
ORBIX
®

PROGRESS
®

Migrating from Orbix 3.3 to
Orbix 6.3

Version 6.3.5, July 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies, Data-
Direct XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture,
EdgeXtend, Empowerment Center, Fathom, Fuse Media tion Router, Fuse Message Broker,
Fuse Services Framework, IntelliStream, IONA, Making Software Work Together, Mind-
reef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress,
Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empow-
erment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology-Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, CloudEdge,
DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, Object Store Inspector, ObjectStore Performance Expert, Open-
Access, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress CloudEdge,
Progress Control Tower, Progress ESP Event Manager, Progress ESP Event Modeler,
Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presenta-
tion, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataOb-
jects, SmartDataView, SmartDialog, SmartFolder, Smart Frame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process
Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic
Database Service, Sonic Workbench, Sonic XML Server, The Brains Behind BAM, Web-
Client, and Who Makes Progress are trademarks or service marks of Progress Software Cor-
poration and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a
registered trademark of Oracle and/or its affiliates. Any other marks con tained herein may
be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software Founda-
tion (http://www.apache.org). Such Apache Technology is subject to the following terms
and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001 The
Apache Software Foundation. All rights reserved. Redistribution and use in source and

binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redistributions in binary form must reproduce the above copy right notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. 3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation (http://
www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "The Jakarta Project", "Struts", and
"Apache Software Foundation" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact apache@apache.org. 5. Products
derived from this software may not be called "Apache", nor may "Apache" appear in their name, without
prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DIS CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBU TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Apache" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software with out prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", "Apache
BCEL", nor may "Apache" appear in their name, without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
iii

Migrating from Orbix 3.3 to Orbix 6.3
LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Founda tion. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistri bution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Jakarta -Regexp", and "Apache Software Foundation" and "Apache
BCEL" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived from this soft-
ware may not be called "Apache", nor may "Apache" appear in their name, without prior written permission
of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBU-
TORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation, please see <http:/
/www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
 iv

the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"log4j" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written per mission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD ING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions: The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the fol lowing disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution. 3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "Ant" and "Apache Soft-
ware Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior writ ten permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contri butions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache Soft-
ware Foundation, please see <http://www.apache.org/>.
v

Migrating from Orbix 3.3 to Orbix 6.3
Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Xalan" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contri butions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 vi

APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Founda tion. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation. THIS SOFT-
WARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFT-
WARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
vii

Migrating from Orbix 3.3 to Orbix 6.3
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Tomcat" and "Apache Software Foundation" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All
rights reserved. This software including the files in this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such technol-
ogy is subject to the following terms and conditions: The Apache Software License, Version 1.1 Copyright
(c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the follow ing disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the follow-
 viii

ing acknowledgment: "This product includes software developed by the Apache Software Foundation (http:/
/www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software Founda-
tion" must not be used to endorse or promote prod ucts derived from this software without prior written per-
mission. For written permission, please contact apache@apache.org. 5. Products derived from this software
may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of
the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIA-
BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This software consists of voluntary contributions made by many individuals on behalf of the Apache Soft-
ware Foundation and was originally based on software copyright (c) 1999, Lotus Development Corpora-
tion., http://www.lotus.com. For more information on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun Microsys-
tems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following terms and
conditions: This software is copyrighted by the Regents of the University of California, Sun Microsystems,
Inc., Scriptics Corporation, and other parties. The following terms apply to all files associated with the soft-
ware unless explicitly disclaimed in individual files. The authors hereby grant permission to use, copy, mod-
ify, distribute, and license this software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No
written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, pro-
vided that the new terms are clearly indicated on the first page of each file where they apply. IN NO EVENT
SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE
AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHORS
AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS"
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAIN-
TENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE:
If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regula-
tions (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of
Defense, the software shall be classified as "Commercial Computer Software" and the Government shall
have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the
ix

Migrating from Orbix 3.3 to Orbix 6.3
foregoing, the authors grant the U.S. Government and others acting in its behalf permission to use and dis-
tribute the software in accordance with the terms specified in this license.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the fol-
lowing terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
The origin of this software must not be misrepresented; you must not claim that you wrote the original soft-
ware. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or pro-
mote products derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Julian Seward, Cambridge, UK.jseward@acm.org bzip2/libbzip2 version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose com-
pression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark Adler.
This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software. Permission is granted to anyone to use this
software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject
to the following restrictions: 1. The origin of this software must not be mis represented; you must not claim
that you wrote the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked
as such, and must not be misrepresented as being the original software. 3. This notice may not be removed
or altered from any source distribution. Jean-loup Gailly jloup@gzip.org Mark Adler
madler@alumni.caltech.edu */

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this soft-
ware must display the following acknowledgement: This product includes software devel oped by John
 x

Wilson. The name of John Wilson may not be used to endorse or promote products derived from this soft-
ware without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbeta9 from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1. Redistribu-
tions of source code must retain the above copyright notice, this list of conditions, and the following dis-
claimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, this list of
conditions, and the dis claimer that follows these conditions in the documentation and/or other materials
provided with the distribu tion. 3. The name "JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation pro-
vided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the following:
"This product includes software developed by the JDOM Project (http://www.jdom.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the JDOM Project and was originally created by Jason Hunter
<jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>. For more information on
the JDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project Copy-
right (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to the
following terms and conditions: The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license
texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to
xi

Migrating from Orbix 3.3 to Orbix 6.3
OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008 The
OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted pro vided that the following conditions are met: 1. Redistributions of source
code must retain the above copy right notice, this list of conditions and the following disclaimer. 2. Redistri-
butions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising
materials mentioning features or use of this software must display the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact openssl-core@openssl.org. 5. Products derived from this software may not be called
"OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL
Project. 6. Redistributions of any form whatsoever must retain the following acknowledgment: "This prod-
uct includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAM AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERV ICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
product includes cryp tographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com). - Original SSLeay License - Copyright (C)
1995-1998 Eric Young (eay@crypt soft.com) All rights reserved. This package is an SSL implementation
written by Eric Young (eay@crypt soft.com). The implementation was written so as to conform with Net-
scapes SSL. This library is free for commercial and non-commer cial use as long as the following conditions
are aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is
covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right
remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package
is used in a product, Eric Young should be given attribution as the author of the parts of the library used.
This can be in the form of a textual message at program startup or in documentation (online or textual) pro-
vided with the package. Redistri bution and use in source and binary forms, with or with out modification,
are permitted provided that the follow ing conditions are met: 1. Redistributions of source code must retain
the copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form
must reproduce the above copyright notice, this list of con ditions and the following dis claimer in the docu-
mentation and/or other materials provided with the distribution. 3. All advertising materials mention ing
features or use of this software must display the following acknowledge ment: "This product includes
crypto graphic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left
out if the rou tines from the library being used are not crypto graphic related :-). 4. If you include any Win-
dows specific code (or a deriv ative thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS
SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 xii

MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPE CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for
any publically available version or deriva tive of this code cannot be changed. i.e. this code cannot simply
be copied and put under another distribution licence [including the GNU Public Licence.]

Progress Orbix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:
PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is distrib-
uted under the same terms as the software itself. The basic library functions are written in C and are free-
standing. Also included in the distribution is a set of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2008 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
xiii

Migrating from Orbix 3.3 to Orbix 6.3
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE COP-
YRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on all media and documentation and the software program in which this product is incorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone else except as
part of a product or program developed by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. This license is effective until termi nated by Sun for failure to comply with this license. Upon ter-
mination, you shall destroy or return all code and documentation for the Interface Definition Language CFE.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF
ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEAL-
ING, USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED
WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR ANY OF ITS
SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC TION, MODIFICATION OR
ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIA-
BILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY
PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO
EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST
REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSE QUENTIAL DAMAGES,
EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Use, duplication,
or disclosure by the government is subject to restrictions as set forth in subpara graph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun
Microsystems and the Sun logo are trademarks or registered trademarks of Sun Microsys tems, Inc. Sun-
Soft, Inc. 2550 Garcia Avenue, Mountain View, California 94043 NOTE: SunOS, Sun Soft, Sun, Solaris,
Sun Microsystems or the Sun logo are trademarks or registered trademarks of Sun Micro systems, Inc.

Progress Orbix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
 xiv

list.c) covered by a similar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including with out limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions: The above copyright notice and this permission notice shall be included in all cop-
ies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Daniel Veillard
shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software with-
out prior written authorization from him.
=== trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER. ==== triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg. Permission to
use, copy, modify, and dis tribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice appear in all cop-
ies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND CON-
TRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without fee is hereby granted, provided that the above cop-
yright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS''
AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER.
===== list.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission
to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, pro-
vided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSI-
BILITY IN ANY CONCEIVABLE MANNER. ===
triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and distrib-
ute this soft ware for any purpose with or without fee is hereby granted, provided that the above copyright
notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND
xv

Migrating from Orbix 3.3 to Orbix 6.3
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIV-
ABLE MANNER.
==== triostr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE IS PRO VIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orbix v6.3.5 incorporates ICU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documenta tion files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft ware is fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in
this notice, the name of a copyright holder shall not be used in advertising or other wise to promote the sale,
use or other dealings in this Software without prior written authorization of the copyright holder. All trade-
marks and registered trademarks mentioned herein are the property of their respective owners.

Updated: 13-Jul-2011
 xvi

Contents

List of Tables xxi

Preface xxiii

Part I Overview of Migration

Chapter 1 Introduction 3
Advantages of Orbix 6.3 4
Migration Resources 6
Migration Options 7

Migrating to Orbix 6.3 8
Mixed Deployment 9

Part II Migrating to Orbix 6.3

Chapter 2 IDL Migration 13
The opaque Type 14
The Principal Type 15

Chapter 3 Client Migration 17
Replacing the _bind() Function 18
Callback Objects 22
IDL-to-C++ Mapping 23
System Exception Semantics 24
Dynamic Invocation Interface 25

Chapter 4 Server Migration 27
Function Signatures 28
Object IDs versus Markers 29
xvii

CONTENTS
CORBA Objects versus Servant Objects 30
BOA to POA Migration 31

Creating an Object Adapter 32
Defining an Implementation Class 33
Creating and Activating a CORBA Object 35

Chapter 5 Migrating Proprietary Orbix 3 Features 37
Orbix 3 Locator 38
Filters 41

Request Logging 42
Piggybacking Data on a Request 43
Multi-Threaded Request Processing 44
Accessing the Client's TCP/IP Details 45
Security Using an Authentication Filter 46

Loaders 47
Smart Proxies 49
Transformers 51
I/O Callbacks 52

Connection Management 53
Session Management 55

Chapter 6 CORBA Services 57
Interface Repository 58
Naming Service 59
Notification Service 60

CORBA Specification Updates 61
Quality of Service Properties 64
Configuration/Administration Changes 66
Deprecated Features 67

SSL/TLS Toolkit 68
Changes to the Programming Interfaces 69
Configuration and Administration 72
Migrating Certificate and Private Key Files 75

Chapter 7 Administration 79
Orbix Daemons 80
POA Names 81
Command-Line Administration Tools 82
 xviii

CONTENTS
Activation Modes 85

Part III Interoperability

Chapter 8 Configuring for Interoperability 89
Interoperability Overview 90
Launch and Invoke Rights 92
GIOP Versions 94

Chapter 9 IDL Issues 97
Using the #pragma Prefix 98
Use of #pragma ID in IDL 101
Fixed Data Type and Interoperability 102
Use of wchar and wstring 104
C++ Keywords as Operation Names 105

Chapter 10 Exceptions 107
Orbix 3.3 C++ Edition—System Exceptions 108

New Semantics and Old Semantics 109
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions 111
The TRANSIENT and COMM_FAILURE Exceptions 112
Orbix 3.3 C++ Edition and Orbix 6.3 113

Orbix 3.3 Java Edition—System Exceptions 115
New Semantics and Old Semantics 116
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions 118
The TRANSIENT and COMM_FAILURE Exceptions 119
Orbix 3.3 Java Edition and Orbix 6.3 120

FILTER_SUPPRESS Exception 121
Dynamic Invocation Interface and User Exceptions 122
Dynamic Invocation Interface and LOCATION_FORWARD 124

Chapter 11 Services 125
The Orbix 6.3 Interoperable Naming Service 126
Interface Repository Interoperability 132
SSL/TLS Toolkit Interoperability 133
High Availability and Orbix 3.3 Clients 134
xix

CONTENTS
Chapter 12 Connection Management 135
Orbix 6.3 Active Connection Management 136
Callbacks and Bidirectional GIOP 137
Setting the Listen Queue Size in Orbix 3.3 C++ Edition 138
Multiple LOCATION_FORWARD 140

Chapter 13 Codeset Negotiation 141
Introduction to Codeset Negotiation 142
Configuring Codeset Negotiation 143
Default Codesets 144
Configuring Legacy Behavior 147

Index 149
 xx

List of Tables

Table 1: POA Policies for Callback Objects 22

Table 2: Migrated System Exceptions 24

Table 3: Standard Base Classes for the Inheritance Approach 33

Table 4: Replacing the Orbix 3 Locator by the Naming Service 39

Table 5: Replacing the Orbix 3 Locator by the Initialization Service 39

Table 6: Orbix 6.3 Alternatives to Filter Features 41

Table 7: Comparison of Loader with Servant Activator Class 47

Table 8: Orbix 6.3 Alternatives to Smart Proxy Features 49

Table 9: Orbix 6.3 QoS Properties 64

Table 10: Orbix 6.3 Administration Properties 65

Table 11: Mapping OrbixSSL 3.x Types to Orbix 6.3 SSL/TLS 70

Table 12: Mapping OrbixSSL 3.x Configuration Variables to Orbix 6.3 73

Table 13: Converting Certificate Files 75

Table 14: Converting Private Key Files 76

Table 15: Comparison of Orbix 3 and Orbix 6.3 General Command-Line Tools 82

Table 16: Comparison of Orbix 3 and Orbix 6.3 Naming Service Command-Line Tools 83

Table 17: CORBA-Specified Minimum GIOP Versions 94

Table 18: Orbix-Specific Minimum GIOP Versions 95

Table 19: Default GIOP Version Used by Orbix Clients 95

Table 20: Support for the wchar and wstring Types by Product 104

Table 21: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server 109

Table 22: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client 110

Table 23: Transformation of Exceptions at the Client Side 110

Table 24: System Exception Handling Compatibility between Orbix 3.0.1-82/Orbix 3.3 and Orbix 6.3114

Table 25: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server 116

Table 26: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client 117
xxi

LIST OF TABLES
Table 27: System Exception Handling Compatibility between OrbixWeb 3.2-15/Orbix 3.3 Java Edition and
Orbix 6.3 120

Table 28: Number of LOCATION_FORWARD Replies that Can Be Handled by Orbix Products 140

Table 29: CORBA Codeset Configuration Variables (Orbix 6.3) 143

Table 30: CORBA C++ Codesets (Non-MVS Platforms) 144

Table 31: CORBA C++ Codesets (Non-MVS Platforms) 145

Table 32: CORBA Java Codesets (ISO-8859-1/Cp-1292/US-ASCII locale) 145

Table 33: CORBA Java Codesets (Shift_JIS locale) 145

Table 34: CORBA Java Codesets (EUC-JP locale) 146

Table 35: CORBA Java Codesets (other locale) 146
 xxii

Preface
This document explains how to migrate applications from the Orbix and
OrbixWeb products, which conform to CORBA 2.1, to Orbix 6.3, which
conforms to CORBA 2.4.

Audience This document is aimed at C++ or Java programmers who are already familiar
with IONA’s Orbix or OrbixWeb products and who now want to migrate all or
part of a system to use Orbix 6.3.

Parts of this document are relevant also to administrators familiar with Orbix
and OrbixWeb administration. See “Administration” on page 79 and
“Configuring for Interoperability” on page 89.

Organization of this guide This guide is divided as follows:

Part I “Overview of Migration”

This part briefly discusses the advantages of migrating and the options for your
migration strategy.

Part II “Migrating to Orbix 6.3”

This part explains how to migrate client and server source (in C++ or Java) to
Orbix 6.3. For each of the features that have been modified or removed from
Orbix 6.3, relative to the features supported by Orbix 3 and OrbixWeb 3, this
part discusses the replacement features offered by Orbix 6.3.

Part III “Interoperability”

This part discusses the issues that affect a mixed deployment of interoperating
Orbix 3, OrbixWeb 3 and Orbix 6.3 applications. With appropriate
customization of the ORB configuration, you can obtain an optimum level of
compatibility between the various applications in your system.
xxiii

PREFACE
Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about the Orbix
and other products. You can access the knowledge base at the following
location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.
 xxiv

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xxv

PREFACE
 xxvi

Part I
Overview of Migration

In this part This part contains the following chapter:

Introduction page 3

CHAPTER 1

Introduction
The newest generation of IONA tools provide significant advances
over the previous generation of products.

In this chapter This chapter discusses the following topics:

Advantages of Orbix 6.3 page 4

Migration Resources page 6

Migration Options page 7
3

CHAPTER 1 | Introduction
Advantages of Orbix 6.3

Overview The recommended path for customers upgrading to a new version of Orbix is to
move to Orbix 6.3. The extra features offered by Orbix can be divided into the
following categories:

• CORBA 2.4-compliant features.

• Unique features.

CORBA 2.4-compliant features Because Orbix 6.3 contains a CORBA 2.4-compliant ORB, it offers the
following advantages over Orbix 2.x (all minor versions of Orbix 2) and
Orbix 3.x (all minor versions of Orbix 3):

• Portable interceptor support.

• Codeset negotiation support.

• Value type support.

• Asynchronous method invocation (AMI) support.

• Persistent State Service (PSS) support.

• Dynamic any support.

Unique features Orbix 6.3 also offers some unique benefits over other commercial ORB
implementations, including:

• ORB extensibility using IONA's patented Adaptive Runtime Technology

(ART).

Orbix 6.3 has a modular structure built on a micro-kernel architecture.

Required ORB modules, ORB plug-ins, are specified in a configuration

file and loaded at runtime, as the application starts up. The advantage of

this approach is that new ORB functionality can be dynamically loaded

into an Orbix application without rebuilding the application.

• Improved performance.

The performance of Orbix 6.3 has been optimized, resulting in

performance that is faster than Orbix 3.x and OrbixWeb 3.x in every

respect.

• Advanced deployment and configuration.
 4

Advantages of Orbix 6.3
Orbix 6.3 supports a flexible model for the deployment of distributed

applications. Applications can be grouped into configuration domains and

organized either as file-based configuration domains or as configuration

repository-based configuration domains.

• Rapid application development using the Orbix code generation toolkit.

The code generation toolkit is an extension to the IDL compiler that

generates a working application prototype—based on your application

IDL—in a matter of seconds.
5

CHAPTER 1 | Introduction
Migration Resources

Overview of resources IONA is committed to assisting you with your migration effort, to ensure that it
proceeds as easily and rapidly as possible. The following resources are currently
available:

• This migration and interoperability guide.

This technical document provides detailed guidance on converting source

code to Orbix 6.3. The document aims to provide comprehensive coverage

of migration issues, and to demonstrate how features supported in earlier

Orbix versions can be mapped to Application Server Platfrom features.

• Professional Services migration packages.

IONA's Professional Services organization has put together a set of

consultancy packages that facilitate rapid migration to Orbix 6.3. Details of

Professional Services assessment and migration packages are available at:

http://www.iona.com/info/services/migration.htm.
 6

http://www.iona.com/info/services/migration.htm

Migration Options
Migration Options

Overview The basic alternatives for migrating a distributed application to Orbix are to
migrate the whole application at once, or to perform the migration gradually,
replacing parts of the application piece by piece. For the latter option (gradual
migration), you will end up with a mixed deployment consisting of Orbix and
older Orbix products.

In this section This section contains the following subsections:

Migrating to Orbix 6.3 page 8

Mixed Deployment page 9
7

CHAPTER 1 | Introduction
Migrating to Orbix 6.3

Overview The CORBA 2.4 specification, on which the Orbix 6.3 ORB is based,
standardizes almost every aspect of CORBA programming. Migrating your
source code to Application Server Platfrom, therefore, represents a valuable
investment because your code will be based on a stable, highly standardized
programming interface.

Client side On the client side, the main issue for migration is that the Orbix _bind()
function is not supported in Orbix 6.3. The CORBA Naming Service is now the
recommended mechanism for establishing contact with CORBA servers.

Server side On the server side, the basic object adapter (BOA) must be replaced by the
portable object adapter (POA). This is one of the major differences between the
CORBA 2.1 and the CORBA 2.4 specifications. The POA is much more tightly
specified than the old BOA; hence server code based on the POA is well
standardized.

Proprietary features Orbix 3.x and OrbixWeb 3.x support a range of proprietary features not covered
by the CORBA standard—for example, the Orbix locator, filters, loaders, smart
proxies, transformers and I/O callbacks. When migrating to Orbix 6.3, the
proprietary features must be replaced by standard CORBA 2.4 features. This
migration guide details how each of the proprietary features can be replaced by
equivalent Orbix 6.3 functionality.

