValue);

 // remaining operations same as for DynArray
 // ...
 };
};
435

CHAPTER 15 | Using the Any Data Type
If you increase the length of a sequence, new elements are appended to the
sequence and default-initialized. If the sequence’s current position is undefined
(equal to -1), increasing the sequence length sets the current position to the first
of the new elements. Otherwise, the current position is not affected.

If you decrease the length of a sequence, set_length() removes the elements
from its end.

You can access elements with the iteration operations described in “Iterating
Over DynAny Components” on page 428. For example, the following code
iterates over elements in a DynArray:

DynFixed The DynFixed interface lets you manipulate an any that contains fixed-point
values.

The DynFixed interface defines the following operations:

get_value() returns the value of a DynFixed as a string.

set_value() sets the value of a DynFixed. If val is an uninitialized string or
contains a fixed point literal that exceeds the scale of DynFixed, the
InvalidValue exception is raised. If val is not a valid fixed point literal, the
TypeMismatch exception is raised.

DynamicAny::DynArray_var dyn_array = ...;
CORBA::TypeCode_var tcode = dyn_array->type();
int counter = tcode->length();

for (int i = 0; i < counter; i++){
 DynamicAny::DynAny_var elem = dyn_array->current_component();
 eval_member(member);
 dyn_array->next();
}

interface DynAny{
...
 interface DynFixed : DynAny{
 string get_value();
 void set_value(in string val)
 raises (TypeMismatch, InvalidValue);
 };
};
 436

Inserting and Extracting DynAny Values
DynValue The DynValue interface lets you manipulate an any that contains a value type
(excluding boxed value types):

The DynValue interface defines the following operations:

current_member_name() returns the name of the value type member indexed
by the current position.

current_member_kind() returns the type code kind for the value type member
indexed by the current position.

module DynamicAny {
 //...
 typedef string FieldName;

 struct NameValuePair
 {
 FieldName id;
 any value;
 };
 typedef sequence<NameValuePair> NameValuePairSeq;

 struct NameDynAnyPair
 {
 FieldName id;
 DynAny value;
 };
 typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

 interface DynValue : DynAny
 {
 FieldName current_member_name()
 raises (TypeMismatch, InvalidValue);
 CORBA::TCKind current_member_kind()
 raises (TypeMismatch, InvalidValue);
 NameValuePairSeq get_members();
 void set_members(in NameValuePairSeq values)
 raises (TypeMismatch, InvalidValue);
 NameDynAnyPairSeq get_members_as_dyn_any();
 void set_members_as_dyn_any(in NameDynAnyPairSeq value)
 raises (TypeMismatch, InvalidValue);
 };
};
437

CHAPTER 15 | Using the Any Data Type
get_members() returns the complete list of value type members in the form of a
NameValuePairSeq.

set_members() sets the contents of the value type members using a
NameValuePairSeq.

get_members_as_dyn_any() is similar to get_members(), except that the result
is returned in the form of a NameDynAnyPairSeq.

set_members_as_dyn_any() is similar to set_members(), except that the
contents are set using a NameDynAnyPairSeq.

DynValueBox The DynValueBox interface lets you manipulate an any that contains a boxed
value type:

The DynValue interface defines the following operations:

get_boxed_value() returns the boxed value as an any.

set_boxed_value() sets the boxed value as an any.

get_boxed_value_as_dyn_any() returns the boxed value as a DynAny.

set_boxed_value_as_dyn_any() sets the boxed value as a DynAny.

module DynamicAny {
 //...
 interface DynValueBox : DynAny
 {
 any get_boxed_value();
 void set_boxed_value(in any val)
 raises (TypeMismatch);
 DynAny get_boxed_value_as_dyn_any();
 void set_boxed_value_as_dyn_any(in DynAny val)
 raises (TypeMismatch);
 };
};
 438

CHAPTER 16

Generating
Interfaces at
Runtime
The dynamic invocation interface lets a client invoke on objects
whose interfaces are known only at runtime; similarly, the dynamic
skeleton interface lets a server process requests on objects whose
interfaces are known only at runtime.

An application’s IDL usually describes interfaces to all the CORBA objects that
it requires at runtime. Accordingly, the IDL compiler generates the stub and
skeleton code that clients and servers need in order to issue and process requests.
The client can issue requests only on those objects whose interfaces are known
when the client program is compiled; similarly, the server can process requests
only on those objects that are known when the server program is compiled.

Some applications cannot know ahead of time which objects might be required
at runtime. In this case, Orbix provides two interfaces that let you construct stub
and skeleton code at runtime, so clients and servers can issue and process
requests on those objects:

• The dynamic invocation interface (DII) builds stub code for a client so it

can call operations on IDL interfaces that were unknown at compile time.

• The dynamic skeleton interface (DSI) builds skeleton code for a server, so

it can receive operation or attribute invocations on an object whose IDL

interface is unknown at compile time.
439

CHAPTER 16 | Generating Interfaces at Runtime
In this chapter This chapter discusses the following topics:

Using the DII page 441

Using the DSI page 453
 440

Using the DII
Using the DII

Overview Some application programs and tools must be able to invoke on objects whose
interfaces cannot be determined ahead of time—for example, browsers,
gateways, management support tools, and distributed debuggers.

With DII, invocations can be constructed at runtime by specifying the target
object reference, the operation or attribute name, and the parameters to pass. A
server that receives a dynamically constructed invocation request does not
differentiate between it and static requests.

Clients that use DII Two types of client programs commonly use the DII:

• A client interacts with the interface repository to determine a target

object’s interface, including the name and parameters of one or all of its

operations, then uses this information to construct DII requests.

• A client, such as a gateway, receives the details of a request. In the case of

a gateway, the request details might arrive as part of a network package.

The gateway can then translate this into a DII call without checking the

details with the interface repository. If a mismatch occurs, an exception is

raised to the gateway, which in turn can report an error to the caller.

Steps To invoke on an object with DII, follow these steps:

1. Construct a Request object with the operation’s signature.

2. Invoke the request.

3. Retrieve results of the operation.
441

CHAPTER 16 | Generating Interfaces at Runtime
Example IDL The bank example is modified here to show how to use the DII. The
Bank::newAccount() operation now takes an inout parameter that sets a new
account’s initial balance:

The following section shows how to construct a Request object that can deliver
client requests for newAccount() operations such as this one:

bankVar->newAccount(ownerName, initialBalance, status);

In this section This section discusses the following topics:

// IDL
interface Account {
 readonly attribute float balance;

 void makeDeposit(in float f);
 void makeWithdrawal(in float f);
};

interface Bank {
 exception Reject {string reason;};

 // Create an account
 Account newAccount(
 in string owner,
 inout float initialBalance,
 out long status)
 raises (Reject);

 // Delete an account
 void deleteAccount(in Account a);
};

Constructing a Request Object page 443

Invoking a Request page 450

Retrieving Request Results page 451

Invoking Deferred Synchronous Requests page 452
 442

Using the DII
Constructing a Request Object

Overview To construct a Request object and set its data, you must first obtain a reference
to the target object. You then create a request object by invoking one of these
methods on the object reference:

• _request() returns an empty request object whose signature—return type

and parameters—must be set.

• _create_request() returns with a request object that can contain all the data

required to invoke the desired request.

In this section This section discusses the following topics:

_request() page 444

_create_request() page 447
443

CHAPTER 16 | Generating Interfaces at Runtime
_request()

Overview You can use _request() to create a Request object in these steps:

1. Create a request object and set the name of its operation.

2. Set the operation’s return type.

3. Set operation parameters and supply the corresponding arguments.

4. Set exception type codes.

5. Set the operation’s context clause, if necessary.

Create a request object Call _request() on the target object and specify the name of the operation to
invoke:

Set the operation’s return type After you create a Request object, set the TypeCode of the operation’s return
value by calling set_return_type() on the Request object.
set_return_type() takes a single argument, the TypeCode constant of the
return type. For example, given the Request object newAcctRequest, set the
return type of its newAccount() operation to Account as follows:

For information about supported TypeCode constants, refer to “Type Code
Constants” on page 396.

For information about supported TypeCodes, see Chapter 14 on page 385.

Set operation parameters A request object uses an NVList to store the data for an operation’s parameters.
To set the parameters in the NVList you need to know the operations parameters
and insert the proper values in the exact order the parameters are specified in the
operation’s IDL. The _request() operation creates an empty NVList into which
you insert the values needed by the operation.

// Get object reference
CORBA::Object_var target = ... ;

// Create Request object for operation newAccount()
CORBA::Request_var newAcctRequest =
 target->_request("newAccount");

newAcctRequest->set_return_type(_tc_Account);
 444

Using the DII
To fill in the NVList you can use the following operations on the Request
object:

These operations return a reference to an Any. For more information on inserting
values into an Any see “Using the Any Data Type” on page 399.

Example 46 on page 445 sets the parameter list for the newAccount
operation.The values for the out parameters of an operation do not need to be set

because they will be changed when the operation returns. However, the values
for all in and inout parameters must be specified.

You can also fill the NVList object using NVList::add_value(). This operation
has the following signature:

The flags parameter is set to one of the following values:

• CORBA::ARG_IN

• CORBA::ARG_INOUT

• CORBA::ARG_OUT

Set exception type codes You must set the type codes for any exceptions defined for the Request object’s
operation. To do this use the add() operation defined for the Request object’s
exceptions() list.

add() takes the exceptions type codes as its only argument. To add the Reject
exception to newAcctRequest use the following operation:

add_in_arg()
add_inout_arg()
add_out_arg()

Example 46: Setting the parameter list

// C++
newAcctRequest->add_in_arg() <<= "Norman Fellows";
CORBA::Float initBal = 1000.00;
newAcctRequest->add_inout_arg() <<= initBal;
CORBA::Long status;
newAcctRequest->add_out_arg() <<= status;

NamedValue NVList::add_value(String item_name, Any val, int
flags);

newAcctRequest->exceptions()->add(Bank::_tc_Reject);
445

CHAPTER 16 | Generating Interfaces at Runtime
If the type code for the exception was not available in the stub code, you would
need to dynamically generate the exceptions type code.

Set the operation’s context clause If the IDL operation has a context clause, you can add a Context object to its
Request object with CORBA::Request::ctx().
 446

Using the DII
_create_request()

Overview You can also create a Request object by calling _create_request() on an
object reference and passing the request details as arguments. The advantage of
using _create_request() is that you can create a Request object that contains
all of the information needed to invoke a request. _create_request() has the
following signature:

At a minimum, you must provide two arguments when using
_create_request():

• The name of the operation

• A pointer to a NamedValue that holds the operation’s return value

You can also supply a populated parameter list and a populated exception list to
_create_request(). If you supply null for either list, _create_request()
creates an empty list for the returned Request object. In this case you must
populate the list as described above in “_request()” on page 444.

Creating the parameter list There are two operations provided by CORBA::ORB to create the NVList passed to
_create_object() to specify the Request object’s parameter list:

• create_list()

• create_operation_list()

create_list()

create_list() has the fololwing signiture:

void _create_request(Context_ptr ctx,
 const char *operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 ExceptionList_ptr exceptions,
 ContextList_ptr contexts,
 Request_out request,
 Flags req_flags);

void create_list(Long count, NVList_ptr list);
447

CHAPTER 16 | Generating Interfaces at Runtime
The operation allocates the space for an NVList of the specified number of
elements and returns a pointer to the empty NVList. You then add the required
parameters using the following operation on the NVList:

create_operation_list()

create_operation_list() extends the functionality of create_list() by
creating a prefilled parameter list based on informaiton stored in the interface
repository. It has the following signature:

Using the OperationDef object passed as a parameter,
create_operation_list() retrieves the parameter list for the specified
operation from the interface repository. When create_operation_list()
returns, the NVList contains one NamedValue object for each operation
parameter. Each NamedValue object contains the parameter’s passing mode,
name, and initial value of type Any.

Once you have the prefilled parameter list, you can modify the parameters by
iterating over the NVList elements with NVList::item(). Use the insertion
operator <<= to set each NamedValue’s value member.

Example The code in Example 47 constructs a parameter list using
create_operation_list(). It then uses the parameter list to construct a
Request object for invoking operation newAccount():

add()
add_item()
add_item_consume()
add_value()
add_value_consume()

void create_operation_list(OperationDef_ptr operation,
NVList_out list);
 448

Using the DII
Example 47: Create a Request object using _create_request()

// get an object reference
CORBA::Object_var target = ... ;

CORBA::Request_ptr newAcctRequest;
CORBA::NamedValue_ptr result;

// Get OperationDef object from IFR
// reference to the IFR, ifr, obtained previously
CORBA::Contained_ptr cont = ifr->lookup("Bank::newAccount");
CORBA::OperationDef_ptr opDef =

CORBA::OperationDef::_narrow(cont.in());

// Initialize the parameter list
CORBA::NVList_out paramList;
CORBA::ORB::create_operation_list(opDef, paramList);
paramList->item(0)->value <<= "Norman Fellows";
CORBA::Float initBal = 1000.00;
paramList->item(1)->value <<= initBal;
CORBA::Long status;
paramList->item(2)->value <<= status;

// Construct the Request object
target->_create_request(CORBA::Context::_nil(), "newAccount",

paramList, result, newAcctRequest, 0);
449

CHAPTER 16 | Generating Interfaces at Runtime
Invoking a Request
After you set a Request object’s data, you can use one of several methods to
invoke the request on the target object. The following methods are invoked on a
Request object:

invoke() blocks the client until the operation returns with a reply. Exceptions are
handled the same as static function invocations.

send_deferred() sends the request to the target object and allows the client to
continue processing while it awaits a reply. The client must poll for the request’s
reply (see “Invoking Deferred Synchronous Requests” on page 452).

send_oneway() invokes one-way operations. Because no reply is expected, the
client resumes processing immediately after the invocation.

The following methods are invoked on the ORB, and take a sequence of
requests:

send_multiple_requests_deferred() calls multiple deferred synchronous
operations.

send_multiple_requests_oneway() calls multiple oneway operations
simultaneously.

For example:

Example 48: Invoking on a request

try {
 request->invoke();
}
catch (CORBA::SystemException& se) {
 cout << "Unexpected exception" << &se << endl;
}

 450

Using the DII
Retrieving Request Results
When a request returns, Orbix updates out and inout parameters in the Request
object’s NVList. To get an operation’s output values:

1. Call arguments() on the Request object to get a reference to its NVList.

2. Iterate over the NamedValue items in the Request object’s NVList by

successively calling item() on the NVList. Each call to this methods

returns a NamedValue reference.

3. Call value() on the NamedValue to get a pointer to the Any value for each

parameter.

4. Extract the parameter values from the Any.

To get an operation’s return value, call return_value() on the request object.
This operation returns the request’s return value as an any.

For example, the following code gets an object reference to the new account
returned by the newAccount() operation:

Example 49: Obtaining the return value from a request object

CORBA::Object_var newAccount;
request->return_value() >>= newAccount;
451

CHAPTER 16 | Generating Interfaces at Runtime
Invoking Deferred Synchronous Requests
You can use the DII to make deferred synchronous operation calls. A client can
call an operation, continue processing in parallel with the operation, then
retrieve the operation results when required.

You can invoke a request as a deferred synchronous operation as follows:

1. Construct a Request object and call send_deferred() on it.

2. Continue processing in parallel with the operation.

3. Check whether the operation has returned by calling poll_response() on

the Request object. This methods returns a non-zero value if a response

has been received.

4. To get the result of the operation, call get_response() on the Request

object.

You can also invoke methods asynchronously. For more information, see
Chapter 12.
 452

Using the DSI
Using the DSI

Overview A server uses the dynamic skeleton interface (DSI) to receive operations or
attribute invocations on an object whose IDL interface is unknown to it at
compile time. With DSI, a server can build the skeleton code that it needs to
accept these invocations.

The server defines a function that determines the identity of the requested object;
the name of the operation and the types and values of each argument are
provided by the user. The function carries out the task that is being requested by
the client, and constructs and returns the result. Clients are unaware that a server
is implemented with the DSI.

In this section This section discusses the following topics:

DSI Applications page 454

Programming a Server to Use DSI page 455
453

CHAPTER 16 | Generating Interfaces at Runtime
DSI Applications

Overview The DSI is designed to help write gateways that accept operation or attribute
invocations on any specified set of interfaces and pass them to another system. A
gateway can be written to interface between CORBA and some non-CORBA
system. This gateway is the only part of the CORBA system that must know the
non-CORBA system’s protocol; the rest of the CORBA system simply issues
IDL calls as usual.

Invoking on a gateway The IIOP protocol lets an object invoke on objects in another ORB. If a
non-CORBA system does not support IIOP, you can use DSI to provide a
gateway between the CORBA and non-CORBA systems. To the CORBA
system, this gateway appears as a CORBA-compliant server that contains
CORBA objects. In reality, the server uses DSI to trap incoming invocations and
translate them into calls that the non-CORBA system can understand.

Bidirectional gateways You can use DSI and DII together to construct a bidirectional gateway. This
gateway receives messages from the non-CORBA system and uses the DII to
make CORBA client calls. It uses DSI to receive requests from clients on a
CORBA system and translate these into messages in the non-CORBA system.

DSI has other uses. For example, a server might contain many non-CORBA
objects that it wants to make available to its clients. In an application that uses
DSI, clients invoke on only one CORBA object for each non-CORBA object.
The server indicates that it uses DSI to accept invocations on the IDL interface.
When it receives an invocation, it identifies the target object, the operation or
attribute to call, and its parameters. It then makes the call on the non-CORBA
object. When it receives the result, it returns it to the client.
 454

Using the DSI
Programming a Server to Use DSI

Overview The DSI is implemented by servants that instantiate dynamic skeleton classes.
All dynamic skeleton classes are derived from
PortableServer::DynamicImplementation:

A server program uses DSI as follows:

1. Instantiates one or more DSI servants and obtains object references to

them, which it makes available to clients.

2. Associates each DSI servant with a POA—for example, through a servant

manager, or by registering it as the default servant.

Dynamic implementation routine When a client invokes on a DSI-generated object reference, the POA delivers the
client request as an argument to the DSI servant’s invoke() method—also
known as the dynamic implementation routine (DIR). invoke() takes a single
argument, a CORBA::ServerRequest pseudo-object, which encapsulates all data
that pertains to the client request—the operation’s signature and arguments.
CORBA::ServerRequest maps to the following C++ class:

namespace Portable Server{
 class DynamicImplementation : public virtual ServantBase{
 public:
 Object_ptr _this();
 virtual void invoke(ServerRequest_ptr request) = 0;
 virtual RepositoryId _primary interface(
 const ObjectId& oid, POA_ptr poa) = 0;
 };
}

class ServerRequest{
 public:
 const char* operation() cont;
 void arguments(NVList_ptr& parameters);
 Context_ptr ctx();
 void set_result(const Any& value);
 void set_exception(const Any& value);
};
455

CHAPTER 16 | Generating Interfaces at Runtime
invoke() processing invoke() processing varies across different implementations, but it always
includes the following steps:

1. Obtains the operation’s name by calling operation() on the

ServerRequest object.

2. Builds an NVList that contains definitions for the operation’s parameters—

often, from an interface definition obtained from the interface repository.

Then, invoke() populates the NVList with the operation’s input arguments

by calling arguments() on the ServerRequest object.

3. Reconstructs the client invocation and processes it.

4. If required, sets the operation’s output in one of two ways:

♦ If the operation’s signature defines output parameters, invoke() sets

the NVList as needed. If the operation’s signature defines a return

value, invoke() calls set_result() on the ServerRequest object.

♦ If the operation’s signature defines an exception, invoke() calls

set_exception() on the ServerRequest object.

Note: invoke() can either set the operation’s output by initializing its output
parameters and setting its return value, or by setting an exception; however, it
cannot do both.
 456

CHAPTER 17

Using the Interface
Repository
An Orbix application uses the interface repository for persistent
storage of IDL interfaces and types. The runtime ORB and Orbix
applications query this repository at runtime to obtain IDL
definitions.

The interface repository maintains full information about the IDL definitions
that have been passed to it. The interface repository provides a set of IDL
interfaces to browse and list its contents, and to determine the type information
for a given object. For example, given an object reference, you can use the
interface repository to obtain all aspects of the object’s interface: its enclosing
module, interface name, attribute and operation definitions, and so on.

Benefits These capabilities are important for a number of tools:

• Browsers that allow designers and code writers to determine what types

have been defined in the system, and to list the details of chosen types.

• CASE tools that aid software design, writing, and debugging.

• Application level code that uses the dynamic invocation interface (DII) to

invoke on objects whose types were not known to it at compile time. This

code might need to determine the details of the object being invoked in

order to construct the request using the DII.

• A gateway that requires runtime information about the type of an object

being invoked.
457

CHAPTER 17 | Using the Interface Repository
In order to populate the interface repository with IDL definitions, run the IDL
compiler with the -R option. For example, the following command populates the
interface repository with the IDL definitions in bank.idl:

idl -R bank.idl

In this chapter This chapter contains the following sections

Interface Repository Data page 459

Containment in the Interface Repository page 467

Repository Object Descriptions page 474

Retrieving Repository Information page 477

Sample Usage page 480

Repository IDs and Formats page 482

Controlling Repository IDs with Pragma Directives page 484
 458

Interface Repository Data
Interface Repository Data
Interface repository data can be viewed as a set of CORBA objects, where the
repository stores one object for each IDL type definition. All interface repository
objects are derived from the abstract base interface IRObject., which is defined
as follows:

Attribute def_kind identifies a repository object’s type. For example, the
def_kind attribute of an interfaceDef object is dk_interface. The enumerate
constants dk_none and dk_all are used to search for objects in a repository. All
other enumerate constants identify one of the repository object types in
Table 20, and correspond to an IDL type or group of types.

destroy() deletes an interface repository object and any objects contained
within it. You cannot call destroy() on the interface repository object itself or
any PrimitiveDef object.

// In module CORBA
enum DefinitionKind
{
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository, dk_Wstring, dk_Fixed,
 dk_Value, dk_ValueBox, dk_ValueMember, dk_Native
};

...
interface IRObject
{
 // read interface
 readonly attribute DefinitionKind def_kind;

 // write interface
 void
 destroy();
};
459

CHAPTER 17 | Using the Interface Repository
Abstract Base Interfaces
Besides IRObject, the interface repository defines four other abstract base
interfaces, all of which inherit directly or indirectly from IRObject:

Container: The interface for container objects. This interface is inherited by all
interface objects that can contain other objects, such as Repository, ModuleDef
and InterfaceDef. These interfaces inherit from Container. See “Container
Interface” on page 472.

Contained: The interface for contained objects. This interface is inherited by all
objects that can be contained by other objects—for example, attribute definition
(AttributeDef) objects within operation definition (OperationDef) objects.
See “Contained Interface” on page 470.

IDLType: All interface repository interfaces that hold the definition of a type
inherit directly or indirectly from this interface. See “IDL-type objects” on
page 464.

TypedefDef: The base interface for the following interface repository types that
have names: StructDef, UnionDef, EnumDef, and AliasDef, which represents
IDL typedef definitions.
 460

Interface Repository Data
Repository Object Types
Objects in the interface repository support one of the IDL types in Table 20:

Table 20: Interface Repository OIbject Types

Object type Description

Repository The repository itself, in which all other objects are
nested. A repository definition can contain definitions
of other types such as module and interface. Table 21
lists all possible container components.

ModuleDef A module definition is logical grouping of interfaces
and value types. The definition has a name and can
contain definitions of all types except Repository.
Table 21 on page 468 lists all possible container
components.

InterfaceDef An interface definition has a name, a possible
inheritance declaration, and can contain definitions of
other types such as attribute, operation, and exception.
Table 21 lists all possible container components.

ValueDef A value type definition has a name, a possible
inheritance declaration, and can contain definitions of
other types such as attribute, operation, and exception.
Table 21 lists all possible container components.

ValueBoxDef A value box definition defines a value box type.

ValueMemberDef A value member definition defines a member of a
value.

AttributeDef An attribute definition has a name, a type, and a mode
to indicate whether it is readonly.

OperationDef An operation definition has a name, return value, set
of parameters and, optionally, raises and context
clauses.

ConstantDef A constant definition has a name, type, and value.
461

CHAPTER 17 | Using the Interface Repository
ExceptionDef An exception definition has a name and a set of
member definitions.

StructDef A struct definition has a name, and holds the
definition of each of its members.

UnionDef A union definition has a name, and holds a
discriminator type and the definition of each of its
members.

EmumDef An enum definition has a name and a list of member
identifiers.

AliasDef An aliased definition defines a typedef definition,
which has a name and a type that it maps to.

PrimitiveDef A primitive definition defines primitive IDL types
such as short and long, which are predefined in the
interface repository.

StringDef A string definition records its bound. Objects of this
type are unnamed. If they are defined with a typedef
statement, they are associated with an AliasDef
object. Objects of this type correspond to bounded
strings.

SequenceDef Each sequence type definition records its element type
and its bound, where a value of zero indicates an
unbounded sequence type. Objects of this type are
unnamed. If they are defined with a typedef
statement, they have an associated AliasDef object.

ArrayDef Each array definition records its length and its element
type. Objects of this type are unnamed. If they are
defined with a typedef statement, they are associated
with an AliasDef object. Each ArrayDef object
represents one dimension; multiple ArrayDef objects
can represent a multi-dimensional array type.

Table 20: Interface Repository OIbject Types

Object type Description
 462

Interface Repository Data
Given an object of any interface repository type, you can obtain its full interface
definition. For example, InterfaceDef defines operations or attributes to
determine an interface’s name, its inheritance hierarchy, and the description of
each operation and each attribute.

Figure 29 shows the hierarchy for all interface repository objects.

Figure 29: Hierarchy of interface repository objects

IDLType ContainerContained

TypedefDef

AttributeDef
ConstantDef
OperationDef

AliasDef
EnumDef
NativeDef
StructDef

ExceptionDef

UnionDef

ModuleDef

InterfaceDef
ValueDef

ValueBoxDef

Named types
ArrayDef
FixedDef
PrmitiveDef
SequenceDef
StringDef
WStringDef

Unnamed types

Repository

IRObject
463

CHAPTER 17 | Using the Interface Repository
IDL-type objects Most repository objects represent IDL types—for example, InterfaceDef
objects represent IDL interfaces, StructDef interfaces represent struct
definitions, and so on. These objects all inherit, directly or indirectly, from the
abstract base interface IDLType:

This base interface defines a single attribute that contains the TypeCode of the
defined type.

IDL-type objects are themselves subdivided into two groups:

• Named types

• Unnamed types

Named types

The interface repository can contain these named IDL types:

For example, the following IDL defines enum type UD and typedef type
AccountName, which the interface repository represents as named object types
EnumDef and AliasDef objects, respectively:

The following named object types inherit from the abstract base interface
TypedefDef:

// In module CORBA
interface IDLType : IRObject {
 readonly attribute TypeCode type;
};

AliasDef
EnumDef
InterfaceDef
NativeDef

StructDef
UnionDef
ValueBoxDef
ValueDef

// IDL
enum UD {UP, DOWN};
typedef string AccountName;

AliasDef
EnumDef
NativeDef

StructDef
ValueBoxDef
UnionDef
 464

Interface Repository Data
TypedefDef is defined as follows:

TypedefDef serves the sole purpose of enabling its derived object types to
inherit Contained and IDLType attributes and operations:

• Attribute Contained::name enables access to the object’s name. For

example, the IDL enum definition UD shown earlier is represented by the

repository object EnumDef, whose inherited name attribute is set to UD.

• Operation Contained::describe() gets a detailed description of the

object. For more information about this operation, see “Repository Object

Descriptions” on page 474.

Interfaces InterfaceDef and ValueDef are also named object types that inherit
from three base interfaces: Contained, Container, and IDLType.

Because IDL object and value references can be used like other types,
IntefaceDef and ValueDef inherit from the base interface IDLType. For
example, given the IDL definition of interface Account, the interface
repository creates an InterfaceDef object whose name attribute is set to
Account. This name can be reused as a type.

Unnamed types

The interface repository can contain the following unnamed object types:

Getting an object’s idl type

Repository objects that inherit the IDLType interface have their own operations
for identifying their type; you can also get an object’s type through the TypeCode
interface. Repository objects such as AttributeDef that do not inherit from
IDLType have their own TypeCode or IDLType attributes that enable access to
their types.

// IDL
// In module CORBA
interface TypedefDef : Contained, IDLType {
};

ArrayDef
FixedDef
PrimitiveDef

SequenceDef
StringDef
WStringDef
465

CHAPTER 17 | Using the Interface Repository
For example the following IDL interface definition defines the return type of
operation getLongAddress as a string sequence:

getLongAddress() maps to an object of type OperationDef in the repository.
You can query this object for its return type’s definition—string—in two ways:

Method 1:

1. Get the object’s OperationDef::result_def attribute, which is an object

reference of type IDLType.

2. Get the IDLType’s def_kind attribute, which is inherited from IRObject.

In this example, def_kind resolves to dk_primitive.

3. Narrow the IDLType to PrimtiveDef.

4. Get the PrimtiveDef’s kind attribute, which is a PrimtiveKind of

pk_string.

Method 2:

1. Get the object’s OperationDef::result attribute, which is a TypeCode.

2. Obtain the TypeCode’s TCKind through its kind() operation. In this

example, the TCKind is tk_string.

// IDL
interface Mailer {
 string getLongAddress();
};
 466

Containment in the Interface Repository
Containment in the Interface Repository
Most IDL definitions contain or are contained by other definitions, and the
interface repository defines its objects to reflect these relationships. For
example, a module typically contains interface definitions, while interfaces
themselves usually contain attributes, operations, and other definition types.

Containment interfaces The interface repository abstracts the properties of containment into two abstract
base interfaces:

• Contained

• Container

These interfaces provide operations and attributes that let you traverse the
hierarchy of relationships in an interface repository in order to list its contents, or
ascertain a given object’s container. Most repository objects are derived from
one or both of Container or Contained; the exceptions are instances of
PrimitiveDef, StringDef, SequenceDef, and ArrayDef.

Example In the following IDL, module Finance is defined with two interface definitions,
Bank and Account. In turn, interface Account contains attribute and operation
definitions:

The corresponding interface repository objects for these definitions are each
described as Container or Contained objects. Thus, the interface repository
represents module Finance as a ModuleDef container for InterfaceDef objects

// IDL
module Finance {
 interface Account {
 readonly attribute float balance;
 void makeDeposit(in float amount);
 void makeWithdrawal(in float amount);
 };
 interface Bank {
 Account newAccount();
 };
};
467

CHAPTER 17 | Using the Interface Repository
Account and Bank; these, in turn, serve as containers for their respective
attributes and operations. ModuleDef object Finance is also viewed as a
contained object within the container object RepositoryDef.

Containment properties of
interface repository objects

Table 21 shows the relationship between Container and Contained objects in
the interface repository.

* Also a Container object

Only a Repository is a pure Container. An interface repository server has only
one Repository object, and it contains all other definitions.

Table 21: Container and Contained Objects in the Interface Repository

Container
object type

Contained Objects

Repository ConstantDef
TypedefDef
ExceptionDef
InterfaceDef*
ModuleDef*
ValueDef*

ModuleDef ConstantDef
TypedefDef
ExceptionDef
ModuleDef*
InterfaceDef*
ValueDef*

InterfaceDef ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

ValueDef ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
ValueMemberDef
 468

Containment in the Interface Repository
Objects of type ModuleDef, InterfaceDef, and ValueDef are always contained
within a Repository, while InterfaceDef, and ValueDef can also be within a
ModuleDef; these objects usually contain other objects, so they inherit from both
Container and Contained.

All other repository object types inherit only from Contained.
469

CHAPTER 17 | Using the Interface Repository
Contained Interface
The Contained interface is defined as follows:

Name attribute Attribute Contained::name is of type Identifier, a typedef for a string, and
contains the IDL object’s name. For example, module Finance is represented in
the repository by a ModuleDef object. Its inherited ModuleDef::name attribute
resolves to the string Finance. Similarly the makeWithdrawal operation is
represented by an OperationDef object whose OperationDef::name attribute
resolves to makeWithdrawal.

//IDL
typedef string VersionSpec;

interface Contained : IRObject
{
 // read/write interface
 attribute RepositoryId id;
 attribute Identifier name;
 attribute VersionSpec version;

 // read interface
 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_repository;

 struct Description
 {
 DefinitionKind kind;
 any value;
 };

 Description
 describe();

 // write interface
 void
 move(
 in Container new_container,
 in Identifier new_name,
 in VersionSpec new_version
);
};
 470

Containment in the Interface Repository
defined_in attribute Contained also defines the attribute defined_in, which stores a reference to an
object’s Container. Because IDL definitions within a repository must be
unique, defined_in stores a unique Container reference. However, given
inheritance among interfaces, an object can be contained in multiple interfaces.
For example, the following IDL defines interface CurrentAccount to inherit
from interface Account:

balance attribute Given this definition, attribute balance is contained in interfaces Account and
CurrentAccount; however, attribute balance is defined only in the base
interface Account. Thus, if you invoke AttributeDef::defined_in() on either
Account::balance or CurrentAccount::balance, it always returns Account as
the Container object.

A Contained object can include more than containment information. For
example, an OperationDef object has a list of parameters associated with it and
details of the return type. The operation Contained::describe() provides
access to these details by returning a generic Description structure (see
“Repository Object Descriptions” on page 474).

//IDL
// in module Finance
interface CurrentAccount : Account {
 readonly attribute overDraftLimit;
};
471

CHAPTER 17 | Using the Interface Repository
Container Interface
Interface Container is defined as follows:

//IDL
enum DefinitionKind
{
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository, dk_Wstring, dk_Fixed,
 dk_Value, dk_ValueBox, dk_ValueMember, dk_Native
};
...

typedef sequence<Contained> ContainedSeq;

interface Container : IRObject
{
 // read interface
 ...

 Contained
 lookup(
 in ScopedName search_name
);

 ContainedSeq
 contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 ContainedSeq
 lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);
 472

Containment in the Interface Repository
lookup operations The container interface provides four lookup operations that let you browse a
given container for its contents: lookup(), lookup_name(), contents(), and
describe_contents(). For more information about these operations, see
“Browsing and listing repository contents” on page 477.

 struct Description
 {
 Contained contained_object;
 DefinitionKind kind;
 any value;
 };
 typedef sequence<Description> DescriptionSeq;

 DescriptionSeq
 describe_contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

 // write interface

 ... // operations to create container objects
};
473

CHAPTER 17 | Using the Interface Repository
Repository Object Descriptions
Each repository object, in addition to identifying itself as a Contained or
Container object, also maintains the details of its IDL definition. For each
contained object type, the repository defines a structure that stores these details.
Thus, a ModuleDef object stores the details of its description in a
ModuleDescription structure, an InterfaceDef object stores its description in
an InterfaceDescription structure, and so on.

How to obtain object descriptions You can generally get an object’s description in two ways:

• The interface for each contained object type often defines attributes that

get specific aspects of an object’s description. For example, attribute

OperationDef::result gets an operation’s return type.

• You can obtain all the information stored for a given object through the

inherited operation Contained::describe(), which returns the general

purpose structure Contained::Description. This structure’s value

member is of type any, whose value stores the object type’s structure.

For example, interface OperationDef has the following definition:

Accessing attributes Interface OperationDef defines a number of attributes that allow direct access
to specific aspects of an operation, such as its parameters (params) and return
type (result_def).

interface OperationDef : Contained
{
 readonly attribute TypeCode result;
 attribute IDLType result_def;
 attribute ParDescriptionSeq params;
 attribute OperationMode mode;
 attribute ContextIdSeq contexts;
 attribute ExceptionDefSeq exceptions;
};
 474

Repository Object Descriptions
Invoking describe() In a distributed environment, it is often desirable to obtain all information about
an operation in a single step by invoking describe() on the OperationDef
object. This operation returns a Contained::Description whose two members,
kind and value, are set as follows:

kind is set to dk_Operation.

value is an any whose TypeCode is set to _tc_OperationDescription. The
any’s value is an OperationDescription structure, which contains all the
required information about an operation:

OperationDescription structure

OperationDescription members store the following information:

// IDL
struct OperationDescription
{
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
};

name The operation’s name. For example, for operation
Account::makeWithdrawal(), name contains
makeWithdrawal.

id RepositoryId for the OperationDef object.

defined_in The RepositoryId for the parent Container of the
OperationDef object.

version Currently not supported. When implemented, this member
allows the interface repository to distinguish between multiple
versions of a definition with the same name.

result The TypeCode of the result returned by the defined operation.

mode Specifies whether the operation returns (OP_NORMAL) or is
oneway (OP_ONEWAY).
475

CHAPTER 17 | Using the Interface Repository
TypeDescription structure

Several repository object types use the TypeDescription structure to store their
information: EnumDef, UnionDef, AliasDef, and StructDef.

FullInterfaceDescription and FullValueDescription structures

Interfaces InterfaceDef and ValueDef contain extra description structures,
FullInterfaceDescription and FullValueDescription, respectively. These
structures let you obtain a full description of the interface or value and all its
contents in one step. These structures are returned by operations
InterfaceDef::describe_interface() and ValueDef::describe_value().

contexts Lists the context identifiers specified in the operation’s context
clause.

parameters A sequence of ParameterDescription structures that contain
details of each operation parameter.

exceptions A sequence of ExceptionDescription structures that contain
details of the exceptions specified in the operation’s raises
clause.
 476

Retrieving Repository Information
Retrieving Repository Information
You can retrieve information from the interface repository in three ways:

• Given an object reference, find its corresponding InterfaceDef object and

query its details.

• Given an object reference to a Repository, browse its contents.

• Given a RepositoryId, obtain a reference to the corresponding object in

the interface repository and query its details.

Getting a CORBA object’s
interface

Given a reference to a CORBA object, you can obtain its interface from the
interface repository by invoking _get_interface() on it. For example, given
CORBA object objVar, you can get a reference to its corresponding
InterfaceDef object as follows:

CORBA::InterfaceDef_var ifVar =
 objVar->_get_interface();

The member function _get_interface() returns a reference to an object within
the interface repository. You can then use this reference to browse the
repository, and to obtain the details of an interface definition.

Browsing and listing repository
contents

After you obtain a reference to a Repository object, you can browse or list its
contents. To obtain a Repository’s object reference, invoke
resolve_initial_references("InterfaceRepository") on the ORB. This
returns an object reference of type CORBA::Object, which you narrow to a
CORBA::Repository reference.

The abstract interface Container has four operations that enable repository
browsing:

• lookup()

• lookup_name()

• contents()

• describe_contents()

Finding repository objects

Container operations lookup() and lookup_name() are useful for searching
the contents of a repository for one or more objects.
477

CHAPTER 17 | Using the Interface Repository
lookup() conducts a search for a single object based on the supplied ScopedName
argument, which contains the entity’s name relative to other repository objects.
A ScopedName that begins with :: is an absolute scoped name—that is, it
uniquely identifies an entity within a repository—for example,
::Finance::Account::makeWithdrawal. A ScopedName that does not begin
with :: identifies an entity relative to the current one.

For example, if module Finance contains attribute Account::balance, you can
get a reference to the operation’s corresponding AttributeDef object by
invoking the module’s lookup() operation:

The ScopedName argument that you supply can specify to search outside the
cope of the actual container on which you invoke lookup(). For example, the
following statement invokes lookup() on an InterfaceDef in order to start
searching for the newAccount operation from the Repository container:

lookup_name() searches the target container for objects that match a simple
unscoped name. Because the name might yield multiple matches, lookup()
returns a sequence of Contained objects. lookup_name() takes the following
arguments:

CORBA::Contained_var cVar;
cVar = moduleVar->lookup("Account::balance");

CORBA::Contained_var cVar;
cVar = ifVar->lookup("::Finance::Bank::newAccount");

search_name A string that specifies the name of the objects to find. You
can use asterisks (*) to construct wildcard searches.

levels_to_search Specifies the number of levels of nested containers to
include in the search. 1 restricts searching to the current
object. -1 specifies an unrestricted search.

limit_type Supply a DefinitionKind enumerator to include a specific
type of repository object in the returned sequence. For
example, set limit_type to dk_operation to find only
operations. To return all objects, supply dk_all. You can
also supply dk_none to match no repository objects, and
dk_Typedef, which encompasses dk_Alias, dk_Struct,
dk_Union, and dk_Enum.
 478

Retrieving Repository Information
Unlike lookup(), lookup_name() searches are confined to the target container.

Getting object descriptions

Container operations contents() and describe_contents() let you obtain
object descriptions:

contents() returns a sequence of Contained objects that belong to the
Container. You can use this operation to search a given container for a specific
object. When it is found, you can call Contained::describe(), which returns a
Contained::Description for the contained object (see “Repository Object
Descriptions” on page 474).

describe_contents() combines operations Container::contents() and
Contained::describe(), and returns a sequence of Contained::Description
structures, one for each of the Contained objects found.

You can limit the scope of the search by contents() and
describe_contents() by setting one or more of the following arguments:

Finding an object using its
repository id

You can use a repository ID to find any object in a repository by invoking
Container::lookup_id() on that repository. lookup_id() returns a reference
to a Contained object, which can be narrowed to the appropriate object
reference type.

exclude_inheritedValid only for InterfaceDef and ValueDef objects.
Supply TRUE to exclude inherited definitions, FALSE to
include.

limit_type Supply a DefinitionKind enumerator to limit the contents
list to a specific type of repository object. To return all
objects, supply dk_all. You can also supply dk_none to
match no repository objects, and dk_Typedef, which
encompasses dk_Alias, dk_Struct, dk_Union, and
dk_Enum.

exclude_inheritedValid only for InterfaceDef and ValueDef objects. Supply
TRUE to exclude inherited definitions from the contents
listing, FALSE to include.

max_returned_objsAvailable only for describe_contents(), this argument
specifies the maximum length of the sequence returned.
479

CHAPTER 17 | Using the Interface Repository
Sample Usage
This section contains code that uses the interface repository; it prints the list of
operation names and attribute names that are defined in a given object’s
interface.

The example can be extended by finding the OperationDef object for an
operation called doit(). Operation Container::lookup_name() can be used as
follows:

int i;
Repository_var rVar;
Contained_var cVar;
InterfaceDef_var interfaceVar;
InterfaceDef::FullInterfaceDescription_var full;
CORBA::Object_var obj;

try {
 // get an object reference to the IFR:
 obj =

orb->resolve_initial_references("InterfaceRepository");
 rVar = Repository::_narrow(obj);

 // Get the interface definition:
 cVar = rVar->lookup("grid");
 interfaceVar = InterfaceDef::_narrow(cVar);

 // Get a full interface description:
 full = interfaceVar->describe_interface();

 // Now print out the operation names:
 cout << "The operation names are:" << endl;
 for (i=0; i < full->operations.length(); i++)
 cout << full->operations[i].name << endl;

 // Now print out the attribute names:
 cout << "The attribute names are:" << endl;
 for (i=0; i < full->attributes.length(); i++)
 cout << full->attributes[i].name << endl;
}
catch (...) {
 ...
}

 480

Sample Usage
ContainedSeq_var opSeq;
OperationDef_var doitOpVar;

try {
 cout << "Looking up operation doit()"
 << endl;
 opSeq = interfaceVar->lookup_name(
 "doit", 1, dk_Operation, 0);
 if (opSeq->length() != 1) {
 cout << "Incorrect result for lookup_name()";
 exit(1);
 } else {
 // Narrow the result to be an OperationDef.
 doitOpVar =
 OperationDef::_narrow(opSeq[0]))
 }
 ...

}
catch (...) {
 ...
}

481

CHAPTER 17 | Using the Interface Repository
Repository IDs and Formats
Each interface repository object that describes an IDL definition has a repository
ID. A repository ID globally identifies an IDL module, interface, constant,
typedef, exception, attribute, or operation definition. A repository ID is simply a
string that identifies the IDL definition.

Three formats for repository IDs are defined by CORBA. However, repository
IDs are not, in general, required to be in one of these formats:

• OMG IDL

• DCE UUID

• LOCAL

OMG IDL The default format used by Orbix, the OMG IDL format is derived from the IDL
definition’s scoped name:

IDL:identifier[/identifier]...:version-number

This format contains three colon-delimited components:

• The first component identifies the repository ID format as the OMG IDL

format.

• A list of identifiers specifies the scoped name, substituting backslash (/)

for double colon (::).

• version-number contains a version number with the following format:

major.minor

For example, given the following IDL definitions:

The IDL format repository ID for attribute Account::balance looks like this:

IDL:Account/balance:1.0

DCE UUID The DCE UUID has the following format:

DCE:UUID:minor-version-number

// IDL
interface Account {
 readonly attribute float balance;
 void makeDeposit(in float amount);
};
 482

Repository IDs and Formats
LOCAL Local format IDs are for local use within an interface repository and are not
intended to be known outside that repository. They have the following format:

LOCAL:ID

Local format repository IDs can be useful in a development environment as a
way to avoid conflicts with repository IDs that use other formats.
483

CHAPTER 17 | Using the Interface Repository
Controlling Repository IDs with Pragma
Directives

You can control repository ID formats with pragma directives in an IDL source
file. Specifically, you can use pragmas to set the repository ID for a specific IDL
definition, and to set prefixes and version numbers on repository IDs.

You can insert prefix and version pragma statements at any IDL scope; the IDL
compiler assigns the prefix or version only to objects that are defined within that
scope. Prefixes and version numbers are not applied to definitions in files that
are included at that scope. Typically, prefixes and version numbers are set at
global scope, and are applied to all repository IDs.

ID pragma You can explicitly associate an interface repository ID with an IDL definition,
such as an interface name or typedef. The definition can be fully or partially
scoped and must conform with one of the IDL formats approved by the OMG
(see “Repository IDs and Formats” on page 482).

For example, the following IDL assigns repository ID idl:test:1.1 to
interface test:

module Y {
 interface test {
 // ...
 };
 #pragma ID test "idl:test:1.1"
};
 484

Controlling Repository IDs with Pragma Directives
Prefix pragma The IDL prefix pragma lets you prepend a unique identifier to repository IDs.
This is especially useful in ensuring against the chance of name conflicts among
different applications. For example, you can modify the IDL for the Finance
module to include a prefix pragma as follows:

Version pragma A version number for an IDL definition’s repository ID can be specified with a
version pragma. The version pragma directive uses the following format:

#pragma version name major.minor

name can be a fully scoped name or an identifier whose scope is interpreted
relative to the scope in which the pragma directive is included. If no version
pragma is specified for an IDL definition, the default version number is 1.0. For
example:

These definitions yield the following repository IDs:

IDL:Finance:1.0

// IDL
pragma prefix "USB"
module Finance {
 interface Account {
 readonly attribute float balance;
 ...
 };
 interface Bank {
 Account newAccount();
 };
};

These definitions yield the following repository IDs:

IDL:USB/Finance:1.0
IDL:USB/Finance/Account:1.0
IDL:USB/Finance/Account/balance:1.0
IDL:USB/Finance/Bank:1.0
IDL:USB/Finance/Bank/newAccount:1.0

// IDL
module Finance {
 #pragma version Account 2.5
 interface Account {
 // ...
 };
};
485

CHAPTER 17 | Using the Interface Repository
IDL:Finance/Account:2.5

Version numbers are embedded in the string format of an object reference. A
client can invoke on the corresponding server object only if its interface has a
matching version number, or has no version associated with it.

Note: You cannot populate the interface repository with two IDL interfaces
that share the same name but have different version numbers.
 486

CHAPTER 18

Naming Service
The Orbix naming service lets you associate names with objects.
Servers can register object references by name with the naming
service repository, and advertise those names to clients. Clients, in
turn, can resolve the desired objects in the naming service by
supplying the appropriate name.

The Orbix naming service implements the OMG COS Interoperable Naming
Service, which describes how applications can map object references to names.

Benefits Using the naming service can offer the following benefits:

• Clients can locate objects through standard names that are independent of

the corresponding object references. This affords greater flexibility to

developers and administrators, who can direct client requests to the most

appropriate implementation. For example, you can make changes to an

object’s implementation or its location that are transparent to the client.

• The naming service provides a single repository for object references.

Thus, application components can rely on it to obtain an application’s

initial references.

In this chapter This chapter describes how to build and maintain naming graphs
programmatically. It also shows how to use object groups to achieve load
balancing. It contains these sections:

Naming Service Design
487

CHAPTER 18 | Naming Service
Many operations that are discussed here can also be executed administratively
with Orbix tools. For more information about these and related configuration
options, refer to the Application Server Platform Administrator’s Guide.

Defining Names

Obtaining the Initial Naming Context

Building a Naming Graph

Using Names to Access Objects

Listing Naming Context Bindings

Maintaining the Naming Service

Federating Naming Graphs

Sample Code

Object Groups and Load Balancing

Load Balancing Example
 488

Naming Service Design
Naming Service Design

Naming graph organization The naming service is organized into a naming graph, which is equivalent to a
directory system. A naming graph consists of one or more naming contexts,
which correspond to directories. Each naming context contains zero or more
name-reference associations, or name bindings, each of which refers to another
node within the naming graph. A name binding can refer either to another
naming context or to an object reference. Thus, any path within a naming graph
finally resolves to either a naming context or an object reference. All bindings in
a naming graph can usually be resolved via an initial naming context.

Example Figure 30 shows how the Account interface described in earlier chapters might
be extended (through inheritance) into multiple objects, and organized into a
hierarchy of naming contexts. In this graph, hollow nodes are naming contexts
and solid nodes are application objects. Naming contexts are typically
intermediate nodes, although they can also be leaf nodes; application objects can
only be leaf nodes.

Figure 30: A naming graph is a hierarchy of naming contexts

Initial naming context

Checking

Savings

NOW

Basic

Premium

Regular
UTMA

Pension

Mortgage

Loans

Personal

Auto
489

CHAPTER 18 | Naming Service
Each leaf node in this naming graph associates a name with a reference to an
account object such as a basic checking account or a personal loan account.
Given the full path from the initial naming context—for example,
Savings/Regular—a client can obtain the associated reference and invoke
requests on it.

The operations and types that the naming service requires are defined in the IDL
file CosNaming.idl. This file contains a single module, CosNaming, which in
turn contains three interfaces: NamingContext, NamingContextExt, and
BindingIterator.
 490

Defining Names
Defining Names

Name sequence A naming graph is composed of Name sequences of NameComponent structures,
defined in the CosNaming module:

A Name sequence specifies the path from a naming context to another naming
context or application object. Each name component specifies a single node
along that path.

Name components Each name component has two string members:

• The id field acts as a name component’s principle identifier. This field

must be set.

• The kind member is optional; use it to further differentiate name

components, if necessary.

Both id and kind members of a name component are used in name resolution.
So, the naming service differentiates between two name components that have
the same ids but different kinds.

For example, in the naming graph shown in Figure 30 on page 489, the path to a
Personal loan account object is specified by a Name sequence in which only the
id fields are set:

module CosNaming{
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 }
 typedef sequence<NameComponent> Name;
 ...
};

Index id kind

0 Loans

1 Personal
491

CHAPTER 18 | Naming Service
In order to bind another Personal account object to the same Loan naming
context, you must differentiate it from the existing one. You might do so by
setting their kind fields as follows:

Index id kind

0 Loans

1 Personal unsecured

1 Personal secured

Note: If the kind field is unused, it must be set to an empty string.
 492

Defining Names
Representing Names as Strings
The CosNaming::NamingContextExt interface defines a StringName type,
which can represent a Name as a string with the following syntax:

id[.kind][/id[.kind]] ...

Name components are delimited by a forward slash (/); id and kind members
are delimited by a period (.). If the name component contains only the id string,
the kind member is assumed to be an empty string.

StringName syntax reserves the use of three characters: forward slash (/), period
(.), and backslash (\). If a name component includes these characters, you can
use them in a StringFormat by prefixing them with a backslash (\) character.

The CosNaming::NamingContextExt interface provides several operations that
allow conversion between StringName and Name data:

• to_name() converts a StringName to a Name (see page 494).

