
PL/I Programmer’s Guide
and Reference

Version 6.0, November 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 1998, 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 14-Apr-2005

M 3 1 6 4

Contents

List of Figures xi

List of Tables xiii

Preface xv

Part 1 Programmer�s Guide

Chapter 1 Introduction to Orbix 3
Why CORBA? 4

CORBA Objects 5
Object Request Broker 7

CORBA Application Basics 8
Orbix Plug-In Design 9
Orbix Application Deployment 11

Location Domains 12
Configuration Domains 13

Chapter 2 Getting Started in Batch 15
Overview and Setup Requirements 16
Developing the Application Interfaces 21

Defining IDL Interfaces 22
Generating PL/I Source and Include Members 23

Developing the Server 28
Writing the Server Implementation 29
Writing the Server Mainline 32
Building the Server 35

Developing the Client 36
Writing the Client 37
Building the Client 40
iii

CONTENTS
Running the Application 41
Starting the Orbix Locator Daemon 42
Starting the Orbix Node Daemon 43
Running the Server and Client 44
Application Output 45

Application Address Space Layout 46

Chapter 3 Getting Started in IMS 49
Overview 50
Developing the Application Interfaces 56

Defining IDL Interfaces 57
Orbix IDL Compiler 59
Generated PL/I Include Members, Source, and Mapping Member 62

Developing the IMS Server 67
Writing the Server Implementation 68
Writing the Server Mainline 71
Building the Server 74
Preparing the Server to Run in IMS 75

Developing the IMS Client 79
Writing the Client 80
Building the Client 84
Preparing the Client to Run in IMS 85

Running the Demonstrations 89
Running Batch Client against IMS Server 90
Running IMS Client against Batch Server 91

Chapter 4 Getting Started in CICS 93
Overview 94
Developing the Application Interfaces 99

Defining IDL Interfaces 100
Orbix IDL Compiler 102
Generated PL/I Include Members, Source, and Mapping Member 105

Developing the CICS Server 110
Writing the Server Implementation 111
Writing the Server Mainline 114
Building the Server 117
Preparing the Server to Run in CICS 118
 iv

CONTENTS
Developing the CICS Client 122
Writing the Client 123
Building the Client 127
Preparing the Client to Run in CICS 128

Running the Demonstrations 132
Running Batch Client against CICS Server 133
Running CICS Client against Batch Server 134

Chapter 5 IDL Interfaces 135
IDL 136
Modules and Name Scoping 137
Interfaces 138

Interface Contents 140
Operations 141
Attributes 143
Exceptions 144
Empty Interfaces 145
Inheritance of Interfaces 146
Multiple Inheritance 147
Inheritance of the Object Interface 149
Inheritance Redefinition 150
Forward Declaration of IDL Interfaces 151
Local Interfaces 152
Valuetypes 153
Abstract Interfaces 154

IDL Data Types 155
Built-in Data Types 156
Extended Built-in Data Types 159
Complex Data Types 162
Enum Data Type 163
Struct Data Type 164
Union Data Type 165
Arrays 167
Sequence 168
Pseudo Object Types 169

Defining Data Types 170
Constants 171
Constant Expressions 174
v

CONTENTS
Chapter 6 IDL-to-PL/I Mapping 177
Mapping for Identifier Names 179
Mapping Very Long and Leading Underscored Names 181
Mapping for Basic Types 183
Mapping for Boolean Type 187
Mapping for Enum Type 188
Mapping for Octet and Char Types 189
Mapping for String Types 190
Mapping for Fixed Type 193
Mapping for Struct Type 196
Mapping for Union Type 197
Mapping for Sequence Types 200
Mapping for Array Type 203
Mapping for the Any Type 204
Mapping for User Exception Type 206
Mapping for Typedefs 210
Mapping for Operations 212
Mapping for Attributes 217
Mapping for Operations with a Void Return Type and No Parameters 223
Mapping for Inherited Interfaces 224
Mapping for Multiple Interfaces 231

Chapter 7 Orbix IDL Compiler 233
Running the Orbix IDL Compiler 234

Running the Orbix IDL Compiler in Batch 235
Running the Orbix IDL Compiler in UNIX System Services 238

Generated PL/I Source and Include Members 240
Orbix IDL Compiler Arguments 242

Summary of the arguments 243
Specifying Compiler Arguments 244
-D Argument 246
-M Argument 247
-O Argument 254
-S Argument 256
-T Argument 257
-V Argument 260
-W Argument 261
 vi

CONTENTS
Orbix IDL Compiler Configuration 263
PL/I Configuration Variables 264
Adapter Mapping Member Configuration Variables 268
Providing Arguments to the IDL Compiler 271

Chapter 8 Memory Handling 275
Operation Parameters 276

Bounded Sequences and Memory Management 277
Unbounded Sequences and Memory Management 281
Unbounded Strings and Memory Management 285
Object References and Memory Management 289
The any Type and Memory Management 293
User Exceptions and Memory Management 298

Memory Management Routines 300

Part 2 Programmer�s Reference

Chapter 9 API Reference 305
API Reference Summary 306
API Reference Details 312

ANYFREE 315
ANYGET 317
ANYSET 319
MEMALOC 321
MEMDBUG 322
MEMFREE 324
OBJDUPL 325
OBJGTID 327
OBJNEW 329
OBJREL 331
OBJRIR 333
OBJ2STR 335
ORBARGS 337
PODERR 340
PODEXEC 345
PODGET 348
PODINFO 351
vii

CONTENTS
PODPUT 353
PODREG 356
PODREQ 358
PODRUN 361
PODSRVR 362
PODSTAT 364
PODTIME 367
PODVER 369
SEQALOC 370
SEQDUPL 373
SEQFREE 375
SEQGET 377
SEQINIT 380
SEQLEN 382
SEQLSET 384
SEQMAX 387
SEQSET 390
STRCON 393
STRDUPL 395
STRFREE 396
STRGET 397
STRLENG 399
STRSET 401
STRSETS 403
STR2OBJ 404
TYPEGET 409
TYPESET 412
WSTRCON 414
WSTRDUP 416
WSTRFRE 417
WSTRGET 419
WSTRLEN 421
WSTRSET 423
WSTRSTS 425
CHECK_ERRORS 426

Deprecated and Removed APIs 429
 viii

CONTENTS
Part 3 Appendices

Appendix A POA Policies 435

Appendix B System Exceptions 439

Appendix C Installed Data Sets 443

Index 447
ix

CONTENTS
 x

List of Figures

Figure 1: The Nature of Abstract CORBA Objects 5

Figure 2: The Object Request Broker 7

Figure 3: Address Space Layout for an Orbix PL/I Application 46

Figure 4: Inheritance Hierarchy for PremiumAccount Interface 148
xi

LIST OF FIGURES
 xii

List of Tables

Table 1: Supplied Code and JCL 17

Table 2: Supplied Include Members 18

Table 3: Generated Server Source Code Members 23

Table 4: Generated PL/I Include Members 25

Table 5: Supplied Code and JCL 51

Table 6: Supplied Include Members 52

Table 7: Generated PL/I Include Members 63

Table 8: Generated Server Source Code Members 65

Table 9: Generated IMS Server Adapter Mapping Member 66

Table 10: The SIMPLEI Demonstration Module 68

Table 11: The SIMPLEV Demonstration Module 71

Table 12: The SIMPLEC Demonstration Module 80

Table 13: Supplied Code and JCL 95

Table 14: Supplied Include Members 96

Table 15: Generated PL/I Include Members 106

Table 16: Generated Server Source Code Members 108

Table 17: Generated CICS Server Adapter Mapping Member 109

Table 18: Built-in IDL Data Types, Sizes, and Values 156

Table 19: Extended built-in IDL Data Types, Sizes, and Values 159

Table 20: Mapping for Basic IDL Types 183

Table 21: Generated Source Code and Include Members 240

Table 22: Example of Default Generated Data Names 247

Table 23: Example of Level-0-Scoped Generated Data Names 250

Table 24: Example of Level-1-Scoped Generated Data Names 250

Table 25: Example of Level-2-Scoped Generated Data Names 251

Table 26: Example of Modified Mapping Names 252
xiii

LIST OF TABLES
Table 27: Summary of PL/I Configuration Variables 265

Table 28: Adapter Mapping Member Configuration Variables 269

Table 29: Memory Handling for IN Bounded Sequences 277

Table 30: Memory Handling for INOUT Bounded Sequences 278

Table 31: Memory Handling for OUT and Return Bounded Sequences 279

Table 32: Memory Handling for IN Unbounded Sequences 281

Table 33: Memory Handling for INOUT Unbounded Sequences 282

Table 34: Memory Handling for OUT and Return Unbounded Sequences 283

Table 35: Memory Handling for IN Unbounded Strings 285

Table 36: Memory Handling for INOUT Unbounded Strings 286

Table 37: Memory Handling for OUT and Return Unbounded Strings 287

Table 38: Memory Handling for IN Object References 289

Table 39: Memory Handling for INOUT Object References 290

Table 40: Memory Handling for OUT and Return Object References 291

Table 41: Memory Handling for IN Any Types 293

Table 42: Memory Handling for INOUT Any Types 294

Table 43: Memory Handling for OUT and Return Any Types 296

Table 44: Memory Handling for User Exceptions 298

Table 45: Summary of Common Services and Their PL/I Identifiers 333

Table 46: POA Policies Supported by PL/I Runtime 436

Table 47: List of Installed Data Sets Relevant to PL/I 443
 xiv

Preface
Orbix is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group (OMG). Orbix complies with the following
specifications:

� CORBA 2.3

� GIOP 1.2 (default), 1.1, and 1.0

Orbix Mainframe is IONA�s implementation of the CORBA standard for the
OS/390 platform. Orbix Mainframe documentation is periodically updated.
New versions between release are available at
http://www.iona.com/support/docs.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience This guide is intended for PL/I application programmers who want to
develop Orbix applications in a native OS/390 environment.

Supported compilers The supported compilers are:

� IBM PL/I for MVS & VM V1R1M1.

� IBM Enterprise PL/I for z/OS V3R2.

Organization of this guide This guide is divided as follows:
xv

mailto:support@iona.com
mailto:docs-support@iona.com
http://www.iona.com/support/docs

PREFACE
Part 1, Programmer�s Guide

Chapter 1, Introduction to Orbix

With Orbix, you can develop and deploy large-scale enterprise-wide CORBA
systems in languages such as PL/I, COBOL, C++, and Java. Orbix has an
advanced modular architecture that lets you configure and change
functionality without modifying your application code, and a rich
deployment architecture that lets you configure and manage a complex
distributed system. Orbix Mainframe is IONA�s CORBA solution for the OS/
390 environment.

Chapter 2, Getting Started in Batch

This chapter introduces batch application programming with Orbix, by
showing how to use Orbix to develop a simple distributed application that
features a PL/I client and server, each running in batch.

Chapter 3, Getting Started in IMS

This chapter introduces IMS application programming with Orbix, by
showing how to use Orbix to develop both an IMS PL/I client and an IMS PL/
I server. It also provides details of how to subsequently run the IMS client
against a PL/I batch server, and how to run a PL/I batch client against the
IMS server.

Chapter 4, Getting Started in CICS

This chapter introduces CICS application programming with Orbix, by
showing how to use Orbix to develop both a CICS PL/I client and a CICS PL/
I server. It also provides details of how to subsequently run the CICS client
against a PL/I batch server, and how to run a PL/I batch client against the
CICS server.

Chapter 5, IDL Interfaces

The CORBA Interface Definition Language (IDL) is used to describe the
interfaces of objects in an enterprise application. An object�s interface
describes that object to potential clients through its attributes and
operations, and their signatures. This chapter describes IDL semantics and
uses.

Chapter 6, IDL-to-PL/I Mapping

The CORBA Interface Definition Language (IDL) is used to define interfaces
that are exposed by servers in your network. This chapter describes the
standard IDL-to-PL/I mapping rules and shows, by example, how each IDL
type is represented in PL/I.
 xvi

PREFACE
Chapter 7, Orbix IDL Compiler

This chapter describes the Orbix IDL compiler in terms of the JCL used to
run it, the PL/I members that it creates, the arguments that you can use
with it, and the configuration settings that it uses.

Chapter 8, Memory Handling

Memory handling must be performed when using dynamic structures such
as unbounded strings, unbounded sequences, and anys. This chapter
provides details of responsibility for the allocation and subsequent release of
dynamic memory for these complex types at the various stages of an Orbix
PL/I application. It first describes in detail the memory handling rules
adopted by the PL/I runtime for operation parameters relating to different
dynamic structures. It then provides a type-specific breakdown of the APIs
that are used to allocate and release memory for these dynamic structures.

Part 2, Programmer�s Reference

Chapter 9, API Reference

This chapter summarizes the API functions that are defined for the Orbix
PL/I runtime, in pseudo-code. It explains how to use each function, with an
example of how to call it from PL/I.

Part 3, Appendices

Appendix A, POA Policies

This appendix summarizes the POA policies that are supported by the Orbix
PL/I runtime, and the argument used with each policy.

Appendix B, System Exceptions

This appendix summarizes the Orbix system exceptions that are specific to
the Orbix PL/I runtime.

Appendix C, Installed Data Sets

This appendix provides an overview listing of the data sets installed with
Orbix Mainframe that are relevant to development and deployment of PL/I
applications.
xvii

PREFACE
Related documentation The document set for Orbix Mainframe includes the following related
documentation:

� The COBOL Programmer�s Guide and Reference, which provides
details about developing, in a native OS/390 environment, Orbix
COBOL applications that can run in batch, CICS, or IMS.

� The CORBA Programmer�s Guide, C++ and the CORBA Programmer�s
Reference, C++, which provide details about developing Orbix
applications in C++ in various environments, including OS/390.

� The Mainframe Migration Guide, which provides details of migration
issues for users who have migrated from IONA�s Orbix 2.3-based
solution for OS/390 to Orbix Mainframe.

The latest updates to the Orbix Mainframe documentation can be found at
http://www.iona.com/support/docs/orbix/6.0/mainframe/index.xml.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
 xviii

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/docs/e2a/asp/5.1/mainframe/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xix

PREFACE
 xx

Part 1
Programmer�s Guide

In this part This part contains the following chapters:

Introduction to Orbix page 3

Getting Started in Batch page 15

Getting Started in IMS page 49

Getting Started in CICS page 93

IDL Interfaces page 135

IDL-to-PL/I Mapping page 177

Orbix IDL Compiler page 233

Memory Handling page 275

CHAPTER 1

Introduction to
Orbix
With Orbix, you can develop and deploy large-scale
enterprise-wide CORBA systems in languages such as PL/I,
COBOL, C++, and Java. Orbix has an advanced modular
architecture that lets you configure and change functionality
without modifying your application code, and a rich
deployment architecture that lets you configure and manage
a complex distributed system. Orbix Mainframe is IONA�s
CORBA solution for the OS/390 environment.

In this chapter This chapter discusses the following topics:

Why CORBA? page 4

CORBA Application Basics page 8

Orbix Plug-In Design page 9

Orbix Application Deployment page 11
3

CHAPTER 1 | Introduction to Orbix
Why CORBA?

Need for open systems Today�s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages. Each of these is good at
some important business task; all of them must work together for the
business to function.

The common object request broker architecture�CORBA�provides the
foundation for flexible and open systems. It underlies some of the Internet�s
most successful e-business sites, and some of the world�s most complex and
demanding enterprise information systems.

Need for high-performance
systems

Orbix is a CORBA development platform for building high-performance
systems. Its modular architecture supports the most demanding needs for
scalability, performance, and deployment flexibility. The Orbix architecture
is also language-independent, so you can implement Orbix applications in
PL/I, COBOL, C++, or Java that interoperate via the standard IIOP protocol
with applications built on any CORBA-compliant technology.

Open standard solution CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

Widely available solution CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, COBOL,
and PL/I running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through OrbixCOMet, IONA�s dynamic bridge between CORBA and COM,
they can also interoperate with COM objects. CORBA offers an extensive
infrastructure that supports all the features required by distributed business
objects. This infrastructure includes important distributed services, such as
transactions, messaging, and security.
 4

Why CORBA?
CORBA Objects

Nature of abstract CORBA objects CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

Object references An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as PL/I, COBOL, C++, or Java.

IDL interfaces Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions
are available to a client, without making any assumptions about an object�s
implementation.

Figure 1: The Nature of Abstract CORBA Objects

A server
implements a
CORBA object

IDL interface definitions
specify CORBA objects

Clients access
CORBA objects
via object
references
5

CHAPTER 1 | Introduction to Orbix
Advantages of IDL With a few calls to an ORB�s application programming interface (API),
servers can make CORBA objects available to client programs in your
network.

To call member functions on a CORBA object, a client programmer needs
only to refer to the object�s interface definition. Clients use their normal
programming language syntax to call the member functions of a CORBA
object. A client does not need to know which programming language
implements the object, the object�s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object�s use from its implementation
has several advantages. For example, you can change the programming
language in which an object is implemented without affecting the clients
that access the object. You can also make existing objects available across a
network.
 6

Why CORBA?
Object Request Broker

Overview CORBA defines a standard architecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.

Role of an ORB An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Figure 2: The Object Request Broker

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

Server
7

CHAPTER 1 | Introduction to Orbix
CORBA Application Basics

Developing application interfaces You start developing a CORBA application by defining interfaces to objects
in your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler can generate PL/I, COBOL, C++, or Java from
IDL definitions. Generated PL/I and COBOL consists of server skeleton code,
which you use to implement CORBA objects.

Client invocations on CORBA
objects

When an Orbix PL/I client on OS/390 calls a member function on a CORBA
object on another platform, the call is transferred through the PL/I runtime
to the ORB. (The client invokes on object references that it obtains from the
server process.) The ORB then passes the function call to the server.

When a CORBA client on another platform calls a member function on an
Orbix PL/I server object on OS/390, the ORB passes the function call
through the PL/I runtime and then through the server skeleton code to the
target object.
 8

Orbix Plug-In Design
Orbix Plug-In Design

Overview Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB,
based on runtime configuration settings.

Plug-ins A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains
objects that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured
into the application rather than compiled in, you can change your choices
as your needs change without rewriting or recompiling applications.

For example, an application that uses the standard IIOP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. There is no particular transport inherent to the ORB core;
you simply load the transport set that suits your application best. This
architecture makes it easy for IONA to support additional transports in the
future such as multicast or special purpose network protocols.

ORB core The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local PL/I, COBOL, C++, or Java object within the process, depending on
which language you are using. In fact it might be a local object, or a remote
object reached by some network protocol. It is the ORB�s job to get
application requests to the right objects no matter where they are located.
9

CHAPTER 1 | Introduction to Orbix
To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings�either on startup or on demand�as they are needed
by the application. For remote objects, the ORB intercepts local function
calls and turns them into CORBA requests that can be dispatched to a
remote object across the network via the standard IIOP protocol.
 10

Orbix Application Deployment
Orbix Application Deployment

Overview Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain
provides the central control of configuration for an entire distributed
application.

Orbix offers a rich deployment environment that lets you structure and
control enterprise-wide distributed applications. Orbix provides central
control of all applications within a common domain.

In this section This section discusses the following topics:

Location Domains page 12

Configuration Domains page 13
11

CHAPTER 1 | Introduction to Orbix
Location Domains

Overview A location domain is a collection of servers under the control of a single
locator daemon. An Orbix location domain consists of two components: a
locator daemon and a node daemon.

Locator daemon The locator daemon can manage servers on any number of hosts across a
network. The locator daemon automatically activates remote servers through
a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is
a database of available servers. The implementation repository keeps track
of the servers available in a system and the hosts they run on. It also
provides a central forwarding point for client requests. By combining these
two functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests
to the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

Node daemon The node daemon acts as the control point for a single machine in the
system. Every machine that will run an application server must be running a
node daemon. The node daemon starts, monitors, and manages the
application servers running on that machine. The locator daemon relies on
the node daemons to start processes and inform it when new processes
have become available.

Note: See the CORBA Administrator�s Guide for more details about
these.
 12

Orbix Application Deployment
Configuration Domains

Overview A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains. During development, or for small-scale deployment, configuration
can be stored in an ASCII text file, which is edited directly.

Plug-in design The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as
example HTTP or third-party configuration systems.
13

CHAPTER 1 | Introduction to Orbix
 14

CHAPTER 2

Getting Started in
Batch
This chapter introduces batch application programming with
Orbix, by showing how to use Orbix to develop a simple
distributed application that features a PL/I client and server,
each running in its own region.

In this chapter This chapter discusses the following topics:

Overview and Setup Requirements page 16

Developing the Application Interfaces page 21

Developing the Server page 28

Developing the Client page 36

Running the Application page 41

Application Address Space Layout page 46

Note: The example provided in this chapter does not reflect a real-world
scenario that requires the Orbix Mainframe, because the supplied client
and server are written in PL/I and running on OS/390. The example is
supplied to help you quickly familiarize with the concepts of developing a
batch PL/I application with Orbix.
15

CHAPTER 2 | Getting Started in Batch
Overview and Setup Requirements

Introduction This section provides an overview of the main steps involved in creating an
Orbix PL/I application. It describes important steps that you must perform
before you begin. It also introduces the supplied SIMPLE demonstration, and
outlines where you can find the various source code and JCL elements for it.

Steps to create an application The main steps to create an Orbix PL/I application are:

This chapter describes in detail how to perform each of these steps.

The Simple demonstration This chapter describes how to develop a simple client-server application
that consists of:

� An Orbix PL/I server that implements a simple persistent POA-based
server.

� An Orbix PL/I client that uses the clearly defined object interface,
SimpleObject, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (IIOP), which runs
over TCP/IP, to communicate. As already stated, the SIMPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix Mainframe,
because the client and server are written in the same language and running
on the same platform.

The Demonstration Server The server accepts and processes requests from the client across the
network. It is a batch server that runs in its own region.

Step Action

1 �Developing the Application Interfaces� on page 21.

2 �Developing the Server� on page 28.

3 �Developing the Client� on page 36.
 16

Overview and Setup Requirements
See �Location of supplied code and JCL� for details of where you can find an
example of the supplied server. See �Developing the Server� on page 28 for
more details of how to develop the server.

The demonstration client The client runs in its own region and accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server. When the operation has completed, a
reply message is sent back to the client. This completes a single remote
CORBA invocation.

See �Location of supplied code and JCL� for details of where you can find an
example of the supplied client. See �Developing the Client� on page 36 for
more details of how to develop the client.

Location of supplied code
and JCL

All the source code and JCL components needed to create and run the batch
SIMPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 1 provides a summary of the supplied code elements and JCL
components that are relevant to the batch SIMPLE demonstration (where
orbixhlq represents your installation�s high-level qualifier).

Table 1: Supplied Code and JCL (Sheet 1 of 2)

Location Description

orbixhlq.DEMOS.IDL(SIMPLE) This is the supplied IDL.

orbixhlq.DEMOS.PLI.SRC(SIMPLEV) This is the source code for the batch server mainline
module.

orbixhlq.DEMOS.PLI.SRC(SIMPLEI) This is the source code for the batch server
implementation module.

orbixhlq.DEMOS.PLI.SRC(SIMPLEC) This is the source code for the client module.

orbixhlq.JCL(LOCATOR) This JCL runs the Orbix locator daemon.

orbixhlq.JCL(NODEDAEM) This JCL runs the Orbix node daemon.
17

CHAPTER 2 | Getting Started in Batch
Supplied include members Table 2 provides a summary in alphabetic order of the various include
members that are supplied with your product installation. In Table 2,
servers means batch servers, and clients means batch clients. Again,
orbixhlq represents your installation�s high-level qualifier.

orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLIDL) This JCL runs the Orbix IDL compiler, to generate
PL/I source and include members for the batch
server. This JCL specifies the -V compiler argument,
which stops generation of server mainline code by
default. The -S compiler argument, which generates
server implementation code, is disabled by default in
this JCL.

orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLECB) This JCL compiles the client module to create the
SIMPLE client program.

orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLESB) This JCL compiles and links the batch server
mainline and implementation modules to create the
SIMPLE server program.

orbixhlq.DEMOS.PLI.RUN.JCL(SIMPLESV) This JCL runs the server.

orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLECL) This JCL runs the client.

Note: Other code elements and JCL components are provided for the IMS
and CICS versions of the SIMPLE demonstration. See �Getting Started in
IMS� on page 49 and �Getting Started in CICS� on page 93 for more
details of these.

Table 1: Supplied Code and JCL (Sheet 2 of 2)

Location Description

Table 2: Supplied Include Members (Sheet 1 of 3)

Location Description

orbixhlq.INCLUDE.PLINCL(CHKERRS) This contains a PL/I function that can be called both
by clients and servers to check if a system exception
has occurred, and to report that system exception.
 18

Overview and Setup Requirements
orbixhlq.INCLUDE.PLINCL(CORBA) This contains common PL/I runtime variables that
can be used both by clients and servers. It includes
the CORBACOM include member by default. It also
includes the CORBASV include member, if the client
program contains the line %client_only=’yes’;.

orbixhlq.INCLUDE.PLINCL(CORBACOM) This contains common PL/I runtime function
definitions that can be used both by clients and
servers.

orbixhlq.INCLUDE.PLINCL(CORBASV) This contains PL/I runtime function definitions that
can be used by servers.

orbixhlq.INCLUDE.PLINCL(DISPINIT) This is used by servers. It retrieves the current
request information into the REQINFO structure via
PODREQ. From REQINFO the operation to be performed
by the server is retrieved via a call to STRGET.

orbixhlq.INCLUDE.PLINCL(EXCNAME) This is relevant to both batch clients and servers. It
contains a PL/I function called CORBA_EXC_NAME that
returns the system exception name for the system
exception being raised (that is, it maps Orbix
exceptions to human-readable strings). EXCNAME is
used by CHKERRS.

orbixhlq.INCLUDE.PLINCL(IORREC) This is used both by clients and servers. It contains
declarations for the IOR file and associated variables.

orbixhlq.INCLUDE.PLINCL(READIOR) This is used both by clients and servers. It reads the
IOR from IORFILE, and converts the PL/I character
string that is read into an unbounded string. This
string is subsequently used by the OBJ2STR function,
to create an object reference from the IOR that has
been read.

orbixhlq.INCLUDE.PLINCL(SETUPCL) This is used by clients. It sets up several ON…ERROR
blocks that check the status of IORFILE and catch
any general errors that might occur in the client.

Table 2: Supplied Include Members (Sheet 2 of 3)

Location Description
19

CHAPTER 2 | Getting Started in Batch
Checking JCL components When creating the simple application, check that each step involved within
the separate JCL components completes with a condition code not greater
than 4. If the condition codes are greater than 4, establish the point and
cause of failure. The most likely cause is the site-specific JCL changes
required for the compilers. Ensure that each high-level qualifier throughout
the JCL reflects your installation.

orbixhlq.INCLUDE.PLINCL(URLSTR) This is relevant to clients only. It contains a PL/I
representation of the corbaloc URL IIOP string
format. A client can call STR2OBJ to convert the URL
into an object reference. See �STR2OBJ� on
page 404 for more details.

Note: Even though batch applications can use this
include member, the supplied batch demonstration
does not use this.

orbixhlq.DEMOS.PLI.PLINCL This PDS is used to store all batch include members
that are generated by the Orbix IDL compiler when
you run the supplied SIMPLIDL JCL for the batch
demonstration. It also contains helper procedures for
the bank, naming, and nested sequences
demonstrations.

Note: An IMSPCB include member is also provided specifically for use with
IMS servers. See �Getting Started in IMS� on page 49 for more details of
this.

Table 2: Supplied Include Members (Sheet 3 of 3)

Location Description
 20

Developing the Application Interfaces
Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to generate
PL/I source and include members from IDL interfaces, and provides a
description of the members generated from the supplied SimpleObject
interface.

Steps to develop application
interfaces

The steps to develop the interfaces to your application are:

Step Action

1 Define public IDL interfaces to the objects required in your
system.

See �Defining IDL Interfaces� on page 22.

2 Use the Orbix IDL compiler to generate PL/I source and include
members from the defined IDL.

See �Generating PL/I Source and Include Members� on
page 23.
21

CHAPTER 2 | Getting Started in Batch
Defining IDL Interfaces

Defining the IDL The first step in writing an Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the SimpleObject interface that is supplied in
orbixhlq.DEMOS.IDL(SIMPLE):

Explanation of the IDL The preceding IDL declares a SimpleObject interface that is scoped (that is,
contained) within the Simple module. This interface exposes a single
call_me() operation. This IDL definition provides a language-neutral
interface to the CORBA Simple::SimpleObject type.

How the demonstration uses
this IDL

For the purposes of this example, the SimpleObject CORBA object is
implemented in PL/I in the supplied Simple server application. The server
application creates a persistent server object of the SimpleObject type, and
publishes its object reference to a PDS member. The client application must
then locate the SimpleObject object by reading the IOR from the relevant
PDS member. The client invokes the call_me() operation on the
SimpleObject object, and then exits.

// IDL
module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};
 22

Developing the Application Interfaces
Generating PL/I Source and Include Members

The Orbix IDL compiler You can use the Orbix IDL compiler to generate PL/I source and include
members from IDL definitions.

Orbix IDL compiler configuration The Orbix IDL compiler uses the Orbix configuration member for its settings.
The SIMPLIDL JCL that runs the compiler uses the configuration member
orbixhlq.CONFIG(IDL). See �Orbix IDL Compiler Configuration� on
page 263 for more details of this configuration member.

Running the Orbix IDL compiler The PL/I source for the batch server demonstration described in this chapter
is generated in the first step of the following job:

Generated source code members Table 3 shows the server source code members that the Orbix IDL compiler
generates, based on the defined IDL:

orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLIDL)

Table 3: Generated Server Source Code Members

Member JCL Keyword
Parameter

Description

idlmembernameI IMPL This is the server implementation
source code member. It contains
procedure definitions for all the
callable operations.

The is only generated if you
specify the -S argument with the
IDL compiler.

idlmembernameV IMPL This is the server mainline source
code member. It is generated by
default. However, you can use
the -V argument with the IDL
compiler, to prevent generation
of this member.
23

CHAPTER 2 | Getting Started in Batch
Note: For the purposes of this example, the SIMPLEI server
implementation and SIMPLEV server mainline are already provided in your
product installation. Therefore, the -S argument, which generates server
implementation code, is not specified in the supplied SIMPLIDL JCL. The
-V argument, which prevents generation of server mainline code, is
specified in the supplied JCL. See �Orbix IDL Compiler� on page 233 for
more details of the IDL compiler arguments used to generate, and prevent
generation of, server source code.
 24

Developing the Application Interfaces
Generated PL/I include members Table 4 shows the PL/I include members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 4: Generated PL/I Include Members

Copybook JCL Keyword
Parameter

Description

idlmembernameD COPYLIB This include member contains a
select statement that determines
which server implementation
procedure is to be called, based
on the interface name and
operation received.

idlmembernameL COPYLIB This include member contains
structures and procedures used
by the PL/I runtime to read and
store data into the operation
parameters.

This member is automatically
included in the idlmembernameX
include member.

idlmembernameM COPYLIB This include member contains
declarations and structures that
are used for working with
operation parameters and return
values for each interface defined
in the IDL member. The
structures use the based PL/I
structures declared in the
idlmembernameT include
member.

This member is automatically
included in the idlmembernameI
include member.
25

CHAPTER 2 | Getting Started in Batch
How IDL maps to PL/I include
members

Each IDL interface maps to a set of PL/I structures. There is one structure
defined for each IDL operation. A structure contains each of the parameters
for the relevant IDL operation in their corresponding PL/I representation. See
�IDL-to-PL/I Mapping� on page 177 for details of how IDL types map to
PL/I.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

idlmembernameT COPYLIB This include member contains
the based structure declarations
that are used in the
idlmembernameM include
member.

This member is automatically
included in the idlmembernameM
include member.

idlmembernameX COPYLIB This include member contains
structures that are used by the
PL/I runtime to support the
interfaces defined in the IDL
member.

This member is automatically
included in the idlmembernameV
source code member.

idlmembernameD COPYLIB This include member contains a
select statement for calling the
correct procedure for the
requested operation.

This include member is
automatically included in the
idlmembernameI source code
member.

Table 4: Generated PL/I Include Members

Copybook JCL Keyword
Parameter

Description
 26

Developing the Application Interfaces
Member name restrictions Generated PL/I source code and include member names are all based on the
IDL member name. If the IDL member name exceeds six characters, the
Orbix IDL compiler uses only the first six characters of the IDL member
name when generating include member names. This allows space for
appending a one-character suffix to each generated member name, while
allowing it to adhere to the seven-character maximum size limit for PL/I
external procedure names, which are based by default on the generated
member names.

Location of demonstration include
members

You can find examples of the include members generated for the Simple
demonstration in the following locations:

� orbixhlq.DEMOS.PLI.PLINCL(SIMPLED)

� orbixhlq.DEMOS.PLI.PLINCL(SIMPLEL)

� orbixhlq.DEMOS.PLI.PLINCL(SIMPLEM)

� orbixhlq.DEMOS.PLI.PLINCL(SIMPLET)

� orbixhlq.DEMOS.PLI.PLINCL(SIMPLEX)

Note: These include members are not shipped with your product
installation. They are generated when you run the supplied SIMPLIDL JCL,
to run the Orbix IDL compiler.
27

CHAPTER 2 | Getting Started in Batch
Developing the Server

Overview This section describes the steps you must follow to develop the batch server
executable for your application.

Steps to develop the server The steps to develop the server application are:

Step Action

1 �Writing the Server Implementation� on page 29

2 �Writing the Server Mainline� on page 32

3 �Building the Server� on page 35.
 28

Developing the Server
Writing the Server Implementation

The server implementation
module

You must complete the server implementation by writing the logic that
implements each operation in the idlmembernameI source code member.
For the purposes of this example, you must write a PL/I procedure that
implements each operation in the SIMPLEI member.

When you specify the -S argument with the Orbix IDL compiler in this case,
it generates a skeleton module called SIMPLEI, which generates an empty
procedure for each attribute and operation within the interface.

Example of the completed
SIMPLEI module

The following is an example of the completed SIMPLEI module (with the
header comment block omitted for the sake of brevity):

Example 1: The SIMPLEI Demonstration Module (Sheet 1 of 2)

SIMPLEI: PROC;

/*The following line enables the runtime to call this procedure*/
1 DISPTCH: ENTRY;

dcl (addr,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include SIMPLEM;

2 %include DISPINIT;

/* ================ Start of global user code =============== */
/* ================= End of global user code ================ */

/* ---*/
/* */
/* Dispatcher : select(operation) */
/* */
/*--*/

3 %include SIMPLED;

/*--*/
/* Interface: */
/* Simple/SimpleObject */
/* */
29

CHAPTER 2 | Getting Started in Batch
Explanation of the
SIMPLEI module

The SIMPLEI module can be explained as follows:

1. When an incoming request arrives from the network, it is processed by
the ORB and a call is made from the PL/I runtime to the DISPTCH entry
point.

2. Within the DISPINIT include member, PODREQ is called to provide
information about the current invocation request, which is held in the
REQINFO structure. PODREQ is called once for each operation invocation
after a request has been dispatched to the server. STRGET is then called
to copy the characters in the unbounded string pointer for the
operation name into the PL/I string that represents the operation name.

3. The SIMPLED include member contains a select statement that
determines which procedure within SIMPLEI is to be called, given the
operation name and interface name passed to SIMPLEI. It calls PODGET

/* Mapped name: */
/* Simple_SimpleObject */
/* */
/* Inherits interfaces: */
/* (none) */
/*--*/
/*--*/
/* Operation: call_me */
/* Mapped name: call_me */
/* Arguments: None */
/* Returns: void */
/*--*/

4 proc_Simple_SimpleObject_c_c904: PROC(p_args);

dcl p_args ptr;
5 dcl 1_args aligned based(p_args)

 like Simple_SimpleObject_c_ba77_type;

/* ==================== Start of operation code ============= */
6 put skip list(’Operation call_me() called’);

put skip;
/* ===================== End of operation code ============== */

END proc_Simple_SimpleObject_c_c904;

END SIMPLEI;

Example 1: The SIMPLEI Demonstration Module (Sheet 2 of 2)
 30

Developing the Server
before the call to the server procedure, which fills the appropriate PL/I
structure declared in the main include member, SIMPLEM, with the
operation�s incoming arguments. It then calls PODPUT after the call to
the server procedure, to send out the operation�s outgoing arguments.

4. The procedural code containing the server implementation for the
call_me operation.

5. Each operation has an argument structure and these are declared in
the typecode include member, SIMPLET. If an operation does not have
any parameters or return type, such as call_me, the structure only
contains a structure with a dummy char.

6. This is a sample of the server implementation code for call_me. It is
the only part of the SIMPLEI member that is not automatically
generated by the Orbix IDL compiler.

Location of the SIMPLEI
module

You can find a complete version of the SIMPLEI server implementation
module in orbixhlq.DEMOS.PLI.SRC(SIMPLEI).
31

CHAPTER 2 | Getting Started in Batch
Writing the Server Mainline

The server mainline module The next step is to write the server mainline module in which to run the
server implementation. The Orbix IDL compiler generates the server
mainline module, SIMPLEV, by default. However, you can prevent generation
of the server mainline module by specifying the -V argument with the IDL
compiler. The -V argument therefore allows you to prevent overwriting any
customized changes you might have already made to the server mainline.