Further details The details of migrating to Orbix 6.3 are discussed in Part II of this guide. See
“Migrating to Orbix 6.3” on page 11.
 8

Migration Options
Mixed Deployment

Overview Mixed Deployment is appropriate when a number of CORBA applications are in
deployment simultaneously. Some applications might be upgraded to use Orbix
6.3 whilst others continue to use Orbix 3.x and OrbixWeb 3.x. This kind of
mixed environment requires on-the-wire compatibility between the generation 3
products and Orbix 6.3. Extensive testing has been done to ensure
interoperability with Orbix 6.3.

On-the-wire interoperability Both Orbix 3.3 and Orbix 6.3 have been modified to achieve an optimum level
of on-the-wire compatibility between the two products.

Further details Interoperability is discussed in Part III of this guide. See “Interoperability” on
page 87.
9

CHAPTER 1 | Introduction
 10

Part II
Migrating to Orbix 6.3

In this part This part contains the following chapters:

IDL Migration page 13

Client Migration page 17

Server Migration page 27

Migrating Proprietary Orbix 3 Features page 37

CORBA Services page 57

Administration page 79

CHAPTER 2

IDL Migration
This chapter discusses the Orbix 3.x IDL features that are not
available in Orbix 6.3.

In this chapter This chapter discusses the following topics:

The opaque Type page 14

The Principal Type page 15
13

CHAPTER 2 | IDL Migration
The opaque Type

Migrating to Orbix 6.3 The object-by-value (OBV) specification, introduced in CORBA 2.3 and
supported in Orbix 6.3, replaces opaques.
 14

The Principal Type
The Principal Type

Principal IDL type The CORBA specification deprecates the Principal IDL type; therefore the
Principal IDL type is not supported by Orbix 6.3.

Interoperability Orbix 6.3 has some limited on-the-wire support for the Principal type, to
support interoperability with Orbix 3.x applications.

See “Launch and Invoke Rights” on page 92.
15

CHAPTER 2 | IDL Migration
 16

CHAPTER 3

Client Migration
Migration of client code from Orbix 3 to Orbix 6.3 is generally
straightforward, because relatively few changes have been made
to the client-side API.

In this chapter The following topics are discussed in this chapter:

Replacing the _bind() Function page 18

Callback Objects page 22

IDL-to-C++ Mapping page 23

System Exception Semantics page 24

Dynamic Invocation Interface page 25
17

CHAPTER 3 | Client Migration
Replacing the _bind() Function

Overview The _bind() function is not supported in Orbix 6.3. All calls to _bind() must be
replaced by one of the following:

• CORBA Naming Service.

• CORBA Trader Service.

• Object-to-string conversion.

• corbaloc URL.

• ORB::resolve_initial_references().

CORBA Naming Service The naming service is the recommended replacement for _bind() in most
applications. Migration to the naming service is straightforward on the client
side. The triplet of markerName, serverName, and hostName, used by the
_bind() function to locate an object, is replaced by a simple name in the naming
service.

When using the naming service, an object's name is an abstraction of the object
location and the actual location details are stored in the naming service. Object
names are resolved using these steps:

1. An initial reference to the naming service is obtained by calling

resolve_initial_references() with NameService as its argument.

2. The client uses the naming service reference to resolve the names of

CORBA objects, receiving object references in return.

Orbix 6.3 supports the CORBA Interoperable Naming Service, which is
backward-compatible with the old CORBA Naming Service and adds support
for stringified names.

CORBA Trader Service The Orbix 6.3 trader service provides advanced capabilities for object location
and discovery. Unlike the Orbix Naming Service where an object is located by
name, an object in the Trading Service does not have a name. Rather, a server
advertises an object in the Trading Service based on the kind of service provided
by the object. A client locates objects of interest by asking the Trading Service
to find all objects that provide a particular service. The client can further restrict
the search to select only those objects with particular characteristics.
 18

Replacing the _bind() Function
Object-to-string conversion CORBA offers two CORBA-compliant conversion functions:

CORBA::ORB::object_to_string()
CORBA::ORB::string_to_object()

These functions allow you to convert an object reference to and from the
stringified interoperable object reference (stringified IOR) format. These
functions enable a CORBA object to be located as follows:

1. A server generates a stringified IOR by calling

CORBA::ORB::object_to_string().

2. The server passes the stringified IOR to the client (for example, by writing

the string to a file).

3. The client reads the stringified IOR from the file and converts it back to an

object reference, using CORBA::ORB::string_to_object().

Because they are not scalable, these functions are generally not useful in a
large-scale CORBA system. Use them only to build initial prototypes or
proof-of-concept applications.

corbaloc URL A corbaloc URL is a form of human-readable stringified object reference. If you
are migrating your clients to Orbix 6.3 but leaving your servers as Orbix 3.3
applications, the corbaloc URL offers a convenient replacement for _bind().

To access an object in an Orbix 3.3 server from an Orbix 6.3 client using a
corbaloc URL, perform the following steps:

1. Obtain the object key, ObjectKey, for the object in question, as follows:

i. Get the Orbix 3.3 server to print out the stringified IOR using, for

example, the CORBA::ORB::object_to_string() operation. The

result is a string of the form IOR:00...

ii. Use the Orbix 6.3 iordump utility to parse the stringified IOR. Copy

the string that represents the object key field, ObjectKey.

2. Construct a corbaloc URL of the following form:

corbaloc:iiop:1.0@DaemonHost:DaemonPort/ObjectKey%00

Where DaemonHost and DaemonPort are the Orbix daemon’s host and

port respectively. A null character, %00, is appended to the end of the

ObjectKey string because Orbix 3.3 applications expect object key strings

to be terminated by a null character.
19

CHAPTER 3 | Client Migration
3. In the source code of the Orbix 6.3 client, use the

CORBA::ORB::string_to_object() operation to convert the corbaloc

URL to an object reference.

The general form of a corbaloc URL for this case is, as follows:

corbaloc:iiop:GIOPVersion@Host:Port/Orbix3ObjectKey%00

Where the components of the corbaloc URL are:

• GIOPVersion—The maximum GIOP version acceptable to the server. Can

be either 1.0 or 1.1.

• Host and Port—The daemon’s (or server’s) host and port. The Host can

either be a DNS host name or an IP address in dotted decimal format.

The Orbix3ObjectKey has the following general form:

:\Host:SvrName:Marker::IFRSvrName:InterfaceName%00

Where the components of the Orbix 3 object key are:

• Host—The server host. The Host can either be a DNS host name or an IP

address in dotted decimal format.

• SvrName—The server name of the Orbix 3.3 server.

• Marker—The CORBA object’s marker.

• IFRSvrName—Can be either IR or IFR.

• InterfaceName—The object’s IDL interface name.

ORB::resolve_initial_references() The CORBA::ORB::resolve_initial_references() operation provides a
mechanism for obtaining references to basic CORBA objects (for example, the
naming service, the interface repository, and so on).

WARNING:Constructing an Orbix 3.3 object key directly based on the
preceding format does not always work because some versions of Orbix
impose extra restrictions on the object key format. Extracting the object key
from the server-generated IOR is a more reliable approach.

If you encounter any difficulties with using corbaloc URLs, please contact
support@iona.com.
 20

mailto://support@iona.com

Replacing the _bind() Function
Orbix 6.3 allows the resolve_initial_references() mechanism to be
extended. For example, to access the BankApplication service using
resolve_initial_references(), simply add the following variable to the
Orbix 6.3 configuration:

Use this mechanism sparingly. The OMG defines the intended behavior of
resolve_initial_references() and the arguments that can be passed to it. A
name that you choose now might later be reserved by the OMG. It is generally
better to use the naming service to obtain initial object references for
application-level objects.

Orbix 6.3 Configuration File
initial_references:BankApplication:reference =

"IOR:010347923849..."
21

CHAPTER 3 | Client Migration
Callback Objects

POA policies for callback objects Callback objects must live in a POA, like any other CORBA object; hence, there
are certain similarities between a server and a client with callbacks. The most
sensible POA policies for a POA that manages callback objects are shown in
Table 1.

These policies allow for easy management of callback objects and an easy
upgrade path. Callback objects offer one of the few cases where the root POA
has reasonable policies, provided the client is multi-threaded (as it normally is
for callbacks).

Table 1: POA Policies for Callback Objects

Policy Type Policy Value

Lifespan TRANSIENTa

ID Assignment SYSTEM_ID

Servant Retention RETAIN

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY

a. By choosing a TRANSIENT lifespan policy, you remove the need to register the
client with an Orbix 6.3 locator daemon.
 22

IDL-to-C++ Mapping
IDL-to-C++ Mapping

Overview The definition of the IDL-to-C++ mapping has changed little going from Orbix
3.x to Orbix 6.3 (apart from some extensions to support valuetypes). Two
notable changes are:

• The CORBA::Any Type.

• The CORBA::Environment Parameter.

The CORBA::Any Type In Orbix 6.3, it is not necessary to use the type-unsafe interface to Any. Recent
revisions to the CORBA specification have filled the gaps in the IDL-to-C++
mapping that made these functions necessary. That is, the following functions
are deprecated in Orbix 6.3:

The CORBA::Environment
Parameter

The signatures of IDL calls no longer contain the CORBA::Environment
parameter. This parameter was needed for languages that did not support native
exception handling. However, Orbix applications also use it for operation
timeouts.

// C++
// CORBA::Any Constructor.
Any(
 CORBA::TypeCode_ptr tc,
 void* value,
 CORBA::Boolean release = 0
);

// CORBA::Any::replace() function.
void replace(
 CORBA::TypeCode_ptr,
 void* value,
 CORBA::Boolean release = 0
);
23

CHAPTER 3 | Client Migration
System Exception Semantics

Overview Orbix and OrbixWeb clients that catch specific system exceptions might need to
change the exceptions they handle when they are migrated to Orbix.

System exceptions Orbix 6.3 follows the latest CORBA standards for exception semantics. Table 2
shows the two system exceptions most likely to affect existing code.

Minor codes System exception minor codes are completely different between OrbixWeb 3.2
and Orbix 6.3 for Java. Applications that examine minor codes need to be
modified to use Orbix 6.3 for Java minor codes.

Table 2: Migrated System Exceptions

When This Happens Orbix 3 and
OrbixWeb Raise

Orbix 6.3 Raises

Server object does not
exist

INV_OBJREF OBJECT_NOT_EXIST

Cannot connect to
server

COMM_FAILURE TRANSIENT
 24

Dynamic Invocation Interface
Dynamic Invocation Interface

Proprietary dynamic invocation
interface

Orbix-proprietary dynamic invocation interface (DII) functions are not available
in Orbix 6.3. Code that uses CORBA::Request::operator<<() operators and
overloads must be changed to use CORBA-compliant DII functions.

Note: Orbix 6.3-generated stub code consists of sets of statically generated
CORBA-compliant DII calls.
25

CHAPTER 3 | Client Migration
 26

CHAPTER 4

Server Migration
Server code typically requires many more changes than client code.
The main issue for server code migration is the changeover from
the basic object adapter (BOA) to the portable object adapter
(POA).

In this chapter This chapter discusses the following topics:

Function Signatures page 28

Object IDs versus Markers page 29

CORBA Objects versus Servant Objects page 30

BOA to POA Migration page 31
27

CHAPTER 4 | Server Migration
Function Signatures

Changes to the signature In Orbix 6.3, two significant changes have been made to C++ function
signatures:

• The CORBA::Environment parameter has been dropped.

• New types are used for out parameters. An out parameter of T type is now

passed as a T_out type.

Consequently, when migrating C++ implementation classes you must replace
the function signatures that represent IDL operations and attributes.
 28

Object IDs versus Markers
Object IDs versus Markers

C++ conversion functions Orbix 6.3 uses a sequence of octets to compose an object's ID, while Orbix 3
uses string markers. CORBA provides the following helper methods to convert
between the two types; hence migration from marker dependencies to Object
IDs is straightforward.

Java conversion functions In Java, an object ID is represented as a byte array, byte[]. Hence the following
native Java methods can be used to convert between string and object ID
formats:

// C++
// Converting string marker -----> ObjectId
PortableServer::ObjectId *
PortableServer::string_to_ObjectId(const char *);

// Converting ObjectId -----> string marker
char *
PortableServer::ObjectId_to_string(
 const PortableServer::ObjectId&
);

// Java
// Converting string marker -----> ObjectId
byte[]
java.lang.String.getBytes();

// Converting ObjectId -----> string marker
// String constructor method:
java.lang.String.String(byte[]);
29

CHAPTER 4 | Server Migration
CORBA Objects versus Servant Objects

Orbix 3 In Orbix 3 there is no need to distinguish between a CORBA object and a
servant object. When you create an instance of an implementation class in Orbix
3, the instance already has a unique identity (represented by a marker) and
therefore represents a unique CORBA object.

Orbix 6.3 In Orbix 6.3, a distinction is made between the identity of a CORBA object (its
object ID) and its implementation (a servant). When you create an instance of an
implementation class in Orbix 6.3, the instance is a servant object, which has no
identity. The identity of the CORBA object (represented by an object ID) must
be grafted on to the servant at a later stage, in one of the following ways:

• The servant becomes associated with a unique identity. This makes it a

CORBA object, in a similar sense to an object in a BOA-based

implementation.

• The servant becomes associated with multiple identities. This case has no

parallel in a BOA-based implementation.

The mapping between object IDs and servant objects is controlled by the POA
and governed by POA policies.
 30

BOA to POA Migration
BOA to POA Migration

Overview It is relatively easy to migrate a BOA-based server by putting all objects in a
simple POA that uses an active object map; however, this approach is unable to
exploit most of the functionality that a POA-based server offers. It is worth
while redesigning and rewriting servers so they benefit fully from the POA.

In this section This section contains the following subsections:

Creating an Object Adapter page 32

Defining an Implementation Class page 33

Creating and Activating a CORBA Object page 35
31

CHAPTER 4 | Server Migration
Creating an Object Adapter

Creating a BOA in Orbix 3.x In Orbix 3, a single BOA instance is used. All CORBA objects in a server are
implicitly associated with this single BOA instance.

Creating a POA in Orbix 6.3 In Orbix 6.3, an application can create multiple POA instances (using the
PortableServer::POA::create_POA() operation in C++ and the
org.omg.PortableServer.create_POA() operation in Java). Each POA
instance can be individually configured, using POA policies, to manage CORBA
objects in different ways. When migrating to Orbix 6.3, you should give careful
consideration to the choice of POA policies, to obtain the maximum benefit from
the POA's flexibility.
 32

BOA to POA Migration
Defining an Implementation Class

Overview There are two approaches to defining an implementation class in CORBA:

• The inheritance approach.

• The tie approach.

The inheritance approach The most common approach to implementing an IDL interface in Orbix is to use
the inheritance approach. Consider the following IDL fragment:

The BankSimple::Account IDL interface can be implemented by defining a
class that inherits from a standard base class. The name of this standard base
class for Orbix 3 and Orbix 6.3 is shown in Table 3.

//IDL
module BankSimple {
 Account {
 //...
 };
};

Table 3: Standard Base Classes for the Inheritance Approach

Application Type Implementation Base Class Name

Orbix 3, C++ (BOA) BankSimple::AccountBOAImpl

Orbix 6.3, C++ (POA) POA_BankSimple::Account

Orbix 3, Java (BOA) BankSimple._AccountImplBase

Orbix 6.3, Java (POA) BankSimple.AccountPOA
33

CHAPTER 4 | Server Migration
Consider a legacy Orbix 3 application that implements BankSimple::Account
in C++ as the BankSimple_Account_i class. The BankSimple_Account_i class
might be declared as follows:

When this implementation class is migrated to Orbix 6.3, the
BankSimple::AccountBOAImpl base class is replaced by the
POA_BankSimple::Account base class, as follows:

The tie approach The tie approach is an alternative mechanism for implementing IDL interfaces.
It allows you to associate an implementation class with an IDL interface using a
delegation approach rather than an inheritance approach.

In Application Server Paltform (C++) the tie classes are generated using C++
templates. When migrating from Orbix 3 to Orbix 6.3, all DEF_TIE and TIE
preprocessor macros must be replaced by the equivalent template syntax.

In Orbix 6.3 (Java) the tie approach is essentially the same as in Orbix 3.
However, the names of the relevant Java classes and interfaces are different. For
example, given an IDL interface, Foo, an Orbix 6.3 servant class implements the
FooOperations Java interface and the associated Java tie class is called
FooPOATie.

// C++
// Orbix 3 Version
// Inheritance Approach
class BankSimple_Account_i : BankSimple::AccountBOAImpl {
public:
 // Declare IDL operation and attribute functions...
};

// C++
// Orbix 6.3 Version
// Inheritance Approach
class BankSimple_Account_i : POA_BankSimple::Account {
public:
 // Declare IDL operation and attribute functions...
};
 34

BOA to POA Migration
Creating and Activating a CORBA Object

Overview To make a CORBA object available to clients, you should:

1. Create an implementation object. An implementation object is an instance

of the class that implements the operations and attributes of an IDL

interface. In Orbix 3, an implementation object is the same thing as a

CORBA object. In Orbix 6.3, an implementation object is a servant object,

which is not the same thing as a CORBA object.

2. Activate the servant object. Activating a servant object attaches an identity

to the object (a marker in Orbix 3 or an object ID in Orbix 6.3) and

associates the object with a particular object adapter.

Orbix 3 In Orbix 3, creating and activating an object are rolled into a single step. For
example, in C++ you might instantiate a BankSimple::Account CORBA object
using the following code:

This step creates the CORBA object and attaches the ObjectID identity to it
(initializing the object's marker). The constructor automatically activates the
CORBA object.

// C++
// Orbix 3
// Create and activate a new 'Account' object.
BankSimple_Account_i * acc1 =
 new BankSimple_Account_i("ObjectID");
35

CHAPTER 4 | Server Migration
Orbix 6.3 In Orbix 6.3, creating and activating an object are performed as separate steps.
For example, in C++ you might instantiate a BankSimple::Account CORBA
object using the following code:

Activation is performed as an explicit step in Orbix 6.3. The call to
PortableServer::POA::activate_object_with_id() attaches the ObjectID
identity to the object and associates the persistent_poa object adapter with the
object.

// C++
// Orbix 6.3

// Step 1: Create a new 'Account' object.
BankSimple_Account_i * acc1 = new BankSimple_Account_i();

// Step 2: Activate the new 'Account' object.
PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectId("ObjectID");
// persistent_poa created previously
persistent_poa->activate_object_with_id(oid, acc1);
 36

CHAPTER 5

Migrating
Proprietary Orbix 3
Features
Proprietary Orbix 3 feature are replaced by a range of
standards-compliant Orbix 6.3 features.

In this chapter This chapter discusses the following topics:

Orbix 3 Locator page 38

Filters page 41

Loaders page 47

Smart Proxies page 49

Transformers page 51

I/O Callbacks page 52
37

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Orbix 3 Locator

Overview The Orbix 3 locator is an Orbix-specific feature that is used in combination with
_bind() to locate server processes. Because Orbix 6.3 does not support
_bind(), it cannot use the Orbix 3 style locator.

If your legacy code uses the Orbix 3 locator, you must replace it with one of the
following Orbix 6.3 features:

• High availability.

• The CORBA Naming Service.

• The CORBA Initialization Service.

High availability The Orbix 6.3’s high availability feature provides fault tolerance—that is, a
mechanism that avoids having a single point of failure in a distributed
application. With the enterprise edition of Orbix 6.3, you can protect your
system from single points of failure through clustered servers.

A clustered server comprises multiple instances, or replicas, of the same server;
together, these act as a single logical server. Clients invoke requests on the
clustered server and Orbix routes the requests to one of the replicas. The actual
routing to any replica is transparent to the client.

The CORBA Naming Service If your legacy code uses the load-balancing feature of the Orbix 3 locator, you
can replace this by the ObjectGroup feature of the Orbix 6.3’s naming service.
Object groups are an Orbix-specific extension to the naming service that allow
you to register a number of servers under a single name.

Note: Orbix 6.3 has a feature called a locator, which is not related in any way
to the Orbix 3 locator. The Orbix 6.3 locator is a daemon process, itlocator,
that locates server processes for clients.
 38

Orbix 3 Locator
Table 4 shows how the Orbix 3 locator maps to the equivalent naming service
functionality.

The naming service is the preferred way to locate objects in Orbix 6.3. It is a
standard service and is highly scalable.

The CORBA Initialization Service The initialization service uses the
CORBA::ORB::resolve_initial_references() operation to retrieve an object
reference from an Orbix 6.3 configuration file, DomainName.cfg.

Table 5 shows how the Orbix 3 locator maps to the equivalent initialization
service functionality.

Table 4: Replacing the Orbix 3 Locator by the Naming Service

Orbix 3-Locator Orbix 6.3-Naming Service

Entry in the locator file, mapping the
server name, SrvName, to a single
server host, HostName:

SrvName:HostName:

Object binding in the naming
service, mapping a name to a single
object reference.