• to_string() converts a Name to a StringName (see page 495).

• resolve_str() uses a StringName to find a Name in a naming graph and

returns an object reference (see page 505).

Note: You can invoke these and other CosNaming::NamingContextExt
operations only on an initial naming context that is narrowed to
CosNaming::NamingContextExt.
493

CHAPTER 18 | Naming Service
Initializing a Name
You can initialize a CosNaming::Name sequence in one of two ways:

• Set the members of each name component.

• Call to_name() on the initial naming context and supply a StringName

argument. This operation converts the supplied string to a Name sequence.

Setting name component members Given the loan account objects shown earlier, you can set the name for an
unsecured personal loan as follows:

Converting a stringname to a
name

The name shown in the previous example can also be set in a more
straightforward way by calling to_name() on the initial naming context (see
“Obtaining the Initial Naming Context” on page 496):

The to_name() operation takes a string argument and returns a
CosNaming::Name, which the previous example sets as follows:

Example 50: Initializing Name components

CosNaming::Name name(2);
name.length(2);
name[0].id = CORBA::string_dup("Loans");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup("Personal");
name[1].kind = CORBA::string_dup("unsecured");

Example 51: Using to_name() to initialize a Name

// get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

CosNaming::Name_var name;
name = root_cxt->to_name("Loans/Personal.unsecured");

Index id kind

0 Loans

1 Personal unsecured
 494

Defining Names
Converting a Name to a StringName
You can convert a CosNaming::Name to a CosNamingExt::StringName by
calling to_string() on the initial naming context. This lets server programs to
advertise human-readable object names to clients.

For example, the following code converts Name sequence name to a StringName:

Example 52: Converting a Name to a StringName

// get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;
CosNaming::NamingContextExt::StringName str_n;

// initialize name
CosNaming::Name_var name = ...;
...
str_n = root_cxt->to_string(name);
495

CHAPTER 18 | Naming Service
Obtaining the Initial Naming Context
Clients and servers access a naming service through its initial naming context,
which provides the standard entry point for building, modifying, and traversing a
naming graph. To obtain the naming service’s initial naming context, call
resolve_initial_references() on the ORB. For example:

To obtain a reference to the naming context, narrow the result with
CosNaming::NamingContextExt::_narrow():

A naming graph’s initial naming context is equivalent to the root directory. Later
sections show how you use the initial naming context to build and modify a
naming graph, and to resolve names to object references.

Example 53: Obtaining the initial naming context

...
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Get reference to initial naming context
CORBA::Object obj =
 orb_var->resolve_initial_references("NameService");

CosNaming::NamingContextExt_var root_cxt;
if (root_cxt =
 CosNaming::NamingContextExt::_narrow(obj)) {

} else {...} // Deal with failure to _narrow()
...

Note: The NamingContextExt interface provides extra functionality over the
NamingContext interface; therefore, the code in this chapter assumes that an
initial naming context is narrowed to the NamingContextExt interface
 496

Building a Naming Graph
Building a Naming Graph
A name binding can reference either an object reference or another naming
context. By binding one naming context to another, you can organize application
objects into logical categories. However complex the hierarchy, almost all paths
within a naming graph hierarchy typically resolve to object references.

In an application that uses a naming service, a server program often builds a
multi-tiered naming graph on startup. This process consists of two repetitive
operations:

• Bind naming contexts into the desired hierarchy.

• Bind objects into the appropriate naming contexts.
497

CHAPTER 18 | Naming Service
Binding Naming Contexts
A server that builds a hierarchy of naming contexts contains the following steps:

1. Gets the initial naming context (see page 496).

2. Creates the first tier of naming contexts from the initial naming context.

3. Binds the new naming contexts to the initial naming context.

4. Adds naming contexts that are subordinate to the first tier:

♦ Creates a naming context from any existing one.

♦ Binds the new naming context to its designated parent.

The naming graph shown in Figure 30 on page 489 contains three naming
contexts that are directly subordinate to the initial naming context: Checking,
Loans, and Savings. The following code binds the Checking naming context to
the initial naming context, as shown in Figure 31:

Example 54: Binding a naming context to the initial naming context

//get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

CosNaming::NamingContext_var checking_cxt;

// create naming context
checking_cxt = root_cxt->new_context();

// initialize name
CosNaming::Name_var name;
name.length(1);
name[0].id = CORBA::string_dup("Checking");
name[0].kind = CORBA::string_dup("");

// bind new context
root_cxt->bind_context(name, checking_cxt);
 498

Building a Naming Graph
Similarly, you can bind the Savings and Loans naming contexts to the initial
naming context. The following code uses the shortcut operation
bind_new_context(), which combines new_context() and bind(). It also uses
the to_name() operation to set the Name variable.

Figure 31: Checking context bound to initial naming context

Initial naming context

Checking

Example 55: Binding a naming context with bind_new_context()

CosNaming::NamingContext_var savings_cxt, loan_cxt;

// create naming contexts
name = root_cxt->to_name("Savings");
savings_cxt = root_cxt->bind_new_context(name);

name = root_cxt->to_name("Loan");
loan_cxt = root_cxt->bind_new_context(name);

Figure 32: Savings and Loans naming contexts bound to initial naming context

Initial naming context

Checking

Savings

Loans
499

CHAPTER 18 | Naming Service
Orphaned naming contexts The naming service can contain naming contexts that are unbound to any other
context. Because these naming contexts have no parent context, they are
regarded as orphaned. Any naming context that you create with new_context()
is orphaned until you bind it to another context. Although it has no parent
context, the initial naming context is not orphaned inasmuch as it is always
accessible through resolve_initial_references(), while orphan naming
contexts have no reliable means of access.

You might deliberately leave a naming context unbound—for example, you are
in the process of constructing a new branch of naming contexts but wish to test it
before binding it into the naming graph. Other naming contexts might appear to
be orphaned within the context of the current naming service; however, they
might actually be bound to a federated naming graph in another naming service
(see “Federating Naming Graphs” on page 514).
 500

Building a Naming Graph
Erroneous usage of orphaned
naming contexts

Orphaned contexts can also occur inadvertently, often as a result of carelessly
written code. For example, you can create orphaned contexts as a result of
calling rebind() or rebind_context() to replace one name binding with
another (see “Rebinding” on page 503). The following code shows how you
might orphan the Savings naming context:

An application can also create an orphan context by calling unbind() on a
context without calling destroy() on the same context object (see “Maintaining
the Naming Service” on page 512).

In both cases, if the application exits without destroying the context objects, they
remain in the naming service but are inaccessible and cannot be deleted.

Example 56: Orphaned naming contexts

//get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

CosNaming::NamingContext_var savings_cxt;

// initialize name
CosNaming::Name_var name;
name.length(1);
name[0].id = CORBA::string_dup("Savings");
name[0].kind = CORBA::string_dup("");

// create and bind checking_cxt
savings_cxt = root_cxt->bind_new_context(name);

// make another context
CosNaming::NamingContext_var savings_cxt2;
savings_cxt2 = root_cxt->new_context();

// bind savings_cxt2 to root context, savings_cxt now orphaned!
root_cxt->rebind_context(name, savings_cxt2);
501

CHAPTER 18 | Naming Service
Binding Object References
After you construct the desired hierarchy of naming contexts, you can bind
object references to them with the bind() operation. The following example
builds on earlier code to bind a Basic checking account object to the Checking
naming context:

The previous code assumes the existence of a NamingContext variable for the
Checking naming context on which you can invoke bind(). Alternatively, you
can invoke bind() on the initial naming context in order to bind Basic into the
naming graph:

Example 57: Binding an object reference

// object reference "basic_check" obtained earlier
...

name->length(1);
name[0].id = CORBA::string_dup("Basic");
name[0].kind = CORBA::string_dup("");
checking_cxt->bind(name, basic_check);

Figure 33: Binding an object reference to a naming context

Initial naming context

Checking

Savings

Basic

Loans

name = root_cxt->to_name("Checking/Basic");
root_cxt->bind(name, basic_check);
 502

Building a Naming Graph
Rebinding
If you call bind() or bind_context() on a naming context that already contains
the specified binding, the naming service throws an exception of AlreadyBound.
To ensure the success of a binding operation whether or not the desired binding
already exists, call one of the following naming context operations:

• rebind() rebinds an application object.

• rebind_context() rebinds a naming context.

Either operation replaces an existing binding of the same name with the new
binding. Calls to rebind() in particular can be useful on server startup, to ensure
that the naming service has the latest object references.

Note: Calls to rebind_context() or rebind() can have the undesired effect
of creating orphaned naming contexts (see page 500). In general, exercise
caution when calling either function.
503

CHAPTER 18 | Naming Service
Using Names to Access Objects
A client application can use the naming service to obtain object references in
three steps:

1. Obtain a reference to the initial naming context (see page 496).

2. Set a CosNaming::Name structure with the full path of the name associated

with the desired object.

3. Resolve the name to the desired object reference.

Setting object names You specify the path to the desired object reference in a CosNaming::Name. You
can set this name in one of two ways:

Explicitly set the id and kind members of each Name element. For example,
the following code sets the name of a Basic checking account object:

Call to_name() on the initial naming context. This option is available if the
client code narrows the initial naming context to the NamingContextExt
interface. to_name() takes a CosNaming::CosNamingExt::StringName
argument and returns a CosNaming::Name as follows:

For more about using a StringName with to_name(), see “Converting a
stringname to a name” on page 494.

Example 58: Setting object name components

CosNaming::Name_var name;
name.length(2);
name[0].id = CORBA::string_dup("Checking");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup("Basic");
name[1].kind = CORBA::string_dup("");

Example 59: Setting an object name with to_name()

CosNaming::Name_var name;
name = root_cxt->to_name("Checking/Basic");
 504

Using Names to Access Objects
Resolving names Clients call resolve() on the initial naming context to obtain the object
associated with the supplied name:

Alternatively, the client can call resolve_str() on the initial naming context to
resolve the same name using its StringName equivalent:

In both cases, the object returned in obj is an application object that implements
the IDL interface BasicChecking, so the client narrows the returned object
accordingly:

Resolving names with corbaname You can resolve names with a corbaname URL, which is similar to a corbaloc
URL (see “Using corbaloc URL strings” on page 211). However, a corbaname
URL also contains a stringified name that identifies a binding in a naming
context. For example, the following code uses a corbaname URL to obtain a
reference to a BasicChecking object:

Example 60: Calling resolve()

CORBA::Object_var obj;
...
obj = root_cxt->resolve(name);

Example 61: Calling resolve_str()

CORBA::Object_var obj;
...
obj = root_cxt->resolve_str("Checking/Basic");

BasicChecking_var checking_var;
...
try {
 checking_var = BasicChecking::_narrow(obj)) {
 // perform some operation on basic checking object
 ...
} // end of try clause, catch clauses not shown

Example 62: Resolving a name with corbaname

CORBA::Object_var obj;
obj = orb->string_to_object(
 "corbaname:rir:/NameService#Checking/Basic"
);
505

CHAPTER 18 | Naming Service
A corbaname URL has the following syntax:

corbaname:rir:[/NameService]#string-name

string-name is a string that conforms to the format allowed by a
CosNaming::CosNamingExt::StringName (see “Representing Names as
Strings” on page 493). A corbaname can omit the NameService specifier. For
example, the following call to string_to_object() is equivalent to the call
shown earlier:

obj = orb->string_to_object("corbaname:rir:#Checking/Basic");
 506

Using Names to Access Objects
Exceptions Returned to Clients
Invocations on the naming service can result in the following exceptions:

NotFound The specified name does not resolve to an existing binding. This
exception contains two data members:

InvalidName The specified name is empty or contains invalid characters.

CannotProceed The operation fails for reasons not described by other
exceptions. For example, the naming service’s internal repository might be in an
inconsistent state.

AlreadyBound Attempts to create a binding in a context throw this exception if
the context already contains a binding of the same name.

Not Empty Attempts to delete a context that contains bindings throw this
exception. Contexts must be empty before you delete them.

why Explains why a lookup failed with one of the following values:

• missing_node: one of the name components specifies a

non-existent binding.

• not_context: one of the intermediate name components

specifies a binding to an application object instead of a

naming context.

• not_object: one of the name components points to a

non-existent object.

rest_of_nameContains the trailing part of the name that could not be resolved.
507

CHAPTER 18 | Naming Service
Listing Naming Context Bindings
In order to find an object reference, a client might need to iterate over the
bindings in one or more naming contexts. You can invoke the list() operation
on a naming context to obtain a list of its name bindings. This operation has the
following signature:

list() returns with a BindingList, which is a sequence of Binding structures:

Iterating over binding list
elements

Given a binding list, the client can iterate over its elements to obtain their
binding name and type. Given a Binding element’s name, the client application
can call resolve() to obtain an object reference; it can use the binding type
information to determine whether the object is a naming context or an
application object.

For example, given the naming graph in Figure 30, a client application can
invoke list() on the initial naming context and return a binding list with three
Binding elements:

void list(
 in unsigned long how_many,
 out BindingList bl,
 out BindingIterator it);

enum BindingType{ nobject, ncontext };

struct Binding{
 Name binding_name
 BindingType binding_type;
}
typedef sequence<Binding> BindingList

Index Name BindingType

0 Checking ncontext

1 Savings ncontext

2 Loan ncontext
 508

Listing Naming Context Bindings
Using a Binding Iterator

Limiting number of bindings
returned by list()

In the previous example, list() returns a small binding list. However, an
enterprise application is likely to require naming contexts with a large number of
bindings. list() therefore provides two parameters that let a client obtain all
bindings from a naming context without overrunning available memory:

how_many sets the maximum number of elements to return in the binding list.
If the number of bindings in a naming context is greater than how_many, list()
returns with its BindingIterator parameter set.

it is a BindingIterator object that can be used to retrieve the remaining
bindings in a naming context. If list() returns with all bindings in its
BindingList, this parameter is set to nil.

A BindingIterator object has the following IDL interface definition:

Obtaining remainder of bindings If list() returns with a BindingIterator object, the client can invoke on it
either next_n() to retrieve the next specified number of remaining bindings, or
next_one() to retrieve one remaining binding at a time. Both functions return
true if the naming context contains more bindings to fetch. Together, these
BindingIterator operations and list() let a client safely obtain all bindings in
a context.

interface BindingIterator{
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many, out BindingList

bl);
 void destroy();
}

Note: The client is responsible for destroying an iterator. It also must be able
to handle exceptions that might return when it calls an iterator operation,
inasmuch as the naming service can destroy an iterator at any time before the
client retrieves all naming context bindings.
509

CHAPTER 18 | Naming Service
The following client code gets a binding list from a naming context and prints
each element’s binding name and type:

Example 63: Obtaining a binding list

// printing function
void
print_binding_list(const CosNaming::BindingList &bl)
{
 for(CORBA::Ulong i = 0; i < bl.length(); i++){
 cout << bl[i].binding_name[0].id;
 if(bl[i].binding_name[0].kind != ’\0’)
 cout << "(" << bl[i].binding_name[0].kind << ")";
 if(bl[i].binding_type == CosNaming::ncontext)
 cout << ": naming context" << endl;
 else
 cout << ": object reference" << endl;
 }
}

void
get_context_bindings(CosNaming::NamingContext_ptr cxt)
{
 CosNaming::BindingList_var b_list;
 CosNaming::BindingIterator_var b_iter;
 const CORBA::ULong MAX_BINDINGS = 50;

 if (!CORBA::is_nil(cxt)) {

 // get first set of bindings from cxt
 root_cxt->list(MAX_BINDINGS, b_list, b_iter);

 //print first set of bindings
 print_binding_list(b_list);

 // look for remaining bindings
 if(!CORBA::is_nil(b_iter)) {
 CORBA::Boolean more;
 do {
 is_nil(b_iter)) {
 more = b_iter->next_n(MAX_BINDINGS, b_list);
 // print next set of bindings
 print_binding_list(b_list);
 } while (more);
 510

Listing Naming Context Bindings
When you run this code on the initial naming context shown earlier, it yields the
following output:

 }
 // get rid of iterator
 b_iter->destroy();
 }
}

Example 63: Obtaining a binding list

Checking: naming context
Savings: naming context
Loan: naming context
511

CHAPTER 18 | Naming Service
Maintaining the Naming Service
Destruction of a context and its bindings is a two-step procedure:

• Remove bindings to the target context from its parent contexts by calling

unbind() on them.

• Destroy the context by calling the destroy() operation on it. If the context

contains bindings, these must be destroyed first; otherwise, destroy()

returns with a NotEmpty exception.

These operations can be called in any order; but it is important to call both. If
you remove the bindings to a context without destroying it, you leave an
orphaned context within the naming graph that might be impossible to access
and destroy later (see “Orphaned naming contexts” on page 500). If you destroy
a context but do not remove its bindings to other contexts, you leave behind
bindings that point nowhere, or dangling bindings.

For example, given the partial naming graph in Figure 34, you can destroy the
Loans context and its bindings to the loan account objects as follows:

Example 64: Destroying a naming context

CosNaming::Name_var name;

// get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

// assume availability of Loans naming context variable
CosNaming::NamingContext_var loans_cxt = ... ;

// remove bindings to Loans context
name = root_cxt->to_name("Loans/Mortgage");
root_cxt->unbind(name);
name = root_cxt->to_name("Loans/Auto");
root_cxt->unbind(name);
name = root_cxt->to_name("Loans/Personal");
root_cxt->unbind(name);

// remove binding from Loans context to initial naming context
name = root_cxt->to_name("Loans");
root_cxt->unbind(name);
 512

Maintaining the Naming Service
// destroy orphaned Loans context
loans_cxt->destroy();

Figure 34: Destroying a naming context and removing related bindings

Note: Orbix provides administrative tools to destroy contexts and remove
bindings. These are described in the Application Server Platform
Administrator’s Guide.

Example 64: Destroying a naming context

Initial naming

Before After

context
Initial naming
context

Loans

Mortgage

Auto

Personal
513

CHAPTER 18 | Naming Service
Federating Naming Graphs
A naming graph can span multiple naming services, which can themselves reside
on different hosts. Given the initial naming context of an external naming
service, a naming context can transparently bind itself to that naming service’s
naming graph. A naming graph that spans multiple naming services is said to be
federated.

Benefits A federated naming graph offers the following benefits:

• Reliability: By spanning a naming graph across multiple servers, you can

minimize the impact of a single server’s failure.

• Load balancing: You can distribute processing according to logical groups.

Multiple servers can share the work load of resolving bindings for different

clients.

• Scalability: Persistent storage for a naming graph is spread across multiple

servers.

• Decentralized administration: Logical groups within a naming graph can

be maintained separately through different administrative domains, while

they are collectively visible to all clients across the network.

Federation models Each naming graph in a federation must obtain the initial naming context of
other members in order to bind itself to them. The binding possibilities are
virtually infinite; however, two federation models are widely used:

• Hierarchal federation — All naming graphs are bound to a root server’s

naming graph. Clients access objects via the initial naming context of the

root server.

• Fully-connected federation — Each naming graph directly binds itself to

all other naming graphs. Typically, each naming graph binds the initial

naming contexts of all other naming graphs into its own initial naming

context. Clients can access all objects via the initial naming context of their

local naming service.
 514

Federating Naming Graphs
Hierarchal federation Figure 35 shows a hierarchal naming service federation that comprises three
servers. The Deposits server maintains naming contexts for checking and
savings accounts, while the Loans server maintains naming contexts for loan
accounts. A single root server serves as the logical starting point for all naming
contexts.

In this hierarchical structure, the naming graphs in the Deposits and Loans
servers are federated through an intermediary root server. The initial naming
contexts of the Deposits and Loans servers are bound to the root server’s initial
naming context. Thus, clients gain access to either naming graph through the
root server’s initial naming context.

Figure 35: A naming graph that spans multiple servers

Initial naming context

Checking

Savings

NOW

Basic

Premium

Regular
UTMA

Pension

Initial naming context

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Personal

Auto

Mortgage
515

CHAPTER 18 | Naming Service
The following code binds the initial naming contexts of the Deposits and Loans
servers to the root server’s initial naming context:

Example 65: Federating naming graphs to a root server’s initial naming
context

// Root server
#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {
 CosNaming::NamingContextExt_var
 root_inc, deposits_inc, loans,_inc;
 CosNaming::Name_var name;
 CORBA::Object_var obj;
 CORBA::ORB_var orb_var;
 char *loans_inc_ior, deposits_inc_ior
...
 try {
 orb_var = CORBA::ORB_init(argc, argv, "Orbix");

 // code to obtain stringified IORs of initial naming
 // contexts for Loans and Deposits servers (not shown)
 ...

 obj = orb_var->string_to_object (loans_inc_ior);
 loans_inc ==
 CosNaming::NamingContextExt::_narrow(obj);
 obj = orb_var->string_to_object (deposits_inc_ior);
 deposits_inc ==
 CosNaming::NamingContextExt::_narrow(obj);

 // get initial naming context for Root server
 root_inc = ... ;

 // bind Deposits initial naming context to root server
 // initial naming context
 name = root_inc->to_name("Deposits");
 root_inc->bind_context(name, deposits_inc);

 // bind Loans initial naming context to root server’s
 // initial naming context
 name = root_inc->to_name("Loans");
 root_inc->bind_context(name, deposits_inc);
 }
}

 516

Federating Naming Graphs
This yields the following bindings between the three naming graphs:

Fully-connected federation In a purely hierarchical model like the naming graph just shown, clients obtain
their initial naming context from the root server, and the root server acts as the
sole gateway into all federated naming services. To avoid bottlenecks, it is
possible to modify this model so that clients can gain access to a federated
naming graph via the initial naming context of any member naming service.

The next code example shows how the Deposits and Loans servers can bind the
root server’s initial naming context into their respective initial naming contexts.
Clients can use this binding to locate the root server’s initial naming context, and
then use root-relative names to locate objects.

Figure 36: Multiple naming graphs are linked by binding initial naming
contexts of several servers to a root server.

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Initial naming contextInitial naming context
517

CHAPTER 18 | Naming Service
Figure 37 shows how this federates the three naming graphs:

The code for both Deposits and Loans server processes is virtually identical:

Figure 37: The root server’s initial naming context is bound to the initial
naming contexts of other servers, allowing clients to locate the root naming
context.

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Initial naming contextInitial naming context

parent parent

Example 66: Federating naming graphs through the initial naming contexts of
multiple servers

#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {
 CosNaming::NamingContextExt_var
 root_inc, this_inc;
 CosNaming::Name_var name;
 CORBA::Object_var obj;
 CORBA::ORB_var orb_var;
 char *root_inc_ior;
 ...
 try {
 orb_var = CORBA::ORB_init (argc, argv, "Orbix");

 // code to obtain stringified IORs of root server’s
 // initial naming context (not shown)
 ...
 518

Federating Naming Graphs
 obj = orb_var->string_to_object (root_inc_ior);
 root_inc ==
 CosNaming::NamingContextExt::_narrow(obj);

 // get initial naming context for this server
 this_inc = ... ;

 name = this_inc->to_name("parent");

 // bind root server’s initial naming context to
 // this server’s initial naming context
 this_inc->bind_context(name, root_inc);
 ...
 }

Example 66: Federating naming graphs through the initial naming contexts of
multiple servers
519

CHAPTER 18 | Naming Service
Sample Code
The following sections show the server and client code that is discussed in
previous sections of this chapter.

Server code

Example 67: Server naming service code

#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {
 CosNaming::NamingContextExt_var root_cxt;
 CosNaming::NamingContext_var
 checking_cxt, savings_cxt, loan_cxt;
 CosNaming::Name_var name;
 CORBA::ORB_var orb;
 CORBA::Object_var obj;
 Checking_var basic_check, now_check, premium_check;
 // Checking_var objects initialized from
 // persistent data (not shown)

 try {
 // Initialize the ORB
 orb = CORBA::ORB_init(argc, argv, "Orbix");

 // Get reference to initial naming context
 obj =
 orb_var->resolve_initial_references("NameService");
 root_cxt = CosNaming::NamingContextExt::_narrow(obj))
 if(!CORBA::is_nil(root_cxt)){
 // build naming graph

 // initialize name
 name = root_cxt->to_name("Checking");
 // bind new naming context to root
 checking_cxt = root_cxt->bind_new_context(name);
 520

Sample Code
Client code

 // bind checking objects to Checking context
 name = root_cxt->to_name("Checking/Basic");
 checking_cxt->bind(name, basic_check);
 name = root_cxt->to_name("Checking/Premium");
 checking_cxt->bind(name, premium_check);
 name = root_cxt->to_name("Checking/NOW");
 checking_cxt->bind(name, now_check);

 name = root_cxt->to_name("Savings");
 savings_cxt = root_cxt->bind_new_context(name);

 // bind savings objects to savings context
 ...

 name = root_cxt->to_name("Loan");
 loan_cxt = root_cxt->bind_new_context(name);

 // bind loan objects to loan context
 ...
 }

 else {...} // deal with failure to _narrow()
 ...
 } // end of try clause, catch clauses not shown
 ...
}

Example 67: Server naming service code

Example 68: Client naming service code

#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {
 CosNaming::NamingContextExt_var root_cxt;
 CosNaming::Name_var name;
 BasicChecking_var checking_var;
 CORBA::Object_var obj;
 CORBA::ORB_var orb_var;

 try {
 orb_var = CORBA::ORB_init (argc, argv, "Orbix");
521

CHAPTER 18 | Naming Service
 // Find the initial naming context
 obj =
 orb_var->resolve_initial_references("NameService");
 if (root_cxt ==
 CosNaming::NamingContextExt::_narrow(obj)) {
 obj = root_cxt->resolve_str("Checking/Basic");
 if (checking_var == BasicChecking::_narrow(obj)) {
 // perform some operation on basic checking object
 ...
 }
 else { ... } // Deal with failure to _narrow()
 } else { ... } // Deal with failure to _narrow()

 } // end of try clause, catch clauses not shown
 ...
}

Example 68: Client naming service code
 522

Object Groups and Load Balancing
Object Groups and Load Balancing
The naming service defines a repository of names that map to objects. A name
maps to one object only. Orbix extends the naming service model to allow a
name to map to a group of objects. An object group is a collection of objects that
can increase or decrease in size dynamically.

Selection algorithms Each object group has a selection algorithm that is set when the object group is
created (see page 527). This algorithm is applied when a client resolves the
name associated with the object group; and the naming service directs client
requests to objects accordingly.

Three selection algorithms are supported:

Round-robin: The locator uses a round-robin algorithm to select from the list of
active servers—that is, the first client is sent to the first server, the second client
to the second server, and so on.

Random: The locator randomly selects an active server to handle the client.

Active load balancing: Each object group member is assigned a load value. The
naming service satisfies client resolve() invocations by returning references to
members with the lowest load values.
523

CHAPTER 18 | Naming Service
Figure 38 shows how a name can bind to multiple objects through an object
group.

Orbix supports object groups through its own IDL interfaces. These interfaces
let you create object groups and manipulate them: add objects to and remove
objects from groups, and find out which objects are members of a particular
group. Object groups are transparent to clients.

Load balancing interfaces IDL modules IT_LoadBalancing and IT_Naming, defined in
orbix/load_balancing.idl and orbix/naming.idl, respectively, provide
operations that allow access to Orbix load balancing:

Figure 38: Associating a name with an object group

 Name

 Name

bind_object_group()

 Object 1

 Object

 Object 3

 Object 2

Object Group

Pure CORBA
naming service

Optional
Orbix
extension

bind()

module IT_LoadBalancing
{
 exception NoSuchMember{};
 exception DuplicateMember{};
 exception DuplicateGroup{};
 exception NoSuchGroup{};
 524

Object Groups and Load Balancing
 typedef string MemberId;
 typedef sequence<MemberId> MemberIdList;

 enum SelectionMethod
 { ROUND_ROBIN_METHOD, RANDOM_METHOD, ACTIVE_METHOD };

 struct Member
 {
 Object obj;
 MemberId id;
 };

 typedef string GroupId;
 typedef sequence<GroupId> GroupList;

 interface ObjectGroup
 {
 readonly attribute string id;
 attribute SelectionMethod selection_method;
 Object pick();
 void add_member (in Member mem)
 raises (DuplicateMember);
 void remove_member (in MemberId id)
 raises (NoSuchMember);
 Object get_member (in MemberId id)
 raises (NoSuchMember);
 MemberIdList members();
 void destroy();
 void update_member_load(
 in MemberIdList ids,
 in double curr_load
) raises (NoSuchMember);
 double get_member_load(
 in MemberId id
) raises (NoSuchMember);
 void set_member_timeout(
 in MemberIdList ids,
 in long timeout_sec
) raises (NoSuchMember);
 long get_member_timeout(
 in MemberId id
) raises (NoSuchMember);
 };
525

CHAPTER 18 | Naming Service
For detailed information about these interfaces, see the CORBA Programmer’s
Reference.

 interface ObjectGroupFactory
 {
 ObjectGroup create_round_robin (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup create_random (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup create_active (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup find_group (in GroupId id)
 raises (NoSuchGroup);
 GroupList rr_groups();
 GroupList random_groups();
 GroupList active_groups();
 };
};
 526

Object Groups and Load Balancing
Using Object Groups in Orbix
The IT_LoadBalancing module lets servers perform the following tasks:

• Create an object group and add objects to it.

• Add objects to an existing object group.

• Remove objects from an object group.

• Remove an object group.

• Set member load values and direct client requests accordingly.

Create an object group You create an object group and add objects to it in the following steps:

1. Get a reference to a naming context such as the initial naming context and

narrow to IT_NamingContextExt.

2. Create an object group factory by calling og_factory() on the naming

context object. This returns a reference to an

IT_LoadBalancing::ObjectGroupFactory object.

3. Create an object group by calling create_random(),

create_round_robin(), or create_active() on the object group factory.

These operations return a reference to an object group of interface

IT_LoadBalancing::ObjectGroup that uses the desired selection

algorithm.

4. Add application objects to the newly created object group by calling

add_member() on it.

5. Bind a name to the object group by calling bind_object_group() on the

naming context object created in step 1.

When you create the object group, you must supply a group identifier. This
identifier is a string value that is unique among other object groups.

Similarly, when you add a member to the object group, you must supply a
reference to the object and a corresponding member identifier. This identifier is
a string value that must be unique within the object group.

In both cases, you decide the format of the identifier string. Orbix does not
interpret these identifiers.
527

CHAPTER 18 | Naming Service
Add objects to an existing object
group

Before you add objects to an existing object group, you must get a reference to
the corresponding IT_LoadBalancing::ObjectGroup object. You can do this
by using either the group identifier or the name that is bound to the object group.
This section uses the group identifier.

To add objects to an existing object group:

1. Get a reference to a naming context such as the initial naming context.

2. Narrow the reference to IT_NamingContextExt.

3. Call og_factory() on the naming context object. This returns a reference

to an ObjectGroupFactory object.

4. Call find_group() on the object group factory, passing the identifier for

the group as a parameter. This returns a reference to the object group.

5. Add application objects to the object group by calling add_member() on it.

Remove objects from an object
group

Removing an object from a group is straightforward if you know the object
group identifier and the member identifier for the object:

1. Get a reference to a naming context such as the initial naming context and

narrow to IT_NamingContextExt.

2. Call og_factory() on the naming context object. This returns a reference

to an ObjectGroupFactory object.

3. On the object group factory, call find_group(), passing the identifier for

the target object group as a parameter. This operation returns a reference to

the object group.

4. Call remove_member() on the object group to remove the required object

from the group. You must specify the member identifier for the object as a

parameter to this operation.

If you already have a reference to the object group, the first three steps are
unnecessary.

Remove an object group To remove an object group for which you have no reference:

1. Call unbind() on the initial naming context to unbind the name associated

with the object group.

2. Call og_factory() on the initial naming context object. This returns a

reference to an ObjectGroupFactory object.
 528

Object Groups and Load Balancing
3. Call find_group() on the object group factory, passing the identifier for

the target object group as a parameter. This operation returns a reference to

the object group.

4. Call destroy() on the object group to remove it from the naming service.

If you already have a reference to the target object group, steps 2 and 3 are
unnecessary.

Set member load values In an object group that uses active load balancing, each object group member is
assigned a load value. The naming service satisfies client resolve() invocations
by returning references to members with the lowest load values.

A member’s default load value can be set administratively through the
configuration variable plugins:naming:lb_default_initial_load.
Thereafter, load counts should be updated with periodic calls to
ObjectGroup::update_member_load(). itadmin provides an equivalent
command, nsog update_member_load, in cases where manual intervention is
required, or scripting is feasible.

You should also set or modify member timeouts with
ObjectGroup::set_member_timeout() or with itadmin nsog
set_member_timeout. You can configure default timeout values with the
configuration variable plugins:naming:lb_default_load_timeout. If an
object’s load value is not updated within its timeout interval, its object reference
becomes unavailable to client resolve() invocations. This typically happens
because the object itself or an associated process is no longer running, and
therefore cannot update the object’s load value.

A member reference can be made available again to client resolve()
invocations by resetting its load value with
ObjectGroup::update_member_load() or itadmin nsog
update_member_load. In general, an object’s timeout should be set to an
interval greater than the frequency of load count updates.
529

CHAPTER 18 | Naming Service
Load Balancing Example
This section uses a simple stock market system to show how to use object groups
in CORBA applications. In this example, a CORBA object has access to all
current stock prices. Clients request stock prices from this CORBA object and
display those prices to the end user.

A realistic stock market application needs to make available many stock prices,
and provide many clients with price updates immediately. Given such a high
processing load, one CORBA object might be unable to satisfy client
requirements. You can solve this problem by replicating the CORBA object,
invisibly to the client, through object groups.

Figure 39 shows the architecture for the stock market system, where a single
server creates two CORBA objects from the same interface. These objects
process client requests for stock price information.

Figure 39: Architecture of the stock market example

StockMarketFeed object 1

StockMarketFeed object 2

Naming Service

Object Group

Create group1

Bind name to group2

Add objects to group

3

Client

Resolve group name

4 Get stock price

5 StockMarketFeed object 3

StockMarketFeed object 4

Servers
 530

Load Balancing Example
Defining the IDL for the
application

The IDL for the load balancing example consists of a single interface
StockMarketFeed, which is defined in module ObjectGroupDemo:

StockMarketFeed has one operation, read_stock(). This operation returns the
current price of the stock associated with string identifier stock_name, which
identifies the desired stock.

// IDL
module ObjectGroupDemo
{
 exception StockSymbolNotFound{};
 interface StockMarketFeed
 {
 double read_stock (in string stock_symbol)
 raises(StockSymbolNotfound);
 };
};
531

CHAPTER 18 | Naming Service
Creating an Object Group and Adding Objects
After you define the IDL, you can implement the interfaces. Using object groups
has no effect on how you do this, so this section assumes that you define class
StockMarketFeedServant, which implements interface StockMarketFeed.

After you implement the IDL interfaces, you develop a server program that
contains and manages implementation objects. The application can have one or
more servers that perform these tasks:

• Creates two StockMarketFeed implementation objects.

• Creates an object group in the naming service.

• Adds the implementation objects to this group.

The server’s main() routine can be written as follows:

Example 69: Load balancing server

#include <stdlib.h>
#include <string.h>
#include <iostream.h>
#include <omg/orb.hh>
#include <omg/PortableServer.hh>
#include <it_ts/termination_handler.h>
#include <orbix/naming.hh>
#include "stock_i.h"

static CORBA::ORB_var global_orb = CORBA::ORB::_nil();
static PortableServer::POA_var the_poa;

// Needed in global scope so it's available to
termination_handler():

IT_LoadBalancing::ObjectGroup_var rr_og_var;
IT_Naming::IT_NamingContextExt_var it_ins_var;
CosNaming::Name_var nm;
char id1[100], id2[100];
 532

Load Balancing Example
static void
termination_handler(long sig)
{
 try
 {
 cout << "Removing members: " << id1 << " and "
 << id2 << endl;
 rr_og_var->remove_member(id1);
 rr_og_var->remove_member(id2);
 }
 catch (...)
 {
 cerr << "Could not remove members." << endl;
 }

 IT_LoadBalancing::MemberIdList_var members =
 rr_og_var->members();
 if (members->length() == 0) // Last one to remove members
 {
 try
 {
 cout << "Unbinding object group..." << endl;
 it_ins_var->unbind(nm);
 cout << "Destroying group..." << endl;
 rr_og_var->destroy();
 }
 catch (...)
 {
 cerr << "Unbind/destroy failed." << endl;
 }
 }
 cout << "Shutting down the ORB." << endl;
 global_orb->shutdown(0);
}

Example 69: Load balancing server
533

CHAPTER 18 | Naming Service
int
main(
 int argc,
 char *argv[]
)
{
 if (argc != 2)
 {
 cerr << "Usage: ./server <name>" << endl;
 return 1;
 }

 CORBA::String_var server_name = CORBA::string_dup(argv[1]);

 try
 {
 global_orb = CORBA::ORB_init(argc, argv);
 }
 catch (CORBA::Exception &ex)
 {
 cerr << "Could not initialize the ORB." << endl;
 cerr << "Exception info: " << ex << endl;
 return 1;
 }
 IT_TerminationHandler::set_signal_handler(
 termination_handler);

 // Initialize the POA and POA Manager:
 //
 PortableServer::POAManager_var poa_manager;
 try
 {
 CORBA::Object_var poa_obj =
 global_orb->resolve_initial_references("RootPOA");
 the_poa = PortableServer::POA::_narrow(poa_obj);
 poa_manager = the_poa->the_POAManager();
 }
 catch (CORBA::Exception &ex)
 {
 cerr << "Could not obtain the RootPOA or the POAManager."
 << endl;
 cerr << "Exception info: " << ex << endl;
 return 1;
 }

Example 69: Load balancing server
 534

Load Balancing Example
1 // Create 2 StockMarketFeed objects <server_name>:RR_Member1
 // and<server_name>:RR_Member2.
 strcpy(id1,server_name.in());
 strcat(id1,":");
 strcat(id1,"RR_Member1");
 strcpy(id2,server_name.in());
 strcat(id2,":");
 strcat(id2,"RR_Member2");
 StockServantFeedServant *stk_svnt1 =
 new StockServantFeedServant(id1);
 StockServantFeedServant *stk_svnt2 =
 new StockServantFeedServant(id2);

2 // Resolve naming service and narrow to the interface with
IONA

 // load balancing extensions, and get the object group
factory

 //
 CORBA::Object_var ins_obj;
 IT_LoadBalancing::ObjectGroupFactory_var ogf_var;
 try
 {
 ins_obj =

global_orb->resolve_initial_references("NameService");
 it_ins_var =
 IT_Naming::IT_NamingContextExt::_narrow(ins_obj);

3 ogf_var = it_ins_var->og_factory();
 }
 catch (CORBA::Exception &ex)
 {
 cerr << "Could not obtain or _narrow() reference to "
 << "IT_Naming::IT_NamingContextExt " << endl
 << "interface. Is the Naming Service running?" <<

endl;
 cerr << "Exception info: " << ex << endl;
 return 1;
 }

 // Create a round robin object group and bind it in the
 // naming service
 CORBA::String_var rr_id_str =
 CORBA::string_dup("StockFeedGroup");
 try
 {

Example 69: Load balancing server
535

CHAPTER 18 | Naming Service
4 rr_og_var = ogf_var->create_round_robin(rr_id_str);
 nm = it_ins_var->to_name("StockSvc");

5 it_ins_var->bind_object_group(nm,rr_og_var);
 }
 catch (...)
 {
 // OK: assume other server created object group and
 // bound it in NS
 rr_og_var = ogf_var->find_group(rr_id_str);
 }

 // Add the StockMarketFeed objects to the Object Group:
6 try

 {
 IT_LoadBalancing::Member member_info;

 member_info.id = CORBA::string_dup(id1);
 member_info.obj = stk_svnt1->_this();
 rr_og_var->add_member(member_info);

 member_info.id = CORBA::string_dup(id2);
 member_info.obj = stk_svnt2->_this();
 rr_og_var->add_member(member_info);
 }

 catch (CORBA::Exception &ex)
 {
 cerr << "Could not add members " << id1 << " , "
 << id2 << endl;
 cerr << "Exception info: " << ex << endl;
 return 1;
 }

 // Start accepting requests
 try
 {
 poa_manager->activate();
 cout << "Server ready..." << endl;

Example 69: Load balancing server
 536

Load Balancing Example
This server executes as follows:

1. Instantiates two StockServantFeedServant servants that implement the

StockMarketFeed interface.

2. Obtains a reference to the initial naming context and narrows it to

IT_Naming::IT_NamingContextExt.

3. Obtains an object group factory by calling og_factory() on the naming

context.

4. Calls create_round_robin() on the object group factory to create a new

group with the specified identifier. create_round_robin() returns a new

object group in which objects are selected on a round-robin basis.

5. Calls bind_object_group() on the naming context and binds a specified

naming service name to this group. When a client resolves this name, it

receives a reference to one of the group’s member objects, selected by the

naming service in accordance with the group selection algorithm.

The enclosing try block should allow for the possibility that the group

already exists, where bind_object_group() throws an exception of

CosNaming::NamingContext::AlreadyBound. In this case, the catch

clause calls find_group() in order to obtain the desired object group.

find_group() is also useful in a distributed system, where objects must be

added to an existing object group.

6. Activates two StockMarketFeed objects in the POA and adds them as

members to the object group:

7 global_orb->run();
 }
 catch (CORBA::Exception &ex)
 {
 cerr << "Could not activate the POAManager,
 or orb->run() failed."
 << endl;
 cerr << "Exception info: " << ex << endl;
 return 1;
 }

 return 0;
}

Example 69: Load balancing server
537

CHAPTER 18 | Naming Service
♦ The server creates an IDL struct of type

IT_LoadBalancing::member, and initializes its two members: a

string that identifies the object within the group; and a

StockMarketFeed object reference, created by invoking _this() on

each servant.

♦ The server adds the new member to the object group by calling

add_member().

7. Prepares to receive client requests by calling run() on the ORB.
 538

Load Balancing Example
Accessing Objects from a Client
All objects in an object group provide the same service to clients. A client that
resolves a name in the naming service does not know whether the name is bound
to an object group or a single object. The client receives a reference to one object
only. A client program resolves an object group name just as it resolves a name
bound to one object, using standard CORBA-compliant interfaces.

For example, the stock market client’s main() routine might look like this:

Example 70: Accessing objects from an object group

#include <iostream.h>
#include <omg/orb.hh>
#include <orbix/naming.hh>
#include "stock_demo.hh"

static CORBA::ORB_var global_orb = CORBA::ORB::_nil();

int
main(
 int argc,
 char *argv[]
)
{
 if (argc != 2) {
 cerr << "Usage: ./client <stock_symbol>" << endl;
 return 1;
 }

 CosNaming::NamingContextExt_var ins;

 try {
 global_orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var ins_obj =

global_orb->resolve_initial_references("NameService");
 ins = CosNaming::NamingContextExt::_narrow(ins_obj);
 }
539

CHAPTER 18 | Naming Service
 catch (CORBA::Exception &ex){
 cerr << "Cannot resolve/narrow the NameService IOR."
 << endl;
 cerr << "Exception info: " << ex << endl;
 return 1;
 }

 StockDemo::StockMarketFeed_var stk_ref;
 try {
 CORBA::Object_var stk_obj = ins->resolve_str("StockSvc");
 stk_ref = StockDemo::StockMarketFeed::_narrow(stk_obj);
 }
 catch (CORBA::Exception &ex) {
 cerr << "Could not resolve/narrow the stock_svc IOR from "
 << "the Naming Service." << endl;
 cerr << "Exception info: " << ex << endl;
 return 1;
 }

 double curr_price;

 try {
 curr_price = stk_ref->read_stock(argv[1]);
 }
 catch (StockDemo::StockSymbolNotFound &ex) {
 cerr << "Stock symbol not found: " << argv[1] << endl;
 cerr << "Try another stock symbol." << endl;
 return 1;
 }
 catch (CORBA::Exception &ex) {
 cerr << "Exception received: " << ex << endl;
 return 1;
 }

 cout << argv[1] << " stock price is " << curr_price << endl;
 return 0;
}

Example 70: Accessing objects from an object group
 540

CHAPTER 19

Persistent State
Service
The persistent state service (PSS) is a CORBA service for building
CORBA servers that access persistent data.

In this chapter This chapter discusses the following topics:

Introduction to the Persistent State Service page 542

Defining Persistent Data page 543

Accessing Storage Objects page 558

Using Replication page 583

PSDL Language Mappings page 601
541

CHAPTER 19 | Persistent State Service
Introduction to the Persistent State Service

Overview PSS is tightly integrated with the IDL type system and the object transaction
service (OTS). Orbix PSS implements the standard CosPersistentState
module, and adds proprietary extensions in the IT_PSS module. PSS’s close
integration with OTS facilitates the development of portable applications that
offer transactional access to persistent data such as a database system.

Programming with the PSS Writing a CORBA application that uses PSS is a three-step process:

• Define the data in PSDL (persistent state data language), which is an

extension of IDL, then run the IDL compiler on the PSDL files to generate

C++ code.

• Write a server program that uses PSS to access and manipulate persistent

data.

• Set PSS plug-in variables in the application’s configuration as required.
 542

Defining Persistent Data
Defining Persistent Data
When you develop an application with PSS, you describe datastore components
in the persistent state definition language—PSDL—and save these in a file with
a .psdl extension.

PSDL is a superset of IDL. Like IDL, PSDL is a declarative language, and not a
programming language. It adds new keywords but otherwise conforms to IDL
syntax conventions. A PSDL file can contain any IDL construct; and any local
IDL operation can accept parameters of PSDL types.

Reserved keywords The file CosPersistentState.psdl contains all PSDL type definitions, and is
implicitly included in any PSDL specification. The following identifiers are
reserved for use as PSDL keywords (asterisks indicate keywords reserved for
use in future PSS implementations). Avoid using any of the following keywords
as user-defined identifiers:

as*
catalog*
factory
implements
key
of
primary
provides*
ref
scope*
storagehome
storagetype
stores*
strong*
543

CHAPTER 19 | Persistent State Service
Datastore Model
PSDL contains several constructs that you use to describe datastore components.
These include:

• storagetype describes how data is organized in storage objects of that

type.

• storagehome describes a container for storage objects. Each storage home

is defined by a storage type and can only contain storage objects of that

type. Storage homes are themselves contained by a datastore, which

manages the data—for example a database, a set of files, or a schema in a

relational database. A datastore can contain only one storage home of a

given storage type.

Within a datastore, a storage home manages its own storage objects and the
storage objects of all derived storage homes.

For example, the following two PSDL files describe a simple datastore with a
single Account storage type and its Bank storage home:

Example 71: Describing datastore components

// in bank_demo_store_base.psdl
#include<BankDemo.idl>

module BankDemoStoreBase {
 abstract storagetype AccountBase {
 state BankDemo::AccountId account_id;
 state BankDemo::CashAmount balance;
 };

 abstract storagehome BankBase of AccountBase {
 key account_id;
 factory create(account_id, balance);
 };
};
 544

Defining Persistent Data
// in bank_demo_store.psdl

#include <BankDemo.idl>
#include <BankDemoStoreBase.psdl>

module BankDemoStore {
 storagetype Account implements BankDemoStoreBase::AccountBase
 {
 ref(account_id);
 };

 storagehome Bank of Account
 implements BankDemoStoreBase::BankBase
 {};
};

Example 71: Describing datastore components
545

CHAPTER 19 | Persistent State Service
Abstract Types and Implementations
In the PSDL definitions shown previously, abstract types and their
implementations are defined separately in two files:

• BankDemoStoreBase.psdl file defines the abstract storage type

AccountBase and abstract storage home BankBase. Abstract storage types

and abstract storage homes are abstract specifications, like IDL interfaces.

• BankDemoStore.psdl defines the storage type and storage home

implementations for AccountBase and BankBase in Account storage type

and Bank storage home, respectively.

A storage type implements one or more abstract storage types. Similarly, a
storage home can implement any number of abstract storage homes. By
differentiating abstract types and their implementations, it is possible to generate
application code that is independent of any PSS implementation. Thus, it is
possible to switch from one implementation to another one without recompiling
and relinking.

Given the separation between abstract types and their implementations, the IDL
compiler provides two switches for processing abstract and concrete definitions:

-psdl compiles abstract definitions. For example:

idl -psdl bank_demo_store_base.psdl

The IDL compiler generates a C++ abstract base class for each abstract
storagetype and abstract storagehome that is defined in this file.

-pss_r generates C++ code that maps concrete PSDL constructs to relational
and relational-like database back-end drivers. For example, given the command:

The IDL compiler generates C++ classes for each storagetype and
storagehome that is defined in this file.

idl -pss_r bank_demo_store.psdl

Note: If you maintain all PSDL code in a single file, you should compile it
only with the -pss_r switch.
 546

Defining Persistent Data
Defining Storage Objects
A storage object can have both state and behavior. A storage object’s abstract
storage type defines both with state members and operations, respectively.

Syntax The syntax for an abstract storage type definition is similar to the syntax for an
IDL interface; unlike an interface, however, an abstract storage type definition
cannot contain constants or type definitions.

You define an abstract storage type with this syntax:

For example:

The following sections discuss syntax components in greater detail.

Inheritance: As with interfaces, abstract storage types support multiple
inheritance from base abstract storage types, including diamond-shape
inheritance. It is illegal to inherit two members (state or operation) with the same
name.

State members: A storage object’s state members describe the object’s data;
you can qualify a state member with the readonly keyword. You define a state
member with the following syntax:

[readonly] state type-spec member-name;

For each state member, the C++ mapping provides accessor functions that get
and set the state member’s value (see page 609).

Example 72: Syntax for defining an abstract storage type

abstract storagetype abstract-storagetype-name
 [: base-abstract-storage-type[,...]
{
 [operation-spec;]...
 [state-member-spec;]...
};

abstract storagetype AccountBase {
 state BankDemo::AccountId account_id;
 state BankDemo::CashAmount balance;
};
547

CHAPTER 19 | Persistent State Service
A state member’s type can be any IDL type, or an abstract storage type
reference.

Operations: Operations in an abstract storage type are defined in the same way
as in IDL interfaces. Parameters can be any valid IDL parameter type or abstract
storage type reference.

Inherited StorageObject
operations

All abstract storagetypes implicitly inherit from
CosPersistentState::StorageObject:

You can invoke StorageObject operations on any incarnation of a storage object;
they are applied to the storage object itself:

destroy_object() destroys the storage object.

object_exists() returns true if the incarnation represents an actual storage object.

get_pid() and get_short_pid() return the storage object’s pid and short-pid,
respectively.

get_storage_home() returns the storage home instance that manages the target
storage object instance.

Forward declarations As with IDL interface definitions, PSDL can contain forward declarations of
abstract storage types. The actual definition must follow later in the PSDL
specification.

module CosPersistentState {

 // ...
 native StorageObjectBase;

 abstract storagetype StorageObject {
 void destroy_object();
 boolean object_exists();
 Pid get_pid();
 ShortPid get_short_pid();
 StorageHomeBase get_storage_home();
 };
};
 548

Defining Persistent Data
Defining Storage Homes
You define an abstract storage home with an abstract storagehome definition:

For example, the following PSDL defines abstract storage home BankBase of
storage type AccountBase:

A storage home lacks state but it can have behavior, which is described by
operations that are defined in its abstract storage homes. For example, you locate
and create a storage object by calling operations on the storage home where this
object is stored.

Inheritance from interface
StorageHomeBase

All storage home instances implicitly derive from local interface
CosPersistentState::StorageHomeBase:

abstract storagehome storagehome-name of abstract-storage-type
{
 [key-specification]
 [factory operation-name(state-member[,...]);]
};

Example 73: Defining an abstract storage home

abstract storagehome BankBase of AccountBase
{
 key account_id;
 factory create(account_id, balance);
};

module CosPersistentState {
 exception NotFound {};
 native StorageObjectBase;

 // ...
 local interface StorageHomeBase {

 StorageObjectBase
 find_by_short_pid(
 in ShortPid short_pid
) raises (NotFound);
 };
};
549

CHAPTER 19 | Persistent State Service
find_by_short_pid() looks for a storage object with the given short pid in the
target storage home. If the search fails, the operation raises exception
CosPersistentState::NotFound.

