
Orbix 6.3.7

Security Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2014. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2014-06-09

Contents
Preface...xi
Contacting Micro Focus ... xiii

Part I Introducing Security

Getting Started with Security ..3
Creating a Secure Domain..3
Running a Secure CORBA Demonstration..11
Debugging with the openssl Utility...14
Where do I go from here? ..18

Orbix Security Framework...21
Introduction to the Security Framework ...21

Security Framework Features ...21
Example of an iSF System..22
Security Standards..23

Orbix Security Service ...24
Orbix Security Service Architecture ...24
iSF Server Development Kit..25

Secure Applications ...26
ART Security Plug-Ins..26
Secure CORBA Applications ..28

Administering the iSF ..29
Overview of iSF Administration ...29
Secure ASP Services ...30

Transport Layer Security ...31
What does Orbix Provide? ..31
How TLS Provides Security ...32

Authentication in TLS ..32
Certificates in TLS Authentication ..34
Privacy of TLS Communications ..35
Integrity of TLS Communications ..35

Obtaining Credentials from X.509 Certificates ...36
Obtaining Certificate Credentials from a File36
Obtaining Certificate Credentials from a Smart Card39

Securing CORBA Applications ..43
Overview of CORBA Security...43
Securing Communications with SSL/TLS...44
Specifying Fixed Ports for SSL/TLS Connections ..52
Securing Two-Tier CORBA Systems with CSI...53
Securing Three-Tier CORBA Systems with CSI...57
X.509 Certificate-Based Authentication ..62
Caching of Credentials ...67

Single Sign-On for CORBA Applications69
 Orbix Security Guide i i i

SSO and the Login Service ...69
Username/Password-Based SSO..71
Three Tier Example with Identity Assertion ...77
X.509 Certificate-Based SSO...79
Enabling Re-Authentication at Each Tier ...85
Optimizing Retrieval of Realm Data..88
SSO Sample Configurations ..92

Part II Orbix Security Framework Administration

Configuring the Orbix Security Service 99
Configuring the File Adapter..99
Configuring the LDAP Adapter ...100
Clustering and Federation...104

Federating the Orbix Security Service ..104
Failover and Replication ...108
Client Load Balancing ..115

Additional Security Configuration...116
Configuring Single Sign-On Properties..116
Configuring the Log4J Logging ..117

Managing Users, Roles and Domains................................. 119
Introduction to Domains and Realms..119

iSF Security Domains...119
iSF Authorization Realms..120
Example Domain and Realms..124
Domain and Realm Terminology..127

Managing a File Security Domain ...129
Managing an LDAP Security Domain...131

Managing Access Control Lists .. 133
CORBA ACLs ...133

Overview of CORBA ACL Files..133
CORBA Action-Role Mapping ACL...133

Centralized ACL...136
Local ACL Scenario ..136
Centralized ACL Scenario ...138
Customizing Access Control Locally..143

Securing Orbix Services .. 145
Introduction to Securing Services ..145
Secure File-Based Domain ..146
Secure CFR Domain ...147
Customizing a Secure Domain...154

Creating a Customized Secure Domain...154
Configuring an iSF Adapter for the Security Service160
Configuring a Typical Orbix Service..161
Configuring the Security Service ...168

Default Access Control Lists ..170
Configuration Repository ACL..170
Locator ACL..174
Node Daemon ACL ..176
Naming Service ACL ..177
iv Orbix Security Guide

Trader Service ACL ... 178
Event Service ACL... 180
Notification Service ACL... 183
Basic Log Service ACL ... 189
Event Log Service ACL... 191
Notify Log Service ACL .. 193

Part III SSL/TLS Administration

Choosing an SSL/TLS Toolkit...203
Toolkit Replaceability... 203
OpenSSL Toolkit for C++ ... 203
Schannel Toolkit for C++ ... 204
JSSE/JCE Architecture ... 205

Managing Certificates..211
What are X.509 Certificates? .. 211
Certification Authorities ... 212

Commercial Certification Authorities .. 213
Private Certification Authorities... 213

Certificate Chaining... 214
PKCS#12 Files.. 216
Using the Demonstration Certificates ... 217
Creating Your Own Certificates ... 218

Set Up Your Own CA ... 218
Use the CA to Create Signed Certificates.. 221

Deploying Certificates.. 224
Overview of Certificate Deployment... 224
Providing a List of Trusted Certificate Authorities............................... 225
Deploying Application Certificates ... 226
Deploying Certificates in Smart Cards.. 227
Deploying Orbix Service Certificates .. 228
Deploying itadmin Certificates .. 231
Configuring Certificate Warnings ... 233

Deploying Certificates with Schannel ... 234
Schannel Certificate Store.. 234
Deploying Trusted Certificate Authorities.. 237
Deploying Application Certificates ... 237
Deploying Certificates in Smart Cards.. 239

Configuring SSL/TLS Secure Associations243
Overview of Secure Associations ... 243
Setting Association Options .. 244

Secure Invocation Policies.. 244
Association Options... 245
Choosing Client Behavior ... 247
Choosing Target Behavior .. 248
Hints for Setting Association Options ... 249

Specifying Cipher Suites .. 253
Supported Cipher Suites .. 253
Setting the Mechanism Policy ... 255
Constraints Imposed on Cipher Suites ... 258

Caching TLS Sessions .. 260
Orbix Security Guide v

Configuring SSL/TLS Authentication................................. 261
Requiring Authentication ..261

Target Authentication Only ...261
Target and Client Authentication ...264

Specifying Trusted CA Certificates ...266
Specifying an Application’s Own Certificate ...268
Providing a Pass Phrase or PIN ..271

Providing a Certificate Pass Phrase ..271
Providing a Smart Card PIN ..274

Advanced Configuration Options ..275
Setting a Maximum Certificate Chain Length276
Applying Constraints to Certificates ...276
Delaying Credential Gathering...278

Automatic Activation of Secure Servers 281
Managing Server Pass Phrases ..281
Protecting against Server Imposters ..283
How the KDM Activates a Secure Server ...284
KDM Administration ...286
Setting Up the KDM ...288
Registering a Secure Server..289

Part IV CSIv2 Administration

Introduction to CSIv2 ... 293
CSIv2 Features ...293
Basic CSIv2 Scenarios..294

CSIv2 Authentication over Transport Scenario...................................294
CSIv2 Identity Assertion Scenario ...295

Integration with the Orbix Security Framework..296

Configuring CSIv2 Authentication over Transport............. 299
CSIv2 Authentication Scenario ..299
SSL/TLS Prerequisites ..302
Requiring CSIv2 Authentication ...303
Providing an Authentication Service ...305
Providing a Username and Password ..306
Sample Configuration...309

Sample Client Configuration ...309
Sample Server Configuration ..310

Configuring CSIv2 Identity Assertion 313
CSIv2 Identity Assertion Scenario..313
SSL/TLS Prerequisites ..316
Enabling CSIv2 Identity Assertion..317
Sample Configuration...319

Sample Client Configuration ...319
Sample Intermediate Server Configuration320
Sample Target Server Configuration ..321
vi Orbix Security Guide

Part V CORBA Security Programming

Programming Policies..325
Setting Policies ... 325
Programmable SSL/TLS Policies .. 327

Introduction to SSL/TLS Policies ... 327
The QOPPolicy.. 328
The EstablishTrustPolicy .. 329
The InvocationCredentialsPolicy.. 330
Interaction between Policies ... 331

Programmable CSIv2 Policies ... 331

Authentication...335
Using the Principal Authenticator... 335

Introduction to the Principal Authenticator 335
Creating SSL/TLS Credentials ... 337
Creating CSIv2 Credentials .. 340

Using a Credentials Object ... 343
Retrieving Own Credentials .. 345

Retrieving Own Credentials from the Security Manager 345
Parsing SSL/TLS Own Credentials ... 347
Parsing CSIv2 Own Credentials... 348

Retrieving Target Credentials.. 349
Retrieving Target Credentials from an Object Reference..................... 349
Parsing SSL/TLS Target Credentials... 351

Retrieving Received Credentials .. 353
Retrieving Received Credentials from the Current Object.................... 353
Parsing SSL/TLS Received Credentials ... 354
Parsing CSIv2 Received Credentials... 355

Copying CSI Credentials between Threads.. 358

Validating Certificates ...363
Overview of Certificate Validation.. 363
The Contents of an X.509 Certificate.. 365
Parsing an X.509 Certificate ... 366
Controlling Certificate Validation ... 367

Certificate Constraints Policy .. 368
Certificate Validation Policy .. 371

Obtaining an X.509 Certificate .. 374

Part VI iSF Programming

Developing an iSF Adapter...377
iSF Security Architecture.. 377
iSF Server Module Deployment Options.. 378
iSF Adapter Overview .. 379
Implementing the IS2Adapter Interface ... 380
Deploying the Adapter ... 387

Configuring iSF to Load the Adapter .. 387
Setting the Adapter Properties.. 388
Loading the Adapter Class and Associated Resource Files 389
Orbix Security Guide vii

Appendix Security Variables .. 391
Applying Constraints to Certificates..391
Root Namespace ...393
initial_references...393
password_retrieval_mechanism...394
plugins:atli2_tls ..394
plugins:csi..396
plugins:gsp ..397
plugins:https ..400
plugins:iiop_tls ...400
plugins:kdm ...403
plugins:kdm_adm ...404
plugins:schannel ...405
plugins:security ..405
policies ..405
policies:csi ...409
policies:https ..410
policies:iiop_tls ...414
policies:tls..421
principal_sponsor ..422
principal_sponsor:csi ...425
principal_sponsor:https..427
principal_sponsor:iiop_tls ...428

Appendix iSF Configuration.. 431
Properties File Syntax ..431
iSF Properties File..432
Cluster Properties File ..442
log4j Properties File ...443

Appendix ASN.1 and Distinguished Names....................... 447
ASN.1..447
Distinguished Names ...448

Appendix Association Options.. 451
Association Option Semantics..451

Appendix Action-Role Mapping DTD................................. 453

Appendix OpenSSL Utilities.. 457
Using OpenSSL Utilities ..457

The x509 Utility ..458
The req Utility...459
The rsa Utility ...460
The ca Utility ..461

The OpenSSL Configuration File...463
[req] Variables..463
[ca] Variables ...464
[policy] Variables ..464
Example openssl.cnf File ..465

Appendix Security Recommendations 469
General Recommendations ...469
viii Orbix Security Guide

Appendix Sample TLS Configurations471
Demonstration TLS Scopes... 471

Appendix License Issues ..477
OpenSSL License .. 477

Index...481
Orbix Security Guide ix

x Orbix Security Guide

Preface

What is covered in this book
This book is a guide to administering and programming secure
applications in Orbix, covering both secure CORBA applications.
The Orbix security framework provides the underlying security
infrastructure for performing authentication and authorization.

Who should read this book
This guide is intended for the following audience:
• Security administrators.
• CORBA C++ developers.
• CORBA Java developers.
A prior knowledge of CORBA is assumed.

Organization of this guide
This guide is divided into the following parts:

Part I “Introducing Security”
This part describes how TLS provides security, and how Orbix
works.

Part II “Orbix Security Framework Administration”
This part describes how to administer the Orbix Security
Framework.

Part III “SSL/TLS Administration”
This part explains how to configure and manage Orbix in detail.

Part IV “CSIv2 Administration”
This part explains how to configure and manage CSIv2 in detail.

Part V “CORBA Security Programming”
This part explains how to program the SSL/TLS and CSIv2 APIs in
your security-aware CORBA applications.

Part VI “iSF Programming”
This part explains how to explains how to develop a custom
Security Franework adapter implementation.

Appendices
The appendices list further technical details.
 Orbix Security Guide xi

Typographical conventions
This book uses the following typographical conventions:

Keying conventions
This book uses the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer to
the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:
#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and commands
represent variable values you must supply, such
as arguments to commands or path names for
your particular system. For example:
% cd /users/your_name
Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX command
shell prompt for a command that does not require
root privileges.

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{} Braces enclose a list from which you must choose
an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xii Orbix Security Guide

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.
Orbix Security Guide xiii

http://www.microfocus.com
http://www.microfocus.com

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
 xiv Orbix Security Guide

http://www.microfocus.com
message URL http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Introducing Security

In this part
This part contains the following chapters:

Getting Started with Security page 3

Orbix Security Framework page 21

Transport Layer Security page 31

Securing CORBA Applications page 43

Single Sign-On for CORBA Applications page 69

 2 Orbix Security Guide

Getting Started with
Security
This chapter focuses on getting some security demonstrations up and
running quickly. The details and background of the various security
features are not discussed at this stage.

Creating a Secure Domain
This section describes how to create a secure configuration
domain, secure, which is required for the security demonstrations.
This domain deploys a minimal set of Orbix services.

Prerequisites
Before creating a secure domain, the following prerequisites must
be satisfied:
• Your license allows you to use the security features of Orbix.
• Some basic system variables are set up (in particular, the

IT_PRODUCT_DIR, IT_LICENSE_FILE, and PATH variables).
Fore more details, please consult the Installation Guide.

Licensing
The location of the license file, licenses.txt, is specified by the
IT_LICENSE_FILE system variable. If this system variable is not
already set in your environment, you can set it now.

Steps
To create a secure configuration domain, secure, perform the
following steps:
1. Run itconfigure.
2. Choose the domain type.
3. Specify service startup options.
4. Specify security settings.
5. Specify fault tolerance settings.
6. Select services.
7. Confirm choices.
8. Finish configuration.

WARNING: The secure domain created using this
procedure is not fully secure, because the X.509
certificates used in this domain are insecure demonstration
certificates. This secure domain must be properly
customized before deploying in a production environment.
 Orbix Security Guide 3

Run itconfigure
To begin creating a new configuration domain, enter itconfigure
at a command prompt. An Orbix Configuration Welcome dialog
box appears, as shown in Figure 1.
Select Create a new domain and click OK.

Figure 1: The Orbix Configuration Welcome Dialog Box
 4 Orbix Security Guide

Choose the domain type
A Domain Type window appears, as shown in Figure 2.
In the Configuration Domain Name text field, type secure.
Under Configuration Domain Type, click the Select Services
radiobutton.
Click Next> to continue.

Figure 2: The Domain Type Window
Orbix Security Guide 5

Specify service startup options
A Service Startup window appears, as shown in Figure 3.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

Figure 3: The Service Startup Window
 6 Orbix Security Guide

Specify security settings
A Security window appears, as shown in Figure 4.
Under Transports, click the Secure Communication
(TLS/HTTPS) radiobutton. Under Security Features, select the
Orbix Security Service option and the Enable Access Control
for Core Services option.
Click Next> to continue.

Specify fault tolerance settings
A Fault Tolerance window appears, as shown in Figure 5.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

Figure 4: The Security Window
Orbix Security Guide 7

Figure 5: The Fault Tolerance Window
 8 Orbix Security Guide

Select services
A Select Services window appears, as shown in Figure 6.
In the Select Services window, select the following services and
components for inclusion in the configuration domain: Location,
Node daemon, Management, CORBA Interface Repository,
CORBA Naming, Orbix Security, and demos.
Click Next> to continue.

Figure 6: The Select Services Window
Orbix Security Guide 9

Confirm choices
You now have the opportunity to review the configuration settings
in the Confirm Choices window, Figure 7. If necessary, you can
use the <Back button to make corrections.
Click Next> to create the secure configuration domain and
progress to the next window.

Finish configuration
The itconfigure utility now creates and deploys the secure
configuration domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and OrbixInstallDir/var
directories.
If the configuration domain is created successfully, you should see
a Summary window with a message similar to that shown in
Figure 8.

Figure 7: The Confirm Choices Window
 10 Orbix Security Guide

Click Finish to quit the itconfigure utility.

Running a Secure CORBA Demonstration
This section describes how to run the secure CORBA
demonstration, which is a three-tier application that illustrates the
SSL/TLS, username/password authentication, and identity
assertion features.

Prerequisites
Before running this demonstration, you must have created a
secure configuration domain—see “Creating a Secure Domain” on
page 3.

Demonstration location
The secure CORBA demonstration is located in the following
directory:
ASPInstallDir/asp/Version/demos/common/is2

Where ASPInstallDir is the directory where Orbix is installed.

Figure 8: Configuration Summary
Orbix Security Guide 11

Demonstration overview
Figure 9 gives an overview of the secure CORBA demonstration.

Steps
To build and run the secure CORBA demonstration, perform the
following steps:
1. Build the demonstration.
2. Start the Orbix services.
3. Run the target server.
4. Run the intermediate server.
5. Run the client.

Build the demonstration
To build the demonstration, open a new command prompt and
enter the following commands:

Windows
> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> itant

UNIX
% . ASPInstallDir/etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
% itant

Start the Orbix services
To start the Orbix services, enter the following command at the
command prompt:

Windows
> OrbixInstallDir\etc\bin\start_secure_services.bat

Figure 9: CORBA Secure Demonstration Overview
 12 Orbix Security Guide

UNIX
% OrbixInstallDir/etc/bin/start_secure_services

Run the target server
To run the target server, open a new command prompt and enter
the following commands:

Windows and J2SE (JDK) 1.3.x
> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> java -classpath .\java\classes;"%CLASSPATH%" is2.Server

Windows and J2SE (JDK) 1.4.x
> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> java -Djava_endorsed.dirs="ASPInstallDir\\lib\\art\\omg\\5"

-classpath .\java\classes;"%CLASSPATH%" is2.Server

UNIX and J2SE (JDK) 1.3.x
% . ASPInstallDir/etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
% java -classpath ./java/classes:$CLASSPATH is2.Server

UNIX and J2SE (JDK) 1.4.x
% . ASPInstallDir/etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath

./java/classes:$CLASSPATH is2.Server

Run the intermediate server
To run the intermediate server, open a new command prompt and
enter the following commands:

Windows and J2SE (JDK) 1.3.x
> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> java -classpath .\java\classes;"%CLASSPATH%"

is2.IntermediateServer

Windows and J2SE (JDK) 1.4.x
> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> java -Djava_endorsed.dirs="ASPInstallDir\\lib\\art\\omg\\5"

-classpath .\java\classes;"%CLASSPATH%"
is2.IntermediateServer

UNIX and J2SE (JDK) 1.3.x
% . ASPInstallDir/etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
% java -classpath ./java/classes:$CLASSPATH

is2.IntermediateServer

UNIX and J2SE (JDK) 1.4.x
% . ASPInstallDir/etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
Orbix Security Guide 13

% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath
./java/classes:$CLASSPATH is2.IntermediateServer

Run the client
To run the client, open a new command prompt and enter the
following commands:

Windows and J2SE (JDK) 1.3.x
> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> java -classpath .\java\classes;"%CLASSPATH%" is2.Client -user

alice

Windows and J2SE (JDK) 1.4.x
> ASPInstallDir\etc\bin\secure_env.bat
> cd ASPInstallDir\asp\Version\demos\common\is2
> java -Djava_endorsed.dirs="ASPInstallDir\\lib\\art\\omg\\5"

-classpath .\java\classes;"%CLASSPATH%" is2.Client -user
alice

UNIX and J2SE (JDK) 1.3.x
% . ASPInstallDir/etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
% java -classpath ./java/classes:$CLASSPATH is2.Client -user

alice

UNIX and J2SE (JDK) 1.4.x
% . ASPInstallDir/etc/bin/secure_env.sh
% cd ASPInstallDir/asp/Version/demos/common/is2
% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath

./java/classes:$CLASSPATH is2.Client -user alice

Debugging with the openssl Utility
The openssl utility included with Orbix provides two powerful tools
for debugging SSL/TLS client and server applications, as follows:
• openssl s_client—an SSL/TLS test client, which can be used

to test secure Orbix servers. The test client can connect to a
secure port, while providing a detailed log of the steps
performed during the SSL/TLS handshake.

• openssl s_server—an SSL/TLS test server, which can be used
to test secure Orbix clients. The test server can simulate a
bare bones SSL/TLS server (handshake only). Additionally, by
supplying the -WWW switch, the test server can also simulate a
simple secure Web server.

Note: The intermediate server must run in the same
directory as the target server.

Note: The client must run in the same directory as the
target and intermediate servers.
 14 Orbix Security Guide

References
For complete details of the openssl s_client and the
openssl s_server commands, see the following OpenSSL
documentation pages:
• http://www.openssl.org/docs/apps/s_client.html
• http://www.openssl.org/docs/apps/s_server.html

Debugging example
Consider the is2 demonstration discussed in the previous section,
“Running a Secure CORBA Demonstration” on page 11. This
demonstration consists of a client, an intermediate server and a
target server.
To demonstrate SSL debugging, you can use the openssl test
client to connect directly to the target server.

Debugging steps
The following table shows the steps required to debug a secure
server by connecting to that server using the openssl test client:

Convert the client certificate to PEM
format
Certificates for Orbix applications are deployed in PKCS#12
format, whereas the openssl test client requires the certificate to
be in PEM format (a format that is proprietary to OpenSSL). It is,
therefore, necessary to convert the client certificate to the PEM
format.
For example, given the certificate admin.p12 (located in the
OrbixInstallDir/asp/Version/etc/tls/x509/certs/demos directory), you
can convert the certificate to PEM format as follows.
1. Run the openssl pkcs12 command, as follows:

openssl pkcs12 -in admin.p12 -out admin.pem

When you run this command you are prompted to enter, first
of all, the pass phrase for the admin.p12 file and then to enter
a pass phrase for the newly created admin.pem file.

2. The admin.pem file generated in the previous step contains a
CA certificate, an application certificate, and the application
certificate’s private key. Before you can use the admin.pem file

Step Action

1 Convert the client certificate to PEM format.

2 Run the target server.

3 Obtain the target server’s IP port.

4 Run the test client.
Orbix Security Guide 15

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

with the openssl test client, however, you must remove the CA
certificate from the file. That is, the file should contain only
the application certificate and its private key.
For example, after deleting the CA certificate from the
admin.pem file, the contents of the file should look something
like the following:

Bag Attributes
 localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91 C1 E1 FF 4A
 friendlyName: Administrator
subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty -- demo

purposes/OU=Administration/CN=Administrator/emailAddress=administrator@abigbank.com
issuer=/C=US/ST=Massachusetts/L=Boston/O=ABigBank -- no warranty -- demo

purposes/OU=Demonstration Section -- no warranty --/CN=ABigBank Certificate
Authority/emailAddress=info@abigbank.com

-----BEGIN CERTIFICATE-----
MIIEiTCCA/KgAwIBAgIBATANBgkqhkiG9w0BAQQFADCB5jELMAkGA1UEBhMCVVMx
FjAUBgNVBAgTDU1hc3NhY2h1c2V0dHMxDzANBgNVBAcTBkJvc3RvbjExMC8GA1UE
ChMoQUJpZ0JhbmsgLS0gbm8gd2FycmFudHkgLS0gZGVtbyBwdXJwb3NlczEwMC4G
A1UECxMnRGVtb25zdHJhdGlvbiBTZWN0aW9uIC0tIG5vIHdhcnJhbnR5IC0tMScw
JQYDVQQDEx5BQmlnQmFuayBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkxIDAeBgkqhkiG
9w0BCQEWEWluZm9AYWJpZ2JhbmsuY29tMB4XDTA0MTExODEwNTE1NVoXDTE0MDgw
NzEwNTE1NVowgbQxCzAJBgNVBAYTAlVTMRYwFAYDVQQIEw1NYXNzYWNodXNldHRz
MTEwLwYDVQQKEyhBQmlnQmFuayAtLSBubyB3YXJyYW50eSAtLSBkZW1vIHB1cnBv
c2VzMRcwFQYDVQQLEw5BZG1pbmlzdHJhdGlvbjEWMBQGA1UEAxMNQWRtaW5pc3Ry
YXRvcjEpMCcGCSqGSIb3DQEJARYaYWRtaW5pc3RyYXRvckBhYmlnYmFuay5jb20w
gZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANk75O3YBkkjCvgy0pOPxAU+M6Rt
0QzaQ8/YlciWlQ/oCT/l7+3P/ZhHAJaT+QxmahQHdY5ePixGyaE7raut2MdjHOUo
wCKtZqlhuNa8juJSvsN5iTUupzp/mRQ/j4rOxr8gWI5dh5d/kF4+H5s8yrxNjrDg
tY7fdxP9Kt0x9sYPAgMBAAGjggF1MIIBcTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIB
DQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUJBdK
9LPZPsaE9+a/FWbCz2LQxWkwggEVBgNVHSMEggEMMIIBCIAUhJz9oNb6Yq8d1nbH
BPjtS7uI0WyhgeykgekwgeYxCzAJBgNVBAYTAlVTMRYwFAYDVQQIEw1NYXNzYWNo
dXNldHRzMQ8wDQYDVQQHEwZCb3N0b24xMTAvBgNVBAoTKEFCaWdCYW5rIC0tIG5v
IHdhcnJhbnR5IC0tIGRlbW8gcHVycG9zZXMxMDAuBgNVBAsTJ0RlbW9uc3RyYXRp
b24gU2VjdGlvbiAtLSBubyB3YXJyYW50eSAtLTEnMCUGA1UEAxMeQUJpZ0Jhbmsg
Q2VydGlmaWNhdGUgQXV0aG9yaXR5MSAwHgYJKoZIhvcNAQkBFhFpbmZvQGFiaWdi
YW5rLmNvbYIBADANBgkqhkiG9w0BAQQFAAOBgQC7S5RiDsK3ZChIVpHPQrpQj5BA
J5DYTAmgzac7pkxy8rQzYvG5FjHL7beuzT3jdM2fvQJ8M7t8EMkHKPqeguArnY+x
3VNGwWvlkr5jQTDeOd7d9Ilo2fknQA14j/wPFEDUwdz4n9TThjE7lpj6zG27EivF
cm/h2L/DpWgZK0TQ9Q==
-----END CERTIFICATE-----
Bag Attributes
 localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91 C1 E1 FF 4A
 friendlyName: Administrator
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,AD8F864A0E97FB4E

e3cexhY+kAujb6cOs9skerP2qZsauc33yyp4cdZiAkAilcmfA/mLv2pfgao8gfu9
yroNvYyDADEZzagEyzF/4FGU1nScZjAiy9Imi9mA/lSHD5g1HH/wl2bgXclBqtC3
GrfiHzGMbWyzDUj0PHjw/EkbyxQBJsCe4fPuCGVH7frgCPeE1q2EqRKBHCa3vkHr
6hrwuWS18TXn8DtcCFFtugouHXwKeGjJxE5PYfKak18BOwKgiZqtj1DHY6G2oERl
ZgNtAB+XF9vrA5XZHNsU6RBeXMVSrUlOGzdVrCnojd6d8Be7Q7KBSHDV9XzZlPKp
7DYVn5DyFSEQ7kYs9dsaZ5Id5iNkMJiscPp7AL2SJAWpYlUfEN5gFnIYiwXP1ckF
STTiq+BG8UPPm6G3KGgRZMZ0Ih7DySZufbE24NIrN74kXV9Vf/RpxzNiMz/PbLdG
6wiyp47We/4OqxLv8YIjGGEdYyaB/Y7XEyE9ZL74Dc3CcuSvtA2fC8hU3cXjKBu7
YsVz/Dq8G0w223owpZ0Qz2KUl9CLq/hmYLOJt1yLVoaGZuJ1CWXdgX0dComDOR8K
 16 Orbix Security Guide

Run the target server
Run the target server, as described in “Running a Secure CORBA
Demonstration” on page 11.

Obtain the target server’s IP port
In this demonstration, the server writes an IOR file,
target_server.ior, to the OrbixInstallDir/asp/Version/demos/common/is2
directory as it starts up. You can extract the target server’s IP port
from this IOR file using the iordump utility.
From a command prompt, use the iordump utility to parse the
target_server.ior file as follows:

This dumps the parsed contents of the IOR to the console window.
The relevant portion of the output is the SSL_SEC_TRANS tagged
component, which looks something like the following:

In this example, the target server’s IP port is 2955.

aIaUagy/Gz2zys20N5WRK+s+HzqoB0vneOy4Z1Ss71HfGAUemiRTAI8DXizgyHYK
5m6iSSB961xOM7YI58JYOGNLMXzlLmCUAyCQhklWGJFEN4cZBrkh5o6r+U4FcwhF
dvDoBu39Xie5gHFrJU86qhzxi202h0sO2vexvujSGyNy009PJGkEAhJGfOG+a2Qq
VBwuUZqo0zIJ6gUrMV1LOAWwL7zFxyKaF5lijF1C9KxtEKm0393zag==
-----END RSA PRIVATE KEY-----

iordump target_server.ior

 Component 1:
>> +108 [00][00][00][14]
 Tag: (20) SSL_SEC_TRANS
>> +112 [00][00][00][08]
 Component length: 8 bytes
>> +116 [00]
 Component Byte Order: (0) Big Endian
>> +117 [00]
 (padding)
>> +118 [00][7e]
 Target supports: Integrity

Confidentiality DetectReplay DetectMisordering
EstablishTrustInTarget EstablishTrustInClient

>> +120 [00][5e]
 Target requires: Integrity

Confidentiality DetectReplay DetectMisordering
EstablishTrustInClient

>> +122 [0b][8b]
 SSL port: 2955
Orbix Security Guide 17

Run the test client
To run the openssl test client, open a command prompt, change
directory to the directory containing the admin.pem file, and enter
the following command:

When you enter the command, you are prompted to enter the
pass phrase for the admin.pem file.
The openssl s_client command switches can be explained as
follows:
-connect host:port

Open a secure connection to the specified host and port.
-ssl3

This option configures the client to initiate the handshake
using SSL v3 (the default is SSL v2). To see which SSL
version (or versions) the target server is configured to use,
check the value of the
policies:mechanism_policy:protocol_version variable in the
Orbix configuration file. Orbix servers can also be configured
to use TLS v1, for which the corresponding openssl command
switch is -tls1.

-cert admin.pem

Specifies admin.pem as the test client’s own certificate. The
PEM file should contain only application certificate and the
application certificate’s private key. The PEM file should not
contain a complete certificate chain.
If your server is not configured to require a client certificate,
you can omit the -cert switch.

Other command switches
The openssl s_client command supports numerous other
command switches, details of which can be found on the
OpenSSL document pages (see “References” on page 15).
Two of the more interesting switches are -state and -debug,
which log extra details to the command console during the
handshake.

Where do I go from here?
To help you get started in the wide-ranging field of security, you
might find it helpful to focus on one of the following fundamental
tasks:
• I want to customize the sample domain to make it fully

secure.
• I want to security-enable a CORBA application.
• I want to write a security-aware CORBA application.
• I want to integrate a third-party enterprise security system.
• I want to replace the default SSL/TLS toolkit.

openssl s_client -connect localhost:2955 -ssl3 -cert
admin.pem
 18 Orbix Security Guide

I want to customize the sample domain
to make it fully secure
The sample configuration domains generated by the itconfigure
utility are not fully secure, because the X.509 certificates used by
the Orbix services are insecure demonstration certificates. To
perform basic customization of a secure configuration domain, see
the following reference:
• “Securing Orbix Services” on page 145.

I want to security-enable a CORBA
application
To security-enable a CORBA application, see the following
reference:
• “Securing CORBA Applications” on page 43.

I want to write a security-aware CORBA
application
To write a security-aware CORBA application, see the following
references:
• “Programming Policies” on page 325.
• “Authentication” on page 335.
• “Validating Certificates” on page 363.

I want to integrate a third-party
enterprise security system
The Orbix Security Framework provides a facility for integrating
with third-part enterprise security systems, such as LDAP, through
a pluggable system of security adapters. For details of how this
works, see the following reference:
• “Configuring the Orbix Security Service” on page 99.
For details of how to write your own custom adapter, see the
following reference:
• “Developing an iSF Adapter” on page 377.
Orbix Security Guide 19

I want to replace the default SSL/TLS
toolkit
By default, Orbix uses the OpenSSL toolkit to provide security on
C++, and uses JSSE on Java. Orbix’s SSL/TLS toolkit
replaceability feature enables you to replace the underlying
SSL/TLS toolkit used by an Orbix application (for example, to
replace OpenSSL with Schannel on Windows).

For details, see the following chapter:
• “Choosing an SSL/TLS Toolkit” on page 203.

Note: The Baltimore toolkit formerly used to provide
Orbix security is no longer used. This toolkit was
deprecated from Orbix 6.3 SP4 onwards, and has now been
removed from the product.
 20 Orbix Security Guide

Orbix Security
Framework
The Orbix Security Framework provides the common underlying security
framework for all types of applications in Orbix, including CORBA and
Web services applications. This chapter provides an introduction to the
main features of the Security Framework.

Introduction to the Security Framework
This section provides a brief overview of and introduction to the
Orbix Security Framework, which provides a common security
framework for all components of Orbix.

Security Framework Features
The Orbix Security Framework is a scalable, standards-based
security framework with the following features:
• Pluggable integration with third-party enterprise security

systems.
• Out-of-the-box integration with flat file, or LDAP security

systems.
• Centralized management of user accounts.
• Role-Based Access Control.
• Role-to-permission mapping supported by access control lists.
• Unified security platform works across CORBA and Web

services.
• Security platform is ART-based.
• Logging.
 Orbix Security Guide 21

Example of an iSF System
Figure 10 shows an example of an iSF system that features a
standalone Orbix security service, which can service remote
requests for security-related functions.

Orbix security service
The Orbix security service is the central component of the Orbix
Security Framework, providing an authentication service, an
authorization service and a repository of user information and
credentials. When the Orbix security service is deployed in
standalone mode, all kinds of application, including CORBA
applications and Web services, can call it remotely.

Enterprise security service
The Orbix security service is designed to integrate with a
third-party enterprise security service (ESS), which acts as the
primary repository for user information and credentials.
Integration with an ESS is supported by a variety of iSF adapters.
The following adapters are currently supported by iSF:
• LDAP adapter.
The following adapter is provided for use in simple demonstrations
(but is not supported in production environments):
• File adapter.

Figure 10: Example System with a Standalone Orbix Security Service
 22 Orbix Security Guide

In addition, it is possible to build your own adapters using the iSF
Adapter SDK—see “iSF Server Development Kit” on page 25.

Propagating security credentials
The example in Figure 10 on page 22 assumes that a user’s
credentials can be propagated from one application to another.
There are fundamentally two different layers that can propagate
security credentials between processes in an iSF distributed
system:
• Transport layer.
• Application layer.

Transport layer
Security at the transport layer enables security information to be
exchanged during the security handshake, which happens while
the connection is being established. For example, the SSL/TLS
standard enables X.509 certificates to be exchanged between a
client and a server during a security handshake.

Application layer
Security at the application layer enables security information to be
propagated after connection establishment, using a protocol
layered above the transport. For example, the CORBA common
secure interoperability v2.0 (CSIv2) protocol propagates security
information by embedding security data in IIOP messages, which
are layered above TCP/IP.
The CSIv2 protocol can be used to propagate any of the following
kinds of credential:
• Username/password/domain.
• Username only.
• Single sign-on (SSO) token.

Security Standards
One of the goals of the iSF is to base the security framework on
established security standards, thereby maximizing the ability of
iSF to integrate and interoperate with other secure systems. This
section lists the security standards currently supported by the iSF.

Standards supported by iSF
The following security standards are supported by iSF:
• HTTP login mechanisms—that is, HTTP basic authentication

and HTTP form-based authentication.
Orbix Security Guide 23

• Secure Sockets Layer / Transport Layer Security (SSL/TLS),
from the Internet Engineering Task Force, which provides data
security for applications that communicate across networks.

• CCITT X.509, which governs the form of security certificates
based on public (asymmetric) key systems)

• OMG Common Secure Interoperability specification (CSIv2)
• WS-Security, which a proposed standard from Microsoft, IBM,

and VeriSign. It defines a standard set of SOAP extensions, or
message headers, that can be used to implement integrity
and confidentiality in Web services applications.

• Java Authentication and Authorization Service (JAAS)

Orbix Security Service
The Orbix security service is the central component of the Orbix
Security Framework. This section provides an overview of the
main Orbix security service features.

Orbix Security Service Architecture

iSF client API
The GSP plug-in accesses the Orbix security service through the
iSF client API, which is a private Orbix-proprietary API. This API
exposes general security operations, such as authenticating a
username and password, retrieving a user’s roles, and so on. Two
language versions of the iSF client API are used internally by
Orbix:
• C++.
• Java.

Remote connections to the Orbix security
service
Orbix plug-ins can communicate with the Orbix security service
through an IIOP/TLS connection.

Standalone or embedded deployment
The iSF server module can be packaged in the following different
ways:
• Standalone deployment (default)—the iSF server module is

packaged as a standalone server process, the Orbix security
service, that services requests through a CORBA interface (IIOP
or IIOP/TLS).

• Embedded deployment—the iSF server module is packaged as
a JAR library that can be loaded directly into a Java
application. In this case, service requests are made as local
calls.
 24 Orbix Security Guide

iSF adapter API
Integration with third-party enterprise security systems is
facilitated by the iSF adapter API that enables the Orbix security
service to delegate security operations to other security systems.

iSF adapters
Orbix provides several ready-made adapters that are
implemented with the iSF adapter API. The following adapters are
available:
• LDAP adapter.
• File adapter (demonstration only—not supported in production

environments).

Optional iSF components
The Orbix security service includes the following optional
components that can be enabled to provide additional security
features:
• Single sign-on.

Single sign-on
Single sign-on means that once an application has authenticated a
particular user, it is relatively easy for other secure applications to
access that user’s security data.
When single sign-on is enabled, the Orbix security service creates
an association between an SSO token and a user session. Any
application that has the user’s SSO token can then use it to access
the user’s session data.

iSF Server Development Kit
The iSF server development kit (SDK) enables you to implement
custom extensions to the iSF. The iSF SDK is divided into the
following parts:
• iSF adapter SDK.
• iSF client SDK.

iSF adapter SDK
The iSF adapter SDK provides an API implementing custom iSF
adapters. Using this API, you can integrate any enterprise security
system with the iSF.
This API is available in both C++ and Java.
Orbix Security Guide 25

iSF client SDK
The iSF client SDK provides an API for Orbix to access the iSF
server module’s core functionality directly (usually through remote
calls).
This is a private API intended only for internal use by Orbix.

Secure Applications
This section explains how applications from various technology
domains are integrated into the Orbix Security Framework.

In this section
This section contains the following subsections:

ART Security Plug-Ins
To participate in the Orbix Security Framework, applications load
one or more of the ART security plug-ins. Because Orbix is built
using a common ART platform, an identical set of security plug-ins
are used across the different technology domains of CORBA and
Web services. This has the advantage of ensuring maximum
security compatibility between these different technology
domains.

What is ART?
Orbix’s Adaptive Runtime Technology (ART) is a modular
framework for constructing distributed systems, based on a
lightweight core and an open-ended set of plug-ins. ART is the
underlying technology in Orbix.

Security plug-ins
An application can load any of the following security plug-ins to
enable particular security features and participate in the Orbix
Security Framework:
• IIOP/TLS.
• HTTPS.
• CSIv2.
• GSP.

ART Security Plug-Ins page 26

Secure CORBA Applications page 28
 26 Orbix Security Guide

IIOP/TLS
The IIOP/TLS plug-in provides applications with the capability to
establish secure connections using IIOP over a TLS transport.
Authentication is also performed using X.509 certificates. For
example, this plug-in is used by CORBA applications.

HTTPS
The HTTPS plug-in provides the capability to establish secure
connections using HTTP over a TLS transport. Authentication is
also performed using X.509 certificates. For example, this plug-in
is used by the Web container to enable secure communications
with Web clients.

CSIv2
The Common Secure Interoperability (CSIv2) plug-in provides
support for authentication based on a username and password.
The CSIv2 plug-in also enables applications to forward usernames
or security tokens to other applications over an IIOP or IIOP/TLS
connection.

GSP
The GSP plug-in provides an authorization capability for the iSF—
that is, the capability to restrict access to certain methods,
operations, or attributes, based on the configuration values stored
in an external action-role mapping XML file. The GSP plug-in works in
tandem with the Orbix security service to realize a complete
system of role-based access control.

Note: The GSP plug-in depends on the CSIv2 plug-in.
Whenever you include the GSP plug-in, gsp, in your ORB
plug-ins list, it automatically loads the CSIv2 plug-in, csi.
Orbix Security Guide 27

Secure CORBA Applications
Figure 11 shows how the security plug-ins in a CORBA application
cooperate to provide security for the application.

IIOP/TLS plug-in in CORBA a application
The IIOP/TLS plug-in enables the CORBA application to establish
connections secured by SSL/TLS. This layer of security is essential
for providing data encryption.

CSIv2 plug-in in a CORBA application
The CSIv2 plug-in provides CORBA applications with the following
features:
• The capability to log in with a username and password.
• Screening incoming IIOP invocations by making sure that the

username/password combination is correct.
• Transmission of a username/password/domain combination to

other applications.
• Transmission of a username or security token to other

applications.

GSP plug-in in a CORBA application
The GSP plug-in restricts access to a CORBA server’s operations
and attributes, only allowing user’s with certain specified roles to
proceed with an invocation.

Figure 11: Security Plug-Ins in a CORBA Application
 28 Orbix Security Guide

Administering the iSF
This section provides an overview of the main aspects of
configuring and administering the iSF.

Overview of iSF Administration
There are several different aspects of iSF administration to
consider, as follows:
• Orbix configuration file.
• iSF properties file.
• Enterprise security service administration.
• Access control lists.

Orbix configuration file
The Orbix configuration file, DomainName.cfg (or, alternatively, the
CFR service), is used to configure the security policies for all of the
applications and services in a particular location domain. For
example, the following kinds of security policy are specified in the
Orbix configuration file:
• The list of security plug-ins to be loaded by an application.
• Whether an application accepts both secure and insecure

connections, or secure connections only.
• The name of the iSF authorization realm to which an

application belongs.
These are just some of the security policies that can be
configured—see “Security Variables” on page 391.

iSF properties file
The iSF properties file is used to configure the core properties of
the Orbix security service. This file primarily configures the
properties of an iSF adapter that connects to an enterprise
security backend. This file also configures the optional single
sign-on and authorization manager features.
See “iS2 Configuration” on page 513 for details.

Enterprise security service
administration
Because the Orbix security service is capable of integrating with a
third-party enterprise security service, you can continue to use
the native third-party administration tools for your chosen
enterprise security service. These tools would be used to
administer user accounts, including such data as usernames,
passwords, user groups, and roles.
Orbix Security Guide 29

Access control lists
To complete a system of role-based access control, it is necessary
to provide individual applications with an access control list (ACL)
file that is responsible for mapping user roles to particular
permissions.
For example, the ACL associated with a CORBA server could
specify that only a specified set of roles are allowed to invoke a
particular IDL operation.
There is one type of ACL file used within the iSF, as follows:
• Action-role mapping (proprietary format).

Secure ASP Services
When you create a secure location domain, all of the standard ASP
services are secure by default. The default configuration can be
used to test sample applications, but is not genuinely secure.
Before the ASP services can be used in a real deployment, it is
necessary to customize the security configuration.

Customizing the security configuration
For a real deployment, certain aspects of the security
configuration for ASP services would be customized, as follows:
• X.509 certificates associated with ASP services—the sample

certificates initially associated with the ASP services must all
be replaced, because they are not secure.

• Default security policies—for the ASP services might need to
be changed before deployment.
 30 Orbix Security Guide

Transport Layer
Security
Transport Layer Security provides encryption and authentication
mechanisms for your Orbix system.

What does Orbix Provide?

Security plug-ins
Orbix provides the core security infrastructure to a distributed
system based on Orbix’s Adaptive Runtime Technology (ART). It is
implemented as a symmetric set of plug-ins for Orbix (C++ and
Java). When the security plug-ins are installed in an application,
the communication layers consist of the CORBA standard Internet
Inter-ORB Protocol (IIOP), layered above TLS and TCP/IP.

Transport Layer Security
Transport Layer Security (TLS) is an IETF Open Standard. It is
based on, and is the successor to, Secure Sockets Layer (SSL),
long the standard for secure communications.
The TLS Protocol provides the most critical security features to
help you preserve the privacy and integrity of your system:
• Authentication (based on RSA with X.509v3 certificates).
• Encryption (based on DES, Triple DES, RC4, IDEA).
• Message integrity (based on SHA1, MD5).
• A framework that allows new cryptographic algorithms to be

incorporated into the TLS specification.

CORBA Security Level 2
Orbix is based on the CORBA Security Level 2 policies and API’s
(RTF 1.7). It implements a set of policies from the CORBA
specification that enable you to control encryption and
authentication at a fine level.

Added-value policies and APIs
Orbix also has added-value policies and APIs that provide more
control for SSL/TLS applications than provided by CORBA Security.
 Orbix Security Guide 31

SSL/TLS toolkit replaceability
Orbix has an SSL/TLS toolkit replaceability feature that enables
you to replace completely the underlying toolkit that implements
SSL/TLS in Orbix.

Security-unaware and security-aware
applications
There are two basic approaches to using security in your
applications:
• Security-unaware applications—Modify the Orbix configuration

to enable and configure security for your application. This
approach to security is completely transparent to the
application, requiring no code changes or recompilation.

• Security-aware applications—In addition to modifying the
Orbix configuration to enable security, you can customize
application security using both the standard CORBA security
API and the Orbix added-value APIs.

How TLS Provides Security

Basic TLS security features
TLS provides the following security for communications across
TCP/IP connections:

Authentication in TLS

Public key cryptography
TLS uses Rivest Shamir Adleman (RSA) public key cryptography
for authentication. In public key cryptography, each application
has an associated public key and private key. Data encrypted with
the public key can be decrypted only with the private key. Data
encrypted with the private key can be decrypted only with the
public key.

Authentication This allows an application to verify the
identity of another application with which it
communicates.

Privacy This ensures that data transmitted between
applications can not be eavesdropped on or
understood by a third party.

Integrity This allows applications to detect if data was
modified during transmission.
 32 Orbix Security Guide

Public key cryptography allows an application to prove its identity
by encoding data with its private key. As no other application has
access to this key, the encoded data must derive from the true
application. Any application can check the content of the encoded
data by decoding it with the application’s public key.

The TLS Handshake Protocol
Consider the example of two applications, a client and a server.
The client connects to the server and wishes to send some
confidential data. Before sending application data, the client must
ensure that it is connected to the required server and not to an
impostor.
When the client connects to the server, it confirms the server
identity using the TLS handshake protocol. A simplified
explanation of how the client executes this handshake in order to
authenticate the server is as follows:

Optimized handshake
The TLS protocol permits a special optimized handshake in which
a previously established session can be resumed. This has the
advantage of not needing expensive private key computations.
The TLS handshake also facilitates the negotiation of ciphers to be
used in a connection.

Client authentication
The TLS protocol also allows the server to authenticate the client.
Client authentication, which is supported by Orbix, is optional in
TLS communications.

Stage Description

1 The client initiates the TLS handshake by sending the
initial TLS handshake message to the server.

2 The server responds by sending its certificate to the
client. This certificate verifies the server's identity and
contains the certificate’s public key.

3 The client extracts the public key from the certificate and
encrypts a symmetric encryption algorithm session key
with the extracted public key.

4 The server uses its private key to decrypt the encrypted
session key which it will use to encrypt and decrypt
application data passing to and from the client. The
client will also use the shared session key to encrypt and
decrypt messages passing to and from the server.
Orbix Security Guide 33

Certificates in TLS Authentication

Purpose of certificates
A public key is transmitted as part of a certificate. The certificate
is used to ensure that the submitted public key is, in fact, the
public key that belongs to the submitter. The client checks that
the certificate has been digitally signed by a certification authority
(CA) that the client explicitly trusts.

Certification authority
A CA is a trusted authority that verifies the validity of the
combination of entity name and public key in a certificate. You
must specify trusted CAs in order to use Orbix.

X.509 certificate format
The International Telecommunications Union (ITU)
recommendation, X.509, defines a standard format for
certificates. TLS authentication uses X.509 certificates to transfer
information about an application’s public key.
An X.509 certificate includes the following data:
• The name of the entity identified by the certificate.
• The public key of the entity.
• The name of the certification authority that issued the

certificate.
The role of a certificate is to match an entity name to a public key.

Access to certificates
According to the TLS protocol, it is unnecessary for applications to
have access to all certificates. Generally, each application only
needs to access its own certificate and the corresponding issuing
certificates. Clients and servers supply their certificates to
applications that they want to contact during the TLS handshake.
The nature of the TLS handshake is such that there is nothing
insecure in receiving the certificate from an as yet untrusted peer.
The certificate will be checked to make sure that it has been
digitally signed by a trusted CA and the peer will have to prove its
identity during the handshake.
 34 Orbix Security Guide

Privacy of TLS Communications

Establishing a symmetric key
Immediately after authentication, the client sends an encoded
data value to the server (using the server’s public key). This
unique session encoded value is a key to a symmetric
cryptographic algorithm. Only the server is able to decode this
data (using the corresponding private key).

Symmetric cryptography
A symmetric cryptographic algorithm is an algorithm in which a
single key is used to encode and decode data. Once the server has
received such a key from the client, all subsequent
communications between the applications can be encoded using
the agreed symmetric cryptographic algorithm. This feature
strengthens TLS security.
Examples of symmetric cryptographic algorithms used to maintain
privacy in TLS communications are the Data Encryption Standard
(DES) and RC4.

Integrity of TLS Communications

Message authentication code
The authentication and privacy features of TLS ensure that
applications can exchange confidential data that cannot be
understood by an intermediary. However, these features do not
protect against the modification of encrypted messages
transmitted between applications.
To detect if an application has received data modified by an
intermediary, TLS adds a message authentication code (MAC) to
each message. This code is computed by applying a function to
the message content and the secret key used in the symmetric
cryptographic algorithm.

Guaranteeing message integrity
An intermediary cannot compute the MAC for a message without
knowing the secret key used to encrypt it. If the message is
corrupted or modified during transmission, the message content
will not match the MAC. TLS automatically detects this error and
rejects corrupted messages.
Orbix Security Guide 35

Obtaining Credentials from X.509 Certificates

Obtaining own credentials
This section discusses how an application’s own credentials are
initially obtained from an X.509 certificate. An application’s own
credentials are the credentials that the application normally uses
to identify itself to other applications.

Comparison of PKCS#12 and PKCS#11
Two mechanisms for obtaining own credentials are described in
this section:
• PKCS#12—credentials obtained from a PKCS#12 file.
• PKCS#11—credentials obtained from a smart card. Orbix uses

the PKCS#11 interface to communicate with the smart card.

Obtaining Certificate Credentials from a File

Creating credentials using the principal
sponsor
The simplest way for a client to obtain certificate credentials is to
configure an SSL/TLS principal sponsor for the client application. This
principal sponsor can be initialized by editing the Orbix
configuration—see “Specifying an Application’s Own Certificate” on
page 268.
 36 Orbix Security Guide

Creating credentials from a PKCS#12 file
Figure 12 illustrates how the principal sponsor creates credentials
from a PKCS#12 file.

Steps for creating credentials
The principal sponsor automates the steps to create credentials,
as follows:
1. The principal sponsor reads the client configuration file to

discover which authentication method to use.
2. If the authentication method is PKCS#12, the principal

sponsor obtains the pass phrase to decrypt the client’s
certificate chain and private key. The pass phrase is obtained
either by running a login utility that prompts the user for the
pass phrase, or by reading the client configuration file—see
“Providing a Certificate Pass Phrase” on page 271.

3. The principal sponsor requests the principal authenticator to
generate credentials for the client by invoking the
authenticate() operation, passing the following data as
parameters:
♦ Pass phrase,
♦ PKCS#12 file name.

4. The principal authenticator loads the PKCS#12 file to obtain
the client identity. The PKCS#12 file contains an encrypted
X.509 certificate chain and an encrypted private key.

Figure 12: Creating Credentials for a Client Application Using PKCS#12
Orbix Security Guide 37

5. If the authentication step is successful, the principal
authenticator creates an own credentials object, of
SecurityLevel2::Credentials type. The own credentials object
is cached in memory along with its private key.

How PKCS#12 credentials are used in an
SSL/TLS handshake
Figure 13 illustrates how PKCS#12 credentials are used during an
SSL/TLS handshake, showing only the portion of the handshake
where the server verifies the client’s identity.

PKCS#12 handshake steps
During an SSL/TLS handshake, the client authenticates itself to
the server as follows:
1. At a certain point during the SSL/TLS handshake, the client

sends an X.509 certificate chain (which has been cached in an
own credentials object) to the server.

2. The server sends a challenge message, encrypted using the
client’s public key.

3. The client uses the private key (cached in memory) to decrypt
the challenge message.

4. Having successfully answered the server challenge, the client
proceeds to the next stage of the handshake (not shown).

Figure 13: Using PKCS#12 Credentials to Authenticate a Client to a Server
 38 Orbix Security Guide

Obtaining Certificate Credentials from a Smart Card

Creating credentials using the PKCS#11
interface
Figure 14 illustrates how the SSL/TLS principal sponsor creates
certificate credentials using the PKCS#11 interface—see
“Specifying an Application’s Own Certificate” on page 268.

Steps for creating credentials
The principal sponsor automates the steps to create credentials,
as follows:
1. The principal sponsor reads the client configuration file to

discover which authentication method to use.
2. If the authentication method is PKCS#11, the principal

sponsor obtains the smart card’s PIN to gain access to the
smart card. The PIN is obtained either by running a login
utility that prompts the user for the PIN, or by reading the
client configuration file—see “Providing a Smart Card PIN” on
page 274.

3. The principal sponsor requests the principal authenticator to
generate credentials for the client by invoking the
authenticate() operation, passing the following data:

Figure 14: Creating Credentials for a Client Application Using PKCS#11
Orbix Security Guide 39

♦ Provider name,
♦ Slot number,
♦ PIN or pass phrase.

4. The principal authenticator communicates with the smart card
using the PKCS#11 interface to obtain the client identity. The
principal authenticator uploads only the X.509 certificate
chain. The private key is left on the smart card.

5. If the authentication step is successful, the principal
authenticator creates an own credentials object, of
SecurityLevel2::Credentials type. The own credentials object
is cached in memory but its private key is not stored in
memory.

How PKCS#11 credentials are used in an
SSL/TLS handshake
Figure 15 illustrates how PKCS#11 credentials are used during an
SSL/TLS handshake, showing only the portion of the handshake
where the server verifies the client’s identity.

PKCS#11 handshake steps
During an SSL/TLS handshake, the client authenticates itself to
the server as follows:
1. At a certain point during the SSL/TLS handshake, the client

sends an X.509 certificate chain (which has been cached in an
own credentials object) to the server.

2. The server sends a challenge message, encrypted using the
client’s public key.

Figure 15: Using PKCS#11 Credentials to Authenticate a Client to a Server
 40 Orbix Security Guide

3. The client delegates the challenge message to the smart card,
using the PKCS#11 interface. The smart card uses the
appropriate private key to decrypt the challenge message.
Because the smart card has a built-in processor, it is able to
perform the private key calculations in place. The private key
never leaves the smart card.

4. Having successfully answered the server challenge, the client
proceeds to the next stage of the handshake (not shown).

Note: At no point during the handshake is the smart
card’s private key loaded into memory.
Orbix Security Guide 41

 42 Orbix Security Guide

Securing CORBA
Applications
This chapter describes how to enable security in the context of the Orbix
Security Framework for CORBA applications and services.

Overview of CORBA Security
There are two main components of security for CORBA
applications: IIOP over SSL/TLS (IIOP/TLS), which provides
secure communication between client and server; and the iSF,
which is concerned with higher-level security features such as
authentication and authorization.
The following combinations are recommended:
• IIOP/TLS only—for a pure SSL/TLS security solution.
• IIOP/TLS and iSF—for a highly scalable security solution,

based on username/password client authentication.

CORBA applications and iSF
Figure 16 shows the main features of a secure CORBA application
in the context of the iSF.

Security plug-ins
Within the iSF, a CORBA application becomes fully secure by
loading the following plug-ins:
• IIOP/TLS plug-in
• CSIv2 plug-in
• GSP plug-in

Figure 16: A Secure CORBA Application within the iSF
 Orbix Security Guide 43

IIOP/TLS plug-in
The IIOP/TLS plug-in, iiop_tls, enables a CORBA application to
transmit and receive IIOP requests over a secure SSL/TLS
connection. This plug-in can be enabled independently of the other
two plug-ins.
See “Securing Communications with SSL/TLS” on page 44 for
details on how to enable IIOP/TLS in a CORBA application.

CSIv2 plug-in
The CSIv2 plug-in, csi, provides a client authentication
mechanism for CORBA applications. The authentication
mechanism is based on a username and a password. When the
CSIv2 plug-in is configured for use with the iSF, the username and
password are forwarded to a central Orbix security service to be
authenticated. This plug-in is needed to support the iSF.

GSP plug-in
The GSP plug-in, gsp, provides authorization by checking a user’s
roles against the permissions stored in an action-role mapping file.
This plug-in is needed to support the iSF.

Securing Communications with SSL/TLS
This section describes how to configure an application to use
SSL/TLS security. In this section, it is assumed that your initial
configuration comes from a secure location domain (generated by
the itconfigure utility with security enabled—see “Creating a
Secure Domain” on page 3).

Note: The IIOP/TLS plug-in also provides a client
authentication mechanism (based on SSL/TLS and X.509
certificates). The SSL/TLS and CSIv2 authentication
mechanisms are independent of each other and can be
used simultaneously.

Note: The GSP plug-in depends on the CSIv2 plug-in.
Whenever you include the GSP plug-in, gsp, in your ORB
plug-ins list, it automatically loads the CSIv2 plug-in, csi.

WARNING: The default certificates used in the CORBA
configuration samples are for demonstration purposes only
and are completely insecure. You must generate your own
custom certificates for use in your own CORBA
applications.
 44 Orbix Security Guide

Configuration samples
If a location domain, DomainName, is generated with security
enabled and demonstration configurations enabled, the domain
will include several sample configurations that can be used as
templates for configuring SSL/TLS. Within the default domain
configuration (either in the DomainName.cfg file or in the CFR
service), you can find the following sample SSL/TLS configuration
scopes:
• demos.tls.secure_client_with_no_cert
• demos.tls.secure_client_with_cert
• demos.tls.semi_secure_client_with_cert
• demos.tls.semi_secure_client_with_no_cert
• demos.tls.secure_server_no_client_auth
• demos.tls.secure_server_request_client_auth
• demos.tls.secure_server_enforce_client_auth
• demos.tls.semi_secure_server_no_client_auth
• demos.tls.semi_secure_server_request_client_auth
• demos.tls.semi_secure_server_enforce_client_auth

Secure client terminology
The terminology used to describe the preceding client
configuration scopes is explained in Table 1.

Table 1: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_client The client opens only secure SSL/TLS connections to the server.
If the server does not support secure connections, the connection
attempt will fail.

semi_secure_client The type of connection opened by the client depends on the
disposition of the server:
• If the server is insecure (listening only on an insecure IIOP

port), an insecure connection is established.
• If the server is secure (listening only on a secure IIOP/TLS

port), a secure SSL/TLS connection is established.
• If the server is semi-secure (listening on both an IIOP port

and on an IIOP/TLS port), the type of connection established
depends on the client’s binding:client_binding_list.
♦ If, in the client’s binding:client_binding_list, a binding

with the IIOP interceptor appears before a binding with
the IIOP_TLS interceptor, an insecure connection is
established.

♦ Conversely, if a binding with the IIOP_TLS interceptor
appears before a binding with the IIOP interceptor, a
secure connection is established.
Orbix Security Guide 45

Secure server terminology
The terminology used to describe the preceding server
configuration scopes is explained in Table 2.

with_no_cert No X.509 certificate is associated with the client (at least, not
through configuration).

with_cert An X.509 certificate is associated with the client by setting the
principal sponsor configuration variables.

Table 1: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

Table 2: Terminology Describing Secure Server Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_server The server accepts only secure SSL/TLS connection attempts. If
a remote client does not support secure connections, the
connection attempt will fail.

semi_secure_server The server accepts both secure and insecure connection attempts
by remote clients.

no_client_auth The server does not support client authentication over SSL/TLS.
That is, during an SSL/TLS handshake, the server will not
request the client to send an X.509 certificate.

request_client_auth The server allows a connecting client the option of either
authenticating itself or not authenticating itself using an X.509
certificate.

enforce_client_auth The server requires a connecting client to authenticate itself
using an X.509 certificate.
 46 Orbix Security Guide

Outline of a sample configuration scope
For example, the demos.tls.secure_server_no_client_auth
configuration defines a server configuration that is secured by
SSL/TLS but does not expect clients to authenticate themselves.
This configuration has the following outline:

Three significant groups of configuration variables contribute to
the secure_server_no_client_auth configuration, as follows:
1. General configuration at root scope—these configuration

settings are common to all applications, whether secure or
insecure.

2. Common SSL/TLS configuration settings—specify the basic
settings for SSL/TLS security. In particular, the orb_plugins
list defined in this scope includes the iiop_tls plug-in.

3. Specific server configuration settings—define the settings
specific to the secure_server_no_client_auth configuration.

Sample client configuration
For example, consider a secure SSL/TLS client whose
configuration is modelled on the
demos.tls.secure_client_with_no_cert configuration. Example 1
shows how to configure such a sample client.

Orbix Configuration File
...
General configuration at root scope.
...
demos {
 ...
 tls {
 # Common SSL/TLS configuration settings.
 ...
 secure_server_no_client_auth {
 # Specific server configuration settings.
 ...
 };
 };
};
...

Example 1: Sample SSL/TLS Client Configuration

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 # (copied from ’demos.tls’)

1 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];
Orbix Security Guide 47

The preceding client configuration can be described as follows:
1. Make sure that the orb_plugins variable in this configuration

scope includes the iiop_tls plug-in.

If you plan to use the full Orbix Security Framework, you
should include the gsp plug-in in the ORB plug-ins list as well—
see “Securing Two-Tier CORBA Systems with CSI” on
page 53.

2. Make sure that the binding:client_binding_list variable
includes bindings with the IIOP_TLS interceptor. You can use
the value of the binding:client_binding_list shown here.
If you plan to use the full Orbix Security Framework, you
should use the binding:client_binding_list as shown in
“Client configuration” on page 55 instead.

3. An SSL/TLS application needs a list of trusted CA certificates,
which it uses to determine whether or not to trust certificates
received from other SSL/TLS applications. You must,

2 binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+GIOP+IIOP", "GIOP+IIOP", "OTS+GIOP+IIOP_TLS",
"GIOP+IIOP_TLS"];

3 policies:trusted_ca_list_policy =
"ASPInstallDir\asp\6.0\etc\tls\x509\trusted_ca_lists\ca_list1.pem";

4 policies:mechanism_policy:protocol_version = "SSL_V3";
 policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

5 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific SSL/TLS client configuration settings
 # (copied from ’demos.tls.secure_client_with_no_cert’)

6 principal_sponsor:use_principal_sponsor = "false";

7 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 };
};
...

Example 1: Sample SSL/TLS Client Configuration

Note: For fully secure applications, you should
exclude the iiop plug-in (insecure IIOP) from the ORB
plug-ins list. This renders the application incapable of
making insecure IIOP connections.
For semi-secure applications, however, you should
include the iiop plug-in before the iiop_tls plug-in in
the ORB plug-ins list.
 48 Orbix Security Guide

therefore, edit the policies:trusted_ca_list_policy variable to
point at a list of trusted certificate authority (CA) certificates.
See “Specifying Trusted CA Certificates” on page 266.

4. The SSL/TLS mechanism policy specifies the default security
protocol version and the available cipher suites—see
“Specifying Cipher Suites” on page 253.

5. This line enables console logging for security-related events,
which is useful for debugging and testing. Because there is a
performance penalty associated with this option, you might
want to comment out or delete this line in a production
system.

6. The SSL/TLS principal sponsor is a mechanism that can be
used to specify an application’s own X.509 certificate. Because
this client configuration does not use a certificate, the
principal sponsor is disabled by setting
principal_sponsor:use_principal_sponsor to false.

7. The following two lines set the required options and the
supported options for the client secure invocation policy. In
this example, the policy is set as follows:
♦ Required options—the options shown here ensure that the

client can open only secure SSL/TLS connections.
♦ Supported options—the options shown include all of the

association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

Sample server configuration
Generally speaking, it is rarely necessary to configure such a thing
as a pure server (that is, a server that never makes any requests of
its own). Most real servers are applications that act in both a
server role and a client role. Hence, the sample server described
here is a hybrid of the following two demonstration configurations:
• demos.tls.secure_server_request_client_auth
• demos.tls.secure_client_with_cert
Example 2 shows how to configure such a sample server.

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), the
policies:trusted_ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are
obtained from the Windows certificate store.

Example 2: Sample SSL/TLS Server Configuration

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 # (copied from ’demos.tls’)
 ...
Orbix Security Guide 49

The preceding server configuration can be described as follows:
1. You can use the same common SSL/TLS settings here as

described in the preceding “Sample client configuration” on
page 47

2. The following two lines set the required options and the
supported options for the target secure invocation policy. In
this example, the policy is set as follows:
♦ Required options—the options shown here ensure that the

server accepts only secure SSL/TLS connection attempts.
♦ Supported options—all of the target association options

are supported.
3. A server must always be associated with an X.509 certificate.

Hence, this line enables the SSL/TLS principal sponsor, which
specifies a certificate for the application.

4. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 268.

5. Replace the X.509 certificate, by editing the filename option in
the principal_sponsor:auth_method_data configuration variable
to point at a custom X.509 certificate. The filename value

 my_server {
 # Specific SSL/TLS server configuration settings
 # (from ’demos.tls.secure_server_request_client_auth’)

2 policies:target_secure_invocation_policy:requires =
["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth_method_id = "pkcs12_file";
5 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\bank_
server.p12"];

 # Specific SSL/TLS client configuration settings
 # (copied from ’demos.tls.secure_client_with_cert’)

6 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
};
...

Example 2: Sample SSL/TLS Server Configuration

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), the
principal_sponsor:auth_method_id value must be
security_label instead of pkcs12_file.
 50 Orbix Security Guide

should be initialized with the location of a certificate file in
PKCS#12 format—see “Specifying an Application’s Own
Certificate” on page 268 for more details.

For details of how to specify the certificate’s pass phrase, see
“Providing a Pass Phrase or PIN” on page 271.

6. The following two lines set the required options and the
supported options for the client secure invocation policy. In
this example, the policy is set as follows:
♦ Required options—the options shown here ensure that the

application can open only secure SSL/TLS connections to
other servers.

♦ Supported options—all of the client association options
are supported. In particular, the EstablishTrustInClient
option is supported when the application is in a client role,
because the application has an X.509 certificate.

Mixed security configurations
Most realistic secure server configurations are mixed in the sense
that they include both server settings (for the server role), and
client settings (for the client role). When combining server and
client security settings for an application, you must ensure that
the settings are consistent with each other.
For example, consider the case where the server settings are
secure and the client settings are insecure. To configure this case,
set up the server role as described in “Sample server
configuration” on page 49. Then configure the client role by
adding (or modifying) the following lines to the
my_secure_apps.my_server configuration scope:

The first line sets the ORB plug-ins list to make sure that the iiop
plug-in (enabling insecure IIOP) is included. The NoProtection
association option, which appears in the required and supported
client secure invocation policy, effectively disables security for the
client role.

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), you would set the label option
instead of the filename option in the
principal_sponsor:auth_method_data configuration
variable. The label specifies the common name (CN)
from the application certificate’s subject DN.

orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop", "iiop_tls"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection"];
Orbix Security Guide 51

Customizing SSL/TLS security policies
You can, optionally, customize the SSL/TLS security policies in
various ways. For details, see the following references:
• “Configuring SSL/TLS Secure Associations” on page 243.
• “Configuring SSL/TLS Authentication” on page 261.

Key distribution management
It is possible to configure your CORBA server so that the
certificate pass phrase is supplied automatically by the key
distribution management (KDM) service. For details, see the
following reference:
• “Automatic Activation of Secure Servers” on page 281.

Specifying Fixed Ports for SSL/TLS Connections
Orbix allows you to specify a fixed IP port on which a server listens
for SSL/TLS connections. This subsection provides an overview of
the programming and configuration requirements for setting
IIOP/TLS fixed ports.

POA policies required for setting fixed
ports
The main prerequisite for configuring fixed ports is that a CORBA
developer programs the application to create a POA instance with
the following policies:
• PortableServer::LifespanPolicy—the value of this POA policy

should be set to PERSISTENT, indicating that the objects
managed by this POA can outlive the server process.

• IT_CORBA::WellKnownAddressingPolicy—the value of this POA
policy is a string that defines a well-known addressing prefix,
<wka_prefix>, for host/port configuration variables that an
administrator can edit in the Orbix configuration.

• IT_PortableServer::PersistenceModePolicy—the value of this
POA policy can be set to either of the following values:
♦ DIRECT_PERSISTENCE, indicating that the POA is configured

to receive connection attempts directly from clients. The
server listens on the fixed port (well-known address) and
exports IORs containing its own host and fixed port.

♦ INDIRECT_PERSISTENCE, indicating that connection attempts
will be redirected to the server by the locator service. The
server listens on the fixed port (well-known address), but
exports IORs containing the locator’s host and port.

Programming the required POA policies
For details of how to program POA policies, see the CORBA
Programmer’s Guide.
 52 Orbix Security Guide

Fixed port configuration variables
The following IIOP/TLS configuration variables can be set for a
POA that supports the well-known addressing policy with the
<wka_prefix> prefix:
<wka_prefix>:iiop_tls:host = "<host>";

Specifies the hostname, <host>, to publish in the IIOP/TLS
profile of server-generated IORs.

<wka_prefix>:iiop_tls:port = "<port>";

Specifies the fixed IP port, <port>, on which the server listens
for incoming IIOP/TLS messages. This port value is also
published in the IIOP/TLS profile of generated IORs.

<wka_prefix>:iiop_tls:listen_addr = "<host>";

Restricts the IIOP/TLS listening point to listen only on the
specified host, <host>. It is generally used on multi-homed
hosts to limit incoming connections to a particular network
interface.

<wka_prefix>:iiop_tls:addr_list =
["<optional_plus_sign><host>:<port>", ...];

In the context of server clustering, this configuration variable
specifies a list of host and port combinations, <host>:<port>, for
the <wka_prefix> persistent POA instance.
One of the host and port combinations, <host>:<port> (lacking a
+ prefix), specifies the POA’s own listening point. The other
host and port combinations, +<host>:<port> (including a +
prefix), specify the listening points for other servers in the
cluster.

Securing Two-Tier CORBA Systems with CSI
This section describes how to secure a two-tier CORBA system
using the iSF. The client supplies username/password
authentication data which is then authenticated on the server
side. The following configurations are described in detail:
• Client configuration.
• Target configuration.

Note: The *:addr_list variable takes precedence over
the other host/port configuration variables (*:host,
*:port, and *:listen_addr).
Orbix Security Guide 53

Two-tier CORBA system
Figure 17 shows a basic two-tier CORBA system in the iSF,
featuring a client and a target server.

Scenario description
The scenario shown in Figure 17 can be described as follows:

Figure 17: Two-Tier CORBA System in the iSF

Stage Description

1 The user enters a username, password, and domain
name on the client side (user login).
Note: The domain name can either be an empty string
(acts as a wildcard) or must match the value of the
policies:csi:auth_over_transport:server_domain_name
configuration variable set on the server side.

2 When the client makes a remote invocation on the
server, the iSF transmits the
username/password/domain authentication data to the
target along with the invocation request.

3 The server authenticates the received username and
password by calling out to the external Orbix security
service.

4 If authentication is successful, the Orbix security service
returns the user’s realms and roles.

5 The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.
 54 Orbix Security Guide

Client configuration
The CORBA client from Example 17 on page 54 can be configured
as shown in Example 3.

The preceding client configuration can be explained as follows:
1. The SSL/TLS configuration variables common to all of your

applications can be placed here—see “Securing
Communications with SSL/TLS” on page 44 for details of the
SSL/TLS configuration.

2. Make sure that the orb_plugins variable in this configuration
scope includes both the iiop_tls and the gsp plug-ins in the
order shown.

3. Make sure that the binding:client_binding_list variable
includes bindings with the CSI interceptor. Your can use the
value of the binding:client_binding_list shown here.

4. Make sure that the binding:server_binding_list variable
includes bindings with both the CSI and GSP interceptors. Your
can use the value of the binding:server_binding_list shown
here.

Example 3: Configuration of a CORBA client in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.

2 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "ots", "gsp"];

3 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

4 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

 ...
 my_client {

5 # Specific SSL/TLS configuration settings.
 ...
 # Specific iSF configuration settings.

6 plugins:csi:allow_csi_reply_without_service_context =
"false";

7 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

8 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};
...
Orbix Security Guide 55

5. The SSL/TLS configuration variables specific to the CORBA
client can be placed here—see “Securing Communications
with SSL/TLS” on page 44.

6. This setting enforces strict checking of reply messages from
the server, to make sure the server actually supports CSIv2.

7. This configuration setting specifies that the client supports
sending username/password authentication data to a server.

8. The next three lines specify that the client uses the CSI
principal sponsor to obtain the user’s authentication data.
With the configuration as shown, the user would be prompted
to enter the username and password when the client
application starts up.
For more details on the CSI principal sponsor, see “Providing a
Username and Password” on page 306.

Target configuration
The CORBA target server from Figure 17 on page 54 can be
configured as shown in Example 4.

Example 4: Configuration of a Second-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 my_two_tier_target {

1 # Specific SSL/TLS configuration settings.
 ...
 # Specific iSF configuration settings.

2 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

3 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:gsp:action_role_mapping_file = "ActionRoleURL";

7 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};
 56 Orbix Security Guide

The preceding target server configuration can be explained as
follows:
1. The SSL/TLS configuration variables specific to the CORBA

target server can be placed here—see “Securing
Communications with SSL/TLS” on page 44.

2. This configuration setting specifies that the target server
supports receiving username/password authentication data
from the client.

3. This configuration setting specifies that the target server
requires the client to send username/password authentication
data.

4. The server_domain_name configuration variable sets the server’s
CSIv2 authentication domain name. The domain name
embedded in a received CSIv2 credential must match the
value of the server_domain_name variable on the server side or
could be an empty string (acts as a wildcard).

5. This configuration setting specifies the iSF authorization
realm, AuthzRealm, to which this server belongs. For more
details about iSF authorization realms, see “iSF Authorization
Realms” on page 120.

6. The action_role_mapping configuration variable specifies the
location of an action-role mapping that controls access to the
IDL interfaces implemented by the server. The file location is
specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).
For more details about the action-role mapping file, see
“CORBA Action-Role Mapping ACL” on page 133.

7. You should also set iSF client configuration variables in the
server configuration scope, because a secure server
application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need
to contact both the locator service and the CORBA naming
service.

Related administration tasks
After securing your CORBA applications with iSF, you might need
to perform related administration tasks, for example:
• See “Managing Users, Roles and Domains” on page 119.
• See “CORBA Action-Role Mapping ACL” on page 133.

Securing Three-Tier CORBA Systems with CSI
This section describes how to secure a three-tier CORBA system
using the iSF. In this scenario there is a client, an intermediate
server, and a target server. The intermediate server is configured
to propagate the client identity when it invokes on the target
server in the third tier. The following configurations are described
in detail:
• Intermediate configuration.
• Target configuration.
Orbix Security Guide 57

Three-tier CORBA system
Figure 18 shows a basic three-tier CORBA system in the iSF,
featuring a client, an intermediate server and a target server.

Scenario description
The second stage of the scenario shown in Figure 18 (intermediate
server invokes an operation on the target server) can be described
as follows:

Client configuration
The client configuration for the three-tier scenario is identical to
that of the two-tier scenario, as shown in “Client configuration” on
page 55.

Figure 18: Three-Tier CORBA System in the iSF

Stage Description

1 The intermediate server sets its own identity by
extracting the user identity from the received
username/password credentials. Hence, the
intermediate server assumes the same identity as
the client.

2 When the intermediate server makes a remote
invocation on the target server, the iSF also
transmits the user identity data to the target.

3 The target server then obtains the user’s realms
and roles.

4 The iSF controls access to the target’s IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.
 58 Orbix Security Guide

Intermediate configuration
The CORBA intermediate server from Figure 18 on page 58 can be
configured as shown in Example 5.

The preceding intermediate server configuration can be explained
as follows:
1. The SSL/TLS configuration variables specific to the CORBA

intermediate server can be placed here—see “Securing
Communications with SSL/TLS” on page 44.

2. This setting enforces strict checking of reply messages from
the target, to make sure the target actually supports CSIv2.

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 my_three_tier_intermediate {

1 # Specific SSL/TLS configuration settings.
 ...
 # Specific iSF configuration settings.

2 plugins:csi:allow_csi_reply_without_service_context =
"false";

3 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

4 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

5 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

6 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

7 plugins:gsp:authorization_realm = "AuthzRealm";
8 plugins:gsp:action_role_mapping_file = "ActionRoleURL";

9 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};
Orbix Security Guide 59

3. This configuration setting specifies that the intermediate
server is capable of propagating the identity it receives from a
client. In other words, the server is able to assume the
identity of the client when invoking operations on third-tier
servers.

4. This configuration setting specifies that the intermediate
server supports receiving username/password authentication
data from the client.

5. This configuration setting specifies that the intermediate
server requires the client to send username/password
authentication data.