Example of the SIMPLEV
module

The following is an example of the SIMPLEV module (with the header
comment block omitted for the sake of brevity):

Example 2: The SIMPLEV Demonstration Module (Sheet 1 of 2)

SIMPLEV: PROC OPTIONS(MAIN);

dcl arg_list char(01) init(’’);
dcl arg_list_len fixed bin(31) init(0);
dcl orb_name char(10) init(’simple_orb’);
dcl orb_name_len fixed bin(31) init(10);
dcl srv_name char(256) var;
dcl server_name char(07) init(’simple ’);
dcl server_name_len fixed bin(31) init(6);

dcl Simple_SimpleObject_obj ptr;

dcl DISPTCH ext entry;
dcl IORFILE file record output;
dcl SYSPRINT file stream output;
dcl (addr,length,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include IORREC;
%include SIMPLET;
%include SIMPLEX;

alloc pod_status_information set(pod_status_ptr);
1 call podstat(pod_status_ptr);

if check_errors(’podstat’) ^= completion_status_yes then return;

/* Initialize the server connection to the ORB */
 32

Developing the Server
2 call orbargs(arg_list,arg_list_len,orb_name,orb_name_len);
if check_errors(’orbargs’) ^= completion_status_yes then return;

3 call podsrvr(server_name, server_name_len);
if check_errors(’podsrvr’) ^= completion_status_yes then return;

/* Register interface : Simple/SimpleObject */
4 call podreg(addr(Simple_SimpleObject_interface));

if check_errors(’podreg’;) ^= completion_status_yes then return;

put skip list(’Creating the simple_persistent object’);
5 call objnew(server_name, Simple_SimpleObject_intf,

Simple_SimpleObject_objid, Simple_SimpleObject_obj);
if check_errors(’objnew’) ^= completion_status_yes then return;

/* Write out the IOR for each interface */
open file(IORFILE);

6 call obj2str(Simple_SimpleObject_obj, iorrec_ptr);
if check_errors(’obj2str’) ^= completion_status_yes then return;

put skip list(’Writing out the object reference’);
call strget(iorrec_ptr, iorrec, iorrec_len);
if check_errors(’strget’) ^= completion_status_yes then return;

write file(IORFILE) from(iorrec);
close file(IORFILE);

/* Server is now ready to accept requests */
put skip list(’Giving control to the ORB to process requests’);
put skip;

7 call podrun;
if check_errors(’podrun’) ^= completion_status_yes then return;

8 call objrel(Simple_SimpleObject_obj);
if check_errors(’objrel’) ^= completion_status_yes then return;

free pod_status_information;

END SIMPLEV;

Example 2: The SIMPLEV Demonstration Module (Sheet 2 of 2)
33

CHAPTER 2 | Getting Started in Batch
Explanation of the SIMPLEV
module

The SIMPLEV module can be explained as follows:

1. PODSTAT is called to register the POD_STATUS_INFORMATION block that is
contained in the CORBA include member. Registering the
POD_STATUS_INFORMATION block allows the PL/I runtime to populate it
with exception information, if necessary. If completion_status is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

2. ORBARGS is called to initialize a connection to the ORB.

3. PODSRVR is called to set the server name.

4. PODREG is called to register the IDL interface, SimpleObject, with the
PL/I runtime.

5. OBJNEW is called to create a unique object reference from the server
name, interface name, and object ID for the server.

6. OBJ2STR is called to translate the object reference created by OBJNEW
into a stringified IOR. The stringified IOR is then written to the IORFILE
member.

7. PODRUN is called, to enter the ORB::run() loop, to allow the ORB to
receive and process client requests.

8. OBJREL is called to ensure that the servant object is released properly.

See the preface of this guide for details about the compilers that this product
supports.

Location of the SIMPLEV
module

You can find a complete version of the SIMPLEV server mainline in
orbixhlq.DEMOS.PLI.SRC(SIMPLEV).
 34

Developing the Server
Building the Server

Location of the JCL Sample JCL used to compile and link the batch server mainline and server
implementation is in orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLESB).

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.PLI.LOAD(SIMPLESV).

Server programming restrictions Although the server implementation code is compiled as part of the main
program, it effectively executes as a dynamically loaded procedure. The
fetch and release restrictions documented in the IBM publication: IBM PL/I
for MVS & VM Language Reference Release 1.1: SC26-3114 must be
observed. Failure to observe these restrictions can result in various errors,
including S0C4, S22C, and U4094 abends.

For example, all files to be used by the server program must be explicitly
opened before the first Orbix PL/I runtime call in the server mainline and
must be explicitly closed at the end of the server mainline.
35

CHAPTER 2 | Getting Started in Batch
Developing the Client

Overview This section describes the steps you must follow to develop the client
executable for your application.

Steps to develop the client The steps to develop the client application are:

Note: The Orbix IDL compiler does not generate PL/I client stub code.

Step Action

1 �Writing the Client� on page 37.

2 �Building the Client� on page 40.
 36

Developing the Client
Writing the Client

The client program The next step is to write the client program. This example uses the supplied
SIMPLEC client demonstration.

Example of the SIMPLEC
program

The following is an example of the SIMPLEC program

Example 3: The SIMPLEC Demonstration Program (Sheet 1 of 2)

SIMPLEC: PROC OPTIONS(MAIN);

1 %client_only=’yes’;

dcl (addr, null, substr, sysnull) builtin;
dcl SYSIN file input;
dcl SYSPRINT file stream output;

dcl arg_list char(40) init(’’);
dcl arg_list_len fixed bin(31) init(38);
dcl orb_name char(10) init(’simple_orb’);
dcl orb_name_len fixed bin(31) init(10);

dcl Simple_SimpleObject_obj ptr;

%include CORBA;
%include CHKERRS;
%include SIMPLEM;
%include SIMPLEX;

%include SETUPCL; /* Various DCLs for the client */
%include IORREC; /* Describes the IOR file type */

open file(IORFILE) input; /* Open the server IOR member */
2 %include READIOR; /* Read in the server’s IOR */

/* General Client Setup */
/* Initialize the PL/I runtime status information block */
alloc pod_status_information set(pod_status_ptr);
call podstat(pod_status_ptr);

/* Initialize our ORB */
3 call orbargs(arg_list, arg_list_len, orb_name, orb_name_len);
37

CHAPTER 2 | Getting Started in Batch
/* Register the SimpleObject interface with the PL/I runtime */
4 call podreg(addr(Simple_SimpleObject_interface));

if check_errors(’podreg’) ^= completion_status_yes then return;

/* Create an object reference from the server’s IOR */
/* so we can make calls to the server */

5 call str2obj(iorrec_ptr, Simple_SimpleObject_obj);
if check_errors(’objset’) ^= completion_status_yes then return;

/* Now we are ready to start making server requests */
put skip list(’simple_persistent demo’);
put skip list(’======================’);

/* Call operation call_me */
/* As this is a very simple function, there aren’t any */
/* parameters. So instead we pass in the generated dummy */
/* structure created for this operation. */
put skip list(’Calling operation call_me…’);

6 call podexec(Simple_SimpleObject_obj,
 Simple_SimpleObject_call_me,
 addr(Simple_SimpleObject_c_ba77_args),
 no_user_exceptions);
if check_errors(’podexec’) ^= completion_status_yes then return;

put skip list(’Operation call_me completed (no results to
 display)’);
put skip;
put skip list(’End of the simple_persistent demo’);
put skip;

/* Free the simple_persistent object reference */
7 call objrel(Simple_SimpleObject_obj);

if check_errors(’objrel’) ^= completion_status_yest then return;

END SIMPLEC;

Example 3: The SIMPLEC Demonstration Program (Sheet 2 of 2)
 38

Developing the Client
Explanation of the SIMPLEC
program

The SIMPLEC program can be explained as follows:

1. This preprocessor setting instructs the PL/I compiler not to include the
CORBASV include member, which contains PL/I runtime functions that
are used only by the server. The CORBA include member includes a
check for this setting.

2. The READIOR include member reads the IOR from the IORFILE member
and creates an unbounded string, called iorrec_ptr, which is used
later in the program to create an object reference from this IOR.

3. ORBARGS is called to initialize a connection to the ORB.

4. PODREG is called to register the IDL interface with the PL/I runtime.

5. STR2OBJ is called to create an object reference to the server object
represented by the IOR. This must be done to allow operation
invocations on the server. The STR2OBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmer�s Reference, C++ for more details about stringified
object references.

6. After the object reference is created, PODEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. If the call does not
have a user exception defined (as in the preceding example), the
no_user_exceptions variable is passed in instead. The operation name
must have at least one trailing space. The same argument description
is used by the server, and can be found in the
orbixhlq.DEMOS.PLI.PLINCL(SIMPLET) include member.

7. OBJREL is called to ensure that the servant object is released properly.

Location of the SIMPLEC
program

You can find a complete version of the SIMPLEC client module in
orbixhlq.DEMOS.PLI.SRC(SIMPLEC).
39

CHAPTER 2 | Getting Started in Batch
Building the Client

Location of the JCL Sample JCL used to compile and link the client can be found in the third
step of orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLECB).

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.PLI.LOAD(SIMPLECL).
 40

Running the Application
Running the Application

Introduction This section describes the steps you must follow to run your application. It
also provides an example of the output produced by the client and server.

Steps to run the application The steps to run the application are:

Note: This example involves running a PL/I client and PL/I server. You
could, however, choose to run a PL/I server and a C++ client, or a PL/I
client and a C++ server. Substitution of the appropriate JCL is all that is
required in the following steps to mix clients and servers in different
languages.

Step Action

1 �Starting the Orbix Locator Daemon� on page 42 (if it has not
already been started).

2 �Starting the Orbix Node Daemon� on page 43 (if it has not
already been started).

3 �Running the Server and Client� on page 44.
41

CHAPTER 2 | Getting Started in Batch
Starting the Orbix Locator Daemon

Overview An Orbix locator daemon must be running on the server�s location domain
before you try to run your application. The Orbix locator daemon is a
program that implements several components of the ORB, including the
Implementation Repository. The locator runs in its own address space on
the server host, and provides services to the client and server, both of which
need to communicate with it.

When you start the Orbix locator daemon, it appears as an active job waiting
for requests. See the CORBA Administrator�s Guide for more details about
the locator daemon.

JCL to start the Orbix locator
daemon

If the Orbix locator daemon is not already running, you can use the JCL in
orbixhlq.JCL(LOCATOR) to start it.

Locator daemon configuration The Orbix locator daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the locator daemon uses the
configuration member orbixhlq.CONFIG(DEFAULT@).
 42

Running the Application
Starting the Orbix Node Daemon

Overview An Orbix node daemon must be running on the server�s location domain
before you try to run your application. The node daemon acts as the control
point for a single machine in the system. Every machine that will run an
application server must be running a node daemon. The node daemon
starts, monitors, and manages the application servers running on that
machine. The locator daemon relies on the node daemons to start processes
and inform it when new processes have become available.

When you start the Orbix node daemon, it appears as an active job waiting
for requests. See the CORBA Administrator�s Guide for more details about
the node daemon.

JCL to start the Orbix node
daemon

If the Orbix node daemon is not already running, you can use the JCL in
orbixhlq.JCL(NODEDAEM) to start it.

Node daemon configuration The Orbix node daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the node daemon uses the
configuration member orbixhlq.CONFIG(DEFAULT@).
43

CHAPTER 2 | Getting Started in Batch
Running the Server and Client

JCL to run the server To run the supplied SIMPLESV server application, use the following JCL:

IOR member for the server When you run the server, it automatically writes its IOR to a PDS member
that is subsequently used by the client. For the purposes of this example,
the IOR member is contained in orbixhlq.DEMOS.IORS(SIMPLE).

JCL to run the client After you have started the server and made it available to the network, you
can use the following JCL to run the supplied SIMPLECL client application:

orbixhlq.DEMOS.PLI.JCL(SIMPLESV)

Note: You can use the OS/390 STOP operator command to stop the
server.

orbixhlq.DEMOS.PLI.RUN.JCL(SIMPLECL)
 44

Running the Application
Application Output

Server output The following is an example of the output produced by the simple server:

Client output The following is an example of the output produced by the simple client:

Result If you receive the preceding client and server output, it means that you have
successfully created an Orbix PL/I client-server batch application.

Creating the simple_persistent object
Writing out the object reference
Giving control to the ORB to process Requests

Operation call_me() called

simple_persistent demo
=======================
Calling operation call me…
Operation call_me completed (no results to display)

End of the simple_persistent demo
45

CHAPTER 2 | Getting Started in Batch
Application Address Space Layout

Overview Figure 3 is a graphical overview of the address space layout for an Orbix
PL/I application running in batch in a native OS/390 environment. This is
shown for the purposes of example and is not meant to reflect a real-world
scenario requiring the Orbix Mainframe.

Figure 3: Address Space Layout for an Orbix PL/I Application

Server Process (including TCP/IP)

ORB

PL/I Runtime

Server Mainline

Entry point for launch
includes calls to PODSTAT, ORBARGS,

PODSRVR, PODREG, OBJNEW, OBJ2STR,
and PODRUN

Locator Daemon Process (including TCP/IP)

Locator Daemon

Client Process (including TCP/IP)

ORB

PL/I Runtime

Client Implementation

PODSTAT, ORBARGS, PODREG, and
STR2OBJ calls.

A PODEXEC call for each IDL operation to be
invoked on the CORBA object.

OS/390 Environment

Node Daemon Process (including TCP/IP)

Node Daemon

Server Implementation

DISPTCH - entry point for all IDL operations.

PODREQ is called to determine which PL/I
section (that is, IDL operations) to execute.

Each section includes PODGET (to move data
from PL/I runtime to temporary storage) and

PODPUT (to move data from temporary storage
to PL/I runtime).

Temporary Storage used
by PODEXEC calls

Temporary Storage
used by PODGET

and PODPUT
 46

Application Address Space Layout
Explanation of the server process The server-side ORB, PL/I runtime, server mainline (launch entry point),
and server implementation are linked into a single load module referred to
as the "server". The PL/I runtime marshals data to and from the server
implementation�s operation structures, which means there is
language-specific translation between C++ and PL/I.

The server runs within its own address space. It uses the TCP/IP protocol to
communicate (through the server-side ORB) with both the client and the
locator daemon.

For an example and details of:

� The APIs called by the server mainline, see �Explanation of the
SIMPLEV module� on page 34 and �API Reference� on page 305.

� The APIs called by the server implementation, see �Explanation of the
SIMPLEI module� on page 30 and �API Reference� on page 305.

Explanation of the daemon
processes

The locator daemon and node daemon each runs in its own address space.
See �Location Domains� on page 12 for more details of the locator and node
daemons.

The locator daemon and node daemon use the TCP/IP protocol to
communicate with each other. The locator daemon also uses the TCP/IP
protocol to communicate with the server through the server-side ORB.

Explanation of the client process The client-side ORB, PL/I runtime, and client implementation are linked into
a single load module referred to as the �client�. The client runs within its
own address space.

The client (through the client-side ORB) uses TCP/IP to communicate with
the server.

For an example and details of the APIs called by the client, see �Explanation
of the SIMPLEC program� on page 39 and �API Reference� on page 305.
47

CHAPTER 2 | Getting Started in Batch
 48

CHAPTER 3

Getting Started in
IMS
This chapter introduces IMS application programming with
Orbix, by showing how to use Orbix to develop both an IMS
PL/I client and an IMS PL/I server. It also provides details of
how to subsequently run the IMS client against a PL/I batch
server, and how to run a PL/I batch client against the IMS
server.

In this chapter This chapter discusses the following topics:

Overview page 50

Developing the Application Interfaces page 56

Developing the IMS Server page 67

Developing the IMS Client page 79

Running the Demonstrations page 89

Note: The client and server examples provided in this chapter
respectively require use of the IMS client and server adapters that are
supplied as part of the Orbix Mainframe. See the IMS Adapters
Administrator�s Guide for more details about these IMS adapters.
49

CHAPTER 3 | Getting Started in IMS
Overview

Introduction This section provides an overview of the main steps involved in creating an
Orbix PL/I IMS server and client application. It also introduces the supplied
PL/I IMS client and server SIMPLE demonstrations, and outlines where you
can find the various source code and JCL elements for them.

Steps to create an application The main steps to create an Orbix PL/I IMS server application are:

1. �Developing the Application Interfaces� on page 56.

2. �Developing the IMS Server� on page 67.

3. �Developing the IMS Client� on page 79.

For the purposes of illustration this chapter demonstrates how to develop
both an Orbix PL/I IMS client and an Orbix PL/I IMS server. It then describes
how to run the IMS client and IMS server respectively against a PL/I batch
server and a PL/I batch client. These demonstrations do not reflect
real-world scenarios requiring the Orbix Mainframe, because the client and
server are written in the same language and running on the same platform.

The demonstration IMS server The Orbix PL/I server developed in this chapter runs in an IMS region. It
implements a simple persistent POA-based obect. It accepts and processes
requests from an Orbix PL/I batch client that uses the object interface,
SimpleObject, to communicate with the server via the IMS server adapter.
The IMS server uses the Internet Inter-ORB Protocol (IIOP), which runs over
TCP/IP, to communicate with the batch client.

The demonstration IMS client The Orbix PL/I client developed in this chapter runs in an IMS region. It uses
the clearly defined object interface, SimpleObject, to access and request
data from an Orbix PL/I batch server that implements a simple persistent
SimpleObject object. When the client invokes a remote operation, a request
message is sent from the client to the server via the client adapter. When
the operation has completed, a reply message is sent back to the client
again via the client adapter. The IMS client uses IIOP to communicate with
the batch server.
 50

Overview
Supplied code and JCL for IMS
application development

All the source code and JCL components needed to create and run the IMS
SIMPLE server and client demonstrations have been provided with your
installation. Apart from site-specific changes to some JCL, these do not
require editing.

Table 5 provides a summary of these code elements and JCL components
(where orbixhlq represents your installation�s high-level qualifier).

Table 5: Supplied Code and JCL (Sheet 1 of 2)

Location Description

orbixhlq.DEMOS.IDL(SIMPLE) This is the supplied IDL.

orbixhlq.DEMOS.IMS.PLI.SRC

(SIMPLESV)

This is the source code for the IMS server mainline module, which
is generated when you run the JCL in
orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLIDL). (The IMS server
mainline code is not shipped with the product. You must run the
SIMPLIDL JCL to generate it.)

orbixhlq.DEMOS.IMS.PLI.SRC

(SIMPLES)

This is the source code for the IMS server implementation
module.

orbixhlq.DEMOS.IMS.PLI.SRC

(SIMPLECL)

This is the source code for the IMS client module.

orbixhlq.DEMOS.IMS.PLI.BLD.JCL

(SIMPLIDL)

This JCL runs the Orbix IDL compiler. See �Orbix IDL Compiler�
on page 59 for more details of this JCL and how to use it.

orbixhlq.DEMOS.IMS.PLI.BLD.JCL

(SIMPLESB)

This JCL compiles and links the IMS server mainline and IMS
server implementation modules to create the SIMPLE server
program.

orbixhlq.DEMOS.IMS.PLI.BLD.JCL

(SIMPLECB)

This JCL compile the IMS client module to create the SIMPLE
client program.

orbixhlq.DEMOS.IMS.PLI.BLD.JCL

(SIMPLREG)

This JCL registers the IDL in the Interface Repository (IFR).

orbixhlq.DEMOS.IMS.PLI.BLD.JCL

(SIMPLIOR)

This JCL obtains the IMS server�s IOR (from the IMS server
adapter). A client of the IMS server requires the IMS server�s IOR,
to locate the server object.
51

CHAPTER 3 | Getting Started in IMS
Supplied include members Table 6 provides a summary in alphabetic order of the various include
members supplied with your product installation that are relevant to IMS
application development. Again, orbixhlq represents your installation�s
high-level qualifier.

orbixhlq.DEMOS.IMS.PLI.BLD.JCL

(UPDTCONF)

This JCL adds the following configuration entry to the
configuration member:

initial_references:SimpleObject:reference="IOR…";

This configuration entry specifies the IOR that the IMS client uses
to contact the batch server. The IOR that is set as the value for
this configuration entry is the IOR that is published in
orbixhlq.DEMOS.IORS(SIMPLE) when you run the batch server.
The object reference for the server is represented to the
demonstration IMS client as a corbaloc URL string in the form
corbaloc:rir:/SimpleObject. This form of corbaloc URL string
requires the use of the
initial_references:SimpleObject:reference="IOR…"

configuration entry.

Other forms of corbaloc URL string can also be used (for example,
the IIOP version, as demonstrated in the nested sequences
demonstration supplied with your product installation). See
�STR2OBJ� on page 404 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

orbixhlq.JCL(MFCLA) This JCL configures and runs the client adapter.

orbixhlq.JCL(IMSA) This JCL configures and runs the IMS server adapter.

Table 5: Supplied Code and JCL (Sheet 2 of 2)

Location Description

Table 6: Supplied Include Members (Sheet 1 of 3)

Location Description

orbixhlq.INCLUDE.PLINCL(CHKCLIMS) This is relevant to IMS clients only. It contains a PL/I function that
can be called by the client, to check if a system exception has
occurred, and to report that system exception.
 52

Overview
orbixhlq.INCLUDE.PLINCL(CHKERRS) This is relevant to IMS servers. It contains a PL/I function that can
be called by the IMS server, to check if a system exception has
occurred, and to report that system exception.

orbixhlq.INCLUDE.PLINCL(CORBA) This is relevant to both IMS clients and servers. It contains
common PL/I runtime variables. It includes the CORBACOM include
member by default. It also includes the CORBASV include member,
if the client module contains the line %client_only=’yes’;.

orbixhlq.INCLUDE.PLINCL(CORBACOM) This is relevant to both IMS clients and servers. It contains
common PL/I runtime function definitions that can be used both
by clients and servers.

orbixhlq.INCLUDE.PLINCL(CORBASV) This is relevant to IMS servers. It contains PL/I runtime function
definitions that can be used by servers.

orbixhlq.INCLUDE.PLINCL(DISPINIT) This is relevant to IMS servers only. It retrieves the current request
information into the REQINFO structure via PODREQ. From REQINFO
the operation to be performed by the server is retrieved via a call
to STRGET.

orbixhlq.INCLUDE.PLINCL(DLIDATA) This is relevant to IMS clients only. It contains structures to
facilitate reading from and writing to the IMS message queue via
iopcb_ptr. It contains a a PL/I function called write_dc_text
that facilitates writing messages to the IMS output message
queue. It does this by using the supplied IBM routine (interface)
PLITDLI to make an IMS DC (data communications) call that
specifies the common IMS function command ISRT (insert). The
DLIDATA member contains all the declarations needed for the
supplied PL/I client demonstration in IMS.

orbixhlq.INCLUDE.PLINCL(EXCNAME) This is relevant to both IMS clients and servers. It contains a PL/I
function called CORBA_EXC_NAME that returns the system exception
name for the system exception being raised (that is, it maps Orbix
exceptions to human-readable strings). EXCNAME is used by
CHKERRS and CHKCLIMS.

Table 6: Supplied Include Members (Sheet 2 of 3)

Location Description
53

CHAPTER 3 | Getting Started in IMS
Checking JCL components When creating either the IMS client or server SIMPLE application, check that
each step involved within the separate JCL components completes with a
condition code not greater than 4. If the condition codes are greater than 4,

orbixhlq.INCLUDE.PLINCL(GETUNIQ) This is relevant to IMS clients only. It contains a PL/I function that
can be called by the client, to retrieve specific IMS segments. It
does this by using the supplied IBM routine (interface) PLITDLI to
make an IMS DC (data communications) call that specifies the GU
(get unique) function command.

orbixhlq.INCLUDE.PLINCL(IMSPCB) This is relevant to IMS servers only. It is used in IMS server
modules. It contains three structures: pcblist, io_pcb, and
alt_pcb. The pcblist structure is static, and it allows access to
the PCB pointers from anywhere within the PL/I IMS server code.
The io_pcb and alt_pcb structures are based onto
pcblist.io_pcb_ptr and pcblist.alt_pcb_ptr respectively.

Note: The supplied demonstration omits the line
%include IMSPCB, which means it does not make use of the
variables declared in this include member.

orbixhlq.INCLUDE.PLINCL(URLSTR) This is relevant to clients only. It contains a PL/I representation of
the corbaloc URL IIOP string format. A client can call STR2OBJ to
convert the URL into an object reference. See �STR2OBJ� on
page 404 for more details.

orbixhlq.DEMOS.IMS.PLI.PLINCL This PDS is used to store all IMS include members that are
generated when you run the JCL to run the Orbix IDL compiler for
the supplied demonstrations. It also contains helper procedures
for the nested sequences demonstration.

orbixhlq.DEMOS.IMS.MFAMAP This PDS is relevant to IMS servers only. It is empty at installation
time. It is used to store the IMS server adapter mapping member
generated when you run the JCL to run the Orbix IDL compiler for
the supplied demonstrations. The contents of the mapping
member are the fully qualifed interface name followed by the
operation name followed by the IMS transaction name (for
example, (Simple/SimpleObject,call_me,SIMPLESV). See the
IMS Adapters Administrator�s Guide for more details about
generating server adapter mapping members.

Table 6: Supplied Include Members (Sheet 3 of 3)

Location Description
 54

Overview
establish the point and cause of failure. The most likely cause is the
site-specific JCL changes required for the compilers. Ensure that each
high-level qualifier throughout the JCL reflects your installation.
55

CHAPTER 3 | Getting Started in IMS
Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to run the
IDL compiler. Finally it provides an overview of the PL/I include members,
server source code, and IMS server adapter mapping member that you can
generate via the IDL compiler.

Steps to develop application
interfaces

The steps to develop the interfaces to your application are:

Step Action

1 Define public IDL interfaces to the objects required in your
system.

See �Defining IDL Interfaces� on page 57.

2 Run the Orbix IDL compiler to generate PL/I include members,
server source, and server mapping member.

See �Orbix IDL Compiler� on page 59.
 56

Developing the Application Interfaces
Defining IDL Interfaces

Defining the IDL The first step in writing any Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the SimpleObject interface that is supplied in
orbixhlq.DEMOS.IDL(SIMPLE):

Explanation of the IDL The preceding IDL declares a SimpleObject interface that is scoped (that is,
contained) within the Simple module. This interface exposes a single
call_me() operation. This IDL definition provides a language-neutral
interface to the CORBA Simple::SimpleObject type.

How the demonstration uses this
IDL

For the purposes of the demonstrations in this chapter, the SimpleObject
CORBA object is implemented in PL/I in the supplied simple server
application. The server application creates a persistent server object of the
SimpleObject type, and publishes its object reference to a PDS member.
The client invokes the call_me() operation on the SimpleObject object, and
then exits.

The batch demonstration client of the IMS demonstration server locates the
SimpleObject object by reading the interoperable object reference (IOR) for
the IMS server adapter from orbixhlq.DEMOS.IORS(SIMPLE). In this case,
the IMS server adapter IOR is published to orbixhlq.DEMOS.IORS(SIMPLE)
when you run orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLIOR).

The IMS demonstration client of the batch demonstration server locates the
SimpleObject object by reading the IOR for the batch server from
orbixhlq.DEMOS.IORS(SIMPLE). In this case, the batch server IOR is

// IDL
module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};
57

CHAPTER 3 | Getting Started in IMS
published to orbixhlq.DEMOS.IORS(SIMPLE) when you run the batch server.
The object reference for the server is represented to the demonstration IMS
client as a corbaloc URL string in the form corbaloc:rir:/SimpleObject.
 58

Developing the Application Interfaces
Orbix IDL Compiler

The Orbix IDL compiler This subsection describes how to use the Orbix IDL compiler to generate
PL/I include members, server source, and the IMS server adapter mapping
member from IDL.

Orbix IDL compiler configuration The Orbix IDL compiler uses the Orbix configuration member for its settings.
The SIMPLIDL JCL that runs the compiler uses the configuration member
orbixhlq.CONFIG(IDL). See �Orbix IDL Compiler� on page 233 for more
details.

Example of the SIMPLIDL JCL The following is the supplied JCL to run the Orbix IDL compiler for the IMS
SIMPLE demonstration:

Note: Generation of PL/I include members is relevant to both IMS client
and server development. Generation of server source and the IMS server
adapter mapping member is relevant only to IMS server development.

//SIMPLIDL JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// REGION=0M,
// TIME=1440,
// NOTIFY=&SYSUID,
// COND=(4,LT)
//*---
//* Orbix - Generate the PL/I IMS server files for Simple Demo
//*---
// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
59

CHAPTER 3 | Getting Started in IMS
Explanation of the SIMPLIDL JCL In the preceding JCL example, the lines IDLPARM='-pli:-V' and
IDLPARM='-pli:-TIMS -mfa:-tSIMPLESV' are mutually exclusive. The line
IDLPARM='-pli:-TIMS -mfa:-tSIMPLESV' is relevant to IMS server
development and generates:

� PL/I include members via the -pli argument.

� IMS server mainline code via the -TIMS argument.

� IMS server adapter mapping member via the -mfa:-ttran_name
arguments.

The line IDLPARM='-pli:-V' in the preceding JCL is relevant to IMS client
development and generates only PL/I include members, because it only
specifies the -pli:-V arguments (The -V argument prevents generation of
PL/I server mainline source code.)

Specifying what you want to
generate

To indicate which of these lines you want SIMPLIDL to recognize, comment
out the line you do not want to use, by placing an asterisk at the start of that
line. By default, as shown in the preceding example, the JCL is set to
generate PL/I include members, server mainline code, and an IMS server
adapter mapping member. Alternatively, if you choose to comment out the
line that has the -pli:-TIMS -mfa:-tSIMPLESV arguments, the IDL compiler
only generates PL/I include members.

See �Orbix IDL Compiler� on page 233 for more details of the Orbix IDL
compiler and the JCL used to run it.

//IDLPLI EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-pli:-TIMS -mfa:-tSIMPLESV'
//* IDLPARM='-pli:-V'
//IDLMFA DD DISP=SHR, DSN=&ORBIX..DEMOS.IMS.MFAMAP
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR

Note: Because IMS server implementation code is already supplied for
you, the -S argument is not specified by default.

Note: The Orbix IDL compiler does not generate PL/I client source code.
 60

Developing the Application Interfaces
Running the Orbix IDL compiler After you have edited the SIMPLIDL JCL according to your requirements, you
can run the Orbix IDL compiler by submitting the following job:

orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLIDL)
61

CHAPTER 3 | Getting Started in IMS
Generated PL/I Include Members, Source, and Mapping
Member

Overview This subsection describes all the PL/I include members, server source, and
IMS server adapter mapping member that the Orbix IDL compiler can
generate from IDL definitions.

Member name restrictions Generated PL/I source code, include, and mapping member names are all
based on the IDL member name. If the IDL member name exceeds six
characters, the Orbix IDL compiler uses only the first six characters of the
IDL member name when generating the other member names. This allows
space for appending a one-character suffix to each generated member
name, while allowing it to adhere to the seven-character maximum size limit
for PL/I external procedure names, which are based by default on the
generated member names.

How IDL maps to PL/I include
members

Each IDL interface maps to a group of PL/I structures. There is one structure
defined for each IDL operation. A structure contains each of the parameters
for the relevant IDL operation in their corresponding PL/I representation. See
�IDL-to-PL/I Mapping� on page 177 for details of how IDL types map to
PL/I.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Note: The generated PL/I include members are relevant to both IMS
client and server development. The generated source and adapter mapping
member are relevant only to IMS server development. The IDL compiler
does not generate PL/I client source.
 62

Developing the Application Interfaces
Generated PL/I include members Table 7 shows the PL/I include members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 7: Generated PL/I Include Members (Sheet 1 of 2)

Copybook JCL Keyword
Parameter

Description

idlmembernameD COPYLIB This include member contains a
select statement that determines
which server implementation
procedure is to be called, based
on the interface name and
operation received.

idlmembernameL COPYLIB This include member contains
structures and procedures used
by the PL/I runtime to read and
store data into the operation
parameters.

This member is automatically
included in the idlmembernameX
include member.

idlmembernameM COPYLIB This include member contains
declarations and structures that
are used for working with
operation parameters and return
values for each interface defined
in the IDL member. The
structures use the based PL/I
structures declared in the
idlmembernameT include
member.

This member is automatically
included in the idlmembernameI
include member.
63

CHAPTER 3 | Getting Started in IMS
idlmembernameT COPYLIB This include member contains
the based structure declarations
that are used in the
idlmembernameM include
member.

This member is automatically
included in the idlmembernameM
include member.

idlmembernameX COPYLIB This include member contains
structures that are used by the
PL/I runtime to support the
interfaces defined in the IDL
member.

This member is automatically
included in the idlmembernameV
source code member.

idlmembernameD COPYLIB This include member contains a
select statement for calling the
correct procedure for the
requested operation.

This include member is
automatically included in the
idlmembernameI source code
member.

Table 7: Generated PL/I Include Members (Sheet 2 of 2)

Copybook JCL Keyword
Parameter

Description
 64

Developing the Application Interfaces
Generated server source members Table 8 shows the server source code members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 8: Generated Server Source Code Members

Member JCL Keyword
Parameter

Description

idlmembernameI IMPL This is the IMS server
implementation source code
member. It contains procedure
definitions for all the callable
operations.

This is only generated if you
specify both the -S and -TIMS
arguments with the IDL compiler.

idlmembernameV IMPL This is the IMS server mainline
source code member. It is
generated by default. However,
you can use the -V argument
with the IDL compiler, to prevent
generation of this member.

Note: For the purposes of this example, the SIMPLEI server
implementation member is already provided in your product installation.
Therefore, the -S IDL compiler argument used to generate it is not
specified in the supplied SIMPLIDL JCL. The SIMPLEV server mainline is not
already provided, so the -V argument, which prevents generation of server
mainline code, is not specified in the supplied JCL. See �Orbix IDL
Compiler� on page 233 for more details of the IDL compiler arguments
used to generate, and prevent generation of, IMS server source code.
65

CHAPTER 3 | Getting Started in IMS
Generated server adapter
mapping member

Table 9 shows the IMS server adapter mapping member that the Orbix IDL
compiler generates, based on the defined IDL.

Location of demonstration
copybooks and mapping member

You can find examples of the include members, server source, and IMS
server adapter mapping member generated for the SIMPLE demonstration in
the following locations:

� orbixhlq.DEMOS.IMS.PLI.PLINCL(SIMPLED)

� orbixhlq.DEMOS.IMS.PLI.PLINCL(SIMPLEL)

� orbixhlq.DEMOS.IMS.PLI.PLINCL(SIMPLEM)

� orbixhlq.DEMOS.IMS.PLI.PLINCL(SIMPLET)

� orbixhlq.DEMOS.IMS.PLI.PLINCL(SIMPLEX)

� orbixhlq.DEMOS.IMS.PLI.SRC(SIMPLEV)

� orbixhlq.DEMOS.IMS.PLI.SRC(SIMPLEI)

� orbixhlq.DEMOS.IMS.MFAMAP(SIMPLEA)

Table 9: Generated IMS Server Adapter Mapping Member

Copybook JCL Keyword
Parameter

Description

idlmembernameA MEMBER This is a simple text file that
determines what interfaces and
operations the IMS server
adapter supports, and the IMS
transaction names to which the
IMS server adapter should map
each IDL operation.

Note: Except for the SIMPLEI member, none of the preceding elements
are shipped with your product installation. They are generated when you
run orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLIDL), to run the Orbix IDL
compiler.
 66

Developing the IMS Server
Developing the IMS Server

Overview This section describes the steps you must follow to develop the IMS server
executable for your application. The IMS server developed in this example
will be contacted by the simple batch client demonstration.

Steps to develop the server The steps to develop the server application are:

Step Action

1 �Writing the Server Implementation� on page 68.

2 �Writing the Server Mainline� on page 71.

3 �Building the Server� on page 74.

4 �Preparing the Server to Run in IMS� on page 75.
67

CHAPTER 3 | Getting Started in IMS
Writing the Server Implementation

The server implementation
module

You must implement the server interface by writing a PL/I implementation
module that implements each operation defined to the operation section in
the idlmembernameT include member. For the purposes of this example, you
must write a PL/I procedure that implements each operation in the SIMPLET
include member. When you specify the -S and -TIMS arguments with the
Orbix IDL compiler, it generates a skeleton server implementation module,
in this case called SIMPLEI, which is a useful starting point.

Example of the IMS SIMPLEI
module

The following is an example of the IMS SIMPLEI module (with the header
comment block omitted for the sake of brevity):

Note: For the purposes of this demonstration, the IMS server
implementation module, SIMPLEI, is already provided for you, so the -S
argument is not specified in the JCL that runs the IDL compiler.