Keys An abstract storage home can define one key. A key is composed from one or
more state members that belong to the storage home’s abstract storage type,
either directly or through inheritance. This key gives the storage home a unique
identifier for the storage objects that it manages.

Two IDL types are not valid for use as key members: valuetype and struct.

A key declaration implicitly declares a pair of finder operations; for more
information, see page 551.

Simple Keys A simple key is composed of a single state member. You declare a simple key as
follows:

key key-name (state-member);

For example, the PSDL shown earlier defines abstract storage home BankBase
for storage objects of abstract type AccountBase. This definition can use state
member account_id to define a simple key as follows:

key accno(account_id);

If the key’s name is the same as its state member, you can declare it in this
abbreviated form:

key account_id;

Composite Keys A composite key is composed of multiple state members. You declare a
composite key as follows:

key key-name (state-member, state-member[,...)

A composite key declaration must specify a key name. The types of all state
members must be comparable. The following types are comparable:

• integral types: octet, short, unsigned short, long, unsigned long,

long long, unsigned long long

• fixed types

• char, wchar, string, wstring

• sequence<octet>

• struct with only comparable members
 550

Defining Persistent Data
Finder operations A key declaration is equivalent to the declaration of two PSDL finder operations
that use a given key to search for a storage object among the storage objects that
are managed directly or indirectly by the target storage home:

find_by_key-name() returns an incarnation of the abstract storage home’s
abstract storage type:

abstract-storagetype find_by_key-name(parameter-list)
 raises (CosPersistentState::NotFound);

find_ref_by_key_name() returns a reference to this storage object:

ref<abstract-storage-type> find_ref_by_key_name(parameter-list);

Both operations take a parameter-list that is composed of in parameters that
correspond to each state member in the key declaration, listed in the same order.
If a storage object with the given key is not found, find_by_key_name() raises
the CosPersistentState::NotFound exception, and find_ref_by_key_name()
returns a NULL reference.

For example, given the following abstract storage type and storage home
definitions:

The accno key declaration implicitly yields these two PSDL operations:

Finder operations are polymorphic. For example, the find_by_accno operation
can return a CheckingAccount that is derived from Account.

abstract storagetype AccountBase {
 state BankDemo::AccountId account_id;
 state BankDemo::CashAmount balance;
};

abstract storagehome Bank of AccountBase {
 key accno(account_id);
 // ...
};

Account find_by_accno(in BankDemo::AccountId)
 raises (CosPersistentState::NotFound);

ref<Account> find_ref_by_accno(in BankDemo::AccountId);
551

CHAPTER 19 | Persistent State Service
Operations Each parameter of a local operation can be of a valid IDL parameter type, or of
an abstract PSDL type.

Factory operations In the PSDL shown earlier, abstract storage home BankBase is defined with the
factory create operation. This operation provides a way to create Account
objects in a bank, given values for account_id and balance.

Each parameter that you supply to a factory create operation must be the name of
a state member of the abstract storage home’s abstract storage type, including
inherited state members.

The definition of a factory operation is equivalent to the definition of the
following operation:

abstract-storage-type factory-op-name(parameter-list);

where parameter-list is composed of in parameters that correspond to each
state member in the factory operation declaration, listed in the same order.

For example, given this factory declaration:

The create factory declaration implicitly yields this operation, which uses
conventional IDL-to-C++ mapping rules:

abstract storagehome Bank of AccountBase {
 key accno(account_id);
 factory create(account_id, balance);
};

abstract storagetype AccountBase {
 state BankDemo::AccountId account_id;
 state BankDemo::CashAmount balance;
};

abstract storagehome Bank of AccountBase {
 // ...
 factory create(account_id, balance);
};

Account create(
 in BankDemo::AccountId account_id,
 in BankDemo::CashAmount balance
);
 552

Defining Persistent Data
Inheritance An abstract storage home can inherit from one or more abstract storage homes,
and support diamond-shape inheritance. The following constraints apply to a
base abstract storage home:

• The base abstract storage homes must already be defined.

• The base abstract storage homes must use the same abstract storage type or

base abstract storage type as the derived abstract storage home.

• An abstract storage home cannot inherit two operations with the same

name.

Forward declarations As with IDL interface definitions, PSDL can contain forward declarations of
abstract storage homes.
553

CHAPTER 19 | Persistent State Service
Implementing Storage Objects
A storage type implements one or more abstract storage types, and can inherit
from one other storage type. Storage type implementations are defined as
follows:

The implemented abstract storage type abstract_storagetype must specify a
previously defined abstract storage type.

State members A storage type can define state members; these state members supplement any
state members in the abstract storage types that it implements, or that it inherits
from other implementations. You define a state member with the following
syntax:

[readonly] state type-spec member-name;

Reference representation A storage type can define a reference representation that serves as a unique
identifier for storage objects in a storage home of that storage type. A storage
type without any base storage type can define a single reference representation,
which is composed of one or more state members. For example:

Example 74: Syntax for defining storage type implementations

storagetype storagetype-name [: storagetype-name]
 implements abstract-storagetype[, abstract-storagetype]...
{
 [state-member-spec;]...
 [ref(state-member[, state-member]...)]

};

storagetype Account implements BankDemoStoreBase::AccountBase
{
 ref(account_id);
};
 554

Defining Persistent Data
The state members that compose a reference representation must be defined
either in:

• One of the abstract storagetypes that this storage type directly implements

• The current storage type
555

CHAPTER 19 | Persistent State Service
Implementing Storage Homes
A storage home implements one or more previously defined abstract storage
homes with this syntax:

A storage home specification must include these elements:

• A storage type that derives from the base storage home’s storage type. The

storage home’s storage type must implement the abstract storage type of

each of the implemented abstract storage homes.

• Either inherits an existing storage home, or implements one or more

existing abstract storage home.

Inheritance A storage home can inherit form a previously defined storage home. The
following constraints apply:

• The storage type of the base storage home must be a base of the storage

home’s own storage type.

• Two storage homes in a storage home inheritance tree cannot have the

same storage type.

For example, the following specification is not legal:

Example 75: Syntax for defining a storage home implementations

storage-home storagehome-name[: storagehome-name]
 of storagetype [implements abstract-storagehome[,...]]
{
 [primary-key-spec];
};

storagetype A {/* ... */};
storagetype B : A {/* ... */};
storagehome H of A {};
storagehome H2 of B : H {};
storagehome H3 of B : H {}; // error -- B is already storagetype
 // of another sub-storage-home of H
 556

Defining Persistent Data
Primary key declaration A primary key declaration specifies a distinguished key, as implemented in
relational systems. You can define a primary key in any storage home without a
base storage home.

You can define a primary key in two ways:

• primary key key-spec, where key-spec denotes a key that is declared in

one of the implemented abstract storagehomes.

• primary key ref tells the PSS implementation to use the state members

of the reference representation as the primary key.
557

CHAPTER 19 | Persistent State Service
Accessing Storage Objects
You access a storage object through its language-specific implementation, or
storage object incarnation. A storage object incarnation is bound to a storage
object in the datastore and provides direct access to the storage object’s state.
Thus, updating a storage object incarnation also updates the corresponding
storage object in the datastore.

Likewise, to use a storage home, you need a programming language object, or
storage home instance.

To access a storage object, a server first obtains a logical connection between
itself and the datastore that contains this storage object’s storage home. This
logical connection, or session, can offer access to one or more datastores.

Figure 40: A server process uses sessions to establish a logical connection with
a datastore and its contents

Process B

Process A

Storage object
incarnations

Storage home instances

Datastore

Storage
homes

Storage
objects

Sessions

Storage home instances
 558

Accessing Storage Objects
Creating Transactional Sessions
PSS provides a local connector object that you use to create sessions. Because
PSS is designed for use in transactional servers, Orbix provides its own session
manager, which automatically creates transactional sessions that can be
associated with transactions. You can also manage transactional sessions
explicitly.

Procedure In either case, you create transactional sessions in these steps:

1 Get a reference to the transaction service’s current object by calling
resolve_initial_references("TransactionCurrent") on the ORB, then
narrow the returned reference to a CosTransactions::Current object.

2 Get a reference to a connector object by calling
resolve_initial_references("PSS") on the ORB, then narrow the returned
reference to a connector object:

• IT_PSS::Connector object to use an Orbix SessionManager.

• CosPersistentState::Connector to use standard PSS transactional

sessions.

3 Create storage object and storage home factories and register them with a
Connector object. This allows PSS to create storage object incarnations and
storage home instances in the server process, and thereby enable access to the
corresponding datastore objects.

For each PSDL storage home and storage object implementation, the IDL
compiler, using the -pss_r switch, generates a factory creation and registration
operation.For example, given a PSDL storage home definition of
BankDemoStore::Bank, you can instantiate its storage home factory as follows:

4 After registering factories with the connector, the connector assumes ownership
of the factories. The server code should call _remove_ref() on each factory
object reference to avoid memory leaks.

CosPersistentState::StorageHomeFactory* bank_factory = new
IT_PSS_StorageHomeFactory(BankDemoStore::Bank);
559

CHAPTER 19 | Persistent State Service
5 Create transactional sessions. You can do this in two ways:

• Create an Orbix SessionManager, which creates and manages the desired

number of sessions.

• Create standard PSS TransactionalSession objects.

6 Associate sessions with transactions. How you do so depends on whether you
create sessions with a SessionManager or with standard PSS operations:

• You associate an Orbix SessionManager’s sessions with transactions

through IT_PSS::TxSessionAssociation objects.

• You associate standard transactional sessions with transactions through the

TransactionalSession object’s start() operation.

Example 76 shows how a server can implement steps 1-4. This code is valid
whether you use an Orbix SessionManager or a standard PSS
TransactionalSession.

Example 76: Creating a transactional session

int
main(int argc, char** argv)
{
 // ...
 try
 {
 // Initialise the ORB as configured in the IMR

 cout << "Initializing the ORB" << endl;
 global_orb = CORBA::ORB_init(argc, argv, "demos.pss.bank");

 CORBA::Object_var obj =
global_orb->resolve_initial_references("TransactionCurrent");

 CosTransactions::Current_var tx_current =

IT_PSS::Connector::_narrow(obj);
 assert(!CORBA::is_nil(tx_current));
 560

Accessing Storage Objects
The sections that follow describe the different ways to continue this code,
depending on whether you use a SessionManager or standard PSS transactional
sessions.

 CORBA::Object_var obj =
global_orb->resolve_initial_references("PSS");

 IT_PSS::connector_var connector =

IT_PSS::Connector::_narrow(obj);
 assert(!CORBA::is_nil(connector));

 // Create and register storage object and
 // storage home factories

 CosPersistentState::StorageObjectFactory *acct_factory = new
IT_PSS::StorageObjectFactory<BankDemoStore::Account>;

 CosPersistentState::StorageHomeFactory *bank_factory = new
IT_PSS::StorageHomeFactory<BankDemoStore::Bank>;

 connector->register_storage_object_factory(
 BankDemoStore::_tc_Account->id(),
 acct_factory);

 connector->register_storage_home_factory(
 BankDemoStore::_tc_Bank->id(),
 bank_factory);

 // after registration, connector owns factory objects,
 // so remove factory references from memory

 acct_factory->_remove_ref();
 bank_factory->_remove_ref();

 // ...
 // continuation depends on whether you use Orbix

SessionManager
 // or PSS TransactionalSessions
 //...

Example 76: Creating a transactional session

Using the SessionManager page 562

Managing Transactional Sessions page 569
561

CHAPTER 19 | Persistent State Service
Using the SessionManager
After you create and register storage object and storage home factories, you
create a SessionManager and associate transactions with its sessions as follows:

1 Set a list of parameters for the SessionManager to be created, in a
CosPersistentState::ParameterList. At a minimum, the parameter list
specifies the Resource that sessions connect to—for example, a Berkeley DB
environment name. It can also specify the number of sessions that are initially
created for the SessionManager, and whether to add sessions when all sessions
are busy with requests.Table 22 on page 564 describes all parameter settings.

2 Create a SessionManager by calling it_create_session_manager() on the
Orbix connector. The SessionManager always creates at least two transactional
sessions:

• A shared read-only session for read-only non-transactional requests.

• A pool of read-write serializable transactional sessions for write requests,

and for any request that is executed in the context of a distributed

transaction.

3 Create an association object IT_PSS::TxSessionAssociation to associate the
SessionManager and the transaction.

4 Use the association object to perform transactional operations on the datastore’s
storage objects.

Example 77 implements these steps:

Example 77: Creating a SessionManager

 // Create SessionManager with one read-only read-committed
 // multi-threaded transactional session and one read-write
 // serializable single-threaded transactional session
 562

Accessing Storage Objects
 CosPersistentState::ParameterList parameters(2);
 parameters.length(2);
 parameters[0].name = CORBA::string_dup("to");
 parameters[0].val <<= CORBA::Any::from_string("bank", true);
 parameters[1].name = CORBA::string_dup("single writer");
 parameters[1].val <<= CORBA::Any::from_boolean(true);

 IT_PSS::SessionManager_var session_mgr =
connector->it_create_session_manager(parameters);

 // use the shared read-only session
 IT_PSS::TxSessionAssociation association(
 session_mgr.in(),
 CosPersistentState::READ_ONLY,
 CosTransactions::Coordinator::_nil());

 // show balances in all accounts
 // The query API is proprietary; it is similar to JDBC

 IT_PSS::Statement_var statement =
association.get_session_nc()->it_create_statement();

 IT_PSS::ResultSet_var result_set = statement->execute_query(
 "select ref(h) from PSDL:BankDemoStore/Bank:1.0 h");

 cout << "Listing database: account id, balance" << endl;
 BankDemoStore::AccountBaseRef account_ref;
 CORBA::Any_var ref_as_any;
 while (result_set->next())
 {
 ref_as_any = result_set->get(1);
 CORBA::Boolean ok = (ref_as_any >>= account_ref);
 assert(ok);
 cout << " "
 << account_ref->account_id()
 << ", $" << account_ref->balance()
 << endl;
 }

 result_set->close();

 association.suspend();
 // ...
 return 0;
}

Example 77: Creating a SessionManager
563

CHAPTER 19 | Persistent State Service
Setting SessionManager
parameters

You supply parameters to it_create_session_manager() through a
CosPersistentState::ParameterList, which is defined as a sequence of
Parameter types. Each Parameter is a struct with name and val members:

• name is a string that denotes the parameter type.

• val is an Any that sets the value of name.

The parameter list must specify the Resource that sessions connect to—for
example, an ODBC datasource name or Oracle database name. Table 22
describes all parameter settings

Table 22: SessionManager parameters

Parameter
name

Type Description

to string Identifies the datastore to connect to. For example with
PSS/DB, it will be an environment name.

You must set this parameter.

rw pool size long Initial size of the pool of read-write transactional sessions
managed by the session manager. The value must be
between 1 and 1000, inclusive.

The default value is 1.

grow pool boolean If set to TRUE, specifies to create a new session to process a
new request when all read-write transactional sessions are
busy. A value of FALSE, specifies to wait until a read-write
transactional session becomes available.

The default value is FALSE.

single writer boolean Can be set to TRUE only if rw pool size is 1. In this case,
specifies to create a single read-write transactional session
that allows only one writer at a time.

The default value is FALSE.

replicas IT_PSS::DynamicReplicaSeq List of references to all active replicas in the replica group.
This parameter is used only when replication is required.
 564

Accessing Storage Objects
Creating a SessionManager You create a SessionManager by calling it_create_session_manager() on the
Orbix connector. it_create_session_manager() takes a single
ParameterList argument (see page 564), and is defined in the
IT_PSS::Connector interface as follows:

Associating a transaction with a
session

The association object IT_PSS::TxSessionAssociation associates a
transaction with a session that is managed by the SessionManager. You create an
association object by supplying it with a SessionManager and the access mode.
The CosPersistentState module defines two AccessMode constants:
READ_ONLY and READ_WRITE

The IT_PSS::TXSessionAssociation interface defines two constructors for a
TxSessionAssociation object:

module IT_PSS {
 // ...
 local interface Connector : CosPersistentState::Connector
 {
 SessionManager
 it_create_session_manager(
 in CosPersistentState::ParameterList parameters);
 };
}

Example 78: TxSessionAssociation constructors

namespace IT_PSS {
 //...
 class TxSessionAssociation {
 public:

 TxSessionAssociation(
 SessionManager_ptr session_mgr,
 CosPersistentState::AccessMode access_mode
) throw (CORBA::SystemException);
565

CHAPTER 19 | Persistent State Service
The first constructor supplies only the session manager and access mode. This
constructor uses the default coordinator object that is associated with the current
transaction (CosTransactions::Current). The second constructor lets you
explicitly specify a coordinator; or to specify no coordinator by supplying
_nil(). If you specify _nil(), the association uses the shared transaction that is
associated with the shared read-only session; therefore, the access mode must be
READ_ONLY.

A new association is initially in an active state—that is, it allows transactions to
use the session to access storage objects. You can change the association’s state
by calling suspend() or end() operations on it (see page 567).

Association object operations An association object has several operations that are defined as follows:

 TxSessionAssociation(
 SessionManager_ptr session_mgr,
 CosPersistentState::AccessMode access_mode,
 CosTransactions::Coordinator_ptr tx_coordinator
) throw (CORBA::SystemException);

 ~TxSessionAssociation()
 throw(CORBA::SystemException);
 // ...
};

Example 78: TxSessionAssociation constructors

Example 79: Association object operations

namespace IT_PSS {
 // ...
 class TxSessionAssociation{
 public:
 // ...
 TransactionalSession_ptr get_session_nc
 const throw();

 CosTransactions::Coordinator_ptr get_tx_coordinator_nc()
 const throw();

 void suspend()
 throw (CORBA::SystemException);
 566

Accessing Storage Objects
get_session_nc() returns the session for this association object. After you obtain
the session, you can access storage objects in the datastore that this session
connects to.

get_tx_coordinator_nc() returns the coordinator of this association’s
transaction.

suspend() suspends a session-Resource association. This operation can raise
two exceptions:

• PERSIST_STORE: there is no active association

• INVALID_TRANSACTION: The given transaction does not match the

transaction of the Resource actively associated with this session.

end() terminates a session-Resource association. The end operation raises the
standard exception PERSIST_STORE if there is no associated Resource, and
INVALID_TRANSACTION if the given transaction does not match the transaction of
the Resource associated with this session. If the success parameter is FALSE,
the Resource is rolled back immediately. Like refresh(), end() invalidates
direct references to incarnations’ data members.

A Resource can be prepared or committed in one phase only when it is not
actively associated with any session. If asked to prepare or commit in one phase
when still in use, the Resource rolls back. A Resource (provided by the PSS
implementation) ends any session-Resource association in which it is involved
when it is prepared, committed in one phase, or rolled back.

 void end(CORBA::Boolean success = true)
 throw (CORBA::SystemException);
 };
};

Example 79: Association object operations
567

CHAPTER 19 | Persistent State Service
Using an association to access
storage objects

You can use an association object to access the data in storage objects. The
example shown earlier (see page 562) queries the data in all Account storage
objects in the Bank storage home. In order to obtain data from a given storage
object, you typically follow this procedure:

1. Create an association between a session manager and the current

transaction.

2. Call get_session_nc() on the association to retrieve the session

manager’s current session.

3. Call find_storage_home() on the session to retrieve the storage home.

4. Use the storage home to access the storage objects that it maintains.

The methods used to retrieve and access the storage objects are left up to the
developer to implement. The most basic way is to use the find_by_pid() and
find_by_short_pid() operations provided by the API. This does not stop the
developer from providing implementation specific methods of to locate and
manipulate storage objects.
 568

Accessing Storage Objects
Managing Transactional Sessions
The previous section shows how to use the Orbix SessionManager to create and
manage transactional sessions. The Orbix SessionManager is built on top of the
CosPersistentState::TransactionalSession interface. You can use this
interface to manage transactional sessions directly.

After you create and register storage object and storage home factories, you
create a session and associate transactions with it as follows:

1. Create a TransactionalSession by calling

create_transactional_session() on a Connector object.

2. Activate the transactional session by calling start() on it. The

transactional session creates a new CosTransactions::Resource, and

registers it with the transaction.

For more information about CosTransactions::Resource objects, see the

CORBA OTS Programmers Guide.

3. Use the session-Resource association to perform transactional operations

on the datastore’s storage objects.

Creating a transactional session Sessions are created through Connector objects. A Connector is a local object
that represents a given PSS implementation.

Note: PSS also provides the CosPersistentState::Session interface to
manage basic sessions for file-like access. This interface offers only
non-transactional functionality whose usefulness is limited to simple
applications; therefore, it lies outside the scope of this discussion, except
insofar as its methods are inherited by
CosPersistentState::TransactionalSession.
569

CHAPTER 19 | Persistent State Service
Each ORB-implementation provides a single instance of the local Connector
interface, which you obtain through resolve_initial_references("PSS")
then narrowing the returned reference to a CosPersistentState::Connector
object. You use the Connector object to create a TransactionalSession object by
calling create_transactional_session() on it:

The parameters that you supply to create_transactional_session() define
the new session’s behavior:

• The access mode for all Resource objects to be created by the session. The

CosPersistentState module defines two AccessMode constants:

♦ READ_ONLY

Example 80: Creating a TransactionalSession object

module CosPersistentState {
 // ...

 // forward declarations
 local interface TransactionalSession;

 // ...

 struct Parameter
 {
 string name;
 any val;
 };

 typedef sequence<Parameter> ParameterList;

 local interface Connector
 {

 // ...

 TransactionalSession create_transactional_session(
 in AccessMode access_mode,
 in IsolationLevel default_isolation_level,
 in EndOfAssociationCallback callback,
 in TypeId catalog_type_name,
 in ParameterList additional_parameters);
 };
 // ...
};
 570

Accessing Storage Objects
♦ READ_WRITE

• The default isolation level for all Resource objects to be created by the

session. The CosPersistentState module defines four IsolationLevel

constants:

♦ READ_UNCOMMITTED

♦ READ_COMMITTED

♦ REPEATABLE_READ

♦ SERIALIZABLE

• A callback object to invoke when a session-Resource association ends (see

page 571).

• A ParameterList that specifies the datastore to connect to, and optionally

other session characteristics (see page 571).

End-of-association callbacks

When a session-Resource association ends, the session might not become
available immediately. For example, if the session is implemented with an
ODBC or JDBC connection, the PSS implementation needs this connection until
the Resource is committed or rolled back.

A session pooling mechanism might want to be notified when PSS releases a
session. You can do this by passing a EndOfAssociationCallback local object
to the Connector::create_transactional_session operation:

ParameterList settings

You set session parameters in a ParameterList, which is a sequence of
Parameter types. Each Parameter is a struct with name and val members:

name is a string that denotes the parameter type.

Note: The catalog_type_name parameter is currently not supported. Set it to
an empty string.

module CosPersistentState {
 // ...
 local interface EndOfAssociationCallback {
 void released(in TransactionalSession session);
 };
};
571

CHAPTER 19 | Persistent State Service
val is an any that sets the value of name.

The parameter list must specify the Resource that sessions connect to—for
example, a Berkeley DB environment name. Table 23 describes all parameter
settings

Activating a transactional session When you create a transactional session, it is initially in an inactive state—that
is, the session is not associated with any Resource. You associate the session
with a Resource by calling start() on it, supplying the name of a transaction’s
coordinator object (see page 574). This function associates the session with a
Resource, and registers the Resource with the coordinator’s transaction.

Table 23: ParameterList settings for a TransactionalSession

Parameter name Type Description

to string Identifies the datastore to connect to. For example with
PSS/DB, it will be an environment name; with PSS/ODBC
a datasource name; with PSS/Oracle, an Oracle database
name.

You must set this parameter.

concurrent boolean If set to TRUE, the session can be used by multiple
concurrent threads.

The default value is FALSE.

single writer boolean Can be set to TRUE only if this session is the only session
that writes to this database. A value of TRUE eliminates the
risk of deadlock; the cache can remain unchanged after a
commit.

The default value is FALSE.

replicas IT_PSS::DynamicReplicaSeq List of references to all active replicas in the replica group.
This parameter is used only when replication is required.
 572

Accessing Storage Objects
A transactional session is associated with one Resource object (a datastore
transaction), or with no Resource at all. During its lifetime, a session-Resource
association can be in one of three states—active, suspended, or ending—as
shown in Figure 41:

The state members of a storage object’s incarnation are accessible only when the
transactional session has an active association with a Resource.

Typically, a Resource is associated with a single session for its entire lifetime.
However, with some advanced database products, the same Resource can be
associated with several sessions, possibly at the same time.

The TransactionalSession interface has this definition:

Figure 41: Transactional session states

ACTIVE SUSPENDED

INACTIVEcreation

start

ENDING

end
start

destruction

suspend

end

start

module CosPersistentState {

 // ...
 typedef short IsolationLevel;
 const IsolationLevel READ_UNCOMMITTED = 0;
 const IsolationLevel READ_COMMITTED = 1;
 const IsolationLevel REPEATABLE_READ = 2;
 const IsolationLevel SERIALIZABLE = 3;
573

CHAPTER 19 | Persistent State Service
Managing a transactional session The TransactionalSession interface provides a number of functions to
manage a transactional session.

start() activates a transactional session. If the session is new, it performs these
actions:

• Creates a new Resource and registers it with the given transaction.

• Associates itself with this Resource.

If the session is already associated with a Resource but is in suspended state,
start() resumes it.

suspend() suspends a session-Resource association. This operation can raise
two exceptions:

• PERSIST_STORE: there is no active association

• INVALID_TRANSACTION: The given transaction does not match the

transaction of the Resource actively associated with this session.

 interface TransactionalSession : Session {

 readonly attribute IsolationLevel
default_isolation_level;

 typedef short AssociationStatus;
 const AssociationStatus NO_ASSOCIATION = 0;
 const AssociationStatus ACTIVE = 1;
 const AssociationStatus SUSPENDED = 2;
 const AssociationStatus ENDING = 3;

 void start(in CosTransactions::Coordinator transaction);
 void suspend(
 in CosTransactions::Coordinator transaction
);
 void end(
 in CosTransactions::Coordinator transaction,
 in boolean success
);

 AssociationStatus get_association_status();
 CosTransactions::Coordinator get_transaction();
 IsolationLevel
 get_isolation_level_of_associated_resource();
 };
};
 574

Accessing Storage Objects
end() terminates a session-Resource association. If its success parameter is
FALSE, the Resource is rolled back immediately. Like refresh(), end()
invalidates direct references to the data members of incarnations.

This operation can raise one of the following exceptions

• PERSIST_STORE: There is no associated Resource

• INVALID_TRANSACTION: The given transaction does not match the

transaction of the Resource associated with this session

A Resource can be prepared or committed in one phase only if it is not actively
associated with any session. If asked to prepare or commit in one phase when
still in use, the Resource rolls back. A Resource ends any session-Resource
association in which it is involved when it is prepared, committed in one phase,
or rolled back.

get_association_status() returns the status of the association (if any) with this
session. The association status can be one of these AssociationStatus
constants:

NO_ASSOCIATION
ACTIVE
SUSPENDED
ENDING

See “Activating a transactional session” on page 572 for more information about
a transactional session’s different states.

get_transaction() returns the coordinator of the transaction with which the
Resource associated with this session is registered. get_transaction returns a
nil object reference when the session is not associated with a Resource.

When data is accessed through a transactional session that is actively associated
with a Resource, a number of undesirable phenomena can occur:

• Dirty reads: A dirty read occurs when a Resource is used to read the

uncommitted state of a storage object. For example, suppose a storage

object is updated using Resource 1. The updated storage object’s state is

Note: In XA terms, start() corresponds to xa_start() with either the
TMNOFLAGS, TMJOIN or TMRESUME flag. end corresponds to xa_end() with the
TMSUCCESS or the TMFAIL flag. suspend corresponds to xa_end() with the
TMSUSPEND or TMSUSPEND | TMMIGRATE flag.
575

CHAPTER 19 | Persistent State Service
read using Resource 2 before Resource 1 is committed. If Resource 1 is

rolled back, the data read with Resource 2 is considered never to have

existed.

• Nonrepeatable reads: A nonrepeatable read occurs when a Resource is

used to read the same data twice but different data is returned by each read.

For example, suppose Resource1 is used to read the state of a storage

object. Resource2 is used to update the state of this storage object and

Resource2 is committed. If Resource1 is used to reread the storage

object’s state, different data is returned.

The degree of an application’s exposure to these occurrences depends on the
isolation level of the Resource. The following isolation levels are defined:

get_isolation_level_of_associated_resource() returns the isolation level of the
Resource associated with this session. If no Resource is associated with this
session, the operation raises the standard exception PERSIST_STORE.

resource_isolation_level (read-only attribute) returns the isolation level of the
Resource objects created by this session.

Table 24: Isolation levels

Isolation level Exposure risk

READ_UNCOMMITTED Dirty reads and the nonrepeatable reads

READ_COMMITTED Only nonrepeatable reads

SERIALIZABLE None

Note: Isolation level REPEATABLE_READ is reserved for future use.
 576

Accessing Storage Objects
Basic session management
operations

The CosPersistentState::TransactionalSession interface inherits a
number of operations (via CosPersistentState::Session) from the
CosPersistentState::CatalogBase interface. CatalogBase operations
provide access to a datastore’s storage homes and storage objects; it also
provides several memory-management operations:

find_storage_home() returns a storage home instance that matches the supplied
storagehome ID. If the operation cannot find a storage home, it raises a
NotFound exception.

find_by_pid() searches for the specified storage object among the storage
homes that are provided by the target session. If successful, the operation returns
an incarnation of the specified storage object; otherwise, it raises the exception
NotFound.

module CosPersistentState {
 interface CatalogBase {
 readonly attribute AccessMode access_mode;

 StorageHomeBase
 find_storage_home(in string storage_home_type_id)
 raises (NotFound);

 StorageObjectBase
 find_by_pid(in Pid the_pid) raises (NotFound);

 void flush();
 void refresh();
 void free_all();
 void close();
 };
 // ...

 local interface Session : CatalogBase {};

 interface TransactionalSession : Session {
 // ...
 };
};
577

CHAPTER 19 | Persistent State Service
flush() writes to disk any cached modifications of storage object incarnations
that are managed by this session. This operation is useful when an application
creates a new storage object or updates a storage object, and the modification is
not written directly to disk. In this case, you can call flush() to rid the cache of
“dirty” data.

refresh() refreshes any cached storage object incarnations that are accessed by
this session. This operation is liable to invalidate any direct reference to a
storage object incarnation’s data member.

free_all() sets to 0 the reference count of all PSDL storage objects that have
been incarnated for the given session.

PSDL storage object instances are reference-counted by the application. Freeing
references can be problematic for storage objects that hold references to other
storage objects. For example, if storage object A holds a reference to storage
object B, A’s incarnation owns a reference count of B’s incarnation. When
storage objects form a cyclic graph, the corresponding instances own reference
count of each other. For example, the following PSDL storage type definition
contains a reference to itself:

abstract storagetype Person {
 readonly state string full_name;
 state ref<Person> spouse;
};

When a couple is formed, each Person incarnation maintains the other Person’s
incarnation in memory. Therefore, the cyclic graph can never be completely
released even if you correctly release all reference counts. In this case, the
application must call free_all().

close() terminates the session. When the session is closed, it is also flushed. If
the session is associated with one or more transactions (see below) when
close() is called, these transactions are marked as roll-back only.
 578

Accessing Storage Objects
Getting a Storage Object Incarnation
After you have an active session, you use this session to get a storage home; you
can obtain from this storage home incarnations of its storage objects. You can
then use these incarnations to manipulate the actual storage object data.

To get a storage home, call find_storage_home() on the session. You narrow
the result to the specific storage home type.

Call one of the following operations on the storage home to get the desired
storage object incarnation:

• One of the find operations that are generated for key in that storage home.

(see page 551).

• find_by_short_pid()
579

CHAPTER 19 | Persistent State Service
Querying Data
Orbix PSS provides simple JDBC-like queries.You use an
IT_PSS::CatalogBase to create a Statement. For example:

IT_PSS::Statement_var stmt = catalog->it_create_statement();

Then you execute a query that returns a result set:

Orbix PSS supports the following form of query:

select ref(h) from home_type_id h

The alias must be h.

Example 81: Executing a query

// Gets all accounts
IT_PSS::ResultSet_var result_set
 = stmt->execute_query("select ref(h) from PSDL:Bank:1.0 h");
while (result_set->next())
{
 CORBA::Any_var ref_as_any = result_set->get(1);
 BankDemoStore::AccountRef ref;
 ref_as_any >>= ref;
 cout << "account_id: " << ref->account_id()
 << " balance: $" << ref->balance()
 << endl;
}
result_set->close(); // optional in C++
statement->close(); // optional in C++
 580

Accessing Storage Objects
Associating CORBA and Storage Objects
The simplest way to associate a CORBA object with a storage object is to bind
the identity of the CORBA object (its oid, an octet sequence) with the identity of
the storage object.

For example, to make the storage objects stored in storage home Bank remotely
accessible, you can create for each account a CORBA object whose object ID is
the account number (account_id).

To make such a common association easier to implement, each storage object
provides two external representations of its identity as octet sequences: the pid
and the short_pid:

short_pid is a unique identifier within a storage home and its derived homes.

pid is a unique identifier within the datastore.
581

CHAPTER 19 | Persistent State Service
Thread Safety
A storage object can be used like a struct: it is safe to read concurrently the
same storage object incarnation, but concurrent writes or concurrent read/write
are unsafe. This behavior assumes that a writer typically uses its own transaction
in a single thread; it is rare for an application to make concurrent updates in the
same transaction.

Flushing or locking a storage object is like reading this object. Discarding an
object is like updating it.

A number of CosPersistentState::Session operations are not thread-safe
and should not be called concurrently. No thread should use the target session, or
any object in the target session such as a storage object incarnation or storage
home, when one of the following operations is called:

Session::free_all()
Session::it_discard_all()
Session::refresh()
Session::close()
TransactionalSession::start()
TransactionalSession::suspend()
TransactionalSession::end()

OTS operations are thread-safe. For example one thread can call
tx_current->rollback() while another thread calls start(), suspend(), or
end() on a session involved in this transaction, or while a thread is using storage
objects managed by that session.
 582

Using Replication
Using Replication

Overview The persistent state service provides the ability to create replicated databases.
This facility can be used to make persistent data more highly available and
provide some load distribution.

Replication model The persistent state service implements a simple replication model where there
is one master that allows both read and write access to data and many slaves that
provide read-only access to the data. Failure of a master results in automatic
promotion of a slave to being the new master. Depending on the implementation
of the data server, the slaves can forward read requests on to their associated
master. By implementing the server in such a way, you minimize the impact on
clients wishing to access replicated data.

Platform constraints Due to limitations in Berkeley DB, the master and all its replicas must be on
platforms with a common transaction log format. This means that the platforms
must use the same endian format and the same data width.

In this section This section contains the following subsections:

Delegating to the Master page 584

Custom Delegation Interface page 587

Configuring the Replica Group page 589

Initializing the Replica Group page 591

Operations that Support Replication page 596
583

CHAPTER 19 | Persistent State Service
Delegating to the Master

Overview If you are running a service in a replicated cluster, any operations that make
permanent updates to the database must be delegated to the master replica. The
replica’s operations can be classified as follows:

• Ordinary read operations.

• Transactional read operations.

• Write operations.

Ordinary read operations An ordinary read operation is a non-transactional read operation or a local
(non-distributed) transactional read operation. In this case, the replica can access
the database directly, as shown in Figure 42.

Figure 42: No Delegation Required for Ordinary Read Operation
 584

Using Replication
Transactional read operations A transactional read operation is a read operation that requires read access to
the database backend and takes place in the context of a distributed OTS
transaction. In this case, the replica must delegate to the master in order to access
the database, as shown in Figure 43.

Figure 43: Delegation Required for Transactional Read Operation
585

CHAPTER 19 | Persistent State Service
Write operations A write operation can either be an ordinary write operation or a transactional
write operation. In both cases, the replica must delegate to the master in order to
access the database, as shown in Figure 44.

Figure 44: Delegation Required for Write Operation
 586

Using Replication
Custom Delegation Interface

Overview Every replica must implement a custom delegation interface, which is used as
the main point of contact between replicas in the group. There is no standard
form for the delegation interface; a delegation interface must be custom defined
for each application.

In general, a custom delegation interface must have the following elements:

• Operations that update the database—any operations that require updates

to the database must be routed through the master. The delegation interface

must, therefore, expose application-specific operations that update the

database.

• Accessing the PSS replica IOR—in order to initialize the PSS layer, a

replica must be able to retrieve the IT_PSS::DynamicReplica IORs from

all of the other replicas in the group. Each replica makes its replica IOR

available by defining a get_pss_replica() operation on the delegation

interface.

Outline of a delegation interface Example 82 shows the outline of a typical delegation interface,
MasterDelegate. You can use any name for the delegation interface.

Example 82: Outline of a Delegation Interface

// IDL

interface MasterDelegate {
 // Part I - Operations that update the Database
 // Two kinds of operations must delegate to the master:
 // - Transactional reads
 // - Writes (ordinary or transactional)
 ...
 ... // <--- Insert your operations here!

 // Part II - Accessing the PSS replica IOR
 // (needed for Replica Group initialization)
 IT_PSS::DynamicReplica
 get_pss_replica(
 out boolean is_master
);
};
587

CHAPTER 19 | Persistent State Service
Obtaining a reference to a replica
instance

The IT_PSS::TransactionalSession interface provides the get_replica()
function to obtain a reference to the replicas instance. Because the IOR of the
replica instance is transient, this function is useful for discovering the set of
active replicas upon start-up. For example, a server could register a persistent
POA with the naming service. This POA could contain a session object that
other replicas can call get_replica() on as they come up.

The reference returned from get_replica() can be narrowed to a
IT_PSS::DynamicReplica to be used in the replicas session manager parameter.

Note: The get_replica() function is defined only on the
TransactionalSession interface, because replication requires the use of
transactional sessions.
 588

Using Replication
Configuring the Replica Group

Overview The configuration of a replica group has the following aspects:

• Core configuration—for a replica group, consists of a list of IORs that

enable all of the replicas in the group to contact each other. This aspect of

configuration is described here in detail.

• Customizing replication behavior—some Orbix configuration variables in

the plugins:pss_db namespace enable you to customize replication

behavior. See the Configuration Reference for details.

Information needed for replica
group configuration

In additional to the usual application configuration, the following information is
needed to configure a replica group:

• Replica names.

• Delegate IORs.

Replica names Each replica in a group has a unique name. By default the name used is the
ORB’s name, but this can be changed through configuration. For more details
see the plugins:pss_db namespace in the Configuration Guide.

Delegate IORs The delegation interface is the primary point of contact between replicas in a
group (see “Custom Delegation Interface” on page 587). Therefore, each replica
must have access to the complete list of delegate IORs for the group.

Approaches to configuring a
replica group

Orbix does not mandate a specific approach to configuring a replica group.
There are a number of options:

• Using the Orbix configuration file.

• Using the CORBA naming service.

• Using another method.
589

CHAPTER 19 | Persistent State Service
Using the Orbix configuration file You can use the Orbix configuration file to store a list of replica name/delegate
IOR pairs. For this approach, you need to use the IT_Config programming
interface to access a custom setting in the Orbix configuration—see
“Configuring and Logging” on page 757 for details.

For example, the CORBA naming service uses the following setting to configure
itself as a replicated cluster:

IT_NameServiceReplicas = [
 "iona_services.naming.host01=IOR:......",
 "iona_services.naming.host02=IOR:......",
 "iona_services.naming.host03=IOR:......", ...];

Where each entry in the list has the form:

ReplicaName=StringifiedDelegateIOR

Using the CORBA naming service You can use the CORBA naming service to store the delegate IORs.

For example, you could designate a naming context to hold the data for a
particular replica group. In this naming context, you can store all of the delegate
object references for the replica group, where the name of each delegate object
reference is the replica name.

Using another method Since there are no restrictions on the approach to storing configuration
information for a replica group, you can use any other method—for example,
storing the information in a custom configuration file.
 590

Using Replication
Initializing the Replica Group

Overview Both the Orbix IT_PSS::SessionManager interface and the OMG
PSS::TransactionalSession interface can be used to create and manage a
replica (both master and slave). The steps for creating a replica and associating it
with a session are similar to the steps for creating a default PSS datastore, except
that the parameter list must include a replicas parameter. The replicas
parameter contains a list of IORs for the other members of the replica group. If
there are no other active replicas, an empty sequence should be used.

Initializing a replica group Initializing a replica group consists of essentially the following steps:

1. Read a table of replica name/delegate IOR pairs from configuration.

2. Iterate over all of the delegate objects, calling get_pss_replica() on each

one to obtain a list of dynamic replica objects.

3. Use the list of dynamic replica objects (excluding the replica object for the

current application) to initialize the PSS.

Example NamedReplica class Example 83 shows an example of a class, NamedReplica, that is used to store a
replica name/delegate IOR pair. A list of NamedReplica objects can be used to
store a table of delegate IORs.

Note: If the replicas parameter is missing, the session is created as a
master.

Example 83: Class to Store a Replica Name and Delegate IOR

// C++
class NamedReplica {
 public:
 IT_String m_name;
 CORBA::Object_var m_obj

 NamedReplica();
 NamedReplica(const char* name, CORBA::Object_var obj);
 ~NamedReplica();
};
591

CHAPTER 19 | Persistent State Service
Creating a replica group using the
SessionManager interface

Example 84 shows how to initialize a replica group for a session using the
SessionManager interface. Starting with a table of replica name/delegate IOR
pairs (stored in ns_list), this code fragment iterates over all of the remote
delegate objects, calling get_pss_replica() on each to construct a list of
remote IT_PSS::DynamicReplica object references.

Example 84: Initializing a Replica Group for an Ordinary Session

// C++

IT_CORBA::ORB_var it_orb = IT_CORBA::ORB::_narrow(m_orb);
assert(!CORBA::is_nil(it_orb));

1 CORBA::String_var replica_name = it_orb->it_orb_name();

2 IT_PSS::DynamicReplicaSeq replicas(10);
replicas.length(0);

3 ReplicaList ns_list(it_orb);

4 for (ReplicaList::iterator iter = ns_list.begin();
 iter != ns_list.end();
 iter++)
{

5 if (strcmp (replica_name,(*iter).m_name.c_str()) == 0)
 {
 // Ignore our own value.
 }
 else
 {
 CORBA::Boolean replica_is_master = IT_false;;
 IT_PSS::DynamicReplica_var replica =
 IT_PSS::DynamicReplica::_nil();
 try
 {

6 MasterDelegate_var delegate =
 MasterDelegate::_narrow((*iter).m_obj);

7 replica =
 delegate->get_pss_replica(replica_is_master);

 replicas.length(replicas.length() + 1);
 replicas[replicas.length() - 1] =
 IT_PSS::DynamicReplica::_duplicate(replica.in());

8 if (replica_is_master)
 {
 592

Using Replication
The preceding code can be explained as follows:

1. By default, the current replica name is the ORB name. The

IT_CORBA::ORB::it_orb_name() is a convenient function that returns the

name of the current ORB.

On the other hand, if you plan to set the replica name using the

plugins:pss_db:envs:env-name:replica_name configuration variable,

you should read that variable’s value instead.

 m_remote_master_delegate =
 MasterDelegate::_duplicate(delegate.in());
 }
 }

9 catch (const CORBA::TRANSIENT&)
 {
 // Caught TRANSIENT exception; ignoring replica.
 continue;
 }
 catch (const CORBA::COMM_FAILURE&)
 {
 // Caught COMM_FAILURE exception; ignoring replica.
 continue;
 }
 ...
 }
}

CosPersistentState::ParameterList parameters(4);
parameters.length(4);
parameters[0].name = CORBA::string_dup("to");
parameters[0].val <<= to_string.in();
parameters[1].name = CORBA::string_dup("single writer");
parameters[1].val <<= CORBA::Any::from_boolean(IT_TRUE);
parameters[2].name = CORBA::string_dup("ping period");
parameters[2].val <<= CORBA::ULong(10);

10 parameters[3].name = CORBA::string_dup("replicas");
parameters[3].val <<= replicas;

11 // connector was obtained in preceeding examples
IT_PSS::SessionManager_var session_mgr =

connector->it_create_session_manager(parameters);

Example 84: Initializing a Replica Group for an Ordinary Session
593

CHAPTER 19 | Persistent State Service
2. The replicas variable will be filled with a list of

IT_PSS::DynamicReplica object references for all of the replicas except

the current one.

3. The replica list, ns_list, holds a table of replica name/delegate IOR pairs.

Here it is implemented as a list of NamedReplica objects (see Example 83

on page 591). The ReplicaList constructor automatically populates the

table by reading the replica configuration (see “Configuring the Replica

Group” on page 589).

The ReplicaList type is not a standard class. You have to implement

something like this yourself, however, to store the list of replicas. You

could implement this type using a std::vector<> or std::list<>

template from the C++ STL library.

4. Because the ReplicaList type is defined using the std::list<> template,

you can process the list items using an iterator.

5. Do not add the current replica to the replicas list. To initialize the PSS,

the replicas list should include only the other replica IORs.

6. The m_obj field of the current NamedReplica item is a reference to a

delegate object—in this case, of MasterDelegate type. It must be cast to

the correct type—in this case, using MasterDelegate::_narrow().

7. Call MasterDelegate::get_pss_replica() on the remote delegate object

to obtain a reference to the remote replica object (see “Outline of a

delegation interface” on page 587).

8. If the most recently contacted replica is the master, store a reference to it in

the m_remote_master_delegate variable

9. If we fail to connect to the remote delegate object (raising a

CORBA::TRANSIENT or CORBA::COMM_FAILURE system exception), this is

not a serious problem; just continue executing the loop. We don’t expect

all of the replicas to be running all of the time.

10. Add the replicas list to the parameters list.

11. Initialize a PSS session with replication by calling the

IT_PSS::Connector::it_create_session_manager() operation,

passing in the prepared parameters array.
 594

Using Replication
Creating a replica group using the
TransactionalSession interface

Example 85 shows how to create a replica using the TransactionalSession
interface. Use this to replace the last line of code from Example 84 on page 592.

1. Create a TransactionalSession by calling

create_transactional_session() on the connector.

2. Set the replicas access mode to READ_ONLY.

3. Set the replicas isolation level to the lowest level of risk.

4. The replica has no end of association callback.

5. The TypeId is not implemented.

6. The presence of the replicas parameter in the parameter list indicates that

this instance is a member of a replica group.

Election of a master When there is only one member in a replica group, that replica is started as a
master. When there are two or more members, each replica is started as a slave
and an election is used to decide which replica will be the master.

The operation IT_PSS::TransactionalSession::is_replica() can be used
to determine whether the current replica is a master or a slave. This function has
the following return values: true, if the current replica is a slave; false, if the
current replica is the master.

Example 85: Creating a replica using the TransactionalSession interface

1 CosPersistentState::TransactionalSession_var =
connector->create_transactional_session(

2 READ_ONLY,
3 SERIALIZABLE,
4 NULL,
5 NULL,
6 parameters);
595

CHAPTER 19 | Persistent State Service
Operations that Support Replication

Overview Operations that support replication must be implemented in a particular way. If
the operation performs only non-transactional reads on the database, there is no
need to make any changes. On the other hand, if the operation makes any
updates to the database (write, transactional read/write), it is necessary to divide
the operation implementation into two parts, as follows:

• First alternative: we are not the master—any steps requiring a database

update must be delegated to the master replica. In most cases, if this is not

too inefficient, it is usually simplest to delegate the entire functionality to

the master.

• Second alternative: we are the master—proceed exactly as you would for a

normal, non-replicated operation. The code interacts with the PSS directly.

Implementing a replicated
operation

Example 86 shows the typical outline implementation of an operation that is
capable of replicating any updates to the back-end database.

Example 86: Implementation of a Replicated Operation

// C++

// First alternative: We are NOT the master.
1 while (!m_per_orb->is_master())

 {
 try
 {

2 MasterDelegate_var master = ...

 // Delegating to the master...
3 master->delegated_operation(...);

 return;
 }
 catch (const CORBA::UserException &)
 {
 throw;
 }
 catch (const CORBA::SystemException &se)
 {

4 if(!m_per_orb->find_master())
 {
 596

Using Replication
The preceding code can be explained as follows:

1. The first alternative is chosen when the current replica is not the master:

this alternative is enclosed within a while loop, because it might be

necessary to retry the remote invocation, if the master replica has crashed.

2. A reference to the master’s delegate object has already been obtained—

see, for example, how m_remote_master_delegate is initialized in

Example 84 on page 592.

3. The operation is delegated to the master by calling the appropriate

operation, delegated_operation(), on the master’s delegate interface. This

operation passes in whatever information needs to be written to the

database.

4. If the master has crashed in the meantime, a system exception is raised

(typically CORBA::TRANSIENT or CORBA::COMM_FAILURE). In this case, you

need to force a re-election so that a new master is chosen. The

implementation of find_master() is given in Example 87.

5. Other kinds of error are more serious, so they should generally be logged

and re-thrown.

6. The second alternative is chosen when the current replica is the master. In

this case, the code access the back-end database directly.

 // Error: Failed to find master
 // Log and throw appropriate exception...
 }
 }
 catch (...)
 {

5 // Log and throw appropriate exception...
 }
 }

6 // Second alternative: We are the master.
 // Perform local write / txn write / txn read...
 ...

Example 86: Implementation of a Replicated Operation
597

CHAPTER 19 | Persistent State Service
Refreshing the master Example 87 shows the implementation of the find_master() function, which is
responsible for refreshing the master and finding the new master delegate’s
object reference. This function is called whenever the current master becomes
uncontactable.

Example 87: Implementation of the find_master() Function

// C++
IT_Bool
PerORBInfo::find_master()
{

1 IT_PSS::TransactionalSession_ptr tx_session =
 session_mgr_nc()->get_shared_read_only_session_nc();
 IT_PSS::TransactionalSession2_var tx_session2 =
 IT_PSS::TransactionalSession2::_narrow(tx_session);

 if (CORBA::is_nil(tx_session2.in()))
 {
 return IT_false;
 }
 TimeBase::TimeT timeout =
 refresh_master_interval() * 10000000L;

2 CORBA::String_var name =
 tx_session2->refresh_master(timeout);

3 if(strcmp(name.in(),"") == 0)
 {
 // No master found!
 return IT_false;
 }

4 if(strcmp(name.in(),replica_name_nc()) == 0)
 {
 // We are the master
 return IT_true;
 }

5 ReplicaList ns_list(orb_nc());
 IT_Bool found_master = IT_false;

6 for (ReplicaList::iterator iter = ns_list.begin();
 iter != ns_list.end();
 iter++)
 {
 if (strcmp (name.in(),(*iter).name().c_str()) == 0)
 {
 MasterDelegate_var delegate =
 MasterDelegate::_narrow((*iter).obj_nc());
 598

Using Replication
The preceding code can be explained as follows:

1. From the session manager object, obtain a reference to the current

IT_PSS::TransactionalSession2 instance, tx_session2.

2. Call refresh_master() on the transactional session instance to force the

election of a new master. The timeout parameter places an upper limit on

the length of time that is taken to elect the master.

3. If the return value is an empty string, "", this implies a new master could

not be found.

4. If the master name, name, matches the current replica name,

replica_name_nc(), this means the current application is the new master.

You might also want to set a flag at this point, to record that this

application is the master.

5. The replica list, ns_list, holds a table of replica name/delegate IOR pairs.

Here it is implemented as a list of NamedReplica objects (see Example 83

on page 591). The ReplicaList constructor automatically populates the

table by reading the replica configuration (see “Configuring the Replica

Group” on page 589).