Entry in the locator file, mapping the
server name, SrvName, to multiple
host names:

SrvName:Host1,Host2,Host3:

Object group in the naming service,
mapping a name to multiple object
references.

Overriding functionality of
CORBA::LocatorClass.

Custom implementation of the
IT_LoadBalancing::ObjectGroup
interface.

Table 5: Replacing the Orbix 3 Locator by the Initialization Service

Orbix 3-Locator Orbix 6.3-Initialization Service

Entry in the locator file, mapping the
server name, SrvName, to a single
server host, HostName:

SrvName:HostName:

Entry in the DomainName.cfg file,
mapping an ObjectId to a single
object reference:

initial_references:ObjectId:
reference = "IOR:00...";
39

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
The initialization service can only be used as a replacement for the Orbix 3
locator when a simple object lookup is needed.

Entry in the locator file, mapping the
server name, SrvName, to multiple
host names:

SrvName:Host1,Host2,Host3:

No Equivalent

Override functionality of
CORBA::LocatorClass.

No Equivalent

Table 5: Replacing the Orbix 3 Locator by the Initialization Service

Orbix 3-Locator Orbix 6.3-Initialization Service
 40

Filters
Filters

Overview Filters are a proprietary Orbix 3 mechanism that allow you to intercept
invocation requests on the server and the client side.

Orbix 6.3 does not support the filter mechanism. Instead, a variety of Orbix 6.3
features replace Orbix 3 filter functionality.

Equivalents Table 6 summarizes the typical uses of Orbix 3 filters alongside the equivalent
features supported by Orbix 6.3.

In this section The following topics are discussed in this section:

Table 6: Orbix 6.3 Alternatives to Filter Features

Orbix 3 Filter Feature Orbix 6.3 Equivalent

Request logging Use portable interceptors.

Piggybacking data on a Request Use portable interceptors.

Multi-threaded request processing Use a multi-threaded POA and
(optionally) a proprietary WorkQueue
POA policy.

Accessing the client's TCP/IP details Not supported.

Security using an authentication
filter

Full security support is provided in
the Orbix 6.3 enterprise edition.

Request Logging page 42

Piggybacking Data on a Request page 43

Multi-Threaded Request Processing page 44

Accessing the Client's TCP/IP Details page 45

Security Using an Authentication Filter page 46
41

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Request Logging

Using portable interceptors In Orbix 6.3, request logging is supported by the new portable interceptor
feature. Interceptors allow you to access a CORBA request at any stage of the
marshaling process, offering greater flexibility than Orbix filters. You can use
them to add and examine service contexts. You can also use them to examine the
request arguments.
 42

Filters
Piggybacking Data on a Request

Piggybacking in Orbix 3 In Orbix 3, filters support a piggybacking feature that enables you to add and
remove extra arguments to a request message.

Piggybacking in Orbix 6.3 In Orbix 6.3, piggybacking is replaced by the CORBA-compliant approach
using service contexts. A service context is an optional block of data that can be
appended to a request message, as specified in the IIOP 1.1 standard. The
content of a service context can be arbitrary and multiple service contexts can be
added to a request.
43

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Multi-Threaded Request Processing

Orbix 3 In Orbix 3, concurrent request processing is supported using an Orbix thread
filter. The mechanism is flexible because it gives the developer control over the
assignment of requests to threads.

Orbix 6.3 In Orbix 6.3, request processing conforms to the CORBA 2.4 specification. Each
POA can have its own threading policy:

• SINGLE_THREAD_MODEL ensures that all servant objects in that POA have

their functions called in a serial manner. In Orbix 6.3, servant code is

called only by the main thread, therefore no locking or

concurrency-protection mechanisms need to be used.

• ORB_CTRL_MODEL leaves the ORB free to dispatch CORBA invocations to

servants in any order and from any thread it chooses.

Orbix 6.3 request processing
extensions

Because the CORBA 2.4 specification does not specify exactly what happens
when the ORB_CTRL_MODEL policy is chosen, Orbix 6.3 makes some proprietary
extensions to the threading model.

The multi-threaded processing of requests is controlled using the Orbix 6.3 work
queue feature. Two kinds of work queue are provided by Orbix 6.3:

• Automatic Work Queue: A work queue that feeds a thread pool. When a

POA uses an automatic work queue, request events are automatically

dequeued and processed by threads. The size of the thread pool is

configurable.

• Manual Work Queue: A work queue that requires the developer to

explicitly dequeue and process events.

Manual work queues give developers greater flexibility when it comes to

multi-threaded request processing. For example, prioritized processing of

requests could be implemented by assigning high-priority CORBA objects

to one POA instance and low-priority CORBA objects to a second POA

instance. Given that both POAs are associated with manual work queues,

the developer can write threading code that preferentially processes

requests from the high-priority POA.
 44

Filters
Accessing the Client's TCP/IP Details

Recommendations for Orbix 6.3 Some Orbix 3 applications use Orbix-specific extensions to access socket-level
information, such as the caller's IP address, in order to implement proprietary
security features. These features are not available in Orbix 6.3, because
providing access to low-level sockets would considerably restrict the flexibility
of CORBA invocation dispatch.

To provide security for your applications, it is recommended that you use an
implementation of the security service provided with the Orbix 6.3 Enterprise
Edition instead.
45

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Security Using an Authentication Filter

Recommendations for Orbix 6.3 Some Orbix 3 applications use authentication filters to implement security
features. In Orbix 6.3, it is recommended that you use the security service that is
made available with the Orbix 6.3 Enterprise Edition.
 46

Loaders
Loaders

Orbix 3 loader The Orbix 3 loader provides support for the automatic saving and restoration of
persistent objects. The loader provides a mechanism that loads CORBA objects
automatically into memory, triggered in response to incoming invocations.

Servant manager The Orbix 3 loader is replaced by equivalent features of the Portable Object
Adapter (POA) in Orbix 6.3. The POA can be combined with a servant manager
to provide functionality equivalent to the Orbix 3 loader. There are two different
kinds of servant manager:

• Servant activator: Triggered only when the target CORBA object cannot

be found in memory.

• Servant locator: Triggered for every invocation.

Servant activator Taking the PortableServer::ServantActivator class as an example, the
member functions of CORBA::LoaderClass correspond approximately as shown
in Table 7.

Table 7: Comparison of Loader with Servant Activator Class (Sheet 1 of 2)

CORBA::LoaderClass Member
Function

ServantActivator Member
Function

save() etherealize()

load() incarnate()

record() No equivalent function.

An Orbix 6.3 object ID (equivalent
to an Orbix 3 marker) can be
specified at the time a CORBA
object is created. This gives
sufficient control over object IDs.
47

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Servant locator A servant locator can also be used to replace the Orbix 3 loader. In general, the
servant locator is more flexible than the servant activator and offers greater
scope for implementing sophisticated loader algorithms.

rename() No equivalent function.

An Orbix 6.3 object ID (equivalent
to an Orbix 3 marker) cannot be
changed after a CORBA object has
been created.

Table 7: Comparison of Loader with Servant Activator Class (Sheet 2 of 2)

CORBA::LoaderClass Member
Function

ServantActivator Member
Function
 48

Smart Proxies
Smart Proxies

Orbix 3 The Orbix 3 smart proxies feature is a proprietary mechanism for overriding the
default implementation of the proxy class. This allows applications to intercept
outbound client invocations and handle them within the local client process
address space, rather than using the default proxy behavior of making a remote
invocation on the target object. Smart proxies can be used for such purposes as
client-side caching, logging, load-balancing, or fault-tolerance.

Orbix 6.3 Orbix 6.3 does not support smart proxies. The primary difficulty is that, in the
general case, it is not possible for the client-side ORB to determine if two object
references denote the same server object. The CORBA standard restricts the
client-side ORB from interpreting the object key or making any assumptions
about it. Orbix 3 was able to avoid this limitation by making assumptions about
the structure of the object key. This is neither CORBA-compliant nor
interoperable with other ORBs.

At best, the ORB can only determine that two object references are equivalent if
they have exactly the same server location (host and port in IIOP) and object
key. Unfortunately, this can be an unreliable indicator if object references pass
through bridges, concentrators, or firewalls that change the server location or
object key.

In this case, it is possible for two object references denoting the same CORBA
object to appear different to the ORB, and thus have two different smart proxy
instances. Since smart proxies are commonly used for caching, having two smart
proxy instances for a single CORBA object is unacceptable.

Replacing smart proxies Table 8 shows how smart proxy tasks can be mapped to equivalent features in
Orbix 6.3.

Table 8: Orbix 6.3 Alternatives to Smart Proxy Features

Orbix 3 Smart
Proxy Task

Orbix 6.3 Equivalent Feature

Fault tolerance Orbix 6.3 high availability, based on server clusters.
49

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Fault tolerance Fault tolerance is provided by the high availability feature of the Orbix 6.3’s
locator. See “High availability” on page 38.

Logging For logging that requires access to request parameters, portable interceptors can
be used in Orbix 6.3. Portable interceptors are similar to Orbix 3 filters, but they
are more flexible in that they allow you to read request parameters.

Caching A smart proxy that implements client-side caching of data cannot be mimicked
by a standard Orbix 6.3 feature. In this case, you have no option but to
implement smart proxy-like functionality in Orbix 6.3, and this can be done as
follows:

1. Create a local implementation of the object to be proxified, by writing a

class that derives from the client-side stub class.

2. Every time the client receives an object reference of the appropriate type,

wrap the object reference with a corresponding smart proxy object. Before

wrapping the object reference, however, you must determine the target

object's identity by making an invocation on the remote target object,

asking it for a system-wide unique identifying name. This is the key step

that avoids the object identity problem described in “Orbix 6.3” on

page 49.

Based on the system-wide unique identifying name, the application can then
either create a new smart proxy, or reuse the target object's existing smart proxy.
The client application should consistently use the smart proxy in place of the
regular proxy throughout the application.

Logging Orbix 6.3 built-in logging facility or portable
interceptors

Caching Implement smart proxy-like functionality by hand.

Table 8: Orbix 6.3 Alternatives to Smart Proxy Features

Orbix 3 Smart
Proxy Task

Orbix 6.3 Equivalent Feature
 50

Transformers
Transformers

Orbix 3 Transformers are a deprecated feature of Orbix 3 that allow you to apply
customized encryption to CORBA request messages. This could be used to
implement a primitive substitute for a security service.

Orbix 6.3 In Orbix 6.3, transformers are not supported. It is recommended, instead, that
you use the security service that is made available with the enterprise edition of
Orbix 6.3.
51

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
I/O Callbacks

Overview Orbix 6.3 does not allow access to TCP/IP sockets or transport-level
information. This is incompatible with the Orbix 6.3 architecture, which features
a pluggable transport layer. Using Orbix 6.3, you can replace TCP/IP with
another transport plug-in such as IP multicast (which is connectionless), simple
object access protocol (SOAP), hypertext transfer protocol (HTTP),
asynchronous transfer mode (ATM), and so on. For example, the shared memory
transport (SHMIOP) does not use file descriptors or sockets.

Purposes for using I/O callbacks Orbix 3 I/O Callback functionality is generally used for two main purposes:

• Connection Management—the number of TCP/IP connections that can be

made to a single process is typically subject to an operating system limit.

Some form of connection management is required if this limit is likely to

be reached in a deployed system.

• Session Management—I/O Callback functionality can be used to

implement an elementary session-tracking mechanism. The opening of a

connection from a client defines the beginning of a session and the closing

of the connection defines the end of the session.

Because Orbix 6.3 has no equivalent to the Orbix 3 I/O Callback functionality,
you must migrate any code that uses it.

In this section This section contains the following subsections:

Connection Management page 53

Session Management page 55
 52

I/O Callbacks
Connection Management

Active connection management Orbix 6.3 provides an active connection manager (ACM) that allows the ORB to
reclaim connections automatically, and thereby increases the number of clients
that can use a server beyond the limit of available file descriptors.

ACM configuration variables IIOP connection management is controlled by four configuration variables:

• plugins:iiop:incoming_connections:hard_limit sets the maximum

number of incoming (server-side) connections allowed to IIOP. IIOP

refuses new connections above this limit.

• plugins:iiop:incoming_connections:soft_limit specifies the

number of connections at which IIOP begins closing incoming

(server-side) connections..

• plugins:iiop:outgoing_connections:hard_limit sets the maximum

number of outgoing (client-side) connections allowed to IIOP. IIOP

refuses new outgoing connections above this limit.

• plugins:iiop:outgoing_connections:soft_limit specifies the

number of connections at which IIOP begins closing outgoing (client-side)

connections.

Closing client connections The ORB first tries to close idle connections in least-recently-used order. If there
are no idle connections, the ORB closes busy connections in
least-recently-opened order.

Active connection management effectively remedies file descriptor limits that
has constrained past Orbix applications. If a client is idle for a while and the
server ORB reaches its connection limit, it sends a GIOP CloseConnection
message to the client and closes the connection. Later, the same client can
transparently reestablish its connection, to send a request without throwing a
CORBA exception.

Note: In Orbix 3, Orbix tended to throw a COMM_FAILURE on the first attempt
at reconnection; server code that anticipates this exception should be
reevaluated against current functionality.
53

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Default file descriptor limits Orbix 6.3 is configured to use the largest upper file descriptor limit on each
supported operating system. On UNIX, it is typically possible to rebuild the
kernel to obtain a larger number. However, active connection management
should make this unnecessary.
 54

I/O Callbacks
Session Management

Overview Because Orbix 6.3 features a pluggable transport layer, it is not appropriate to
relate the duration of a client session to the opening and closing of TCP/IP
connections from clients. This type of session management, which is typically
implemented using I/O callbacks in Orbix 3, has to be migrated to an alternative
model.

Session management in Orbix 6.3 Support for session management in Orbix 6.3 is provided by a lease plug-in. The
lease plug-in implements a scheme for automatically tracking client sessions,
based on the idea that a client obtains a lease from the server for the duration of
a client session.

Client migration Client applications can easily be modified to use session management. Just edit
the Orbix 6.3 configuration to make the client load the lease plug-in. No changes
to the client source code are required.

Server migration On the server side, the following changes are required to use session
management in Orbix 6.3:

• Edit the Orbix 6.3 configuration to make the server load the lease plug-in.

• Modify the server source code so that it uses the lease plug-in to track

client sessions.

Further details See the CORBA Session Management Guide for details of how to program and
configure the lease plug-in for session management.

Demonstration code for the lease plug-in is also provided with the Orbix 6.3
product.
55

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
 56

CHAPTER 6

CORBA Services
Orbix includes several CORBA services, such as the interface
repository, the naming service, the notification service, and the
security service. Because these service are based mainly on the
CORBA standard, there are not many changes between Orbix 3
and Orbix 6.3.

In this chapter The following topics are discussed in this chapter:

Interface Repository page 58

Naming Service page 59

Notification Service page 60

SSL/TLS Toolkit page 68
57

CHAPTER 6 | CORBA Services
Interface Repository

Migration Migrating source code that uses the Interface Repository (IFR) to Orbix 6.3 is
straightforward. Link the migrated application against the stub code derived
from the Orbix 6.3 version of the interface repository. No further changes should
be necessary.
 58

Naming Service
Naming Service

Backward compatibility The Orbix 6.3’s naming service is backward compatible with Orbix 3.x in two
respects:

• Source code backward compatibility: source code that is written to use the

standard naming service interfaces can be migrated to Orbix 6.3 without

modification.

• On-the-wire backward compatibility: Orbix 3.x applications can

interoperate with the Orbix 6.3 naming service. If you need to interoperate

Orbix 3.x applications, it is recommended that you recompile the naming

stub code from the Orbix 6.3 IDL files.

New interface Orbix 6.3 adds a new interface, CosNaming::NamingContextExt, which is
defined by the CORBA Interoperable Naming Service specification. This
interface adds support for using names in stringified format.

Load balancing The naming service load-balancing extensions provided in Orbix 3 are also
present in Orbix 6.3. The Orbix 6.3 load-balancing interfaces are only slightly
different from Orbix 3, requiring small modifications to your source code.
59

CHAPTER 6 | CORBA Services
Notification Service

Overview The Orbix 6.3 notification service has undergone significant modifications since
the OrbixNotification 3 generation of the notification service.

Many of the changes that impact application migration reflect changes in the
CORBA standard and require minimal changes to legacy OrbixNotification 3
application code.

In this section This section contains the following subsections:

CORBA Specification Updates page 61

Quality of Service Properties page 64

Configuration/Administration Changes page 66

Deprecated Features page 67
 60

Notification Service
CORBA Specification Updates

Overview The Orbix 6.3 notification service complies with both the CORBA 2.4
specification and the OMG’s Notification Service Specification, approved in
June of 2000. To achieve compliancy with these specifications several changes
were made to the notification services IDL and APIs.

These changes require that any applications that use generation 3 code need to
be recompiled and re-linked, at the very least. Other minor changes might also
need to be made to generation 3 code to accommodate the changes in the APIs.
Compiler warnings warn you of most changes that need to be made.

_bind() The Orbix 6.3 notification service clients do not use _bind() to contact the
notification service. Instead, clients should call
resolve_initial_references("NotificationService") to obtain an object
reference to the notification service. See “Replacing the _bind() Function” on
page 18 for more information.

Subscription and publication
notification

Orbix 6.3 provides notification service clients greater flexibility over how they
receive subscription and publication details from the notification channel. To
accomplish this, an input parameter has been added to
obtain_offered_types() and obtain_subscription_types().

The Orbix 6.3 operation signatures are:

// IDL
CosNotification::EventTypeSeq obtain_subscription_types(
 in ObtainInfoMode mode);
CosNotification::EventTypeSeq obtain_offered_types(
 in ObtainInfoMode mode);
61

CHAPTER 6 | CORBA Services
The new parameter is of type ObtainInfoMode which is an enum defined in
CosNotifyChannelAdmin as:

Any generation 3 clients that call obtain_offered_types() or
obtain_subscription_types() need to add the parameter.
ALL_NOW_UPDATES_OFF mimics generation 3 functionality. For more information
on the other values, see the Enterprise Messaging Guide.

Unstructured event clients Orbix 6.3 introduces unstructured event, any-style, client interfaces into the
CosNotifyComm module. This allows any-style clients to support the enhanced
subscription features and it standardizes notification service client development.
Any-style clients developed for OrbixNotification 3 use the interfaces from
CosEventComm.

In addition, the Orbix 6.3 any-style proxy interfaces, defined in
CosNotifyChannelAdmin, inherit their client interfaces directly from
CosNotifyComm. In OrbixNotification 3 any-style proxies inherit client
interfaces from CosNotifyComm:NotifyPublish and
CosEventComm::PushConsumer.

Not updating legacy code does not generate any compiler errors. However, at
runtime any-style clients using legacy code are not able to contact the
notification service.

TimeBase::TimeT Orbix 6.3 supports the new OMG standard definition of TimeBase::TimeT. In
OrbixNotification 3 TimeBase::TimeT is defined as a structure containing two
unsigned longs. In Orbix 6.3 it is defined as a CORBA::ULongLong.

// IDL
enum ObtainInfoMode
 {
 ALL_NOW_UPDATES_OFF,
 ALL_NOW_UPDATES_ON,
 NONE_NOW_UPDATES_OFF,
 NONE_NOW_UPDATES_ON
 };

Note: The connect() operation’s parameter is still an interface defined in
CosEventComm.
 62

Notification Service
Any generation 3 clients that use the timing features of the service need to be
updated to support the new definition of TimeBase::TimeT. If they are not, the
Orbix 6.3 notification service generates mashalling errors at runtime.
63

CHAPTER 6 | CORBA Services
Quality of Service Properties

Overview Orbix 6.3 notification service uses new several new Quality-of-Service (QoS)
properties and has reimplemented others.

PacingInterval PacingInterval is reimplimented as a TimeBase::TimeT in Orbix 6.3 and is
specified in units of 10-7 seconds. In Orbix 3 it is a TimeBase:UtcT and is
specified in milliseconds.

Orbix 6.3 QoS properties Table 9 lists the new Orbix 6.3 QoS properties. For more detailed information on
Orbix 6.3 QoS properties, see the Enterprise Messaging Guide.

Table 9: Orbix 6.3 QoS Properties (Sheet 1 of 2)

QoS Property Description

MaxEventsPerConsumer Specifies the maximum number of undelivered
events that a channel will queue for a consumer.
It is set with a long and is valid for supplier
proxies, consumer admins, and notification
channels.

MaxRetries Specifies the maximum number of times a proxy
push supplier calls push() on its consumer
before giving up, or the maximum number of
times a proxy pull consumer calls pull() or
try_pull() on its supplier before giving up. It is
set with a CORBA::Ulong and is valid for
consumer admins and notification channels.

RetryTimeout Specifies the amount of time that elapses between
attempts by a proxy push supplier to call push()
on its consumer. It is set with a
TimeBase::TimeT and defaults to 1 second.

MaxRetryTimeout Sets the ceiling for the calculated value of
RetryTimeout. It is set with a TimeBase::TimeT
and defaults to 60 seconds.
 64

Notification Service
Channel administration
properties

Orbix 6.3 has introduced two properties to control the administration of a
notification channel. These properties can only be set on a notification channel.
For more information, see the Enterprise Messaging Guide.