Table 10: The SIMPLEI Demonstration Module (Sheet 1 of 2)

SIMPLEI: PROC;

/*The following line enables the runtime to call this procedure*/
1 DISPTCH: ENTRY;

dcl (addr,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include DLIDATA;
%include SIMPLEM;

2 %include DISPINIT;

/* ================ Start of global user code =============== */
/* ================= End of global user code ================ */

/* ---*/
/* */
/* Dispatcher : select(operation) */
/* */
/*--*/

3 %include SIMPLED;
 68

Developing the IMS Server
Explanation of the IMS SIMPLEI
module

The IMS SIMPLEI module can be explained as follows:

1. When an incoming request arrives from the network, it is processed by
the ORB and a call is made from the PL/I runtime to the DISPTCH entry
point.

2. Within the DISPINIT include member, PODREQ is called to provide
information about the current invocation request, which is held in the
REQINFO structure. PODREQ is called once for each operation invocation

/*--*/
/* Interface: */
/* Simple/SimpleObject */
/* */
/* Mapped name: */
/* Simple_SimpleObject */
/* */
/* Inherits interfaces: */
/* (none) */
/*--*/
/*--*/
/* Operation: call_me */
/* Mapped name: call_me */
/* Arguments: None */
/* Returns: void */
/*--*/

4 proc_Simple_SimpleObject_c_c904: PROC(p_args);

dcl p_args ptr;
5 dcl 1_args aligned based(p_args)

 like Simple_SimpleObject_c_ba77_type;

/* ============ Start of operation specific code ============= */
6 put skip list(’Operation call_me() called’);

put skip;
/* ============== End of operation specific code ============= */

END proc_Simple_SimpleObject_c_c904;

END SIMPLEI;

Table 10: The SIMPLEI Demonstration Module (Sheet 2 of 2)
69

CHAPTER 3 | Getting Started in IMS
after a request has been dispatched to the server. STRGET is then called
to copy the characters in the unbounded string pointer for the
operation name into the PL/I string that represents the operation name.

3. The SIMPLED include member contains a select statement that
determines which procedure within SIMPLEI is to be called, given the
operation name and interface name passed to SIMPLEI. It calls PODGET
before the call to the server procedure, which fills the appropriate PL/I
structure declared in the main include member, SIMPLEM, with the
operation�s incoming arguments. It then calls PODPUT after the call to
the server procedure, to send out the operation�s outgoing arguments.

4. The procedural code containing the server implementation for the
call_me operation.

5. Each operation has an argument structure and these are declared in
the typecode include member, SIMPLET. If an operation does not have
any parameters or return type, such as call_me, the structure only
contains a structure with a dummy char.

6. This is a sample of the server implementation code for call_me. It is
the only part of the SIMPLEI member that is not automatically
generated by the Orbix IDL compiler.

Location of the IMS SIMPLEI
module

You can find a complete version of the IMS SIMPLEI server implementation
module in orbixhlq.DEMOS.IMS.PLI.SRC(SIMPLEI).

Note: An operation implementation should not call PODGET or PODPUT.
These calls are made within the SIMPLED include member generated by the
Orbix IDL compiler.
 70

Developing the IMS Server
Writing the Server Mainline

The server mainline module The next step is to write the server mainline module in which to run the
server implementation. For the purposes of this example, when you specify
the -TIMS argument with the Orbix IDL compiler, it generates a module
called SIMPLEV, which contains the server mainline code.

Example of the IMS SIMPLEV
module

The following is an example of the IMS SIMPLEV module:

Note: Unlike the batch server mainline, the IMS server mainline does not
have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the IMS server
adapter.

Table 11: The SIMPLEV Demonstration Module (Sheet 1 of 2)

SIMPLEV: PROC(IO_PCB_PTR,ALT_PCB_PTR) OPTIONS(MAIN NOEXECOPS);
dcl (io_pcb_ptr,alt_pcb_ptr) ptr;

dcl arg_list char(01) init(’’);
dcl arg_list_len fixed bin(31) init(0);
dcl orb_name char(10) init(’simple_orb’);
dcl orb_name_len fixed bin(31) init(10);
dcl srv_name char(256) var;
dcl server_name char(07) init(’simple ’);
dcl server_name_len fixed bin(31) init(6);

dcl Simple_SimpleObject_objid char(27)
 init(’Simple/SimpleObject_object’);
dcl Simple_SimpleObject_obj ptr;
dcl SYSPRINT file stream output;
dcl (addr,length,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include IMSPCB;
%include SIMPLET;
%include SIMPLEX;

pcblist.io_pcb_ptr = io_pcb_ptr;
71

CHAPTER 3 | Getting Started in IMS
Explanation of the IMS SIMPLEV
module

The IMS SIMPLEV module can be explained as follows:

1. PODSTAT is called to register the POD_STATUS_INFORMATION block that is
contained in the CORBA include member. Registering the
POD_STATUS_INFORMATION block allows the PL/I runtime to populate it

pcblist.alt_pcb_ptr = alt_pcb_ptr;

pcblist.num_db_pcbs = 0;

alloc pod_status_information set(pod_status_ptr);

1 call podstat(pod_status_ptr);
if check_errors(’podstat’) ^= completion_status_yes then return;

/* Initialize the server connection to the ORB */
2 call orbargs(arg_list,arg_list_len,orb_name,orb_name_len);

if check_errors(’orbargs’) ^= completion_status_yes then return;

3 call podsrvr(server_name, server_name_len);
if check_errors(’podsrvr’) ^= completion_status_yes then return;

/* Register interface : Simple/SimpleObject */
4 call podreg(addr(Simple_SimpleObject_interface));

if check_errors(’podreg’;) ^= completion_status_yes then return;

5 call objnew(server_name,
 Simple_SimpleObject_intf,
 Simple_SimpleObject_objid,
 Simple_SimpleObject_obj);
if check_errors(’objnew’) ^= completion_status_yes then return;

/* Server is now ready to accept requests */
6 call podrun;

if check_errors(’podrun’) ^= completion_status_yes then return;

7 call objrel(Simple_SimpleObject_obj);
if check_errors(’objrel’) ^= completion_status_yes then return;

free pod_status_information;

END SIMPLEV;

Table 11: The SIMPLEV Demonstration Module (Sheet 2 of 2)
 72

Developing the IMS Server
with exception information, if necessary. If completion_status is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

2. ORBARGS is called to initialize a connection to the ORB.

3. PODSRVR is called to set the server name.

4. PODREG is called to register the IDL interface, SimpleObject, with the
PL/I runtime.

5. OBJNEW is called to create a persistent server object of the
SimpleObject type, with an object ID of my_simple_object.

6. PODRUN is called, to enter the ORB::run() loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the IMS server adapter sends to IMS. If the transaction
has been defined as WFI, multiple requests can be processed in the
PODRUN loop; otherwise, PODRUN processes only one request.

7. OBJREL is called to ensure that the servant object is released properly.

See the preface of this guide for details about the compilers that this product
supports.

Location of the IMS SIMPLESV
module

You can find a complete version of the IMS SIMPLEV server mainline module
in orbixhlq.DEMOS.IMS.PLI.SRC(SIMPLEV) after you have run
orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLIDL) to run the Orbix IDL
compiler.
73

CHAPTER 3 | Getting Started in IMS
Building the Server

Location of the JCL Sample JCL used to compile and link the IMS server mainline and server
implementation is in orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLESB).

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.IMS.PLI.LOAD(SIMPLESV).
 74

Developing the IMS Server
Preparing the Server to Run in IMS

Overview This section describes the required steps to allow the server to run in an IMS
region. These steps assume you want to run the IMS server against a batch
client. When all the steps in this section have been completed, the server is
started automatically within IMS, as required.

Steps The steps to enable the server to run in an IMS region are:

Step 1�Defining transaction
definition for IMS

A transaction definition must be created for the server, to allow it to run in
IMS. The following is the transaction definition for the supplied
demonstration:

Step 2�Providing load module to
IMS region

Ensure that the orbixhlq.DEMOS.IMS.PLI.LOAD PDS is added to the
STEPLIB for the IMS region that is to run the transaction, or copy the
SIMPLESV load module to a PDS in the STEPLIB of the relevant IMS region.

Step Action

1 Define a transaction definition for IMS.

2 Provide the IMS server load module to an IMS region.

3 Generate mapping member entries for the IMS server adapter.

4 Add the IDL to the Interface Repository.

Note: For the purposes of this demonstration, the IFR is used
as the source of type information.

5 Obtain the IOR for use by the client program.

APPLCTN GPSB=SIMPLESV, x
 PGMTYPE=(TP,,2), x
 SCHDTYP=PARALLEL
TRANSACT CODE=SIMPLESV, x
 EDIT=(ULC)
75

CHAPTER 3 | Getting Started in IMS
Step 3�Generating mapping
member entries

The IMS server adapter requires mapping member entries, so that it knows
which IMS transaction should be run for a particular interface and
operation. The mapping member entry for the supplied example is contained
in orbixhlq.DEMOS.IMS.MFAMAP(SIMPLEA) (after you run the IDL compiler)
and appears as follows:

The generation of a mapping member for the IMS server adapter is
performed by the orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLIDL) JCL. The
-mfa:-ttran_name argument with the IDL compiler generates the mapping
member. For the purposes of this example, tran_name is replaced with
SIMPLESV. An IDLMFA DD statement must also be provided in the JCL, to
specify the PDS into which the mapping member is generated. See the IMS
Adapters Administrator�s Guide for full details about IMS server adapter
mapping members.

Step 4�Adding IDL to Interface
Repository

The IMS server adapter needs to be able to obtain operation signatures for
the PL/I server. For the purposes of this demonstration, the IFR is used to
retrieve this type information. This type information is necessary so that the
adapter knows what data types it has to marshal into IMS for the server,
and what data types it can expect back from the IMS transaction. Ensure
that the relevant IDL for the server has been added to (that is, registered
with) the Interface Repository before the IMS server adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in orbixhlq.JCL(IFR) to start it. The Interface
Repository uses the configuration settings in the Orbix configuration
member, orbixhlq.CONFIG(DEFAULT@).

(Simple/SimpleObject,call_me,SIMPLESV)
 76

Developing the IMS Server
The following JCL that adds IDL to the Interface Repository is supplied in
orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLEREG):

Step 5�Obtaining the server
adapter IOR

The final step is to obtain the IOR that the batch client needs to locate the
IMS server adapter. Before you do this, ensure all of the following:

� The Interface Repository is running and contains the relevant IDL. See
�Step 4�Adding IDL to Interface Repository� on page 76 for details of
how to start it, if it is not already running.

� The IMS server adapter is running. See the IMS Adapters
Administrator�s Guide for more details about how to start the IMS
server adapter.

� The IMS server adapter mapping member contains the relevant
mapping entries. For the purposes of this example, ensure that the
orbixhlq.DEMOS.IMS.MFAMAP(SIMPLEA) mapping member is being
used. See the IMS Adapters Administrator�s Guide for details about
IMS server adapter mapping members.

// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//IDLPLI EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-R'
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR

Note: An alternative to using the IFR is to use type information files.
These are an alternative method of providing IDL interface information to
the IMS server adapter. Type information files can be generated as part of
the -mfa plug-in to the IDL compiler. See the IMS Adapters
Administrator�s Guide for more details about how to generate them. The
use of type information files would render this step unnecessary; however,
the use of the IFR is recommended for the purposes of this demonstration.
77

CHAPTER 3 | Getting Started in IMS
Now submit orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLIOR), to obtain the
IOR that the batch client needs to locate the IMS server adapter. This JCL
includes the resolve command, to obtain the IOR. The following is an
example of the SIMPLIOR JCL:

When you submit the SIMPLIOR JCL, it writes the IOR for the IMS server
adapter to orbixhlq.DEMOS.IORS(SIMPLE).

// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Request the IOR for the IMS 'simple_persistent' server
//* and store it in a PDS for use by the client.
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//REG EXEC PROC=ORXADMIN,
// PPARM='mfa resolve Simple/SimpleObject > DD:IOR'
//IOR DD DSN=&ORBIX..DEMOS.IORS(SIMPLE),DISP=SHR
//ORBARGS DD *
-ORBname iona_utilities.imsa
/*
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR
 78

Developing the IMS Client
Developing the IMS Client

Overview This section describes the steps you must follow to develop the IMS client
executable for your application. The IMS client developed in this example
will connect to the simple batch server demonstration.

Steps to develop the client The steps to develop and run the client application are:

Note: The Orbix IDL compiler does not generate PL/I client stub code.

Step Action

1 �Writing the Client� on page 80.

2 �Building the Client� on page 84.

3 �Preparing the Client to Run in IMS� on page 85.
79

CHAPTER 3 | Getting Started in IMS
Writing the Client

The client program The next step is to write the client program, to implement the IMS client.
This example uses the supplied SIMPLECL client demonstration.

Example of the SIMPLEC module The following is an example of the IMS SIMPLEC module:

Table 12: The SIMPLEC Demonstration Module (Sheet 1 of 3)

SIMPLEC: PROC (IO_PCB_PTR, ALT_PCB_PTR) OPTIONS(MAIN NOEXECOPS);

 dcl (io_pcb_ptr, alt_pcb_ptr) ptr;

 %client_only='yes';

 dcl (addr index,low,substr,sysnull,length) builtin;

 dcl arg_list char(40) init('');
 dcl arg_list_len fixed bin(31) init(38);
 dcl orb_name char(10)
 init('simple_orb');
 dcl orb_name_len fixed bin(31) init(10);

 dcl sysprint file stream output;

1 dcl simple_url char(27)
 init('corbaloc:rir:/SimpleObject ');
 dcl simple_url_ptr ptr init(sysnull());
 dcl Simple_SimpleObject_obj ptr;

 %include CORBA;
 %include IMSPCB;

2 %include DLIDATA;
 %include GETUNIQ;

3 %include CHKCLIMS;
 %include SIMPLEM;
 %include SIMPLEX;

 pcblist.io_pcb_ptr = io_pcb_ptr;
 pcblist.alt_pcb_ptr = alt_pcb_ptr;
 call get_uniq;
 /* Initialize the PL/I runtime status information block */
 alloc pod_status_information set(pod_status_ptr);
 80

Developing the IMS Client
4 call podstat(pod_status_ptr);

 /* Initialize our ORB */
5 call orbargs(arg_list,

 arg_list_len,
 orb_name,
 orb_name_len);
 if check_errors('orbargs') ^= completion_status_yes then
 return;

 /* Register the SimpleObject interface with the PL/I runtime */
6 call podreg(addr(Simple_SimpleObject_interface));

 if check_errors('podreg') ^= completion_status_yes then
 return;

 /* Create an object reference from the server's IOR */
 /* so we can make calls to the server */

7 call strset(simple_url_ptr,
 simple_url,
 length(simple_url));
 if check_errors('strset') ^= completion_status_yes then
 return;

8 call str2obj(simple_url_ptr,Simple_SimpleObject_obj);
 if check_errors('str2obj') ^= completion_status_yes then
 return;

 /* Now we are ready to start making server requests */

 put skip list('simple_persistent demo');
 put skip list('======================');

 /* Call operation call_me */
 /* As this is a very simple function, there aren’t any */
 /* parameters. So instead we pass in the generated dummy */
 /* structure created for this operation. */
 put skip list('Calling operation call_me...');

9 call podexec(Simple_SimpleObject_obj,
 Simple_SimpleObject_call_me,
 addr(Simple_SimpleObject_c_ba77_args),
 no_user_exceptions);
 if check_errors('podexec') ^= completion_status_yes then
 return;

Table 12: The SIMPLEC Demonstration Module (Sheet 2 of 3)
81

CHAPTER 3 | Getting Started in IMS
Explanation of the SIMPLEC
module

The IMS SIMPLEC module can be explained as follows:

1. simple_url defines a corbaloc URL string in the corbaloc:rir format.
This string identifies the server with which the client is to
communicate. This string can be passed as a parameter to STR2OBJ, to
allow the client to retrieve an object reference to the server. See point 8
about STR2OBJ for more details.

2. The write_dc_text function is provided in the DLIDATA include
member. This function allows messages generated by the
demonstrations to be written to the IMS message queue.

3. A special error-checking include member is used for IMS clients.

4. PODSTAT is called to register the POD_STATUS_INFORMATION block that is
contained in the CORBA include member. Registering the
POD_STATUS_INFORMATION block allows the PL/I runtime to populate it
with exception information, if necessary. If completion_status is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

The check_errors function can be used to test the status of any Orbix
call. It tests the value of the exception_number in
pod_status_information. If its value is zero, it means the call was
successful. Otherwise, check_errors prints out the system exception

 put skip list('Operation call_me completed (no results to
display)');

 put skip;
 put skip list('End of the simple_persistent demo');
 put skip;
 dc_text = 'Simple Transaction completed';
 call write_dc_text(dc_text,38);

 /* Free the simple_persistent object reference */
10 call objrel(Simple_SimpleObject_obj);

 if check_errors('objrel') ^= completion_status_yes then
 return;

 free pod_status_information;

 END SIMPLEC;

Table 12: The SIMPLEC Demonstration Module (Sheet 3 of 3)
 82

Developing the IMS Client
number and message, and the program ends at that point. The
check_errors function should be called after every PL/I runtime call to
ensure the call completed successfully.

5. ORBARGS is called to initialize a connection to the ORB.

6. PODREG is called to register the IDL interface with the Orbix PL/I
runtime.

7. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

8. STR2OBJ is called to create an object reference to the server object. This
must be done to allow operation invocations on the server. In this case,
the client identifies the target object, using a corbaloc URL string in the
form corbaloc:rir:/SimpleObject (as defined in point 1). See
�STR2OBJ� on page 404 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

9. After the object reference is created, PODEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. If the call does not
have a user exception defined (as in the preceding example), the
no_user_exceptions variable is passed in instead. The operation name
must be terminated with a space. The same argument description is
used by the server. For ease of use, string identifiers for operations are
defined in the SIMPLET include member. For example, see
orbixhlq.DEMOS.IMS.PLI.PLINCL(SIMPLET).

10. OBJREL is called to ensure that the servant object is released properly.

Location of the SIMPLEC module You can find a complete version of the IMS SIMPLEC client module in
orbixhlq.DEMOS.IMS.PLI.SRC(SIMPLEC).
83

CHAPTER 3 | Getting Started in IMS
Building the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLEC).

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.IMS.PLI.LOAD(SIMPLEC).
 84

Developing the IMS Client
Preparing the Client to Run in IMS

Overview This section describes the required steps to allow the client to run in an IMS
region. These steps assume you want to run the IMS client against a batch
server.

Steps The steps to enable the client to run in an IMS region are:

Step 1�Define transaction
definition for IMS

A transaction definition must be created for the client, to allow it to run in
IMS. The following is the transaction definition for the supplied
demonstration:

Step 2�Provide client load
module to IMS region

Ensure that the orbixhlq.DEMOS.IMS.PLI.LOAD PDS is added to the
STEPLIB for the IMS region that is to run the transaction.

Step Action

1 Define an APPC transaction definition for IMS.

2 Provide the IMS client load module to an IMS region.

3 Start the locator, node daemon, and IFR on the server host.

4 Add the IDL to the IFR.

5 Start the batch server.

6 Customize the batch server IOR.

7 Configure and run the client adapter.

APPLCTN GPSB=SIMPLECL, x
 PGMTYPE=(TP,,2), x
 SCHDTYP=PARALLEL
TRANSACT CODE=SIMPLECL, x
 EDIT=(ULC)

Note: If you have already done this for your IMS server load module, you
do not need to do this again.
85

CHAPTER 3 | Getting Started in IMS
Alternatively, you can copy the SIMPLEC load module to a PDS in the
STEPLIB of the relevant IMS region.

Step 3�Start locator, node
daemon, and IFR on server

This step is assuming that you intend running the IMS client against the
supplied batch demonstration server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting orbixhlq.JCL(LOCATOR).

2. Start the node daemon by submitting orbixhlq.JCL(NODEDAEM).

3. Start the interface repository by submitting orbixhlq.JCL(IFR).

See �Running the Server and Client� on page 44 for more details of running
the locator and node daemon on the batch server host.

Step 4�Add IDL to IFR The client adapter needs to be able to obtain the IDL for the PL/I server from
the Interface Repository, so that it knows what data types it can expect to
marshal from the IMS transaction, and what data types it should expect
back from the batch server. Ensure that the relevant IDL for the server has
been added to (that is, registered with) the Interface Repository before the
client adapter is started.

To add IDL to the Interface Repository, the IFR server must be running. As
explained in �Step 3�Start locator, node daemon, and IFR on server�, you
can use the JCL in orbixhlq.JCL(IFR) to start the IFR. The IFR uses the
Orbix configuration member for its settings. The IFR uses the configuration
settings in the Orbix configuration member, orbixhlq.CONFIG(DEFAULT@).

Note: An IDL interface only needs to be registered once with the IFR.
 86

Developing the IMS Client
The following JCL that adds IDL to the IFR is supplied in
orbixhlq.DEMOS.IMS.PLI.BLD.JCL(SIMPLEREG):

Step 5�Start batch server This step is assuming that you intend running the IMS client against the
demonstration batch server.

Submit the following JCL to start the batch server:

See �Running the Server and Client� on page 44 for more details of running
the locator and node daemon on the batch server host.

Step 6�Customize batch server
IOR

When you run the demonstration batch server it publishes its IOR to a
member called orbixhlq.DEMOS.IORS(SIMPLE). The demonstration IMS
client needs to use this IOR to contact the demonstration batch server.

The demonstration IMS client obtains the object reference for the
demonstration batch server in the form of a corbaloc URL string. A corbaloc
URL string can take different formats. For the purposes of this
demonstration, it takes the form corbaloc:rir:/SimpleObject. This form of
the corbaloc URL string requires the use of a configuration variable,
initial_references:SimpleObject:reference, in the configuration

// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//IDLPLI EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-R'
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR

orbixhlq.DEMOS.PLI.RUN.JCL(SIMPLESV)
87

CHAPTER 3 | Getting Started in IMS
domain. When you submit the JCL in
orbixhlq.DEMOS.IMS.PLI.BLD.JCL(UPDTCONF), it automatically adds this
configuration entry to the configuration domain:

The IOR value is taken from the orbixhlq.DEMOS.IORS(SIMPLE) member.

See �STR2OBJ� on page 404 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

Step 7�Configure and run client
adapter

The client adapter must now be configured before you can start the client as
a IMS transaction. See the IMS Adapters Administrator�s Guide for details
of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
the following JCL:

initial_references:SimpleObject:reference = "IOR…";

orbixhlq.JCL(MFCLA)
 88

Running the Demonstrations
Running the Demonstrations

Overview This section provides a summary of what you need to do to successfully run
the supplied demonstrations.

In this section This section discusses the following topics:

Running Batch Client against IMS Server page 90

Running IMS Client against Batch Server page 91
89

CHAPTER 3 | Getting Started in IMS
Running Batch Client against IMS Server

Overview This subsection describes what you need to do to successfully run the
demonstration batch client against the demonstration IMS server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration IMS server against the demonstration
batch client are:

1. Ensure that all the steps in �Preparing the Server to Run in IMS� on
page 75 have been successfully completed.

2. Run the batch client as described in �Running the Server and Client�
on page 44.

IMS server output The IMS server sends the following output to the IMS region:

Batch client output The batch client produces the following output:

Creating the simple_persistent object
Writing out the object reference
Giving control to the ORB to process Requests

Operation call_me() called

simple_persistent demo
=======================
Calling operation call_me…
Operation call_me completed (no results to display)

End of the simple_persistent demo
 90

Running the Demonstrations
Running IMS Client against Batch Server

Overview This subsection describes what you need to do to successfully run the
demonstration IMS client against the demonstration batch server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration IMS client against the demonstration
batch server are:

1. Ensure that all the steps in �Preparing the Client to Run in IMS� on
page 85 have been successfully completed.

2. Run the IMS client by entering the transaction name, SIMPLECL, in the
relevant IMS region.

IMS client output The IMS client sends the following output to the IMS region:

The IMS client sends the following output to the IMS message queue:

Batch server output The batch server produces the following output:

simple_persistent demo
======================
Calling operation call_me…
Operation call_me completed (no results to display)

End of the simple_persistent demo

Simple transaction completed

Creating the simple_persistent object
Writing out the object reference
Giving control to the ORB to process Requests

Operation call_me() called
91

CHAPTER 3 | Getting Started in IMS
 92

CHAPTER 4

Getting Started in
CICS
This chapter introduces CICS application programming with
Orbix, by showing how to use Orbix to develop both a CICS PL/I
client and a CICS PL/I server. It also provides details of how to
subsequently run the CICS client against a PL/I batch server,
and how to run a PL/I batch client against the CICS server.

In this chapter This chapter discusses the following topics:

Overview page 94

Developing the Application Interfaces page 99

Developing the CICS Server page 110

Developing the CICS Client page 122

Running the Demonstrations page 132

Note: The client and server examples provided in this chapter
respectively require use of the CICS client and server adapters that are
supplied as part of the Orbix Mainframe. See the CICS Adapters
Administrator�s Guide for more details about these CICS adapters.
93

CHAPTER 4 | Getting Started in CICS
Overview

Introduction This section provides an overview of the main steps involved in creating an
Orbix PL/I CICS server and client application. It also introduces the supplied
PL/I CICS client and server SIMPLE demonstrations, and outlines where you
can find the various source code and JCL elements for them.

Steps to create an application The main steps to create an Orbix PL/I CICS server application are:

1. �Developing the Application Interfaces� on page 99.

2. �Developing the CICS Server� on page 110.

3. �Developing the CICS Client� on page 122.

For the purposes of illustration this chapter demonstrates how to develop
both an Orbix PL/I CICS client and an Orbix PL/I CICS server. It then
describes how to run the CICS client and CICS server respectively against a
PL/I batch server and a PL/I batch client. These demonstrations do not
reflect real-world scenarios requiring the Orbix Mainframe, because the
client and server are written in the same language and running on the same
platform.

The demonstration CICS server The Orbix PL/I server developed in this chapter runs in a CICS region. It
implements a simple persistent POA-based obect. It accepts and processes
requests from an Orbix PL/I batch client that uses the object interface,
SimpleObject, to communicate with the server via the CICS server adapter.
The CICS server uses the Internet Inter-ORB Protocol (IIOP), which runs
over TCP/IP, to communicate with the batch client.

The demonstration CICS client The Orbix PL/I client developed in this chapter runs in a CICS region. It uses
the clearly defined object interface, SimpleObject, to access and request
data from an Orbix PL/I batch server that implements a simple persistent
SimpleObject object. When the client invokes a remote operation, a request
message is sent from the client to the server via the client adapter. When
the operation has completed, a reply message is sent back to the client
again via the client adapter. The CICS client uses IIOP to communicate with
the batch server.
 94

Overview
Supplied code and JCL for CICS
application development

All the source code and JCL components needed to create and run the CICS
SIMPLE server and client demonstrations have been provided with your
installation. Apart from site-specific changes to some JCL, these do not
require editing.

Table 13 provides a summary of these code elements and JCL components
(where orbixhlq represents your installation�s high-level qualifier).

Table 13: Supplied Code and JCL (Sheet 1 of 2)

Location Description

orbixhlq.DEMOS.IDL(SIMPLE) This is the supplied IDL.

orbixhlq.DEMOS.CICS.PLI.SRC

(SIMPLEV)

This is the source code for the CICS server mainline module,
which is generated when you run the JCL in
orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLIDL). (The CICS server
mainline code is not shipped with the product. You must run the
SIMPLIDL JCL to generate it.)

orbixhlq.DEMOS.CICS.PLI.SRC

(SIMPLEI)

This is the source code for the CICS server implementation
module.

orbixhlq.DEMOS.CICS.PLI.SRC

(SIMPLEC)

This is the source code for the CICS client module.

orbixhlq.DEMOS.CICS.PLI.BLD.JCL

(SIMPLIDL)

This JCL runs the Orbix IDL compiler. See �Orbix IDL Compiler�
on page 102 for more details of this JCL and how to use it.

orbixhlq.DEMOS.CICS.PLI.BLD.JCL

(SIMPLESB)

This JCL compiles and links the CICS server mainline and CICS
server implementation modules to create the SIMPLE server
program.

orbixhlq.DEMOS.CICS.PLI.BLD.JCL

(SIMPLECB)

This JCL compiles the CICS client module to create the SIMPLE
client program.

orbixhlq.DEMOS.CICS.PLI.BLD.JCL

(SIMPLREG)

This JCL registers the IDL in the Interface Repository.

orbixhlq.DEMOS.CICS.PLI.BLD.JCL

(SIMPLIOR)

This JCL obtains the CICS server�s IOR (from the CICS server
adapter). A client of the CICS server requires the CICS server�s
IOR, to locate the server object.
95

CHAPTER 4 | Getting Started in CICS
Supplied include members Table 14 provides a summary in alphabetic order of the various include
members supplied with your product installation that are relevant to CICS
application development. Again, orbixhlq represents your installation�s
high-level qualifier.

orbixhlq.DEMOS.CICS.PLI.BLD.JCL

(UPDTCONF)

This JCL adds the following configuration entry to the
configuration member:

initial_references:SimpleObject:reference="IOR…";

This configuration entry specifies the IOR that the CICS client
uses to contact the batch server. The IOR that is set as the value
for this configuration entry is the IOR that is published in
orbixhlq.DEMOS.IORS(SIMPLE) when you run the batch server.
The object reference for the server is represented to the
demonstration CICS client as a corbaloc URL string in the form
corbaloc:rir:/SimpleObject. This form of corbaloc URL string
requires the use of the
initial_references:SimpleObject:reference="IOR…"

configuration entry.

Other forms of corbaloc URL string can also be used (for example,
the IIOP version, as demonstrated in the nested sequences
demonstration supplied with your product installation). See
�STR2OBJ� on page 404 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

orbixhlq.JCL(MFCLA) This JCL configures and runs the client adapter.

orbixhlq.JCL(CICSA) This JCL configures and runs the CICS server adapter.

Table 13: Supplied Code and JCL (Sheet 2 of 2)

Location Description

Table 14: Supplied Include Members (Sheet 1 of 3)

Location Description

orbixhlq.INCLUDE.PLINCL(CHKCLCIC) This is relevant to CICS clients only. It contains a PL/I function
that has been translated via the CICS TS 1.3 translator. This
function can be called by the client, to check if a system exception
has occurred and report it. It writes any messages raised by the
supplied demonstrations to the CICS terminal.
 96

Overview
orbixhlq.INCLUDE.PLINCL(CHKCICS) This is relevant to CICS clients only. It contains the version of the
CHKCLCIC member before it was translated via the CICS TS 1.3
translator. It is used by the CICSTRAN job, to compile the CHKCICS
member, using another version of the CICS translator.

orbixhlq.INCLUDE.PLINCL(CHKERRS) This is relevant to CICS servers. It contains a PL/I function that
can be called by the CICS server, to check if a system exception
has occurred, and to report that system exception.

orbixhlq.INCLUDE.PLINCL(CORBA) This is relevant to both CICS clients and servers. It contains
common PL/I runtime variables. It includes the CORBACOM include
member by default. It also includes the CORBASV include member,
if the client module contains the line %client_only=’yes’;.

orbixhlq.INCLUDE.PLINCL(CORBACOM) This is relevant to both CICS clients and servers. It contains
common PL/I runtime function definitions that can be used both
by clients and servers.

orbixhlq.INCLUDE.PLINCL(CORBASV) This is relevant to CICS servers. It contains PL/I runtime function
definitions that can be used by servers.

orbixhlq.INCLUDE.PLINCL(DISPINIT) This is relevant to CICS servers only. It retrieves the current
request information into the REQINFO structure via PODREQ. From
REQINFO the operation to be performed by the server is retrieved
via a call to STRGET.

orbixhlq.INCLUDE.PLINCL(EXCNAME) This is relevant to both CICS clients and servers. It contains a PL/I
function called CORBA_EXC_NAME that returns the system exception
name for the system exception being raised (that is, it maps Orbix
exceptions to human-readable strings). EXCNAME is used by
CHKERRS and CHKCLCIC.

orbixhlq.INCLUDE.PLINCL(URLSTR) This is relevant to clients only. It contains a PL/I representation of
the corbaloc URL IIOP string format. A client can call STR2OBJ to
convert the URL into an object reference. See �STR2OBJ� on
page 404 for more details.

Table 14: Supplied Include Members (Sheet 2 of 3)

Location Description
97

CHAPTER 4 | Getting Started in CICS
Checking JCL components When creating either the CICS client or server SIMPLE application, check
that each step involved within the separate JCL components completes with
a condition code not greater than 4. If the condition codes are greater than
4, establish the point and cause of failure. The most likely cause is the
site-specific JCL changes required for the compilers. Ensure that each
high-level qualifier throughout the JCL reflects your installation.

orbixhlq.DEMOS.CICS.PLI.PLINCL This PDS is relevant to both CICS clients and servers. It is used to
store all CICS include members generated when you run the JCL
to run the Orbix IDL compiler for the supplied demonstrations. It
also contains helper procedures for use with the nested sequences
demonstration.

orbixhlq.DEMOS.CICS.MFAMAP This PDS is relevant to CICS servers only. It is empty at
installation time. It is used to store the CICS server adapter
mapping member generated when you run the JCL to run the
Orbix IDL compiler for the supplied demonstrations. The contents
of the mapping member are the fully qualifed interface name
followed by the operation name followed by the CICS APPC
transaction name or CICS EXCI program name (for example,
(Simple/SimpleObject,call_me,SIMPLESV). See the CICS
Adapters Administrator�s Guide for more details about generating
CICS server adapter mapping members.

Table 14: Supplied Include Members (Sheet 3 of 3)

Location Description
 98

Developing the Application Interfaces
Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to run the
IDL compiler. Finally it provides an overview of the PL/I include members,
server source code, and CICS server adapter mapping member that you can
generate via the IDL compiler.

Steps to develop application
interfaces

The steps to develop the interfaces to your application are:

Step Action

1 Define public IDL interfaces to the objects required in your
system.

See �Defining IDL Interfaces� on page 100.

2 Run the Orbix IDL compiler to generate PL/I include members,
server source, and server mapping member.

See �Orbix IDL Compiler� on page 102.
99

CHAPTER 4 | Getting Started in CICS
Defining IDL Interfaces

Defining the IDL The first step in writing any Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the SimpleObject interface that is supplied in
orbixhlq.DEMOS.IDL(SIMPLE):

Explanation of the IDL The preceding IDL declares a SimpleObject interface that is scoped (that is,
contained) within the Simple module. This interface exposes a single
call_me() operation. This IDL definition provides a language-neutral
interface to the CORBA Simple::SimpleObject type.

How the demonstration uses this
IDL

For the purposes of the demonstrations in this chapter, the SimpleObject
CORBA object is implemented in PL/I in the supplied simple server
application. The server application creates a persistent server object of the
SimpleObject type, and publishes its object reference to a PDS member.
The client invokes the call_me() operation on the SimpleObject object, and
then exits.

The batch demonstration client of the CICS demonstration server locates the
SimpleObject object by reading the interoperable object reference (IOR) for
the CICS server adapter from orbixhlq.DEMOS.IORS(SIMPLE). In this case,
the CICS server adapter IOR is published to orbixhlq.DEMOS.IORS(SIMPLE)
when you run orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLIOR).

The CICS demonstration client of the batch demonstration server locates the
SimpleObject object by reading the IOR for the batch server from
orbixhlq.DEMOS.IORS(SIMPLE). In this case, the batch server IOR is

// IDL
module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};
 100

Developing the Application Interfaces
published to orbixhlq.DEMOS.IORS(SIMPLE) when you run the batch server.
The object reference for the server is represented to the demonstration CICS
client as a corbaloc URL string in the form corbaloc:rir:/SimpleObject.
101

CHAPTER 4 | Getting Started in CICS
Orbix IDL Compiler

The Orbix IDL compiler This subsection describes how to use the Orbix IDL compiler to generate
PL/I include members, server source, and the CICS server adapter mapping
member from IDL.

Orbix IDL compiler configuration The Orbix IDL compiler uses the Orbix configuration member for its settings.
The SIMPLIDL JCL that runs the compiler uses the configuration member
orbixhlq.CONFIG(IDL). See �Orbix IDL Compiler� on page 233 for more
details.

Example of the SIMPLIDL JCL The following JCL runs the IDL compiler for the CICS SIMPLE demonstration:

Note: Generation of PL/I include members is relevant to both CICS client
and server development. Generation of server source and the CICS server
adapter mapping member is relevant only to CICS server development.

//SIMPLIDL JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// REGION=0M,
// TIME=1440,
// NOTIFY=&SYSUID,
// COND=(4,LT)
//*---
//* Orbix - Generate PL/I CICS server files for the Simple Demo
//*---
// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
 102

Developing the Application Interfaces
Explanation of the SIMPLIDL JCL In the preceding JCL example, the IDLPARM lines can be explained as
follows:

� The line IDLPARM='-pli:-TCICS -mfa:-tSIMPLESV' is relevant to CICS
server development for EXCI. This line generates:

♦ PL/I include members via the -pli argument.

♦ CICS server mainline code via the -TCICS arguments.

♦ CICS server adapter mapping member via the
-mfa:-ttran_or_program_name arguments.

� The line IDLPARM='-pli:-TCICS -mfa:-tSMSV' is relevant to CICS
server development for APPC. This line generates the same items as
the IDLPARM='-pli:-TCICS -mfa:-tSIMPLESV'. It is disabled (that is,
commented out with an asterisk) by default.