6. The server_domain_name configuration variable sets the server’s
CSIv2 authentication domain name. The domain name
embedded in a received CSIv2 credential must match the
value of the server_domain_name variable on the server side or
could be an empty string (acts as a wildcard).

7. This configuration setting specifies the iSF authorization
realm, AuthzRealm, to which this server belongs. For more
details about iSF authorization realms, see “iSF Authorization
Realms” on page 120.

8. This configuration setting specifies the location of an
action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an
URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).
For more details about the action-role mapping file, see
“CORBA Action-Role Mapping ACL” on page 133.

9. You should also set iSF client configuration variables in the
intermediate server configuration scope, because a secure
server application usually behaves as a secure client of the
core CORBA services. For example, almost all CORBA servers
need to contact both the locator service and the CORBA
naming service.

Target configuration
The CORBA target server from Figure 18 on page 58 can be
configured as shown in Example 6.

Example 6: Configuration of a Third-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 60 Orbix Security Guide

These target server configuration can be explained as follows:
1. The SSL/TLS configuration variables specific to the CORBA

target server can be placed here—see “Securing
Communications with SSL/TLS” on page 44.

2. It is recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For
example, the intermediate server (acting as a client of the
target) would then be required to send an X.509 certificate to
the target during the SSL/TLS handshake.
You can specify this option by including the
EstablishTrustInClient association option in the target secure
invocation policy, as shown here (thereby overriding the
policy value set in the outer configuration scope).

3. In addition to the preceding step, it is also advisable to restrict
access to the target server by setting a certificate constraints
policy, which allows access only to those clients whose X.509
certificates match one of the specified constraints—see
“Applying Constraints to Certificates” on page 276.

 my_three_tier_target {
 # Specific SSL/TLS configuration settings.

1 ...
2

policies:iiop_tls:target_secure_invocation_policy:requires =
["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];

3 policies:iiop_tls:certificate_constraints_policy =
[ConstraintString1, ConstraintString2, ...];

 # Specific iSF configuration settings.
4 policies:csi:attribute_service:target_supports =

["IdentityAssertion"];

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:gsp:action_role_mapping_file = "ActionRoleURL";

7 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 6: Configuration of a Third-Tier Target Server in the iSF

Note: The motivation for limiting access to the target server
is that clients of the target server obtain a special type of
privilege: propagated identities are granted access to the
target server without the target server performing
authentication on the propagated identities. Hence, the
target server trusts the intermediate server to do the
authentication on its behalf.
Orbix Security Guide 61

4. This configuration setting specifies that the target server
supports receiving propagated user identities from the client.

5. This configuration setting specifies the iSF authorization
realm, AuthzRealm, to which this server belongs. For more
details about iSF authorization realms, see “iSF Authorization
Realms” on page 120.

6. This configuration setting specifies the location of an
action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an
URL format, for example:
file:///security_admin/action_role_mapping.xml.
For more details about the action-role mapping file, see
“CORBA Action-Role Mapping ACL” on page 133.

7. You should set iSF client configuration variables in the target
server configuration scope, because a secure server
application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need
to contact both the locator service and the CORBA naming
service.

Related administration tasks
After securing your CORBA applications with iSF, you might need
to perform related administration tasks, for example:
• See “Managing Users, Roles and Domains” on page 119.
• See “CORBA Action-Role Mapping ACL” on page 133.

X.509 Certificate-Based Authentication
This section describes how to enable X.509 certificate
authentication with the iSF, based on a simple two-tier
client/server scenario. In this scenario, the Orbix security service
authenticates the client’s certificate and retrieves roles and realms
based on the identity of the certificate subject. When iSF
certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:
• SSL/TLS-level authentication—this authentication step occurs

during the SSL/TLS handshake and is governed by Orbix
configuration settings and programmable SSL/TLS policies.

• iSF-level authentication and authorization—this authentication
step occurs after the SSL/TLS handshake and is performed by
the Orbix security service working in tandem with the gsp
plug-in.
 62 Orbix Security Guide

Certificate-based authentication
scenario
Figure 19 shows an example of a two-tier system, where
authentication of the client’s X.509 certificate is integrated with
iSF.

Scenario description
The scenario shown in Figure 19 can be described as follows:

Figure 19: Overview of iSF Certificate-Based Authentication

Stage Description

1 When the client opens a connection to the server, the
client sends its X.509 certificate as part of the SSL/TLS
handshake. The server then performs SSL/TLS-level
authentication, checking the certificate as follows:
• The certificate is checked against the server’s trusted

CA list to ensure that it is signed by a trusted
certification authority.

• If a certificate constraints policy is set, the
certificate is checked to make sure it satisfies the
specified constraints.

• If a certificate validator policy is set (by
programming), the certificate is also checked by this
policy.

2 The server then performs iSF-level authentication by
calling authenticate() on the Orbix security service,
passing the client’s X.509 certificate as the argument.
Orbix Security Guide 63

Client configuration
Example 7 shows a sample client configuration that you can use
for the iSF certificate-based authentication scenario (Figure 19 on
page 63).

3 The Orbix security service authenticates the client’s
X.509 certificate by checking it against a cached copy of
the certificate. The type of checking performed depends
on the particular third-party enterprise security service that is
plugged into the Orbix security service.

4 If authentication is successful, the Orbix security service
returns the user’s realms and roles.

5 The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.

Stage Description

Example 7: Client Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 client_x509
 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 };
};
 64 Orbix Security Guide

The preceding client configuration is a typical SSL/TLS
configuration. The only noteworthy feature is that the client must
have an associated X.509 certificate. Hence, the principal_sponsor
settings are initialized with the location of an X.509 certificate
(provided in the form of a PKCS#12 file).
For a discussion of these client SSL/TLS settings, see “Sample
client configuration” on page 47 and “Deploying Application
Certificates” on page 226.

Target configuration
Example 8 shows a sample server configuration that you can use
for the iSF certificate-based authentication scenario (Figure 19 on
page 63).

Example 8: Server Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 server
 {

policies:csi:auth_over_transport:authentication_service =
"com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
["filename=OrbixInstallDir\etc\tls\x509\certs\demos\bank_server.
p12", "password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI",
"GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugI
n";

2 plugins:gsp:action_role_mapping_file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionr
olemapping_with_interfaces.xml";
Orbix Security Guide 65

The preceding server configuration can be explained as follows:
1. As is normal for an SSL/TLS server, you must provide the

server with its own certificate. The simplest way to do this is
to specify the location of a PKCS#12 file using the principal
sponsor.

2. This configuration setting specifies the location of an
action-role mapping file, which controls access to the server’s
interfaces and operations.

3. The plugins:gsp:enable_security_service_cert_authentication
variable is the key to enabling iSF certificate-based
authentication. By setting this variable to true, you cause the
server to perform iSF-level certificate authentication.

4. The IIOP/TLS target secure invocation policy must require
EstablishTrustInClient. Evidently, if the client does not
provide a certificate during the SSL/TLS handshake, there will
be no certificate available to perform the iSF-level
authentication.

Related administration tasks
When using X.509 certificate-based authentication, it is necessary
to add the appropriate user data to your enterprise security system
(which is integrated with the Orbix security service through an iSF
adapter), as follows:
• File adapter (do not use in deployed systems)—see

“Certificate-based authentication for the file adapter” on
page 131

• LDAP adapter—see “Certificate-based authentication for the
LDAP adapter” on page 132.

 auth_x509
 {

3 plugins:gsp:enable_security_service_cert_authentication =
"true";

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

4
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 };
 };
};

Example 8: Server Configuration for iSF Certificate-Based Authentication
 66 Orbix Security Guide

Caching of Credentials
To improve the performance of servers within the Orbix Security
Framework, the GSP plug-in implements caching of credentials
(that is, the authentication and authorization data received from
the Orbix security service).
The GSP credentials cache reduces a server’s response time by
reducing the number of remote calls to the Orbix security service.
On the first call from a given user, the server calls the Orbix
security service and caches the received credentials. On
subsequent calls from the same user, the cached credentials are
used, thereby avoiding a remote call to the Orbix security service.

Cache time-out
The cache can be configured to time-out credentials, forcing the
server to call the Orbix security service again after using cached
credentials for a certain period.

Cache size
The cache can also be configured to limit the number of stored
credentials.

Configuration variables
The following variables configure the credentials cache in the
context of the Orbix Security Framework:
plugins:gsp:authentication_cache_size

The maximum number of credentials stored in the
authentication cache. If this size is exceeded the oldest
credential in the cache is removed.
A value of -1 (the default) means unlimited size. A value of 0
means disable the cache.

plugins:gsp:authentication_cache_timeout

The time (in seconds) after which a credential is considered
stale. Stale credentials are removed from the cache and the
server must re-authenticate with the Orbix security service on
the next call from that user. The cache timeout should be
configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).
A value of -1 (the default) means an infinite time-out. A value
of 0 means disable the cache.
Orbix Security Guide 67

 68 Orbix Security Guide

Single Sign-On for
CORBA Applications
Single sign-on (SSO) is an Orbix security feature which minimizes the
exposure of usernames and passwords to snooping. After initially signing
on, a client communicates with other applications by passing an SSO
token in place of the original username and password.

SSO and the Login Service
The SSO feature is implemented by the following elements of
Orbix:
• Login service—a central service which can authenticate

username/password combinations and generate SSO tokens.
• GSP plug-in—the generic security plug-in, which is embedded

in a client application, is responsible for contacting the login
service to obtain an SSO token.

Advantages of SSO
SSO greatly increases the security of an application in the Orbix
Security Framework, offering the following advantages:
• Password visibility is restricted to the Login Service.
• Clients use SSO tokens to communicate with servers.
• Clients can be configured to use SSO with no code changes.
• SSO tokens are configured to expire after a specified length of

time.
• When an SSO token expires, the CORBA client automatically

requests a new token from the login service. No additional
user code is required.

Embedded login service
Figure 20 shows an overview of the login service which, by
default, is embedded in the same process as the Orbix security
service. The client ORB automatically requests an SSO token by
 Orbix Security Guide 69

sending a username and a password to the login service. If the
username and password are successfully authenticated, the login
service returns an SSO token.

SSO token
The SSO token is a compact key that the Orbix security service
uses to access a user’s session details, which are stored in a
cache.

SSO token expiry
The Orbix security service is configured to impose the following
kinds of timeout on an SSO token:
• SSO session timeout—this timeout places an absolute limit on

the lifetime of an SSO token. When the timeout is exceeded,
the token expires.

• SSO session idle timeout—this timeout places a limit on the
amount of time that elapses between authentication requests
involving the SSO token. If the central Orbix security service
receives no authentication requests in this time, the token
expires.

For more details, see “Configuring Single Sign-On Properties” on
page 116.

Automatic token refresh
In theory, the expiry of SSO tokens could prove a nuisance to
client applications, because servers will raise a
CORBA::NO_PERMISSION exception whenever an SSO token expires.
In practice, however, when SSO is enabled, the GSP plug-in
catches the NO_PERMISSION exception on the client side and
contacts the login service again to refresh the SSO token
automatically. The GSP plug-in then automatically retries the
failed operation invocation.

Figure 20: Client Requesting an SSO Token from the Login Service
 70 Orbix Security Guide

Connection to the login server
It is imperative that a connection to the login service is strongly
protected by SSL/TLS, in order to avoid exposing usernames and
passwords to snooping. Hence, by default, the client-to-login
service connection is protected by strong SSL/TLS security policies
and the IIOP/TLS client secure invocation policy requires the
following association options:
["Integrity", "Confidentiality", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget"];

This protection remains in force, irrespective of the association
options set explicitly by the SSL/TLS client secure invocation
policy.

Standalone login service
It is possible, in principle, to reconfigure the login service as a
standalone server (that is, a standalone process that runs
independently of the Orbix security service). Currently, however,
the itconfigure utility can only generate domains with an
embedded login service.
Please contact Micro Focus for more details.

Username/Password-Based SSO
This section describes how to configure a client so that it transmits
an SSO token in place of a username and a password (that is, SSO
is used in conjunction with the CSI authentication over transport
mechanism).

CSI layers
The CSIv2 standard defines two layers for transmitting
credentials:
• CSI authentication over transport (GSSUP authentication)—

this layer is used to transmit username, password, and
domain data which can then be authenticated on the server
side.

• CSI identity assertion—this layer is used to transmit just a
username (asserted identity). It is not needed for the
scenarios in this section.

Note: The only way to reduce the level of protection on
login service connections is to set the
plugins:gsp:enforce_secure_comms_to_sso_server variable to
false.
Orbix Security Guide 71

GSSUP authentication without SSO
Figure 21 gives an overview of Generic Security Service
Username/Password (GSSUP) based authentication without SSO.
In this case, the username, <username>, and password, <password>,
are passed directly to the target server, which then contacts the
Orbix security service to authenticate the username/password
combination.

GSSUP authentication with SSO
Figure 22 gives an overview of username/password-based
(GSSUP) authentication when SSO is enabled.

Prior to contacting the target server for the first time, the client
ORB sends the username, <username>, and password, <password>, to
the login server, getting an SSO token, <token> in return. The client
ORB then includes a CSIv2 service context in the next request to
the target server, sending the special string, _SSO_TOKEN_, instead
of a username and the SSO token, <token>, instead of a password.

Figure 21: Overview of GSSUP Authentication without SSO

Figure 22: Overview of GSSUP Authentication with SSO
 72 Orbix Security Guide

The target server’s ORB contacts the Orbix security service to
authenticate the username/password combination and to obtain
the user’s authorization data.

Related configuration variables
The following variables are relevant to username/password-based
SSO:
plugins:gsp:enable_gssup_sso

Enables SSO with a username and a password (that is,
GSSUP) when set to true.

plugins:gsp:sso_server_certificate_constraints

A special certificate constraints policy that applies only to the
SSL/TLS connection between the client and the SSO login
server. This policy is used to ensure that sensitive password
information is seen only by a specific login server. For details
on the syntax of certificate constraints, see “Applying
Constraints to Certificates” on page 276.

Client configuration
Example 9 shows a typical configuration for an SSO client that
employs GSSUP authentication.

Note: The target server is not aware whether the client
has used the login service or not. It is the Orbix security
service that knows to treat the _SSO_TOKEN_ username in a
special way.

Example 9: Client Configuration for Username/Password-Based SSO

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

1 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA Services*"];

 sso_client_gssup
 {

2 principal_sponsor:use_principal_sponsor = "false";
Orbix Security Guide 73

The preceding client configuration can be described as follows:
1. The plugins:gsp:sso_server_certificate_constraints variable

specifies certificate constraints that apply only to the X.509
certificate from the login server. If the login server’s
certificate fails to match these constraints, a
CORBA::NO_PERMISSION exception is thrown on the client side.

2. In this example, the SSL/TLS principal sponsor is not used
(the SSL/TLS principal sponsor is used to specify an
application’s own X.509 certificate credentials).

3. In this example, the client requires a secure SSL/TLS
connection and requires the target server to authenticate
itself with an X.509 certificate.

4. This setting enforces strict checking of reply messages from
the server, to make sure the server actually supports CSIv2.

5. The CSI authentication over transport policy must support
EstablishTrustInClient to enable the sending of usernames
and passwords in CSIv2 service contexts.

6. The CSI principal sponsor, which specifies an application’s
own CSI credentials, can be enabled as shown here
(alternatively, you could specify CSI credentials by
programming; see “Creating CSIv2 Credentials” on
page 340).

3
policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

4 plugins:csi:allow_csi_reply_without_service_context =
"false";

5 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

6 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=paulh", "password=password", "domain=PCGROUP"];

7 plugins:gsp:enable_gssup_sso = "true";

 };
};

Example 9: Client Configuration for Username/Password-Based SSO

Note: Irrespective of the level of security required by
the these configuration settings, the SSO client always
requires the login server connection to be secure and
authenticated by an X.509 certificate. The only way
you can reduce the level of security required by the
login server connection is by setting the
plugins:gsp:enforce_secure_comms_to_sso_server
variable to false.
 74 Orbix Security Guide

In a deployed system, it is better to omit the password entry
from the principal_sponsor:csi:auth_method_data setting.
When omitted, the principal sponsor will prompt the user to
enter a username and password as the client application
starts up. The domain must be set to match the value of the
policies:csi:auth_over_transport:server_domain_name variable
on the server side.

7. The plugins:gsp:enable_gssup_sso variable is set to true to
enable the GSSUP single sign-on behavior.

Target configuration
Example 10 shows a typical configuration for a target server that
accepts connections from clients that authenticate themselves
using GSSUP.

Note: Alternatively, you can specify the domain as an
empty string, which would match any domain on the
server side.

Example 10: Target Configuration for Username/Password-Based SSO

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

 server
 {
 policies:csi:auth_over_transport:authentication_service

= "com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
["filename=W:\art\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";
Orbix Security Guide 75

The preceding target configuration can be described as follows:
1. As usual for an SSL/TLS server, the SSL/TLS principal sponsor

is used to specify the location of the server’s own X.509
certificate.

2. The action_role_mapping configuration variable specifies the
location of an action-role mapping that controls access to the
IDL interfaces implemented by the server.

3. In this example, the server requires a secure SSL/TLS
connection, but does not require the client to authenticate
itself with an X.509 certificate.

4. It is essential for the target server to require and support the
EstablishTrustInClient option for CSI authentication over
transport. This ensures that the server receives a username
and a password from the client in a CSIv2 service context.

Related administration tasks
For details of how to configure SSO token timeouts, see
“Configuring Single Sign-On Properties” on page 116.

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugI
n";

2 plugins:gsp:action_role_mapping_file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionr
olemapping_with_interfaces.xml";

 plugins:gsp:authorization_realm = "AuthzRealm";
 policies:csi:auth_over_transport:server_domain_name =

"PCGROUP";

 auth_csi
 {

3
policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };
 };
};

Example 10: Target Configuration for Username/Password-Based SSO
 76 Orbix Security Guide

Three Tier Example with Identity Assertion
his section describes what happens when the two-tier
username/password-based SSO example is extended by a third
tier, which uses the CSI identity assertion mechanism.
This scenario has the following essential features:
• Client to second tier—the CSI authentication over transport

mechanism (GSSUP authentication) is enabled and the client
is configured to use single sign-on.

• Second tier to third tier—the CSI identity assertion
mechanism is enabled between these tiers. SAML data
(containing details of the client user’s roles and realms) is
propagated between these tiers.

Three-tier scenario with piggybacking
Figure 23 shows the outline of a single sign-on scenario where
SAML role and realm data is piggybacked between the second and
third tiers.

Figure 23: Single Sign-On Scenario with Piggybacking Roles and Realms
Orbix Security Guide 77

Steps
The operation invocations performed on behalf of the client shown
in Figure 23 on page 77 can be described as follows:

Stage Description

1 When single sign-on is enabled, the client calls out to the
login service, passing in the client’s GSSUP credentials,
u/p/d, in order to obtain a single sign-on token, t.

2 When the client invokes an operation on the second-tier
server, the SSO token, t, is sent as the password in the
GSSUP authentication data. The GSSUP username has
the reserved value _SSO_TOKEN_.
The client SSO token, t, is now accessible through the
IT_CORBASEC::ExtendedReceivedCredentials interface.

3 When the SSO token is received by the middle-tier
server, it calls out to the Orbix security service to
authenticate the client token and retrieve the SAML
authorization data containing the user’s complete role
and realm data.

4 If the second tier now invokes an operation on the third
tier, the effective credentials for the invocation are
constructed as follows:
• The client username is used as the asserted identity

(to be propagated through the CSI identity assertion
mechanism).

• The client SSO token, t, from the received
credentials is inserted into an Orbix-proprietary
service context.

5 When the request message is sent to the third tier, the
asserted identity is sent through the CSI identity layer,
and the single sign-on token, t, is sent in an
Orbix-proprietary service context, accompanied by the
SAML role and realm data.
In the third tier, no call-out to the Orbix Security Service
is required, because the SAML data includes all of the
information needed for an authorization check.
WARNING:It is essential that an adequate degree of
trust is established between the third-tier server and the
second-tier server. In this scenario, the third tier is
completely dependent on the second tier to perform
authentication on its behalf.
 78 Orbix Security Guide

Configuration notes
The most important policy settings for this three-tier scenario with
SAML piggybacking are briefly described here.

Client to Second Tier
The client is configured to support CSI authentication over
transport and single sign-on with the following configuration
settings (the sso_server_certificate_constraints setting would
have to be customised to match your login server’s X.509
certificate):

The second tier is configured to support CSI authentication over
transport from incoming connections with the following settings:

Second Tier to Third Tier
The second tier is configured to support CSI identity assertion for
outgoing connections with the following configuration settings:

The third tier is configured to support CSI identity assertion from
incoming connections with the following settings:

X.509 Certificate-Based SSO
Normally, during certificate-based authentication, a client
transmits its X.509 certificate during the SSL/TLS handshake. This
certificate is then used for the authentication step with the Orbix
security service (see “X.509 Certificate-Based Authentication” on
page 62).
In contrast to this, in the SSO case a client transmits an SSO
token through the CSI security layer (using CSI authentication
over transport), having previously obtained the SSO token by
authenticating its own certificate with the login server. The client’s
certificate might also be propagated directly to the target, in
addition to the SSO token, but this would not be the usual case.

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient];

plugins:gsp:enable_gssup_sso = "true";
plugins:gsp:sso_server_certificate_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient];

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];
Orbix Security Guide 79

Certificate-based authentication without
SSO
Figure 24 gives an overview of ordinary certificate-based
authentication without SSO. In this case, the client’s X.509
certificate is passed directly to the target server (during the
SSL/TLS handshake). The target server then contacts the Orbix
security service to authenticate the certificate.

Certificate-based authentication with
SSO
Figure 25 gives an overview of certificate-based authentication
when SSO is enabled.

Prior to contacting the target server for the first time, the client
ORB invokes the login() operation on the login server. The login
server retrieves the client’s X.509 certificate from the SSL/TLS
received credentials, authenticates the certificate, and sends back
an SSO token, <token> in return.

Figure 24: Overview of Certificate-Based Authentication without SSO

Figure 25: Overview of Certificate-Based Authentication with SSO
 80 Orbix Security Guide

The client then sends a request to the target server, including the
special username, _SSO_TOKEN_, and the password, <token>, in a
CSIv2 service context. The target server contacts the Orbix
security service to authenticate the username/password
combination and to retrieve the user’s authorization data (realms
and roles).

Difference between
username/password-based SSO and
certificate-based SSO
The key difference between username/password-based SSO
(Figure 22 on page 72) and certificate-based SSO (Figure 25) lies
in the communication with the login server. In the
username/password-based case, the client sends GSSUP data to
be authenticated to the login service; whereas in the
certificate-based case, the client sends an X.509 certificate to be
authenticated to the login service.
There is no difference in the nature of the communication between
the client and the target, however. In both cases, an SSO token is
transmitted through the CSI authentication over transport layer.

Related configuration variables
The following variables are relevant to certificate-based SSO:
plugins:gsp:enable_x509_sso

Enables certificate-based SSO when set to true.
plugins:gsp:sso_server_certificate_constraints

A special certificate constraints policy that applies only to the
SSL/TLS connection between the client and the SSO login
server. For details on the syntax of certificate constraints, see
“Applying Constraints to Certificates” on page 276.

Typical scenario
The most likely scenario where you might need certificate-based
SSO is where an existing server is configured to require
username/password credentials, but you want to connect to the
server using clients that have only X.509 certificate credentials.
By enabling SSO on the client side, the clients acquire
username/password credentials which the target server can then
use for the purpose of authentication and authorization.
Orbix Security Guide 81

Client configuration
Example 11 shows a typical configuration for an SSO client that
employs certificate-based authentication.

Example 11: Client Configuration for Certificate-Based Authentication

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

1 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA Services*"];

 sso_client_x509
 {

2
policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

3 plugins:csi:allow_csi_reply_without_service_context =
"false";

4 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

5 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

6 plugins:gsp:enable_x509_sso = "true";

 };
};
 82 Orbix Security Guide

The preceding client configuration can be described as follows:
1. The plugins:gsp:sso_server_certificate_constraints variable

specifies certificate constraints that apply only to the X.509
certificate from the login server. If the login server’s
certificate fails to match these constraints, a
CORBA::NO_PERMISSION exception is thrown on the client side.

2. In this example, the client requires a secure SSL/TLS
connection and requires the target server to authenticate
itself with an X.509 certificate. The client also supports the
SSL/TLS EstablishTrustInClient option.

3. This setting enforces strict checking of reply messages from
the server, to make sure the server actually supports CSIv2.

4. The client must have its own X.509 certificate to authenticate
itself to the target. In this example, the SSL/TLS principal
sponsor is used to specify the location of a PKCS#12 file
containing the client’s certificate.

5. The CSI authentication over transport policy must support
EstablishTrustInClient to enable the sending of usernames
and passwords in CSIv2 service contexts.

6. The plugins:gsp:enable_x509_sso variable is set to true to
enable the X.509 single sign-on behavior.

Target configuration
Example 12 shows the configuration for a target server that
requires GSSUP username/password credentials, but can also
accept connections from clients that use X.509 certificate-based
SSO.

Note: Irrespective of the level of security required by
the these configuration settings, the SSO client always
requires the login server connection to be secure and
authenticated by an X.509 certificate. The only way
you can reduce the level of security required by the
login server connection is by setting the
plugins:gsp:enforce_secure_comms_to_sso_server
variable to false.

Example 12: Target Configuration for Certificate-Based Authentication

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];
Orbix Security Guide 83

 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

 server
 {
 policies:csi:auth_over_transport:authentication_service

= "com.iona.corba.security.csi.AuthenticationService";

1 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugI
n";

2 plugins:gsp:action_role_mapping_file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionr
olemapping_with_interfaces.xml";

 plugins:gsp:authorization_realm = "AuthzRealm";
 policies:csi:auth_over_transport:server_domain_name =

"PCGROUP";

 require_gssup_support_x509_with_sso
 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

3
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };
 };
};

Example 12: Target Configuration for Certificate-Based Authentication
 84 Orbix Security Guide

The preceding target configuration can be described as follows:
1. As usual for an SSL/TLS server, the SSL/TLS principal sponsor

is used to specify the location of the server’s own X.509
certificate.

2. The action_role_mapping configuration variable specifies the
location of an action-role mapping that controls access to the
IDL interfaces implemented by the server.

3. The server requires a secure SSL/TLS connection, but does
not require the client to authenticate itself with an X.509
certificate.

4. Because the target server requires the EstablishTrustInClient
option for CSI authentication over transport, clients must
supply GSSUP username/password credentials. This condition
is also satisfied by clients that use X.509 certificate-based
SSO, because this results in the generation of GSSUP
username/password credentials.

Related administration tasks
For details of how to configure SSO token timeouts, see
“Configuring Single Sign-On Properties” on page 116.

Enabling Re-Authentication at Each Tier
This section describes a three-tier SSO scenario where
piggybacking of SAML data (containing details of the client user’s
roles and realms) is disabled. This forces an SSO token to be
re-authenticated at each tier in a multi-tier system, because the
servers in each tier need to contact the Orbix security service to
obtain the SAML data.

Advantages of enabling
re-authentication
Re-enabling authentication at each tier has the following potential
advantages:
• If your distributed application crosses different security

domains, it might be necessary to re-authenticate credentials
in a new domain.

• Sometimes, if the quantity of SAML data is very large, it might
be more efficient for servers to retrieve the SAML data directly
from the Orbix security service.

Disabling SAML piggybacking
There are two configuration variables that control SAML
piggybacking.
plugins:gsp:assert_authorization_info

If false, SAML data is not sent on outgoing connections. Default is
true.
plugins:gsp:accept_asserted_authorization_info
Orbix Security Guide 85

If false, SAML data is not read from incoming connections. Default
is true.

Three-tier scenario without
piggybacking
Figure 26 shows the outline of a single sign-on scenario where the
propagation of SAML role and realm data is disabled.

Steps
The operation invocations performed on behalf of the client shown
in Figure 26 on page 86 can be described as follows:

Figure 26: Single Sign-On Scenario without Piggybacking Roles and Realms

Stage Description

1 When single sign-on is enabled, the client calls out to the
login service, passing in the client’s GSSUP credentials,
u/p/d, in order to obtain a single sign-on token, t.

2 When the client invokes an operation on the second-tier
server, the SSO token, t, is sent as the password in the
GSSUP username/password credentials.

3 The second tier re-authenticates the client’s SSO token,
t, by calling out to the Orbix Security Service. The return
value contains the SAML role and realm data for the
token.
 86 Orbix Security Guide

Configuration notes
The most important policy settings for this three-tier scenario
without SAML piggybacking are briefly described here.

Client to Second Tier
The client is configured to support CSI authentication over
transport and single sign-on without SAML piggybacking, with the
following configuration settings (the
sso_server_certificate_constraints setting would have to be
customised to match your login server’s X.509 certificate):

The second tier is configured to support CSI authentication over
transport from incoming connections, but not to accept SAML
data, with the following settings:

4 If the second tier now invokes an operation on the third
tier, the effective credentials for the invocation are
constructed as follows:
• The client username is used as the asserted identity

(to be propagated through the CSI identity assertion
mechanism).

• The client SSO token, t, from the received
credentials is inserted into an Orbix-proprietary
service context.

5 When the request message is sent to the third tier, only
the asserted identity and the single sign-on token, t, are
included. Propagation of the SAML authorization data is
disabled.

6 The third tier re-authenticates the client’s SSO token, t,
by calling out to the Orbix Security Service. The return
value contains the SAML role and realm data for the
token.

Stage Description

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient];

plugins:gsp:enable_gssup_sso = "true";
plugins:gsp:sso_server_certificate_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

plugins:gsp:assert_authorization_info = "false";

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient];

plugins:gsp:accept_asserted_authorization_info = "false";
Orbix Security Guide 87

Second Tier to Third Tier
The second tier is configured to support CSI identity assertion for
outgoing connections, but not to send SAML data, with the
following configuration settings:

The third tier is configured to support CSI identity assertion from
incoming connections, but not to accept SAML data, with the
following settings:

Optimizing Retrieval of Realm Data
By default, when the GSP plug-in connects to the security service
to authenticate a user’s security credentials, it retrieves all of the
realm and role data for that user. For example, if a user has
security data for realms, A, B, and C, the authentication step
would return realm and role data for each of the three realms, A,
B, and C.
In an enterprise system, the amount of realm data assocated with
each user might become very large. In such systems, it is
desirable to optimize the authentication step by returning only the
realm data that is needed at a particular point in the system,
rather than retrieving all of the realm data at once. Orbix enables
you to restrict the amount of realm data returned at the
authentication step by enabling a feature known as realm filtering.

Enabling realm filtering
To enable realm filtering, set the following configuration variable
to false:
plugins:gsp:retrieve_isf_auth_principal_info_for_all_realms

By default, the GSP plug-in would retrieve a user’s role and realm
data for all realms when contacting the security service. When
realm filtering is enabled in an Orbix server, however, the GSP
plug-in checks to see whether the following configuration variable
is set:
plugins:gsp:authorization_realm

If the preceding variable is set to a specific realm, the GSP plug-in
proceeds to retrieve realm and role data for that realm only.

Same-realm scenario
Figure 27 shows an example of realm filtering applied to a
three-tier system, where the intermediate server and the target
server both belong to the same realm, A. In this case, the realm

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

plugins:gsp:assert_authorization_info = "false";

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

plugins:gsp:accept_asserted_authorization_info = "false";
 88 Orbix Security Guide

filtering optimization works effectively, because the target server
can re-use the role and realm data (SAML-A data) obtained by the
intermediate server.

Same-realm stages
The same-realm scenario shown in Figure 27 can be described as
follows:

Figure 27: Intermediate and Target Belong to Same Realm

Stage Description

1 The client calls out to the login service, passing in the
client’s GSSUP credentials, u/p/d, in order to obtain a
single sign-on token, t.

2 When the client invokes an operation on the
intermediate server, the SSO token, t, is included with
the request message (in the CSI authentication layer).

3 The intermediate server re-authenticates the client’s
SSO token, t, by calling out to the Orbix Security
Service.
Because the intermediate server is configured to use
realm filtering, it requests SAML role and realm data for
realm A only.

4 The intermediate server invokes an operation on the
target server. The request message includes the client
SSO token, t, and the SAML data for realm A, SAML-A.
Because the target server also belongs to realm A, it can
use the SAML data received from the intermediate
server to make an access decision. It does not need to
re-authenticate the token.
Orbix Security Guide 89

Same-realm configuration
Example 13 shows an outline of the configuration required for the
same-realm scenario. The intermediate server is configured to use
realm filtering by setting the
plugins:gsp:retrieve_isf_auth_principal_info_for_all_realms
variable to false. Both the intermediate and the target are
configured to belong to realm A.

Different-realm scenario
Figure 28 shows an example of realm filtering applied to a
three-tier system, where the intermediate server and the target
server belong to different realms, A and B. In this case, realm
filtering does not provide an optimization and the target server
must be configured to re-authenticate any incoming tokens.

Example 13: Same-Realm Scenario Configuration

Orbix Configuration File
client {
 ...
};

intermediate_server {
 ...
 plugins:gsp:retrieve_isf_auth_principal_info_for_all_realms

= "false";
 plugins:gsp:authorization_realm = "A";
};

target_server {
 ...
 plugins:gsp:authorization_realm = "A";
};

Figure 28: Intermediate and Target Belong to Different Realms
 90 Orbix Security Guide

Different-realm stages
The different-realm scenario shown in Figure 28 can be described
as follows:

Different-realm configuration
Example 14 shows an outline of the configuration required for the
different-realm scenario. Both the intermediate server and the
target server are configured to use realm filtering by setting the
plugins:gsp:retrieve_isf_auth_principal_info_for_all_realms
variable to false. The intermediate and the target belong,
however, to different realms: while the intermediate belongs to
realm A, the target belongs to realm B. To force the target server
to re-authenticate incoming tokens (and thus retrieve the
necessary SAML data for realm B), the target server configuration
sets plugins:gsp:accept_asserted_authorization_info to false.

Stage Description

1 The client calls out to the login service, passing in the
client’s GSSUP credentials, u/p/d, in order to obtain a
single sign-on token, t.

2 When the client invokes an operation on the
intermediate server, the SSO token, t, is included with
the request message (in the CSI authentication layer).

3 The intermediate server re-authenticates the client’s
SSO token, t, by calling out to the Orbix Security
Service.
Because the intermediate server is configured to use
realm filtering, it requests SAML role and realm data for
realm A only.

4 The intermediate server invokes an operation on the
target server. The request message includes the client
SSO token, t, and the SAML data for realm A, SAML-A.
The SAML data for realm A is of no use to the target
server, which belongs to realm B. Therefore, the target
server is configured to reject the transmitted realm data
(that is, plugins:gsp:accept_asserted_authorization_info
is set to false).

5 The target server re-authenticates the client’s SSO
token, t, to obtain the SAML role and realm data for
realm B.

Example 14: Different-Realm Scenario Configuration

Orbix Configuration File
client {
 ...
};

intermediate_server {
Orbix Security Guide 91

SSO Sample Configurations
This section provides SSO sample configurations that show how to
configure the client side and the server side in a variety of
different ways.

Client SSO configurations
The following client configurations appear in Example 15:
• sso_client_x509—configuration for an SSO client that uses

X.509 certificate-based SSO credentials to authenticate itself
to the server.

• sso_client_gssup—configuration for an SSO client that
provides username and password (GSSUP)-based SSO
credentials to authenticate itself to the server.

• sso_client_gssup_x509—configuration for an SSO client that
can authenticate itself to a server using either
username/password-based SSO credentials or X.509
certificate-based SSO credentials, depending on the
requirements of the server.

Server SSO configurations
The following server configurations appear in Example 15:
• auth_csi—configuration for a server that requires the client to

provide credentials over CSI. Three client scenarios are
supported by this server configuration, as follows:
♦ Client with username/password credentials (SSO not

enabled).
♦ Client with username/password-based SSO credentials.
♦ Client with X.509 certificate-based SSO credentials.

• auth_csi_and_x509—configuration for a server that requires
both X.509 certificate credentials (over SSL/TLS) and
username/password credentials (over CSIv2). The following
client scenarios are supported by this server configuration:
♦ Client with both X.509 certificate credentials and

username/password credentials (SSO not enabled).

 ...
 plugins:gsp:retrieve_isf_auth_principal_info_for_all_realms

= "false";
 plugins:gsp:authorization_realm = "A";
};

target_server {
 ...
 plugins:gsp:retrieve_isf_auth_principal_info_for_all_realms

= "false";
 plugins:gsp:authorization_realm = "B";
 plugins:gsp:accept_asserted_authorization_info = "false";
};

Example 14: Different-Realm Scenario Configuration
 92 Orbix Security Guide

♦ Client with X.509 certificate-based SSO credentials.
♦ Client with both X.509 certificate credentials and

username/password-based SSO credentials.
♦ Client with both X.509 certificate-based SSO credentials

and username/password-based SSO credentials (for
example, the sso_client_gssup_x509 configuration scope).
In this case, the client would store three different kinds of
credentials: X.509 certificate credentials, X.509
certificate-based SSO credentials, and
username/password-based SSO credentials. Only two of
the stored credentials would actually be used when
communicating with the server (X.509 certificate
credentials over SSL/TLS, and one of the SSO credentials
over CSIv2).

SSO configuration examples
Example 15 shows a series of sample configurations suitable for
SSO clients and SSO servers, supporting either GSSUP
authentication, or X.509 certificate authentication, or both.

Example 15: SSO Client and Server Configuration Examples

Orbix Configuration File
corba_login_server_test_with_tls
{
 principal_sponsor:use_principal_sponsor = "false";

 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

 sso_client_x509

 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
Orbix Security Guide 93

 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 plugins:csi:allow_csi_reply_without_service_context =
"false";

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 plugins:gsp:enable_x509_sso = "true";
 };

 sso_client_gssup

 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 plugins:csi:allow_csi_reply_without_service_context =
"false";

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=paulh", "password=password", "domain=PCGROUP"];

 plugins:gsp:enable_gssup_sso = "true";
 };

 sso_client_gssup_x509

 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 plugins:csi:allow_csi_reply_without_service_context =
"false";

Example 15: SSO Client and Server Configuration Examples
 94 Orbix Security Guide

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=paulh", "password=password", "domain=PCGROUP"];

 plugins:gsp:enable_gssup_sso = "true";
 plugins:gsp:enable_x509_sso = "true";
 };

 server
 {
 policies:csi:auth_over_transport:authentication_service

= "com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugI
n";

 plugins:gsp:action_role_mapping_file =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionr
olemapping_with_interfaces.xml";

 plugins:gsp:authorization_realm = "AuthzRealm";
 policies:csi:auth_over_transport:server_domain_name =

"PCGROUP";

 auth_csi

 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };

 auth_csi_and_x509

 {

Example 15: SSO Client and Server Configuration Examples
Orbix Security Guide 95

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };
 };
};

Example 15: SSO Client and Server Configuration Examples
 96 Orbix Security Guide

Part II
Orbix Security

Framework
Administration

In this part
This part contains the following chapters:

Configuring the Orbix Security Service page 99

Managing Users, Roles and Domains page 119

Managing Access Control Lists page 133

Securing Orbix Services page 145

 98 Orbix Security Guide

Configuring the Orbix
Security Service
This chapter describes how to configure the properties of the Orbix
security service and, in particular, how to configure a variety of adapters
that can integrate the Orbix security service with third-party enterprise
security back-ends (for example, LDAP).

Configuring the File Adapter
The iSF file adapter enables you to store information about users,
roles, and realms in a flat file, a security information file. The file
adapter is easy to set up and configure, but is appropriate for
demonstration purposes only. This section describes how to set up
and configure the iSF file adapter.

File locations
The following files configure the iSF file adapter:
• is2.properties file—the default location of the iSF properties

file is as follows:
ASPInstallDir/etc/domains/DomainName/is2.properties

See “iS2 Properties File” on page 515 for details of how to
customize the default iSF properties file location.

• Security information file—this file’s location is specified by the
com.iona.isp.adapter.file.param.filename property in the
is2.properties file.

File adapter properties
Example 16 shows the properties to set for a file adapter.

WARNING: The file adapter is provided for demonstration
purposes only. Orbix does not support the use of the file
adapter in a production environment.

Example 16: Sample File Adapter Properties

1 com.iona.isp.adapters=file

##
##
Demo File Adapter Properties
##
##

2 com.iona.isp.adapter.file.class=com.iona.security.is2adap
ter.file.FileAuthAdapter

3 com.iona.isp.adapter.file.param.filename=ASPInstallDir/etc/
domains/DomainName/is2_user_password_role_file.txt
 Orbix Security Guide 99

The necessary properties for a file adapter are described as
follows:
1. Set com.iona.isp.adapters=file to instruct the Orbix security

service to load the file adapter.
2. The com.iona.isp.adapter.file.class property specifies the

class that implements the iSF file adapter.
3. The com.iona.isp.adapter.file.param.filename property

specifies the location of the security information file, which
contains information about users and roles.
See “Managing a File Security Domain” on page 129 for
details of how to create or modify the security information file.

4. (Optionally) You might also want to edit the general Orbix
security service properties.
See “Additional Security Configuration” on page 116 for
details.

Configuring the LDAP Adapter
The Orbix security platform integrates with the Lightweight
Directory Access Protocol (LDAP) enterprise security infrastructure
by using an LDAP adapter. The LDAP adapter is configured in an
is2.properties file. This section discusses the following topics:
• Prerequisites
• File location.
• Minimal LDAP configuration.
• Basic LDAP properties.
• LDAP.param properties.
• LDAP server replicas.
• Logging on to an LDAP server.

Prerequisites
Before configuring the LDAP adapter, you must have an LDAP
security system installed and running on your system. LDAP is not
a standard part of Orbix, but you can use the Orbix security
service’s LDAP adapter with any LDAP v.3 compatible system.

File location
The following file configures the LDAP adapter:
• is2.properties file—the default location of the iSF properties

file is as follows:
ASPInstallDir/etc/domains/DomainName/is2.properties

##
General Orbix Security Service Properties
##

4 # ... Generic properties not shown here ...

Example 16: Sample File Adapter Properties
 100 Orbix Security Guide

See “iS2 Properties File” on page 515 for details of how to
customize the default iSF properties file location.

Minimal LDAP configuration
Example 17 shows the minimum set of iSF properties that can be
used to configure an LDAP adapter.

The necessary properties for an LDAP adapter are described as
follows:
1. Set com.iona.isp.adapters=LDAP to instruct the Orbix Security

Platform to load the LDAP adapter.
2. The com.iona.isp.adapter.file.class property specifies the

class that implements the LDAP adapter.
3. For each LDAP server replica, you must specify the host and

port where the LDAP server can be contacted. In this
example, the host and port parameters for the primary LDAP
server, host.1 and port.1, are specified.

4. These properties specify how the LDAP adapter finds a user
name within the LDAP directory schema. The properties are
interpreted as follows:

Example 17: A Sample LDAP Adapter Configuration File

1 com.iona.isp.adapters=LDAP
##

LDAP Adapter Properties
##
##

2 com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter

3 com.iona.isp.adapter.LDAP.param.host.1=10.81.1.400
com.iona.isp.adapter.LDAP.param.port.1=389

4 com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson
com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

5 com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn
com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

6 com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn
com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames
com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB
com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

7 com.iona.isp.adapter.LDAP.param.version=3

UserNameAttr The attribute type whose corresponding value
uniquely identifies the user.

UserBaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.
Orbix Security Guide 101

See “iS2 Properties File” on page 515 for more details.
5. The following properties specify how the adapter extracts a

user’s role from the LDAP directory schema:

6. These properties specify how the LDAP adapter finds a group
name within the LDAP directory schema. The properties are
interpreted as follows:

See “iS2 Properties File” on page 515 for more details.
7. The LDAP version number can be either 2 or 3, corresponding

to LDAP v.2 or LDAP v.3 respectively.

Basic LDAP properties
The following properties must always be set as part of the LDAP
adapter configuration:
com.iona.isp.adapters=LDAP
com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda

p.LdapAdapter

In addition to these basic properties, you must also set a number
of LDAP parameters, which are prefixed by
com.iona.isp.adapter.LDAP.param.

UserObjectClass The attribute type for the object class that
stores users.

UserSearchScope The user search scope specifies the search
depth relative to the user base DN in the LDAP
directory tree. Possible values are: BASE, ONE, or
SUB.

UserRoleDNAttr The attribute type that stores a user’s role DN.
RoleNameAttr The attribute type that the LDAP server uses to

store the role name.

GroupNameAttr The attribute type whose corresponding
attribute value gives the name of the user
group.

GroupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

GroupObjectClass The object class that applies to user group
entries in the LDAP directory structure.

GroupSearchScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are: BASE,
ONE, or SUB.

MemberDNAttr The attribute type that is used to retrieve LDAP
group members.
 102 Orbix Security Guide

LDAP.param properties
Table 3 shows all of the LDAP adapter properties from the
com.iona.isp.adapter.LDAP.param scope. Required properties are
shown in bold:

LDAP server replicas
The LDAP adapter is capable of failing over to one or more backup
replicas of the LDAP server. Hence, properties such as host.<Index>
and port.<Index> include a replica index as part of the parameter
name.
For example, host.1 and port.1 refer to the host and port of the
primary LDAP server, while host.2 and port.2 would refer to the
host and port of an LDAP backup server.

Logging on to an LDAP server
The following properties can be used to configure login parameters
for the <Index> LDAP server replica:
PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

The properties need only be set if the LDAP server is configured to
require username/password authentication.

Secure connection to an LDAP server
The following properties can be used to configure SSL/TLS
security for the connection between the Orbix security service and
the <Index> LDAP server replica:

Table 3: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope

LDAP Server Properties LDAP User/Role
Configuration Properties

host.<Index>
port.<Index>
SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>
PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

UserNameAttr
UserBaseDN
UserObjectClass
UserSearchScope

UserSearchFilter
UserRoleDNAttr
RoleNameAttr

UserCertAttrName

LDAP Group/Member
Configuration Properties

Other LDAP Properties

GroupNameAttr
GroupObjectClass
GroupSearchScope
GroupBaseDN
MemberDNAttr

MemberFilter

MaxConnectionPoolSize
version
UseGroupAsRole
RetrieveAuthInfo
CacheSize
CacheTimeToLive
Orbix Security Guide 103

SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>

The properties need only be set if the LDAP server requires
SSL/TLS mutual authentication.

iSF properties reference
For more details about the Orbix security service properties, see
“iS2 Configuration” on page 513.

Clustering and Federation
Clustering and federation are two distinct, but related, features of
the Orbix security service. Briefly, these features can be described
as follows:
• Clustering—involves running several instances of the Orbix

security service to provide what is effectively a single service.
By running multiple security service instances as a cluster,
Orbix enables you to support fault tolerance and replication
features. Typically, in this case all of the security services in a
cluster are integrated with a single authentication database
back-end.

• Federation—enables SSO tokens to be recognized across
multiple security domains. Each security domain is served by
a distinct security service instance and each security service is
integrated with a different database back-end.

Federating the Orbix Security Service
Federation is meant to be used in deployment scenarios where
there is more than one instance of an Orbix security service. By
configuring the Orbix security service instances as a federation,
the security services can talk to each other and access each
other’s session caches. Federation frequently becomes necessary
when single sign-on (SSO) is used, because an SSO token can be
verified only by the security service instance that originally
generated it.

Federation is not clustering
Federation is not the same thing as clustering. In a federated
system, user data is not replicated across different security
service instances and there are no fault tolerance features
provided.

Example federation scenario
Consider a simple federation scenario consisting of two security
domains, each with their own Orbix security service instances, as
follows:
 104 Orbix Security Guide

• First LDAP security domain—consists of an Orbix security
service (with is2.current.server.id property equal to 1)
configured to store user data in an LDAP database. The
domain includes any Orbix applications that use this Orbix
security service (ID=1) to verify credentials.
In this domain, a login server is deployed which enables
clients to use single sign-on.

• Second LDAP security domain—consists of an Orbix security
service (with is2.current.server.id property equal to 2)
configured to store user data in an LDAP database. The
domain includes any Orbix applications that use this Orbix
security service (ID=2) to verify credentials.

The two Orbix security service instances are federated, using the
configuration described later in this section. With federation
enabled, it is possible for single sign-on clients to make
invocations that cross security domain boundaries.

Federation scenario
Figure 29 shows a typical scenario that illustrates how iSF
federation might be used in the context of an Orbix system.

Figure 29: An iSF Federation Scenario
Orbix Security Guide 105

Federation scenario steps
The federation scenario in Figure 29 can be described as follows:

Configuring the is2.properties files
Each instance of the Orbix security service should have its own
is2.properties file. Within each is2.properties file, you should set
the following:
• is2.current.server.id—a unique ID (alphanumeric string) for

this Orbix security service instance,
• is2.cluster.properties.filename—a shared cluster file.
• is2.sso.remote.token.cached—a boolean property enables

caching of remote token credentials in a federated system.
With caching enabled, the call from one federated security
service to another (step 7 of Figure 29 on page 105) is only
necessary to authenticate a token for the first time. For
subsequent authentications, the security service (with ID=2)
can obtain the token’s security data from its own token cache.

Stage Description

1 With single sign-on (SSO) enabled, the client calls out to
the login service, passing in the client’s GSSUP
credentials, u/p/d, in order to obtain an SSO token, t.

2 The login service delegates authentication to the Orbix
security server (ID=1), which retrieves the user’s
account data from the LDAP backend.

3 The client invokes an operation on the Target A,
belonging to the first LDAP security domain. The SSO
token, t, is included in the message.

4 Target A passes the SSO token to the Orbix security
server (ID=1) to be authenticated. If authentication is
successful, the operation is allowed to proceed.

5 Subsequently, the client invokes an operation on the
Target B, belonging to the second LDAP security domain.
The SSO token, t, obtained in step 1 is included in the
message.

6 Target B passes the SSO token to the second Orbix
security server (ID=2) to be authenticated.

7 The second Orbix security server examines the SSO
token. Because the SSO token is tagged with the first
Orbix security server’s ID (ID=1), verification of the
token is delegated to the first Orbix security server. The
second Orbix security server opens an IIOP/TLS
connection to the first Orbix security service to verify the
token.
 106 Orbix Security Guide

For example, the first Orbix security server instance from
Figure 29 on page 105 could be configured as follows:

And the second Orbix security server instance from Figure 29 on
page 105 could be configured as follows:

Configuring the cluster properties file
All the Orbix security server instances within a federation should
share a cluster properties file. For example, the following extract
from the cluster.properties file shows how to configure the pair of
embedded Orbix security servers shown in Figure 29 on page 105.

This assumes that the first security service (ID=1) runs on host
security_ldap1 and IP port 5001; the second security service
(ID=2) runs on host security_ldap2 and IP port 5002. To discover
the appropriate host and port settings for the security services,
check the plugins:security:iiop_tls settings in the relevant
configuration scope in the relevant Orbix configuration file for
each federated security service.
The securityInstanceURL.ServerID variable advertises the location of
a security service in the cluster. Normally, the most convenient
way to set these values is to use the corbaloc URL format.

iS2 Properties File, for Server ID=1
...
###
iSF federation related properties
###
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote.token.cached=true
...

iS2 Properties File, for Server ID=2
...
###
iSF federation related properties
###
is2.current.server.id=2
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote.token.cached=true
...

Advertise the locations of the security services in the cluster.
com.iona.security.common.securityInstanceURL.1=corbaloc:it_iiops:1.2@security_ldap1:5

001/IT_SecurityService
com.iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security_ldap2:5

002/IT_SecurityService

Note: If your cluster additionally supports failover and
replication, you will also see some
com.iona.security.common.replicaURL.* entries in this file. See
“Failover and Replication” on page 108 for details.
Orbix Security Guide 107

Sample cluster properties file
If you have generated a secure configuration domain, DomainName,
on a host, HostName, you can then find a sample cluster.properties
file in the following directory:
OrbixInstallDir/etc/domains/DomainName/security_HostName/

Failover and Replication
To support high availability of the Orbix security service, Orbix
implements the following features:
• Failover—the security service is contacted using an IOR that

contains the address of every security service in a cluster.
Hence, if one of the services in the cluster crashes, or
otherwise becomes unavailable, an application can
automatically try one of the alternative addresses listed in the
IOR.

• Replication—the data cache associated with single sign-on
(SSO) sessions can be replicated to other security services in
the cluster. This ensures that SSO session data is not lost if
one member of the cluster should become unavailable.

This subsection describes how to configure failover and replication
by hand.
 108 Orbix Security Guide

Failover scenario
Example 30 shows a scenario for a highly available Orbix security
service that consists of a cluster of three security services, each
with an embedded login service. The security and login services
run on separate hosts, security01, security02, and security03
respectively, and all of the services rely on the same third-party
LDAP database to store their user data.

In this scenario, it is assumed that both the client and the target
application are configured to perform random load balancing over the
security services in the cluster (see “Client Load Balancing” on
page 115 for details). Each of the security services in the cluster
are configured for failover and replication.

Figure 30: Failover Scenario for a Cluster of Three Security Services
Orbix Security Guide 109

Failover scenario steps
The interaction of the client and target with the security service
cluster shown in Example 30 on page 109 can be described as
follows:

Configuring the is2.properties file
Each instance of the Orbix security service should have its own
is2.properties file. Within each is2.properties file, you should set
the following:
• is2.current.server.id—a unique ID (alphanumeric string) for

this Orbix security service instance,
• is2.cluster.properties.filename—a shared cluster file.
• is2.replication.required—must be set to true.
• is2.replica.selector.classname—you must set this variable as

shown in the example.

Stage Description

1 Assuming the client is configured to use single sign-on
(SSO), it will automatically contact the login service
(which is part of the security service) to obtain an SSO
token.
Because the client is configured to perform random load
balancing, it chooses one of the addresses from the
IT_Login IOR at random and opens a connection to that
login service.

2 The client invokes an operation on the target, sending
the SSO token obtained in the previous step with the
request.

3 The target server checks the SSO token received from
the client by sending an invocation to the security
service cluster. If the target server already has an
existing connection with a service in the cluster, it
re-uses that connection. Otherwise, the target randomly
picks an address from the list of addresses in the
IT_SecurityService IOR.
 110 Orbix Security Guide

For example, the first Orbix security server instance from
Figure 30 on page 109 could be configured as follows:

The second and third Orbix security services from Figure 30 on
page 109 should be configured similarly, except that the
is2.current.server.id property should be set to 2 and 3
respectively.

Configuring the cluster properties file
For the three-service cluster shown in Figure 30 on page 109, you
could configure the cluster.properties file as follows:

There are two groups of settings in this file:
• securityInstanceURL.ServerID—advertises the location of a

security service in the cluster. Normally, the most convenient
way to set these values is to use the corbaloc URL format.

• replicaURL.ServerID—a list of URLs for the other security
services to which this service replicates its data.
For example, the replicaURL.1 setting lists URLs for the
security service with ID=2 and the security service with ID=3.
Hence, the first service in the cluster is configured to replicate
its data to the second and third services. Normally, each
security service should replicate to all of the other services in
the cluster.

iS2 Properties File, for Server ID=1
...
###
iSF federation related properties
###
is2.current.server.id=1

is2.cluster.properties.filename=C:/is2_config/cluster.pro
perties

is2.replication.required=true
is2.replication.interval=20
is2.replica.selector.classname=com.iona.security.replicat

e.StaticReplicaSelector
...

Advertise the locations of the security services in the cluster.
com.iona.security.common.securityInstanceURL.1=corbaloc:it_iiops:1.2@security01:5001/

IT_SecurityService
com.iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security02:5002/

IT_SecurityService
com.iona.security.common.securityInstanceURL.3=corbaloc:it_iiops:1.2@security03:5003/

IT_SecurityService

Configure replication between security services.
com.iona.security.common.replicaURL.1=corbaloc:it_iiops:1.2@security02:5002/IT_Securi

tyService,corbaloc:it_iiops:1.2@security03:5003/IT_SecurityService
com.iona.security.common.replicaURL.2=corbaloc:it_iiops:1.2@security03:5003/IT_Securi

tyService,corbaloc:it_iiops:1.2@security01:5001/IT_SecurityService
com.iona.security.common.replicaURL.3=corbaloc:it_iiops:1.2@security01:5001/IT_Securi

tyService,corbaloc:it_iiops:1.2@security02:5002/IT_SecurityService
Orbix Security Guide 111

Orbix configuration for the first security
service
Example 18 shows the details of the Orbix configuration for the
first Orbix security service in the cluster. To configure this security
service to support failover, you must ensure that the security
service’s IOR contains a list addresses for all of the services in the
cluster.

Example 18: Orbix Security Service Configuration for Failover

Orbix Configuration File
1 initial_references:IT_SecurityService:reference =

"IOR:010000002400000049444c3a696f6e612e636f6d2f49545f53656375
726974792f5365727665723a312e300001000000000000009200000001010
2000800000066626f6c74616e0000000000220000003a3e02333109536563
7572697479001249545f53656375726974795365727669636500000400000
0140000000800000001007e005e0078cf000000000800000001000000415f
5449010000001c00000001000000010001000100000001000105090101000
1000000000101000600000006000000010000000e00";

initial_references:IT_Login:reference =
"IOR:010000002300000049444c3a696f6e612e636f6d2f49545f5
3656375726974792f4c6f67696e3a312e300000010000000000000
086000000010102000800000066626f6c74616e000000000018000
0003a3e023331095365637572697479000849545f4c6f67696e040
00000140000000800000001007e001e0078cf00000000080000000
1000000415f5449010000001c00000001000000010001000100000
001000105090101000100000000010100060000000600000001000
0000e00";

iona_services {
 ...

2 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=PKCS12File",
"password_file=CertPasswordFile"];

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

 security {
 Hostname {
 ...

3 plugins:security_cluster:iiop_tls:addr_list =
["+security01:5001", "+security02:5002", "+security03:5003"];

4 plugins:security:iiop_tls:host = "5001";
 plugins:security:iiop_tls:port = "security01";

policies:iiop_tls:target_secure_invocation_policy:requ
ires = ["Integrity", "Confidentiality",
"DetectReplay", "DetectMisordering",
"EstablishTrustInClient"];
 112 Orbix Security Guide

The preceding Orbix configuration can be explained as follows:
1. The IT_SecurityService initial reference is read by Orbix

applications to locate the cluster of Orbix security services.
Embedded in this IOR is a list of addresses for all of the
security services in the cluster.
This IOR is generated by the Orbix security service when it is
run in prepare mode.

2. The Orbix security service picks up most of its SSL/TLS
security settings from the iona_services scope. In particular,
the default configuration of the security service uses the
X.509 certificate specified by the principal_sponsor settings in
this scope.

3. The plugins:security_cluster:iiop_tls:addr_list variable lists
the addresses for all of the security services in the cluster.
Each address in the list is preceded by a + sign, which
indicates that the service embeds the address in its generated
IORs.

4. The plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port settings specify the address
where the security service listens for incoming IIOP/TLS
request messages.

Orbix configuration for other services in
the cluster
The configuration for other services in the cluster is similar, except
that the plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port variables should be changed to the
appropriate host and port for each of the replicas.

policies:iiop_tls:target_secure_invocation_policy:supp
orts = ["Integrity", "Confidentiality",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget", "EstablishTrustInClient"];

 ...
 };
 };
};

Example 18: Orbix Security Service Configuration for Failover

Note: You can parse the contents of the stringified
IOR using the iordump tool.

Note: The
plugins:security_cluster:iiop_tls:addr_list setting
also configures the embedded login service.
Orbix Security Guide 113

Replication
Example 31 on page 114 shows how replication works in a cluster
of three Orbix security services. If replication is enabled (that is,
is2.replication.required is set to true in the is2.properties file),
a security service pushes its data cache to the other services in
the cluster every 30 seconds (default replication interval).

Security service replication has the following characteristics:
• The security service pushes the following data to the other

services:
♦ SSO tokens that have been added since the last

replication.
♦ Realm and role data for each of the new SSO tokens.

• Note, however, that the security service does not replicate
username and password data. Therefore, replication is only
relevant to applications that use the SSO feature.

Modifying the replication interval
You can modify the replication interval by setting the
is2.replication.interval property in the is.properties file for the
relevant service. If this variable is not set, the default replication
interval is 30 seconds.

Figure 31: Replication of Data Caches in a Security Service Cluster
 114 Orbix Security Guide

For example, to configure the security service with ID=1 to
replicate data once every 10 seconds, its is2.properties file would
be configured as follows:

Client Load Balancing
When you use a clustered security service, it is important to
configure all of the other applications in the system (clients and
servers) to perform client load balancing (in this context, client means
a client of the Orbix security service and thus includes ordinary
Orbix servers as well). This ensures that the client load is evenly
spread over all of the security services in the cluster.
Client load balancing is enabled by default.

Configuration for load balancing
Example 19 shows an outline of the configuration for a client of a
security service cluster. Such clients must be configured to use
random load balancing to ensure that the load is spread evenly
over the servers in the cluster. The settings highlighted in bold
should be added to the application’s configuration scope.

iS2 Properties File, for Server ID=1
...
###
iSF federation related properties
###
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.pro

perties
is2.replication.required=true
is2.replication.interval=10

is2.replica.selector.classname=com.iona.security.replicat
e.StaticReplicaSelector

...

Example 19: Configuration for Client of a Security Service Cluster

Orbix Configuration File
...
load_balanced_app {
 ...
 plugins:gsp:use_client_load_balancing = "true";
 policies:iiop_tls:load_balancing_mechanism = "random";

};
Orbix Security Guide 115

Client load balancing mechanism
The client load balancing mechanism is selected by setting the
policies:iiop_tls:load_balancing_mechanism variable. Two
mechanisms are supported, as follows:
• random—choose one of the addresses embedded in the IOR at

random (this is the default).

• sequential—choose the first address embedded in the IOR,
moving on to the next address in the list only if the previous
address could not be reached.
In general, this mechanism is not recommended for deployed
systems, because it usually results in all of the client
applications connecting to the first cluster member.

Additional Security Configuration
This section describes how to configure optional features of the
Orbix security service, such as single sign-on and the
authorization manager. These features can be combined with any
iSF adapter type.

Configuring Single Sign-On Properties
The Orbix Security Framework provides an optional single sign-on
(SSO) feature. If you want to use SSO with your applications, you
must configure the Orbix security service as described in this
section. SSO offers the following advantages:
• User credentials can easily be propagated between

applications in the form of an SSO token.
• Performance is optimized, because the authentication step

only needs to be performed once within a distributed system.
• Because the user’s session is tracked centrally by the Orbix

security service, it is possible to impose timeouts on the user
sessions and these timeouts are effective throughout the
distributed system.

SSO tokens
The login service generates an SSO token in response to an
authentication operation. The SSO token is a compact key that the
Orbix security service uses to access a user’s session details,
which are stored in a cache.

Note: This is the only mechanism suitable for use in a
deployed system.
 116 Orbix Security Guide

SSO properties
Example 20 shows the iSF properties needed for SSO:

The SSO properties are described as follows:
1. Setting this property to yes enables single sign-on.
2. The SSO session timeout sets the lifespan of SSO tokens, in

units of seconds. Once the specified time interval elapses, the
token expires.

3. The SSO session idle timeout sets the maximum length of
time for which an SSO session can remain idle, in units of
seconds. If the Orbix security service registers no activity
against a particular session for this amount of time, the
session and its token expire.

4. The size of the SSO cache, in units of number of sessions.

Related administration tasks
For details of how to configure CORBA applications to use SSO,
see “Single Sign-On for CORBA Applications” on page 69.

Configuring the Log4J Logging
log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient
system for capturing logging messages from an application.
Because the Orbix security service’s logging is based on log4j, it is
possible to configure the output of Orbix security service logging
using a standard log4j properties file.

log4j documentation
For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.html

Example 20: Single Sign-On Properties

iSF Properties File
...
###
Single Sign On Session Info
###

1 is2.sso.enabled=yes
2 is2.sso.session.timeout=6000
3 is2.sso.session.idle.timeout=300
4 is2.sso.cache.size=10000
Orbix Security Guide 117

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

Enabling log4j logging
To enable log4j logging, you can specify the location of the log4j
properties file in either of the following ways:
• In the system_properties list.
• In the SECURITY_CLASSPATH.

In the system_properties list
You can specify the location of the log4j properties file by setting
the com.iona.common.log4j.Log4JUtils.filename property in the
plugins:java_server:system_properties list in the security service
configuration. For example, to use the
/is2_config/log4j.properties file, modify the security service
configuration by extending its system properties list as follows:

In the SECURITY_CLASSPATH
You can specify the location of the log4j properties file by adding it
to the SECURITY_CLASSPATH variable in the configuration file (the
separator between items in the classpath is ; on Windows
platforms and : on UNIX platforms).

Configuring the log4j properties file
The following example shows how to configure the log4j properties
to perform basic logging. In this example, the lowest level of
logging is switched on (DEBUG) and the output is sent to the
console screen.

Configuration File
In the security service configuration scope:
plugins:java_server:system_properties = [...,

"com.iona.common.log4j.Log4JUtils.filename=/is2_config
/log4j.properties"];

log4j Properties File
log4j.rootCategory=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x

- %m%n
 118 Orbix Security Guide

Managing Users, Roles
and Domains
The Orbix security service provides a variety of adapters that enable you
to integrate the Orbix Security Framework with third-party enterprise
security products. This allows you to manage users and roles using a
third-party enterprise security product.

Introduction to Domains and Realms
This section introduces the concepts of an iSF security domain and
an iSF authorization realm, which are fundamental to the
administration of the Orbix Security Framework. Within an iSF
security domain, you can create user accounts and within an iSF
authorization realm you can assign roles to users.
This section deals with the following subjects:
• iSF Security Domains
• iSF Authorization Realms
• Example Domain and Realms
• Domain and Realm Terminology

iSF Security Domains
This subsection introduces the concept of an iSF security domain.

iSF security domain
An iSF security domain is a particular security system, or namespace
within a security system, designated to authenticate a user.
Here are some specific examples of iSF security domains:
• LDAP security domain—authentication provided by an LDAP

security backend, accessed through the Orbix security service.

Domain architecture
Figure 32 shows the architecture of an iSF security domain. The
iSF security domain is identified with an enterprise security service
that plugs into the Orbix security service through an iSF adapter.
User data needed for authentication, such as username and
 Orbix Security Guide 119

password, are stored within the enterprise security service. The
Orbix security service provides a central access point to enable
authentication within the iSF security domain.

Creating an iSF security domain
Effectively, you create an iSF security domain by configuring the
Orbix security service to link to an enterprise security service
through an iSF adapter (such as an LDAP adapter). The enterprise
security service is the implementation of the iSF security domain.

Creating a user account
Because user account data is stored in a third-party enterprise
security service, you use the standard tools from the third-party
enterprise security product to create a user account.
For a simple example, see “Managing a File Security Domain” on
page 129.

iSF Authorization Realms
This subsection introduces the concept of an iSF authorization
realm and role-based access control, explaining how users, roles,
realms, and servers are interrelated.

Figure 32: Architecture of an iSF Security Domain
 120 Orbix Security Guide

iSF authorization realm
An iSF authorization realm is a collection of secured resources that
share a common interpretation of role names. An authenticated
user can have different roles in different realms. When using a
resource in realm R, only the user's roles in realm R are applied to
authorization decisions.

Role-based access control
The Orbix security framework supports a role-based access control
(RBAC) authorization scheme. Under RBAC, authorization is a two
step process, as follows:
1. User-to-role mapping—every user is associated with a set of

roles in each realm (for example, guest, administrator, and so
on, in a realm, Engineering). A user can belong to many
different realms, having a different set of roles in each realm.
The user-to-role assignments are managed centrally by the
Orbix security service, which returns the set of realms and
roles assigned to a user when required.

2. Role-to-permission mapping (or action-role mapping)—in the
RBAC model, permissions are granted to roles, rather than
directly to users. The role-to-permission mapping is
performed locally by a server, using data stored in local
access control list (ACL) files. For example, CORBA servers in
the iSF use an XML action-role mapping file to control access
to IDL interfaces, operation, and attributes.

Servers and realms
From a server’s perspective, an iSF authorization realm is a way of
grouping servers with similar authorization requirements.
Figure 33 shows two iSF authorization realms, Engineering and
Finance, each containing a collection of server applications.

Figure 33: Server View of iSF Authorization Realms
Orbix Security Guide 121

Adding a server to a realm
To add a server to a realm, add or modify the
plugins:gsp:authorization_realm configuration variable within the
server’s configuration scope (either in the DomainName.cfg file or in
the CFR server).
For example, if your server’s configuration is defined in the
my_server_scope scope, you can set the iSF authorization realm to
Engineering as follows:

Roles and realms
From the perspective of role-based authorization, an iSF
authorization realm acts as a namespace for roles. For example,
Figure 34 shows two iSF authorization realms, Engineering and
Finance, each associated with a set of roles.

Creating realms and roles
Realms and roles are usually administered from within the
enterprise security system that is plugged into the Orbix security
service through an adapter. Not every enterprise security system
supports realms and roles, however.
For example, in the case of a security file connected to a file
adapter (a demonstration adapter provided by Orbix), a realm or
role is implicitly created whenever it is listed amongst a user’s
realms or roles. See also “Assigning realms and roles to the
example users” on page 124.

Orbix configuration file
...
my_server_scope {
 plugins:gsp:authorization_realm = "Engineering";
 ...
};

Figure 34: Role View of iSF Authorization Realms
 122 Orbix Security Guide

Assigning realms and roles to users
The assignment of realms and roles to users is administered from
within the enterprise security system that is plugged into the
Orbix security service. For example, Figure 35 shows how two
users, Janet and John, are assigned roles within the Engineering
and Finance realms.
• Janet works in the engineering department as a developer,

but occasionally logs on to the Finance realm with guest
permissions.

• John works as an accountant in finance, but also has guest
permissions with the Engineering realm.

Special realms and roles
The following special realms and roles are supported by the Orbix
Security Framework:
• IONAGlobalRealm realm—a special realm that encompasses

every iSF authorization realm. Roles defined within the
IONAGlobalRealm are valid within every iSF authorization realm.

• UnauthenticatedUserRole—a special role that can be used to
specify actions accessible to an unauthenticated user (in an
action-role mapping file). An unauthenticated user is a remote
user without credentials (that is, where the client is not
configured to send GSSUP credentials).
Actions mapped to the UnauthenticatedUserRole role are also
accessible to authenticated users.
The UnauthenticatedUserRole can be used only in action-role
mapping files.

Figure 35: Assignment of Realms and Roles to Users Janet and John
Orbix Security Guide 123

Example Domain and Realms
This subsection presents an example of how to set up an iSF
security domain using a file domain. Sample iSF authorization
realms, roles, and users are created, and the authorization
process is explained by example.

File domain
In this example, the iSF security domain is configured to be a file
domain. A file domain is a simple file-based security domain that
can be used for tests or demonstrations. The user data is then
stored in an XML security file.
For details of how to configure a file domain, see “Managing a File
Security Domain” on page 129.

Example users
The following users are created in the file domain for this
example:
• Janet—with username, Janet, and password, JanetPass.
• John—with username, John, and password, JohnPass.
• SuperUser—with username, SuperUser, and password,

BigSecret.

Assigning realms and roles to the
example users
The following realms and roles are assigned to the users, Janet,
John, and SuperUser (where realms and roles are notated in the
format RealmA { roleA1, roleA2, ..., roleAn}):
• Janet—is assigned the following realms and roles:

♦ Engineering {developer, admin}
♦ IONAGlobalRealm {guest}

• John—is assigned the following realms and roles:
♦ Finance {accountant}
♦ IONAGlobalRealm {guest}

• SuperUser—is assigned the following realm and role:
♦ IONAGlobalRealm {admin}

Sample security file for the file domain
Within a file domain, you specify the user authentication data
(username and password) as well as the realm/role assignments
within the same XML security file. The preceding user data can be
specified in a security file as follows:
 124 Orbix Security Guide

<?xml version="1.0" encoding="utf-8" ?>
<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
 <users>
 <user name="Janet" password="JanetPass"
 description="Developer">
 <realm name="Engineering">
 <role name="developer"/>
 <role name="admin"/>
 </realm>
 <realm name="IONAGlobalRealm" description="All realms">
 <role name="guest"/>
 </realm>
 </user>
 <user name="John" password="JohnPass"
 description="Accountant">
 <realm name="Finance">
 <role name="accountant"/>
 </realm>
 <realm name="IONAGlobalRealm" description="All realms">
 <role name="guest"/>
 </realm>
 </user>
 <user name="SuperUser" password="BigSecret"
 description="All powerful user!">
 <realm name="IONAGlobalRealm" description="All realms">
 <role name="admin" description="All actions"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>
Orbix Security Guide 125

Sample server configuration
Consider, for example, the CORBA naming service in the
Engineering iSF authorization realm. To configure this naming
service, edit the variables in the iona_services.naming scope in the
DomainName.cfg configuration file. Set the authorization realm to
Engineering and specify the location of the action-role mapping
file, as follows:

Sample ACL file
The eng_naming_arm.xml action-role mapping file, which specifies
permissions for the naming service in the Engineering domain,
could be defined as follows:

Orbix configuration file
...
iona_services {
 ...
 naming {
 plugins:gsp:authorization_realm = "Engineering";
 plugins:is2_authorization:action_role_mapping =
 "file:///security/eng_naming_arm.xml";
 ...
 };
};

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM

"actionrolemapping_with_interfaces.dtd">
<secure-system>
 <allow-unlisted-interfaces>true</allow-unlisted-interfaces>
 <action-role-mapping>
 <server-name>iona_services.naming</server-name>
 <interface>
 <name>IDL:omg.org/CosNaming/NamingContext:1.0</name>
 <action-role>
 <action-name>*</action-name>
 <role-name>developer</role-name>
 </action-role>
 <action-role>
 <action-name>resolve</action-name>
 <action-name>list</action-name>
 <role-name>guest</role-name>
 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>
 126 Orbix Security Guide

Authorization process
When user John attempts to invoke an operation on the CORBA
naming service in the Engineering domain, authorization proceeds
as follows:

Domain and Realm Terminology
The terms domain and realm appear in several security technology
specifications with different (and sometimes contradictory)
meanings. This subsection attempts to clarify some of the domain
and realm terminology and provides a comparison with the Orbix
Security Framework terms.

Stage Description

1 The naming service contacts the Orbix security service
remotely to authenticate John’s username and
password.

2 If authentication is successful, the Orbix security service
returns the complete list of realms and roles assigned to
John. In the current example, the following realms and
roles would be returned:
• Finance {accountant}
• IONAGlobalRealm {guest}

3 The naming service determines which roles are
applicable to John in the current iSF authorization realm.
Because the naming service belongs to the Engineering
realm, only the guest role from the IONAGlobalRealm is
applicable here.

4 The naming service now checks the eng_naming_arm.xml
action-role mapping file and finds that only the resolve
and list actions are permitted on the
CosNaming::NamingContext IDL interface for the guest role.
On the other hand, if the user, John, attempts to call an
operation (or attribute) on any other naming service
interface, the call would be permitted, because the
<allow-unlisted-interfaces> option is true in the
action-role mapping file.
Note: The special <allow-unlisted-interfaces> tag is a
useful shortcut, but you should use it carefully to avoid
opening a security hole.
Orbix Security Guide 127

Comparison of terminology
To clarify the terminology used by different technology
specifications (all of which are embraced by the iSF) Table 4 lists
the generic iSF terms against their technology-specific
equivalents:

1. The term, J2EE security policy domain, appears in both rows
because it is a general term that embodies both an
authentication domain and an authorization domain.

2. J2EE realm means the same thing as J2EE security policy
domain.

J2EE security technology domain
The J2EE specification defines a J2EE security technology domain as
follows:
The scope over which a single security mechanism is used to
enforce a security policy. Multiple security policy domains can
exist within a single technology domain.

J2EE security policy domain
The J2EE specification defines a J2EE security policy domain as follows:
A realm, also called a security policy domain or security domain in
the J2EE specification, is a scope over which a common security
policy is defined and enforced by the security administrator of the
security service

J2EE realm
A J2EE realm is the same thing as J2EE security policy domain.

Table 4: Domain and Realm Terminology Comparison

Generic iSF Term Technology-Specific
Equivalents

iSF security domain J2EE security technology domain
J2EE security policy domain (1)
J2EE realm (2)
JAAS authentication realm
CSIv2 authentication domain
HTTP login realm

iSF authorization realm J2EE security policy domain (1)
J2EE realm (2)
 128 Orbix Security Guide

JAAS authentication realm
A Java Authentication and Authorization Service (JAAS)
authentication realm is a namespace for JAAS principals.

CSIv2 authentication domain
A CSIv2 authentication domain is a named domain in which CSIv2
authentication data (for example, username and password) is
authenticated.

HTTP login realm
When a user logs on to a Web client through a standard HTTP
login mechanism (for example, HTTP basic authentication or HTTP
form-based authentication), the user is prompted for a username,
password, and login realm name. The login realm name, along
with the user’s username and password, is the sent to the Web
server.

Managing a File Security Domain
The file security domain is active if the Orbix security service has
been configured to use the iSF file adapter (see “Configuring the
File Adapter” on page 99). The main purpose of the iSF file
adapter is to provide a lightweight security domain for
demonstration purposes. A realistic deployed system, however,
would use one of the other adapters (LDAP or custom) instead.