Table 10 describes the new properties.

RequestTimeout Specifies the amount of time a channel object has
to perform an operation on a client. It is set using
a TimeBase::TimeT.

PullInterval Specifies the amount of time that elapses between
attempts by a proxy pull consumer to call pull()
or try_pull() on its consumer. It is specifies
with a long and defaults to 1 second.

RetryMultiplier Specifies the number used to calculate the
amount of time between attempts by a proxy
push supplier to call push() on its consumer. It is
set with a CORBA::double and defaults to 1.0.

Table 9: Orbix 6.3 QoS Properties (Sheet 2 of 2)

QoS Property Description

Table 10: Orbix 6.3 Administration Properties

Property Description

MaxConsumers Specifies the maximum number of
consumers that can be connected to a
channel at a given time. It is set
using a long and defaults to 0
(unlimited).

MaxSuppliers Specifies the maximum number of
suppliers that can be connected to a
channel at a given time. It is set
using a long and defaults to 0
(unlimited).
65

CHAPTER 6 | CORBA Services
Configuration/Administration Changes

Centralized configuration Orbix 6.3 has a centralized configuration mechanism. This means that the
notification service is configured using the standard Orbix 6.3 configuration
tools and the information is stored in the common Orbix 6.3 database.

Starting the notification service The Orbix 6.3 notification service can be configured to start on system boot, on
demand, or from the command line.

To start the notification service from the command line use:

itnotify run [-backround]

The -background flag is optional and starts the notification service to run as a
background process.

Managing the notification service The Orbix 6.3 notification service can be managed in one of two ways.

• The Orbix 6.3 itadmin tool. For more information, see the Administrator’s

Guide.

• The Orbix 6.3 notification console, itnotifyconsole. For more

information on using the console, see the Enterprise Messaging Guide.

Configuration variables The Orbix 6.3 notification service uses a new set of configuration variables. See
the Administrator’s Guide for a detailed listing of the new configuration
variables.
 66

Notification Service
Deprecated Features

Overview Orbix 6.3 has deprecated some proprietary features from OrbixNotification 3.
Any notification clients that make use of these features need to be updated.

HealthCheck The OrbixNotification 3 HealthCheck feature allows notification channels, and
optionally notification clients, to monitor their connections. In Orbix 6.3 this
feature is no longer supported.

Code Modification

To find code using the HealthCheck feature search for the following strings:

• DO_HEALTHCHECK

• DO_GL_HEALTHCHECK

• initializeHealthCheck

• startHealthCheck

• stopHealthCheck

• HealthCheck.h

This code must be removed before the clients can be compiled using the Orbix
6.3 libraries.

Simulating HealthCheck in Orbix 6.3

HealthCheck-like functionality is implemented in Orbix 6.3, using the
MaxRetries QoS property. If a ProxyPushSupplier or a ProxyPullConsumer
fails to communicate with its associated client in MaxRetries attempts, the
notification channel forces a disconnect and destroys all of the resources used to
support the client.

String events Orbix 6.3 no longer supports string events. All generation 3 clients using string
events must be rewritten to use a valid event type.
67

CHAPTER 6 | CORBA Services
SSL/TLS Toolkit

Overview This section describes how to migrate from OrbixSSL or Orbix 3.3 security to
the Orbix 6.3 SSL/TLS security service. Orbix 6.3 SSL/TLS has a very similar
set of features to Orbix 3.3 security and it supports interoperability with legacy
Orbix applications (see “SSL/TLS Toolkit Interoperability” on page 133).

The programming interfaces and administration of security have, however,
changed significantly between Orbix 3.3 and Orbix 6.3. This section provides an
overview of these changes.

In this section This section contains the following subsections:

Changes to the Programming Interfaces page 69

Configuration and Administration page 72

Migrating Certificate and Private Key Files page 75
 68

SSL/TLS Toolkit
Changes to the Programming Interfaces

Support for security level 2 The APIs for Orbix 6.3 SSL/TLS are based on the CORBA security level 2
interfaces. The programming interface is, therefore, based on the following
standard IDL modules:

• Security

• SecurityLevel1

• SecurityLevel2

CORBA policy-based API In contrast to OrbixSSL 3.x, the Orbix 6.3 SSL/TLS product supports a CORBA
policy-based approach to setting security properties. This represents a significant
enhancement over OrbixSSL 3.x, because the policy-based approach lets you set
properties at a finer granularity than before.

For example, client policies can be set at the following levels:

• ORB

• Thread

• Object reference

Server policies can be set at the following levels:

• ORB

• POA

No support for certificate
revocation lists

Orbix 6.3 SSL/TLS has no support for certificate revocation lists (CRL).
Therefore, the following OrbixSSL 3.x interfaces have no Orbix 6.3 equivalent:

IT_CRL_List
IT_X509_CRL_Info
IT_X509_Revoked
IT_X509_RevokedList

Note: Orbix 6.3 SSL/TLS does not implement every interface in the
SecurityLevel1 and SecurityLevel2 modules. The CORBA security API is
a mechanism-neutral API that can be layered over a variety of security toolkits.
Some of the standard interfaces are more appropriately implemented by a
higher level security layer.
69

CHAPTER 6 | CORBA Services
If you require certificate revocation in Orbix 6.3, you can programmatically
implement any required revocation checks by registering a certificate validator
policy, IT_TLS_API::CertValidatorPolicy.

Mechanism-specific API Orbix 6.3 SSL/TLS provides a number of value-added APIs that deal with the
mechanism-specific aspects of the SSL/TLS toolkit. The extra IDL interfaces
provide the facility to parse X.509 certificates and set Orbix-specific security
policies.

The mechanism-specific API is defined by the following IDL modules:

• IT_Certificate

• IT_TLS

• IT_TLS_API

Migrating OrbixSSL 3.x classes
and data types

When migrating to Orbix 6.3, most of the old C++ and Java classes from
OrbixSSL 3.x are replaced by equivalent IDL interfaces. Table 11 shows which
OrbixSSL classes and data types to replace by the equivalent Orbix 6.3
SSL/TLS types.

Table 11: Mapping OrbixSSL 3.x Types to Orbix 6.3 SSL/TLS (Sheet 1 of 2)

OrbixSSL 3.x Type Orbix 6.3 SSL/TLS Equivalent

IT_AVA IT_Certificate::AVA

IT_AVAList IT_Certificate::AVAList

IT_CertError IT_Certificate::CertError

IT_CRL_List No equivalent

IT_Extension IT_Certificate::Extension

IT_ExtensionList IT_Certificate::ExtensionList

IT_OID IT_Certificate::ASN_OID

IT_OIDTag IT_Certificate::OIDTag

IT_SSL Equivalent functionality provided by the
Security, SecurityLevel1, SecurityLevel2,
and IT_TLS_API IDL modules.

IT_UTCTime IT_Certificate::UTCTime
 70

SSL/TLS Toolkit
IT_ValidateX509CertCB Use a combination of the
IT_TLS::CertValidator interface and the
IT_TLS_API::CertValidatorPolicy
interface.

IT_X509_CRL_Info No equivalent

IT_X509_Revoked No equivalent

IT_X509_RevokedList No equivalent

IT_X509Cert IT_Certificate::X509Cert

IT_X509CertChain IT_Certificate::X509CertChain

Table 11: Mapping OrbixSSL 3.x Types to Orbix 6.3 SSL/TLS (Sheet 2 of 2)

OrbixSSL 3.x Type Orbix 6.3 SSL/TLS Equivalent
71

CHAPTER 6 | CORBA Services
Configuration and Administration

Enabling security in Orbix 6.3 Security in Orbix 6.3 is enabled by configuring an application to load the
security plug-in, iiop_tls.This is a relatively simple procedure involving just a
few changes in the Orbix 6.3 configuration file; although advanced applications
might also need to use security APIs.

Because application security is controlled by editing the configuration file, you
must ensure that access to the configuration file is restricted.

External configuration
granularity

The external configuration granularity refers to the effective scope of security
configuration settings that are made in a configuration file. The external
configuration granularity is mapped as follows:

• In OrbixSSL 3.x, it is identified with a process.

• In Orbix 6.3 SSL/TLS, it is identified with a single ORB instance.

KDM support The key distribution management (KDM) is a framework that enables automatic
activation of secure servers. Both OrbixSSL 3.x and Orbix 6.3 SSL/TLS provide
a KDM and the functionality is similar in each.

There is one significant difference between the OrbixSSL 3.x KDM and the
Orbix 6.3 KDM. Protection against server imposters is implemented differently
in the two products:

• In OrbixSSL 3.x, a binary checksum is calculated from the contents of the

server executable file. The server is launched only if the calculated

checksum matches the cached value.

• In Orbix 6.3 SSL/TLS, the node daemon relies on the server executables

being stored in a secured directory to prevent tampering. A different sort of

checksum is calculated (based on the contents of the server activation

record) to ensure that the node daemon cannot be fooled into launching a

server from an insecure directory.

No CRL support Orbix 6.3 SSL/TLS does not support certificate revocation lists. Hence, there are
no equivalents for the corresponding OrbixSSL 3.x configuration variables. See
also “No support for certificate revocation lists” on page 69.
 72

SSL/TLS Toolkit
Migrating OrbixSSL 3.x
configuration

Most of the OrbixSSL 3.x configuration variables have direct equivalents in
Orbix 6.3, as shown in Table 12. In addition, many of the properties listed in
Table 12 can also be set programmatically in Orbix 6.3.

Table 12: Mapping OrbixSSL 3.x Configuration Variables to Orbix 6.3 (Sheet
1 of 2)

OrbixSSL 3.x Configuration Variable Orbix 6.3 SSL/TLS Equivalent

IT_CA_LIST_FILE policies:trusted_ca_list_policy

IT_AUTHENTICATE_CLIENTS policies:target_secure_invocation_policy

IT_SERVERS_MUST_AUTHENTICATE_CLIENTS. policies:target_secure_invocation_policy

IT_INVOCATION_POLICY policies:target_secure_invocation_policy
policies:client_secure_invocation_policy

IT_SECURE_REMOTE_INTERFACES
IT_SECURE_SERVERS
IT_INSECURE_REMOTE_INTERFACES
IT_INSECURE_SERVERS

These properties cannot currently be specified in the Orbix 6.3
configuration file.

You can, however, set the properties programmatically using
the following interfaces:

SecurityLevel2::EstablishTrustPolicy
SecurityLevel2::QOPPolicy

IT_CIPHERSUITES policies:mechanism_policy

IT_ALLOWED_CIPHERSUITES No equivalent in Orbix 6.3.

IT_CERTIFICATE_FILE
IT_CERTIFICATE_PATH

Equivalent functionality provided by:

principal_sponsor:auth_method_data

IT_BIDIRECTIONAL_IIOP_BY_DEFAULT

IT_CACHE_OPTIONS policies:session_caching_policy
plugins:atli_tls_tcp:session_cache_validity_period
plugins:atli_tls_tcp:session_cache_size

IT_DEFAULT_MAX_CHAIN_DEPTH policies:max_chain_length

IT_MAX_ALLOWED_CHAIN_DEPTH. No equivalent in Orbix 6.3.

IT_DAEMON_POLICY
IT_DAEMON_UNRESTRICTED_METHODS
IT_DAEMON_AUTHENTICATES_CLIENTS
IT_ORBIX_BIN_SERVER_POLICY

In Orbix 6.3, the IONA services are configured using standard
Orbix 6.3 configuration variables such as the secure invocation
policies.
73

CHAPTER 6 | CORBA Services
IT_DAEMON_UNRESTRICTED_METHODS No equivalent in Orbix 6.3.

There is currently no concept of service authorization in Orbix
6.3.

IT_FILTER_BAD_CONNECTS_BY_DEFAULT Not needed in Orbix 6.3.

IT_ENABLE_DEFAULT_CERT Not needed in Orbix 6.3.

There is no need for this option because Orbix 6.3 supports
security unaware applications.

IT_DISABLE_SSL Not needed in Orbix 6.3.

Configure your application not to load the security plug-in.

IT_KDM_CLIENT_COMMON_NAMES
IT_KDM_ENABLED
IT_KDM_PIPES_ENABLED
IT_KDM_REPOSITORY
IT_KDM_SERVER_PORT

Equivalent functionality is provided by the KDM in Orbix 6.3.

See the CORBA SSL/TLS Guide.

IT_CHECKSUMS_ENABLED
IT_CHECKSUM_REPOSITORY

No equivalent in Orbix 6.3.

There is no binary checksum functionality in Orbix 6.3. Orbix
6.3 SSL/TLS relies on storing server executables in secured
directories.

IT_CRL_ENABLED
IT_CRL_REPOSITORY
IT_CRL_UPDATE_INTERVAL

No equivalent in Orbix 6.3.

There is no CRL functionality in Orbix 6.3.

Table 12: Mapping OrbixSSL 3.x Configuration Variables to Orbix 6.3 (Sheet
2 of 2)

OrbixSSL 3.x Configuration Variable Orbix 6.3 SSL/TLS Equivalent
 74

SSL/TLS Toolkit
Migrating Certificate and Private Key Files

Overview In OrbixSSL 3.x, a variety of certificate and private key formats are used in
different parts of the product. Orbix 6.3 SSL/TLS is based on a unified
certificate file format, the industry standard PKCS#12 format, and the PEM
format for storing trusted CA certificates. This subsection describes how to
convert each of the legacy formats to PKCS#12.

Certificate file formats The following certificate file formats are used by OrbixSSL 3.x and Orbix 6.3
SSL/TLS:

• Privacy enhanced mail (PEM) format—A PEM file typically contains a

single certificate. OrbixSSL 3.x can use this format to hold peer

certificates. Orbix 6.3 SSL/TLS cannot use this format for peer certificates.

• PKCS#12 format—A PKCS#12 file contains a peer certificate chain,

concatenated with a private key at the end. Both OrbixSSL 3.x and Orbix

6.3 SSL/TLS can use this format for peer certificates.

Migrating certificate files You can migrate OrbixSSL 3.x certificate files to Orbix 6.3 SSL/TLS as shown
in Table 13.

Private key file formats The following private key file formats are used by OrbixSSL 3.x and Orbix 6.3
SSL/TLS:

• PKCS#1 format—An unencrypted private key format. Orbix 6.3 SSL/TLS

only supports this format programmatically.

• PKCS#8 format—An encrypted private key format. Orbix 6.3 SSL/TLS

only supports this format programmatically.

Table 13: Converting Certificate Files

Source OrbixSSL 3.x
File Format

Target Orbix 6.3 File
SSL/TLS Format

How to Convert

PEM format PKCS#12 format Use the openssl pkcs12 utility, specifying the complete peer
cert chain, private key and pass phrase.

PKCS#12 format PKCS#12 format No conversion needed.
75

CHAPTER 6 | CORBA Services
• OpenSSL proprietary private key format—A proprietary encrypted format

generated by the OpenSSL toolkit utilities.

• IONA proprietary KEYENC format (deprecated)—An encrypted private

key format generated by the OrbixSSL 3.x keyenc utility. This format was

formerly used by OrbixSSL 3.x Java applications and is now deprecated.

Migrating key files You can migrate OrbixSSL 3.x private key files to Orbix 6.3 SSL/TLS as shown
in Table 14.

Trusted CA certificate lists In both OrbixSSL 3.x and Orbix 6.3 SSL/TLS, a trusted CA certificate list file
consists of a concatenated list of PEM certificates.

Table 14: Converting Private Key Files

Source OrbixSSL 3.x
File Format

Target Orbix 6.3
SSL/TLS File

Format

How to Convert

PKCS#1 format PKCS#12 format Use the openssl pkcs12 utility, specifying the complete peer
cert chain, private key, and pass phrase.

OpenSSL proprietary
encrypted private key
format

PKCS#12 format Convert as follows:

1. Decrypt using the openssl rsa command.

2. Encrypt as PKCS#12 using the openssl pkcs12 utility,

specifying the complete peer cert chain, private key, and

pass phrase.

IONA proprietary
keyenc format

PKCS#12 format Convert as follows:

1. Decrypt using the keyenc -d command:

2. Encrypt as PKCS#12 using the openssl pkcs12 utility,

specifying the complete peer cert chain, private key, and

pass phrase.

Note: The Orbix 6.3 SSL/TLS Java Edition product currently does not accept
any extraneous text (comments and so on) in a trusted CA list file. The extra
text must therefore be removed if you are using Orbix 6.3 SSL/TLS Java
Edition.
 76

SSL/TLS Toolkit
Interoperability In a mixed system containing Orbix 3.3 Java Edition and Orbix 6.3 SSL/TLS,
the PKCS#12 format can be used for peer certificates because Orbix 3.3 Java
Edition also accepts the PKCS#12 format.
77

CHAPTER 6 | CORBA Services
 78

CHAPTER 7

Administration
The administration of Orbix 6.3 has changed significantly from
Orbix 3. This chapter provides a brief overview of the main changes
in Orbix administration.

In this chapter The following topics are discussed in this chapter:

Orbix Daemons page 80

POA Names page 81

Command-Line Administration Tools page 82

Activation Modes page 85
79

CHAPTER 7 | Administration
Orbix Daemons

Orbix 6.3 daemons To provide greater flexibility and scaling, Orbix 6.3 replaces the Orbix 3
daemon, orbixd, with two daemons:

• The locator daemon, itlocator, helps clients to find Orbix 6.3 servers.

• The node daemon, itnode_daemon, launches dormant Orbix 6.3 servers in

response to a client's request for service.
 80

POA Names
POA Names

Administering POA Names In Orbix 3, CORBA objects were associated with a named server. In Orbix 6.3,
CORBA objects are associated with named POAs. This means that Orbix 6.3
object references include an embedded POA name instead of a server name.

The Orbix 6.3 locator daemon locates the CORBA object using the object
reference’s embedded POA name. Hence, POA names play a major role in
configuring the Orbix 6.3 locator daemon.
81

CHAPTER 7 | Administration
Command-Line Administration Tools

Overview Orbix 6.3 unifies many of Orbix 3’s command-line tools under a single utility,
itadmin. Also, some of the Orbix 3 command line-tools have been deprecated.

General command-line tools Table 15 compares the Orbix 3 general purpose command-line tools with the
Orbix 6.3’s tools.

Table 15: Comparison of Orbix 3 and Orbix 6.3 General Command-Line Tools
(Sheet 1 of 2)

Description Orbix 3 Orbix 6.3

Show implementation repository
(IMR) entry.

catit itadmin process show

Security commands. chownit, chmodit No equivalent

Show configuration. dumpconfig itadmin config dump

Associate hosts into groups. grouphosts No equivalent

C++ IDL compiler. idl idl

CodeGen toolkit. idlgen idlgen

Java IDL compiler. idlj idl

Interface Repository (IFR). ifr itifr

Kill a server process. killit itadmin process stop

List server. lsit itadmin process list

Create a sub-directory in the IMR. mkdirit No equivalent

Orbix daemon. orbixd itlocator and itnode_daemon

Ping the Orbix daemon. pingit No equivalent

List active servers. psit itadmin process list -active

Add a definition to the IFR. putidl idl -R
 82

Command-Line Administration Tools
Naming Service Command Line
Tools

Table 16 compares the Orbix 3 naming service command-line tools with the
Orbix 6.3 tools.

Register a server in the IMR. putit itadmin process create

Show an IFR definition. readifr itadmin ifr show

Remove a sub-directory from the
IMR.

rmdirit No equivalent

Unregister a server from the IMR. rmit itadmin process remove

Remove a definition from the IFR. rmidl itadmin ifr remove

Associate servers with groups. servergroups No equivalent

Associate hosts with servers. serverhosts No equivalent

Table 15: Comparison of Orbix 3 and Orbix 6.3 General Command-Line Tools
(Sheet 2 of 2)

Description Orbix 3 Orbix 6.3

Table 16: Comparison of Orbix 3 and Orbix 6.3 Naming Service
Command-Line Tools (Sheet 1 of 2)

Description Orbix 3 Orbix 6.3

Add a member to an object group. add_member itadmin nsog add_member

Print the IOR of an object group. cat_group No equivalent

Print the IOR of an object group’s
member.

cat_member itadmin nsog show_member

Print the IOR of a given name. catns itadmin ns resolve

Remove an object group. del_group itadmin nsog remove

Remove a member from an object
group.

del_member itadmin nsog remove_member

List all object groups. list_groups itadmin nsog list

List the members of an object group. list_members itadmin nsog list_member
83

CHAPTER 7 | Administration
List the bindings in a context. lsns itadmin ns list

Create an object group. new_group itadmin nsog create

Create an unbound context. newncns itadmin ns newnc

Select a member of an object group. pick_member No equivalent

Bind a name to a context. putncns itadmin ns bind -context

Create a bound context. putnewncns itadmin ns newnc

Bind a name to an object. putns itadmin ns bind -object

Rebind a name to a context. reputncns itadmin ns bind -context

Rebind a name to an object. reputns itadmin ns bind -object

Remove a binding. rmns itadmin ns remove

Table 16: Comparison of Orbix 3 and Orbix 6.3 Naming Service
Command-Line Tools (Sheet 2 of 2)

Description Orbix 3 Orbix 6.3
 84

Activation Modes
Activation Modes

Orbix 3 Orbix 3 process activation modes, shared, unshared, per-method, per-client-pid,
and persistent are used for a variety of reasons. For example, they are used to
achieve multi-threaded behavior in a single-threaded environment, to increase
server reliability, and so on. The two most popular modes are:

• Shared mode—which enables all clients to communicate with the same

server process.