� The line IDLPARM='-pli:-V' is relevant to CICS client development
and generates only PL/I include members, because it only specifies the
-pli:-V arguments. (The -V argument prevents generation of PL/I
server mainline source code.) It is disabled (that is, commented out) by
default.

//IDLPLI EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-pli:-TCICS -mfa:-tSIMPLESV'
//* IDLPARM='-pli:-TCICS -mfa:-tSMSV'
//* IDLPARM='-pli:-V'
//IDLMFA DD DISP=SHR,DSN=&ORBIX..DEMOS.CICS.MFAMAP
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR

Note: Because CICS server implementation code is already supplied
for you, the -S argument is not specified by default.

Note: The Orbix IDL compiler does not generate PL/I client source
code.
103

CHAPTER 4 | Getting Started in CICS
For the purposes of the demonstration, the IDLPARM='-pli:-TCICS
-mfa:-tSIMPLESV' line is not commented out (that is, it is not preceded by
an asterisk) by default.

Specifying what you want to
generate

To indicate which one of the IDLPARM lines you want SIMPLIDL to recognize,
comment out the two IDLPARM lines you do not want to use, by ensuring an
asterisk precedes those lines. By default, as shown in the preceding
example, the JCL is set to generate PL/I include members, server mainline
code, and a CICS server adapter mapping member for EXCI.

See �Orbix IDL Compiler� on page 233 for more details of the Orbix IDL
compiler and the JCL used to run it.

Running the Orbix IDL compiler After you have edited the SIMPLIDL JCL according to your requirements, you
can run the Orbix IDL compiler by submitting the following job:

orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLIDL)
 104

Developing the Application Interfaces
Generated PL/I Include Members, Source, and Mapping
Member

Overview This subsection describes all the PL/I include members, server source, and
CICS server adapter mapping member that the Orbix IDL compiler can
generate from IDL definitions.

Member name restrictions Generated PL/I source code, include, and mapping member names are all
based on the IDL member name. If the IDL member name exceeds six
characters, the Orbix IDL compiler uses only the first six characters of the
IDL member name when generating the other member names. This allows
space for appending a one-character suffix to each generated member
name, while allowing it to adhere to the seven-character maximum size limit
for PL/I external procedure names, which are based by default on the
generated member names.

How IDL maps to PL/I include
members

Each IDL interface maps to a set of PL/I structures. There is one structure
defined for each IDL operation. A structure contains each of the parameters
for the relevant IDL operation in their corresponding PL/I representation. See
�IDL-to-PL/I Mapping� on page 177 for details of how IDL types map to
PL/I.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Note: The generated PL/I include members are relevant to both CICS
client and server development. The generated source and adapter mapping
member are relevant only to CICS server development. The IDL compiler
does not generate PL/I client source.
105

CHAPTER 4 | Getting Started in CICS
Generated PL/I include members Table 15 shows the PL/I include members that the Orbix IDL compiler
generates, based on the defined IDL..

Table 15: Generated PL/I Include Members (Sheet 1 of 2)

Copybook JCL Keyword
Parameter

Description

idlmembernameD COPYLIB This include member contains a
select statement that determines
which server implementation
procedure is to be called, based
on the interface name and
operation received.

idlmembernameL COPYLIB This include member contains
structures and procedures used
by the PL/I runtime to read and
store data into the operation
parameters.

This member is automatically
included in the idlmembernameX
include member.

idlmembernameM COPYLIB This include member contains
declarations and structures that
are used for working with
operation parameters and return
values for each interface defined
in the IDL member. The
structures use the based PL/I
structures declared in the
idlmembernameT include
member.

This member is automatically
included in the idlmembernameI
include member.
 106

Developing the Application Interfaces
idlmembernameT COPYLIB This include member contains
the based structure declarations
that are used in the
idlmembernameM include
member.

This member is automatically
included in the idlmembernameM
include member.

idlmembernameX COPYLIB This include member contains
structures that are used by the
PL/I runtime to support the
interfaces defined in the IDL
member.

This member is automatically
included in the idlmembernameV
source code member.

idlmembernameD COPYLIB This include member contains a
select statement for calling the
correct procedure for the
requested operation.

This include member is
automatically included in the
idlmembernameI source code
member.

Table 15: Generated PL/I Include Members (Sheet 2 of 2)

Copybook JCL Keyword
Parameter

Description
107

CHAPTER 4 | Getting Started in CICS
Generated server source members Table 16 shows the server source code members that the Orbix IDL
compiler generates, based on the defined IDL.:

Table 16: Generated Server Source Code Members

Member JCL Keyword
Parameter

Description

idlmembernameI IMPL This is the CICS server
implementation source code
member. It contains procedure
definitions for all the callable
operations.

The is only generated if you
specify both the -S and -TCICS
arguments with the IDL compiler.

idlmembernameV IMPL This is the CICS server mainline
source code member. It is
generated by default. However,
you can use the -V argument
with the IDL compiler, to prevent
generation of this member.

Note: For the purposes of this example, the SIMPLEI server
implementation member is already provided in your product installation.
Therefore, the -S IDL compiler argument used to generate it is not
specified in the supplied SIMPLIDL JCL. The SIMPLEV server mainline
member is not already provided, so the -V argument, which prevents
generation of server mainline code, is not specified in the supplied JCL.
See �Orbix IDL Compiler� on page 233 for more details of the IDL compiler
arguments used to generate, and prevent generation of, CICS server source
code.
 108

Developing the Application Interfaces
Generated server adapter
mapping member

Table 17 shows the CICS server adapter mapping member that the Orbix
IDL compiler generates, based on the defined IDL.

Location of demonstration include
and mapping member

You can find examples of the include members, server source, and CICS
server adapter mapping member generated for the SIMPLE demonstration in
the following locations:

� orbixhlq.DEMOS.CICS.PLI.PLINCL(SIMPLED)

� orbixhlq.DEMOS.CICS.PLI.PLINCL(SIMPLEL)

� orbixhlq.DEMOS.CICS.PLI.PLINCL(SIMPLEM)

� orbixhlq.DEMOS.CICS.PLI.PLINCL(SIMPLET)

� orbixhlq.DEMOS.CICS.PLI.PLINCL(SIMPLEX)

� orbixhlq.DEMOS.CICS.PLI.SRC(SIMPLEV)

� orbixhlq.DEMOS.CICS.PLI.SRC(SIMPLEI)

� orbixhlq.DEMOS.CICS.MFAMAP(SIMPLEA)

Table 17: Generated CICS Server Adapter Mapping Member

Copybook JCL Keyword
Parameter

Description

idlmembernameA MEMBER This is a simple text file that
determines what interfaces and
operations the CICS server
adapter supports, and the CICS
APPC transaction names, or CICS
EXCI program names, to which
the CICS server adapter should
map each IDL operation.

Note: Except for the SIMPLEI member, none of the preceding elements
are shipped with your product installation. They are generated when you
run orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLIDL), to run the Orbix IDL
compiler.
109

CHAPTER 4 | Getting Started in CICS
Developing the CICS Server

Overview This section describes the steps you must follow to develop the CICS server
executable for your application. The CICS server developed in this example
will be contacted by the simple batch client demonstration.

Steps to develop the server The steps to develop the server application are:

Step Action

1 �Writing the Server Implementation� on page 111.

2 �Writing the Server Mainline� on page 114.

3 �Building the Server� on page 117.

4 �Preparing the Server to Run in CICS� on page 118.
 110

Developing the CICS Server
Writing the Server Implementation

The server implementation
module

You must implement the server interface by writing a PL/I implementation
module that implements each operation defined to the operation section in
the idlmembernameT include member. For the purposes of this example, you
must write a PL/I procedure that implements each operation in the SIMPLET
include member. When you specify the -S and -TCICS arguments with the
Orbix IDL compiler, it generates a skeleton server implementation module,
in this case called SIMPLEI, which is a useful starting point.

Example of the CICS SIMPLEI
module

The following is an example of the CICS SIMPLEI module (with the header
comment block omitted for the sake of brevity):

Note: For the purposes of this demonstration, the CICS server
implementation module, SIMPLEI, is already provided for you, so the -S
argument is not specified in the JCL that runs the IDL compiler.

Example 4: The SIMPLEI Demonstration Module (Sheet 1 of 2)

SIMPLEI: PROC;

/*The following line enables the runtime to call this procedure*/
1 DISPTCH: ENTRY;

dcl (addr,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include SIMPLEM;

2 %include DISPINIT;

/* ================ Start of global user code =============== */
/* ================= End of global user code ================ */

/* ---*/
/* */
/* Dispatcher : select(operation) */
/* */
/*--*/

3 %include SIMPLED;
111

CHAPTER 4 | Getting Started in CICS
Explanation of the CICS SIMPLEI
module

The CICS SIMPLEI module can be explained as follows:

1. When an incoming request arrives from the network, it is processed by
the ORB and a call is made from the PL/I runtime to the DISPTCH entry
point.

2. Within the DISPINIT include member, PODREQ is called to provide
information about the current invocation request, which is held in the
REQINFO structure. PODREQ is called once for each operation invocation
after a request has been dispatched to the server. STRGET is then called
to copy the characters in the unbounded string pointer for the
operation name into the PL/I string that represents the operation name.

/*--*/
/* Interface: */
/* Simple/SimpleObject */
/* */
/* Mapped name: */
/* Simple_SimpleObject */
/* */
/* Inherits interfaces: */
/* (none) */
/*--*/
/*--*/
/* Operation: call_me */
/* Mapped name: call_me */
/* Arguments: None */
/* Returns: void */
/*--*/

4 proc_Simple_SimpleObject_c_c904: PROC(p_args);

dcl p_args ptr;
5 dcl 1_args aligned based(p_args)

 like Simple_SimpleObject_c_ba77_type;

/* ==================== Start of operation code ============= */
6 put skip list(’Operation call_me() called’);

put skip;
/* ===================== End of operation code ============== */

END proc_Simple_SimpleObject_c_c904;

END SIMPLEI;

Example 4: The SIMPLEI Demonstration Module (Sheet 2 of 2)
 112

Developing the CICS Server
3. The SIMPLED include member contains a select statement that
determines which procedure within SIMPLEI is to be called, given the
operation name and interface name passed to SIMPLEI. It calls PODGET
before the call to the server procedure, which fills the appropriate PL/I
structure declared in the main include member, SIMPLEM, with the
operation�s incoming arguments. It then calls PODPUT after the call to
the server procedure, to send out the operation�s outgoing arguments.

4. The procedural code containing the server implementation for the
call_me operation.

5. Each operation has an argument structure and these are declared in
the typecode include member, SIMPLET. If an operation does not have
any parameters or return type, such as call_me, the structure only
contains a structure with a dummy char.

6. This is a sample of the server implementation code for call_me. It is
the only part of the SIMPLEI member that is not automatically
generated by the Orbix IDL compiler.

Location of the CICS SIMPLEI
module

You can find a complete version of the CICS SIMPLEI server implementation
module in orbixhlq.DEMOS.CICS.PLI.SRC(SIMPLEI).

Note: An operation implementation should not call PODGET or PODPUT.
These calls are made within the SIMPLED include member generated by the
Orbix IDL compiler.
113

CHAPTER 4 | Getting Started in CICS
Writing the Server Mainline

The server mainline module The next step is to write the server mainline module in which to run the
server implementation. For the purposes of this example, when you specify
the -TCICS argument with the Orbix IDL compiler, it generates a module
called SIMPLEV, which contains the server mainline code.

Example of the CICS SIMPLEV
module

The following is an example of the CICS SIMPLEV module:

Note: Unlike the batch server mainline, the CICS server mainline does
not have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the CICS server
adapter.

Example 5: The SIMPLEV Demonstration Module (Sheet 1 of 2)

SIMPLEV: PROC OPTIONS(MAIN NOEXECOPS);

dcl arg_list char(01) init(’’);
dcl arg_list_len fixed bin(31) init(0);
dcl orb_name char(10) init(’simple_orb’);
dcl orb_name_len fixed bin(31) init(10);
dcl srv_name char(256) var;
dcl server_name char(07) init(’simple ’);
dcl server_name_len fixed bin(31) init(6);

dcl Simple_SimpleObject_objid char(27)
 init(’Simple/SimpleObject_object ’);
dcl Simple_SimpleObject_obj ptr;
dcl SYSPRINT file stream output;
dcl (addr,length,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include SIMPLET;
%include SIMPLEX;

alloc pod_status_information set(pod_status_ptr);

1 call podstat(pod_status_ptr);
 114

Developing the CICS Server
Explanation of the CICS SIMPLEV
module

The CICS SIMPLEV module can be explained as follows:

1. PODSTAT is called to register the POD_STATUS_INFORMATION block that is
contained in the CORBA include member. Registering the
POD_STATUS_INFORMATION block allows the PL/I runtime to populate it
with exception information, if necessary. If completion_status is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

2. ORBARGS is called to initialize a connection to the ORB.

3. PODSRVR is called to set the server name.

if check_errors(’podstat’) ^= completion_status_yes then return;

/* Initialize the server connection to the ORB */
2 call orbargs(arg_list,arg_list_len,orb_name,orb_name_len);

if check_errors(’orbargs’) ^= completion_status_yes then return;

3 call podsrvr(server_name, server_name_len);
if check_errors(’podsrvr’) ^= completion_status_yes then return;

/* Register interface : Simple/SimpleObject */
4 call podreg(addr(Simple_SimpleObject_interface));

if check_errors(’podreg’;) ^= completion_status_yes then return;

5 call objnew(server_name,
 Simple_SimpleObject_intf,
 Simple_SimpleObject_objid,
 Simple_SimpleObject_obj);
if check_errors(’objnew’) ^= completion_status_yes then return;

/* Server is now ready to accept requests */
6 call podrun;

if check_errors(’podrun’) ^= completion_status_yes then return;

7 call objrel(Simple_SimpleObject_obj);
if check_errors(’objrel’) ^= completion_status_yes then return;

free pod_status_information;

END SIMPLEV;

Example 5: The SIMPLEV Demonstration Module (Sheet 2 of 2)
115

CHAPTER 4 | Getting Started in CICS
4. PODREG is called to register the IDL interface, SimpleObject, with the
PL/I runtime.

5. OBJNEW is called to create a persistent server object of the
SimpleObject type, with an object ID of my_simple_object.

6. PODRUN is called, to enter the ORB::run() loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the CICS adapter sends to CICS.

7. OBJREL is called to ensure that the servant object is released properly.

See the preface of this guide for details about the compilers that this product
supports.

Location of the CICS SIMPLEV
module

You can find a complete version of the CICS SIMPLEV server mainline module
in orbixhlq.DEMOS.CICS.PLI.SRC(SIMPLEV) after you have run
orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLIDL) to run the Orbix IDL
compiler.
 116

Developing the CICS Server
Building the Server

Location of the JCL Sample JCL used to compile and link the CICS server mainline and server
implementation is in orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLESB).

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.CICS.PLI.LOAD(SIMPLESV).
117

CHAPTER 4 | Getting Started in CICS
Preparing the Server to Run in CICS

Overview This section describes the required steps to allow the server to run in a CICS
region. These steps assume you want to run the CICS server against a batch
client. When all the steps in this section have been completed, the server is
started automatically within CICS, as required.

Steps The steps to enable the server to run in a CICS region are:

Step 1�Defining program or
transaction definition for CICS

A CICS APPC transaction definition, or CICS EXCI program definition, must
be created for the server, to allow it to run in CICS. The following is the CICS
APPC transaction definition for the supplied demonstration:

Step Action

1 Define an APPC transaction definition or EXCI program
definition for CICS.

2 Provide the CICS server load module to a CICS region.

3 Generate mapping member entries for the CICS server adapter.

4 Add the IDL to the Interface Repository (IFR).

Note: For the purposes of this demonstration, the IFR is used
as the source of type information.

5 Obtain the IOR for use by the client program.

DEFINE TRANSACTION(SMSV)
 GROUP(ORXAPPC)
 DESCRIPTION(Orbix APPC Simple demo transaction)
 PROGRAM(SIMPLESV)
 PROFILE(DFHCICSA)
 TRANCLASS(DFHTCL00)
 DTIMOUT(10)
 SPURGE(YES)
 TPURGE(YES)
 RESSEC(YES)
 118

Developing the CICS Server
The following is the CICS EXCI program definition for the supplied
demonstration:

See the supplied orbixhlq.JCL(ORBIXCSD) for a more detailed example of
how to define the resources that are required to use Orbix with CICS and to
run the supplied demonstrations.

Step 2�Providing load module to
CICS region

Ensure that the orbixhlq.DEMOS.CICS.PLI.LOAD PDS is added to the
DFHRPL for the CICS region that is to run the transaction, or copy the
SIMPLESV load module to a PDS in the DFHRPL of the relevant CICS region.

Step 3�Generating mapping
member entries

The CICS server adapter requires mapping member entries, so that it knows
which CICS APPC transaction or CICS EXCI program should be run for a
particular interface and operation. The mapping member entry for the
supplied CICS EXCI server example is contained by default in
orbixhlq.DEMOS.CICS.MFAMAP(SIMPLEA) after you run the IDL compiler. The
mapping member entry for EXCI appears as follows:

The generation of a mapping member for the CICS server adapter is
performed by the orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLIDL) JCL. The
-mfa:-ttran_or_program_name argument with the IDL compiler generates
the mapping member. For the purposes of this example,
tran_or_program_name is replaced with SIMPLESV. An IDLMFA DD statement
must also be provided in the JCL, to specify the PDS into which the
mapping member is generated. See the CICS Adapters Administrator�s
Guide for full details about CICS adapter mapping members.

DEFINE PROGRAM(SIMPLESV)
 GROUP(ORXDEMO)
 DESCRIPTION(Orbix Simple demo server)
 LANGUAGE(LE370)
 DATALOCATION(ANY)
 EXECUTIONSET(DPLSUBSET)

(Simple/SimpleObject,call_me,SIMPLESV)

Note: If instead you chose to enable the line in SIMPLIDL to generate a
mapping member entry for a CICS APPC version of the demonstration, that
mapping member entry would appear as follows:

(Simple/SimpleObject,call_me,SMSV)
119

CHAPTER 4 | Getting Started in CICS
Step 4�Adding IDL to Interface
Repository

The CICS server adapter needs to be able to obtain operation signatures for
the PL/I server. For the purposes of this demonstration, the IFR is used to
retrieve this type information. This type information is necessary so that the
adapter knows what data types it has to marshal into CICS for the server,
and what data types it can expect back from the CICS APPC transaction or
CICS EXCI program. Ensure that the relevant IDL for the server has been
added to (that is, registered with) the Interface Repository before the CICS
server adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in orbixhlq.JCL(IFR) to start it. The Interface
Repository uses the configuration settings in the Orbix configuration
member, orbixhlq.CONFIG(DEFAULT@).

The following JCL that adds IDL to the Interface Repository is supplied in
orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLEREG):

// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//IDLPLI EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-R'
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR

Note: An alternative to using the IFR is to use type information files.
These are an alternative method of providing IDL interface information to
the CICS server adapter. Type information files can be generated as part of
the -mfa plug-in to the IDL compiler. See the CICS Adapters
Administrator�s Guide for more details about how to generate them. The
use of type information files would render this step unnecessary; however,
the use of the IFR is recommended for the purposes of this demonstration.
 120

Developing the CICS Server
Step 5�Obtaining the server
adapter IOR

The final step is to obtain the IOR that the batch client needs to locate the
CICS server adapter. Before you do this, ensure all of the following:

� The IFR server is running and contains the relevant IDL. See �Step 4�
Adding IDL to Interface Repository� on page 120 for details of how to
start it, if it is not already running.

� The CICS server adapter is running. The supplied JCL in
orbixhlq.JCL(CICSA) starts the CCIS server adapter. See the CICS
Adapters Administrator�s Guide for more details.

� The CICS server adapter mapping member contains the relevant
mapping entries. For the purposes of this example, ensure that the
orbixhlq.DEMOS.CICS.MFAMAP(SIMPLEA) mapping member is being
used. See the CICS Adapters Administrator�s Guide for details about
CICS server adapter mapping members.

Now submit orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLIOR), to obtain the
IOR that the batch client needs to locate the CICS server adapter. This JCL
includes the resolve command, to obtain the IOR. The following is an
example of the SIMPLIOR JCL:

// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Request the IOR for the CICS 'simple_persistent' server
//* and store it in a PDS for use by the client.
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//REG EXEC PROC=ORXADMIN,
// PPARM='mfa resolve Simple/SimpleObject > DD:IOR'
//IOR DD DSN=&ORBIX..DEMOS.IORS(SIMPLE),DISP=SHR
//ORBARGS DD *
-ORBname iona_utilities.cicsa
/*
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR
121

CHAPTER 4 | Getting Started in CICS
Developing the CICS Client

Overview This section describes the steps you must follow to develop the CICS client
executable for your application. The CICS client developed in this example
will connect to the simple batch server demonstration.

Steps to develop the client The steps to develop and run the client application are:

Note: The Orbix IDL compiler does not generate PL/I client stub code.

Step Action

1 �Writing the Client� on page 123.

2 �Building the Client� on page 127.

3 �Preparing the Client to Run in CICS� on page 128.
 122

Developing the CICS Client
Writing the Client

The client module The next step is to write the client module, to implement the CICS client.
This example uses the supplied SIMPLECL client demonstration.

Example of the SIMPLEC module The following is an example of the CICS SIMPLEC module:

Example 6: The SIMPLEC Demonstration Module (Sheet 1 of 3)

SIMPLEC: PROC OPTIONS(MAIN NOEXECOPS);
 %client_only='yes';

 dcl (addr,substr,sysnull,low,length) builtin;

 dcl arg_list char(40) init('');
 dcl arg_list_len fixed bin(31) init(38);
 dcl orb_name char(10)
 init('simple_orb');
 dcl orb_name_len fixed bin(31) init(10);

 dcl sysprint file stream output;

1 dcl simple_url char(27)
 init('corbaloc:rir:/SimpleObject ');
 dcl simple_url_ptr ptr init(sysnull());
 dcl Simple_SimpleObject_obj ptr;

 dcl MessageText char(79) init('');

 %include CORBA;
 %include CHKCLCIC;
 %include SIMPLEM;
 %include SIMPLEX;

 /* Initialize the PL/I runtime status information block */
 alloc pod_status_information set(pod_status_ptr);

2 call podstat(pod_status_ptr);

 /* Initialize our ORB */
3 call orbargs(arg_list,

 arg_list_len,
 orb_name,
 orb_name_len);
123

CHAPTER 4 | Getting Started in CICS
 if check_errors('orbargs') ^= completion_status_yes then
 exec cics return;

 /* Register the SimpleObject intf with the PL/I runtime */
4 call podreg(addr(Simple_SimpleObject_interface));

 if check_errors('podreg') ^= completion_status_yes then
 exec cics return;

 /* Create an object reference from the server's URL */
 /* so we can make calls to the server */

5 call strset(simple_url_ptr,
 simple_url,
 length(simple_url));

 if check_errors('strset') ^= completion_status_yes then
 exec cics return;

6 call str2obj(simple_url_ptr,Simple_SimpleObject_obj);
 if check_errors('str2obj') ^= completion_status_yes then
 exec cics return;

 /* Now we are ready to start making server requests */

 put skip list('simple_persistent demo');
 put skip list('======================');

 /* Call operation call_me */
 put skip list('Calling operation call_me...');

7 call podexec(Simple_SimpleObject_obj,
 Simple_SimpleObject_call_me,
 addr(Simple_SimpleObject_c_ba77_args),
 no_user_exceptions);
 if check_errors('podexec') ^= completion_status_yes then
 exec cics return;

 put skip list('Operation call_me completed (no results to
display)');

 put skip;
 put skip list('End of the simple_persistent demo');
 put skip;

 MessageText = 'Simple Transaction completed';

8 EXEC CICS SEND TEXT FROM (MessageText) LENGTH(79) FREEKB;

Example 6: The SIMPLEC Demonstration Module (Sheet 2 of 3)
 124

Developing the CICS Client
Explanation of the SIMPLEC
module

The CICS SIMPLEC module can be explained as follows:

1. simple_url defines a corbaloc URL string in the corbaloc:rir format.
This string identifies the server with which the client is to
communicate. This string can be passed as a parameter to STR2OBJ, to
allow the client to retrieve an object reference to the server. See point 6
about STR2OBJ for more details.

2. PODSTAT is called to register the POD_STATUS_INFORMATION block that is
contained in the CORBA include member. Registering the
POD_STATUS_INFORMATION block allows the PL/I runtime to populate it
with exception information, if necessary. If completion_status is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

The check_errors function can be used to test the status of any Orbix
call. It tests the value of the exception_number in
pod_status_information. If its value is zero, it means the call was
successful. Otherwise, check_errors prints out the system exception
number and message, and the program ends at that point. The
check_errors function should be called after every PL/I runtime call to
ensure the call completed successfully.

3. ORBARGS is called to initialize a connection to the ORB.

4. PODREG is called to register the IDL interface with the Orbix PL/I
runtime.

5. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

 /* Free the simple_persistent object reference */
9 call objrel(Simple_SimpleObject_obj);

 if check_errors('objrel') ^= completion_status_yes then
 exec cics return;

 free pod_status_information;
 exec cics return;

 END SIMPLEC;

Example 6: The SIMPLEC Demonstration Module (Sheet 3 of 3)
125

CHAPTER 4 | Getting Started in CICS
6. STR2OBJ is called to create an object reference to the server object. This
must be done to allow operation invocations on the server. In this case,
the client identifies the target object, using a corbaloc URL string in the
form corbaloc:rir:/SimpleObject (as defined in point 1). See
�STR2OBJ� on page 404 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

7. After the object reference is created, PODEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. If the call does not
have a user exception defined (as in the preceding example), the
no_user_exceptions variable is passed in instead. The operation name
must be terminated with a space. The same argument description is
used by the server. For ease of use, string identifiers for operations are
defined in the SIMPLET include member. For example, see
orbixhlq.DEMOS.CICS.PLI.PLINCL(SIMPLET).

8. The EXEC CICS SEND statement is used to write messages to the CICS
terminal. The client uses this to indicate whether the call was
successful or not.

9. OBJREL is called to ensure that the servant object is released properly.

Location of the SIMPLEC module You can find a complete version of the CICS SIMPLEC client module in
orbixhlq.DEMOS.CICS.PLI.SRC(SIMPLEC).
 126

Developing the CICS Client
Building the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLECB).

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.CICS.PLI.LOAD(SIMPLECL).
127

CHAPTER 4 | Getting Started in CICS
Preparing the Client to Run in CICS

Overview This section describes the required steps to allow the client to run in a CICS
region. These steps assume you want to run the CICS client against a batch
server.

Steps The steps to enable the client to run in a CICS region are:

Step 1�Define transaction
definition for CICS

A CICS APPC transaction definition must be created for the client, to allow
it to run in CICS. The following is the CICS APPC transaction definition for
the supplied demonstration:

Step Action

1 Define an APPC transaction definition for CICS.

2 Provide the CICS client load module to a CICS region.

3 Start the locator, node daemon, and IFR on the server host.

4 Add the IDL to the IFR.

5 Start the batch server.

6 Customize the batch server IOR.

7 Configure and run the client adapter.

DEFINE TRANSACTION(SMCL)
 GROUP(ORXDEMO)
 DESCRIPTION(Orbix Client Simple demo transaction)
 PROGRAM(SIMPLECL)
 PROFILE(DFHCICSA)
 TRANCLASS(DFHTCL00)
 DTIMOUT(10)
 SPURGE(YES)
 TPURGE(YES)
 RESSEC(YES)
 128

Developing the CICS Client
See the supplied orbixhlq.JCL(ORBIXCSD) for a more detailed example of
how to define the resources that are required to use Orbix with CICS and to
run the supplied demonstrations.

Step 2�Provide client load
module to CICS region

Ensure that the orbixhlq.DEMOS.CICS.PLI.LOAD PDS is added to the
DFHRPL for the CICS region that is to run the transaction.

Alternatively, you can copy the SIMPLECL load module to a PDS in the
DFHRPL of the relevant CICS region.

Step 3�Start locator, node
daemon, and IFR on server

This step is assuming that you intend running the CICS client against the
supplied batch demonstration server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting orbixhlq.JCL(LOCATOR).

2. Start the node daemon by submitting orbixhlq.JCL(NODEDAEM).

3. Start the interface repository by submitting orbixhlq.JCL(IFR).

See �Running the Server and Client� on page 44 for more details of running
the locator and node daemon on the batch server host.

Step 4�Add IDL to IFR The client adapter needs to be able to obtain the IDL for the PL/I server from
the Interface Repository, so that it knows what data types it can expect to
marshal from the CICS APPC transaction, and what data types it should
expect back from the batch server. Ensure that the relevant IDL for the
server has been added to (that is, registered with) the Interface Repository
before the client adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. As explained in �Step 3�Start locator, node daemon, and IFR on
server�, you can use the JCL in orbixhlq.JCL(IFR) to start the IFR. The IFR

Note: If you have already done this for your CICS server load module, you
do not need to do this again.
129

CHAPTER 4 | Getting Started in CICS
uses the Orbix configuration member for its settings. The Interface
Repository uses the configuration settings in the Orbix configuration
member, orbixhlq.CONFIG(DEFAULT@).

The following JCL that adds IDL to the Interface Repository is supplied in
orbixhlq.DEMOS.CICS.PLI.BLD.JCL(SIMPLEREG):

Step 5�Start batch server This step is assuming that you intend running the CICS client against the
demonstration batch server.

Submit the following JCL to start the batch server:

See �Running the Server and Client� on page 44 for more details of running
the locator and node daemon on the batch server host.

Step 6�Customize batch server
IOR

When you run the batch server it publishes its IOR to a member called
orbixhlq.DEMOS.IORS(SIMPLE). The CICS client needs to use this IOR to
contact the server.

The demonstration CICS client obtains the object reference for the
demonstration batch server in the form of a corbaloc URL string. A corbaloc
URL string can take different formats. For the purposes of this

Note: An IDL interface only needs to be registered once with the Interface
Repository.

// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//IDLPLI EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-R'
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR

orbixhlq.DEMOS.PLI.RUN.JCL(SIMPLESV)
 130

Developing the CICS Client
demonstration, it takes the form corbaloc:rir:/SimpleObject. This form of
the corbaloc URL string requires the use of a configuration variable,
initial_references:SimpleObject:reference, in the configuration
domain. When you submit the JCL in
orbixhlq.DEMOS.CICS.PLI.BLD.JCL(UPDTCONF), it automatically adds this
configuration entry to the configuration domain:

The IOR value is taken from the orbixhlq.DEMOS.IORS(SIMPLE) member.

See �STR2OBJ� on page 404 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

Step 7�Configure and run client
adapter

The client adapter must now be configured before you can start the client as
a CICS transaction. See the CICS Adapters Administrator�s Guide for details
of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
the following JCL:

initial_references:SimpleObject:reference = "IOR…";

orbixhlq.JCL(MFCLA)
131

CHAPTER 4 | Getting Started in CICS
Running the Demonstrations

Overview This section provides a summary of what you need to do to successfully run
the supplied demonstrations.

In this section This section discusses the following topics:

Running Batch Client against CICS Server page 133

Running CICS Client against Batch Server page 134
 132

Running the Demonstrations
Running Batch Client against CICS Server

Overview This subsection describes what you need to do to successfully run the
demonstration batch client against the demonstration CICS server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration CICS server against the demonstration
batch client are:

1. Ensure that all the steps in �Preparing the Server to Run in CICS� on
page 118 have been successfully completed.

2. Run the batch client as described in �Running the Server and Client�
on page 44.

CICS server output The CICS server sends the following output to the CICS region:

Batch client output The batch client produces the following output:

Creating the simple_persistent object
Writing out the object reference
Giving control to the ORB to process Requests

Operation call_me() called

simple_persistent demo
======================
Calling operation call_me…
Operation call_me completed (no results to display)

End of the simple_persistent demo
133

CHAPTER 4 | Getting Started in CICS
Running CICS Client against Batch Server

Overview This subsection describes what you need to do to successfully run the
demonstration CICS client against the demonstration batch server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration CICS client against the demonstration
batch server are:

1. Ensure that all the steps in �Preparing the Client to Run in CICS� on
page 128 have been successfully completed.

2. Run the CICS client by entering the transaction name, SMCL, in the
relevant CICS region.

CICS client output The CICS client sends the following output to the CICS region:

The ClCS client sends the following output to the CICS terminal:

Batch server output The batch server produces the following output:

simple_persistent demo
======================
Calling operation call_me…
Operation call_me completed (no results to display)

End of the simple_persistent demo

Simple transaction completed

Creating the simple_persistent object
Writing out the object reference
Giving control to the ORB to proces Requests

Operation call_me() called
 134

CHAPTER 5

IDL Interfaces
The CORBA Interface Definition Language (IDL) is used to
describe the interfaces of objects in an enterprise application.
An object�s interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes IDL semantics and uses.

In this chapter This chapter discusses the following topics:

IDL page 136

Modules and Name Scoping page 137

Interfaces page 138

IDL Data Types page 155

Defining Data Types page 170
135

CHAPTER 5 | IDL Interfaces
IDL

Overview An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, PL/I, and COBOL. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

IDL standard mappings CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, PL/I, and COBOL. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbix IDL compiler uses these mappings to convert IDL
definitions to language-specific definitions that conform to the semantics of
that language.

Overall structure You create an application�s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

IDL definition structure In the following example, two interfaces, Bank and Account, are defined
within the BankDemo module:

module BankDemo
{
interface Bank {
 //…
 };

 interface Account {
 //…
 };
};
 136

Modules and Name Scoping
Modules and Name Scoping

Resolving a name To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.

2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Referencing interfaces Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped with the following syntax:

module-name::interface-name

For example, the fully scoped names of the Bank and Account interfaces
shown in �IDL definition structure� on page 136 are, respectively,
BankDemo::Bank and BankDemo::Account.

Nesting restrictions A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

module A
{
 module B
 {
 interface A {
 //…
 };
 };
};
137

CHAPTER 5 | IDL Interfaces
Interfaces

In this section The following topics are discussed in this section:

Overview Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Because an interface does not expose an object�s implementation, all
members are public. A client can access variables in an object�s
implementation only through an interface�s operations and attributes.

Operations and attributes An IDL interface generally defines an object�s behavior through operations
and attributes:

� Operations of an interface give clients access to an object�s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,

Interface Contents page 140

Operations page 141

Attributes page 143

Exceptions page 144

Empty Interfaces page 145

Inheritance of Interfaces page 146

Multiple Inheritance page 147
 138

Interfaces
whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

� An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

Account interface IDL sample In the following example, the Account interface in the BankDemo module
describes the objects that implement the bank accounts:

Code explanation This interface has two readonly attributes, AccountId and balance, which
are respectively defined as typedefs of the string and float types. The
interface also defines two operations, withdraw() and deposit(), which a
client can invoke on this object.

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 typedef string AccountId; //Type for representing account ids
 //…
 interface Account {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
 };
};
139

CHAPTER 5 | IDL Interfaces
Interface Contents

IDL interface components An IDL interface definition typically has the following components.

� Operation definitions.

� Attribute definitions

� Exception definitions.

� Type definitions.

� Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.
 140

Interfaces
Operations

Overview Operations of an interface give clients access to an object�s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

Operation components IDL operations define the signature of an object�s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

� Return value data type.

� Parameters and their direction.

� Exception clause.

An operation�s return value and parameters can use any data types that IDL
supports.

Operations IDL sample In the following example, the Account interface defines two operations,
withdraw() and deposit(), and an InsufficientFunds exception:

Note: Not all CORBA 2.3 IDL data types are supported by PL/I or
COBOL.

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 //...
 interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
 };
};
141

CHAPTER 5 | IDL Interfaces
Code explanation On each invocation, both operations expect the client to supply an argument
for the amount parameter, and return void. Invocations on the withdraw()
operation can also raise the InsufficientFunds exception, if necessary.

Parameter direction Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The PL/I runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

Parameter-passing mode
qualifiers

There are three parameter-passing mode qualifiers:

In general, you should avoid using inout parameters. Because an inout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter�s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, in and out, the caller can decide for
itself when to discard the parameter.

One-way operations By default, IDL operations calls are synchronous�that is, a client invokes
an operation on an object and blocks until the invoked operation returns. If
an operation definition begins with the keyword, oneway, a client that calls
the operation remains unblocked while the object processes the call.

in This means that the parameter is initialized only by the
client and is passed to the object.

out This means that the parameter is initialized only by the
object and returned to the client.

inout This means that the parameter is initialized by the client
and passed to the server; the server can modify the value
before returning it to the client.

Note: The PL/I runtime does not support one-way operations.
 142

Interfaces
Attributes

Attributes overview An interface�s attributes correspond to the variables that an object
implements. Attributes indicate which variable in an object are accessible to
clients.

Qualified and unqualified
attributes

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the readonly keyword
maps only to a get function.