Location of file
The location of the security information file is specified by the
com.iona.isp.adapter.file.param.filename property in the Orbix
security service’s is2.properties file.

Example
Example 21 is an extract from a sample security information file
that shows you how to define users, realms, and roles in a file
security domain.

WARNING:The file adapter is provided for demonstration
purposes only. Orbix does not support the use of the file
adapter in a production environment.

Example 21: Sample Security Information File for an iSF File Domain

<?xml version="1.0" encoding="utf-8" ?>

1 <ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
2 <users>
Orbix Security Guide 129

1. The <ns:securityInfo> tag can contain a nested <users> tag.
2. The <users> tag contains a sequence of <user> tags.
3. Each <user> tag defines a single user. The <user> tag’s name

and password attributes specify the user’s username and
password. Within the scope of the <user> tag, you can list the
realms and roles with which the user is associated.

4. When a <realm> tag appears within the scope of a <user> tag,
it implicitly defines a realm and specifies that the user belongs
to this realm. A <realm> must have a name and can optionally
have a description attribute.

5. A realm can optionally be associated with one or more roles
by including <role> elements within the <realm> scope.

3 <user name="IONAAdmin" password="admin"
 description="Default IONA admin user">

4 <realm name="IONA" description="All IONA applications"/>
 </user>
 <user name="admin" password="admin" description="Old admin

user; will not have the same default privileges as
IONAAdmin.">

 <realm name="Corporate">
 <role name="Administrator"/>
 </realm>
 </user>
 <user name="alice" password="dost1234">

5 <realm name="Financials"
 description="Financial Department">
 <role name="Manager" description="Department Manager" />
 <role name="Clerk"/>
 </realm>
 </user>
 <user name="bob" password="dost1234">
 <realm name="Financials">
 <role name="Clerk"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

Example 21: Sample Security Information File for an iSF File Domain
 130 Orbix Security Guide

Certificate-based authentication for the
file adapter
When performing certificate-based authentication, the file adapter
compares the certificate to be authenticated with a cached copy of
the user’s certificate.
To configure the file adapter to support X.509 certificate-based
authentication, perform the following steps:
1. Cache a copy of each user’s certificate, CertFile.pem, in a

location that is accessible to the file adapter.
2. Make the following type of entry for each user with a

certificate:

The user’s name, CNfromSubjectDN, is derived from the
certificate by taking the Common Name (CN) from the subject
DN of the X.509 certificate (for DN terminology, see “ASN.1
and Distinguished Names” on page 447). The certificate
attribute specifies the location of this user’s X.509 certificate,
CertFile.pem.

Managing an LDAP Security Domain
The Lightweight Directory Access Protocol (LDAP) can serve as the
basis of a database that stores users, groups, and roles. There are
many implementations of LDAP and any of them can be integrated
with the Orbix security service by configuring the LDAP adapter.
Please consult documentation from your third-party LDAP implementation for detailed
instructions on how to administer users and roles within LDAP.

Configuring the LDAP adapter
A prerequisite for using LDAP within the Orbix Security Framework
is that the Orbix security service be configured to use the LDAP
adapter.
See “Configuring the LDAP Adapter” on page 100.

Example 22: File Adapter Entry for Certificate-Based Authentication

...
<user name="CNfromSubjectDN" certificate="CertFile.pem"

description="User certificate">
 <realm name="RealmName">
 ...
 </realm>
</user>
Orbix Security Guide 131

Certificate-based authentication for the
LDAP adapter
When performing certificate-based authentication, the LDAP
adapter compares the certificate to be authenticated with a
cached copy of the user’s certificate.
To configure the LDAP adapter to support X.509 certificate-based
authentication, perform the following steps:
1. Cache a copy of each user’s certificate, CertFile.pem, in a

location that is accessible to the LDAP adapter.
2. The user’s name, CNfromSubjectDN, is derived from the

certificate by taking the Common Name (CN) from the subject
DN of the X.509 certificate (for DN terminology, see “ASN.1
and Distinguished Names” on page 447).

3. Make (or modify) an entry in your LDAP database with the
username, CNfromSubjectDN, and specify the location of the
cached certificate.
 132 Orbix Security Guide

Managing
Access Control Lists
The Orbix Security Framework defines access control lists (ACLs) for
mapping roles to resources. The ACLs are specific to particular
technology domains, such as CORBA. They can be deployed either
together with each secure server or centrally in the Orbix security service.

CORBA ACLs
This section discusses the ACL files that control access to IDL
operations and attributes in a CORBA server. The ACL files for
CORBA servers provide role-based access control with granularity
down to the level of IDL operations, and attributes.

Overview of CORBA ACL Files

Action-role mapping file
The action-role mapping file is an XML file that specifies which
user roles have permission to perform specific actions on the
server (that is, invoking specific IDL operations and attributes).

GSP plug-in
The GSP plug-in is a component of the iSF that provides support
for action-role mapping. This plug-in must be loaded in order to
use the action-role mapping ACL file (see “Security Configuration”
on page 485 for details of how to configure the GSP plug-in).

CORBA Action-Role Mapping ACL
This subsection explains how to configure the action-role mapping
ACL file for CORBA applications. Using an action-role mapping file,
you can specify that access to IDL operations and attributes is
restricted to specific roles.
 Orbix Security Guide 133

File location
In your Orbix configuration file, the
plugins:gsp:action_role_mapping_file configuration variable
specifies the location URL of the action-role mapping file,
action_role_mapping.xml, for a CORBA server. For example:

Example IDL
For example, consider how to set the operation and attribute
permissions for the IDL interface shown in Example 23.

Example action-role mapping
Example 24 shows how you might configure an action-role
mapping file for the Simple::SimpleObject interface given in the
preceding Example 23 on page 134.

Orbix Configuration File
...
my_server_scope {
 plugins:gsp:action_role_mapping_file =
 "file:///security_admin/action_role_mapping.xml";
};

Example 23: Sample IDL for CORBA ACL Example

// IDL
module Simple
{
 interface SimpleObject
 {
 void call_me();
 attribute string foo;
 };
};

Example 24: CORBA Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
1 <!DOCTYPE secure-system SYSTEM

"InstallDir/etc/domains/Domain/actionrolemapping.dtd">
<secure-system>

2 <allow-unlisted-interfaces>false</allow-unlisted-interfaces>

3 <action-role-mapping>
4 <server-name>gsp_basic_test.server</server-name>
5 <interface>
6 <name>IDL:Simple/SimpleObject:1.0</name>

 <action-role>
7 <action-name>call_me</action-name>

 <role-name>corba-developer</role-name>
 <role-name>guest</role-name>
 </action-role>
 <action-role>

8 <action-name>_get_foo</action-name>
 134 Orbix Security Guide

The preceding action-role mapping example can be explained as
follows:
1. If the directory containing the actionrolemapping.dtd file

includes spaces, the spaces should be replaced by %20 in the
<!DOCTYPE> tag.

2. The <allow-unlisted-interfaces> tag specifies the default
access that applies to interfaces not explicitly listed in the
action-role mapping file. The tag contents can have the
following values:
♦ true—for any interfaces not listed, access is allowed for all

roles. If the remote user is unauthenticated (in the sense
that no GSSUP credentials are sent by the client), access
is also allowed.

♦ false—for any interfaces not listed, access is denied for all
roles. Unauthenticated users are also denied access. This
is the default.

3. The <action-role-mapping> tag contains all of the permissions
that apply to a particular server application.

4. The <server-name> tag specifies the ORB name that is used by
the server in question. The value of this tag must match the
ORB name exactly.

5. The <interface> tag contains all of the access permissions for
one particular IDL interface.

6. The <name> tag identifies the IDL interface using the interface’s
OMG repository ID. The repository ID normally consists of the
characters IDL: followed by the fully scoped name of the
interface (using / instead of :: as the scoping character),
followed by the characters :1.0. Hence, the
Simple::SimpleObject IDL interface is identified by the
IDL:Simple/SimpleObject:1.0 repository ID.

 <role-name>corba-developer</role-name>
 <role-name>guest</role-name>
 </action-role>
 </interface>

 </action-role-mapping>
</secure-system>

Example 24: CORBA Action-Role Mapping Example

Note: The ORB name also determines which
configuration scopes are read by the server. See the
Administrator’s Guide for details.

Note: The form of the repository ID can also be
affected by various #pragma directives appearing in the
IDL file. A commonly used directive is #pragma prefix.
For example, the CosNaming::NamingContext interface in
the naming service module, which uses the omg.org
prefix, has the following repository ID:
IDL:omg.org/CosNaming/NamingContext:1.0
Orbix Security Guide 135

7. The call_me action name corresponds to the call_me()
operation in the Simple::SimpleObject interface. The action
name corresponds to the GIOP on-the-wire form of the
operation name (usually the same as it appears in IDL).

8. The _get_foo action name corresponds to the foo attribute
accessor. In general, any read/write attribute, AttributeName,
has the following action names:
♦ _get_AttributeName—for the attribute accessor, and
♦ _set_AttributeName—for the attribute modifier.
In general, the accessor or modifier action names correspond
to the GIOP on-the-wire form of the attribute accessor or
modifier.

Action-role mapping DTD
The syntax of the action-role mapping file is defined by the
action-role mapping DTD. See “Action-Role Mapping DTD” on
page 453 for details.

Centralized ACL
By default, a secure Orbix application is configured to store its ACL
file locally. Hence, in a large deployment, ACL files might be
scattered over many hosts, which could prove to be a nuisance for
administrators.
An alternative approach, as described in this section, is to
configure your secure applications to use a centralized ACL
repository. This allows you to administer all of the ACL data in one
place, making it easier to update and maintain.
This section deals with the following subjects:
• Local ACL Scenario
• Centralized ACL Scenario
• Customizing Access Control Locally

Local ACL Scenario
This section briefly describes the behavior of a secure server
whose operations are protected by a local ACL file (see, for
example, “Target configuration” on page 56 for details of such a
configuration).
 136 Orbix Security Guide

Local ACL scenario
Figure 36 shows an outline of the local ACL scenario, where the
ACL file is stored on the same host as the target server. You
configure the server to load the ACL file from the local file system
by setting the plugins:gsp:action_role_mapping_file variable in the
target server’s configuration scope.

Scenario description
The local ACL scenario shown in Figure 36 can be described as
follows:

Figure 36: Local ACL Scenario

Stage Description

1 The client invokes an operation on the secure target
server, requiring an access decision to be made on the
server side.

2 The GSP plug-in calls a function on the internal
ClientAccessDecision object to check whether the
current user has permission to invoke the current
operation.

3 If this is the first access decision required by the target
server, the ClientAccessDecision object reads the
contents of the local ACL file (as specified by the
plugins:gsp:action_role_mapping_file variable) and
stores the ACL data in a cache.
For all subsequent access decisions, the
ClientAccessDecision object reads the cached ACL data
for efficiency.
Orbix Security Guide 137

Centralized ACL Scenario
From an administrative point of view, it is often more convenient
to gather ACL files onto a central host, rather than leaving them
scattered on different hosts. The centralized ACL feature enables you
to create such a central repository of ACL files. The ACL files are
stored on the same host as the Orbix security service, which
serves up ACL data to remote Orbix servers on request.

Centralized ACL scenario
Figure 37 shows an outline of a centralized ACL scenario, where
the ACL files are stored on the same host as the Orbix security
service.

Scenario description
The centralized ACL scenario shown in Figure 37 can be described
as follows:

Figure 37: Centralized ACL scenario

Stage Description

1 The client invokes an operation on the secure
target server, requiring an access decision to be
made on the server side.
 138 Orbix Security Guide

Modify the Orbix configuration file
To configure an application (such as the target server shown in
Figure 37 on page 138) to use a centralized ACL, you must modify
its configuration scope as shown in Example 25. In this example,
it is assumed that the application’s ORB name is
my_secure_apps.my_two_tier_target.

2 The GSP plug-in calls a function on the internal
ClientAccessDecision object to check whether the
current user has permission to invoke the current
operation.

3 If this is the first access decision required by the
target server, the ClientAccessDecision object
contacts the Orbix security service to obtain the
ACL data.
For all subsequent access decisions, the
ClientAccessDecision object reads the cached ACL
data for efficiency.

4 When the security service is requested to provide
ACL data, it selects the appropriate ACL file from
its repository of ACL files.
By default, the Orbix security service selects the
ACL file whose ORB name (as specified in the
<server-name> tag) matches that of the request.

5 The security service returns the ACL data in the
form of an XML string, which is then cached by the
ClientAccessDecision object.

Stage Description

Example 25: Configuration of a Second-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 ...
 my_two_tier_target {
 ...
 plugins:gsp:authorization_realm = "AuthzRealm";

1 # plugins:gsp:action_role_mapping_file = "ActionRoleURL";
2 plugins:gsp:authorization_policy_store_type = "centralized";
3 plugins:gsp:authorization_policy_enforcement_point = "local";

 };
};
Orbix Security Guide 139

The preceding Orbix configuration can be described as follows:
1. The plugins:gsp:action_role_mapping_file setting is ignored

when you have centralized ACL enabled. You can either
comment out this line, as shown here, or delete it.

2. Setting the plugins:gsp:authorization_policy_store_type
variable to centralized configures the application to retrieve
its ACL data from the Orbix security service (which is then
stored in a local cache).

3. Setting the
plugins:gsp:authorization_policy_enforcement_point variable
to local specifies that the ACL logic is implemented locally (in
the target server). Currently, this is the only option that is
supported.

Modify the is2.properties file
To configure the Orbix security service to support centralized ACL,
you should edit its is2.properties (normally located in the
OrbixInstallDir/etc/domains/DomainName directory) to add or modify
the following settings:

The ACLFileListFile is the name of a file (specified in the local file
format) which contains a list of the centrally stored ACL files.

Create an ACL file list file
The ACL file list file is a list of filenames, each line of which has the
following format:

A file name can optionally be preceded by an ACL key and an
equals sign, ACLKey=, if you want to select the file by ACL key (see
“Selection by ACL key” on page 142). The ACL file, ACLFileName, is
specified using an absolute pathname in the local file format.

For example, on Windows you could specify a list of ACL files as
follows:

is2.properties File for the Orbix Security Service
...
com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.i

s2AzAdapter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListF

ile;

[ACLKey=]ACLFileName

Note: On Windows, you should replace backslashes by
forward slashes in the pathname.

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
U:/orbix_security/etc/acl_files/server_C.xml
 140 Orbix Security Guide

Selecting the ACL file
When the Orbix security service responds to a request to provide
ACL data, it chooses an ACL file using one of the following
selection criteria:
• Selection by ORB name.
• Selection by override value.
• Selection by ACL key.

Selection by ORB name
The default selection criterion is selection by ORB name. The target
application includes its ORB name in the request it sends to the
security service. The security service then selects the data from
the ACL file which includes a <server-name> tag with the specified
ORB name.

For example, if the application’s ORB name is
my_secure_apps.my_two_tier_target, the security service will select
the data from the ACL file containing the following <server-name>
tag:

Selection by override value
Alternatively, you can use selection by override value to override the
value of the ORB name sent to the Orbix security service. The
override value must be set in the Orbix configuration using the
plugins:gsp:acl_policy_data_id variable.

Note: The security service reads and returns all of the
data from the selected ACL file. Even if the ACL file
contains multiple <server-name> tags labelled by different
ORB names, the data from the enclosing
<action-role-mapping> tags with non-matching ORB names
are also returned.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "DTDFileForOrbixACL">
<secure-system>
 <action-role-mapping>
 <server-name>my_secure_apps.my_two_tier_target</server-name>

 ...
 </action-role-mapping>
 ...
</secure-system>
Orbix Security Guide 141

For example, suppose you want to select ACL data that has the
ORB name, my_secure_apps.my_two_tier_target.alt_acl. You would
specify the override value using the
plugins:gsp:acl_policy_data_id variable as follows:

The security service would then select the data from the ACL file
containing the following <server-name> tag:

Selection by ACL key
A more flexible system of selection is selection by ACL key. In this
case, the application specifies an ACL key in its Orbix configuration
and the security service matches this key to an entry in the ACL
file list file.
For example, consider an application that defines an ACL key,
bank_data, in its configuration scope. You would specify the key
using the plugins:gsp:acl_policy_data_id variable as follows:

The security service then selects the entry from the ACL file list
labelled with the bank_data key:

Orbix Configuration File
...
Add this line to the application’s configuration scope
plugins:gsp:acl_policy_data_id =

"my_secure_apps.my_two_tier_target.alt_acl";

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "DTDFileForOrbixACL">
<secure-system>
 <action-role-mapping>

<server-name>my_secure_apps.my_two_tier_target.alt_acl</server-name
>

 ...
 </action-role-mapping>
 ...
</secure-system>

Orbix Configuration File
...
Add this line to the application’s configuration scope
plugins:gsp:acl_policy_data_id = "aclkey:bank_data";

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
bank_data=U:/orbix_security/etc/acl_files/server_C.xml
 142 Orbix Security Guide

Customizing Access Control Locally
Orbix allows you to customize access control locally by
implementing a plug-in that overrides the implementation of the
ClientAccessDecision object. This gives you complete control over
the access decision logic in an Orbix application.

Custom ClientAccessDecision in an Orbix
application
Figure 38 shows an outline of an ACL scenario, where the default
ClientAccessDecision object is replaced by a customized
implementation.

Scenario variants
Replacing the ClientAccessDecision object with a customized
implementation effectively gives you complete control over the
access decision logic in an Orbix application. The system shown in
Figure 38 can be adapted to a variety of scenarios, as follows:
• Storing the ACL data locally, but using a customized file

format.

Note: Detailed instructions on how to implement a
ClientAccessDecision plug-in are not provided here.
Because this task requires a detailed understanding of
Orbix plug-ins, we recommend that you contact Micro
Focus for further assistance.

Figure 38: Custom ClientAccessDecision in an Orbix Application
Orbix Security Guide 143

• Customizing both the ClientAccessDecision object and the
ServerAccessDecision object to implement a centralized ACL
with custom features. In particular, this approach would
enable you to store and transmit ACL data in a custom format.

• Retrieving ACL data from a custom server. In this case, you
could have a centralized ACL repository that bypasses the
Orbix security service.
 144 Orbix Security Guide

Securing Orbix
Services
This chapter describes how to enable security in the context of the Orbix
Security Framework for the Orbix services.

Introduction to Securing Services
In a secure system, all Orbix services should be capable of
servicing secure connections. A typical secure system includes an
Orbix security service and enables SSL/TLS on all of the Orbix
services.

Configuring the Orbix services
Before deploying the Orbix services in a live system, you must
customize the security configuration, replacing demonstration
certificates by custom certificates and so on. The procedure for
securing Orbix services is similar to the procedure for securing
regular CORBA applications (see “Securing CORBA Applications”
on page 43).

Configuring the Orbix security service
The Orbix security service is a special case because, in addition to
setting configuration variables in the Orbix configuration, you also
need to perform the following basic administration tasks:
• Edit the properties in the is2.properties file—see “Configuring

the Orbix Security Service” on page 99.
• Change the secure user data (usernames, passwords, and so

on) stored in the Orbix security service’s user database—see
“Managing Users, Roles and Domains” on page 119.

Access control lists for Orbix services
Fine-grained access to the Orbix services is controlled by the
access control lists (ACLs) in the Orbix action-role mapping files.
Default ACLs are generated automatically when you run
itconfigure to create a secure domain. See “Default Access
Control Lists” on page 170 for a detailed discussion of the default
ACLs for the Orbix services.
 Orbix Security Guide 145

Secure File-Based Domain

File-based domain overview
Figure 39 shows an overview of a secure file-based domain. In
this example, the Orbix security service runs on a host, S1, and
the other core Orbix services run on a different host, S2.

Domain.cfg in a file-based domain
In a secure file-based domain, the Orbix configuration file,
Domain.cfg, contains all of the configuration data for the CORBA
system. In particular, the Domain.cfg file can contain security
credentials for your applications and the core Orbix services (for
example, certificate locations and password file locations).
When deploying a domain across multiple hosts (as, for example,
in Figure 39), it is advisable to customize the Domain.cfg file on
each host. Each copy of Domain.cfg should include security
credentials only for the applications running on that particular
host.

Figure 39: Overview of a Secure File-Based Domain

WARNING: Any domain configuration files containing
security-related data must be stored securely by the
operating system.
 146 Orbix Security Guide

Secure CFR Domain

CFR domain overview
Figure 40 shows an overview of a secure CFR domain. In this
example, the Orbix security service runs on a host, S1, and the
other core Orbix services run on a different host, S2.

Note: Some aspects of secure CFR domains have changed
significantly in Orbix 6.3 Service Pack 4. If you are using
an earlier version of Orbix, please consult the original
documentation for that Orbix version.

Figure 40: Overview of a Secure CFR Domain
Orbix Security Guide 147

Secure CFR domain files
A secure CFR domain can use the following different kinds of
domain configuration file:
• insecure-Domain.cfg.
• secure-Domain.cfg.
• cfr-Domain.cfg.

insecure-Domain.cfg
The insecure-Domain.cfg file contains boilerplate configuration and
default settings for the boot ORB (see “Boot ORB” on page 150). It
is not meant to be used directly in a secure CFR domain, but it can
be used in a semi-secure CFR domain. It is included in the
secure-Domain.cfg file.

secure-Domain.cfg
In a secure CFR domain, the secure-Domain.cfg file is used by all
services and clients, except for the Orbix security service and the
CFR, to bootstrap the application’s ORB configuration.
The secure-Domain.cfg file contains all of the settings from
insecure-Domain.cfg (that is, it includes insecure-Domain.cfg) and
additionally specifies the credentials needed to connect to the CFR
and download the application’s configuration data.

cfr-Domain.cfg
The cfr-Domain.cfg file is used only by the Orbix security service
and the CFR service (see Figure 40 on page 147) and it contains
the complete configuration details for these two services. It is
necessary to leave the configuration of these two services entirely
file-based in order to avoid creating a circular dependency.
In a typical deployment, you need to customize the credentials for
the Orbix security service and the CFR service, which are set in
cfr-Domain.cfg, because the default settings use demonstration
certificates and demonstration credentials. See “Creating a
Customized Secure Domain” on page 154 for details.

WARNING: The secure-Domain.cfg file contains sensitive
data and therefore it must be stored securely by the
operating system.

WARNING: The cfr-Domain.cfg file contains sensitive data
and therefore it must be stored securely by the operating
system.
 148 Orbix Security Guide

Environment scripts
When you create a secure or a semi-secure CFR domain, Domain,
the following pair of scripts are generated (where the suffix is
either .bat for Windows, or .sh for UNIX):
• secure-Domain_env[.bat|.sh]—enables access to secure

services.
• insecure-Domain_env[.bat|.sh]—enables access to insecure

services only.

CFR action-role mapping
Like any of the other Orbix services, in a secure or semi-secure
domain the CFR has an associated action-role mapping file. It is
usually necessary to customize this action-role mapping in order
to define which configuration scopes are accessible to ordinary
users and which configuration scopes are reserved for the
administrator.
For more details, see “Configuration Repository ACL” on page 170.

How does a service initialize in a secure
CFR domain?
In a secure CFR domain, ordinary services (that is, all services
apart from the security service and the CFR itself) initialize in two
phases, as follows:
• Boot phase—during the boot phase, the service reads its boot

settings from the configuration file, secure-Domain.cfg, and
uses these settings to instantiate a boot ORB. The sole purpose
of the boot ORB is to establish a connection to the CFR and to
download the relevant configuration settings for the
application.
Configuration settings are downloaded as follows:
i. The boot ORB uses the credentials from the root scope of the

secure-Domain.cfg file to establish a secure connection to the CFR (these

are usually CSI credentials).

ii. The boot ORB requests the CFR to send the relevant configuration data for

the application-level ORB (as determined by the application ORB name).

iii. The CFR authenticates the credentials received from the boot ORB and

checks these credentials against the CFR’s access control list, to see whether

this user has permission to download the requested configuration data.

iv. If the boot ORB’s credentials have the requisite privileges, the CFR returns

the application ORB’s configuration data.
Orbix Security Guide 149

• Application phase—during the application phase, the service
instantiates an application ORB using the configuration data that
was downloaded during the boot phase. From this point on,
application initialization proceeds as normal.

Boot ORB
Boot ORBs have the following characteristics:
• Boot ORBs are used only for the purpose of making an initial

connection to the CFR and downloading the application ORB’s
configuration data.

• The boot ORB reads settings exclusively from the root scope
of the domain configuration file. Nested scopes appearing in
the domain configuration file are completely ignored.

• You can decide whether or not to share the boot ORB’s
credentials with the application ORB using the boolean
variable, plugins:security:share_credentials_across_orbs.

Customizing the default domain files
The default CFR domain file, secure-Domain.cfg, is initially
configured to use demonstration user accounts and X.509
certificates. It is therefore essential to customize the security
settings before attempting to deploy the CFR domain files in a
production system.
In particular, you must customize the following settings in
secure-Domain.cfg:
• Enable SSL/TLS—if you require SSL/TLS security on the CFR

connection, check that the iiop_tls plug-in is included in the
orb_plugins list and make sure that the client secure
invocation policy is set as follows:

Note: Generally, the application ORB settings are
independent of the boot ORB settings. The only
exception is when you set
plugins:security:share_credentials_across_orbs to
true.

Orbix Configuration File
policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",

 "DetectMisordering", "EstablishTrustInTarget"];
 150 Orbix Security Guide

For more details, see “Configuring SSL/TLS Secure
Associations” on page 243.

• Configure trusted CA list for SSL/TLS—if SSL/TLS is enabled,
you must specify a trusted CA list. Open secure-Domain.cfg in a
text editor and edit the value of ROOT_TRUSTED_CA_LIST_POLICY,
setting its value to the location of the trusted CA list file on the
local machine. For example:

For more details, see “Specifying Trusted CA Certificates” on
page 266.

• Configure CSIv2 credentials—the CSIv2 (GSSUP) credentials
set in the root scope of secure-Domain.cfg are used solely for
the purpose of downloading configuration settings from the
CFR service. Hence, it is sufficient to specify credentials with
read-only access to the CFR.
For example, you could define a special user, bootORB, and an
associated user role, bootORBRole, that provide read-only
access to the CFR, but do not allow you to access any other
services. The advantage of this set-up is that the bootORB
credentials do not present much of a security risk, so you do
not need to take any great precautions to keep the credentials
a secret. You could configure the CSIv2 credentials as follows:

Where BOOT_ORB_GSSUP_CREDENTIALS is a new substitution
variable. You must also remove the other GSSUP credentials,
*_GSSUP_CREDENTIALS, from the CFR domain file.

WARNING: It can be convenient to disable SSL/TLS
security on the CFR connection (for example, it saves you
having to deploy a trusted CA list file to every client host).
However, this approach is potentially dangerous, because
it leaves clients vulnerable to a man-in-the middle attack
by an imposter CFR, which could serve up bogus
configuration settings to the client and steal client
credentials.

ROOT_TRUSTED_CA_LIST_POLICY =
"c:\my_custom_ca_lists\ca_list.pem";

policies:trusted_ca_list_policy =
"%{ROOT_TRUSTED_CA_LIST_POLICY}";

BOOT_ORB_GSSUP_CREDENTIALS = ["username=bootORB",
"password=bootORBPass", "domain=IONA"];

principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method_data =

"%{BOOT_ORB_GSSUP_CREDENTIALS}";
policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];
Orbix Security Guide 151

Administering the secure CFR
It is important to understand that, when administering the secure
CFR using the itadmin utility, login occurs at two different levels,
as follows:
• Boot ORB login—at this level, you can supply CSIv2

credentials that have read-only access to the CFR. This step
downloads the configuration that is used to instantiate the
application ORB.
These login credentials are stored in the secure-Domain.cfg file.

• Application ORB login—at this level, if you want to make any
changes to the CFR contents, you must supply CSIv2
credentials that give you sufficient access to modify the
contents of the secure CFR.

As a result of this two-phase bootstrap process, the itadmin utility
has two bindings connecting it to the secure CFR (which might
actually result in two separate TCP/IP connections being opened to
the CFR, depending how each ORB is configured).

CFR administration roles
In general, when setting up the configuration for the itadmin
utility, you need to distinguish between two levels of
administration:
• User-level administration—covers the routine use of the

standard Orbix services, except for the CFR. You can grant
this level of access with the IONAUserRole role.
For example, ordinary users typically need to be able to create
and remove name bindings in the CORBA naming service.

• Sysadmin-level administration—covers the more sensitive
operations, which includes making any modifications to the
CFR. You can grant this level of access with the
IONAServiceRole role.

User-level administration
To configure the application ORB for user-level administration,
Orbix defines the following configuration scopes in the CFR by
default:

iona_utilities {
 admin {
 secure {
 # Configure user-level administration
 # in a secure environment.
 }
 insecure {
 # Configure user-level administration
 # in an insecure environment.
 }
 }
}

 152 Orbix Security Guide

Sysadmin-level administration
By default, there is no scope provided specifically for
sysadmin-level administration. You must define a new scope in
the CFR for sysadmin tasks. The simplest approach is to configure
the CSI principal sponsor to prompt the user for login credentials,
so that system administrators can log in using their sysadmin
username and password. For example, you could define the
iona_utilities.admin.sysadmin scope as follows:

In this example, because the password setting is omitted from
principal_sponsor:csi:auth_method_data, the user will be prompted
to enter the sysadmin password after starting the itadmin utility.

IT_ADMIN_UTILITIES_ORB_NAME environment variable
In order to select the correct application ORB configuration scope,
it is always necessary to specify the relevant ORB name when you
run the itadmin utility. For example:

In practice, it would be tedious to have to type the ORB name on
the command line every time you run itadmin. To simplify running
the utility, therefore, a new environment variable,
IT_ADMIN_UTILITIES_ORB_NAME, is introduced in Orbix 6.3 SP4. This
environment variable specifies the application-level ORB name
used by the itadmin utility, making it unnecessary to supply the
-ORBname switch at the command line.
For example, the environment scripts generated for a secure CFR
domain set the IT_ADMIN_UTILITIES_ORB_NAME environment variable
as follows:
• secure-Domain_env[.bat|.sh] sets the application ORB name to

iona_utilities.admin.secure.
• insecure-Domain_env[.bat|.sh] sets the application ORB name

to iona_utilities.admin.insecure.

iona_utilities {
 admin {
 sysadmin {
CSI principal sponsor prompts for password
principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method_data =

"["username=IONAAdmin", "domain=IONA"]";
policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

Other config, including SSL/TLS settings, etc.
...
 }
 }
}

itadmin -ORBname iona_utilities.admin.secure
Orbix Security Guide 153

Customizing a Secure Domain
This section describes how to customize the configuration of
secure domains generated using the itconfigure utility. When
generating a domain, the itconfigure utility allows you to choose
between two different levels of security:
• Secure—only secure connections are accepted.
• Semi-secure—both secure and insecure connections are

accepted.
In the subsections that follow, the differences between a secure
domain and a semi-secure domain are described in detail.
The itconfigure utility also allows you to choose between a
file-based domain and a CFR-based domain. The examples in this
section are all based on a file domain. Similar comments apply,
though, to the analogous settings in a CFR domain.

Creating a Customized Secure Domain
If you follow the default steps for creating a secure domain using
itconfigure, the standard Orbix services will be configured with
default X.509 certificates, which are essentially insecure. This
section describes how to create a security domain, such that the
default X.509 certificates are replaced by secure custom
certificates.

Substitution variables
Withn a configuration file, Orbix uses substitution variables to
specify the X.509 certificate credentials and the CSI credentials
used by the standard Orbix services. Normally, these substitution
variables are initialized with certain default values.
Orbix provides a mechanism, however, that allows you to override
the default values of the substitution variables. First, you create a
substitutions file, which contains a list of property settings, and then
you provide this file to the itconfigure utility in the course of
creating a new domain.
Example 26 shows the sample contents of a substitutions file that
sets security-related substitution variables.

WARNING: It is essential to customize a secure domain
generated by the itconfigure utility. The default secure
domain created using itconfigure is not fully secure,
because the X.509 certificates used by the domain are
demonstration certificates, which are identical for all
installations of Orbix.

Example 26: Substitution Variables in Property File Format

ROOT_TRUSTED_CA_LIST_POLICY="C:\\orbix6\\custom_certs\\calist.pem"
SERVICES_AUTH_METHOD_DATA=["filename=C:\\orbix6\\custom_certs\\admi

nistrator.p12","password_file=C:\\orbix6\\custom_certs\\administ
rator.pwf"]
 154 Orbix Security Guide

The substitutions file has the format of a Java properties file (it is
read by itconfigure, which is a Java-based tool). In particular,
there is no semicolon, ;, required at the end of a line and a double
backslash, \\, must be used in place of a single backslash, \, in
Windows-style path names (the Java properties file uses
backslash as an escape character).
The substitution variables shown in Example 26 on page 154 have
the following meaning:
• ROOT_TRUSTED_CA_LIST_POLICY—specifies the list of trusted CA

certificates for all Orbix services. This substitution variable
initializes the policies:trusted_ca_list_policy configuration
variable (see “Specifying Trusted CA Certificates” on
page 266).

• SERVICES_AUTH_METHOD_DATA—specifies the own X.509 certificate
for all Orbix services. It is recommended that you avoid
putting the certificate’s private key password directly into
configuration (that is, set the password_file attribute instead
of the password attribute). This substitution variable initializes
the principal_sponsor:auth_method_data configuration variable
(see “Specifying an Application’s Own Certificate” on
page 268) within the configuration scopes that affect standard
Orbix services.

• UTILITIES_AUTH_METHOD_DATA—specifies the own X.509
certificate for the itadmin command-line utility. This
substitution variable initializes the
principal_sponsor:auth_method_data configuration variable
within the iona_utilities configuration scope.

• ADMINISTRATOR_GSSUP_CREDENTIALS—specifies the CSI GSSUP
(username and password) credentials for all Orbix services.
This substitution variable initializes the
principal_sponsor:csi:auth_method_data configuration variable
(see “Providing a Username and Password” on page 306).

• ITADMIN_ADMIN_CERT_ROOT_DIR—specifies the location of a
directory that contains PKCS#12 certificates that can be used
by an administrator to log on to the KDM server using the
itadmin utility (for details see “Logging In” on page 286). This
substitution variable initializes the itadmin_x509_cert_root
configuration variable.

UTILITIES_AUTH_METHOD_DATA=["filename=C:\\orbix6\\custom_certs\\uti
lities.p12","password_file=C:\\orbix6\\custom_certs\\utilities.p
wf"]

ADMINISTRATOR_GSSUP_CREDENTIALS=["username=IONAServiceAdmin","domai
n=IONA"]

ITADMIN_ADMIN_CERT_ROOT_DIR="C:\\orbix6\\custom_certs"
KDM_AUTH_METHOD_DATA=["filename=C:\\orbix6\\custom_certs\\kdmadmini

strator.p12","password_file=C:\\orbix6\\custom_certs\\kdmadminis
trator.pwf"]

KDM_CERT_CONSTRAINTS=["C=US,O=ABigBank*,CN=abc*","C=US,O=ABigBank*,
CN=xyz*"]

KDM_ADM_CERT_CONSTRAINTS=["C=US,O=ABigBank*,CN=abc*"]

Example 26: Substitution Variables in Property File Format
Orbix Security Guide 155

• KDM_AUTH_METHOD_DATA—currently, not used (the KDM server is
colocated with and uses the same X.509 certificate as the
location service).

• KDM_CERT_CONSTRAINTS—specifies certificate constraints that
restrict access to the KDM server, protecting it from
unauthorized clients (see “Defining certificate constraints” on
page 288).

• KDM_ADM_CERT_CONSTRAINTS—specifies certificate constraints that
protect the itadmin utility from rogue applications that might
attempt to impersonate the KDM server (see “Defining
certificate constraints” on page 288).

Creating a secure domain using the
itconfigure command line
If you have a pre-existing deployment descriptor,
DeploymentDescriptor, for a secure domain, you can apply the
substitution variables from a substitutions file, SubstitutionsFile, by
invoking itconfigure from the command line with the
-substitutions switch, as follows:

For more details about the command-line approach to configuring
domains, see the Deployment Guide.

Creating a secure domain using the
itconfigure GUI
To create a customized secure domain, perform the following
steps:
1. Run itconfigure.
2. Select expert mode.
3. Specify domain details.
4. Specify a substitutions file.
5. Specify storage locations.
6. Select services.
7. Confirm choices.
8. Finish configuration.

Run itconfigure
To begin creating a new configuration domain, enter itconfigure
at a command prompt. An Orbix Configuration Welcome dialog
box appears, as shown in Figure 41.

itconfigure -nogui -load DeploymentDescriptor
-substitutions SubstitutionsFile
 156 Orbix Security Guide

Click Cancel to skip this dialog.

Select expert mode
From the main Orbix Configuration window, select
File|New|Expert to begin creating a domain in expert mode, as
shown in Figure 42.

Figure 41: The Orbix Configuration Welcome Dialog Box

Figure 42: Selecting File|New|Expert from the Main Window
Orbix Security Guide 157

Specify domain details
A Domain Details window appears, as shown in Figure 43.
In the Configuration Domain Name text field, type
custom-secure. Set the Allow Secure Communication checkbox
and unset the Allow Insecure Communication checkbox.

Figure 43: Specifying Domain Details
 158 Orbix Security Guide

Specify a substitutions file
From the Domain Details window, click the Substitutions
button at the bottom of the panel—see Figure 43 on page 158.
A file selection dialog appears, as shown in Figure 44. Select a
prepared substitutions file (a properties file containing substitution
variables—see “Substitution variables” on page 154) and click
Open.

From the Domain Details window, click Next> to continue.

Specify storage locations
A Storage Locations window appears.
If you want to store the domain configuration files somewhere
other than the default locations, you can use the Storage
Locations panel to customize the relevant directory locations.
Click Next> to continue.

Select services
A Select Services window appears.
Using the checkboxes on this panel, select the services that you
require. Typically, you require at least a Location service and a
Node Daemon. You only need to select the IONA Security
service, if you want to install it on the current host.

Click Next> to continue.

Figure 44: Specifying a Substitutions File

Note: For more details about how to deploy a domain
across multiple hosts, please consult the Orbix Deployment
Guide.
Orbix Security Guide 159

Confirm choices
A Confirm Choices window appears.
You now have the opportunity to review the configuration settings
in the Confirm Choices window. If necessary, you can use the
<Back button to make corrections.
Click Next> to create the secure configuration domain and
progress to the next window.

Finish configuration
The itconfigure utility now creates and deploys the secure
configuration domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and OrbixInstallDir/var
directories (or into custom locations, if you changed the defaults
in the Storage Locations window).
Click Finish to quit the itconfigure utility.

Configuring an iSF Adapter for the Security Service
By default, a new domain configures the security service to use
the file adapter to store security data (usernames, passwords, roles
and realm data). It is necessary to replace the file adapter with a
different iSF adapter, however, because the file adapter is not
designed for use in a production environment.

Install an iSF adapter
There are two approaches you can take to installing an iSF
adapter in the Orbix security service:
• Install a standard iSF adapter—Orbix provides a range of

ready-made iSF adapters for the Orbix security service.
Currently, the LDAP adapter is the only iSF adapter suitable
for a production environment.
For details, see “Configuring the Orbix Security Service” on
page 99.

• Install a custom iSF adapter—you can implement and install
your own custom iSF adapter using a special Java API
provided by Orbix.
For details, see “Developing an iSF Adapter” on page 377.

WARNING: The file adapter is provided for demonstration
purposes only. Orbix does not support the use of the file
adapter in a production environment.
 160 Orbix Security Guide

Configure the third-party enterprise
security system
After installing an iSF adapter (which interfaces a third-party
enterprise security system into the Orbix security service), you
must then prime the third-party enterprise security system with
security data (usernames, passwords, roles and realm data).
For more information about the kind of security data that is
required for role-based access control, see “Managing Users, Roles
and Domains” on page 119.

Configuring a Typical Orbix Service
This section describes how to configure a typical Orbix service—
such as naming, trading, events, and so on—running in a domain
with an Orbix security service. Details of the Orbix security service
configuration are discussed in the next subsection “Configuring
the Security Service” on page 168.
To configure a typical Orbix service, there are two groups of
configuration settings that are relevant:
• Configuration settings for the application ORB—these settings

configure the behavior of Orbix at the application level.
• Configuration settings for the internal ORB—these settings

configure an internal ORB that allows the server process to be
monitored by the Orbix management service.

Configuration settings for the application
ORB
Example 27 shows the configuration settings for a typical Orbix
service (not the security service itself). These settings configure
the application ORB—that is, these settings determine the
ordinary runtime behavior of the service.

Example 27: Typical Service Configuration for the Application ORB

Orbix Configuration File
...
General configuration at root scope.

1 binding:client_binding_list = ["GIOP+EGMIOP", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS", "CSI+GIOP+IIOP_TLS",
"GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP", "OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "GIOP+IIOP"];

2 policies:mechanism_policy:protocol_version = "SSL_V3";
policies:mechanism_policy:ciphersuites = ["RSA_WITH_RC4_128_SHA",

"RSA_WITH_RC4_128_MD5"];

3 policies:trusted_ca_list_policy = "%{ROOT_TRUSTED_CA_LIST_POLICY}";
...
iona_services
{
 # Common SSL/TLS security settings.
Orbix Security Guide 161

4 principal_sponsor:use_principal_sponsor = "true";
5 principal_sponsor:auth_method_id = "pkcs12_file";
6 principal_sponsor:auth_method_data = "%{SERVICES_AUTH_METHOD_DATA}";

7 policies:target_secure_invocation_policy:requires =
["Confidentiality", "DetectMisordering", "DetectReplay", "Integrity"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering", "DetectReplay",
"Integrity"];

8 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering", "DetectReplay",
"Integrity"];

9 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP", "CSI+OTS",
"CSI"];

 Service {
 # Service-specific security configuration.
 ...

10 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "ots", "gsp"];

11 plugins:Service:iiop_tls:port = "0";
 plugins:Service:iiop_tls:host = "ServiceHost";

 # Configuration of CSI and GSP plug-ins.
12 policies:csi:auth_over_transport:target_requires =

"EstablishTrustInClient";
 policies:csi:auth_over_transport:target_supports =

"EstablishTrustInClient";
 policies:csi:auth_over_transport:server_domain_name = "IONA";
 policies:csi:auth_over_transport:client_supports =

"EstablishTrustInClient";

13 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

"%{ADMINISTRATOR_GSSUP_CREDENTIALS}";

14 plugins:gsp:action_role_mapping_file =
"file:///vob/art/etc/domains/filedomain-secure-is2-tls/allow_all_authe
nticated_clients_action_role_mapping.xml";

15 plugins:gsp:authorization_realm = "IONAGlobalRealm";
 ...
 };
 ...
};

Example 27: Typical Service Configuration for the Application ORB
 162 Orbix Security Guide

The preceding service configuration can be explained as follows:
1. Make sure that the binding:client_binding_list variable

includes bindings with the IIOP_TLS and CSI interceptors. You
can use the value of the binding:client_binding_list shown
here.

2. The SSL/TLS mechanism policy specifies the default security
protocol version and the available cipher suites—see
“Specifying Cipher Suites” on page 253.

3. An SSL/TLS application needs a list of trusted CA certificates,
which it uses to determine whether or not to trust certificates
received from other SSL/TLS applications.
By default, the policies:trusted_ca_list_policy variable is
initialized from a substitution variable,
ROOT_TRUSTED_CA_LIST_POLICY. Alternatively, you can edit the
policies:trusted_ca_list_policy variable to point at a list of
trusted certificate authority (CA) certificates. For example, the
following configuration fragment shows how to initialize the
policies:trusted_ca_list_policy configuration variable
explicitly:

For details, see “Specifying Trusted CA Certificates” on
page 266.

4. The Orbix services all require an X.509 certificate. Hence, this
line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

5. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 268.

6. By default, the service’s own X.509 certificate is specified by
the value of the SERVICES_AUTH_METHOD_DATA substitution
variable.
Alternatively, you can edit the
principal_sponsor:auth_method_data configuration variable
directly. For example, the following configuration fragment

policies:trusted_ca_list_policy =
"/vob/art/etc/tls/x509/trusted_ca_lists/ca_list1.p
em";

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), the
policies:trusted_ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are
obtained from the Windows certificate store.

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), the
principal_sponsor:auth_method_id value must be
security_label instead of pkcs12_file.
Orbix Security Guide 163

specifies the service’s own X.509 certificate by setting the
filename and password_file attributes:

The filename value should be initialized with the location of a
certificate file in PKCS#12 format—see “Specifying an
Application’s Own Certificate” on page 268 for more details.

7. The following two lines set the required options and the
supported options for the target secure invocation policy. In
this example, which is a secure domain, the target policies
specify that the application will accept secure connections
only.
Alternatively, in a semi-secure domain the target secure
invocation policy would be set as follows:

8. The following two lines set the required options and the
supported options for the client secure invocation policy. In
this example, which is a secure domain, the client policies
require the connection to open secure connections only.
Alternatively, in a semi-secure domain the client secure
invocation policy would be set as follows:

9. Make sure that the binding:server_binding_list variable
includes bindings with the CSI and GSP interceptors. You can
use the value of the binding:server_binding_list shown here.

principal_sponsor:auth_method_data =
["filename=/vob/art/etc/tls/x509/certs/services/ad
ministrator.p12",
"password_file=/vob/art/etc/tls/x509/certs/service
s/administrator.pwf"];

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), you would set the label option
instead of the filename option in the
principal_sponsor:auth_method_data configuration
variable. The label specifies the common name (CN)
from the application certificate’s subject DN.

policies:target_secure_invocation_policy:requires =
["NoProtection"];

policies:target_secure_invocation_policy:supports =
["NoProtection", "Confidentiality",
"EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality",
"EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];
 164 Orbix Security Guide

10. Make sure that the orb_plugins variable in this configuration
scope includes both the iiop_tls plug-in and the gsp plug-in.

11. The IIOP/TLS IP port is set to 0 in this example, because the
node daemon is responsible for allocating the port dynamically
(on demand activation). Services that are not activated on
demand (for example, the locator) will be allocated a specific
IP port.

12. In this example (secure domain), the CSI policies are set up in
such a way that clients are required to provide a username
and password to log on to the service.
Alternatively, in a semi-secure domain the
policies:csi:auth_over_transport:target_requires variable is
set to an empty string, "", implying that clients are not
required to provide a username and password to the service.
For example:

13. The CSI principal sponsor sets a username, a password and a
domain, which the server uses when acting in a client role to
connect to other applications. By default, the username,
password, and domain for the CSI principal sponsor are
initialized from the ADMINISTRATOR_GSSUP_CREDENTIALS
substitution variable.
Alternatively, you can set the username, password, and
domain explicitly, as shown in the following configuration
fragment:

The principal_sponsor:csi:auth_method_data variable is set as
follows:
♦ username—has the value IONAServiceAdmin. When using

the default ACLs (see “Default Access Control Lists” on
page 170), the IONAServiceAdmin user enjoys unrestricted
access to all of the core Orbix services.

Note: For fully secure applications, you should
exclude the iiop plug-in (insecure IIOP) from the ORB
plug-ins list. This renders the application incapable of
making insecure IIOP connections.
For semi-secure applications, however, you should
include the iiop plug-in before the iiop_tls plug-in in
the ORB plug-ins list.

policies:csi:auth_over_transport:server_domain_name =
"IONA";

policies:csi:auth_over_transport:target_supports =
"EstablishTrustInClient";

policies:csi:auth_over_transport:target_requires =
"";

policies:csi:auth_over_transport:client_supports =
"EstablishTrustInClient";

principal_sponsor:csi:auth_method_data =
["username=IONAServiceAdmin", "password=service",
"domain=IONA"];
Orbix Security Guide 165

♦ password—in this example, the CSI password is provided
directly in the configuration file. For alternative ways of
specifying the CSI password, see “Providing a Username
and Password” on page 306.

♦ domain—has the value IONA. The CSI authentication
domain must match the target server’s domain name, as
specified by the
policies:csi:auth_over_transport:server_domain_name
configuration variable, or could be an empty string (acts
as a wildcard).

14. The action_role_mapping configuration variable specifies the
location of an action-role mapping that controls access to the
IDL interfaces implemented by the server. The file location is
specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).
For more details about the action-role mapping file, see
“CORBA Action-Role Mapping ACL” on page 133.

15. This configuration setting specifies the iSF authorization
realm, AuthzRealm, to which this server belongs (the default is
IONAGlobalRealm). For more details about iSF authorization
realms, see “iSF Authorization Realms” on page 120.

Configuration settings for the internal
ORB
Example 28 shows the configuration settings for the internal ORB.
These settings enable the management service to monitor the
Orbix services. All of the settings for the internal ORB are intended
to configure the server end of a connection. The internal ORB does
not open any connections to other processes.

Example 28: Typical Service Configuration for the Internal ORB

Orbix Configuration File
...
IT_POAInternalORB
{
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
"%{SERVICES_AUTH_METHOD_DATA}";

 policies:target_secure_invocation_policy:requires =

["Confidentiality", "DetectMisordering",
"DetectReplay", "Integrity"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];
 166 Orbix Security Guide

The preceding internal ORB configuration can be explained as
follows:
1. The internal ORB’s principal sponsor should be configured with

an X.509 certificate suitable for a secure Orbix service.

2. Make sure that the orb_plugins variable in this configuration
scope includes both the iiop_tls plug-in and the gsp plug-in.

3. The internal ORB uses the
allow_all_authenticated_clients_action_role_mapping.xml file
for access control. This configuration gives unrestricted access
to all authenticated clients.

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

 binding:server_binding_list = ["CSI+GSP+OTS",
"CSI+GSP", "CSI+OTS", "CSI"];

 policies:csi:auth_over_transport:target_requires =
"EstablishTrustInClient";

 policies:csi:auth_over_transport:target_supports =
"EstablishTrustInClient";

 policies:csi:auth_over_transport:server_domain_name =
"IONA";

 iona_services
 {
 Service
 {

2 orb_plugins = ["local_log_stream",
"iiop_profile", "giop", "iiop_tls", "ots", "gsp"];

 plugins:local_log_stream:filename =
"/vob/art/var/filedomain-secure-is2-tls/logs/IT_POAInt
ernalORBifr.log";

3 plugins:gsp:action_role_mapping_file =
"file:///vob/art/etc/domains/filedomain-secure-is2-tls
/allow_all_authenticated_clients_action_role_mapping.x
ml";

 };
 ...
 };
};

Example 28: Typical Service Configuration for the Internal ORB

Note: Instead of using the principal sponsor here, you
could set the
plugins:security:share_credentials_across_orbs
configuration variable instead. See “Security
Configuration” on page 485.
Orbix Security Guide 167

Configuring the Security Service
This section describes how to configure the Orbix security service.
This service is configured somewhat differently from the others.
For example, because the gsp plug-in contacts the security service
to perform authentication, the gsp plug-in must be excluded from
the security service’s own orb_plugins list in order to avoid a
circular dependency.

Configuration settings for application
ORB
Example 29 shows the configuration settings for the Orbix security
service. These settings configure the application ORB—that is,
these settings determine the ordinary runtime behavior of the
service.

Example 29: Security Service Configuration for the Application ORB

Orbix Configuration File
...

1 # General configuration at root scope.
...

2 initial_references:IT_SecurityService:reference = "IOR: ...";
...
iona_services {

3 # Common SSL/TLS security settings.
 ...
 security
 {
 ...
 iS2Host {
 ...

4 plugins:security:iiop_tls:port = "53112";
 plugins:security:iiop_tls:host = "iS2Host";

5 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls"];

6
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

7
policies:security_server:client_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services (demo cert), OU=Demonstration Section -- no warranty
--", "C=US,ST=Massachusetts,O=ABigBank*,CN=Abigbank Accounts
Server*", "C=US,ST=Massachusetts,O=ABigBank*,CN=Iona
utilities - demo purposes"];
 168 Orbix Security Guide

The preceding security service configuration can be explained as
follows:
1. The security service’s root configuration settings are the same

as in Example 27 on page 161.
2. The IT_SecurityService initial reference specifies the IOR that

CORBA applications use to talk to the security service.
3. The common configuration settings (in the iona_services

scope) are the same as in Example 27 on page 161.
4. The plugins:security:iiop_tls:port variable specifies the IP

port where the security service listens for secure connections.

5. This orb_plugins setting is required here for technical reasons.
Specifically, the Orbix security service is bootstrapped in two
stages, as follows:
v. In the first stage, the generic server (implemented in C++) instantiates an

ORB with the iona_services.security.iS2Host configuration scope,

loading a minimal set of ORB plug-ins (this orb_plugins setting).

vi. In the second stage, the generic server spawns a Java process, which

instantiates an ORB with the

iona_services.security.iS2Host.server configuration scope,

loading the full set of ORB plug-ins.

6. The IIOP/TLS target secure invocation policy requires a strong
quality of protection for incoming connections.

 server
 {

8 orb_plugins = ["local_log_stream",
"iiop_profile", "giop", "iiop_tls",
"it_servlet_binding_manager", "it_deployer",
"it_servlet_context", "it_http_sessions",
"it_servlet_filters", "http", "https",
"it_servlet_dispatch", "it_exception_mapping",
"it_naming_context", "it_web_security",
"it_web_app_activator", "it_default_servlet_binding",
"it_character_encoding", "it_locale",
"it_classloader_mapping"];

 };
 };
 ...
 };
};

Example 29: Security Service Configuration for the Application ORB

Note: If you want to change the security service’s
listening port, you would also have to update the IOR
in the initial_references:IT_SecurityService:reference
setting. You could regenerate the IOR by re-running
the itconfigure utility.
Orbix Security Guide 169

7. Restricts access to the Orbix security server, allowing only
clients that match the specified certificate constraints to open
a connection to the security service. For details of how to
specify certificate constraints, see “Applying Constraints to
Certificates” on page 391.

8. Make sure that the orb_plugins variable in this configuration
scope includes the iiop_tls plug-in.

Default Access Control Lists
When you use the itconfigure utility to generate a secure domain,
SecureDomain, a collection of default action-role mapping files are
generated in the etc/domains/SecureDomain directory. Each of the
core Orbix services, Service, is associated with an action-role
mapping file as follows:
• Service_action_role_mapping.xml—for a secure domain.
• Service_semi_secure_action_role_mapping.xml—for a semi-secure

domain.
Two basic levels of access are defined in these ACLs: IONAUserRole
for ordinary users; and IONAServiceRole for administrators.

Configuration Repository ACL
The configuration repository (CFR) ACL is a special case, because
it requires access control of parameter values in the IDL
operations. To enable parameter-based access control, the CFR
includes a special subsystem, a request to action mapper, which is
responsible for parsing the operation parameters. In the CFR, the
following kinds of parameter can be subjected to access control:
• Configuration scopes.
• Namespaces.

Note: This configuration variable must be set,
otherwise the Orbix security server will not start.

Note: For fully secure applications, you should
exclude the iiop plug-in (insecure IIOP) and the http
plug-in (insecure HTTP) from the ORB plug-ins list.
This renders the application incapable of making
insecure IIOP connections and insecure HTTP
connections.
For semi-secure applications, however, you should
include the iiop plug-in before the iiop_tls plug-in in
the ORB plug-ins list.

Note: It is recommended that you check whether the
default ACLs provide the level of security you need before
deploying the core Orbix services in a real system.

Note: It is recommended that you check whether the
default configuration repository ACL provides the level of
security you need before deploying it in a real system.
 170 Orbix Security Guide

Configuration scopes
Similarly to a file domain, the CFR uses a configuration scope to group
together related configuration settings. Configuration scopes can
be nested as shown in the following example:

To reference a nested configuration scope, the period character
(.) is used as a delimiter. For example,
demos.tls.secure_client_with_cert refers to the innermost
configuration scope of the preceding example.

Namespaces
The CFR uses namespaces to represent compound variable names.
For example, the principal_sponsor:csi:auth_method_id variable
name is built up as follows:

To represent compound names composed of namespaces, the
colon character (:) is used as a delimiter.

IT_CFR module
The IT_CFR module defines some of the CFR’s remotely accessible
interfaces and operations (the CFR also implements the IDL
modules defined in cfr_replication.idl). The IDL for the IT_CFR
module is available in the following file:
OrbixInstallDir/asp/Version/idl/orbix_pdk/cfr.idl

Orbix Configuration File
demos {
 tls {
 secure_client_with_cert {
 ...
 };
 };
};

principal_sponsor Namespace.
principal_sponsor:csi Namespace.
principal_sponsor:csi:auth_method_
id

Variable name.
Orbix Security Guide 171

For example, the itadmin utility calls operations from the IT_CFR
module in order to read from and update the configuration
repository. Example 30 shows an overview of the interfaces
defined in the IT_CFR module.

CompoundName type
The IT_CFR::CompoundName type is defined as follows:

The CompoundName type represents configuration scopes and
namespaces as follows:
• Configuration scope—is converted into a CompoundName by

recognizing the period character (.) as a delimiter. For
example, the demos.tls.secure_client_with_cert scope is
converted to the following sequence of strings: demos, tls,
secure_client_with_cert.

• Namespace—is converted into a CompoundName by recognizing
the colon character (:) as a delimiter. For example, the
principal_sponsor:csi:auth_method_id variable name is
converted to the following sequence of strings:
principal_sponsor, csi, auth_method_id.

Parameter-based access control
In order to provide a meaningful level of access control for the
CFR, it is necessary to control access at the level of operation
parameters; operation-based access control would not be
sufficient.

Example 30: The IT_CFR Module

// IDL
...
module IT_CFR {
 interface ConfigScope { ... };
 interface Namespace { ... };
 interface ConfigRepository { ... };
 interface Listener { ... };
 interface ListenerRegistration { ... };
};

// IDL
module IT_CFR {
 typedef sequence<string> CompoundName;
};
 172 Orbix Security Guide

For example, consider the following destroy_subscope() operation
from the IT_CFR module:

Ordinary users should not have permission to destroy critical
configuration scopes such as iona_services (which holds the
configuration settings for the core Orbix services). But ordinary
users do need full access to at least one scope, for example demos,
in order to configure their own applications. Parameter-based access
control enables you to control access based on the value of the name
parameter in the preceding operation.
To control access based on the destroy_scope() operation’s name
parameter, you could use the following fragment in an action-role
mapping file:

This ensures that ordinary users (represented by IONAUserRole)
can only destroy the demos scope and its subscopes.

ACL for configuration scope operations
Example 31, which is extracted from the default
cfr_action_role_mapping.xml file, shows how access control is
configured for the IT_CFR::ConfigScope interface.

// IDL
module IT_CFR {
 interface ConfigScope
 {
 ConfigScope destroy_subscope(
 in CompoundName name
) raises (CFRException);
 };
};

 <interface>
 <name>IDL:iona.com/IT_CFR/ConfigScope:1.0</name>
 ...
 <action-role>
 <action-name>destroy_subscope</action-name>
 <parameter-control>
 <parameter name="name" value="demos.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>

 ...
 <role-name>IONAServiceRole</role-name>
 </action-role>
 </interface>

Example 31: ACL for the IT_CFR::ConfigScope Interface

 <interface>
 <name>IDL:iona.com/IT_CFR/ConfigScope:1.0</name>
 <action-role>
 <action-name>*get*</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>scope_lookup</action-name>
 <role-name>IONAUserRole</role-name>
Orbix Security Guide 173

Locator ACL
This subsection describes which interfaces and operations are
accessible through the default locator ACL. The following
alternative ACL files are generated by itconfigure for the locator
service:
• locator_action_role_mapping.xml (secure domain).
• locator_semi_secure_action_role_mapping.xml (semi-secure

domain).

 </action-role>
 <action-role>
 <action-name>create_subscope</action-name>
 <parameter-control>
 <parameter name="name"

value="_it_cfr_root_scope.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <parameter-control>
 <parameter name="name" value="demos.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <parameter-control>
 <parameter name="name" value="multicast_demo.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <role-name>IONAServiceRole</role-name>
 </action-role>
 <action-role>
 <action-name>destroy_subscope</action-name>
 <parameter-control>
 <parameter name="name" value="demos.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <parameter-control>
 <parameter name="name" value="multicast_demo.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <role-name>IONAServiceRole</role-name>
 </action-role>
 <action-role>
 <action-name>*</action-name>
 <role-name>IONAServiceRole</role-name>
 </action-role>
 </interface>

Example 31: ACL for the IT_CFR::ConfigScope Interface

Note: It is recommended that you check whether the
default locator ACL provides the level of security you need
before deploying it in a real system.
 174 Orbix Security Guide

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the locator interfaces and operations
shown in Table 5 in both secure and semi-secure domains.
Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 5 in semi-secure
domains only.

Table 5: Locator Interfaces and Operations Accessible to the IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible
Operations
(Secure and
semi-secure)

UnauthenticatedUser
Role

Accessible
Operations

(Semi-secure only)

IT_Location::Locator All All

IT_IMRAdmin::Process All All

IT_IMRAdmin::ProcessRegistry All All

IT_IMRAdmin::Process All All

IT_IMRAdmin::ORBRegistry All All

IT_IMRAdmin::ORB All All

IT_NamedKey::NamedKeyRegistry All All

IT_POAIMRAdmin::POA All All

IT_POAIMRAdmin::POARegistry All All

IT_LocatorAdmin::ActiveORBRegistry All All

IT_LocatorAdmin::ActiveProcessRegistry All All

IT_POALocatorAdmin::ActivePOARegistry All All

IT_POAIMRAdmin::ActivePOA All All

IT_POAIMRAdmin::POAActiveORB All All

IT_POAIMRAdmin::CachedPOA All All

IT_POAIMRAdmin::POA All All

IT_POAIMRAdmin::POACache All All

IT_NodeDaemon::NodeDaemonRegistry All All

IT_NodeDaemon::NodeDaemon None None
Orbix Security Guide 175

Node Daemon ACL
This subsection describes which interfaces and operations are
accessible through the default node daemon ACL. The following
alternative ACL files are generated by itconfigure for the node
daemon service:
• node_daemon_action_role_mapping.xml (secure domain).
• node_daemon_semi_secure_action_role_mapping.xml (semi-secure

domain).

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the node daemon interfaces and
operations shown in Table 6 in both secure and semi-secure
domains.

IT_NodeDaemon::DynamicStateRegistry None None

IT_ServerLocation::ServerValidator None None

IT_ServerLocation::EndpointCache None None

IT_LocatorAdmin::ActiveProcess None None

Table 5: Locator Interfaces and Operations Accessible to the IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible
Operations
(Secure and
semi-secure)

UnauthenticatedUser
Role

Accessible
Operations

(Semi-secure only)

Note: It is recommended that you check whether the
default node daemon ACL provides the level of security you
need before deploying it in a real system.
 176 Orbix Security Guide

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 6 in semi-secure
domains only.

Naming Service ACL
This subsection describes which interfaces and operations are
accessible through the default naming service ACL. The following
alternative ACL files are generated by itconfigure for the naming
service:
• naming_action_role_mapping.xml (secure domain).
• naming_semi_secure_action_role_mapping.xml (semi-secure

domain).

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the naming service interfaces and
operations shown in Table 7 in both secure and semi-secure
domains.

Table 6: Node Daemon Interfaces and Operations Accessible to the IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible
Operations
(Secure and
semi-secure)

UnauthenticatedUser
Role

Accessible
Operations

(Semi-secure only)

IT_NodeDaemon::NodeDaemon shutdown
shutdown_complete
register_process

shutdown
shutdown_complete
register_process

IT_NodeDaemon::ORBStateRegistry None None

IT_NodeDaemon::EndpointRegistry None None

IT_NodeDaemon::ProcessRegistry None None

IT_NodeDaemon::DynamicStateRegistry All All

Note: It is recommended that you check whether the
default naming ACL provides the level of security you need
before deploying it in a real system.
Orbix Security Guide 177

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 7 in semi-secure
domains only.

Trader Service ACL
The default action-role mappings for the trader service are
designed to protect the service by differentiating between
non-intrusive operations (for example, read operations) and
intrusive operations that might threaten the integrity of the
service (for example, write operations).
Two different action-role mappings are provided, as follows:
• Secure domain—both intrusive and non-intrusive access to

the trader service is restricted to authenticated applications
only.

• Semi-secure domain—non-intrusive access to the trader
service is available to both authenticated and unauthenticated
applications. Intrusive access is limited to authenticated
applications only.

Secure domain
In a secure domain, the trader’s action-role mapping file is:
etc/DomainName/trader_action_role_mapping.xml

Only authorized applications can add service types and service
offers. This ensures that unauthorized peers will not be able to
add to the repository references to malicious applications
designed to mimic the behavior and appearance of expected
service offers.

Table 7: Naming Service Interfaces and Operations Accessible to the IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_Naming::IT_NamingContextExt All All

IT_NamingReplication::IT_Master
NamingAdmin

shutdown shutdown

IT_NamingAdmin::NamingAdmin shutdown shutdown

CosNaming::NamingContextExt None None

CosNaming::BindingIterator All All

Note: It is recommended that you check whether the
default trader ACL provides the level of security you need
before deploying it in a real system.
 178 Orbix Security Guide

Applications that need to obtain references to existing service
offers must also be authenticated. This prevents unauthorized
client applications from looking up services they are not allowed to
use.

Access to administrative operation that could endanger the
integrity of the database if accessed by unauthorized parties is
restricted to roles normally used by administrators (that is,
IONAServiceRole and IONAAdminRole).

Semi-secure domain
In a semi-secure domain, the trader’s action-role mapping file is:
etc/DomainName/trader_semi_secure_action_role_mapping.xml

This mapping relaxes the settings from the secure domain, so that
unauthenticated users (using either secure or insecure transports)
are allowed to invoke any operations that perform read only
queries.
Only authenticated users are allowed to invoke operations that
require write access to the Trader’s database. This ensures that no
malicious application will be able to export unauthorized service
types or offers (for example, server applications that mimic
legitimate service offers, but instead collect information passed to
them by client applications).

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the trader service interfaces and
operations shown in Table 8 in both secure and semi-secure
domains.

Note: This precaution alone is not sufficient to protect
server applications from unauthorized access, because
querying the trader service is not the only way to obtain
references to server applications. Sensitive applications
must incorporate their own security mechanisms, or be
protected by the security service as well.
Orbix Security Guide 179

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 8 in semi-secure
domains only.

Event Service ACL
The default action-role mappings for the event service are
designed to protect the service by differentiating between
non-intrusive operations (for example, read operations) and
intrusive operations that might threaten the integrity of the
service (for example, write operations).
Two different action-role mappings are provided, as follows:
• Secure domain—intrusive access to the event service is

restricted to authenticated applications only.

Table 8: Trader Service Interfaces and Operations Accessible to the IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

CosTradingRepos::ServiceType
Repository

add_type
list_types
describe_type
fully_describe_type

list_types
describe_type

fully_describe_type

CosTradingDynamic::DynamicPropEval All All

IT_Trading::IT_LookupExt All All

IT_TradingAdmin::TradingAdmin None None

CosTrading::Lookup All All

CosTrading::Register export
withdraw
describe
modify
withdraw_using_

constraint

None

CosTrading::Link None None

CosTrading::Proxy All None

CosTrading::Admin None None

CosTrading::OfferIterator All All

CosTrading::OfferIdIterator None None
 180 Orbix Security Guide

• Semi-secure domain—intrusive access to the event service is
available to both authenticated and unauthenticated
applications.

Secure domain
In a secure domain, the event service’s action-role mapping file is:
etc/DomainName/event_action_role_mapping.xml

Only authenticated applications can connect to the event service
for the purpose of sending or receiving events. With this security
scheme in place, consumers connected to the service can trust
that the events they receive are legitimate (because they are
known to originate from authenticated suppliers). Suppliers that
send events through the event service can trust that their events
reach only legitimate consumers (because consumers are also
authenticated).

Semi-secure domain
In a semi-secure domain, the event service’s action-role mapping
file is:
etc/DomainName/event_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain is very
permissive, because all applications have full access to the service
by default. The scheme could be made more secure by restricting
the role of unauthenticated applications to simple listeners (by
denying them the privilege of connecting suppliers to event
channels).

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

Note: It is recommended that you check whether the
default events ACL provides the level of security you need
before deploying it in a real system.

WARNING: The semi-secure scheme should not be used
if events can carry security-sensitive information, because
the identity of neither the suppliers nor the consumers can
be guaranteed.
Orbix Security Guide 181

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the event service interfaces and
operations shown in Table 9 in both secure and semi-secure
domains.
Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 9 in semi-secure
domains only.

Table 9: Event Service Interfaces and Operations Accessible to the IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_EventChannelAdminInternal::
EventChannelFactory

_get_name
_get_host
shutdown
create_channel
find_channel
find_channel_by_id
list_channels
create_typed_channel
find_typed_channel
find_typed_channel_by_

id
list_typed_channels
create
find
findByRef
list
createTyped
findTyped
findByTypedRef
listTyped

_get_name
_get_host
shutdown
create_channel
find_channel
find_channel_by_id
list_channels
create_typed_channel
find_typed_channel
find_typed_channel_by_id
list_typed_channels
create
find
findByRef
list
createTyped
findTyped
findByTypedRef
listTyped

CosEventChannelAdmin::EventChannel All All

CosTypedEventChannelAdmin::
TypedEventChannel

All All

CosEventChannelAdmin::Supplier
Admin

All All

CosTypedEventChannelAdmin::
TypedSupplierAdmin

All All

CosEventChannelAdmin::Consumer
Admin

All All

CosTypedEventChannelAdmin::
TypedConsumerAdmin

All All

CosEventChannelAdmin::ProxyPush
Consumer

All All
 182 Orbix Security Guide

Notification Service ACL
The default action-role mappings for the notification service are
designed to protect the service by differentiating between
non-intrusive operations (for example, read operations) and
intrusive operations that might threaten the integrity of the
service (for example, write operations).
Two different action-role mappings are provided, as follows:
• Secure domain—both intrusive and non-intrusive access to

the notification service are restricted to authenticated
applications only.

• Semi-secure domain—non-intrusive access to the notification
service is available to both authenticated and unauthenticated
applications. Intrusive access is limited to authenticated
applications only.

Secure domain
In a secure domain, the event service’s action-role mapping file is:
etc/DomainName/notify_action_role_mapping.xml

Only authenticated applications can connect to the notification
service for the purpose of sending or receiving notifications. With
this security scheme in place, consumers connected to the service
can trust that the events they receive are legitimate (because
they are known to originate from authenticated suppliers).
Suppliers that send events through the notification service can
trust that their events reach only legitimate consumers (because
consumers are also authenticated).

CosTypedEventChannelAdmin::
TypedProxyPushConsumer

All All

CosEventChannelAdmin::ProxyPush
Supplier

All All

CosEventChannelAdmin::ProxyPull
Supplier

All All

CosEventChannelAdmin::ProxyPull
Consumer

All All

Table 9: Event Service Interfaces and Operations Accessible to the IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

Note: It is recommended that you check whether the
default notification ACL provides the level of security you
need before deploying it in a real system.
Orbix Security Guide 183

Authenticated applications are allowed to create and apply event
filters and mapping filters, as normal.
Authenticated applications are allowed to alter the behavior of the
notification service by setting Quality of Service properties at any level
of the service. The operations that administer the notification
service are also protected by access control. Hence, these
adminstration operations can only be called by authenticated
applications and utilities.

Semi-secure domain
In a semi-secure domain, the event service’s action-role mapping
file is:
etc/DomainName/notify_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain forces all event
suppliers to authenticate with the notification service. However
any consumer, even non-authenticated consumers, can connect to
the service and receive events.
Under this security model, consumers can trust the notifications
they receive to be legitimate (because they are known to originate
from authenticated applications only). On the other hand,
suppliers do not know whether the events they send will reach
authenticated or unauthenticated consumers.

Operations that could potentially compromise the integrity or the
functionality of the notification service are restricted to
authenticated applications only.
Only authenticated peers are allowed to apply filters to objects
other than proxy consumers or suppliers, since filters set at any
other level could potentially be used by malicious applications to
prevent events from reaching they legitimate targets.
Unauthenticated consumers have the right to decide which events
they want to receive: they can still apply filters to their proxy
supplier. Similarly, they have read-only access to filters set at the
channel administration level (so that they can interpret the
filtration logic of the events they receive).

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

WARNING: The semi-secure scheme should not be used
if notifications can carry security-sensitive information,
because suppliers have no way of knowing the identity of
consumers. Also, an insecure transport might be used to
carry events to the consumers.
 184 Orbix Security Guide

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the notification service interfaces and
operations shown in Table 10 in both secure and semi-secure
domains.
Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 10 in semi-secure
domains only.

Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_NotifyFilterInternal::Filter All All

IT_NotifyFilterInternal::Mapping
Filter

All All

IT_NotifyFilterInternal::Filter
Factory

All All

IT_NotifyComm::GroupNotifyPublish None None

IT_NotifyComm::GroupPushConsumer All All

IT_NotifyComm::
GroupStructuredPushConsumer

All All

IT_NotifyComm::
GroupSequencePushConsumer

All All

IT_NotifyChannelAdmin::IT_Proxy
Supplier

All All

IT_NotifyChannelAdmin::
NotifyProxySupplier

All All

IT_NotifyChannelAdmin::
ProxyPushSupplier

All All

IT_NotifyChannelAdmin::
StructuredProxyPushSupplier

All All

IT_NotifyChannelAdmin::
SequenceProxyPushSupplier

All All

IT_NotifyChannelAdmin::
ProxyPullSupplier

All All

IT_NotifyChannelAdmin::
StructuredProxyPullSupplier

All All

IT_NotifyChannelAdmin::
SequenceProxyPullSupplier

All All
Orbix Security Guide 185

IT_NotifyChannelAdmin::IT_Proxy
Consumer

All All

IT_NotifyChannelAdmin::
NotifyProxyConsumer

All All

IT_NotifyChannelAdmin::
ProxyPushConsumer

All All

IT_NotifyChannelAdmin::
StructuredProxyPushConsumer

All All

IT_NotifyChannelAdmin::
SequenceProxyPushConsumer

All All

IT_NotifyChannelAdmin::
ProxyPullConsumer

All All

IT_NotifyChannelAdmin::
StructuredProxyPullConsumer

All All

IT_NotifyChannelAdmin::
SequenceProxyPullConsumer

All All

Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 186 Orbix Security Guide

IT_NotifyChannelAdmin::ConsumerAdmin get_bridge_proxy_
supplier

obtain_subscription_
types_for_admin

_get_bridge_pull_
suppliers

_get_bridge_push_~sup
pliers

get_proxy_supplier
obtain_notification_

pull_supplier
obtain_notification_p

ush_supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier
destroy
_set_priority_filter
_set_lifetime_filter
set_qos
subscription_change
add_filter
remove_filter
remove_all_filters

get_bridge_proxy_supplier
obtain_subscription_types_

for_admin
_get_bridge_pull_suppliers
_get_bridge_push_suppliers
get_proxy_supplier
obtain_notification_pull_

supplier
obtain_notification_push_

supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier

subscription_change

Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
Orbix Security Guide 187

IT_NotifyChannelAdmin::SupplierAdmin get_bridge_proxy_
consumer

obtain_offered_types_
for_admin

_get_bridge_pull_cons
umers

_get_bridge_push_cons
umers

_get_MyID
_get_MyChannel
_get_MyOperator
get_qos
validate_qos
get_filter
get_all_filters
obtain_typed_notifica

tion_pull_consumer
obtain_typed_notifica

tion_push_consumer
get_proxy_consumer
obtain_notification_p

ull_consumer
obtain_notification_p

ush_consumer
destroy
_get_pull_consumers
_get_push_consumers
set_qos
offer_change
add_filter
remove_filter
remove_all_filters
obtain_push_consumer
obtain_pull_consumer

get_bridge_proxy_consumer
obtain_offered_types_for_

admin
_get_bridge_pull_consumers
_get_bridge_push_consumers
_get_MyID
_get_MyChannel
_get_MyOperator
get_qos
validate_qos
get_filter
get_all_filters

IT_NotifyChannelAdmin::Manager None None

IT_NotifyChannelAdmin::
GroupProxyPushSupplier

All All

IT_NotifyChannelAdmin::
GroupStructuredProxyPushSupplier

All All

IT_NotifyChannelAdmin::
GroupSequenceProxyPushSupplier

All All

Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 188 Orbix Security Guide

Basic Log Service ACL
The default action-role mappings for the basic log service are
designed to protect the service by differentiating between
non-intrusive operations (for example, read operations) and
intrusive operations that might threaten the integrity of the
service (for example, write operations).
Two different action-role mappings are provided, as follows:
• Secure domain—intrusive access to the basic log service is

restricted to authenticated applications only.

IT_NotifyChannelAdminInternal::
EventChannel

All obtain_offered_types
obtain_subscribed_types
_get_event_info
get_consumeradmin
get_supplieradmin
get_all_consumeradmins
get_all_supplieradmins
_get_MyFactory
_get_default_consumer_admin
_get_default_supplier_admin
_get_default_filter_factory
get_qos
validate_qos
get_admin
for_consumers
new_for_consumers_delegate
new_for_consumers

IT_NotifyChannelAdminInternal::
EventChannelFactory

All _get_default_filter_factory
find_channel
find_channel_by_id
list_channels
_get_manager
get_all_channels
get_event_channel
create_named_channel
create_channel

IT_NotifyChannelAdminInternal::
BridgeProxyPushSupplier

All None

IT_NotifyChannelAdminInternal::
BridgeProxyPushConsumer

All None

Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
Orbix Security Guide 189

• Semi-secure domain—intrusive access to the basic log service
is available to both authenticated and unauthenticated
applications.