• Per-client-pid mode—which enforces a 1-1 relationship between client

process and server process, is sometimes used to maximize server

availability.

Orbix 6.3 Orbix 6.3 provides the following activation modes:

• on_demand—the process only activates when required.

• per_client—a new process is activated for each client.

Orbix 6.3 moved CORBA object association from the server to the POA.
Because of this, all Orbix 6.3 processes are shared.

Migration Migration of source code should be straightforward, because the choice of
activation mode has almost no impact on BOA or POA-based server code.

Load balancing The additional activation modes provided by Orbix 3 are typically used to
achieve some form of load-balancing that is transparent to the client. The
Enterprise Edition of Orbix 6.3 includes transparent locator-based load
balancing over a group of replica POAs. This answers the needs currently
addressed by Orbix 3 activation modes.
85

CHAPTER 7 | Administration
 86

Part III
Interoperability

In this part This part contains the following chapters:

Configuring for Interoperability page 89

IDL Issues page 97

Exceptions page 107

Services page 125

Connection Management page 135

Codeset Negotiation page 141

CHAPTER 8

Configuring for
Interoperability
This chapter describes the main configuration changes that must
be made to facilitate interoperability between Orbix 3.x and Orbix
6.3 applications.

In this chapter This chapter discusses the following topics:

Interoperability Overview page 90

Launch and Invoke Rights page 92

GIOP Versions page 94
89

CHAPTER 8 | Configuring for Interoperability
Interoperability Overview

Overview This Interoperability Guide describes how to configure applications that use a
mixture of IONA products and any feature limitations that apply to such
interoperating systems.

Orbix 6.3 interoperability Because Orbix 6.3 is binary-compatible with Orbix E2A ASP v6.0, Orbix 6.3
has the same interoperability characteristics as ASP 6.0.

Orbix E2A ASP v6.0
interoperability

The following product releases have been tested for interoperability with Orbix
E2A ASP v6.0:

• Orbix 3.3.4 C++ Edition

• Orbix 3.3.4 Java Edition

Orbix E2A ASP v5.1
interoperability

The following product releases have been tested for interoperability with Orbix
E2A ASP v5.1:

• Orbix 3.0.1-82

• OrbixWeb 3.2-15

• Orbix 3.3.2 C++ Edition

• Orbix 3.3.2 Java Edition

The _bind() function Orbix 6.3 does not support the _bind() function for establishing connections
between clients and servers. Neither Orbix 3.0.1-82, OrbixWeb 3.2-15, nor
Orbix 3.3 clients can use the _bind() function to establish a connection to an
Orbix 6.3 server. You must use a CORBA Naming Service instead. For
example, you could use either the Orbix 3.3 naming service or the Orbix 6.3
naming service.
 90

Interoperability Overview
IDL feature support Orbix 6.3 supports a larger set of IDL data types and features than Orbix 3.3.
When developing IDL interfaces for use with Orbix 6.3 and other IONA
products you need to restrict your IDL to a subset that is supported by all of the
interoperating products.

In particular, the following describe IDL features that are subject to limitations
or require special configuration:

• “Using the #pragma Prefix” on page 98

• “Use of #pragma ID in IDL” on page 101

• “Fixed Data Type and Interoperability” on page 102

• “Use of wchar and wstring” on page 104

• “C++ Keywords as Operation Names” on page 105

Changed exception semantics The semantics of some CORBA system exceptions are different in Orbix 6.3, as
compared with Orbix 3.0.1-82, OrbixWeb 3.2-15, or Orbix 3.3. If you have
existing code written for Orbix 3.0.1-82, OrbixWeb 3.2-15, or Orbix 3.3, you
should read the following:

• “Orbix 3.3 C++ Edition—System Exceptions” on page 108

• “Orbix 3.3 Java Edition—System Exceptions” on page 115

These sections describe how to configure your legacy application so that it is
insulated from any differences in exception semantics.

Bidirectional GIOP Orbix 6.3 introduces support for bidirectional GIOP, based on an OMG
standard. Previously (Orbix E2A ASP v5.x and v6.0), bidirectional GIOP was
not supported, or was not based on an OMG standard (Orbix 3.x and earlier).

See “Callbacks and Bidirectional GIOP” on page 137 for details.

Other affected features If you want to use the Orbix 6.3 interoperable naming service as the common
naming service for your interoperating system, see “The Orbix 6.3 Interoperable
Naming Service” on page 126.

The rest of this guide describe miscellaneous issues that might affect
interoperability in a mixed product environment.
91

CHAPTER 8 | Configuring for Interoperability
Launch and Invoke Rights

Overview When an Orbix 6.3 client attempts to open a connection to an Orbix 3.0.1-82,
OrbixWeb 3.2-15, or Orbix 3.3 server you must make sure that the system is
configured such that the Orbix 6.3 client has launch and invoke rights.

Role of launch and invoke rights In Orbix 3.3 the orbixd daemon process is responsible both for launching
servers and for redirecting client requests to servers. These two functions are
governed by launch rights and invoke rights, respectively.

Launch and invoke rights on Orbix 3.3 servers are based on the idea that the
client userID is transmitted along with request messages. The field of the request
message that contains the user ID is known as the Principal of the invocation.

If launch and invoke rights are not configured correctly, the Orbix 6.3 client
raises a CORBA::OBJECT_NOT_EXIST system exception.

Setting launch rights The launch rights associated with an Orbix 3.3 server specify which users are
allowed to cause automatic launching of the server. Launch rights in Orbix 3.3
are granted with the following form of chmodit:

chmodit l+userID ServerName

Setting invoke rights The invoke rights associated with an Orbix 3.3 server are used to determine
which users are allowed to invoke on the server. Invoke rights are granted using:

chmodit i+userID ServerName

Orbix 6.3 and Orbix 3.3 The configuration must be altered for an Orbix 6.3 client invoking on an Orbix
3.3 server. There are two possible approaches to fix the launch and invoke
rights:

• Alter the configuration of the Orbix 6.3 Client.

• Relax the security on the orbixd daemon.

Alter the configuration of the
Orbix 6.3 Client

Three configuration variables must be made (or changed) in the Orbix 6.3
configuration file:

Orbix 6.3 Configuration File
 92

Launch and Invoke Rights
The policies:giop:interop_policy:send_locate_request option controls
whether Orbix 6.3 sends LocateRequest messages before sending initial
Request messages. This option must be set to false because LocateRequest
messages do not contain a Principal field.

The policies:giop:interop_policy:send_principal option controls
whether Orbix 6.3 sends Principal information containing the current user name
in GIOP 1.0 and GIOP 1.1 requests. The user name is matched against the
launch and invoke rights listed in the orbixd daemon, to determine the
permissions of the Orbix 6.3 client.

Relax the security on the orbixd
daemon

Alternatively, you can relax the security on the orbixd daemon so that all clients
have launch and invoke rights. For example, use the chmodit command line
utility to change the launch and invoke rights:

chmodit l+all ServerName
chmodit i+all ServerName

These commands give permission for any client to invoke or launch the server
ServerName. Permissions are granted even if the Principal value is left blank in
the incoming requests.

policies:giop:interop_policy:send_locate_request = "false";
policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable_principal_service_context =
"true";
93

CHAPTER 8 | Configuring for Interoperability
GIOP Versions

GIOP version of a connection The GIOP version used by a client-server connection is determined by the client.
When a client is about to open a connection to a CORBA object, the client
examines the version information in the object’s IOR:

• If the GIOP version in the IOR is greater than or equal to the default GIOP

version of the client, the client initiates a connection using the client’s

default GIOP version.

• Otherwise, the client initiates a connection using the GIOP version in the

IOR.

Effect of GIOP version The GIOP version of a connection is important, because some CORBA features
are not supported in early GIOP versions. Table 17 shows the minimum GIOP
version required for some CORBA features, according to the CORBA
specification.

Table 17: CORBA-Specified Minimum GIOP Versions

CORBA Feature CORBA-Specified
Minimum GIOP Version

fixed type 1.1

wchar and wstring types 1.1

codeset negotiation (Orbix 6.3 only) 1.1
 94

GIOP Versions
Orbix-specific minimum GIOP
versions

Notwithstanding the CORBA-specified minimum GIOP versions, Orbix allows
some features to be used at a lower GIOP version (in some cases requiring
specific configuration variables to be set). Table 18 shows the Orbix-specific
minimum GIOP versions.

For more details on these CORBA features, see the following sections:

• “Fixed Data Type and Interoperability” on page 102.

• “Use of wchar and wstring” on page 104.

• “Introduction to Codeset Negotiation” on page 142.

Table of default GIOP versions Table 19 shows the default GIOP versions for different Orbix clients when
opening a connection to a server.

Table 18: Orbix-Specific Minimum GIOP Versions

CORBA Feature Orbix-Specific
Minimum GIOP Version

fixed type 1.0

wchar and wstring types 1.0

codeset negotiation (Orbix 6.3 only) 1.1

Table 19: Default GIOP Version Used by Orbix Clients

Client Version Default GIOP Version

Orbix 3.0.1-82 1.0

OrbixWeb 3.2-15 1.0

Orbix 3.3 C++ Edition 1.1

Orbix 3.3 Java Edition 1.0

Orbix 6.3 1.1
95

CHAPTER 8 | Configuring for Interoperability
 96

CHAPTER 9

IDL Issues
This chapter describes those features of IDL that affect
interoperability between Orbix 3.x and Orbix 6.3 applications.

In this chapter This chapter discusses the following topics:

Using the #pragma Prefix page 98

Use of #pragma ID in IDL page 101

Fixed Data Type and Interoperability page 102

Use of wchar and wstring page 104

C++ Keywords as Operation Names page 105
97

CHAPTER 9 | IDL Issues
Using the #pragma Prefix

Overview Using the #pragma prefix preprocessor directive in your IDL affects the
semantics of the _narrow() function. When an Orbix 3.0.1-82 or Orbix 3.3 C++
client attempts to _narrow() an object reference originating from an Orbix 6.3
server, a remote _is_a() call is implicitly made.

The #pragma prefix preprocessor directive is not fully supported in OrbixWeb
3.2-15 and Orbix 3.3 Java Edition. An OrbixWeb 3.2-15 or Orbix 3.3 Java
application can, however, interoperate with Orbix 6.3, with an implicit is_a()
call being made by the Orbix runtime.

Effect of #pragma prefix The #pragma prefix directive is used to add a prefix to the RepositoryId of all
the IDL declarations that follow. For example:

The default RepositoryId of the Foo interface would be IDL:Foo:1.0. When
used as above, the #pragma prefix causes the RepositoryId of the interface
Foo to change to IDL:mydomain.com/Foo:1.0.

C++ code example Consider, a Foo object reference that is generated by an Orbix 6.3 server. The
Orbix 6.3 server stringifies the object reference, using the
CORBA::ORB::object_to_string() operation and writes it to a temporary file.

//IDL
#pragma prefix "mydomain.com"

interface Foo {
 //Various operations and attributes (not shown)
 ...
};
 98

Using the #pragma Prefix
An Orbix 3.3 C++ client then reads the stringified object reference from the
temporary file and converts it back to a Foo object reference, as follows:

Semantics of the _narrow()
function

When Foo::_narrow(objV) is invoked, the object's RepositoryId is checked
to make sure that it really is of type Foo. There are two ways a client can check
the type of an object when it performs a _narrow():

• Check the type locally, using the information in the client stub code.

• Check the type remotely, by calling back to the Orbix 6.3 server. The

_is_a() function is invoked on the remote Foo object.

Because the Foo object reference originates from an Orbix 6.3 server, the Orbix
3.3 C++ client is unable to check the RepositoryId using its local stub code. It
must call back to the server instead. The implementation of _narrow() calls the
remote operation CORBA::Object::_is_a() on the object reference objV. The
_is_a() function returns TRUE if the object is really of type Foo, otherwise it
returns FALSE.

//C++
...
//--
// The following variables are assumed to be initialized already:
// 'stringObj'- A stringified object reference of char * type
// 'orbV' - A reference to an ORB object,
// of CORBA::ORB_var type
//
try {
 CORBA::Object_var objV = orbV->string_to_object(stringObj);
 // Attempt to 'narrow' the object reference to type 'Foo_ptr'
 Foo_var myFooV = Foo::_narrow(objV);
 if (CORBA::is_nil(myFooV)) {
 cerr << "error: narrow to Foo failed" << endl;
 exit(1);
 }
}
catch (CORBA::SystemException& sysEx) {
 ... // deal with exceptions
}

99

CHAPTER 9 | IDL Issues
Effect on the CORBA Naming
Service

The naming service is affected because it uses a #pragma prefix directive:

When used as above, #pragma prefix causes the RepositoryId of the interface
NamingContext to change to IDL:omg.org/CosNaming/NamingContext:1.0.
An Orbix 3.3 C++ client that uses the Orbix 6.3 naming service, therefore,
implicitly makes a remote _is_a() invocation whenever it invokes _narrow()
on a naming service object.

Orbix 3.3 C++ Edition and
Orbix 6.3

When Orbix 3.3 C++ Edition and Orbix 6.3 applications are mixed in the same
system, you can use IDL that has a #pragma prefix directive, but the semantic
behavior of _narrow() is affected.

Orbix 3.3 Java Edition and
Orbix 6.3

If a #pragma prefix preprocessor directive appears in your IDL, it is ignored by
the Orbix 3.3 IDL-to-Java compiler. The Java stub and skeleton code is
generated as if the #pragma prefix was not there.

When Orbix 3.3 Java Edition and Orbix 6.3 applications are mixed in the same
system, you can use IDL that has a #pragma prefix directive, but implicit
is_a() calls are made by the Orbix runtime.

//IDL for the CORBA Naming Service
#pragma prefix "omg.org"

module CosNaming {
 ...
 interface NamingContext {
 ...
 };
};
 100

Use of #pragma ID in IDL
Use of #pragma ID in IDL

Overview The #pragma ID directive is supported in Orbix 6.3, but is not supported in
Orbix 3.3.

Syntax of #pragma ID The #pragma ID directive is used to associate an arbitrary repository ID with a
given IDL type name. It has the following syntax:

The RepositoryId must be of the form Format:String where no colon can appear
in Format. For example, if the Format of the repository ID is IDL:

The default repository ID that would normally be associated with Foo is
IDL:Example/Foo:1.0. By including the #pragma ID directive the repository
ID becomes IDL:ArbitraryFooId:1.1 instead.

Orbix 3.3 C++ Edition and
Orbix 6.3

IDL that makes use of the #pragma ID directive cannot be used interoperably
between Orbix 3.3 C++ Edition and Orbix 6.3 applications.

Orbix 3.3 Java Edition and
Orbix 6.3

IDL that makes use of the #pragma ID directive cannot be used interoperably
between Orbix 3.3 Java Edition and Orbix 6.3 applications.

#pragma ID TypeName "RepositoryID"

//IDL
module Example {
 interface Foo {};
#pragma ID Foo "IDL:ArbitraryFooId:1.1"
};
101

CHAPTER 9 | IDL Issues
Fixed Data Type and Interoperability

Overview When interoperating between an Orbix 3.0.1-82/OrbixWeb 3.2-15 application
and an Orbix 6.3 C++ application, it is necessary to change the configuration of
Orbix 6.3 in order to be able to use the fixed-point IDL type.

C++ applications To enable the fixed-point type to be sent between an Orbix 3.0.1-82 application
and an Orbix 6.3 application, the following configuration entry must be made (or
changed) in the Orbix 6.3 configuration file:

If set to true, Orbix 6.3 permits fixed-point types to be sent over GIOP 1.0.
Defaults to false.

Java applications Orbix 6.3 accepts fixed-point types through GIOP 1.0 and GIOP 1.1
connections. No special configuration is needed, therefore, when sending
fixed-point types between Orbix 6.3 and legacy products such as Orbix 3.0.1-82
or Orbix 3.3.

Orbix 3.0.1-82 and Orbix 6.3 Orbix 3.0.1-82 uses GIOP 1.0 by default and Orbix 6.3 does not permit
fixed-point types to be sent over GIOP 1.0. It is necessary, therefore, to
reconfigure Orbix 6.3 in this case by setting the allow_fixed_types_in_1_0
variable to true.

Orbix 3.3 C++ Edition and Orbix
6.3

Orbix 6.3 uses GIOP 1.1 by default and Orbix 6.3 permits fixed-point types to be
sent over GIOP 1.1. There is, therefore, no need to reconfigure Orbix 6.3 in this
case.

Orbix 6.3 Configuration File
policies:giop:interop_policy:allow_fixed_types_in_1_0 = "true";
 102

Fixed Data Type and Interoperability
Orbix 3.3 Java Edition and Orbix
6.3

To enable the fixed-point type to be sent between Orbix 3.3 Java Edition and
Orbix 6.3 applications, two alternative configurations can be used:

• Make, or change, the following configuration entry in the Orbix 6.3

configuration file:

If set to true, Orbix 6.3 permits fixed-point types to be sent over GIOP

1.0. Defaults to false.

• Alternatively, you can configure Orbix 3.3 Java Edition to use GIOP 1.1,

using the IT_DEFAULT_IIOP_VERSION configuration variable. This

configuration variable can be set in any of the ways described in the Orbix

3.3 Administrator's Guide. For example, you can set it in the

orbixweb3.cfg file, as follows:

By setting the IT_DEFAULT_IIOP_VERSION configuration variable to 11

you ensure that Orbix 3.3 Java Edition uses GIOP 1.1 by default on

connections to servers. Because GIOP 1.1 officially supports marshalling

of fixed-point data, this enables you to use fixed-point data interoperably.

Orbix 6.3 Configuration File
policies:giop:interop_policy:allow_fixed_types_in_1_0 =

"true";

#File: 'orbixweb3.cfg'
OrbixWeb {
 # Other options not shown
 # ...
 IT_DEFAULT_IIOP_VERSION = "11";
};

Note: Orbix 3.3 C++ Edition has a similarly named environment variable,
IT_IIOP_VERSION. However, setting IT_IIOP_VERSION in Orbix 3.3 C++
Edition does not have the same effect as setting IT_DEFAULT_IIOP_VERSION in
Orbix 3.3 Java Edition. The IT_IIOP_VERSION environment variable cannot be
used to enable use of the fixed point type between Orbix 3.3 C++ Edition and
Orbix 6.3.
103

CHAPTER 9 | IDL Issues
Use of wchar and wstring

Overview Table 20 summarizes the support for the wchar and wstring IDL types in the
Orbix 3.3 and Orbix 6.3 products.

All of the products that support wchar and wstring types can interoperate with
each other.

Table 20: Support for the wchar and wstring Types by Product

Product Supports wchar Supports wstring

Orbix 6.3 (C++) Yes Yes

Orbix 6.3 (Java) Yes Yes

Orbix 3.3 C++ Edition No No

Orbix 3.3 Java Edition Yes Yes
 104

C++ Keywords as Operation Names
C++ Keywords as Operation Names

Overview Previously, if your IDL contained operation names that were the same as C++
keywords, Orbix 3.0.1-82 and Orbix 3.3 C++ Edition could not interoperate with
Orbix 6.3.

This problem is now fixed. Orbix 3.3 applications can now interoperate with
Orbix 6.3 even when your IDL contains C++ keywords as operation names.

IDL example Consider the following IDL:

C++ stub code The Orbix 3.3 IDL-to-C++ compiler maps this interface to the following proxy
class:

The names of the functions in C++ have a leading underscore character (for
example, _for and _class) to avoid clashing with the for and class C++
keywords.

On-the-wire format for operation
names

When an Orbix 3.3 C++ or Java client makes a remote invocation using the
_for() and _class() functions, the operation names are marshalled as "for"
and "class" respectively. This behavior complies with CORBA 2.4 and is
compatible with Orbix 6.3 CORBA servers.

//IDL
interface CPlusPlusKeywords {
 void for();
 boolean class();
};

//C++
class CPlusPlusKeywords: public virtual CORBA::Object {
 ...
public:
 ...
 virtual void _for (...) ;
 virtual CORBA::Boolean _class (...) ;
 ...
};
105

CHAPTER 9 | IDL Issues
 106

CHAPTER 10

Exceptions
This chapter discusses the differences in the handling of CORBA
exceptions between Orbix 3.x and Orbix 6.3.

