
Orbix 6.3.9

CORBA Tutorial: C++

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

1/10/17

Contents
Getting Started with Orbix ..1
Creating a Configuration Domain...1
Setting the Orbix Environment..9
Hello World Example ...10
Development from the Command Line ...11

Index ..17
 Orbix CORBA Tutorial for C++ i i i

iv Orbix CORBA Tutorial for C++

Getting Started with
Orbix
You can use the CORBA Code Generation Toolkit to develop an Orbix
application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk
of the client and server application code, including makefiles. You
then complete the distributed application by filling in the missing
business logic.

Creating a Configuration Domain
This section describes how to create a simple configuration
domain, simple, which is required for running basic
demonstrations. This domain deploys a minimal set of Orbix
services.

Prerequisites
Before creating a configuration domain, the following prerequisites
must be satisfied:
• Orbix is installed.
• Some basic system variables are set up (in particular, the

IT_PRODUCT_DIR, IT_LICENSE_FILE, and PATH variables).
Fore more details, please consult the Installation Guide.

Licensing
The location of the license file, licenses.txt, is specified by the
IT_LICENSE_FILE system variable. If this system variable is not
already set in your environment, you can set it now.

Steps
To create a configuration domain, simple, perform the following
steps:
1. Run itconfigure.
2. Choose the domain type.
3. Specify service startup options.
4. Specify security settings.
5. Specify fault tolerance settings.
6. Select services.
7. Confirm choices.
8. Finish configuration.
 Orbix CORBA Tutorial for C++ 1

Run itconfigure
To begin creating a new configuration domain, enter itconfigure
at a command prompt. An Orbix Configuration Welcome dialog
box appears, as shown in Figure 1.
Select Create a new domain and click OK.

Figure 1: The Orbix Configuration Welcome Dialog Box
 2 Orbix CORBA Tutorial for C++

Choose the domain type
A Domain Type window appears, as shown in Figure 2.
In the Configuration Domain Name text field, type simple.
Under Configuration Domain Type, click the Select Services
radiobutton.
Click Next> to continue.

Figure 2: The Domain Type Window
Orbix CORBA Tutorial for C++ 3

Specify service startup options
A Service Startup window appears, as shown in Figure 3.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

Figure 3: The Service Startup Window
 4 Orbix CORBA Tutorial for C++

Specify security settings
A Security window appears, as shown in Figure 4.
You can leave the settings in this Window at their defaults (no
security).
Click Next> to continue.

Figure 4: The Security Window
Orbix CORBA Tutorial for C++ 5

Specify fault tolerance settings
A Fault Tolerance window appears, as shown in Figure 5.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

Figure 5: The Fault Tolerance Window
 6 Orbix CORBA Tutorial for C++

Select services
A Select Services window appears, as shown in Figure 6.
In the Select Services window, select the following services and
components for inclusion in the configuration domain: Location,
Node daemon, Management, CORBA Interface Repository,
CORBA Naming, and demos.
Click Next> to continue.

Confirm choices
You now have the opportunity to review the configuration settings
in the Confirm Choices window, Figure 7. If necessary, you can
use the <Back button to make corrections.

Figure 6: The Select Services Window
Orbix CORBA Tutorial for C++ 7

Click Next> to create the configuration domain and progress to
the next window.

Finish configuration
The itconfigure utility now creates and deploys the simple
configuration domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and OrbixInstallDir/var
directories.
If the configuration domain is created successfully, you should see
a Summary window with a message similar to that shown in
Figure 8.

Figure 7: The Confirm Choices Window
 8 Orbix CORBA Tutorial for C++

Click Finish to quit the itconfigure utility.

Setting the Orbix Environment

Prerequisites
Before proceeding with the demonstration in this chapter you
need to ensure:
• The CORBA developer’s kit is installed on your host.
• Orbix is configured to run on your host platform.
• Your configuration domain is set (see “Setting the domain”).
The Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Figure 8: Configuration Summary

Note: OS/390, both native and UNIX system services, do
not support the code generation toolkit and distributed
genies. For information about building applications in a
native OS/390 environment, see the readme files and JCL
that are supplied in the DEMO data sets of your iPortal
OS/390 Server product installation.
Orbix CORBA Tutorial for C++ 9

Setting the domain
The scripts that set the Orbix environment are associated with a
particular domain, which is the basic unit of Orbix configuration.
See the Installation Guide, and the Administrator’s Guide for
further details on configuring your environment.
To set the Orbix environment associated with the domain-name
domain, enter:

Windows

UNIX

config-dir is the root directory where the Appliation Server
Platform stores its configuration information. You specify this
directory while configuring your domain. domain-name is the name of
a configuration domain.