Secure domain
In a secure domain, the basic log service’s action-role mapping file
is:
etc/DomainName/basic_log_action_role_mapping.xml

Only authenticated applications can connect to the basic log
service. Authenticated applications can create new logs, retrieve
existing logs, or delete logs. They also have unlimited access to all
of the operations related to records.
Authenticated applications also have full access to the
administrative functions of the logs (for example, setting the
quality of service properties on the log, changing the maximum
log size, disabling a log, and so on).

Semi-secure domain
In a semi-secure domain, the basic log service’s action-role
mapping file is:
etc/DomainName/basic_log_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain is very
permissive, because all applications have full access to the service
by default. The scheme could be made more secure by denying
unauthenticated peers access to some of the write operations of
the services (such as log creation or deletion).

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

Note: It is recommended that you check whether the
default basic log ACL provides the level of security you
need before deploying it in a real system.
 190 Orbix Security Guide

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the basic log service interfaces and
operations shown in Table 11 in both secure and semi-secure
domains.
Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 11 in semi-secure
domains only.

Event Log Service ACL
The default action-role mappings for the event log service are
designed to protect the service by differentiating between
non-intrusive operations (for example, read operations) and
intrusive operations that might threaten the integrity of the
service (for example, write operations).
Two different action-role mappings are provided, as follows:
• Secure domain—intrusive access to the event log service is

restricted to authenticated applications only.
• Semi-secure domain—intrusive access to the event log service

is available to both authenticated and unauthenticated
applications.

Table 11: Basic Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_BasicLogAdmin::BasicLogFactory _get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id

_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id

IT_MessagingAdmin::Manager _get_name
_get_host
shutdown

_get_name
_get_host
shutdown

DsLogAdmin::BasicLog All Alla

DsLogAdmin::Iterator get
destroy

get
destroy

a. Security could be tightened at this level by removing access to the destroy operation, for example, or to some of the operations used
to access log records (see operations inherited from the DsLogAdmin::Log interface).

Note: It is recommended that you check whether the
default event log ACL provides the level of security you
need before deploying it in a real system.
Orbix Security Guide 191

Secure domain
In a secure domain, the event log service’s action-role mapping
file is:
etc/DomainName/event_log_action_role_mapping.xml

Only authenticated applications can connect to the event log
service. With this security scheme in place, consumers connected
to the built-in event channel can trust that the events they receive
are legitimate (because they are known to originate from
authenticated suppliers). Event suppliers can trust that their
events will be sent only to legitimate consumers (because
consumers are also authenticated).
Authenticated applications can create new logs, retrieve existing
logs, or delete logs.
Authenticated applications also have full access to the
administrative functions of the logs (for example, setting the
quality of service properties on the log, changing the maximum
log size, disabling a log, and so on).

Semi-secure domain
In a semi-secure domain, the event log service’s action-role
mapping file is:
etc/DomainName/event_log_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain is very
permissive, since by default all applications have full access to the
service. This scheme could be made more secure by restricting the
role of unauthenticated applications to simple listeners (by
denying them the privilege of connecting suppliers to the event
channel as well as restricting write access to the logs and log
records).
The semi-secure scheme should not be used if events carry
security-sensitive information, because the identity of neither the
suppliers or the consumer can be guaranteed. The integrity of the
logs cannot be guaranteed since unauthenticated peers have
access to all of the write operations and can alter the content of
the logs.

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.
 192 Orbix Security Guide

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the event log service interfaces and
operations shown in Table 12 in both secure and semi-secure
domains.
Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 12 in semi-secure
domains only.

Notify Log Service ACL
The default action-role mappings for the notify log service are
designed to protect the service by differentiating between
non-intrusive operations (for example, read operations) and
intrusive operations that might threaten the integrity of the
service (for example, write operations).
Two different action-role mappings are provided, as follows:

Table 12: Event Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUser
Role Accessible

Operations
(Semi-secure only)

IT_EventLogAdmin::EventLogFactory _get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id
obtain_push_supplier
obtain_pull_supplier

_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id
obtain_push_supplier
obtain_pull_supplier

IT_MessagingAdmin::Manager _get_name
_get_host
shutdown

_get_name
_get_host
shutdown

DsEventLogAdmin::EventLog All All

DsLogAdmin::Iterator get
destroy

get
destroy

CosEventChannelAdmin::ConsumerAdmin All All

CosEventChannelAdmin::SupplierAdmin All All

CosEventChannelAdmin::ProxyPushSupplier All All

CosEventChannelAdmin::ProxyPullConsumer All All

CosEventChannelAdmin::ProxyPullSupplier All All

CosEventChannelAdmin::ProxyPushConsumer All All
Orbix Security Guide 193

• Secure domain—both intrusive and non-intrusive access to
the notify log service are restricted to authenticated
applications only.

• Semi-secure domain—non-intrusive access to the notify log
service is available to both authenticated and unauthenticated
applications. Intrusive access is limited to authenticated
applications only.

Secure domain
In a secure domain, the notify log service’s action-role mapping
file is:
etc/DomainName/notify_log_action_role_mapping.xml

Only authenticated applications can connect to the notify log
service. With this security scheme in place, consumers connected
to the built-in event channel can trust that the events they receive
are legitimate (because they are known to originate from
authenticated suppliers). Suppliers that send events through the
notification service can trust that their events will reach only
legitimate consumers (because consumers are also
authenticated).
Authenticated applications can create new logs, retrieve existing
logs, or delete logs.
Authenticated applications also have full access to the
administrative functions of the logs (for example, setting the
quality of service properties on the log, changing the maximum
log size, disabling a log, and so on).
Authenticated applications are allowed to create and apply both
types of filters supported by the service: log filters (which decide
which events get logged) and notification-style filters (which
decide which kind of events pass through the built-in event
channel).

Semi-secure domain
In a semi-secure domain, the notify log service’s action-role
mapping file is:
etc/DomainName/notify_log_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain requires event
suppliers (applications that create logs or write log records) to
authenticate with the notify log service. Any consumer (even if
unauthenticated) can connect to the service, however, in order to
receive events and access the logs.
Only authenticated applications (normally event suppliers) can
create new logs or alter the list of existing logs (for example, by
removing logs). This ensures that unauthenticated applications

Note: It is recommended that you check whether the
default notify log ACL provides the level of security you
need before deploying it in a real system.
 194 Orbix Security Guide

are not able to interfere with the logging logic or alter critical
information by tampering with the service's database (by
removing log entries, for example).
With this semi-secure scheme, consumers are able to trust the
notifications they receive from the built-in event channel to be
legitimate (because the events must have originated from an
authenticated application). Consumers can also trust all logs to be
genuine. On the other hand, suppliers do not know whether the
events they send and/or the logs they create will reach
authenticated and/or unauthenticated consumers.
Unauthenticated applications have unlimited read-only access to
all the properties of the service and the logs. They can receive
events from the built-in channel, access the list of existing logs
and obtain records from any existing log. Unauthenticated
applications can also examine, but not change, the filtering logic
applied to the service. However, even unauthenticated consumers
can decide which events they want to receive by applying filters to
their proxy supplier.

IONAServiceRole
The IONAServiceRole can access all interfaces and operations in
both secure and semi-secure domains.

Note: This semi-secure scheme allows unauthenticated
applications to create filters. This is a safe policy, because
the unauthenticated applications cannot apply the newly
created filters in places they are not supposed to.
Orbix Security Guide 195

IONAUserRole and
UnauthenticatedUserRole
The IONAUserRole can access the notify log service interfaces and
operations shown in Table 13 in both secure and semi-secure
domains.
Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access
the interfaces and operations shown in Table 13 in semi-secure
domains only.
 196 Orbix Security Guide

Table 13: Notify Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUser
Role Accessible

Operations
(Semi-secure only)

IT_NotifyLogAdmin::NotifyLog All _non_existent
obtain_offered_types
obtain_subscribed_

types
get_filter
my_factory
id
get_log_qos
get_max_record_life
get_max_size
get_current_size
get_n_records
get_log_full_action
get_administrative_

state
get_forwarding_state
get_operational_state
get_interval
get_availability_

status
get_capacity_alarm_

thresholds
get_week_mask
query
retrieve
match
get_record_attribute
get_consumeradmin
get_supplieradmin
get_all_consumeradmins
get_all_supplieradmins
_get_MyFactory
_get_default_consumer_

admin
_get_default_supplier_

admin
_get_default_filter_

factory
get_qos
validate_qos
get_admin
for_consumers
new_for_consumers
Orbix Security Guide 197

IT_NotifyLogAdmin::NotifyLogFactory _get_default_filter_
factory

_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id
get_proxy_supplier
obtain_notification_

pull_supplier
obtain_notification_

push_supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier
destroy
_set_priority_filter
_set_lifetime_filter
set_qos
subscription_change
add_filter
remove_filter
remove_all_filters

_get_default_filter_fa
ctory

_get_manager

list_logs
find_log
list_logs_by_id
get_proxy_supplier
obtain_notification_

pull_supplier
obtain_notification_

push_supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier

subscription_change

IT_MessagingAdmin::Manager All None

DsLogAdmin::Iterator get
destroy

get
destroy

Table 13: Notify Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUser
Role Accessible

Operations
(Semi-secure only)
 198 Orbix Security Guide

IT_NotifyChannelAdmin::ConsumerAdmin All get_bridge_proxy_
supplier

obtain_subscription_
types_for_admin

_get_bridge_pull_
suppliers

_get_bridge_push_
suppliers

get_proxy_supplier
obtain_notification_

pull_supplier
obtain_notification_

push_supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier
subscription_change

IT_NotifyChannelAdmin::SupplierAdmin All get_bridge_proxy_
consumer

obtain_offered_types_
for_admin

_get_bridge_pull_
consumers

_get_bridge_push_
consumers

_get_MyID
_get_MyChannel
_get_MyOperator
get_qos
validate_qos
get_filter
get_all_filters

IT_NotifyChannelAdmin::
ProxyPushSupplier

All All

IT_NotifyChannelAdmin::
StructuredProxyPushSupplier

All All

IT_NotifyChannelAdmin::
SequenceProxyPushSupplier

All All

Table 13: Notify Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUser
Role Accessible

Operations
(Semi-secure only)
Orbix Security Guide 199

IT_NotifyChannelAdmin::
ProxyPullSupplier

All All

IT_NotifyChannelAdmin::
StructuredProxyPullSupplier

All All

IT_NotifyChannelAdmin::
SequenceProxyPullSupplier

All All

IT_NotifyChannelAdmin::
ProxyPushConsumer

All All

IT_NotifyChannelAdmin::
StructuredProxyPushConsumer

All All

IT_NotifyChannelAdmin::
SequenceProxyPushConsumer

All All

IT_NotifyChannelAdmin::
ProxyPullConsumer

All All

IT_NotifyChannelAdmin::
StructuredProxyPullConsumer

All All

IT_NotifyChannelAdmin::
SequenceProxyPullConsumer

All All

IT_NotifyChannelAdmin::
GroupProxyPushSupplier

All All

IT_NotifyChannelAdmin::
GroupStructuredProxyPushSupplier

All All

IT_NotifyChannelAdmin::
GroupSequenceProxyPushSupplier

All All

IT_NotifyFilterInternal::
Filter

All All

IT_NotifyFilterInternal::
MappingFilter

All All

IT_NotifyFilterInternal::
FilterFactory

All All

Table 13: Notify Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible

Operations (Secure
and semi-secure)

UnauthenticatedUser
Role Accessible

Operations
(Semi-secure only)
 200 Orbix Security Guide

Part III
SSL/TLS Administration

In this part
This part contains the following chapters:

Choosing an SSL/TLS Toolkit page 203

Managing Certificates page 211

Configuring SSL/TLS Secure Associations page 243

Configuring SSL/TLS Authentication page 261

Automatic Activation of Secure Servers page 281

 202 Orbix Security Guide

Choosing an SSL/TLS
Toolkit
This chapter describes the SSL/TLS toolkit replaceability feature, which
enables you to replace the underlying third-party toolkit that implements
the SSL/TLS protocol for Orbix applications.

Toolkit Replaceability
In Orbix, the underlying SSL/TLS security layer is provided by a
third-party security toolkit. The Orbix security configuration
variables and programming APIs wrap the third-party toolkit in
order to integrate it with CORBA technology.
Orbix provides a toolkit replaceability feature by exploiting Orbix’s
Adaptive Runtime Technology (ART) to encapsulate third-party
SSL/TLS toolkits in an ART plug-in. Using this modular approach,
you can replace the SSL/TLS security layer underlying Orbix by
specifying a different ART plug-in to load at runtime.

Toolkits for C++ applications
The following SSL/TLS toolkits are currently available for use with
Orbix C++ applications:
• “OpenSSL Toolkit for C++” on page 203.
• “Schannel Toolkit for C++” on page 204.

JSSE/JCE architecture for Java
applications
By default the JSSE toolkit is used to provide the security
underlying your Orbix Java appli cations. For details, see:
• “JSSE/JCE Architecture” on page 205.

Custom toolkit plug-in for C++
Orbix also provides an option to develop a custom toolkit plug-in
for C++ applications, using the Orbix plug-in development kit
(PDK). You can use this feature to integrate any third-party
SSL/TLS toolkit with Orbix.

OpenSSL Toolkit for C++
The OpenSSL toolkit from the OpenSSL project is the default toolkit
for C++ applications.

Note: The Baltimore toolkit has now been removed from
Orbix, so you must migrate any applications that still use it
to the OpenSSL toolkit.
 Orbix Security Guide 203

http://www.openssl.org/

Choosing the OpenSSL toolkit for C++
applications
To ensure that Orbix uses the OpenSSL toolkit for C++
applications, add (or change) the settings shown in Example 32 in
your Orbix configuration.

Schannel Toolkit for C++
This section describes how to configure Orbix to use the Schannel
toolkit from Microsoft. Schannel is a software implementation of
the SSL/TLS security protocol which uses the Microsoft Crypto API
(MS CAPI) to implement the cryptographic functionality required
by SSL/TLS.

The following special features are available to C++ applications
that use the Schannel toolkit:
• Smart cards.
• Schannel certificate stores.

Smart cards
Because almost all smart card hardware vendors make their
devices available as an MS CAPI Cryptographic Service Provider
(CSP), applications that use Schannel can access a very wide
range of cyptographic devices and smart cards.

Schannel certificate stores
With Schannel, application certificates and trusted CA certificates
are stored in the standard Windows certificate store, thus
simplifying the administration of certificates on Windows
platforms.

Choosing the Schannel toolkit
You can specify that Orbix uses the Schannel toolkit by adding the
settings shown in Example 33 to your Orbix configuration.

Example 32: Configuring Orbix to use the OpenSSL Toolkit in C++

Orbix configuration file
initial_references:IT_TLS_Toolkit:plugin = "openssl_toolkit";
plugins:openssl_toolkit:shlib_name = "it_tls_openssl";

Note: The Schannel toolkit is available only on Windows
platforms for the purpose of securing C++ applications.

Example 33: Configuring Orbix to use the Schannel Toolkit

Orbix configuration file
initial_references:IT_TLS_Toolkit:plugin = "schannel_toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schannel";
 204 Orbix Security Guide

Administration impact of switching to
Schannel
Orbix toolkit replaceability is designed to be as transparent as
possible to the user. Nevertheless, there are some aspects of
administration that are affected by the switch to using Schannel,
as follows:
• “Deploying Trusted Certificate Authorities” on page 237.
• “Deploying Application Certificates” on page 237.
• “Deploying Certificates in Smart Cards” on page 239.
• “Providing a Pass Phrase or PIN” on page 271.

Programming impact of switching to
Schannel
The following aspects of security programming are affected by the
switch to using Schannel:
• “Creating SSL/TLS Credentials” on page 337.

JSSE/JCE Architecture
The Java Cryptography Extension (JCE) is a pluggable framework
that allows you to replace the Java security implementation with
arbitrary third-party toolkits, known as security providers.
By default, Orbix uses the JSSE/JCE framework, as described in
this section.

Prerequisites
The following prerequisites must be satisfied to use the JSSE/JCE
architecture with Orbix:
1. Install the appropriate version of J2SE (JDK)—consult the

Orbix Installation Guide to find the recommended JDK version
for your platform. It is crucial to install an up-to-date version
of the JDK, because some earler versions of the JDK do not
have the required support for JSSE/JCE.

2. Install the unlimited strength JCE policy files—these files allow
you to use security providers that implement strong
cryptography. You can obtain these files from the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy Files download link on the Java downloads page:
http://www.oracle.com/technetwork/indexes/downloads/index.html#java
Orbix Security Guide 205

http://www.oracle.com/technetwork/indexes/downloads/index.html#java

Using JSSE/JCE with Orbix
To use the JSSE/JCE architecture with your Orbix Java applications
and to install a third-party security provider, perform the following
steps:

Configure Orbix to use JSSE/JCE
Orbix is by default configured to use JSSE/JCE. Check that the
setting shown in Example 34 is included in your Orbix
configuration.

Configure the java.security file
(Optional) Normally, you do not need to configure the
java.security file. If you are using a default JDK installation, it is
already configured to use the SunJSSE security provider.
JCE security providers are selected by specifying a list of security
provider classes in the java.security file, which is found at the
following location in your JDK installation:
JAVA_HOME/jre/lib/security/java.security

If you are using a Java Runtime Environment (JRE) instead of a
JDK, omit /jre from the preceding path.
For example, to use the Oracle JSSE security implementation you
would configure java.security as shown in Example 35.

The properties in Example 35 are organized as a prioritized list.
When JCE looks for the implementation of a Java security
interface, it first checks the class specified by security.provider.1
and then proceeds to the higher positions until it finds an interface
implementation. Hence, it is possible for different aspects of
security to be implemented by different security providers.

Step Action

1 Configure Orbix to use JSSE/JCE.

2 Configure the java.security file (Optional).

3 Install the provider JAR files (Optional).

Example 34: Configuring Orbix to use JSSE/JCE

Orbix configuration file
plugins:atli2_tls:use_jsse_tk = "true";

Example 35: Sample Java Security File

security.provider.1=sun.security.provider.Oracle
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
 206 Orbix Security Guide

For more details, see Configuring the Provider
(http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefG
uide.html#Configuring).

Install the provider JAR files
(Optional) Normally, you do not need to install provider JARS. The
SunJSSE provider files are already available in the Java runtime.
If you are using a third-party security provider (not SunJSSE), you
need to add the third-party JAR files to your CLASSPATH to make
the security provider accessible to Orbix. Please follow the
installation instructions provided by your third-party security
provider.
For more details about installing the provider classes, see:
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#InstallProv

Add a provider by programming
The JCE architecture provides an API that enables you to add a
security provider by programming—see Configuring the Provider
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefG
uide.html#InstallProv). The java.security.Security API can be
used instead of or in addition to configuring the java.security file.

java.security.Security.addProvider()
Add a security provider to the next available position.

java.security.Security.insertProviderAt()
Add a security provider to the specified position. The succeeding
security providers are shifted down by one position.
For more details, see the java.security.Security reference page:
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Security.html

Using the Orbix principal sponsor and
PKCS#12 files
When you switch to the JSSE/JCE framework with the SunJSSE
provider, you can continue to use the Orbix principal sponsor
settings to specify an application’s own certificate in PKCS#12
format—for example:

Orbix Configuration File
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcs12_file";
principal_sponsor:auth_method_data =

["filename=C:\Programs\Orbix\asp\6.3\etc\tls\x509\certs\demo
s\bank_server.p12", "password=bankserverpass"];
Orbix Security Guide 207

http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#Configuring
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Security.html

You can also continue to provide the trusted CA list in PEM
format—for example:

See “Specifying an Application’s Own Certificate” on page 268 and
“Specifying Trusted CA Certificates” on page 266.

Using the Orbix principal sponsor and
keystore files
If you switch to the JSSE/JCE framework with the SunJSSE
provider, you have the option of supplying an application’s own
certificate in Java Keystore (JKS) format. To use this feature, set
the principal_sponsor:auth_method_id variable to keystore and
configure the principal sponsor variables as follows:

The keystore_name property specifies the location of a keystore file
that contains a single key entry (the application’s own certificate
and associated private key). The password property specifies a
password that is used both to unlock the keystore file (store
password) and to decrypt the key entry (key password). Hence,
when you create the keystore file, you must ensure that these two
passwords are identical.

Migrating certificates to keystore format
If you need to migrate certificates from the PKCS#12 format to
the keystore format, use the -importkeystore option of the Java
keytool utility.

For example, if you have a certificate in PKCS#12 format,
bank_server.p12, with password, bankserverpass, you can convert it
to a keystore file, bank_server.ks, using the following command:

Orbix Configuration File
policies:trusted_ca_list_policy =

"C:\Programs\Orbix\asp\6.3\etc\tls\x509\trusted_ca_lists\ca_
list1.pem";

Orbix Configuration File
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "keystore";
principal_sponsor:auth_method_data =

["keystore_name=C:\Programs\Orbix\asp\6.3\etc\tls\x509\certs
\demos\bank_server.ks", "password=bankserverpass"];

Note: The keytool -importkeystore option is available only
from JDK 6 onwards.

keytool -importkeystore
-srckeystore bank_server.p12
-destkeystore bank_server.ks
-srcstoretype pkcs12
-deststoretype jks
-srcstorepass bankserverpass
-deststorepass bankserverpass
 208 Orbix Security Guide

If you use the preceding form of the keytool -importkeystore
command, the store password and the key password for
bank_server.ks are identical and equal to bankserverpass.

Logging
When using the JSSE/JCE architecture with Orbix, the log records
which security provider performs an action. This is a useful
debugging aid when multiple security providers are installed.
For example, the following is a log extract for an application that
uses the Bouncy Castle security provider to read PKCS#12 files
(PKCS12 BC) and the IAIK security provider to read PKCS#11 smart
card credentials (PKCS11 IAIK PKCS#11:1).

Troubleshooting
Some of the third-party security providers of the JSSE/JCE
architecture may have specific limitations or bugs. One approach
to working around these problems is by using a combination of
security providers, with different security providers implementing
different aspects of security.
For example, the following general security features could be
implemented by distinct security providers:
• PKCS#12 functionality—loading credentials from PKCS#12

files.
• PKCS#11 functionality—loading credentials from a smart card.
• SSL/TLS encryption.

References
For more information about Oracle’s JSSE/JCE architecture, see
the following links:
• Java Cryptography Extension

(http://java.sun.com/javase/technologies/security/).
• J2SE (JDK) 1.5.0 Security

(http://java.sun.com/j2se/1.5.0/docs/guide/security//).

11:24:15 2/20/2003
[_it_orb_id_1@yogibear.dublin.emea.iona.com/10.2.3.6]
(IT_ATLI_TLS:250) I - "Using the following provider: PKCS12 BC"

11:24:21 2/20/2003
[_it_orb_id_1@yogibear.dublin.emea.iona.com/10.2.3.6]
(IT_TLS:201) I - Authentication succeeded using the
IT_TLS_AUTH_METH_PKCS12_FILE method

11:24:15 2/20/2003 [_it_orb_id_1@yogibear/10.2.3.58]
(IT_ATLI_TLS:250) I - "Using the following provider: PKCS11 IAIK
PKCS#11:1"

11:24:15 2/20/2003 [_it_orb_id_1@yogibear/10.2.3.58] (IT_TLS:201) I
- Authentication succeeded using the IT_TLS_AUTH_METH_PKCS11
method
Orbix Security Guide 209

http://java.sun.com/javase/technologies/security/
http://java.sun.com/j2se/1.5.0/docs/guide/security/

• JCE Reference Guide
(http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCE
RefGuide.html).

• How to implement a security provider
(http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/How
ToImplAJCEProvider.html).

• Installing JCE providers
(http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCE
RefGuide.html#InstallProvider).
 210 Orbix Security Guide

http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/HowToImplAJCEProvider.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#InstallProvider

Managing Certificates
TLS authentication uses X.509 certificates—a common, secure and
reliable method of authenticating your application objects. This chapter
explains how you can create X.509 certificates that identify your Orbix
applications.

What are X.509 Certificates?

Role of certificates
An X.509 certificate binds a name to a public key value. The role
of the certificate is to associate a public key with the identity
contained in the X.509 certificate.

Integrity of the public key
Authentication of a secure application depends on the integrity of
the public key value in the application’s certificate. If an impostor
replaced the public key with its own public key, it could
impersonate the true application and gain access to secure data.
To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms
the integrity of the public key value in a certificate.

Digital signatures
A CA signs a certificate by adding its digital signature to the
certificate. A digital signature is a message encoded with the CA’s
private key. The CA’s public key is made available to applications
by distributing a certificate for the CA. Applications verify that
certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.

WARNING: Most of the demonstration certificates
supplied with Orbix are signed by the CA abigbank_ca.pem.
This CA is completely insecure because anyone can access
its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter
describes the set of certificates required by an Orbix
application and shows you how to replace the default
certificates.
 Orbix Security Guide 211

The contents of an X.509 certificate
An X.509 certificate contains information about the certificate
subject and the certificate issuer (the CA that issued the
certificate). A certificate is encoded in Abstract Syntax Notation
One (ASN.1), a standard syntax for describing messages that can
be sent or received on a network.
The role of a certificate is to associate an identity with a public key
value. In more detail, a certificate includes:
• X.509 version information.
• A serial number that uniquely identifies the certificate.
• A subject DN that identifies the certificate owner.
• The public key associated with the subject.
• An issuer DN that identifies the CA that issued the certificate.
• The digital signature of the issuer.
• Information about the algorithm used to sign the certificate.
• Some optional X.509 v.3 extensions. For example, an

extension exists that distinguishes between CA certificates
and end-entity certificates.

Distinguished names
A distinguished name (DN) is a general purpose X.500 identifier
that is often used in the context of security.
See “ASN.1 and Distinguished Names” on page 447 for more
details about DNs.

Certification Authorities

Choice of CAs
A CA must be trusted to keep its private key secure. When setting
up an Orbix system, it is important to choose a suitable CA, make
the CA certificate available to all applications, and then use the CA
to sign certificates for your applications.
There are two types of CA you can use:
• A commercial CA is a company that signs certificates for many

systems.
• A private CA is a trusted node that you set up and use to sign

certificates for your system only.
 212 Orbix Security Guide

Commercial Certification Authorities

Signing certificates
There are several commercial CAs available. The mechanism for
signing a certificate using a commercial CA depends on which CA
you choose.

Advantages of commercial CAs
An advantage of commercial CAs is that they are often trusted by
a large number of people. If your applications are designed to be
available to systems external to your organization, use a
commercial CA to sign your certificates. If your applications are
for use within an internal network, a private CA might be
appropriate.

Criteria for choosing a CA
Before choosing a CA, you should consider the following criteria:
• What are the certificate-signing policies of the commercial

CAs?
• Are your applications designed to be available on an internal

network only?
• What are the potential costs of setting up a private CA?

Private Certification Authorities

Choosing a CA software package
If you wish to take responsibility for signing certificates for your
system, set up a private CA. To set up a private CA, you require
access to a software package that provides utilities for creating
and signing certificates. Several packages of this type are
available.

OpenSSL software package
One software package that allows you to set up a private CA is
OpenSSL, http://www.openssl.org. OpenSSL is derived from
SSLeay, an implementation of SSL developed by Eric Young
(eay@cryptsoft.com). Complete license information can be found
in Appendix 1 on page 477. The OpenSSL package includes basic
command line utilities for generating and signing certificates and
these utilities are available with every installation of Orbix.
Complete documentation for the OpenSSL command line utilities
is available from http://www.openssl.org/docs.
Orbix Security Guide 213

Setting up a private CA using OpenSSL
For instructions on how to set up a private CA, see “Creating Your
Own Certificates” on page 218.

Choosing a host for a private certification
authority
Choosing a host is an important step in setting up a private CA.
The level of security associated with the CA host determines the
level of trust associated with certificates signed by the CA.
If you are setting up a CA for use in the development and testing
of Orbix applications, use any host that the application developers
can access. However, when you create the CA certificate and
private key, do not make the CA private key available on hosts
where security-critical applications run.

Security precautions
If you are setting up a CA to sign certificates for applications that
you are going to deploy, make the CA host as secure as possible.
For example, take the following precautions to secure your CA:
• Do not connect the CA to a network.
• Restrict all access to the CA to a limited set of trusted users.
• Protect the CA from radio-frequency surveillance using an

RF-shield.

Certificate Chaining

Certificate chain
A certificate chain is a sequence of certificates, where each certificate
in the chain is signed by the subsequent certificate.

Self-signed certificate
The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.
 214 Orbix Security Guide

Example
Figure 45 shows an example of a simple certificate chain.

Chain of trust
The purpose of certificate chain is to establish a chain of trust from
a peer certificate to a trusted CA certificate. The CA vouches for
the identity in the peer certificate by signing it. If the CA is one
that you trust (indicated by the presence of a copy of the CA
certificate in your root certificate directory), this implies you can
trust the signed peer certificate as well.

Certificates signed by multiple CAs
A CA certificate can be signed by another CA. For example, an
application certificate may be signed by the CA for the finance
department of Micro Focus, which in turn is signed by a self-signed
commercial CA. Figure 46 shows what this certificate chain looks
like.

Trusted CAs
An application can accept a signed certificate if the CA certificate
for any CA in the signing chain is available in the certificate file in
the local root certificate directory.
See “Providing a List of Trusted Certificate Authorities” on
page 225.

Figure 45: A Certificate Chain of Depth 2

Figure 46: A Certificate Chain of Depth 3
Orbix Security Guide 215

Maximum chain length policy
You can limit the length of certificate chains accepted by your
applications, with the maximum chain length policy. You can set a
value for the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy configuration variables for
IIOP/TLS and HTTPS respectively.

PKCS#12 Files

Contents of a PKCS#12 file
A PKCS#12 file contains the following:
• An X.509 peer certificate (first in a chain).
• All the CA certificates in the certificate chain.
• A private key.
The file is encrypted with a password.
PKCS#12 is an industry-standard format and is used by browsers
such as Netscape and Internet Explorer. They are also used in
Orbix. Orbix does not support .pem format certificate chains,
however.

Creating a PKCS#12 file
To create a PKCS#12 file, see “Use the CA to Create Signed
Certificates” on page 221.

Viewing a PKCS#12 file
To view a PKCS#12 file, CertName.p12:
openssl pkcs12 -in CertName.p12

Importing and exporting PKCS#12 files
The generated PKCS#12 files can be imported into browsers such
as IE or Netscape. Exported PKCS#12 files from these browsers
can be used in Orbix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0
or later; Netscape 4.7 or later.
 216 Orbix Security Guide

Using the Demonstration Certificates

Location of the demonstration
certificates
The Orbix certificates directory contains a set of demonstration
certificates that enable you to run the Orbix example applications.
The certificates are contained in this directory:
ASPInstallDir/asp/6.0/etc/tls/x509/certs

Default CA certificate
The CA used to sign the demonstration certificates is the default
Orbix CA:
• The CA certificate is x509/certs/ca/abigbank_ca.pem.
• The list of trusted CA’s is contained in

x509/certs/trusted_ca_lists/ca_list1.pem. This initially
contains only the abigbank_ca.pem CA, but other CAs can be
appended.

Certificates for demonstration programs
The PKCS#12 certificates in Table 14 are used by the Orbix
demonstration programs. These certificates are located in the
x509/certs/demos directory and signed by the
x509/certs/ca/abigbank_ca.pem CA certificate.

Untrusted demonstration certificate
In the demonstration programs, the following certificate,
bad_guy.p12, is used to represent a certificate from an untrusted
CA:
certs/demos/bad_guy.p12

Note: No whitespace or text is allowed in this file outside
the BEGIN/END statements.

Table 14: Demonstration Certificates and Passwords

Demonstration
Certificate

Password

certs/demos/admin.p12 adminpass

certs/demos/alice.p12 alicepass

certs/demos/bankserver.p12 bankserverpass

certs/demos/bob.p12 bobpass

certs/demos/CertName.p12 CertNamepass
Orbix Security Guide 217

Certificates for the Orbix services
The Orbix services all use the same certificate, as shown in
Table 15.

Creating Your Own Certificates
This section describes the steps involved in setting up a CA and
signing certificates.

OpenSSL utilities
The steps described in this section are based on the OpenSSL
command-line utilities from the OpenSSL project,
http://www.openssl.org—see Appendix 1 on page 457. Further
documentation of the OpenSSL command-line utilities can be
obtained from http://www.openssl.org/docs.

Sample CA directory structure
For the purposes of illustration, the CA database is assumed to
have the following directory structure:

Where X509CA is the parent directory of the CA database.

Set Up Your Own CA

Substeps to perform
This section describes how to set up your own private CA. Before
setting up a CA for a real deployment, read the additional notes in
“Choosing a host for a private certification authority” on page 214.
To set up your own CA, perform the following substeps:
• Step 1—Add the bin directory to your PATH
• Step 2—Create the CA directory hierarchy
• Step 3—Copy and edit the openssl.cnf file
• Step 4—Initialize the CA database
• Step 5—Create a self-signed CA certificate and private key

Table 15: Demonstration Certificate for the Orbix Services

Services Demonstration
Certificate

Password

certs/services/administrator.p12 administratorpass

X509CA/ca
X509CA/certs
X509CA/newcerts

X509CA/crl
 218 Orbix Security Guide

Step 1—Add the bin directory to your
PATH
On the secure CA host, add the Orbix bin directory to your path:
Windows
> set PATH=ASPInstallDir\asp\6.0\bin;%PATH%

UNIX
% PATH=ASPInstallDir/asp/6.0/bin:$PATH; export PATH

This step makes the openssl utility available from a command line.

Step 2—Create the CA directory hierarchy
Create a new directory, X509CA, to hold the new CA. This directory
will be used to hold all of the files associated with the CA. Under
the X509CA directory, create the following hierarchy of directories:

Step 3—Copy and edit the openssl.cnf file
Copy the openssl.cnf file to the X509CA directory, as follows:
Windows
copy ASPInstallDir\asp\6.0\etc\tls\x509\openssl.cnf

X509CA\openssl.cnf

UNIX
cp ASPInstallDir/asp/6.0/etc/tls/x509/openssl.cnf

X509CA/openssl.cnf

Edit the openssl.cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.
Edit the [CA_default] section of the openssl.cnf file to make it look
like the following:
###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

X509CA/ca
X509CA/certs
X509CA/newcerts

X509CA/crl
Orbix Security Guide 219

You might like to edit other details of the OpenSSL configuration
at this point—for more details, see “The OpenSSL Configuration
File” on page 463.

Step 4—Initialize the CA database
In the X509CA directory, initialize two files, serial and index.txt.
Windows
> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows
Notepad at the command line in the X509CA directory, as follows:
> notepad index.txt

In response to the dialog box with the text, Cannot find the
text.txt file. Do you want to create a new file?, click Yes, and
close Notepad.
UNIX
% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of
certificate files.

Step 5—Create a self-signed CA
certificate and private key
Create a new self-signed CA certificate and private key:
openssl req -x509 -new -config

X509CA/openssl.cnf -days 365 -out X509CA/ca/new_ca.pem
-keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private
key and details of the CA distinguished name:
Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC

Note: The index.txt file must initially be completely
empty, not even containing white space.
 220 Orbix Security Guide

Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@iona.com

You should ensure that the file names and location of the CA
certificate and private key, new_ca.pem and new_ca_pk.pem, are the
same as the values specified in openssl.cnf (see the preceding
step).
You are now ready to sign certificates with your CA.

Use the CA to Create Signed Certificates

Substeps to perform
If you have set up a private CA, as described in “Set Up Your Own
CA” on page 218, you are now ready to create and sign your own
certificates.
To create and sign a certificate in PKCS#12 format, CertName.p12,
perform the following substeps:
• Step 1—Add the bin directory to your PATH
• Step 2—Create a certificate signing request
• Step 3—Sign the CSR
• Step 4—Concatenate the files
• Step 5—Create a PKCS#12 file
• Step 6—Repeat steps as required

Step 1—Add the bin directory to your
PATH
If you have not already done so, add the Orbix bin directory to
your path:
Windows
> set PATH=ASPInstallDir\asp\6.0\bin;%PATH%

UNIX
% PATH=ASPInstallDir/asp/6.0/bin:$PATH; export PATH

This step makes the openssl utility available from the command
line.

Note: The security of the CA depends on the security of
the private key file and private key pass phrase used in this
step.
Orbix Security Guide 221

Step 2—Create a certificate signing
request
Create a new certificate signing request (CSR) for the CertName.p12
certificate:
openssl req -new -config X509CA/openssl.cnf

-days 365 -out X509CA/certs/CertName_csr.pem -keyout
X509CA/certs/CertName_pk.pem

This command prompts you for a pass phrase for the certificate’s
private key and information about the certificate’s distinguished
name.
Some of the entries in the CSR distinguished name must match
the values in the CA certificate (specified in the CA Policy section
of the openssl.cnf file). The default openssl.cnf file requires the
following entries to match:
• Country Name
• State or Province Name
• Organization Name
The Common Name must be distinct for every certificate
generated by OpenSSL.
Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Orbix
Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:IONA
 222 Orbix Security Guide

Step 3—Sign the CSR
Sign the CSR using your CA:
openssl ca -config X509CA/openssl.cnf -days 365 -in

X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key
associated with the new_ca.pem CA certificate:
Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'IONA Technologies PLC'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@iona.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT

(365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private
key pass phrase—see “Set Up Your Own CA” on page 218.

Step 4—Concatenate the files
Concatenate the CA certificate file, CertName certificate file, and
CertName_pk.pem private key file as follows:
Windows
copy X509CA\ca\new_ca.pem +

X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX
cat X509CA/ca/new_ca.pem

X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Step 5—Create a PKCS#12 file
Create a PKCS#12 file from the CertName_list.pem file as follows:
openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out

X509CA/certs/CertName.p12 -name "New cert"
Orbix Security Guide 223

Step 6—Repeat steps as required
Repeat steps 2 to 5, creating a complete set of certificates for your
system. A minimum set of Orbix certificates must include a set of
certificates for the secure Orbix services.

Deploying Certificates
This section provides an overview of deploying X.509 certificates
in a typical secure Orbix system, with detailed instructions on how
to deploy certificates for different parts of the Orbix system.

Overview of Certificate Deployment
Figure 47 provides an overview of the certificates used in a typical
deployment of Orbix.

Sample deployment directory structure
For the purposes of illustration, the examples in this section
deploy certificates into the following sample directory structure:

Where X509Deploy is the parent directory for the deployed
certificates.

Figure 47: Overview of Certificates in a Typical Deployed System

X509Deploy/trusted_ca_lists
X509Deploy/certs/applications
X509Deploy/certs/services
X509Deploy/certs/admin
 224 Orbix Security Guide

Providing a List of Trusted Certificate Authorities

Configuration variable
You can specify the list of root trusted certificates authorities by
setting the policies:iiop_tls:trusted_ca_list_policy and
policies:https:trusted_ca_list_policy configuration variables for
IIOP/TLS and HTTPS respectively.
This variable contains a list of strings, each of which provides the
filename and path of a file containing one or more trusted CA
certificates. For example:
policies:iiop_tls:trusted_ca_list_policy =

["ASPInstallDir/asp/6.0/etc/tls/x509/certs/trusted_ca_lists/ca_l
ist1.pem"];

The directory containing the trusted CA certificate lists (for
example, ASPInstallDir/asp/6.0/etc/tls/x509/certs/trusted_ca_lists/)
should be a secure directory.

Choosing a configuration domain
Before deploying the CA certificate on a target host, you must
have access to a secure configuration domain or you can create a
new domain—see the Administrator’s Guide.
For example, if you create a secure file-based configuration
domain, SecureDomain, you could view or modify the configuration
by editing the corresponding
ASPInstallDir/etc/domains/SecureDomain.cfg file.

Choosing a deployment directory
CA certificates are deployed as concatenated lists. These CA list
files can be stored in any location; however, it is convenient to
store them under a common deployment directory, for example:
X509Deploy/trusted_ca_lists

Note: If an application supports authentication of a peer,
that is a client supports EstablishTrustInTarget, then a file
containing trusted CA certificates must be provided. If not,
a NO_RESOURCES exception is raised.
Orbix Security Guide 225

Deploying
To deploy a trusted CA certificate, perform the following steps:

Deploying Application Certificates

Choosing a deployment directory
Application certificates are stored as PKCS#12 files (with .p12
suffix). The certificates can be stored in arbitrary locations;
however, it is usually convenient to store the application
certificates under a common deployment directory, for example:
X509Deploy/certs/applications

Step Action

1 If you have access to an existing secure domain,
SecureDomain, you can append the CA certificate contents
to one of the files specified in the
policies:iiop_tls:trusted_ca_list_policy configuration
variable for IIOP/TLS or in the
policies:https:trusted_ca_list_policy configuration
variable for HTTPS.
For example, consider how to configure the IIOP/TLS
protocol. If policies:iiop_tls:trusted_ca_list_policy
lists the file, X509Deploy/trusted_ca_lists/ca_list1.pem,
you can add your new CA to the ca_list1.pem file as
follows:

Windows
copy X509Deploy\trusted_ca_lists\ca_list1.pem +

X509CA\ca\new_ca.pem
X509Deploy\trusted_ca_lists\ca_list1.pem

UNIX
cat X509CA/ca/new_ca.pem >>

X509Deploy/trusted_ca_lists/ca_list1.pem

The CA certificate is now deployed; hence you can skip
steps 2 and 3.

2 Alternatively, you can create a new CA list file to hold
your CA certificate. Copy the new_ca.pem certificate to the
X509Deploy/trusted_ca_lists directory. Rename
new_ca.pem to ca_list.pem, to remind you that this file is
actually a list of certificates that happens to contain one
certificate.
Do not copy the CA private key to the target host.

3 Add the ca_list.pem file to your list of trusted CA files.
For example, in the case of IIOP/TLS:
policies:iiop_tls:trusted_ca_list_policy =

["X509Deploy/trusted_ca_lists/existing_list.pem",
"X509Deploy/trusted_ca_lists/ca_list.pem"];
 226 Orbix Security Guide

Deploying
To deploy an application certificate, CertName.p12, for an application
that uses the SampleApp ORB name in the DomainName domain,
perform the following steps:

Deploying Certificates in Smart Cards
Orbix supports an option to store credentials (that is, an X.509
certificate chain and private key) on a smart card.

Prerequisites
Before deploying your certificates in a smart card, you must have
the following third-party products installed:
• A PKCS#11 toolkit—a software library that supports the

PKCS#11 interface and enables Orbix to communicate with
the smart card.

• Tools and utilities to administer the smart card (usually
bundled with the hardware).

Step Action

1 Copy the application certificate, CertName.p12, to the
certificates directory—for example,
X509Deploy/certs/applications—on the deployment host.
The certificates directory should be a secure directory
that is accessible only to administrators and other
privileged users.

2 Edit the DomainName configuration file (usually
ASPInstallDir/etc/domains/DomainName.cfg). In the SampleApp
scope, change the principal sponsor configuration to
specify the CertName.p12 certificate, as follows:
Orbix Configuration File
SampleApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/applications/CertName.p12
"];

};

3 By default, the application will prompt the user for the
certificate pass phrase as it starts up. To choose another
option for providing the pass phrase, see “Providing a
Certificate Pass Phrase” on page 271.

4 If you are using the KDM to enable automatic activation
of your secure servers, make sure you update the KDM
database with the new certificate passwords. See
“Automatic Activation of Secure Servers” on page 281.
Orbix Security Guide 227

Deploying the certificates
Smart card hardware is normally delivered with drivers and
utilities that enable you to deploy X.509 certificate chains and
private keys to the smart card. Consult the third-party
documentation that accompanies your smart-card hardware for
details.

Deployment constraints
Please note the following constraints when deploying the
certificates:
• You must deploy the certificate chain and private key to slot 0.

This is currently the only supported smart card slot.
• The slot 0 should contain only one certificate chain and

public/private key pair.

Configuring an application to use the
smart card
To configure an application to use the smart card, edit the
configuration for your domain (usually
ASPInstallDir/etc/domains/DomainName.cfg). In the SmartCardApp scope,
ensure that the principal sponsor is configured to use the smart
card, as follows:
Orbix Configuration File
SmartCardApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs11";
 principal_sponsor:auth_method_data = ["provider=dkck132.dll",

"slot=0"];
};

By default, the application will prompt the user for the smart card
PIN as it starts up. To choose another option for providing the PIN,
see “Providing a Smart Card PIN” on page 274.

Deploying Orbix Service Certificates

Orbix services requiring certificates
In a secure system, all Orbix services should be capable of
servicing secure connections; hence, all of the services require
certificates. A minimal system typically includes the following
secure services:
• Locator,
• Node daemon,
• Naming service,
• Interface repository (IFR),
 228 Orbix Security Guide

• Management service.
• Security service.
Additionally, your system might also require certificates for the
events, notification, and OTS services.

Choosing a deployment directory
Orbix service certificates are stored as PKCS#12 files. The service
certificates are similar to application certificates and, like
application certificates, can be stored in arbitrary locations. It is
usually convenient to store the service certificates in their own
subdirectory—for example:
X509Deploy/certs/services

Deploying
To deploy a service certificate, CertName.p12, for a service that uses
the Service ORB name in the DomainName domain, perform the
following steps:

Step Action

1 Copy the service certificate, CertName.p12, to the service
certificates directory X509Deploy/certs/services on the
deployment host.
The service certificates directory should be a secure
directory that is accessible only to administrators and
other privileged users.

2 Edit the DomainName configuration file (usually
ASPInstallDir/etc/domains/DomainName.cfg). In the Service
scope, change the principal sponsor configuration to
specify the CertName.p12 certificate, as follows:
Orbix Configuration File
Service {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/services/CertName.p12"];
};

3 By default, the application will prompt the user for the
certificate pass phrase as it starts up. To choose another
option for providing the pass phrase, see “Providing a
Certificate Pass Phrase” on page 271.

4 If you are using the KDM to enable automatic activation
of the Orbix service, make sure you update the KDM
database with the new certificate pass phrase. See
“Automatic Activation of Secure Servers” on page 281.
Orbix Security Guide 229

Providing pass phrases for Orbix services
It is possible to combine the different ways of providing pass
phrases to the Orbix services. For example, some of the
alternatives for setting up the Orbix services are:
• Use a password file for all Orbix services.
• Provide the pass phrase from a dialog prompt for all Orbix

services.
• Use a password file for the locator and the node daemon. Use

the KDM for all other Orbix services.
• Provide the pass phrase from a dialog prompt for the locator

and the node daemon. Use the KDM for all other Orbix
services.

Example configuration
The default configuration of the Orbix services specifies that all
services use the administrator.p12 certificate. The principal
sponsor for services is configured as follows:

The sub-scopes, ServiceA, ServiceB and so on, use the principal
sponsor settings from the outer scope, iona_services. Hence, all of
the Orbix services use the same certificate, administrator.p12.
It is possible to override settings from the iona_services outer
scope by configuring the principal sponsor in a local scope—for
example, within the ServiceA scope.

Orbix Configuration File
iona_services
{
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\services\ad
ministrator.p12",
"password_file=ASPInstallDir\asp\6.0\etc\tls\x509\certs\service
s\administrator.pwf"];

 ...
 ServiceA {
 // Inherit principal sponsor settings from outer scope.
 ...
 };
 ServiceB {
 // Inherit principal sponsor settings from outer scope.
 ...
 };
 ...
};
 230 Orbix Security Guide

Deploying itadmin Certificates
The Orbix command-line administration utility, itadmin, requires a
certificate when used in a secure domain. Two categories of
certificate can be used with itadmin, as follows:
• Ordinary certificates—for users with ordinary privileges who

want to perform routine administration tasks such as checking
the status of servers and administering the naming service.

• Administrator certificates—for users with administrator
privileges who need to administer pass phrases and security
checksums stored in the KDM—see “KDM Administration” on
page 286.

Specifying a deployment directory for
administrator certificates
Before deploying itadmin certificates for the first time, you can edit
the Orbix configuration file to specify the directory that will
contain the administrator certificates. You can specify the
administrator certificates deployment directory using the
itadmin_x509_cert_root configuration variable.
For example, if you choose the following deployment directory for
your itadmin certificates:
X509Deploy/certs/admin

you should then set itadmin_x509_cert_root as follows:

Deploying an ordinary certificate for
itadmin
To deploy an ordinary certificate for itadmin, OrdinaryCert.p12, in the
DomainName domain, perform the following steps:

Orbix Configuration File
itadmin_x509_cert_root = "X509Deploy/certs/admin";
...

Step Action

1 Copy the ordinary certificate, OrdinaryCert.p12, to the
service certificates directory X509Deploy/certs/services on
the deployment host.
The service certificates directory should be a secure
directory that is accessible only to administrators and
other privileged users.
Orbix Security Guide 231

Deploying an administrator certificate
for itadmin
To deploy an administrator certificate for itadmin, AdminCert.p12,
perform the following step:

Overriding the ordinary certificate with
the administrator certificate
To perform administrator tasks requiring special privileges, such
as administering the KDM, you must override the ordinary
certificate with the administrator certificate using the itadmin
admin_logon subcommand.
See “KDM Administration” on page 286 for details.

2 Edit the DomainName configuration file (usually
ASPInstallDir/etc/domains/DomainName.cfg). In the
ItadminUtility scope, change the principal sponsor
configuration to specify the OrdinaryCert.p12 certificate, as
follows:
Orbix Configuration File
ItadminUtility {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/services/OrdinaryCert.p12"
];

};

3 By default, the itadmin utility would prompt the user for
the certificate pass phrase as it starts up. A more
convenient option, however, is to store the pass phrase
in a secure password file—see “Providing a Certificate
Pass Phrase” on page 271 for details of how to configure
this.

Step Action

Step Action

1 Copy the administrator certificate, AdminCert.p12, to the
itadmin certificates directory specified by the
itadmin_x509_cert_root configuration variable.
The itadmin certificates directory should be a secure
directory that is accessible only to administrators and
other privileged users.
 232 Orbix Security Guide

Configuring Certificate Warnings
Orbix enables you to configure the following kinds of certificate
warning:
• Certificate expiration warning.
• Own credentials warning.

Certificate expiration warning
Normally, an X.509 certificate would be defined to expire after a
certain date. You can arrange to send a warning message to the
Orbix log, if certificate expiration is imminent, thus helping to
avoid unexpected failure.
To configure a certificate expiration warning, add the configuration
variables from Example 36 to your application’s configuration
scope.

The configuration in Example 36 would send a warning to the
Orbix log, if the application’s own certificate is less than 31 days
away from expiry. Only an application’s own certificate is checked,
not the peer certificates.

Own credentials warning
You can also configure Orbix to log a warning, if the subject DN
from an application’s own certificate matches a certain pattern.
This can be useful, for example, if you want to ensure that
demonstration certificates are not accidentally deployed in a
production system.
Example 37 shows how to configure the own credentials warning. If the
specified certificate constraints match the subject DN of an
application’s own certificate, a warning is issued to the Orbix log.
For details of the constraint language, see “Applying Constraints
to Certificates” on page 391.

Example 36: Configuring a Certificate Expiration Warning

#Orbix Configuration File
plugins:iiop_tls:enable_warning_for_approaching_cert_expiration

= "true";
plugins:iiop_tls:cert_expiration_warning_days = "31";

Example 37: Configuring an Own Credentials Warning

#Orbix Configuration File
plugins:iiop_tls:own_credentials_warning_cert_constraints =

["C=US,ST=Massachusetts"];
Orbix Security Guide 233

Deploying Certificates with Schannel
This section describes how to deploy X.509 certificates into the
Schannel certificate store. This method of deployment is used only
for C++ applications that use the Schannel SSL/TLS toolkit on the
Windows platform—see “Choosing an SSL/TLS Toolkit” on
page 203 for more details.

Schannel Certificate Store
This subsection describes how to manage certificates in the
Schannel certificate store (Windows C++ applications only).

Prerequisites
The Schannel certificate store is only available to C++ applications
on the Windows platform when you have selected Schannel as the
underlying SSL/TLS toolkit. See “Choosing an SSL/TLS Toolkit” on
page 203 for details.

Managing the certificate store
Windows makes the Schannel certificate store accessible through
the following O/S utilities:
• Internet Explorer.
• Microsoft Management Console.

Internet Explorer
To access the certificate store from Internet Explorer:
1. Choose the Tools|Internet Options... menu option to open

the Internet Options dialog box.
2. Click on the Content tab.
3. Click Certificates... to open the Certificates dialog box.
4. Use the Certificates dialog box to manage the certificate

store.

Microsoft Management Console
You can also access the certificate store from within the Microsoft
Management Console (MMC), using the certificate snap-in. The MMC is
general-purpose, customizable management tool for the Windows
operating system. The functionality of the MMC can be customized
by adding, removing and configuring a variety of different MMC
snap-ins.
 234 Orbix Security Guide

You can add the certificate snap-in to the MMC as follows:
1. Start the MMC from the start menu by selecting Start|Run

and then entering the command mmc. The MMC opens as
shown in Figure 48.

2. From the MMC, select the Console|Add/Remove Snap-In...
menu option. The Add/Remove Snap-In dialog opens as
shown in Figure 49.

Figure 48: The Microsoft Management Console

Figure 49: The Add/Remove Snap-In Dialog Box
Orbix Security Guide 235

3. Click Add... to open the Add Standalone Snap-In dialog
box, as shown in Figure 50.

4. From the snap-in list box, select the Certificates snap-in and
then click Add.

5. A wizard utility starts up to guide you through the process of
adding the Certificates snap-in. Follow the instructions in the
wizard to add the snap-in.

6. After finishing the certificate snap-in wizard, close the dialog
boxes. The console window should now look similar to
Figure 51.

7. To save the current console configuration for future use,
select Console|Save As... and save the customized console
in a convenient location.

Figure 50: The Add Standalone Snap-In Dialog Box

Figure 51: Microsoft Management Console with Certificates Snap-In
 236 Orbix Security Guide

References
For more details about the MMC utility, see the following page
from Microsoft:
• Microsoft Management Console: Overview

(http://technet.microsoft.com/en-us/library/cc709659.aspx).

Deploying Trusted Certificate Authorities
This subsection describes how to deploy trusted certificate
authority (CA) certificates to the Schannel certificate store
(Windows C++ applications only). Your Orbix application must be
configured to use Schannel as its underlying SSL/TLS toolkit.

CA certificate format
A trusted CA certificate is distributed as a plain certificate without
a private key (the private key is known only to the certification
authority). For example, trusted CA certificates might be
distributed in PEM format, but not in PKCS#12 format (which
includes a private key).

Deploying
To deploy a trusted CA certificate to the Schannel certificate store,
perform the following steps:
1. Launch an MMC utility that has been configured with a

certificates snap-in (see “Schannel Certificate Store” on
page 234).

2. From the MMC console tree, select the Console
Root\Certificates\Trusted Root Certification
Authorities\Certificates directory.

3. Right-click the Certificates directory and select the All
Tasks|Import... option. A Certificate Import Wizard
launches.

4. Follow the instructions in the Certificate Import Wizard to
add a trusted CA certificate to the certificate store.

Deploying Application Certificates
This subsection describes how to deploy application certificates in
the Schannel certificate store (Windows C++ applications only).
Your Orbix application must be configured to use Schannel as its
underlying SSL/TLS toolkit.

Note: The Orbix policies:iiop_tls:trusted_ca_list_policy
configuration variable is ignored when your C++
application is configured to use the Schannel SSL/TLS
toolkit.
Orbix Security Guide 237

http://technet.microsoft.com/en-us/library/cc709659.aspx

Deploying
To deploy an application certificate to the Schannel certificate
store, perform the following steps:
1. Launch an MMC utility that has been configured with a

certificates snap-in (see “Schannel Certificate Store” on
page 234).

2. From the MMC console tree, select the Console
Root\Certificates\Personal\Certificates directory.

3. Right-click the Certificates directory and select the All
Tasks|Import... option. A Certificate Import Wizard
launches.

4. Follow the instructions in the Certificate Import Wizard to
add an application certificate to your personal certificate
store.

5. To configure an Orbix application to use the certificate, you
need to know the common name (CN) from the certificate’s
subject DN.
If you do not already know the certificate’s common name,
you can easily find out by double-clicking the certificate entry
in the Console Root\Certificates\Personal\Certificates
directory of the MMC console. In the Certificate dialog, click
the Details tab and then select the Subject field from the
scrollbox. Figure 52 shows the Certificate dialog at this point.

Note: Currently, Orbix can load application
certificates from the personal certificate directory only.

Figure 52: Certificate Dialog Showing the Certificate’s Subject DN.
 238 Orbix Security Guide

The lower pane shows the AVA settings from the certificate’s
subject DN (for an explanation of X.509 certificate
terminology, see “ASN.1 and Distinguished Names” on
page 447). From Figure 52, you can see that the common
name (CN) of this certificate is Alice.

6. Edit the Orbix configuration for your domain (usually
ASPInstallDir/etc/domains/DomainName.cfg). In your application’s
configuration scope, MyApp, ensure that the principal sponsor
is configured to use the new certificate, as shown in
Example 38.

Where CommonName is the common name (CN) from the new
certificate’s subject DN. For example, if using the certificate
shown in Figure 52 on page 238, the CommonName would be
Alice.

7. When you start an Orbix application that uses the new
certificate, Schannel might or might not prompt you for a
private key password. The behavior at runtime depends on
whether or not you chose the Enable strong private key
protection option when importing the certificate with the
Certificate Import Wizard.

Importing PKCS#12 files
If you want to import a PKCS#12 certificate (.p12 file suffix) into
the certificate store, there is an easy short cut available:
double-click the PKCS#12 file and follow the instructions in the
Certificate Import Wizard to add the certificate to your
personal certificate store.

Deploying Certificates in Smart Cards
Orbix supports an option to store credentials (that is, an X.509
certificate chain and private key) on a smart card.
This subsection describes how to deploy certificates in a smart
card which is accessible through the Schannel certificate store
(Windows C++ applications only). Your Orbix application must be
configured to use Schannel as its underlying SSL/TLS toolkit.

Orbix Configuration File
...
MyApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "security_label";
 principal_sponsor:auth_method_data = ["label=CommonName"];
};

Note: When Orbix is configured to use Schannel, you
cannot use PKCS#12 files directly. Hence, the
pkcs12_file value of principal_sponsor:auth_method_id
cannot be used with Schannel.
Orbix Security Guide 239

Prerequisites
Before deploying your certificates in a smart card, you must have
the following third-party products installed:
• Third-party smart card toolkit—a software library that

integrates the smart card hardware with the Schannel toolkit
and certificate store.

• Tools and utilities to administer the smart card (usually
bundled with the hardware).

Deploying the certificates
Smart card hardware is normally delivered with drivers and
utilities that enable you to deploy X.509 certificate chains and
private keys to the smart card. Consult the third-party
documentation that accompanies your smart-card hardware for
details.

Smart card transparency in Schannel
As soon as a smart card is inserted into the card reader, the smart
card credentials automatically appear in the Schannel certificate
store. The credentials are then accessible in just the same way as
any other certificate in the store.

Configuring an application to use the
smart card
To configure an Orbix application to use the smart card through
Schannel, edit the configuration for your domain (usually
ASPInstallDir/etc/domains/DomainName.cfg). In your application’s
configuration scope, SmartCardApp, ensure that the principal sponsor
is configured to use the smart card, as shown in Example 38.

Where CommonName is the common name (CN) from the smart card
certificate’s subject DN (see “ASN.1 and Distinguished Names” on
page 447).

Example 38: Configuring an Application to Use a Smart Card in Schannel

Orbix Configuration File
...
SmartCardApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "security_label";
 principal_sponsor:auth_method_data = ["label=CommonName"];
};
 240 Orbix Security Guide

Supplying the smart card PIN
By default, Schannel will prompt the user for the smart card PIN
as it starts up. There is currently no alternative to supplying the
smart card PIN in Schannel.
Orbix Security Guide 241

 242 Orbix Security Guide

Configuring SSL/TLS
Secure Associations
You can govern the behavior of client-server connections by setting
configuration variables to choose association options and to specify
cipher suites.

Overview of Secure Associations

Secure association
Secure association is the CORBA term for any link between a client and
a server that enables invocations to be transmitted securely. In
practice, a secure association is often realized as a TCP/IP network
connection augmented by a particular security protocol (such as
TLS) but many other realizations are possible.
In the context of Orbix, secure associations always use TLS.

TLS session
A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that
stores the security characteristics of the association.
A TLS session underlies each secure association in Orbix.

Colocation
For colocated invocations, that is where the calling code and called
code share the same address space, Orbix supports the
establishment of colocated secure associations. A special
interceptor, TLS_Coloc, is provided by the security plug-in to
optimize the transmission of secure, colocated invocations.

Configuration overview
The security characteristics of an association can be configured
through the following CORBA policy types:
• Client secure invocation policy—enables you to specify the security

requirements on the client side by setting association options.
See “Choosing Client Behavior” on page 247 for details.

• Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association
options. See “Choosing Target Behavior” on page 248 for
details.
 Orbix Security Guide 243

• Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are
required to specify a list of cipher suites for your application.
See “Specifying Cipher Suites” on page 253 for details.

Figure 53 illustrates all of the elements that configure a secure
association. The security characteristics of the client and the
server can be configured independently of each other.

Setting Association Options
This section explains the meaning of the various SSL/TLS
association options and describes how you can use the SSL/TLS
association options to set client and server secure invocation
policies for both SSL/TLS and HTTPS connections.

Secure Invocation Policies

Secure invocation policies
You can set the minimum security requirements of objects in your
system with two types of security policy:
• Client secure invocation policy—specifies the client association

options.
• Target secure invocation policy—specifies the association options on

a target object.
These policies can only be set through configuration; they cannot
be specified programmatically by security-aware applications.

OMG-defined policy types
The client and target secure invocation policies correspond to the
following policy types, as defined in the OMG security
specification:
• Security::SecClientSecureInvocation

• Security::SecTargetSecureInvocation

These policy types are, however, not directly accessible to
programmers.

Figure 53: Configuration of a Secure Association
 244 Orbix Security Guide

Configuration example
For example, to specify that client authentication is required for
IIOP/TLS connections, you can set the following target secure
invocation policy for your server:

Association Options

Available options
You can use association options to configure Orbix. They can be set for
clients or servers where appropriate. These are the available
options:
• NoProtection

• Integrity
• Confidentiality
• DetectReplay
• DetectMisordering
• EstablishTrustInTarget
• EstablishTrustInClient

NoProtection
Use the NoProtection flag to set minimal protection.This means
that insecure bindings are supported, and (if the application
supports something other than NoProtection) the object can
accept secure and insecure invocations. This is the equivalent to
SEMI_SECURE servers in OrbixSSL.

Integrity
Use the Integrity flag to indicate that the object supports
integrity-protected invocations. Setting this flag implies that your
TLS cipher suites support message digests (such as MD5, SHA1).

Orbix Configuration File
secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires

= ["EstablishTrustInClient", "Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports
= ["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 // Other settings (not shown)...
};
Orbix Security Guide 245

Confidentiality
Use the Confidentiality flag if your object requires or supports at
least confidentiality-protected invocations. The object can support
this feature if the cipher suites specified by the MechanismPolicy
support confidentiality-protected invocations.

DetectReplay
Use the DetectReplay flag to indicate that your object supports or
requires replay detection on invocation messages. This is
determined by characteristics of the supported TLS cipher suites.

DetectMisordering
Use the DetectMisordering flag to indicate that your object
supports or requires error detection on fragments of invocation
messages. This is determined by characteristics of the supported
TLS cipher suites.

EstablishTrustInTarget
The EstablishTrustInTarget flag is set for client policies only. Use
the flag to indicate that your client supports or requires that the
target authenticate its identity to the client. This is determined by
characteristics of the supported TLS cipher suites. This is normally
set for both client supports and requires unless anonymous cipher
suites are supported.

EstablishTrustInClient
Use the EstablishTrustInClient flag to indicate that your target
object requires the client to authenticate its privileges to the
target. This option cannot be required as a client policy.
If this option is supported on a client’s policy, it means that the
client is prepared to authenticate its privileges to the target. On a
target policy, the target supports having the client authenticate its
privileges to the target.

Note: Examples of all the common cases for configuring
association options can be found in the default Orbix
configuration file—see the demos.tls scope of the
ASPInstallDir/etc/domains/DomainName.cfg configuration file.
 246 Orbix Security Guide

Choosing Client Behavior

Client secure invocation policy
The Security::SecClientSecureInvocation policy type determines
how a client handles security issues.

IIOP/TLS configuration
You can set this policy for IIOP/TLS connections through the
following configuration variables:
policies:iiop_tls:client_secure_invocation_policy:requires

Specifies the minimum security features that the client
requires to establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports

Specifies the security features that the client is able to
support on IIOP/TLS connections.

HTTPS configuration
You can set this policy for HTTPS connections through the
following configuration variables:
policies:https:client_secure_invocation_policy:requires

Specifies the minimum security features that the client
requires to establish a HTTPS connection.

policies:https:client_secure_invocation_policy:supports

Specifies the security features that the client is able to
support on HTTPS connections.

Association options
In both cases, you provide the details of the security levels in the
form of AssociationOption flags—see “Association Options” on
page 245 and “Association Options” on page 451.

Default value
The default value for the client secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget
Orbix Security Guide 247

Example
In the default configuration file, the demos.tls.bank_client scope
specifies the following association options:

Choosing Target Behavior

Target secure invocation policy
The Security::SecTargetSecureInvocation policy type operates in a
similar way to the Security::SecClientSecureInvocation policy
type. It determines how a target handles security issues.

IIOP/TLS configuration
You can set the target secure invocation policy for IIOP/TLS
connections through the following configuration variables:
policies:iiop_tls:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets
require, before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to
support on IIOP/TLS connections.

HTTPS configuration
You can set the target secure invocation policy for HTTPS
connections through the following configuration variables:
policies:https:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets
require, before they accept a HTTPS connection.

policies:https:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to
support on HTTPS connections.

Orbix Configuration File
In ’demos.tls’ scope
 bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 };
 ...
};
 248 Orbix Security Guide

Association options
In both cases, you can provide the details of the security levels in
the form of AssociationOption flags—see “Association Options” on
page 245 and Appendix 1 on page 451.

Default value
The default value for the target secure invocation policy is:

Example
In the default configuration file, the demos.tls.bank_server scope
specifies the following association options:

Hints for Setting Association Options
This section gives an overview of how association options can be
used in real applications.

Use the sample scopes
The quickest way to configure a secure SSL/TLS application is by
basing the configuration on one of the sample demos.tls scopes in
the DomainName.cfg configuration file. In demos.tls, there are
sample scopes that match all of the common use cases for
SSL/TLS configuration.
For more details, see “Configuration samples” on page 45.

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering

Orbix Configuration File
In ’demos.tls’ scope
 ...
 bank_server {
 ...
 policies:iiop_tls:target_secure_invocation_policy:requires =
 ["Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 ...
 };
 ...
Orbix Security Guide 249

Rules of thumb
The following rules of thumb should be kept in mind:
• If an association option is required by a particular invocation

policy, it must also be supported by that invocation policy. It
makes no sense to require an association option without
supporting it.

• It is important to be aware that the secure invocation policies
and the security mechanism policy mutually interact with each
other. That is, the association options effective for a particular
secure association depend on the available cipher suites (see
“Constraints Imposed on Cipher Suites” on page 258).

• The NoProtection option must appear alone in a list of required
options. It does not make sense to require other security
options in addition to NoProtection.

Types of association option
Association options can be categorized into the following different
types, as shown in Table 16.

EstablishTrustInTarget and
EstablishTrustInClient
These association options are used as follows:
• EstablishTrustInTarget—determines whether a server sends

its own X.509 certificate to a client during the SSL/TLS
handshake. In practice, secure Orbix applications must enable
EstablishTrustInTarget, because all of the cipher suites
supported by Orbix require it.
The EstablishTrustInTarget association option should appear
in all of the configuration variables shown in the relevant row
of Table 17.

• EstablishTrustInClient—determines whether a client sends its
own X.509 certificate to a server during the SSL/TLS
handshake. The EstablishTrustInClient feature is optional and
various combinations of settings are possible involving this
assocation option.

Table 16: Description of Different Types of Association Option

Description Relevant Association
Options

Request or require TLS
peer authentication.

EstablishTrustInTarget and
EstablishTrustInClient.

Quality of protection. Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.
 250 Orbix Security Guide

The EstablishTrustInClient association option can appear in
any of the configuration variables shown in the relevant row of
Table 17.

Confidentiality, Integrity, DetectReplay,
and DetectMisordering
These association options can be considered together, because
normally you would require either all or none of these options.
Most of the cipher suites supported by Orbix support all of these
association options, although there are a couple of integrity-only
ciphers that do not support Confidentiality (see Table 21 on
page 258). As a rule of thumb, if you want security you generally
would want all of these association options.

Table 17: Setting EstablishTrustInTarget and EstablishTrustInClient Association
Options

Association Option Client side—can appear in... Server side—can appear
in...

EstablishTrustInTarget policies:client_secure_invocation
_policy:supports
policies:client_secure_invocation
_policy:requires

policies:target_secure_inv
ocation_policy:supports

EstablishTrustInClient policies:client_secure_invocation
_policy:supports

policies:target_secure_inv
ocation_policy:supports
policies:target_secure_inv
ocation_policy:requires

Note: The SSL/TLS client authentication step can also be
affected by the
policies:allow_unauthenticated_clients_policy
configuration variable. See “policies” on page 405.

Table 18: Setting Quality of Protection Association Options

Association Options Client side—can appear in... Server side—can appear
in...

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering

policies:client_secure_invocation
_policy:supports
policies:client_secure_invocation
_policy:requires

policies:target_secure_inv
ocation_policy:supports
policies:target_secure_inv
ocation_policy:requires
Orbix Security Guide 251

A typical secure application would list all of these association
options in all of the configuration variables shown in Table 18.

NoProtection
The NoProtection association option is used for two distinct
purposes:
• Disabling security selectively—security is disabled, either in

the client role or in the server role, if NoProtection appears as
the sole required association option and as the sole supported
association option in a secure invocation policy. This
mechanism is selective in the sense that the client role and
the server role can be independently configured as either
secure or insecure.

• Making an application semi-secure—an application is
semi-secure, either in the client role or in the server role, if
NoProtection appears as the sole required association option
and as a supported association option along with other secure
association options. The meaning of semi-secure in this
context is, as follows:
♦ Semi-secure client—the client will open either a secure or

an insecure connection, depending on the disposition of
the server (that is, depending on whether the server
accepts only secure connections or only insecure
connections). If the server is semi-secure, the type of
connection opened depends on the order of the bindings
in the binding:client_binding_list.

♦ Semi-secure server—the server accepts connections
either from a secure or an insecure client.

Note: Some of the sample configurations appearing in the
generated configuration file require Confidentiality, but
not the other qualities of protection. In practice, however,
the list of required association options is implicitly
extended to include the other qualities of protection,
because the cipher suites that support Confidentiality also
support the other qualities of protection. This is an
example of where the security mechanism policy interacts
with the secure invocation policies.

Note: In this case, the orb_plugins configuration
variable should include the iiop plug-in to enable
insecure communication.

Note: In this case, the orb_plugins configuration
variable should include both the iiop_tls plug-in and
the iiop plug-in.
 252 Orbix Security Guide

Table 19 shows the configuration variables in which the
NoProtection association option can appear.

References
For more information about setting association options, see the
following:
• “Securing Communications with SSL/TLS” on page 44.
• The demos.tls scope in a generated Orbix configuration file.

Specifying Cipher Suites
This section explains how to specify the list of cipher suites that
are made available to an application (client or server) for the
purpose of establishing secure associations. During a security
handshake, the client chooses a cipher suite that matches one of
the cipher suites available to the server. The cipher suite then
determines the security algorithms that are used for the secure
association.

Supported Cipher Suites

Orbix cipher suites
The following cipher suites are supported by Orbix:
• Null encryption, integrity-only ciphers:

RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH_3DES_EDE_CBC_SHA

Security algorithms
Each cipher suite specifies a set of three security algorithms,
which are used at various stages during the lifetime of a secure
association:

Table 19: Setting the NoProtection Association Option

Association
Option

Client side—can appear in... Server side—can appear in...

NoProtection policies:client_secure_invocation
_policy:supports
policies:client_secure_invocation
_policy:requires

policies:target_secure_invocation_
policy:supports
policies:target_secure_invocation_
policy:requires
Orbix Security Guide 253

• Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key
for subsequent communication. Must be a public key
algorithm.

• Encryption algorithm—used for the encryption of messages after
the secure association has been established. Must be a
symmetric (private key) encryption algorithm.

• Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

Key exchange algorithms
The following key exchange algorithms are supported by Orbix:

Encryption algorithms
The following encryption algorithms are supported by Orbix:

Secure hash algorithms
The following secure hash algorithms are supported by Orbix:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key
size.

RSA_EXPORT RSA public key encryption using X.509v3
certificates. Key size restricted to 512 bits.

RC4_40 A symmetric encryption algorithm developed by
RSA data security. Key size restricted to 40 bits.

RC4_128 RC4 with a 128-bit key.
DES40_CBC Data encryption standard (DES) symmetric

encryption. Key size restricted to 40 bits.
DES_CBC DES with a 56-bit key.
3DES_EDE_CBC Triple DES (encrypt, decrypt, encrypt) with an

effective key size of 168 bits.

MD5 Message Digest 5 (MD5) hash algorithm. This
algorithm produces a 128-bit digest.

SHA Secure hash algorithm (SHA). This algorithm
produces a 160-bit digest, but is somewhat slower
than MD5.
 254 Orbix Security Guide

Cipher suite definitions
The Orbix cipher suites are defined as follows:

For further details about cipher suites in the context of TLS, see
RFC 2246 from the Internet Engineering Task Force (IETF). This
document is available from the IETF Web site: http://www.ietf.org.

Setting the Mechanism Policy

Mechanism policy
To specify cipher suites, use the mechanism policy. The mechanism
policy is a client and server side security policy that determines
• Whether SSL or TLS is used, and
• Which specific cipher suites are to be used.

The protocol_version configuration
variable
You can specify whether SSL, TLS or both are used with a
transport protocol by assigning a list of protocol versions to the
policies:iiop_tls:mechanism_policy:protocol_version
configuration variable for IIOP/TLS and the
policies:https:mechanism_policy:protocol_version configuration
variable for HTTPS. For example:

You can set the protocol_version configuration variable to include
one or more of the following protocols:

Table 20: Cipher Suite Definitions

Cipher Suite Key
Exchange
Algorithm

Encryption
Algorithm

Secure
Hash

Algorithm

Exportable

RSA_WITH_NULL_MD5 RSA NULL MD5 yes

RSA_WITH_NULL_SHA RSA NULL SHA yes

RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5 yes

RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5 no

RSA_WITH_RC4_128_SHA RSA RC4_128 SHA no

RSA_EXPORT_WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes

RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA no

RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA no

Orbix Configuration File
policies:iiop_tls:mechanism_policy:protocol_version =

["TLS_V1", "SSL_V3"];
Orbix Security Guide 255

http://www.ietf.org

TLS_V1
SSL_V3

The order of the entries in the protocol_version list is unimportant.
During the SSL/TLS handshake, the highest common protocol will
be negotiated.

Interoperating with CORBA applications
on OS/390
There are some implementations of SSL/TLS on the OS/390
platform that erroneously send SSL V2 client hellos at the start of
an SSL V3 or TLS V1 handshake. If you need to interoperate with
a CORBA application running on OS/390, you can configure Artix
to accept SSL V2 client hellos using the
policies:iiop_tls:mechanism_policy:accept_v2_hellos
configuration variable for IIOP/TLS. For example:

The default is false.

Interoperating with Orbix versions 3.3.6
and earlier
The default configuration of the mechanism policy protocol
version—that is, support for both SSLv3 and the TLSv1—is not
compatible with Orbix versions 3.3.6 and earlier. To work around
this interoperability problem, you should edit the
policies:iiop_tls:mechanism_policy:protocol_version
configuration setting for IIOP/TLS, such that only the SSL_V3
protocol appears in the protocol version list. For example:

This interoperability problem arises because of a bug in the older
SSLeay security toolkits on which Orbix versions 3.3.6 and earlier
are based. The older SSLeay toolkits support only the SSLv3
protocol, which in itself is not a problem, because an SSL toolkit
always negotiates the protocol version during the SSL handshake.
A problem does arise, however, because the early SSLeay kits
implement the protocol negotiation phase incorrectly. The only
solution to this problem is to restrict the protocol version list to
SSLv3 in Orbix 6.2.