7 set_remote_master_delegate(delegate);
 found_master = IT_true;
 break;
 }
 }

8 if(!found_master)
 {
 // Couldn't find a new master.
 return IT_false;
 }
 return IT_true;
}

Example 87: Implementation of the find_master() Function

Note: You can check at any time whether or not the current replica is
the master by calling the
IT_PSS::TransactionalSession::is_replica() operation. A return
value of false implies the current application is the master.
599

CHAPTER 19 | Persistent State Service
6. Process the items in ns_list using an iterator (the ReplicaList type is

based on the std::list standard template type).

7. The set_remote_master_delegate() function is just a placeholder. What

you need to do at this point is to store a reference to the remote master

delegate in a variable—for example, Example 84 on page 592 stores the

master delegate reference in m_remote_master_delegate.

8. If the master delegate has not been found at this point, it implies that the

replica name returned from refresh_master() matches none of the

known replicas in ns_list (this should never happen).

Current master replica name The name of the current master replica is available from the operation
IT_PSS::TransactionalSession2::refresh_master()—see Example 88.
This returns either the name of the current master or an empty string, if there is
no master available. It takes a timeout parameter that allows the function to
block for a period until a new master is found.

Example 88: Getting the master’s name

// C++
// Set timeout for 30 seconds
TimeBase::TimeT timeout = 30 * 10000000L;
IT_PSS::TransactionalSession_var tx_session = ...
IT_PSS::TransactionalSession2_var tx_session2 =
 IT_PSS::TransactionalSession2::_narrow(session.in());
CORBA::String_var name = tx_session2->refresh_master(timeout);
 600

PSDL Language Mappings
PSDL Language Mappings
Application code that uses PSS interacts with abstract storage types, abstract
storage homes and types defined in the CosPersistentState module. This code
is completely shielded from PSS-implementation dependencies by the C++
language mapping for abstract storage types, abstract storage homes, and the
types defined by the CosPersistentState module.

Storage types and storage homes are mapped to concrete programming language
constructs with implementation-dependent parts such as C++ members.

The C++ mapping for PSDL and IDL modules is the same. The mapping for
abstract storage types and abstract storage homes is similar to the mapping for
IDL structs and abstract valuetypes; the mapping for storage types and storage
homes is similar to the mapping for IDL structs or valuetypes.

Implementation of operations in abstract storage types and abstract storage
homes are typically provided in classes derived from classes generated by the
psdl backend to the IDL compiler.

Factories and connector
operations

The CosPersistentState module defines factories to create instances of all
user-defined classes, and operations to register them with a given connector:

module CosPersistentState {
 native StorageObjectFactory;
 native StorageHomeFactory;
 native SessionFactory;

 interface Connector {

 StorageObjectFactory
 register_storage_object_factory(
 in TypeId storage_type_name,
 in StorageObjectFactory factory
);

 StorageHomeFactory
 register_storage_home_factory(
 in TypeId storage_home_type_name,
 in StorageHomeFactory factory
);
601

CHAPTER 19 | Persistent State Service
Each register_ operation returns the factory previously registered with the
given name; it returns NULL if there is no previously registered factory.

The CosPersistentState module also defines two enumeration types:

YieldRef defines overloaded functions that return incarnations and references.

ForUpdate defines an overloaded accessor function that updates the state
member.

 SessionFactory
 register_session_factory(
 in TypeId catalog_type_name,
 in SessionFactory factory
);

 // ...
 };
};

module CosPersistentState {
 enum YieldRef { YIELD_REF };
 enum ForUpdate { FOR_UPDATE };
};
 602

PSDL Language Mappings
abstract storagehome
The language mappings for abstract storage homes are defined in terms of an
equivalent local interface: the mapping of an abstract storage home is the same
as the mapping of a local interface of the same name.

Inherited abstract storages homes map to inherited equivalent local interfaces in
the equivalent definition.

The equivalent local interface of an abstract storage home that does not inherit
from any other abstract storage home inherits from local interface
CosPersistentState::StorageHomeBase.
603

CHAPTER 19 | Persistent State Service
abstract storagetype
An abstract storage type definition is mapped to a C++ abstract base class of the
same name. The mapped C++ class inherits (with public virtual inheritance)
from the mapped classes of all the abstract storage type inherited by this abstract
storage type.

For example, given this PSDL abstract storage type definition:

the IDL compiler generates the following C++ class:

The forward declaration of an abstract storage type is mapped to the forward
declaration of its mapped class and Ref class.

Ref class For each abstract storage type and concrete storage type definition, the IDL
compiler generates the declaration of a concrete C++ class with Ref appended to
its name.

A Ref class behaves like a smart pointer: it provides an operator->() that
returns the storage object incarnation corresponding to this reference; and
conversion operators to convert this reference to the reference of any base type.

A pointer to a storage object incarnation can be implicitly converted into a
reference of the corresponding type, or of any base type. Each reference also has
a default constructor that builds a NULL reference, and a number of member
functions that some implementations might be able to provide without loading
the referenced object.

abstract storagetype A {}; // implicitly inherits
 // CosPersistentState::StorageObject
abstract storagetype B : A {};

class A :
 public virtual CosPersistentState::StorageObject {};
class ARef { /* ... */};
class B : public virtual A {};
class BRef {/*... */};

Note: Ref types manage memory in the same way as _ptr reference types.
For functionality that is equivalent to a _var reference type, the IDL compiler
(with the -psdl switch) also generates Ref_var types (see page 608).
 604

PSDL Language Mappings
Ref class members Each Ref class has the following public members:

• Default constructor that creates a NULL reference.

• Non-explicit constructor takes an incarnation of the target storage type.

• Copy constructor.

• Destructor.

• Assignment operator.

• Assignment operator that takes an incarnation of the target [abstract]

storage type.

• operator->() that dereferences this reference and returns the target

object. The caller is not supposed to release this incarnation.

• deref() function that behaves like operator->()

• release() function that releases this reference

• destroy_object() that destroys the target object

• get_pid() function which returns the pid of the target object.

• get_short_pid() function which returns the short-pid of the target object.

• is_null() function that returns true only if this reference is NULL.

• get_storage_home() function that returns the storage home of the target

object.

• For each direct or indirect base class of the abstract storage type, a

conversion operator that converts this object to the corresponding Ref.

Each reference class also provides a typedef to its target type, _target_type.
This is useful for programming with templates.

Reference class example For example, given this abstract storage type:

abstract storagetype A {};
605

CHAPTER 19 | Persistent State Service
the IDL compiler generates the following reference class:

Example 89: Generated reference class

class ARef
{
public:
 typedef A _target_type;

 // Constructors
 ARef() throw ();
 ARef(A* target) throw ();
 ARef(const ARef& ref) throw ();
 // Destructor
 ~ARef() throw ();

 // Assignment operator
 ARef& operator=(const ARef& ref) throw ();
 ARef& operator=(T* obj) throw ();

 // Conversion operators
 operator CosPersistentState::StorageObjectRef() const

throw();

 // Other member functions
 void release() throw ();
 A* operator->() throw (CORBA::SystemException);
 A* deref() throw (CORBA::SystemException);
 void destroy_object() throw (CORBA::SystemException);

 CosPersistentState::Pid*
 get_pid() const throw (CORBA::SystemException);

 CosPersistentState::ShortPid*
 get_short_pid() const throw (CORBA::SystemException);

 CORBA::Boolean is_null() const throw ();

 CosPersistentState::StorageHomeBase_ptr
 get_storage_home() const throw (CORBA::SystemException);

 // additional implementation-specific members
};
 606

PSDL Language Mappings
For operation parameters, Refs are mapped as follows:

Table 25: PSDL Reference Mappings

PSDL C++

in ref<S> SRef

inout ref<S> SRef&

out ref<S> SRef_out

(return) ref<S> SRef
607

CHAPTER 19 | Persistent State Service
Ref_var Classes
The _var class associated with a _var provides the same member functions as the
corresponding Ref class, and with the same behavior. It also provides these
members:

• The ref() function returns a pointer to the managed reference, or 0 if the

managed reference is NULL.

• Constructors and assignment operators that accept Ref pointers.
 608

PSDL Language Mappings
State Members
Each state member is mapped to a number of overloaded public pure virtual
accessor and modifier functions, with the same name as the state member. These
functions can raise any CORBA standard exception.

A state member of a basic C++ type is mapped like a value data member. There
is no modifier function if the state member is read-only.

For example, the following PSDL definition:

is mapped to this C++ class:

Reference to abstract storage type A state member whose type is a reference to an abstract storage type is mapped
to two accessors and two modifier functions. One of the accessor functions takes
no parameter and returns a storage object incarnation, the other takes a
CosPersistentState::YieldRef parameter and returns a reference. One of the
modifier functions takes an incarnation, the other one takes a reference. If the
state member is read-only, only the accessor functions are generated.

For example, the following PSDL definition:

// PSDL
abstract storagetype Person {
 state string name;
};

class Person : public virtual CosPersistentState::StorageObject
{

public:
 virtual const char* name() const = 0;
 virtual void name(const char* s) = 0; // copies
 virtual void name(char* s) = 0; // adopts
 virtual void name(const CORBA::string_var &) = 0;
};

abstract storagetype Bank;

abstract storagetype Account {
 state long id;
 state ref<Bank> my_bank;
};
609

CHAPTER 19 | Persistent State Service
is mapped to this C++ class:

All other state members are mapped to two accessor functions—one read-only,
and one read-write—and one modifier function.

Read-only state member If the state member is read-only, only the read-only accessor is generated. For
example, the following PSDL definition:

is mapped to this C++ class:

class Account : public virtual CosPersistentState::StorageObject
{

public:
 virtual CORBA::Long id() = 0;
 virtual void id(CORBA::Long l) = 0;
 virtual Bank* my_bank() const= 0;
 virtual BankRef my_bank
 (CosPersistentState::YieldRef yr) const = 0;
 virtual void my_bank(BankRef b) = 0;
};

abstract storagetype Person {
 readonly state string name;
 state CORBA::OctetSeq photo;
};

class Person : public virtual CosPersistentState::StorageObject
{

public:
 virtual const char* name() = 0;
 virtual const OctetSeq& photo() const = 0;
 virtual OctetSeq& photo(CosPersistentState::ForUpdate fu)
 = 0;
 virtual void photo(const OctetSeq& new_one) = 0;
};
 610

PSDL Language Mappings
Operation Parameters
Table 26 shows the mapping for parameters of type S and ref <S> (where S is an
abstract storage type:.

Table 26: Mapping for PSDL parameters

PSDL parameter C++ parameter

in S param const S* param

inout S param S& param

out S param S_out param

(return) S (return) S*
611

CHAPTER 19 | Persistent State Service
storagetype
A storagetype is mapped to a C++ class of the same name. This class inherits
from the mapped classes of all the abstract storage types implemented by the
storage type, and from the mapped class of its base storage type, if any. This
class also provides a public default constructor.

All state members that are implemented directly by the storage type are
implemented by the mapped class as public functions.

For example, the following PSDL definition:

is mapped to this C++ class:

abstract storagetype Dictionary {
 readonly state string from_language;
 readonly state string to_language;
 void insert(in string word, in string translation);
 string translate(in string word);
};

// a portable implementation:

struct Entry {
 string from;
 string to;
};
typedef sequence<Entry> EntryList;

storagetype PortableDictionary implements Dictionary {
 state EntryList entries;
};

class PortableDictionary : public virtual Dictionary /* ... */ {
public:
 const char* from_language() const;
 const char* to_language() const;
 const EntryList& entries() const;
 EntryList& entries(CosPersistentState::ForUpdate fu);
 void entries(const EntryList&);
 PortableDictionary();
 // ...
};
 612

PSDL Language Mappings
For each storage type, a concrete Ref class is also generated. This Ref class
inherits from the Ref classes of all the abstract storage types that the storage type
implements, and from the Ref class of the base storage type, if any.

The IDL compiler generates Ref class declarations for a storage type exactly as
it does for an abstract storage type. For more information, see page 604.
613

CHAPTER 19 | Persistent State Service
storagehome
A storagehome is mapped to a C++ class of the same name. This class inherits
from the mapped classes of all the abstract storage homes implemented by the
storage home, and from the mapped class of its base storage home, if any. This
class also provides a public default constructor.

A storage home class implements all finder operations implicitly defined by the
abstract storage homes that the storage home directly implements.

The mapped C++ class provides two public non-virtual _create() member
functions with these signatures:

• A parameter for each storage type state member. This _create() function

returns an incarnation.

• A parameter for each storage type state member, and a

CosPersistentState::YieldRef parameter. This _create() function

returns a reference.

It also provides two public virtual _create() member functions with these
signatures:

• A parameter for each storage type’s reference representation members.

This _create() function returns an incarnation

• A parameter for each storage type’s reference representation members, and

a CosPersistentState::YieldRef parameter. This _create() function

returns a reference.

For example, given the following definition of storage home
PortableBookStore:

abstract storagetype Book {
 readonly state string title;
 state float price;
};

abstract storagehome BookStore of Book {};

storagetype PortableBook implements Book {
 ref(title)
};

storagehome PortableBookStore of PortableBook
 implements BookStore {};
 614

PSDL Language Mappings
The IDL compiler (with the pss_r backend) generates the C++ class
PortableBookStore:

class PortableBookStore : public virtual BookStore /* ... */ {
public:
 virtual PortableBook* _create(const char* title, Float

price);
 virtual PortableBook* _create();
 virtual PortableBookRef _create(
 const char* name,
 Float price,
 CosPersistentState::YieldRef yr
);
 virtual PortableBookRef _create(
 const char* title,
 CosPersistentState::YieldRef yr
);
 // ...
};
615

CHAPTER 19 | Persistent State Service
Factory Native Types
Native factory types StorageObjectFactory, StorageHomeFactory, and
SessionFactory map to C++ classes of the same names:

namespace CosPersistentState {

 template class<T>
 class Factory {
 public:
 virtual T* create()
 throw (SystemException) = 0;
 virtual void _add_ref() {}
 virtual void _remove_ref() {}
 virtual ~Factory() {}
 };

 typedef Factory<StorageObject> StorageObjectFactory;
 typedef Factory<StorageHomeBase> StorageHomeFactory;
 typedef Factory<Session> SessionFactory;
};
 616

CHAPTER 20

Event Service
The event service enables decoupled communication between
client consumers and suppliers by forwarding messages through
an event channel.

An event originates at a client supplier and is forwarded through an event
channel to any number of client consumers. Suppliers and consumers are
completely decoupled: a supplier has no knowledge of the number of consumers
or their identities, and consumers have no knowledge of which supplier
generated a given event.

In this chapter This chapter discusses the following topics:

Overview page 618

Event Communication Models page 620

Developing an Application Using Untyped Events page 624

Developing an Application Using Typed Events page 640
617

CHAPTER 20 | Event Service
Overview

Service capabilities An event channel provides the following capabilities for forwarding events:

• Enables consumers to subscribe to events of certain types.

• Accepts incoming events from client suppliers.

• Forwards supplier-generated events to all connected consumers.

• Forwarding messages using well defined IDL interfaces.

Connections Suppliers and consumers connect to an event channel and not directly to each
other, as shown in Figure 45. From a supplier’s perspective, the event channel
appears as a single consumer; from a consumer’s perspective, the event channel
appears as a single supplier. In this way, the event channel decouples suppliers
and consumers.

How many clients? Any number of suppliers can issue events to any number of consumers using a
single event channel. There is no correlation between the number of suppliers
and the number of consumers. New suppliers and consumers can be easily added
to or removed from the system. Furthermore, any supplier or consumer can
connect to more than one event channel.

Figure 45: Suppliers and consumers communicating through an event channel

Event Channel
Suppliers

Event propagation

Consumers
 618

Overview
For example, many documents might be linked to a spreadsheet cell, and must
be notified when the cell value changes. However, the spreadsheet software does
not need to know about the documents linked to its cell. When the cell value
changes, the spreadsheet software should be able to issue an event that is
automatically forwarded to each connected document.

Event delivery Figure 46 shows a sample implementation of event propagation in a CORBA
system. In this example, suppliers are implemented as CORBA clients; the event
channel and consumers are implemented as CORBA servers. An event occurs
when a supplier invokes a clearly defined IDL operation on an object in the
event channel application. The event channel then propagates the event by
invoking a similar operation on objects in each of the consumer servers.

Figure 46: Event propagation in a CORBA system

Event Channel
1. Supplier calls operation

Consumers

on event channel

Supplier

2. Event channel calls
operation on consumers
619

CHAPTER 20 | Event Service
Event Communication Models

Overview CORBA specifies two approaches to initiating the transfer of events between
suppliers and consumers

• Push model: Suppliers initiate transfer of events by sending those events to

the channel. The channel then forwards them to any consumers connected

to it.

• Pull model: Consumers initiate the transfer of events by requesting them

from the channel. The channel requests events from the suppliers

connected to it.

• Typed push model: Suppliers initiate the transfer of events by calling

operations on an interface that is mutually agreed upon by both the

consumer and the supplier. The channel forwards the events to all

connected consumers that support the interface.

Push model In the push model, suppliers generate events and actively pass them to an event
channel. In this model, consumers wait for events to arrive from the channel.

Figure 47 illustrates a push model architecture in which push suppliers
communicate with push consumers through the event channel.

Figure 47: Push model of event transfer

Event Channel
Push

Event propagation

Push

suppliers

consumers
 620

Event Communication Models
In this architecture, a supplier initiates event transfer by invoking an IDL
operation on an object in the event channel. The event channel then invokes a
similar operation on an object in each consumer that is connected to the channel.

Pull model In the pull model, a consumer actively requests events from the channel. The
supplier waits for a pull request to arrive from the channel. When a pull request
arrives, event data is generated and returned to the channel.

Figure 48 illustrates a pull model architecture in which pull consumers
communicate with pull suppliers through the event channel.

In this architecture, the event channel invokes an IDL operation on an object in
each supplier to collect events. When a consumer invokes a similar operation on
the event channel, the channel forwards the events to the consumer that initiated
the transfer.

Mixing push and pull models Because suppliers and consumers are completely decoupled by the event
channel, push and pull models can be mixed in a single system.

Figure 48: Pull Model suppliers and consumers communicating through an
event channel

Event Channel
Pull

Event propagation

Pull

suppliers

consumers
621

CHAPTER 20 | Event Service
For example, suppliers can connect to an event channel using the push model,
while consumers connect using the pull model, as shown in Figure 49.

In this case, both suppliers and consumers participate in initiating event transfer.
A supplier invokes an operation on an object in the event channel to transfer an
event to the channel. A consumer then invokes another operation on an event
channel object to transfer the event data from the channel.

In the case where push consumers and pull suppliers are mixed, the event
channel actively propagates events by invoking IDL operations in objects in
both suppliers and consumers. The pull supplier waits for the channel to invoke
an event transfer before sending events. Similarly, the push consumer waits for
the event channel to invoke event transfer before receiving events.

Typed push model In the typed push model suppliers connect to the channel using a consumer
proxy that supports a user defined interface. The supplier then pushes strongly
typed events to the channel by invoking the operations supported by the
interface.

Figure 49: Push suppliers and pull consumers communicating through an event
channel

Event Channel
Push

Event propagation

Pull

suppliers

consumers
 622

Event Communication Models
Figure 50 shows how typed push suppliers forward events to typed push
consumers through a typed event channel. Push suppliers can only forward event
messages to typed push consumers that support the agreed upon interface.

As shown in the diagram, the decoupled nature of the event communication is
preserved. Only one typed push consumer supports Interface I, but it receives
events from two push suppliers. Also, only a single supplier pushes events using
Interface J, but several typed push consumers support the interface and therefore
receive the events.

Figure 50: Push consumers pushing typed events to typed push consumers

Typed Event Channel

Push

Event propagation

Typed push
suppliers consumers

Interface I

Interface J

Interfa
ce I

Interface I
Interface J

Interface J

Interface J
623

CHAPTER 20 | Event Service
Developing an Application Using Untyped
Events

Overview When using untyped events messages are packaged into Anys before they are
forwarded through the event channel.

In this section This section discusses the following topics:

Obtaining an Event Channel page 625

Implementing a Supplier page 628

Implementing a Consumer page 634
 624

Developing an Application Using Untyped Events
Obtaining an Event Channel

Overview Consumers and suppliers obtain an event channel object reference either by
creating a channel, or by finding an existing one.

You obtain an event channel factory by calling
resolve_initial_references("EventChannelFactory"). You narrow this
reference to a event channel factory with Orbix extensions.

Event channel factory Orbix provides the EventChannelFactory interface, which provides the
operations to create and discover event channels:

module IT_EventChannelAdmin
{
 typedef long ChannelID;

 struct EventChannelInfo
 {
 string name;
 ChannelID id;
 CosEventChannelAdmin::EventChannel reference;
 };
 typedef sequence<EventChannelInfo> EventChannelInfoList;

 exception ChannelAlreadyExists {string name;};
 exception ChannelNotFound {string name;};

 interface EventChannelFactory : IT_MessagingAdmin::Manager
 {
 CosEventChannelAdmin::EventChannel create_channel(
 in string name,
 out ChannelID id)
 raises (ChannelAlreadyExists);

 CosEventChannelAdmin::EventChannel find_channel(
 in string name,
 out ChannelID id)
 raises (ChannelNotFound);
625

CHAPTER 20 | Event Service
Event channel factory operations You can call one of several operations on an event channel factory to create or
find an event channel. By providing both create and find operations, the event
service allows any client or supplier to create an event channel, which other
clients and suppliers can subsequently discover:

create_channel() creates an event channel and returns an object reference.

find_channel() returns an object reference to the named event channel.

find_channel_by_id() returns an object reference to an event channel based on
the channel’s ID.

list_channels() returns a list of event channels, which provides their names, IDs,
and object references.

Example The following code can be used by any supplier or consumer to obtain an event
channel.

 CosEventChannelAdmin::EventChannel find_channel_by_id(
 in ChannelID id,
 out string name)
 raises (ChannelNotFound);

 EventChannelInfoList list_channels();
 };
};

Example 90: Obtaining an event channel

CosEventChannelAdmin::EventChannel_var ec;
IT_EventChannelAdmin::ChannelID id;

1 CORBA::Object_var obj =
 orb->resolve_initial_references("EventChannelFactory");
IT_EventChannelAdmin::EventChannelFactory_var factory =
 IT_EventChannelAdmin::EventChannelFactory::_narrow(obj);

2 try {
 ec = factory->create_channel("EventChannel", id);
}

3 catch (IT_EventChannelAdmin::ChannelAlreadyExists&) {
 626

Developing an Application Using Untyped Events
This code executes as follows:

1. Obtains the event channel factory.

2. Tries to create an event channel by calling create_named_channel().

3. Catches exception IT_EventChannelAdmin::ChannelAlreadyExists if a

channel of the specified name already exists.

4. Tries to obtain an existing channel of the same name by calling

find_channel().

4
 // Channel has been previously created, so find it
 try {
 ec = factory->find_channel("EventChannel", id);
 }
 catch (IT_EventChannelAdmin::ChannelNotFound&) {
 cerr << "Couldn't create or find the event channel" <<
 endl;
 exit(1);
 }
 catch (CORBA::SystemException& event_msg) {
 cerr << "System exception occurred during find_channel: "
 << event_msg << endl;
 exit(1);
 }
} // catch ChannelAlreadyExists

Example 90: Obtaining an event channel
627

CHAPTER 20 | Event Service
Implementing a Supplier

Actions A client supplier program performs the following actions:

1. Instantiates suppliers using the appropriate interface in module

CosEventComm.

2. Connects suppliers to the event channel.

3. Sends event messages to the event channel.

4. Disconnects from the event channel.

Instantiating the Supplier You instantiate a push supplier with the PushSupplier interface; and a pull
supplier with the PullSupplier interface. Both are defined in the IDL module
CosEventComm:

Connecting to a Channel In order to pass messages to the event channel, a supplier must connect to it
through a proxy consumer that receives events from the supplier. Each supplier
must have its own proxy consumer. The proxy consumer passes the events down
the channel.

Example 91: Supplier interfaces

module CosEventComm {
 exception Disconnected {};

 interface PullSupplier
 {
 any pull() raises (Disconnected);
 any try_pull (out boolean has_event)
 raises (Disconnected);
 void disconnect_pull_supplier();
 };

 interface PushSupplier
 {
 void disconnect_push_supplier();
 };
};
 628

Developing an Application Using Untyped Events
A client supplier connects to the event channel in three steps:

1. Obtain a SupplierAdmin object from the event channel.

2. Obtain a proxy consumer in the event channel, to receive the events that

the supplier generates.

3. Connect a supplier to a proxy consumer.

Obtain a SupplierAdmin

On creation, an event channel instantiates a default SupplierAdmin object,
which you obtain by calling for_suppliers() on the event channel. For
example:

Obtain a proxy consumer

A proxy consumer is responsible for receiving event messages from its client
supplier and inserting them into the event channel, where they are forwarded to
all interested consumers. You obtain one proxy consumer for each client
supplier.

The type of proxy consumer that you obtain depends on whether the client
supplier uses the push or pull model. The type of proxy consumer must match
the type of its client supplier: a push supplier must use a push proxy consumer;
and a pull supplier must use a pull proxy supplier.

The CosEventChannelAdmin module supports the two proxy consumer object
types with the following interfaces:

CosEventChannelAdmin::SupplierAdmin_var sa =
 channel->for_suppliers();

module CosEventChannelAdmin
{
 exception AlreadyConnected {};
 exception TypeError {};

 interface ProxyPushConsumer : CosEventComm::PushConsumer
 {
 void
 connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier
) raises (AlreadyConnected);
 };
629

CHAPTER 20 | Event Service
You obtain a proxy consumer by invoking one of the following operations on a
supplier admin:

obtain_push_consumer() returns a push-model proxy consumer.

obtain_pull_consumer() returns a pull-model proxy consumer.

Example

The following code obtains a ProxyPushConsumer for a PushSupplier by
calling obtain_push_consumer().

Connect a supplier to a proxy consumer

After creating a proxy consumer, you can connect it to a compatible client
supplier. This establishes the client supplier’s connection to the event channel so
it can send messages.

 interface ProxyPullConsumer : CosEventComm::PullConsumer
 {
 void
 connect_pull_supplier(
 in CosEventComm::PullSupplier pull_supplier
) raises (AlreadyConnected, TypeError);
 };
 // ...
};

Example 92: Obtaining a proxy consumer

try
{
 CosEventChannelAdmin::ProxyConsumer_var ppc =
 sa->obtain_push_consumer();
}

 630

Developing an Application Using Untyped Events
Each proxy consumer interface supports a connect operation; the operation
requires that the supplier and its proxy support the same delivery model. For
example, the ProxyPushConsumer interface defines
connect_push_supplier(), which only accepts an object reference to a
PushSupplier as input.:

Example

The following code shows one way to implement a PushSupplier client that
connects itself to a proxy consumer.

Sending Event Messages A client supplier sends event messages in one of two ways:

• A push supplier invokes the push operation on its proxy consumer and

supplies the event as an input argument.

• A pull supplier implements try_pull(). When the proxy consumer

invokes a pull operation, the supplier returns an event message if one is

available.

interface ProxyPushConsumer : CosEventComm::PushConsumer
{
 void
 connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier
) raises (AlreadyConnected);
};

Example 93: Connecting a PushSupplier

// proxy ppc and PushSupplier supplier client obtained previously
try{
 ppc->connect_push_supplier(supplier)
}
catch (CosEventChannelAdmin::AlreadyConnected.value ac){
 // Handle the exception
}
catch (CORBA::SystemException& event_msg){
 cerr << "System exception occurred during connect: " <<
 event_msg << endl;
 exit(1);
}

631

CHAPTER 20 | Event Service
Push supplier

A push supplier invokes the push() operation on its proxy consumer. For
example:

Pull supplier

A pull supplier sends event messages only on request. Whether a client
consumer invokes pull() or try_pull(), the pull supplier’s proxy consumer
always invokes try_pull() on its supplier.

Pull suppliers are responsible for implementing try_pull(), which returns a
CORBA::Any. This operation is non-blocking; it returns immediately with an
output parameter of type boolean to indicate whether the return value actually
contains an event.

For example, the following code implements try_pull() by attempting to
populate an event message with the latest baseball scores.

Example 94: Pushing an event message

// proxy consumer and event message already obtained
try{
 proxy->push(event_msg);
}
catch (CORBA::SystemException& sysex){
 cerr << "System exception occurred during push: " <<
 sysex << endl;
 exit(1);
}
catch (CORBA::Exception&){
 cerr << "Unknown exception occurred during push" << endl;
 exit(1);
}

Example 95: Pulling events

PullSupplier_i::try_pull(boolean has_event)
throw(CORBA::SystemException)
{
 boolean has_scores = false;
 boolean has_event = false;

 CORBA::Any event_msg;
 632

Developing an Application Using Untyped Events
Disconnecting From the Event
Channel

A client supplier can disconnect from the event channel at any time by invoking
the disconnect operation on its proxy consumer. This operation terminates the
connection between a supplier and its target proxy consumer. The channel then
releases all resources allocated to support its connection to the supplier,
including destruction of the target proxy consumer.

Each proxy consumer interface supports a disconnect operation. For example,
interface ProxyPushConsumer defines disconnect_push_consumer().

 // check if any baseball scores are available
 string scores = get_latest_scores(has_scores));
 if (has_scores)
 {
 event_msg <<= scores;
 has_event = true;
 }
 return(event_msg);
}

Example 95: Pulling events
633

CHAPTER 20 | Event Service
Implementing a Consumer

Actions A client consumer program performs the following actions:

1. Instantiates consumers with the appropriate CosEventComm interface.

2. Connects consumers to the event channel.

3. Obtains event messages.

4. Disconnects from the event channel.

Instantiating a Consumer You instantiate a push consumer with the PushConsumer interface; and a pull
consumer with the PullConsumer interface. Both are defined in the IDL module
CosEventComm:

Connecting to the Channel Consumers receive messages from the event channel through a proxy supplier.
Each consumer on the channel has its own proxy supplier. Proxy suppliers use
the same delivery method as their consumers and send the appropriate message
type.

Example 96: Consumer interfaces

module CosEventComm
{
 exception Disconnected { };

 interface PushConsumer {
 void push(in any data) raises (Disconnected);

 void disconnect_push_consumer ();
 };

 interface PullConsumer {
 void disconnect_pull_consumer();

 };
};
 634

Developing an Application Using Untyped Events
Consumers connect to the event channel in three steps:

1. Obtain a ConsumerAdmin object from the event channel.

2. Obtain a proxy supplier in the event channel, to receive supplier-generated

event messages.

3. Connect the consumer to a proxy supplier.

Obtain a ConsumerAdmin

On creation, an event channel instantiates a default ConsumerAdmin object,
which you obtain by calling for_consumers() on the event channel. For
example:

Obtain a proxy supplier

A proxy supplier is responsible for distributing event messages that have been
sent by the event channel to its consumer. You create one proxy supplier for
each client consumer.

The type of proxy supplier that you obtain depends on whether the client
consumer uses the push or pull model. The type of proxy supplier must match
the type of its client consumer: a push consumer must use a push proxy supplier;
and a pull consumer must use a pull proxy supplier.

The CosEventChannelAdmin module supports the two proxy supplier object
types with the following interfaces:

CosEventChannelAdmin::ConsumerAdmin_var ca =
 channel->for_consumers();

Example 97: Proxy supplier interfaces

module CosEventChannelAdmin
{
 exception AlreadyConnected {};
 exception TypeError {};

 interface ProxyPullSupplier : CosEventComm::PullSupplier
 {
 void
 connect_pull_consumer(
 in CosEventComm::PullConsumer pull_consumer
) raises (AlreadyConnected);
 };
635

CHAPTER 20 | Event Service
You obtain a proxy supplier by invoking one of the following operations on a
consumer admin:

obtain_push_supplier() returns a push-model proxy supplier.

obtain_pull_supplier() returns a pull-model proxy supplier.

Example

The following code obtains a proxy supplier for a PushConsumer by calling
obtain_push_supplier().

Connect the consumer to a proxy supplier

After creating a proxy supplier, you can connect it to a compatible client
consumer. This establishes the client’s connection to the event channel, so it can
obtain messages from suppliers.

 interface ProxyPushSupplier : CosEventComm::PushSupplier
 {
 void
 connect_push_consumer(
 in CosEventComm::PushConsumer push_consumer
) raises (AlreadyConnected, TypeError);
 };
};

Example 97: Proxy supplier interfaces

Example 98: Obtaining a proxy supplier

try
{
 CosEventChannelAdmin::ProxySupplier_var pps =
 ca->obtain_push_supplier();
}

 636

Developing an Application Using Untyped Events
Each proxy supplier interface supports a connect operation; the operation
requires that the client supplier and its proxy support the same push or pull
model and event-message type. For example, the ProxyPushSupplier interface
defines connect_push_consumer(), which only accepts an object reference to a
PushConsumer as input:

Example

The following example shows how you might implement a PushConsumer client
that connects itself to a proxy supplier.

Obtaining Event Messages A client consumer obtains event messages in one of two ways:

• A push consumer implements the push() operation. As events become

available, the proxy supplier pushes them to its client consumer.

• A pull consumer invokes pull() or try_pull() on its proxy supplier; the

proxy supplier returns with the next available event.

interface ProxyPushSupplier :
 ProxySupplier,
 CosEventComm::PushSupplier
{
 void connect_push_consumer
 (in CosEventComm::PushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

Example 99: Connecting to a proxy supplier

// Proxy pps and PushConsumer consumer obtained previously
try{
 pps->connect_push_consumer(consumer)
}
catch (CosEventChannelAdmin::AlreadyConnected ac){
 cerr << "Already connecting to channel." << endl;
 exit (1);
}
catch (CORBA::SystemException& event_msg){
 cerr << "System exception occurred during connect: "
 << event_msg << endl;
 exit(1);
}

637

CHAPTER 20 | Event Service
Push consumer

A push consumer implements the push() operation. For example:

Pull consumer

A pull client consumer invokes the pull() or try_pull() operation on its proxy
supplier to solicit event messages; the proxy supplier returns with the next
available event.

The proxy supplier interface supports operations pull() and try_pull(). A
pull consumer invokes one of these operations on its ProxyPullSupplier. Both
operations return a CORBA::Any argument; they differ only in their blocking
mode:

pull() blocks until an event is available.

try_pull() is non-blocking—it returns immediately with a boolean output
parameter to indicate whether the return value actually contains an event. The
event channel continues to invoke the pull operation on suppliers until one of
them supplies an event. When an event becomes available, try_pull() sets its
boolean has_event parameter to true and returns with the event data to the pull
consumer.

The following example shows how a pull consumer might invoke try_pull() to
receive data from its ProxyPullSupplier.

Example 100:Receiving events using push()

void NotifyPushConsumer_i::push (CORBA::Any event)
 throw(CORBA::SystemException)
{
 CORBA::String scores;
 event >> = scores;
 cout << "Current " << sports_type << "scores: " << scores
 << endl;
 }
}

Example 101:Pulling events

// C++
CORBA::Any* event;
const char * scores;
boolean has_data = false;
 638

Developing an Application Using Untyped Events
Disconnecting From the Event
Channel

A client consumer can disconnect from the event channel at any time by
invoking the disconnect operation on its proxy supplier. This operation
terminates the connection between the consumer and its target proxy supplier.
The event channel then releases all resources allocated to support its connection
to the consumer, including destruction of the target proxy supplier.

Each proxy supplier interface supports a disconnect operation. For example,
interface ProxyPushSupplier defines disconnect_push_supplier().

try{
 event = proxy->try_pull(has_data);
}
catch (CosEventComm::Disconnected&){
 cerr << "Disconnected exception occurred during pull" <<
 endl;
 exit(1);
}
catch (CORBA::SystemException& event_msg){
 cerr << "System exception occurred during pull" << endl;
 exit(1);
}

if (has_data)
{
 if (*event >>= scores)
 {
 cout << "Received event number " << n << "using try_pull"
 << endl;
 }
}

Example 101:Pulling events
639

CHAPTER 20 | Event Service
Developing an Application Using Typed
Events

Overview Typed events allow event service clients to use a strongly typed interface to pass
events back and forth. Using typed events can increase the performance of event
service clients by eliminating the time used for marshalling, encoding,
unmarshalling, and decoding of events packaged into Anys. Typed event clients
can also use non-typed event communication to send and receive messages.

In this section This section discusses the following topics:

Creating the Interface page 641

Obtaining a Typed Event Channel page 642

Implementing the Supplier page 646

Implementing the Consumer page 650
 640

Developing an Application Using Typed Events
Creating the Interface

Overview When using typed push event communication, suppliers and consumers use a
mutually agreed upon interface to facilitate event forwarding. This interface is
defined in IDL and stored in the interface repository.

Interface restrictions Because typed event communication is strictly from the supplier to the
consumer, there are two restrictions on the operations of an interface used for
typed event communication:

• They can only have in parameters.

• They cannot have a return type other than void.

Messages cannot be passed through the event channel from consumer to supplier
and these restrictions help reinforce the unidirectional nature of event
forwarding.

Example The interface, ScorePusher, in Example 102 shows a simple interface to push a
sports score.

Once you have written the interface, you must place it into the interface
repository using the following command:

Example 102:Typed event interface ScorePusher

\\IDL
interface ScorePusher
{
 void push_score(in string team_a, in long score_a,
 in string team_b, in long score_b);
};

idl -R filename
641

CHAPTER 20 | Event Service
Obtaining a Typed Event Channel

Overview A typed event channel forwards messages between typed event clients. It
provides the same operations as the untyped event channel.

Consumers and suppliers obtain a typed event channel object reference either by
creating a channel, or by finding an existing one.

You obtain a typed event channel factory by calling
resolve_initial_references("EventChannelFactory"). You narrow the
returned reference to a typed event channel factory with Orbix extensions.

Event channel factory Orbix provides the TypedEventChannelFactory interface, which define the
operations to create and discover typed event channels:

module IT_TypedEventChannelAdmin
{
 struct TypedEventChannelInfo
 {
 string name;
 IT_EventChannelAdmin::ChannelID id;
 CosTypedEventChannelAdmin::TypedEventChannel reference;
 };
 typedef sequence<TypedEventChannelInfo>

TypedEventChannelInfoList;

 interface TypedEventChannelFactory :
 IT_MessagingAdmin::Manager
 {
 CosTypedEventChannelAdmin::TypedEventChannel
 create_typed_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)
 raises(IT_EventChannelAdmin::ChannelAlreadyExists);

 CosTypedEventChannelAdmin::TypedEventChannel
 find_typed_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)
 raises(IT_EventChannelAdmin::ChannelNotFound);
 642

Developing an Application Using Typed Events
Typed event channel factory
operations

You can call one of several operations on an event channel factory to create or
find an event channel. By providing both create and find operations, the event
service allows any client or supplier to create an event channel, which other
clients and suppliers can subsequently discover:

create_typed_channel() creates a typed event channel and returns an object
reference.

find_typed_channel() returns an object reference to the named typed event
channel.

find_typed_channel_by_id() returns an object reference to a typed event
channel based on the channel’s ID.

list_typed_channels() returns a list of typed event channels, which provides
their names, IDs, and object references.

Example The following code can be used by any supplier or consumer to obtain a typed
event channel.

 CosTypedEventChannelAdmin::TypedEventChannel
 find_typed_channel_by_id(
 in IT_EventChannelAdmin::ChannelID id,
 out string name)
 raises(IT_EventChannelAdmin::ChannelNotFound);

 TypedEventChannelInfoList list_typed_channels();
 };
};

Example 103:Obtaining a typed event channel

CosTypedEventChannelAdmin::TypedEventChannel_var tec;
IT_EventChannelAdmin::ChannelID id;
643

CHAPTER 20 | Event Service
This code executes as follows:

1. Obtains the typed event channel factory.

2. Tries to create a typed event channel by calling create_typed_channel().

3. Catches exception IT_EventChannelAdmin::ChannelAlreadyExists if a

channel of the specified name already exists.

1 try
{
 CORBA::Object_var obj =

orb->resolve_initial_references("EventService");
}
catch (InvalidName)
{
 // handle the exception
}
IT_TypedEventChannelAdmin::TypedEventChannelFactory_var
 factory =
 IT_TypedEventChannelAdmin::TypedEventChannelFactory::_narrow
 (obj);

2 try
{
 tec = factory->create_typed_channel("TypedChannel", id);
}

3 catch (IT_EventChannelAdmin::ChannelAlreadyExists&)
{

4 // Channel has been previously created, so find it
 try
 {
 tec = factory->find_typed_channel("TypedChannel", id);
 }
 catch (IT_EventChannelAdmin::ChannelNotFound&)
 {
 cerr << "Couldn't create or find the event channel" <<
 endl;
 exit(1);
 }
 catch (CORBA::SystemException& event_msg)
 {
 cerr << "System exception occurred during find_channel: "
 << event_msg << endl;
 exit(1);
 }
} // catch ChannelAlreadyExists

Example 103:Obtaining a typed event channel
 644

Developing an Application Using Typed Events
4. Tries to obtain an existing channel of the same name by calling

find_typed_channel().
645

CHAPTER 20 | Event Service
Implementing the Supplier

Actions The actions performed by a push supplier for typed event communications are
similar to the actions performed by a push supplier for untyped event
communication. These actions are:

1. Instantiate an instance of the CosEventComm::PushSupplier interface.

2. Connect to a typed event channel.

3. Push typed event messages by obtaining the appropriate interfaces and

invoking its operations.

4. Disconnect from the typed event channel.

Instantiate the supplier Typed push style event communication uses a generic push supplier to supply
events to typed push consumers. An application that is intended to push typed
events to typed event consumers can instantiate an instance of the
CosEventComm::PushSupplier interface.

If the supplier does not need to be informed if its proxy disconnects from the
channel, the supplier can connect a CosEventComm::PushSupplier::_nil()
reference to the typed proxy consumer.

Connecting to a typed event
channel

In order to pass messages to the typed event channel, a supplier must connect to
it through a typed proxy consumer that receives events from the supplier. The
proxy consumer passes the events down the channel.

A supplier connects to the typed event channel in three steps:

1. Obtain a TypedSupplierAdmin from the typed event channel.

2. Obtain a typed proxy consumer in the typed event channel, to receive the

events generated by the supplier.

3. Connect a supplier to a typed proxy consumer.

Obtain a TypedSupplierAdmin

On creation, a typed event channel instantiates a default TypedSupplierAdmin,
which you obtain by calling for_suppliers() on the typed event channel. For
example:

CosTypedEventChannelAdmin::TypedSupplierAdmin_var tsa =
 tec->for_suppliers();
 646

Developing an Application Using Typed Events
Obtain a typed proxy consumer

A typed proxy consumer is responsible for receiving typed event messages from
its supplier and inserting them into the event channel, where they are forwarded
to all interested typed consumers. You obtain one typed proxy consumer for
each client supplier.

The CosTypedEventChannelAdmin module supports the typed proxy push
consumer object type with the following interfaces:

You obtain a typed proxy consumer by invoking
obtain_typed_push_consumer() on a typed supplier admin and supplying the
interface repository ID of the interface the supplier intends to use to push events.
If there are no consumers on the typed event channel which support the specified
interface a InterfaceNotSupported exception is raised.

Example

The following code obtains a TypedProxyPushConsumer for a PushSupplier by
calling obtain_typed_push_consumer().

module CosTypedEventChannelAdmin
{
 exception InterfaceNotSupported {};
 exception NoSuchImplementation {};

 interface TypedProxyPushConsumer :
 CosTypedEventComm::TypedPushConsumer,
 CosEventChannelAdmin::ProxyPushConsumer
 {
 };
}

Example 104:Obtaining a proxy consumer

try
{
 CosTypedEventChannelAdmin::TypedProxyConsumer_var tpc =
 tsa->obtain_typed_push_consumer("IDL:ScorePusher:1.0");
}
catch (CosTypedEventChannelAdmin::InterfaceNotSupported)
{
 // handle the exception
}

647

CHAPTER 20 | Event Service
Connect a supplier to a typed proxy consumer

After creating a typed proxy consumer, you can connect it to a compatible
supplier. This establishes the supplier’s connection to the typed event channel so
it can send messages.

Typed proxy consumers support the connect_push_supplier() operation. The
operation requires that the supplier and its proxy support the same interface.

Example 105 shows one way to implement a PushSupplier client that connects
itself to a typed proxy consumer.

Pushing typed events In typed push event communication the supplier pushes events to the consumers
by invoking operations on an interface that has been mutually agreed upon by
both the developer responsible for implementing the supplier and the developer
responsible for implementing the consumer.

The supplier obtains a reference to the appropriate interface by invoking its
associated typed proxy consumer’s get_typed_consumer() operation. This
operation returns a reference to the interface specified when
obtain_typed_push_consumer() was invoked to obtain the typed proxy
consumer. The returned reference is of type Object and must be narrowed to the
appropriate interface.

Example 105:Connecting a PushSupplier

// proxy ppc and PushSupplier supplier client obtained previously
try{
 tpc->connect_push_supplier(supplier)
}
catch (CosEventChannelAdmin::AlreadyConnected& ac){
 // Handle the exception
}
catch (CORBA::SystemException& event_msg){
 cerr << "System exception occurred during connect: " <<
 event_msg << endl;
 exit(1);
}

Note: If the supplier and the client do not support the identical interface the
narrow() operation will fail.
 648

Developing an Application Using Typed Events
Example 106 shows how a push supplier would pass typed messages to typed
consumers that supported the ScorePusher interface defined earlier.

The above code performs the following actions:

1. Obtains a reference to an appropriate typed consumer interface.

2. Narrows the reference.

3. Invokes the push_score() operation to forward the event to any typed

push consumers that implement the ScorePusher interface.

Disconnecting From the Event
Channel

A supplier can disconnect from a typed event channel at any time by invoking
the disconnect_push_consumer() operation. This operation terminates the
connection between a supplier and its target typed proxy consumer. The channel
then releases all resources allocated to support its connection to the supplier and
destroys the target typed proxy consumer.

Example 106:Pushing typed events using the ScorePusher interface.

// C++

1 CORBA::Object_var obj = tpc->get_typed_consumer();
2 ScorePusher_var pusher = ScorePusher::_narrow(obj);
3 pusher->push_score("Hooligans", 12, "Ruffians", 9);
649

CHAPTER 20 | Event Service
Implementing the Consumer

Overview In typed push style event communication the consumer is responsible for
implementing the interface that is used to forward events. Also, the consumer is
instantiated using a typed event interface,
CosTypedEventComm::TypedPushConsumer, instead of the generic push
consumer interface.

Development tasks The developer of a typed push consumer must complete the following tasks:

• Implement the mutually agreed upon interface.

• Instantiate the consumer using the

CosTypedEventComm::TypedPushConsumer interface.

• Connect the consumer to a typed event channel.

• Receive event messages from the channel and process them.

• Disconnect the consumer from the typed event channel.

Implement the interface The first step in developing a typed push consumer is to implement the interface
that will be used to support the typed events. To do this complete the following
steps:

1. Create a new IDL interface that inherits from the interface that will be used

for event communication and from CosEventComm::PushConsumer. For

the ScorePusher interface the combined interface for the consumer might

look like:

2. Compile the IDL interface into the desired programming language.

3. Implement the operation to be used for forwarding typed events.

\\IDL
#include <ScorePusher.idl>
#include <omg/CosEventComm.idl>

interface ScoreConsumer : ScorePusher,
 CosEventComm::PushConsumer
{
};
 650

Developing an Application Using Typed Events
4. Implement push(). If the consumer participate exclusively in typed event

communication, push() can do nothing.

For example, the code shown in Example 107 shows one way to implement a
typed push consumer that uses the ScorePusher interface to forward events.

Instantiate the consumer Typed push event communication uses the
CosTypedEventComm::TypedPushConsumer interface to receive events. Clients
wishing to act as consumers in typed push style events must instantiate an
instance of this interface or, as above, an interface that inherits from it. Using the
example above, the application would instantiate an instance of ScoreConsumer
which implements both the interface used to forward events and
CosTypedEventComm::TypedPushConsumer.

Example 107:Implementing a typed push consumer

// C++
#include <omg/orb.hh>
#include <omg/CosTypedEventChannelAdmin.hh>
#include <orbix/typed_event_channel_admin.hh>
class ScoreConsumer_i: virtual public POA_ScoreConsmuer;
{
 // constructor and destructor
 // ...

3 void push_score(char* team_a, CORBA::Long score_a,
 char* team_b, CORBA::Long score_b)
 {
 cout << "Score:" << endl;
 cout << team_a << "\t" << score_a << endl;
 cout << team_b << "\t" << score_b << endl;
 }

4 void push(const CORBA::Any& a)
 {
 }

 void disconnect_push_consumer()
 {
 }
};
651

CHAPTER 20 | Event Service
Connecting to the channel Typed push consumers connect to a typed event channel through a proxy push
supplier which receives the events from the channel and forwards them to the
consumer.

The steps to connect a typed push consumer to a typed event channel are the
same as the steps to connect a generic consumer to an event channel, They are:

1. Obtain a typed consumer admin object from the typed event channel.

2. Obtain a proxy push supplier from the consumer admin.

3. Connect the consumer to the proxy supplier.

Obtain a typed consumer admin

On creation, a typed event channel instantiates a default TypedConsumerAdmin
object, which you obtain by calling for_consumers() on the event channel. For
example:

Obtain a proxy supplier

A proxy push supplier is responsible for distributing event messages that have
been sent by the typed event channel to its typed consumer. You create one
proxy supplier for each client consumer.

You obtain a proxy push supplier by invoking obtain_typed_push_supplier()
on the typed consumer admin and supplying the interface’s interface repository
id. For example, to obtain a proxy push supplier for use with the ScorePusher
interface, you would use the following operation:

CosTypedEventChannelAdmin::TypedConsumerAdmin_var tca =
 tec->for_consumers();

try
{
 CosEventChannelAdmin::ProxyPushSupplier pps =

tca->obtain_typed_push_supplier("IDL:ScorePusher:1.0");
}
catch (CosTypedEventChannelAdmin::NoSuchImplementation)
{
 // no push supplier implements the appropriate interface
 // handle the exception
}

 652

Developing an Application Using Typed Events
Connect the consumer to a proxy supplier

After creating a proxy push supplier, you can connect it to a client consumer.
This establishes the client’s connection to the typed event channel, so it can
obtain messages from suppliers.

The proxy push supplier interface supports the connect operation
connect_push_consumer(), which accepts an object reference to a
TypedPushConsumer as input.

Example 108 shows how you might implement a TypedPushConsumer client that
connects itself to a proxy supplier.

Receiving event messages Typed push consumers passively receive messages from the channel. As events
become available the proxy supplier forwards them to the consumer using one of
the operations in the mutually agreed upon interface. The operation, which was
implemented previously, is responsible for processing the event.

try
{
 org.omg.CosEventChannelAdmin.ProxyPushSupplier pps =

tca.obtain_typed_push_supplier("IDL:ScorePusher:1.0");
}
catch (CosTypedEventChannelAdmin.NoSuchImplementation)
{
 // no supplier implements the interface
 // handle the exception
}

Example 108:Connecting to a proxy supplier

// Proxy pps and TypedPushConsumer consumer obtained previously
try{
 pps->connect_push_consumer(consumer)
}
catch (CosEventChannelAdmin::AlreadyConnected ac){
 cerr << "Already connecting to channel." << endl;
 exit (1);
}
catch (CORBA::SystemException& event_msg){
 cerr << "System exception occurred during connect: "
 << event_msg << endl;
 exit(1);
}

653

CHAPTER 20 | Event Service
Disconnecting from the event
channel

A client consumer can disconnect from the event channel at any time by
invoking disconnect_push_consumer(). This operation terminates the
connection between the consumer and its target proxy supplier. The typed event
channel then releases all resources allocated to support its connection to the
consumer and destroys the target proxy supplier.
 654

CHAPTER 21

Portable
Interceptors
Portable interceptors provide hooks, or interception points, which
define stages within the request and reply sequence. Services can
use these interception points to query request/reply data, and to
transfer service contexts between clients and servers.