IDL readonly attributes sample For example the Account interface defines two readonly attributes,
AccountId and balance. These attributes represent information about the
account that only the object�s implementation can set; clients are limited to
readonly access:

Code explanation The Account interface has two readonly attributes, AccountId and balance,
which are respectively defined as typedefs of the string and float types.
The interface also defines two operations, withdraw() and deposit(),
which a client can invoke on this object.

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 typedef string AccountId; //Type for representing account ids
 //…
 interface Account {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);

 void
 deposit(in CashAmount amount);
 };
};
143

CHAPTER 5 | IDL Interfaces
Exceptions

IDL and exceptions IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

The raises clause After you define an exception, you can specify it through a raises clause in
any operation that is defined within the same scope. A raises clause can
contain multiple comma-delimited exceptions:

Example of IDL-defined
exceptions

The Account interface defines the InsufficientFunds exception with a
single member of the string data type. This exception is available to any
operation within the interface. The following IDL defines the withdraw()
operation to raise this exception when the withdrawal fails:

exception exception-name {
 [member;]…
};

return-val operation-name([params-list])
 raises(exception-name[, exception-name]);

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 //…
 interface Account {
 exception InsufficientFunds {};

 void
 withdraw(in CashAmount amount)
 raises (InsufficientFunds);
 //…
 };
};
 144

Interfaces
Empty Interfaces

Defining empty interfaces IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces.

IDL empty interface sample In the following example, the CORBA PortableServer module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, ServantActivator and ServantLocator:

module PortableServer
{
 interface ServantManager {};

 interface ServantActivator : ServantManager {
 //…
 };

 interface ServantLocator : ServantManager {
 //…
 };
};
145

CHAPTER 5 | IDL Interfaces
Inheritance of Interfaces

Inheritance overview An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

Inheritance interface IDL sample In the following example, the CheckingAccount and SavingsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

Code sample explanation An object that implements the CheckingAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a CheckingAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

interface new-interface : base-interface[, base-interface]…
{…};

module BankDemo{
 typedef float CashAmount; // Type for representing cash
 interface Account {
 //…
 };

 interface CheckingAccount : Account {
 readonly attribute CashAmount overdraftLimit;
 boolean orderCheckBook ();
 };

 interface SavingsAccount : Account {
 float calculateInterest ();
 };
};
 146

Interfaces
Multiple Inheritance

Multiple inheritance IDL sample In the following IDL definition, the BankDemo module is expanded to include
the PremiumAccount interface, which inherits from the CheckingAccount and
SavingsAccount interfaces:

Multiple inheritance constraints Multiple inheritance can lead to name ambiguity among elements in the
base interfaces. The following constraints apply:

� Names of operations and attributes must be unique across all base
interfaces.

� If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Inheritance hierarchy diagram Figure 4 shows the inheritance hierarchy for the Account interface, which is
defined in �Multiple inheritance IDL sample� on page 147.

module BankDemo {
 interface Account {
 //…
 };

 interface CheckingAccount : Account {
 //…
 };

 interface SavingsAccount : Account {
 //…
 };

 interface PremiumAccount :
 CheckingAccount, SavingsAccount {
 //…
 };
};
147

CHAPTER 5 | IDL Interfaces
Figure 4: Inheritance Hierarchy for PremiumAccount Interface

Account

SavingsAccountCheckingAccount

PremiumAccount
 148

Interfaces
Inheritance of the Object Interface

User-defined interfaces All user-defined interfaces implicitly inherit the predefined interface Object.
Thus, all Object operations can be invoked on any user-defined interface.
You can also use Object as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter.

Object locator IDL sample For example, the following operation getAnyObject() serves as an
all-purpose object locator:

interface ObjectLocator {
 void getAnyObject (out Object obj);
};

Note: It is illegal in IDL syntax to explicitly inherit the Object interface.
149

CHAPTER 5 | IDL Interfaces
Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance redefinition IDL
sample

In the following example, the CheckingAccount interface modifies the
definition of the InsufficientFunds exception, which it inherits from the
Account interface:

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 //…
 interface Account {
 exception InsufficientFunds {};
 //…
 };
 interface CheckingAccount : Account {
 exception InsufficientFunds {
 CashAmount overdraftLimit;
 };
 };
 //…
};

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C++, which support it.
However, PL/I does not support operation overloading.
 150

Interfaces
Forward Declaration of IDL Interfaces

Overview An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface�s name; the interface�s actual
definition is deferred until later in the module.

Forward declaration IDL sample In the following example, the Bank interface defines a create_account()
and find_account() operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

module BankDemo
{
 typedef float CashAmount; // Type for representing cash
 typedef string AccountId; //Type for representing account ids

 // Forward declaration of Account
 interface Account;

 // Bank interface...used to create Accounts
 interface Bank {
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };

 Account
 find_account(in AccountId account_id)
 raises(AccountNotFound);

 Account
 create_account(
 in AccountId account_id,
 in CashAmount initial_balance
) raises (AccountAlreadyExists);
 };

 // Account interface…used to deposit, withdraw, and query
 // available funds.
 interface Account { //…
 };
};
151

CHAPTER 5 | IDL Interfaces
Local Interfaces

Overview An interface declaration that contains the IDL local keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An
object that implements a local interface is a local object.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/I do
not support local interfaces.
 152

Interfaces
Valuetypes

Overview Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/I do
not support valuetypes.
153

CHAPTER 5 | IDL Interfaces
Abstract Interfaces

Overview An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/I do
not support abstract interfaces.
 154

IDL Data Types
IDL Data Types

In this section The following topics are discussed in this section:

Data type categories In addition to IDL module, interface, valuetype, and exception types, IDL
data types can be grouped into the following categories:

� Built-in types such as short, long, and float.

� Extended built-in types such as long long and wstring.

� Complex types such as enum, struct, and string.

� Pseudo objects.

Built-in Data Types page 156

Extended Built-in Data Types page 159

Complex Data Types page 162

Enum Data Type page 163

Struct Data Type page 164

Union Data Type page 165

Arrays page 167

Sequence page 168

Pseudo Object Types page 169

Note: Not all CORBA 2.3 IDL data types are supported by PL/I or
COBOL.
155

CHAPTER 5 | IDL Interfaces
Built-in Data Types

List of types, sizes, and values Table 18 shows a list of CORBA IDL built-in data types (where the ≤ symbol
means �less than or equal to�).

Table 18: Built-in IDL Data Types, Sizes, and Values

Data type Size Range of values

short ≤ 16 bits -215...215-1

unsigned shorta ≤ 16 bits 0...216-1

long ≤ 32 bits �231...231-1

unsigned longb ≤ 32 bits 0...232-1

float ≤ 32 bits IEEE single-precision floating
point numbers

double ≤ 64 bits IEEE double-precision
floating point numbers

char ≤ 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound>c Variable length ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE

octet ≤ 8 bits 0x0 to 0xff

any Variable length Universal container type

a. The PL/I range for the unsigned short type is restricted to 0�215-1.

b. The PL/I range for the unsigned long type is restricted to 0�231-1

c. The PL/I range for a bounded string is restricted to a range of 1�32767
characters.
 156

IDL Data Types
Integer types With the exception of unsigned short, unsigned long , and bounded string
types, the full IDL range of values of each of the types listed in Table 18 can
be marshaled to and from the PL/I runtime. Due to a limitation of the PL/I
compiler for MVS & VM, the upper range of values for unsigned short and
unsigned long types are the same as those for short and long types.

Floating point types The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

Char type The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

String type The string type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as string<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL character.
Thus, a string<6> can contain the six-character string, cheese.

Bounded and unbounded strings The declaration statement can optionally specify the string�s maximum
length, thereby determining whether the string is bounded or unbounded:

string[length] name

For example, the following code declares the ShortString type, which is a
bounded string with a maximum length of 10 characters:

typedef string<10> ShortString;

attribute ShortString shortName; // max length is 10 chars

Due to the limitations in PL/I, a bounded string can have a maximum length
of 32767 characters.

Octet type Octet types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, inasmuch as characters might be
157

CHAPTER 5 | IDL Interfaces
subject to translation during transmission. For example, if a client that uses
ASCII sends a string to a server that uses EBCDIC, the sender and receiver
are liable to have different binary values for the string�s characters.

Any type The any type allows specification of values that express any IDL type, which
is determined at runtime; thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this
call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the TypeCode. See
the CORBA Programmer�s Guide, C++ for more details about the any type.
 158

IDL Data Types
Extended Built-in Data Types

List of types, sizes, and values Table 19 shows a list of CORBA IDL extended built-in data types (where the
≤ symbol means �less than or equal to�).

Long long type The 64-bit integer types, long long and unsigned long long, support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

Table 19: Extended built-in IDL Data Types, Sizes, and Values

Data Type Size Range of Values

long longa ≤ 64 bits �263...263-1

unsigned long longa ≤ 64 bits 0...-264-1

long doubleb ≤ 79 bits IEEE double-extended
floating point number, with
an exponent of at least 15
bits in length and signed
fraction of at least 64 bits.
long double type is
currently not supported on
Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable
length

Arbitrary codesets

fixedc Unspecified ≤ 31significant digits

a. Due to compiler restrictions, the PL/I range of values for the long long and
unsigned long long types is the same range as for a long type (that is,
0�231-1).

b. Due to compiler restrictions, the PL/I range of values for the long double
type is the same range as for a double type (that is, ≤ 64 bits).

c. Due to compiler restrictions, the PL/I range of values for the fixed type is ≤
15 significant digits.
159

CHAPTER 5 | IDL Interfaces
Long double type Like 64-bit integer types, platform support varies for the long double type,
so usage can yield IDL compiler errors.

Wchar type The wchar type encodes wide characters from any character set. The size of
a wchar is platform-dependent. Because Orbix currently does not support
character set negotiation, use this type only for applications that are
distributed across the same platform.

Wstring type The wstring type is the wide-character equivalent of the string type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

Fixed type IDL specifies that the fixed type provides fixed-point arithmetic values with
up to 31 significant digits. However, due to restrictions in the PL/I compiler
for MVS & VM, only up to 15 significant digits are supported.

You specify a fixed type with the following format:

The format for the fixed type can be explained as follows:

� The digit-size represents the number�s length in digits. The
maximum value for digit-size is 31 and it must be greater than
scale. A fixed type can hold any value up to the maximum value of a
double type.

� If scale is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount, to have a digit size of 10 and a
scale of 2:

Given this typedef, any variable of the CashAmount type can contain
values of up to (+/-)99999999.99.

typedef fixed<digit-size,scale> name

typedef fixed<10,2> CashAmount;
 160

IDL Data Types
� If scale is a negative integer, the decimal point moves to the right by
the number of digits specified for scale, thereby adding trailing zeros
to the fixed data type�s value. For example, the following code declares
a fixed type, bigNum, to have a digit size of 3 and a scale of -4:

If myBigNum has a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant fixed types Constant fixed types can also be declared in IDL, where digit-size and
scale are automatically calculated from the constant value. For example:

This yields a fixed type with a digit size of 7, and a scale of 6.

Fixed type and decimal fractions Unlike IEEE floating-point values, the fixed type is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fixed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

typedef fixed <3,-4> bigNum;

bigNum myBigNum;

module Circle {
 const fixed pi = 3.142857;
};
161

CHAPTER 5 | IDL Interfaces
Complex Data Types

IDL complex data types IDL provide the following complex data types:

� Enums.

� Structs.

� Multi-dimensional fixed-sized arrays.

� Sequences.
 162

IDL Data Types
Enum Data Type

Overview An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

Enum IDL sample For example, you can modify the BankDemo IDL with the balanceCurrency
enum type:

In the preceding example, the balanceCurrency attribute in the Account
interface can take any one of the values pound, dollar, yen, or franc.

Ordinal values of enum type The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dollar is greater than pound, yen is greater than
dollar, and so on. All enumerators are mapped to a 32-bit type.

module BankDemo {
 enum Currency {pound, dollar, yen, franc};

 interface Account {
 readonly attribute CashAmount balance;
 readonly attribute Currency balanceCurrency;
 //…
 };
};
163

CHAPTER 5 | IDL Interfaces
Struct Data Type

Overview A struct type lets you package a set of named members of various types.

Struct IDL sample In the following example, the CustomerDetails struct has several members.
The getCustomerDetails() operation returns a struct of the
CustomerDetails type, which contains customer data:

module BankDemo{
 struct CustomerDetails {
 string custID;
 string lname;
 string fname;
 short age;
 //…
 };

 interface Bank {
 CustomerDetails getCustomerDetails
 (in string custID);
 //…
 };
};

Note: A struct type must include at least one member. Because a struct
provides a naming scope, member names must be unique only within the
enclosing structure.
 164

IDL Data Types
Union Data Type

Overview A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

Union declaration syntax You declare a union type with the following syntax:

Discriminated unions All IDL unions are discriminated. A discriminated union associates a
constant expression (label1…labeln) with each member. The
discriminator�s value determines which of the members is active and stores
the union�s value.

IDL union date sample The following IDL defines a Date union type, which is discriminated by an
enum value:

union name switch (discriminator) {
 case label1 : element-spec;
 case label2 : element-spec;
 […]
 case labeln : element-spec;
 [default : element-spec;]
};

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
 short Day;
 short Month;
 short Year;
};

union Date switch (dateStorage) {
 case numeric: long digitalFormat;
 case strMMDDYY:
 case strDDMMYY: string stringFormat;
 default: DateStructure structFormat;
};
165

CHAPTER 5 | IDL Interfaces
Sample explanation Given the preceding IDL:

� If the discriminator value for Date is numeric, the digitalFormat
member is active.

� If the discriminator�s value is strMMDDYY or strDDMMYY, the
stringFormat member is active.

� If neither of the preceding two conditions apply, the default
structFormat member is active.

Rules for union types The following rules apply to union types:

� A union�s discriminator can be integer, char, boolean or enum, or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

� Because a union provides a naming scope, member names must be
unique only within the enclosing union.

� Each union contains a pair of values: the discriminator value and the
active member.

� IDL unions allow multiple case labels for a single member. In the
previous example, the stringFormat member is active when the
discriminator is either strMMDDYY or strDDMMYY.

� IDL unions can optionally contain a default case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.
 166

IDL Data Types
Arrays

Overview IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where dimension-spec must be a non-zero positive
constant integer expression):

[typedef] element-type array-name [dimension-spec]…

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

Array IDL sample For example, the following piece of code defines a two-dimensional array of
bank accounts within a portfolio:

typedef Account portfolio[MAX_ACCT_TYPES][MAX_ACCTS]

Array indexes Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C++
array indexes always start at 0, while PL/I, COBOL, and Pascal use an origin
of 1. Consequently, clients and servers cannot exchange array indexes
unless they both agree on the origin of array indexes and make adjustments
as appropriate for their respective implementation languages. Usually, it is
easier to exchange the array element itself instead of its index.

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.
167

CHAPTER 5 | IDL Interfaces
Sequence

Overview IDL supports sequences of any IDL data type with the following syntax:

[typedef] sequence < element-type[, max-elements] > sequence-name

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration, to be used as a
parameter, an attribute, or a return value. You can omit a typedef
declaration only for a sequence that is declared within a structure definition.

A sequence�s element type can be of any type, including another sequence
type. This feature is often used to model trees.

Bounded and unbounded
sequences

The maximum length of a sequence can be fixed (bounded) or unfixed
(unbounded):

� Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

� Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

Bounded and unbounded IDL
definitions

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimitedAccounts {
 string bankSortCode<10>;
 sequence<Account, 50> accounts; // max sequence length is 50
};

struct UnlimitedAccounts {
 string bankSortCode<10>;
 sequence<Account> accounts; // no max sequence length
};
 168

IDL Data Types
Pseudo Object Types

Overview CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/I do
not support all pseudo object types.
169

CHAPTER 5 | IDL Interfaces
Defining Data Types

In this section This section contains the following subsections:

Using typedef With typedef, you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or
user-defined.

Typedef identifier IDL sample The following code defines the typedef identifier, StandardAccount, so that
it can act as an alias for the Account type in later IDL definitions:

Constants page 171

Constant Expressions page 174

module BankDemo {
 interface Account {
 //…
 };

 typedef Account StandardAccount;
};
 170

Defining Data Types
Constants

Overview IDL lets you define constants of all built-in types except the any type. To
define a constant�s value, you can use either another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

Integer constants IDL accepts integer literals in decimal, octal, or hexadecimal:

Both unary plus and unary minus are legal.

Floating-point constants Floating-point literals use the same syntax as C++:

Character and string constants Character constants use the same escape sequences as C++:

const short I1 = -99;
const long I2 = 0123; // Octal 123, decimal 83
const long long I3 = 0x123; // Hexadecimal 123, decimal 291
const long long I4 = +0xaB; // Hexadecimal ab, decimal 171

const float f1 = 3.1e-9; // Integer part, fraction part,
 // exponent
const double f2 = -3.14; // Integer part and fraction part
const long double f3 = .1 // Fraction part only
const double f4 = 1. // Integer part only
const double f5 = .1E12 // Fraction part and exponent
const double f6 = 2E12 // Integer part and exponent

Example 7: List of character constants (Sheet 1 of 2)

const char C1 = 'c'; // the character c
const char C2 = '\007'; // ASCII BEL, octal escape
const char C3 = '\x41'; // ASCII A, hex escape
const char C4 = '\n'; // newline
const char C5 = '\t'; // tab
const char C6 = '\v'; // vertical tab
const char C7 = '\b'; // backspace
const char C8 = '\r'; // carriage return
const char C9 = '\f'; // form feed
const char C10 = '\a'; // alert
171

CHAPTER 5 | IDL Interfaces
Wide character and string
constants

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean constants Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

Octet constants Octet constants are positive integers in the range 0-255.

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

const char C11 = '\\'; // backslash
const char C12 = '\?'; // question mark
const char C13 = '\''; // single quote
// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters
 // ('\xA' and 'B'),
 // not the single character '\xAB'

Example 7: List of character constants (Sheet 2 of 2)

const wchar C = L'X';
const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';
const wstring OMEGA_STR = L"Omega: \u3A9";

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing

const octet O1 = 23;
const octet O2 = 0xf0;
 172

Defining Data Types
Fixed-point constants For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration constants Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

// Fixed point constants take digits and scale from the
// initializer:
const fixed val1 = 3D; // fixed<1,0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

enum Size { small, medium, large }

const Size DFL_SIZE = medium;
const Size MAX_SIZE = ::large;
173

CHAPTER 5 | IDL Interfaces
Constant Expressions

Overview IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for %, which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

Arithmetic operators The following code contains several examples of arithmetic operators:

Evaluating expressions for
arithmetic operators

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

Bitwise operators Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

// You can use arithmetic expressions to define constants.
const long MIN = -10;
const long MAX = 30;
const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE_PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT);

// You can use bitwise operators to define constants.
const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff
 174

Defining Data Types
IDL guarantees two�s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.
175

CHAPTER 5 | IDL Interfaces
 176

CHAPTER 6

IDL-to-PL/I
Mapping
The CORBA Interface Definition Language (IDL) is used to
define interfaces that are offered by servers on your network.
This chapter describes how the Orbix IDL compiler maps IDL
data types to PL/I. It shows, with examples, how each IDL type
is represented in PL/I.

In this chapter This chapter discusses the following topics:

Mapping for Identifier Names page 179

Mapping Very Long and Leading Underscored Names page 181

Mapping for Basic Types page 183

Mapping for Boolean Type page 187

Mapping for Enum Type page 188

Mapping for Octet and Char Types page 189

Mapping for String Types page 190

Mapping for Fixed Type page 193

Mapping for Struct Type page 196
177

CHAPTER 6 | IDL-to-PL/I Mapping
Note the following points:

� For the purposes of the examples shown in this chapter, the member
name for each example is the same as the interface name, unless
otherwise stated.

� For the purposes of PL/I application development, Orbix closely follows
the IDL-to-PL/I mapping rules described in the OMG specification. To
provide compatibility for both PL/I compilers that Orbix supports, Orbix
generally only differs from these rules where the PL/I compiler for MVS
& VM does not support a particular feature, such as UNSIGNED FIXED
BIN(32). See www.omg.org for details about the IDL-to-PL/I mapping
specification.

� See �IDL Interfaces� on page 135 for more details of the IDL types
discussed in this chapter.

Mapping for Union Type page 197

Mapping for Sequence Types page 200

Mapping for Array Type page 203

Mapping for the Any Type page 204

Mapping for User Exception Type page 206

Mapping for Typedefs page 210

Mapping for Operations page 212

Mapping for Attributes page 217

Mapping for Operations with a Void Return Type and No Parameters
page 223

Mapping for Inherited Interfaces page 224

Mapping for Multiple Interfaces page 231
 178

Mapping for Identifier Names
Mapping for Identifier Names

Overview This section describes how IDL identifier names are mapped to PL/I.

Standard mapping rule The Orbix IDL compiler uses the following basic rule to generate PL/I
identifiers unless you use the -O argument to generate an alternative
naming scheme (see �-O Argument� on page 254 for more details):

Further guidelines The naming scheme for PL/I identifiers also adheres to the following
guidelines:

� If the identifier is within a nested module, these module names are
prefixed to the moduleName_interfaceName_IDLvariableName format.

� An identifier name that exceeds 31 characters is abbreviated to its first
26 characters, and is appended with an underscore followed by a
four-character hash suffix.

� If an identifier name exceeds 31 characters and is a particular type
that already ends with a particular suffix (for example, an argument
block always ends in _args), the identifier name is abbreviated to its
first 21 characters, and is appended with an underscore followed by a
four-character hash suffix followed by its existing suffix. See �Mapping
Very Long and Leading Underscored Names� on page 181.

� Upper case characters map to upper case, and lower case characters
map to lower case. For example, myName in IDL maps to myName in PL/I.

� If the identifier is a PL/I keyword, the identifier is mapped with an idl_
prefix. The Orbix IDL compiler supports the PL/I-reserved words
pertaining to the IBM PL/I for MVS & VM V1R1M1 and Enterprise PL/I
compilers.

� The first and last lines of a procedure are always capitalized, except for
server implementation sub-procedures, which have a proc_ prefix.

moduleName_interfaceName_IDLvariableName
179

CHAPTER 6 | IDL-to-PL/I Mapping
� If you specify the -Mprocess option, the mappings specified for
mapping modulename/interfacename are used instead. See �Orbix IDL
Compiler� on page 233 for more details.

� Identifiers defined at IDL file level, outside any modules or interfaces,
have the IDL member name incorporated in their name. See �Example�
on page 184 to see how such identifiers are mapped.
 180

Mapping Very Long and Leading Underscored Names
Mapping Very Long and Leading Underscored
Names

Overview This section describes how very long IDL identifier names, or identifiers
within a module with a very long name, are mapped to PL/I.

Standard mapping rule As stated in �Further guidelines� on page 179, if the identifier name exceeds
31 characters, and it is of a particular type that already ends with a
particular suffix (for example, an argument block always ends in _args), this
suffix is included in the generated name. In this case, the identifier name is
abbreviated to its first 21 characters, and is appended with an underscore
followed by a four-character hash suffix followed by the existing suffix.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
operation structure name for calculateMonthlyRepay as follows:

module BankLoans {
 interface Mortgages {
 float calculateMonthlyRepay(
 in long amountBorrowed,
 in float interestRate,
 in short durationBorrowedFor);
 };

 const float _special_rate=4.5;
};

dcl 1 BankLoans_Mortgages_c_ee9c_args aligned like
 BankLoans_Mortgages_c_ee9c_type;
181

CHAPTER 6 | IDL-to-PL/I Mapping
Avoiding the standard rule You can use the -O argument with the Orbix IDL compiler, to avoid the
standard way in which identifier names are abbreviated. You can do this by
using the -O argument to set up an alternative mapping entry in the
mapping member. For example, consider the following mapping member
entry:

Based on the preceding mapping member entry, the Orbix IDL compiler
generates the operation structure name for calculateMonthlyRepay as
follows:

The mapping for the _special_rate constant is as follows (in this case, the
Orbix IDL compiler removes the leading underscore from the mapped PL/I
name by default):

BankLoans/Mortgages/calculateMonthlyRepay calculateMonthlyRepay

dcl 1 calculateMonthlyRepay_args aligned like
 calculateMonthlyRepay_type;

dcl 1 BankLoans_consts,
 3 special_rate float dec(6) init(4.5e+00);
 182

Mapping for Basic Types
Mapping for Basic Types

Overview This section describes how basic IDL types are mapped to PL/I.

IDL-to-PL/I mapping
for basic types

Table 20 shows the mapping rules for basic IDL types. The CORBA typedef
name is provided for reference purposes only; the PL/I representation is used
directly.

Table 20: Mapping for Basic IDL Types

IDL Type CORBA Typedef Name PL/I
Representation

short CORBA-short FIXED BIN(15)

long CORBA-long FIXED BIN(31)

unsigned short CORBA-unsigned-short FIXED BIN(15)a

unsigned long CORBA-unsigned-long FIXED BIN(31)a

float CORBA-float FLOAT DEC(6)

double CORBA-double FLOAT DEC(16)

char CORBA-char CHAR(1)

boolean CORBA-boolean CHAR(1)

octet CORBA-octet CHAR(1)

enum CORBA-enum FIXED
BIN(31)a,b

fixed<d,s> Fixed<d,s> FIXED DEC(d,s)

any CORBA-any See �Mapping for
the Any Type� on
page 204.

long long CORBA-long-long FIXED BIN(31)b
183

CHAPTER 6 | IDL-to-PL/I Mapping
Example The example can be broken down as follows:

1. Consider the following IDL, stored in an IDL member called EXAMPLE:

unsigned long long CORBA-unsigned-long-long FIXED
BIN(31)a,b

wchar CORBA-wchar GRAPHIC

a. UNSIGNED FIXED BIN is not supported by the PL/I compiler for MVS & VM.
Therefore, the maximum length of a PL/I unsigned short is half that of the
CORBA-defined equivalent. The same applies for a PL/I unsigned long
CORBA type.

b. The maximum number of digits allowed in a FIXED BIN is 31 bits.

Table 20: Mapping for Basic IDL Types

IDL Type CORBA Typedef Name PL/I
Representation

const float outer_float = 19.76;
const double outer_double = 123456.789;

interface example {
 typedef fixed<5,2> fixed_5_2;

 attribute short myshort;
 attribute long mylong;
 attribute unsigned short ushort;
 attribute unsigned long ulong;
 attribute float myfloat;
 attribute double mydouble;
 attribute char mychar;
 attribute octet myoctet;
 attribute fixed_5_2 myfixed52;
 attribute long long mylonglong;
 attribute unsigned long long ulonglong;

 const short intf_sh = 24;
 const wchar mywchar = L’X’;
 const wstring mywstring = L"Hello";
};

module extras {
 const long elong = 760224;
};
 184

Mapping for Basic Types
2. The preceding IDL maps to the following in the idlmembernameM
include member:

The idlmembernameM include member also declares storage for the
attributes.

3. Based on the preceding IDL in point 1, the definitions for the attributes
are generated in the idlmembernameT include member as follows
(where generated comments have been omitted for the sake of brevity):

/*---*/
/* Constants in root scope: */
/*---*/
dcl 1 global_EXAMPLE_consts,
 3 outer_float float dec(6) init(1.976e+01),
 3 outer_double float dec(16) init(1.23456789e+05);

/*---*/
/* Constants in example: */
/*---*/
dcl 1 example_consts,
 3 intf_sh fixed bin(15) init(24),
 3 mywchar graphic(01) init(graphic(’X’)),
 3 mywstring graphic(05) init(graphic(’Hello’));

/*---*/
/* Constants in extras: */
/*---*/
dcl 1 extras_consts,
 3 elong fixed bin(31) init(760224),
185

CHAPTER 6 | IDL-to-PL/I Mapping
dcl 1 example_myshort_type based,
 3 result fixed bin(15) init(0);

dcl 1 example_mylong_type_based,
 3 result fixed bin(31) init(0);

dcl 1 example_ushort_type based,
 3 result fixed bin(15) init(0);

dcl 1 example_ulong_type based,
 3 result fixed bin(31) init(0);

dcl 1 example_myfloat_type_based,
 3 result float dec(6) init(0.0);

dcl 1 example_mydouble_type based,
 3 result float bin(16) init(0.0);

dcl 1 example_mychar_type based,
 3 result char(01) init(’’);

dcl 1 example_myoctet_type_based,
 3 result char(01) init(low(1));

dcl 1 example_myfixed52_type based,
 3 result fixed dec(5,2) init(0);

dcl 1 example_mylonglong_type based,
 3 result fixed bin(31) init(0);

dcl 1 example_ulonglong_type_based,
 3 result fixed bin(31) init(0);
 186

Mapping for Boolean Type
Mapping for Boolean Type

Overview This section describes how booleans are mapped to PL/I.

IDL-to-PL/I mapping
for booleans

An IDL boolean type maps to a PL/I character data item. Two named
constants representing the true and false values are provided.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following PL/I:

interface examp1e {
 attribute boolean full;
};

/* Declared in the Orbix PL/I CORBA include file */
DCL CORBA_FALSE CHAR(01) INIT(’0’) STATIC;
DCL CORBA_TRUE CHAR(01) INIT(’1’) STATIC;

/* Generated output by the IDL compiler */
dcl 1 example_full_type_based,
 3 result char(01) init(CORBA_FALSE);
187

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for Enum Type

Overview This section describes how enums are mapped to PL/I.

IDL-to-PL/I mapping
for enums

An IDL enum type maps to PL/I FIXED BIN(31) BINARY named constants
that are assigned an incrementing value starting from 0.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following PL/I:

3. It can be used as follows:

interface weather {
 enum temp {cold, warm, hot};
};

/*---*/
/* Enum values in weather/temp: */
/*---*/
dcl weather_temp_cold fixed bin(31) init(0) static;
dcl weather_temp_warm fixed bin(31) init(1) static;
dcl weather_temp_hot fixed bin(31) init(2) static;

if todays_temp = weather_temp_cold then
 put skip list(’Brr, it is cold outside!’);
 188

Mapping for Octet and Char Types
Mapping for Octet and Char Types

Overview This section describes how octet and char types are mapped to PL/I.

IDL-to-PL/I mapping
for char types

Char data values that are passed between machines with different character
encoding methods (for example, ASCII, EBCDIC, and so on) are
appropriately converted. See �Example� on page 184 for an example of how
char types are mapped to PL/I.

IDL-to-PL/I mapping
for octet types

Octet data values that are passed between machines with different
character encoding methods (for example, ASCII, EBCDIC, and so on) are
not converted. See �Example� on page 184 for an example of how octet
types are mapped to PL/I.
189

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for String Types

Overview This section describes how string types are mapped to PL/I. First, it
describes the various string types that are available.

Bounded and unbounded
strings

Strings can be bounded or unbounded. Bounded strings are of a specified
size, while unbounded strings have no specified size. For example:

Bounded and unbounded strings are represented differently in PL/I. The
maximum length of a bounded string in PL/I is 32,767 characters.

Incoming bounded strings Incoming strings are passed as IN or INOUT values by the PODGET function
into the PL/I operation parameter buffer at the start of a PL/I operation.

An incoming bounded string is represented by a CHAR(n) data item, where n
is the bounded length of the string. Such strings have their nulls converted
to spaces, if they contain nulls.

Outgoing bounded strings Outgoing strings are copied as INOUT, OUT, or RESULT values by the PODPUT
function from the complete PL/I operation parameter buffer that is passed to
it at the end of a PL/I operation.

An outgoing bounded string has trailing spaces removed, and all characters
up to the bounded length (or the first null) are passed via PODPUT. If a null is
encountered before the bounded length, only those characters preceding the
null are passed. The remaining characters are not passed.

Incoming unbounded strings Incoming strings are passed as IN or INOUT values by the PODGET function
into the PL/I operation parameter buffer at the start of a PL/I operation.

//IDL
string<8> a_bounded_string
string an_unbounded_string
 190

Mapping for String Types
An incoming unbounded string is represented as a pointer data item. A
pointer is supplied that refers to an area of memory containing the string
data. This string is not directly accessible. You must call the STRGET function
to copy the data into a CHAR(n) data item, because the length of the
unbounded string is not known in advance. For example:

If the unbounded string that is passed is too big for the supplied PL/I string,
an exception is raised and the PL/I string remains unchanged. If the
unbounded string is not big enough to fill the PL/I string, the rest of the PL/I
string is filled with spaces.

Outgoing unbounded strings Outgoing strings are copied as INOUT, OUT, or RESULT values by the PODPUT
function from the complete PL/I operation parameter buffer that is passed to
it at the end of a PL/I operation.

A valid outgoing unbounded string must be supplied by the implementation
of an operation. This can be either a pointer that was obtained by an IN or
INOUT parameter, or a string constructed by using the STRSET function. For
example:

/* This is the supplied PL/I unbounded string pointer. */
dcl name ptr;

/* This is the PL/I representation of the string. */
dcl supplier_name char (64);

/* This STRGET call copies the characters in NAME to */
/* SUPPLIER_NAME */
call strget(name,supplier_name,length(supplier_name));

/* This is the PL/I representation of the string containing a */
/* value that we want to pass back to the client using PODPUT */
/* via an unbounded pointer string. */
dcl notes char (160);

/* This is the unbounded pointer string */
dcl cust_notes ptr;

/* This STRGET call creates a copy of the string in the NOTES */
/* field and assigns the pointer value to */
call strset(cust_notes,notes,length(notes));
191

CHAPTER 6 | IDL-to-PL/I Mapping
Trailing spaces are removed from the constructed string. If trailing spaces
are required, you can use the STRSETS function, with the same argument
signature, to copy the specified number of characters, including trailing
spaces.

Example The following is an example of how strings are mapped to PL/I. The example
can be broken down as follows:

1. Consider the following IDL:

2. The Orbix IDL compiler generates the following PL/I, based on the
preceding IDL:

interface example {
 attribute string mystring;
 string<10>getname(in string code);
};

/*---*/
/* Attribute: mystring */
/* Mapped name: mystring */
/* Type: string (read/write) */
/*---*/
dcl 1 example_mystring_type based,
 3 result ptr init(sysnull());

/*---*/
/* Operation: getname */
/* Mapped name: getname */
/* Arguments: <in> string code */
/* Returns: string<10> */
/*---*/
dcl 1 example_getname_type based,
 3 code ptr init(sysnull()),
 3 result char(10) init(’’);
 192

Mapping for Fixed Type
Mapping for Fixed Type

Overview This section describes how fixed types are mapped to PL/I.

IDL-to-PL/I mapping
for fixed types

The IDL fixed type maps directly to PL/I packed decimal data with the
appropriate number of digits and decimal places (if any).

Fixed-point decimal data type The fixed-point decimal data type is used to express in exact terms numeric
values that consist of both an integer and a fixed-length decimal fraction
part. The fixed-point decimal data type has the format <d,s>.

Examples of the fixed-point
decimal data type

You might use it to represent a monetary value in dollars. For example:

Explanation of the fixed-point
decimal data type

The format of the fixed-point decimal data type can be explained as follows:

1. The first number within the angle brackets is the total number of digits
of precision.

2. The second number is the scale (that is, the position of the decimal
point relative to the digits).

A positive scale represents a fractional quantity with that number of
digits after the decimal point. A zero scale represents an integral value.
A negative scale is allowed, and it denotes a number with units in
positive powers of ten (that is, hundreds, millions, and so on).

fixed<9,2> net_worth; // up to $9,999,999.99, accurate to one
cent

fixed<9,4> exchange_rate; // accurate to 1/10000 unit
fixed<4,-6> annual_revenue; // in millions
193

CHAPTER 6 | IDL-to-PL/I Mapping
Example of IDL-to-PL/I
mapping for fixed types

The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code (where comments are omitted for the sake of brevity):

//IDL
interface exam1e {
 typedef fixed<5,2> typesal;
 typdef fixed<4,4> typetax;
 typedef fixed<3,-6> typemill;
 typedef fixed<6,3> typesmall;
 attribute typesal salary;
 attribute typetax taxrate;
 attribute typemill millions;
 attribute typesmall small;
};

dcl 1 example_salary_type based,
 3 result fixed dec(5,2) init(0);

dcl 1 example_taxrate_type based,
 3 result fixed dec(4,4) init(0);

dcl 1 example_millions_type based,
 3 result fixed dec(3,-6) init(0);

dcl 1 example_small_type based,
 3 result fixed dec(6,3) init(0);
 194

Mapping for Fixed Type
3. If you try to display a number such as example_millions_args or
example_small_args (each of the identifiers with an _args suffix is
declared as being like the based variables shown in point 2), the
number is displayed as a floating point number; however, it is stored in
the normal fixed format. The following example illustrates this point:

4. Displaying the contents of each variable based on the preceding
statements then produces the following:

example_salary_args.result=165.78;
example_taxrate_args.result=0.9876;
example_millions_args.result=23000000;
example_small_args.result=0.041;

put skip list(’Salary =’, example_salary_args.result);
put skip list(’TaxRate =’, example_taxrate_args.result);
put skip list(’Millions =’, example_millions_args.result);
put skip list(’Small =’, example_small_args.result);

Salary = 165.78
TaxRate = 0.9876
Millions = 23F+6
Small = 0.004

Note: The maximum number of figures (not significant digits) allowed is
15. For example, fixed<15,3> is allowed; however, fixed<15,-3> is not
allowed, because the number of digits required to display that number is
18.
195

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for Struct Type

Overview This section describes how struct types are mapped to PL/I.