Orbix Configuration File
policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

Orbix Configuration File
policies:iiop_tls:mechanism_policy:protocol_version =

["SSL_V3"];

Note: The implementation of SSL protocol negotiation in
Orbix 6.2 SP1 is compliant with the SSL/TLS standards. As
long as Orbix 6.2 SP1 is communicating with other
SSL/TLS-compliant applications, you should not encounter
interoperability problems of this kind.
 256 Orbix Security Guide

The cipher suites configuration variable
You can specify the cipher suites available to a transport protocol
by setting the policies:iiop_tls:mechanism_policy:ciphersuites
configuration variable for IIOP/TLS and the
policies:https:mechanism_policy:ciphersuites configuration
variable for HTTPS. For example:

Cipher suite order
The order of the entries in the mechanism policy’s cipher suites list
is important.
During a security handshake, the client sends a list of acceptable
cipher suites to the server. The server then chooses the first of
these cipher suites that it finds acceptable. The secure association
is, therefore, more likely to use those cipher suites that are near
the beginning of the ciphersuites list.

Valid cipher suites
You can specify any of the following cipher suites:
• Null encryption, integrity only ciphers:

RSA_WITH_NULL_MD5,
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5,
RSA_WITH_RC4_128_MD5,
RSA_WITH_RC4_128_SHA,
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA,
RSA_WITH_3DES_EDE_CBC_SHA

Default values
If no cipher suites are specified through configuration or
application code, the following apply:
RSA_WITH_RC4_128_SHA,
RSA_WITH_RC4_128_MD5,
RSA_WITH_3DES_EDE_CBC_SHA,
RSA_WITH_DES_CBC_SHA

Orbix Configuration File
policies:iiop_tls:mechanism_policy:ciphersuites =
 ["RSA_EXPORT_WITH_RC4_40_MD5",
 "RSA_WITH_RC4_128_MD5"];
Orbix Security Guide 257

Constraints Imposed on Cipher Suites

Effective cipher suites
Figure 54 shows that cipher suites initially specified in the
configuration are not necessarily made available to the
application. Orbix checks each cipher suite for compatibility with
the specified association options and, if necessary, reduces the
size of the list to produce a list of effective cipher suites.

Required and supported association
options
For example, in the context of the IIOP/TLS protocol the list of
cipher suites is affected by the following configuration options:
• Required association options—as listed in

policies:iiop_tls:client_secure_invocation_policy:requires
on the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires
on the server side.

• Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports
on the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports
on the server side.

Cipher suite compatibility table
Use Table 21 to determine whether or not a particular cipher suite
is compatible with your association options.

Figure 54: Constraining the List of Cipher Suites

Table 21: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA_WITH_NULL_MD5 Integrity, DetectReplay, DetectMisordering

RSA_WITH_NULL_SHA Integrity, DetectReplay, DetectMisordering
 258 Orbix Security Guide

Determining compatibility
The following algorithm is applied to the initial list of cipher suites:
1. For the purposes of the algorithm, ignore the

EstablishTrustInClient and EstablishTrustInTarget association
options. These options have no effect on the list of cipher
suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 21) do not satisfy the
configured required association options.

3. From the remaining list, remove any cipher suite that
supports an option (see Table 21) not included in the
configured supported association options.

No suitable cipher suites available
If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an
exception will be raised. Logging also provides more details on
what went wrong.

Example
For example, specifying a cipher suite such as
RSA_WITH_RC4_128_MD5 that supports Confidentiality, Integrity,
DetectReplay, DetectMisordering, EstablishTrustInTarget (and
optionally EstablishTrustInClient) but specifying a
secure_invocation_policy that supports only a subset of those
features results in that cipher suite being ignored.

RSA_EXPORT_WITH_RC4_40_MD5 Integrity, DetectReplay, DetectMisordering,
Confidentiality

RSA_WITH_RC4_128_MD5 Integrity, DetectReplay, DetectMisordering,
Confidentiality

RSA_WITH_RC4_128_SHA Integrity, DetectReplay, DetectMisordering,
Confidentiality

RSA_EXPORT_WITH_DES40_CBC_SHA Integrity, DetectReplay, DetectMisordering,
Confidentiality

RSA_WITH_DES_CBC_SHA Integrity, DetectReplay, DetectMisordering,
Confidentiality

RSA_WITH_3DES_EDE_CBC_SHA Integrity, DetectReplay, DetectMisordering,
Confidentiality

Table 21: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options
Orbix Security Guide 259

Caching TLS Sessions

Session caching policy
You can use the IT_TLS_API::SessionCachingPolicy to control TLS
session caching and reuse for both the client side and the server
side.

Configuration variable
You can set the IT_TLS_API::SessionCachingPolicy with the
policies:iiop_tls:session_caching_policy or
policies:https:session_caching_policy configuration variables. For
example:
policies:iiop_tls:session_caching_policy = "CACHE_CLIENT";

Valid values
You can apply the following values to the session caching policy:
CACHE_NONE,
CACHE_CLIENT,
CACHE_SERVER,
CACHE_SERVER_AND_CLIENT

Default value
The default value is CACHE_NONE.

Configuration variable
plugins:atli_tls_tcp:session_cache_validity_period

This allows control over the period of time that SSL/TLS
session caches are valid for.

Valid values
session_cache_validity_period is specified in seconds.

Default value
The default value is 1 day.

Configuration variable
plugins:atli_tls_tcp:session_cache_size

session_cache_size is the maximum number of SSL/TLS sessions
that are cached before sessions are flushed from the cache.

Default value
This defaults to no limit specified for C++.
This defaults to 100 for Java.
 260 Orbix Security Guide

Configuring SSL/TLS
Authentication
This chapter describes how to configure the authentication requirements
for your application.

Requiring Authentication
This section discusses how to specify whether a target object must
authenticate itself to a client and whether the client must
authenticate itself to the target. For a given client-server link, the
authentication requirements are governed by the following
policies:
• Client secure invocation policy.
• Target secure invocation policy.
• Mechanism policy.
These policies are explained in detail in “Configuring SSL/TLS
Secure Associations” on page 243. This section focuses only on
those aspects of the policies that affect authentication.

Target Authentication Only
When an application is configured for target authentication only,
the target authenticates itself to the client but the client is not
authentic to the target object—see Figure 55.

Security handshake
Prior to running the application, the client and server should be set
up as follows:

Figure 55: Target Authentication Only
 Orbix Security Guide 261

• A certificate chain is associated with the server—the certificate
chain is provided in the form of a PKCS#12 file. See
“Specifying an Application’s Own Certificate” on page 268.

• One or more lists of trusted certification authorities (CA) are
made available to the client—see “Providing a List of Trusted
Certificate Authorities” on page 225.

During the security handshake, the server sends its certificate
chain to the client—see Figure 55. The client then searches its
trusted CA lists to find a CA certificate that matches one of the CA
certificates in the server’s certificate chain.

Client configuration
For target authentication only, the client policies should be
configured as follows:
• Client secure invocation policy—must be configured both to

require and support the EstablishTrustInTarget association
option.

• Mechanism policy—at least one of the specified cipher suites
must be capable of supporting target authentication. All of the
cipher suites currently provided by Orbix E2A support target
authentication.

Server configuration
For target authentication only, the target policies should be
configured as follows:
• Target secure invocation policy—must be configured to

support the EstablishTrustInTarget association option.
• Mechanism policy—at least one of the specified cipher suites

must be capable of supporting target authentication. All of the
cipher suites currently provided by Orbix E2A support target
authentication.
 262 Orbix Security Guide

Example of target authentication only
The following sample extract from an Orbix E2A configuration file
shows a configuration for a CORBA client application, bank_client,
and a CORBA server application, bank_server, in the case of target
authentication only.

Orbix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
 policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
Orbix Security Guide 263

Target and Client Authentication
When an application is configured for target and client
authentication, the target authenticates itself to the client and the
client authenticates itself to the target. This scenario is illustrated
in Figure 56. In this case, the server and the client each require an
X.509 certificate for the security handshake.

Security handshake
Prior to running the application, the client and server should be set
up as follows:
• Both client and server have an associated certificate chain

(PKCS#12 file)—see “Specifying an Application’s Own
Certificate” on page 268.

• Both client and server are configured with lists of trusted
certification authorities (CA)—see “Providing a List of Trusted
Certificate Authorities” on page 225.

During the security handshake, the server sends its certificate
chain to the client, and the client sends its certificate chain to the
server—see Figure 55.

Figure 56: Target and Client Authentication
 264 Orbix Security Guide

Client configuration
For target and client authentication, the client policies should be
configured as follows:
• Client secure invocation policy—must be configured both to

require and support the EstablishTrustInTarget association
option. The client also must support the
EstablishTrustInClient association option.

• Mechanism policy—at least one of the specified cipher suites
must be capable of supporting target authentication.

Server configuration
For target and client authentication, the target policies should be
configured as follows:
• Target secure invocation policy—must be configured to

support the EstablishTrustInTarget association option. The
target must also require and support the
EstablishTrustInClient association option.

• Mechanism policy—at least one of the specified cipher suites
must be capable of supporting target and client
authentication.
Orbix Security Guide 265

Example of target and client
authentication
The following sample extract from an Orbix E2A configuration file
shows a configuration for a client application,
secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, in the case of target and client
authentication.

Specifying Trusted CA Certificates
When an application receives an X.509 certificate during an
SSL/TLS handshake, the application decides whether or not to
trust the received certificate by checking whether the issuer CA is
one of a pre-defined set of trusted CA certificates. If the received
X.509 certificate is validly signed by one of the application’s
trusted CA certificates, the certificate is deemed trustworthy;
otherwise, it is rejected.

Orbix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};

secure_client_with_cert
{
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
};
 266 Orbix Security Guide

Which applications need to specify
trusted CA certificates?
Any application that is likely to receive an X.509 certificate as part
of an SSL/TLS or HTTPS handshake must specify a list of trusted
CA certificates. For example, this includes the following types of
application:
• All IIOP/TLS or HTTPS clients.
• Any IIOP/TLS or HTTPS servers that support mutual

authentication.

Deploying trusted CA certificates
You can use one of the following approaches to deploying trusted
CA certificates, depending on which SSL/TLS toolkit your
application uses:
• OpenSSL toolkit (all C++ platforms), JSSE/JCE (Java

platform)—use the Trusted CA list policy.
• Schannel toolkit (Windows C++ applications only)—use the

Schannel certificate store.

Trusted CA list policy
The trusted CA list policy specifies a list of files, each of which
contains a concatenated list of CA certificates in PEM format. You
can configure this policy by setting one of the following
configuration variables in your application’s configuration scope:
• policies:iiop_tls:trusted_ca_list_policy, for IIOP/TLS, and
• policies:https:trusted_ca_list_policy, for HTTPS.

Schannel certificate store
If you have configured your application to use the Schannel
SSL/TLS toolkit (Windows C++ applications only), you would
deploy trusted CA certificates by adding them to the Schannel
certificate store, which is an integral part of the Windows
operating system.

More details
For more details about deploying trusted CA certificates, see one
of the following references:
• OpenSSL toolkit, JSSE/JCE toolkit—“Providing a List of Trusted

Certificate Authorities” on page 225.
• Schannel toolkit—“Deploying Trusted Certificate Authorities”

on page 237.
Orbix Security Guide 267

Specifying an Application’s Own Certificate
To enable an Orbix application to identify itself, it must be
associated with an X.509 certificate. The X.509 certificate is
needed during an SSL/TLS handshake, where it is used to
authenticate the application to its peers. The method you use to
specify the certificate depends on the type of application:
• Security unaware—configuration only,
• Security aware—configuration or programming.
This section describes how to specify a certificate by configuration
only. For details of the programming approach, see
“Authentication” on page 335.

PKCS#12 files
In practice, the TLS protocol needs more than just an X.509
certificate to support application authentication. Orbix therefore
stores X.509 certificates in a PKCS#12 file, which contains the
following elements:
• The application certificate, in X.509 format.
• One or more certificate authority (CA) certificates, which

vouch for the authenticity of the application certificate (see
also “Certification Authorities” on page 212).

• The application certificate’s private key (encrypted).
In addition to the encryption of the private key within the
certificate, the whole PKCS#12 certificate is also stored in
encrypted form.

Note: The same pass phrase is used both for the
encryption of the private key within the PKCS#12 file and
for the encryption of the PKCS#12 file overall. This
condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web
browsers and by Orbix.
 268 Orbix Security Guide

Figure 57 shows the typical elements in a PKCS#12 file.

PKCS#11 and smart cards
Orbix supports the use of smart cards for storing credentials.
Orbix accesses the smart card through a standard PKCS#11
interface (you will need a third-party toolkit for this).
Smart card storage is arranged as a series of slots. To use the
smart card with Orbix, slot 0 should be initialized to contain an
X.509 certificate chain and a public/private key pair. The user
gains access to the data in the smart card by supplying a slot
number and a PIN.

Schannel certificate store
(Windows C++ applications only) If you have configured your
application to use the Schannel toolkit, the applications own
certificate will be stored in the Schannel certificate store, which is an
integral part of the Windows operation system. For details of how
to manage the certificate store, see “Schannel Certificate Store”
on page 234.

SSL/TLS principal sponsor
The SSL/TLS principal sponsor is a piece of code embedded in the
security plug-in that obtains SSL/TLS authentication information
for an application. It is configured by setting variables in the Orbix
configuration.

Figure 57: Elements in a PKCS#12 File
Orbix Security Guide 269

Single or multiple certificates
The SSL/TLS principal sponsor is limited to specifying a single
certificate for each ORB scope. This is sufficient for most
applications.
Specifying multiple certificates for a single ORB can only be
achieved by programming (see “Authentication” on page 335). If
an application is programmed to own multiple certificates, that
application ought to be accompanied by documentation that
explains how to specify the certificates.

Principal sponsor configuration
To use a principal sponsor, you must set the principal_sponsor
configuration variables:
1. Set the variable principal_sponsor:use_principal_sponsor to

true.
2. Provide values for the principal_sponsor:auth_method_id and

principal_sponsor:auth_method_data variables.

Sample PKCS #12 configuration
For example, to use a certificate, DemoCerts/demo_cert_ie5.p12, that
has its password in the DemoCerts/demo_cert_ie5.pwf file:
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcs12_file";
principal_sponsor:auth_method_data =

["filename=DemoCerts/demo_cert_ie5.p12",
"password_file=DemoCerts/demo_cert_ie5.pwf"];

Details of these configuration variables can be found in
“principal_sponsor Namespace” on page 507.

Sample PKCS #11 configuration
(Java only.) For example, to use a smart card from the provider
dkck132.dll with credentials in slot 0:
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcs11";
principal_sponsor:auth_method_data = ["provider=dkck132.dll",

"slot=0"];

Details of these configuration variables can be found in
“principal_sponsor Namespace” on page 507.

Sample Schannel configuration
(Windows C++ applications only) If you have configured your
application to use the Schannel toolkit, you should set the
principal sponsor as follows:
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "security_label";
principal_sponsor:auth_method_data = ["label=CommonName"];
 270 Orbix Security Guide

Where CommonName is the common name (CN) from the certificate’s
subject DN (see “ASN.1 and Distinguished Names” on page 447).

Credentials sharing
Normally, when you specify an own credential using the SSL/TLS
principal sponsor, the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own credentials created by one ORB are
automatically made available to any other ORBs that are
configured to share credentials.

Providing a Pass Phrase or PIN
When you specify an application’s own certificate, in the form of a
certificate file or smart card, you must also provide authorization
data that decrypts the certificate’s private key, as follows:
• PKCS#12 certificate file—provide a pass phrase,
• PKCS#11 or Schannel smart card—provide a PIN.

Providing a Certificate Pass Phrase
Once you have specified a PKCS#12 certificate, you must also
provide its pass phrase. The pass phrase is needed to decrypt the
certificate’s private key (which is used during the TLS security
handshake to prove the certificate’s authenticity).
The pass phrase can be provided in one of the following ways:
• From a dialog prompt.
• From the KDM server.
• In a password file.
• Directly in configuration.
• By programming.

From a dialog prompt
If the pass phrase is not specified in any other way, Orbix will
prompt the user for the pass phrase as the application starts up.
This approach is suitable for persistent (that is,
manually-launched) servers.

C++ Applications
When a C++ application starts up, the user is prompted for the
pass phrase at the command line as follows:
Initializing the ORB
Enter password :
Orbix Security Guide 271

Java Applications Using PKCS #12
If the Java application uses a PKCS #12 file to store its certificate,
the following dialog window pops up to prompt the user for the
pass phrase:

The Java dialog window can also be customized by programming.
See “principal_sponsor Namespace” on page 507.

From the KDM server
The pass phrase can be obtained automatically from the KDM
server as the application starts up. This mechanism is suitable for
automatically launched servers. See “Automatic Activation of
Secure Servers” on page 281 for details.

In a password file
The pass phrase is stored in a password file whose location is
specified in the principal_sponsor:auth_method_data configuration
variable using the password_file option. For example, the
iona_services scope configures the principal sponsor as follows:

Figure 58: Java Dialog Window for Certificate Pass Phrase

Orbix Configuration File
iona_services {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\services\
administrator.p12",
"password_file=ASPInstallDir\asp\6.0\etc\tls\x509\certs\
services\administrator.pwf"];

 ...
};
 272 Orbix Security Guide

In this example, the pass phrase for the bank_server.p12 certificate
is stored in the administrator.pwd file, which contains the following
pass phrase:
administratorpass

Directly in configuration
For a PKCS #12 file, the pass phrase can be specified directly in
the principal_sponsor:auth_method_data configuration variable
using the password option. For example, the bank_server
demonstration configures the principal sponsor as follows:

In this example, the pass phrase for the bank_server.p12 certificate
is bankserverpass.

By programming
A CORBA application developer can specify X.509 certificate
credentials by programming—see “Creating SSL/TLS Credentials”
on page 337.
In this case, an administrator should ensure that the SSL/TLS
principal sponsor is disabled for the application. Either the
principal_sponsor:use_principal_sponsor variable can to be set to
false, or the SSL/TLS principal sponsor variables can be removed
from the application’s configuration.

WARNING:Because the password file stores the pass
phrase in plain text, the password file should not be
readable by anyone except the administrator. For greater
security, you could supply the pass phrase from a dialog
prompt instead.

Orbix Configuration File
bank_server {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos
\bank_server.p12", "password=bankserverpass"];

};

WARNING:Storing the pass phrase directly in
configuration is not recommended for deployed systems.
The pass phrase is in plain text and could be read by
anyone.
Orbix Security Guide 273

The best approach is to set the
principal_sponsor:use_principal_sponsor variable to false in the
application’s configuration scope. For example:

This ensures that the principal sponsor cannot be enabled
accidentally by picking up configuration variables from the outer
configuration scope.

Providing a Smart Card PIN
If you are using a smart card (PKCS #11 or Schannel), you must
provide a PIN when the application starts up to gain access to the
smart card.
The PIN can be provided in one of the following ways:
• From a dialog prompt.
• Directly in configuration (PKCS#11 only).

From a dialog prompt
If the PIN is not specified in any other way, Orbix will prompt the
user for the PIN as the application starts up.

Java Applications Using PKCS #11 (Smart Card)
If the Java application uses a smart card to store its certificate,
the following dialog window pops up to prompt the user for the
provider name, slot number, and PIN:

Orbix configuration file
outer_config_scope {
 ...
 my_app_config_scope {
 principal_sponsor:use_principal_sponsor = "false";
 ...
 };
 ...
};

Figure 59: Java Dialog Window for Certificate PIN
 274 Orbix Security Guide

Windows C++ Application Using Schannel (Smart Card)
If your C++ application is configured to use Schannel in
combination with a smart card, the following dialog window pops
up to prompt the user for the smart card PIN:

Directly in configuration (PKCS#11 only)
The PKCS #11 authentication mechanism allows you to specify the
PIN directly in configuration.
The PIN can be specified directly in the
principal_sponsor:auth_method_data configuration variable using
the pin option. For example:

In this example, the PIN for slot 0 of the smart card is 1234.

Advanced Configuration Options
For added security, Orbix allows you to apply extra conditions on
certificates. Before reading this section you might find it helpful to
consult “Managing Certificates” on page 211, which provides some
background information on the structure of certificates.

Figure 60: Schannel Dialog Window for Certificate PIN

Orbix Configuration File
bank_server {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs11";
 principal_sponsor:auth_method_data = ["provider=dkck132.dll",

"slot=0", "pin=1234"];
};

WARNING:Storing the PIN directly in configuration is not
recommended for deployed systems. The PIN is in plain
text and could be read by anyone.
Orbix Security Guide 275

Setting a Maximum Certificate Chain Length

Max chain length policy
You can use the MaxChainLengthPolicy to enforce the maximum
length of certificate chains presented by a peer during
handshaking.
A certificate chain is made up of a root CA at the top, an
application certificate at the bottom and any number of CA
intermediaries in between. The length that this policy applies to is
the (inclusive) length of the chain from the application certificate
presented to the first signer in the chain that appears in the list of
trusted CA's (as specified in the TrustedCAListPolicy).

Example
For example, a chain length of 2 mandates that the certificate of
the immediate signer of the peer application certificate presented
must appear in the list of trusted CA certificates.

Configuration variable
You can specify the maximum length of certificate chains used in
MaxChainLengthPolicy with the
policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy configuration variables.
For example:
policies:iiop_tls:max_chain_length_policy = "4";

Default value
The default value is 2 (that is, the application certificate and its
signer, where the signer must appear in the list of trusted CA’s.

Applying Constraints to Certificates

Certificate constraints policy
You can use the CertConstraintsPolicy to apply constraints to peer
X.509 certificates by the default CertificateValidatorPolicy.
These conditions are applied to the owner’s distinguished name
(DN) on the first certificate (peer certificate) of the received
certificate chain. Distinguished names are made up of a number of
distinct fields, the most common being Organization Unit (OU) and
Common Name (CN).
 276 Orbix Security Guide

Configuration variable
You can specify a list of constraints to be used by
CertConstraintsPolicy through the
policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:
policies:iiop_tls:certificate_constraints_policy =

["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=E
arth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth
",

"CN=TheOmnipotentOne"];

Constraint language
These are the special characters and their meanings in the
constraint list:

Example
This is an example list of constraints:
policies:iiop_tls:certificate_constraints_policy = [

"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",
"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

This constraint list specifies that a certificate is deemed acceptable
if and only if it satisfies one or more of the constraint patterns:
If

The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

 * Matches any text. For example:
an* matches ant and anger, but not aunt

[] Grouping symbols.
 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is
unit1 or IT_SSL, the certificate is
acceptable.

 =, != Signify equality and inequality
respectively.
Orbix Security Guide 277

The language is like a boolean OR, trying the constraints defined
in each line until the certificate satisfies one of the constraints.
Only if the certificate fails all constraints is the certificate deemed
invalid.
Note that this setting can be sensitive about white space used
within it. For example, "CN =" might not be recognized, where
"CN=" is recognized.

Distinguished names
For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 447.

Delaying Credential Gathering
Delayed credential gathering is a feature that enables a client to
send an X.509 certificate to a secure server at a later point in the
SSL/TLS handshake. The advantage of this handshake procedure
is that the server sends the client a list of trusted CA certificates.
Hence, the client can select a certificate at runtime which is
compatible with the server’s trusted CA certificates.

SSL/TLS handshake process
Delayed credential gathering occurs during the course of the
SSL/TLS handshake process as follows:

Note: Delayed credential gathering is currently only
supported in combination with the Schannel SSL/TLS
toolkit (Windows C++ applications only). See “Choosing an
SSL/TLS Toolkit” on page 203.

Stage Description

1 A client opens a new connection to a secure server and
initiates the SSL/TLS connection handshake.

2 The client does not initially send an X.509 certificate to
the server, although the client supports authentication
(that is, the EstablishTrustInClient association option is
supported on the client side, but the principal sponsor is
disabled).

3 At a later stage of the handshake, the server gives the
client a second chance to send an X.509 certificate. The
server explicitly requests a certificate from the client and
sends a list of all the CA certificates it is willing to trust.

4 At this point, if delayed credential gathering is enabled,
the client will select a certificate and send it on to the
server. Depending on the configuration, the certificate is
selected either by default or manually by the user.
If delayed credential gathering is not enabled,
connection establishment would fail at this point.
 278 Orbix Security Guide

Enabling delayed credential gathering
Delayed credential gathering is enabled by setting the following
variable to true in the relevant scope of your Orbix configuration:
plugins:iiop_tls:delay_credential_gathering_until_handshake

When the server requests a client certificate during the SSL/TLS
handshake, the certificate can be selected using one of the
following procedures:
• Prompting the user for credentials.
• Choosing credentials by default.

Prompting the user for credentials
To enable the user to choose a client certificate at SSL/TLS
handshake time, you should set the
plugins:schannel:prompt_with_credential_choice variable to true.
For example:

Choosing credentials by default
If the plugins:schannel:prompt_with_credential_choice variable is
set to false, the default behavior is for Orbix to choose the first
certificate it can find in the certificate store that meets the
applicable constraints. For example, you can enable a default
credential choice as follows

Example client configuration
Example 39 shows how to configure an SSL/TLS client to use
delayed credential gathering.

plugins:iiop_tls:delay_credential_gathering_until_handshake =
"true";

plugins:schannel:prompt_with_credential_choice = "true";

plugins:iiop_tls:delay_credential_gathering_until_handshake =
"true";

plugins:schannel:prompt_with_credential_choice = "false";

Example 39: Client Configuration with Delayed Credential Gathering

Orbix configuration file
...
SchannelClientApplication {

1 # Configuration to load Schannel toolkit (not shown)
 ...
 # SSL/TLS Configuration
 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
2 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
Orbix Security Guide 279

The preceding configuration example can be explained as follows:
1. A basic prerequisite for delayed credential gathering is that

your application is configured to use the Schannel toolkit (see
“Schannel Toolkit for C++” on page 204 for details).

2. The client must support the EstablishTrustInClient
association option.

3. The principal sponsor must be disabled when using the
delayed credential gathering feature; in addition you must
ensure that no certificate is associated with the client through
programming the principal authenticator.

4. The delay_credential_gathering_until_handshake variable is set
to true to enable delayed credential gathering.

5. In this example, the prompt_with_credential_choice variable is
set to true so that Schannel will prompt the user for
credentials at SSL/TLS handshake time. You could also set
this variable to false, if you want to let Orbix choose the
credentials by default.

 ...
 # Delaying credentials gaterhing

3 principal_sponsor:use_principal_sponsor = "false";
4 plugins:iiop_tls:delay_credential_gathering_until_handshake =

"true";
5 plugins:schannel:prompt_with_credential_choice = "true";

};

Example 39: Client Configuration with Delayed Credential Gathering
 280 Orbix Security Guide

Automatic Activation of
Secure Servers
Every server secured with Orbix has an associated certificate and private
key. To access its private key, and use it to encrypt messages, a server
must retrieve the associated pass phrase. This chapter shows you how to
use Orbix administration to supply pass phrases to servers.

Managing Server Pass Phrases
Every server secured with Orbix has an associated certificate and
private key. To access the private key, which is stored in
encrypted form, a pass phrase must be supplied to the server as it
starts up. The server is then able to identify itself to other
applications that require authentication.

Persistent activation
To activate a secure server persistently (manual start-up), the
server’s pass phrase must be supplied by the operator who is
starting the process. Typically, the operator types in the pass
phrase manually in response to a login prompt at the console.

Automatic activation
To activate a secure server automatically (in response to a client
request), the server’s pass phrase should be supplied
automatically because it would be impractical for the server to
wait for manual intervention. This is particularly true of high
availability environments. It is necessary, therefore, to have a
mechanism for automatic delivery of authentication data to a
server.

Key distribution management
Orbix provides the key distribution management (KDM) mechanism to
manage the authentication data required by servers. The KDM
manages the storage of authentication data and is responsible for
delivering the authentication data to automatically activated
servers.
 Orbix Security Guide 281

KDM architecture
Figure 61 shows the main components of the KDM architecture:

The KDM server
The main component of the KDM is the KDM server, which is
implemented as a plug-in and embedded in the locator service.
The main responsibility of the KDM server is to manage the secure
storage and retrieval of authentication data.

The key distribution repository
The key distribution repository (KDR) is the database that stores
authentication data for the KDM server.The KDR currently stores
the following information:
• Pass phrases—a pass phrase is stored in the form of an ORB

name/pass phrase association. Given an ORB name, the KDM
server can retrieve the associated pass phrase. Just one pass
phrase can be stored per ORB name.

• Checksums—a checksum is generated for a particular server
record in the IMR and stored in the form of a process
name/checksum association. Checksums are described in
“Protecting against Server Imposters” on page 283.

Role of the locator
When the locator receives a client request for an inactive server,
the role of the locator is to contact the KDM server (a plug-in to
the locator), retrieve the server’s authentication data and send
the authentication data on to the node daemon.

Figure 61: The KDM Architecture
 282 Orbix Security Guide

Role of the node daemon
When the node daemon receives an activation request from the
locator, the node daemon launches the corresponding server
process and passes the authentication data to the server as it
starts up.

Protecting against Server Imposters

Security threats
A server imposter is a rogue server executable that runs in place
of a legitimate server application.The KDM must ensure that
authentication data are not supplied to server imposters. The
following forms of attack must be guarded against:
• Replacing the server executable by an imposter.
• Replacing one or more Orbix plug-ins by imposters.
• Tampering with the IMR record to point at a rogue executable.

Protection measures
The following measures should be taken to protect against server
imposters:
• Place all server executables in a trusted directory (for

example, one secured by the operating system).
• Place all plug-in libraries in a trusted directory.
• Specify the list of trusted directories in the node daemon’s

secure_directories configuration variable.
• Use the KDM checksum facility to protect the IMR record from

tampering.

The secure_directories configuration
variable
The secure_directories configuration variable specifies a list of
trusted directories to the node daemon. For example, on the
Windows platform you could set it as follows:

Orbix E2A Configuration File
iona_services {
 ...
 node_daemon {
 secure_directories = ["c:\trusted_servers",
 "c:\trusted_apps"];
 ...
 };
};
Orbix Security Guide 283

If the node daemon’s secure_directories configuration variable is
set, only server executables stored in one of the listed directories
can be launched.

Checksums
The server’s IMR record contains details of where to find the
server executable and other server activation information. By
protecting the IMR record from tampering, you can ensure that
the KDM passes its authentication data only to a known server
executable.
After an administrator creates or modifies a server’s IMR record
the administrator generates an associated checksum for the IMR
record. The checksum is then stored in the KDR database, in the
form of a process name/checksum association.

How the KDM Activates a Secure Server
When the KDM mechanism is used, two different kinds of server
activation are supported, as follows:
• Insecure server activation—the server is activated using the

normal (insecure) activation mechanism. A server is implicitly
treated as insecure if no pass phrases are registered for the
server.

• Secure server activation—the server is activated using a
secure activation algorithm. The KDM supplies pass phrases to
the server and verifies the server’s checksum.

Activation process
Figure 62 outlines the steps for activating a secure server:

Figure 62: Automatic Activation of a Secure Server
 284 Orbix Security Guide

Description
The secure server shown in Figure 62 is activated using the KDM,
as follows:

Stage Description

1 A client makes a request on a server that is
currently inactive.
In Figure 62, the client request (a Request or
LocateRequest message) is sent to the locator. The
example assumes that the target object belongs
to an indirect persistent POA.

2 The locator requests the server’s checksum from
the KDM, which attempts to retrieve the
checksum from the KDR database.
If there is a checksum for the server, the
checksum for the server’s current IMR record is
calculated and compared with the retrieved
checksum. If the checksums do not match, the
locator reports an error.

3 The locator requests the server pass phrases from
the KDM, which retrieves the pass phrases from
the KDR database.
If there are pass phrases but no checksum for the
server, the locator reports an error (unless the
plugins:kdm:checksums_optional configuration
variable is set to false).
If there are no pass phrases registered for the
server, the locator reverts to the standard
procedure for activating an insecure server at this
point.

4 The locator sends an activation request and
authentication data to the node daemon.

5 The node daemon activates the server and passes
the authentication data to the server as it starts
up.
Orbix Security Guide 285

KDM Administration
An administrator uses an extended version of the itadmin utility to
manage the pass phrases and checksums stored in the KDR. In a
secure environment, the itadmin utility includes a KDM
administration plug-in, kdm_adm. Figure 63 shows how the itadmin
utility communicates with the KDM server.

Whenever the administrator invokes a KDM command (kdm_adm or
checksum) the itadmin client communicates directly with a secure IP
port on the KDM server (separate from the locator’s ports).

Logging In
Before invoking itadmin commands to manage the KDM, an
administrator must log on to the itadmin utility. To log on, enter
the following at a command prompt:
itadmin
% admin_logon login identity
Please enter password for identity identity:
%

After entering itadmin, subsequent commands are entered in
itadmin script mode (see Administrator’s Guide). The admin_logon
command logs the administrator on to the itadmin utility using the
X.509 certificate specified by identity. The identity certificate refers to
the PKCS#12 certificate, identity.p12, stored in the directory
specified by the itadmin_x509_cert_root configuration variable. The
administrator then enters the pass phrase to access the
certificate.
See the Administrator’s Guide for full details of the admin_logon
command syntax.

Figure 63: Using itadmin to Manage the KDM Server
 286 Orbix Security Guide

Commands
Two administration commands, kdm_adm and checksum, are provided
for the KDM. They are used within the itadmin scripting mode.
The kdm_adm command manages pass phrases stored in the KDR.
The command supports the following subcommands and options:

The checksum command manages server checksums stored in the
KDR. It supports the following subcommands and options:

See the Administrator’s Guide for detailed descriptions of these
commands. Examples of using these commands appear in
“Registering a Secure Server” on page 289.

Configuration
The KDM is configured by two sets of variables, as follows:

A complete list and descriptions of KDM configuration variables is
provided in “Security Configuration” on page 485.

Table 22: The kdm_adm Administration Command

Command Subcommand and Options

kdm_adm create -orbname name [-password pass_phrase]

confirm -orbname name

remove -orbname name

list [-count]

change_pw

Table 23: The checksum Administration Command

Command Subcommand and Options

checksum create -orbname name [-password pass_phrase]

confirm -orbname name

remove -orbname name

list [-count]

Table 24: Prefixes for KDM Configuration Variables

Prefix Description

plugins:kdm Variables with this prefix configure the KDM
server plug-in, which is embedded in the
locator service.

plugins:kdm_adm Variables with this prefix configure the KDM
administration plug-in, which is embedded in
the itadmin utility.
Orbix Security Guide 287

Setting Up the KDM

Setting up a secure domain
Use the itconfigure utility to create a secure domain that includes
the KDM. You must choose file-based configuration instead of the
configuration repository (CFR).

Using secure directories
When an administrator enables automatic activation of a secure
server, it becomes possible for remote clients to trigger activation
of the secure server. It is, therefore, essential to protect server
executables from being overwritten by storing them in a trusted
directory.
Create a directory, SecureServerDir, that is accessible only to
administrators and store your secure server executables in this
directory. Add the secure directory, SecureServerDir, to the node
daemon’s list of trusted directories. For example:

Defining certificate constraints
In a real deployment, you must define a set of certificate
constraints for the KDM. The following certificate constraints are
relevant to the KDM:
• plugins:kdm:cert_constraints—restricts access to the KDM

server, protecting it from unauthorized clients. See
“plugins:kdm:cert_constraints” on page 494 for details of how
to set this variable.

• plugins:kdm_adm:cert_constraints—protects the itadmin utility
from rogue applications that might attempt to impersonate
the KDM server. See “plugins:kdm_adm:cert_constraints” on
page 495 for details of how to set this variable.

Orbix E2A Configuration File
iona_services {
 ...
 node_daemon {
 secure_directories = ["SecureServerDir"];
 ...
 };
};
 288 Orbix Security Guide

Creating and installing administration
certificates
When you create a new set of X.509 certificates for use with
Orbix, you need to choose a naming pattern for your Distinguished
Names that is compatible with the KDM certificate constraints. In
particular, your certificates should satisfy the following conditions:
• The Orbix locator certificate (also used by the KDM server)

must satisfy the plugins:kdm_adm:cert_constraints certificate
constraints.

• Certificates with administrator privileges should satisfy the
plugins:kdm:cert_constraints certificate constraints.

• Other certificates must not satisfy the KDM certificate
constraints.

To deploy the administrator certificates (that is, the certificates
used by itadmin), create a secure directory AdminCerts, copy the
administrator certificates to this directory, and set the
itadmin_x509_cert_root configuration variable equal to AdminCerts.

Registering a Secure Server

Server registration steps
You must register the server with the locator daemon to enable it
to find the server when requested by a client. To register the
server with the locator, perform the following steps:
1. Enter itadmin. This starts the Orbix administration command

shell, and avoids typing itadmin before each command.
2. Register the server’s persistent POA name and ORB name with

the locator, using the following commands:
% orbname create demos.tls.secure_bank_extended_server
% poa create -replica demos.tls.secure_bank_extended_server

bank_server_persistent_poa

The first command creates an ORB name called
demos.tls.secure_bank_extended_server. The second creates a
POA name called bank_server_persistent_poa, and associates it
with demos.tls.secure_bank_extended_server ORB name, using
the -replica option. For more details about POA names and
ORB names, see the Administrator’s Guide.

3. Register the server process name with the locator.

C++ Server

To register a C++ process name, use the following command:

UNIX
% process create -node_daemon hostname/it_node_daemon -pathname
{install-dir/asp/6.0/demos/tls/secure_bank_extended/
 cxx_server/server} -args "--use_kdm /tmp/bank.ior"

secure_bank_extended_process

Windows
% process create -node_daemon hostname/it_node_daemon -pathname
{install-dir\asp\6.0\demos\tls\secure_bank_extended\
 cxx_server\server.exe} -args "--use_kdm C:\temp\bank.ior"

secure_bank_extended_process
Orbix Security Guide 289

Replace hostname with your machine’s DNS name, and replace
install-dir with the location of your Orbix installation (for
example, c:\iona). The -args parameter specifies
command-line arguments (for example, the file used to
publish the server object reference).

4. Register the server process name with the appropriate ORB
name (in this case, demos.tls.secure_bank_extended_server):
orbname modify -process secure_bank_extended_process

demos.tls.secure_bank_extended_server

5. From the itadmin command prompt, log on to the itadmin
utility:
% admin_logon login kdmadmin
Please enter password for identity kdmadmin:

This example uses the kdmadmin.p12 certificate which has the
password kdmadminpass.

6. Register the server’s pass phrase with the KDM:
% kdm_adm create -orbname demos.tls.secure_bank_extended_server
Please enter password for orb my_orb_name :

The secure_bank_extended_server demonstration uses the
bankserver.p12 certificate which has the password
bankserverpass.

7. Create and store a checksum for the server’s IMR record:
% checksum create -process secure_bank_extended_process

Running the server
After registering the bank server, you must run the bank server
once to initialize the bank.ior file containing a persistent object
reference. It is only necessary to run the server explicitly once.
Subsequently, the node daemon can activate the bank server
automatically in response to client requests.
 290 Orbix Security Guide

Part IV
CSIv2 Administration

In this part
This part contains the following chapters:

Introduction to CSIv2 page 293

Configuring CSIv2 Authentication over Transport
page 299

Configuring CSIv2 Identity Assertion page 313

 292 Orbix Security Guide

Introduction to CSIv2
CSIv2 is the OMG’s Common Secure Interoperability protocol v2.0,
which can provide the basis for application-level security in CORBA
applications. The Orbix Security Framework uses CSIv2 to transmit
usernames and passwords, and asserted identities between applications.

CSIv2 Features
This section gives a quick overview of the basic features provided
by CSIv2 application-level security. Fundamentally, CSIv2 is a
general, interoperable mechanism for propagating security data
between applications. Because CSIv2 is designed to complement
SSL/TLS security, CSIv2 focuses on providing security features
not covered by SSL/TLS.

Application-level security
CSIv2 is said to provide application-level security because, in contrast
to SSL/TLS, security data is transmitted above the transport layer
and the security data is sent after a connection has been
established.

Transmitting CSIv2-related security data
The CSIv2 specification defines a new GIOP service context type,
the security attribute service context, which is used to transmit
CSIv2-related security data. There are two important
specializations of GIOP:
• IIOP—the Internet inter-ORB protocol, which specialises GIOP

to the TCP/IP transport, is used to send CSIv2 data between
CORBA applications.

• RMI/IIOP—RMI over IIOP, which is an IIOP-compatible
version of Java’s Remote Method Invocation (RMI)
technology, is used to send CSIv2 data between EJB
applications and also for CORBA-to-EJB interoperability.

CSIv2 mechanisms
The following CSIv2 mechanisms are supported:
• CSIv2 authentication over transport mechanism.
• CSIv2 identity assertion mechanism.

CSIv2 authentication over transport
mechanism
The CSIv2 authentication over transport mechanism provides a
simple client authentication mechanism, based on a username and
a password. This mechanism propagates a username, password,
 Orbix Security Guide 293

and domain name to the server. The server then authenticates the
username and password before allowing the invocation to
proceed.

CSIv2 identity assertion mechanism
The CSIv2 identity assertion mechanism provides a way of
asserting the identity of a caller without performing
authentication. This mechanism is usually used to propagate a
caller identity that has already been authenticated at an earlier
point in the system.

Applicability of CSIv2
CSIv2 is applicable to both CORBA technology. CSIv2 can be used
by the following kinds of application:
• CORBA C++ applications.
• CORBA Java applications.

Basic CSIv2 Scenarios
The CSIv2 specification provides two independent mechanisms for
sending credentials over the transport (authentication over
transport, and identity assertion), but the CSIv2 specification does
not mandate how the transmitted credentials are used. Hence,
there are many different ways of using CSIv2 and different ways
to integrate it into a security framework (such as iSF).
This section describes some of the basic scenarios that illustrate
typical CSIv2 usage.

CSIv2 Authentication over Transport Scenario
Figure 64 shows a basic CSIv2 scenario where a CORBA client and
a CORBA server are configured to use the CSIv2 authentication
over transport mechanism.

Figure 64: Basic CSIv2 Authentication over Transport Scenario
 294 Orbix Security Guide

Scenario description
The scenario shown in Figure 64 can be described as follows:

More details
For more details about authentication over transport, see
“Configuring CSIv2 Authentication over Transport” on page 299.

CSIv2 Identity Assertion Scenario
Figure 65 shows a basic CSIv2 scenario where a client and an
intermediate server are configured to use the CSIv2
authentication over transport mechanism, and the intermediate
server and a target server are configured to use the CSIv2 identity
assertion mechanism. In this scenario, the client invokes on the
intermediate server, which then invokes on the target server.

Stage Description

1 The user enters a username, password, domain name on
the client side (user login).

2 When the client makes a remote invocation on the
server, CSIv2 transmits the username/password/domain
authentication data to the server in a security attribute
service context.

3 The server authenticates the received
username/password before allowing the invocation to
proceed.

Figure 65: Basic CSIv2 Identity Assertion Scenario
Orbix Security Guide 295

Scenario description
The second stage of the scenario shown in Figure 65 (intermediate
server invokes an operation on the target server) can be described
as follows:

More details
For more details about identity assertion, see “Configuring CSIv2
Identity Assertion” on page 313.

Integration with the Orbix Security Framework
This section presents an example of how CSIv2 works in the
context of the Orbix Security Framework. The purpose of the
example is to show the distinction between the purely CSIv2
functionality and the way in which CSIv2 is used in the Orbix
Security Framework. The example also provides a case study of
how to integrate the CSI plug-in within a wider security
framework.

CSIv2 authentication domain
In the context of the Orbix Security Framework, the CSIv2
authentication domain set by the user on the client side must
match the CSIv2 authentication domain set on the server side.

Stage Description

1 The intermediate server can set the identity that will be
asserted to the target in one of two ways:
• Implicitly—if the execution context has an

associated CSIv2 received credentials, the
intermediate server extracts the user identity from
the received credentials, or

• Explicitly—by programming.

2 When the intermediate server makes a remote
invocation on the target server, CSIv2 transmits the
user identity data to the server in a security attribute
service context.

3 The target server can access the propagated user
identity programmatically (by extracting it from a
SecurityLevel2::ReceivedCredentials object).
 296 Orbix Security Guide

Plug-ins used by the iSF
Within the iSF, a typical CORBA server would load the following
security plug-ins: IIOP/TLS, GSP, and CSI. The roles of the GSP
plug-in and the CSI plug-in in particular are important in the
context of the iSF, as follows:
• GSP plug-in,
• CSI plug-in.

GSP plug-in
The role of the GSP plug-in is to manage the interpretation of
authentication data and to perform authorization. The GSP plug-in
implements features specific to the Orbix Security Framework.

CSI plug-in
The role of the CSIv2 plug-in is to manage the propagation of
authentication data. It handles the protocol that delivers the data
and makes decisions such as whether to propagate authentication
data in further calls to other servers.

How CSIv2 integrates with iSF
Figure 66 shows how the CSIv2 and the GSP plug-ins behave in
the context of the iSF, for a server that is configured to use CSIv2
authentication over transport.

Figure 66: CSIv2 in the Orbix Security Framework
Orbix Security Guide 297

Description
The stages of a secure invocation using CSIv2 authentication over
transport, as shown in Figure 66, can be described as follows:

Stage Description

1 A secure operation invocation arrives at the server.
Initially, the invocation passes through the IIOP/TLS
plug-in, which is responsible for decrypting the incoming
message and performing other transport layer security
tasks.

2 The CSI plug-in extracts the
username/password/domain authentication data, which
identifies the calling user, from the incoming message’s
security attribute service context.

3 The CSI plug-in delegates authentication to the
IT_CSI::AuthenticateGSSUPCredentials callback object,
which is implemented in the GSP plug-in.

4 The AuthenticateGSSUPCredentials object further
delegates authentication to the central Orbix security
service.

5 If authentication with the Orbix security service is
successful, the GSP plug-in receives details of all the
roles and realms for the calling user. The roles and
realms are cached, to be used later during the
authorization step.
 298 Orbix Security Guide

Configuring CSIv2
Authentication over
Transport
This chapter explains the concepts underlying the CSIv2 authentication
over transport mechanism and provides details of how to configure a
client and a server to use this mechanism.

CSIv2 Authentication Scenario
This section describes a typical CSIv2 authentication scenario,
where the client is authenticated over the transport by providing a
username and a password.

Authentication over transport
The CSIv2 authentication over transport mechanism is a simple client
authentication mechanism based on a username and a password.
In a system with a large number of clients, it is significantly easier
to administer CSIv2 client authentication than it is to administer
SSL/TLS client authentication.
CSIv2 authentication is said to be over transport, because the
authentication step is performed at the General Inter-ORB
Protocol (GIOP) layer. Specifically, authentication data is inserted
into the service context of a GIOP request message. CSIv2
authentication, therefore, occurs after a connection has been
established (in contrast to SSL/TLS authentication).

GSSUP mechanism
The Generic Security Service Username/Password (GSSUP)
mechanism is the basic authentication mechanism supported by
CSIv2 at Level 0 conformance. Currently, this is the only
authentication mechanism supported by Orbix’s implementation of
CSIv2.

Dependency on SSL/TLS
Note, that CSIv2 authentication over transport cannot provide
adequate security on its own. The authentication over transport
mechanism relies on the transport layer security, that is SSL/TLS,
to provide the following additional security features:
• Server authentication.
• Privacy of communication.
• Message integrity.
 Orbix Security Guide 299

CSIv2 scenario
Figure 67 shows a typical scenario for CSIv2 authentication over
transport:

How CSIv2 authentication over transport
proceeds
As shown in Figure 67 on page 300, the authentication over
transport mechanism proceeds as follows:

Figure 67: CSIv2 Authentication Over Transport Scenario

Stage Description

1 When a client initiates an operation invocation on the
target, the client’s CSI plug-in inserts a client
authentication token (containing
username/password/domain) into the GIOP request
message.

2 The request, together with the client authentication
token, is sent over the SSL/TLS connection. The
SSL/TLS connection provides privacy and message
integrity, ensuring that the username and password
cannot be read by eavesdroppers.
 300 Orbix Security Guide

SSL/TLS connection
The client and server should both be configured to use a secure
SSL/TLS connection. In this scenario, the SSL/TLS connection is
configured for target authentication only.
See “SSL/TLS Prerequisites” on page 302 for details of the
SSL/TLS configuration for this scenario.

Client authentication token
A client authentication token contains the data that a client uses to
authenticate itself to a server through the CSIv2 authentication
over transport mechanism, as follows:
• Username—a UTF-8 character string, which is guaranteed not

to undergo conversion when it is sent over the wire.
• Password—a UTF-8 character string, which is guaranteed not

to undergo conversion when it is sent over the wire.
• Domain—a string that identifies the CSIv2 authentication

domain within which the user is authenticated.

The client authentication token is usually initialized by the CSIv2
principal sponsor (which prompts the user to enter the
username/password and domain). See “Providing a Username and
Password” on page 306.

Authentication service
The authentication service is an external service that checks the
username and password received from the client. If the
authentication succeeds, the request is allowed to proceed and an
invocation is made on the target object; if the authentication fails,
the request is automatically blocked and a CORBA::NO_PERMISSION
system exception is returned to the client.
See “Providing an Authentication Service” on page 305.

3 Before permitting the request to reach the target object,
the CSI server interceptor calls an application-supplied
object (the authentication service) to check the
username/password combination.

4 If the username/password combination are
authenticated successfully, the request is allowed to
reach the target object; otherwise the request is blocked
and an error returned to the client.

Stage Description

Note: The client’s domain should match the target
domain, which is specified by the
policies:csi:auth_over_transport:server_domain_name
configuration variable on the server side.
Orbix Security Guide 301

SSL/TLS Prerequisites
The SSL/TLS protocol is an essential complement to CSIv2
security. The CSIv2 authentication over transport mechanism
relies on SSL/TLS to provide the following additional security
features:
• Server authentication.
• Privacy of communication.
• Message integrity.

SSL/TLS target authentication only
For the scenario depicted in Figure 67 on page 300, the SSL/TLS
connection is configured for target authentication only. The
SSL/TLS configuration can be summarized as follows:
• Client-side SSL/TLS configuration—the client requires

confidentiality, message integrity, and the
EstablishTrustInTarget SSL/TLS association option. No X.509
certificate is provided on the client side, because the client is
not authenticated at the transport layer.

• Server-side SSL/TLS configuration—the server requires
confidentiality and message integrity, but the
EstablishTrustInClient SSL/TLS association option is not
required. An X.509 certificate is provided on the server side to
enable the client to authenticate the server.

Configuration samples
The SSL/TLS configuration of this CSIv2 scenario is based on the
following TLS demonstration configurations in your Orbix
configuration (DomainName.cfg file or CFR service):
• demos.tls.secure_client_with_no_cert
• demos.tls.secure_server_no_client_auth

SSL/TLS principal sponsor configuration
In this scenario, the SSL/TLS principal sponsor needs to be
enabled only on the server side, because it is only the server that
has an associated X.509 certificate.

WARNING:If you do not enable SSL/TLS for the
client-server connection, the GSSUP username and
password would be sent over the wire unencrypted and,
therefore, could be read by eavesdroppers.

Note: The SSL/TLS principal sponsor is completely
independent of the CSIv2 principal sponsor (see “CSIv2
principal sponsor” on page 306). It is possible, therefore,
to enable both of the principal sponsors within the same
application.
 302 Orbix Security Guide

References
See “Sample Configuration” on page 309 for a detailed example of
the client and server SSL/TLS configuration.
See “SSL/TLS Administration” on page 201 for complete details of
configuring and administering SSL/TLS.

Requiring CSIv2 Authentication
This section describes the minimal configuration needed to enable
CSIv2 authentication over transport. In a typical system,
however, you also need to configure SSL/TLS (see “SSL/TLS
Prerequisites” on page 302) and the CSIv2 principal sponsor (see
“Providing a Username and Password” on page 306).

Loading the CSI plug-in
To enable CSIv2 for a C++ or Java application, you must include
the csi plug-in in the orb_plugins list in your Orbix configuration.
The binding:client_binding_list and binding:server_binding_list
must also be initialized with the proper list of interceptor
combinations.
Sample settings for these configuration variables can be found in
the demos.tls.csiv2 configuration scope of your Orbix
configuration. For example, you can load the csi plug-in with the
following configuration:

Client configuration
A client can be configured to support CSIv2 authentication over
transport, as follows:

Orbix configuration file
csiv2 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
 ...
};

Orbix configuration file
policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];
Orbix Security Guide 303

Client CSIv2 association options
The EstablishTrustInClient option is a CSIv2 association option.
Including this option in the
policies:csi:auth_over_transport:client_supports list indicates
that the client supports the CSIv2 authentication over transport
mechanism.

Server configuration
A server can be configured to support CSIv2 authentication over
transport, as follows:

Server CSIv2 association options
Including the EstablishTrustInClient CSIv2 association option in
the policies:csi:auth_over_transport:target_supports list
indicates that the server supports the CSIv2 authentication over
transport mechanism.
Including the EstablishTrustInClient CSIv2 association option in
the policies:csi:auth_over_transport:target_requires list
indicates that the server requires clients to authenticate
themselves using the CSIv2 authentication over transport
mechanism. If the client fails to authenticate itself to the server
when the server requires it, the server throws a
CORBA::NO_PERMISSION system exception back to the client.

Server domain name
The server domain name is the name of a valid CSIv2
authentication domain. A CSIv2 authentication domain is an
administrative unit within which a username/password
combination is authenticated.
A CSIv2 client will check that the domain name in its CSIv2
credentials is the same as the domain name set on the server side
by the policies:csi:auth_over_transport:server_domain_name
configuration variable. If the domain in the client credentials is an
empty string, however, the domain always matches (the empty
string is treated as a wildcard).

Orbix configuration file
policies:csi:auth_over_transport:target_supports =

["EstablishTrustInClient"];
policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];
policies:csi:auth_over_transport:server_domain_name =

"AuthDomain";
policies:csi:auth_over_transport:authentication_service =

"csiv2.AuthenticationServiceObject";
 304 Orbix Security Guide

Authentication service
The authentication_service variable specifies a Java class that
provides an implementation of the authentication service. This
enables you to provide a custom implementation of the CSIv2
authentication service in Java.
When using CSIv2 in the context of the Orbix Security Framework,
however, this configuration variable should be omitted. In the
Orbix Security Framework, the GSP plug-in specifies the CSIv2
authentication service programmatically.
See “Providing an Authentication Service” on page 305 for more
details.

Providing an Authentication Service
An implementation of the CSIv2 authentication service can be
specified in one of the following ways:
• By configuration (Java only).
• By programming a policy (Java only).
• By registering an initial reference.

By configuration (Java only)
In Java, the authentication service is provided by a customizable
class which can be loaded by setting the
policies:csi:auth_over_transport:authentication_service
configuration variable to the fully-scoped name of the Java class.

By programming a policy (Java only)
In Java, you can specify a CSIv2 authentication service object
programmatically by setting the IT_CSI::CSI_SERVER_AS_POLICY
policy with an IT_CSI::AuthenticationService struct as its policy
value.
See the CORBA Programmer’s Reference, Java for more details.

By registering an initial reference
You can specify a CSIv2 authentication service object (in C++ and
Java) by registering an instance as the IT_CSIAuthenticationObject
initial reference. This approach is mainly intended for use by Orbix
plug-ins.

Default authentication service
If no authentication service is specified, a default implementation
is used that always returns false in response to authenticate()
calls.
Orbix Security Guide 305

Orbix Security Framework
In the context of the Orbix Security Framework, the GSP plug-in
provides a proprietary implementation of the CSIv2 authentication
service that delegates authentication to the Orbix security service.

Sample implementation
A sample implementation of a CSIv2 authentication service can be
found in the following demonstration directory:
ASPInstallDir/asp/Version/demos/corba/tls/csiv2/java/src/csiv2

Providing a Username and Password
This section explains how a user can provide a username and a
password for CSIv2 authentication (logging on) as an application
starts up. CSIv2 mandates the use of the GSSUP standard for
transmitting a username/password pair between a client and a
server.

CSIv2 principal sponsor
The CSIv2 principal sponsor is a piece of code embedded in the CSI
plug-in that obtains authentication information for an application.
It is configured by setting variables in the Orbix configuration. The
great advantage of the CSIv2 principal sponsor is that it enables
you to provide authentication data for security unaware
applications, just by modifying the configuration.
The following configuration file extract shows you how to enable
the CSIv2 principal sponsor for GSSUP-style authentication
(assuming the application is already configured to load the CSI
plug-in):

Credentials sharing
Normally, when you specify an own credential using the CSI
principal sponsor, the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own credentials created by one ORB are
automatically made available to any other ORBs that are
configured to share credentials.

Orbix configuration file
principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:use_method_id = "GSSUPMech";
 306 Orbix Security Guide

Logging in
The GSSUP username and password can be provided in one of the
following ways:
• From a dialog prompt.
• Directly in configuration.
• By programming.

From a dialog prompt
If the login data are not specified in configuration, the CSIv2
principal sponsor will prompt the user for the username,
password, and domain as the application starts up. The dialog
prompt is displayed if the client supports the
EstablishTrustInClient CSIv2 association option and one or more
of the principal_sponsor:csi:auth_method_data fields are missing
(username, password, or domain).

C++ Applications
When a C++ application starts up, the user is prompted for the
username and password at the command line as follows:
Please enter username :
Enter password :

Java Applications
The following dialog window pops up to prompt the user for the
username, password, and domain name:

Figure 68: Java Dialog Window for GSSUP Username and Password

Note: The password is not checked until the client
communicates with a server secured by CSIv2. Hence, the
dialog is unable to provide immediate confirmation of a
user’s password and a mis-typed password will not be
detected until the client begins communicating with the
server.
Orbix Security Guide 307

Directly in configuration
The username, password, and domain can be specified directly in
the principal_sponsor:csi:auth_method_data configuration variable.
For example, the CSIv2 principal sponsor can be configured as
follows:

In this example, the auth_method_data variable specifies a User
username, Pass password, and AuthDomain domain.

By programming
A CORBA application developer can optionally specify the GSSUP
username, password and domain name by programming—see
“Creating CSIv2 Credentials” on page 340.
In this case, an administrator should ensure that the CSIv2
principal sponsor is disabled for the application. Either the
principal_sponsor:csi:use_principal_sponsor variable can to be
set to false, or the CSIv2 principal sponsor variables can be
removed from the application’s configuration.
The best approach is to set the
principal_sponsor:csi:use_principal_sponsor variable to false in
the application’s configuration scope. For example:

This ensures that the principal sponsor cannot be enabled
accidentally by picking up configuration variables from the outer
configuration scope.

Orbix configuration file
principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:use_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method_data =

["username=User", "password=Pass", "domain=AuthDomain"];

WARNING:Storing the password directly in configuration
is not recommended for deployed systems. The password
is in plain text and could be read by anyone.

Orbix configuration file
outer_config_scope {
 ...
 my_app_config_scope {
 principal_sponsor:csi:use_principal_sponsor =

"false";
 ...
 };
 ...
};
 308 Orbix Security Guide

Sample Configuration
This section provides complete sample configurations, on both the
client side and the server side, for the scenario described in
“CSIv2 Authentication Scenario” on page 299.

Sample Client Configuration
This section describes a sample client configuration for CSIv2
authentication over transport which has the following features:
• The iiop_tls and csi plug-ins are loaded into the application.
• The client supports the SSL/TLS EstablishTrustInTarget

association option.
• The client supports the CSIv2 authentication over transport

EstablishTrustInClient association option.
• The username and password are specified using the CSIv2

principal sponsor.

Configuration sample
The following sample shows the configuration of a client
application that uses CSIv2 authentication over transport to
authenticate a user, Paul (using the csiv2.client.paul ORB
name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*",

"IT_IIOP_TLS=*", "IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 client
 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 paul
 {
 plugins:csi:allow_csi_reply_without_service_context

= "false";
Orbix Security Guide 309

Sample Server Configuration
This section describes a sample server configuration for CSIv2
authentication over transport which has the following features:
• The iiop_tls and csi plug-ins are loaded into the application.
• The server supports the SSL/TLS EstablishTrustInTarget and

EstablishTrustInClient association options.
• The server’s X.509 certificate is specified using the SSL/TLS

principal sponsor.
• The server supports the CSIv2 authentication over transport

EstablishTrustInClient association option.

Configuration sample
The following sample shows the configuration of a server
application that supports CSIv2 authentication over transport
(using the csiv2.server ORB name):

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor =
"true";

 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Paul", "password=password", domain="DEFAULT"];
 };
 };
};

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*",

"IT_IIOP_TLS=*", "IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 server
 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
 310 Orbix Security Guide

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\ba
nk_server.p12", "password=bankserverpass"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:authentication_service
= "csiv2.AuthenticationServiceObject";

 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

 };
};
Orbix Security Guide 311

 312 Orbix Security Guide

Configuring CSIv2
Identity Assertion
This chapter explains the concepts underlying the CSIv2 identity assertion
(or delegation) mechanism and provides details of how to configure your
applications to use this mechanism.

CSIv2 Identity Assertion Scenario
This section describes a typical CSIv2 identity assertion scenario,
involving a client, an intermediate server, and a target server.
Once the client has authenticated itself to the intermediate server,
the intermediate server can impersonate the client by including an
identity token in the requests that it sends to the target server. The
intermediate server thus acts as a proxy (or delegate) server.

Identity assertion
The CSIv2 identity assertion mechanism provides the basis for a
general-purpose delegation or impersonation mechanism. Identity
assertion is used in the context of a system where a client invokes
an operation on an intermediate server which then invokes an
operation on a target server (see Figure 69). When making a call
on the target, the client identity (which is authenticated by the
intermediate server) can be forwarded by the intermediate to the
target. This enables the intermediate to impersonate the client.

Dependency on SSL/TLS
The CSIv2 identity assertion mechanism relies on SSL/TLS to
provide the the following security features at the transport layer
(between the intermediate server and the target server):
• Authentication of the target server to the intermediate server.
• Authentication of the intermediate server to the target server.
• Privacy of communication.
• Message integrity.
 Orbix Security Guide 313

CSIv2 scenario
Figure 69 shows a typical scenario for CSIv2 identity assertion:

How CSIv2 identity assertion proceeds
As shown in Figure 69 on page 314, the identity assertion
mechanism proceeds as follows:

Figure 69: CSIv2 Identity Assertion Scenario

Stage Description

1 When a client initiates an operation invocation on the
intermediate, the client’s CSI plug-in inserts a client
authentication token (containing
username/password/domain) into the GIOP request
message.

2 The request, together with the client authentication
token, is sent over the SSL/TLS connection. The
SSL/TLS connection provides privacy and message
integrity, ensuring that the username and password
cannot be read by eavesdroppers.

3 Before permitting the request to reach the target object
in the intermediate, the intermediate’s CSI plug-in calls
the authentication service to check the
username/password combination.
 314 Orbix Security Guide

SSL/TLS connection
The intermediate server and target server should both be
configured to use a secure SSL/TLS connection. In this scenario,
the intermediate-to-target SSL/TLS connection is configured for
mutual authentication.
See “SSL/TLS Prerequisites” on page 316 for details of the
SSL/TLS configuration for this scenario.

Identity token
An identity token can contain one of the following types of identity
token:
• ITTAbsent—if no identity token is included in the GIOP

message sent by the intermediate server (for example, if
CSIv2 identity assertion is disabled in the intermediate
server).

• ITTAnonymous—if the intermediate server is acting on behalf of
an anonymous, unauthenticated client.

• ITTPrincipalName—if the intermediate server is acting on
behalf of an authenticated client. In this case, the client
identity contains the following data:
♦ GSSUP username—automatically extracted from the

GSSUP client authentication token received from the
client.

4 If the username/password combination are
authenticated successfully, the request is allowed to
reach the object; otherwise the request is blocked and
an error is returned to the client.

5 Within the context of the current invocation, the
intermediate server invokes an operation on the target
server.
Because identity assertion has been enabled on the
intermediate server, the intermediate’s CSI plug-in
extracts the client username from the received GSSUP
credentials, creates an identity token containing this
username, and then inserts the identity token into the
GIOP request message.

6 The request, together with the identity token, is sent
over the SSL/TLS connection. The SSL/TLS connection
provides privacy message integrity, and mutual
authentication between the intermediate and the target.

7 When the request arrives at the target server, the
asserted identity is extracted and made available to the
target through the CORBA received credentials object—
see “Retrieving Received Credentials” on page 353.

Stage Description
Orbix Security Guide 315

♦ Subject DN—if the intermediate server authenticates the
client using an X.509 certificate, but not using a
username and password, the intermediate would forward
on an identity token containing the subject DN from the
client certificate.

Received credentials
The received credentials is an object, of
SecurityLevel2::ReceivedCredentials type, defined by the OMG
CORBA Security Service that encapsulates the security credentials
received from a client. In this scenario, the target server is
programmed to access the asserted identity using the received
credentials.
For details of how to access the asserted identity through the
received credentials object, see “Retrieving Received Credentials
from the Current Object” on page 353.

SSL/TLS Prerequisites
The CSIv2 identity assertion mechanism relies on SSL/TLS to
provide the the following security features at the transport layer
(between the intermediate server and the target server):
• Authentication of the target server to the intermediate server.
• Authentication of the intermediate server to the target server.
• Privacy of communication.
• Message integrity.

SSL/TLS mutual authentication
For the scenario depicted in Figure 69 on page 314, the SSL/TLS
connection between the intermediate and the target server is
configured for mutual authentication. The SSL/TLS configuration
can be summarized as follows:
• Intermediate server SSL/TLS configuration—the intermediate

server requires confidentiality, message integrity, and the
EstablishTrustInTarget SSL/TLS association option. An X.509
certificate is provided, which enables the intermediate server
to be authenticated both by the client and by the target
server.

• Target server SSL/TLS configuration—the server requires
confidentiality, message integrity, and the
EstablishTrustInClient SSL/TLS association option. An X.509
certificate is provided, which enables the target server to be
authenticated by the intermediate server.

See “Sample Intermediate Server Configuration” on page 320 for
a detailed example of the SSL/TLS configuration in this scenario.
See “SSL/TLS Administration” on page 201 for complete details of
configuring and administering SSL/TLS.
 316 Orbix Security Guide

Setting certificate constraints
In the scenario depicted in Figure 69 on page 314, the target
server grants a special type of privilege (backward trust) to the
intermediate server—that is, the target accepts identities asserted
by the intermediate without getting the chance to authenticate
these identities itself. It is, therefore, recommended to set the
certificate constraints policy on the target server to restrict the
range of applications that can connect to it.
The certificate constraints policy prevents connections being
established to the target server, unless the ASN.1 Distinguished
Name from the subject line of the incoming X.509 certificate
conforms to a certain pattern.
See “Applying Constraints to Certificates” on page 276 for further
details.

Principal sponsor configuration
In this scenario, the SSL/TLS principal sponsor needs to be
enabled in the intermediate server and in the target server.
See “Specifying an Application’s Own Certificate” on page 268 and
“Providing a Certificate Pass Phrase” on page 271 for further
details.

Enabling CSIv2 Identity Assertion
Based on the sample scenario depicted in Figure 69 on page 314,
this section describes the basic configuration variables that enable
CSIv2 identity assertion. These variables on their own, however,
are by no means sufficient to configure a system to use CSIv2
identity assertion. For a complete example of configuring CSIv2
identity assertion, see “Sample Configuration” on page 319.

Loading the CSI plug-in
To enable CSIv2, you must include the csi plug-in in the
orb_plugins list in your Orbix configuration. The
binding:client_binding_list and binding:server_binding_list must
also be initialized with the proper list of interceptor combinations.

Note: The SSL/TLS principal sponsor is completely
independent of the CSIv2 principal sponsor (see “Providing
a Username and Password” on page 306). It is possible,
therefore, to enable both of the principal sponsors within
the same application.
Orbix Security Guide 317

Sample settings for these configuration variables can be found in
the demos.tls.csiv2 configuration scope of your Orbix
configuration. For example, you can load the csi plug-in with the
following configuration:

Intermediate server configuration
The intermediate server can be configured to support CSIv2
identity assertion, as follows:

Intermediate server CSIv2 association
options
Including the IdentityAssertion CSIv2 association option in the
policies:csi:attribute_service:client_supports list indicates that
the application supports CSIv2 identity assertion when acting as a
client.

Target server configuration
The target server can be configured to support CSIv2 identity
assertion, as follows:

Target server CSIv2 association options
Including the IdentityAssertion CSIv2 association option in the
policies:csi:attribute_service:target_supports list indicates that
the application supports CSIv2 identity assertion when acting as a
server.

Orbix configuration file
csiv2 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
 ...
};

Orbix configuration file
policies:csi:attribute_service:client_supports =

["IdentityAssertion"];

Orbix configuration file
policies:csi:attribute_service:target_supports =

["IdentityAssertion"];
 318 Orbix Security Guide

Sample Configuration
This section provides complete sample configurations, covering
the client, the intermediate server, and the target server, for the
scenario described in “CSIv2 Identity Assertion Scenario” on
page 313.

Sample Client Configuration
This section describes a sample client configuration for the CSIv2
identity assertion scenario. In this part of the scenario, the client
is configured to use CSIv2 authentication over transport, as
follows:
• The iiop_tls and csi plug-ins are loaded into the application.
• The client supports the SSL/TLS EstablishTrustInTarget

association option.
• The client supports the CSIv2 authentication over transport

EstablishTrustInClient association option.
• The username and password are specified using the CSIv2

principal sponsor.

Configuration sample
The following sample shows the configuration of a client
application that uses CSIv2 authentication over transport to
authenticate a user, Paul (using the csiv2.client.paul ORB
name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*",

"IT_IIOP_TLS=*", "IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 client
 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 paul
 {
Orbix Security Guide 319

Sample Intermediate Server Configuration
This section describes a sample intermediate server configuration
for CSIv2 identity assertion which has the following features:
• The iiop_tls and csi plug-ins are loaded into the application.
• In the role of server, the intermediate server supports the

SSL/TLS EstablishTrustInTarget and EstablishTrustInClient
association options.

• In the role of client, the intermediate server supports the
SSL/TLS EstablishTrustInTarget and EstablishTrustInClient
association options.

• The intermediate server’s X.509 certificate is specified using
the SSL/TLS principal sponsor.

• In the role of server, the intermediate server supports the
CSIv2 authentication over transport EstablishTrustInClient
association option.

• In the role of client, the intermediate server supports the
CSIv2 IdentityAssertion association option.

Configuration sample
The following sample shows the configuration of an intermediate
server application that supports CSIv2 authentication over
transport (when acting as a server) and identity assertion (when
acting as a client). In this example, the server executable should
use the csiv2.intermed_server ORB name:

 plugins:csi:allow_csi_reply_without_service_context
= "false";

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor =
"true";

 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Paul", "password=password", "domain=DEFAULT"];
 };
 };
};

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*",

"IT_IIOP_TLS=*", "IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
 320 Orbix Security Guide

Sample Target Server Configuration
This section describes a sample target server configuration for
CSIv2 identity assertion which has the following features:
• The iiop_tls and csi plug-ins are loaded into the application.
• The server supports the SSL/TLS EstablishTrustInTarget and

EstablishTrustInClient association options.
• The server requires the SSL/TLS EstablishTrustInClient

association option.
• The server’s X.509 certificate is specified using the SSL/TLS

principal sponsor.
• The intermediate server supports the CSIv2 IdentityAssertion

association option.

 intermed_server
 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\art\6.0\etc\tls\x509\certs\demos\ba
nk_server.p12", "password=bankserverpass"];

 plugins:csi:allow_csi_reply_without_service_context =
"false";

 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:authentication_service
= "csiv2.AuthenticationServiceObject";

 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

 };
};
Orbix Security Guide 321

Configuration sample
The following sample shows the configuration of a target server
application that supports identity assertion (using the
csiv2.target_server ORB name).

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*",

"IT_IIOP_TLS=*", "IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 target_server
 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\art\6.0\etc\tls\x509\certs\demos\ba
nk_server.p12", "password=bankserverpass"];

 policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

 };
};
 322 Orbix Security Guide

Part V
CORBA Security

Programming

In this part
This part contains the following chapters:

Programming Policies page 325

Authentication page 335

Validating Certificates page 363

 324 Orbix Security Guide

Programming Policies
You can customize the behavior of secure CORBA applications by setting
policies programmatically.

Setting Policies
This section provides a brief overview of how to set CORBA
policies by programming. An example, in C++ and Java, is
provided that shows how to set a CORBA policy at the ORB level.
How to program CORBA policies is described in more detail in the
CORBA Programmer’s Guide.

Client-side policy levels
You can set client-side policies at any of the following levels:
• ORB
• Thread
• Object (for client-side proxies).

Server-side policy levels
You can set server-side policies at any of the following levels:
• ORB
• POA

Policy management
As described in the CORBA Programmer’s Guide, you can set a
policy at each level using the appropriate policy management
object as listed in Table 25.

Table 25: Policy Management Objects

Policy Level Policy Management Object

ORB CORBA::PolicyManager

Thread CORBA::PolicyCurrent

POA PortableServer::POA::create_POA()

Client-side
proxy

(ObjectRef)._set_policy_overrides()
 Orbix Security Guide 325

C++ Example
The following C++ example shows how to set an SSL/TLS
certificate constraints policy at the ORB level:

Java Example
The following Java example shows how to set an SSL/TLS
certificate constraints policy at the ORB level:

Example 40: C++ Example of Setting ORB-Level Policies

//C++
...
 CORBA::Any any;
 CORBA::PolicyList orb_policies;
 orb_policies.length(1);

1 CORBA::Object_var object =

global_orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_mgr =
 CORBA::PolicyManager::_narrow(object);

2 IT_TLS_API::CertConstraints cert_constraints;
 cert_constraints.length(1);

3 cert_constraints[0] = CORBA::string_dup(
 "C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"
);

 any <<= cert_constraints;

4,5 orb_policies[0] = global_orb->create_policy(
 IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY, any
);

6 policy_mgr->set_policy_overrides(
 orb_policies, CORBA::ADD_OVERRIDE
);

Example 41: Java Example of Setting ORB-Level Policies

//Java
1 PolicyManager pol_manager = null;

 pol_manager = (PolicyManager)
 orb.resolve_initial_references("ORBPolicyManager");
 Any policy_value = orb.create_any();
 String[] constraint =
 {"C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"};

2,3 CertConstraintsHelper.insert(policy_value, constraint);
 Policy[] policies = new Policy[1];

4,5 policies[0] =
 orb.create_policy(TLS_CERT_CONSTRAINTS_POLICY.value,
 policy_value);

6 pol_manager.set_policy_overrides(policies,
 SetOverrideType.SET_OVERRIDE);
 326 Orbix Security Guide

Setting a Policy at ORB Level
The programming steps in the preceding examples, “C++
Example” on page 326 and “Java Example” on page 326, can be
explained as follows:
1. Retrieve the ORB policy manager.
2. Create an instance of the policy that you are to adjust, based

on the Orbix IDL (see the CORBA Programmer’s Reference).
3. Set your new values on this policy.
4. Create an ORB policy object using the

CORBA::ORB:create_policy() operation and provide your new
policy as a parameter.

5. Add the policy to a PolicyList object.
6. Use the PolicyManager::set_policy_overrides() operation to

set the new PolicyList on the ORB.

Programmable SSL/TLS Policies
This section gives a brief overview of the different kinds of
programmable SSL/TLS policy and discusses how these policies
interact with each other and with policies set in configuration.
For more details of these SSL/TLS policies, consult the relevant
sections of the CORBA Programmer’s Reference.

Introduction to SSL/TLS Policies

Configuring or programming policies
You can use policies to govern security behavior in Orbix and most
of these policies can be set through the Orbix configuration file
(see “policies” on page 405).
However, policies set with the configuration file only apply at the
ORB level. If you develop security-aware applications, you can add
a finer level of security to objects by programming policies in your
application code.

Augmenting minimum levels of security
You can use the CORBA policy IDL and the TLS policy IDL to refine
the security features that your objects require. Follow these steps:
1. Consider what are the minimum security levels set for objects

in your system.
2. Add to these minimum levels, by adding the available

programmable policies to your application code.

Note: Examples of configuring policies programmatically
can be found in the TLS policy demo, in the
ASPInstallDir/asp/6.0/demos/tls/policy directory.
Orbix Security Guide 327

What are the minimum security levels for
objects?
You can set the minimum levels of security that objects require
with secure invocation policies. There are two types of secure invocation
policy:
• Security::SecClientSecureInvocation
• Security::SecTargetSecureInvocation

You can apply values for these in the Orbix configuration file, as
discussed in “Setting Association Options” on page 244, or by
programming policies.
It is important to remember that by programming policies you can
only add more security to the minimum required in the
configuration; you cannot reduce the minimum required security
by programming.

Required and supported security
features
Any object, can have the following dispositions to a security
feature:
• If the object requires a certain type of security, that

requirement must be complied with before a call to the object
succeeds.

• If the object supports a certain type of security, that security
feature can be used, but does not have to be used.

The QOPPolicy

IDL definition
The SecurityLevel2::QOPPolicy policy provides a way to override
the client and target secure invocation policies. You can apply four
levels of protection defined by the enumerated type,
Security::QOP, defined as follows:

//IDL
module Security {
...
 enum QOP {
 SecQOPNoProtection,
 SecQOPIntegrity,
 SecQOPConfidentiality,
 SecQOPIntegrityAndConfidentiality
 };
};
 328 Orbix Security Guide

Purpose
The SecurityLevel2::QOPPolicy is used by security aware
applications for two purposes:
• Restricting the types of cipher suites available for

consideration.
• Overriding the way in which a specific object is contacted.