Sample application This chapter shows an application that uses interceptors to secure a server with a
password authorization service as follows:

• A password policy is created and set on the server’s POA.

• An IOR interceptor adds a tagged component to all object references

exported from that POA. This tagged component encodes data that

indicates whether a password is required.

• A client interceptor checks the profile of each object reference that the

client invokes on. It ascertains whether the object is password-protected; if

so, it adds to the outgoing request a service context that contains the

password data.

• A server interceptor checks the service contexts of incoming requests for

password data, and compares it with the server password. The interceptor

allows requests to continue only if the client and server passwords match.

Note: The password authorization service that is shown here is deliberately
simplistic, and intended for illustrative purposes only.
655

CHAPTER 21 | Portable Interceptors
In this chapter This chapter contains the following sections:

Interceptor Components page 657

Writing IOR Interceptors page 668

Using RequestInfo Objects page 671

Writing Client Interceptors page 673

Writing Server Interceptors page 687

Registering Portable Interceptors page 700

Setting Up Orbix to Use Portable Interceptors page 708
 656

Interceptor Components
Interceptor Components
Portable interceptors require the following components:

Interceptor implementations that are derived from interface
PortableInterceptor::Interceptor.

IOP::ServiceContext supplies the service context data that a client or server
needs to identify and access an ORB service.

PortableInterceptor::Current (hereafter referred to as PICurrent) is a table of
slots that are available to application threads and interceptors, to store and access
service context data.

IOP::TaggedComponent contains information about optional features and
ORB services that an IOR interceptor can add to an outgoing object reference.
This information is added by server-side IOR interceptors, and is accessible to
client interceptors.

IOP::Codec can convert data into an octet sequence, so it can be encoded as a
service context or tagged component.

PortableInterceptor::PolicyFactory enables creation of policy objects that are
required by ORB services.

PortableInterceptor::ORBInitializer is called on ORB initialization. An ORB
initializer obtains the ORB’s PICurrent, and registers portable interceptors with
the ORB. It can also register policy factories.
657

CHAPTER 21 | Portable Interceptors
Interceptor Types
All portable interceptors are based on the Interceptor interface:

module PortableInterceptor{
 local interface Interceptor{
 readonly attribute string name;
 };
};

An interceptor can be named or unnamed. Among an ORB’s interceptors of the
same type, all names must be unique. Any number of unnamed, or anonymous
interceptors can be registered with an ORB.

All interceptors implement one of the interceptor types that inherit from the
Interceptor interface:

ClientRequestInterceptor defines the interception points that client-side
interceptors can implement.

ServerRequestInterceptor defines the interception points that server-side
interceptors can implement.

IORInterceptor defines a single interception point, establish_components. It
is called immediately after a POA is created, and pre-assembles the list of tagged
components to add to that POA’s object references.

Interception points Each interceptor type defines a set of interception points, which represent stages
in the request/reply sequence. Interception points are specific to each interceptor
type, and are discussed fully in later sections that describe these types.
Generally, in a successful request-reply sequence, the ORB calls interception
points on each interceptor.

For example, Figure 51 shows client-side interceptors A and B. Each interceptor
implements interception points send_request and receive_reply. As each
outgoing request passes through interceptors A and B, their send_request
implementations add service context data a and b to the request before it is

Note: At present, Orbix provides no mechanism for administering portable
interceptors by name.
 658

Interceptor Components
transported to the server. The same interceptors’ receive_reply
implementations evaluate the reply’s service context data before the reply
returns to the client.

Interception point data For each interception point, the ORB supplies an object that enables the
interceptor to evaluate the request or reply data at its current stage of flow:

• A PortableInterceptor::IORInfo object is supplied to an IOR

interceptor’s single interception point establish_components (see

page 668).

• A PortableInterceptor::ClientRequestInfo object is supplied to all

ClientRequestInterceptor interception points (see page 680).

• A PortableInterceptor::ServerRequestInfo object is supplied to all

ServerRequestInterceptor interception points (see page 689).

Much of the information that client and server interceptors require is similar; so
ClientRequestInfo and ServerRequestInfo both inherit from interface
PortableInterceptor::RequestInfo. For more information on RequestInfo,
see page 671.

Figure 51: Client interceptors allow services to access outgoing requests and
incoming replies.

Client

client interceptors

B
Server

request
a
b

 reply

send_request

receive_reply

send_request

receive_reply

A

add a
add b
659

CHAPTER 21 | Portable Interceptors
Service Contexts
Service contexts supply the information a client or server needs to identify and
access an ORB service. The IOP module defines the ServiceContext structure
as follows:

A service context has two member components:

• Service-context IDs are user-defined unsigned long types. The high-order

20 bits of a service-context ID contain a 20-bit vendor service context

codeset ID, or VSCID; the low-order 12 bits contain the rest of the service

context ID. To define a set of service context IDs:

i. Obtain a unique VSCID from the OMG

ii. Define the service context IDs, using the VSCID for the high-order

bits.

• Service context data is encoded and decoded by an IOP::Codec (see

“Codec” on page 664).

Example 109:ServiceContext structure

module IOP
{
 // ...
 typedef unsigned long ServiceId;

 struct ServiceContext {
 ServiceId context_id;
 sequence <octet> context_data;
 };
};
 660

Interceptor Components
PICurrent
PICurrent is a table of slots that different services can use to transfer their data to
request or reply service contexts. For example, in order to send a request to a
password-protected server, a client application can set the required password in
PICurrent. On each client invocation, a client interceptor’s send_request
interception point obtains the password from PICurrent and attaches it as service
context data to the request.

Interface definition The PortableInterceptor module defines the interface for PICurrent as
follows:

Figure 52: PICurrent facilitates transfer of thread context data to a request or
reply.

Client request

send_request

client interceptor

client(“vermilion”)

PICurrent

Server

get password slot data
add service context
 with password

{

}

"vermilion"

Example 110:PortableInterceptor:Current (PICurrent) interface

module PortableInterceptor
{
 // ...
 typedef unsigned long SlotId;
 exception InvalidSlot {};
661

CHAPTER 21 | Portable Interceptors
 local interface Current : CORBA::Current {
 any
 get_slot(in SlotId id
) raises (InvalidSlot);

 void
 set_slot(in SlotId id, in any data
) raises (InvalidSlot);
 };
};

Example 110:PortableInterceptor:Current (PICurrent) interface
 662

Interceptor Components
Tagged Components
Object references that support an interoperability protocol such as IIOP or SIOP
can include one or more tagged components, which supply information about
optional IIOP features and ORB services. A tagged component contains an
identifier, or tag, and component data, defined as follows:

An IOR interceptor can define tagged components and add these to an object
reference’s profile by calling add_ior_component() (see “Writing IOR
Interceptors” on page 668). A client interceptor can evaluate tagged components
in a request’s object reference by calling get_effective_component() or
get_effective_components() (see “Evaluating tagged components” on
page 684).

Example 111:TaggedComponent structure

typedef unsigned long ComponentId;
struct TaggedComponent{
 ComponentID tag;
 sequence<octet> component_data;
};

Note: The OMG is responsible for allocating and registering the tag IDs of
tagged components. Requests to allocate tag IDs can be sent to
tag_request@omg.org.
663

CHAPTER 21 | Portable Interceptors
Codec

Interface definition The data of service contexts and tagged components must be encoded as a CDR
encapsulation. Therefore, the IOP module defines the Codec interface, so
interceptors can encode and decode octet sequences:

Codec operations The Codec interface defines the following operations:

encode converts the supplied any into an octet sequence, based on the encoding
format effective for this Codec. The returned octet sequence contains both the
TypeCode and the data of the type.

decode decodes the given octet sequence into an any, based on the encoding
format effective for this Codec.

Example 112:Codec interface

local interface Codec {
 exception InvalidTypeForEncoding {};
 exception FormatMismatch {};
 exception TypeMismatch {};

 CORBA::OctetSeq
 encode(in any data
) raises (InvalidTypeForEncoding);

 any
 decode(in CORBA::OctetSeq data
) raises (FormatMismatch);

 CORBA::OctetSeq
 encode_value(in any data
) raises (InvalidTypeForEncoding);

 any
 decode_value(
 in CORBA::OctetSeq data,
 in CORBA::TypeCode tc
) raises (FormatMismatch, TypeMismatch);
};
 664

Interceptor Components
encode_value converts the given any into an octet sequence, based on the
encoding format effective for this Codec. Only the data from the any is encoded.

decode_value decodes the given octet sequence into an any based on the given
TypeCode and the encoding format effective for this Codec.

Creating a codec The ORBInitInfo::codec_factory attribute returns a Codec factory, so you
can provide Codec objects to interceptors. This operation must be called during
ORB initialization, through the ORB initializer.
665

CHAPTER 21 | Portable Interceptors
Policy Factory
An ORB service can be associated with a user-defined policy. The
PortableInterceptor module provides the PolicyFactory interface, which
applications can use to implement their own policy factories:

local interface PolicyFactory {
 CORBA::Policy
 create_policy(
 in CORBA::PolicyType type,
 in any value
) raises (CORBA::PolicyError);
};

Policy factories are created during ORB initialization, and registered through the
ORB initializer (see “Create and register policy factories” on page 704).
 666

Interceptor Components
ORB Initializer
ORB initializers implement interface
PortableInterceptor::OrbInitializer:

As it initializes, the ORB calls the ORB initializer’s pre_init() and
post_init() operations. pre_init() and post_init() both receive an
ORBInitInfo argument, which enables implementations to perform these tasks:

• Instantiate a PICurrent and allocates its slots for service data.

• Register policy factories for specified policy types.

• Create Codec objects, which enable interceptors to encode service context

data as octet sequences, and vice versa.

• Register interceptors with the ORB.

Example 113:ORBInitializer interface

local interface ORBInitializer {
 void
 pre_init(in ORBInitInfo info);

 void
 post_init(in ORBInitInfo info);
};
667

CHAPTER 21 | Portable Interceptors
Writing IOR Interceptors
IOR interceptors give an application the opportunity to evaluate a server’s
effective policies, and modify an object reference’s profiles before the server
exports it. For example, if a server is secured by a password policy, the object
references that it exports should contain information that signals to potential
clients that they must supply a password along with requests on those objects.

The IDL interface for IOR interceptors is defined as follows:

Interception point An IOR interceptor has a single interception point, establish_components().
The server-side ORB calls establish_components() once for each POA on all
registered IOR interceptors. A typical implementation of
establish_components() assembles the list of components to include in the
profile of all object references that a POA exports.

An implementation of establish_components() must not throw exceptions. If
it does, the ORB ignores the exception.

IORInfo establish_components() gets an IORInfo object, which has the following
interface:

local interface IORInterceptor : Interceptor {
 void
 establish_components(in IORInfo info);
};

Example 114:IORInfo interface

local interface IORInfo {

 CORBA::Policy
 get_effective_policy(in CORBA::PolicyType type);

 void
 add_ior_component(in IOP::TaggedComponent component);
 668

Writing IOR Interceptors
The sample application’s IOR interceptor implements
establish_components() to perform the following tasks on an object
reference’s profile:

• Get its password policy.

• Set a TAG_REQUIRES_PASSWORD component accordingly.

 add_ior_component_to_profile (
 in IOP::TaggedComponent component,
 in IOP::ProfileId profile_id
);
};

Note: add_ior_component_to_profile() is currently unimplemented.

Example 114:IORInfo interface

Example 115:Implementing establish_components()

ACL_IORInterceptorImpl::ACL_IORInterceptorImpl(
 IOP::Codec_ptr codec
) IT_THROW_DECL(()) :
 m_codec(IOP::Codec::_duplicate(codec))
{
}

void
ACL_IORInterceptorImpl::establish_components(
 PortableInterceptor::IORInfo_ptr ior_info
) IT_THROW_DECL((CORBA::SystemException))
{
 CORBA::Boolean requires_password = IT_FALSE;

1 try {

 CORBA::Policy_var policy =
 ior_info->get_effective_policy(
 AccessControl::PASSWORD_POLICY_ID);
 AccessControl::PasswordPolicy_var password_policy =
 AccessControl::PasswordPolicy::_narrow(policy);
 assert(!CORBA::is_nil(password_policy));
669

CHAPTER 21 | Portable Interceptors
The sample application’s implementation of establish_components()
executes as follows:

1. Gets the effective password policy object for the POA by calling

get_effective_policy() on the IORInfo.

2. Gets the password policy value by calling requires_password() on the

policy object.

3. Encodes the password policy value as an octet.

4. Instantiates a tagged component (IOP::TaggedComponent) and initializes

it with the TAG_REQUIRES_PASSWORD tag and encoded password policy

value.

5. Adds the tagged component to the object reference’s profile by calling

add_ior_component().

2 requires_password = password_policy->requires_password();
 }
 catch (const CORBA::INV_POLICY&) {
 // Policy wasn't set...don't add component
 }

 CORBA::Any component_data_as_any;
 component_data_as_any <<=
 CORBA::Any::from_boolean(requires_password);

3 CORBA::OctetSeq_var octets =
 m_codec->encode_value(component_data_as_any);

4 IOP::TaggedComponent component;
 component.tag = AccessControlService::TAG_REQUIRES_PASSWORD;
 component.component_data.replace(octets->length(),
 octets->length(),
 octets->get_buffer(),
 IT_FALSE);

5 ior_info->add_ior_component(component);
}

Example 115:Implementing establish_components()
 670

Using RequestInfo Objects
Using RequestInfo Objects
Interception points for client and server interceptors receive
ClientRequestInfo and ServerRequestInfo objects, respectively. These
derive from PortableInterceptor::RequestInfo, which defines operations
and attributes common to both.

Interface definition The RequestInfo interface is defined as follows:

A RequestInfo object provides access to much of the information that an
interceptor requires to evaluate a request and its service context data. For a full
description of all attributes and operations, see the CORBA Programmer’s
Reference.

The validity of any given RequestInfo operation and attribute varies among
client and server interception points. For example, the result attribute is valid
only for interception points receive_reply on a client interceptor; and
send_reply on a server interceptor. It is invalid for all other interception points.
Table 28 on page 681 and Table 29 on page 694 show which RequestInfo
operations and attributes are valid for a given interception point.

Example 116:RequestInfo interface

local interface RequestInfo {
 readonly attribute unsigned long request_id;
 readonly attribute string operation;
 readonly attribute Dynamic::ParameterList arguments;
 readonly attribute Dynamic::ExceptionList exceptions;
 readonly attribute Dynamic::ContextList contexts;
 readonly attribute Dynamic::RequestContext operation_context;
 readonly attribute any result;
 readonly attribute boolean response_expected;
 readonly attribute Messaging::SyncScope sync_scope;
 readonly attribute ReplyStatus reply_status;
 readonly attribute Object forward_reference;
 any get_slot (in SlotId id) raises (InvalidSlot);
 IOP::ServiceContext get_request_service_context (
 in IOP::ServiceId id);
 IOP::ServiceContext get_reply_service_context (
 in IOP::ServiceId id);
};
671

CHAPTER 21 | Portable Interceptors
Timeout attributes A client might specify one or more timout policies on request or reply delivery.
If portable interceptors are present in the bindings, these interceptors must be
aware of the relevant timeouts so that they can bound any potentially blocking
activities that they undertake.

The current OMG specification for portable interceptors does not account for
timeout policy constraints; consequently, Orbix provides its own derivation of
the RequestInfo interface, IT_PortableInterceptor::RequestInfo, which
adds two attributes:

To access timeout constraints, interception point implementations can narrow
their ClientRequestInfo or ServerRequestInfo objects to this interface. The
two attributes apply to different interception points, as follows:

Example 117:IT_PortableInterceptor::RequestInfo interface attributes

module IT_PortableInterceptor
{
 local interface RequestInfo : PortableInterceptor::RequestInfo
 {
 readonly attribute TimeBase::UtcT request_end_time;
 readonly attribute TimeBase::UtcT reply_end_time;
 };
};

Table 27: Portable Interceptor Timeout Attributes

Timeout attribute Relevant interception points

request_end_time send_request
send_poll
receive_request_service_contexts
receive_request

reply_end_time send_reply
send_exception
send_other
receive_reply
receive_exception
receive_other
 672

Writing Client Interceptors
Writing Client Interceptors

Interception point definitions Client interceptors implement the ClientRequestInterceptor interface, which
defines five interception points:

A client interceptor implements one or more of these operations.

In the password service example, the client interceptor provides an
implementation for send_request, which encodes the required password in a
service context and adds the service context to the object reference. For
implementation details, see “Client Interceptor Tasks” on page 683.

Client interceptor constructor As noted earlier, the ORB initializer instantiates and registers the client
interceptor. This interceptor’s constructor is implemented as follows:

Example 118:ClientRequestInterceptor interface

local interface ClientRequestInterceptor : Interceptor {
 void send_request (in ClientRequestInfo ri)
 raises (ForwardRequest);
 void send_poll (in ClientRequestInfo ri);
 void receive_reply (in ClientRequestInfo ri);
 void receive_exception (in ClientRequestInfo ri)
 raises (ForwardRequest);
 void receive_other (in ClientRequestInfo ri)
 raises (ForwardRequest);
};

Example 119:Client interceptor constructor

// Client interceptor constructor
ACL_ClientInterceptorImpl::ACL_ClientInterceptorImpl(
 PortableInterceptor::SlotId password_slot,
 IOP::Codec_ptr codec
) IT_THROW_DECL(()) :
 m_password_slot(password_slot),
 m_codec(IOP::Codec::_duplicate(codec))
{
}

673

CHAPTER 21 | Portable Interceptors
Client interceptor arguments The client interceptor takes two arguments:

• The PICurrent slot allocated by the ORB initializer to store password data.

• An IOP::Codec, which is used to encode password data for service context

data.
 674

Writing Client Interceptors
Interception Points
A client interceptor implements one or more interception points. During a
successful request-reply sequence, each client-side interceptor executes one
starting interception point and one ending interception point.

Starting interception points Depending on the nature of the request, the ORB calls one of the following
starting interception points:

send_request lets an interceptor query a synchronously invoked request, and
modify its service context data before the request is sent to the server.

send_poll lets an interceptor query an asynchronously invoked request, where
the client polls for a reply. This interception point currently applies only to
deferred synchronous operation calls (see “Invoking Deferred Synchronous
Requests” on page 452)

Ending interception points Before the client receives a reply to a given request, the ORB executes one of the
following ending interception points on that reply:

receive_reply lets an interceptor query information on a reply after it is returned
from the server and before control returns to the client.

receive_exception is called when an exception occurs. It lets an interceptor
query exception data before it is thrown to the client.

receive_other lets an interceptor query information that is available when a
request results in something other than a normal reply or an exception. For
example: a request can result in a retry, as when a GIOP reply with a
LOCATION_FORWARD status is received; receive_other is also called on
asynchronous calls, where the client resumes control before it receives a reply on
a given request and an ending interception point is called.
675

CHAPTER 21 | Portable Interceptors
Interception Point Flow
For each request-reply sequence, only one starting interception point and one
ending point is called on a client interceptor. Each completed starting point is
paired to an ending point. For example, if send_request executes to completion
without throwing an exception, the ORB calls one of its ending interception
points—receive_reply, receive_exception, or receive_other.

If multiple interceptors are registered on a client, the interceptors are traversed in
order for outgoing requests, and in reverse order for incoming replies.

Scenario 1: Request-reply
sequence is successful

Interception points A and B are registered with the server ORB. The interception
point flow shown in Figure 53 depicts a successful reply-request sequence,
where the server returns a normal reply:

Figure 53: Client interceptors process a normal reply.

send_request

receive_reply

send_request

receive_reply

send_request

receive_reply

B

A

C

Client

Server
 676

Writing Client Interceptors
Scenario 2: Client receives
LOCATION_FORWARD

If the server throws an exception or returns some other reply, such as
LOCATION_FORWARD, the ORB directs the reply flow to the appropriate
interception points, as shown in Figure 54:

Figure 54: Client interceptors process a LOCATION_FORWARD reply.

send_request

receive_other

send_request

receive_other

send_request

receive_other

B

A

C

Client

Server

replies with
LOCATION_FORWARD
677

CHAPTER 21 | Portable Interceptors
Scenario 3: Exception aborts
interception flow

Any number of events can abort or shorten the interception flow. Figure 55
shows the following interception flow:

1. Interceptor B’s send_request throws an exception.

2. Because interceptor B’s start point does not complete, no end point is

called on it, and interceptor C is never called. Instead, the request flow

returns to interceptor A’s receive_exception end point.

Scenario 4: Interceptor changes
reply

An interceptor can change a normal reply to a system exception; it can also
change the exception it receives, whether user or system exception to a different
system exception. Figure 56 shows the following interception flow:

1. The server returns a normal reply.

2. The ORB calls receive_reply on interceptor C.

3. Interceptor C’s receive_reply raises exception foo_x, which the ORB

delivers to interceptor B’s receive_exception.

4. Interceptor B’s receive_exception changes exception foo_x to exception

foo_y.

5. Interceptor A’s receive_exception receives exception foo_y and returns

it to the client.

Figure 55: send_request throws an exception in a client-side interceptor

A

C

Client

send_request

receive_exception

send_request

throws exception

B

C

 678

Writing Client Interceptors
Figure 56: Client interceptors can change the nature of the reply.

Note: Interceptors must never change the CompletionStatus of the received
exception.

receive_exception

send_request

B

A

C

Client

Server

servant returns
normal reply

receive_exception

throws exception
foo_y

send_request

foo_y

foo_x

send_request

receive_reply

foo_x
throws exception
679

CHAPTER 21 | Portable Interceptors
ClientRequestInfo
Each client interception point gets a single ClientRequestInfo argument,
which provides the necessary hooks to access and modify client request data:

Example 120:ClientRequestInfo interface

local interface ClientRequestInfo : RequestInfo {
 readonly attribute Object target;
 readonly attribute Object effective_target;
 readonly attribute IOP::TaggedProfile effective_profile;
 readonly attribute any received_exception;
 readonly attribute CORBA::RepositoryId received_exception_id;

 IOP::TaggedComponent
 get_effective_component(in IOP::ComponentId id);

 IOP::TaggedComponentSeq
 get_effective_components(in IOP::ComponentId id);

 CORBA::Policy
 get_request_policy(in CORBA::PolicyType type);

 void
 add_request_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);
};
 680

Writing Client Interceptors
Table 28 shows which ClientRequestInfo operations and attributes are
accessible to each client interception point. In general, attempts to access an
attribute or operation that is invalid for a given interception point throw an
exception of BAD_INV_ORDER with a standard minor code of 10.

Table 28: Client Interception Point Access to ClientRequestInfo

ClientRequestInfo: s_req s_poll r_reply r_exep r_other

request_id y y y y y

operation y y y y y

arguments ya y

exceptions y y y y

contexts y y y y

operation_context y y y y

result y

response_expected y y y y y

sync_scope y y y y

reply_status y y y

forward_reference yb

get_slot y y y y y

get_request_service_context y y y y

get_reply_service_context y y y

target y y y y y

effective_target y y y y y

effective_profile y y y y y

received_exception y

received_exception_id y

get_effective_component y y y y
681

CHAPTER 21 | Portable Interceptors
get_effective_components y y y y

get_request_policy y y y y

add_request_service_context y

a. When ClientRequestInfo is passed to send_request, the arguments list contains an entry for all arguments,
but only in and inout arguments are available.

b. Access to forward_reference is valid only if reply_status is set to LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT.

Table 28: Client Interception Point Access to ClientRequestInfo

ClientRequestInfo: s_req s_poll r_reply r_exep r_other
 682

Writing Client Interceptors
Client Interceptor Tasks
A client interceptor typically uses a ClientRequestInfo to perform the
following tasks:

• Evaluate an object reference’s tagged components to determine an

outgoing request’s service requirements.

• Obtain service data from PICurrent.

• Encode service data as a service context.

• Add service contexts to a request.

These tasks are usually implemented in send_request. Interceptors have a
much wider range of potential actions available to them—for example, client
interceptors can call get_request_service_context(), to evaluate the service
contexts that preceding interceptors added to a request. Other operations are
specific to reply data or exceptions, and therefore can be invoked only by the
appropriate receive_ interception points.

This discussion confines itself to send_request and the tasks that it typically
performs. For a full description of other ClientRequestInfo operations and
attributes, see the CORBA Programmer’s Reference.

In the sample application, the client interceptor provides an implementation for
send_request, which performs these tasks:

• Evaluates each outgoing request for this tagged component to determine

whether the request requires a password.

• Obtains service data from PICurrent

• Encodes the required password in a service context

• Adds the service context to the object reference:
683

CHAPTER 21 | Portable Interceptors
Evaluating tagged components The sample application’s implementation of send_request checks each
outgoing request for tagged component TAG_REQUIRES_PASSWORD by calling
get_effective_component() on the interceptor’s ClientRequestInfo:

Example 121:Using get_effective_component()

void
ACL_ClientInterceptorImpl::send_request(
 PortableInterceptor::ClientRequestInfo_ptr request
) IT_THROW_DECL((
 CORBA::SystemException,
 PortableInterceptor::ForwardRequest
))

try {
// Check if the object requires a password

1 if (requires_password(request))
 { // ...
 }
}

// ...

CORBA::Boolean
ACL_ClientInterceptorImpl::requires_password(
 PortableInterceptor::ClientRequestInfo_ptr request
) IT_THROW_DECL((CORBA::SystemException))
{
 try {

2 IOP::TaggedComponent_var password_required_component =
 request->get_effective_component(
 AccessControlService::TAG_REQUIRES_PASSWORD
);

3 IOP::TaggedComponent::_component_data_seq& component_data =
 password_required_component->component_data;
 CORBA::OctetSeq octets(component_data.length(),
 component_data.length(),
 component_data.get_buffer(),
 IT_FALSE);
 684

Writing Client Interceptors
The interception point executes as follows:

1. Calls the subroutine require_password() to determine whether a

password is required.

2. get_effective_component() returns tagged component

TAG_REQUIRES_PASSWORD from the request’s object reference.

3. component_data() returns the tagged component’s data as an octet

sequence.

4. decode_value() is called on the interceptor’s Codec to decode the octet

sequence into a CORBA::Any. The call extracts the Boolean data that is

embedded in the octet sequence.

5. The Any is evaluated to determine whether the component data of

TAG_REQUIRES_PASSWORD is set to true.

4 CORBA::Any_var password_required_as_any =
 m_codec->decode_value(octets, CORBA::_tc_boolean);

 CORBA::Boolean password_required;

5 if (password_required_as_any >>=
 CORBA::Any::to_boolean(password_required))
 {
 return password_required;
 }
 }

 catch (const CORBA::BAD_PARAM&)
 {
 // Component does not exist; treat as not requiring a

password
 }

 return IT_FALSE;
}

Example 121:Using get_effective_component()
685

CHAPTER 21 | Portable Interceptors
Obtaining service data After the client interceptor verifies that the request requires a password, it calls
RequestInfo::get_slot() to obtain the client password from the appropriate
slot:

Encoding service context data After the client interceptor gets the password string, it must convert the string
and related data into a CDR encapsulation, so it can be embedded in a service
context that is added to the request. To perform the data conversion, it calls
encode_value on an IOP::Codec:

Adding service contexts to a
request

After initializing the service context, the client interceptor adds it to the outgoing
request by calling add_request_service_context():

Example 122:Calling RequestInfo::get_slot()

// Get the specified password
CORBA::Any_var password =
 request->get_slot(m_password_slot);
// ...
}

Example 123:Calling IOP::Codec::encode_value()

// Encode the password as a service context
CORBA::OctetSeq_var octets =
 m_codec->encode_value(password);
IOP::ServiceContext::_context_data_seq seq(
 octets->length(),
 octets->length(),
 octets->get_buffer(),
 IT_FALSE);

Example 124:Calling add_request_service_context()

IOP::ServiceContext service_context;
service_context.context_id =
 AccessControlService::PASSWORD_SERVICE_ID;
service_context.context_data = seq;

request->add_request_service_context(
 service_context, IT_TRUE);
 686

Writing Server Interceptors
Writing Server Interceptors
Server interceptors implement the ServerRequestInterceptor interface:

Example 125:ServerRequestInterceptor interface

local interface ServerRequestInterceptor : Interceptor {
 void
 receive_request_service_contexts(in ServerRequestInfo ri
) raises (ForwardRequest);

 void
 receive_request(in ServerRequestInfo ri
) raises (ForwardRequest);

 void
 send_reply(in ServerRequestInfo ri);

 void
 send_exception(in ServerRequestInfo ri
) raises (ForwardRequest);

 void
 send_other(in ServerRequestInfo ri
) raises (ForwardRequest);
};
687

CHAPTER 21 | Portable Interceptors
Interception Points
During a successful request-reply sequence, each server interceptor executes one
starting interception point and one intermediate interception point for incoming
requests. For outgoing replies, a server interceptor executes an ending
interception point.

Starting interception point A server interceptor has a single starting interception point:

receive_request_service_contexts lets interceptors get service context
information from an incoming request and transfer it to PICurrent slots. This
interception point is called before the servant manager is called. Operation
parameters are not yet available at this point.

Intermediate interception point A server interceptor has a single intermediate interception point:

receive_request lets an interceptor query request information after all
information, including operation parameters, is available.

Ending interception points An ending interception point is called after the target operation is invoked, and
before the reply returns to the client. The ORB executes one of the following
ending interception points, depending on the nature of the reply:

send_reply lets an interceptor query reply information and modify the reply
service context after the target operation is invoked and before the reply returns
to the client.

send_exception is called when an exception occurs. An interceptor can query
exception information and modify the reply service context before the exception
is thrown to the client.

send_other lets an interceptor query the information available when a request
results in something other than a normal reply or an exception. For example, a
request can result in a retry, as when a GIOP reply with a LOCATION_FORWARD
status is received.
 688

Writing Server Interceptors
Interception Point Flow
For a given server interceptor, the flow of execution follows one of these paths:

• receive_request_service_contexts completes execution without

throwing an exception. The ORB calls that interceptor’s intermediate and

ending interception points. If the intermediate point throws an exception,

the ending point for that interceptor is called with the exception.

• receive_request_service_contexts throws an exception. The

interceptor’s intermediate and ending points are not called.

If multiple interceptors are registered on a server, the interceptors are traversed
in order for incoming requests, and in reverse order for outgoing replies. If one
interceptor in the chain throws an exception in either its starting or intermediate
points, no other interceptors in the chain are called; and the appropriate ending
points for that interceptor and all preceding interceptors are called.

Scenario 1: Target object throws
exception

Interceptors A and B are registered with the server ORB. Figure 57 shows the
following interception flow:

1. The interception point receive_request_server_contexts processes an

incoming request on interceptor A, then B. Neither interception point

throws an exception.

2. Intermediate interception point receive_request processes the request

first on interceptor A, then B. Neither interception point throws an

exception.

3. The ORB delivers the request to the target object. The object throws an

exception.

4. The ORB calls interception point send_exception, first on interceptor B.,

then A, to handle the exception.
689

CHAPTER 21 | Portable Interceptors
5. The ORB returns the exception to the client.

Scenario 2: Exception aborts
interception flow

Any number of events can abort interception flow. Figure 58 shows the
following interception flow.

1. A request starts server-side interceptor processing, starting with interceptor

A’s receive_request_service_contexts. The request is passed on to

interceptor B.

2. Interceptor B’s receive_request_service_contexts throws an

exception. The ORB aborts interceptor flow and returns the exception to

interceptor A’s end interception point send_exception.

3. The exception is returned to the client.

Figure 57: Server interceptors receive request and send exception thrown by
target object.

r_req_serv_cxts

receive_request

send_exception

BA

Client

Server

r_req_serv_cxts

receive_request

send_exception

object throws
exception
 690

Writing Server Interceptors
Because interceptor B’s start point does not complete execution, its intermediate
and end points are not called. Interceptor A’s intermediate point
receive_request also is not called.

Scenario 3: Interceptors change
reply type

An interceptor can change a normal reply to a system exception; it can also
change the exception it receives, whether user or system exception to a different
system exception. Figure 59 shows the following interception flow:

1. The target object returns a normal reply.

2. The ORB calls send_reply on server interceptor C.

3. Interceptor C’s send_reply interception point throws exception foo_x,

which the ORB delivers to interceptor B’s send_exception.

4. Interceptor B’s send_exception changes exception foo_x to exception

foo_y, which the ORB delivers to interceptor A’s send_exception.

5. Interceptor A’s send_exception returns exception foo_y to the client.

Figure 58: receive_request_service_contexts throws an exception and
interception flow is aborted.

r_req_serv_cxts

receive_request

send_exception

BA

Client

Server

r_req_serv_cxts

throws exception
691

CHAPTER 21 | Portable Interceptors
Figure 59: Server interceptors can change the reply type.

Note: Interceptors must never change the CompletionStatus of the received
exception.

BA

Client

Server

r_req_serv_cxts

receive_request

send_exception

r_req_serv_cxts

receive_request

send_reply

C

foo_x
throws exception

foo_y
throws exception

r_req_serv_cxts

receive_request

send_exception

foo_xfoo_y object returns
normal reply
 692

Writing Server Interceptors
ServerRequestInfo
Each server interception point gets a single ServerRequestInfo argument,
which provides the necessary hooks to access and modify server request data:

Example 126:ServerRequestInfo interface

local interface ServerRequestInfo : RequestInfo {
 readonly attribute any sending_exception;
 readonly attribute CORBA::OctetSeq object_id;
 readonly attribute CORBA::OctetSeq adapter_id;
 readonly attribute CORBA::RepositoryId
 target_most_derived_interface;

 CORBA::Policy
 get_server_policy(in CORBA::PolicyType type);

 void
 set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);

 boolean
 target_is_a(in CORBA::RepositoryId id);

 void
 add_reply_service_context(
 in IOP::ServiceContext service_context,
 in boolean replease
);
};
693

CHAPTER 21 | Portable Interceptors
Table 29 shows which ServerRequestInfo operations and attributes are
accessible to server interception points. In general, attempts to access an
attribute or operation that is invalid for a given interception point raise an
exception of BAD_INV_ORDER with a standard minor code of 10.

Table 29: Server Interception Point Access to ServerRequestInfo

ServerRequestInfo: r_req_
serv_cxts r_req s_reply s_excep s_other

request_id y y y y y

operation y y y y y

argumentsa y y y

exceptions y y y y

contexts y y y y

operation_context y y

result y

response_expected y y y y y

sync_scope y y y y y

reply_status y y y

forward_reference y

get_slot y y y y y

get_request_service_context y y y y y

get_reply_service_context y y y

sending_exception y

object_id y

adapter_id y

target_most_derived_interface y

get_server_policy y y y y y
 694

Writing Server Interceptors
set_slot y y y y y

target_is_a y

add_reply_service_context y y y y y

a. When a ServerRequestInfo is passed to receive_request(), the arguments list contains an entry for all arguments,
but only in and inout arguments are available.

Table 29: Server Interception Point Access to ServerRequestInfo

ServerRequestInfo: r_req_
serv_cxts r_req s_reply s_excep s_other
695

CHAPTER 21 | Portable Interceptors
Server Interceptor Tasks
A server interceptor typically uses a ServerRequestInfo to perform the
following tasks:

• Get server policies.

• Get service contexts from an incoming request and extract their data.

The sample application implements receive_request_server_contexts only.
The requisite service context data is available at this interception point, so it is
capable of executing authorizing or disqualifying incoming requests. Also,
unnecessary overhead is avoided for unauthorized requests: by throwing an
exception in receive_request_server_contexts, the starting interception
point fails to complete and all other server interception points are bypassed.

This discussion confines itself to receive_request_server_contexts and the
tasks that it typically performs. For a description of other ServerRequestInfo
operations and attributes, see the CORBA Programmer’s Reference.

Get server policies The sample application’s receive_request_server_contexts implementation
obtains the server’s password policy in order to compare it to the password that
accompanies each request. In order to do so, it calls get_server_policy() on
the interception point’s ServerRequestInfo:

Example 127:Calling get_server_policy()

void
ACL_ServerInterceptorImpl::receive_request_service_contexts(
 PortableInterceptor::ServerRequestInfo_ptr request
) IT_THROW_DECL((
 CORBA::SystemException,
 PortableInterceptor::ForwardRequest
))
{
 // Determine whether password protection is required.
 AccessControl::PasswordPolicy_var password_policy =
 get_password_policy(request);
// ...
 696

Writing Server Interceptors
Get service contexts After receive_request_server_contexts gets the server’s password policy, it
needs to compare it to the client password that accompanies the request. The
password is encoded as a service context, which is accessed through its identifier
PASSWORD_SERVICE_ID:

AccessControl::PasswordPolicy_ptr
ACL_ServerInterceptorImpl::get_password_policy(
 PortableInterceptor::ServerRequestInfo_ptr request
) IT_THROW_DECL((CORBA::SystemException))
{

 try {
 CORBA::Policy_var policy = request->get_server_policy(
 AccessControl::PASSWORD_POLICY_ID);
 return AccessControl::PasswordPolicy::_narrow(policy);
 }
 catch (const CORBA::INV_POLICY&) {
 // Policy not specified
 }

 return AccessControl::PasswordPolicy::_nil();
}

// ...

Example 127:Calling get_server_policy()

Example 128:

 // ...
 if (!CORBA::is_nil(password_policy) &&
 password_policy->requires_password())
 {
 CORBA::String_var server_password =
 password_policy->password();
 if (!check_password(request, server_password))
 {
 throw CORBA::NO_PERMISSION(0xDEADBEEF);
 }
 }
// ...
697

CHAPTER 21 | Portable Interceptors
The interception point executes as follows:

1. Calls get_request_service_context() with an argument of

AccessControlService::PASSWORD_SERVICE_ID. If successful, the call

returns with a service context that contains the client password.

2. context_data() returns the service context data as an octet sequence (see

“Service Contexts” on page 660).

3. Initializes an octet sequence with the context data.

CORBA::Boolean
ACL_ServerInterceptorImpl::check_password(
 PortableInterceptor::ServerRequestInfo_ptr request,
 const char* expected_password
) IT_THROW_DECL((CORBA::SystemException))
{
 try {
 // Get the password service context...

1 IOP::ServiceContext_var password_service_context =
 request->get_request_service_context(
 AccessControlService::PASSWORD_SERVICE_ID
);

 // ...convert it into string format...
2 IOP::ServiceContext::_context_data_seq& context_data =

 password_service_context->context_data;
3 CORBA::OctetSeq octets(context_data.length(),

 context_data.length(),
 context_data.get_buffer(),
 IT_FALSE);

4 CORBA::Any_var password_as_any =
 m_codec->decode_value(octets, CORBA::_tc_string);
 const char* password;
 password_as_any >>= password;

 // ...and compare the passwords
5 return (strcmp(password, expected_password) == 0);

 }
 catch (const CORBA::BAD_PARAM&)
 {
 // Service context was not specified
 return IT_FALSE;
 }
}

Example 128:
 698

Writing Server Interceptors
4. Calls decode_value() on the interceptor’s Codec to decode the octet

sequence into a CORBA::Any. The call specifies to extract the string data

that is embedded in the octet sequence.

5. Extracts the Any’s string value and compares it to the server password. If

the two strings match, the request passes authorization and is allowed to

proceed; otherwise, an exception is thrown back to the client.
699

CHAPTER 21 | Portable Interceptors
Registering Portable Interceptors
Portable interceptors and their components are instantiated and registered during
ORB initialization, through an ORB initializer. An ORB initializer implements
its pre_init() or post_init() operation, or both. The client and server
applications must register the ORB initializer before calling ORB_init().
 700

Registering Portable Interceptors
Implementing an ORB Initializer
The sample application’s ORB initializer implements pre_init() to perform
these tasks:

• Obtain PICurrent and allocate a slot for password data.

• Encapsulate PICurrent and the password slot identifier in an

AccessControl::Current object, and register this object with the ORB as

an initial reference.

• Register a password policy factory.

• Create Codec objects for the application’s interceptors, so they can encode

and decode service context data and tagged components.

• Register interceptors with the ORB.

Obtain PICurrent In the sample application, the client application and client interceptor use
PICurrent to exchange password data:

• The client thread places the password in the specified PICurrent slot.

• The client interceptor accesses the slot to obtain the client password and

add it to outgoing requests.

In the sample application, pre_init() calls the following operations on
ORBInitInfo:

1. allocate_slot_id() allocates a slot and returns the slot’s identifer.

2. resolve_initial_references("PICurrent") returns PICurrent.

Example 129:Obtaining PICurrent

void
ACL_ORBInitializerImpl::pre_init(
 PortableInterceptor::ORBInitInfo_ptr info
) IT_THROW_DECL((CORBA::SystemException))
{
 // Reserve a slot for the password current

1 PortableInterceptor::SlotId password_slot =
 info->allocate_slot_id();

 PortableInterceptor::Current_var pi_current;

 // get PICurrent
 try {
701

CHAPTER 21 | Portable Interceptors
Register an initial reference After the ORB initializer obtains PICurrent and a password slot, it must make
this information available to the client thread. To do so, it instantiates an
AccessControl::Current object. This object encapsulates:

• PICurrent and its password slot

• Operations that access slot data

The AccessControl::Current object has the following IDL definition:

The application defines its implementation of AccessControl::Current as
follows:

2 CORBA::Object_var init_ref =
 info->resolve_initial_references("PICurrent");
 pi_current =

PortableInterceptor::Current::_narrow(init_ref);
 } catch
 (const PortableInterceptor::ORBInitInfo::InvalidName&) {
 throw CORBA::INITIALIZE();
 }
// ...
}

Example 129:Obtaining PICurrent

Example 130:AccessControl::Current interface

module AccessControl {
 // ...
 local interface Current : CORBA::Current {
 attribute string password;
 };
};

Example 131:Implementing an AccessControl::Current object

#include <omg/PortableInterceptor.hh>
#include <orbix/corba.hh>
#include "access_control.hh"

class ACL_CurrentImpl :
 public AccessControl::Current,
 public IT_CORBA::RefCountedLocalObject
 702

Registering Portable Interceptors
With AccessControl::Current thus defined, the ORB initializer performs
these tasks:

1. Instantiates the AccessControl::Current object.

2. Registers it as an initial reference.

{
 public:
 ACL_CurrentImpl(
 PortableInterceptor::Current_ptr pi_current,
 PortableInterceptor::SlotId password_slot
) IT_THROW_DECL(());

 char*
 password() IT_THROW_DECL((CORBA::SystemException));

 void
 password(const char* the_password
) IT_THROW_DECL((CORBA::SystemException));
 // ...
}

Example 131:Implementing an AccessControl::Current object

Example 132:Registering AccessControl::Current as an initial reference

try {
1 AccessControl::Current_var current =

 new ACL_CurrentImpl(pi_current, password_slot);
2 info->register_initial_reference(

 "AccessControlCurrent", current);
}
 catch (const

PortableInterceptor::ORBInitInfo::DuplicateName&)
{
 throw CORBA::INITIALIZE();
}

703

CHAPTER 21 | Portable Interceptors
Create and register policy
factories

The sample application’s IDL defines the following password policy to provide
password protection for the server’s POAs.

During ORB initialization, the ORB initializer instantiates and registers a factory
for password policy creation:

For example, a server-side ORB initializer can register a factory to create a
password policy, to provide password protection for the server’s POAs.

Example 133:Defining a password policy

module AccessControl {
 const CORBA::PolicyType PASSWORD_POLICY_ID = 0xBEEF;

 struct PasswordPolicyValue {
 boolean requires_password;
 string password;
 };

 local interface PasswordPolicy : CORBA::Policy {
 readonly attribute boolean requires_password;
 readonly attribute string password;
 };

 local interface Current : CORBA::Current {
 attribute string password;
 };
};

PortableInterceptor::PolicyFactory_var passwd_policy_factory =
 new ACL_PasswordPolicyFactoryImpl();
info->register_policy_factory(
 AccessControl::PASSWORD_POLICY_ID,
 passwd_policy_factory
);
 704

Registering Portable Interceptors
Create Codec objects Each portable interceptor in the sample application requires a
PortableInterceptor::Codec in order to encode and decode octet data for
service contexts or tagged components. The ORB initializer obtains a Codec
factory by calling ORBInitInfo::codec_factory, then creates a Codec:

When the ORB initializer instantiates portable interceptors, it supplies this
Codec to the interceptor constructors.

Register interceptors The sample application relies on three interceptors:

• An IOR interceptor that adds a TAG_PASSWORD_REQUIRED component to

IOR’s that are generated by the server application.

• A client interceptor that attaches a password as a service context to

outgoing requests.

• A server interceptor that checks a request’s password before allowing it to

continue.

The ORB initializer instantiates and registers these interceptors as follows:

Example 134:Creating a Codec object

IOP::CodecFactory_var codec_factory = info->codec_factory();
IOP::Encoding cdr_encoding = { IOP::ENCODING_CDR_ENCAPS, 1, 2 };
IOP::Codec_var cdr_codec =
 codec_factory->create_codec(cdr_encoding);

Note: The order in which the ORB initializer registers interceptors has no
effect on their runtime ordering. The order in which portable initializers are
called is determined by their order in the client and server binding lists (see
“Setting Up Orbix to Use Portable Interceptors” on page 708)

Example 135:Registering interceptors

// Register IOR interceptor
PortableInterceptor::IORInterceptor_var ior_icp =
 new ACL_IORInterceptorImpl(cdr_codec);
info->add_ior_interceptor(ior_icp);
705

CHAPTER 21 | Portable Interceptors
// Register client interceptor
PortableInterceptor::ClientRequestInterceptor_var client_icp =
new ACL_ClientInterceptorImpl(password_slot, cdr_codec);
info->add_client_request_interceptor(client_icp);

// Register server interceptor
PortableInterceptor::ServerRequestInterceptor_var server_icp =
new ACL_ServerInterceptorImpl(cdr_codec);
info->add_server_request_interceptor(server_icp);

Example 135:Registering interceptors
 706

Registering Portable Interceptors
Registering an ORBInitializer
An application registers an ORB initializer by calling
register_orb_initializer, which is defined in the PortableInterceptor
name space as follows:

Each service that implements interceptors provides an instance of an ORB
initializer. To use a service, an application follows these steps:

1. Calls register_orb_initializer and supplies the service’s ORB

initializer.

2. Instantiates a new ORB by calling ORB_init() with a new ORB identifier.

An ORB initializer is called by all new ORBs that are instantiated after its
registration.

namespace PortableInterceptor {
 static void register_orb_initializer(
 PortableInterceptor::ORBInitializer_ptr init);
};
707

CHAPTER 21 | Portable Interceptors
Setting Up Orbix to Use Portable Interceptors
The following setup requirements apply to registering portable interceptors with
the Orbix configuration. At the appropriate scope, add:

• portable_interceptor plugin to orb_plugins.

• Client interceptor names to client_binding_list.

• Server interceptor names to server_binding_list.

You can only register portable interceptors for ORBs created in programs that
are linked with the shared library it_portable_interceptor. If an application
has unnamed (anonymous) portable interceptors, add
AnonymousPortableInterceptor to the client and server binding lists. All
unnamed portable interceptors insert themselves at that location in the list.

For more information about Orbix configuration, see the Application Server
Platform Administrator’s Guide.

Note: The binding lists determine the order in which interceptors are called
during request processing.
 708

CHAPTER 22

Bidirectional GIOP
The usual GIOP connection semantics allow request messages to
be sent in only one direction over a connection-oriented transport
protocol. Recent changes to the GIOP standard allow this
restriction to be relaxed in certain circumstances, making it
possible to use connections in a bidirectional mode.

In this chapter This chapter contains the following sections:

Introduction to Bidirectional GIOP page 710

Bidirectional GIOP Policies page 712

Configuration Prerequisites page 717

Basic BiDir Scenario page 718

Advanced BiDir Scenario page 729

Interoperability with Orbix Generation 3 page 732
709

CHAPTER 22 | Bidirectional GIOP
Introduction to Bidirectional GIOP

Overview The original OMG General Inter-ORB Protocol (GIOP) standard specified that
client/server connections are unidirectional, in the sense that GIOP request
messages can be sent in one direction only (from client to server).

There are certain scenarios, however, where it is important to lift the
unidirectional constraint on connections. For example, when a client connects to
a server through a firewall, it is usually impossible for the server to open a new
TCP/IP connection back to the client. In this scenario, the only feasible option is
to re-use the existing incoming connection by making it bidirectional.

Bidirectional GIOP draft
specification

At the time of writing, a draft specification for bidirectional GIOP is described in
the OMG firewall submission:

http://www.omg.org/docs/orbos/01-08-03.pdf

Features IONA’s implementation of bidirectional GIOP has the following features:

1. Compliant with the modified bidirectional GIOP approach described in the

firewall submission.

2. Compatible with GIOP 1.2 (that is, not dependent on GIOP 1.4

NegotiateSession messages).

3. Decoupled from IIOP, so that it can be used over arbitrary

connection-oriented transports (for example, SHMIOP).

4. Supports weak BiDirIds initially.

5. Supports bidirectional invocations on legacy Orbix 3.x callback object

references in order to facilitate phased migration to Orbix 6.1.

Configuration versus
programming approach

There are essentially two alternative approaches you can take to enabling
bidirectional GIOP in your Orbix applications, as follows:

• Configuration approach.

• Programming approach.
 710

Introduction to Bidirectional GIOP
Configuration approach The configuration approach to enabling bidirectional GIOP has the advantage of
being relatively easy to do, because it does not require an application re-build.

On the other hand, this approach has the disadvantage that it is coarse grained:
that is, the relevant bidirectional policies are applied to all of the CORBA
objects, object references and POA instances.

For details of this approach, see the Orbix Administrator’s Guide.

Programming approach The programming approach to enabling bidirectional GIOP has the advantage
that you can apply it at any level of granularity: ORB, POA, thread or object. In
general, it is better to apply a fine-grained approach—that is, enabling
bidirectional GIOP only for those objects that really need it.

Bidirectional GIOP incurs a small performance penalty, due to the following
overheads: extra component added to IORs, extra service context added to
request messages, checking for bidirectional policy compatibility. By enabling
bidirectional GIOP only where it is needed, you can minimize this performance
penalty.
711

CHAPTER 22 | Bidirectional GIOP
Bidirectional GIOP Policies

Overview Bidirectional GIOP is enabled and controlled by setting a variety of CORBA
policies. The bidirectional policies are defined by two different IDL modules, as
follows:

• IDL for standard policies—defined by the OMG.

• IDL for proprietary policies—defined by IONA.

IDL for standard policies The OMG draft specification for bidirectional GIOP defines three bidirectional
policies. These policies are defined in the BiDirPolicy IDL module as shown in
Example 136.

Example 136:The BiDirPolicy Module

// IDL
module BiDirPolicy
{
 typedef unsigned short BidirectionalPolicyValue;

 const BidirectionalPolicyValue ALLOW = 0;
 const BidirectionalPolicyValue DENY = 1;

 // to be assigned by OMG (using temporary IDs
 // allocated from IONA namespace)
 //
 const CORBA::PolicyType BI_DIR_EXPORT_POLICY_TYPE =

0x49545F7C;
 const CORBA::PolicyType BI_DIR_OFFER_POLICY_TYPE =

0x49545F7D;
 const CORBA::PolicyType BI_DIR_ACCEPT_POLICY_TYPE =

0x49545F7E;

 local interface BidirectionalExportPolicy : CORBA::Policy
 {
 readonly attribute BidirectionalPolicyValue value;
 };

 local interface BidirectionalOfferPolicy : CORBA::Policy
 {
 readonly attribute BidirectionalPolicyValue value;
 };
 712

Bidirectional GIOP Policies
BidirectionalExportPolicy The BiDirPolicy::BidirectionalExportPolicy is a policy that is applied to
POA instances on the client side (in this context, the term client here designates
the process that opens the bidirectional connection). There are two alternative
values for this policy:

• BiDirPolicy::ALLOW—indicates that the CORBA objects activated by

this POA are able to receive callbacks through a bidirectional GIOP

connection.