Hello World Example
This chapter shows how to create, build, and run a complete
client/server demonstration with the help of the CORBA code
generation toolkit. The architecture of this example system is
shown in Figure 9.

The client and server applications communicate with each other
using the Internet Inter-ORB Protocol (IIOP), which sits on top of
TCP/IP. When a client invokes a remote operation, a request
message is sent from the client to the server. When the operation
returns, a reply message containing its return values is sent back
to the client. This completes a single remote CORBA invocation.
All interaction between the client and server is mediated via a set
of IDL declarations. The IDL for the Hello World! application is:

> config-dir\etc\bin\domain-name_env.bat

% . config-dir/etc/bin/domain-name_env

Figure 9: Client makes a single operation call on a server

Client Machine

Client Application

IDL Interface

Server Application

Server Machine

ORB ORB

Code Code

Operation Call

Result

CORBA
Object

//IDL
interface Hello {
 string getGreeting();
};
 10 Orbix CORBA Tutorial for C++

The IDL declares a single Hello interface, which exposes a single
operation getGreeting(). This declaration provides a language
neutral interface to CORBA objects of type Hello.
The concrete implementation of the Hello CORBA object is written
in C++ and is provided by the server application. The server could
create multiple instances of Hello objects if required. However,
the generated code generates only one Hello object.
The client application has to locate the Hello object—it does this
by reading a stringified object reference from the file Hello.ref.
There is one operation getGreeting() defined on the Hello
interface. The client invokes this operation and exits.

Development from the Command Line
Starting point code for CORBA client and server applications can
also be generated using the idlgen command line utility.
The idlgen utility can be used on Windows and UNIX platforms.
You implement the Hello World! application with the following
steps:
1. Define the IDL interface, Hello.
2. Generate starting point code.
3. Complete the server program by implementing the single IDL

getGreeting() operation.
4. Complete the client program by inserting a line of code to

invoke the getGreeting() operation.
5. Build the demonstration.
6. Run the demonstration.

Define the IDL interface
Create the IDL file for the Hello World! application. First of all,
make a directory to hold the example code:

Windows

UNIX

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.
Enter the following text into the file hello.idl:

This interface mediates the interaction between the client and the
server halves of the distributed application.

> mkdir C:\OCGT\HelloExample

% mkdir -p OCGT/HelloExample

//IDL
interface Hello {
 string getGreeting();
};
Orbix CORBA Tutorial for C++ 11

Generate starting point code
Generate files for the server and client application using the
CORBA Code Generation Toolkit.
In the directory C:\OCGT\HelloExample (Windows) or
OCGT/HelloExample (UNIX) enter the following command:

This command logs the following output to the screen while it is
generating the files:

You can edit the following files to customize client and server
applications:

Client:
client.cxx

Server:
server.cxx
HelloImpl.h
HelloImpl.cxx

Complete the server program
Complete the implementation class, HelloImpl, by providing the
definition of the HelloImpl::getGreeting() function . ThisC++
function provides the concrete realization of the
Hello::getGreeting() IDL operation.

idlgen cpp_poa_genie.tcl -all hello.idl

hello.idl:
cpp_poa_genie.tcl: creating it_servant_base_overrides.h
cpp_poa_genie.tcl: creating it_servant_base_overrides.cxx
cpp_poa_genie.tcl: creating HelloImpl.h
cpp_poa_genie.tcl: creating HelloImpl.cxx
cpp_poa_genie.tcl: creating server.cxx
cpp_poa_genie.tcl: creating client.cxx
cpp_poa_genie.tcl: creating call_funcs.h
cpp_poa_genie.tcl: creating call_funcs.cxx
cpp_poa_genie.tcl: creating it_print_funcs.h
cpp_poa_genie.tcl: creating it_print_funcs.cxx
cpp_poa_genie.tcl: creating it_random_funcs.h
cpp_poa_genie.tcl: creating it_random_funcs.cxx
cpp_poa_genie.tcl: creating Makefile
 12 Orbix CORBA Tutorial for C++

Edit the HelloImpl.cxx file, and delete most of the generated
boilerplate code occupying the body of the
HelloImpl::getGreeting() function. Replace it with the line of code
highlighted in bold font below:

The function CORBA::string_dup() allocates a copy of the
"Hello World!" string on the free store. It would be an error to
return a string literal directly from the CORBA operation because
the ORB automatically deletes the return value after the function
has completed. It would also be an error to create a copy of the
string using the C++ new operator.