IDL-to-PL/I mapping
for struct types

An IDL struct definition maps directly to a PL/I structure.

Example of IDL-to-PL/I
mapping for struct types

The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following PL/I code for the test attribute:

interface example {
 struct mystruct {
 long member1;
 short member2;
 boolean member3;
 };
 attribute mystruct test;
};

dcl 1 example_test_type based,
 3 result,
 5 member1 fixed bin(31) init(0),
 5 member2 fixed bin(15) init(0),
 5 member3 char(01) init(CORBA_FALSE);
 196

Mapping for Union Type
Mapping for Union Type

Overview This section describes how union types are mapped to PL/I.

IDL-to-PL/I mapping
for union types

An IDL union maps to a PL/I structure that contains:

� A discriminator, d.

� The union data area, u.

� A PL/I structure for each union branch.

Example of IDL-to-PL/I
mapping for union types

The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the definition for the attribute�s structure
is generated as follows in the idlmembernameT include member:

The actual storage for the test attribute is generated as follows in the
idlmembernameM include member:

interface example {
 union un switch(short) {
 case 1: char case_1;
 case 2: double case_2;
 default: long def_case;
 };
 attribute un test;
};

dcl 1 example_test_type based,
 3 result,
 5 d fixed bin(15) init(0),
 5 u area(08);

/*---*/
/* Attribute: test */
/* Mapped name: test */
/* Type: example/un (read/write) */
/*---*/
dcl 1 example_test_attr aligned like example_test_type;
197

CHAPTER 6 | IDL-to-PL/I Mapping
The union branches are generated as follows in the idlmembernameM
include member:

Compiler restrictions Because the PL/I for MVS & VM compiler does not support unions directly,
the union branches (in the preceding example, case_1, case_2, and
def_case) are declared separately from the union structure. The union
branches use the storage defined by the example_test_attr.u
pseudo-union branch. This branch is allocated enough storage for the
largest union item. In the preceding example, the largest union item is
case_2, which is a float dec (16) type, thus requiring 8 bytes of storage.

Using the union type To use the union type, for example, to display the contents retrieved by
calling get on the attribute, you can use a select statement as follows:

/*--*/
/* Initialization Statements for Union: */
/* example/un */
/* */
/* Used In: */
/* example_test_attr.result */
/*--*/
dcl example_test_result_case_1 based(example_test_attr.result.u)
 char(01) init(’’);
dcl example_test_result_case_2 based(example_test_attr.result.u)
 float dec(16) init(0.0);
dcl example_test_result_def_case

based(example_test_attr.result.u)
 fixed bin(31) init(0);

select(example_test_attr.d)
 when(1)
 put skip list(’Value of case_1 is:’,
 example_test_result_case_1);
 when(2)
 put skip list(’Value of case_2:’,
 example_test_result_case_2);
 otherwise
 put skip list(’Value of def_case is:’,
 example_test_result_def_case);
end;
 198

Mapping for Union Type
Setting up the attribute You can set up the test attribute as follows, for example, to set up the value
for the get call on the attribute (which is taken from the idlmembernameI
server implementation module):

/*--*/
/* Attribute: test (get) */
/* Mapped name: test */
/* Type: example/un (read/write) */
/*--*/
proc_example_get_test: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like example_test_type;

/* ============ Start of operation specific code ============ */
args.d=1; /* case_1 */
example_test_result_case_1=’Z’;
/* ============= End of operation specific code ============= */

END proc_example_get_test;
199

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for Sequence Types

Overview The PL/I mapping for a sequence differs depending on whether the
sequence is bounded or unbounded. In both cases, however, a supporting
pointer that contains information about the sequence is generated. This
information includes the maximum length (accessed via SEQMAX), the length
of the sequence in elements (accessed via SEQLEN), and the contents of the
sequence (in the case of the unbounded sequence). After a sequence is
initialized, the sequence length is equal to zero. The first element of a
sequence is referenced as element 1. The _dat suffix contains the actual
sequence data.

Bounded Bounded sequence types map to a PL/I array and a supporting data item.
For example:

The preceding IDL maps to the following PL/I:

Unbounded Unbounded sequence types cannot map to a PL/I array, because the size of
the sequence is not known. In this case, a group item is created to hold one
element of the sequence, and the element is provided with a suffix of _buf.
A supporting pointer to the elements of the sequence is also created. For
example:

interface example {
 typedef sequence<long, 10> seqlong10;
 attribute seqlong10 myseq;
};

dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_dat(10) fixed bin(31) init((10)0);

interface example {
 typedef sequence<long> seqlong;
 attribute seqlong myseq;
};
 200

Mapping for Sequence Types
The preceding IDL maps to the following PL/I:

Initial storage is assigned to the sequence via SEQALOC. Elements of an
unbounded sequence are not directly accessible. You can use SEQGET and
SEQSET to access specific elements in the sequence. You can use SEQLEN to
find the length of the sequence. You can use SEQMAX to find the maximum
length of the sequence.

PODGET�IN and INOUT modes An unbounded sequence is represented as a pointer data item. A pointer is
supplied that refers to an area of memory containing the sequence. This is
not directly accessible. You must call the SEQGET function to copy a specified
element of the sequence into an accessible data area.

The following PL/I, based on the preceding IDL example, walks through all
the elements of a sequence:

dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_buf fixed bin(31) init(0);

/* Excerpt from the M-suffixed include file: */
dcl 1 example_myseq_attr aligned like example_myseq_type;

/* Code for traversing through the unbounded sequence of longs */
dcl element_num fixed bin(31) init(0);
dcl result_seq fixed bin(31) init(0);

call seqlen(example_myseq_args.result.result_seq,
 result_seq_len);

do element_num = 1 to result_seq_len;
 call seqget(example_myseq_args.result.result_seq,
 element_num,
 addr(example_myseq_args.result.result_buf));
 put skip list(’Element #’,
 element_num,
 ’ contains value’,
 example_myseq_args.result.result_buf);
end;
201

CHAPTER 6 | IDL-to-PL/I Mapping
PODPUT�OUT, INOUT, and
result only

A valid unbounded sequence must be supplied by the implementation of an
operation. This can be either a pointer that was obtained by an IN or INOUT
parameter, or an unbounded sequence constructed by using the SEQALOC
function.

The SEQSET function is used to change the contents of a sequence element.
Based on the preceding example, the following code could be used to store
some initial values into all elements of the sequence.

The following example uses the attribute defined in the preceding IDL for
setting up the unbounded sequence of long types (note the
example_seqlong_tc is the sequence typecode, which is declared in the
idlmembernameT include member):

dcl seq_size fixed bin(31) init(20);
del element_num fixed bin(31) init(0);

call seqlen(result_seq,result_seq_len);
call seqaloc(example_myseq_args.result.result_seq, seq_size,
 example_seqlong_tc, length(example_seqlong_tc);

do element_num = 1 to seq_size;
 result_buf=7*i; /* 7 times multiplication table */
 call seqset(example_myseq_args.result.result_seq,
 element_num,
 addr(example_myseq_args.result.result_buf);
end;
 202

Mapping for Array Type
Mapping for Array Type

Overview This section describes how arrays are mapped to PL/I.

IDL-to-PL/I mapping
for arrays

An IDL array definition maps directly to a PL/I array. Each element of the
array is directly accessible.

Example of IDL-to-PL/I
mapping for arrays

The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT include member:

The Orbix IDL compiler generates the following code in the
idlmembernameM include member:

3. The following is an example of how the generated code can
subsequently be used:

Note: PL/I arrays are 1-indexed, and not 0-indexed as in C or C++. For
example, grid reference A(1,2) in PL/I matches A[2][3] in C++.

interface examp1e {
 typedef long mylong[2][5];
 attribute mylong long_array;
};

dcl 1 example_long_array_type based,
 3 result(2,5) fixed bin(31) init ((2*5)0);

dcl 1 example_long_array_attr aligned like
example_long_array_type;

example_long_array_args.result(1,3) = 22;
203

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for the Any Type

Overview This section describes how anys are mapped to PL/I.

IDL-to-PL/I mapping
for anys

The IDL any type maps to a PL/I structure that provides information about
the contents of the any, such as the type of the contents. A separate
character data item is also generated, which is large enough to hold the
longest type code string defined in the interface.

Example of IDL-to-PL/I
mapping for anys

The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT include member:

In the preceding example, EXAMPLE_typecode is used as a variable when
setting the type of the any. The typecode identifier for the any, which is used
for sequences, is defined in the preceding example as example_myany_tc.
The maximum length of all the typecodes defined in the IDL is 21, which is
defined via EXAMPLE_typecode_length. In the preceding example, EXAMPLE
denotes the IDL member name, and example denotes the interface name.

interface example {
 typedef any myany;
 attribute myany temp;
};

dcl 1 example_temp_type based,
 3 result ptr init(sysnull());

dcl EXAMPLE_typecode char(21) init(’’);
dcl example_myany_tc char(21)
 init(’IDL:example/myany:1.0’);
dcl EXAMPLE_typecode_length fixed bin(31) init(21);
 204

Mapping for the Any Type
Accessing and changing
contents of an any

You cannot access the contents of the any type directly. Instead you can use
the ANYGET function to extract data from an any type, and use the ANYSET
function to insert data into an any type.

Before you call ANYGET, call TYPEGET to retrieve the type of the any into a
data item generated by the Orbix IDL compiler. This data item is large
enough to hold the largest type name defined in the interface. Similarly,
before you call ANYSET, call TYPESET to set the type of the any.

See �ANYGET� on page 317 and �TYPEGET� on page 409 for details and
an example of how to access the contents of an any. See �ANYSET� on
page 319 and �TYPESET� on page 412 for details and an example of how
to change the contents of an any.
205

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for User Exception Type

Overview This section describes how exceptions are mapped to PL/I.

IDL-to-PL/I mapping
for exceptions

An IDL exception type maps to a PL/I structure and a character data item
with a value that uniquely identifies the exception.

Example of IDL-to-PL/I
mapping for exceptions

The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT include member:

interface example {
 exception bad {
 long value1;
 string<32> reason;
 };

 exception worse {
 short value2;
 string<16> errorcode;
 string<32> reason;
 };

 void addName(in string name) raises(bad,worse);
};

dcl 1 example_addName_type based,
 3 idl_name ptr init(sysnull());
 206

Mapping for User Exception Type
3. The Orbix IDL compiler generates the following code in the
idlmembernameM include member:

Raising a user exception The server can raise a user exception by performing the following sequence
of steps:

1. It calls STRSET to set the exception_id identifier of the user exception
structure with the appropriate exception identifier defined in the
idlmembernameT include member. The exception identifier in this case
is suffixed with _exid.

2. It sets the d discriminator with the appropriate exception identifier
defined in the idlmembernameM include member. The exception
identifier in this case is suffixed with _d.

3. It fills in the exception branch block associated with the exception.

/*---*/
/* Operation: addName */
/* Mapped name: addName */
/* Arguments: <in> string name */
/* Returns: void */
/*---*/
dcl 1 example_addName_args aligned like

example_addName_type;

/*---*/
/* Defined User Exceptions */
/*---*/
dcl 1 EXAMPLE_user_exceptions,
 3 exception_id ptr,
 3 d fixed bin(31) init(0),
 3 u area(50);

dcl 1 example_bad_exc_d fixed bin(31) init(1);
dcl 1 example_worse_exc_d fixed bin(31) init(2);

dcl 1 example_bad_exc based(EXAMPLE_user_exceptions.u),
 3 value1 fixed bin(31) init(0),
 3 reason char(32) init(’’);

dcl 1 example_worse_exc based(EXAMPLE_user_exceptions.u),
 3 value2 fixed bin(15) init(0),
 3 errorcode char(16) init(’’),
 3 reason char(32) init(’’);
207

CHAPTER 6 | IDL-to-PL/I Mapping
4. It calls PODERR with the address of the user exception structure.

Example of Error Raising and
Checking

The example can be broken down as follows:

1. The following code shows how to raise the bad user exception defined
in the preceding example:

2. To test for the user exception, the client side tests the discriminator
value of the user exception structure after calling PODEXEC on the server
function, which is able to raise a user exception. For example, the
following code shows how the client can test whether the server set an
exception after the call to addName:

/* Server implementation code */
if name=’’ then
 do;
 strset(EXAMPLE_user_exceptions.exception_id,
 SimpleObject_bad_exid,
 length(SimpleObject_bad_exid));
 EXAMPLE_user_exceptions.d=example_bad_exc_d;
 call poderr(addr(EXAMPLE_user_exceptions));
 end;

Example 8: Client Code to Test Exception (Sheet 1 of 2)

/* Call podexec to perform operation addName. */
/* Note the user exception block in the fourth parameter. */
call podexec(example_obj,
 example_addName,
 example_addName_args,
 addr(EXAMPLE_user_exceptions));

if EXAMPLE_user_exceptions.d ^= 0 then
 do;
 /* a user exception has been thrown */
 put skip list(’Operation addName threw a user exception!’);
 put skip list(’ Discriminator: ’,EXCEPT_user_exceptions.d);

 select(EXAMPLE_user_exceptions.d);
 when(example_bad_exc_d)
 do;
 put list(’Exception thrown: bad_exc’);
 put skip list(’value1:’,example_bad_exc.value1);
 put skip list(’reason:’,example_bad_exc.reason);
 end;
 208

Mapping for User Exception Type
 when(example_worse_exc_d)
 do;
 put list(’Exception thrown: worse_exc’);
 put skip list(’value2:’,example_worse_exc.value2);
 put skip list(’errorcode:’,
 example_worse_exc.errorcode);
 put skip list(’reason:’,example_worse_exc.reason);
 end;
 otherwise
 put list(’Unrecognized exception!’);
 end;
 end;
else /* no exception has been thrown */
 do;
 put skip list(’Operation addName completed successfully’);
 end;

Example 8: Client Code to Test Exception (Sheet 2 of 2)
209

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for Typedefs

Overview This section describes how typedefs are mapped to PL/I.

IDL-to-PL/I mapping
for typedefs

Typdefs are supported in PL/I through the use of the based keyword. The
Orbix IDL compiler generates based declarations for attribute and operation
structures (to keep them generic), for struct types, and for other complex
types. It does not generate a based identifier in a one-to-one mapping with
the IDL unless all of the typedefs defined in the IDL are these types just
listed.

The reasons for this are partially to do with how the PL/I runtime uses them
to set up and retrieve data, and partially for ease of coding. In the case of
ease-of-coding, if an operation has two parameters, but is then changed to
have three parameters, only the based declaration needs to be updated,
because each of the uses of the particular operation are declared as being
like the based structure.

Example The example can be broken down as follows:

1. Consider the following IDL:

interface example {
 typedef struct stru;
 long a;
 short b;
 } misc;
 typedef fixed<8,2> currency;

 attribute currency pounds;
};
 210

Mapping for Typedefs
2. Based on the preceding IDL, the Orbix IDL compiler generates a based
identifier for the struct, stru, and for the attribute structure; however,
it does not generate a based identifier for the fixed type. The based
variables for the struct, stru, are generated in the idlmembernameT
include member as follows:

3. The attribute�s structure is generated as follows in the idlmembernameM
include member, which makes use of the attribute�s based structure:

dcl 1 example_pounds_type based,
 3 result fixed dec(8,2) init(0);

/*---*/
/* Struct: example/stru */
/*---*/
dcl 1 example_stru_type based,
 3 a fixed bin(31) init(0),
 3 b fixed bin(15) init(0);

dcl 1 example_pounds_attr aligned like example_pounds_type;
211

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for Operations

Overview This section describes how operations are mapped to PL/I.

IDL-to-PL/I mapping for
operations

An IDL operation maps to a number of statements in PL/I as follows:

1. A structure is created for each operation. This structure is declared in
the idlmembernameT include member as a based structure and contains
a list of the parameters and the return type of the operation. An
associated declaration, which uses this based structure, is declared in
the idlmembernameM include member. Memory is allocated only for
non-dynamic types, such as bounded strings and longs. The top-level
identifier (that is, at dcl 1 level) for each operation declaration is
suffixed with _type in the idlmembernameT include member, and with
_args in the idlmembernameM include member, for example:

2. A declaration is generated in the idlmembernameT include member for
every IDL operation. The declaration contains the fully qualified
operation name followed by a space, which is used when calling
PODEXEC to invoke that operation on a server. The following is an
example of a declaration based on the my_operation operation in the
test interface:

3. The operation declaration is also used in the idlmembernameD include
member. It is used within the select clause, which is used by the
server program to call the appropriate operation/attribute procedure
described next in point 4.

dcl 1 my_operation_type_based,
 3 my_argument fixed bin(31) init(0);
 …

dcl test_my_operation char(36)
 init(’my_operation:IDL:test:1.0 ’);
 212

Mapping for Operations
4. When you specify the -S argument with the Orbix IDL compiler, an
empty server procedure is generated in the idlmembernameI source
member for each IDL operation. (You must specify the -S argument, to
generate these operation/attribute procedures.)

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the following operation structures are
generated in the idlmembernameT include member:

interface example
{
 long my_operation1(in long mylong);
 short my_operation2(in short myshort);
};

/*---*/
/* Operation: my_operation1 */
/* Mapped name: my_operation1 */
/* Arguments: <in> long mylong */
/* Returns: long */
/* User Exceptions: none */
/*---*/
dcl 1 example_my_operation1_type based,
 3 mylong fixed bin(31) init(0),
 3 result fixed bin(31) init(0);

/*---*/
/* Operation: my_operation2 */
/* Mapped name: my_operation2 */
/* Arguments: <in> short myshort */
/* Returns: short */
/* User Exceptions: none */
/*---*/
dcl 1 example_my_operation2_type based,
 3 myshort fixed bin(15) init(0),
 3 result fixed bin(15) init(0);
213

CHAPTER 6 | IDL-to-PL/I Mapping
3. Based on the preceding IDL, the following operation structures are
generated in the idlmembernameM include member:

4. The following is generated in the idlmembernameT include member:

/*---*/
/* Operation: my_operation1 */
/* Mapped name: my_operation1 */
/* Arguments: <in> long mylong */
/* Returns: long */
/* User Exceptions: none */
/*---*/
dcl 1 example_my_operation1_args aligned like
 example_my_operation1_type;

/*---*/
/* Operation: my_operation2 */
/* Mapped name: my_operation2 */
/* Arguments: <in> short myshort */
/* Returns: short */
/* User Exceptions: none */
/*---*/
dcl 1 example_my_operation2_args aligned like
 example_my_operation2_type;

/*---*/
/* Operation List section */
/* Contains a list of the interface's operations and */
/* attributes. */
/*---*/
dcl example_my_operation1 char(30)
 init('my_operation1:IDL:example:1.0 ');
dcl example_my_operation2 char(30)
 init('my_operation2:IDL:example:1.0 ');
 214

Mapping for Operations
5. The following select statement is also generated in the
idlmembernameD include member:

6. The following skeleton procedures are generated in the
idlmembernameI member:

select(operation);
when (example_my_operation1) do;
 call podget(addr(example_my_operation1_args));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_example_my_operation1
 (addr(example_my_operation1_args));

 call podput(addr(example_my_operation1_args));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (example_my_operation2) do;
 call podget(addr(example_my_operation2_args));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_example_my_operation2
 (addr(example_my_operation2_args));

 call podput(addr(example_my_operation2_args));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
otherwise do;
 put skip list('ERROR! Undefined Operation ' ||
 operation);
 return;
end;

end;
215

CHAPTER 6 | IDL-to-PL/I Mapping
/*---*/
/* Operation: my_operation1 */
/* Mapped name: my_operation1 */
/* Arguments: <in> long mylong */
/* Returns: long */
/* User Exceptions: none */
/*---*/
proc_example_my_operation1: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like example_my_operation1_type;

/* ========= Start of operation specific code ========== */
/* ========== End of operation specific code =========== */

END proc_example_my_operation1;

/*---*/
/* Operation: my_operation2 */
/* Mapped name: my_operation2 */
/* Arguments: <in> short myshort */
/* Returns: short */
/* User Exceptions: none */
/*---*/
proc_example_my_operation2: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like example_my_operation2_type;

/* =========== Start of operation specific code ======= */
/* ============ End of operation specific code ========= */

END proc_example_my_operation2;
 216

Mapping for Attributes
Mapping for Attributes

Overview This section describes how IDL attributes are mapped to PL/I.

Similarity to mapping for
operations

The IDL mapping for attributes is very similar to the IDL mapping for
operations, but with the following differences:

� IDL attributes map to PL/I with a _get_ and _set_ prefix. Two PL/I
declarations are created for each attribute (that is, one with a _get_
prefix, and one with a _set_ prefix). However, readonly attributes only
map to one declaration, with a _get_ prefix.

� The top-level identifier (that is, at dcl 1 level) for each attribute
declaration in the idlmembernameM include member has a suffix of
_attr rather than a suffix of _args.

� An attribute�s parameters are always treated as return types (that is, a
structure created for a particular attribute always contains just one
immediate sub-declaration, result).

IDL-to-PL/I mapping for attributes An IDL attribute maps to a number of statements in PL/I as follows:

1. A structure is created for each attribute. This structure is declared in
the idlmembernameT include member as a based structure and contains
one immediate sub-declaration, result. If the attribute is a complex
type, the result declaration contains a list of the attribute�s
parameters as lower-level declarations. If the parameters are of a
dynamic type (for example, sequences, unbounded strings, or anys),
no storage is assigned to them. An associated declaration, which uses
this based structure, is declared in the idlmembernameM include
member.

The top-level identifier (that is, at dcl 1 level) for each attribute
declaration is suffixed with _type in the idlmembernameT include
member, and with _attr in the idlmembernameM include member (that
is, FQN_attributename_type and FQN_attributename_attr).
217

CHAPTER 6 | IDL-to-PL/I Mapping
2. Two declarations are generated in the idlmembernameT include
member for every IDL attribute, unless it is a readonly attribute, in
which case only one declaration is declared for it. A declaration
contains the fully qualified name followed by _get_ or (provided it is
not readonly) _set_, followed by the attribute name, followed by a
space, which is used when calling PODEXEC to invoke that attribute on
on a server. For example, the following is an example of two
declarations based on the myshort attribute in the example interface:

3. The attribute declaration is also used in the idlmembernameD include
member. It is used within the select clause, which is used by the
server program to call the appropriate operation/attribute procedure
described next in point 4.

4. When you specify the -S argument with the Orbix IDL compiler, an
empty server procedure is generated in the idlmembernameI source
member for each IDL attribute. (You must specify the -S argument, to
generate these operation/attribute procedures.)

Example The example can be broken down as follows:

1. Consider the following IDL:

dcl example_get_myshort char(29)
 init(’_get_myshort:IDL:example:1.0 ’);
dcl example_set_myshort char (29)
 init(’_set_myshort:IDL:example:1.0 ’);

interface example
{
 readonly attribute long mylong;
 attribute short myshort;
};
 218

Mapping for Attributes
2. Based on the preceding IDL, the following attribute structures are
generated in the idlmembernameT include member:

3. Based on the preceding IDL, the following attribute structures are
generated in the idlmembernameM include member:

/*---*/
/* Attribute: mylong */
/* Mapped name: mylong */
/* Type: long (readonly) */
/*---*/
dcl 1 example_mylong_type based,
 3 result fixed bin(31) init(0),

/*---*/
/* Attribute: myshort */
/* Mapped name: myshort */
/* Type: short (read/write) */
/*---*/
dcl 1 example_myshort_type based,
 3 result fixed bin(15) init(0);

/*---*/
/* Attribute: mylong */
/* Mapped name: mylong */
/* Type: long (readonly) */
/*---*/
dcl 1 example_mylong_attr aligned like example_mylong_type;

/*---*/
/* Attribute: myshort */
/* Mapped name: myshort */
/* Type: short (read/write) */
/*---*/
dcl 1 example_myshort_attr aligned like exampl_myshort_type;
219

CHAPTER 6 | IDL-to-PL/I Mapping
4. The following is generated in the idlmembernameT include member:

5. The following select statement is also generated in the
idlmembernameD include member:

/*---*/
/* Operation List section */
/* Contains a list of the interface's operations and */
/* attributes. */
/*---*/
dcl example_get_mylong char(28)
 init('_get_mylong:IDL:example:1.0 ');
dcl example_get_myshort char(29)
 init('_get_myshort:IDL:example:1.0 ');
dcl example_set_myshort char(29)
 init('_set_myshort:IDL:example:1.0 ');

select(operation);
when (example_get_mylong) do;
 call podget(addr(example_mylong_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_example_get_mylong
 (addr(example_mylong_attr));

 call podput(addr(example_mylong_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (example_get_myshort) do;
 call podget(addr(example_myshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_example_get_myshort
 (addr(example_myshort_attr));

 call podput(addr(example_myshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
 220

Mapping for Attributes
6. The following skeleton procedures are generated in the
idlmembernameI include member:

when (example_set_myshort) do;
 call podget(addr(example_myshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_example_set_myshort
 (addr(example_myshort_attr));

 call podput(addr(example_myshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
otherwise do;
 put skip list('ERROR! No such operation:')
 put skip list(operation);
 return;
end;

end;

/*---*/
/* Attribute: mylong (get) */
/* Mapped name: mylong */
/* Type: long (readonly) */
/*---*/
proc_example_get_mylong: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like example_mylong_type;

/* ========= Start of operation specific code ========== */
/* ========== End of operation specific code =========== */

END proc_example_get_mylong;
221

CHAPTER 6 | IDL-to-PL/I Mapping
/*---*/
/* Attribute: myshort (get) */
/* Mapped name: myshort */
/* Type: short (read/write) */
/*---*/
proc_example_get_myshort: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like example_myshort_type;

/* =========== Start of operation specific code ======= */
/* ============ End of operation specific code ========= */

END proc_example_get_myshort;

/*---*/
/* Attribute: myshort (set) */
/* Mapped name: myshort */
/* Type: short (read/write) */
/*---*/
proc_example_set_myshort: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like example_myshort_type;

/* =========== Start of operation specific code ======= */
/* ============ End of operation specific code ========= */

END proc_example_set_myshort;

END EXAMPLI;
 222

Mapping for Operations with a Void Return Type and No Parameters
Mapping for Operations with a Void Return
Type and No Parameters

Overview This section describes IDL operations that have a void return type and no
parameters are mapped to PL/I.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following PL/I:

interface example
{
 void myoperation();
};

/*---*/
/* Operation: myoperation */
/* Mapped name: myoperation */
/* Arguments: None */
/* Returns: void */
/* User Exceptions: none */
/*---*/
dcl 1 example_myoperation_type based,
 3 filler_0001 char(01);

Note: The filler is included for completeness, to allow the application to
compile, but the filler is never actually referenced. The numeric suffix can
have any value. The other generated code segments are generated as
expected.
223

CHAPTER 6 | IDL-to-PL/I Mapping
Mapping for Inherited Interfaces

Overview This section describes how inherited interfaces are mapped to PL/I.

IDL-to-PL/I mapping for inherited
interfaces

An IDL interface that inherits from other interfaces includes all the attributes
and operations of those other interfaces. In the header of the interface being
processed, the Orbix IDL compiler generates an extra comment that
contains a list of all the inherited interfaces.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL is mapped to the following PL/I in the
idlmembernameD include member:

interface Account
{
 attribute short mybaseshort;
 void mybasefunc(in long mybaselong);
};

interface SavingAccount : Account
{
 attribute short myshort;
 void myfunc(in long mylong);
};

Example 9: The idlmembernameD Example (Sheet 1 of 4)

select(operation);
when (Account_get_mybaseshort) do;
 call podget(addr(Account_mybaseshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_Account_get_mybaseshort
 (addr(Account_mybaseshort_attr));

 call podput(addr(Account_mybaseshort_attr));
 if check_errors('podput') ^= completion_status_yes
 224

Mapping for Inherited Interfaces
 then return;
end;
when (Account_set_mybaseshort) do;
 call podget(addr(Account_mybaseshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_Account_set_mybaseshort
 (addr(Account_mybaseshort_attr));

 call podput(addr(Account_mybaseshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (Account_mybasefunc) do;
 call podget(addr(Account_mybasefunc_args));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_Account_mybasefunc
 (addr(Account_mybasefunc_args));

 call podput(addr(Account_mybasefunc_args));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_get_myshort) do;
 call podget(addr(SavingAccount_myshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_SavingAccount_get_myshort
 (addr(SavingAccount_myshort_attr));

 call podput(addr(SavingAccount_myshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_set_myshort) do;
 call podget(addr(SavingAccount_myshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_SavingAccount_set_myshort
 (addr(SavingAccount_myshort_attr));

Example 9: The idlmembernameD Example (Sheet 2 of 4)
225

CHAPTER 6 | IDL-to-PL/I Mapping
 then return;
end;
when (Account_set_mybaseshort) do;
 call podget(addr(Account_mybaseshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_Account_set_mybaseshort
 (addr(Account_mybaseshort_attr));

 call podput(addr(Account_mybaseshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (Account_mybasefunc) do;
 call podget(addr(Account_mybasefunc_args));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_Account_mybasefunc
 (addr(Account_mybasefunc_args));

 call podput(addr(Account_mybasefunc_args));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_get_myshort) do;
 call podget(addr(SavingAccount_myshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_SavingAccount_get_myshort
 (addr(SavingAccount_myshort_attr));

 call podput(addr(SavingAccount_myshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_set_myshort) do;
 call podget(addr(SavingAccount_myshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_SavingAccount_set_myshort
 (addr(SavingAccount_myshort_attr));

Example 9: The idlmembernameD Example (Sheet 2 of 4)
 226

Mapping for Inherited Interfaces
 call podput(addr(SavingAccount_myshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_myfunc) do;
 call podget(addr(SavingAccount_myfunc_args));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_SavingAccount_myfunc
 (addr(SavingAccount_myfunc_args));

 call podput(addr(SavingAccount_myfunc_args));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_get_mybaseshort) do;
 call podget(addr(SavingAccount_mybaseshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_SavingAccount_get_myb_dc3a
 (addr(SavingAccount_mybaseshort_attr));

 call podput(addr(SavingAccount_mybaseshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_set_mybaseshort) do;
 call podget(addr(SavingAccount_mybaseshort_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_SavingAccount_set_myb_8e2b
 (addr(SavingAccount_mybaseshort_attr));

 call podput(addr(SavingAccount_mybaseshort_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (SavingAccount_mybasefunc) do;
 call podget(addr(SavingAccount_mybasefunc_args));
 if check_errors('podget') ^= completion_status_yes
 then return;

Example 9: The idlmembernameD Example (Sheet 3 of 4)
227

CHAPTER 6 | IDL-to-PL/I Mapping
3. The following code is contained in the idlmembernameT include
member:

 call proc_SavingAccount_mybasefunc
 (addr(SavingAccount_mybasefunc_args));

 call podput(addr(SavingAccount_mybasefunc_args));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
otherwise do;
 put skip list('ERROR! Undefined operation ' ||
 operation);
 return;
end;
end;

Example 9: The idlmembernameD Example (Sheet 4 of 4)

Example 10:The idlmembernameT Example (Sheet 1 of 3)

/*---*/
/* Interface: */
/* Account */
/* */
/* Mapped name: */
/* Account */
/* */
/* Inherits interfaces: */
/* (none) */
/*---*/
/*---*/
/* Attribute: mybaseshort */
/* Mapped name: mybaseshort */
/* Type: short (read/write) */
/*---*/
 dcl 1 Account_mybaseshort_type based,
 3 result fixed bin(15) init(0);

/*---*/
/* Operation: mybasefunc */
/* Mapped name: mybasefunc */
/* Arguments: <in> long mybaselong */
/* Returns: void */
/* User Exceptions: none */
 228

Mapping for Inherited Interfaces
/*---*/
 dcl 1 Account_mybasefunc_type based,
 3 mybaselong fixed bin(31) init(0);

/*---*/
/* Interface: */
/* SavingAccount */
/* */
/* Mapped name: */
/* SavingAccount */
/* */
/* Inherits interfaces: */
/* Account */
/*---*/
/*---*/
/* Attribute: myshort */
/* Mapped name: myshort */
/* Type: short (read/write) */
/*-------------------------------------- ----------------*/
 dcl 1 SavingAccount_myshort_type based,
 3 result fixed bin(15) init(0);
/*---*/
/* Attribute: mybaseshort */
/* Mapped name: mybaseshort */
/* Type: short (read/write) */
/*---*/
 dcl 1 SavingAccount_mybaseshort_type based,
 3 result fixed bin(15) init(0);

/*---*/
/* Operation: myfunc */
/* Mapped name: myfunc */
/* Arguments: <in> long mylong */
/* Returns: void */
/* User Exceptions: none */
/*---*/
 dcl 1 SavingAccount_myfunc_type based,
 3 mylong fixed bin(31) init(0);

/*---*/
/* Operation: mybasefunc */
/* Mapped name: mybasefunc */
/* Arguments: <in> long mybaselong */
/* Returns: void */
/* User Exceptions: none */

Example 10: The idlmembernameT Example (Sheet 2 of 3)
229

CHAPTER 6 | IDL-to-PL/I Mapping
/*---*/
 dcl 1 SavingAccount_mybasefunc_type based,
 3 mybaselong fixed bin(31) init(0);
/*---*/
/* Operation List section */
/* Contains a list of the interface's operations and */
/* attributes. */
/*---*/
 dcl Account_get_mybaseshort char(33)
 init('_get_mybaseshort:IDL:Account:1.0 ');
 dcl Account_set_mybaseshort char(33)
 init('_set_mybaseshort:IDL:Account:1.0 ');
 dcl Account_mybasefunc char(27)
 init('mybasefunc:IDL:Account:1.0 ');
 dcl SavingAccount_get_myshort char(35)
 init('_get_myshort:IDL:SavingAccount:1.0 ');
 dcl SavingAccount_set_myshort char(35)
 init('_set_myshort:IDL:SavingAccount:1.0 ');
 dcl SavingAccount_myfunc char(29)
 init('myfunc:IDL:SavingAccount:1.0 ');
 dcl SavingAccount_get_mybaseshort char(39)
 init('_get_mybaseshort:IDL:SavingAccount:1.0 ');
 dcl SavingAccount_set_mybaseshort char(39)
 init('_set_mybaseshort:IDL:SavingAccount:1.0 ');
 dcl SavingAccount_mybasefunc char(33)
 init('mybasefunc:IDL:SavingAccount:1.0 ');

Example 10:The idlmembernameT Example (Sheet 3 of 3)
 230

Mapping for Multiple Interfaces
Mapping for Multiple Interfaces

Overview This section describes how multiple interfaces are mapped to PL/I.

Example The example can be broken down as follows:

1. Consider the following IDL:

interface example1
{
 readonly attribute long mylong;
};

interface example2
{
 readonly attribute long mylong;
};
231

CHAPTER 6 | IDL-to-PL/I Mapping
2. The idlmembernameI member includes idlmembernameD, to determine
which server operation procedure is to be called. For example:

select(operation);
when (example1_get_mylong) do;
 call podget(addr(example1_mylong_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_example1_get_mylong
 (addr(example1_mylong_attr));

 call podput(addr(example1_mylong_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
when (example2_get_mylong) do;
 call podget(addr(example2_mylong_attr));
 if check_errors('podget') ^= completion_status_yes
 then return;

 call proc_example2_get_mylong
 (addr(example2_mylong_attr));

 call podput(addr(example2_mylong_attr));
 if check_errors('podput') ^= completion_status_yes
 then return;
end;
otherwise do;
 put skip list('ERROR! Undefined operation ' ||
 operation);
 return;
end;

end;
 232

CHAPTER 7

Orbix IDL
Compiler
This chapter describes the Orbix IDL compiler in terms of how
to run it in batch and OS/390 UNIX System Services, the PL/I
source code and include members that it creates, the
arguments that you can use with it, and the configuration
variables that it uses.

In this chapter This chapter discusses the following topics:

Running the Orbix IDL Compiler page 234

Generated PL/I Source and Include Members page 240

Orbix IDL Compiler Arguments page 242

Orbix IDL Compiler Configuration page 263

Note: The supplied demonstrations include examples of JCL that can be
used to run the Orbix IDL compiler. You can modify the demonstration JCL
as appropriate, to suit your applications. Any occurrences of orbixhlq in
this chapter are meant to represent the high-level qualifier for your Orbix
Mainframe installation on OS/390. If you are using OS/390 UNIX System
Services, references to OS/390 member names can be interchanged with
filenames, unless otherwise specified.
233

CHAPTER 7 | Orbix IDL Compiler
Running the Orbix IDL Compiler

Overview You can use the Orbix IDL compiler to generate PL/I source code and
include members from IDL definitions. This section describes how to run the
Orbix IDL compiler, both in batch and in OS/390 UNIX System Services.

In this section This section discusses the following topics:

Running the Orbix IDL Compiler in Batch page 235

Running the Orbix IDL Compiler in UNIX System Services page 238
 234

Running the Orbix IDL Compiler
Running the Orbix IDL Compiler in Batch

Overview This subsection describes how to run the Orbix IDL compiler in batch. It
discusses the following topics:

� �Orbix IDL compiler configuration� on page 235.