In this chapter This chapter discusses the following topics:

Orbix 3.3 C++ Edition—System Exceptions page 108

Orbix 3.3 Java Edition—System Exceptions page 115

FILTER_SUPPRESS Exception page 121

Dynamic Invocation Interface and User Exceptions page 122

Dynamic Invocation Interface and LOCATION_FORWARD page 124
107

CHAPTER 10 | Exceptions
Orbix 3.3 C++ Edition—System Exceptions

Overview The semantics of system exceptions in Orbix prior to Orbix 3.0.1-20 are
different from the semantics in Orbix 6.3. In Orbix 3.0.1-20 and later Orbix 3.x
versions, however, exception semantics have been altered to make them
compatible with Orbix 6.3. An environment variable,
IT_USE_ORBIX3_STYLE_SYS_EXC, is introduced that enables you to insulate
legacy code from the change.

In this section This section contains the following subsections:

New Semantics and Old Semantics page 109

The INV_OBJREF and OBJECT_NOT_EXIST Exceptions page 111

The TRANSIENT and COMM_FAILURE Exceptions page 112

Orbix 3.3 C++ Edition and Orbix 6.3 page 113
 108

Orbix 3.3 C++ Edition—System Exceptions
New Semantics and Old Semantics

Overview Some system exceptions in Orbix 6.3 have different semantics to the
corresponding exceptions in Orbix prior to Orbix 3.0.1-20. The exception
semantics used by Orbix 6.3 are referred to here as new semantics. The
exception semantics used by Orbix prior to Orbix 3.0.1-20 are referred to here as
old semantics.

The
IT_USE_ORBIX3_STYLE_SYS_EXC
Variable

The IT_USE_ORBIX3_STYLE_SYS_EXC variable affects three different aspects of
Orbix 3.0.1-82 and Orbix 3.3 applications:

• System exceptions raised by the server.

• System exceptions raised by the client.

• Transformation of exceptions arriving at the client.

System exceptions are not only raised by servers, they can also be raised on the
client side. If a client encounters an error before it sends a Request message to a
server, or after it receives a Reply message from a server, the client raises a
system exception. The IT_USE_ORBIX3_STYLE_SYS_EXC variable therefore
affects both client and server applications.

System exceptions raised by the
server

Table 21 shows how system exceptions raised by an Orbix 3.0.1-82 and an
Orbix 3.3 server are influenced by IT_USE_ORBIX3_STYLE_SYS_EXC.

Table 21: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.0.1-82 and Orbix 3.3 Server
- Exception Raising

Not defined Old semantics

YES Old semantics

NO New semantics
109

CHAPTER 10 | Exceptions
System exceptions raised by the
client

Table 22 shows how system exceptions raised by an Orbix 3.0.1-82 and an
Orbix 3.3 client are influenced by IT_USE_ORBIX3_STYLE_SYS_EXC.

Transformation of exceptions
arriving at the client

Table 23 shows how transformation of exceptions arriving at an Orbix 3.0.1-82
and an Orbix 3.3 client are influenced by IT_USE_ORBIX3_STYLE_SYS_EXC.

Transformation is applied to system exceptions incoming from the network. This
feature dynamically intercepts system exceptions arriving at the client and, if
necessary, converts them to the type of system exception expected by the client
(consistent with either new or old semantics). This is essential to ensure that the
client can apply a consistent style of exception handling, irrespective of the type
of server it is talking to.

Difference between Orbix Prior to
Orbix 3.0.1-82 and Orbix 3.3

The presence of the transformation feature means that there is a significant
difference between Orbix clients prior to Orbix 3.0.1-20 and Orbix
3.0.1-82/Orbix 3.3 clients even when the IT_USE_ORBIX3_STYLE_SYS_EXC
variable is not set (or set equal to YES). An Orbix 3.0.1-82 or Orbix 3.3 client
that uses old semantics actively transforms incoming system exceptions to old
semantics. A pre-Orbix 3.0.1-20 client does not.

Table 22: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.0.1-82 and Orbix 3.3 Client -
Exception Raising

Not defined Old semantics

YES Old semantics

NO New semantics

Table 23: Transformation of Exceptions at the Client Side

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.0.1-82 and Orbix 3.3 Client -
Exception Transformation

Not defined Transform to old semantics

YES Transform to old semantics

NO Transform to new semantics
 110

Orbix 3.3 C++ Edition—System Exceptions
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions

Orbix 6.3 semantics In Orbix 6.3 the INV_OBJREF and OBJECT_NOT_EXIST system exceptions are
raised under the following circumstances:

• The INV_OBJREF system exception is raised by

CORBA::ORB::string_to_object() to indicate that the stringified object

reference is malformed in some way.

• The OBJECT_NOT_EXIST system exception is raised by a server to indicate

that a CORBA object does not exist.

Orbix 3.3 (new semantics) In Orbix 3.0.1-82 and Orbix 3.3 (new semantics) the INV_OBJREF and
OBJECT_NOT_EXIST system exceptions are raised under the following
circumstances:

• The INV_OBJREF system exception is raised for a variety of reasons.

However, it is not raised to indicate that a CORBA object does not exist.

• The OBJECT_NOT_EXIST system exception is raised by a server to indicate

that a CORBA object does not exist.

Pre-Orbix 3.0.1-20 (old semantics) Prior to Orbix 3.0.1-20 (old semantics) the INV_OBJREF and OBJECT_NOT_EXIST
system exceptions are raised under the following circumstances:

• The INV_OBJREF system exception is raised for a variety of reasons. When

raised by a server, with minor code 10101, it indicates that a CORBA

object does not exist.

• The OBJECT_NOT_EXIST system exception is never raised by pre-Orbix

3.0.1-20 applications.
111

CHAPTER 10 | Exceptions
The TRANSIENT and COMM_FAILURE Exceptions

Orbix 6.3 Semantics and Orbix 3.3
(new semantics)

In Orbix 6.3 and in Orbix 3.0.1-82/Orbix 3.3 (new semantics) the TRANSIENT
and COMM_FAILURE system exceptions are raised under the following
circumstances:

• The TRANSIENT exception is raised if a client tries to send a message to a

server, but is unable to do so. In terms of the TCP/IP transport layer, this

means an error occurred before or during an attempt to write to or connect

to a socket.

• The COMM_FAILURE exception is raised if a client has already sent a

message to a server, but is unable to receive the associated reply. In terms

of the TCP/IP transport layer, this means either the connection went down

or an error occurred during an attempt to read from a socket.

Pre-Orbix 3.0.1-20 (old semantics) Prior to Orbix 3.0.1-20 (old semantics) the TRANSIENT and COMM_FAILURE
system exceptions are raised under the following circumstances:

• The TRANSIENT exception is never raised in pre-Orbix 3.0.1-20

applications.

• The COMM_FAILURE exception is raised in pre-Orbix 3.0.1-20 applications if

an error occurs while writing to, reading from, or connecting to a TCP/IP

socket.
 112

Orbix 3.3 C++ Edition—System Exceptions
Orbix 3.3 C++ Edition and Orbix 6.3

Overview There are three different ways of setting the IT_USE_ORBIX3_STYLE_SYS_EXC
configuration value:

• Setting an environment variable.

• Setting a configuration variable.

• Using the SetConfigValue() function.

Setting an environment variable Set the environment variable, IT_USE_ORBIX3_STYLE_SYS_EXC, as follows:

Windows

set IT_USE_ORBIX3_STYLE_SYS_EXC=yes_or_no

UNIX

export IT_USE_ORBIX3_STYLE_SYS_EXC=yes_or_no

Where yes_or_no can be the string YES or the string NO.

Setting a configuration variable Set the configuration variable, IT_USE_ORBIX3_STYLE_SYS_EXC, by editing the
Orbix 3.3 configuration file:

Using the SetConfigValue()
function

Use the CORBA::ORB::SetConfigValue() function:

Where orb_p is a pointer to a CORBA::ORB instance.

Orbix 3.3 Configuration File
Orbix {
 IT_USE_ORBIX3_STYLE_SYS_EXC = "yes_or_no";
};

// C++
orb_p->SetConfigValue(
 "Orbix.IT_USE_ORBIX3_STYLE_SYS_EXC",
 "yes_or_no"
);
113

CHAPTER 10 | Exceptions
Compatibility matrix Table 24 shows the compatibility matrix between Orbix 3.0.1-82/Orbix 3.3 and
Orbix 6.3.

A Yes entry in the above table indicates compatible exception semantics for that
combination.

An Orbix 3.0.1-82/Orbix 3.3 application described in the table as old semantics
has its IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to YES, or unset. An
Orbix 3.0.1-82/Orbix 3.3 application described in the table as new semantics has
its IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to NO.

Table 24: System Exception Handling Compatibility between Orbix
3.0.1-82/Orbix 3.3 and Orbix 6.3

Client Application Orbix 3.0.1-82/Orbix 3.3
Server (Old Semantics)

Orbix 3.0.1-82/Orbix 3.3
Server (New Semantics)

Orbix 6.3 CORBA
Server

Orbix 3.0.1-82/Orbix 3.3
Client (Old Semantics)

Yes Yes Yes

Orbix 3.0.1-82/Orbix 3.3
Client (New Semantics)

Yes Yes Yes

Orbix 6.3 CORBA Client No Yes Yes
 114

Orbix 3.3 Java Edition—System Exceptions
Orbix 3.3 Java Edition—System Exceptions

Overview The semantics of system exceptions in OrbixWeb prior to OrbixWeb 3.2-05 are
different from the semantics in Orbix 6.3. In OrbixWeb 3.2-15 and Orbix 3.3
Java Edition, however, exception semantics have been altered to make them
compatible with Orbix 6.3. An environment variable,
IT_USE_ORBIX3_STYLE_SYS_EXC, is introduced that enables you to insulate
legacy code from the change.

In this section This section contains the following subsections:

New Semantics and Old Semantics page 116

The INV_OBJREF and OBJECT_NOT_EXIST Exceptions page 118

The TRANSIENT and COMM_FAILURE Exceptions page 119

Orbix 3.3 Java Edition and Orbix 6.3 page 120
115

CHAPTER 10 | Exceptions
New Semantics and Old Semantics

Overview Some system exceptions in Orbix 6.3 have different semantics to the
corresponding exceptions in OrbixWeb prior to OrbixWeb 3.2-05. The
exception semantics used by Orbix 6.3 are referred to here as new semantics.
The exception semantics used by OrbixWeb prior to OrbixWeb 3.2-05 are
referred to here as old semantics.

The
IT_USE_ORBIX3_STYLE_SYS_EXC
variable

The IT_USE_ORBIX3_STYLE_SYS_EXC variable affects two aspects of OrbixWeb
3.2-15 and Orbix 3.3 Java Edition applications:

• System exceptions raised by the server.

• System exceptions raised by the client.

The IT_USE_ORBIX3_STYLE_SYS_EXC variable therefore affects both client and
server applications.

System exceptions raised by the
server

System exceptions raised by an OrbixWeb 3.2-15/Orbix 3.3 Java server are
influenced in the following way by IT_USE_ORBIX3_STYLE_SYS_EXC.

System exceptions raised by the
client

System exceptions raised by an OrbixWeb 3.2-15/Orbix 3.3 Java client are
influenced in the following way by IT_USE_ORBIX3_STYLE_SYS_EXC.

Note: OrbixWeb 3.2-15 and Orbix 3.3 Java applications do not perform
transformations on incoming system exceptions.

Table 25: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Java Server - Exception
Raising

Not defined Old semantics

TRUE Old semantics

FALSE New semantics
 116

Orbix 3.3 Java Edition—System Exceptions
Table 26: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Java Client - Exception
Raising

Not defined Old semantics

TRUE Old semantics

FALSE New semantics
117

CHAPTER 10 | Exceptions
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions

Orbix 6.3 Semantics and Orbix 3.3
Java Edition (new semantics)

In Orbix 6.3 and OrbixWeb 3.2-15/Orbix 3.3 Java Edition (new semantics) the
INV_OBJREF and OBJECT_NOT_EXIST system exceptions are raised under the
following circumstances:

• The INV_OBJREF system exception is raised by

CORBA::ORB::string_to_object() to indicate that the stringified object

reference is malformed in some way.

• The OBJECT_NOT_EXIST system exception is raised by a server to indicate

that a CORBA object does not exist.

Orbix 3.3 Java Edition (old
semantics)

In OrbixWeb 3.2-15/Orbix 3.3 Java Edition (old semantics) the INV_OBJREF and
OBJECT_NOT_EXIST system exceptions are raised under the following
circumstances:

• The INV_OBJREF system exception, with minor code 10100, is raised by a

server to indicate that a CORBA object does not exist.

• The OBJECT_NOT_EXIST system exception is never raised in OrbixWeb

3.2-15/Orbix 3.3 Java Edition.
 118

Orbix 3.3 Java Edition—System Exceptions
The TRANSIENT and COMM_FAILURE Exceptions

Orbix 6.3 Semantics and Orbix 3.3
Java Edition (new semantics)

In Orbix 6.3 and OrbixWeb 3.2-15/Orbix 3.3 Java Edition (new semantics) the
TRANSIENT and COMM_FAILURE system exceptions are raised under the following
circumstances:

• The TRANSIENT exception is raised if a client tries to send a message to a

server but is unable to do so. In terms of the TCP/IP transport layer, this

means an error occurred before or during an attempt to write to or connect

to a socket.

• The COMM_FAILURE exception is raised if a client has already sent a

message to a server but is unable to receive the associated reply. In terms

of the TCP/IP transport layer, this means either the connection went down

or an error occurred during an attempt to read from a socket.

Orbix 3.3 Java Edition (old
semantics)

In OrbixWeb 3.2-15/Orbix 3.3 Java Edition (old semantics) the TRANSIENT and
COMM_FAILURE system exceptions are raised under the following circumstances:

• The TRANSIENT exception can be raised in an OrbixWeb 3.2-15/Orbix 3.3

Java client when attempting to make a connection through Orbix

Wonderwall, or when attempting to deal with a LOCATION_FORWARD Reply

message.

• The COMM_FAILURE exception is raised in OrbixWeb 3.2-15/Orbix 3.3 Java

Edition if an error occurs while writing to, reading from, or connecting to a

TCP/IP socket.
119

CHAPTER 10 | Exceptions
Orbix 3.3 Java Edition and Orbix 6.3

Setting the
IT_USE_ORBIX3_STYLE_SYS_EXC
variable

The IT_USE_ORBIX3_STYLE_SYS_EXC variable can be set in any of the ways
described in the OrbixWeb Administrator's Guide.

For example, to switch on new semantics you can make the following entry in
the OrbixWeb3.cfg configuration file:

Compatibility matrix Table 27 shows the compatibility matrix between OrbixWeb 3.2-15/Orbix 3.3
Java Edition and Orbix 6.3.

A Yes entry in the above table indicates compatible exception semantics for that
combination.

An OrbixWeb 3.2-15/Orbix 3.3 Java application described in the table as old
semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to TRUE, or
unset. An OrbixWeb 3.2-15/Orbix 3.3 Java application described in the table as
new semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to
FALSE.

Orbix 3.3 Configuration File
OrbixWeb.IT_USE_ORBIX3_STYLE_SYS_EXC = "FALSE";

Table 27: System Exception Handling Compatibility between OrbixWeb
3.2-15/Orbix 3.3 Java Edition and Orbix 6.3

Client Application OrbixWeb 3.2-15/Orbix
3.3 Java Server (Old

Semantics)

OrbixWeb 3.2-15/Orbix
3.3 Java Server (New

Semantics)

Orbix 6.3 CORBA
Server

OrbixWeb 3.2-15/Orbix
3.3 Java Client (Old
Semantics)

Yes No No

OrbixWeb 3.2-15/Orbix
3.3 Java Client (New
Semantics)

No Yes Yes

Orbix 6.3 CORBA Client No Yes Yes
 120

FILTER_SUPPRESS Exception
FILTER_SUPPRESS Exception

Overview The FILTER_SUPPRESS exception is a system exception specific to Orbix and
OrbixWeb. If an Orbix 3.3 C++ server or an Orbix 3.3 Java server sends the
FILTER_SUPPRESS exception to an Orbix 6.3 CORBA client, it is converted to
the standard system exception CORBA::UNKNOWN.

Purpose of the FILTER_SUPPRESS
exception

Filters are a proprietary feature of Orbix 3.3 that enable you to read and
manipulate all incoming and outgoing messages. Prior to the availability of a
standard CORBA Security Service, some applications used filters to implement
a rudimentary security mechanism. These legacy applications could block the
execution of an operation on the server side, by raising the FILTER_SUPPRESS
exception in a filter.

How Orbix 6.3 handles a
FILTER_SUPPRESS exception

When a FILTER_SUPPRESS exception is sent back to an Orbix 6.3 CORBA client,
the Orbix 6.3 CORBA client does not recognize the exception. A
CORBA::UNKNOWN system exception is raised instead by the Orbix 6.3 CORBA
client.
121

CHAPTER 10 | Exceptions
Dynamic Invocation Interface and
User Exceptions

Overview The dynamic invocation interface (DII) in Orbix 3.3 cannot handle CORBA user
exceptions.

Orbix 3.3 and user exceptions If a user exception is received by an Orbix 3.3 invocation, the Orbix 3.3 runtime
converts the exception into a CORBA::UNKNOWN system exception, which is then
thrown by the CORBA::Request::invoke() operation.

Handling user exceptions in
Orbix 3.3 C++ Edition

Given an initialized request object, req, the following example shows an outline
of how to deal with user exceptions in the DII:

// C++ - Orbix 3.3
// Initialize DII Request object, req.
...
// Make the invocation
try {
 req.invoke();
}
catch (...) {
 // You will reach this point if a user exception is thrown.
 ...
}

 122

Dynamic Invocation Interface and User Exceptions
Handling user exceptions in
Orbix 3.3 Java Edition

Given an initialized request object, req, the following example shows an outline
of how to deal with user exceptions in the DII:

Orbix 6.3 and user exceptions In the Orbix 6.3 DII, however, user exceptions are supported in the DII. The
CORBA::UnknownUserException standard exception class holds a CORBA::Any
which can then be parsed with the aid of the dynamic any module to obtain the
contents of the user exception.

// Java - Orbix 3.3
// Initialize DII Request object, req.
...
// Make the invocation
try {
 req.invoke();
}
catch (java.lang.Exception) {
 // You will reach this point if a user exception is thrown.
 ...
}

123

CHAPTER 10 | Exceptions
Dynamic Invocation Interface and
LOCATION_FORWARD

Overview The dynamic invocation interface (DII) in Orbix 3.3 C++ Edition is now able to
handle reply messages that have the LOCATION_FORWARD status. Previously,
LOCATION_FORWARD replies were not supported in Orbix C++ applications.

The DII in Orbix 3.3 Java Edition has always been able to handle reply messages
that have the LOCATION_FORWARD status.

See also “Multiple LOCATION_FORWARD” on page 140.

Location forwarding mechanisms The IIOP protocol features support for location forwarding. It is used to
dynamically discover the location of CORBA objects. There are two distinct
kinds of message exchange that form the basis of location forwarding:

• The client ORB can deliberately probe the location of a CORBA object, by

sending a LocateRequest message to the server (or agent). The server (or

agent) responds with a LocateReply message containing details of the

object's location.

• When a client sends a regular Request message, the server (or agent)

might respond with a special type of Reply message that has a reply status

of LOCATION_FORWARD. This reply has details of the object's location.

Support for location forwarding The location forward mechanism is used by the Orbix 3.3 daemon and the Orbix
6.3 locator service to direct clients to the true location of a CORBA server:

• The first type of message exchange is a LocateRequest followed by

LocateReply.

• The second type of message exchange is a Request followed by a Reply

with status LOCATION_FORWARD.

Both kinds of message exchange are supported in Orbix 3.3.
 124

CHAPTER 11

Services
In a mixed system with Orbix 3.x and Orbix 6.3 applications, you
generally have a choice between an Orbix 3.x or an Orbix 6.3
implementation of a CORBA service. This chapter discusses the
viable configurations of CORBA services in a mixed system.

In this chapter This chapter discusses the following topics:

The Orbix 6.3 Interoperable Naming Service page 126

Interface Repository Interoperability page 132

SSL/TLS Toolkit Interoperability page 133

High Availability and Orbix 3.3 Clients page 134
125

CHAPTER 11 | Services
The Orbix 6.3 Interoperable Naming Service

Overview The naming service provided with Orbix 6.3 is an implementation of the
CORBA Interoperable Naming Service (INS) specification. This section
explains how to set up Orbix 3.3 applications to use the Orbix 6.3 INS.

Old and new naming services In an environment that mixes Orbix 3.3 and Orbix 6.3 applications, you have a
choice between using the old CORBA Naming Service (NS), provided with
Orbix 3.3, or the new CORBA Interoperable Naming Service (INS), provided
with Orbix 6.3.

The NamingContextExt interface The main difference between the old and new naming services is that the INS
adds a new IDL CosNaming::NamingContextExt interface:

// File: CosNaming.idl
#pragma prefix "omg.org"

module CosNaming {
 ...
 interface NamingContextExt : NamingContext {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;

 StringName to_string (in Name n)
 raises (InvalidName);
 Name to_name (in StringName sn)
 raises (InvalidName);

 exception InvalidAddress {};

 URLString to_url (in Address addr, in StringName sn)
 raises (InvalidAddress, InvalidName);
 Object resolve_str (in StringName sn)
 raises (NotFound, CannotProceed, InvalidName);

 };
};
 126

The Orbix 6.3 Interoperable Naming Service
Stub code Applications that use the INS should preferably be built against the new naming
stub (generated from the INS IDL). This makes the new NamingContextExt
interface accessible. However, the old naming stubs (generated from the old NS
IDL) can also be used.