• BiDirPolicy::DENY (the default)—the bidirectional export policy is

disabled.

In practice, when the BidirectionalExportPolicy is enabled on a POA
instance, an ID, GIOP::BiDirId, is generated for the POA. The BiDirId is used
to identify the POA in the context of managing bidirectional connections. In
particular, the BiDirId is embedded in IORs generated by this POA (encoded in
a TAG_BI_DIR_GIOP IOR component).

BidirectionalOfferPolicy The BiDirPolicy::BidirectionalOfferPolicy is a policy that can be applied
to object references on the client side (that is, object references whose operations
are invoked by the client, not callback object references created by the client).
There are two alternative values for this policy:

• BiDirPolicy::ALLOW—indicates that the outgoing connection used by this

object reference will be offered as a bidirectional GIOP connection.

• BiDirPolicy::DENY (the default)—the bidirectional offer policy is

disabled.

The mechanism for making a bidirectional offer is based on sending a list of
BiDirId’s in a GIOP::BI_DIR_GIOP_OFFER service context. Hence, the
bidirectional offer is not made until you invoke an operation on the
offer-enabled object reference.

 local interface BidirectionalAcceptPolicy : CORBA::Policy
 {
 readonly attribute BidirectionalPolicyValue value;
 };
};

Example 136:The BiDirPolicy Module
713

CHAPTER 22 | Bidirectional GIOP
BidirectionalAcceptPolicy The BiDirPolicy::BidirectionalAcceptPolicy is a policy that can be
applied to callback object references on the server side. Normally, the
bidirectional accept policy should be overridden only on callback object
references whose IOR could reasonably be expected to contain a BiDirId
component—otherwise the bidirectional accept policy has no effect. There are
two alternative values for this policy:

• BiDirPolicy::ALLOW—indicates that the callback object reference should

attempt to re-use one of the incoming connections to send invocation

requests back to the client.

• BiDirPolicy::DENY (the default)—the bidirectional accept policy is

disabled.

When the server first invokes an operation on the callback object reference,
Orbix extracts the BiDirId from the associated IOR and attempts to match this
BiDirId with one of the offered incoming connections. Successful re-use of an
incoming connection requires a BiDirId match and compatible policies.

IDL for proprietary policies Orbix defines some proprietary bidirectional GIOP policies, in addition to the
policies defined by the OMG draft specification. These policies are defined in
the IT_BiDirPolicy IDL module as shown in Example 137.

Example 137:The IT_BiDirPolicy Module

// IDL
...
module IT_BiDirPolicy
{
 const CORBA::PolicyType BI_DIR_ID_GENERATION_POLICY_ID =
 IT_PolicyBase::IONA_POLICY_ID + 62;

 const CORBA::PolicyType BI_DIR_GEN3_ACCEPT_POLICY_ID =
 IT_PolicyBase::IONA_POLICY_ID + 65;

 typedef unsigned short BiDirIdGenerationPolicyValue;
 const BiDirIdGenerationPolicyValue RANDOM = 0;
 const BiDirIdGenerationPolicyValue REPEATABLE = 1;

 local interface BiDirIdGenerationPolicy : CORBA::Policy
 {
 readonly attribute BiDirIdGenerationPolicyValue value;
 };
 714

Bidirectional GIOP Policies
BiDirIdGenerationPolicy The IT_BiDirPolicy::BiDirIdGenerationPolicy is a proprietary policy that
affects the way GIOP::BiDirId’s are generated. It is applied to POA instances
on the client side and must be used in combination with the
BiDirPolicy::BidirectionalExportPolicy. There are two alternative values
for this policy:

• IT_BiDirPolicy::RANDOM (the default)—the BidDirId combines a 32-bit

endpoint creation timestamp and 128 bit hash/digest of the endpoint ID.

The use of the timestamp makes accidental clashes extremely unlikely.

• IT_BiDirPolicy::REPEATABLE—the BiDirId is composed entirely of a

160 bit hash/digest of the endpoint ID. Accidental clashes are possible if

similar lengthy fully qualified POA names are extensively used in the same

location domain, but the probability of a clash is still very low.

BidirectionalGen3AcceptPolicy The IT_BiDirPolicy::BidirectionalGen3AcceptPolicy is a policy that can
be applied to Orbix 3 callback object references on the server side. This policy is
provided to facilitate interoperability between Orbix 6.x servers and Orbix 3
legacy clients. The effect of this policy is analogous to the
BidirectionalAcceptPolicy, except that it applies to Orbix 3 callbacks.

There are two alternative values for this policy:

• BiDirPolicy::ALLOW—indicates that the Orbix 3 callback object

reference should attempt to re-use one of the incoming connections to send

invocation requests back to the Orbix 3 client.

 local interface BidirectionalGen3AcceptPolicy : CORBA::Policy
 {
 readonly attribute BiDirPolicy::BidirectionalPolicyValue

value;
 };
};

Example 137:The IT_BiDirPolicy Module

Note: If callback object references are intended to be persistent, the
REPEATABLE policy value must be chosen to ensure that the same BiDirId
is generated over subsequent re-activations of the client process. In the
usual callback scenario, however, the callback object references are
transient and the RANDOM policy value is applicable.
715

CHAPTER 22 | Bidirectional GIOP
• BiDirPolicy::DENY (the default)—the bidirectional Orbix 3 accept policy

is disabled.

For more details on interoperability with Orbix 3, see “Interoperability with
Orbix Generation 3” on page 732.

Policy granularity As usual for CORBA policies, these bidirectional policies can be defined at
different levels of granularity. The different levels of granularity for which you
can define each policy are summarized in Table 30.

Table 30: Levels of Granularity for Bidirectional Policies

Bidirectional GIOP Policy Levels of Granularity

BiDirPolicy::BidirectionalExportPolicy ORB

POA

BiDirPolicy::BidirectionalOfferPolicy ORB

Thread

Object reference

BiDirPolicy::BidirectionalAcceptPolicy ORB

Thread

Object reference

IT_BiDirPolicy::BiDirIdGenerationPolicy ORB

POA

IT_BiDirPolicy::BidirectionalGen3AcceptPolicy ORB

Thread

Object reference
 716

Configuration Prerequisites
Configuration Prerequisites

Overview This subsection describes the basic configuration prerequisites for using
bidirectional GIOP in an Orbix 6.x domain.

Client configuration On the client-side, the plugins:giop:message_server_binding_list should
include an entry for BiDir_GIOP, for example:

This enables the existing outgoing message interceptor chain to be re-used for an
incoming server binding.

Server configuration On the server-side, the binding:client_binding_list should include an entry
for BiDir_GIOP, for example:

This enables the existing incoming message interceptor chain to be re-used, so
that the outgoing client binding dispatches the callback invocation.

Note: You would normally not have to configure these configuration settings
manually. In a generated configuration domain, by default, your client and
server binding lists are set to include BiDir_GIOP.

plugins:giop:message_server_binding_list=
["BiDir_GIOP","GIOP"];

 binding:client_binding_list = ["OTS+BiDir_GIOP", "BiDir_GIOP",
"OTS+GIOP+IIOP", "GIOP+IIOP", ...];

Note: If your server needs to interoperate with Orbix 3 legacy clients, the
binding:client_binding_list should also include a "BiDir_Gen3" entry.
See “Interoperability with Orbix Generation 3” on page 732.
717

CHAPTER 22 | Bidirectional GIOP
Basic BiDir Scenario

Overview This section describes the stock feed demonstration, which is a sample
bidirectional GIOP scenario. Some code examples extracted from the stock feed
demonstration show you how to set the bidirectional GIOP policies on the client
side and on the server side.

In this section This section contains the following subsections:

The Stock Feed Demonstration page 719

Setting the Export Policy page 722

Setting the Offer Policy page 724

Setting the Accept Policy page 726
 718

Basic BiDir Scenario
The Stock Feed Demonstration

Overview This section describes the stock feed demonstration, a basic bidirectional GIOP
scenario. The stock feed system consists of one central server, which gathers
information about stock price changes, and many clients, which can register an
interest in receiving stock data.

The central server stores a list of callback object references for all the clients that
are registered with it. As soon as a stock price changes occurs, the server iterates
over the list of callback object references, calling NotifyPriceChange() on
each one. It is these callback invocations which can potentially be configured to
use bidirectional GIOP.

Demonstration code The stock feed demonstration code is located in the following directory:

OrbixInstallDir/asp/Version/demos/corba/orb/bidir_giop

IDL for stock feed scenario Example 138 shows the IDL for the stock feed demonstration, which consists of
two IDL interfaces: StockInfoCB and RegStockInfo. These IDL interfaces are
identical to the ones used by the corresponding demonstration in the Orbix
Generation 3 product.

Example 138:IDL for the Stock Feed Demonstration

// IDL
interface StockInfoCB
{
 oneway void NotifyPriceChange(
 in string stock_name,
 in float new_price
);
};

interface RegStockInfo
{
 void Register(in StockInfoCB callback);
 void Deregister(in StockInfoCB callback);
 void Notify(in float new_price);
};
719

CHAPTER 22 | Bidirectional GIOP
Stock feed scenario Figure 60 gives you an overview of the stock feed demonstration, where a
number of clients register their interest in receiving callbacks from the stock
feed server.

Steps to establish a callback Figure 60 shows the steps that occur to establish a stock feed callback, as
follows:

Figure 60: Basic Bidirectional GIOP Scenario—Stock Feed

Stage Description

1 The client creates a POA instance, which has the
BidirectionalExportPolicy enabled, and activates a
StockInfoCB CORBA object, which is responsible for receiving
callbacks.

For the purposes of bidirectional GIOP, the POA is identified by
the ID, BiDirId_X.
 720

Basic BiDir Scenario
2 The client instantiates a RegStockInfo object reference, with the
BidirectionalOfferPolicy enabled (the RegStockInfo object
reference might have been retrieved from the naming service or
from a stringified IOR).

3 The client invokes the Register() operation on the RegStockInfo
object. A couple of things happen at this point:

• The request message for the Register operation includes the

BiDirId_X ID in a service context. This signals that the

connection is offering to receive callbacks to the POA

identified by BiDirId_X.

• The Register() operation’s argument is a reference to the

StockInfoCB object, which will be used to accept callbacks

from the server. The StockInfoCB object reference also has

the BiDirId_X ID embedded in it.

4 If the BidirectionalAcceptPolicy policy is not already enabled
at the level of the current ORB or the current thread, the server can
enable this policy at the object level after receiving the
StockInfoCB object reference (creating a new accept-enabled copy
of the object reference).

5 Some time later, the server makes a callback on the client, calling
the NotifyPriceChange() operation on the StockInfoCB object
reference. Because the bidirectional accept policy is enabled on the
object reference, Orbix checks to see whether it can re-use an
existing incoming connection for the callback. By matching the
GIOP BiDirId in the object reference to the GIOP BiDirId
offered by a connection, Orbix finds a connection that it can re-use
in bidirectional mode.

Stage Description
721

CHAPTER 22 | Bidirectional GIOP
Setting the Export Policy

Overview This subsection shows you how to set the
BiDirPolicy::BidirectionalExportPolicy policy on a POA instance. This
POA instance can then be used to activate CORBA objects that are intended to
receive callbacks through a bidirectional GIOP connection.

Policy granularity In this example, the BiDirPolicy::BidirectionalExportPolicy policy is set
at POA granularity, which is the finest level of granularity for this policy.

C++ example Example 139 is a C++ example that shows how to create a POA instance with
the BidirectionalExportPolicy policy enabled. This POA instance is used on
the client side to activate client callback objects.

Call the CORBA::ORB::create_policy() operation to create a
BidirectionalExportPolicy object and then include this policy in the list of
policies passed to the PortableServer::POA::create_POA() operation.

Example 139:C++ Setting the BidirectionalExportPolicy Policy

// C++
// create callback POA with the effective
// BidirectionalExportPolicy set to ALLOW in order to allow an
// appropriate BiDirId be published in the callback reference
//
...
PortableServer::POA_var poa;

CORBA::PolicyList poa_policies(1);
poa_policies.length(1);

CORBA::Any bi_dir_value;
bi_dir_value <<= BiDirPolicy::ALLOW;

poa_policies[0] = orb->create_policy(
 BiDirPolicy::BI_DIR_EXPORT_POLICY_TYPE,
 bi_dir_value
);
 722

Basic BiDir Scenario
poa = root_poa->create_POA("callback", poa_manager,
poa_policies);

...

Example 139:C++ Setting the BidirectionalExportPolicy Policy
723

CHAPTER 22 | Bidirectional GIOP
Setting the Offer Policy

Overview This subsection shows you how to set the
BiDirPolicy::BidirectionalOfferPolicy policy on an object reference.
After invoking an operation for the first time, the connection used by the object
reference becomes available for bidirectional GIOP use. It does not matter
whether the object reference opens a new connection or re-uses an existing
connection.

For example, if an offer-enabled object reference re-uses an existing outgoing
uni-directional connection, that connection becomes available for bidirectional
use after the first invocation on the offer-enabled object reference.

Policy granularity In this example, the BiDirPolicy::BidirectionalOfferPolicy policy is set at
object granularity, which is the finest level of granularity for this policy.

C++ example Example 140 is a C++ example that shows how to create a RegStockInfo object
reference with the BidirectionalOfferPolicy policy enabled. This
RegStockInfo object reference is used on the client side to connect to a
RegStockInfo CORBA object on the server side.

Call the CORBA::ORB::create_policy() operation to create a
BidirectionalOfferPolicy object and then include this policy in the list of
policies passed to the CORBA::Object::_set_policy_overrides() operation.

Note: It might not be necessary to invoke an operation explicitly to make a
connection available for bidirectional use. Sometimes operations are invoked
implicitly—as, for example, when the narrow() function implicitly forces a
remote _is_a() invocation.

Example 140:C++ Setting the BidirectionalOfferPolicy Policy

// C++
// destringify RegStockInfo IOR and override the effective
// policies with the BidirectionalOfferPolicy set to ALLOW in
// order to allow a birectional offer be made with invocations on
// this reference - note the policy is overridden on the

reference
// to be invoked by the client, not on the callback reference
//
 724

Basic BiDir Scenario
CORBA::Object_var objref =
 import_object(orb, registry_objref_file);

if (CORBA::is_nil(objref))
{
 return 1;
}

CORBA::Any value;
value <<= BiDirPolicy::ALLOW;
CORBA::PolicyList policies(1);
policies.length(1);

policies[0] = orb->create_policy(
 BiDirPolicy::BI_DIR_OFFER_POLICY_TYPE,
 value
);

CORBA::Object_var registry_ref =
 objref->_set_policy_overrides(policies,

CORBA::ADD_OVERRIDE);

RegStockInfo_var reg_stock_info =
 RegStockInfo::_narrow(registry_ref);

if (CORBA::is_nil(reg_stock_info))
{
 cerr << "Could not _narrow object to type RegStockInfo"
 << endl;
 return 1;
}

Example 140:C++ Setting the BidirectionalOfferPolicy Policy
725

CHAPTER 22 | Bidirectional GIOP
Setting the Accept Policy

Overview This subsection shows you how to set the
BiDirPolicy::BidirectionalAcceptPolicy policy on an object reference. In
order to use an object reference on the server side as a bidirectional callback, the
following prerequisites must be satisfied:

• The object reference is a proper callback object reference. For example, in

Orbix 6.x a callback object reference has a BiDirId embedded in its IOR.

• The BiDirPolicy::BidirectionalAcceptPolicy policy must be enabled

for the object reference.

When both of these prerequisites are satisfied, an operation invocation made on
the callback object reference causes Orbix to attempt re-use an incoming
connection in a bidirectional mode. An incoming connection is only considered
for bidirectional use, if it offers the same BiDirId that appears in the callback
object reference’s IOR and the connection is compatible with the policies
effective for the callback invocation.

Policy granularity In this example, the BiDirPolicy::BidirectionalAcceptPolicy policy is set
at object granularity, which is the finest level of granularity for this policy.

C++ example Example 141 is a C++ example that shows how to create a StockInfoCB
callback object reference with the BidirectionalAcceptPolicy policy enabled.
This StockInfoCB callback object reference is used on the server side to connect
to a StockInfoCB callback object on the client side.

Example 141:C++ Setting the BidirectionalAcceptPolicy Policy

// C++
void
RegStockInfoImpl::Register (
 StockInfoCB_ptr obj
) throw (CORBA::SystemException)
{
 cout << "RegStockInfoImpl::Register(StockInfoCB_ptr)

called"
 << endl;
 cout << "Registering client for stockname "
 << m_stockname << endl;
 726

Basic BiDir Scenario

 // To accept the client's bidirectional offer, override
 // the effective policies on the callback reference with the
 // BidirectionalAcceptPolicy set to ALLOW - similarly the
 // BidirectionalGen3AcceptPolicy is overridden to allow
 // bidirectional invocations on callback references
 // registered by gen3 clients
 //
 CORBA::Any value;
 value <<= BiDirPolicy::ALLOW;
 CORBA::PolicyList policies(2);
 policies.length(2);

1 policies[0] = global_orb->create_policy(
 BiDirPolicy::BI_DIR_ACCEPT_POLICY_TYPE,
 value
);

2 policies[1] = global_orb->create_policy(
 IT_BiDirPolicy::BI_DIR_GEN3_ACCEPT_POLICY_ID,
 value
);

3 CORBA::Object_ptr new_obj =
 obj->_set_policy_overrides(policies,

CORBA::ADD_OVERRIDE);

 StockInfoCB_ptr bidir_callback =
 StockInfoCB::_narrow(new_obj);

 {
 CallbackListEntry value;
 value.m_original_ref = StockInfoCB::_duplicate(obj);
 value.m_bidir_ref = bidir_callback;

 IT_Locker<IT_Mutex> lock(m_mutex);

4 m_clientlist.push_back(value);
 }
}

Example 141:C++ Setting the BidirectionalAcceptPolicy Policy
727

CHAPTER 22 | Bidirectional GIOP
The preceding C++ code extract can be explained as follows:

1. This line calls the CORBA::ORB::create_policy() operation to create a

BiDirPolicy::BidirectionalAcceptPolicy object.

2. This line calls the CORBA::ORB::create_policy() operation to create a

IT_BiDirPolicy::BidirectionalGen3AcceptPolicy object. This

proprietary policy allows you to accept bidirectional connections from

Orbix 3 legacy clients. See “Interoperability with Orbix Generation 3” on

page 732.

3. This line calls the CORBA::Object::_set_policy_overrides() operation

to create a new object reference with the BidirectionalAcceptPolicy

and BidirectionalGen3AcceptPolicy policies enabled.

4. The stock feed demonstration adds the callback object reference (with

accept policies enabled) to its list of StockInfoCB object references.
 728

Advanced BiDir Scenario
Advanced BiDir Scenario

Overview Figure 61 gives an overview of an advanced bidirectional scenario, where a
client application establishes two separate connections to a server application. In
this scenario, the server has to figure out which connection to use for the
callback.

Figure 61: Advanced Bidirectional GIOP Scenario
729

CHAPTER 22 | Bidirectional GIOP
Multiple endpoints The main difference between this advanced bidirectional scenario, Figure 61,
and the basic bidirectional scenario, Figure 60 on page 720, is that the advanced
scenario features multiple endpoints, as follows:

• Server-side endpoints—POA_J and POA_K. The POA_J endpoint has its

policies set so that it accepts insecure connections from clients. The POA_K

endpoint has its policies set so that it requires secure connections from

clients.

• Client-side endpoints—POA_A, POA_B and POA_C, of which only POA_B and

POA_C can accept callbacks (their BidirectionalExportPolicy is set to

ALLOW). POA_B is configured to accept only insecure callbacks. POA_C is

configured to accept only secure callbacks.

Multiple connections Because of the different security policies required by POA_J and POA_K in
Figure 61, it is possible for one client application to establish multiple
connections to the same server. For example, the client might establish an
insecure connection to object J1 in POA_J, and a secure connection to object K1
in POA_K.

Bidirectional offer phase The offer phase occurs whenever the client opens a connection to the server. In
Figure 61, two offers are made:

• Connection to the object, J1—an insecure connection is made to the POA_J

endpoint, which activates object J1. In the first request message over this

connection, the client includes a GIOP::BI_DIR_GIOP_OFFER service

context containing a list of the client endpoints that support insecure

callbacks: that is, BiDirId_B.

• Connection to the object, K1—a secure connection is made to the POA_K

endpoint, which activates object K1. Similarly to the first connection, the

client includes a GIOP::BI_DIR_GIOP_OFFER service context containing a

list of the client endpoints that support secure callbacks: that is,

BiDirId_C.
 730

Advanced BiDir Scenario
Exporting a callback object In Example 61 on page 729, the client exports a callback reference, B1, to the
server. Because POA_B has its BiDirExportPolicy set to ALLOW, the IOR for B1
includes a GIOP::TAG_BI_DIR_GIOP IOR component, which embeds the
BiDirId_B bidirectional ID.

The presence of the TAG_BI_DIR_GIOP IOR component indicates to the server
that the object, B1, supports bidirectional GIOP and the ID, BiDirId_B,
identifies the associated endpoint on the client side.

Bidirectional accept phase The accept phase occurs when the first operation invocation is made on the
object reference, B1, on the server side. When the first operation is invoked on
B1, the ORB recognizes that B1 can use bidirectional GIOP, because the
following conditions hold:

• The BiDirAcceptPolicy is set to ALLOW on the B1 object reference, and

• The IOR for B1 includes a TAG_BI_DIR_GIOP IOR component.

The ORB then extracts the BiDirId_B ID from B1’s IOR and compares this
bidirectional ID with the offers from existing client connections. Because the
insecure connection offers bidirectional GIOP for the BiDirId_B endpoint, the
B1 object reference attempts to re-use this connection for the callback. At this
point, Orbix automatically compares the callback invocation policies with the
attributes of the offered connection. Only if the policies are compatible will
Orbix re-use the existing insecure connection for bidirectional GIOP.
731

CHAPTER 22 | Bidirectional GIOP
Interoperability with Orbix Generation 3

Overview Orbix 6.1 is designed to interoperate with Orbix 3 (Generation 3) clients.
Figure 62 shows an example of the stock feed demonstration where one of the
clients receiving callbacks is an Orbix 3 client.

Configuring an Orbix 6.1 server
for Gen 3 interoperability

To configure an Orbix 6.1 server to interoperate bidirectionally with Orbix
Generation 3 clients, you must include the appropriate BiDir_Gen3 entry in the
server's configured binding:client_binding_list. For example,

Setting the BiDir Gen 3 accept
policy

To enable an Orbix 3 callback object reference to re-use an existing incoming
connection on the server side, you must set the
IT_BiDirPolicy::BidirectionalGen3AcceptPolicy on the callback object
reference.

For C++ example code, see Example 141 on page 726.

Figure 62: Orbix 3 Client Receiving a Callback from an Orbix 6.1 Server

binding:client_binding_list = ["OTS+BiDir_GIOP", "BiDir_GIOP",
"BiDir_Gen3", "OTS+GIOP+IIOP", "GIOP+IIOP", ...];
 732

Interoperability with Orbix Generation 3
Asymmetry of Gen 3 bidirectional
support

Orbix 6.1 support for Orbix 3 bidirectional GIOP is asymmetric. An Orbix 6.1
server can invoke on a Orbix 3 callback reference using bidirectional GIOP.
However, an Orbix 6.1 client can not produce a callback reference that an Orbix
3 server could invoke on using bidirectional GIOP.

Limitations of Gen 3 bidirectional
GIOP

Orbix 3 bidirectional GIOP is also subject to the following limitations:

• An Orbix 3 callback reference must be passed as a request parameter over

the actual connection to be used for bidirectional invocations; whereas an

Orbix 6.x bidirectional-enabled callback reference can be passed in any

way to the server (for example, through the naming service or by

stringifying to a shared file).

• The bidirectional offer implicit in an Orbix 3 callback reference is limited

to the lifetime of the connection over which the callback reference is

received by the server. Hence, further bidirectional invocations could not

be made if, for example, the connection is reaped by the Orbix automatic

connection management (ACM) and then re-established.
733

CHAPTER 22 | Bidirectional GIOP
 734

CHAPTER 23

Locating Objects
with corbaloc
Corbaloc URLs enable you to specify the location of a CORBA
service in a relatively simple format. Before using a corbaloc URL
on the client side, you would normally register a simplified key for
the CORBA object. Key registration can be done either using the
itadmin named_key command or by programming.

In this chapter This chapter discusses the following topics:

corbaloc URL Format page 736

Indirect Persistence Case page 740

Direct Persistence Case page 749

Named Keys and Plain Text Keys Used by Orbix Services page 754
735

CHAPTER 23 | Locating Objects with corbaloc
corbaloc URL Format

Overview The purpose of a corbaloc URL is to specify the location of a CORBA object in
a human-readable format with the minimum amount of information necessary.
For example, here is a typical example of a corbaloc URL:

corbaloc:iiop:1.2@LocatorHost:3075/NameService

Contrast this with a typical example of a stringified IOR:

IOR:010000003200000049444c3a696f6e612e636f6d2f49545f4f54535f53657
27669636541646d696e2f5365727669636541646d696e3a312e30000000010
00000000000008a000000010102000800000066626f6c74616e00030c00003
f0000003a3e0232310f73696d706c652e6c6f636174696f6e11694f5453006
f7473746d0061646d696e00175472616e73616374696f6e536572766963654
1646d696e00020000000100000018000000010000000100010000000000000
1010001000000090101000600000006000000010000002600

There is an important difference between these two representations of an object
reference: whereas the stringified IOR contains essentially the complete state of
an object reference (including IOR components), the corbaloc URL contains
only the object’s address. Hence, object references constructed with a corbaloc
URL are initialized in a provisional state. When an operation is first invoked on
the object reference, Orbix exploits the GIOP location forward mechanism to
retrieve the missing object reference details.

Converting a corbaloc URL to an
object reference

In C++, you can convert a corbaloc URL into an object reference using the
CORBA::ORB::string_to_object() function, which has the following
signature:

For code examples, see “Using the corbaloc URL in a Client” on page 748.

corbaloc URL formats The following corbaloc URL formats are described here:

• Basic corbaloc URL.

• Multiple-address corbaloc URL.

• Secure corbaloc URL.

// C++
CORBA::Object_ptr string_to_object(const char *);
 736

corbaloc URL Format
Basic corbaloc URL A basic corbaloc URL has the following format:

The components of the basic corbaloc URL can be described as follows:

corbaloc:[iiop]:[Version@]Host[:Port][/ObjectKey]

iiop (Optional) Specifies the transport protocol to be IIOP. If
omitted, the protocol defaults to IIOP. Hence,
corbaloc:iiop: and corbaloc:: are equivalent.

Version (Optional) Specifies the GIOP version supported by the
server. The allowed values are 1.0, 1.1 and 1.2; if omitted,
the default is 1.0.

Orbix supports GIOP 1.2.

Host Specifies the server’s hostname or IP address in dotted
decimal format.

Port (Optional) Specifies the IP port used to connect to the server.
If omitted, the default is 2809.

ObjectKey (Optional) A key that identifies the CORBA object on the
remote server.

According to the OMG specification, this key is the same as
the object key that would be embedded in an equivalent IOR.
To facilitate ease-of-use, however, Orbix provides
mechanisms to substitute a human-readable key for the
original object key.
737

CHAPTER 23 | Locating Objects with corbaloc
Multiple-address corbaloc URL The multiple-address corbaloc URL has the following format:

With this form of corbaloc URL, you can locate a service that runs on more
than one host and port (or is available through multiple protocols).

Each address in the list has the same format as the middle part of the basic
corbaloc URL. For example, given that the FooService object is available both
on HostX and HostY, you could specify a multiple-address corbaloc URL for
the service as follows:

corbaloc:iiop:1.2@HostX:3075,iiop:1.2@HostY:3075/FooService

This form of URL is useful for specifying backup services; Orbix tries each of
the addresses in the order in which they appear until it makes a successful
connection.

Secure corbaloc URL A secure corbaloc URL has the following format:

This differs from the basic corbaloc URL only in that the transport protocol is
it_iiops, which selects the IIOP/TLS protocol instead of IIOP. The it_iiops
protocol specifier is Orbix-specific.

corbaloc:[CommaSeparatedAddressList][/ObjectKey]

corbaloc:it_iiops:[Version@]Host[:Port][/ObjectKey]

Note: Some earlier versions of Orbix (C++ only) used iiops to specify the
IIOP/TLS protocol. If you need to support interoperability with older versions
of Orbix, you could use a multiple-address corbaloc URL to support both types
of protocol specifier, it_iiops and iiops.

For example, to connect securely to the FooService object:

corbaloc:it_iiops:1.2@FooHost:3075,iiops:1.2@FooHost:3075/FooSer
vice
 738

corbaloc URL Format
Object keys The object key appearing in a corbaloc URL can have one of the following
values:

• Object key from an IOR—the CORBA specification defines a corbaloc

object key to be the same as the object key embedded in an IOR, except

that non-printable characters are substituted by URL escape sequences.

Unfortunately, this form of object key is unwieldy, because object keys

from IORs are usually defined in a binary format.

• Named key—a named key is a human-readable key that is registered with

the locator service. The named key enables you to construct a

human-readable corbaloc URL for indirect persistent servers.

• Plain text key—a plain text key is a human-readable key that is registered

with the plain_text_key plug-in. The plain text key enables you to

construct a human-readable corbaloc URL for direct persistent servers.

The named key and the plain text key are conceptually similar; they are both
mechanisms for substituting a human-readable key in a corbaloc URL.
739

CHAPTER 23 | Locating Objects with corbaloc
Indirect Persistence Case

Overview The mechanism used to substitute human-readable keys in a corbaloc URL must
be tailored to the characteristics of the server, which could be either indirect
persistent or direct persistent.

In the case of an indirect persistent server, the task of substituting
human-readable keys is performed by the locator service, which maintains a
named key registry in the IMR for this purpose.

In this section This section contains the following subsections:

Overview of the Indirect Persistence Case page 741

Registering a Named Key at the Command Line page 744

Registering a Named Key by Programming page 746

Using the corbaloc URL in a Client page 748
 740

Indirect Persistence Case
Overview of the Indirect Persistence Case

Overview An indirect persistent server is a server that has a POA initialized with the
following POA policy values:

• PortableServer::LifespanPolicy value is PERSISTENT, and

• IT_PortableServer::PersistenceModePolicy value is

INDIRECT_PERSISTENCE (the default).

The CORBA objects activated by this POA have the following qualities:

• Persistence—implies that the object reference for this object remains valid

even after the server is stopped and restarted.

• Indirect persistence—implies that clients establish contact with the server

through the locator. In practice, the POA embeds the locator’s address in

the object references it generates. This forces clients to contact the locator

before connecting to the server.
741

CHAPTER 23 | Locating Objects with corbaloc
Figure 63 shows an overview of how Orbix resolves a corbaloc URL with the
help of the locator service in the indirect persistent case.

Figure 63: Using corbaloc with the Locator-Based Named Key Registry
 742

Indirect Persistence Case
Stages in registering and finding a
named key

The stages involved in registering a named key and resolving a corbaloc URL
constructed with that named key, as shown in Figure 63 on page 742, can be
described as follows:

Stage Description

1 There are two alternative ways to register a named key:

• At the command line—use the itadmin named_key create

command to associate a named key (for example,

FooService) with a stringified IOR.

• By programming—as the Foo service starts up, it contacts the

locator to register the FooService named key against the Foo

object reference.

2 The locator stores the FooService named key and object reference
data in the named key registry, which is part of the implementation
repository (IMR).

3 A client attempts to contact the server using the following URL:

corbaloc:iiop:1.2@LocatorHost:3075/FooService

Because the corbaloc URL contains the address of the locator,
LocatorHost:3075, the client initially opens a connection to the
locator service, sending either a GIOP LocateRequest message or a
GIOP Request message.

4 The locator looks up the named key registry to find the object
reference corresponding to the FooService key. The Foo object
reference is then sent back to the client in a reply message (either a
GIOP LocateReply message or a GIOP Reply message with
LOCATION_FORWARD reply type).

5 Using the object reference data received from the locator, the client
can now open a connection directly to the Foo server.
743

CHAPTER 23 | Locating Objects with corbaloc
Registering a Named Key at the Command Line

Overview To make a named key available for use in corbaloc URLs, the server must
register the named key and its corresponding object reference in the named key
registry. This subsection describes how to register a named key at the command
line.

The itadmin named_key
command

The itadmin named_key command supports a variety of subcommands for
managing named keys in the implementation repository, as follows:

For full details of these commands, see the Orbix Administrator’s Guide.

named_key create Creates an association between a specified
well-known object key and a specified object
reference.

named_key list Lists all well known object keys that are registered
with the locator daemon.

named_key remove Removes the specified object key from the location
domain.

named_key show Displays the object reference associated with the
given key.
 744

Indirect Persistence Case
Creating a named key using
itadmin named_key create

To create a named key using the itadmin named_key create command,
perform the following steps:

Step Action

1 Obtain a stringified IOR for the CORBA object that you want to
register. You could obtain the IOR in one of the following ways:

• If the server dumps the stringified IOR to a file or to the

console window, you can copy it from there (the

CORBA::ORB::object_to_string() function generates

stringified IORs).

• If the object is already registered in the CORBA naming

service, you can obtain the stringified IOR using the itadmin

ns resolve Name command.

2 Register the stringified IOR from the preceding step, String-IOR,
associating it with a named key, NamedKey, by entering the
following command:

itadmin named_key create -key NamedKey String-IOR
745

CHAPTER 23 | Locating Objects with corbaloc
Registering a Named Key by Programming

Overview This subsection describes the alternative approach to registering corbaloc URLs
in the named key registry, which is by programming. A code example shows
how a server contacts the locator service to register a named key.

Prerequisites To use the IT_Location and IT_NamedKey modules in C++, you must link your
application with the it_location library (it_location.lib in Windows).

Server example in C++ Example 142 shows how a server can register a named key, FooService, that
identifies a given object reference, FooObjectRef (the object reference must
have been generated from a CORBA object belonging to an indirect persistent
POA).

Example 142:Registering a Named Key with the Locator

// C++
...
// Get the Locator
CORBA::Object_var objref =

1 orb->resolve_initial_references("IT_Locator");
IT_Location::Locator_var locator =
 IT_Location::Locator::_narrow(objref);

// Get the Named Key registry
2 objref =

locator->resolve_service(IT_NamedKey::NAMED_KEY_REGISTRY);
3 IT_NamedKey::NamedKeyRegistry_var registry =

 IT_NamedKey::NamedKeyRegistry::_narrow(objref);

// Add a key to the registry
try
{

4 registry->add_text_key("FooService", FooObjectRef);
}
catch (const IT_NamedKey::NamedKeyRegistry::EntryAlreadyExists&

ex)
{
 cerr << "ERROR: Unable to add an IMR entry for key: "
 << ex.name << endl;
}

 746

Indirect Persistence Case
The preceding C++ code example can be explained as follows:

1. The IT_Locator initial reference ID is used to obtain a reference to the

IT_Location::Locator interface. The Locator interface enables a server

to communicate directly with the Orbix locator service (the IT_Location

IDL module is defined in the

OrbixInstallDir/asp/Version/idl/orbix/location.idl file).

2. The resolve_service() operation is called to return a reference to the

named key registry. The IT_NamedKey::NAMED_KEY_REGISTRY is a string

constant, which has the value IT_NamedKey::NamedKeyRegistry.

3. The IT_NamedKey::NamedKeyRegistry interface defines operations to

register named keys and manage the named key registry. See the C++

Programmer’s Reference for more details.

4. The IT_NamedKey::NamedKeyRegistry::add_text_key() operation

registers a new named key with the locator.
747

CHAPTER 23 | Locating Objects with corbaloc
Using the corbaloc URL in a Client

Overview The usual format for a corbaloc URL that references an indirect persistent
server is as follows:

Because the server is indirect persistent, the URL embeds the locator’s address,
LocatorHost:LocatorPort, not the server’s own address.

For example, given that the Orbix locator is running on host, LocatorHost, and
port, 3075, and the server registers a Foo object under the named key,
FooService, you could access the Foo object with the following URL:

corbaloc:iiop:1.2@LocatorHost:3075/FooService

Client example in C++ Example 143 shows how to resolve a corbaloc URL for an object of Foo type,
using the CORBA::ORB::string_to_object() function.

corbaloc:iiop:1.2@LocatorHost:LocatorPort/NamedKey

Example 143:Resolving a corbaloc URL

// C++
const char * corbalocURL =

"corbaloc:iiop:1.2@LocatorHost:3075/FooService";

CORBA::Object_var objref = orb->string_to_object(corbalocURL);

Foo_var fooObj= Foo::_narrow(objref);
if (CORBA::is_nil(fooObj)) {
 // Error: _narrow failed!
}

 748

Direct Persistence Case
Direct Persistence Case

Overview The mechanism used to substitute human-readable keys in a corbaloc URL must
be tailored to the characteristics of the server, which could be either indirect
persistent or direct persistent.

In the case of a direct persistent server, the task of substituting human-readable
keys is performed by the plain_text_key plug-in, which holds a transient list of
plain text keys for this purpose.

In this section This section contains the following subsections:

Overview of the Direct Persistence Case page 750

Registering a Plain Text Key page 752

Using the corbaloc URL in a Client page 753
749

CHAPTER 23 | Locating Objects with corbaloc
Overview of the Direct Persistence Case

Overview A direct persistent server is a server that has a POA initialized with the
following POA policy values:

• PortableServer::LifespanPolicy value is PERSISTENT, and

• IT_PortableServer::PersistenceModePolicy value is

DIRECT_PERSISTENCE.

The CORBA objects activated by this POA have the following qualities:

• Persistence—implies that the object reference for this object remains valid

even after the server is stopped and restarted.

• Direct persistence—implies that clients establish contact with the server

directly, bypassing the locator. Hence, the POA embeds the server’s own

address in the object references it generates.

Figure 64 shows an overview of how Orbix resolves a corbaloc URL using the
plain_text_key plug-in in the direct persistent case.

Figure 64: Using corbaloc with the plain_text_key Plug-In
 750

Direct Persistence Case
Stages in registering and finding a
plain text key

The stages involved in registering a plain text key and resolving a corbaloc
URL constructed with that plain text key, as shown in Figure 64 on page 750,
can be described as follows:

Stage Description

1 As the Foo service starts up, it registers the FooService plain text
key with the plain_text_key plug-in.

2 A client attempts to contact the server using the following URL:

corbaloc:iiop:1.2@FooHost:4321/FooService

Because the corbaloc URL contains the address of the Foo server,
FooHost:4321, the client opens a connection directly to the server
(sending either a GIOP LocateRequest message or a GIOP Request
message).

3 The plain_text_key plug-in finds the object reference
corresponding to the FooService key. The Foo object reference is
then sent back to the client in a reply message (either a GIOP
LocateReply message or a GIOP Reply message with
LOCATION_FORWARD reply type).

4 Using the object reference data received in the previous step, the
client now resends the GIOP Request message to the server.
751

CHAPTER 23 | Locating Objects with corbaloc
Registering a Plain Text Key

Overview To make a plain text key available for use in corbaloc URLs, the server must
register the plain text key and its corresponding object reference with the
plain_text_key plug-in.

Prerequisites Because the plain_text_key plug-in is already included in the core it_art
library, there are no special prerequisites for using plain text keys on the server
side.

Server example in C++ Example 144 shows how a server registers a plain text key, FooService, that
identifies a given object reference, FooObjectRef (the object reference must
have been generated from a CORBA object belonging to a direct persistent
POA).

The preceding C++ code can be explained as follows:

1. The IT_PlainTextKeyForwarder initial reference ID is used to obtain a

reference to an IT_PlainTextKey::Forwarder object (the

IT_PlainTextKey IDL module is defined in the

OrbixInstallDir/asp/Version/idl/orbix_pdk/plain_text_key.idl

file).

2. The IT_PlainTextKey::Forwarder::add_plain_text_key() operation

adds a new plain text key to the list held by the plain_text_key plug-in.

Example 144:Registering a Plain Text Key

// C++
CORBA::Object_var objref = the_orb->resolve_initial_references(

1 "IT_PlainTextKeyForwarder"
);
IT_PlainTextKey::Forwarder_var forwarder =
 IT_PlainTextKey::Forwarder::_narrow(objref);

2 forwarder->add_plain_text_key(
 "FooService",
 FooObjectRef
);
 752

Direct Persistence Case
Using the corbaloc URL in a Client

Overview The usual format for a corbaloc URL that references a direct persistent server is
as follows:

Because the server is direct persistent, the URL embeds the server’s own
address, ServerHost:ServerPort.

For example, given that the server is running on host, FooHost, and port, 4321,
and the server registers a Foo object under the plain text key, FooService, you
could access the Foo object with the following URL:

corbaloc:iiop:1.2@FooHost:4321/FooService

Client example in C++ Example 145 shows how to resolve a corbaloc URL for an object of Foo type,
using the CORBA::ORB::string_to_object() function.

corbaloc:iiop:1.2@ServerHost:ServerPort/PlainTextKey

Example 145:Resolving a corbaloc URL

// C++
const char * corbalocURL =

"corbaloc:iiop:1.2@FooHost:4321/FooService";

CORBA::Object_var objref = orb->string_to_object(corbalocURL);

Foo_var fooObj= Foo::_narrow(objref);
if (CORBA::is_nil(fooObj)) {
 // Error: _narrow failed!
}

753

CHAPTER 23 | Locating Objects with corbaloc
Named Keys and Plain Text Keys Used by
Orbix Services

Overview Most of the standard Orbix services register a named key and a plain text key by
default. Table 31 lists all of the named keys and plain text keys currently
supported by the Orbix services. Using the information from Table 31, you can
easily construct a corbaloc URL to contact one of these services.

Table 31: Named Keys and Plain Text Keys for Orbix Services

Service Plain Text Key Named Key

Security IT_SecurityService

IT_Login

N/A

N/A

CFR ConfigRepository

IT_ConfigRepositoryReplica

N/A

N/A

FPS IT_FPS_Registry

IT_FPS_Manager

N/A

N/A

Management IT_ManagementService.User

IT_ManagementService.Registration

IT_ManagementService.Security

N/A

N/A

N/A

locator IT_Locator

IT_LocatorReplica

N/A

N/A

node_daemon IT_NodeDaemon N/A

otstm TransactionServiceAdmin

TransactionFactory

TransactionServiceAdmin

TransactionFactory

ifr InterfaceRepository InterfaceRepository

naming NameService

IT_NameServiceReplica

NameService

N/A
 754

Named Keys and Plain Text Keys Used by Orbix Services
trader TradingService

TradingServiceNR

Replicator

TradingService

N/A

N/A

basic_log DefaultBasicLogFactory BasicLoggingService

event_log DefaultEventLogFactory EventLoggingService

notify_log DefaultNotifyLogFactory NotifyLoggingService

notify DefaultEventChannelFactory

DefaultEndpointAdmin

NotificationService

N/A

event DefaultEventChannelFactory

DefaultTypesEventChannelFactory

EventService

N/A

jms MessageBroker

ServerContext

MessagingBridge

EndpointAdmin

IT_JMSMessageBroker

N/A

N/A

N/A

Table 31: Named Keys and Plain Text Keys for Orbix Services

Service Plain Text Key Named Key
755

CHAPTER 23 | Locating Objects with corbaloc
 756

CHAPTER 24

Configuring and
Logging
Orbix has built-in configuration and logging mechanisms, which
are used internally by the Orbix product. You have the option of
using these configuration and logging mechanisms in your own
applications.

In this chapter This chapter discusses the following topics:

The Configuration Interface page 758

Configuring page 760

Logging page 763
757

CHAPTER 24 | Configuring and Logging
The Configuration Interface

The IT_Config::Configuration
interface

The Configuration interface is defined as a local interface within the
IT_Config module, as follows:

Example 146:Definition of the IT_Config::Configuration IDL Interface

Orbix Configuration File
...
#pragma prefix "iona.com"

module IT_Config
{
 typedef sequence<string> ConfigList;
 ...
 exception TargetNotFound {};

 local interface Configuration
 {
 exception TypeMismatch {};

 boolean get_string(in string name, out string value)
 raises (TypeMismatch);

 boolean get_list(in string name, out ConfigList value)
 raises (TypeMismatch);

 boolean get_boolean(in string name, out boolean value)
 raises (TypeMismatch);

 boolean get_long(in string name, out long value)
 raises (TypeMismatch);

 boolean get_double(in string name, out double value)
 raises (TypeMismatch);
 ...
 };
 ...
};
...
 758

The Configuration Interface
The ConfigList type The IT_Config::ConfigList type, which is defined as a sequence of strings, is
used to hold the data returned from the Configuration::get_list() operation.
The following configuration variable, my_list_item, is an example of a
configuration entry that needs to be retrieved as a list, using get_list().

Operations The following operations of the Configuration interface are listed in
Example 146 on page 758:

• get_string()—get the value of the name variable as a string type.

• get_list()—get the value of the name list variable as a list of strings,

IT_Config::ConfigList.

• get_boolean()—get the value of the name variable as a CORBA boolean

type.

• get_long()—get the value of the name variable as a CORBA long type.

• get_double()—get the value of the name variable as a CORBA double

type.

Reference For more details of the Configuration interface and the IT_Config module, see
the IT_Config sections of the CORBA Programmer’s Reference.

Orbix Configuration
my_list_item = ["first", "second", "third"];
759

CHAPTER 24 | Configuring and Logging
Configuring

Overview Orbix has a flexible configuration system which enables an application to
retrieve configuration data without needing to know anything about the actual
source of the data. This section briefly describes Orbix configuration, covering
the following topics:

• Generating configuration domains.

• Configuration sources.

• Sample configuration.

• C++ accessing configuration settings.

• References.

Generating configuration
domains

Configuration domains are generated by running the itconfigure tool.

Configuration sources Orbix configuration data can come from one of the following sources:

• Configuration file—this is a file, DomainName.cfg, that stores

configuration settings in a format that is easily readable and editable.

• Configuration repository (CFR) service—this is a service that stores

configuration settings in a central database and is remotely accessible to

CORBA applications. Note, that a minimal configuration handler file,

DomainName.cfg, is also needed on hosts that use the CFR service in

order to contact the CFR initially.
 760

Configuring
Sample configuration Example 147 shows some sample configuration settings, of various types, that
might be used to configure a hello_world plug-in.

C++ accessing configuration
settings

Example 148 shows C++ code that obtains an initial reference to an
IT_Config::Configuration object, by passing the IT_Configuration initial
object ID string to the resolve_initial_references() operation.

Example 147:Sample Configuration Settings

Orbix configuration file
plugin_example {
 plugin:hello_world:boolean_item = "true";
 plugin:hello_world:string_item = "Hello World!";
 plugin:hello_world:long_item = "4096";
 plugin:hello_world:double_item = "3.14";
 plugin:hello_world:list_item = ["first", "second",

"third"];
};

Example 148:C++ Obtaining an Initial IT_Config::Configuration Reference

// C++
...
#include <orbix/configuration.hh>

HelloWorld_ORBState::HelloWorld_ORBState(
 CORBA::IT_ORB_ptr orb
) : m_orb(CORBA::IT_ORB::_duplicate(orb))
{
 assert(!CORBA::is_nil(m_orb));
 m_orb->it_add_internal_ref();

 CORBA::Object_var initial_reference;

 // Get our configuration and defaults
 //
 initial_reference = orb->resolve_initial_references(
 "IT_Configuration"
);
 m_config = IT_Config::Configuration::_narrow(
 initial_reference
);
 assert(!CORBA::is_nil(m_config));
 load_config();
761

CHAPTER 24 | Configuring and Logging
The next step is to read configuration data using the operations defined on the
IT_Config::Configuration interface. Example 149 shows how to read the
sample configuration settings from Example 147 on page 761.

References The following references can provide you with more information about Orbix
configuration:

• The documentation of the IT_Config::Configuration interface in the

CORBA Programmer’s Reference.

 ...
}

Example 148:C++ Obtaining an Initial IT_Config::Configuration Reference

Example 149:C++ Reading Sample Configuration Settings

// C++
CORBA::Boolean b;
CORBA::String_var s;
CORBA::Long l;
CORBA::Double d;
IT_Config::ConfigList_var cfg_list;

m_config->get_boolean("plugin:hello_world:boolean_item", b);
m_config->get_string("plugin:hello_world:string_item", s);
m_config->get_long("plugin:hello_world:long_item", l);
m_config->get_double("plugin:hello_world:double_item", d);
m_config->get_list("plugin:hello_world:list_item", cfg_list);
 762

Logging
Logging

Overview Logging provides administrators and system operators with information about a
production system, reporting information such as significant system events,
warnings of anomalous conditions, and detailed information about error
conditions. Its primary goal is to provide administrators with the information
needed to detect diagnose and resolve problems in a production system.

Logging event An Orbix logging event has the following structure:

• Logging subsystem.

• Event ID.

• Event priority.

• Message.

Logging subsystem A logging subsystem, identified by a subsystem ID, provides a convenient way
of grouping together related logging events and messages. The subsystem ID is
useful when it comes to filtering log events, because you can use it to specify
logging options on a per-subsystem basis.

Typically, a unique logging subsystem is defined for each plug-in. For example,
the lease plug-in defines its own logging subsystem, IT_LEASE, as shown in
Example 150 on page 765.

See Table 16 on page 376 for a complete list of built-in logging subsystems.

Event ID An event ID is a constant, of IT_Logging::EventId type, that identifies a
particular type of event.

Before you can use logging in your own plug-in code, you must define a
collection of custom event IDs in IDL. See Example 150 on page 765 for an
example of how this is done for the leasing plug-in.
763

CHAPTER 24 | Configuring and Logging
Event priority Every event that is generated must have a priority assigned to it.

In C++, you can use one of the following constants (of
IT_Logging::EventPriority type) to assign priority to an event:

IT_Logging::LOG_INFO
IT_Logging::LOG_WARNING
IT_Logging::LOG_ERROR
IT_Logging::LOG_FATAL_ERROR

Message A log message is a string, which might include some embedded parameters.

Local log stream The local log stream reports events either to a local file or to standard error. You
can enable the local log stream by including local_log_stream in your list of
orb_plugins, as follows:

For more details about how to configure a local log stream, see the CORBA
Administrator’s Guide.

System log stream The system log stream reports events to the host’s system log. You can enable
the system log stream by including system_log_stream in your list of
orb_plugins, as follows:

For more details about how to configure a system log stream, see the CORBA
Administrator’s Guide.

Orbix configuration file
plugin_example {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop", "hello_world"];
 ...
};

Orbix configuration file
plugin_example {
 orb_plugins = ["system_log_stream", "iiop_profile", "giop",

"iiop", "hello_world"];
 ...
};
 764

Logging
Defining a subsystem ID and event
IDs

Before you can use logging with your plug-in, you must define a logging
subsystem ID and a set of event IDs in IDL.

For example, the IDL in Example 150 shows the subsystem ID and event IDs
defined for the lease plug-in.