Complete the client program
Complete the implementation of the client main() function in the
client.cxx file. You must add a couple of lines of code to make a
remote invocation of the getGreeting() operation on the Hello
object.
Edit the client.cxx file and search for the line where the
call_Hello_getGreeting() function is called. Delete this line and
replace it with the two lines of code highlighted in bold font below:

The object reference Hello1 refers to an instance of a Hello object
in the server application. It is already initialized for you.

//C++
//File ’HelloImpl.cxx’
...
char *
HelloImpl::getGreeting() throw(
 CORBA::SystemException
)
{
 char * _result;

 _result = CORBA::string_dup("Hello World!");

 return _result;
}
...

//C++
//File: ‘client.cxx’
...
 if (CORBA::is_nil(Hello1))
 {
 cerr << "Could not narrow reference to interface "
 << "Hello" << endl;
 }
 else
 {
 CORBA::String_var strV = Hello1->getGreeting();
 cout << "Greeting is: " << strV << endl;

 }
...
Orbix CORBA Tutorial for C++ 13

A remote invocation is made by invoking getGreeting() on the
Hello1 object reference. The ORB automatically establishes a
network connection and sends packets across the network to
invoke the HelloImpl::getGreeting() function in the server
application.
The returned string is put into a C++ object, strV, of the type
CORBA::String_var. The destructor of this object will delete the
returned string so that there is no memory leak in the above code.

Build the demonstration
The Makefile generated by the code generation toolkit has a
complete set of rules for building both the client and server
applications.
To build the client and server complete the following steps:
1. Open a command line window.
2. Go to the ../OCGT/HelloExample directory.
3. Enter:

Windows

UNIX

Run the demonstration
Run the application as follows:
1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration,
no services need to run for this demonstration. Proceed to
step 2.
If you have configured Orbix to use configuration repository
based configuration, start up the basic Orbix services.
Open a DOS prompt in Windows, or xterm in UNIX. Enter:

Where domain-name is the name of the configuration domain.
2. Set the Application Server Platform’s environment.

3. Run the server program.
Open a DOS prompt, or xterm window (UNIX). From the
C:\OCGT\HelloExample directory enter the name of the

> nmake

% make -e

start_domain-name_services

> domain-name_env
 14 Orbix CORBA Tutorial for C++

executable file—server.exe (Windows) or server (UNIX).The
server outputs the following lines to the screen:

The server performs the following steps when it is launched:
♦ It instantiates and activates a single Hello CORBA object.
♦ The stringified object reference for the Hello object is

written to the local Hello.ref file.
♦ The server opens an IP port and begins listening on the

port for connection attempts by CORBA clients.
4. Run the client program.

Open a new DOS prompt, or xterm window (UNIX). From the
C:\OCGT\HelloExample directory enter the name of the
executable file—client.exe (Windows) or client (UNIX).
The client outputs the following lines to the screen:

The client performs the following steps when it is run:
♦ It reads the stringified object reference for the Hello

object from the Hello.ref file.
♦ It converts the stringified object reference into an object

reference.
♦ It calls the remote Hello::getGreeting() operation by

invoking on the object reference. This causes a
connection to be established with the server and the
remote invocation to be performed.

5. When you are finished, terminate all processes.
Shut down the server by typing Ctrl-C in the window where it
is running.

6. Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xterm in UNIX, enter:

The passing of the object reference from the server to the client in
this way is suitable only for simple demonstrations. Realistic
server applications use the CORBA naming service to export their
object references instead.

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...

Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

stop_domain-name_services
Orbix CORBA Tutorial for C++ 15

 16 Orbix CORBA Tutorial for C++

Index
A
Application

running 14

C
Client

generating 12
implementing 13

Code generation toolkit
idlgen utility 12

cpp_poa_genie.tcl 12

H
Hello World! example 10

M
Memory management

string type 13

O
Object reference

passing as a string 11

S
Server

generating 12
implementing 12

Services 14, 15
string_dup() 13
String_var 14
Orbix CORBA Tutorial for C++ 17

 18 Orbix CORBA Tutorial for C++

	Getting Started with Orbix
	Creating a Configuration Domain
	Setting the Orbix Environment
	Hello World Example
	Development from the Command Line

	Index