Restricting cipher suites
The values allowed for QOP policies are not specific enough to
identify particular cipher suites (the mechanism policy can be used
for this). However the QOPPolicy value can render certain cipher
suites inapplicable—see “Constraints Imposed on Cipher Suites”
on page 258.
If you set a QOP policy to override an existing QOP policy, the
applicable list of cipher suites can be extended as a result.

Over-riding how an object is contacted
When you set a QOP policy override for an object, this results in a
new object reference that contains the applicable policies. This
means that the QOP policy can conveniently be used to create an
insecure object reference (where allowed by the administration
policies) that you can use for operations where you wish insecure
invocations to take place. The original object reference that
contains a higher quality of protection can be used for the more
sensitive operations.

The EstablishTrustPolicy

Purpose
You can use the SecurityLevel2::EstablishTrustPolicy to control
whether server or client authentication is to be enforced.
Both a client and target object can support this policy, meaning
that, for a client, the client is prepared to authenticate its
privileges to the target, and the target supports this.
However, you can also set this policy as required for a target
policy. This means that a client must authenticate its privileges to
the target, before the target will accept the connection.
Orbix Security Guide 329

IDL Definition
The SecurityLevel2::EstablishTrustPolicy policy contains an
attribute, trust, of Security::EstablishTrust type that specifies
whether trust in client and trust in target is enabled. The
Security::EstablishTrust type is defined as follows:

Structure members
This structure contains the following members:
• The trust_in_client element stipulates whether the invocation

must select credentials and mechanism that allow the client to
be authenticated to the target.

• The trust_in_target element stipulates whether the invocation
must first establish trust in the target.

The InvocationCredentialsPolicy

Purpose
The SecurityLevel2::InvocationCredentialsPolicy policy forces a
POA to use specific credentials or to use specific credentials on a
particular object. When this object is returned by the get_policy()
operation, it contains the active credentials that will be used for
invocations using this target object reference.

Attribute
The SecurityLevel2::InvocationCredentialsPolicy policy has a
single attribute, creds, that returns a list of Credentials objects
that are used as invocation credentials for invocations through this
object reference.

//IDL
module Security {
...
 struct EstablishTrust {
 boolean trust_in_client;
 boolean trust_in_target;
 };
...
};

Note: Normally, all SSL/TLS cipher suites need to
authenticate the target.
 330 Orbix Security Guide

Setting the policy at object level
An InvocationCredentialsPolicy object can be passed to the
set_policy_overrides() operation to specify one or more
Credentials objects to be used when calling this target object,
using the object reference returned by set_policy_overrides().

Interaction between Policies

Upgrading security
To upgrade an insecure Orbix application to be fully secure using
the QOP and EstablishTrust policies, the application must initially
be configured to support the DetectReply and the
DetectMisordering association options. This is because it is not
possible to specify the DetectReplay and DetectMisordering
association options programatically, but these association options
are needed for all the SSL/TLS cipher suites. See “Constraints
Imposed on Cipher Suites” on page 258.

No downgrading of security
When you specify the client secure invocation policy and the
target secure invocation policy, you are providing your application
with its minimum security requirements. These minimum
requirements must be met by any other specified policies and
cannot be weakened. This means that the following policies cannot
be specified, if their values would conflict with the corresponding
SecureInvocationPolicy value:
• QOPPolicy
• MechanismPolicy
• EstablishTrustPolicy

Compatibility with the mechanism policy
value
You cannot specify values for the QOPPolicy,
SecureInvocationPolicy (client and target), or
EstablishTrustPolicy, if the underlying mechanism policy does not
support it. For example, you cannot specify that Confidentiality is
required, if only NULL cipher suites are enabled in the
MechanismPolicy.

Programmable CSIv2 Policies
This section gives a brief overview of the programmable CSIv2
policies. These programmable policies provide functionality
equivalent to the CSIv2 configuration variables.
For complete details of the CSIv2 policies, see the description of
the IT_CSI module in the CORBA Programmer’s Reference.
Orbix Security Guide 331

CSIv2 policies
The following CSIv2 policies can be set programmatically:
• Client-side CSIv2 authentication policy.
• Server-side CSIv2 authentication policy.
• Client-side CSIv2 identity assertion policy.
• Server-side CSIv2 identity assertion policy.

Client-side CSIv2 authentication policy
You can set the client-side CSIv2 authentication policy to enable
an application to send GSSUP username/password credentials
over the wire in a GIOP service context. The programmable
client-side CSIv2 authentication policy provides functionality
equivalent to setting the following configuration variable:
policies:csi:auth_over_transport:client_supports

To create a client-side CSIv2 authentication policy, use the
following IDL data types from the IT_CSI module:
• Policy type constant is IT_CSI::CSI_CLIENT_AS_POLICY.
• Policy data is IT_CSI::AuthenticationService.

Server-side CSIv2 authentication policy
You can set the server-side CSIv2 authentication policy to enable
an application to receive and authenticate GSSUP
username/password credentials. The programmable server-side
CSIv2 authentication policy provides functionality equivalent to
setting the following configuration variables:
policies:csi:auth_over_transport:target_supports
policies:csi:auth_over_transport:target_requires
policies:csi:auth_over_transport:server_domain_name
policies:csi:auth_over_transport:authentication_service

To create a server-side CSIv2 authentication policy, use the
following IDL data types from the IT_CSI module:
• Policy type constant is IT_CSI::CSI_SERVER_AS_POLICY.
• Policy data is IT_CSI::AuthenticationService.

Client-side CSIv2 identity assertion
policy
You can set the client-side CSIv2 identity assertion policy to
enable an application to send a CSIv2 asserted identity over the
wire in a GIOP service context. The programmable client-side
CSIv2 identity assertion policy provides functionality equivalent to
setting the following configuration variable:
policies:csi:attribute_service:client_supports
 332 Orbix Security Guide

To create a client-side CSIv2 identity assertion policy, use the
following IDL data types from the IT_CSI module:
• Policy type constant is IT_CSI::CSI_CLIENT_SAS_POLICY.
• Policy data is IT_CSI::AttributeService.

Server-side CSIv2 identity assertion
policy
You can set the server-side CSIv2 identity assertion policy to
enable an application to receive a CSIv2 asserted identity. The
programmable server-side CSIv2 identity assertion policy provides
functionality equivalent to setting the following configuration
variable:
policies:csi:attribute_service:target_supports

To create a server-side CSIv2 identity assertion policy, use the
following IDL data types from the IT_CSI module:
• Policy type constant is IT_CSI::CSI_SERVER_SAS_POLICY.
• Policy data is IT_CSI::AttributeService.
Orbix Security Guide 333

 334 Orbix Security Guide

Authentication
The Orbix Security Framework protects your applications by preventing
principals from making calls to the system unless they authenticate
themselves.

Using the Principal Authenticator
The principal authenticator is an object that associates secure
identities with a CORBA application. This section explains how to
use the principal authenticator to create various kinds of
credentials.

Introduction to the Principal Authenticator
This section describes the role of the principal authenticator object
in creating and authenticating an application’s own credentials.

Creating own credentials
There are two alternative ways to create an application’s own
credentials:
• By configuration—that is, by setting the principal sponsor

configuration variables. See “Specifying an Application’s Own
Certificate” on page 268.

• By programming—that is, by calling the
SecurityLevel2::PrincipalAuthenticator::authenticate()
operation directly. This alternative is described here.

Principal
A principal can be any person or code that wants to use your
secure system. The principal must be identified, for example by a
user name and password, and authenticated. Once authenticated,
your system assigns credentials to that principal, that assert the
authenticated identity.

Own credentials
An own credentials object, of SecurityLevel2::Credentials type,
represents a secure identity under whose authority the context is
executing. When an application invokes an operation on a remote
server, it sends one or more of its own credentials to the server in
order to identify itself to the server.
 Orbix Security Guide 335

Principal authenticator
The principal authenticator is a factory object that creates own
credentials and associates them with the current ORB instance. By
calling the principal authenticator’s authenticate() operation
multiple times, you can associate a list of own credentials objects
with the current ORB.

Credentials sharing
Normally, when you specify an own credential using the principal
authenticator, the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own credentials created by one ORB are
automatically made available to any other ORBs that are
configured to share credentials.

Creating own credentials
To create own credentials and make them available to your
application, follow these steps:

Types of credentials
Using the PrincipalAuthenticator, you can create the following
types of credentials:
• SSL/TLS own credentials.
• CSIv2 own credentials.

Note: In terms of the CORBA Security Specification, an
ORB object is identified with a security capsule. The list of own
credentials created by a principal authenticator is implicitly
associated with the enclosing security capsule.

Step Action

1 Obtain an initial reference to the
SecurityLevel2::SecurityManager object.

2 Acquire a SecurityLevel2::PrincipleAuthenticator object
from the security manager.

3 Call the PrincipleAuthenticator::authenticate()
operation to authenticate the client principal and create
a SecurityLevel2::Credentials own credentials object.

4 If more than one type of own credentials object is
needed, call the PrincipleAuthenticator::authenticate()
operation again with the appropriate arguments.
 336 Orbix Security Guide

SSL/TLS own credentials
An SSL/TLS own credentials contains an X.509 certificate chain
and is represented by an object of IT_TLS_API::TLSCredentials
type.

CSIv2 own credentials
The contents of a CSIv2 own credentials depends on the particular
mechanism that is used, as follows:
• Username and password—if the CSIv2 authentication over

transport mechanism is used.
• Username only—if the CSIv2 identity assertion mechanism is

used.
In both cases, the CSIv2 own credentials is represented by an
object of IT_CSI::CSICredentials type.

Creating SSL/TLS Credentials
The following authentication methods are supported for SSL/TLS:
• IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_FILE—enables you to

specify the path name of a PKCS#12 file containing an X.509
certificate chain. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_DER—enables you to
specify an X.509 certificate chain in DER-encoded PKCS#12
format. The PKCS#12 data is provided in the form of an
IT_Certificate::DERData object. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_CERT_CHAIN—enables you to
specify the private key and certificate chain directly as
IT_Certificate::DERData and IT_Certificate::X509CertChain
objects, respectively. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_CERT_CHAIN_FILE—enables you to
specify the path name of a file containing a PEM-encoded
X.509 certificate chain. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_PKCS11—enables you to specify
the provider, slot number and PIN for a PKCS#11 smart card.
Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_LABEL—enables you to specify
the common name (CN) from an application certificate’s
subject DN. This method can be used only in combination with
the Schannel toolkit (Windows C++ only).

C++ example
In the following C++ example, a client principal passes its identity
to the principal authenticator in the form of a PKCS#12 file:

Example 42: C++ Example of SSL/TLS Authentication

//C++
int pkcs12_login(
Orbix Security Guide 337

C++ notes
The preceding C++ example can be explained as follows:
1. Declare an empty credentials object reference to hold the

security attributes of this client if login is successful.
2. Obtain an initial reference to the SecurityManager object.
3. Acquire a PrincipleAuthenticator object from the security

manager.

 CORBA::ORB_ptr orb,
 const char *pkcs12_filename,
 const char *password
)
{
 CORBA::Any auth_data;
 CORBA::Any* continuation_data_ign;
 CORBA::Any* auth_specific_data_ign;
 Security::AttributeList privileges; // Empty

1 SecurityLevel2::Credentials_var creds;
 Security::AuthenticationStatus status;
 IT_TLS_API::PKCS12FileAuthData p12_auth_data;
 CORBA::Object_var obj;
 SecurityLevel2::SecurityManager_var security_manager_obj;
 SecurityLevel2::PrincipalAuthenticator_var
 principal_authenticator_obj;

2 obj = orb->resolve_initial_references("SecurityManager");
 security_manager_obj = SecurityLevel2::SecurityManager::
 _narrow(obj);

3 principal_authenticator_obj =
 security_manager_obj->principal_authenticator();

 p12_auth_data.filename =
 CORBA::string_dup(pkcs12_filename);
 p12_auth_data.password =
 CORBA::string_dup(password);
 auth_data <<= p12_auth_data;

4 status = principal_authenticator_obj->authenticate(
 IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_FILE,
 "", // The mechanism name.
 NULL, // SecurityName (not used for this method).
 auth_data, // The authentication data for this method of
 // authentication.
 privileges, // Empty list, no privileges are supported
 // by SSL.
 creds,
 continuation_data_ign, // These last two paramaters are
 auth_specific_data_ign // not used by this
 // mechanism/method combination.
);
...

Example 42: C++ Example of SSL/TLS Authentication
 338 Orbix Security Guide

4. Use the PrincipleAuthenticator to authenticate the client
principal. If this operation returns a value of
Security::SecAuthSuccess, the security attributes of the
authenticated object are stored in the credentials object,
creds.

Java example
In the following Java example, a client principal passes its identity
to the principal authenticator in the form of a PKCS#12 file:

Example 43: Java Example of SSL/TLS Authentication

//Java
1 org.omg.SecurityLevel2.SecurityManager manager =

 (org.omg.SecurityLevel2.SecurityManager)
 orb.resolve_initial_references("SecurityManager");

2 PrincipalAuthenticator authenticator
 manager.principal_authenticator();

 Any auth_data_any = orb.create_any();

 PKCS12FileAuthData authentication_data =
 new PKCS12FileAuthData("bankserverpass", certificate);
 PKCS12FileAuthDataHelper.insert(auth_data_any,
 authentication_data);

 SecAttribute[] privileges = new SecAttribute[0];

 // Holder for the credentials returned from logging in
3 CredentialsHolder credentials = new CredentialsHolder();

 // Holders for continuation_data and auth_specific_data
 // are not used
 AnyHolder continuation_data = new AnyHolder();
 AnyHolder auth_specific_data = new AnyHolder();

 AuthenticationStatus authentication_result;

4 authentication_result = authenticator.authenticate(

IT_TLS_AUTH_METH_PKCS12_FILE.value,
 "", // mechanism empty
 "", // security name empty
 auth_data_any,
 privileges,
 credentials,
 continuation_data,
 auth_specific_data
);
...
Orbix Security Guide 339

Java notes
The preceding Java example can be explained as follows:
1. Obtain an initial reference to the SecurityManager object.
2. Acquire a PrincipleAuthenticator object from the security

manager.
3. Initialize an empty credentials holder object to hold the

security attributes of this client if login is successful.
4. Use the PrincipleAuthenticator to authenticate the client

principal. If this operation returns a value of
Security::SecAuthSuccess, the security attributes of the
authenticated object are stored in the Credentials object.

Creating CSIv2 Credentials
The following authentication method is supported for CSIv2:
• IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD—enables you to

specify a GSSUP username, password, and domain. The
GSSUP authentication data is provided in the form of an
IT_CSI::GSSUPAuthData object.

C++ example
Example 44 shows how to create CSIv2 credentials in C++, by
supplying a username, <user_name>, password, <password>, and
authentication domain, <domain>, to the principal authenticator’s
authenticate() operation.

Example 44: C++ Example of CSIv2 Authentication

// C++
int
set_csiv2_credential(CORBA::ORB_var orb)
{
 IT_CSI::GSSUPAuthData csi_gssup_auth_data;
 CORBA::Any auth_data;
 CORBA::Any* continuation_data_ign;
 CORBA::Any* auth_specific_data_ign;
 Security::AttributeList privileges;
 SecurityLevel2::Credentials_var creds;
 CORBA::String_var username;
 Security::AuthenticationStatus status;
 SecurityLevel2::PrincipalAuthenticator_var authenticator;

 try {
 // Get initial reference of SecurityManager
 SecurityLevel2::SecurityManager_var

security_manager_obj;

 try
 {
 CORBA::Object_var obj;

1 obj = orb->resolve_initial_references(
 "SecurityManager"
);
 340 Orbix Security Guide

 security_manager_obj =
 SecurityLevel2::SecurityManager::_narrow(obj);

 if (CORBA::is_nil(security_manager_obj))
 {
 cerr << "Unexpected Error. Failed to initialize "
 "SecurityManager initial reference." << endl;
 }

2 authenticator =
 security_manager_obj->principal_authenticator();
 if (CORBA::is_nil(authenticator))
 {
 // Log error message (not shown) ...
 return -1;
 }
 }
 catch (const CORBA::ORB::InvalidName&)
 {
 // Log error message (not shown) ...
 return -1;
 }

 username = CORBA::string_dup("<user_name>");
3 csi_gssup_auth_data.password =

 CORBA::string_dup("<password>");
 csi_gssup_auth_data.domain =
 CORBA::string_dup("<domain>");

4 auth_data <<= csi_gssup_auth_data;
 ...

5 status = authenticator->authenticate(
 IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD,
 "", // NOT USED
 username, // GSSUP user name
 auth_data, // GSSUP auth data in an

any
 privileges, // NOT USED
 creds, // returned credentials
 continuation_data_ign, // NOT USED
 auth_specific_data_ign // NOT USED
);

 if (status != Security::SecAuthSuccess)
 {
 // Log error message (not shown) ...
 return -1;
 }
 }
 catch(const CORBA::Exception& ex)
 {
 cerr << "Could not set csi credentials, " << ex << endl;
 return -1;
 }
 return 0;
}

Example 44: C++ Example of CSIv2 Authentication
Orbix Security Guide 341

C++ notes
The preceding C++ example can be explained as follows:
1. Obtain an initial reference to the SecurityManager object.
2. Acquire a PrincipleAuthenticator object from the security

manager.
3. Create a GSSUPAuthData struct containing the GSSUP password,

<password>, and domain, <domain>.
4. Insert the GSSUPAuthData struct, auth_data, into the any,

auth_data_any.
5. Call authenticate() on the PrincipleAuthenticator object to

authenticate the client principal. If the authenticate()
operation returns a value of Security::SecAuthSuccess, the
security attributes of the authenticated object are stored in
creds.

Java example
Example 45 shows how to create CSIv2 credentials in Java, by
supplying a username, <user_name>, password, <password>, and
authentication domain, <domain>, to the principal authenticator’s
authenticate() operation.

Example 45: Java Example of CSIv2 Authentication

//Java
...
// Given the following prerequisites:
// orb - A reference to an org.omg.CORBA.ORB object.

1 org.omg.SecurityLevel2.SecurityManager manager =
 (org.omg.SecurityLevel2.SecurityManager)
 orb.resolve_initial_references("SecurityManager");

2 org.omg.SecurityLevel2.PrincipalAuthenticator authenticator
 = manager.principal_authenticator();

 org.omg.CORBA.Any auth_data_any = orb.create_any();
3 com.iona.IT_CSI.GSSUPAuthData auth_data =

 new com.iona.IT_CSI.GSSUPAuthData(
 "<password>",
 "<domain>"
);

4 com.iona.IT_CSI.GSSUPAuthDataHelper.insert(
 auth_data_any,
 auth_data
);

 org.omg.Security.SecAttribute[] privileges
 = new org.omg.Security.SecAttribute[0];

 // Holder for the credentials returned from logging in
5 org.omg.SecurityLevel2.CredentialsHolder credentials

 = new org.omg.SecurityLevel2.CredentialsHolder();

 // Holders for continuation_data and auth_specific_data
 342 Orbix Security Guide

Java notes
The preceding Java example can be explained as follows:
1. Obtain an initial reference to the SecurityManager object.
2. Acquire a PrincipleAuthenticator object from the security

manager.
3. Create a GSSUPAuthData struct containing the GSSUP password,

<password>, and domain, <domain>.
4. Insert the GSSUPAuthData struct, auth_data, into the any,

auth_data_any.
5. Initialize an empty credentials holder object to hold the

security attributes of this client.
6. Call authenticate() on the PrincipleAuthenticator object to

authenticate the client principal. If the authenticate()
operation returns a value of Security::SecAuthSuccess, the
security attributes of the authenticated object are stored in
credentials.value.

Using a Credentials Object

What is a credentials object?
A SecurityLevel2::Credentials object is a locality-constrained
object that represents a particular principal’s credential
information, specific to the execution context. A Credentials object
stores security attributes, including authenticated (or
unauthenticated) identities, and provides operations to obtain and
set the security attributes of the principal it represents.

 // are not used
 org.omg.CORBA.AnyHolder continuation_data
 = new org.omg.CORBA.AnyHolder();
 org.omg.CORBA.AnyHolder auth_specific_data
 = new org.omg.CORBA.AnyHolder();

 org.omg.Security.AuthenticationStatus authentication_result;

6 authentication_result = principal_authenticator.authenticate(
 com.iona.IT_CSI.IT_CSI_AUTH_METH_USERNAME_PASSWORD.value,
 "", // NOT USED
 "<user_name>", // GSSUP user name
 auth_data_any, // an any containing the
 // IT_CSI::GSSUPAuthData struct
 privileges, // NOT USED
 credentials, // returns the CSIv2 user credentials
 continuation_data, // NOT USED
 auth_specific_data // NOT USED
);

// Returned credentials can be accessed in ’credentials.value’
...

Example 45: Java Example of CSIv2 Authentication
Orbix Security Guide 343

Credentials types
There are three types of credentials:
• Own credentials—identifies the principal under whose

authority the context is executing. An own credential is
represented by an object of SecurityLevel2::Credentials type.

• Target credentials—identifies a remote target object. A target
credential is represented by an object of
SecurityLevel2::TargetCredentials type.

• Received credentials—identifies the principal that last sent a
message to the current execution context (for example, the
principal that called a currently executing operation). A
received credential is represented by an object of
SecurityLevel2::ReceivedCredentials type.

How credentials are obtained
Credentials objects are created or obtained as the result of:
• Authentication.
• Asking for a Credentials object from a

SecurityLevel2::Current object or from a
SecurityLevel2::SecurityManager object.

Accessing the credentials attributes
The security attributes associated with a Credentials object can be
obtained by calling the
SecurityLevel2::Credentials::get_attributes() operation, which
returns a list of security attributes (of Security::AttributeList
type).

Standard credentials attributes
Two security attribute types are supported by Orbix (of
Security::SecurityAttributeType type), as follows:
• Security::_Public—present in every Credentials object. The

value of this attribute is always empty.

• Security::AccessId—present only if the Credentials object
represents a valid credential (containing an X.509 certificate
chain). In SSL/TLS, the value of this attribute is the string
form of the subject DN of the first certificate in the certificate
chain.

Note: The _ (underscore) prefix in _Public is needed
to avoid a clash with the IDL keyword, public. The
underscore prefix is, however, omitted from the
corresponding C++ and Java identifiers.
 344 Orbix Security Guide

Orbix-specific credentials attributes
Orbix also enables you to access the X.509 certificate chain
associated with a Credentials object by narrowing the Credentials
object to one of the following interface types:
IT_TLS_API::Credentials, IT_TLS_API::ReceivedCredentials, or
IT_TLS_API::TargetCredentials.

Retrieval method summary
The different credentials types can be retrieved in the following
ways:
• Retrieving own credentials—a client’s own credentials can be

retrieved from the SecurityLevel2::SecurityManager object.
• Retrieving target credentials—a client can retrieve target

credentials (if they are available) by passing the target’s
object reference to the
SecurityLevel2::SecurityManager::get_target_credentials()
operation.

• Retrieving received credentials—a server can retrieve an
authenticated client’s credentials from the
SecurityLevel2::Current object.

Retrieving Own Credentials
This section describes how to retrieve own credentials from the
security manager object and how to access the information
contained in the own credentials.

Retrieving Own Credentials from the Security Manager
This section describes how to retrieve an application’s list of own
credentials from the security manager object.

The security manager object
The SecurityLevel2::SecurityManager object provides access to
ORB-specific security information. The attributes and operations of
the SecurityManager object apply to the current security capsule
(that is, ORB or group of credentials-sharing ORBs) regardless of
the thread of execution.

Security manager operations and
attributes
The attributes and operations on the
SecurityLevel2::SecurityManager object are described in the
CORBA Programmer’s Reference.
Orbix Security Guide 345

C++ example
In C++, you can retrieve an application’s own credentials list as
shown in Example 46.

The preceding code example can be described, as follows:
1. The standard string, SecurityManager, is used to obtain an

initial reference to the SecurityLevel2::SecurityManager object.
2. The list of own credentials is obtained from the

own_credentials attribute of the security manager object.

Java example
In Java, you can retrieve an application’s own credentials list as
shown in Example 47.

Example 46: Retrieving a C++ Application’s Own Credentials List

// C++
...

1 CORBA::Object_var obj =
 my_orb->resolve_initial_references("SecurityManager");
SecurityLevel2::SecurityManager_var security_manager_obj =

SecurityLevel2::SecurityManager::_narrow(obj);
if (CORBA::is_nil(security_manager_obj))
{
 // Error! Deal with failed narrow...
}

2 SecurityLevel2::CredentialsList_var creds_list =
 security_manager_obj->own_credentials();
...

Example 47: Retrieving a Java Application’s Own Credentials List

// Java
...
try {

1 org.omg.CORBA.Object obj =
 my_orb.resolve_initial_references("SecurityManager");
 org.omg.SecurityLevel2.SecurityManager security_manager_obj
 =

org.omg.SecurityLevel2.SecurityManagerHelper.narrow(obj);
}
catch (org.omg.CORBA.ORB.InvalidName e) {
 ...
}
catch (org.omg.CORBA.BAD_PARAM e)
{
 // Error! Deal with failed narrow...
}

2 org.omg.SecurityLevel2.Credentials[] creds_list =
 security_manager_obj.own_credentials();
...
 346 Orbix Security Guide

The preceding code example can be described, as follows:
1. The standard string, SecurityManager, is used to obtain an

initial reference to the SecurityLevel2::SecurityManager object.
2. The list of own credentials is obtained from the

own_credentials attribute of the security manager object.

Parsing SSL/TLS Own Credentials
This subsection explains how to access the information stored in
an SSL/TLS credentials object. If a credentials object obtained
from the security manager is of SSL/TLS type, you can narrow the
credentials to the IT_TLS_API::TLSCredentials type to gain access
to its X.509 certificate chain.

C++ example
In C++, if the own credentials list contains a list of SSL/TLS
credentials, you can access the credentials as follows:

// C++
for (CORBA::ULong i=0; i < creds_list->length(); i++)
{
 // Access the i’th own credentials in the list
 IT_TLS_API::TLSCredentials_var tls_creds =
 IT_TLS_API::TLSCredentials::_narrow(creds_list[i]);
 if (CORBA::is_nil(tls_creds))
 {
 // Error! Deal with failed narrow...
 }

 // Get the first X.509 certificate in the chain
 IT_Certificate::X509Cert_var cert =
 tls_creds->get_x509_cert();

 // Examine the X.509 certificate, etc.
 ...
}

Orbix Security Guide 347

Java example
In Java, if the own credentials list contains a list of SSL/TLS
credentials, you can access the credentials as follows:

Parsing CSIv2 Own Credentials
This subsection explains how to access the information stored in a
CSIv2 credentials object. If a credentials object obtained from the
security manager is of CSIv2 type, you can narrow the credentials
to the IT_CSI::CSICredentials type.

// Java
import com.iona.corba.IT_TLS_API.TLSCredentials;
import com.iona.corba.IT_TLS_API.TLSCredentialsHelper;
import com.iona.corba.IT_Certificate.X509Cert;
...
for (int i=0; i < creds_list.length; i++)
{
 // Access the i’th own credentials in the list
 TLSCredentials tls_creds =
 TLSCredentialsHelper.narrow(creds_list[i]);

 // Get the first X.509 certificate in the chain
 X509Cert cert =
 tls_creds.get_x509_cert();

 // Examine the X.509 certificate, etc.
 ...
}

 348 Orbix Security Guide

Java example
In Java, if the own credentials list contains a list of CSIv2
credentials, you can access the credentials as follows:

Retrieving Target Credentials
This section describes how to retrieve the target credentials from
a particular target object and how to access the information
contained in the target credentials.

Retrieving Target Credentials from an Object Reference

Availability of target credentials
Target credentials are available on the client side only if the client
is configured to authenticate the remote target object. For almost
all SSL/TLS cipher suites and for all SSL/TLS cipher suites
currently supported by Orbix E2A ASP this is the case.
When target credentials are available to the client, they are
implicitly associated with an object reference.

The TargetCredentials interface
The SecurityLevel2::TargetCredentials interface is the standard
type used to represent a target credentials object. It is described
in the CORBA Programmer’s Reference.

// Java
import com.iona.corba.IT_CSI.CSICredentials;
import com.iona.corba.IT_CSI.CSICredentialsHelper;
import com.iona.corba.IT_CSI.CSICredentialsType;
import com.iona.corba.IT_CSI.CSICredentialsType.GSSUPCredentials;
import

com.iona.corba.IT_CSI.CSICredentialsType.PropagatedCredentials;
...
for (int i=0; i < creds_list.length; i++)
{
 // Access the i’th own credentials in the list
 CSICredentials csi_creds =
 CSICredentialsHelper.narrow(creds_list[i]);
 CSICredentialsType csi_type
 = csi_creds.csi_credentials_type()
 if (csi_type == GSSUPCredentials) {
 System.out.println("[" + i + "] = "
 + "credentials for CSIv2 authentication mechanism");
 }

 ...
}

Orbix Security Guide 349

Interaction with rebind policy
If you are going to retrieve target credentials, you should be
aware of the possible interactions with the rebind policy.

C++ example
In C++, you can retrieve the target credentials associated with a
particular object reference, target_ref, as shown in Example 48.

WARNING:If you want to check the target credentials,
you should ensure that transparent rebinding is disabled by
setting the policies:rebind_policy configuration variable to
NO_REBIND. Otherwise, a secure association could close (for
example, if automatic connection management is enabled)
and rebind to a different server without the client being
aware of this.

Example 48: C++ Obtaining Target Credentials

// C++
...
// Given the following prerequisites:
// my_orb - a reference to an ORB instance.
// target_ref - an object reference to a remote, secured object.

CORBA::Object_var obj =
 my_orb->resolve_initial_references("SecurityManager");
SecurityLevel2::SecurityManager_var security_manager_obj =

SecurityLevel2::SecurityManager::_narrow(obj);
if (CORBA::is_nil(security_manager_obj))
{
 // Error! Deal with failed narrow...
}

SecurityLevel2::TargetCredentials_var target_creds =
 security_manager_obj->get_target_credentials(target_ref);
...
 350 Orbix Security Guide

Java example
In Java, you can retrieve the target credentials associated with a
particular object reference, target_ref, as shown in Example 49.

Parsing SSL/TLS Target Credentials
If you want to access the added value Orbix functionality for
SSL/TLS target credentials, perform this additional step after
obtaining the target credentials (otherwise, you can use the
standard SecurityLevel2::Credentials interface).
Narrow the SecurityLevel2::TargetCredentials object to the
IT_TLS_API::TLSTargetCredentials type to gain access to its X.509
certificate.

Example 49: Java Obtaining Target Credentials

// Java
...
// Given the following prerequisites:
// my_orb - a reference to an ORB instance.
// target_ref - an object reference to a remote, secured object.

try {
 org.omg.CORBA.Object obj =
 my_orb.resolve_initial_references("SecurityManager");
 org.omg.SecurityLevel2.SecurityManager security_manager_obj
 =

org.omg.SecurityLevel2.SecurityManagerHelper.narrow(obj);
}
catch (org.omg.CORBA.ORB.InvalidName e) {
 ...
}
catch (org.omg.CORBA.BAD_PARAM e)
{
 // Error! Deal with failed narrow...
}

org.omg.SecurityLevel2.TargetCredentials target_creds =
 security_manager_obj.get_target_credentials(target_ref);
...
Orbix Security Guide 351

C++ example
In C++, after obtaining a target credentials object, target_creds,
as shown in Example 48 on page 350, you can access the SSL/TLS
specific data as follows:

Java example
In Java, after obtaining a target credentials object, target_creds,
as shown in Example 49 on page 351, you can access the SSL/TLS
specific data as follows (exception handling not shown):

// C++
...
IT_TLS_API::TLSTargetCredentials_var tls_target_creds =
 IT_TLS_API::TLSTargetCredentials::_narrow(target_creds);
if (CORBA::is_nil(tls_target_creds))
{
 // Error! Deal with failed narrow...
}

// Get the first X.509 certificate in the chain
IT_Certificate::X509Cert_var cert =
 tls_target_creds->get_x509_cert();

// Examine the X.509 certificate, etc.
...

// Java
import com.iona.corba.IT_TLS_API.TLSTargetCredentials;
import com.iona.corba.IT_TLS_API.TLSTargetCredentialsHelper;
import com.iona.corba.IT_Certificate.X509Cert;
...
TLSTargetCredentials tls_target_creds =
 TLSTargetCredentialsHelper.narrow(target_creds);

// Get the first X.509 certificate in the chain
X509Cert cert =
 tls_target_creds.get_x509_cert();

// Examine the X.509 certificate, etc.
...
 352 Orbix Security Guide

Retrieving Received Credentials
This section describes how to retrieve received credentials from
the current object and how to access the information contained in
the received credentials.

Retrieving Received Credentials from the Current Object

Role of the SecurityLevel2::Current
object
A security-aware server application can obtain information about
the attributes of the calling principal through the
SecurityLevel2::Current object. The SecurityLevel2::Current
object contains information about the execution context.

The SecurityLevel2::Current interface
The SecurityLevel2::Current interface is described in detail in the
CORBA Programmer’s Reference.

C++ example
In C++, to obtain received credentials, perform the steps shown
in Example 50.

Example 50: C++ Retrieving Received Credentials

// C++
...
// In the context of an operation/attribute implementation

CORBA::Object_var obj =
my_orb->resolve_initial_references("SecurityCurrent");

SecurityLevel2::Current_var current_obj =
SecurityLevel2::Current::_narrow(obj);

if (CORBA::is_nil(current_obj))
{
 // Error! Deal with failed narrow...
}

SecurityLevel2::ReceivedCredentials_var recvd_creds =
 current_obj->received_credentials();
...
Orbix Security Guide 353

Java example
In Java, to obtain received credentials, perform the steps shown in
Example 51.

Parsing SSL/TLS Received Credentials
If you want to access the added value Orbix functionality for
SSL/TLS received credentials, perform this additional step
(otherwise, you can use the standard SecurityLevel2::Credentials
interface).
Narrow the SecurityLevel2::ReceivedCredentials object to the
IT_TLS_API::TLSReceivedCredentials type to gain access to its
X.509 certificate (this step is specific to Orbix).

Example 51: Java Retrieving Received Credentials

// Java
...
// In the context of an operation/attribute implementation

try {
 org.omg.CORBA.Object obj =
 my_orb.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current current_obj
 = org.omg.SecurityLevel2.CurrentHelper.narrow(obj);
}
catch (org.omg.CORBA.ORB.InvalidName e) {
 ...
}
catch (org.omg.CORBA.BAD_PARAM e)
{
 // Error! Deal with failed narrow...
}

org.omg.SecurityLevel2.ReceivedCredentials recvd_creds =
 current_obj.received_credentials();
...
 354 Orbix Security Guide

C++ example
In C++, after obtaining a received credentials object, recvd_creds,
(see Example 50 on page 353) you can access the SSL/TLS
specific data as follows:

Java example
In Java, after obtaining a received credentials object, recvd_creds,
(see Example 51 on page 354) you can access the SSL/TLS
specific data as follows (exception handling not shown):

Parsing CSIv2 Received Credentials
If you want to access the added value Orbix functionality for
CSIv2 received credentials, you need to narrow the generic
SecurityLevel2::ReceivedCredentials object to the
IT_CSI::CSIReceivedCredentials type. This subsection explains,
with the help of examples, how to access the CSIv2 received
credentials.

// C++
...
IT_TLS_API::TLSReceivedCredentials_var tls_recvd_creds =
 IT_TLS_API::TLSReceivedCredentials::_narrow(recvd_creds);
if (CORBA::is_nil(tls_recvd_creds))
{
 // Error! Deal with failed narrow...
}

// Get the first X.509 certificate in the chain
IT_Certificate::X509Cert_var cert =
 tls_recvd_creds->get_x509_cert();

// Examine the X.509 certificate, etc.
...

// Java
import com.iona.corba.IT_TLS_API.TLSReceivedCredentials;
import com.iona.corba.IT_TLS_API.TLSReceivedCredentialsHelper;
import com.iona.corba.IT_Certificate.X509Cert;
...
TLSReceivedCredentials tls_recvd_creds =
 TLSReceivedCredentialsHelper.narrow(recvd_creds);

// Get the first X.509 certificate in the chain
X509Cert cert =
 tls_recvd_creds.get_x509_cert();

// Examine the X.509 certificate, etc.
...
Orbix Security Guide 355

CSIv2 received credentials
The CSIv2 received credentials are a special case, because the
CSIv2 specification allows up to three distinct credentials types to
be propagated simultaneously. A CSIv2 received credentials can,
therefore, include one or more of the following credentials types:
• Propagated identity credentials (through the CSIv2 identity

assertion mechanism).
• GSSUP credentials (through the CSIv2 authentication

mechanism).
• Transport credentials (through SSL/TLS).

CSIReceivedCredentials interface
Access to each of the credentials types is provided by the following
attributes of the IT_CSI::CSIReceivedCredentials interface:

Java example
In Java, after obtaining a received credentials object, recvd_creds
(see Example 51 on page 354), you can access the CSIv2 specific
data as shown in Example 52. This example assumes that CSIv2
authentication is enabled, but not CSIv2 identity assertion. Hence,
no attempt is made to access the propagated identity credentials.

// IDL
...
module IT_CSI {
...
 local interface CSIReceivedCredentials :
 IT_TLS_API::TLSReceivedCredentials, CSICredentials
 {
 readonly attribute CSICredentials gssup_credentials;
 readonly attribute CSICredentials
 propagated_identity_credentials;
 readonly attribute SecurityLevel2::Credentials
 transport_credentials;
 };
...
};

Example 52: Java Parsing CSIv2 Received Credentials

// Java
import org.omg.Security.*;
import org.omg.SecurityLevel2.*;

import com.iona.corba.IT_CSI.CSIReceivedCredentials;
import com.iona.corba.IT_CSI.CSIReceivedCredentialsHelper;
import com.iona.corba.IT_CSI.CSICredentialsType;
import com.iona.corba.IT_CSI.CSI_SERVER_AS_POLICY;
import com.iona.corba.util.OrbServicesUtility;
...
 // Get the TLS received credentials

1 CSIReceivedCredentials csi_rec_creds
 356 Orbix Security Guide

The preceding Java example can be explained as follows:
1. This line attempts to narrow the generic received credentials

object, recvd_creds, to the IT_CSI::CSIReceivedCredentials
type. If the received credentials object is not of this type, the
narrow would fail and a CORBA::BAD_PARAM exception would be
thrown.

2. The transport_credentials attribute accessor returns a
reference to the received transport credentials (for example,
SSL/TLS), which form part of the overall CSI received
credentials. If there is no secure transport or if the client is
not configured to send transport credentials, the return value
would be null.

3. This line initializes a Security::AttributeTypeList sequence
(Java org.omg.Security.AttributeType[] array) with a single
attribute type for a Security::AccessId.

4. The attribute type list created in the previous line is passed to
get_attributes() to retrieve the AccessId attribute from the
received transport credentials. The AccessId for the transport

 = CSIReceivedCredentialsHelper.narrow(recvd_creds);
2 Credentials transport_credentials_rec

 = csi_rec_creds.transport_credentials();

 // Select the org.omg.Security.AccessId SecAttribute type
3 AttributeType[] attributes_types =

 {
 new AttributeType(
 new ExtensibleFamily((short)0, (short)1),

AccessId.value
)
 };

4 SecAttribute[] trans_attribute
 = transport_credentials_rec.get_attributes(
 attributes_types
);

5 String trans_access_id = new String(
 trans_attribute[0].value, 0,

trans_attribute[0].value.length
);

 // Get the GSSUP (username/passsword) credentials
6 Credentials gssup_creds = csi_rec_creds.gssup_credentials();

7 SecAttribute[] gssup_attribute
 = gssup_creds.get_attributes(attributes_types);

8 String gssup_access_id = new String(
 gssup_attribute[0].value, 0,

gssup_attribute[0].value.length
);

...

Example 52: Java Parsing CSIv2 Received Credentials
Orbix Security Guide 357

credentials is the distinguished name of the subject of the
X.509 certificate received from the client. In other words, the
AccessId identifies the invoking client.

5. This line converts the AccessId from its native format (an octet
sequence) into a string. The result is a distinguished name in
string format (see “ASN.1 and Distinguished Names” on
page 447).
This step completes the process of identifying the client using
the transport credentials portion of the CSI received
credentials.

6. The gssup_credentials attribute accessor returns a reference
to the received GSSUP credentials. The GSSUP credentials
contain an authenticated username sent by the client using
the CSIv2 authentication mechanism. If the client is not
configured to use the CSIv2 authentication mechanism, the
return value would be null.

7. The get_attributes() operation is invoked to retrieve the
AccessId attribute from the received GSSUP credentials. The
AccessId for the GSSUP credentials is the client’s username.

8. This line converts the AccessId from its native format (an octet
sequence) into a string.
This step completes the process of identifying the client using
the GSSUP portion of the CSI received credentials.

Copying CSI Credentials between Threads
This section considers a three-tier CSI authentication scenario,
where the second-tier server (intermediate server) spawns a
separate thread to make a follow-on operation invocation on a
third-tier server (target server). Because the original invocation
context (that is, thread-specific invocation data) is not available in
the newly-spawned thread, it is necessary for the intermediate
server to copy CSI received credentials from the original thread to
the new thread.
 358 Orbix Security Guide

Three-tier CSI scenario
Figure 70 shows a three-tier CORBA application, featuring a client,
an intermediate server and a target server, where CSI is used to
transmit credentials between the tiers.

Scenario description
The scenario shown in Figure 70 on page 359 is almost identical to
the scenario described in “Securing Three-Tier CORBA Systems
with CSI” on page 57. The difference, in this case, is that the
intermediate server spawns a separate thread to perform a
follow-on invocation on the target server.
The three tiers interact as follows:

Figure 70: Three-Tier CSI Scenario with Copying of CSI Credentials

Stage Description

1 The client invokes an operation on the intermediate
server, passing username, password, and domain
credentials (also known as GSSUP credentials) over the
CSI authentication layer.

2 The GSP plug-in in the intermediate server automatically
authenticates the credentials received from the client, by
calling out to the Orbix security service.
Orbix Security Guide 359

Threading model in the intermediate
server
The intermediate server spawns a thread to make a follow-on
operation invocation on the target server. This enables the
intermediate server to be more responsive, by returning from the
called operation immediately, without having to wait for the
follow-on invocation to finish. A difficulty with this threading
model, however, is that the new thread, lacking the data from the
original invocation context, does not have automatic access to the
CSI received credentials. By default, therefore, the follow-on
operation invocation would be transmitted to the target without a
CSI asserted identity (probably causing the operation to fail).
The solution to this problem is to pass the CSI received credentials
explicitly, from the original thread in the intermediate server to
the newly spawned thread. In summary, the new thread should be
created as follows:
1. In the original thread, obtain the CSI received credentials

object from the security current instance.
2. Pass the CSI received credentials object to the new thread.
3. Within the new thread, call the

IT_CSI::CSICurrent2::set_csi_received_credentials() function
to simulate the receipt of CSI credentials in the current thread
context.

3 The intermediate server spawns a new thread to make a
follow-on operation invocation on the target server. It is
at this point that the current scenario differs from the
one described in “Securing Three-Tier CORBA Systems
with CSI” on page 57.
Making the follow-on invocation from within a new
thread creates complications for the intermediate server,
because the new thread lacks the data from the original
thread’s invocation context. In particular, the new
thread does not automatically have access to the CSI
received credentials. To get around this problem, the
intermediate server explicitly copies the CSI received
credentials from the original thread to the
newly-spawned thread.

4 After the new thread context is initialized with the CSI
received credentials, the follow-on invocation is
automatically accompanied by an asserted identity (the
client’s username), which is transmitted over the CSI
identity layer (the GSP plug-in automatically initializes
outgoing CSI credentials, based on the CSI received
credentials in the current thread context).

Stage Description
 360 Orbix Security Guide

set_csi_received_credentials() function
In order to set CSI received credentials in a newly spawned
thread, call the
IT_CSI::CSICurrent2::set_csi_received_credentials() function,
passing in a reference to an IT_CSI::CSIReceivedCredentials
object. The signature of this function is as follows:

C++ example
Example 53 shows an example of an intermediate server
operation, mid_tier_operation(), which implements the threading
model described previously. That is, the implementation of this
operation extracts the CSI received credentials from the current
execution context and passes these credentials to a new thread,
MyThreadBody.

Example 54 shows the body of a thread that makes a follow-on
invocation on the target server. In order to ensure that a CSI
asserted identity is transmitted to the target, the

// C++
virtual CORBA::Boolean
set_csi_received_credentials(
 IT_CSI::CSIReceivedCredentials_ptr rec_creds
) IT_THROW_DECL((CORBA::SystemException))

Example 53: Mid-Tier Operation that Spawns a New Thread

// C++

void
MidTierImpl::mid_tier_operation()
 IT_THROW_DECL((CORBA::SystemException))
{
 // Obtain a reference to the CSI received credentials.

 CORBA::Object_var obj =
 orb->resolve_initial_references("SecurityCurrent");
 SecurityLevel2::Current_var security2_current =
 SecurityLevel2::Current::_narrow(obj);

 SecurityLevel2::ReceivedCredentials_var rec_creds =
 security2_current->received_credentials();
 IT_CSI::CSIReceivedCredentials_var csi_rec_creds =
 IT_CSI::CSIReceivedCredentials::_narrow(rec_creds);

 // Spawn a new thread to make the follow-on invocation:

 MyThreadBody thread_body = new MyThreadBody(csi_rec_creds);
 // ... run the thread (not shown) ...
 ...
 // Return, without waiting for the sub-thread to finish.

}

Orbix Security Guide 361

MyThreadBody::run() function calls set_csi_received_credentials()
to simulate the receipt of the received credentials within the
current thread context.

Example 54: Body of Thread that Makes a Follow-On Invocation

// C++
#include <it_ts/thread.h>
#include <it_cal/iostream.h>
#include <stdlib.h>
#include <it_cal/strstream.h>

class MyThreadBody : public IT_ThreadBody
{
 public:
 MyThreadBody(
 IT_CSI::CSIReceivedCredentials_ptr csi_rec_creds
)
 : m_csi_rec_creds(

IT_CSI::CSIReceivedCredentials::_duplicate(csi_rec_creds)
)
 {
 // Complete
 }

 virtual void* run()
 {
 CORBA::Object_var obj =
 orb->resolve_initial_references("SecurityCurrent");
 IT_CSI::CSICurrent2_var it_csi_current =
 IT_CSI::CSICurrent2::_narrow(obj);

 // Set CSI received credentials in the current context

 CORBA::Boolean creds_set =
 it_csi_current->set_csi_received_credentials(
 m_csi_rec_creds
);

 // Make the follow-on CORBA operation invocation.

 ...

 IT_CurrentThread::yield();
 return 0;
 }

 private:
 IT_CSI::CSIReceivedCredentials_var m_csi_rec_creds;
};
 362 Orbix Security Guide

Validating Certificates
During secure authentication, Orbix TLS checks the validity of an
application’s certificate. This chapter describes how Orbix validates a
certificate and how you can use the Orbix API to introduce additional
validation to your applications.

Overview of Certificate Validation

Certificate validation
The Orbix API allows you to define a certificate validation policy
that implements custom validation of certificates. During
authentication, Orbix validates a certificate and then passes it to a
certificate validation object, if you have specified a certificate
validation policy. This functionality is useful in systems that have
application-specific requirements for the contents of each
certificate.

Validation process
A server sends its certificate to a client during a TLS handshake,
as follows:
1. The server obtains its certificate (for example, by reading it

from a local file) and transmits it as part of the handshake.
2. The client reads the certificate from the network, checks the

validity of its contents, and either accepts or rejects the
certificate.

Figure 71: Validating a Certificate
 Orbix Security Guide 363

Default validation
The default certificate validation in Orbix checks the following:
• The certificate is a validly constructed X.509 certificate.
• The signature is correct for the certificate.
• The certificate has not expired and is currently valid.
• The certificate chain is validly constructed, consisting of the

peer certificate plus valid issuer certificates up to the
maximum allowed chain depth.

• If the CertConstraintsPolicy has been set, the DN of the
received peer certificate is checked to see if it passes any of
the constraints in the policy conditions. This applies only to
the application certificate, not the CA certificates in the chain.

Custom validation
For some applications, it is necessary to introduce additional
validation. For example, your client programs might check that
each server uses a specific, expected certificate (that is, the
distinguished name matches an expected value). Using Orbix, you
can perform custom validation on certificates by registering an
IT_TLS_API::CertValidatorPolicy and implementing an associated
IT_TLS::CertValidator object.

Example of custom validation
For example, Figure 72 shows the steps followed by Orbix to
validate a certificate when a CertValidatorPolicy has been
registered on the client side:
1. The standard validation checks are applied by Orbix.
2. The certificate is then passed to an IT_TLS::CertValidator

callback object that performs user-specified validation on the
certificate.

3. The user-specified CertValidator callback object can decide
whether to accept or reject the certificate.
 364 Orbix Security Guide

4. Orbix accepts or rejects the certificate.

The Contents of an X.509 Certificate

Purpose of a certificate
An X.509 certificate contains information about the certificate
subject and the certificate issuer (the CA that issued the
certificate).

Certificate syntax
A certificate is encoded in Abstract Syntax Notation One (ASN.1),
a standard syntax for describing messages that can be sent or
received on a network.

Certificate contents
The role of a certificate is to associate an identity with a public key
value. In more detail, a certificate includes:
• X.509 version information.
• A serial number that uniquely identifies the certificate.
• A common name that identifies the subject.
• The public key associated with the common name.
• The name of the user who created the certificate, which is

known as the subject name.
• Information about the certificate issuer.
• The signature of the issuer.

Figure 72: Using a CertValidator Callback
Orbix Security Guide 365

• Information about the algorithm used to sign the certificate.
• Some optional X.509 v3 extensions. For example, an

extension exists that distinguishes between CA certificates
and end-entity certificates.

Parsing an X.509 Certificate

Parsing APIs
Two distinct APIs are used to parse an X.509 certificate,
depending on whether you program in C++ or Java, as follows:
• C++ parsing uses the interfaces defined in the IT_Certificate

IDL module.
• Java parsing uses the java.security.cert package and a

subset of the interfaces in the IT_Certificate IDL module.

C++ parsing
Orbix E2A ASP provides a high-level set of C++ classes that
provide the ability to parse X.509 v3 certificates, including X.509
v3 extensions. When writing your certificate validation functions,
you use these classes to examine the certificate contents.
The C++ parsing classes are mapped from the interfaces
appearing in the IT_Certificate IDL module—see the CORBA
Programmer’s Reference.

Java parsing
Orbix E2A ASP allows you to use the X.509 functionality provided
by the JDK.
If you develop Java applications, only the following IDL interfaces
are relevant:
• IT_Certificate::Certificate
• IT_Certificate::X509Cert
• IT_Certificate::X509CertificateFactory

To access the information in a Java X.509 certificate, perform the
following steps:
1. Extract the DER data from the certificate using the

IT_Certificate::Certificate::encoded_form attribute.
2. Pass the DER data to the

com.iona.corba.tls.cert.CertHelper.bytearray_to_cert()
method to obtain a java.security.cert.Certificate object.

3. Use the java.security.cert package to examine the
certificate.
 366 Orbix Security Guide

Working with distinguished names in
C++
An X.509 certificate uses ASN.1 distinguished name structures to
store information about the certificate issuer and subject. A
distinguished name consists of a series of attribute value
assertions (AVAs). Each AVA associates a value with a field from
the distinguished name.
For example, the distinguished name for a certificate issuer could
be represented in string format as follows:
/C=IE/ST=Co. Dublin/L=Dublin/O=IONA/OU=PD/CN=IONA

In this example, AVAs are separated by the / character. The first
field in the distinguished name is C, representing the country of
the issuer, and the corresponding value is the country code IE.
This example distinguished name contains six AVAs.

Extracting distinguished names from
certificates in C++
Once you have acquired a certificate, the
IT_Certificate::Certificate interface permits you to retrieve
distinguished names using the get_issuer_dn_string() and
get_subject_dn_string() operations. These operations return an
object derived from the IT_Certificate::AVAList interface. The
AVAList interface gives you access to the AVA objects contained in
the distinguished name. For more information on these interfaces,
see the CORBA Programmer’s Reference.

Working with X.509 extensions in C++
Some X.509 v3 certificates include extensions. These extensions
can contain several different types of information. You can use the
IT_Certificate::ExtensionList and IT_Certificate::Extension
interfaces described in the CORBA Programmer’s Reference to
retrieve this information.

Controlling Certificate Validation

Policies used for certificate validation
You can control how your applications handle certificate validation
using the following Orbix policies:

CertConstraintsPolicy Use this policy to apply conditions
that peer X.509 certificates must
meet to be accepted.

CertificateValidatorPolicy Use this policy to create
customized validations of peer
certificate chains.
Orbix Security Guide 367

Certificate Constraints Policy

Constraints applied to distinguished
names
You can impose rules about which peer certificates to accept using
certificate constraints. These are conditions imposed on a received
certificate subject's distinguished name (DN). Distinguished
names are made up of a number of distinct fields, the most
common being Organization Unit (OU) and Common Name (CN).
Constraints are not applied to all certificates in a received
certificate chain, but only to the first in the list, the peer
application certificate.

Alternatives ways to set the constraints
policy
Use the certificate constraints policy to apply these conditions. You
can set this policy in two ways:

Setting the CertConstraintsPolicy by
configuration
You can set the CertConstraintsPolicy in the configuration file. For
example:
"C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"

In this case, the same constraints string applies to all POAs. If you
need different constraints for different POAs then you must supply
the policy at POA creation time. For more details, see “Applying
Constraints to Certificates” on page 276.

Setting the CertConstraintsPolicy by
programming
When you specify a CertConstraintsPolicy object on an ORB
programatically, objects created by that ORB apply the certificate
constraints to all applications that connect to it.

By configuration This allows you to set constraints at the
granularity of an ORB. The same constraints
are applied to both client and server peer
certificates.

By programming This allows you to set constraints by ORB,
thread, POA, or object reference. You can also
differentiate between client and server
certificates when specifying constraints.
 368 Orbix Security Guide

In the following example, the certificate constraints string
specified only allows clients from the Administration Organization
unit to connect. The administration user is the only client that has
a certificate that satisfies this constraint.

C++ example
The following C++ example shows how to set the
CertConstraintsPolicy programmatically:

C++ example description
The preceding C++ example can be explained as follows:
1. Create a PolicyList object.
2. Retrieve the PolicyManager object.
3. Instantiate a CertConstraints data instance (string array).
4. Create a policy using the CORBA::ORB::create_policy()

operation. The first parameter to this operation sets the policy
type to TLS_CERT_CONSTRAINTS_POLICY, and the second is an
Any containing the custom policy.

5. Use the PolicyManager to add the new policy override to the
Orb scope

Note: This certificate constraints policy is only relevant if
the target object supports client authentication.

Example 55: C++ Example of Setting the CertConstraintsPolicy

//C++
...
 CORBA::Any any;

1 CORBA::PolicyList orb_policies;
 orb_policies.length(1);

2 CORBA::Object_var object =

global_orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_mgr =

CORBA::PolicyManager::
 _narrow(object);

3 IT_TLS_API::CertConstraints cert_constraints;
 cert_constraints.length(1);

 cert_constraints[0] =

CORBA::string_dup("C=US,ST=Massachusetts,
 O=ABigBank*,OU=Administration");
 any <<= cert_constraints;

4 orb_policies[0] = global_orb->create_policy(IT_TLS_API::
 TLS_CERT_CONSTRAINTS_POLICY, any);

5 policy_mgr->set_policy_overrides(orb_policies, CORBA::
 ADD_OVERRIDE);
Orbix Security Guide 369

Java example
The following Java example shows how to set the
CertConstraintsPolicy programmatically:

Example 56: Java Example of Setting the CertConstraintsPolicy (Sheet 1 of 2)

// Java
...
// OMG imports
import org.omg.CORBA.ORBPackage.InvalidName;
import org.omg.CORBA.Policy;
import org.omg.CORBA.PolicyManager;
import org.omg.CORBA.PolicyManagerHelper;
import org.omg.CORBA.SetOverrideType;
...
// Orbix specific security imports
import com.iona.corba.IT_TLS_API.CertConstraintsHelper;
import com.iona.corba.IT_TLS_API.TLS_CERT_CONSTRAINTS_POLICY;

public class Server
{
 public static void main(String args[])
 {
 try
 {
 ...
 PolicyManager pol_manager = null;
 try
 {

1 pol_manager = PolicyManagerHelper.narrow(
 orb.resolve_initial_references("ORBPolicyManager")
);
 }
 catch(InvalidName invalid_name)
 {
 System.err.println(
 "x509 initial reference not set. Check plugin list"
);
 System.exit(1);
 }
 catch(org.omg.CORBA.BAD_PARAM exc)
 {
 System.err.println("narrow to PolicyManager failed.");
 System.exit(1);
 }

 org.omg.CORBA.Any policy_value = orb.create_any();
2 String[] constraint =

{"C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"};
3 CertConstraintsHelper.insert(policy_value, constraint);

 Policy[] policies = new Policy[1];
4 policies[0] = orb.create_policy(

 TLS_CERT_CONSTRAINTS_POLICY.value,
 policy_value
);
 370 Orbix Security Guide

Java example description
The preceding Java example can be explained as follows:
1. Retrieve the PolicyManager object.
2. Instantiate a CertConstraints data instance (string array).
3. Insert the constraint into policy_value (an Any).
4. Create a policy using the CORBA::ORB::create_policy()

operation. The first parameter to this operation sets the policy
type to TLS_CERT_CONSTRAINTS_POLICY, and the second is an
Any containing the custom policy.

5. Use the PolicyManager to add the new policy override to the
ORB scope

Certificate Validation Policy

Certificate validation
Your applications can perform customized validation of peer
certificate chains. This enables them, for example, to perform
special validation on x.509 v3 extensions or do automatic
database lookups to validate subject DNs.

Restrictions on custom certificate
validation
The customized certificate validation policy cannot make Orbix
accept a certificate that the system has already decided is invalid.
It can only reject a certificate that would otherwise have been
accepted.

Customizing your applications
To customize your applications, perform the following steps:

Your customized policy is used in addition to the default
CertValidatorPolicy.

5 pol_manager.set_policy_overrides(
 policies,
 SetOverrideType.SET_OVERRIDE
);

Example 56: Java Example of Setting the CertConstraintsPolicy (Sheet 2 of 2)

Step Action

1 Derive a class from the CertValidator signature class.

2 Override the validate_cert_chain() operation.

3 Specify the CertValidatorPolicy on the ORB.
Orbix Security Guide 371

Derive a class from the CertValidator
signature class
In the following example, an implementation class is derived from
the IT_TLS::CertValidator interface:

The class contains your custom version of the
validate_cert_chain() function.

Override the validate_cert_chain()
operation
The following an example custom validation function simply
retrieves a name from a certificate:

//C++
class CustomCertValidatorImpl :
 public virtual IT_TLS::CertValidator,
 public virtual CORBA::LocalObject

{
 public:

 CORBA::Boolean
 validate_cert_chain(
 CORBA::Boolean chain_is_valid,
 const IT_Certificate::X509CertChain& cert_chain,
 const IT_TLS::CertChainErrorInfo& error_info
);
};

Example 57: C++ Example of Overriding validate_cert_chain()

//C++
CORBA::Boolean
CustomCertValidatorImpl::validate_cert_chain(
 CORBA::Boolean chain_is_valid,
 const IT_Certificate::X509CertChain& cert_chain,
 const IT_TLS::CertChainErrorInfo& error_info
)
{
 if (chain_is_valid)
 {
 CORBA::String_var CN;

1 IT_Certificate::X509Cert_var cert = cert_chain[0];

2 IT_Certificate::AVAList_var subject =
 cert->get_subject_avalist();

 IT_Certificate::Bytes* subject_string_name;
3 subject_string_name = subject->convert(IT_Certificate::

 IT_FMT_STRING);

 int len = subject_string_name->length();
 char *str_name = new char[len];
 for (int i = 0; i < len; i++){
 str_name[i] = (char)((*subject_string_name)[i]);
 372 Orbix Security Guide

The preceding C++ example can be explained as follows:
1. The certificate is retrieved from the certificate chain.
2. An AVAList (see “Working with distinguished names in C++”

on page 367) containing the distinguished name is retrieved
from the certificate.

3. The distinguished name is converted to string format.

Specify the CertValidatorPolicy on the
ORB
Once you have devised your custom validation class, create an
instance of it and apply it as a policy to the Orb with the policy
manager, as shown in the following example:

 }
 }
 return chain_is_valid;
}

Example 57: C++ Example of Overriding validate_cert_chain()

Example 58: C++ Example of Setting the CertValidatorPolicy

//C++
int main(int argc, char* argv[])
{
 CORBA::PolicyTypeSeq types;
 CORBA::PolicyList policies(1);
 CORBA::Any policy_any;
 CORBA::Object_var object;
 CORBA::PolicyManager_var policy_mgr;
 IT_TLS::CertValidator_ptr custom_cert_val_obj;

1 policies.length(1);
 types.length(1);

2 types[0] = IT_TLS_API::TLS_CERT_VALIDATOR_POLICY;

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 object =
orb->resolve_initial_references("ORBPolicyManager");

3 policy_mgr = CORBA::PolicyManager::_narrow(object);

 // set cert validator policy at ORB scope
4 custom_cert_val_obj = new CustomCertValidatorImpl;

 policy_any <<= custom_cert_val_obj;
5 policies[0] =

orb->create_policy(IT_TLS_API::TLS_CERT_VALIDATOR_POLICY,
policy_any);

6 policy_mgr->set_policy_overrides(
 policies,
 CORBA::ADD_OVERRIDE
);
 ...
}

Orbix Security Guide 373

As can be seen from the above example, you can apply the new
CertValidator policy to the Orb in the same manner as any other
Orbix2000 policy:
1. Create a CORBA::PolicyList object.
2. Set the type of the appropriate policy slot in the PolicyList to

TLS_CERT_VALIDATOR_POLICY. In this example, the first slot is
chosen.

3. Retrieve the CORBA::PolicyManager object.
4. Instantiate the custom IT_TLS::CertValidator policy object.
5. Create a policy using the CORBA::ORB::create_policy()

operation. The first parameter to this operation sets the policy
type to TLS_CERT_VALIDATOR_POLICY, and the second is a
CORBA::Any containing the custom policy.

6. Use the PolicyManager to add the new policy override to the
ORB scope.

Obtaining an X.509 Certificate

Alternative ways of obtaining certificates
You can obtain a certificate in the following ways:
• Using the IT_TLS_API::TLSCredentials interface, which enables

you to retrieve X.509 certificates from a credentials object—
see “Retrieving Own Credentials” on page 345.

• The IT_Certificate::X509CertChain object that Orbix passes to
the IT_TLS::CertValidator::validate_cert_chain() operation.

• Using the IT_Certificate::X509CertificateFactory interface,
which creates an IT_Certificate::X509Cert object from DER
data.

The certificate can be accessed through the
IT_Certificate::X509Cert interface. For more For more information
on this interface, see the CORBA Programmer’s Reference.
 374 Orbix Security Guide

Part VI
iSF Programming

In this part
This part contains the following chapters:

Developing an iSF Adapter page 377

 376 Orbix Security Guide

Developing an iSF
Adapter
An iSF adapter is a replaceable component of the iSF server module that
enables you to integrate iSF with any third-party enterprise security
service. This chapter explains how to develop and configure a custom iSF
adapter implementation.

iSF Security Architecture
This section introduces the basic components and concepts of the
iSF security architecture, as follows:
• Architecture
• iSF client
• iSF client SDK
• Security Service
• iSF adapter SDK
• iSF adapter
• Example adapters

Architecture
 gives an overview of the Security Service, showing how it fits
into the overall context of a secure system.

iSF client
An iSF client is an application that communicates with the
Security Service to perform authentication and authorization
operations. The following are possible examples of iSF client
applications:
• CORBA servers.
• Artix servers.
• Any server that has a requirement to authenticate its clients.
Hence, an iSF client can also be a server. It is a client only with
respect to the Security Service.

iSF client SDK
The iSF client SDK is the programming interface that enables the iSF
clients to communicate (usually remotely) with the Security
Service.

Note: The iSF client SDK is only used internally. It is
currently not available as a public programming interface.
 Orbix Security Guide 377

 Security Service
The Security Service is a standalone process that acts a thin
wrapper layer around the iSF server module. On its own, the iSF
server module is a Java library which could be accessed only
through local calls. By embedding the iSF server module within
the Security Service, however, it becomes possible to access the
security service remotely.

iSF server module
The iSF server module is a broker that mediates between iSF clients,
which request the security service to perform security operations,
and a third-party security service, which is the ultimate repository
for security data.
The iSF server module has the following special features:
• A replaceable iSF adapter component that enables integration

with a third-party enterprise security service.
• A single sign-on feature with user session caching.

iSF adapter SDK
The iSF adapter SDK is the Java API that enables a developer to
create a custom iSF adapter that plugs into the iSF server module.

iSF adapter
An iSF adapter is a replaceable component of the iSF server module
that enables you to integrate with any third-party enterprise
security service. An iSF adapter implementation provides access
to a repository of authentication data and (optionally)
authorization data as well.

Example adapters
The following standard adapters are provided with :
• Lightweight Directory Access Protocol (LDAP).
• File—a simple adapter implementation that stores

authentication and authorization data in a flat file.

iSF Server Module Deployment Options
The iSF server module, which is fundamentally implemented as a
Java library, can be deployed in one of the following ways:

WARNING:The file adapter is intended for demonstration
purposes only. It is not industrial strength and is not meant
to be used in a production environment.
 378 Orbix Security Guide

• CORBA service.

CORBA service
The iSF server module can be deployed as a CORBA service (
Security Service), as shown in Figure 73. This is the default
deployment model for the iSF server module in . This deployment
option has the advantage that any number of distributed iSF
clients can communicate with the iSF server module over
IIOP/TLS.
With this type of deployment, the iSF server module is packaged
as an application plug-in to the Orbix generic server. The Security
Service can be launched by the itsecurity executable and basic
configuration is set in the iona_services.security scope of the
configuration file.

iSF Adapter Overview
This section provides an overview of the iSF adapter architecture.
The modularity of the iSF server module design makes it relatively
straightforward to implement a custom iSF adapter written in
Java.

Standard iSF adapters
Orbix provides several ready-made adapters that are
implemented with the iSF adapter API. The following standard
adapters are currently available:
• File adapter.
• LDAP adapter.

Figure 73: iSF Server Module Deployed as a CORBA Service
Orbix Security Guide 379

Custom iSF adapters
The iSF server module architecture also allows you to implement
your own custom iSF adapter and use it instead of a standard
adapter.

Main elements of a custom iSF adapter
The main elements of a custom iSF adapter are, as follows:
• Implementation of the ISF Adapter Java interface.
• Configuration of the ISF adapter using the iSF properties file.

Implementation of the ISF Adapter Java
interface
The only code that needs to be written to implement an iSF
adapter is a class to implement the IS2Adapter Java interface. The
adapter implementation class should respond to authentication
requests either by checking a repository of user data or by
forwarding the requests to a third-party enterprise security
service.

Configuration of the ISF adapter using
the iSF properties file
The iSF adapter is configured by setting Java properties in the
is2.properties file. The is2.properties file stores two kinds of
configuration data for the iSF adapter:
• Configuration of the iSF server module to load the adapter—

see “Configuring iSF to Load the Adapter” on page 387.
• Configuration of the adapter itself—see “Setting the Adapter

Properties” on page 388.

Implementing the IS2Adapter Interface
The com.iona.security.is2adapter package defines an IS2Adapter
Java interface, which a developer must implement to create a
custom iSF adapter. The methods defined on the ISFAdapter class
are called by the iSF server module in response to requests
received from iSF clients.
This section describes a simple example implementation of the
IS2Adapter interface, which is capable of authenticating a single
test user with hard-coded authorization properties.

Test user
The example adapter implementation described here permits
authentication of just a single user, test_user. The test user has
the following authentication data:
 380 Orbix Security Guide

Username: test_user
Password: test_password

and the following authorization data:
• The user’s global realm contains the GuestRole role.
• The user’s EngRealm realm contains the EngineerRole role.
• The user’s FinanceRealm realm contains the AccountantRole

role.

iSF adapter example
Example 59 shows a sample implementation of an iSF adapter
class, ExampleAdapter, that permits authentication of a single user.
The user’s username, password, and authorization are
hard-coded. In a realistic system, however, the user data would
probably be retrieved from a database or from a third-party
enterprise security system.

Example 59: Sample ISF Adapter Implementation

import com.iona.security.azmgr.AuthorizationManager;
import com.iona.security.common.AuthenticatedPrincipal;
import com.iona.security.common.Realm;
import com.iona.security.common.Role;
import com.iona.security.is2adapter.IS2Adapter;
import com.iona.security.is2adapter.IS2AdapterException;
import java.util.Properties;
import java.util.ArrayList;
import java.security.cert.X509Certificate;
import org.apache.log4j.*;
import java.util.ResourceBundle;

import java.util.MissingResourceException;

public class ExampleAdapter implements IS2Adapter {

 public final static String EXAMPLE_PROPERTY =
"example_property";

 public final static String ADAPTER_NAME = "ExampleAdapter";

1 private final static String MSG_EXAMPLE_ADAPTER_INITIALIZED
= "initialized";

 private final static String MSG_EXAMPLE_ADAPTER_CLOSED
= "closed";

 private final static String MSG_EXAMPLE_ADAPTER_AUTHENTICATE
= "authenticate";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM =
"authenticate_realm";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK = "authenticateok";

 private final static String MSG_EXAMPLE_ADAPTER_GETAUTHINFO
= "getauthinfo";

 private final static String
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK = "getauthinfook";

 private ResourceBundle _res_bundle = null;
Orbix Security Guide 381

2 private static Logger LOG =
Logger.getLogger(ExampleAdapter.class.getName());

 public ExampleAdapter() {
3 _res_bundle = ResourceBundle.getBundle("ExampleAdapter");

 LOG.setResourceBundle(_res_bundle);
 }

4 public void initialize(Properties props)
 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_INITIALIZED,null);

 // example property
 String propVal = props.getProperty(EXAMPLE_PROPERTY);
 LOG.info(propVal);

 }

5 public void close() throws IS2AdapterException {
 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +

MSG_EXAMPLE_ADAPTER_CLOSED, null);
 }

6 public AuthenticatedPrincipal authenticate(String username,
String password)

 throws IS2AdapterException {

7 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE,new
Object[]{username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

8 ap = getAuthorizationInfo(new
AuthenticatedPrincipal(username));

 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
9 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

Example 59: Sample ISF Adapter Implementation
 382 Orbix Security Guide

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);

 return ap;
 }

10 public AuthenticatedPrincipal authenticate(String realmname,
String username, String password)

 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM,new
Object[]{realmname,username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

11 AuthenticatedPrincipal principal = new
AuthenticatedPrincipal(username);

 principal.setCurrentRealm(realmname);
 ap = getAuthorizationInfo(principal);
 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);

 return ap;
 }

12 public AuthenticatedPrincipal authenticate(X509Certificate
certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

13 public AuthenticatedPrincipal authenticate(String realm,
X509Certificate certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);

Example 59: Sample ISF Adapter Implementation
Orbix Security Guide 383

 }

14 public AuthenticatedPrincipal
getAuthorizationInfo(AuthenticatedPrincipal principal)
throws IS2AdapterException{

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO,new
Object[]{principal.getUserID()},null);

 AuthenticatedPrincipal ap = null;
 String username = principal.getUserID();
 String realmname = principal.getCurrentRealm();

 try{
 if (username.equals("test_user")) {

15 ap = new AuthenticatedPrincipal(username);
16 ap.addRole(new Role("GuestRole", ""));

17 if (realmname == null || (realmname != null &&

realmname.equals("EngRealm")))
 {
 ap.addRealm(new Realm("EngRealm", ""));
 ap.addRole("EngRealm", new

Role("EngineerRole", ""));
 }

18 if (realmname == null || (realmname != null &&
realmname.equals("FinanceRealm")))

 {
 ap.addRealm(new Realm("FinanceRealm",""));
 ap.addRole("FinanceRealm", new

Role("AccountantRole", ""));
 }
 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.USER_NOT_EXIST, new Object[]{username},
null);

 throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.USER_NOT_EXIST, new Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK,null);

 return ap;
 }

19 public AuthenticatedPrincipal getAuthorizationInfo(String

username) throws IS2AdapterException{

Example 59: Sample ISF Adapter Implementation
 384 Orbix Security Guide

The preceding iSF adapter code can be explained as follows:
1. These lines list the keys to the messages from the adapter’s

resource bundle. The resource bundle stores messages used
by the Log4J logger and exceptions thrown in the adapter.

2. This line creates a Log4J logger.
3. This line loads the resource bundle for the adapter.
4. The initialize() method is called just after the adapter is

loaded. The properties passed to the initialize() method,
props, are the adapter properties that the iSF server module
has read from the is2.properties file.
See “Setting the Adapter Properties” on page 388 for more
details.

5. The close() method is called to shut down the adapter. This
gives you an opportunity to clean up and free resources used
by the adapter.

6. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with
username and password parameters.

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

20 public AuthenticatedPrincipal getAuthorizationInfo(String
realmname, String username) throws IS2AdapterException{

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

21 public ArrayList getAllUsers()
 throws IS2AdapterException {

 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);

 }

22 public void logout(AuthenticatedPrincipal ap) throws
IS2AdapterException {

 }
}

Example 59: Sample ISF Adapter Implementation
Orbix Security Guide 385

In this simple demonstration implementation, the
authenticate() method recognizes only one user, test_user,
with password, test_password.

7. This line calls a Log4J method in order to log a localized and
parametrized message to indicate that the authenticate
method has been called with the specified username and
password values. Since all the keys in the resource bundle
begin with the adapter name, the adapter name is prepended
to the key. The l7dlog() method is used because it automatically searches the
resource beundle which was set previously by the loggers setResourceBundle()
method.

8. If authentication is successful; that is, if the name and
password passed in match test_user and test_password, the
getAuthorizationInfo() method is called to obtain an
AuthenticatedPrincipal object populated with all of the user’s
realms and role

9. If authentication fails, an IS2AdapterException is raised with
minor code IS2AdapterException.WRONG_NAME_PASSWORD.
The resource bundle is passed to the exception as it accesses
the exception message from the bundle using the key,
ExampleAdapter.wrongUsernamePassword.

10. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with
realm name, username and password parameters.
This method differs from the preceding username/password
authenticate() method in that only the authorization data for
the specified realm and the global realm are included in the
return value.

11. If authentication is successful, the getAuthorizationInfo()
method is called to obtain an AuthenticatedPrincipal object
populated with the authorization data from the specified realm
and the global realm.

12. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with
an X.509 certificate parameter.

13. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with a
realm name and an X.509 certificate parameter.
This method differs from the preceding certificate
authenticate() method in that only the authorization data for
the specified realm and the global realm are included in the
return value.

14. This method should create an AuthenticatedPrincipal object
for the username user. If a realm is not specified in the
principal, the AuthenticatedPrincipal is populated with all
realms and roles for this user. If a realm is specified in the
principal, the AuthenticatedPrincipal is populated with
authorization data from the specified realm and the global
realm only.

15. This line creates a new AuthenticatedPrincipal object for the
username user to hold the user’s authorization data.

16. This line adds a GuestRole role to the global realm,
IONAGlobalRealm, using the single-argument form of addRole().
Roles added to the global realm implicitly belong to every
named realm as well.
 386 Orbix Security Guide

17. This line checks if no realm is specified in the principal or if the
realm, EngRealm, is specified. If either of these is true, the
following lines add the authorization realm, EngRealm, to the
AuthenticatedPrincipal object and add the EngineerRole role to
the EngRealm authorization realm.

18. This line checks if no realm is specified in the principal or if the
realm, FinanceRealm, is specified. If either of these is true, the
following lines add the authorization realm, FinanceRealm, to
the AuthenticatedPrincipal object and add the AccountantRole
role to the FinanceRealm authorization realm.

19. Since SSO was introduced to , this variant of the
IS2Adapter.getAuthorizationInfo() method has been
deprecated. The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal
principal) should be used instead

20. Since SSO was introduced to , this variant of the
IS2Adapter.getAuthorizationInfo() method has also been
deprecated. The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal
principal) should be used instead

21. The getAllUsers() method is currently not used by the iSF
server module during runtime. Hence, there is no need to
implement this method currently.

22. When the logout() method is called, you can perform cleanup
and release any resources associated with the specified user
principal. The iSF server module calls back on
IS2Adapter.logout() either in response to a user calling
AuthManager.logout() explicitly or after an SSO session has
timed out.

Deploying the Adapter
This section explains how to deploy a custom iSF adapter.

Configuring iSF to Load the Adapter
You can configure the iSF server module to load a custom adapter
by setting the following properties in the iSF server module’s
is2.properties file:
• Adapter name.
• Adapter class.

Adapter name
The iSF server module loads the adapter identified by the
com.iona.isp.adapters property. Hence, to load a custom adapter,
AdapterName, set the property as follows:
com.iona.isp.adapters=AdapterName

Note: In the current implementation, the iSF server
module can load only a single adapter at a time.
Orbix Security Guide 387

Adapter class
The name of the adapter class to be loaded is specified by the
following property setting:
com.iona.isp.adapter.AdapterName.class=AdapterClass

Example adapter
For example, the example adapter provided shown previously can
be configured to load by setting the following properties:
com.iona.isp.adapters=example
com.iona.isp.adapter.example.class=isfadapter.ExampleAdapter

Setting the Adapter Properties
This subsection explains how you can set properties for a specific
custom adapter in the is2.properties file.