Example 150:Example Subsystem ID and Event ID Definitions

#include <orbix/logging.idl>

module IT_Lease_Logging
{
 const IT_Logging::SubsystemId SUBSYSTEM = "IT_LEASE";

 // Errors (1+)
 //
 const IT_Logging::EventId NAMING_SERVICE_UNREACHABLE = 1;
 const IT_Logging::EventId REAPER_THREAD_FAILURE = 2;
 const IT_Logging::EventId RENEWAL_THREAD_FAILURE = 3;
 const IT_Logging::EventId CALLBACK_FAILURE = 4;
 const IT_Logging::EventId INVALID_LEASE_AGENT_REFERENCE = 5;
 const IT_Logging::EventId LEASE_AGENT_NOT_FOUND = 6;
 const IT_Logging::EventId LEASE_ACQUISITION_FAILURE = 7;

 // Warnings (100+)
 //
 const IT_Logging::EventId CLIENT_LEASE_RELEASE_FAILURE = 100;
 const IT_Logging::EventId SERVER_LEASE_WITHDRAW_FAILURE= 101;
 const IT_Logging::EventId DEFAULT_REAP_TIME_USED = 102;
 const IT_Logging::EventId DEFAULT_PING_TIME_USED = 103;
 const IT_Logging::EventId PING_TIME_ALTERED = 104;
 const IT_Logging::EventId LEASE_EXPIRED_PREMATURELY = 105;

 // Informational messages (200+)
 //
 const IT_Logging::EventId CLIENT_LEASES_UPDATED = 200;
 const IT_Logging::EventId SERVER_LEASES_UPDATED = 201;
 const IT_Logging::EventId CONFIGURATION_DUMP = 202;
 const IT_Logging::EventId SERVER_LEASE_REAPER_CHECK = 203;
 const IT_Logging::EventId LEASE_EXPIRATION = 204;
 const IT_Logging::EventId LEASE_ADVERTISED_OK = 205;
 const IT_Logging::EventId RENEWAL_NOT_NEEDED_YET = 206;
 const IT_Logging::EventId RENEWING_LEASE = 207;
};
765

CHAPTER 24 | Configuring and Logging
C++ logging messages Example 151 shows an extract from the lease plug-in code, which shows how to
obtain a reference to an event log and send messages to the event log.

Example 151:C++ Example of Logging Messages

// C++
...
#include <orbix/logging_support.h>
#include "lease_events.hh"

IT_Lease_ORBState::IT_Lease_ORBState(
 CORBA::IT_ORB_ptr orb
) : m_orb(CORBA::IT_ORB::_duplicate(orb)),
 m_connected_to_naming_service(IT_FALSE)
{
 assert(!CORBA::is_nil(m_orb));
 m_orb->it_add_internal_ref();

 // Get the Event Log
 //
 CORBA::Object_var initial_reference;

1 initial_reference = m_orb->resolve_initial_references(
 "IT_EventLog"
);

2 m_event_log = IT_Logging::EventLog::_narrow(
 initial_reference
);
 assert(!CORBA::is_nil(m_event_log));
 ...
 // Example log message:
 // The leasing plug-in logs this message if it fails to
 // connect to the CORBA Naming Service.
 //

3 IT_LOG_MESSAGE(
 m_event_log,
 IT_Lease_Logging::SUBSYSTEM,
 IT_Lease_Logging::NAMING_SERVICE_UNREACHABLE,
 IT_Logging::LOG_ERROR,
 IT_LEASE_NAMING_SERVICE_UNREACHABLE_MSG
);
 ...
}

 766

Logging
The preceding C++ logging example can be explained as follows:

1. This line obtains an initial reference to the IT_Logging::EventLog object,

by calling resolve_initial_references() with the IT_EventLog initial

object ID string.

2. Narrow the initial reference to m_event_log, which has been declared

elsewhere to be of IT_Logging::EventLog_var type.

3. IT_LOG_MESSAGE is a macro, declared in the orbix/logging_support.h

header, which you can use to send events/messages to the event log. The

IT_LOG_MESSAGE macro takes the following parameters:

♦ An event log reference, of IT_Logging::EventLog_ptr type.

♦ A subsystem ID, of char* type.

♦ An event ID, of IT_Logging::EventId type.

♦ An event priority, of IT_Logging::EventPriority type.

♦ A message string, of char* type.

C++ messages with parameters Five additional macros, IT_LOG_MESSAGE_1, IT_LOG_MESSAGE_2,
IT_LOG_MESSAGE_3, IT_LOG_MESSAGE_4, IT_LOG_MESSAGE_5, are provided in
C++ to help you log messages with 1 to 5 embedded parameters.

For example, this extract from the lease plug-in code shows how to log a
message with two parameters using the IT_LOG_MESSAGE_2 macro:

// C++
// Log the lease renewal failure and exit the thread.
//
IT_LOG_MESSAGE_2(
 m_event_log,
 IT_Lease_Logging::SUBSYSTEM,
 IT_Lease_Logging::RENEWAL_THREAD_FAILURE,
 IT_Logging::LOG_ERROR,
 IT_LEASE_RENEWAL_THREAD_FAILURE_MSG,
 m_lease_id, // 1st Parameter
 m_server_id // 2nd Parameter
);
767

CHAPTER 24 | Configuring and Logging
The message string that embeds the parameters is defined as follows:

The first parameter value replaces %0 and the second replaces %1. You can use
either strings or integer types as parameters.

References The following resources are available on the subject of Orbix logging:

• The C++ logging macros are defined in

OrbixInstallDir/asp/Version/include/orbix/logging_support.h.

• The documentation of the IT_Logging module in the CORBA

Programmer’s Reference.

// C++
const char* IT_LEASE_RENEWAL_THREAD_FAILURE_MSG =
"lease renewal thread failure - lease %0 for server %1 may not be

automatically renewed";
 768

CHAPTER 25

Orbix Compression
Plug-in
This chapter explains how to program the Orbix ZIOP compression
plug-in. This can enable significant performance improvements on
low bandwidth networks.

In this chapter This chapter includes the following topics

Introduction to the ZIOP Plug-In page 770

Configuration Prerequisites page 772

Compression Policies page 774

Programming Compression Policies page 776

Implementing Custom Compression page 779
769

CHAPTER 25 | Orbix Compression Plug-in
Introduction to the ZIOP Plug-In

Overview The Orbix ZIOP compression plug-in provides optional
compression/decompression of GIOP messages on the wire. Compressed and
uncompressed transports can be mixed together. This can enable significant
performance improvements on low bandwidth networks.

These performance improvements depend on the network and the message data.
For example, if the requests contain .jpeg images, there is virtually no
compression, however, with repetitive string data, there is good compression.

Figure 65 shows a high-level overview of ZIOP compression in a client-server
environment.

Figure 65: Overview of ZIOP Compression

Client Host Server Host

ObjectClient

ZIOP Compression

IIOP Message
 770

Introduction to the ZIOP Plug-In
Implementation Compression can be configured per-ORB and also per-binding (using Orbix
ORB policies). The compression is performed using a configurable compression
library. The compression plug-in (ziop) supports the following compression
algorithms:

• gzip

• pkzip

• bzip2

Orbix ZIOP compression has been implemented in both C++ and Java and is
available on all platforms.

Additional components The following Orbix components have also been updated for ZIOP compression:

• The giop_snoop plug-in has been updated to detect ZIOP compressed

messages.

• The iordump tool has been updated to parse the new IOR profiles for

ZIOP compression.
771

CHAPTER 25 | Orbix Compression Plug-in
Configuration Prerequisites

Overview Before you can program compression policies, the Orbix configuration must
satisfy prerequisites to ensure that the ZIOP plug-in is loaded and enabled.

Orbix uses symbolic names to configure plug-ins and then associates them with
a Java or a C++ implementation. The compression/decompression plug-in is
named ziop. This is implemented in Java by the
com.iona.corba.ziop.ZIOPPlugIn class, and in C++ by the it_ziop shared
library.

The ziop plug-in requires the following basic configuration settings:

• Configuring the ziop plug-in.

• Configuring the binding lists.

Configuring the ziop plug-in To configure the ziop plug-in, perform the following steps:

1. Ensure that the following entries are present in your Orbix configuration

file:

2. Include the ziop plug-in the ORB plug-ins list:

For example:

Note: Both the client and the server must be configured appropriately to
enable compression.

plugins:ziop:shlib_name = "it_ziop";
plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";

orb_plugins = [.... "ziop" ...];

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"ziop", "iiop"];
 772

Configuration Prerequisites
Configuring the binding lists To enable compression/decompression for CORBA IIOP communication,
ensure that your binding lists contain the following entries.

For clients:

For servers:

The client or server binding lists can be much more complicated than these
simple examples, although these are adequate for compressed GIOP/IIOP
communication. Here is an example of more complex binding lists:

binding:client_binding_list = ["GIOP+ZIOP+IIOP"];

plugins:giop:message_server_binding_list = ["ZIOP+GIOP"];

binding:client_binding_list = ["OTS+GIOP+ZIOP+IIOP_TLS",
"CSI+GIOP+ZIOP+IIOP_TLS", "GIOP+ZIOP+IIOP_TLS",
"CSI+GIOP+ZIOP+ZIOP+IIOP", "GIOP+ZIOP+IIOP"];

plugins:giop:message_server_binding_list = ["BiDir_GIOP",
"ZIOP+GIOP", "GIOP"];
773

CHAPTER 25 | Orbix Compression Plug-in
Compression Policies

Overview This section describes those compression policies that are defined in IDL and
can be set programmatically. Not all compression policies can be set
programmatically—see the Administrator’s Guide for details of all the policies
that can be set by configuration.

• CompressionEnablingPolicy.

• CompressorIdPolicy.

IDL for the compression policies Example 152 shows the part of the IT_ZIOP module that defines two
compression policies, CompressionEnablingPolicy and CompressorIdPolicy.
This IDL is extracted from the orbix_pdk/ziop.idl file.

Example 152:Compression Policies in the IT_ZIOP Module

// IDL
// File: <OrbixInstallDir>/asp/<Version>/idl/orbix_pdk/ziop.idl
...
module IT_ZIOP {
 ...
 typedef unsigned long CompressorId;

 const CORBA::PolicyType COMPRESSION_ENABLING_POLICY_ID =
 IT_PolicyBase::IONA_POLICY_ID + 0x46;

 const CORBA::PolicyType COMPRESSOR_ID_POLICY_ID =
 IT_PolicyBase::IONA_POLICY_ID + 0x47;

 local interface CompressionEnablingPolicy : CORBA::Policy
 {
 readonly attribute boolean compression_enabled;
 };

 local interface CompressorIdPolicy : CORBA::Policy
 {
 readonly attribute CompressorId compressor_id;
 };
};
 774

Compression Policies
CompressionEnablingPolicy The CompressionEnablingPolicy policy type has one boolean attribute,
compression_enabled, which indicates whether compression is enabled (true)
or disabled (false). Default is true (but the policy has no effect if the ziop
plug-in is not loaded and configured).

When the compression enabling policy is set on the server side, the server
embeds a ZIOP component in the IORs it generates. The presence of a ZIOP
component in the IOR indicates to clients that the server is capable of receiving
compressed messages. You can set server-side policies at any of the following
levels:

• ORB.

• POA.

When the compression enabling policy is set on the client side, the client checks
IORs for the presence of a ZIOP component. If a ZIOP component is present, the
client will attempt to send compressed messages to the server. You can set
client-side policies at any of the following levels:

• ORB.

• Thread.

• Object (client proxy).

CompressorIdPolicy The CompressorIdPolicy policy type has one integer attribute, compressor_id,
which identifies the type of compression algorithm to use (internally, a
compressor ID refers to a specific implementation of the IT_ZIOP::Compressor
interface—see “Implementing Custom Compression” on page 779 for more
details).

The compressor ID policy can only be set on the server side. The server embeds
the compressor ID in a ZIOP component in the IORs that it generates. You can
set server-side policies at any of the following levels:

• ORB.

• POA.
775

CHAPTER 25 | Orbix Compression Plug-in
Programming Compression Policies

Overview This section describes how to set compression policies by programming on the
client side and on the server side. The following cases are considered:

• C++ enable/disable compression on the server side.

• C++ enable/disable compression on the client side.

• C++ select compression algorithm on the server side.

C++ enable/disable compression
on the server side

Example 153 shows how to enable compression at the POA level in a C++
server. This example creates a compression enabling policy with the value true
and uses this policy to initialize a POA object, child_poa. The programmed
policy value overrides the policies:ziop:compession_enabled setting from
the Orbix configuration.

Because this example does not program a value for the compressor ID policy,
the choice of compression algorithm is implicitly determined by the
policies:ziop:compressor_id setting in the Orbix configuration.

Example 153:C++ Enabling Compression at the POA Level

// C++
#include <omg/orb.hh>
#include <orbix_pdk/ziop.hh>

// ...

CORBA::Boolean enable_compression = true; // or false
CORBA::PolicyList policies;
policies.length(1);
CORBA::Any any <<= CORBA::Any::from_boolean(enable_compression);
policies[1] =

orb->create_policy(IT_ZIOP::COMPRESSION_ENABLING_POLICY_ID,
any);

PortableServer::POA_var child_poa = root_poa->create_POA(
 "child_poa",
 root_poa->the_POAManager(),
 policies
);
 776

Programming Compression Policies
C++ enable/disable compression
on the client side

Example 154 shows how to disable compression at the proxy object level in a
C++ client. This example creates a compression enabling policy with the value
false and uses this policy to create a copy of a proxy object, objref2. The
programmed policy value overrides the policies:ziop:compession_enabled
setting from the Orbix configuration.

C++ select compression algorithm
on the server side

Example 155 shows how to select the compression algorithm by setting the
compressor ID at the POA level in a C++ server. This example creates a
compressor ID policy with the value 3 (for bzip2) and uses this policy to
initialize a POA object, child_poa. The programmed policy value overrides the
policies:ziop:compressor_id setting from the Orbix configuration.

Example 154:C++ Disabling Compression at the Proxy Object Level

// C++
#include <omg/orb.hh>
#include <orbix_pdk/ziop.hh>

// ...

CORBA::Object_var objref, objref2;
CORBA::Boolean enable_compression = false; // or true
CORBA::PolicyList policies;
policies.length(1);
CORBA::Any any <<= CORBA::Any::from_boolean(enable_compression);
policies[1] =

orb->create_policy(IT_ZIOP::COMPRESSION_ENABLING_POLICY_ID,
any);

objref2 = objref->_set_policy_overrides(policies,
CORBA::SET_OVERRIDE);

Example 155:C++ Setting the Compression Algorithm at the POA Level

// C++
#include <omg/orb.hh>
#include <orbix_pdk/ziop.hh>

// ...

CORBA::ULong compressor_id = 3; // for bzip2 compression
CORBA::PolicyList policies;
policies.length(1);
CORBA::Any any <<= compressor_id;
777

CHAPTER 25 | Orbix Compression Plug-in
policies[1] =
orb->create_policy(IT_ZIOP::COMPRESSOR_ID_POLICY_ID, any);

PortableServer::POA_var child_poa = root_poa->create_POA(
 "child_poa",
 root_poa->the_POAManager(),
 policies
);

Example 155:C++ Setting the Compression Algorithm at the POA Level
 778

Implementing Custom Compression
Implementing Custom Compression

Overview The ZIOP plug-in is extensible, enabling you to implement your own
compression algorithm for GIOP messages.

1. Choose a unique compressor ID to identify the new compression algorithm

(this ID should not clash with the existing compressor IDs).

2. Implement an IT_ZIOP::Compressor class, providing the logic to

compress/decompress messages.

3. Implement an IT_ZIOP::CompressorFactory class that creates

Compressor instances that perform the custom compression at a specific

compression level.

4. Register an IT_ZIOP::CompressorFactory instance with the

IT_ZIOP::CompressionManager object.

In this section This section contains the following subsections:

The IT_Buffer Module page 780

Implementing a Compressor page 784

Implementing a Compressor Factory page 790

Registering a Compressor Factory page 795
779

CHAPTER 25 | Orbix Compression Plug-in
The IT_Buffer Module

Overview The IT_Buffer module provides a proprietary implementation of a segmented
buffer, which the compression API uses to represent incoming and outgoing
messages.

Each IT_Buffer::Buffer object implicitly consists of a number of segments, of
IT_Buffer::Segment type. Given a buffer instance, buff, you can iterate over
all of the bytes in the buffer as follows:

1. Call IT_Buffer::Buffer::rewind() to reset the buffer to the first

segment.

2. Call IT_Buffer::Buffer::next_segment() to get a reference to the first

segment in the buffer (of IT_Buffer::Segment type).

3. Iterate over each byte in the segment (bytes within a segment are

contiguous). The first byte of the segment is given by Segment::data +

Segment::offset. The last byte of the segment is given by

Segment::data + Segment::offset + Segment::length - 1.

4. Move on to the next segment by calling

IT_Buffer::Buffer::next_segment().

5. When the last segment is reached, next_segment() returns a null pointer.

Example For a detailed example of how to use the IT_Buffer programming interface, see
the ZIOP compression demonstration in the following directory:

OrbixInstallDir/asp/Version/demos/corba/orb/ziop_compression

Buffer IDL interface Example 156 shows the Buffer IDL interface, which is defined in the
IT_Buffer module.

Example 156:The Buffer IDL Interface

// IDL
...
module IT_Buffer {
 ...
 local interface Buffer
 {
 readonly attribute unsigned long length;
 780

Implementing Custom Compression
Buffer attributes The following attributes are defined in the IT_Buffer::Buffer interface:

• length—the number of bytes within the buffer currently available for use.

• original_length—the number of bytes originally allocated to the buffer.

• storage_size—the allocation unit size of the buffer’s underlying storage

implementation.

• segment_count—the number of segments currently available for use.

Buffer operations The following operations are defined in the IT_Buffer::Buffer interface:

 readonly attribute unsigned long original_length;
 readonly attribute unsigned long storage_size;
 readonly attribute unsigned long segment_count;

 void rewind();
 Segment next_segment();
 void grow(
 in unsigned long increment,
 in TimeBase::UtcT expiry
);
 void trim(
 in unsigned long from,
 in unsigned long to
);
 void eclipse(in long delta);
 void recycle();
 void prepend(in Buffer head);
 void append(in Buffer tail);
 Buffer extract(
 in unsigned long from,
 in unsigned long to
);
 void copy_octets(
 in unsigned long buffer_offset,
 inout CORBA::OctetSeq dest,
 in unsigned long dest_offset,
 in unsigned long length
);
 };
 ...
};

Example 156:The Buffer IDL Interface
781

CHAPTER 25 | Orbix Compression Plug-in
• rewind()—ensures that a subsequent call to next_segment() returns the

first segment of the buffer or NULL, if the length is zero.

• next_segment()—returns a reference to the next segment in the buffer or

NULL, if the buffer contains no additional segments.

• grow()—attempt to grow the length of the buffer by at least increment

bytes. The expiry parameter specifies the maximum amount of time to

wait for this operation to complete.

• trim()—reduce the length of the buffer and rewind. The reduced buffer is

defined by the subrange [from, to). That is, the parameters are

interpreted as follows:

♦ from—the index of the first byte to be included in the trimmed buffer.

♦ to—the index after the last byte to be included in the trimmed buffer.

• extract()—extract the specified range of bytes from this buffer, returning

the result as a new Buffer. The reduced buffer is defined by the subrange

[from, to). That is, the parameters are interpreted as follows:

♦ from—the index of the first byte to be included in the trimmed buffer.

♦ to—the index after the last byte to be included in the trimmed buffer.

• recycle()—release the buffer’s memory, unreferencing any Storage

instances it contains.

• prepend()—add another buffer, head, to the front of this buffer.

• append()—add another buffer, tail, to the end of this buffer.

Segment IDL interface Example 157 shows the Segment IDL interface, which is defined in the
IT_Buffer module.

Example 157:The Segment IDL Interface

// IDL
...
module IT_Buffer {
 native RawData;

 local interface Storage;
 ...
 local interface Segment
 {
 readonly attribute RawData data;
 readonly attribute unsigned long offset;
 782

Implementing Custom Compression
Segment attributes The following attributes are defined in the IT_Buffer::Segment interface:

• data—a pointer to the block of raw memory where this segment is stored.

In C++, the native RawData type maps to CORBA::Octet*.

• offset—an offset into the data block that marks the start of the bytes

belonging to this segment. In other words, the first byte belonging to the

segment is given by Segment::data + Segment::offset.

• length—the number of bytes in data that belong to this segment. The

value of length is always greater than zero.

For example, the index after the last byte in the segment is given by

Segment::data + Segment::offset + Segment::length.

• underlying_storage—returns the underlying storage as an

IT_Buffer::Storage object.

 readonly attribute unsigned long length;
 readonly attribute Storage underlying_storage;
 };
 ...
};

Example 157:The Segment IDL Interface
783

CHAPTER 25 | Orbix Compression Plug-in
Implementing a Compressor

Overview This section describes how to implement an IT_ZIOP::Compressor object,
which is responsible for performing compression and decompression of GIOP
messages. By implementing this IDL interface, you can define new compression
algorithms for the ZIOP plug-in.

Two operations are defined in the Compressor interface: compress() and
decompress(). Each of these operations takes a source buffer as input and
returns a transformed target buffer as output. The buffers are passed in the form
of IT_Buffer::Buffer objects.

Compressor IDL interface Example 158 shows the Compressor IDL interface, which is defined in the
IT_ZIOP module.

Example 158:The Compressor IDL Interface

// IDL
#include <omg/orb.idl>
#include <orbix_pdk/buffer.idl>
...
module IT_ZIOP {
 ...
 exception CompressionException { string reason; };

 typedef unsigned long CompressorId;
 local interface CompressorFactory;
 ...
 local interface Compressor
 {
 readonly attribute CompressorFactory compressor_factory;
 readonly attribute long compression_level;

 void compress(
 in IT_Buffer::Buffer source,
 in IT_Buffer::Buffer target
) raises (CompressionException);

 void decompress(
 in IT_Buffer::Buffer source,
 in IT_Buffer::Buffer target
) raises (CompressionException);
 784

Implementing Custom Compression
The Compressor interface defines two operation, as follows:

• compress()—take the input buffer, source, compress it, and insert it into

the output buffer, target.

• decompress()—take the input buffer, source, decompress it, and insert it

into the output buffer, target.

C++ header for Compressor Example 159 shows a sample header file for the Compressor class.

 };
 ...
};

Example 158:The Compressor IDL Interface

Note: The Compressor object simply performs compression/decompression
unconditionally. The logic that determines whether or not it is appropriate to
compress/decompress a particular message (based on the effective
compression policies) is already built-in to the ZIOP plug-in.

Example 159:C++ Header for the Compressor Class

// C++
#include <orbix/corba.hh>
#include <orbix_pdk/buffer.hh>
#include <orbix_pdk/ziop.hh>

class DemoCompressorImpl :
1 public IT_ZIOP::Compressor,

 public IT_CORBA::RefCountedLocalObject
{
 public:
 DemoCompressorImpl(
 IT_ZIOP::CompressorFactory_var factory,
 CORBA::Long compression_level
);

 ~DemoCompressorImpl();

 void
 compress(
 IT_Buffer::Buffer_ptr source_buffer,
 IT_Buffer::Buffer_ptr target_buffer
);
785

CHAPTER 25 | Orbix Compression Plug-in
The preceding header file can be explained as follows:

1. Because Compressor is a local IDL interface, the DemoCompressorImpl

class does not inherit from a POA implementation class. It inherits from

the following base classes:

♦ IT_ZIOP::Compressor—this abstract class is used as a base, instead

of a POA implementation class.

♦ IT_CORBA::RefCountedLocalObject—this class marks the

DemoCompressorImpl class as a local object (it inherits from

CORBA::LocalObject) and implements the reference counting

functions, _add_ref() and _remove_ref().

2. The two member variables, m_factory and m_compression_level, cache

the values of the compressor_factory and the compression_level

attributes respectively.

C++ implementation of
Compressor

Example 160 shows a sample implementation of the Compressor class.

 void
 decompress(
 IT_Buffer::Buffer_ptr source_buffer,
 IT_Buffer::Buffer_ptr target_buffer
);

 IT_ZIOP::CompressorFactory_ptr compressor_factory();

 CORBA::Long compression_level();

 private:
2 IT_ZIOP::CompressorFactory_var m_factory;

 CORBA::Long m_compression_level;
};

Example 159:C++ Header for the Compressor Class

Example 160:C++ Implementation of the Compressor Class

// C++
#include <orbix_sys/default_ts_error_handler.h>
#include <orbix/timebase.h>
#include "demo_compressor_impl.h"
 786

Implementing Custom Compression
1 DemoCompressorImpl::DemoCompressorImpl(
 IT_ZIOP::CompressorFactory_var factory,
 CORBA::Long compression_level
):
 m_factory(factory),
 m_compression_level(compression_level)
{
}

DemoCompressorImpl::~DemoCompressorImpl() { }

void
2 DemoCompressorImpl::compress(

 IT_Buffer::Buffer_ptr source_buffer,
 IT_Buffer::Buffer_ptr target_buffer
)
{

3 source_buffer->rewind();
 target_buffer->rewind();
 ...
}

void
4 DemoCompressorImpl::decompress(

 IT_Buffer::Buffer_ptr source_buffer,
 IT_Buffer::Buffer_ptr target_buffer
)
{

5 source_buffer->rewind();
 target_buffer->rewind();
 ...
}

IT_ZIOP::CompressorFactory_ptr
6 DemoCompressorImpl::compressor_factory()

{
 return m_factory;
}

CORBA::Long
7 DemoCompressorImpl::compression_level()

{
 return m_compression_level;
}

Example 160:C++ Implementation of the Compressor Class
787

CHAPTER 25 | Orbix Compression Plug-in
The preceding implementation class can be explained as follows:

1. The compressor factory reference, factory, and the compression level,

compression_level, are passed into the constructor by the compressor

factory.

2. When the compress() member function is called, the source_buffer is

initialized with the data to compress. The compress() function performs

compression on the contents of the source_buffer and writes the result

into the initially empty target_buffer object.

3. The IT_Buffer::Buffer::rewind() function resets the current position

of the buffer back to the first byte. After rewinding, you can proceed to

compress the source buffer.

4. When the decompress() member function is called, the source_buffer is

initialized with the data to decompress. The decompress() function

performs decompression on the contents of the source_buffer and writes

the result into the initially empty target_buffer object.

Note: The details of implementing a compression algorithm are not
shown here. In principle, it involves iterating over the bytes in the
segmented buffers.

For a detailed example, see the demonstration at:

OrbixInstallDir/asp/Version/demos/corba/orb/ziop_compression

In the ziop_compression demonstration, the compress function writes
the compression level to the front of the target buffer. With most real-life
compression algorithms, however, this is unnecessary.
 788

Implementing Custom Compression
5. The IT_Buffer::Buffer::rewind() function resets the current position

of the buffer back to the first byte. After rewinding, you can proceed to

decompress the source buffer.

6. Return the cached reference to the compressor factory, m_factory.

7. Return the cached compression level, m_compression_level.

Note: The details of implementing a decompression algorithm are not
shown here. In principle, it involves iterating over the bytes in the
segmented buffers.

For a detailed example, see the demonstration at:

OrbixInstallDir/asp/Version/demos/corba/orb/ziop_compression #

In the ziop_compression demonstration, the decompress() function
reads the compression level from the front of the target buffer. With most
real-life compression algorithms, however, this is unnecessary.
789

CHAPTER 25 | Orbix Compression Plug-in
Implementing a Compressor Factory

Overview This section describes how to implement an IT_ZIOP::CompressorFactory
object, which is responsible for creating new Compressor instances (or returning
existing instances).

The most important operation defined by CompressorFactory is
get_compressor(), which is responsible for obtaining new (or pre-existing)
Compressor instances.

CompressorFactory IDL interface Example 161 shows the CompressorFactory IDL interface, which is defined in
the IT_ZIOP module.

Example 161:The CompressorFactory IDL Interface

// IDL
...
module IT_ZIOP {
 ...
 typedef unsigned long CompressorId;
 ...
 local interface CompressorFactory
 {
 readonly attribute CompressorId compressor_id;
 readonly attribute unsigned long long compressed_bytes;
 readonly attribute unsigned long long uncompressed_bytes;
 readonly attribute double average_compression;

 Compressor get_compressor(in long compression_level);

 void add_sample(
 in unsigned long long compressed_bytes,
 in unsigned long long uncompressed_bytes
);
 };
 ...
};
 790

Implementing Custom Compression
The CompressorFactory interface defines two operation, as follows:

• get_compressor()—create a new IT_ZIOP::Compressor object (or get a

reference to an existing IT_ZIOP::Compressor object).

• add_sample()—this is used for statistical analysis. The operation is called

internally by Orbix interceptors after each call to compress() or

decompress(). The arguments to add_sample() are calculated from the

lengths of the source and target buffers. By calling

average_compression(), you can determine the average compression

ratio for a particular compression algorithm.

C++ header for
CompressorFactory

Example 162 shows a sample header file for the CompressorFactory class.

Example 162:C++ Header for the CompressorFactory Class

// C++
#include <omg/orb.hh>
#include <orbix_pdk/ziop.hh>

class DemoCompressorFactory :
1 public IT_ZIOP::CompressorFactory,

 public IT_CORBA::RefCountedLocalObject
{
 public:
 DemoCompressorFactory(
 IT_ZIOP::CompressorId compressor_id
);

 virtual ~DemoCompressorFactory();

 IT_ZIOP::CompressorId compressor_id();
 CORBA::ULongLong compressed_bytes();
 CORBA::ULongLong uncompressed_bytes();
 CORBA::Double average_compression();

 IT_ZIOP::Compressor_ptr
 get_compressor(
 CORBA::Long compression_level
);

 void
 add_sample(
 CORBA::ULongLong compressed_bytes,
791

CHAPTER 25 | Orbix Compression Plug-in
The preceding header file can be explained as follows:

1. Because CompressorFactory is a local IDL interface, the

DemoCompressorFactory class does not inherit from a POA

implementation class. It inherits from the following base classes:

♦ IT_ZIOP::CompressorFactory—this abstract class is used as a base,

instead of a POA implementation class.

♦ IT_CORBA::RefCountedLocalObject—this class marks the

DemoCompressorFactory class as a local object (it inherits from

CORBA::LocalObject) and implements the reference counting

functions, _add_ref() and _remove_ref().

2. The member variable, m_compressor_id, identifies the compression

algorithm associated with this factory. The m_compressed_bytes and

m_uncompressed_bytes member variables represent, respectively, the

total number of compressed bytes and the total number of uncompressed

bytes that have been processed by this algorithm.

C++ implementation of
CompressorFactory

Example 163 shows a sample implementation of the CompressorFactory
interface.

 CORBA::ULongLong uncompressed_bytes
);

 private:

2 IT_ZIOP::CompressorId m_compressor_id;
 CORBA::ULongLong m_compressed_bytes;
 CORBA::ULongLong m_uncompressed_bytes;
 IT_ZIOP::Compressor_var m_compressor;
};

Example 162:C++ Header for the CompressorFactory Class

Example 163:C++ Implementation of the CompressorFactory Class

// C++
#include <orbix_sys/default_ts_error_handler.h>

#include "demo_compressor_factory.h"
#include "demo_compressor_impl.h"

1 DemoCompressorFactory::DemoCompressorFactory(
 792

Implementing Custom Compression
 IT_ZIOP::CompressorId compressor_id
):
 m_compressor_id(compressor_id),
 m_compressed_bytes(0L),
 m_uncompressed_bytes(0L),
 m_compressor(0)
{
}

DemoCompressorFactory::~DemoCompressorFactory() { }

IT_ZIOP::CompressorId
DemoCompressorFactory::compressor_id()
{
 return m_compressor_id;
}

CORBA::ULongLong
DemoCompressorFactory::compressed_bytes()
{
 return m_compressed_bytes;
}

CORBA::ULongLong
DemoCompressorFactory::uncompressed_bytes()
{
 return m_uncompressed_bytes;
}

CORBA::Double
2 DemoCompressorFactory::average_compression()

{
 if(m_uncompressed_bytes == 0)
 {
 return (CORBA::Double)1.0;
 }
 CORBA::Double dbl_compressed_bytes =

(CORBA::Long)m_compressed_bytes;
 CORBA::Double dbl_uncompressed_bytes =

(CORBA::Long)m_uncompressed_bytes;
 return dbl_compressed_bytes / dbl_uncompressed_bytes;
}

IT_ZIOP::Compressor_ptr
3 DemoCompressorFactory::get_compressor(

Example 163:C++ Implementation of the CompressorFactory Class
793

CHAPTER 25 | Orbix Compression Plug-in
The preceding implementation class can be explained as follows:

1. The compressor ID, compressor_id, is passed into the constructor when

the user code creates and installs the factory.

2. The average_compression() member function calculates the average

compression ratio for all of the data that has passed through the compressor

(or compressors) associated with this factory.

3. The get_compressor() member function either creates a new compressor

instance, if this is the first time the function is called, or else returns a

reference to a pre-existing compressor instance.

4. The add_sample() member function is called internally to record the

volumes of compressed data and uncompressed data passing through the

Compressor. Normally, you should implement it exactly as shown here.

 CORBA::Long compression_level
)
{
 if(CORBA::is_nil(m_compressor))
 {
 m_compressor = new DemoCompressorImpl(this,

compression_level);
 }
 return m_compressor;
}

void
4 DemoCompressorFactory::add_sample(

 CORBA::ULongLong compressed_bytes,
 CORBA::ULongLong uncompressed_bytes
)
{
 m_compressed_bytes += compressed_bytes;
 m_uncompressed_bytes += uncompressed_bytes;
}

Example 163:C++ Implementation of the CompressorFactory Class
 794

Implementing Custom Compression
Registering a Compressor Factory

Overview To make a new compression algorithm available to the ZIOP plug-in, you must
register it with the IT_ZIOP::CompressionManager object.

The new compression algorithm must be identified by a unique compressor ID.
Once it is registered, the compression algorithm can be configured using the
standard ZIOP configuration variables and policies.

The CompressionManager
interface

Example 164 shows the CompressionManager IDL interface, which is defined in
the IT_ZIOP module.

Example 164:The CompressionManager Interface

// IDL
...
module IT_ZIOP {
 ...
 exception FactoryAlreadyRegistered { };
 exception UnknownCompressorId { };
 ...
 typedef sequence<CompressorFactory> CompressorFactorySeq;

 local interface CompressionManager
 {
 void register_factory(
 in CompressorFactory compressor_factory
) raises (FactoryAlreadyRegistered);

 void unregister_factory(
 in CompressorId compressor_id
) raises (UnknownCompressorId);

 CompressorFactory get_factory(
 in CompressorId compressor_id
) raises (UnknownCompressorId);

 Compressor get_compressor(
 in CompressorId compressor_id,
 in long compression_level
) raises (UnknownCompressorId);

 CompressorFactorySeq get_factories();
795

CHAPTER 25 | Orbix Compression Plug-in
The CompressionManager interface defines the following operations:

• register_factory()—register the compressor factory,

compressor_factory, with the compressor manager in order to make a

new compression algorithm available.

• unregister_factory()—unregister the compressor factory which has the

specified compressor ID, compressor_id.

• get_factory()—get a reference to the factory with the specified

compressor ID.

• get_factories()—get a list of reference to all of the registered factories.

• get_compressor()—get a reference to a Compressor object with the

specified ID and compression level (implicitly calls the relevant

compressor factory).

C++ registering a
CompressorFactory

Example 165 shows how to register a custom CompressorFactory, which
makes a custom compression algorithm available to the application. This
segment of code should be called when the application starts up.

 };
 ...
};

Example 164:The CompressionManager Interface

Example 165:C++ Registering a CompressorFactory

// C++

// Setup and Configure the CompressionManager
IT_ZIOP::CompressionManager_var compression_manager;

1 CORBA::Object_var objref =
 orb->resolve_initial_references("IT_CompressionManager");

if (CORBA::is_nil(objref))
{
 cerr << "Could not resolve reference" << endl;
 return 1;
}

2 compression_manager =
IT_ZIOP::CompressionManager::_narrow(objref);

if (CORBA::is_nil(compression_manager))
 796

Implementing Custom Compression
The preceding registration code can be described as follows:

1. To access the compression manager object, resolve an initial reference,

passing the IT_CompressionManager string to

resolve_initial_references().

2. The returned initial reference must be cast to the correct type,

IT_ZIOP::CompressionManager, using the _narrow() function.

3. Call register_factory() to register a new factory instance, of

DemoCompressorFactory type. The argument passed to the

DemoCompressorFactory constructor is the compression level.

{
 cerr << "Could not _narrow object to type

IT_ZIOP::CompressionManager" << endl;
 return 1;
}

cout << "Registering DemoCompressorFactory with Compression
Manager" << endl;

3 compression_manager->register_factory(new
DemoCompressorFactory(100));

Example 165:C++ Registering a CompressorFactory
797

CHAPTER 25 | Orbix Compression Plug-in
 798

APPENDIX A

Orbix IDL
Compiler Options
This appendix describes the syntax of the IDL compiler command,
along with the relevant options and switches.

Overview This appendix includes the following topics:

Command Line Switches page 800

Plug-in Switch Modifiers page 802

IDL Configuration File page 807
799

APPENDIX A | Orbix IDL Compiler Options
Command Line Switches

Syntax The IDL compiler compiles the contents of an IDL module into header and
source files for client and server processes, in the specified implementation
language. You invoke the idl compiler with the following command syntax:

idl -plugin[...] [-switch]... idlModule

General switches You can qualify the idl command with one or more of the following switches.
Multiple switches are colon-delimited.

Note: You must specify at least one plug-in switch, such as -poa or -base,
unless you modify the IDL configuration file to set IsDefault for one or more
plug-ins to Yes. (see page 807). As distributed, the configuration file sets
IsDefault for all plug-ins to No.

Switch Description

-Dname[:value] Defines the preprocessor’s name.

-E Runs preprocessor only, prints on stdout.

-Idir Includes dir in search path for preprocessor.

-R[-v] Populates the interface repository (IFR). The -v modifier specifies
verbose mode.

-Uname Undefines name for preprocessor.

-V Prints version information and exits.

-u Prints usage message and exits.

-w Suppresses warning messages.
 800

Command Line Switches
-plugin
 [:-modifier]...

Specifies to load the IDL plug-in specified by plug-in to generate
code that is specific to a language or ART plug-in. You must specify at
least one plug-in to the idl compiler

Use one of these values for plug-in:

• base: Generate C++ header and stub code.

• jbase: Generate Java stub code

• poa: Generate POA code for C++ servers.

• poa: Generate POA code for Java servers.

• psdl: Generate C++ code that maps to abstract PSDL constructs.

• pss_r: Generate C++ code that maps concrete PSDL constructs

to relational and relational-like database back-end drivers.

Each plug-in switch can be qualified with one or more
colon-delimited modifiers.

Switch Description
801

APPENDIX A | Orbix IDL Compiler Options
Plug-in Switch Modifiers

Overview The following tables describe the modifiers that you can supply to plug-in
switches such as -base or -poa.

• Modifiers for all C++ plug-in switches.

• Modifiers for -base, -psdl, and -pss_r switches.

• Modifiers for -jbase and -jpoa switches.

• Modifiers for -poa switch.

Modifiers for all C++ plug-in
switches

Table 32 describes modifiers that can be used with all C++ plug-in switches.

Table 32: Modifiers for all C++ plug-in switches

Modifier Description

-d[decl-spec] Creates NT declspecs for dllexport and dllimport. If you omit decl-spec, idl
uses the stripped IDL module’s name.

For example, the following command:

idl -dIT_ART_API foo.idl

yields this code:

#if !defined(IT_ART_API)
#if defined(IT_ART_API_EXPORT)
#define IT_ART_API IT_DECLSPEC_EXPORT
#else
#define IT_ART_API IT_DECLSPEC_IMPORT
#endif
#endif

If you compile and link a DLL with the idl-generated code within it,
IT_ART_API_EXPORT must be a defined preprocessor symbol so that IT_ART_API
is set to dllexport. All methods and variables in the generated code can be
exported from the DLL and used by other applications. If IT_ART_API_EXPORT is
not defined as a preprocessor symbol, IT_ART_API is set to dllimport; methods
and variables that are defined in the generated code are imported from a DLL.
 802

Plug-in Switch Modifiers
-ipath-prefix Prepends path-prefix to generated include statements. For example, if the IDL
file contains the following statement:

#include "foo.idl"

idl generates this statement in the header file:

#include path-prefix/foo.hh

-h[suffix.]ext Sets header file extensions. The default setting is .hh.

For example, the following command:

idl -base:-hh foo.idl

yields a header file with this name:

foo.h

If the argument embeds a period (.), the string to the left of the period is appended
to the IDL file name; the string to the right of the period specifies the file
extension. For example, the following command:

idl -base:-h_client.h foo.idl

yields the following header file name:

foo_client.h

If you use the -h to modify the -base switch, also use -b to modify the -poa
switch (see Table 35).

-Ohpath Sets the output directory for header files.

-Ocpath Sets the output directory for client stub (.cxx) files.

-xAMICallbacks Generates stub code that enables asynchronous method invocations (AMI).

Table 32: Modifiers for all C++ plug-in switches

Modifier Description
803

APPENDIX A | Orbix IDL Compiler Options
Modifiers for -base, -psdl, and
-pss_r switches

Table 33 describes the modifiers for -base, -psdl, and -pss_r.

Modifiers for -jbase and -jpoa
switches

Table 34 describes the modifiers for -jbase and -jpoa.

Table 33: Modifier for -base, -psdl, and -pss_r plug-in switches

Modifier Description

-c[suffix.]ext Specifies the format for stub file names. The default name is idl-name.cxx.

For example, the following command:

idl -base:-cc foo.idl

yields a server skeleton file with this name:

foo.c

If the argument embeds a period (.), the string to the left of the period is appended
to the IDL file name; the string to the right of the period specifies the file
extension. For example, the following command:

idl -base:-c_client.c foo.idl

yields the following stub file name:

foo_client.c

-xOBV Generates object-by-value default valuetype implementations in files.

Table 34: Modifiers for -jbase and -jpoa switches

Modifier Description

-Ppackage Uses package as the root scope to package all unspecified modules. By default,
all Java output is packaged in the IDL module names.

-Pmodule=package Uses package as the root scope for the specified module.

-Odir Outputs all java code to dir. The default is the current directory.

-Gdsi
-Gstream

Outputs DSI or stream-based code. The default is stream.

-Mreflect
-Mcascade

Specifies the POA dispatch model to use either reflection or cascading
if-then-else statements. The default is reflect.
 804

Plug-in Switch Modifiers
Modifiers for -poa switch Table 35 describes the modifiers for -poa.

-J1.1
-J1.2

Specifies the JDK version. The default is 1.2.

-VTRUE
-VFALSE

Generates native implementation for valuetypes. The default is FALSE.

-FTRUE
-FFALSE

Generates factory implementation for valuetypes. The default is FALSE.

-ETRUE
-EFALSE

Initializes the string fields of structures and exceptions to the empty string. The
default is FALSE, meaning that string fields are initialized to null.

-TTRUE
-TFALSE

Generates toString() overrides for the type stubs. Default is FALSE.

-CTRUE
-CFALSE

Closes the stream before the IDL compiler throws an exception for bounded
strings and sequences. The default value is FALSE.

Note: This is a -jbase modifier.

Table 34: Modifiers for -jbase and -jpoa switches

Modifier Description

Table 35: Modifiers for -poa switch

Modifier Description

-s[suffix.]ext Specifies the skeleton file name. The default name is idl-nameS.cxx for skeleton
files.

For example, the following command:

idl -poa:-sc foo.idl

yields a server skeleton file with this name:

fooS.c

If the argument embeds a period (.), the string to the left of the period is appended
to the IDL file name; the string to the right of the period specifies the file
extension. For example, the following command:

idl -poa:-s_server.h foo.idl

yields the following skeleton file name:

foo_server.c
805

APPENDIX A | Orbix IDL Compiler Options
-b[suffix.]ext Specifies the format of the header file names in generated #include statements.
Use this modifier if you also use the -h modifier with the -base plug-in switch.

For example, if you specify a .h extension for -base-generated header files,
specify the same extension in -poa-generated #include statements, as in the
following commands:

idl -base:-hh foo.idl
idl -poa:-bh foo.idl

These commands generate header file foo.h, and include in skeleton file
fooS.cxx a header file of the same name:

#include "foo.h"

If the argument embeds a period (.), the string to the left of the period is appended
to the IDL file name; the string to the right of the period specifies the file
extension. For example, the following command:

idl -poa:-b_client.h foo.idl

yields in the generated skeleton file the following #include statement:

#include "foo_client.h"

-mincl-mask #include statements with file names that match mask are ignored in the generated
skeleton header file. This lets the code generator ignore files that it does not need.
For example, the following switch:

-momg/orb

directs the idl compiler to ignore this #include statement in the IDL/PSDL:

#include <omg/orb.idl>

-pmultiple Sets the dispatch table to be 2 to the power of multiple. The default value of
multiple is 1. Larger dispatch tables can facilitate operation dispatching, but also
increase code size and memory usage.

-xTIE Generates POA TIE classes.

Table 35: Modifiers for -poa switch

Modifier Description
 806

IDL Configuration File
IDL Configuration File

Overview The IDL configuration file defines valid idl plug-in switches such as -base and
-poa and specifies how to execute them. For example, the default IDL
configuration file defines the base and poa switches, the path to their respective
libraries, and command line options to use for compiling C++ header and client
stub code and POA code.

IDL configuration files have the following format:

plugin-type can be one of the following literals:

Java
POAJava
Cplusplus
POACxx
IFR
PSSDLCxx
PSSRCxx

The idl command can supply additional switch modifiers; these are appended to
the switch modifiers that are defined in the configuration file. You can comment
out any line by beginning it with the # character.

Figure 66: Configuration file format

IDLPlugins = "plugin-type[, plugin-type].."

plugin-type
{
 Switch = switch-name;
 ShlibName = path;
 ShlibMajorVersion = version
 ISDefault = "{ YES | NO }";
 PresetOptions = "-plugin-modifier[, -plugin-modifier]..."

plugin-specific settings...
...
}

807

APPENDIX A | Orbix IDL Compiler Options
The distributed IDL configuration file looks like this:

Figure 67: Distributed IDL configuration file

IDL Configuration File

IDL_CPP_LOCATION configures the C-Preprocessor for the IDL
Compiler
It can be the fully qualified path with the executable name or
just the executable name
#IDL_CPP_LOCATION = "%PRODUCT_BIN_DIR_PATH%/idl_cpp";
#IDL_CPP_ARGUMENTS = "";
#tmp_dir = "c:\temp";

IDLPlugins = "Java, POAJava, Cplusplus, POACxx, IFR, PSSDLCxx,
 PSSRCxx";

Cplusplus
{
 Switch = "base";
 ShlibName = "it_cxx_ibe";
 ShlibMajorVersion = "1";
 IsDefault = "NO";
 PresetOptions = "-t";

Header and StubExtension set the generated files
extension

The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};
 808

IDL Configuration File
POACxx
{
 Switch = "poa";
 ShlibName = "it_poa_cxx_ibe";
 ShlibMajorVersion = "1";
 IsDefault = "NO";
 PresetOptions = "-t";

Header and StubExtension set the generated files
extension

The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

IFR
{
 Switch = "R";
 ShlibName = "it_ifr_ibe";
 ShlibMajorVersion = "1";
 IsDefault = "NO";
 PresetOptions = "";
};

PSSDLCxx
{
 Switch = "psdl";
 ShlibName = "it_pss_cxx_ibe";
 ShlibMajorVersion = "1";
 IsDefault = "NO";
 PresetOptions = "-t";
 UsePSSDLGrammar = "YES";

Header and StubExtension set the generated files
extension

The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

Figure 67: Distributed IDL configuration file
809

APPENDIX A | Orbix IDL Compiler Options
Given this configuration, you can issue the following idl commands on the IDL
file foo.idl:

PSSRCxx
{
 Switch = "pss_r";
 ShlibName = "it_pss_r_cxx_ibe";
 ShlibMajorVersion = "1";
 IsDefault = "NO";
 PresetOptions = "-t";
 UsePSSDLGrammar = "YES";

Header and StubExtension set the generated files
extension

The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

Java Config Information
Java
{
 Switch = "jbase";
 ShlibName = "idl_java";
 ShlibMajorVersion = "1";
 IsDefault = "NO";
};

POAJava
{
 Switch = "jpoa";
 ShlibName = "jpoa";
 ShlibMajorVersion = "1";
 IsDefault = "NO";

};

Figure 67: Distributed IDL configuration file

idl -base foo.idl Generates client stub and header code.

idl -poa foo.idl Generates POA code.

idl -base -poa foo.idl Generates code for both client stub and header
code and POA code.
 810

APPENDIX B

IONA Foundation
Classes Library
For each platform, IONA distributes several variants of its IONA foundation
classes (IFC) shared library, which provides a number of proprietary features,
such as a threading abstraction. For each IFC library, IONA provides checked
and unchecked variants:

• Checked variants are suitable for development and testing: extra checking

is built into the code—for example, it throws an exception when a thread

attempts to lock a mutex that it has already locked.

• Unchecked variants are suitable for deployed applications, which have

been tested for thread safety.

Each UNIX distribution provides IFC libraries that support the POSIX thread
package. The following platforms have multiple IFC libraries, which support
different thread packages:

Platform Thread package support

HPUX 32 POSIX, DCE/CMA

Solaris 32/64 POSIX, UI
811

APPENDIX B | IONA Foundation Classes Library
Installed IFC Directories
Each Orbix installation makes IFC variants available in directories with this
format:

Unix:

Windows:

Further, each installation provides a default IFC directory, which contains an
unchecked variant. On UNIX platforms, the default directory contains a
symbolic link to an unchecked variant of UI or POSIX; on Windows, it contains
a copy of the unchecked variant of the Windows IFC library:

UNIX:

$IT_PRODUCT_DIR/shlib/default/ifc-lib-sym-link

Windows:

%IT_PRODUCT_DIR%\bin\it_ifc3_vc60.dll

Unchecked $IT_PRODUCT_DIR/shlib/native-thread-pkg/libit_ifc_compiler-spec

Checked $IT_PRODUCT_DIR/shlib/native-thread-pkg/checked/libit_ifc_compiler-spec

Unchecked %IT_PRODUCT_DIR%\bin\windows\it_ifc3_vc60.dll

Checked %IT_PRODUCT_DIR%\bin\windows\checked\it_ifc3_vc60.dll
 812

Selecting an IFC Library
Selecting an IFC Library
Options for setting a given program’s IFC library are platform-dependent.

Unix On UNIX systems, you can set a program’s IFC library in two ways:

• (Recommended) When linking the program, use the linker’s run path

feature, and set it to the desired IFC library directory. For example, set the

-R option with the Sun compiler.

• Set the program’s environment variable (LD_LIBRARY_PATH or

SHLIB_PATH). Keep in mind that other services such as the Locator also

might use this environment and can be affected by this setting.

Windows Set PATH to the desired IFC library directory.
813

APPENDIX B | IONA Foundation Classes Library
 814

APPENDIX C

Orbix C++
Libraries

Library Name Function

it_art.lib The main ART library. This lib is always
needed when linking projects.

it_dynany.lib Provides DynAny support. This lib must be
linked for any project that uses Dynamic
Anys.

it_event.lib Event service stub code. This lib must be
linked into any project that uses the event or
notification service.

it_event_psk.lib Event service skeleton code. This lib must be
linked into any project that uses the event or
notification service.

it_genie.lib Provides support for the boiler plate code
generated by the idlgen genie.

it_ifc.lib IONA foundation classes. This lib must be
linked into all projects.

it_lease.lib Session Management stub code. Required by
CORBA servers using the Orbix Leasing
Plug-In.
815

APPENDIX C | Orbix C++ Libraries
it_load_balancing.lib Naming Service load balancing stub code.
Only required by projects that use the
IT_LoadBalancing module.

it_location.lib Locator stub code. This lib is only needed by
projects that need to directly communicate
with the locator daemon.

it_message_routing.lib Provide support for AMI message routing.
Required by all projects that use the
MessageRoutiing module.

it_message_routing_psk.lib Provide support for AMI message routing.
Required by all servers that use the
MessageRoutiing module.

it_naming.lib Naming service stub code. Required by any
project using the CosNaming module.

it_naming_admin.lib Naming service admin interfaces stub code.
Required by any project using the
CosNaming module.

it_notify.lib Notification service stub code. Required by
any project using the notification service.

it_notify_psk.lib Notification skeletons. Required ny any
project using the notification service.

it_ots.lib OTS stub code. Required by any project that
uses OTS.

it_ots_psk.lib OTS skeletons. Required by any CORBA
server that uses OTS.

it_poa.lib POA stub code. This lib is needed for all
CORBA applications that have a POA.

it_portable_interceptor.lib Portable Interceptor stub code. Required by
any project that uses portable interceptors.

it_pss.lib PSS stub code. Required by any projects
using the Orbix Persistent State Service.