� �Running the Orbix IDL compiler� on page 235.

� �Example of the batch SIMPLIDL JCL� on page 236.

� �Description of the JCL� on page 237.

Orbix IDL compiler configuration The Orbix IDL compiler uses the Orbix configuration member for its settings.
The JCL that runs the compiler uses the IDL member in the
orbixhlq.CONFIG configuration PDS.

Running the Orbix IDL compiler For the purposes of this example, the PL/I source is generated in the first
step of the supplied orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLIDL) JCL. This JCL
is used to run the Orbix IDL compiler for the simple persistent POA-based
server demonstration supplied with your installation.
235

CHAPTER 7 | Orbix IDL Compiler
Example of the batch SIMPLIDL
JCL

The following is the supplied JCL to run the Orbix IDL compiler for the batch
version of the simple persistent POA-based server demonstration:

The preceding JCL generates PL/I include members from an IDL member
called SIMPLE (see the SOURCE=SIMPLE line).

//SIMPLIDL JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// REGION=0M,
// TIME=1440,
// NOTIFY=&SYSUID,
// COND=(4,LT)
//*---
//* Orbix - Generate the PL/I files for the Simple Demo
//*---
// JCLLIB ORDER=(orbixhlq.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//IDLPLI EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-pli:-V'
//ITDOMAIN DD DSN=&ORBIX..CONFIG(&DOMAIN),DISP=SHR

Note: PL/I include members are always generated by default when you
run the Orbix IDL compiler.
 236

Running the Orbix IDL Compiler
The preceding JCL specifies only the -V argument with the Orbix IDL
compiler (see the IDLPARM line). This instructs the Orbix IDL compiler not to
generate the idlmembernameV server mainline source code member. See
�Orbix IDL Compiler Arguments� on page 242 for more details.

Description of the JCL The settings and data definitions contained in the preceding JCL can be
explained as follows:

Note: The preceding JCL is specific to the batch version of the supplied
simple persistent POA-based server demonstration, and is contained in
orbixhlq.DEMOS.PLI.BLD.JCL(SIMPLIDL). For details of the JCL for the
CICS or IMS version of the demonstration see �Example of the SIMPLIDL
JCL� on page 59 or �Example of the SIMPLIDL JCL� on page 102.

ORBIX The high-level qualifier for your Orbix Mainframe installation,
which is set in orbixhlq.PROCS(ORXVARS).

SOURCE The IDL member to be compiled.

IDL The PDS for the IDL member.

COPYLIB The PDS for the PL/I include members generated by the Orbix IDL
compiler.

IMPL The PDS for the PL/I source code members generated by the
Orbix IDL compiler.

IDLPARM The plug-in to the Orbix IDL compiler to be used (in the preceding
example, it is the PL/I plug-in), and any arguments to be passed
to it (in the preceding example, there is one argument specified,
-V). See �Specifying Compiler Arguments� on page 244 for details
of how to specify the Orbix IDL compiler arguments as parameters
to it.
237

CHAPTER 7 | Orbix IDL Compiler
Running the Orbix IDL Compiler in UNIX System Services

Overview This subsection describes how to run the Orbix IDL compiler in OS/390
UNIX System Services. It discusses the following topics:

� �Orbix IDL compiler configuration� on page 238.

� �Prerequisites to running the Orbix IDL compiler� on page 238.

� �Running the Orbix IDL compiler� on page 235.

Orbix IDL compiler configuration The Orbix IDL compiler uses the Orbix IDL configuration file for its settings.
The configuration file is set via the IT_IDL_CONFIG_PATH export variable.

Prerequisites to running the Orbix
IDL compiler

Before you can run the Orbix IDL compiler, enter the following command to
initialize your Orbix environment (where YOUR_ORBIX_INSTALL represents the
full path to your Orbix installation directory):

Running the Orbix IDL compiler The general format for running the Orbix IDL compiler is:

In the preceding example, [:-argument1] and [:-argument2] represent
optional arguments that can be passed as parameters to the Orbix IDL
compiler, and idlfilename represents the name of the IDL file from which
you want to generate the PL/I source and include files.

For example, consider the following command:

Note: Even though you can run the Orbix IDL compiler in OS/390 UNIX
System Services, Orbix does not support subsequent building of Orbix PL/I
applications in OS/390 UNIX System Services.

cd $YOUR_ORBIX_INSTALL/etc/bin
. default-domain_env.sh

Note: You only need to do this once per logon.

idl -pli[:-argument1][:-argument2][…] idlfilename.idl

idl -pli:-V simple.idl
 238

Running the Orbix IDL Compiler
The preceding command instructs the Orbix IDL compiler to use the
simple.idl file. The Orbix IDL compiler always generates PL/I include files
by default, and the -V argument indicates that it should not generate an
idlfilenameV server mainline source code file. See �Orbix IDL Compiler
Arguments� on page 242 for more details of Orbix IDL compiler arguments.
See �Generated PL/I Source and Include Members� on page 240 and �Orbix
IDL Compiler Configuration� on page 263 for more details of default
generated filenames.
239

CHAPTER 7 | Orbix IDL Compiler
Generated PL/I Source and Include Members

Overview This section describes the various PL/I source code and include members
that the Orbix IDL compiler can generate.

Generated members Table 21 provides an overview and description of the PL/I source code and
include members that the Orbix IDL compiler can generate, based on the
IDL member name.

Table 21: Generated Source Code and Include Members

Member Name Member Type Compiler Argument
Used to Generate

Description

idlmembernameI Source code -S This is the server implementation
source code member. It contains
procedure definitions for all the callable
operations. It is only generated if you
use the -S argument.

idlmembernameV Source code Generated by
default

This is the server mainline source code
member. It is generated by default
unless you specify the -V argument to
prevent generation of it.

idlmembernameD Include member Generated by
default

This is the select include member. It
contains a select statement that
determines the appropriate
implementation function for the
attribute or operation being called.

idlmembernameL Include member Generated by
default

This is the alignment include member.
It contains procedures to perform the
PL/I alignment calculations on behalf of
the PL/I runtime.

idlmembernameM Include member Generated by
default

This is the main include member. It
stores all the PL/I structures and
declarations.
 240

Generated PL/I Source and Include Members
Member name restrictions If the IDL member name exceeds six characters, the Orbix IDL compiler uses
only the first six characters of that name when generating the source code
and include member names. This allows space for appending a
one-character suffix to each generated member name, while allowing it to
adhere to the seven-character maximum size limit for PL/I external
procedure names, which are based by default on the generated member
names. Member names (and filenames on OS/390 UNIX System Services)
are always generated in uppercase.

Filename extensions on OS/390
UNIX System Services

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
it is recommended (but not mandatory) that you specify certain extensions
for the generated filenames via the configuration variables in the Orbix IDL
configuration file. The recommended extension for both the server
implementation source code and server mainline source code filename is
.pli and can be set via the PLIModuleExtension configuration variable. The
recommended extension for all include filenames is .inc and can be set via
the PLIIncludeExtension configuration variable.

idlmembernameT Include member Generated by
default

This is the typedef include member. It
stores the based identifier information
(that is, the PL/I structure definitions for
which no storage is allocated).

idlmembernameX Include member Generated by
default

This is the runtime include member. It
contains information for the PL/I
runtime about the contents of each
interface.

Table 21: Generated Source Code and Include Members

Member Name Member Type Compiler Argument
Used to Generate

Description

Note: The settings for PLIModuleExtension and PLIIncludeExtension
are left blank by default in the Orbix IDL configuration file. See �PL/I
Configuration Variables� on page 264 for more details.
241

CHAPTER 7 | Orbix IDL Compiler
Orbix IDL Compiler Arguments

Overview This section describes the various arguments that you can specify as
parameters to the Orbix IDL compiler.

In this section This section discusses the following topics:

Summary of the arguments page 243

Specifying Compiler Arguments page 244

-D Argument page 246

-M Argument page 247

-O Argument page 254

-S Argument page 256

-T Argument page 257

-V Argument page 260

-W Argument page 261
 242

Orbix IDL Compiler Arguments
Summary of the arguments

Overview This subsection provides an introductory overview of the various Orbix IDL
compiler arguments. Each argument is described in more detail further on in
this section.

Summary The Orbix IDL compiler arguments can be summarized as follows:

All these arguments are optional. This means that they do not have to be
specified as parameters to the Orbix IDL compiler.

-D Generate source code and include files into specified directories
rather than the current working directory.

Note: This is relevant to OS/390 UNIX System Services only.

-M Set up an alternative mapping scheme for data names.

-O Override default include member names with a different name.

-S Generate server implementation source code.

-T Indicate whether server code is for batch, IMS, or CICS.

-V Do not generate the server mainline source code.

-W Indicate whether generated source code uses put or display calls
when issuing messages.
243

CHAPTER 7 | Orbix IDL Compiler
Specifying Compiler Arguments

Overview This subsection describes how to specify the available arguments as
parameters to the Orbix IDL compiler, both in batch and in OS/390 UNIX
System Services. It discusses the following topics:

� �Specifying compiler arguments in batch� on page 244.

� �Specifying compiler arguments in UNIX System Services� on
page 244.

Specifying compiler arguments in
batch

To denote the arguments that you want to specify as parameters to the
Orbix IDL compiler, you can use the DD name, IDLPARM, in the JCL that you
use to run it. See �Running the Orbix IDL Compiler� on page 234 for an
example of the supplied SIMPLIDL JCL that is used to run the Orbix IDL
compiler for the simple persistent POA-based server demonstration.

The parameters for the IDLPARM entry in the JCL take the following format:

Each argument that you specify must be preceded by a colon followed by a
hyphen (that is, :-) , with no spaces between any characters or any
arguments.

Specifying compiler arguments in
UNIX System Services

The parameters to the Orbix IDL compiler in OS/390 UNIX System Services
take the following format:

Each argument that you specify must be preceded by a colon followed by a
hyphen (that is, :-), with no spaces between any characters or any
arguments.

// IDLPARM='-pli[:-M[option][membername]][:-Omembername]
// [:-S][:-T[option]][:-V]'

Note: In the Pli scope of the orbixhlq.CONFIG(IDL) configuration
member, if you set the IsDefault variable to YES, you do not need to
specify the -pli switch in the IDLPARM line of the JCL. See �Orbix IDL
Compiler Configuration� on page 263 for more details.

-pli[:-D[option][dir]][:-M[option][membername]][:-Omembername]
[:-S][:-T[option]][:-V]
 244

Orbix IDL Compiler Arguments
Note: In the Pli scope of the Orbix IDL configuration file that is specified
via the IT_IDL_CONFIG_PATH export variable, if you set the IsDefault
variable to YES, you do not need to specify the -cobol switch as a
parameter to the Orbix IDL compiler. See �Orbix IDL Compiler
Configuration� on page 263 for more details.
245

CHAPTER 7 | Orbix IDL Compiler
-D Argument

Overview By default, when you run the Orbix IDL compiler in OS/390 UNIX System
Services, it generates source code and include files into the current working
directory. You can use the -D argument with the Orbix IDL compiler to
redirect some or all of the generated output into alternative directories.

Specifying the -D argument The -D argument takes two components: a sub-argument that specifies the
type of file to be redirected, and the directory path into which the file should
be redirected. The three valid sub-arguments, and the file types they
correspond to, are as follows:

You must specify the directory path directly after the sub-argument. There
must be no spaces between the argument, sub-argument, and directory
path. For example, consider the following command that instructs the Orbix
IDL compiler to generate PL/I files based on the IDL in myfile.idl, and to
place generated include files in /home/tom/pli/incl and generated source
code in /home/tom/pli/src:

Alternatively, consider the following command that instructs the Orbix IDL
compiler to generate an IDL mapping file called myfile.map, based on the
IDL in myfile.idl, and to place that mapping file in /home/tom/pli/map:

Note: The -D argument is relevant only if you are running the Orbix IDL
compiler on OS/390 UNIX System Services. It is ignored if you specify it
when running the Orbix IDL compiler on native OS/390.

i Include files

m IDL map files

s Source code files

idl -pli:-Di/home/tom/pli/incl:-Ds/home/tom/pli/src myfile.idl

idl -pli:-Dm/home/tom/pli/map:-Mcreate0myfile.map myfile.idl

Note: See the rest of this section for more details of how to generate
source code and IDL mapping files.
 246

Orbix IDL Compiler Arguments
-M Argument

Overview PL/I data names generated by the Orbix IDL compiler are based on fully
qualified IDL interface names by default (that is,
IDLmodulename(s)_IDLinterfacename_IDLvariablename). You can use the
-M argument with the Orbix IDL compiler to define your own alternative
mapping scheme for data names. This is particularly useful if your PL/I data
names are likely to exceed the 31-character restriction imposed by the PL/I
compiler.

Example of data names
generated by default

The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the data
names shown in Table 22 by default for the specified interfaces:

By using the -M argument, you can replace the fully scoped names shown in
Table 22 with alternative data names of your choosing.

module Banks{
 module IrishBanks{
 interface SavingsBank{attribute short accountbal;};
 interface NationalBank{};
 interface DepositBank{};
 };
};

Table 22: Example of Default Generated Data Names

Interface Name Generated Data Name

SavingsBank Banks_IrishBanks_SavingsBank

NationalBank Banks_IrishBanks_NationalBank

DepositBank Banks_IrishBanks_DepositBank
247

CHAPTER 7 | Orbix IDL Compiler
Defining IDLMAP DD card in
batch

If you are running the Orbix IDL compiler in batch, and you want to specify
the -M argument as a parameter to it, you must define a DD card for IDLMAP
in the JCL that you use to run the Orbix IDL compiler. This DD card specifies
the PDS for the mapping members generated by the Orbix IDL compiler.
(There is one mapping member generated for each IDL member.) For
example, you might define the DD card as follows in the JCL (where
orbixhlq represents the high-level qualifier for your Orbix Mainframe
installation):

You can define a DD card for IDLMAP even if you do not specify the -M
argument as a parameter to the Orbix IDL compiler. The DD card is simply
ignored if the -M argument is not specified.

Steps to generate alternative
names with the -M argument

The steps to generate alternative data name mappings with the -M argument
are:

Step 1�Generate the mapping
member

First, you must run the Orbix IDL compiler with the -Mcreate argument, to
generate the mapping member, which contains the fully qualified names
and the alternative name mappings.

If you are running the Orbix IDL compiler in batch, the format of the
command in the JCL used to run the compiler is as follows (where X
represents the scope level, and BANK is the name of the mapping member
you want to create):

//IDLMAP DD DISP=SHR,DSN=orbixhlq.DEMOS.PLI.MAP

Step Action

1 Run the Orbix IDL compiler with the -Mcreate argument, to
generate the mapping member, complete with the fully qualified
names and their alternative mappings.

2 Edit (if necessary) the generated mapping member, to change
the alternative name mappings to the names you want to use.

3 Run the Orbix IDL compiler with the -Mprocess argument, to
generate PL/I include members with the alternative data names.

IDLPARM='-pli:-McreateXBANK',
 248

Orbix IDL Compiler Arguments
If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the format of the command to run the compiler is as follows (where X
represents the scope level, bank.map is the name of the mapping file you
want to create, and myfile.idl is the name of the IDL file):

Generating mapping files into
alternative directories

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the mapping file is generated by default in the working directory. If you want
to place the mapping file elsewhere, use the -Dm argument in conjunction
with the -Mcreate argument. For example, the following command (where X
represents the scope level) creates a bank.map file based on the myfile.idl
file, and places it in the /home/tom/pli/map directory:

See �-D Argument� on page 246 for more details about the -D argument.

Scoping levels with the -Mcreate
command

As shown in the preceding few examples, you can specify a scope level with
the -Mcreate command. This specifies the level of scoping to be involved in
the generated data names in the mapping member. The possible scope
levels are:

-pli:-McreateXbank.map myfile.idl

Note: The name of the mapping member can be up to six characters
long. If you specify a name that is greater than six characters, the name is
truncated to the first six characters. In the case of OS/390 UNIX System
Services, you do not need to assign an extension of .map to the mapping
filename; you can choose to use any extension or assign no extension at
all.

-pli:-Dm/home/tom/pli/map:-McreateXbank.map myfile.idl

0 Map fully scoped IDL names to unscoped PL/I names (that is, to the
IDL variable name only).

1 Map fully scoped IDL names to partially scoped PL/I names (that is,
to IDLinterfacename_IDLvariablename). The scope operator, /, is
replaced with an underscore, _.

2 Map fully scoped IDL names to fully scoped PL/I names (that is, to
IDLmodulename(s)_IDLinterfacename_IDLvariablename). The
scope operator, /, is replaced with an underscore, _.
249

CHAPTER 7 | Orbix IDL Compiler
The following provides an example of the various scoping levels. The
example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL example, a -Mcreate0BANK command
produces the BANK mapping member contents shown in Table 23.

Alternatively, based on the preceding IDL example, a -Mcreate1BANK
command produces the BANK mapping member contents shown in
Table 24.

module Banks{
 module IrishBanks{
 interface SavingsBank{attribute short accountbal;};
 interface NationalBank{void deposit(in long
 amount);};
 };
};

Table 23: Example of Level-0-Scoped Generated Data Names

Fully Scoped IDL Names Generated Alternative Names

Banks Banks

Banks/IrishBanks IrishBanks

Banks/IrishBanks/SavingsBank SavingsBank

Banks/IrishBanks/SavingsBank/

accountbal

accountbal

Banks/IrishBanks/NationalBank NationalBank

Banks/IrishBanks/NationalBank/

deposit

deposit

Table 24: Example of Level-1-Scoped Generated Data Names

Fully Scoped IDL Names Generated Alternative Names

Banks Banks

Banks/IrishBanks IrishBanks
 250

Orbix IDL Compiler Arguments
Alternatively, based on the preceding IDL example, a -Mcreate2BANK
command produces the BANK mapping member contents shown in
Table 25.

Banks/IrishBanks/SavingsBank SavingsBank

Banks/IrishBanks/SavingsBank/

accountbal

SavingsBank_accountbal

Banks/IrishBanks/NationalBank NationalBank

Banks/IrishBanks/NationalBank/

deposit

NationalBank_deposit

Table 24: Example of Level-1-Scoped Generated Data Names

Fully Scoped IDL Names Generated Alternative Names

Table 25: Example of Level-2-Scoped Generated Data Names

Fully Scoped IDL Names Generated Alternative Names

Banks Banks

Banks/IrishBanks Banks_IrishBanks

Banks/IrishBanks/SavingsBank Banks_IrishBanks_SavingsBank

Banks/IrishBanks/SavingsBank/

accountbal

Banks_IrishBanks_SavingsBank_

accountbal

Banks/IrishBanks/NationalBank Banks_IrishBanks_NationalBank

Banks/IrishBanks/NationalBank/

deposit

Banks_IrishBanks_NationalBank_

deposit
251

CHAPTER 7 | Orbix IDL Compiler
Step 2�Change the alternative
name mappings

You can manually edit the mapping member to change the alternative
names to the names that you want to use. For example, you might change
the mappings in the BANK mapping member as follows:

Note the following rules:

� The fully scoped name and the alternative name meant to replace it
must be separated by one space (and one space only).

� If the alternative name exceeds 31 characters, it is abbreviated to 31
characters, subject to the the normal PL/I mapping rules for identifiers.

� The fully scoped IDL names generated are case sensitive, so that they
match the IDL being processed. If you add new entries to the mapping
member, to cater for additions to the IDL, the names of the new entries
must exactly match the corresponding IDL names in terms of case.

Step 3�Generate the PL/I include
members

When you have changed the alternative mapping names as necessary, run
the Orbix IDL compiler with the -Mprocess argument, to generate your PL/I
include members complete with the alternative data names that you have
set up in the specified mapping member.

If you are running the Orbix IDL compiler in batch, the format of the
command to generate PL/I include members with the alternative data
names is as follows (where BANK is the name of the mapping member you
want to create):

Table 26: Example of Modified Mapping Names

Fully Scoped IDL Names Modified Names

Banks/IrishBanks IrishBanks

Banks/IrishBanks/SavingsBank MyBank

Banks/IrishBanks/NationalBank MyOtherBank

Banks/IrishBanks/SavingsBank/accountbal Myaccountbalance

IDLPARM='-pli:-MprocessBANK'
 252

Orbix IDL Compiler Arguments
If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the format of the command to generate PL/I include members with the
alternative data names is as follows (where bank.map is the name of the
mapping file you want to create):

When you run the -Mprocess command, your PL/I include members are
generated with the alternative data names you want to use, instead of with
the fully qualified data names that the Orbix IDL compiler generates by
default.

-pli:-Mprocessbank.map

Note: If you are running the Orbix IDL compiler in OS/390 UNIX System
Services, and you used the -Dm argument with the -Mcreate argument, so
that the mapping file is not located in the current working directory, you
must specify the path to that alternative directory with the -Mprocess
argument. For example, -pli:-Mprocess/home/tom/pli/map/bank.map.
253

CHAPTER 7 | Orbix IDL Compiler
-O Argument

Overview PL/I source code and include member names generated by the Orbix IDL
compiler are based by default on the IDL member name. You can use the -O
argument with the Orbix IDL compiler to map the default source and include
member names to an alternative naming scheme, if you wish.

The -O argument is, for example, particularly useful for users who have
migrated from IONA�s Orbix 2.3-based solution for OS/390, and who want
to avoid having to change the %include statements in their existing
application source code. In this case, they can use the -O argument to
automatically change the generated source and include member names to
the alternative names they want to use.

Example of include members
generated by Orbix IDL compiler

The example can be broken down as follows:

1. Consider the following IDL, where the IDL is stored in a member called
TEST:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following PL/I include members, based on the IDL member name:

♦ TESTD

♦ TESTL

♦ TESTM

Note: If you are an existing user who has migrated from IONA�s Orbix
2.3-based solution for OS/390, see the Mainframe Migration Guide for
more details.

interface simple
{
 void sizeofgrid(in long mysize1, in long
 mysize2);
};

interface block
{
 void area(in long myarea);
};
 254

Orbix IDL Compiler Arguments
♦ TESTT

♦ TESTX

Specifying the -O argument If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, changes the include member names from TEST to SIMPLE:

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the following command, for example, changes the include member names
from TEST to SIMPLE:

You must specify the alternative name directly after the -O argument (that
is, no spaces). Even if you specify the replacement name in lower case (for
example, simple instead of SIMPLE), the Orbix IDL compiler automatically
generates replacement names in upper case.

Limitation in size of
replacement name

If the name you supply as the replacement exceeds six characters (in the
preceding example it does not, because it is SIMPLE), only the first six
characters of that name are used as the basis for the alternative member
names.

// SOURCE=TEST
// …
// IDLPARM='-pli:-OSIMPLE'

-pli:-OSIMPLE test.idl
255

CHAPTER 7 | Orbix IDL Compiler
-S Argument

Overview The -S argument generates skeleton server implementation source code
(that is, the idlmembernameI member). This member provides a skeleton
implementation for the attributes and operation procedures to be
implemented. It is not generated by default by the Orbix IDL compiler. It is
only generated if you use the -S argument, because doing so overwrites any
server implementation code that has already been created based on that IDL
member name.

Specifying the -S argument If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a server implementation member called SIMPLEI,
based on the SIMPLE IDL member:

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the following command, for example, creates a server implementation file
called SIMPLEI, based on the simple.idl IDL file:

WARNING: Only specify the -S argument if you want to generate new
server implementation source code or deliberately overwrite existing code.

// SOURCE=SIMPLE,
// …
// IDLPARM='-pli:-S'

-pli:-S simple.idl

Note: In the case of OS/390 UNIX System Services, if you use the
PLIModuleExtension configuration variable to specify an extension for the
server implementation source code member name, this extension is
automatically appended to the generated member name. The preceding
commands generate batch server implementation code. If you want to
generate CICS or IMS server implementation code, see �-T Argument� on
page 257 for more details.
 256

Orbix IDL Compiler Arguments
-T Argument

Overview The -T argument allows you to specify whether the server code you want to
generate is for use in batch, IMS, or CICS.

Qualifying parameters The -T argument must be qualified by NATIVE, IMS, or CICS. For example:

NATIVE Specifying -TNATIVE generates batch server mainline code.
Specifying -TNATIVE with -S generates batch server
implementation code.

Specifying -TNATIVE is the same as not specifying -T at all.
That is, unless you specify -TIMSx or TCICS, the IDL compiler
generates server code by default for use in native batch mode.

Note: If you specify -TNATIVE with -V, it prevents the
generation of batch server mainline code.

IMSx Specifying -TIMSx generates IMS server mainline code.
Specifying -TIMSx with -S generates IMS server
implementation code.

Specifying -TIMSx means that io_pcb_ptr, alt_pcb_ptr, and
x number of extra pcb pointer parameters are added to the
server mainline. It also means that the line %include IMSPCB;
is added to the server mainline. Specifying -TIMS is the same
as specifying -TIMS0 (that is, if you do not specify a number,
no extra pcb pointer parameters are added).

If you also specify the -S argument with the compiler, the line
%include IMSPCB; is also added to the server implementation.
IORs for the interfaces that server implements are not written
to file, because the IMS adapter handles this.

Note: IMSPCB is a static include file that allows the server
implementation to access the IMS pointers that are passed in
the server mainline. If you specify -TIMSx with -V, it prevents
the generation of IMS server mainline code.

CICS Specifying -TCICS generates CICS server mainline code.
Specifying -TCICS with -S generates CICS server
implementation code.

Note: If you specify -TCICS with -V, it prevents the generation
of CICS server mainline code.
257

CHAPTER 7 | Orbix IDL Compiler
Specifying the -TNATIVE
argument

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a batch PL/I server mainline member (called
TESTV) and a batch PL/I server implementation member (called TESTI),
based on the TEST IDL member:

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the following command, for example, creates a batch PL/I server mainline
file (called TESTV) and a batch PL/I server implementation file (called
TESTI), based on the test.idl IDL file:

See �Developing the Server� on page 28 for an example of batch PL/I server
mainline and implementation members.

Specifying the -TIMSx argumentS If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates an IMS PL/I server mainline member (called
TESTV) with four PCB pointers, and an IMS PL/I server implementation
member (called TESTI), based on the TEST IDL member:

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the following command, for example, creates an IMS PL/I server mainline
file (called TESTV) with four PCB pointers, and an IMS PL/I server
implementation file (called TESTI), based on the test.idl IDL file:

See �Developing the IMS Server� on page 67 for an example of IMS PL/I
server mainline and implementation members.

// SOURCE=TEST,
// …
// IDLPARM='-pli:-S:-TNATIVE',

-pli:-S:-TNATIVE test.idl

Note: Specifying -TNATIVE is the same as not specifying -T at all.

// SOURCE=TEST,
// …
// IDLPARM='-pli:-S:-TIMS4',

-pli:-S:-TIMS4 test.idl
 258

Orbix IDL Compiler Arguments
Specifying the -TCICS argument If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a CICS PL/I server mainline member (called
TESTV) and a CICS PL/I server implementation member (called TESTI),
based on the TEST IDL member:

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the following command, for example, creates a CICS PL/I server mainline file
(called TESTV) and a CICS PL/I server implementation file (called TESTI),
based on the test.idl IDL file:

See �Developing the CICS Server� on page 110 for an example of CICS PL/I
server mainline and implementation members.

// SOURCE=TEST,
// …
// IDLPARM='-pli:-S:-TCICS',

-pli:-S:-TCICS test.idl
259

CHAPTER 7 | Orbix IDL Compiler
-V Argument

Overview The -V argument prevents generation of server mainline source code (that is,
it prevents generation of the idlmembernameV member). You typically use
this argument if you have added code that you do not want to be overwritten
(for example, code that produces server output indicating that the server is
ready to receive requests).

Specifying the -V argument If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, only generates include members, based on the SIMPLE IDL
member, and prevents creation of a server mainline source code member
called SIMPLEV:

If you are running the Orbix IDL compiler in OS/390 UNIX System Services,
the following command, for example, only generates include files, based on
the simple.idl IDL file, and prevents creation of a server mainline source
code file called SIMPLEV:

WARNING: If you do not specify the -V argument, any previous version of
the server mainline source code member is overwritten.

// SOURCE=SIMPLE,
// …
// IDLPARM='-pli:-V'

-pli:-V simple.idl

Note: In the case of OS/390 UNIX System Services, if you use the
PLIModuleExtension configuration variable to specify an extension for the
server mainline source code member name, this extension is automatically
appended to the generated member name when you do not specify the -V
argument. The preceding commands generate batch server
implementation code. If you want to generate CICS or IMS server
implementation code, see �-T Argument� on page 257 for more details.
 260

Orbix IDL Compiler Arguments
-W Argument

Overview The -W argument indicates whether the generated source code should use
put or display calls when issuing messages.

Specifying the -W argument The -W argument takes a sub-argument that specifies how to issue
messages in the generated code. There are two valid sub-arguments:

If you are running the Orbix IDL compiler in batch, the following JCL, for
example, generates code that uses DISPLAY calls to issue messages:

If you are running the Orbix IDL compiler on OS/390 UNIX System Services,
the following command, for example, generates code that uses DISPLAY
calls to issue messages:

d Use the PL/I DISPLAY call to issue messages in the
generated code.

The DISPLAY call causes messages to be generated by a
WTO.

A DISPLAY call issued from within an IMS region does not
generate any messages. No messages are written to the
system log or to STDOUT.

When using Enterprise PL/I, the DISPLAY compiler option
can be used to specify where the messages are directed,
as follows:

� DISPLAY(WTO) directs messages to the system log.

� DISPLAY(STD) directs messages to STDOUT.

p Use the PL/I PUT call to issue messages in the generated
code. This is the default option.

The PUT call directs messages to STDOUT.

//SOURCE=TEST
//…
//IDLPARM=’-pli:-Wd’

idl -pli:-Wd simple.idl
261

CHAPTER 7 | Orbix IDL Compiler
If you do not specify a -W argument, the default is to generate code that uses
PUT calls to issue messages.
 262

Orbix IDL Compiler Configuration
Orbix IDL Compiler Configuration

Overview This section describes the configuration variables relevant to the Orbix IDL
compiler -pli plug-in for PL/I source code and include member generation,
and the -mfa plug-in for IMS or CICS adapter mapping member generation.

In this section This section discusses the following topics:

Note: The -mfa plug-in is not relevant for batch application development.

PL/I Configuration Variables page 264

Adapter Mapping Member Configuration Variables page 268

Providing Arguments to the IDL Compiler page 271
263

CHAPTER 7 | Orbix IDL Compiler
PL/I Configuration Variables

Overview The Orbix IDL configuration member contains settings for PL/I, along with
settings for C++ and several other languages. If the Orbix IDL compiler is
running in batch, it uses the configuration member located in
orbixhlq.CONFIG(IDL). If the Orbix IDL compiler is running in OS/390
UNIX System Services, it uses the configuration file specified via the
IT_IDL_CONFIG_PATH export variable.

Configuration variables The PL/I configuration is listed under Pli as follows:

Mandatory settings The Switch, ShlibName, and ShlibMajorVersion variables are mandatory
and their default settings must not be altered. They inform the Orbix IDL
compiler how to recognize the PL/I switch, and what name the DLL plug-in
is stored under. The x value for ShlibMajorVersion represents the version
number of the supplied ShlibName DLL.

Pli
{
 Switch = "pli";
 ShlibName = "ORXBPLI";
 ShlibMajorVersion = "x";
 IsDefault = "NO";
 PresetOptions = "";

MainIncludeSuffix = "Q";

PL/I modules and includes extensions
The default is .pli and .inc on NT and none for OS/390.
 PLIModuleExtension = "";
 PLIIncludeExtension = "";
};

Note: Settings listed with a # are considered to be comments and are not
in effect. The default in relation to PL/I modules and includes extensions is
also none for OS/390 UNIX System Services.
 264

Orbix IDL Compiler Configuration
User-defined settings All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format:

List of available variables Table 27 provides an overview and description of the available configuration
variables.

setting_name = "value";

Table 27: Summary of PL/I Configuration Variables (Sheet 1 of 2)

Variable Name Description Default

IsDefault Indicates whether PL/I is the
language that the Orbix IDL
compiler generates by
default from IDL. If this is
set to YES, you do not need
to specify the -pli switch
when running the compiler.

PresetOptions The arguments that are
passed by default as
parameters to the Orbix IDL
compiler.

PLIModuleExtensiona Extension for the server
source code filenames on
OS/390 UNIX System
Services or Windows NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is
.pli.
265

CHAPTER 7 | Orbix IDL Compiler
PLIIncludeExtensiona Extension for PL/I include
filenames on OS/390 UNIX
System Services or Windows
NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is
.inc.

MainIncludeSuffix Suffix for the main include
member name.

M

TypedefIncludeSuffix Suffix for the typedef include
member name.

T

RuntimeIncludeSuffix Suffix for the runtime
include member name.

X

SelectIncludeSuffix Suffix for the select include
member name.

D

ServerMainModuleSuffix Suffix for the server mainline
source code member name.

V

ServerImplModuleSuffix Suffix for the server
implementation source code
member name.

I

MaxFixedDigits Maximum precision for the
FIXED DECIMAL type.

15

NotSymbol Symbol for the NOT operator. ¬

OrSymbol Symbol for the OR operator. |b

a. This is ignored on native OS/390.

b. PL/I uses a double OR symbol (that is, ||) as a string concatenation symbol.

Table 27: Summary of PL/I Configuration Variables (Sheet 2 of 2)

Variable Name Description Default
 266

Orbix IDL Compiler Configuration
The last nine variables shown in Table 27 on page 265 are not listed by
default in orbixhlq.CONFIG(IDL). If you want to change the value for a
variable name that is not listed by default, you must manually enter that
variable name and its corresponding value in orbixhlq.CONFIG(IDL).

Note: Suffixes for member names can only be a single character. Use an
asterisk (that is, *) if no suffix is to be used for a particular source code or
include member.
267

CHAPTER 7 | Orbix IDL Compiler
Adapter Mapping Member Configuration Variables

Overview The -mfa plug-in allows the Orbix IDL compiler to generate:

� IMS or CICS adapter mapping members from IDL, using the -t
argument.

� Type information members, using the -inf argument.

The Orbix IDL configuration member contains configuration settings relating
to the generation of IMS or CICS adapter mapping members and type
information members.

Configuration variables The IMS or CICS adapter mapping member configuration is listed under
MFAMappings as follows:

Note: See the IMS Adapter Administrator�s Guide or CICS Adapter
Administrator�s Guide for more details about adapter mapping members
and type information members.

MFAMappings
{
 Switch = "mfa";
 ShlibName = "ORXBMFA";
 ShlibMajorVersion = "x";
 IsDefault = "NO";
 PresetOptions = "";

Mapping & Type Info file suffix and ext. may be overridden
The default mapping file suffix is A
The default mapping file ext. is .map and none for OS/390
The default type info file suffix is B
The default type info file ext. is .inf and none for OS/390
MFAMappingExtension = "";
MFAMappingSuffix = "";
TypeInfoFileExtension = "";
TypeInfoFileSuffix = ""’
};
 268

Orbix IDL Compiler Configuration
Mandatory settings The Switch, ShlibName, and ShlibMajorVersion variables are mandatory
and their settings must not be altered. They inform the Orbix IDL compiler
how to recognize the adapter mapping member switch, and what name the
DLL plug-in is stored under. The x value for ShlibMajorVersion represents
the version number of the supplied ShlibName DLL.

User-defined settings All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format.

List of available variables Table 28 provides an overview and description of the available configuration
variables.

setting_name = "value";

Table 28: Adapter Mapping Member Configuration Variables

Variable Name Description Default

IsDefault Indicates whether the Orbix
IDL compiler generates
adapter mapping members by
default from IDL. If this is set
to YES, you do not need to
specify the -mfa switch when
running the compiler.

PresetOptions The arguments that are passed
by default as parameters to the
Orbix IDL compiler for the
purposes of generating adapter
mapping members.

MFAMappingExtensiona Extension for the adapter
mapping filename on OS/390
UNIX System Services or
Windows NT.

map
269

CHAPTER 7 | Orbix IDL Compiler
MFAMappingSuffix Suffix for the adapter mapping
member name. If you do not
specify a value for this, it is
generated with an A suffix by
default.

A

TypeInfoFileExtensiona Extension for the type
information filename on
OS/390 UNIX System Services
or Windows NT.

inf

TypeInfoFileSuffix Suffix for the type information
member name. If you do not
specify a value for this, it is
generated with a B suffix by
default.

B

a. This is ignored on native OS/390.

Table 28: Adapter Mapping Member Configuration Variables

Variable Name Description Default
 270

Orbix IDL Compiler Configuration
Providing Arguments to the IDL Compiler

Overview The Orbix IDL compiler configuration can be used to provide arguments to
the IDL compiler. Normally, IDL compiler arguments are supplied to the
ORXIDL procedure via the IDLPARM JCL symbolic, which comprises part of
the JCL PARM. The JCL PARM has a 100-character limit imposed by the
operating system. Large IDL compiler arguments, coupled with locale
environment variables, tend to easily approach or exceed the 100-character
limit. To help avoid problems with the 100-character limit, IDL compiler
arguments can be provided via a data set containing IDL compiler
configuration statements.