Narrowing and remote _is_a()
operation

When an Orbix 3.3 application invokes
CosNaming::NamingContext::_narrow() on an Orbix 6.3 NamingContext, it
makes a remote _is_a() invocation on the INS. The _is_a() invocation is used
to confirm the type of the NamingContext object reference. See “Using the
#pragma Prefix” on page 98.

Orbix 3.3 and Orbix 6.3 You can configure Orbix 3.3 to use both the Orbix 3.3 NS and the Orbix 6.3
INS. This section describes how to configure the CORBA Initialization Service
to obtain a reference to either naming service using the
CORBA::ORB::resolve_initial_references() function.

Configuring Orbix 3.3 to use the
Orbix 6.3 INS

To connect to both the Orbix 3.3 NS and the Orbix 6.3 INS from an Orbix 3.3
application you must first configure the initialization service. Edit the
common.cfg configuration file and make the following entries in the
Common.Services scope:

Orbix 3.3 Configuration File
Common {
 Services {
 # This is the stringified IOR for the root 'NamingContext'
 # of the 'Orbix 3' naming service.
 # You can obtain this IOR by running the naming service
 # as follows:
 # ns -I <iorfile>
 NameService = "IOR:1234......";

 # This is the stringified IOR for the root 'NamingContext'
 # of the 'Orbix 6.3' Interoperable Naming Service.
 # You can obtain this IOR using the Orbix 6.3 admin
 # utility as follows:
 # itadmin ns resolve
 INS = "IOR:4567......";
 };
};
127

CHAPTER 11 | Services
Orbix 3.3 configuration variables The following configuration variables are set in the Common.Services scope:

• The Common.Services.NameService configuration variable is set to a

stringified IOR for a NamingContext in the Orbix 3 NS.

• The Common.Services.INS configuration variable is set to a stringified

IOR for a NamingContext in the Orbix 6.3 INS.

Setting the Common.Services.INS
variable

For example, consider the following IOR string:

You can assign this IOR string to Common.Services.INS as follows:

IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616d696e67
2f49545f4e616d696e67436f6e746578744578743a312e300000010000000
00000006e000000010102000b00000031302e322e312e31313300008a1300
003f0000003a3e0232311744656661756c74204c6f636174696f6e20446f6
d61696e185f64656661756c745f69745f6e635f6578745f706f615f000800
0000000000020000010000000600000006000000010000003500

Orbix 3.3 Configuration File
Common {
 Services {
 INS =

"IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616d69
6e672f49545f4e616d696e67436f6e746578744578743a312e30000001000
000000000006e000000010102000b00000031302e322e312e31313300008a
1300003f0000003a3e0232311744656661756c74204c6f636174696f6e204
46f6d61696e185f64656661756c745f69745f6e635f6578745f706f615f00
08000000000000020000010000000600000006000000010000003500";

 };
};
 128

The Orbix 6.3 Interoperable Naming Service
Orbix 3.3 client code for using both
naming services

The following C++ code extract shows how an Orbix 3.0.1-20 application can
make an initial connection to both naming services:

After this code runs, orbix3RootContextV holds a reference to an Orbix 3
NamingContext and orbix2000RootContextV holds a reference to an Orbix 6.3
NamingContext.

// C++ - Orbix 3 Client Code
int
main (int argc, char *argv[])
{
 CORBA::ORB_var orbV;

 try
 {
 cout << "Initializing the ORB." << endl;
 orbV = CORBA::ORB_init(argc, argv, "Orbix");

 CosNaming::NamingContext_var orbix3RootContextV;
 CosNaming::NamingContext_var orbix2000RootContextV;
 CORBA::Object_var objV;

 try
 {
 objV =

orbV->resolve_initial_references("NameService");
 orbix3RootContextV =

CosNaming::NamingContext::_narrow(objV);

 objV = orbV->resolve_initial_references("INS");
 orbix2000RootContextV =

CosNaming::NamingContext::_narrow(objV);
 }
 catch (CORBA::SystemException &sysEx)
 {
 cerr << &sysEx << endl;
 return 1;
 }
 ...
 ...
}

129

CHAPTER 11 | Services
Orbix 3.3 Java Edition and
Orbix 6.3

The following steps describe how to configure Orbix 3.3 Java Edition to connect
to both the Orbix 3.3 NS and the Orbix 6.3 INS:

Step 1—obtain the IOR Obtain the IOR for the root naming context of the NS.

Start the Orbix 6.3 INS and enter the following command:

itadmin ns resolve > Naming.ref

The output of this command is an IOR string that looks similar to the following:

This is the IOR string for the root naming context of the Orbix 6.3 INS.

Step 2—connect to the naming
services

Connect to the Orbix 3.3 NS and the Orbix INS.

The following Java code shows how an Orbix 3.3 Java client connects to both
the Orbix 3.3 NS and the Orbix 6.3 INS:

Step Action

1 Obtain the IOR for the root naming context of the naming service.

2 Connect to the Orbix 3.3 NS and the Orbix INS.

IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616d696e67
2f49545f4e616d696e67436f6e746578744578743a312e300000010000000
00000006e000000010102000b00000031302e322e312e31313300008a1300
003f0000003a3e0232311744656661756c74204c6f636174696f6e20446f6
d61696e185f64656661756c745f69745f6e635f6578745f706f615f000800
0000000000020000010000000600000006000000010000003500

//Java
NamingContext OWrootContext = null;

try {
 org.omg.CORBA.Object ncOWeb =
 orb_wrapper.get_orb().resolve_initial_references(
 "NameService"
);
 OW32rootContext = NamingContextHelper.narrow(ncOWeb);

 130

The Orbix 6.3 Interoperable Naming Service
This code reads the stringified IOR for the Orbix 6.3 NS from the Naming.ref
file. The stringified IOR is converted to an object reference, O2KRootContext,
using the org.omg.CORBA.ORB.string_to_object() function. The
O2KRootContext object reference is used to access the root NamingContext of
the Orbix 6.3 INS.

 // read the ART Naming IOR from the file:
 String objRef = null;
 BufferedReader br = null;

 try {
 br = new BufferedReader(new FileReader("Naming.ref"));
 objRef = br.readLine();
 } catch (IOException e) {
 System.err.println(
 "IOException caught: " + e.toString()
);
 ioe = new IOException();
 } finally {
 try {
 br.close();
 } catch (IOException ignore) { }
 }

 org.omg.CORBA.Object objNaming =

orb.string_to_object(objRef);
 O2KRootContext = NamingContextHelper.narrow(objNaming);
} catch (SystemException ex) {
 System.err.println ("Exception caught during bind : " +

ex.toString());
 System.exit (1);
} catch (org.omg.CORBA.ORBPackage.InvalidName in) {
 System.err.println ("Exception during narrow of initial

reference : " + in.toString());
 System.exit (1);
}

131

CHAPTER 11 | Services
Interface Repository Interoperability

Overview Significant changes were made to the IDL definition of the Interface Repository
(IFR) between CORBA 2.2 and CORBA 2.3. The Orbix 6.3 IFR is written to
conform to the CORBA 2.4 specification and it has many advantages over the
Orbix 3.3 IFR.

If you have both Orbix 3.3 and Orbix 6.3 applications that use the IFR, it is
recommended that you change the Orbix 3.3 applications to use the Orbix 6.3
IFR.

Modifying Orbix 3.3 applications
to use the Orbix 6.3 IFR

To change an Orbix 3.3 C++ application to use the Orbix 6.3 IFR, perform the
following steps:

1. Take the IDL for the Orbix 6.3 IFR and generate stub code from it using

the Orbix 3.3 IDL compiler.

2. Modify the source code of your Orbix 3.3 application to be consistent with

the IDL for the Orbix 6.3 IFR.

3. Link your Orbix 3.3 application with the IFR stub code generated in step 1.
 132

SSL/TLS Toolkit Interoperability
SSL/TLS Toolkit Interoperability

Orbix 3.3 to Orbix 6.3
interoperability

Orbix version 3.3 or later is recommended for secure interoperability with Orbix
6.3 SSL/TLS. Both C++ and Java editions of Orbix 3.3 have been tested with
Orbix 6.3 SSL/TLS. There are no known SSL-related interoperability problems
affecting this product combination.

Orbix 6.3 Interoperability with
Orbix 2000

Orbix 6.3 SSL/TLS (both C++ and Java) has been tested for secure
interoperability with Orbix 2000 versions 1.2 and 2.0. There are no known
SSL-related interoperability problems.
133

CHAPTER 11 | Services
High Availability and Orbix 3.3 Clients

Overview High availability is a feature of Orbix 6.3 that provides fault tolerance by
grouping servers into server clusters. Orbix 3.3 clients (C++ and Java Editions)
are now able to interoperate with Orbix 6.3 server clusters.

Support for multi-profile IORs In Orbix 3.3.2 the client ORB iterates over a multi-profiled IOR until it is able to
establish a connection to a server. It always starts at the first profile, when
connecting or reconnecting to a server.
 134

CHAPTER 12

Connection
Management
There are some differences in connection management between
Orbix 3.x and Orbix 6.3 applications. In most cases these
differences are unimportant, but a minority of applications might
be affected.

In this chapter This chapter discusses the following topics:

Orbix 6.3 Active Connection Management page 136

Callbacks and Bidirectional GIOP page 137

Setting the Listen Queue Size in Orbix 3.3 C++ Edition page 138

Multiple LOCATION_FORWARD page 140
135

CHAPTER 12 | Connection Management
Orbix 6.3 Active Connection Management

Overview Orbix 6.3 has a feature called active connection management (ACM) that is used
to limit the number of open connections on an Orbix 6.3 application.

The Orbix 6.3 ACM feature has been interoperably tested with Orbix 3.3 and
found to be fully compatible.

Configuring the ACM To configure ACM in Orbix 6.3, edit the configuration file, making the
following additional entries:

A value of -1 indicates that there is no limit on the number of connections.

Orbix 6.3 Configuration File
plugins:iiop:incoming_connections:hard_limit = "InHardLimit";
plugins:iiop:incoming_connections:soft_limit = "InSoftLimit";
plugins:iiop:outgoing_connections:hard_limit = "OutHardLimit";
plugins:iiop:outgoing_connections:soft_limit = "OutSoftLimit";
 136

Callbacks and Bidirectional GIOP
Callbacks and Bidirectional GIOP

Overview Orbix 6.3 supports bidirectional GIOP. This is a new feature introduced since
Orbix E2A ASP v 6.0.

Motivation for bi-directional IIOP Bidirectional GIOP was introduced in Orbix in order to overcome the limitations
of standard GIOP in relation to using callback objects through a firewall.

Features IONA’s implementation of bidirectional GIOP has the following features:

1. Compliant with the modified bidirectional GIOP approach described in the

firewall submission.

2. Compatible with GIOP 1.2 (that is, not dependent on GIOP 1.4

NegotiateSession messages).

3. Decoupled from IIOP, so that it can be used over arbitrary

connection-oriented transports (for example, SHMIOP).

4. Supports weak BiDirIds initially.

5. Supports bidirectional invocations on legacy Orbix 3.x callback object

references in order to facilitate phased migration to Orbix 6.3.

References For more details about the bidirectional GIOP support in Orbix 6.3, see the
following references:

• CORBA Programmer’s Guide

• Administrator’s Guide
137

CHAPTER 12 | Connection Management
Setting the Listen Queue Size in Orbix 3.3 C++
Edition

Overview A new configuration variable, IT_LISTEN_QUEUE_SIZE, is defined in Orbix 3.3
C++ Edition. It allows you to set the size of the queue associated with listening
ports on an Orbix 3.3 C++ server. This is a useful optimization for a heavily
loaded server that might receive many connection attempts in a short time.

Listen queue size When an Orbix server wants to receive connections from clients, it needs to call
the listen(int,int) socket function. The second parameter of listen() sets
the listen queue size associated with the socket. The listen queue size determines
the maximum length that the queue of pending connections can grow to. In
Orbix 3.3, the queue length is 5, by default.

The IT_LISTEN_QUEUE_SIZE
configuration variable

Orbix 3.3 C++ Edition supports a new IT_LISTEN_QUEUE_SIZE configuration
variable that enables you to configure the listen queue size. It can be set subject
to the following constraints:

• The value should lie between 5 and 2000 (inclusive).

• If it is set to a value less than 5, the value 5 is used instead.

• If it is set to a value greater than 2000, the value 2000 is used instead.

Queue size hard limit The maximum queue size is subject to a hard limit that varies between
platforms:

• Solaris—there is currently no limit.

• HPUX—the limit is 20.

• Windows—the limit is 5.

Setting the listen queue size There are three different ways to set the IT_LISTEN_QUEUE_SIZE configuration
value:

• Set the IT_LISTEN_QUEUE_SIZE environment variable:

Windows

set IT_LISTEN_QUEUE_SIZE=QueueSize
 138

Setting the Listen Queue Size in Orbix 3.3 C++ Edition
UNIX

export IT_LISTEN_QUEUE_SIZE=QueueSize
• Set the IT_LISTEN_QUEUE_SIZE configuration variable by editing the

Orbix 3.3 configuration file, as follows:

• Use the CORBA::ORB::SetConfigValue() function:

Where orb_p is a pointer to a CORBA::ORB instance.

Querying the listen queue size An application can query the value of IT_LISTEN_QUEUE_SIZE, using the
following code:

Orbix 3.3 Configuration File
Orbix {
 IT_LISTEN_QUEUE_SIZE = "QueueSize";
};

// C++
orb_p->SetConfigValue(
 "Orbix.IT_LISTEN_QUEUE_SIZE",
 "QueueSize"
);

// C++
char* value = 0;
CORBA::Orbix.GetConfigValue("Orbix.IT_LISTEN_QUEUE_SIZE",value);
cout << endl << "Listen Queue size is " << value << endl;
// Caller is responsible for memory allocated
// in out parameter to GetConfigValue
//
delete[] value;
value = 0;
139

CHAPTER 12 | Connection Management
Multiple LOCATION_FORWARD

Overview When an Orbix 3.3 C++ client attempts to connect to a server, it can deal with at
most one LOCATION_FORWARD reply on a single request. In some cases, this limit
might be exceeded when an Orbix 3.3 client attempts to connect to an Orbix 6.3
CORBA server.

An Orbix 3.3 Java client can deal with an infinite number of LOCATION_FORWARD
replies on a single request.

Description In a pure Orbix 3.3 environment, the only time a LOCATION_FORWARD reply can
be generated is when an Orbix 3.3 client contacts the Orbix daemon. In Orbix
6.3, any CORBA server can generate a LOCATION_FORWARD reply. It is, therefore,
possible that the limit of a single LOCATION_FORWARD could be exceeded when an
Orbix 3.3 client attempts to connect to an Orbix 6.3 CORBA server.

Summary Table 28 summarizes the handling of multiple LOCATION_FORWARD reply
messages.

Table 28: Number of LOCATION_FORWARD Replies that Can Be Handled
by Orbix Products

Product Maximum Number of
LOCATION_FORWARD Replies

Orbix 3.3 C++ Edition 1

Orbix 3.3 Java Edition Infinity

Orbix 6.3 Infinity
 140

CHAPTER 13

Codeset
Negotiation
Codeset negotiation enables CORBA applications to agree on a
common character set for transmission of narrow and wide
characters.

In this chapter This chapter discusses the following topics:

Introduction to Codeset Negotiation page 142

Configuring Codeset Negotiation page 143

Default Codesets page 144

Configuring Legacy Behavior page 147
141

CHAPTER 13 | Codeset Negotiation
Introduction to Codeset Negotiation

Overview The CORBA codeset conversion framework enables applications to ensure that
they communicate using compatible character formats for both narrow
characters, char, and wide characters, wchar.

Support for codeset negotiation Orbix 2000 (version 1.1 and later) and Orbix 6.3 support codeset negotiation, as
defined by the CORBA 2.4 specification.

Neither Orbix 3.3 nor Orbix 2000 version 1.0 support codeset negotiation.

Servers and codeset negotiation A server that supports codeset negotiation appends a list of supported codesets
(character formats) to the interoperable object references (IORs) it generates.
The codesets are placed in standard IOP::TAG_CODE_SETS components in the
IOR.

Clients and codeset negotiation A client that supports codeset negotiation examines an IOR to check the list of
codesets supported by the server. The client compares this list with its own list
of supported codesets and, if a match is found, the client chooses the pair of
transmission codesets (narrow character format and wide character format) to
use for that particular connection.

When sending a Request message, the client appends an IOP::CodeSets service
context that tells the server which codesets are used. The client continues to
include an IOP::CodeSets service context in Request messages until the first
Reply message is received from the server. Receipt of the first server Reply
message implicitly indicates that codeset negotiation is complete. The same
characters formats are used for subsequent communication on the connection.
 142

Configuring Codeset Negotiation
Configuring Codeset Negotiation

Overview Orbix 6.3 features greatly enhanced support for internationalization and codeset
negotiation. In particular, it is now possible to specify explicitly the codesets that
a server exports in an IOR.

CORBA configuration variables Table 29 gives the configuration variables that are used to specify the codesets
for an Orbix 6.3 CORBA application.

Table 29: CORBA Codeset Configuration Variables (Orbix 6.3)

Configuration Variable Description

plugins:codeset:char:ncs = "<codeset>"; Specifies the native narrow character
codeset.

plugins:codeset:char:ccs = ["<codeset1>", "<codeset2>",
...];

Specifies the list of conversion narrow
character codesets supported.

plugins:codeset:wchar:ncs = "<codeset>"; Specifies the native wide character
codeset.

plugins:codeset:wchar:ccs = ["<codeset1>", "<codeset2>",
...];

Specifies the list of conversion wide
character codesets supported.

plugins:codeset:always_use_default = <boolean>; Specifies that hardcoded default values
are used and the preceding variables are
ignored, if set in the same configuration
scope or higher.
143

CHAPTER 13 | Codeset Negotiation
Default Codesets

Overview This section describes the default codesets used by the Orbix 6.3 product. The
following default codesets are defined:

• CORBA C++ codesets for non-MVS platforms.

• CORBA C++ codesets for MVS platform.

• CORBA Java codesets for US-ASCII locale.

• CORBA Java codesets for Shift_JIS locale.

• CORBA Java codesets for EUC-JP locale.

• CORBA Java codesets for other locales.

Native and conversion codesets Native codesets are used by the application to pass char and wchar data to the
ORB.

Conversion codesets are used, where necessary, to facilitate interoperability with
other ORBs or platforms.

CORBA C++ codesets for
non-MVS platforms

Table 30 shows the default codesets for Orbix 6.3 C++ applications on
non-MVS platforms (Latin-1 locale).

In Orbix 6.3, the choice of native wide character codeset, UCS-2 or UCS-4, is
based on the size of CORBA::WChar (either 2 or 4 bytes). On Windows, UCS-2 is
used and on most UNIX platforms, UCS-4 is used.

Table 30: CORBA C++ Codesets (Non-MVS Platforms)

Codeset Type Codeset

Native codeset for char (NCS-C) ISO-8859-1

Conversion codesets for char (CCS-C) none

Native codeset for wchar (NCS-W) UCS-2 or UCS-4

Conversion codesets for wchar (CCS-W) UTF-16
 144

Default Codesets
CORBA C++ codesets for MVS
platform

Table 31 shows the default codesets for Orbix 6.3 C++ applications on the MVS
platform.

CORBA Java codesets for
US-ASCII locale

Table 32 shows the codesets supported by Orbix 6.3 Java applications in a
US-ASCII locale.

CORBA Java codesets for
Shift_JIS locale

Table 33 shows the codesets supported by Orbix 6.3 Java applications in a
Shift_JIS locale.

Table 31: CORBA C++ Codesets (Non-MVS Platforms)

Codeset Type Codeset

Native codeset for char (NCS-C) EBCDIC

Conversion codesets for char (CCS-C) ISO-8859-1

Native codeset for wchar (NCS-W) UCS-2 or UCS-4

Conversion codesets for wchar (CCS-W) UTF-16

Table 32: CORBA Java Codesets (ISO-8859-1/Cp-1292/US-ASCII locale)

Codeset Type Codeset

Native codeset for char (NCS-C) ISO-8859-1

Conversion codesets for char (CCS-C) UTF-8

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2

Table 33: CORBA Java Codesets (Shift_JIS locale)

Codeset Type Codeset

Native codeset for char (NCS-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or Shift_JIS or
euc_JP
145

CHAPTER 13 | Codeset Negotiation
CORBA Java codesets for
EUC-JP locale

Table 34 shows the codesets supported by Orbix 6.3 Java applications in a
EUC-JP locale.

CORBA Java codesets for other
locales

Table 35 shows the codesets supported by Orbix 6.3 Java applications in other
locales.