Library Name Function
 816

it_pss_r.lib PSS stub code. Required by any projects
using the Orbix persistent state service.

it_trader.lib Trader stub code. Required by any project
that needs to access the Orbix Trader.

it_trader_psk.lib Trader skeletons. Required by any CORBA
server that needs to access the Orbix Trader.

it_xa.lib XA skeletons. Required by projects using the
Orbix XA Plug-In.

Library Name Function
817

APPENDIX C | Orbix C++ Libraries
 818

APPENDIX D

IONA Policies
Orbix supports a number of proprietary policies in addition to the
OMG policies. To create a policy of the proper type you must know
the policy’s tag.

In this appendix This appendix contains the following sections:

Client Side Policies page 820

POA Policies page 823

Security Policies page 825

Firewall Proxy Policies page 827
819

APPENDIX D | IONA Policies
Client Side Policies

BindingEstablishmentPolicy

Policy Tag

IT_CORBA::BINDING_ESTABLISHMENT_POLICY_ID

Data Values

A client’s BindingEstablishmentPolicy is determined by the members of its
BindingEstablishmentPolicyValue, which is defined as follows:

See Also

“BindingEstablishmentPolicy” on page 243

RelativeBindingExclusiveRoundtripTimeoutPolicy

Policy Tag

IT_CORBA::RELATIVE_BINDING_EXCLUSIVE_ROUNDTRIP_TIMEOUT_POLICY_ID

Data Values

This policy’s value is set in 100-nanosecond units.

See Also

“RelativeBindingExclusiveRoundtripTimeoutPolicy” on page 245

struct BindingEstablishmentPolicyValue
{
 TimeBase::TimeT relative_expiry;
 unsigned short max_binding_iterations;
 unsigned short max_forwards;
 TimeBase::TimeT initial_iteration_delay;
 float backoff_ratio;
};
 820

Client Side Policies
RelativeBindingExclusiveRequestTimeoutPolicy

Policy Tag

IT_CORBA::RELATIVE_BINDING_EXCLUSIVE_REQUEST_TIMEOUT_POLICY_ID

Data Values

This policy’s value is set in 100-nanosecond units.

See Also

“RelativeBindingExclusiveRequestTimeoutPolicy” on page 245

RelativeConnectionCreationTimeoutPolicy

Policy Tag

IT_CORBA::RELATIVE_CONNECTION_CREATION_TIMEOUT_POLICY_ID

Data Values

The policy’s value is set in 100-nanosecond units.

See Also

“RelativeConnectionCreationTimeoutPolicy” on page 245

InvocationRetryPolicy

Policy Tag

IT_CORBA::INVOCATION_RETRY_POLICY_ID

Data Values

A client’s InvocationRetryPolicy is determined by the members of its
InvocationRetryPolicyValue, which is defined as follows:

struct InvocationRetryPolicyValue
{
 unsigned short max_retries;
 unsigned short max_rebinds;
 unsigned short max_forwards;
 TimeBase::TimeT initial_retry_delay;
 float backoff_ratio;
};
821

APPENDIX D | IONA Policies
See Also

“InvocationRetryPolicy” on page 246
 822

POA Policies
POA Policies

ObjectDeactivationPolicy

Policy Tag

IT_PortableServer::OBJECT_DEACTIVATION_POLICY_ID

Data Values

Three settings are valid for this policy:

See Also

“Setting deactivation policies” on page 339

PersistentModePolicy

Policy Tag

IT_PortableServer::PERSISTENCE_MODE_POLICY_ID

Data Values

The only valid value for this policy is
IT_PortableServer::DIRECT_PERSISTENCE.

See Also

“Direct persistence” on page 304

DELIVER(default)The object deactivates only after processing all pending
requests, including any requests that arrive while the object
is deactivating.

DISCARD The POA rejects incoming requests with an exception of
TRANSIENT. Clients should be able to reissue discarded
requests.

HOLD Requests block until the object deactivates. A POA with a
HOLD policy maintains all requests until the object
reactivates. However, this policy can cause deadlock if the
object calls back into itself.
823

APPENDIX D | IONA Policies
WellKnownAddressingPolicy

Policy Tag

IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID

Data Values

This policy takes a string that maps to the prefix of the configuration variable
listing the well known address.

See Also

“Direct persistence” on page 304

WorkQueuePolicy

Policy Tag

IT_WorkQueue::WORK_QUEUE_POLICY_ID

Data Values

This policy takes a WorkQueue object.

See Also

“Creating the WorkQueue” on page 326
 824

Security Policies
Security Policies
For more detailed information on the following policies see the CORBA
SSL/TLS Guide.

SessionCachingPolicy

Policy Tag

IT_TLS_API::TLS_SESSION_CACHING_POLICY

Data Values

The following settings are valid for this policy:

MaxChainLengthPolicy

Policy Tag

IT_TLS_API::TLS_MAX_CHAIN_LENGTH_POLICY

Data Values

This policy takes an integer.

CertContraintsPolicy

Policy Tag

IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY

Data Values

This policy takes an IT_TLS_API::CertConstraints object.

CACHE_NONE(default) The ORB does not cache session data.

CACHE_CLIENT The ORB will cache session data for client side of
a connection.

CACHE_SERVER The ORB will cache session data for server side
of a connection.

CACHE_SERVER_AND_CLIENT The ORB stores session information for both the
client and server side of a connection.
825

APPENDIX D | IONA Policies
CertValidatorPolicy

Policy Tag

IT_TLS_API::TLS_CERT_VALIDATOR_POLICY

Data Values

This policy takes a IT_TLS::CertValidator object.
 826

Firewall Proxy Policies
Firewall Proxy Policies
For more information on the firewall proxy service see the Application Server
Platform Administrator’s Guide.

InterdictionPolicy

Policy Tag

IT_FPS::INTERDICTION_POLICY_ID

Data Values

PROCEED(default)This is the default behavior of the firewall proxy service
plug-in. A POA with its INTERDICTION policy set to
PROCEED will be proxified.

PREVENT This setting tells the firewall proxy service plug-in to not
proxify the POA. POAs with their INTERDICTION policy set
to PREVENT will not use the firewall proxy service and
requests made on objects under its control will come directly
from the requesting clients.
827

APPENDIX D | IONA Policies
 828

Index

Symbols
788

A
Abstract storage home

defined 546
defining 549
factory operation 552
forward declaration 553
inheritance 553
keys 550
operations 552

Abstract storage type
defined 546
defining 547
definition syntax 547
forward declaration 548
inheritance 547

from storage object 548
operations 548
state members 547

activate()
calling on POAManager 91, 317

activate_object() 88, 262, 309, 311
activate_object_with_id() 262, 309, 311
Active object map 292

disabling 301
enabling 301
using with servant activator 333

add_ior_component() 670
addMember() 527
add_plain_text_key() operation 752
_add_ref() 278
add_sample() operation 791, 794
AliasDef 464
allocate_slot_id() 701
Any type 399–438

extracting user-defined types 405
extracting values from 404

alias 413
array 408
Boolean 407
bounded string alias 412
Char 407
Octet 407
string 410
WChar 407
wstring 410

extraction operators 404
inserting user-defined types 402
inserting values 401

alias 412
array 408
Boolean 407
bounded string alias 412
Char 407
Octet 407
string 409
WChar 407
wstring 409

insertion operators 401
memory management 401, 404
querying type code 414

append() operation 782
Application

running 41, 46
arguments() 451
Arithmetic operators 137
ArrayDef 465
Array type

_forany 408
Association

constructors 565
operations 566

Asynchronous method invocations 353–363
client implementation 361
implied IDL 356
reply handlers 357

Attribute
client-side C++ mapping for 214
genie-generated 69
in IDL 108
readonly 58

average_compression attribute 791, 794
829

INDEX
B
BAD_TYPECODE 413
-base flag 62
Berkeley DB

platform constraints 583
BiDir_Gen3 732
BiDir_GIOP 717
Binding

setting delay between tries 244
timing out on 243
timing out on forward tries 243
timing out on IP address resolution 245
timing out on retries 243

binding:client_binding_list 717
BindingEstablishmentPolicy 243
Binding iterator 509
Binding list 508
Boolean

constant in IDL 135
Bounded strings 409
Buffer attributes 781
Buffer interface 780
Buffer operations 781
bzip2 compression algorithm 771

C
CannotProceed exception 507
CDR encapsulation 664
ChannelAlreadyExists exception 627, 644
Character

constant in IDL 135
Client

asynchronous method invocations 353
building 40
developing 73, 191
dummy implementation 61
exception handling 371
generating 37, 44, 60
implementing 40, 45, 73
initializing ORB runtime 168, 213
interceptors, see Client interceptors
invoking operations 194, 214–235
quality of service policies 236

creating PolicyList 177
effective policy 175
getting policy overrides 180
object management 181, 183
ORB PolicyManager 179, 183
 830
setting policy overrides 180
thread management 179, 183

reply handlers for asynchronous method
invocations 361

timeout policies 239
Client interceptors

aborting request 678
changing reply 678
evaluating tagged component 684
interception point flow 676
interception points 673, 675, 681
location forwarding 677
normal reply processing 676
registering 705
tasks 683

Client policies
RebindPolicy 237
SyncScopePolicy 238
timeout 239

Client proxy 76, 192
class definition 193
deallocating 197
reference counting 196

ClientRequestInfo 659
interface 680

ClientRequestInterceptor 658
interface 673

Client-side C++ mapping
attributes 214
operations 214
parameter passing 215

rules 233
parameters

fixed-length array 219
fixed-length complex 217
object reference 231
_out-type 224
simple 216
string 221
variable-length array 229
variable-length complex 227

clusters
delegation interface 587
replication 584

Codec
creating 665, 705
decoding service context 664
encoding service context 664
interface 664

INDEX
operations 664
Codec factory 665

obtaining 705
codec_factory() 665, 705
Code generation toolkit

See also Genie-generated application
idlgen utility 44
packaged genies 139
wizard 32

Command-line arguments 83
Compiling

application 78
IDL 62
PSDL 546

completed() 375
component_count() 428
compress() operation 785

implementation 788
compression

add_sample() operation 791, 794
append() operation 782
average_compression attribute 791, 794
Buffer attributes 781
Buffer interface 780
Buffer operations 781
compress() operation 785, 788
CompressionManager interface 795
CompressorFactory class, header 791
CompressorFactory class, implementation 792
CompressorFactory interface 790
compressor ID 794
Compressor interface 784
custom 779
custom, demonstration 788
data attribute 780
decompress() operation 785, 788
enabling on the client side 777
enabling on the server side 776
extract() operation 782
get_compressor() operation 791, 794, 796
get_factories() compression 796
get_factory() operation 796
grow() operation 782
IT_Buffer module 780
IT_CompressionManager initial reference ID 797
next_segment() operation 780, 782
offset attribute 780
prepend() operation 782
recycle() operation 782
register_factory() operation 796, 797
rewind() operation 780, 782
Segment attributes 783
Segment interface 782
selecting the compression algorithm 777
Storage interface 783
trim() operation 782
unregister_factory() operation 796

CompressionEnablingPolicy policy type 775, 776, 777
CompressionManager interface 795
compression plug-in

algorithms 771
binding list 773
compatibility with giop_snoop 771
compatibility with iordump tool 771
configuration prerequisites 772
IT_ZIOP module 774
overview 770
plugins:ziop:ClassName variable 772
plugins:ziop:shlib_name variable 772
policies 774
policies:ziop:compession_enabled variable 776, 777

compression policies
CompressionEnablingPolicy policy type 775
CompressorIdPolicy policy type 775
programming 776

Compressor class
header 785
implementation 786

compressor factory
registering 795

CompressorFactory class
header 791
implementation 792

CompressorFactory interface 790
compressor ID 794
CompressorIdPolicy policy type 775, 777
Compressor interface

definition of 784
ConfigList type 759
Configuration 12
configuration

creating a new domain 760
reading configuration data 762
sources 760

Configuration interface 758
initial reference 761
operations 759

Connector object 569
831

INDEX
Constant definition
boolean 135
character 135
enumeration 136
fixed-point 136
floating point 134
in IDL 134
integer 134
octet 136
string 135
wide character 135
wide string 135

Constant expressions
in IDL 137

consumer
connecting to event channel 635
connecting to proxy supplier 636
disconnecting from event channel 639, 654
implementing 634
instantiating 628

consumer admin
obtaining default 635

Contained interface 470
Description structure 474

Container interface 472
operations 477

contents() 479
corbaloc 211
corbaloc URL

basic format 737
converting to object reference 736
direct persistence case 749
direct persistent, resolving 753
indirect persistence case 740
indirect persistent, resolving 748
multiple-address format 738
overview 736
registering plain text keys 752
secure format 738

corbaname 505
CORBA object, see Object
CosNotifyChannelAdmin module 629
CosTypedEventChannelAdmin module 647
cpp_poa_genie.tcl 44, 60
cpp_poa_genie.tcl genie 165

-all option 144
-complete/-incomplete options 158
-default_poa option 150
defined 139
 832
-dir option 162
-include option 147
interface specification 146
-refcount/-norefcount options 151
-servant/-noservant options 150
-servant option 148
-server option 152
-strategy options 153
syntax 142
-threads/-nothreads options 153
-tie option 149
-v/-s options 162

cpp_poa_op.tcl genie 165
defined 139

_create() 87
create_active() 527
create_channel() 626
create_id_assignment_policy() 307
create_id_uniqueness_policy() 308
create_lifespan_policy() 304
create_policy()

calling on client ORB 177
create_random() 527
create_reference() 349
create_reference_with_id() 349
_create_request 447
create_round_robin() 527, 537
create_transactional_session() 570
create_transactional_session() operation

and replication 595
create_typed_channel() 643
ctx() function 446
Current, in portable interceptors

See PICurrent
current_component() 428
current_member_kind() 433, 437
current_member_name() 432, 437
custom compression

overview 779
registering a compressor factory 795

D
data attribute

compression API 780
DCE UID repository ID format 482
deactivate()

calling on POAManager 318
decode() 664
decode_value() 665

INDEX
decompress() operation 785
implementation 788

_default_POA() 314
overriding 315

Default servant 292, 345–348
registering with POA 303, 348

default_supplier_admin() 629
Deferred synchronous request 452
def_kind 459
delegate IORs

and replication 589
describe() 474
describe_contents() 479
destroy() 93, 170, 459
DII 441

See also Request object
creating request object 443
deferred synchronous request 452
invoking request 450

direct persistence
corbaloc URLs 749

DIRECT_PERSISTENCE policy 304
discard_requests()

calling on POAManager 318
disconnect operation

consumer 639
supplier 633, 649

disconnect_structured_push_supplier() 639
discriminator_kind() 434
DSI 453

dynamic implementation routine 455
Dynamic Any, see DynAny
Dynamic implementation routine 455
Dynamic invocation interface, see DII
DynamicReplica interface

obtaining references for initializing 592
obtaining reference to 587
replica name 589

Dynamic skeleton interface, see DSI
DynAny 415

assignment 416
comparing 416
conversion to Any 416
copying 416
creating 418
destroying 416
DynArray interface 435
DynEnum interface 430
DynFixed interface 436
DynSequence interface 435
DynStruct interface 432
DynUnion interface 433
DynValueBox interface 438
DynValue interface 437
extraction operations 426
factory operations 418
initializing from another 416
insertion operations 424
iterating over components 428
obtaining type code 417

DynAnyFactory interface 418

E
election, of master 595
election of master 599
encode() 664
encode_value() 665
EndOfAssociationCallback 571
enum data type 127
EnumDef 464
Enumeration

constant in IDL 136
equal() 390
equivalent() 390
establish_components() 668
etherealize() 338
event

obtaining 637
pull consumer 638
push consumer 638

sending 631
pull supplier 632
push supplier 632

event channel
connecting consumer 635
connecting supplier 629
creating 626
disconnecting consumer 639
disconnecting supplier 633, 649
finding by id 626
finding by name 626
listing all by names 626
obtaining 625

event channel factory
OMG operations 626

event communication
mixing push and pull models 621
pull model 621
833

INDEX
Event handling
in server 284

event ID 767
defining 765
logging 763

EventLog interface
initial reference 767

event priority 767
logging 764

EventPriority inteface 767
Exceptions 365–384

handling in clients 371
in IDL 109
specification in server skeleton class 258
system 373
system codes 375
throwing in server 380

Explicit object activation 262, 311
policy 309

extract() operation 782

F
Factory operation

in PSDL 552
find_channel() 626
find_channel_by_id() 626
find_group() 528, 537
find_typed_channel() 643
find_typed_channel_by_id() 643
FixedDef 465
Fixed-point

constant in IDL 136
Floating point

constant in IDL 134
for_consumers() 635, 652
for_suppliers() 646
Forward declaration

abstract storage home 553
abstract storage type 548
in IDL 115

G
Genie-generated application 12, 139–165

See also cpp_poa_genie.tcl genie, cpp_poa_op.tcl
genie

compiling 163
completeness of code 158
component specification
 834
all 144
included files 147
servant classes only 148
server only 152

_create() 71
directing output 162
generated attribute 69
interface selection 146
object mapping policy

servant locator 154
use active object map only 154
use servant activator 154

overriding _default_POA() 150
POA thread policy 153
reference counting 151
servant class inheritance 150
signature 164
tie-based servants 149
verbosity settings 162

get_association_status() 575
get_boxed_value() 438
get_boxed_value_as_dyn_any() 438
get_client_policy() 185
get_compact_typecode() 391
get_compressor() operation 791, 794, 796
get_discriminator() 434
get_effective_component() 684
get_effective_policy() 669
get_factories() compression 796
get_factory() operation 796
_get_interface() 477
get_length() 435
get_members() 432, 438
get_members_as_dyn_any() 433, 438
get_policy() 185
get_policy_overrides() 186

calling on ORB PolicyManager 180
calling on thread PolicyCurrent 180

get_replica() function 588
get_response() 452
get_typed_consumer() 648
get_value() 436
giop_snoop plug-in

compatibility with compression 771
GIOP version

in corbaloc URL 737
grow() operation 782
gzip compression algorithm 771

INDEX
H
hash() 201
has_no_active_member() 434
Hello World! example 30
high availability

replication 583
hold_requests()

calling on POAManager 317

I
IDL 99

attribute in 58
attributes in 108
compiling 62
constant expressions in 137
empty interfaces 110
exceptions 365–384
exceptions in 109
interface definition 103
interface repository definitions 457

object types 461
module definition 101
name scoping 101
one-way operations in 107
operation in 58, 106
parameters in 106
pragma directives 484
precedence of operators 137
prefix pragma 485
user-defined types 133
version pragma 485

IDL compiler 62
generated files 62
generating implied IDL 356
options

-base 62
-flags 62
-poa 62

output 62
populating interface repository 458

idlgen utility 60
iiops protocol specifier

corbaloc 738
implementation repository

and named keys 743, 744
IMPLICIT_ACTIVATION policy 309, 312
Implicit object activation 262, 312

overriding default POA 315
policy 309
Implied IDL 356

attribute mapping 356
operation mapping 356
sendc_get operation 356
sendc_ operation 356

indirect persistence
and corbaloc URL 740

Inheritance
implementing by 68
in abstract storage home 553
in interfaces 111
in servant classes 281, 282
storage home 556

Initial naming context
obtaining 496

Initial reference
registering 702

initial reference IDs
IT_Configuration 761
IT_EventLog 767
IT_Locator 747
IT_PlainTextKeyForwarder 752

inout parameters 107
in parameters 107
Integer

constant in IDL 134
Interception points 658

client flow 676
client interceptors 673, 675, 681
client-side data 659, 680
IOR data 659
IOR interceptors 668
request data 659, 671
server flow 689
server interceptors 688, 694
server-side data 659, 693
timeout constraints 672

Interceptor interface 658
Interceptors, see Portable interceptors
Interface

client proxy for 192
components 105
defined in IDL 103
dynamic generation 439
empty 110
forward declaration of 115
inheritance 111
inheritance from Object interface 113
835

INDEX
multiple inheritance 112
overriding inherited definitions 113

Interface, in IDL definition 58
InterfaceDef 464
Interface Definition Language, see IDL
InterfaceNotSupported exception 647
Interface repository 457–486

abstract base interfaces 460
browsing 477
Contained interface 470
Container interface 472
containment 467
destroying object 459
finding objects by ID 479
getting information from 477

object interface 477
getting object’s IDL type 465
object descriptions 474

getting 479
objects in 459
object types 459

named 464
unnamed 465

populating 458
repository IDs 482

setting prefixes 484
setting version number 485

Interoperable Object Reference, see IOR
InvalidName exception 507
InvocationRetryPolicy 246
IOR 291

string format 209
usage 211

iordump tool
compatibility with compression 771

IORInfo 659
interface 668

IORInterceptor 658
See also IOR interceptors
interface 668

IOR interceptors 668
adding tagged components 663, 670
interception point 668
registering 705

IORs
object key in corbaloc URL 737

IRObject interface 459
_is_a() 200
_is_equivalent() 200
 836
Isolation level
specifying for session 571

is_replica() operation 595
itadmin ns command 745
it_art library 752
IT_Buffer module 780
IT_CompressionManager initial reference ID 797
IT_Config module 758
it_create_session_manager() function

and replication 594
item() 451
it_iiops protocol type

corbaloc 738
it_location library 746
IT_Location module 746
IT_Locator initial reference ID 747
IT_LOG_MESSAGE_1 macro 767
IT_LOG_MESSAGE_2 macro 767
IT_LOG_MESSAGE_3 macro 767
IT_LOG_MESSAGE macro 767
IT_NamedKey module 746
it_orb_name() function 593
IT_PlainTextKeyForwarder initial reference ID 752
IT_PlainTextKey module 752
IT_ServantBaseOverrides class 316
IT_THROW_DECL macro 68
IT_ZIOP module 774

K
Key

defined in abstract storage home 550
composite 550
simple 550

primary declaration in storage home 557
kind() 391

L
LifespanPolicy 741
list_channels() 626
list_typed_channels() 643
Load balancing 523

active selection 529
example of 530
selection algorithms 523

load balancing
replication 583

local_log_stream plug-in 764
Local repository ID format 483

INDEX
LocateReply message 743, 751
LocateRequest message 743, 751
LOCATION_FORWARD 743
locator service

and resolving corbaloc URLs 742
Logging 12
logging

event 763
event ID 763, 767
event ID, defining 765
event priority 764, 767
example code 766
IT_LOG_MESSAGE_1 macro 767
IT_LOG_MESSAGE_2 macro 767
IT_LOG_MESSAGE_3 macro 767
IT_LOG_MESSAGE macro 767
local_log_stream plug-in 764
overview 763
subsystem 763
subsystem ID 763, 767
subsystem ID, defining 765
system_log_stream plug-in 764
with parameters 767

lookup() 477
lookup_id() 479
lookup_name() 477

M
master replica

refresh 598
member() 434
member_kind() 435
member_name() 434
Memory management

string type 45
minor() 375
Module

in IDL 101
MULTIPLE_ID policy 308

N
Name binding

creating for application object 502
creating for naming context 498
dangling 512
listing for naming context 508
removing 512

NameComponent
defined 491
named_key command 744
named key registry

and corbaloc 743
NamedKeyRegistry interface 747
named keys

registering 744
NamedValue pseudo object type 132
Name scoping

in IDL 101
Name sequence

converting to StringName 495
defined 491
initializing 494
resolving to object 491, 504
setting from StringName 494
setting name components 494
string format 493

Naming context
binding application object to 502
binding to another naming context 498
destroying 512
listing bindings 508
orphan 500
rebinding application object to 503
rebinding to naming context 503

Naming graph
binding application object to context 502
binding iterator 509
binding naming context to 498
building programmatically 497
defined 489
defining Name sequences 491
destroying naming context 512
federating with other naming graphs 514
iterating over naming context bindings 509
listing name bindings 508
obtaining initial naming context 496
obtaining object reference 504
rebinding application object to context 503
rebinding naming context 503
removing bindings 512
resolving name 491, 505
resolving name with corbaname 505

Naming service 487
AlreadyBound exception 503
binding iterator 509
CannotProceed exception 507
defining names 491
837

INDEX
exceptions 507
initializing name sequence 494
InvalidName exception 507
name binding 489
naming context 489
NotEmpty exception 512
NotFound exception 507
representing names as strings 493
string conversion operations 493

naming service
itadmin ns command 745

Narrowing
initial references 84
object reference 76
_ptr 202

type-safe 204
_var 206

NativeDef 464
next() 429
next_segment() operation 780, 782
_nil()

Nil reference 75, 83
Nil reference 198
NO_IMPLICIT_ACTIVATION policy 309, 311
_non_existent() 200
NON_RETAIN policy 301

and servant locator 333
NotFound exception 507

O
Object

activating 88, 262
activating on demand

with servant activator 335
with servant locator 340, 343

base class 64
binding to naming context 502
client proxy for 192
creating inactive 349
deactivating

with servant activator 338
with servant locator 344

defined in CORBA 4
explicit activation 262, 311
getting interface description 477
ID assignment 88, 307
implicit activation 262, 312
mapping to servant 291

options 292
 838
rebinding to naming context 503
removing from object groups 528
request processing policies 302
test for equivalence 200
test for existence 200
test for interface 200

Object binding
transparent rebinding 237

ObjectDeactivationPolicy 297
Object group 523

accessing from clients 539
adding objects to 528, 532
creating 527, 532
factories 527
finding 537
group identifiers 527
member identifiers 527
member structure 538
removing 528
removing objects from 528
selection algorithms 523, 527

object key
in corbaloc URL 737

object keys
in corbaloc URL 739

Object pseudo-interface
hash() 201
inheritance from 113
is_a_() 200
_is_equivalent() 200
_non_existent() 200
operations 199

Object reference 4
adding tagged components 663, 670
creating for inactive object 349
IOR 291
lifespan 304
narrowing 76
nil 198
obtaining with create_reference() 349
obtaining with id_to_reference() 89
obtaining with _this() 312
operations 199
passing as a string 31
passing as parameter

C++ mapping in client 231
persistent 304
string conversion 209

format 209

INDEX
transient 304
_var type 194

object_to_string() 90, 209
obtain_notification_pull_consumer() 630, 636
obtain_notification_push_consumer() 630, 636, 647,

652
obtain_push_consumer() 630
obtain_typed_push_consumer() 647, 648
Octet

constant in IDL 136
offset attribute

compression API 780
og_factory() 537
OMG IDL repository ID format 482
One-way requests

SyncScopePolicy 238
Operation

client-side C++ mapping for 214
defined in abstract storage home 552
defined in abstract storage type 548
defined in IDL 106
interface repository description 474
one-way, defined in IDL 107

OperationDef interface 474
Operators

arithmetic 137
precedence of, in IDL 137

ORB
getting object reference to 168, 213
role of 6

ORB_CTRL_MODEL policy 278, 310
-ORB flags 83
ORB_init() 75

calling in client 168, 213
ORB_init() function 75

calling in server 83
ORB initializer 657

creating and registering PolicyFactory 704
creating Codec objects 665, 705
interface 667
obtaining Codec factory 665, 705
registering initial reference 702
registering portable interceptors 700, 705
registering with application 707
tasks 667, 701

ORBInitInfo 667
ORB PolicyManager 181
ORB runtime

destroying 170
event handling 284
initializing in client 73, 168, 213
initializing in server 83
polling for incoming requests 284
shutting down 92, 170

Orphaned naming context 500
out parameters 107
_out-type parameters

C++ mapping in client 224

P
ParameterList

settings for transaction session 571
Parameters

C++ mapping in client 215
fixed-length array 219
fixed-length complex 217
object reference 231
_out types 224
rules for passing 233
simple 216
string 221
variable-length array 229
variable-length complex 227

C++ mapping in server 264–277
fixed-length array 268
fixed-length complex 266
object reference 276
simple 265
string 270
variable-length array 274
variable-length complex 272

defined in IDL 59, 106
direction 106
inout types 107
in types 107
out types 107
setting for request object 444

perform_work() 284
PersistenceModePolicy 298, 741, 750
PERSISTENT policy 304
Persistent State Definition Language, see PSDL
Persistent State Service, see PSS
PICurrent 657

allocating slot 701
defined 661
interface 661
obtaining 701

pkzip compression algorithm 771
839

INDEX
plain text key
registering 752

plain_text_key plug-in 749
Plug-in 10
plug-ins

plain_text_key 749
plugins

pss_db
envs

env-name
replica_name configura-

tion variable 593
pss_db namespace 589

plugins:giop:message_server_binding_list 717
plugins:ziop:ClassName variable 772
plugins:ziop:shlib_name variable 772
POA 289–318

activating object in 88, 262
active object map 292, 301
attaching PolicyList 182, 295
creating 84, 85, 293
default servant 292, 345–348
genie-generated

active object map 154
servant activator 154
use servant locator 154

mapping object to servant through inheritance 256–
258

POAManager 85, 91, 317
registering default servant 303, 348
registering servant activator 339
registering servant locator 344
registering servant manager 303
root POA 84, 293
servant manager 292
skeleton class 253

POA manager 85, 317
states 91, 317

POA policies
attaching to new POA 182, 295
constants

DIRECT_PERSISTENCE 304
IMPLICIT_ACTIVATION 309
MULTIPLE_ID 308
NO_IMPLICIT_ACTIVATION 309
NON_RETAIN 301
ORB_CTRL_MODEL 310
PERSISTENT 304
 840
RETAIN 301
SINGLE_THREAD_MODEL 310
SYSTEM_ID 307
TRANSIENT 304
UNIQUE_ID 308
USE_ACTIVE_OBJECT_MAP_ONLY 302
USE_DEFAULT_SERVANT 303
USER_ID 307
USE_SERVANT_MANAGER 303

factories for Policy objects 296
ID assignment 307
ID uniqueness 308
object activation 309
ObjectDeactivationPolicy 297
object lifespan 304
ORB_CTRL_MODEL 278
PersistenceModePolicy 298
proprietary 297
request processing 302
root POA 299
servant retention 301
setting 86, 295
threading 310
WellKnownAddressingPolicy 298

Policies
creating PolicyFactory 666
getting 188

policies:ziop:compession_enabled variable 776, 777
policies:ziop:compressor_id variable 777
PolicyCurrent 183

interface operations 179
PolicyFactory 657

creating and registering 704
interface 666

PolicyList
attaching to POA 182, 295
creating for client 177
creating for POA 295

PolicyManager 183
interface operations 179
setting ORB policies 181

poll_response 452
Portable interceptors 13, 655

client interceptors, see Client interceptors
components 657
interception points, see Interception points
IOR interceptors, see IOR interceptors
ORB initializer, see ORB initializer
PICurrent, see PICurrent

INDEX
policy factory, see PolicyFactory
registering 700, 705
registering with Orbix configuration 708
server interceptors, see Server interceptors
service context, see Service context
tagged component, see Tagged component
types 658

Portable Object Adapter, see POA
post_init() 700
postinvoke() 342, 344
Pragma directives, in IDL 484
Prefix pragma 485
pre_init() 700
preinvoke() 342, 343
prepend() operation 782
PrimitiveDef 465
Proxy, see Client proxy
proxy consumer

connecting supplier 630
creating 629
interfaces 629

proxy supplier 631
connecting consumer 636
creating 635
pull operations 638

PSDL 543–557
abstract storage home 549
abstract storage type 547
C++ mapping 601–616

abstract storagetype 604
operation parameters 611
Ref_var class 608
state members 609
storagehome 614
storagetype 612

compiling 546
keywords 543
language mappings

equivalent local interfaces 603
storage home 544
storage type

defined 544
Pseudo object types

in IDL definition 132
PSS 541–616

accessing storage objects 558
defining data 543

see also PSDL
querying data 580
_ptr object reference type 194, 202–204
duplicating 202
narrowing 202

type-safe 204
releasing 202
widening 202

pull() 638
pull consumer

obtaining messages 637, 638
pull model 621
pull supplier

obtaining proxy consumer 630, 636
push() 632, 638
push and pull model mixed 620
push consumer

obtaining messages 638
push model 620
push supplier

obtaining a typed proxy consumer 647
obtaining proxy consumer 630, 636, 652

Q
Quality of service policies 236

creating PolicyList 177
effective policy 175, 236
getting overrides

for ORB 180
for thread 180

managing
object 185
ORB 179
thread 179

object management 181, 183
ORB PolicyManager 179, 183
setting overrides

for ORB 180
for thread 180

thread management 179, 183
Querying data 580

R
read operation

ordinary, in local transaction 584
RebindPolicy 237
receive_exception() 675
receive_other() 675
receive_reply() 675
receive_request() 688
841

INDEX
receive_request_service_contexts() 688
recycle() operation 782
RefCountServantBase 278
Reference counting 278

genie-generated 151
Reference representation 554
refresh_master() operation 599, 600
Ref_var Classes 608
register_factory() operation 796, 797
register_orb_initializer() 707
RelativeBindingExclusiveRequestTimeoutPolicy 245
RelativeBindingExclusiveRoundtripTimeoutPolicy 24

5
RelativeConnectionCreationTimeoutPolicy 245
RelativeRequestTimeoutPolicy 241
RelativeRoundtripTimeoutPolicy 240
remove_member() 528
_remove_ref() 278
replica name 589

obtaining current 593
replication

configuration 589
current replica name 593
custom delegation interface 587
delegate IORs 589
delegating to the master 584
DynamicReplica interface 587
election of master 595, 599
get_replica() function 588
implementing operations 596
initializing 591
initializing with create_transactional_session()

operation 595
initializing with TransactionalSession interface 595
is_replica() operation 595
it_create_session_manager() function 594
model 583
ordinary read operations 584
overview 583
plugins

pss_db
envs

env-name
replica_name configu-

ration
variable 593

pss_db namespace 589
 842
refreshing the master 598
refresh_master() operation 599, 600
replica name 589
transactional read operation 585
TransactionalSession2 interface 599
TransactionalSession interface 588
write operation 586

ReplyEndTimePolicy 241
Reply handlers 357

exceptional replies 359
implementing on client 361
normal replies 359

_request 444
RequestEndTimePolicy 242
RequestInfo 659

interface 671
Request object

creating 443
context parameter 446
operation parameters 444
return type 444
with _create_request 447
with _request 444

invoking 450
obtaining results 451

resolve_initial_references()
InterfaceRepository 477
NameService 496
PICurrent 701
POA 84
PSS 559
TransactionCurrent 559

resolve_initial_references() operation 797
resolve_str() 493
RETAIN policy 301

and servant activator 333
return_value() 451
rewind() 429
rewind() operation 780, 782, 788
Root POA

policies 299
run() 91
Running an application 79

S
seek() 429
Segment attributes 783
segmented buffer 780
Segment interface 782

INDEX
sendc_get_ operation 356
send_c operation 356
send_deferred 452
send_exception() 688
send_other() 688
send_poll() 675
send_reply() 688
send_request() 675
sequence data type 130
SequenceDef 465
Servant

caching 341
etherealized

by servant activator 338
by servant locator 344

genie-generated
overriding default POA 150
reference counting 151

implementation class 69, 259
incarnated

by servant locator 343
incarnating multiple objects 308
inheritance from POA skeleton class 253
inheritance from ServantBase 257
instantiating 262
mapping to object 291

options 292
reference counting 278
tie-based 279

Servant activator 335–340
deactivating objects 338
etherealizing servants 338
registering with POA 339
required policies 303

ServantBase 257
Servant class

creating 259–260
genie-generated 148

inheritance 150
inheritance 281
interface inheritance 282
multiple inheritance 283

Servant locator 340–344
activating objects 343
caching servants 341
deactivating objects 344
etherealizing servants 344
incarnating servants 343
registering with POA 344
required policies 303
Servant manager 292, 331–349

registering with POA 303, 333
set for POA 303

Server
building 37
compiling 287
defined in CORBA 8
dummy implementation 61
event handling 284
generating 34, 44, 60
genie-generated 152

object mapping options 154
POA thread policy 153

implementing 37, 44, 66
initialization 81
processing requests, see POA
servant reference counting 278
shutting down 92
termination handler 92, 285
throwing exceptions 380

Server interceptors 687
aborting request 690
changing reply 691
getting server policy 696
getting service contexts 697
interception point flow 689
interception points 688, 694
registering 705
tasks 696
throwing exception 689

ServerRequestInfo 659
interface 693

ServerRequestInterceptor 658
interface 687

ServerRequest pseudo-object 455
Server-side C++ mapping

fixed-length array parameters 268
fixed-length complex parameters 266
object reference parameters 276
parameter passing 264–277
POA skeleton class 253, 256–258
simple parameters 265
skeleton class

method signatures 258
string parameters 270
variable-length array parameters 274
variable-length complex parameters 272

Service context 657, 660
843

INDEX
decoding data 664
encoding data 657, 664
IDs 660

Services 41, 42, 47, 48, 79
encapsulating ORB service data 660

Session
management operations 577

SessionManager 562
parameters 564

SessionManager interface
initializing a replica group 592
initializing replication 591

set_boxed_value() 438
set_boxed_value_as_dyn_any() 438
set_discriminator() 434
set_length() 435
set_members() 432, 438
set_members_as_dyn_any() 433, 438
set_member_timeout() 529
set_policy_overrides() 186

calling on ORB PolicyManager 180
calling on thread PolicyCurrent 180

set_return_type 444
set_servant() 303
set_servant_manager() 303
set_to_default_member() 434
set_to_no_active_member() 434
set_value() 436
shutdown() 76, 93, 170
Signal handling 285
SINGLE_THREAD_MODEL policy 310
Skeleton class

dynamic generation 455
method signatures 258
naming convention 257

Skeleton code 62
Smart pointers 194
State member

in abstract storage type 547
in storage type 554

Storage home
defined 544
implementing 546, 556
inheritance 556
instance 558
primary key declaration 557

Storage interface 783
Storage object

accessing 558, 568
 844
associating with CORBA object 581
defining 547
incarnation 558
thread safety 582

Storage type
defined 544
implementing 546, 554
reference representation 554
state members 554

String
constant in IDL 135

StringDef 465
string_dup() 45, 72
StringName

converting to Name 494
using to resolve Name sequence 505

string_to_object() 75, 209
string_to_object() function

and corbaloc 736
resolving corbaloc URL 748, 753

String_var 46
struct data type 128
StructDef 464
Stub code 62
subsystem ID 767

defining 765
logging 763

supplier
connecting to proxy consumer 631
connecting to typed proxy consumer 648
disconnecting from event channel 633, 649
implementing 628

supplier admin
obtaining 629, 646
obtaining default 629

SyncScopePolicy 238
System exceptions 373

codes 375
throwing 384

SYSTEM_ID policy 307
system_log_stream plug-in 764

T
Tagged component 657

adding to object reference 663, 670
defined 663
evaluated by client 684

tc<type> 397
TCKind enumerators 386

INDEX
Termination handler
in server 285

_this() 262, 309, 312–315
overriding default POA 315

Threading 12
POA policy 310
with storage objects 582

Tie-based servants 279
compared to inheritance approach 280
creating 279
genie-generated 149
removing from memory 280

Timeout policies 239
absolute times 240
binding retries 243
binding time limits 243
delay between binding tries 244
forwards during binding 243
invocation retries 246

delay between 247
maximum 246
maximum forwards 247
maximum rebinds 246

propagating to portable interceptors 672
reply deadline 241
request and reply time 245

excluding binding 240
request delivery 241

excluding binding 245
resolving IP addresses 245

request delivery deadline 242
to_name() 493
to_string() 493
transactional read operation

replication 585
Transactional session

activating 572
creating 569

access mode 570
callback object 571
isolation level 571
ParameterList settings 571

EndOfAssociationCallback 571
managing 569, 574

TransactionalSession2 interface 599
TransactionalSession interface

initializing replication 591, 595
obtaining a replica instance 588

Transaction resource
associating with SessionManager 565
transactions

replication, read operations 584
TRANSIENT policy 304
trim() operation 782
try_pull() 632, 638
try_pull_structured_event() 632
TxSessionAssociation interface 565
type() 412
Type code

getting from any type 414
getting from DynAny 417

TypeCode interface 465
TypeCode pseudo object type 132
Type codes 385–397

compacting 391
comparing 390
constants 396
getting TCKind of 392
operations 389
TCKind enumerators 386
type-specific operations 392
user-defined 396

typed consumer
connecting to proxy supplier 653

typed consumer admin
obtaining default 652

typedef 133
TypedefDef 465
Type definition

in IDL 133
typed event channel

connecting supplier 646
creating 643
disconnecting consumer 654
finding by id 643
finding by name 643
listing all by names 643
obtaining 642

typed event channel factory
Orbix operations 643

typed proxy consumer
connecting supplier 647
creating 647
interfaces 647

typed proxy supplier
connecting consumer 653
creating 652

typed push model 622
845

INDEX
typed supplier admin
obtaining default 646

U
Union

in IDL definition 128
UnionDef 464
UNIQUE_ID policy 308
unregister_factory() operation 796
update_member_load() 529
USE_ACTIVE_OBJECT_MAP_ONLY policy 302
USE_DEFAULT_SERVANT policy 303
USER_ID policy 307
USE_SERVANT_MANAGER policy 303

V
validate_connections() 186
value() 451
ValueBoxDef 464
ValueDef 464
_var object reference type 194, 205–208

assignment operator 206
class members 205
constructors 205
conversion operator 206
default constructor 205
destructor 206
explicit conversion operator 206
in() 206
indirection operator 206
inout() 206
narrowing 206
out() 206
widening 206

Version pragma 485

W
WellKnownAddressingPolicy 298
Wide character

constant in IDL 135
Widening

_ptr 202
assignment 202

_var 206
Wide string

constant in IDL 135
Wizard

for code generation 32
 846
work_pending() 284
WorkQueuePolicy 319
write operation

replication 586
WStringDef 465

Z
ziop_compression demonstration 788
ZIOP plug-in

See compression plug-in

INDEX
847

INDEX
 848

	List of Figures
	List of Tables
	Preface
	Introduction to Orbix
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Servers and the Portable Object Adapter
	Orbix Plug-In Design
	Development Tools
	Orbix Application Deployment
	CORBA Features and Services

	Getting Started with Orbix
	Creating a Configuration Domain
	Setting the Orbix Environment
	Hello World Example
	Development Using the Client/Server Wizard
	Development from the Command Line

	First Application
	Development Using Code Generation
	Development Without Using Code Generation
	Locating CORBA Objects
	Development Steps
	Define IDL interfaces
	Generate starting point code
	Compile the IDL definitions
	Develop the server program
	Develop the client program
	Build the application
	Run the application

	Enhancing Server Functionality
	Create a Termination Handler Object
	Initialize the ORB
	Create a POA for transient objects
	Create servant objects
	Activate CORBA objects
	Export object references
	Activate the POA manager
	Shut down the ORB

	Complete Source Code for server.cxx

	Defining Interfaces
	Modules and Name Scoping
	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces
	Local Interfaces

	Valuetypes
	Abstract Interfaces
	IDL Data Types
	Built-in Types
	Extended Built-in Types
	Complex Data Types
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	Developing Applications with Genies
	Starting Development Projects
	Genie Syntax
	Specifying Application Components
	Selecting Interfaces
	Including Files
	Implementing Servants
	Implementing the Server Mainline
	Implementing a Client
	Generating a Makefile
	Controlling Code Completeness
	General Options
	Compiling the Application

	Generating Signatures of Individual Operations
	Configuration Settings

	ORB Initialization and Shutdown
	Initializing the ORB Runtime
	Shutting Down the ORB
	Shutting Down a Client
	Shutting down a server

	Using Policies
	Creating Policy and PolicyList Objects
	Setting Orb and Thread Policies
	Setting Server-Side Policies
	Setting Client Policies
	Setting Policies at Different Scopes
	Managing Object Reference Policies

	Getting Policies

	Developing a Client
	Mapping IDL Interfaces to Proxies
	Using Object References
	Counting References
	Nil References
	Object Reference Operations
	Using _ptr References
	Using _var References
	String Conversions

	Initializing and Shutting Down the ORB
	Invoking Operations and Attributes
	Passing Parameters in Client Invocations
	Simple Parameters
	Fixed-Length Complex Parameters
	Fixed-Length Array Parameters
	String Parameters
	_out Types
	Variable-Length Complex Parameters
	Variable-Length Array Parameters
	Object Reference Parameters
	Parameter-Passing Rules: Summary

	Client Policies
	RebindPolicy
	SyncScopePolicy
	Timeout Policies

	Implementing Callback Objects

	Developing a Server
	POAs, Skeletons, and Servants
	Mapping Interfaces to Skeleton Classes
	Creating a Servant Class
	Implementing Operations
	Activating CORBA Objects
	Handling Output Parameters
	Simple Parameters
	Fixed-Length Complex Parameters
	Fixed-Length Array Parameters
	String Parameters
	Variable-Length Complex Parameters
	Variable-Length Array Parameters
	Object Reference Parameters

	Counting Servant References
	Delegating Servant Implementations
	Implementation Inheritance
	Interface Inheritance
	Multiple Inheritance
	Explicit Event Handling
	Termination Handler
	Compiling and Linking

	Managing Server Objects
	Mapping Objects to Servants
	Creating a POA
	Setting POA Policies
	Root POA Policies

	Using POA Policies
	Enabling the Active Object Map
	Processing Object Requests
	Setting Object Lifespan
	Assigning Object IDs
	Activating Objects with Dedicated Servants
	Activating Objects
	Setting Threading Support

	Explicit Object Activation
	Implicit Object Activation
	Calling _this() Inside an Operation
	Calling _this() Outside an Operation

	Managing Request Flow
	Work Queues
	ManualWorkQueue
	AutomaticWorkQueue
	Using a WorkQueue

	Controlling POA Proxification

	Managing Servants
	Using Servant Managers
	Servant Activators
	Servant Locators

	Using a Default Servant
	Setting a Default Servant

	Creating Inactive Objects

	Asynchronous Method Invocations
	Implied IDL
	Calling Back to Reply Handlers
	Interface-to-Reply Handler Mapping
	Implementing a Client with Reply Handlers

	Exceptions
	Exception Code Mapping
	User-Defined Exceptions
	Handling Exceptions
	Handling User Exceptions
	Handling System Exceptions
	Evaluating System Exceptions

	Throwing Exceptions
	Exception Safety
	Throwing System Exceptions

	Using Type Codes
	Type Code Components
	Type Code Operations
	General Type Code Operations

	Type Code Constants

	Using the Any Data Type
	Inserting Typed Values Into Any
	Extracting Typed Values From Any
	Inserting and Extracting Booleans, Octets, Chars and WChars
	Inserting and Extracting Array Data
	Inserting and Extracting String Data
	Inserting and Extracting Alias Types
	Querying a CORBA::Any’s Type Code
	Using DynAny Objects
	Creating a DynAny
	create_dyn_any()
	create_dyn_any_from_type_code()

	Inserting and Extracting DynAny Values
	Insertion Operations
	Extraction Operations
	Iterating Over DynAny Components
	Accessing Constructed DynAny Values

	Generating Interfaces at Runtime
	Using the DII
	Constructing a Request Object
	_request()
	_create_request()
	Invoking a Request
	Retrieving Request Results
	Invoking Deferred Synchronous Requests

	Using the DSI
	DSI Applications
	Programming a Server to Use DSI

	Using the Interface Repository
	Interface Repository Data
	Abstract Base Interfaces
	Repository Object Types

	Containment in the Interface Repository
	Contained Interface
	Container Interface

	Repository Object Descriptions
	Retrieving Repository Information
	Sample Usage
	Repository IDs and Formats
	Controlling Repository IDs with Pragma Directives

	Naming Service
	Naming Service Design
	Defining Names
	Representing Names as Strings
	Initializing a Name
	Converting a Name to a StringName

	Obtaining the Initial Naming Context
	Building a Naming Graph
	Binding Naming Contexts
	Binding Object References
	Rebinding

	Using Names to Access Objects
	Exceptions Returned to Clients

	Listing Naming Context Bindings
	Using a Binding Iterator

	Maintaining the Naming Service
	Federating Naming Graphs
	Sample Code
	Object Groups and Load Balancing
	Using Object Groups in Orbix

	Load Balancing Example
	Creating an Object Group and Adding Objects
	Accessing Objects from a Client

	Persistent State Service
	Introduction to the Persistent State Service
	Defining Persistent Data
	Datastore Model
	Abstract Types and Implementations
	Defining Storage Objects
	Defining Storage Homes
	Implementing Storage Objects
	Implementing Storage Homes

	Accessing Storage Objects
	Creating Transactional Sessions
	Using the SessionManager
	Managing Transactional Sessions
	Getting a Storage Object Incarnation
	Querying Data
	Associating CORBA and Storage Objects
	Thread Safety

	Using Replication
	Delegating to the Master
	Custom Delegation Interface
	Configuring the Replica Group
	Initializing the Replica Group
	Operations that Support Replication

	PSDL Language Mappings
	abstract storagehome
	abstract storagetype
	Ref_var Classes
	State Members
	Operation Parameters
	storagetype
	storagehome
	Factory Native Types

	Event Service
	Overview
	Event Communication Models
	Developing an Application Using Untyped Events
	Obtaining an Event Channel
	Implementing a Supplier
	Implementing a Consumer

	Developing an Application Using Typed Events
	Creating the Interface
	Obtaining a Typed Event Channel
	Implementing the Supplier
	Implementing the Consumer

	Portable Interceptors
	Interceptor Components
	Interceptor Types
	Service Contexts
	PICurrent
	Tagged Components
	Codec
	Policy Factory
	ORB Initializer

	Writing IOR Interceptors
	Using RequestInfo Objects
	Writing Client Interceptors
	Interception Points
	Interception Point Flow
	ClientRequestInfo
	Client Interceptor Tasks

	Writing Server Interceptors
	Interception Points
	Interception Point Flow
	ServerRequestInfo
	Server Interceptor Tasks

	Registering Portable Interceptors
	Implementing an ORB Initializer
	Registering an ORBInitializer

	Setting Up Orbix to Use Portable Interceptors

	Bidirectional GIOP
	Introduction to Bidirectional GIOP
	Bidirectional GIOP Policies
	Configuration Prerequisites
	Basic BiDir Scenario
	The Stock Feed Demonstration
	Setting the Export Policy
	Setting the Offer Policy
	Setting the Accept Policy

	Advanced BiDir Scenario
	Interoperability with Orbix Generation 3

	Locating Objects with corbaloc
	corbaloc URL Format
	Indirect Persistence Case
	Overview of the Indirect Persistence Case
	Registering a Named Key at the Command Line
	Registering a Named Key by Programming
	Using the corbaloc URL in a Client

	Direct Persistence Case
	Overview of the Direct Persistence Case
	Registering a Plain Text Key
	Using the corbaloc URL in a Client

	Named Keys and Plain Text Keys Used by Orbix Services

	Configuring and Logging
	The Configuration Interface
	Configuring
	Logging

	Orbix Compression Plug-in
	Introduction to the ZIOP Plug-In
	Configuration Prerequisites
	Compression Policies
	Programming Compression Policies
	Implementing Custom Compression
	The IT_Buffer Module
	Implementing a Compressor
	Implementing a Compressor Factory
	Registering a Compressor Factory

	Orbix IDL Compiler Options
	Command Line Switches
	Plug-in Switch Modifiers
	IDL Configuration File

	IONA Foundation Classes Library
	Installed IFC Directories
	Selecting an IFC Library

	Orbix C++ Libraries
	IONA Policies
	Client Side Policies
	POA Policies
	Security Policies
	Firewall Proxy Policies

	Index