Adapter property name format
All configurable properties for a custom file adapter, AdapterName,
should have the following format:
com.iona.isp.adapter.AdapterName.param.PropertyName

Truncation of property names
Adapter property names are truncated before being passed to the
iSF adapter. That is, the com.iona.ispadapter.AdapterName.param
prefix is stripped from each property name.

Example
For example, given an adapter named ExampleAdapter which has
two properties, host and port, these properties would be set as
follows in the is2.properties file:
com.iona.isp.adapter.example.param.example_property="This is an

example property"

Before these properties are passed to the iSF adapter, the
property names are truncated as if they had been set as follows:
example_property="This is an example property"
 388 Orbix Security Guide

Accessing properties from within an iSF
adapter
The adapter properties are passed to the iSF adapter through the
com.iona.security.is2adapter.IS2Adapter.initialize() callback
method. For example:

Loading the Adapter Class and Associated Resource Files
You need to make appropriate modifications to your CLASSPATH to
ensure that the iSF server module can find your custom adapter
class.
In all cases, the location of the file used to configure Log4j logging
can be set using the log4j.configuration property in the
is2.properties file.

CORBA service
By default, the Security Service uses the scope in your Orbix
configuration file (or configuration repository service). Modify the
plugins:java_server:classpath variable to include the directory
containing the compiled adapter class and the adapter’s resource
bundle. The plugins:java_server:classpath variable uses the value
of the SECURITY_CLASSPATH variable.
For example, if the adapter class and adapter resource bundle are
located in the InstallDir\ExampleAdapter directory, you should set the
SECURITY_CLASSPATH variable as follows:

...
public void initialize(java.util.Properties props)
throws IS2AdapterException {
 // Access a property through its truncated name.
 String propVal = props.getProperty("PropertyName")
 ...
}

Orbix Security Guide 389

 390 Orbix Security Guide

Security Variables
This appendix describes variables used by the Orbix Security Framework.
The security infrastructure is highly configurable.

This appendix discusses the following topics:

Applying Constraints to Certificates

Certificate constraints policy
You can use the CertConstraintsPolicy to apply constraints to peer
X.509 certificates by the default CertificateValidatorPolicy.
These conditions are applied to the owner’s distinguished name
(DN) on the first certificate (peer certificate) of the received
certificate chain. Distinguished names are made up of a number of
distinct fields, the most common being Organization Unit (OU) and
Common Name (CN).

Applying Constraints to Certificates page 391

Root Namespace page 393

initial_references page 393

password_retrieval_mechanism page 394

plugins:atli2_tls page 394

plugins:csi page 396

plugins:gsp page 397

plugins:iiop_tls page 400

plugins:kdm page 403

plugins:kdm_adm page 404

plugins:schannel page 405

plugins:security page 405

policies page 405

policies:csi page 409

policies:https page 410

policies:iiop_tls page 414

policies:tls page 421

principal_sponsor page 422

principal_sponsor:csi page 425

principal_sponsor:https page 427

principal_sponsor:iiop_tls page 428
 Orbix Security Guide 391

Configuration variable
You can specify a list of constraints to be used by
CertConstraintsPolicy through the
policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:
policies:iiop_tls:certificate_constraints_policy =

["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=E
arth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth
",

"CN=TheOmnipotentOne"];

Constraint language
These are the special characters and their meanings in the
constraint list:

Example
This is an example list of constraints:
policies:iiop_tls:certificate_constraints_policy = [

"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",
"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

This constraint list specifies that a certificate is deemed acceptable
if and only if it satisfies one or more of the constraint patterns:
If

The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined
in each line until the certificate satisfies one of the constraints.

 * Matches any text. For example:
an* matches ant and anger, but not aunt

[] Grouping symbols.
 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1 or
IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
 392 Orbix Security Guide

Only if the certificate fails all constraints is the certificate deemed
invalid.
Note that this setting can be sensitive about white space used
within it. For example, "CN =" might not be recognized, where
"CN=" is recognized.

Distinguished names
For more information on distinguished names, see the Security
Guide.

Root Namespace
The following configuration variables are defined in the root
namespace:
• itadmin_x509_cert_root

itadmin_x509_cert_root

This configuration variable specifies the directory containing
administrator certificates for the itadmin utility. The administrator
certificates are used specifically for performing KDM
administration tasks
For example, if you choose the directory, X509Deploy/certs/admin,
for your itadmin certificates, you would set itadmin_x509_cert_root
as follows:

To administer the KDM, you must override the ordinary certificate
with an administrator certificate, using the itadmin admin_logon
subcommand.
See “KDM Administration” on page 286 for details.

initial_references
The initial_references namespace contains the following
configuration variables:
• IT_TLS_Toolkit:plugin

IT_TLS_Toolkit:plugin

This configuration variable enables you to specify the underlying
SSL/TLS toolkit to be used by . It is used in conjunction with the
plugins:openssl_toolkit:shlibname,
plugins:schannel_toolkit:shlib_name (Windows only) and
plugins:systemssl_toolkit:shlib_name (z/OS only) configuration
variables to implement SSL/TLS toolkit replaceability.
The default is the OpenSSL toolkit.

Orbix Configuration File
itadmin_x509_cert_root = "X509Deploy/certs/admin";
...
Orbix Security Guide 393

For example, to specify that an application should use the
Schannel SSL/TLS toolkit, you would set configuration variables as
follows:

password_retrieval_mechanism
The configuration variables in the password_retrieval_mechanism
namespace are intended to be used only by the Orbix services.
The following variables are defined in this namespace:
• inherit_from_parent
• use_my_password_as_kdm_password

inherit_from_parent

If an application forks a child process and this variable is set to
true, the child process inherits the parent’s password through the
environment.

use_my_password_as_kdm_password

This variable should be set to true only in the scope of the KDM
plug-ins container. From a security perspective it is dangerous to
do otherwise as the password could be left in cleartext within the
process.
The KDM is a locator plug-in and so it is natural that it should use
the locator's identity as its identity. However, it requires a
password to encrypt its security information. By default the KDM
requests such a password from the user during locator startup and
this is separate from the locator password. The locator password
would be used if this variable is set to true.

plugins:atli2_tls
The plugins:atli2_tls namespace contains the following
variables:
• cert_store_protocol
• cert_store_provider
• kmf_algorithm
• tmf_algorithm
• use_jsse_tk (This variable is no longer required)

cert_store_protocol

(Java only) This variable is used in conjunction with
policies:tls:use_external_cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable as
the protocol argument to the

initial_references:IT_TLS_Toolkit:plugin =
"schannel_toolkit";

plugins:schannel_toolkit:shlib_name = "it_tls_schannel";
 394 Orbix Security Guide

javax.net.ssl.SSLContext.getInstance() method. To obtain a list of
possible values for this variable, consult the documentation for
your third-party JSSE/JCS security provider.
For example, if your application is using the Oracle JSSE security
provider, you can configure the certificate store to use the SSLv3
protocol as follows:
plugins:atli2_tls:cert_store_protocol = "SSLv3";

cert_store_provider

(Java only) This variable is used in conjunction with
policies:tls:use_external_cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable
as the provider argument to the
javax.net.ssl.SSLContext.getInstance() method. To obtain a list of
possible values for this variable, consult the documentation for
your third-party JSSE/JCS security provider.
For example, if your application is using the Oracle JSSE security
provider, you can configure the certificate store provider as
follows:
plugins:atli2_tls:cert_store_provider = "SunJSSE";

kmf_algorithm

(Java only) This variable is used in conjunction with
policies:tls:use_external_cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable as
the algorithm argument to the
javax.net.ssl.KeyManagerFactory.getInstance() method, overriding
the value of the ssl.KeyManagerFactory.algorithm property set in
the java.security file. To obtain a list of possible values for this
variable, consult the documentation for your third-party JSSE/JCS
security provider.
For example, if your application is using the Oracle JSSE security
provider, you can configure the key manager factory to use the
following algorithm:
plugins:atli2_tls:kmf_algorithm = "SunX509";

tmf_algorithm

(Java only) This variable is used in conjunction with
policies:tls:use_external_cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable as
the algorithm argument to the
javax.net.ssl.TrustManagerFactory.getInstance() method,
overriding the value of the ssl.TrustManagerFactory.algorithm
property set in the java.security file. To obtain a list of possible
values for this variable, consult the documentation for your
third-party JSSE/JCS security provider.
For example, if your application is using the Oracle JSSE security
provider, you can configure the trust manager factory to use the
following algorithm:
plugins:atli2_tls:tmf_algorithm = "SunX509";
Orbix Security Guide 395

use_jsse_tk

(Java only) This variable is no longer needed; if remaining in the
file from a previous version, it has no effect. However it is set,
uses the JSSE/JCE architecture to implement SSL/TLS security.

plugins:csi
The plugins:csi namespace includes variables that specify
settings for Common Secure Interoperability version 2 (CSIv2):
• allow_csi_reply_without_service_context.
• ClassName.
• shlib_name.
• use_legacy_policies.

allow_csi_reply_without_service_context

(Java only) Boolean variable that specifies whether a CSIv2 client
enforces strict checking for the presence of a CSIv2 service
context in the reply it receives from the server.
Up until Orbix 6.2 SP1, the Java implementation of the CSIv2
protocol permitted replies from a CSIv2 enabled server even if the
server did not send a CSIv2 response. From Orbix 6.2 SP1
onwards, this variable determines whether or not the client checks
for a CSIv2 response.
If the variable is set to false, the client enforces strict checking on
the server reply. If there is no CSIv2 service context in the reply,
a NO_PERMISSION exception with the minor code,
BAD_SAS_SERVICE_CONTEXT, is thrown by the client.
If the variable is set to true, the client does not enforce strict
checking on the reply. If there is no CSIv2 service context in the
reply, the client does not raise an exception.
Default is true.

ClassName

ClassName specifies the Java class that implements the csi plugin.
The default setting is:
plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";

This configuration setting makes it possible for the core to load
the plugin on demand. Internally, the core uses a Java class
loader to load and instantiate the csi class. Plugin loading can be
initiated either by including the csi in the orb_plugins list, or by
associating the plugin with an initial reference.

shlib_name

shlib_name identifies the shared library (or DLL in Windows)
containing the csi plugin implementation.
plugins:csi:shlib_name = "it_csi_prot";
 396 Orbix Security Guide

The csi plug-in becomes associated with the it_csi_prot shared
library, where it_csi_prot is the base name of the library. The
library base name, it_csi_prot, is expanded in a
platform-dependent manner to obtain the full name of the library
file.

use_legacy_policies

Boolean variable that specifies whether the application can be
programmed using the new CSIv2 policy types or the older
(legacy) CSIv2 policy types.
If plugins:csi:use_legacy_policies is set to true, you can program
CSIv2 using the following policies:
• IT_CSI::AuthenticationServicePolicy
• IT_CSI::AttributeServicePolicy
If plugins:csi:use_legacy_policies is set to false, you can
program CSIv2 using the following policies:
• IT_CSI::AttributeServiceProtocolClient
• IT_CSI::AttributeServiceProtocolServer
Default is false.

plugins:gsp
The plugins:gsp namespace includes variables that specify
settings for the Generic Security Plugin (GSP). This provides
authorization by checking a user’s roles against the permissions
stored in an action-role mapping file. It includes the following:
• accept_asserted_authorization_info

• action_role_mapping_file

• assert_authorization_info

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• ClassName

• enable_authorization

• enable_gssup_sso

• enable_user_id_logging

• enable_x509_sso

• enforce_secure_comms_to_sso_server

• enable_security_service_cert_authentication

• retrieve_isf_auth_principal_info_for_all_realms

• sso_server_certificate_constraints

• use_client_load_balancing

accept_asserted_authorization_info

If false, SAML data is not read from incoming connections. Default
is true.
Orbix Security Guide 397

action_role_mapping_file

Specifies the action-role mapping file URL. For example:
plugins:gsp:action_role_mapping_file =

"file:///my/action/role/mapping";

assert_authorization_info

If false, SAML data is not sent on outgoing connections. Default is
true.

authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.
A value of -1 (the default) means unlimited size. A value of 0
means disable the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the security service on the next call from
that user. The cache timeout should be configured to be smaller
than the timeout set in the is2.properties file (by default, that
setting is is2.sso.session.timeout=600).
A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which
a server belongs. The value of this variable determines which of a
user's roles are considered when making an access control
decision.
For example, consider a user that belongs to the ejb-developer
and corba-developer roles within the Engineering realm, and to the
ordinary role within the Sales realm. If you set
plugins:gsp:authorization_realm to Sales for a particular server,
only the ordinary role is considered when making access control
decisions (using the action-role mapping file).

ClassName

ClassName specifies the Java class that implements the gsp plugin.
This configuration setting makes it possible for the core to load
the plugin on demand. Internally, the core uses a Java class
loader to load and instantiate the gsp class. Plugin loading can be
initiated either by including the csi in the orb_plugins list, or by
associating the plugin with an initial reference.

enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.
 398 Orbix Security Guide

Default is true.

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP)
when set to true.

enable_user_id_logging

A boolean variable that enables logging of user IDs on the server
side. Default is false.
Up until the release of Orbix 6.1 SP1, the GSP plug-in would log
messages containing user IDs. For example:
[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]

(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose
user IDs in the Orbix log. From Orbix 6.2 onward, the default
behavior of the GSP plug-in is changed, so that user IDs are not
logged by default. To restore the pre-Orbix 6.2 behavior and log
user IDs, set this variable to true.

enable_x509_sso

Enables certificate-based SSO when set to true.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login
service when set to true. When this setting is true, the value of
the SSL/TLS client secure invocation policy does not affect the
connection between the client and the login service.
Default is true.

enable_security_service_cert_authentication

A boolean GSP setting that enables X.509 certificate-based
authentication on the server side using the security service.
Default is false.

retrieve_isf_auth_principal_info_for_all_realms

A boolean setting that determines whether the GSP plug-in
retrieves role and realm data for all realms, when authenticating
user credentials. If true, the GSP plug-in retrieves the user’s role
and realm data for all realms; if false, the GSP plug-in retrieves
the user’s role and realm data only for the realm specified by
plugins:gsp:authorization_realm.
Setting this variable to false can provide a useful performance
optimization in some applications. But you must take special care
to configure the application correctly for making operation
invocations between different realms.
Default is true.
Orbix Security Guide 399

sso_server_certificate_constraints

A special certificate constraints policy that applies only to the
SSL/TLS connection between the client and the SSO login server.
For details of the pattern constraint language, see “Applying
Constraints to Certificates” on page 391.

use_client_load_balancing

A boolean variable that enables load balancing over a cluster of
security services. If an application is deployed in a domain that
uses security service clustering, the application should be
configured to use client load balancing (in this context, client means a
client of the security service). See also
policies:iiop_tls:load_balancing_mechanism.
Default is true.

plugins:https
The plugins:https namespace contains the following variable:
• ClassName

ClassName

(Java only) This variable specifies the class name of the https
plug-in implementation. For example:
plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";

plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:
• buffer_pool:recycle_segments
• buffer_pool:segment_preallocation
• buffer_pools:max_incoming_buffers_in_pool
• buffer_pools:max_outgoing_buffers_in_pool
• cert_expiration_warning_days
• delay_credential_gathering_until_handshake
• enable_iiop_1_0_client_support
• enable_warning_for_approaching_cert_expiration
• incoming_connections:hard_limit
• incoming_connections:soft_limit
• outgoing_connections:hard_limit
• outgoing_connections:soft_limit
• own_credentials_warning_cert_constraints
• tcp_listener:reincarnate_attempts
• tcp_listener:reincarnation_retry_backoff_ratio
• tcp_listener:reincarnation_retry_delay
 400 Orbix Security Guide

buffer_pool:recycle_segments

(Java only) When this variable is set, the iiop_tls plug-in reads
this variable’s value instead of the
plugins:iiop:buffer_pool:recycle_segments variable’s value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the iiop_tls plug-in reads
this variable’s value instead of the
plugins:iiop:buffer_pool:segment_preallocation variable’s value.

buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads
this variable’s value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable’s
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads
this variable’s value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable’s
value.

cert_expiration_warning_days

(Since Orbix 6.2 SP1) Specifies the threshold for the number of
days left to certificate expiration, before Orbix issues a warning. If
the application’s own certificate is due to expire in less than the
specified number of days, Orbix issues a warning message to the
log.
Default is 31 days.
See also the following related configuration variables:
plugins:iiop_tls:enable_warning_for_approaching_cert_expiration
plugins:iiop_tls:own_credentials_warning_cert_constraints

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable
provides an alternative to using the principal_sponsor variables to
specify an application’s own certificate. When this variable is set to
true and principal_sponsor:use_principal_sponsor is set to false,
the client delays sending its certificate to a server. The client will
wait until the server explicitly requests the client to send its
credentials during the SSL/TLS handshake.
This configuration variable can be used in conjunction with the
plugins:schannel:prompt_with_credential_choice configuration
variable.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of SSL/TLS
applications with legacy IIOP 1.0 SSL/TLS servers, which do not
support IIOP 1.1.
Orbix Security Guide 401

The default value is false. When set to true, SSL/TLS searches
secure target IIOP 1.0 object references for legacy IIOP 1.0
SSL/TLS tagged component data, and attempts to connect on the
specified port.

enable_warning_for_approaching_cert_expiration

(Since Orbix 6.2 SP1) Enables warnings to be sent to the log, if an
application’s own ceritificate is imminently about to expire. The
boolean value can have the following values: true, enables the
warning feature; false, disables the warning feature.
Default is true.
See also the following related configuration variables:
plugins:iiop_tls:cert_expiration_warning_days
plugins:iiop_tls:own_credentials_warning_cert_constraints

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side)
connections permitted to IIOP. IIOP does not accept new
connections above this limit. Defaults to -1 (disabled).
When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:incoming_connections:hard_limit
variable’s value.
Please see the chapter on ACM in the CORBA Programmer’s Guide
for further details.

incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin
closing incoming (server-side) connections. Defaults to -1
(disabled).
When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:incoming_connections:soft_limit
variable’s value.
Please see the chapter on ACM in the CORBA Programmer’s Guide
for further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:outgoing_connections:hard_limit
variable’s value.

outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:outgoing_connections:soft_limit
variable’s value.

Note: This variable will not be necessary for most users.
 402 Orbix Security Guide

own_credentials_warning_cert_constraints

(Since Orbix 6.2 SP1) Set this certificate constraints variable, if
you would like to avoid deploying certain certificates as an own
certificate. A warning is issued, if the own certificate’s subject DN
matches the constraints specified by this variable (see “Applying
Constraints to Certificates” on page 391 for details of the
constraint language). For example, you might want to generate a
warning in case you accidentally deployed an Orbix demonstration
certificate.
Default is an empty list, [].

tcp_listener:reincarnate_attempts

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnate_attempts specifies the
number of times that a Listener recreates its listener socket after
recieving a SocketException.
Sometimes a network error may occur, which results in a listening
socket being closed. On Windows, you can configure the listener
to attempt a reincarnation, which enables new connections to be
established. This variable only affects Java and C++ applications
on Windows. Defaults to 0 (no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_delay specifies
a delay between reincarnation attempts. Data type is long.
Defaults to 0 (no delay).

tcp_listener:reincarnation_retry_delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_backoff_ratios
pecifies the degree to which delays between retries increase from
one retry to the next. Datatype is long. Defaults to 1.

plugins:kdm
The plugins:kdm namespace contains the following variables:
• cert_constraints
• iiop_tls:port
• checksums_optional

Note: This warning is not related to certificate expiration
and works independently of the certificate expiration
warning.
Orbix Security Guide 403

cert_constraints

Specifies the list of certificate constraints for principals attempting
to open a connection to the KDM server plug-in. See “Applying
Constraints to Certificates” on page 391 for a description of the
certificate constraint syntax.
To protect the sensitive data stored within it, the KDM applies
restrictions on which entities are allowed talk to it. A security
administrator should choose certificate constraints that restrict
access to the following principals:
• The locator service (requires read-only access).
• The kdm_adm plug-in, which is normally loaded into the itadmin

utility (requires read-write access).
All other principals should be blocked from access. For example,
you might define certificate constraints similar to the following:
plugins:kdm:cert_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Secure admin*",
"C=US,ST=Boston,O=ABigBank*,CN=Orbix2000 Locator Service*"]

Your choice of certificate constraints will depend on the naming
scheme for your subject names.

iiop_tls:port

Specifies the well known IP port on which the KDM server listens
for incoming calls.

checksums_optional

When equal to false, the secure information associated with a
server must include a checksum; when equal to true, the presence
of a checksum is optional. Default is false.

plugins:kdm_adm
The plugins:kdm_adm namespace contains the following variable:
• cert_constraints

cert_constraints

Specifies the list of certificate constraints that are applied when
the KDM administration plug-in authenticates the KDM server. See
“Applying Constraints to Certificates” on page 391 for a
description of the certificate constraint syntax.
The KDM administration plug-in requires protection against attack
from applications that try to impersonate the KDM server. A
security administrator should, therefore, choose certificate
constraints that restrict access to trusted KDM servers only. For
example, you might define certificate constraints similar to the
following:
plugins:kdm_adm:cert_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=IT_KDM*"];

Your choice of certificate constraints will depend on the naming
scheme for your subject names.
 404 Orbix Security Guide

plugins:schannel
The plugins:schannel namespace contains the following variable:
• prompt_with_credential_choice

prompt_with_credential_choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay_credential_gathering_until_handshake
variable to true on the client side allows the user to choose which
credentials to use for the server connection. The choice of
credentials offered to the user is based on the trusted CAs sent to
the client in an SSL/TLS handshake message.
If prompt_with_credential_choice is set to false, runtime chooses
the first certificate it finds in the certificate store that meets the
applicable constraints.
The certificate prompt can be replaced by implementing an IDL
interface and registering it with the ORB.

plugins:security
The plugins:security namespace contains the following variable:
• share_credentials_across_orbs

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs.
Normally, when you specify an own SSL/TLS credential (using the
principal sponsor or the principal authenticator), the credential is
available only to the ORB that created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are
configured to share credentials.
See also principal_sponsor:csi:use_existing_credentials for
details of how to enable sharing of CSI credentials.
Default is false.

policies
The policies namespace defines the default CORBA policies for an
ORB. Many of these policies can also be set programmatically from
within an application. SSL/TLS-specific variables in the policies
namespace include:
• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version
Orbix Security Guide 405

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

(See also
policies:iiop_tls:allow_unauthenticated_clients_policy.)
A generic variable that sets the policy for iiop_tls. The variable
prefixed by policies:iiop_tls takes precedence over this generic
variable.

certificate_constraints_policy

(See also policies:iiop_tls:certificate_constraints_policy and
policies:https:certificate_constraints_policy.)
A generic variable that sets this policy both for iiop_tls and https.
The variables prefixed by policies:iiop_tls and policies:https
take precedence over this generic variable.

client_secure_invocation_policy:requires

(See also
policies:iiop_tls:client_secure_invocation_policy:requires and
policies:https:client_secure_invocation_policy:requires.)
A generic variable that sets this policy both for iiop_tls and https.
The variables prefixed by policies:iiop_tls and policies:https
take precedence over this generic variable.

client_secure_invocation_policy:supports

(See also
policies:iiop_tls:client_secure_invocation_policy:supports and
policies:https:client_secure_invocation_policy:supports.)
A generic variable that sets this policy both for iiop_tls and https.
The variables prefixed by policies:iiop_tls and policies:https
take precedence over this generic variable.

max_chain_length_policy

(See also policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy.)
max_chain_length_policy specifies the maximum certificate chain
length that an ORB will accept. The policy can also be set
programmatically using the IT_TLS_API::MaxChainLengthPolicy
CORBA policy. Default is 2.

Note: The max_chain_length_policy is not currently
supported on the z/OS platform.
 406 Orbix Security Guide

mechanism_policy:accept_v2_hellos

(See also policies:iiop_tls:mechanism_policy:accept_v2_hellos
and policies:https:mechanism_policy:accept_v2_hellos.)
The accept_v2_hellos policy is a special setting that facilitates
interoperability with an application deployed on the z/OS
platform. When true, the application accepts V2 client hellos, but
continues the handshake using either the SSL_V3 or TLS_V1
protocol. When false, the application throws an error, if it
receives a V2 client hello. The default is false.
For example:
policies:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

(See also policies:iiop_tls:mechanism_policy:ciphersuites and
policies:https:mechanism_policy:ciphersuites.)
mechanism_policy:ciphersuites specifies a list of cipher suites for
the default mechanism policy. One or more of the cipher suites
shown in Table 26 can be specified in this list.

If you do not specify the list of cipher suites explicitly, all of the
null encryption ciphers are disabled and all of the non-export
strength ciphers are supported by default.

mechanism_policy:protocol_version

(See also policies:iiop_tls:mechanism_policy:protocol_version
and policies:https:mechanism_policy:protocol_version.)
mechanism_policy:protocol_version specifies the list of protocol
versions used by a security capsule (ORB instance). The list can
include one or more of the values SSL_V3 and TLS_V1. For example:

Table 26: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication

Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

policies:mechanism_policy:protocol_version=["TLS_V1",
"SSL_V3"];
Orbix Security Guide 407

session_caching_policy

session_caching_policy specifies whether an ORB caches the
session information for secure associations when acting in a client
role, a server role, or both. The purpose of session caching is to
enable closed connections to be re-established quickly. The
following values are supported:
CACHE_NONE(default)
CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

target_secure_invocation_policy:requires

(See also
policies:iiop_tls:target_secure_invocation_policy:requires and
policies:https:target_secure_invocation_policy:requires.)
target_secure_invocation_policy:requires specifies the minimum
level of security required by a server. The value of this variable is
specified as a list of association options.

target_secure_invocation_policy:supports

(See also
policies:iiop_tls:target_secure_invocation_policy:supports and
policies:https:target_secure_invocation_policy:supports.)
supports specifies the maximum level of security supported by a
server. The value of this variable is specified as a list of
association options. This policy can be upgraded programmatically
using either the QOP or the EstablishTrust policies.

trusted_ca_list_policy

(See also policies:iiop_tls:trusted_ca_list_policy and
policies:https:trusted_ca_list_policy.)
trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The
aggregate of the CAs in all of the listed files is the set of trusted
CAs.
For example, you might specify two files containing CA lists as
follows:

Note: In accordance with CORBA security, this policy
cannot be downgraded programmatically by the
application.

policies:trusted_ca_list_policy =
["install_dir/asp/version/etc/tls/x509/ca/ca_list1.pem",
"install_dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];
 408 Orbix Security Guide

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into
different lists and to select a particular set of CAs for a security
domain by choosing the appropriate CA lists.

policies:csi
The policies:csi namespace includes variables that specify
settings for Common Secure Interoperability version 2 (CSIv2):
• attribute_service:backward_trust:enabled

• attribute_service:client_supports

• attribute_service:target_supports

• auth_over_transport:authentication_service

• auth_over_transport:client_supports

• auth_over_transport:server_domain_name

• auth_over_transport:target_requires

• auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that
specifies the association options supported by the CSIv2 attribute
service (principal propagation). The only assocation option that
can be specified is IdentityAssertion. This policy is normally
specified in an intermediate server so that it propagates CSIv2
identity tokens to a target server. For example:
policies:csi:attribute_service:client_supports =

["IdentityAssertion"];

attribute_service:target_supports

attribute_service:target_supports is a server-side policy that
specifies the association options supported by the CSIv2 attribute
service (principal propagation). The only assocation option that
can be specified is IdentityAssertion. For example:
policies:csi:attribute_service:target_supports =

["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements
the IT_CSI::AuthenticateGSSUPCredentials IDL interface. The
authentication service is implemented as a callback object that
plugs into the CSIv2 framework on the server side. By replacing
this class with a custom implementation, you could potentially
implement a new security technology domain for CSIv2.
By default, if no value for this variable is specified, the Java CSI
plug-in uses a default authentication object that always returns
false when the authenticate() operation is called.
Orbix Security Guide 409

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that
specifies the association options supported by CSIv2
authentication over transport. The only assocation option that can
be specified is EstablishTrustInClient. For example:
policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which
this server application belongs. The iSF security domains are
administered within an overall security technology domain.
The value of the server_domain_name variable will be embedded in
the IORs generated by the server. A CSIv2 client about to open a
connection to this server would check that the domain name in its
own CSIv2 credentials matches the domain name embedded in
the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authentication
over transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:
policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2
authentication over transport. The only assocation option that can
be specified is EstablishTrustInClient. For example:
policies:csi:auth_over_transport:target_supports =

["EstablishTrustInClient"];

policies:https
The policies:https namespace contains variables used to
configure the https plugin.
The policies:https namespace contains the following variables:
• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• target_secure_invocation_policy:requires
 410 Orbix Security Guide

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

certificate_constraints_policy

A list of constraints applied to peer certificates—see “Applying
Constraints to Certificates” on page 391 for the syntax of the
pattern constraint language. If a peer certificate fails to match any
of the constraints, the certificate validation step will fail.
The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The
value of this variable is specified as a list of association options—
see the Orbix Security Guide for details on how to set SSL/TLS
association options.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a
client. The value of this variable is specified as a list of association
options—see the Orbix Security Guide for details on how to set
SSL/TLS association options.

max_chain_length_policy

The maximum certificate chain length that an ORB will accept (see
the discussion of certificate chaining in the Orbix Security Guide).
The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This HTTPS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.
The accept_v2_hellos policy is a special setting that facilitates
HTTPS interoperability with certain Web browsers. Many Web
browsers send SSL V2 client hellos, because they do not know
what SSL version the server supports.

Note: In accordance with CORBA security, this policy
cannot be downgraded programmatically by the
application.

Note: This policy can be upgraded programmatically using
either the QOP or the EstablishTrust policies.

Note: The max_chain_length_policy is not currently
supported on the z/OS platform.
Orbix Security Guide 411

When true, the server accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When
false, the server throws an error, if it receives a V2 client hello.
The default is true.

For example:
policies:https:mechanism_policy:accept_v2_hellos = "true";

Note: This default value is deliberately different from the
policies:iiop_tls:mechanism_policy:accept_v2_hellos
default value.
 412 Orbix Security Guide

mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy.
One or more of the following cipher suites can be specified in this
list:

If you do not specify the list of cipher suites explicitly, all of the
null encryption ciphers are disabled and all of the non-export
strength ciphers are supported by default.

mechanism_policy:protocol_version

This HTTPS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.
Specifies the list of protocol versions used by a security capsule
(ORB instance). Can include one or more of the following values:
TLS_V1
SSL_V3

The default setting is SSL_V3 and TLS_V1.
For example:
policies:https:mechanism_policy:protocol_version = ["TLS_V1",

"SSL_V3"];

session_caching_policy

When this policy is set, the https plug-in reads this policy’s value
instead of the policies:session_caching policy’s value (C++) or
policies:session_caching_policy policy’s value (Java).

target_secure_invocation_policy:requires

Specifies the minimum level of security required by a server. The
value of this variable is specified as a list of association options—
see the Orbix Security Guide for more details about association
options.
In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

Table 27: Mechanism Policy Cipher Suites

Null Encryption,
Integrity and

Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
Orbix Security Guide 413

target_secure_invocation_policy:supports

Specifies the maximum level of security supported by a server.
The value of this variable is specified as a list of association
options—see the Orbix Security Guide for more details about
association options.
This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which
contains a concatenated list of CA certificates in PEM format. The
aggregate of the CAs in all of the listed files is the set of trusted
CAs.
For example, you might specify two files containing CA lists as
follows:
policies:trusted_ca_list_policy =

["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into
different lists and to select a particular set of CAs for a security
domain by choosing the appropriate CA lists.

policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting
affect the iiop_tls plugin. It contains the following variables:
• allow_unauthenticated_clients_policy

• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• client_version_policy

• connection_attempts

• connection_retry_delay

• load_balancing_mechanism

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• server_address_mode_policy:local_domain

• server_address_mode_policy:local_hostname

• server_address_mode_policy:port_range

• server_address_mode_policy:publish_hostname
 414 Orbix Security Guide

• server_version_policy

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• tcp_options_policy:no_delay

• tcp_options_policy:recv_buffer_size

• tcp_options_policy:send_buffer_size

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a
client to establish a secure connection without sending a
certificate. Default is false.
This configuration variable is applicable only in the special case
where the target secure invocation policy is set to require
NoProtection (a semi-secure server).

buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:buffer_sizes_policy:default_buffer_size policy’s
value.
buffer_sizes_policy:default_buffer_size specifies, in bytes, the
initial size of the buffers allocated by IIOP. Defaults to 16000. This
value must be greater than 80 bytes, and must be evenly divisible
by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:buffer_sizes_policy:max_buffer_size policy’s value.
buffer_sizes_policy:max_buffer_size specifies the maximum buffer
size permitted by IIOP, in kilobytes. Defaults to 512. A value of -1
indicates unlimited size. If not unlimited, this value must be
greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion
of certificate constraints in the security guide for the syntax of the
pattern constraint language. If a peer certificate fails to match any
of the constraints, the certificate validation step will fail.
The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.
Orbix Security Guide 415

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The
value of this variable is specified as a list of association options—
see the Security Guide for more details about association options.
In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a
client. The value of this variable is specified as a list of association
options—see the Security Guide for more details about
association options.
This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by
clients. A client uses the version of IIOP specified by this variable,
or the version specified in the IOR profile, whichever is lower.
Valid values for this variable are: 1.0, 1.1, and 1.2.
For example, the following file-based configuration entry sets the
server IIOP version to 1.1.

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts
used when creating a connected socket using a Java application.
Defaults to 5.

connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

load_balancing_mechanism

Specifies the load balancing mechanism for the client of a security
service cluster (see also plugins:gsp:use_client_load_balancing).
In this context, a client can also be an server. This policy only
affects connections made using IORs that contain multiple
addresses. The iiop_tls plug-in load balances over the addresses
embedded in the IOR.
The following mechanisms are supported:

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy
 416 Orbix Security Guide

• random—choose one of the addresses embedded in the IOR at
random (this is the default).

• sequential—choose the first address embedded in the IOR,
moving on to the next address in the list only if the previous
address could not be reached.

max_chain_length_policy

This policy overides policies:max_chain_length_policy for the
iiop_tls plugin.
The maximum certificate chain length that an ORB will accept.
The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.
The accept_v2_hellos policy is a special setting that facilitates
interoperability with an application deployed on the z/OS
platform. security on the z/OS platform is based on IBM’s
System/SSL toolkit, which implements SSL version 3, but does so
by using SSL version 2 hellos as part of the handshake. This form
of handshake causes interoperability problems, because
applications on other platforms identify the handshake as an SSL
version 2 handshake. The misidentification of the SSL protocol
version can be avoided by setting the accept_v2_hellos policy to
true in the non-z/OS application (this bug also affects some old
versions of Microsoft Internet Explorer).
When true, the application accepts V2 client hellos, but continues
the handshake using either the SSL_V3 or TLS_V1 protocol. When
false, the application throws an error, if it receives a V2 client
hello. The default is false.

For example:
policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for
the iiop_tls plugin.

Note: The max_chain_length_policy is not currently
supported on the z/OS platform.

Note: This default value is deliberately different from the
policies:https:mechanism_policy:accept_v2_hellos default
value.
Orbix Security Guide 417

Specifies a list of cipher suites for the default mechanism policy.
One or more of the following cipher suites can be specified in this
list:

If you do not specify the list of cipher suites explicitly, all of the
null encryption ciphers are disabled and all of the non-export
strength ciphers are supported by default.

mechanism_policy:protocol_version

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.
Specifies the list of protocol versions used by a security capsule
(ORB instance). Can include one or more of the following values:
TLS_V1
SSL_V3
SSL_V2V3 (Deprecated)
The default setting is SSL_V3 and TLS_V1.
For example:
policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",

"SSL_V3"];

The SSL_V2V3 value is now deprecated. It was previously used to
facilitate interoperability with applications deployed on the z/OS
platform. If you have any legacy configuration that uses SSL_V2V3,
you should replace it with the following combination of settings:
policies:iiop_tls:mechanism_policy:protocol_version = ["SSL_V3",

"TLS_V1"];
policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

server_address_mode_policy:local_domain

(Java only) When this policy is set, the iiop_tls plug-in reads this
policy’s value instead of the
policies:iiop:server_address_mode_policy:local_domain policy’s
value.

Table 28: Mechanism Policy Cipher Suites

Null Encryption,
Integrity and

Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
 418 Orbix Security Guide

server_address_mode_policy:local_hostname

(Java only) When this policy is set, the iiop_tls plug-in reads this
policy’s value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy’s
value.
server_address_mode_policy:local_hostname specifies the hostname
advertised by the locator daemon, and listened on by server-side
IIOP.
Some machines have multiple hostnames or IP addresses (for
example, those using multiple DNS aliases or multiple network
cards). These machines are often termed multi-homed hosts. The
local_hostname variable supports these type of machines by
enabling you to explicitly specify the host that servers listen on
and publish in their IORs.
For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this
variable to either address:

By default, the local_hostname variable is unspecified. Servers use
the default hostname configured for the machine with the Orbix
configuration tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the iiop_tls plug-in reads this
policy’s value instead of the
policies:iiop:server_address_mode_policy:port_range policy’s
value.
server_address_mode_policy:port_range specifies the range of ports
that a server uses when there is no well-known addressing policy
specified for the port.

server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:publish_hostname
policy’s value.
server_address_mode-policy:publish_hostname specifes whether
IIOP exports hostnames or IP addresses in published profiles.
Defaults to false (exports IP addresses, and does not export
hostnames). To use hostnames in object references, set this
variable to true, as in the following file-based configuration entry:

The following itadmin command is equivalent:

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname
Orbix Security Guide 419

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the policies:iiop:server_version_policy policy’s
value.
server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Orbix
servers do not publish IIOP 1.0 profiles. The default value is 1.2.

session_caching_policy

This policy overides policies:session_caching_policy for the
iiop_tls plugin.

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the
iiop_tls plugin.
Specifies the minimum level of security required by a server. The
value of this variable is specified as a list of association options—
see the Security Guide for more details about association options.
In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the
iiop_tls plugin.
Specifies the maximum level of security supported by a server.
The value of this variable is specified as a list of association
options—see the Security Guide for more details about
association options.
This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the policies:iiop:tcp_options_policy:no_delay
policy’s value.
tcp_options_policy:no_delay specifies whether the TCP_NODELAY
option should be set on connections. Defaults to false.
 420 Orbix Security Guide

tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:tcp_options_policy:recv_buffer_size policy’s value.
tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which
coresponds to using the default size defined by the operating
system.

tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:tcp_options_policy:send_buffer_size policy’s value.
tcp_options_policy:send_buffer_size specifies the size of the TCP
send buffer. This variable can only be set to 0, which coresponds
to using the default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.
Contains a list of filenames (or a single filename), each of which
contains a concatenated list of CA certificates in PEM format. The
aggregate of the CAs in all of the listed files is the set of trusted
CAs.
For example, you might specify two files containing CA lists as
follows:
policies:trusted_ca_list_policy =

["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into
different lists and to select a particular set of CAs for a security
domain by choosing the appropriate CA lists.

policies:tls
The following variables are in this namespace:
• use_external_cert_store

use_external_cert_store

(Java only) A binary variable that configures Orbix to check for the
presence of a third-party certificate store. The possible values are:
true, to check for the presence of an external certificate store, and
false, to use the built-in certificate store (that is, certificate
location specified by the principal sponsor).
The default is false.
This variable has no effect unless you also configure your Java
application to use an external security provider—see the
description of the plugins:atli2_tls:use_jsse_tk configuration
variable for more details.
Orbix Security Guide 421

This policy variable must be used in conjunction with the following
configuration variables:
plugins:atli2_tls:cert_store_provider
plugins:atli2_tls:cert_store_protocol

You can also optionally set the following configuration variables
(which override the corresponding properties in the java.security
file):
plugins:atli2_tls:kmf_algorithm
plugins:atli2_tls:tmf_algorithm

principal_sponsor
The principal_sponsor namespace stores configuration information
to be used when obtaining credentials. provides an
implementation of a principal sponsor that creates credentials for
applications automatically.
Use of the PrincipalSponsor is disabled by default and can only be
enabled through configuration.
The PrincipalSponsor represents an entry point into the secure
system. It must be activated and authenticate the user, before
any application-specific logic executes. This allows unmodified,
security-unaware applications to have Credentials established
transparently, prior to making invocations.
The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

• callback_handler:ClassName

• login_attempts

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to
obtain credentials automatically. Defaults to false. If set to true,
the following principal_sponsor variables must contain data in
order for anything to actually happen.
 422 Orbix Security Guide

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the pkcs12_file authentication
method as follows:

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the pkcs12_file authentication method, the following
authentication data can be provided in auth_method_data:

For the keystore authentication method, the following
authentication data can be provided in auth_method_data:

pkcs12_file The authentication method uses a
PKCS#12 file.

keystore The authentication method uses a Java
keystore file.

pkcs11 Java only. The authentication data is
provided by a smart card.

security_labelWindows and Schannel only. The
authentication data is specified by
supplying the common name (CN) from
an application certificate’s subject DN.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate
chain and private key—required.

password A password for the private key—optional.
It is bad practice to supply the password from
configuration for deployed systems. If the
password is not supplied, the user is
prompted for it.

password_file The name of a file containing the password
for the private key—optional.

filename A Java keystore file containing a key entry
that consists of a certificate chain and a
private key—required.

password A password for the keystore (used both for
the store password and for the key
password)—optional.
It is bad practice to supply the password from
configuration for deployed systems. If the
password is not supplied, the user is
prompted for it.

password_file The name of a file containing the password
for the keystore—optional.
Orbix Security Guide 423

For the pkcs11 (smart card) authentication method, the following
authentication data can be provided in auth_method_data:

For the security_label authentication method on Windows, the
following authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a
certificate, bob.p12, whose private key is encrypted with the
bobpass password, set the auth_method_data as follows:

The following points apply to Java implementations:
• If the file specified by filename= is not found, it is searched for

on the classpath.
• The file specified by filename= can be supplied with a URL

instead of an absolute file location.
• The mechanism for prompting for the password if the

password is supplied through password= can be replaced with a
custom mechanism, as demonstrated by the login demo.

• There are two extra configuration variables available as part
of the principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

• These Java-specific features are available subject to change in
future releases; any changes that can arise probably come
from customer feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an
interface that implements the interface
com.iona.corba.tls.auth.CallbackHandler. This variable is only
used for Java clients.

provider A name that identifies the underlying
PKCS #11 toolkit used by Orbix to
communicate with the smart card.

slot The number of a particular slot on the
smart card (for example, 0) containing
the user’s credentials.

pin A PIN to gain access to the smart card—
optional.
It is bad practice to supply the PIN from
configuration for deployed systems. If the
PIN is not supplied, the user is prompted
for it.

label (Windows and Schannel only.) The
common name (CN) from an application
certificate’s subject DN

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
 424 Orbix Security Guide

login_attempts

login_attempts specifies how many times a user is prompted for
authentication data (usually a password). It applies for both
internal and custom CallbackHandlers; if a CallbackHandler is
supplied, it is invoked upon up to login_attempts times as long as
the PrincipalAuthenticator returns SecAuthFailure. This variable is
only used by Java clients.

principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration
information to be used when obtaining CSI (Common Secure
Interoperability) credentials. It includes the following:
• use_existing_credentials

• use_principal_sponsor

• auth_method_data

• auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share
credentials can also share CSI credentials. If true, any CSI
credentials loaded by one credential-sharing ORB can be used by
other credential-sharing ORBs loaded after it; if false, CSI
credentials are not shared.
This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variable is also
true.
Default is false.

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI
principal sponsor on or off.
If set to true, the CSI principal sponsor is enabled; if false, the
CSI principal sponsor is disabled and the remaining
principal_sponsor:csi variables are ignored. Defaults to false.
If no CSI credentials are set on the client side, the client might still
send an authentication token containing null credentials. If you
want to completely disable the sending of CSI credentials (so that
no client authentication token is sent), use the following setting on
the client side:
policies:csi:auth_over_transport:client_supports = [];

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
Orbix Security Guide 425

For the GSSUPMech authentication method, the following
authentication data can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to
enter authentication data when the application starts up.
For example, to log on to a CSIv2 application as the administrator
user in the US-SantaClara domain:
principal_sponsor:csi:auth_method_data =

["username=administrator", "domain=US-SantaClara"];

When the application is started, the user is prompted for the
administrator password.

auth_method_id

auth_method_id specifies a string that selects the authentication
method to be used by the CSI application. The following
authentication method is available:

For example, you can select the GSSUPMech authentication
method as follows:
principal_sponsor:csi:auth_method_id = "GSSUPMech";

username The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security
mechanism that is plugged into the server side see
auth_over_transport:authentication_service.

password The password associated with username. This is
optional. It is bad practice to supply the password from
configuration for deployed systems. If the password is
not supplied, the user is prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.
When the client is about to open a new connection, this
domain name is compared with the domain name
embedded in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.
Note: If domain is an empty string, it matches any
target domain. That is, an empty domain string is
equivalent to a wildcard.

Note: It is currently not possible to customize the login
prompt associated with the CSIv2 principal sponsor. As an
alternative, you could implement your own login GUI by
programming and pass the user input directly to the
principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.
 426 Orbix Security Guide

principal_sponsor:https
The principal_sponsor:https namespace provides configuration
variables that enable you to specify the own credentials used with the
HTTPS transport. The variables in the principal_sponsor:https
namespace (which are specific to the HTTPS protocol) have
precedence over the analogous variables in the principal_sponsor
namespace.
Use of the PrincipalSponsor is disabled by default and can only be
enabled through configuration.
The PrincipalSponsor represents an entry point into the secure
system. It must be activated and authenticate the user, before
any application-specific logic executes. This allows unmodified,
security-unaware applications to have Credentials established
transparently, prior to making invocations.
The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to
obtain credentials automatically. Defaults to false. If set to true,
the following principal_sponsor:https variables must contain data
in order for anything to actually happen:
• auth_method_id
• auth_method_data

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the pkcs12_file authentication
method as follows:

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the pkcs12_file authentication method, the following
authentication data can be provided in auth_method_data:

pkcs12_file The authentication method uses a PKCS#12 file

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.
Orbix Security Guide 427

For example, to configure an application on Windows to use a
certificate, bob.p12, whose private key is encrypted with the
bobpass password, set the auth_method_data as follows:

principal_sponsor:iiop_tls
The principal_sponsor:iiop_tls namespace provides configuration
variables that enable you to specify the own credentials used with the
IIOP/TLS transport.
The IIOP/TLS principal sponsor is disabled by default.
The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to
obtain credentials automatically. Defaults to false. If set to true,
the following principal_sponsor:iiop_tls variables must contain
data in order for anything to actually happen:
• auth_method_id
• auth_method_data

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the pkcs12_file authentication
method as follows:

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.

password A password for the private key—optional.
It is bad practice to supply the password from
configuration for deployed systems. If the password
is not supplied, the user is prompted for it.

password_file The name of a file containing the password for the
private key—optional.
This option is not recommended for deployed
systems.

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];

pkcs12_file The authentication method uses a PKCS#12 file

principal_sponsor:iiop_tls:auth_method_id = "pkcs12_file";
 428 Orbix Security Guide

For the pkcs12_file authentication method, the following
authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a
certificate, bob.p12, whose private key is encrypted with the
bobpass password, set the auth_method_data as follows:

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key.
It is bad practice to supply the password from
configuration for deployed systems. If the password
is not supplied, the user is prompted for it.

password_file The name of a file containing the password for the
private key.
The password file must be read and write protected
to prevent tampering.

principal_sponsor:iiop_tls:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
Orbix Security Guide 429

 430 Orbix Security Guide

iSF Configuration
This appendix provides details of how to configure the security server.

Properties File Syntax
The security service uses standard Java property files for its
configuration. Some aspects of the Java properties file syntax are
summarized here for your convenience.

Property definitions
A property is defined with the following syntax:

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example,
is2.current.server.id. The <PropertyValue> is an arbitrary string,
including all of the characters up to the end of the line (embedded
spaces are allowed).

Specifying full pathnames
When setting a property equal to a filename, you normally specify
a full pathname, as follows:

UNIX
/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as
follows:

Specifying relative pathnames
If you specify a relative pathname when setting a property, the
root directory for this path must be added to the security
service’s classpath. For example, if you specify a relative
pathname as follows:

UNIX
securityInfo.xml

The security service’s classpath must include the file’s parent
directory:

<PropertyName>=<PropertyValue>

D:\\iona\\securityInfo.xml

CLASSPATH = /home/data/:<rest_of_classpath>
 Orbix Security Guide 431

iSF Properties File
An iSF properties file is used to store the properties that configure
a specific security service instance. Generally, every security
service instance should have its own iSF properties file. This
section provides descriptions of all the properties that can be
specified in an iSF properties file.

File location
The default location of the iSF properties file is the following:
In general, the iSF properties file location is specified in the
configuration by setting the is2.properties property in the
plugins:java_server:system_properties property list.
For example, on UNIX the security server’s property list is
normally initialized in the iona_services.security configuration
scope as follows:

List of properties
The following properties can be specified in the iSF properties file:

check.kdc.running

A boolean property that specifies whether or not the Artix security
service should check whether the Kerberos KDC server is running.
Default is false.

check.kdc.principal

(Used in combination with the check.kdc.running property.)
Specifies the dummy KDC principal that is used for connecting to
the KDC server, in order to check whether it is running or not.

com.iona.isp.adapters

Specifies the iSF adapter type to be loaded by the security service
at runtime. Choosing a particular adapter type is equivalent to
choosing an Artix security domain. Currently, you can specify one
of the following adapter types:
• file
• LDAP

For example, you can select the LDAP adapter as follows:

com.iona.isp.adapter.file.class

Specifies the Java class that implements the file adapter.

com.iona.isp.adapters=LDAP

Note: The file adapter is intended for demonstration
purposes only. Use of the file adapter is not supported in
production systems.
 432 Orbix Security Guide

For example, the default implementation of the file adapter
provided with is selected as follows:

com.iona.isp.adapter.file.param.filename

Specifies the name and location of a file that is used by the file
adapter to store user authentication data.
For example, you can specify the file,
C:/is2_config/security_info.xml, as follows:

com.iona.isp.adapter.file.params

Obsolete. This property was needed by earlier versions of the
security service, but is now ignored.

com.iona.isp.adapter.LDAP.class

Specifies the Java class that implements the LDAP adapter.
For example, the default implementation of the LDAP adapter
provided with is selected as follows:

com.iona.isp.adapter.LDAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This
maximum applies to the total LDAP cache size, including all LDAP
connections opened by this security service instance.
Internally, the security service uses a third-party toolkit
(currently the iPlanet SDK) to communicate with an LDAP server.
The cache referred to here is one that is maintained by the LDAP
third-party toolkit. Data retrieved from the LDAP server is
temporarily stored in the cache in order to optimize subsequent
queries.
For example, you can specify a cache size of 1000 as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive

Specifies the LDAP cache time to-live in units of seconds. For
example, you can specify a cache time to-live of one minute as
follows:

com.iona.isp.adapter.LDAP.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores
user groups.

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.file.FileAuthAdapter

com.iona.isp.adapter.file.param.filename=C:/is2_config/security_info.xml

com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter

com.iona.isp.adapter.LDAP.param.CacheSize=1000

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60
Orbix Security Guide 433

For example, you could use the RDN sequence, DC=iona,DC=com, as
a base DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value
gives the name of the user group. The default is CN.
For example, you can use the common name, CN, attribute type to
store the user group’s name by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupObjectClass

Specifies the object class that applies to user group entries in the
LDAP directory structure. An object class defines the required and
allowed attributes of an entry. The default is groupOfUniqueNames.
For example, to specify that all user group entries belong to the
groupOfUniqueNames object class:

com.iona.isp.adapter.LDAP.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting
point of a search and the depth from the base DN to which the
search should occur. This property can be set to one of the
following values:
• BASE—Search a single entry (the base object).
• ONE—Search all entries immediately below the base DN.
• SUB—Search all entries from a whole subtree of entries.
Default is SUB.
For example:

com.iona.isp.adapter.LDAP.param.host.<SrvrID>

For the <SrvrID> LDAP server replica, specify the IP hostname
where the LDAP server is running. The <SrvrID> can be any string
that uniquely identifies the server replica.
For example, you could specify that the primary LDAP server is
running on host 10.81.1.100 as follows:

com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order
should be based on the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn

com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames

com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter.LDAP.param.host.primary=10.81.1.100
 434 Orbix Security Guide

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the security
service (a strictly positive integer). The maximum connection pool
size is the maximum number of LDAP connections that would be
opened and cached by the security service. The default is 1.
For example, to limit the security service to open a maximum of
50 LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members.
The LDAP adapter uses the MemberDNAttr property to construct a
query to find out which groups a user belongs to.
The list of the user’s groups is needed to determine the complete
set of roles assigned to the user. The LDAP adapter determines
the complete set of roles assigned to a user as follows:
1. The adapter retrieves the roles assigned directly to the user.
2. The adapter finds out which groups the user belongs to, and

retrieves all the roles assigned to those groups.
Default is uniqueMember.
For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.LDAP.param.MemberFilter

Specifies how to search for members in a group. The value
specified for this property must be an LDAP search filter (can be a
custom filter).

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the security
service. The minimum connection pool size specifies the number
of LDAP connections that are opened during initialization of the
security service. The default is 1.
For example, to specify a minimum of 10 LDAP connections at a
time:

com.iona.isp.adapter.LDAP.param.port.<SrvrID>

For the <SrvrID> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <SrvrID> can be any string that
uniquely identifies the server replica. The default port is 389.
For example, you could specify that the primary LDAP server is
listening on port 636 as follows:

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50

com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

com.iona.isp.adapter.LDAP.param.port.primary=636
Orbix Security Guide 435

com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<SrvrID>

For the <SrvrID> LDAP server replica, specifies the username that is
used to login to the LDAP server (in distinguished name format).
This property need only be set if the LDAP server is configured to
require username/password authentication.
No default.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<SrvrID>

For the <SrvrID> LDAP server replica, specifies the password that is
used to login to the LDAP server. This property need only be set if
the LDAP server is configured to require username/password
authentication.
No default.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo

Specifies whether or not the security service retrieves
authorization information from the LDAP server. This property
selects one of the following alternatives:
• yes—the security service retrieves authorization information

from the LDAP server.
• no—the security service retrieves authorization information

from the iS2 authorization manager..
Default is no.
For example, to use the LDAP server’s authorization information:

com.iona.isp.adapter.LDAP.param.RoleNameAttr

Specifies the attribute type that the LDAP server uses to store the
role name. The default is CN.
For example, you can specify the common name, CN, attribute
type as follows:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.<SrvrID>

For the <SrvrID> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are
loaded and set as trusted CA certificates, for the purpose of
opening an SSL connection to the LDAP server. The CA certificates
can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.
No default.

WARNING:Because the password is stored in plaintext,
you must ensure that the is2.properties file is readable
and writable only by users with administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes

com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn
 436 Orbix Security Guide

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<SrvrID>

Specifies the client certificate file that is used to identify the
security service to the <SrvrID> LDAP server replica. This property
is needed only if the LDAP server requires SSL/TLS mutual
authentication. The certificate must be in PKCS#12 format.
No default.

com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<SrvrID>

Specifies the password for the client certificate that identifies the
security service to the <SrvrID> LDAP server replica. This property
is needed only if the LDAP server requires SSL/TLS mutual
authentication.

com.iona.isp.adapter.LDAP.param.SSLEnabled.<SrvrID>

Enables SSL/TLS security for the connection between the security
service and the <SrvrID> LDAP server replica. The possible values
are yes or no. Default is no.
For example, to enable an SSL/TLS connection to the primary
LDAP server:

com.iona.isp.adapter.LDAP.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The
following alternatives are available:
• yes—each group name is interpreted as a role name.
• no—for each of the user’s groups, retrieve all roles assigned to

the group.
This option is useful for some older versions of LDAP, such as
iPlanet 4.0, that do not have the role concept.
Default is no.
For example:

com.iona.isp.adapter.LDAP.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree
in the LDAP directory that stores user object class instances.

com.iona.isp.adapter.LDAP.param.SSLCACertDir.primary=d:/c
erts/test

WARNING:Because the password is stored in plaintext,
you must ensure that the is2.properties file is readable
and writable only by users with administrator privileges.

com.iona.isp.adapter.LDAP.param.SSLEnabled.primary=yes

com.iona.isp.adapter.LDAP.param.UseGroupAsRole=no
Orbix Security Guide 437

For example, you could use the RDN sequence, DC=iona,DC=com, as
a base DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The
default is userCertificate.
For example, you can explicitly specify the attribute type for
storing user certificates to be userCertificate as follows:

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

Specifies the attribute type whose corresponding value uniquely
identifies the user. This is the attribute used as the user’s login ID.
The default is uid.
For example:

com.iona.isp.adapter.LDAP.param.UserObjectClass

Specifies the attribute type for the object class that stores users.
The default is organizationalPerson.
For example:

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr

Specifies the attribute type that stores a user’s role DN. The
default is nsRoleDn (from the Netscape LDAP directory schema).
For example:

com.iona.isp.adapter.LDAP.param.UserSearchFilter

Custom filter for retrieving users. In the current version,
$USER_NAME$ is the only replaceable parameter supported. This
parameter would be replaced during runtime by the LDAP adapter
with the current User's login ID. This property uses the standard
LDAP search filter syntax.
For example:

com.iona.isp.adapter.LDAP.param.UserSearchScope

Specifies the user search scope. This property can be set to one of
the following values:

com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCert
ificate

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn

&(uid=$USER_NAME$)(objectclass=organizationalPerson)
 438 Orbix Security Guide

• BASE—Search a single entry (the base object).
• ONE—Search all entries immediately below the base DN.
• SUB—Search all entries from a whole subtree of entries.
Default is SUB.
For example:

com.iona.isp.adapter.LDAP.param.version

Specifies the LDAP protocol version that the security service uses
to communicate with LDAP servers. The only supported version is
3 (for LDAP v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.
For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.LDAP.params

Obsolete. This property was needed by earlier versions of the
security service, but is now ignored.

com.iona.isp.authz.adapters

Specifies the name of the adapter that is loaded to perform
authorization. The adapter name is an arbitrary identifier,
AdapterName, which is used to construct the names of the properties
that configure the adapter—that is,
com.iona.isp.authz.adapter.AdapterName.class and
com.iona.isp.authz.adapter.AdapterName.param.filelist. For
example:

com.iona.isp.authz.adapter.<AdapterName>.class

Selects the authorization adapter class for the AdapterName adapter.
The following adapter implementations are provided by Orbix:
• com.iona.security.is2AzAdapter.multifile.MultiFileAzAdapter—an

authorization adapter that enables you to specify multiple ACL
files. It is used in conjunction with the
com.iona.isp.authz.adapter.file.param.filelist property.

For example:

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

com.iona.isp.adapter.LDAP.param.version=3

com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.i

s2AzAdapter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListF

ile;

com.iona.isp.authz.adapters = file
com.iona.isp.authz.adapter.file.class=com.iona.security.i

s2AzAdapter.multifile.MultiFileAzAdapter
Orbix Security Guide 439

http://www.ietf.org/rfc/rfc2251.txt

com.iona.isp.authz.adapter.<AdapterName>.param.filelist

Specifies the absolute pathname of a file containing a list of ACL
files for the AdapterName adapter. Each line of the specified file has
the following format:

A file name can optionally be preceded by an ACL key and an
equals sign, ACLKey=, if you want to select the file by ACL key. The
ACL file, ACLFileName, is specified using an absolute pathname in
the local file format.
For example, on Windows you could specify a list of ACL files as
follows:

is2.current.server.id

The server ID is an alphanumeric string (excluding spaces) that
specifies the current Orbix security service’s ID. The server ID is
needed for clustering. When a secure application obtains a single
sign-on (SSO) token from this Orbix security service, the server
ID is embedded into the SSO token. Subsequently, if the SSO
token is passed to a second Orbix security service instance, the
second Orbix security service recognizes that the SSO token
originates from the first Orbix security service and delegates
security operations to the first Orbix security service.
The server ID is also used to identify replicas in the
cluster.properties file.
For example, to assign a server ID of primary to the current Orbix
security service:

is2.cluster.properties.filename

Specifies the file that stores the configuration properties for
clustering. For example:

is2.replication.required

Enables the replication feature of the security service, which can
be used in the context of security service clustering. The possible
values are true (enabled) and false (disabled). When replication is
enabled, the security service pushes its cache of SSO data to
other servers in the cluster at regular intervals.
Default is false.
For example:

[ACLKey=]ACLFileName

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
U:/orbix_security/etc/acl_files/server_C.xml

is2.current.server.id=primary

is2.cluster.properties.filename=C:/is2_config/cluster.pro
perties

is2.replication.required=true
 440 Orbix Security Guide

is2.replication.interval

Specifies the time interval between replication updates to other
servers in the security service cluster. The value is specified in
units of a second.
Default is 30 seconds.
For example:

is2.replica.selector.classname

If replication is enabled (see is2.replication.required), you must
set this variable equal to
com.iona.security.replicate.StaticReplicaSelector.
For example:

is2.sso.cache.size

Specifies the maximum cache size (number of user sessions)
associated with single sign-on (SSO) feature. The SSO caches
user information, including the user’s group and role information.
If the maximum cache size is reached, the oldest sessions are
deleted from the session cache.
No default.
For example:

is2.sso.enabled

Enables the single sign-on (SSO) feature of the security service.
The possible values are yes (enabled) and no (disabled).
Default is yes.
For example:

is2.sso.remote.token.cached

In a federated scenario, this variable enables caching of token
data for tokens that originate from another security service in the
federated cluster. When this variable is set to true, a security
service need contact another security service in the cluster, only
when the remote token is authenticated for the first time. For
subsequent token authentications, the token data for the remote
token can be retrieved from the local cache.
Default is false.

is2.replication.interval=10

is2.replica.selector.classname=com.iona.security.replicat
e.StaticReplicaSelector

is2.sso.cache.size=1000

is2.sso.enabled=yes
Orbix Security Guide 441

is2.sso.session.idle.timeout

Sets the session idle time-out in units of seconds for the single
sign-on (SSO) feature of the security service. A zero value implies
no time-out.
If a user logs on to the Security Framework (supplying username
and password) with SSO enabled, the security service returns an
SSO token for the user. The next time the user needs to access a
resource, there is no need to log on again because the SSO token
can be used instead. However, if no secure operations are
performed using the SSO token for the length of time specified in
the idle time-out, the SSO token expires and the user must log on
again.
Default is 0 (no time-out).
For example:

is2.sso.session.timeout

Sets the absolute session time-out in units of seconds for the
single sign-on (SSO) feature of the security service. A zero value
implies no time-out.
This is the maximum length of time since the time of the original
user login for which an SSO token remains valid. After this time
interval elapses, the session expires irrespective of whether the
session has been active or idle. The user must then login again.
Default is 0 (no time-out).
For example:

log4j.configuration

Specifies the log4j configuration filename. You can use the
properties in this file to customize the level of debugging output
from the security service. See also “log4j Properties File” on
page 443.
For example:

Cluster Properties File
The cluster properties file is used to store properties common to a
group of security service instances that operate as a cluster or
federation. This section provides descriptions of all the properties
that can be specified in a cluster file.

is2.sso.session.idle.timeout=0

is2.sso.session.timeout=0

log4j.configuration=d:/temp/myconfig.txt
 442 Orbix Security Guide

File location
The location of the cluster properties file is specified by the
is2.cluster.properties.filename property in the iSF properties file.
All of the security service instances in a cluster or federation must
share the same cluster properties file.

List of properties
The following properties can be specified in the cluster properties
file:

com.iona.security.common.securityInstanceURL.<SrvrID>

Specifies the server URL for the <SrvrID> security service instance.
When single sign-on (SSO) is enabled together with clustering or
federation, the security service instances use the specified
instance URLs to communicate with each other. Because the
security service instances share the same cluster file, they can
read each other’s URLs and open connections to each other.

com.iona.security.common.replicaURL.<SrvrID>

A comma-separated list of URLs for the other security services to
which this service replicates its SSO token data.

log4j Properties File
The log4j properties file configures log4j logging for your security
service. This section describes a minimal set of log4j properties
that can be used to configure basic logging.

log4j documentation
For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.html

File location
The location of the log4j properties file is specified by the
log4j.configuration property in the iSF properties file. For ease of
administration, different security service instances can optionally
share a common log4j properties file.

List of properties
To give you some idea of the capabilities of log4j, the following is
an incomplete list of properties that can be specified in a log4j
properties file:
Orbix Security Guide 443

http://jakarta.apache.org/log4j/docs/documentation.html

log4j.appender.<AppenderHandle>

This property specifies a log4j appender class that directs
<AppenderHandle> logging messages to a particular destination. For
example, one of the following standard log4j appender classes
could be specified:
• org.apache.log4j.ConsoleAppender
• org.apache.log4j.FileAppender
• org.apache.log4j.RollingFileAppender
• org.apache.log4j.DailyRollingFileAppender
• org.apache.log4j.AsynchAppender
• org.apache.log4j.WriterAppender

For example, to log messages to the console screen for the A1
appender handle:

log4j.appender.<AppenderHandle>.layout

This property specifies a log4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard
log4j layout classes could be specified:
• org.apache.log4j.PatternLayout
• org.apache.log4j.HTMLLayout
• org.apache.log4j.SimpleLayout
• org.apache.log4j.TTCCLayout

For example, to use the pattern layout class for log messages
processed by the A1 appender:

log4j.appender.<AppenderHandle>.layout.ConversionPattern

This property is used only in conjunction with the
org.apache.log4j.PatternLayout class (when specified by the
log4j.appender.<AppenderHandle>.layout property) to define the
format of a log message.
For example, you can specify a basic conversion pattern for the A1
appender as follows:

log4j.rootCategory

This property is used to specify the logging level of the root logger
and to associate the root logger with one or more appenders. The
value of this property is specified as a comma separated list as
follows:

The logging level, <LogLevel>, can have one of the following values:
• DEBUG
• INFO
• WARN
• ERORR

log4j.appender.A1=org.apache.log4j.ConsoleAppender

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

<LogLevel>, <AppenderHandle01>, <AppenderHandle02>, ...
 444 Orbix Security Guide

• FATAL

An appender handle is an arbitrary identifier that associates a
logger with a particular logging destination.
For example, to select all messages at the DEBUG level and direct
them to the A1 appender, you can set the property as follows:

log4j.rootCategory=DEBUG, A1
Orbix Security Guide 445

 446 Orbix Security Guide

ASN.1 and
Distinguished Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished
Names play an important role in the security standards that define X.509
certificates and LDAP directories.

ASN.1
The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining
data types and structures that is independent of any particular
machine hardware or programming language. In many ways,
ASN.1 can be considered a forerunner of the OMG’s IDL, because
both languages are concerned with defining platform-independent
data types.
ASN.1 is important, because it is widely used in the definition of
standards (for example, SNMP, X.509, and LDAP). In particular,
ASN.1 is ubiquitous in the field of security standards—the formal
definitions of X.509 certificates and distinguished names are
described using ASN.1 syntax. You do not require detailed
knowledge of ASN.1 syntax to use these security standards, but
you need to be aware that ASN.1 is used for the basic definitions
of most security-related data types.

BER
The OSI’s Basic Encoding Rules (BER) define how to translate an
ASN.1 data type into a sequence of octets (binary representation).
The role played by BER with respect to ASN.1 is, therefore, similar
to the role played by GIOP with respect to the OMG IDL.

DER
The OSI’s Distinguished Encoding Rules (DER) are a specialization
of the BER. The DER consists of the BER plus some additional rules
to ensure that the encoding is unique (BER encodings are not).

References
You can read more about ASN.1 in the following standards
documents:
• ASN.1 is defined in X.208.
• BER is defined in X.209.
 Orbix Security Guide 447

Distinguished Names
Historically, distinguished names (DN) were defined as the
primary keys in an X.500 directory structure. In the meantime,
however, DNs have come to be used in many other contexts as
general purpose identifiers. In the Security Framework, DNs
occur in the following contexts:
• X.509 certificates—for example, one of the DNs in a certificate

identifies the owner of the certificate (the security principal).
• LDAP—DNs are used to locate objects in an LDAP directory

tree.

String representation of DN
Although a DN is formally defined in ASN.1, there is also an LDAP
standard that defines a UTF-8 string representation of a DN (see
RFC 2253). The string representation provides a convenient basis
for describing the structure of a DN.

DN string example
The following string is a typical example of a DN:
C=US,O=Micro Focus,OU=Engineering,CN=A. N. Other

Structure of a DN string
A DN string is built up from the following basic elements:
• OID.
• Attribute types.
• AVA.
• RDN.

OID
An object identifier (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

Note: The string representation of a DN does not provide
a unique representation of DER-encoded DN. Hence, a DN
that is converted from string format back to DER format
does not always recover the original DER encoding.
 448 Orbix Security Guide

Attribute types
The variety of attribute types that could appear in a DN is
theoretically open-ended, but in practice only a small subset of
attribute types are used. Table 29 shows a selection of the
attribute types that you are most likely to encounter:

AVA
An attribute value assertion (AVA) assigns an attribute value to an
attribute type. In the string representation, it has the syntax:
<attr-type>=<attr-value>

For example:
CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the
attribute type in the string representation (see Table 29). For
example:
2.5.4.3=A. N. Other

RDN
A relative distinguished name (RDN) represents a single node of a DN
(the bit that appears between the commas in the string
representation). Technically, an RDN might contain more than one
AVA (it is formally defined as a set of AVAs); in practice, however,
this almost never occurs. In the string representation, an RDN has
the following syntax:
<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:
OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:
OU=Engineering

Table 29: Commonly Used Attribute Types

String
Representation

X.500 Attribute Type Size of
Data

Equivalent
OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid
Orbix Security Guide 449

 450 Orbix Security Guide

Association Options
This appendix describes the semantics of all the association options that
are supported by Orbix.

Association Option Semantics
This appendix defines how AssociationOptions are used with
SecClientInvocation and SecTargetInvocation policies.

IDL Definitions
AssociationOptions are enumerated in the CORBA security
specification as follows:
//IDL
typedef unsigned short AssociationOptions;
const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
// Unsupported option: NoDelegation
// Unsupported option: SimpleDelegation
// Unsupported option: CompositeDelegation

Table of association options
Table 30 shows how the options affect client and target policies:

Table 30: AssociationOptions for Client and Target

Association
Options

client_supports client_requires target_supports target_requires

NoProtection Client supports
unprotected
messages.

The client’s
minimal
protection
requirement is
unprotected
messages.

Target supports
unprotected
messages.

The target’s
minimal
protection
requirement is
unprotected
messages.

Integrity The client
supports integrity
protected
messages.

The client
requires
messages to be
integrity
protected.

The target
supports integrity
protected
messages.

The target
requires
messages to be
integrity
protected.

Confidential
ity

The client
supports
confidentiality
protected
messages.

The client
requires
messages to be
confidentiality
protected.

The target
supports
confidentiality
protected
messages.

The target
requires
messages to be
confidentiality
protected.
 Orbix Security Guide 451

DetectReplay The client can
detect replay of
requests (and
request
fragments).

The client
requires
detection of
message replay.

The target can
detect replay of
requests (and
request
fragments).

The target
requires
detection of
message replay.

Detect
Misordering

The client can
detect sequence
errors of
requests (and
request
fragments).

The client
requires
detection of
message
mis-sequencing.

The target can
detect sequence
errors of requests
(and request
fragments).

The target
requires
detection of
message
mis-sequencing.

Establish
TrustIn
Target

The client is
capable of
authenticating
the target.

The client
requires
establishment of
trust in the
target’s identity.

The target is
prepared to
authenticate its
identity to the
client.

(This option is
invalid).

Establish
TrustIn
Client

The client is
prepared to
authenticate its
identity to the
target.

(This option is
invalid).

The target is
capable of
authenticating the
client.

The target
requires
establishment of
trust in the
client’s identity.

Table 30: AssociationOptions for Client and Target

Association
Options

client_supports client_requires target_supports target_requires
 452 Orbix Security Guide

Action-Role Mapping
DTD
This appendix presents the document type definition (DTD) for the
action-role mapping XML file.

DTD file
The action-role mapping DTD is shown in Example 60.

Action-role mapping elements
The elements of the action-role mapping DTD can be described as
follows:
<!ELEMENT action-name (#PCDATA)>

Specifies the action name to which permissions are assigned.
The interpretation of the action name depends on the type of
application:
♦ CORBA server—for IDL operations, the action name

corresponds to the GIOP on-the-wire format of the
operation name (usually the same as it appears in IDL).
For IDL attributes, the accessor or modifier action name corresponds to the

GIOP on-the-wire format of the attribute accessor or modifier. For example,

an IDL attribute, foo, would have an accessor, _get_foo, and a modifier,

_set_foo.

♦ Artix server—for WSDL operations, the action name is
equivalent to a WSDL operation name; that is, the
OperationName from a tag, <operation name="OperationName">.

The action-name element supports a wildcard mechanism,
where the special character, *, can be used to match any
number of contiguous characters in an action name. For
example, the following action-name element matches any
action:

<!ELEMENT action-role (action-name, role-name+)>

Example 60:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT action-name (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT server-name (#PCDATA)>
<!ELEMENT action-role-mapping (server-name, interface+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT interface (name, action-role+)>
<!ELEMENT action-role (action-name, role-name+)>
<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
<!ELEMENT secure-system (allow-unlisted-interfaces*,

action-role-mapping+)>

<action-name>*</action-name>
 Orbix Security Guide 453

Groups together a particular action and all of the roles
permitted to perform that action.

<!ELEMENT action-role-mapping (server-name, interface+)>

Contains all of the permissions that apply to a particular
server application.

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>

Specifies the default access permissions that apply to
interfaces not explicitly listed in the action-role mapping file.
The element contents can have the following values:
♦ true—for any interfaces not listed, access to all of the

interfaces’ actions is allowed for all roles. If the remote
user is unauthenticated (in the sense that no credentials
are sent by the client), access is also allowed.

♦ false—for any interfaces not listed, access to all of the
interfaces’ actions is denied for all roles. Unauthenticated
users are also denied access.

Default is false.
<!ELEMENT interface (name, action-role+)>

In the case of a CORBA server, the interface element contains
all of the access permissions for one particular IDL interface.
In the case of an Artix server, the interface element contains
all of the access permissions for one particular WSDL port
type.

<!ELEMENT name (#PCDATA)>

Within the scope of an interface element, identifies the
interface (IDL interface or WSDL port type) with which
permissions are being associated. The format of the interface
name depends on the type of application, as follows:
♦ CORBA server—the name element identifies the IDL

interface using the interface’s OMG repository ID. The
repository ID normally consists of the characters IDL:
followed by the fully scoped name of the interface (using /
instead of :: as the scoping character), followed by the
characters :1.0. Hence, the Simple::SimpleObject IDL
interface is identified by the IDL:Simple/SimpleObject:1.0
repository ID.

♦ Artix server—the name element contains a WSDL port type
name, specified in the following format:

Note: However, if <allow-unlisted-interfaces> is true
and a particular interface is listed, then only the
actions explicitly listed within that interface’s interface
element are accessible. Unlisted actions from the listed
interface are not accessible.

Note: The form of the repository ID can also be
affected by various #pragma directives appearing in the
IDL file. A commonly used directive is #pragma prefix.
For example, the CosNaming::NamingContext interface in
the naming service module, which uses the omg.org
prefix, has the following repository ID:
IDL:omg.org/CosNaming/NamingContext:1.0
 454 Orbix Security Guide

NamespaceURI:PortTypeName

The PortTypeName comes from a tag, <portType

name="PortTypeName">, defined in the NamespaceURI namespace. The

NamespaceURI is usually defined in the <definitions

targetNamespace="NamespaceURI" ...> tag of the WSDL contract.

<!ELEMENT role-name (#PCDATA)>

Specifies a role to which permission is granted. The role name
can be any role that belongs to the server’s Artix authorization
realm (for CORBA bindings, the realm name is specified by the
plugins:gsp:authorization_realm configuration variable; for
SOAP bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable) or to
the IONAGlobalRealm realm. The roles themselves are defined
in the security server backend; for example, in a file adapter
file or in an LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

The outermost scope of an action-role mapping file groups
together a collection of action-role-mapping elements.

<!ELEMENT server-name (#PCDATA)>

The server-name element specifies the configuration scope
(that is, the ORB name) used by the server in question. This is
normally the value of the -ORBname parameter passed to the
server executable on the command line.
Orbix Security Guide 455

 456 Orbix Security Guide

OpenSSL Utilities
The openssl program consists of a large number of utilities that have
been combined into one program. This appendix describes how you use
the openssl program with when managing X.509 certificates and private
keys.

Using OpenSSL Utilities

The OpenSSL package
Orbix ships a version of the OpenSSL program that is available
with Eric Young’s openssl package. OpenSSL is a publicly available
implementation of the SSL protocol. Consult “License Issues” on
page 477 for information about the copyright terms of OpenSSL.