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2 or Shift_JIS or
euc_JP

Table 33: CORBA Java Codesets (Shift_JIS locale)

Codeset Type Codeset

Table 34: CORBA Java Codesets (EUC-JP locale)

Codeset Type Codeset

Native codeset for char (NCS-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or Shift_JIS or
euc_JP

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2 or Shift_JIS or
euc_JP

Table 35: CORBA Java Codesets (other locale)

Codeset Type Codeset

Native codeset for char (NCS-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or file encoding

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2 or file encoding
 146

Configuring Legacy Behavior
Configuring Legacy Behavior

Default behavior By default, the IOP::TAG_CODE_SETS tagged component is included in generated
IORs and the transmission codesets are negotiated by clients and transmitted
through an IOP::CodeSets service context. This is the CORBA-defined
behavior.

Legacy behavior Orbix 6.3 (all versions) also provides legacy behavior, to support the scenario
where wide character data is communicated between Orbix 6.3 and Orbix 3.3
Java Edition.

Disabling codeset negotiation The following configuration variable can be used to explicitly disable the
codeset negotiation mechanism:

The default is true.

This is a proprietary setting provided for interoperability with legacy
implementations, such as Orbix 3.3 Java Edition. The native codeset for
character data, ISO-8859-1 (Latin-1), is used and the overhead of full
negotiation is avoided. If wide character data is used, Orbix 6.3 reverts to the
UTF-16 transmission codeset.

Enabling wchar transmission on a
GIOP 1.0 connections

Passing wchar data over GIOP 1.0 can be enabled using the following
configuration variable:

The default is false.

The transmission of wchar data is not legal in GIOP 1.0, by default.

Orbix 6.3 Configuration File
policies:giop:interop_policy:negotiate_transmission_codeset =

"false";

Orbix 6.3 Configuration File
policies:giop:interop_policy:allow_wchar_types_in_1_0 = "true";
147

CHAPTER 13 | Codeset Negotiation
 148

Index

Symbols
#pragma ID 101
#pragma prefix

and naming service 100
#pragma prefix, using 98

A
ACM 53
activate_object_with_id() operation 36
activating CORBA objects

in Application Server Platform 36
in Orbix 3 35

activation, and the KDM 72
activation modes 85
active connection management

and interoperability 136
in Application Server Platform 53

add_member command 83
administration properties

MaxConsumers 65
MaxSuppliers 65

allow_fixed_types_in_1_0 variable 102
allow_wchar_types_in_1_0 variable 147
Any constructor 23
any-style clients 62
Any type

migrating 23
type-unsafe functions 23

ASN_OID structure 70
authentication filters 46
auth_method_data variable 73
automatic activation 72, 85
automatic work queues 44
AVA interface 70
AVAList interface 70

B
bi-directional IIOP 137
binary checksums 72
_bind() function 90

and corbaloc URLs 19
and notification service 61
and the Orbix 3 locator 38
BOA, replacing with the POA 31

C
C++ function signatures 28
C++ keywords

in IDL 105
on-the-wire format 105

C++ mapping changes 23
caching

and smart proxies 50
of data using smart proxies 50

callbacks
POA policies for 22

cat_group command 83
catit command 82
cat_member command 83
catns command 83
CertError interface 70
certificate authorities

trusted CA list 76
certificate revocation lists

configuration of 72
no support for 69

certificates
interoperability 77
migrating 75
PKCS#12 format 75

CertValidator interface 71
CertValidatorPolicy interface 70, 71
char type 142
checksums, in the KDM 72
chmodit command 82
chmodit utility 92
chownit command 82
client_secure_invocation_policy variable 73
clustered servers 38
codeset negotiation

interoperability 147
support for 142

codesets
Application Server Platform (C++) 144, 145
transmission 142
149

INDEX
codesetsApplication Server Platform (Java) 145, 146
CodeSets service context 142, 147
command-line tools 82
COMM_FAILURE system exception 24, 53

new semantics 112, 119
old semantics 112, 119

common.cfg file 127
Common.Services scope 128
compatibility matrix

for Java applications 120
for system exceptions 114

concurrent request processing 44
configuration

active connection management 136
allow_fixed_types_in_1_0 variable 102
itadmin utility 82
IT_IIOP_VERSION variable 103
IT_LISTEN_QUEUE_SIZE variable 138
IT_USE_ORBIX3_STYLE_SYS_EXC variable 108
security variables 73
send_locate_request variable 93
send_principal variable 93

connection management
and ACM 53
and I/O callbacks 52

CORBA::Environment parameter
migrating 23

corbaloc URL 19
CORBA objects, creating and activating 35
CORBA Security Level 2 69
CosNotifyComm module 62
CRL 69

D
daemons

locator 80
node daemon 80
orbixd 80

DEF_TIE macro 34
del_group command 83
del_member command 83
deprecated IDL types

Principal 15
DII, See dynamic invocation interface
DO_GL_HEALTHCHECK 67
DO_HEALTHCHECK 67
dumpconfig command 82
dynamic any module 123
dynamic invocation interface
 150
and LOCATION_FORWARD reply status 124
and user exceptions 122

E
enable_principal_service_context variable 93
Environment parameter 23

and C++ function signatures 28
migrating 23

EstablishTrustPolicy interface 73
etherealize() function 47
Extension interface 70
ExtensionList interface 70
external configuration granularity 72

F
fault tolerance 38, 49
file descriptor limits

and active connection management 53
extending 54

filters
and FILTER_SUPPRESS exception 121
migrating to Application Server Platform 41
typical uses 41

FILTER_SUPPRESS system exception 121
firewalls, and bi-directional IIOP 137
fixed type, interoperating 102

G
GIOP

default version 102
grouphosts command 82

H
HealthCheck

overview 67
simulating in Application Server Platform 67

high availability 38, 49

I
I/O Callbacks 52
IDL

C++ keywords appearing in 105
wchar type 104
wstring type 104

idl command 82
idlgen command 82
idlj command 82

INDEX
IDL migration 91
IDL-to-C++ mapping

and C++ keywords in IDL 105
changes 23

IFR 132
ifr command 82
IIOP

bi-directional 137
IT_DEFAULT_IIOP_VERSION variable 103

iiop_tls plug-in 72
implementing CORBA objects

inheritance approach 33
tie approach 34

incarnate() function 47
incoming_connections:hard_limit variable 53
incoming_connections:soft_limit variable 53
inheritance approach 33
initialization service

and the Orbix 3 locator 39
configuring for naming service 127

initializeHealthCheck() function 67
initial references

NotificationService object ID 61
interface repository 132
internationalization 104, 142
interoperable naming service

interoperability 126
new interface 59

INV_OBJREF system exception
migration 24
new semantics 111, 118
old semantics 111

invoke rights 92
IONA proprietary KEYENC format 76
IOR, and supported codesets 142
_is_a() function 98, 100
itadmin utility 82
IT_ALLOWED_CIPHERSUITES variable 73
IT_AUTHENTICATE_CLIENTS variable 73
IT_AVA interface 70
IT_AVAList interface 70
IT_BIDIRECTIONAL_IIOP_BY_DEFAULT

variable 73
IT_CACHE_OPTIONS variable 73
IT_CA_LIST_FILE variable 73
IT_CertError structure 70
IT_CERTIFICATE_FILE variable 73
IT_Certificate interface 70
IT_CERTIFICATE_PATH variable 73
IT_CHECKSUM_REPOSITORY variable 74
IT_CHECKSUMS_ENABLED variable 74
IT_CIPHERSUITES variable 73
IT_CRL_ENABLED variable 74
IT_CRL_List interface 69, 70
IT_CRL_REPOSITORY variable 74
IT_CRL_UPDATE_INTERVAL variable 74
IT_DAEMON_AUTHENTICATES_CLIENTS

variable 73
IT_DAEMON_POLICY variable 73
IT_DAEMON_UNRESTRICTED_METHODS

variable 73, 74
IT_DEFAULT_IIOP_VERSION variable 103
IT_DEFAULT_MAX_CHAIN_DEPTH variable 73
IT_DISABLE_SSL variable 74
IT_ENABLE_DEFAULT_CERT variable 74
IT_Extension interface 70
IT_ExtensionList interface 70
IT_FILTER_BAD_CONNECTS_BY_DEFAULT

variable 74
IT_IIOP_VERSION variable 103
IT_INSECURE_REMOTE_INTERFACES

variable 73
IT_INSECURE_SERVERS variable 73
IT_INVOCATION_POLICY variable 73
IT_KDM_CLIENT_COMMON_NAMES variable 74
IT_KDM_ENABLED variable 74
IT_KDM_PIPES_ENABLED variable 74
IT_KDM_REPOSITORY variable 74
IT_KDM_SERVER_PORT variable 74
IT_LISTEN_QUEUE_SIZE variable 138
itlocator daemon 80
IT_MAX_ALLOWED_CHAIN_DEPTH variable 73
itnode_daemon daemon 80
itnotifyconsole utility 66
IT_OID structure 70
IT_OIDTag type 70
IT_ORBIX_BIN_SERVER_POLICY variable 73
IT_SECURE_REMOTE_INTERFACES variable 73
IT_SECURE_SERVERS variable 73
IT_SERVERS_MUST_AUTHENTICATE_CLIENTS

variable 73
IT_SSL interface 70
IT_TLS_API interface 70
IT_TLS interface 70
IT_USE_ORBIX3_STYLE_SYS_EXC variable

in C++ 108
in Java 115
setting for Java applications 120
151

INDEX
setting in C++ 113
IT_UTCTime interface 70
IT_ValidateX509CertCB interface 71
IT_X509CertChain interface 71
IT_X509Cert interface 71
IT_X509_CRL_Info interface 69, 71
IT_X509_Revoked interface 69, 71
IT_X509_RevokedList interface 69, 71

K
KDM 72
key distribution management 72
killit command 82

L
launch rights 92
lease plug-in, and session management 55
level 2, security 69
listen queue size

range 138
setting for C++ applications 138

list_groups command 83
list_members command 83
load() function 47
load balancing

and activation modes 85
and the CORBA Naming Service 38

loader 47
LoaderClass class 47
loading persistent objects 47
LocateReply messages 124
LocateRequest messages 93, 124
LOCATION_FORWARD reply status 124, 140
locator, Orbix 3 migrating to Application Server

Platform 38
LocatorClass class 39, 40
locator daemon

administering POA names 81
in Application Server Platform 80

logging
and portable interceptors 42
and smart proxies 50

lsit command 82
lsns command 84

M
manual work queues 44
markers, converting to object ID 29
 152
max_chain_length variable 73
MaxConsumers administration properties 65
MaxEventsPerConsumer QoS property 64
MaxRetries QoS property 64, 67
MaxRetryTimeout QoS property 64
MaxSuppliers administration property 65
mechanism_policy variable 73
minor codes, for system exceptions 24
mkdirit command 82
multiple location forward 140
multi-threaded request processing 41

N
NamingContextExt interface 59, 126
naming service

and #pragma prefix 100
and NamingContextExt interface 126
C++ code sample 129
extensions 59
interoperability 59, 126
Java code sample 130
load-balancing extensions 59
source code compatibility 59
stub code 127

_narrow() function 98
and NamingContext 127
semantics 99

narrow characters, and codeset negotiation 142
negotiate_transmission_codeset variable

setting 147
new_group command 84
newncns command 84
node daemon 72, 80
notification console 66
notification service

administration properties 65
any-style clients 62
CORBA compliance 61
deprecated features 67
management 66
migrating 61
overview 60
PacingInterval type, migrating 64
Quality-of-Service properties 64
starting 66
subscribing and publishing, updates 61
TimeBase::TimeT, migrating 62
unstructured events 62

NotificationService object ID 61

INDEX
O
object-by-value 14
ObjectGroup interface 39
object groups, and load balancing 38
object IDs, converting to marker 29
OBJECT_NOT_EXIST system exception

and new semantics 111
Application Server Platform semantics 111
launch and invoke rights 92
migration 24
new semantics 118
old semantics 111

object_to_string() function 98
ObtainInfoMode enumeration 62
obtain_offered_types() operation 61
obtain_subscription_types() operation 61
OIDTag type 70
on_demand 85
opaque type 14
OpenSSL proprietary private key format 76
operation signatures

Environment parameter 23
ORB_CTRL_MODEL policy 44
orbixd daemon 80, 82

chmodit utility 92
invoke rights 92
launch rights 92

OrbixNotification 3 60
OrbixSSL 3.x configuration, migrating 73
OrbixWeb3.cfg configuration file 120
outgoing_connections:hard_limit 53
outgoing_connections:soft_limit 53
out parameters, and C++ function signatures 28

P
PacingInterval type 64
PEM format 75
per_client 85
pick_member command 84
piggybacking

in filters 41
migrating to Application Server Platform 43

pingit command 82
PKCS#12 format 75
PKCS#1 format 75
PKCS#8 format 75
plug-ins

iiop_tls 72
lease 55
POA

and object identities 30
creating 32
names, administering 81
replacing the BOA 31

POA policies
and POA creation 32
for callback objects 22

policies
allow_wchar_types_in_1_0 147
negotiate_transmission_codeset 147
threading policies 44

policy-based API 69
portable interceptors

and logging 42
replacement for filters 41

principal
enabling 93

Principal type 15, 92
interoperability 15

prioritized request processing 44
privacy enhanced mail format 75
private keys

IONA proprietary KEYENC format 76
migrating 76
OpenSSL proprietary format 76
PKCS#1 format 75
PKCS#8 format 75

psit command 82
publication, to notification channel 61
PullInterval QoS property 65
putidl command 82
putit command 83
putncns command 84
putnewncns command 84
putns command 84

Q
QOPPolicy interface 73
QoS properties 64

MaxEventsPerConsumer 64
MaxRetries 64, 67
MaxRetryTimeout 64
PullInterval 65
RequestTimeout 65
RetryMultiplier 65
RetryTimeout 64

Quality-of-Service properties 64
153

INDEX
R
readifr command 83
record() function 47
rename() function 48
replace() function 23
replies, LOCATION_FORWARD status 124
repository IDs 98

and #pragma ID 101
reputncns command 84
reputns command 84
request processing, prioritized 44
RequestTimeout QoS property 65
RetryMultiplier QoS property 65
RetryTimeout QoS property 64
rmdirit command 83
rmidl command 83
rmit command 83
rmns command 84

S
save() function 47
saving persistent objects 47
security 41

and filters 121
and transformers 51
ASN_OID structure 70
AVA interface 70
AVAList interface 70
CertError interface 70
CertValidator interface 71
CertValidatorPolicy interface 71
configuration variables 73
enabling 72
EstablishTrustPolicy interface 73
Extension interface 70
ExtensionList interface 70
IT_AVA interface 70
IT_AVAList interface 70
IT_CertError structure 70
IT_Certificate interface 70
IT_CRL_List interface 70
IT_Extension interface 70
IT_ExtensionList interface 70
IT_OID structure 70
IT_OIDTag type 70
IT_SSL interface 70
IT_TLS_API interface 70
IT_TLS interface 70
 154
IT_UTCTime interface 70
IT_ValidateX509CertCB 71
IT_X509CertChain interface 71
IT_X509Cert interface 71
IT_X509_CRL_Info interface 71
IT_X509_Revoked interface 71
IT_X509_RevokedList interface 71
OIDTag type 70
QOPPolicy interface 73
UTCTime type 70
X509CertChain interface 71
X509Cert interface 71

SecurityLevel1 module 69
SecurityLevel2 module 69
Security module 69
security service 45
send_locate_request variable 93
send_principal variable 93
servant activator 47
ServantActivator class 47
servant locator 47
servant manager 47
servant objects 30
server clusters 38
servergroups command 83
serverhosts command 83
service contexts

CodeSets 142, 147
replacement for piggybacking filters 43

session_cache_size variable 73
session_cache_validity_period variable 73
session_caching_policy variable 73
session management

and I/O callbacks 52
client migration 55
overview 55
server migration 55

SetConfigValue() function
and listen queue size 139
using 113

SINGLE_THREAD_MODEL policy 44
smart proxies

caching 50
definition 49
migrating to Application Server Platform 49

socket-level information 45
startHealthCheck() function 67
stopHealthCheck() function 67
string events 67

INDEX
subscription
to notification channel 61

system exceptions
and IT_USE_ORBIX3_STYLE_SYS_EXC 108
changes in semantics 24
COMM_FAILURE 119
compatibility matrix 114, 120
FILTER_SUPPRESS 121
INV_OBJREF 111, 118
IT_USE_ORBIX3_STYLE_SYS_EXC variable 115
minor code differences 24
new semantics 109, 116
OBJECT_NOT_EXIST 111, 118
old semantics 109, 116
semantics 108
TRANSIENT 119
UNKNOWN 121, 122

T
TAG_CODE_SETS IOR component 142, 147
target_secure_invocation_policy variable 73
TCP/IP

accessing details 45
accessing from application 52
and session management 55

templates, and tie approach 34
thread filter, migrating to Application Server

Platform 44
tie approach 34
TIE macro 34
TimeBase::TimeT

and notification service 62
replacing PacingInterval type 64

TLS, policy-based API 69
transformation of exceptions, and

IT_USE_ORBIX3_STYLE_SYS_EXC 110
transformers 51
TRANSIENT system exception

new semantics 112, 119
old semantics 112, 119
when raised 24

transmission codesets 142
transports, accessing TCP/IP layer 52
trusted CA certificate list 76
trusted_ca_list variable 73

U
UNKNOWN system exception 121, 122
UnknownUserException user exception class 123
unstructured events 62
URL, corbaloc format 19
user exceptions

and DII 122
parsing with dynamic any 123
UnknownUserException 123

UTCTime type 70

W
wchar type

and codeset negotiation 142
interoperating 104
over GIOP 1.0 connections 147

wide characters
and codeset negotiation 142

Wonderwall 137
WorkQueue policy 41
work queues

automatic 44
manual 44

wstring type, interoperating 104

X
X509CertChain interface 71
X509Cert interface 71
155

INDEX
 156

INDEX
157

INDEX
 158

	List of Tables
	Preface
	Overview of Migration
	Introduction
	Advantages of Orbix 6.3
	Migration Resources
	Migration Options
	Migrating to Orbix 6.3
	Mixed Deployment

	Migrating to Orbix 6.3
	IDL Migration
	The opaque Type
	The Principal Type

	Client Migration
	Replacing the _bind() Function
	Callback Objects
	IDL-to-C++ Mapping
	System Exception Semantics
	Dynamic Invocation Interface

	Server Migration
	Function Signatures
	Object IDs versus Markers
	CORBA Objects versus Servant Objects
	BOA to POA Migration
	Creating an Object Adapter
	Defining an Implementation Class
	Creating and Activating a CORBA Object

	Migrating Proprietary Orbix 3 Features
	Orbix 3 Locator
	Filters
	Request Logging
	Piggybacking Data on a Request
	Multi-Threaded Request Processing
	Accessing the Client's TCP/IP Details
	Security Using an Authentication Filter

	Loaders
	Smart Proxies
	Transformers
	I/O Callbacks
	Connection Management
	Session Management

	CORBA Services
	Interface Repository
	Naming Service
	Notification Service
	CORBA Specification Updates
	Quality of Service Properties
	Configuration/Administration Changes
	Deprecated Features

	SSL/TLS Toolkit
	Changes to the Programming Interfaces
	Configuration and Administration
	Migrating Certificate and Private Key Files

	Administration
	Orbix Daemons
	POA Names
	Command-Line Administration Tools
	Activation Modes

	Interoperability
	Configuring for Interoperability
	Interoperability Overview
	Launch and Invoke Rights
	GIOP Versions

	IDL Issues
	Using the #pragma Prefix
	Use of #pragma ID in IDL
	Fixed Data Type and Interoperability
	Use of wchar and wstring
	C++ Keywords as Operation Names

	Exceptions
	Orbix 3.3 C++ Edition—System Exceptions
	New Semantics and Old Semantics
	The INV_OBJREF and OBJECT_NOT_EXIST Exceptions
	The TRANSIENT and COMM_FAILURE Exceptions
	Orbix 3.3 C++ Edition and Orbix 6.3

	Orbix 3.3 Java Edition—System Exceptions
	New Semantics and Old Semantics
	The INV_OBJREF and OBJECT_NOT_EXIST Exceptions
	The TRANSIENT and COMM_FAILURE Exceptions
	Orbix 3.3 Java Edition and Orbix 6.3

	FILTER_SUPPRESS Exception
	Dynamic Invocation Interface and User Exceptions
	Dynamic Invocation Interface and LOCATION_FORWARD

	Services
	The Orbix 6.3 Interoperable Naming Service
	Interface Repository Interoperability
	SSL/TLS Toolkit Interoperability
	High Availability and Orbix 3.3 Clients

	Connection Management
	Orbix 6.3 Active Connection Management
	Callbacks and Bidirectional GIOP
	Setting the Listen Queue Size in Orbix 3.3 C++ Edition
	Multiple LOCATION_FORWARD

	Codeset Negotiation
	Introduction to Codeset Negotiation
	Configuring Codeset Negotiation
	Default Codesets
	Configuring Legacy Behavior

	Index