Command syntax
An openssl command line takes the following form:
openssl utility arguments
For example:
openssl x509 -in OrbixCA -text

The openssl utilities
This appendix describes four openssl utilities:

The -help option
To get a list of the arguments associated with a particular
command, use the -help option as follows:
openssl utility -help
For example:
openssl x509 -help

Note: For complete documentation of the OpenSSL
utilities, consult the documentation at the OpenSSL web
site http://www.openssl.org/docs.

x509 Manipulates X.509 certificates.
req Creates and manipulates certificate signing requests,

and self-signed certificates.
rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).
 Orbix Security Guide 457

te

utput

sing

xist
The x509 Utility

Purpose of the x509 utility
In Orbix the x509 utility is mainly used for:
• Printing text details of certificates you wish to examine.
• Converting certificates to different formats.

Options
The options supported by the openssl x509 utility are as follows:

-inform arg - input format - default PEM
(one of DER, NET or PEM)

-outform arg - output format - default PEM
(one of DER, NET or PEM

-keyform arg - private key format - default PEM

-CAform arg - CA format - default PEM

-CAkeyform arg - CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN

-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certifica
- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object

-req - input is a certificate request, sign and o

-CA arg - set the CA certificate, must be PEM format

-CAkey arg - set the CA key, must be PEM format. If mis
it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not e

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-sha1/
-mdc2

- digest to do an RSA sign with
 458 Orbix Security Guide

Using the x509 utility
To print the text details of an existing PEM-format X.509
certificate, use the x509 utility as follows:
openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509
certificate, use the x509 utility as follows:
openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the
x509 utility as follows:
openssl x509 -in MyCert.pem -inform PEM -outform DER -out

MyCert.der

The req Utility

Purpose of the x509 utility
The req utility is used to generate a self-signed certificate or a
certificate signing request (CSR). A CSR contains details of a
certificate to be issued by a CA. When creating a CSR, the req
command prompts you for the necessary information from which a
certificate request file and an encrypted private key file are
produced. The certificate request is then submitted to a CA for
signing.
If the -nodes (no DES) parameter is not supplied to req, you are
prompted for a pass phrase which will be used to protect the
private key.

Options
The options supported by the openssl req utility are as follows:

Note: It is important to specify a validity period (using the
-days parameter). If the certificate expires, applications
that are using that certificate will not be authenticated
successfully.

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM

-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg key file format
Orbix Security Guide 459

Using the req Utility
To create a self-signed certificate with an expiry date a year from
now, the req utility can be used as follows to create the certificate
CA_cert.pem and the corresponding encrypted private key file
CA_pk.pem:
openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem
and the corresponding encrypted private key file
MyEncryptedKey.pem:
openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

The rsa Utility

Purpose of the rsa utility
The rsa command is a useful utility for examining and modifying
RSA private key files. Generally RSA keys are stored encrypted
with a symmetric algorithm using a user-supplied pass phrase.
The OpenSSL req command prompts the user for a pass phrase in
order to encrypt the private key. By default, req uses the triple
DES algorithm. The rsa command can be used to change the
password that protects the private key and to convert the format
of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase
used to encrypt it.

-keyout arg file to send the key to

-newkey rsa:bits generate a new RSA key of ‘bits’ in size

-newkey dsa:file generate a new DSA key, parameters taken
from CA in ‘file’

-[digest] Digest to sign with (md5, sha1, md2,
mdc2)

-config file request template file

-new new request

-x509 output an x509 structure instead of a
certificate req. (Used for creating self
signed certificates)

-days number of days an x509 generated by -x509
is valid for

-asn1-kludge Output the ‘request’ in a format that is
wrong but some CA’s have been reported as
requiring [It is now always turned on but
can be turned off with -no-asn1-kludge]
 460 Orbix Security Guide

Options
The options supported by the openssl rsa utility are as follows:

Using the rsa Utility
Converting a private key to PEM format from DER format involves
using the rsa utility as follows:
openssl rsa -inform DER -in MyKey.der -outform PEM -out MyKey.pem

Changing the pass phrase which is used to encrypt the private key
involves using the rsa utility as follows:
openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey.pem

-des3

Removing encryption from the private key (which is not
recommended) involves using the rsa command utility as follows:
openssl rsa -inform PEM -in MyKey.pem -outform PEM -out

MyKey2.pem

The ca Utility

Purpose of the ca utility
You can use the ca utility create X.509 certificates by signing
existing signing requests. It is imperative that you check the
details of a certificate request before signing. Your organization
should have a policy with respect to the issuing of certificates.
The ca utility is used to sign certificate requests thereby creating a
valid X.509 certificate which can be returned to the request
submitter. It can also be used to generate Certificate Revocation
Lists (CRLS). For information on the ca -policy and -name options,
refer to “The OpenSSL Configuration File” on page 463.

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des
using 168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus

Note: Do not specify the same file for the -in and -out
parameters, because this can corrupt the file.
Orbix Security Guide 461

Creating a new CA
To create a new CA using the openssl ca utility, two files (serial
and index.txt) need to be created in the location specified by the
openssl configuration file that you are using.

Options
The options supported by the openssl ca utility are as follows:

Note: Most of the above parameters have default values as
defined in openssl.cnf.

Using the ca Utility
Converting a private key to PEM format from DER format involves
using the ca utility as shown in the following example. To sign the
supplied CSR MyReq.pem to be valid for 365 days and create a new
X.509 certificate in PEM format, use the ca utility as follows:
openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

-verbose - Talk alot while doing things

-config file - A config file

-name arg - The particular CA definition to use

-gencrl - Generate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - number of days to certify the certificate
for

-md arg - md to use, one of md2, md5, sha or sha1

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEM private key file

-key arg - key to decode the private key if it is
encrypted

-cert - The CA certificate

-in file - The input PEM encoded certificate
request(s)

-out file - Where to put the output file(s)

-outdir dir - Where to put output certificates

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key
and challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos
universal strings
 462 Orbix Security Guide

The OpenSSL Configuration File
A number of OpenSSL commands (for example, req and ca) take a
-config parameter that specifies the location of the openssl
configuration file. This section provides a brief description of the
format of the configuration file and how it applies to the req and ca
commands. An example configuration file is listed at the end of
this section.

Structure of openssl.cnf
The openssl.cnf configuration file consists of a number of sections
that specify a series of default values that are used by the openssl
commands:

[req] Variables

Overview of the variables
The req section contains the following variables:
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

default_bits configuration variable
The default_bits variable is the default RSA key size that you wish
to use. Other possible values are 512, 2048, and 4096.

default_keyfile configuration variable
The default_keyfile variable is the default name for the private
key file created by req.

distinguished_name configuration variable
The distinguished_name variable specifies the section in the
configuration file that defines the default values for components of
the distinguished name field. The req_attributes variable specifies
the section in the configuration file that defines defaults for
certificate request attributes.

[req] Variables page 463

[ca] Variables page 464

[policy] Variables page 464

Example openssl.cnf File page 465
Orbix Security Guide 463

[ca] Variables

Choosing the CA section
You can configure the file openssl.cnf to support a number of CAs
that have different policies for signing CSRs. The -name parameter
to the ca command specifies which CA section to use. For
example:
openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not
supplied to the ca command, the CA section used is the one
indicated by the default_ca variable. In the “Example openssl.cnf
File” on page 465, this is set to CA_default (which is the name of
another section listing the defaults for a number of settings
associated with the ca command). Multiple different CAs can be
supported in the configuration file, but there can be only one
default CA.

Overview of the variables
Possible [ca] variables include the following
dir: The location for the CA database

The database is a simple text database containing the following tab
separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified
revoked date: When it was revoked, blank if not revoked
serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial number field should be unique, as should the CN/status
combination. The ca utility checks these at startup.
certs: This is where all the previously issued certificates are

kept

[policy] Variables

Choosing the policy section
The policy variable specifies the default policy section to be used if
the -policy argument is not supplied to the ca command. The CA
policy section of a configuration file identifies the requirements for
the contents of a certificate request which must be met before it is
signed by the CA.
There are two policy sections defined in the “Example openssl.cnf
File” on page 465: policy_match and policy_anything.
 464 Orbix Security Guide

Example policy section
The policy_match section of the example openssl.cnf file specifies
the order of the attributes in the generated certificate as follows:
countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

The match policy value
Consider the following value:
countryName = match

This means that the country name must match the CA certificate.

The optional policy value
Consider the following value:
organisationalUnitName = optional

This means that the organisationalUnitName does not have to be
present.

The supplied policy value
Consider the following value:
commonName = supplied

This means that the commonName must be supplied in the certificate
request.

Example openssl.cnf File

Listing
The following listing shows the contents of an example openssl.cnf
configuration file:
##
openssl example configuration file.
This is mostly used for generation of certificate requests.
##

#
[ca]
default_ca= CA_default # The default ca section
##

#

[CA_default]

dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept
Orbix Security Guide 465

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL
private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should

conform to the details of the CA

policy= policy_match

For the CA policy

[policy_match]
countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied
emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]
countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]
default_bits = 1024
default_keyfile= privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName= Country Name (2 letter code)
countryName_min= 2
countryName_max = 2
stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
 466 Orbix Security Guide

emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName= An optional company name
Orbix Security Guide 467

 468 Orbix Security Guide

Security
Recommendations
This appendix lists some general recommendations for ensuring the
effectiveness of Orbix security.

General Recommendations

List of recommendations
The following general recommendations can help you secure your
system using Orbix applications
1. Use SSL security for every application wherever possible.
2. Use the strongest cipher suites available. There is little extra

overhead if you use 128 bit instead of 40 bit encryption for a
typical connection.

3. If your application must connect to insecure applications, limit
the aspects of your system that use insecure communications
to the minimum necessary using policies and security aware
code.

4. Treat any IOR received from an insecure endpoint as
untrustworthy. Set your policies so that you cannot use
insecure IORs accidentally. Set all communications in your
ORBs to be secure by default and use the appropriate policies
to override these where necessary.

5. It is important to remember that the certificates supplied with
Orbix are for demonstration purposes only and must be
replaced with a securely generated set of real certificates
before applications can run in a production environment.

6. The contents of your trusted CA list files must only include CA
certificates that you trust.

7. Do not use passwords in the configuration file. This feature is
only a developer aid.

8. The security of all SSL/TLS programs is only as strong as the
weakest cipher suite that they support. Consider making
stronger cipher suites available as an optional service which
may be availed of by applications with stronger minimum
security requirements.
The bad guys will of course choose to use the weakest cipher
suites.

9. Depending on the sensitivity of your system an RSA key size
greater than 512 bits might be appropriate. 1024 bit keys are
significantly slower than 512 bit keys but are much more
secure.
 Orbix Security Guide 469

 470 Orbix Security Guide

Sample TLS
Configurations
This appendix lists the standard demonstration configurations from the
demos.tls configuration scope.

Demonstration TLS Scopes
The following TLS scopes demonstrate how to configure
elementary security policies for secure IIOP/TLS clients and
servers.

Orbix Coniguration File
demos {
 tls {
 secure_client_with_no_cert
 {
 principal_sponsor:use_principal_sponsor = "false";

 policies:client_secure_invocation_policy:requires = ["Confidentiality",
"EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports = ["Confidentiality",
"Integrity", "DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];

 };

 secure_client_with_cert
 {
 policies:client_secure_invocation_policy:requires = ["Confidentiality",

"EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports = ["Confidentiality",
"Integrity", "DetectReplay", "DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 schannel
 {
 principal_sponsor:auth_method_id = "security_label";

 principal_sponsor:auth_method_data = ["label=Bob"];

 initial_references:IT_TLS_Toolkit:plugin = "schannel_toolkit";

 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*", "IT_IIOP_TLS=*",
"IT_TLS=*", "IT_SCHANNEL=*"];

 };
 Orbix Security Guide 471

 smart_card
 {
 principal_sponsor:auth_method_id = "pkcs11";

 principal_sponsor:auth_method_data = ["provider=dkck132.dll",
"slot=0", "pin=demopassword"];

 };

 };

 semi_secure_client_with_cert
 {
 orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls",

"local_log_stream"];

 policies:client_secure_invocation_policy:requires = ["NoProtection"];

 policies:client_secure_invocation_policy:supports = ["NoProtection",
"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInClient", "EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 };

 semi_secure_client_with_no_cert
 {
 orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls",

"local_log_stream"];

 principal_sponsor:use_principal_sponsor = "false";

 policies:client_secure_invocation_policy:requires = ["NoProtection"];

 policies:client_secure_invocation_policy:supports = ["NoProtection",
"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 };

 insecure_server
 {
 orb_plugins = ["iiop_profile", "giop", "iiop", "local_log_stream"];

 };

 secure_server_no_client_auth
 {
 policies:target_secure_invocation_policy:requires = ["Confidentiality"];
 472 Orbix Security Guide

 policies:target_secure_invocation_policy:supports = ["Confidentiality",
"Integrity", "DetectReplay", "DetectMisordering", "EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 };

 secure_server_request_client_auth
 {
 policies:target_secure_invocation_policy:requires = ["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 };

 secure_server_enforce_client_auth
 {
 policies:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 schannel
 {
 principal_sponsor:auth_method_id = "security_label";

 principal_sponsor:auth_method_data = ["label=Abigbank Accounts
Server"];

 initial_references:IT_TLS_Toolkit:plugin = "schannel_toolkit";

 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*", "IT_IIOP_TLS=*",
"IT_TLS=*", "IT_SCHANNEL=*"];
Orbix Security Guide 473

 };

 };

 semi_secure_server_no_client_auth
 {
 orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls",

"local_log_stream"];

 policies:target_secure_invocation_policy:requires = ["NoProtection"];

 policies:target_secure_invocation_policy:supports = ["NoProtection",
"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 };

 semi_secure_server_enforce_client_auth
 {
 orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls",

"local_log_stream"];

 policies:target_secure_invocation_policy:requires = ["NoProtection"];

 policies:target_secure_invocation_policy:supports = ["NoProtection",
"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInClient", "EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 };

 semi_secure_server_request_client_auth
 {
 orb_plugins = ["iiop_profile", "giop", "iiop", "iiop_tls",

"local_log_stream"];

 policies:target_secure_invocation_policy:requires = ["NoProtection"];

 policies:target_secure_invocation_policy:supports = ["NoProtection",
"Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInClient", "EstablishTrustInTarget"];

 policies:allow_unauthenticated_clients_policy = "true";
 474 Orbix Security Guide

 principal_sponsor:use_principal_sponsor = "true";

 principal_sponsor:auth_method_id = "pkcs12_file";

 principal_sponsor:auth_method_data =
["filename=C:\Programs\IONA\asp\6.3\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 };
 };
};
Orbix Security Guide 475

 476 Orbix Security Guide

License Issues
This appendix contains the text of licenses relevant to .

OpenSSL License

Overview
The license agreement for the usage of the OpenSSL command
line utility shipped with SSL/TLS is as follows:

LICENSE ISSUES
==============
 The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
 the OpenSSL License and the original SSLeay license apply to the toolkit.
 See below for the actual license texts. Actually both licenses are BSD-style
 Open Source licenses. In case of any license issues related to OpenSSL
 please contact openssl-core@openssl.org.

 OpenSSL License

/* ==
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 Orbix Security Guide 477

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 478 Orbix Security Guide

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
Orbix Security Guide 479

 480 Orbix Security Guide

Index
Symbols
#pragma prefix 135
<action-role-mapping> tag 135, 141
<allow-unlisted-interfaces> tag 135
<interface> tag 135
<name> tag 135
<realm> tag 130
<role> tag 130
<server-name> tag 135, 139
<users> tag 130

A
accept_asserted_authorization_info
configuration variable 85, 87

AccessId attribute type 358
AccessId credentials attribute 344
AccessId security attribute 344
ACL

<action-role-mapping> tag 135
<allow-unlisted-interfaces> tag 135
<interface> tag 135
<name> tag 135
<server-name> tag 135
action_role_mapping configuration
variable 134

action-role mapping file 133
action-role mapping file, example 134
centralized 136, 138
ClientAccessDecision interface 137, 139,

143
com.iona.isp.authz.adapters
property 140

localized 136
plugins:gsp:acl_policy_data_id
variable 141, 142

plugins:gsp:action_role_mapping_file
variable 137

plugins:gsp:authorization_policy_enfor
cement_point variable 140

plugins:gsp:authorization_policy_store
_type variable 140

action-role mapping
and role-based access control 121

action_role_mapping configuration
variable 57, 76, 85, 134, 166

action-role mapping file
<action-role-mapping> tag 135
<allow-unlisted-interfaces> tag 135
<interface> tag 135
<name> tag 135
<server-name> tag 135
CORBA

configuring 133
example 134
action-role mapping files

Orbix services, for 170
activation

automatic 281
of insecure servers 284
persistent 281
process for 284

addProvider() method
JCE security provider, adding 207

administration
itadmin utility, certificates for 231
of the KDM server 286
OpenSSL command-line utilities 218

administrator
certificates 289

admin_logon sub-command 286
admin_logon subcommand 290
and iSF adapter properties 389
application-level security 293
Artix security service

architecture 377
definition 378
features 378
plugins:java_server:classpath
configuration variable 389

standalone deployment of 379
ASN.1 212, 447

attribute types 449
AVA 449
OID 448
RDN 449

assert_authorization_info configuration
variable 85, 87

association options
and cipher suite constraints 258
and mechanism policy 250
client secure invocation policy,
default 247

compatibility with cipher suites 258
DetectMisordering 331
DetectReply 331
EstablishTrustInClient 49, 61, 265
EstablishTrustInClient, CSIv2 303, 304
EstablishTrustInTarget 262, 265
IdentityAssertion, CSIv2 318
NoProtection 51
rules of thumb 250
SSL/TLS

Confidentiality 246
DetectMisordering 246
DetectReplay 246
EstablishTrustInClient 246
EstablishTrustInTarget 246
Orbix Security Guide 481

Integrity 245
NoProtection 245
setting 244

target secure invocation policy,
default 249

Asymmetric cryptography 33
AttributeList type 344
attribute service policy 318
AttributeService policy data 333
AttributeTypeList sequence 357
attribute value assertion 449
Attribute value assertions, See AVA
authenticate() method

in IS2Adapter 385
authenticate() operation 335, 336
AuthenticateGSSUPCredentials
interface 298

Authentication 31, 32
authentication

and mechanism policy 265
caching of credentials 67
CSIv2 client-side policy 332
CSIv2 server-side policy 332
EstablishTrustPolicy 329
GSSUP mechanism
invocation credentials 330
iSF

process of 54
IT_CSI_AUTH_METH_USERNAME_PAS
SWORD authentication method 340

IT_TLS_AUTH_METH_CERT_CHAIN
authentication method 337

IT_TLS_AUTH_METH_CERT_CHAIN_FIL
E authentication method 337

IT_TLS_AUTH_METH_LABEL
authentication method 337

IT_TLS_AUTH_METH_PKCS11
authentication method 337

IT_TLS_AUTH_METH_PKCS12_DER
authentication method 337

IT_TLS_AUTH_METH_PKCS12_FILE
authentication method 337

methods for SSL/TLS 337
multiple own certificates 270
over transport, in CSIv2 299
own certificate, specifying 268
pass phrase

dialog prompt, C++ 271
dialog prompt, Java 272
in configuration 273
KDM server, from 272
password file, from 272

PIN
dialog prompt 274
in configuration 275

principal authenticator 335
security capsule 336
smart card

PIN 274
SSL/TLS

principal sponsor 269
requiring 261

smart cards 269
target and client 264
target only 261
trusted CA list 266

authentication_cache_size configuration
variable 67

authentication_cache_timeout
configuration variable 67

authentication data
and key distribution management 281

authentication domain
CSIv2, definition 129

authentication over transport 83
client authentication token 301
client support, enabling 303
dependency on SSL/TLS 299
description 293, 299
GSSUP credentials 358
own credentials 337
server configuration 304
target requirements 304
target support, enabling 304

authentication realm
JAAS, definition 129

authentication service
sample implementation 306

authentication service class
specifying 305

authentication service object
and CSI_SERVER_AS_POLICY
policy 305

default implementation 305
iSF implementation 306
registering as an initial reference 305

AuthenticationService policy data 332
AuthenticationService policy value 305
auth_method_data configuration
variable 270

auth_method_id configuration
variable 270

authorization
caching of credentials 67
iSF

process of 54, 64
procedure 127
role-based access control 121
roles

creating 122
example 124
special 123

SAML data 77
terminology 127

authorization realm
adding a server 122
IONAGlobalRealm realm 123
iSF 121
iSF, setting in server 57
roles in 122
servers in 121
special 123

authorization realms
creating 122
 482 Orbix Security Guide

example 124
automatic activation 281
automatic connection management

interaction with rebind policy 350
AVA 449

in distinguished names 367
AVAList interface 367

B
backward trust 61, 317
Basic Encoding Rules 447
basic log service ACL

IONAServiceRole 190
IONAUserRole 191
secure domain 190
semi-secure domain 190
UnauthenticatedUserRole 191

BER 447
bytearray_to_cert() method 366

C
CA 34, 211

appending to a CA list 226
choosing a host 214
commercial CAs 213
default 217
deploying 225
index file 220
in PKCS#12 file 268
list of trusted 215
multiple CAs 215
private CAs 213
private key, creating 220
security precautions 214
See Alsocertificate authority
self-signed 220
serial file 220
trusted list 225, 237, 266

464
CA, setting up 218
CA certificates 204

deploying to Windows certificate
store 237

CACHE_CLIENT session caching value 260
CACHE_NONE session caching value 260
CACHE_SERVER_AND_CLIENT session
caching value 260

CACHE_SERVER session caching
value 260

caching
authentication_cache_size
configuration variable 67

authentication_cache_timeout
configuration variable 67

CACHE_CLIENT session caching
value 260

CACHE_NONE session caching
value 260

CACHE_SERVER_AND_CLIENT session
caching value 260

CACHE_SERVER session caching
value 260

of credentials 67
SSL/TLS 260

cache size 260
validity period 260

Caching sessions 260
CAPI 204
CAs 218
ca utility 461
centralized ACL 140

<action-role-mapping> tag 141
<server-name> tag 139
ClientAccessDecision interface 139
com.iona.isp.authz.adapters
property 140

file list 140
is2.properties file 140
overview 136, 138
plugins:gsp:acl_policy_data_id
variable 141, 142

plugins:gsp:authorization_policy_enfor
cement_point variable 140

plugins:gsp:authorization_policy_store
_type variable 140

selecting an ACL file 141
selection by ACL key 142
selection by ORB name 141
selection by override value 141

cert_constraints configuration
variable 288

CertConstraintsPolicy 277, 392
CertConstraintsPolicy policy 276, 364, 367,

391
CertConstraints string array 369, 371
certificate authority

and certificate signing 211
certificate-based authentication

example scenario 62
file adapter, configuring 131
LDAP adapter, configuring 132

certificate-based SSO
overview 79
typical scenario 81

certificate constraints 288
login server 83

certificate constraints policy 364
C++ example 369
configuration, setting by 368
identity assertion and 317
Java example 370
programming, setting by 368
setting 368
three-tier target server 61

certificate_constraints_policy
variable 277, 392

Certificate interface 366
Certificates 33, 34

chain length 276
constraints 276, 391
contents of 365
validating 363–365
Orbix Security Guide 483

validation process 363
certificates

accessing from Microsoft Management
Console 234

administrator 289
C++ parsing

get_issuer_dn_string() operation 367
get_subject_dn_string()
operation 367

CertConstraintsPolicy policy 276, 391
Certificate interface 366
chaining 214
common names 365
constraint language 277, 392
constraint policy, C++ example 369
constraint policy, Java example 370
constraints, applying 368
constraints policy 61
contents 365
contents of 212
creating and signing 221
creating for the KDM 289
default validation 364
demonstration 217
demonstration passwords 217
deploying 226
deploying in Schannel 234, 237
deployment, 224
deployment of 224
DER encoding 366
DER format 374
for itadmin utility 231
importing and exporting 216
issuer 365
itadmin_x509_cert_root configuration
variable 231

Java parsing 366
KDM administrator 289
length limit 216
locator 289
MaxChainLengthPolicy 276
multiple own certificates 270
obtaining 374
Orbix services 218
own, specifying 268
parsing 366

AVAList interface 367
bytearray_to_cert() method 366

pass phrase 271
peer 215
PKCS#11 interface 227, 269
PKCS#12 file 216, 268
public key 212, 365
public key encryption 254
security handshake 262, 264
self-signed 214, 220
serial number 212, 365
signing 211, 223
signing request 222
smart card deployment 227, 239
smart cards 269
subject name 365

syntax 365
trusted CA certificates 204
trusted CA list 225, 237, 266
validation

validate_cert_chain() operation 372
validation, implementing 371
X.509 211
X.509 extensions 367
X509CertificateFactory interface 366,

374
X509Cert interface 366

certificate signing request 222
common name 222
signing 223

certificate snap-in, for MMC 235
certificate store

accessing from Internet Explorer 234
deploying application certificates 237
importing PKCS#12 files 239
Schannel 204
trusted CA certificates, depoying 237

certificate validation
CertValidator interface 364
custom 364
default validation 364

certificate validation policy 363
implementing 371

CertificateValidatorPolicy policy 367
Certification Authority. See CA
CertValidator interface 364

implementing 372
CertValidatorPolicy policy 364
CFR

CompoundName type 172
configuration scope 171
namespaces 171
parameter-based access control 173

CFR domain
Domain.cfg file 148
secure-Domain.cfg file 148

cfr-Domain.cfg file 148
chaining of certificates 214
checksums 284

and the key distribution repository 282
checking 285

checksums_optional configuration
variable 285

checksum subcommand 287, 290
ciper suites

order of 257
Ciphersuites

choosing 469
cipher suites

ciphersuites configuration variable 257
compatibility algorithm 259
compatibility with association
options 258

default list 257
definitions 255
effective 258
encryption algorithm 254
exportable 255
 484 Orbix Security Guide

integrity-only ciphers 253
key exchange algorithm 254
mechanism policy 255
secure hash algorithm 254
secure hash algorithms 254
security algorithms 253
specifying 253
standard ciphers 253

ciphersuites configuration variable 257
ClientAccessDecision interface 137, 139,

143
client authentication token

CSIv2 authentication over
transport 301

client_binding_list configuration
variable 317
and CSIv2 authentication 303
iSF, client configuration 55
secure client 48, 163

client secure invocation policy 258
HTTPS 247
IIOP/TLS 247

ClientSecureInvocationPolicy policy 244
client-side policies 325
client_version_policy

IIOP 416
close() method 385
cluster.properties file 108

example 111
clustering

definition 104
is2.cluster.properties.filename
property 110

is2.replica.selector.classname 110
is2.replica.selector.classname
property 110

is2.replication.required property 110,
114

IT_SecurityService initial reference 113
load balancing 110, 115
login service 109, 110
plugins:security:iiop_tls:addr_list
variable 113

plugins:security:iiop_tls:host
variable 113

plugins:security:iiop_tls:port
variable 113

policies:iiop_tls:load_balancing_mecha
nism variable 116

replicaURL property 111
securityInstanceURL property 111

clustering, and fixed ports 53
cluster properties file 107
colocated invocations

and secure associations 243
com.iona.isp.adapters property 387
com.iona.isp.authz.adapters property 140
common names 365

uniqueness 222
CompoundName type 172
Confidentiality association option 246

hints 251

Confidentiality option 246
configuration

and iSF standalone deployment 379
of OpenSSL 219
plugins:java_server:classpath
configuration variable 389

Configuration file 463
configuration repository ACL 170
configuration scope 171
connection_attempts 416
constraint language 277, 392
Constraints

for certificates 276, 391
Contents of certificates 365
CORBA

ACLs 133
action-role mapping file 133
action-role mapping file, example 134
and iSF client SDK 377
intermediate server configuration 59
iSF, three-tier system 57
security, overview 43
SSL/TLS

client configuration 47
securing communications 44
server configuration 49

three-tier target server
configuration 60

two-tier systems 53
CORBA policies

how to set 325
CORBA security

CSIv2 plug-in 44
GSP plug-in 44
IIOP/TLS plug-in 44

CORBA Security RTF 1.7 31
create_POA() operation

and policies 325
create_policy() operation 369, 371
Credentials

and Principal Authenticator 37, 40
defined 37, 40
retrieving 345

credentials
AccessId attribute 344
AttributeList type 344
attributes, Orbix-specific 345
creating CSIv2 credentials 340, 342
creating own 335
definition 343
get_attributes() operation 358
get_target_credentials() operation 345
GSSUP 358
invocation credentials 330
obtaining 344
own

C++ example 347
Java example 348, 349
parsing 347

own, creating multiple 336
own, CSIv2 337

parsing 348
Orbix Security Guide 485

own, SSL/TLS 337
_Public attribute 344
received 345

C++ example 353
Java example 354

received, CSIv2
Java example 356
parsing 355

received, SSL/TLS
parsing 354, 355

retrieving 345
retrieving own 345

C++ example 346
Java example 346

retrieving received 353
retrieving target 349
SecurityAttributeType type 344
sharing 271, 306, 336
smart cards 269
target, interaction with rebind
policy 350

target, retrieving
C++ example 350
Java example 351

target, SSL/TLS
C++ example 352
Java example 352
parsing 351

Credentials interface 335, 344
get_attributes() operation 344
Orbix-specific 345

Cryptography
asymmetric 33
RSA. See RSA cryptography
symmetric 33, 35

CSI
and certificate-based SSO 79
authentication over transport 83

CSI authentication over transport
and single sign-on 77

CSI_CLIENT_AS_POLICY policy type 332
CSI_CLIENT_SAS_POLICY policy type 333
CSICredentials interface 337

parsing 348
CSI identity assertion

and single sign-on 77
CSI interceptor 55, 164
CSI plug-in

and CSIv2 principal sponsor 306
loading for Java applications 303
role in iSF 298
role in the iSF 297

csi plug-in 317
CSIReceivedCredentials interface 355
CSI_SERVER_AS_POLICY policy 305
CSI_SERVER_AS_POLICY policy type 332
CSI_SERVER_SAS_POLICY policy
type 333

CSIv2
applicability 294
application-level security 293
association options 304

IdentityAssertion 318
attribute service policy 318
AuthenticateGSSUPCredentials
interface 298

authentication, Java example 340, 342
authentication domain 129
authentication over transport 293
authentication over transport,
description 299

authentication over transport, own
credentials 337

authentication policy, client-side 332
authentication policy, server-side 332
authentication service 305
authentication service object 301
backward trust 317
certificate constraints policy 61
client authentication token 301
client_binding_list configuration
variable 317

csi plug-in for Java applications 317
GSSUPAuthData interface 340
GSSUP mechanism 299
identity assertion 294

own credentials 337
identity assertion, description 313
identity assertion, enabling 317
identity assertion, scenario
description 314

identity token types 315
intermediate server 295
ITTAbsent identity token type 315
ITTAnonymous identity token type 315
ITTPrincipalName identity token
type 315

level 0 299
login 295
login, by configuration 308
login, by programming 308
login, dialog prompt 307
login options 307
policies 331
principal sponsor

client configuration 56
principal sponsor, description 306
principal sponsor, disabling 308
principal sponsor, enabling 306
principal_sponsor:csi:auth_method_da
ta configuration variable 308

principal sponsor and client
authentication token 301

received credentials 316
sample configurations 319
server_binding_list configuration
variable 317

SSL/TLS mutual authentication 316
SSL/TLS prerequisites 316
SSL/TLS principal sponsor 317
transmitting security data 293

CSIv2 authentication domain
and server domain name 304
in the iSF 296
 486 Orbix Security Guide

CSIv2 plug-in
CORBA security 44

CSP 204
CSR 222
CSv2

CSICredentials interface 337
Current interface

and credentials 345
retrieving received credentials 353

custom validation 364

D
Data Encryption Standard 35
data encryption standard

see DES
delegation

and identity assertion 313
demonstration certificates 217

passwords 217
deploying a CA 225
deployment

application certificates 226
certificates 224
service certificates 228
smart card, constraints 228
smart cards 227, 239

DER 447
DER encoding 366
DER format 374
DES 35

symmetric encryption 254
DetectMisordering association option 246,

331
hints 251

DetectMisordering option 246
DetectReplay association option 246

hints 251
DetectReplay option 246
DetectReply association option 331
DIRECT_PERSISTENCE policy value 52
Distinguished Encoding Rules 447
distinguished names 367

definition 448
DN

definition 448
string representation 448

documentation
.pdf format xiv
updates on the web xiv

Domain.cfg file 148
domain name

and CSIv2 authentication over
transport 294

ignored by iSF 54
domain names

server domain name 304
domains

federating across 104

E
effective cipher suites

definition 258
effective credentials 87
enable_gssup_sso variable 73
enable_x509_sso variable

and certificate-based SSO 81
Encryption 31
encryption algorithm

RC4 254
encryption algorithms 254

DES 254
symmetric 254
triple DES 254

enforce_secure_comms_to_sso_server
variable 74
and the login service 71
login server 83

enterprise security service
and iSF security domains 119

EstablishTrustInClient
CSIv2 association option 303, 304, 307

EstablishTrustInClient association
option 49, 246, 265
hints 250
three-tier target server 61

EstablishTrustInClient CSI association
option
and username/password-based
authentication 74, 76

EstablishTrustInClient option 246
EstablishTrustInTarget association
option 246, 262, 265
hints 250

EstablishTrustInTarget option 246
EstablishTrustPolicy policy 329

and interaction between policies 331
EstablishTrust type 330
event log service ACL

IONAServiceRole 192
IONAUserRole 193
secure domain 192
semi-secure domain 192
UnauthenticatedUserRole 193

event service ACL
IONAServiceRole 181
IONAUserRole 182
secure domain 181
semi-secure domain 181
UnauthenticatedUserRole 182

exportable cipher suites 255
ExtendedReceivedCredentials interface 78
Extension interface 367
ExtensionList interface 367

F
failover

definition 108
features, of the Artix security service 378
federation

and the security service 104
cluster.properties file 108
cluster properties file 107
Orbix Security Guide 487

definition 104
is2.cluster.properties.filename
property 106

is2.current.server.id property 105
is2.properties file 106, 110
plugins:security:iiop_tls settings 107

file adapter 99
configuring certificate-based
authentication 131

properties 99
file domain

<realm> tag 130
<users> tag 130
example 124, 129
file location 129
managing 129

fixed ports 52
DIRECT_PERSISTENCE policy value 52
host 53
IIOP/TLS addr_list 53
IIOP/TLS listen_addr 53
IIOP/TLS port 53
INDIRECT_PERSISTENCE policy
value 52

G
generic security service username/
password mechanism

generic server 379
getAllUsers() method 387
get_attributes() operation 358

in Credentials interface 344
getAuthorizationInfo() method 386
get_issuer_dn_string() operation 367
get_subject_dn_string() operation 367
get_target_credentials() operation 345
GIOP

and CSIv2 293
GroupBaseDN property 102
GroupNameAttr property 102
GroupObjectClass property 102
GroupSearchScope property 102
GSP interceptor 164
GSP plug-in

and ClientAccessDecision 137
and the login service 69
authentication_cache_size
configuration variable 67

authentication_cache_timeout
configuration variable 67

caching of credentials 67
CORBA security 44
role in the iSF 297

GSSUP
modifications for single sign-on 72

GSSUPAuthData interface 340
GSSUPAuthData struct 342, 343
GSSUP credentials 106, 358
GSSUP mechanism 299

and CSIv2 principal sponsor 306
GSSUP username 315

H
Handshake, TLS 33–??
high availability 108
HTTP

login realm 129
HTTPS

ciphersuites configuration variable 257

I
identity assertion

backward trust 317
certificate constraints policy

CSIv2
certificate constraints policy

317
csi plug-in for Java applications 317
description 294, 313
enabling 317
intermediate server configuration 318
own credentials 337
policy, client-side 332
policy, server-side 333
received credentials and 316
sample client configuration 319
sample configurations 319
sample intermediate server
configuration 320

sample target server configuration 321
scenarioCSIv2

identity assertion scenario 313
scenario description 314
SSL/TLS dependency 313
SSL/TLS mutual authentication 316
SSL/TLS prerequisites 316
SSL/TLS principal sponsor 317

IdentityAssertion CSIv2 association
option 318

identity tokens
GSSUP username 315
subect DN in 316
types of 315

IIOP
and CSIv2 293

IIOP/TLS
ciphersuites configuration variable 257
host 53

IIOP/TLS addr_list 53
IIOP/TLS listen_addr 53
IIOP/TLS plug-in

CORBA security 44
role in iSF 298

IIOP/TLS port 53
IIOP plug-in

and semi-secure clients 48, 165, 170
IIOP policies 410, 414

client version 416
connection attempts 416
export hostnames 419
export IP addresses 419
GIOP version in profiles 420
server hostname 419
 488 Orbix Security Guide

TCP options
delay connections 420
receive buffer size 421

IIOP policy
ports 419

IIOP_TLS interceptor 48, 163
impersonation

and identity assertion 313
imposter, server 283
IMR record 290

protecting with checksums 284
index file 220
INDIRECT_PERSISTENCE policy value 52
initialize() method 385, 389
initial references

IT_CSIAuthenticationObject 305
insecure object references

and QOP policy 329
insertProviderAt() method

JCE security provider, adding 207
Integrity 32, 35
Integrity association option 245

hints 251
integrity-only ciphers 253
Integrity option 245
intermediate server

and CSIv2 identity assertion 295
SSL/TLS connection from 315

intermediate server configuration 318
internal ORB

configuration 166
management service, monitoring 166
share_credentials_across_orbs
variable 167

International Telecommunications
Union 34

Internet Explorer
accessing the Windows certificate
store 234

InvocationCredentialsPolicy policy 330
invocation policies

interaction with mechanism policy 250
IONAGlobalRealm 386
IONAGlobalRealm realm 123
IONAServiceRole role 170
IONAUserRole role 170
is2.cluster.properties.filename property

and clustering 110
and federation 106

is2.current.server.id property 105
and clustering 110

is2.properties file 99, 140
and clustering 110
and federation 106, 110
and iSF adapter configuration 380

is2.replica.selector.classname property
and clustering 110

is2.replication.interval property 114
is2.replication.required property 114

and clustering 110
IS2AdapterException class 386
IS2Adapter Java interface 380

iS2 adapters
enterprise security service 119
file domain

managing 129
file domain, example 124
LDAP domain

managing 131
standard adapters 378

iS2 server
bootstrapping 169
configuring 99
file adapter 99
IP port 169
is2.properties file 99
LDAP adapter 100
LDAP adapter, properties 101
log4j logging 117
securing 145
security infomation file 99

iS2 service
configuring 168

iSF
action_role_mapping configuration
variable 57, 76, 85, 166

and certificate-based authentication 62
authentication service
implementation 306

authorization
process of 54, 64

authorization realm
setting in server 57

client configuration
CSI interceptor 55

CORBA
three-tier system 57
three-tier target server
configuration 60

two-tier scenario description 54
CORBA security 43
CSI plug-in role 297, 298
CSIv2 authentication domain in the 296
domain name, ignoring 54
GSP plug-in role 297
IIOP/TLS plug-in role 298
intermediate server configuration 59
security domain

creating 120
server configuration

server_binding_list 55
server domain name, ignored 304
server_domain_name configuration
variable 57

three-tier scenario description 58
two-tier CORBA systems 53
user account

creating 120
iSF adapter

adapter class property 388
and IONAGlobalRealm 386
and the iSF architecture 378
authenticate() method 385
close() method 385
Orbix Security Guide 489

com.iona.isp.adapters property 387
custom adapter, main elements 380
example code 381
getAllUsers() method 387
getAuthorizationInfo() method 386
initialize() method 385, 389
logout() method 387
property format 388
property truncation 388
WRONG_NAME_PASSWORD minor
exception 386

iSF adapter SDK
and the iSF architetecture 378

iSF client
in iSF architecture 377

iSF client SDK 377
iSF server

plugins:java_server:classpath
configuration variable 389

itadmin utility
admin_logon 286
and KDM administration 286
deploying certificates for 231
itadmin_x509_cert_root configuration
variable 231

protection 288
itadmin_x509_cert_root configuration
variable 231, 289

IT_Certificate module 366
IT_CFR module 171
IT_CORBASEC module 78
IT_CSIAuthenticationObject initial object
ID 305

IT_CSI_AUTH_METH_USERNAME_PASSW
ORD authentication method 340

IT_SecurityService initial reference 113,
169

ITTAbsent identity token type 315
ITTAnonymous identity token type 315
IT_TLS_AUTH_METH_CERT_CHAIN
authentication method 337

IT_TLS_AUTH_METH_CERT_CHAIN_FILE
authentication method 337

IT_TLS_AUTH_METH_LABEL
authentication method 337

IT_TLS_AUTH_METH_PKCS11
authentication method 337

IT_TLS_AUTH_METH_PKCS12_DER
authentication method 337

IT_TLS_AUTH_METH_PKCS12_FILE
authentication method 337

ITTPrincipalName identity token type 315
ITU 34

J
J2EE

and iSF client SDK 377
realm 128
security policy domain 128
security technology domain 128

JAAS

authentication realm 129
Java

certificates 366
java.security.cert package 366
Java Authentication and Authorization
Service
see JAAS

Java Cryptography Extension 205
JCE 205
JCE architecture

enabling in Orbix 206
logging 209

JSSE toolkit 203

K
KDM

activation 284
activation process 284
administration overview 286
and activation 281
and certificate constraints 288
and checksums 284
and checksum storage 282
and deploying certificates 227, 229
and secure directories 288
and security threats 283
and the key distribution repository 282
and the locator 282
architecture 282
certificates, creating 289
checking the checksum 285
checksum creation 290
configuration variables 287
definition of 281
itadmin utility

protection 288
itadmin_x509_cert_root 289
logging on 286
loggin on 290
pass phrase registration 290
pass phrase storage 282
registration of a secure server 289
role of the locator 282
role of the node daemon 283
secure_directories configuration
variable 283

server plug-in 282
setting up 288

kdm_adm subcommand 287, 290
KDM server protection 288
KDR 282
key distribution mechanism. See KDM
key distribution repository 282
key exchange algorithms 254

L
LDAP adapter 100

basic properties 102
configuring certificate-based
authentication 132

GroupBaseDN property 102
 490 Orbix Security Guide

GroupNameAttr property 102
GroupObjectClass property 102
LDAP server replicas 103
MemberDNAttr property 102
PrincipalUserDN property 103
PrincipalUserPassword property 103
properties 101
replica index 103
RoleNameAttr property 102
SSLCACertDir property 104
SSLClientCertFile property 104
SSLClientCertPassword property 104
SSLEnabled property 104
UserBaseDN property 101
UserNameAttr property 101
UserObjectClass property 102
UserRoleDNAttr property 102

LDAP database
and clustering 109

LDAP domain
managing 131

LifespanPolicy policy 52
Lightweight Directory Access Protocol

see LDAP
load balancing 109

and clustering 110, 115
policies:iiop_tls:load_balancing_mecha
nism variable 116

local ACL 136
local_hostname 419
localized ACL

ClientAccessDecision interface 143
locator

and the KDM 282
and the KDM server 282
certificate 289

locator ACL 174
IONAServiceRole 175
IONAUserRole 175

log4j 117
documentation 117

logging
in secure client 49
JCE architecture 209
log4j 117

login
CSIv2 295
CSIv2, by configuration 308
CSIv2, by programming 308
CSIv2 dialog prompt 307
CSIv2 options 307

login realm
HTTP, definition 129

login server
enforce_secure_comms_to_sso_server
variable 83

login service 109
and single sign-on 69
embedded deployment 69
enforce_secure_comms_to_sso_server
variable 71

login operation 80

secure connection to 71
standalone deployment mode 71

logout() method 387

M
MAC 35
management service

and the internal ORB settings 166
max_chain_length_policy configuration
variable 276

MaxChainLengthPolicy policy 276
MD5 245, 254
mechamism policy

interaction with invocation policies 250
MechanismPolicy 246
mechanism policy 255

and authentication 265
and interaction between policies 331
and Orbix services 163

MechanismPolicy policy
and interaction between policies 331

MemberDNAttr property 102
message authentication code 35
message digest 5

see MD5
message digests 245
message fragments 246
Message integrity 31
Microsoft Crypto API 204
Microsoft Cryptographic Service
Provider 204

Microsoft Management Console
accessing certificates 234

minimum security levels 327
mixed configurations, SSL/TLS 51
MMC 234
multi-homed hosts, configure support
for 419

multiple CAs 215
multiple own certificates 270
mutual authentication

identity assertion scenario 316

N
names, distinguished 367
namespace

plugins:csi 396
plugins:gsp 397
policies 405
policies:csi 409
policies:https 410
policies:iiop_tls 414
principal_sponsor:csi 425
principle_sponsor 422, 427

namespaces 171
naming service ACL

IONAServiceRole 177
IONAUserRole 177
UnauthenticatedUserRole 178

node daemon
and the KDM 282, 283
Orbix Security Guide 491

secure_directories configuration
variable 283

node daemon ACL
IONAServiceRole 176
IONAUserRole 176
UnauthenticatedUserRole 177

no_delay 420
NO_PERMISSION exception

and login server certificate
constraings 83

and SSO token refresh 70
NoProtection assocation option

rules of thumb 250
NoProtection association option 51, 245

hints 252
semi-secure applications 252

NoProtection option 245
notification service ACL

IONAServiceRole 184
IONAUserRole 185
secure domain 183
semi-secure domain 184
UnauthenticatedUserRole 185

notify log service ACL
IONAServiceRole 195
IONAUserRole 196
secure domain 194
semi-secure domain 194
UnauthenticatedUserRole 196

O
object-level policies

invocation credentials policy 331
object references

and target credentials 349
making insecure 329

opage Abstract Syntax Notation One
see ASN.1 447

OpenSSL 213, 457
openSSL

configuration file 463
utilities 457

openSSL.cnf example file 465
openssl.cnf file 219
OpenSSL command-line utilities 218
OpenSSL configuration file 219
OpenSSL toolkit

selecting for C++ applications 393
ORB

security capsule 336
Orbix configuration file 379
orbname create 289
orbname modify 290
orb_plugins configuration variable 48, 165,

170
client configuration 55

orb_plugins list
CSI plug-in, including the 303

orb_plugins variable

and the NoProtection association
option 252

semi-secure configuration 252
own credentials

creating 335
creating multiple 336
CSICredentials interface 337
CSIv2 337

parsing 348
definition 344
principal authenticator 336
retrieving 345

C++ example 346
Java example 346

SSL/TLS 337
C++ example 347
Java example 348
parsing 347

TLSCredentials interface 337

P
parameter-based access control 173
pass phrase 271

and the kdm_adm subcommand 287
and the key distribution repository 282
dialog prompt, C++ 271
dialog prompt, Java 272
in configuration 273
KDM server, from 272
password file, from 272
registering with the KDM 290

pass phrases
and key distribution management 281

passwords
demonstration, for 217

PDK
and custom SSL/TLS toolkit 203

peer certificate 215
performance

caching of credentials 67
PersistenceModePolicy policy 52
persistent activation 281
PIN 228, 241

dialog prompt 274
in configuration 275
smart card 269

PKCS#11 interface 227, 269
PKCS#12 file

importing into Windows certificate
store 239

PKCS#12 files 268
creating 216, 221
definition 216
deploying 226
importing and exporting 216
pass phrase 271
private key 268
viewing 216

plug-in development kit 203
plug-ins

csi 317
 492 Orbix Security Guide

CSI, and CSIv2 principal sponsor 306
CSI, role in iSF 297, 298
CSIv2, in CORBA security 44
GSP, in CORBA security 44
GSP, role in iSF 297
IIOP 48, 165, 170
IIOP/TLS, in CORBA security 44
IIOP/TLS, role in iSF 298
kdm_adm 286

plugins:csi:ClassName 396
plugins:csi:shlib_name 396
plugins:gsp:acl_policy_data_id
variable 141, 142

plugins:gsp:action_role_mapping_file
variable 137, 140

plugins:gsp:authorization_policy_enforce
ment_point variable 140

plugins:gsp:authorization_policy_store_ty
pe variable 140

plugins:gsp:authorization_realm 398
plugins:gsp:ClassName 398
plugins:iiop:tcp_listener:reincarnate_atte
mpts 403

plugins:iiop:tcp_listener:reincarnation_re
try_backoff_ratio 403

plugins:iiop:tcp_listener:reincarnation_re
try_delay 403

plugins:iiop_tls:hfs_keyring_file_passwor
d 417

plugins:iiop_tls:tcp_listener:reincarnation
_retry_backoff_ratio 403

plugins:iiop_tls:tcp_listener:reincarnation
_retry_delay 403

plugins:java_server:classpath
configuration variable 389

plugins:security:iiop_tls:addr_list variable
and clustering 113

plugins:security:iiop_tls:host variable 113
plugins:security:iiop_tls:port variable 113
plugins:security:iiop_tls settings 107
poa create 289
polices:max_chain_length_policy 406
policies

and create_POA() operation 325
and _set_policy_overrides()
operation 325

C++ example 326
CertConstraintsPolicy 276, 367, 391
certificate constraints 364, 368
certificate validation 363
CertificateValidatorPolicy 367
client secure invocation 258
ClientSecureInvocationPolicy 244
client-side 325
CSI_SERVER_AS_POLICY 305
CSIv2, programmable 331
EstablishTrustPolicy 329
how to set 325
HTTPS

client secure invocation 247
target secure invocation 248

identity assertion, client-side 332

identity assertion, server-side 333
IIOP/TLS

client secure invocation 247
target secure invocation 248

insecure object references 329
interaction between 331
InvocationCredentialsPolicy policy 330
Java example 326
MaxChainLengthPolicy 276
minimum security levels 327
PolicyCurrent type 325
PolicyManager type 325
QOPPolicy policy 328
rebind policy 350
restricting cipher suites 329
SecClientSecureInvocation 247
SecClientSecureInvocation policy 328
SecQOPConfidentiality enumeration
value 328

SecQOPIntegrityAndConfidentiality
enumeration value 328

SecQOPIntegrity enumeration
value 328

SecQOPNoProtection enumeration
value 328

SecTargetSecureInvocation 248
SecTargetSecureInvocation policy 328
server-side 325
SessionCachingPolicy 260
SSL/TLS 327
target secure invocation 258
TargetSecureInvocationPolicy 244
TLS_CERT_CONSTRAINTS_POLICY 369,

371
policies:allow_unauthenticated_clients_p
olicy 406

policies:certificate_constraints_policy 406
policies:csi:attribute_service:client_suppo
rts 409

policies:csi:attribute_service:target_supp
orts 409

policies:csi:auth_over_transpor:target_su
pports 410

policies:csi:auth_over_transport:authenti
cation_service configuration variable 305

policies:csi:auth_over_transport:client_s
upports 410

policies:csi:auth_over_transport:client_s
upports configuration variable 303

policies:csi:auth_over_transport:target_r
equires 410

policies:csi:auth_over_transport:target_r
equires configuration variable 304

policies:csi:auth_over_transport:target_s
upports configuration variable 304

policies:https:certificate_constraints_poli
cy 411

policies:https:client_secure_invocation_p
olicy:requires 411

policies:https:client_secure_invocation_p
olicy:supports 411
Orbix Security Guide 493

policies:https:max_chain_length_policy 4
11

policies:https:mechanism_policy:ciphersu
ites 413

policies:https:mechanism_policy:protocol
_version 413

policies:https:session_caching_policy 413
policies:https:target_secure_invocation_p
olicy:requires 413

policies:https:target_secure_invocation_p
olicy:supports 414

policies:https:trusted_ca_list_policy 414
policies:iiop_tls:allow_unauthenticated_cl
ients_policy 415

policies:iiop_tls:certificate_constraints_po
licy 415

policies:iiop_tls:client_secure_invocation
_policy:requires 416

policies:iiop_tls:client_secure_invocation
_policy:supports 416

policies:iiop_tls:client_version_policy 416
policies:iiop_tls:connection_attempts 416
policies:iiop_tls:connection_retry_delay 4

16
policies:iiop_tls:load_balancing_mechanis
m variable 116

policies:iiop_tls:max_chain_length_policy
417

policies:iiop_tls:mechanism_policy:cipher
suites 417

policies:iiop_tls:mechanism_policy:protoc
ol_version 418

policies:iiop_tls:server_address_mode_p
olicy:local_hostname 419

policies:iiop_tls:server_address_mode_p
olicy:port_range 419

policies:iiop_tls:server_address_mode_p
olicy:publish_hostname 419

policies:iiop_tls:server_version_policy 42
0

policies:iiop_tls:session_caching_policy 4
20

policies:iiop_tls:target_secure_invocation
_policy:requires 420

policies:iiop_tls:target_secure_invocation
_policy:supports 420

policies:iiop_tls:tcp_options:send_buffer_
size 421

policies:iiop_tls:tcp_options_policy:no_de
lay 420

policies:iiop_tls:tcp_options_policy:recv_
buffer_size 421

policies:iiop_tls:trusted_ca_list_policy 42
1

policies:mechanism_policy:ciphersuites 4
07

policies:mechanism_policy:protocol_versi
on 407

policies:session_caching_policy 408
policies:target_secure_invocation_policy:
requires 408

policies:target_secure_invocation_policy:
supports 408

policies:trusted_ca_list_policy 408
464

PolicyCurrent type 325
policy data

AttributeService 333
AuthenticationService 332

PolicyList interface 369
PolicyList object 327
PolicyManager interface 369, 371
PolicyManager object 327
PolicyManager type 325
policy types

CSI_CLIENT_AS_POLICY 332
CSI_CLIENT_SAS_POLICY 333
CSI_SERVER_AS_POLICY 332
CSI_SERVER_SAS_POLICY 333

policy values
AuthenticationService 305

principal
definition 335

principal authenticator
authenticate() operation 335, 336
CSIv2

Java example 340, 342
definition 336
security capsule 336
SSL/TLS

C++ example 337
Java example 339

using 335
principal sponsor

configuring for smart cards 240
CSIv2

client configuration 56
CSIv2, description 306
CSIv2 and client authentication
token 301

SSL/TLS
configuring 270
definition 269
enabling 50, 163

SSL/TLS, disabling 49
principal_sponsor:csi:auth_method_data

425
principal_sponsor:csi:auth_method_data
configuration variable 307, 308

principal_sponsor:csi:use_method_id
configuration variable 306

principal_sponsor:csi:use_principal_spon
sor 425

principal_sponsor:csi:use_principal_spon
sor configuration variable 306, 308

principal_sponsor:use_principal_sponsor
configuration variable 273

principal_sponsor configuration
namespace 270

principal_sponsor Namespace
Variables 422, 427

principal sponsors
CSIv2, disabling 308
 494 Orbix Security Guide

CSIv2, enabling 306
SSL/TLS, and CSIv2 302
SSL/TLS, disabling 273

PrincipalUserDN property 103
PrincipalUserPassword property 103
PrincipleAuthenticator interface 336, 338,

342, 343
principle_sponsor:auth_method_data 423,

427
principle_sponsor:auth_method_id 423,

427
principle_sponsor:callback_handler:Class
Name 424

principle_sponsor:login_attempts 425
principle_sponsor:use_principle_sponsor

422, 427
Privacy 32
private key 220

in PKCS#12 file 268
process create 289
Protocol, TLS handshake 33–??
protocol_version configuration
variable 255

_Public credentials attribute 344
public key 365
Public key cryptography 33
public key encryption 254
public keys 212
_Public security attribute 344
publish_hostname 419

Q
QOP enumerated type 328
QOP policy

restricting cipher suites 329
QOPPolicy policy 328

and interaction between policies 331
quality of protection 328

R
RC4 35
RC4 encryption 254
RDN 449
realm

J2EE, definition 128
see authorization realm

realms
and GSP plug-in 298
IONAGlobalRealm, adding to 386
SAML data 77

rebind policy
interaction with target credentials 350

received credentials
CSIv2

Java example 356
parsing 355

Current object 353
definition 344
identity assertion and 316
retrieving 353

C++ example 353

Java example 354
SSL/TLS

parsing 354, 355
ReceivedCredentials interface 296, 344

Orbix-specific 345
parsing received credentials 354

recv_buffer_size 421
registration

of a secure server 289
relative distinguished name 449
remote method invocation, see RMI
Replay detection 246
replication

definition 108
is2.replication.interval property 114
overview 114

replicaURL property 111
repository ID

#pragma prefix 135
in action-role mapping file 135

463
required security features 328
req utility 459
req Utility command 459
Rivest Shamir Adleman

see RSA
Rivest Shamir Adleman cryptography.
See RSA cryptography

RMI/IIOP
and CSIv2 293

role-based access control 121
example 123

RoleNameAttr property 102
roles

and GSP plug-in 298
creating 122
example 124
SAML data 77
special 123

root certificate directory 215
RSA 254

key size 469
symmetric encryption algorithm 254

RSA cryptography 32
RSA_EXPORT_WITH_DES40_CBC_SHA
cipher suite 253, 257, 259

RSA_EXPORT_WITH_RC4_40_MD5 cipher
suite 253, 259

rsa utility 460
rsa Utility command 460
RSA_WITH_3DES_EDE_CBC_SHA cipher
suite 253, 259

RSA_WITH_DES_CBC_SHA cipher
suite 253, 259

RSA_WITH_NULL_MD5 cipher suite 253,
258

RSA_WITH_NULL_SHA cipher suite 253,
258

RSA_WITH_RC4_128_MD5 cipher
suite 253, 259

RSA_WITH_RC4_128_SHA cipher
suite 253, 259
Orbix Security Guide 495

S
SAML

piggybacking data 77
sample configurations

SSL/TLS 45
Schannel

and smart cards 239
deploying application certificates 237
deploying certificates 234
deploying trusted CA certificates 237

Schannel toolkit 204
selecting for C++ applications 393

SecClientSecureInvocation policy 247, 328
SecQOPConfidentiality enumeration
value 328

SecQOPIntegrityAndConfidentiality
enumeration value 328

SecQOPIntegrity enumeration value 328
SecQOPNoProtection enumeration
value 328

SecTargetSecureInvocation policy 248, 328
secure associations

client behavior 247
definition 243
TLS_Coloc interceptor 243

secure_client_with_no_cert configuration
sample 302

secure_directories configuration
variable 283

secure-Domain.cfg file 148
secure hash algorithms 254
secure invocation policy 244, 328
secure_server_no_client_auth
configuration 47

secure_server_no_client_auth
configuration sample 302

Secure Sockets Layer, See SSL
Security 469
security algorithms

and cipher suites 253
security attribute service context 293, 296
SecurityAttributeType type 344
security capsule

and principal authenticator 336
credentials sharing 271, 306, 336

security domain
creating 120
file domain example 124

security domains
architecture 119
iSF 119

security handshake
cipher suites 253
SSL/TLS 262, 264

security infomation file 99
securityInstanceURL property 111
SecurityManager interface 336, 338, 342,

343
and credentials 345
retrieving own credentials 345

security policy domain

J2EE, definition 128
security providers

configuring JCE 206
JCE 205
providing by programming 207

Security recommendations 469
security service

federation of 104
security technology domain

J2EE, definition 128
security threats 283
self-signed CA 220
self-signed certificate 214
semi-secure applications

and NoProtection 252
SEMI_SECURE servers 245
serial file 220
serial number 212, 365
server_binding_list configuration
variable 55, 317
and CSIv2 authentication 303
secure server 164

server domain name
and CSIv2 authentication over
transport 304

server_domain_name configuration
variable
iSF, ignored by 57

server-side policies 325
server_version_policy

IIOP 420
service contexts

security attribute 293, 296
services

certificates 218
configuring Orbix 161
deploying certificates 228
principal sponsor

example configuration 230
securing Orbix 145

session_cache_size configuration
variable 260

session_cache_validity_period
configuration variable 260

session_caching_policy configuraion
variable 260

SessionCachingPolicy policy 260
session_caching_policy variable 260
_set_policy_overrides() operation 325
set_policy_overrides() operation 327, 369

and invocation credentials 331
SHA 254
SHA1 245
share_credentials_across_orbs variable

internal ORB settings 167
shared credentials 271, 306, 336
signing certificates 211
single sign-on

accept_asserted_authorization_info
configuration variable 85, 87

assert_authorization_info configuration
variable 85, 87
 496 Orbix Security Guide

effective credentials 87
ExtendedReceivedCredentials
interface 78

IT_CORBASEC module 78
sample client configurations 92
sso_server_certificate_constraints
configuration variable 79

token timeouts 70
slot number, in smart card 269
smart card

certificate deployment 227
PIN 269, 274
slot number 269

smart cards 269
and Schannel 204
certificate deployment 239
deploying credentials 240
deployment constraints 228
PIN 228, 241

Specifying ciphersuites 253
SSL/TLS

association options
setting 244

caching 260
caching validity period 260
cipher suites 253
client configuration 47
colocated invocations 243
encryption algorithm 254
fixed ports 52
IIOP_TLS interceptor 48, 163
key exchange algorithm 254
logging 49
mechanism policy 255
mixed configurations 51
orb_plugins list 48, 165, 170
principal sponsor

disabling 49
enabling 50, 163

protocol_version configuration
variable 255

sample configurations 45
secure associations 243
secure client, definition 45
secure hash algorithm 254
secure hash algorithms 254
secure invocation policy 244
securing communications 44
security handshake 262, 264
selecting a toolkit, C++ 393
semi-secure client

IIOP plug-in 48, 165, 170
semi-secure client, definition 45
semi-secure server, definition 46
server configuration 49
server server, definition 46
session cache size 260
terminology 45
TLS session 243

SSL/TLS policies 327
SSL/TLS principal sponsor

and CSIv2 authentication over
transport 302

SSL/TLS toolkits 203
Schannel 204

SSLCACertDir property 104
SSLClientCertFile property 104
SSLClientCertPassword property 104
SSLeay 213
SSLEnabled property 104
SSO

see single sign-on
sso_server_certificate_constraints
configuration variable 79

sso_server_certificate_constraints
variable 73
and certificate-based SSO 81

_SSO_TOKEN_ 73
certificate-based SSO 81

SSO token 78, 87
and certificate-based SSO 80
and the login service 69
automatic refresh 70
re-authenticating 86, 89, 91
timeouts 70

standalone deployment 379
standard ciphers 253
subject DN

and identity tokens 316
subject name 365
supported security features 328
Symmetric cryptography 35
symmetric encryption algorithms 254

T
Target

choosing behavior 248
target and client authentication 264

example configuration 266
target authentication 261
target authentication only

example 263
target credentials

availability of 349
definition 344
interaction with rebind policy 350
retrieving 349

C++ example 350
Java example 351

SSL/TLS
C++ example 352
Java example 352
parsing 351

TargetCredentials interface 344, 349
Orbix-specific 345

target secure invocation policy 258
HTTPS 248
IIOP/TLS 248

TargetSecureInvocationPolicy policy 244
TCP policies

delay connections 420
receive buffer size 421
Orbix Security Guide 497

terminology
SSL/TLS

secure client, definition 45
semi-secure client, definition 45
semi-secure server, definition 46
server server, definition 46

SSL/TLS samples 45
terminology, for domain and realm 127
three-tier scenario description 58
TLS

authentication 32
handshake 33–??
how provides security 32
integrity 35
session caching 260

TLS_CERT_CONSTRAINTS_POLICY policy
type 369, 371

TLS_Coloc interceptor 243
TLSCredentials interface 337, 347, 374
TLSReceivedCredentials interface 354
TLS session

definition 243
TLSTargetCredentials interface

parsing target credentials 351
token

SSO 78, 87
tokens

client authentication 301
toolkit replaceability 203

JSSE/JCE architecture 205
logging 209
selecting the toolkit, C++ 393

trader service ACL
IONAServiceRole 179
IONAUserRole 179
secure domain 178
semi-secure domain 179
UnauthenticatedUserRole 180

Transport Layer Security, See TLS
triple DES 254
truncation of property names 388
trusted CA list 225, 237
trusted CA list policy 266
trusted_ca_list_policy 226
trusted_ca_list_policy configuration
variable 267

trusted_ca_list_policy variable 225
and Orbix services 163

trusted CAs 215
trust in client

by programming, SSL/TLS 330
trust in target

by programming, SSL/TLS 330

U
use_jsse_tk configuration variable 396
use_principal_sponsor configuration
variable 270

user account
creating 120

UserBaseDN property 101

username/password-based authentication
overview 71

UserNameAttr property 101
UserObjectClass property 102
UserRoleDNAttr property 102
UserSearchScope property

LDAP adapter
UserObjectClass property 102

V
validate_cert_chain() operation 372
Variables 463, 464

W
well-known addressing policy 53
WellKnownAddressingPolicy policy 52
WRONG_NAME_PASSWORD minor
exception 386

X
X.500 447
X.509

and PKCS#12 file 268
certificates. See certificates
Extension interface 367
ExtensionList interface 367
extensions 367
public key encryption 254
v3 extensions 366

X.509 certificate
contents 365
definition 211

X.509 certificates 211
parsing 366

X509CertChain interface 374
X509CertificateFactory interface 366, 374
X509Cert interface 366, 374
x509 utility 458
 498 Orbix Security Guide

	Preface
	Contacting Micro Focus

	Introducing Security
	Getting Started with Security
	Creating a Secure Domain
	Running a Secure CORBA Demonstration
	Debugging with the openssl Utility
	Where do I go from here?

	Orbix Security Framework
	Introduction to the Security Framework
	Security Framework Features
	Example of an iSF System
	Security Standards

	Orbix Security Service
	Orbix Security Service Architecture
	iSF Server Development Kit

	Secure Applications
	ART Security Plug-Ins
	Secure CORBA Applications

	Administering the iSF
	Overview of iSF Administration
	Secure ASP Services

	Transport Layer Security
	What does Orbix Provide?
	How TLS Provides Security
	Authentication in TLS
	Certificates in TLS Authentication
	Privacy of TLS Communications
	Integrity of TLS Communications

	Obtaining Credentials from X.509 Certificates
	Obtaining Certificate Credentials from a File
	Obtaining Certificate Credentials from a Smart Card

	Securing CORBA Applications
	Overview of CORBA Security
	Securing Communications with SSL/TLS
	Specifying Fixed Ports for SSL/TLS Connections
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication
	Caching of Credentials

	Single Sign-On for CORBA Applications
	SSO and the Login Service
	Username/Password-Based SSO
	Three Tier Example with Identity Assertion
	X.509 Certificate-Based SSO
	Enabling Re-Authentication at Each Tier
	Optimizing Retrieval of Realm Data
	SSO Sample Configurations

	Orbix Security Framework Administration
	Configuring the Orbix Security Service
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Clustering and Federation
	Federating the Orbix Security Service
	Failover and Replication
	Client Load Balancing

	Additional Security Configuration
	Configuring Single Sign-On Properties
	Configuring the Log4J Logging

	Managing Users, Roles and Domains
	Introduction to Domains and Realms
	iSF Security Domains
	iSF Authorization Realms
	Example Domain and Realms
	Domain and Realm Terminology

	Managing a File Security Domain
	Managing an LDAP Security Domain

	Managing Access Control Lists
	CORBA ACLs
	Overview of CORBA ACL Files
	CORBA Action-Role Mapping ACL

	Centralized ACL
	Local ACL Scenario
	Centralized ACL Scenario
	Customizing Access Control Locally

	Securing Orbix Services
	Introduction to Securing Services
	Secure File-Based Domain
	Secure CFR Domain
	Customizing a Secure Domain
	Creating a Customized Secure Domain
	Configuring an iSF Adapter for the Security Service
	Configuring a Typical Orbix Service
	Configuring the Security Service

	Default Access Control Lists
	Configuration Repository ACL
	Locator ACL
	Node Daemon ACL
	Naming Service ACL
	Trader Service ACL
	Event Service ACL
	Notification Service ACL
	Basic Log Service ACL
	Event Log Service ACL
	Notify Log Service ACL

	SSL/TLS Administration
	Choosing an SSL/TLS Toolkit
	Toolkit Replaceability
	OpenSSL Toolkit for C++
	Schannel Toolkit for C++
	JSSE/JCE Architecture

	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Using the Demonstration Certificates
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Providing a List of Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards
	Deploying Orbix Service Certificates
	Deploying itadmin Certificates
	Configuring Certificate Warnings

	Deploying Certificates with Schannel
	Schannel Certificate Store
	Deploying Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards

	Configuring SSL/TLS Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching TLS Sessions

	Configuring SSL/TLS Authentication
	Requiring Authentication
	Target Authentication Only
	Target and Client Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Pass Phrase or PIN
	Providing a Certificate Pass Phrase
	Providing a Smart Card PIN

	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates
	Delaying Credential Gathering

	Automatic Activation of Secure Servers
	Managing Server Pass Phrases
	Protecting against Server Imposters
	How the KDM Activates a Secure Server
	KDM Administration
	Setting Up the KDM
	Registering a Secure Server

	CSIv2 Administration
	Introduction to CSIv2
	CSIv2 Features
	Basic CSIv2 Scenarios
	CSIv2 Authentication over Transport Scenario
	CSIv2 Identity Assertion Scenario

	Integration with the Orbix Security Framework

	Configuring CSIv2 Authentication over Transport
	CSIv2 Authentication Scenario
	SSL/TLS Prerequisites
	Requiring CSIv2 Authentication
	Providing an Authentication Service
	Providing a Username and Password
	Sample Configuration
	Sample Client Configuration
	Sample Server Configuration

	Configuring CSIv2 Identity Assertion
	CSIv2 Identity Assertion Scenario
	SSL/TLS Prerequisites
	Enabling CSIv2 Identity Assertion
	Sample Configuration
	Sample Client Configuration
	Sample Intermediate Server Configuration
	Sample Target Server Configuration

	CORBA Security Programming
	Programming Policies
	Setting Policies
	Programmable SSL/TLS Policies
	Introduction to SSL/TLS Policies
	The QOPPolicy
	The EstablishTrustPolicy
	The InvocationCredentialsPolicy
	Interaction between Policies

	Programmable CSIv2 Policies

	Authentication
	Using the Principal Authenticator
	Introduction to the Principal Authenticator
	Creating SSL/TLS Credentials
	Creating CSIv2 Credentials

	Using a Credentials Object
	Retrieving Own Credentials
	Retrieving Own Credentials from the Security Manager
	Parsing SSL/TLS Own Credentials
	Parsing CSIv2 Own Credentials

	Retrieving Target Credentials
	Retrieving Target Credentials from an Object Reference
	Parsing SSL/TLS Target Credentials

	Retrieving Received Credentials
	Retrieving Received Credentials from the Current Object
	Parsing SSL/TLS Received Credentials
	Parsing CSIv2 Received Credentials

	Copying CSI Credentials between Threads

	Validating Certificates
	Overview of Certificate Validation
	The Contents of an X.509 Certificate
	Parsing an X.509 Certificate
	Controlling Certificate Validation
	Certificate Constraints Policy
	Certificate Validation Policy

	Obtaining an X.509 Certificate

	iSF Programming
	Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Security Variables
	Applying Constraints to Certificates
	Root Namespace
	itadmin_x509_cert_root
	initial_references
	IT_TLS_Toolkit:plugin
	password_retrieval_mechanism
	inherit_from_parent
	use_my_password_as_kdm_password
	plugins:atli2_tls
	cert_store_protocol
	cert_store_provider
	kmf_algorithm
	tmf_algorithm
	use_jsse_tk
	plugins:csi
	allow_csi_reply_without_service_context
	ClassName
	shlib_name
	use_legacy_policies
	plugins:gsp
	accept_asserted_authorization_info
	action_role_mapping_file
	assert_authorization_info
	authentication_cache_size
	authentication_cache_timeout
	authorization_realm
	ClassName
	enable_authorization
	enable_gssup_sso
	enable_user_id_logging
	enable_x509_sso
	enforce_secure_comms_to_sso_server
	enable_security_service_cert_authentication
	retrieve_isf_auth_principal_info_for_all_realms
	sso_server_certificate_constraints
	use_client_load_balancing
	plugins:https
	ClassName
	plugins:iiop_tls
	buffer_pool:recycle_segments
	buffer_pool:segment_preallocation
	buffer_pools:max_incoming_buffers_in_pool
	buffer_pools:max_outgoing_buffers_in_pool
	cert_expiration_warning_days
	delay_credential_gathering_until_handshake
	enable_iiop_1_0_client_support
	enable_warning_for_approaching_cert_expiration
	incoming_connections:hard_limit
	incoming_connections:soft_limit
	outgoing_connections:hard_limit
	outgoing_connections:soft_limit
	own_credentials_warning_cert_constraints
	tcp_listener:reincarnate_attempts
	tcp_listener:reincarnation_retry_backoff_ratio
	tcp_listener:reincarnation_retry_delay
	plugins:kdm
	cert_constraints
	iiop_tls:port
	checksums_optional
	plugins:kdm_adm
	cert_constraints
	plugins:schannel
	prompt_with_credential_choice
	plugins:security
	share_credentials_across_orbs
	policies
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:csi
	attribute_service:backward_trust:enabled
	attribute_service:client_supports
	attribute_service:target_supports
	auth_over_transport:authentication_service
	auth_over_transport:client_supports
	auth_over_transport:server_domain_name
	auth_over_transport:target_requires
	auth_over_transport:target_supports
	policies:https
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:iiop_tls
	allow_unauthenticated_clients_policy
	buffer_sizes_policy:default_buffer_size
	buffer_sizes_policy:max_buffer_size
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	client_version_policy
	connection_attempts
	connection_retry_delay
	load_balancing_mechanism
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	server_address_mode_policy:local_domain
	server_address_mode_policy:local_hostname
	server_address_mode_policy:port_range
	server_address_mode_policy:publish_hostname
	server_version_policy
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	tcp_options_policy:no_delay
	tcp_options_policy:recv_buffer_size
	tcp_options_policy:send_buffer_size
	trusted_ca_list_policy
	policies:tls
	use_external_cert_store
	principal_sponsor
	use_principal_sponsor
	auth_method_id
	auth_method_data
	callback_handler:ClassName
	login_attempts
	principal_sponsor:csi
	use_existing_credentials
	use_principal_sponsor
	auth_method_data
	auth_method_id
	principal_sponsor:https
	use_principal_sponsor
	auth_method_id
	auth_method_data
	principal_sponsor:iiop_tls
	use_principal_sponsor
	auth_method_id
	auth_method_data

	iSF Configuration
	Properties File Syntax
	iSF Properties File
	check.kdc.running
	check.kdc.principal
	com.iona.isp.adapters
	com.iona.isp.adapter.file.class
	com.iona.isp.adapter.file.param.filename
	com.iona.isp.adapter.file.params
	com.iona.isp.adapter.LDAP.class
	com.iona.isp.adapter.LDAP.param.CacheSize
	com.iona.isp.adapter.LDAP.param.CacheTimeToLive
	com.iona.isp.adapter.LDAP.param.GroupBaseDN
	com.iona.isp.adapter.LDAP.param.GroupNameAttr
	com.iona.isp.adapter.LDAP.param.GroupObjectClass
	com.iona.isp.adapter.LDAP.param.GroupSearchScope
	com.iona.isp.adapter.LDAP.param.host.<SrvrID>
	com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.MemberDNAttr
	com.iona.isp.adapter.LDAP.param.MemberFilter
	com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.port.<SrvrID>
	com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<SrvrID>
	com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<SrvrID>
	com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo
	com.iona.isp.adapter.LDAP.param.RoleNameAttr
	com.iona.isp.adapter.LDAP.param.SSLCACertDir.<SrvrID>
	com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<SrvrID>
	com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<SrvrID>
	com.iona.isp.adapter.LDAP.param.SSLEnabled.<SrvrID>
	com.iona.isp.adapter.LDAP.param.UseGroupAsRole
	com.iona.isp.adapter.LDAP.param.UserBaseDN
	com.iona.isp.adapter.LDAP.param.UserCertAttrName
	com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
	com.iona.isp.adapter.LDAP.param.UserObjectClass
	com.iona.isp.adapter.LDAP.param.UserRoleDNAttr
	com.iona.isp.adapter.LDAP.param.UserSearchFilter
	com.iona.isp.adapter.LDAP.param.UserSearchScope
	com.iona.isp.adapter.LDAP.param.version
	com.iona.isp.adapter.LDAP.params
	com.iona.isp.authz.adapters
	com.iona.isp.authz.adapter.<AdapterName>.class
	com.iona.isp.authz.adapter.<AdapterName>.param.filelist
	is2.current.server.id
	is2.cluster.properties.filename
	is2.replication.required
	is2.replication.interval
	is2.replica.selector.classname
	is2.sso.cache.size
	is2.sso.enabled
	is2.sso.remote.token.cached
	is2.sso.session.idle.timeout
	is2.sso.session.timeout
	log4j.configuration
	Cluster Properties File
	com.iona.security.common.securityInstanceURL.<SrvrID>
	com.iona.security.common.replicaURL.<SrvrID>
	log4j Properties File
	log4j.appender.<AppenderHandle>
	log4j.appender.<AppenderHandle>.layout
	log4j.appender.<AppenderHandle>.layout.ConversionPattern
	log4j.rootCategory

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Association Options
	Association Option Semantics

	Action-Role Mapping DTD
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Security Recommendations
	General Recommendations

	Sample TLS Configurations
	Demonstration TLS Scopes

	License Issues
	OpenSSL License

	Index