IDL compiler argument input to
ORXIDL

The ORXIDL procedure accepts IDL compiler arguments from three sources:

� The orbixhlq.CONFIG(IDL) data set�This is the main Orbix IDL
compiler configuration data set. See �PL/I Configuration Variables� on
page 264 for an example of the Pli configuration scope. See �Adapter
Mapping Member Configuration Variables� on page 268 for an
example of the MFAMappings configuration scope. The Pli and
MFAMappings configuration scopes used by the IDL compiler are in
orbixhlq.CONFIG(IDL). IDL compiler arguments are specified in the
PresetOptions variable.

� The IDLARGS data set�This data set can extend or override what is
defined in the main Orbix IDL compiler configuration data set. The
IDLARGS data set defines a PresetOptions variable for each
configuration scope. This variable overrides what is defined in the main
Orbix IDL compiler configuration data set.

� The IDLPARM symbolic of the ORXIDL procedure�This is the usual
source of IDL compiler arguments.
271

CHAPTER 7 | Orbix IDL Compiler
Because the IDLPARM symbolic is the usual source for IDL compiler
arguments, it might lead to problems with the 100-character JCL PARM
limit. Providing IDL compiler arguments in the IDLARGS data set can help to
avoid problems with the 100-character limit. If the same IDL compiler
arguments are supplied in more than one input source, the order of
precedence is as follows:

� IDL compiler arguments specified in the IDLPARM symbolic take
precedence over identical arguments specified in the IDLARGS data set
and the main Orbix IDL compiler configuration data set.

� The PresetOptions variable in the IDLARGS data set overrides the
PresetOptons variable in the main Orbix IDL compiler configuration
data set. If a value is specified in the PresetOptons variable in the
main Orbix IDL compiler configuration data set, it should be defined
(along with any additional IDL compiler arguments) in the
PresetOptions variable in the IDLARGS data set.

Using the IDLARGS data set The IDLARGS data set can help when IDL compiles are failing due to the
100-character limit of the JCL PARM. Consider the following JCL:

In the preceding example, all the IDL compiler arguments are provided in
the IDLPARM JCL symbolic, which is part of the JCL PARM. The JCL PARM
can also be comprised of an environment variable that specifies locale
information. Locale environment variables tend to be large and use up many
of the 100 available characters in the JCL PARM. If the 100-character limit

//IDLPLI EXEC ORXIDL,
// SOURCE=BANKDEMO,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.PLI.PLINCL,
// IMPL=&ORBIX..DEMOS.PLI.SRC,
// IDLPARM='-pli:-MprocessBANK:-OBANK'
 272

Orbix IDL Compiler Configuration
is exceeded, some of the data in the IDLPARM JCL symbolic can be moved to
the IDLARGS data set to reclaim some of the JCL PARM space. The
preceding example can be recoded as follows:

The IDLPARM JCL symbolic retains the -pli switch. The rest of the IDLPARM
data is now provided in the IDLARGS data set, freeing up 21 characters of
JCL PARM space.

The IDLARGS data set contains IDL configuration file scopes. These are a
reopening of the scopes defined in the main IDL configuration file. In the
preceding example, the IDLPARM JCL symbolic contains a -pli switch. This
instructs the IDL compiler to look in the Pli scope of the IDLARGS dataset
for any IDL compiler arguments that might be defined in the PresetOptions
variable. Based on the preceding example, it finds -MprocessBANK:-OBANK.

The IDLARGS data set must be coded according to the syntax rules for the
main Orbix IDL compiler configuration data set. See �PL/I Configuration
Variables� on page 264 for an example of the Pli configuration scope. See
�Adapter Mapping Member Configuration Variables� on page 268 for an
example of the MFAMappings configuration scope.

Defining multiple scopes in the
IDLARGS data set

The IDLARGS data set can contain multiple scopes. Consider the following
JCL that compiles IDL for a CICS server:

//IDLPLI EXEC ORXIDL,
// SOURCE=BANKDEMO,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.PLI.PLINCL,
// IMPL=&ORBIX..DEMOS.PLI.SRC,
// IDLPARM='-pli'
//IDLARGS DD *
Pli {PresetOptions = "-MprocessBANK:-OBANK";};
/*

Note: A long entry can be continued by coding a backslash character
(that is, \) in column 72, and starting the next line in column 1.

//IDLPLI EXEC ORXIDL,
// SOURCE=NSTSEQ,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.CICS.PLI.PLINCL,
// IMPL=&ORBIX..DEMOS.CICS.PLI.SRC,
// IDLPARM='-pli:-TCICS -mfa:-tNSTSEQSV'
273

CHAPTER 7 | Orbix IDL Compiler
The IDLPARM JCL symbolic contains both a -pli and -mfa switch. The
preceding example can be recoded as follows:

The IDLPARM JCL symbolic retains the -pli and -mfa IDL compiler switches.
The IDL compiler looks for -pli switch arguments in the Pli scope, and for
-mfa switch arguments in the MFAMappings scope.

//IDLPLI EXEC ORXIDL,
// SOURCE=NSTSEQ,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.CICS.PLI.PLINCL,
// IMPL=&ORBIX..DEMOS.CICS.PLI.SRC,
// IDLPARM='-pli -mfa'
//IDLARGS DD *
Pli {PresetOptions = "-TCICS";};
MFAMappings {PresetOptions = "-tNSTSEQSV";};
/*
 274

CHAPTER 8

Memory Handling
Memory handling must be performed when using dynamic
structures such as unbounded strings, bounded and
unbounded sequences, and anys. This chapter provides details
of responsibility for the allocation and subsequent release of
dynamic memory for these complex types at the various stages
of an Orbix PL/I application. It first describes in detail the
memory handling rules adopted by the PL/I runtime for
operation parameters relating to different dynamic structures.
It then provides a type-specific breakdown of the APIs that are
used to allocate and release memory for these dynamic
structures.

In this chapter This chapter discusses the following topics:

Operation Parameters page 276

Memory Management Routines page 300

Note: See �API Reference� on page 305 for full API details.
275

CHAPTER 8 | Memory Handling
Operation Parameters

Overview This section describes in detail the memory handling rules adopted by the
PL/I runtime for operation parameters relating to different types of dynamic
structures, such as unbounded strings, bounded and unbounded sequences,
and any types. Memory handling must be performed when using these
dynamic structures. It also describes memory issues arising from the raising
of exceptions.

In this section The following topics are discussed in this section:

Bounded Sequences and Memory Management page 277

Unbounded Sequences and Memory Management page 281

Unbounded Strings and Memory Management page 285

The any Type and Memory Management page 293

User Exceptions and Memory Management page 298
 276

Operation Parameters
Bounded Sequences and Memory Management

Overview for IN parameters Table 29 provides a detailed outline of how memory is handled for bounded
sequences that are used as in parameters.

Summary of rules for IN
parameters

The memory handling rules for a bounded sequence used as an in
parameter can be summarized as follows, based on Table 29:

1. The client calls SEQINIT to initialize the sequence information block
and allocate memory for it.

2. The client initializes the sequence elements.

3. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PODGET, which causes the server-side PL/I runtime to
receive the sequence and implicitly allocate memory for it.

5. The server obtains the sequence value from the operation parameter
buffer.

6. The server calls PODPUT, which causes the server-side PL/I runtime to
implicitly free the memory allocated by the call to PODGET.

7. The client calls SEQFREE to free the memory allocated by the call to
SEQINIT.

Table 29: Memory Handling for IN Bounded Sequences

Client Application Server Application

1. SEQINIT
2. write
3. PODEXEC�(send)

7. SEQFREE

4. PODGET�(receive, allocate)
5. read
6. PODPUT�(free)
277

CHAPTER 8 | Memory Handling
Overview for INOUT parameters Table 30 provides a detailed outline of how memory is handled for bounded
sequences that are used as inout parameters.

Summary of rules for INOUT
parameters

The memory handling rules for a bounded sequence used as an inout
parameter can be summarized as follows, based on Table 30:

1. The client calls SEQINIT to initialize the sequence information block
and allocate memory for it.

2. The client initializes the sequence elements.

3. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PODGET, which causes the server-side PL/I runtime to
receive the sequence and implicitly allocate memory for it.

5. The server obtains the sequence value from the operation parameter
buffer.

6. The server calls SEQFREE to explicitly free the memory allocated for the
original in sequence via the call to PODGET in point 4.

7. The server calls SEQINIT to initialize the replacement out sequence
and allocate memory for it.

8. The server initializes the sequence elements for the replacement out
sequence.

Table 30: Memory Handling for INOUT Bounded Sequences

Client Application Server Application

1. SEQINIT
2. write
3. PODEXEC�(send)

10. (free, receive, allocate)
11. read
12. SEQFREE

4. PODGET�(receive, allocate)
5. read
6. SEQFREE
7. SEQINIT
8. write
9. PODPUT�(send, free)
 278

Operation Parameters
9. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the replacement out sequence across the network and then
implicitly free the memory allocated for it via the call to SEQINIT in
point 7.

10. Control returns to the client, and the call to PODEXEC in point 3 now
causes the client-side PL/I runtime to:

i. Free the memory allocated for the original in sequence via the
call to SEQINIT in point 1.

ii. Receive the replacement out sequence.

iii. Allocate memory for the replacement out sequence.

11. The client obtains the sequence value from the operation parameter
buffer.

12. The client calls SEQFREE to free the memory allocated for the
replacement out sequence via the call to PODEXEC in point 3.

Overview for OUT and return
parameters

Table 31 provides a detailed outline of how memory is handled for bounded
sequences that are used as out or return parameters.

Note: By having PODEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

Table 31: Memory Handling for OUT and Return Bounded Sequences

Client Application Server Application

1. PODEXEC�(send)

6. (receive, allocate)
7. read
8. SEQFREE

2. PODGET�(receive)
3. SEQINIT
4. write
5. PODPUT�(send, free)
279

CHAPTER 8 | Memory Handling
Summary of rules for OUT and
return parameters

The memory handling rules for a bounded sequence used as an out or
return parameter can be summarized as follows, based on Table 31:

1. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PODGET, which causes the server-side PL/I runtime to
receive the client request.

3. The server calls SEQINIT to initialize the sequence and allocate
memory for it.

4. The server initializes the sequence elements.

5. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the sequence via the call to SEQINIT.

6. Control returns to the client, and the call to PODEXEC in point 1 now
causes the client-side PL/I runtime to receive the sequence and
implicitly allocate memory for it.

7. The client obtains the sequence value from the operation parameter
buffer.

8. The client calls SEQFREE, which causes the client-side PL/I runtime to
free the memory allocated for the sequence via the call to PODEXEC.
 280

Operation Parameters
Unbounded Sequences and Memory Management

Overview for IN parameters Table 32 provides a detailed outline of how memory is handled for
unbounded sequences that are used as in parameters.

Summary of rules for IN
parameters

The memory handling rules for an unbounded sequence used as an in
parameter can be summarized as follows, based on Table 32:

1. The client calls SEQALOC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

2. The client calls SEQSET to initialize the sequence elements.

3. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PODGET, which causes the server-side PL/I runtime to
receive the sequence and implicitly allocate memory for it.

5. The server calls SEQGET to obtain the sequence value from the
operation parameter buffer.

6. The server calls PODPUT, which causes the server-side PL/I runtime to
implicitly free the memory allocated by the call to PODGET.

7. The client calls SEQFREE to free the memory allocated by the call to
SEQALOC.

Table 32: Memory Handling for IN Unbounded Sequences

Client Application Server Application

1. SEQALOC
2. SEQSET
3. PODEXEC�(send)

7. SEQFREE

4. PODGET�(receive, allocate)
5. SEQGET
6. PODPUT�(free)
281

CHAPTER 8 | Memory Handling
Overview for INOUT parameters Table 33 provides a detailed outline of how memory is handled for
unbounded sequences that are used as inout parameters.

Summary of rules for INOUT
parameters

The memory handling rules for an unbounded sequence used as an inout
parameter can be summarized as follows, based on Table 33:

1. The client calls SEQALOC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

2. The client calls SEQSET to initialize the sequence elements.

3. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PODGET, which causes the server-side PL/I runtime to
receive the sequence and implicitly allocate memory for it.

5. The server calls SEQGET to obtain the sequence value from the
operation parameter buffer.

6. The server calls SEQFREE to explicitly free the memory allocated for the
original in sequence via the call to PODGET in point 4.

7. The server calls SEQALOC to initialize the replacement out sequence
and allocate memory for both the sequence information block and the
sequence data.

Table 33: Memory Handling for INOUT Unbounded Sequences

Client Application Server Application

1. SEQALOC
2. SEQSET
3. PODEXEC�(send)

10. (free, receive, allocate)
11. SEQGET
12. SEQFREE

4. PODGET�(receive, allocate)
5. SEQGET
6. SEQFREE
7. SEQALOC
8. SEQSET
9. PODPUT�(send, free)
 282

Operation Parameters
8. The server calls SEQSET to initialize the sequence elements for the
replacement out sequence.

9. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the replacement out sequence across the network and then
implicitly free the memory allocated for it via the call to SEQALOC in
point 7.

10. Control returns to the client, and the call to PODEXEC in point 3 now
causes the client-side PL/I runtime to:

i. Free the memory allocated for the original in sequence via the
call to SEQALOC in point 1.

ii. Receive the replacement out sequence.

iii. Allocate memory for the replacement out sequence.

11. The client calls SEQGET to obtain the sequence value from the operation
parameter buffer.

12. The client calls SEQFREE to free the memory allocated for the
replacement out sequence in point 10 via the call to PODEXEC in point
3.

Overview for OUT and return
parameters

Table 34 provides a detailed outline of how memory is handled for
unbounded sequences that are used as out or return parameters.

Note: By having PODEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

Table 34: Memory Handling for OUT and Return Unbounded Sequences

Client Application Server Application

1. PODEXEC�(send)

6. (receive, allocate)
7. SEQGET
8. SEQFREE

2. PODGET�(receive)
3. SEQALOC
4. SEQSET
5. PODPUT�(send, free)
283

CHAPTER 8 | Memory Handling
Summary of rules for OUT and
return parameters

The memory handling rules for an unbounded sequence used as an out or
return parameter can be summarized as follows, based on Table 34:

1. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PODGET, which causes the server-side PL/I runtime to
receive the client request.

3. The server calls SEQALOC to initialize the sequence and allocate
memory for both the sequence information block and the sequence
data.

4. The server calls SEQSET to initialize the sequence elements.

5. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the sequence via the call to SEQALOC.

6. Control returns to the client, and the call to PODEXEC in point 1 now
causes the client-side PL/I runtime to receive the sequence and
implicitly allocate memory for it.

7. The client calls SEQGET to obtain the sequence value from the operation
parameter buffer.

8. The client calls SEQFREE, which causes the client-side PL/I runtime to
free the memory allocated for the sequence via the call to PODEXEC.
 284

Operation Parameters
Unbounded Strings and Memory Management

Overview for IN parameters Table 35 provides a detailed outline of how memory is handled for
unbounded strings that are used as in parameters.

Summary of rules for IN
parameters

The memory handling rules for an unbounded string used as an in
parameter can be summarized as follows, based on Table 35:

1. The client calls STRSET to initialize the unbounded string and allocate
memory for it.

2. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

3. The server calls PODGET, which causes the server-side PL/I runtime to
receive the string and implicitly allocate memory for it.

4. The server calls STRGET to obtain the string value from the operation
parameter buffer.

5. The server calls PODPUT, which causes the server-side PL/I runtime to
implicitly free the memory allocated by the call to PODGET.

6. The client calls STRFREE to free the memory allocated by the call to
STRSET.

Table 35: Memory Handling for IN Unbounded Strings

Client Application Server Application

1. STRSET
2. PODEXEC�(send)

6. STRFREE

3. PODGET�(receive, allocate)
4. STRGET
5. PODPUT�(free)
285

CHAPTER 8 | Memory Handling
Overview for INOUT parameters Table 36 provides a detailed outline of how memory is handled for
unbounded strings that are used as inout parameters.

Summary of rules for INOUT
parameters

The memory handling rules for an unbounded string used as an inout
parameter can be summarized as follows, based on Table 36:

1. The client calls STRSET to initialize the unbounded string and allocate
memory for it.

2. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

3. The server calls PODGET, which causes the server-side PL/I runtime to
receive the string and implicitly allocate memory for it.

4. The server calls STRGET to obtain the string value from the operation
parameter buffer.

5. The server calls STRFREE to explicitly free the memory allocated for the
original in string via the call to PODGET in point 3.

6. The server calls STRSET to initialize the replacement out string and
allocate memory for it.

7. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the replacement out string across the network and then
implicitly free the memory allocated for it via the call to STRSET in point
6.

Table 36: Memory Handling for INOUT Unbounded Strings

Client Application Server Application

1. STRSET
2. PODEXEC�(send)

8. (free, receive, allocate)
9. STRGET
10. STRFREE

3. PODGET�(receive, allocate)
4. STRGET
5. STRFREE
6. STRSET
7. PODPUT�(send, free)
 286

Operation Parameters
8. Control returns to the client, and the call to PODEXEC in point 2 now
causes the client-side PL/I runtime to:

i. Free the memory allocated for the original in string via the call to
STRSET in point 1.

ii. Receive the replacement out string.

iii. Allocate memory for the replacement out string.

9. The client calls STRGET to obtain the replacement out string value from
the operation parameter buffer.

10. The client calls STRFREE to free the memory allocated for the
replacement out string in point 8 via the call to PODEXEC in point 2.

Overview for OUT and return
parameters

Table 37 provides a detailed outline of how memory is handled for
unbounded strings that are used as out or return parameters.

Summary of rules for OUT and
return parameters

The memory handling rules for an unbounded string used as an out or
return parameter can be summarized as follows, based on Table 37:

1. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PODGET, which causes the server-side PL/I runtime to
receive the client request.

Note: By having PODEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

Table 37: Memory Handling for OUT and Return Unbounded Strings

Client Application Server Application

1. PODEXEC�(send)

5. (receive, allocate)
6. STRGET
7. STRFREE

2. PODGET�(receive)
3. STRSET
4. PODPUT�(send, free)
287

CHAPTER 8 | Memory Handling
3. The server calls STRSET to initialize the string and allocate memory for
it.

4. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the string via the call to STRSET.

5. Control returns to the client, and the call to PODEXEC in point 1 now
causes the client-side PL/I runtime to receive the string and implicitly
allocate memory for it.

6. The client calls STRGET to obtain the string value from the operation
parameter buffer.

7. The client calls STRFREE, which causes the client-side PL/I runtime to
free the memory allocated for the string in point 5 via the call to
PODEXEC in point 1.
 288

Operation Parameters
Object References and Memory Management

Overview for IN parameters Table 38 provides a detailed outline of how memory is handled for object
references that are used as in parameters.

Summary of rules for IN
parameters

The memory handling rules for an object reference used as an in parameter
can be summarized as follows, based on Table 38:

1. The client attains an object reference through some retrieval
mechanism (for example, by calling STR2OBJ or OBJRIR).

2. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the object reference across the network.

3. The server calls PODGET, which causes the server-side PL/I runtime to
receive the object reference.

4. The server can now invoke on the object reference.

5. The server calls PODPUT, which causes the server-side PL/I runtime to
implicitly free any memory allocated by the call to PODGET.

6. The client calls OBJREL to release the object.

Table 38: Memory Handling for IN Object References

Client Application Server Application

1. Attain object reference
2. PODEXEC�(send)

6. OBJREL

3. PODGET�(receive)
4. read
5. PODPUT
289

CHAPTER 8 | Memory Handling
Overview for INOUT parameters Table 39 provides a detailed outline of how memory is handled for object
references that are used as in parameters.

Summary of rules for INOUT
parameters

The memory handling rules for an object reference used as an inout
parameter can be summarized as follows, based on Table 39:

1. The client attains an object reference through some retrieval
mechanism (for example, by calling STR2OBJ or OBJRIR).

2. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the object reference across the network.

3. The server calls PODGET, which causes the server-side PL/I runtime to
receive the object reference.

4. The server can now invoke on the object reference.

5. The server calls OBJREL to release the original in object reference.

6. The server attains an object reference for the replacement out
parameter through some retrieval mechanism (for example, by calling
STR2OBJ or OBJRIR).

7. The server calls OBJDUPL to increment the object reference count and to
prevent the call to PODPUT in point 8 from causing the replacement out
object reference to be released.

8. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the replacement out object reference across the network.

Table 39: Memory Handling for INOUT Object References

Client Application Server Application

1. Attain object reference
2. PODEXEC�(send)

9. (receive)
10. read
11. OBJREL

3. PODGET�(receive)
4. read
5. OBJREL
6. Attain object reference
7. OBJDUPL
8. PODPUT�(send)
 290

Operation Parameters
9. Control returns to the client, and the call to PODEXEC in point 2 now
causes the client-side PL/I runtime to receive the replacement out
object reference.

10. The client can now invoke on the replacement object reference.

11. The client calls OBJREL to release the object.

Overview for OUT and return
parameters

Table 40 provides a detailed outline of how memory is handled for object
references that are used as out or return parameters.

Summary of rules for OUT and
return parameters

The memory handling rules for an object reference used as an out or return
parameter can be summarized as follows, based on Table 40:

1. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PODGET, which causes the server-side PL/I runtime to
receive the client request.

3. The server attains an object reference through some retrieval
mechanism (for example, by calling STR2OBJ or OBJRIR).

4. The server calls OBJDUPL to increment the object reference count and to
prevent the call to PODPUT in point 5 from causing the object reference
to be released.

5. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the object reference across the network.

6. Control returns to the client, and the call to PODEXEC in point 1 now
causes the client-side PL/I runtime to receive the object reference.

Table 40: Memory Handling for OUT and Return Object References

Client Application Server Application

1. PODEXEC�(send)

6. (receive)
7. read
8. OBJREL

2. PODGET�(receive)
3. Attain object reference
4. OBJDUPL
5. PODPUT�(send)
291

CHAPTER 8 | Memory Handling
7. The client can now invoke on the object reference.

8. The client calls OBJREL to release the object.
 292

Operation Parameters
The any Type and Memory Management

Overview for IN parameters Table 41 provides a detailed outline of how memory is handled for an any
type that is used as an in parameter.

Summary of rules for IN
parameters

The memory handling rules for an object reference used as an in parameter
can be summarized as follows, based on Table 41:

1. The client calls TYPESET to set the type of the any.

2. The client calls ANYSET to set the value of the any and allocate memory
for it.

3. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PODGET, which causes the server-side PL/I runtime to
receive the any value and implicitly allocate memory for it.

5. The server calls TYPEGET to obtain the typecode of the any.

6. The client calls ANYGET to obtain the value of the any from the
operation parameter buffer.

7. The server calls PODPUT, which causes the server-side PL/I runtime to
implicitly free the memory allocated by the call to PODGET.

8. The client calls ANYFREE to free the memory allocated by the call to
ANYSET.

Table 41: Memory Handling for IN Any Types

Client Application Server Application

1. TYPESET
2. ANYSET
3. PODEXEC�(send)

8. ANYFREE

4. PODGET�(receive, allocate)
5. TYPEGET
6. ANYGET
7. PODPUT�(free)
293

CHAPTER 8 | Memory Handling
Overview for INOUT parameters Table 42 provides a detailed outline of how memory is handled for an any
type that is used as an inout parameter.

Summary of rules for INOUT
parameters

The memory handling rules for an object reference used as an inout
parameter can be summarized as follows, based on Table 42:

1. The client calls TYPESET to set the type of the any.

2. The client calls ANYSET to set the value of the any and allocate memory
for it.

3. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PODGET, which causes the server-side PL/I runtime to
receive the any value and implicitly allocate memory for it.

5. The server calls TYPEGET to obtain the typecode of the any.

6. The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

7. The server calls ANYFREE to explicitly free the memory allocated for the
original in value via the call to PODGET in point 4.

8. The server calls TYPESET to set the type of the replacement any.

Table 42: Memory Handling for INOUT Any Types

Client Application Server Application

1. TYPESET
2. ANYSET
3. PODEXEC�(send)

11. (free, receive, allocate)
12. TYPEGET
13. ANYGET
14. ANYFREE

4. PODGET�(receive, allocate)
5. TYPEGET
6. ANYGET
7. ANYFREE
8. TYPESET
9. ANYSET
10. PODPUT�(send, free)
 294

Operation Parameters
9. The server calls ANYSET to set the value of the replacement any and
allocate memory for it.

10. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the replacement any value across the network and then
implicitly free the memory allocated for it via the call to ANYSET in point
9.

11. Control returns to the client, and the call to PODEXEC in point 3 now
causes the client-side PL/I runtime to:

i. Free the memory allocated for the original any via the call to
ANYSET in point 2.

ii. Receive the replacement any.

iii. Allocate memory for the replacement any.

12. The client calls TYPEGET to obtain the typecode of the replacement
any.

13. The client calls ANYGET to obtain the value of the replacement any from
the operation parameter buffer.

14. The client calls ANYFREE to free the memory allocated for the
replacement out string in point 11 via the call to PODEXEC in point 3.

Note: By having PODEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.
295

CHAPTER 8 | Memory Handling
Overview for OUT and return
parameters

Table 43 provides a detailed outline of how memory is handled for an any
type that is used as an inout parameter.

Summary of rules for OUT and
return parameters

The memory handling rules for an object reference used as an out or return
parameter can be summarized as follows, based on Table 43:

1. The client calls PODEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PODGET, which causes the server-side PL/I runtime to
receive the client request.

3. The server calls calls TYPESET to set the type of the any.

4. The server calls ANYSET to set the value of the any and allocate memory
for it.

5. The server calls PODPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the any via the call to ANYSET.

6. Control returns to the client, and the call to PODEXEC in point 1 now
causes the client-side PL/I runtime to receive the any and implicitly
allocate memory for it.

7. The client calls TYPEGET to obtain the typecode of the any.

8. The client calls ANYGET to obtain the value of the replacement any from
the operation parameter buffer.

Table 43: Memory Handling for OUT and Return Any Types

Client Application Server Application

1. PODEXEC�(send)

6. (receive, allocate)
7. TYPEGET
8. ANYGET
9. ANYFREE

2. PODGET�(receive)
3. TYPESET
4. ANYSET
5. PODPUT�(send, free)
 296

Operation Parameters
9. The client calls ANYFREE, which causes the client-side PL/I runtime to
free the memory allocated for the any in point 6 via the call to PODEXEC
in point 1.
297

CHAPTER 8 | Memory Handling
User Exceptions and Memory Management

Overview Table 44 provides a detailed outline of how memory is handled for user
exceptions.

Summary of rules The memory handling rules for raised user exceptions can be summarized as
follows, based on Table 44:

1. The client calls PODEXEC, which causes the PL/I runtime to marshal the
client request across the network.

2. The server calls PODGET, which causes the server-side PL/I runtime to
receive the client request and allocate memory for any arguments (if
necessary).

3. The server initializes the user exception block with the information for
the exception to be raised.

4. The server calls PODERR, to raise the user exception.

5. The server-side PL/I runtime automatically frees the memory allocated
for the user exception in point 3.

Table 44: Memory Handling for User Exceptions

Client Application Server Application

1. PODEXEC�(send)

6. Free

2. PODGET�(receive, allocate)

3. write

4. PODERR

5. (free)

Note: The PL/I runtime does not, however, free the argument
buffers for the user exception. To prevent a memory leak, it is up to
the server program to explicitly free active argument structures,
regardless of whether they have been allocated automatically by the
PL/I runtime or allocated manually. This should be done before the
server calls PODERR.
 298

Operation Parameters
6. The client must explicitly free the exception ID in the user exception
header, by calling STRFREE. It must also free any exception data
mapping to dynamic structures (for example, if the user exception
information block contains a sequence, this can be freed by calling
SEQFREE).
299

CHAPTER 8 | Memory Handling
Memory Management Routines

Overview This section provides examples of PL/I routines for allocating and freeing
memory for various types of dynamic structures. These routines are
necessary when sending arguments across the wire or when using
user-defined IDL types as variables within PL/I.

Unbounded strings Use STRSET to allocate memory for unbounded strings, and STRFREE to
subsequently free this memory. For example:

Unbounded wide strings Use WSTRSET to allocate memory for unbounded wide strings, and WSTRFRE
to subsequently free this memory. For example:

/* allocation */
dcl my_pli_string char(15) init(’Testing 123’);
dcl my_corba_string ptr;

call strset(my_pli_string, my_corba_string,
length(my_pli_string));

/* deletion */
call strfree(my_corba_string);

/* allocation */
dcl my_corba_wstring ptr;

call wstrset(my_pli_graphic, my_corba_wstring,
my_pli_graphic_length);

/* deletion */
call wstrfre(my_corba_wstring);
 300

Memory Management Routines
Typecodes As described in �IDL-to-PL/I Mapping� on page 177, typecodes are mapped
to a pointer. They are handled in PL/I as unbounded strings and should
contain a value corresponding to one of the typecode keys generated by the
Orbix IDL compiler. For example:

Bounded sequences Use SEQINIT to initialize a bounded sequence. This dynamically creates a
sequence information block that is used internally to record state. Use
SEQFREE to free this footprint before shutdown, to prevent memory leakage.
For example:

SEQFREE deletes only the memory allocated via the calls to SEQINIT and
SEQALOC. Therefore, you should always free the inner sequence element data
first, and then the sequence itself. For example, when freeing a sequence of
sequence of strings, follow this order:

1. Use STRFREE to free the data elements for the inner sequence.

2. Use SEQFREE to free the inner sequence.

3. Use SEQFREE to free the outer sequence.

Unbounded sequences Use SEQALOC to initialize an unbounded sequence. This dynamically creates
a sequence information block that is used internally to record state, and
allocates the memory required for sequence elements. You can use SEQSET
and SEQGET to access the sequence elements. You can also use SEQSET to

/* allocation */
dcl my_typecode ptr;
call strset(my_typecode_ptr, my_complex_type,

length(my_complex_type));

/* deletion */
call strfree(my_typecode_ptr);

/* allocation */
call seqinit(my_bseq_attr.result.result_seq, my_bseq_type,

length(my_bseq_type));

/* deletion */
call seqfree(my_bseq_attr.result.result_seq);
301

CHAPTER 8 | Memory Handling
resize the sequence if the maximum size of the sequence is not large enough
to contain another sequence element. Use SEQFREE to free memory allocated
via SEQALOC. For example:

The any type Use TYPESET to initialize the any information status block and allocate
memory for it. Then use ANYSET to set the type of the any. Use ANYFREE to
free memory allocated via TYPESET. This frees the flat structure created via
TYPESET and any dynamic structures that are contained within it. For
example:

/* allocation */
call seqaloc(my_useq_attr.result.result_seq, my_useq_max,

my_useq_type, length(my_useq_type));

/* deletion */
call seqfree(my_useq_attr.result.result_seq);

Note: SEQFREE does not recursively free inner element data, so you should
call inner element data before calling SEQFREE.

dcl my_corba_any ptr;
dcl my_long fixed bin(31) init(123);

/* allocation */
call typeset(my_corba_any ptr, CORBA_TYPE_LONG,

length(CORBA_TYPE_LONG));
call anyset(my_corba_any ptr, addr(my_long));

/* deletion */
call anyfree(my_corba_any ptr);
 302

Part 2
Programmer�s Reference

In this part This part contains the following chapters:

API Reference page 305

CHAPTER 9

API Reference
This chapter summarizes the API functions that are defined
for the Orbix PL/I runtime, in pseudo-code. It explains how to
use each function, with an example of how to call it from PL/I.

In this chapter This chapter discusses the following topics:

API Reference Summary page 306

API Reference Details page 312

Deprecated and Removed APIs page 429
305

CHAPTER 9 | API Reference
API Reference Summary

Introduction This section provides a summary of the available API functions, in
alphabetic order. See �API Reference Details� on page 312 for more details
of each function.

Summary listing ANYFREE(inout PTR any_pointer)
// Frees memory allocated to an any.

ANYGET(in PTR any_pointer,
 out PTR any_data_buffer)
// Extracts data out of an any.

ANYSET(inout PTR any_pointer,
 in PTR any_data_buffer)
// Inserts data into an any.

MEMALOC(out PTR memory_pointer,
 in FIXED BIN(31) memory_size)
// Allocates memory at runtime from the program heap.

MEMDBUG(in PTR memory_pointer,
 in FIXED BIN(15) memory_dump_size,
 in CHAR(*) text_string,
 in FIXED BIN(15) text_string_length)
// Output a formatted memory dump for the specified block of
// memory.

MEMFREE(in PTR memory_pointer)
// Frees the memory allocated at the address passed in.

OBJDUPL(in PTR object_reference,
 out PTR duplicate_obj_ref)
// Duplicates an object reference.

OBJGTID(in PTR object_reference,
 out CHAR(*) object_id,
 in FIXED BIN(31) object_id_length)
// Retrieves the object ID from an object reference.
 306

API Reference Summary
OBJNEW(in CHAR(*) server_name,
 in CHAR(*) interface_name,
 in CHAR(*) object_id,
 out PTR object_reference)
// Creates a unique object reference.

OBJREL(in PTR object_reference)
// Releases an object reference.

OBJRIR(out PTR object_reference,
 in CHAR(*) desired_service)
// Returns an object reference to an object through which a
// service such as the Naming Service can be used.

OBJ2STR(in PTR object_reference,
 out CHAR(*) object_string)
// Retrieves the object ID from an IOR.

ORBARGS(in CHAR(*) argument_string,
 in FIXED BIN(31) argument_string_length,
 in CHAR(*) orb_name,
 in FIXED BIN(31) orb_name_length)
// Initializes a client or server connection to an ORB.

PODERR(in PTR user_exception_buffer)
// Allows a PL/I server to raise a user exception for an
// operation.

PODEXEC(in PTR object_reference,
 in CHAR(*) operation_name,
 inout PTR operation_buffer,
 inout PTR user_exception_buffer)
// Invokes an operation on the specified object.

PODGET(in PTR operation_buffer)
// Marshals in and inout arguments for an operation on the server
// side from an incoming request.

PODINFO(out PTR status_info_pointer)
// Retrieves address of the PL/I runtime status structure.

PODPUT(out PTR operation_buffer)
// Marshals return, out, and inout arguments for an operation on
// the server side from an incoming request.

PODREG(in PTR interface_description)
// Describes an IDL interface to the PL/I runtime
307

CHAPTER 9 | API Reference
PODREQ(in PTR request_details)
// Provides current request information.

PODRUN
// Indicates the server is ready to accept requests.

PODSRVR(in CHAR(*) server_name,
 in FIXED BIN(31) server_name_length)
// Sets the server name for the current server process.

PODSTAT(in PTR status_buffer)
// Registers the status information block.

PODTIME(in FIXED BIN(15) timeout_type,
 in FIXED BIN(31) timeout_value)
// Used by clients for setting the call timeout.
// Used by servers for setting the event timeout.

PODVER(out CHAR(*) runtime_id_version,
 out CHAR(*) runtime_compile_time_date)
//Returns PL/I runtime compile-time information.

SEQALOC(out PTR sequence_control_data,
 in FIXED BIN(31) sequence_size,
 in CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Allocates memory for an unbounded sequence.

SEQDUPL(in PTR sequence_control_data,
 out PTR dupl_seq_control_data)
// Duplicates an unbounded sequence control block.

SEQFREE(in PTR sequence_control_data)
// Frees the memory allocated to an unbounded sequence.

SEQGET(in PTR sequence_control_data,
 in FIXED BIN(31) element_number,
 out PTR sequence_data)
// Retrieves the specified element from an unbounded sequence.

SEQINIT(out PTR sequence_control_data,
 in CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Initializes a bounded sequence
 308

API Reference Summary
SEQLEN(in PTR sequence_control_data,
 out FIXED BIN(31) sequence_size)
// Retrieves the current length of the sequence

SEQLSET(in PTR sequence_control_data,
 in FIXED BIN(31) new_sequence_size)
// Changes the number of elements in the sequence

SEQMAX(in PTR sequence_control_data,
 out FIXED BIN(31) max_sequence_size)
// Returns the maximum set length of the sequence
SEQSET(in PTR sequence_control_data,
 in FIXED BIN(31) element_number,
 in PTR sequence_data)
// Places the specified data into the specified element of an
// unbounded sequence.

STRCON(inout PTR string_pointer,
 in PTR addon_string_pointer)
// Concatenates two unbounded strings.

STRDUPL(in PTR string_pointer,
 out PTR duplicate_string_pointer)
// Duplicates a given unbounded string

STRFREE(in PTR string_pointer)
// Frees the storage used by an unbounded string

STRGET(in PTR string_pointer,
 out CHAR(*) string,
 in FIXED BIN(31) string_length)
// Copies the contents of an unbounded string to a PL/I string

STRLENG(in PTR string_pointer,
 out FIXED BIN(31) string_length)
// Returns the actual length of an unbounded string

STRSET(out PTR string_pointer,
 in CHAR(*) string,
 in FIXED BIN(31) string_length)
// Creates an unbounded string from a CHAR(n) data item.

STRSETS(out PTR string_pointer,
 in CHAR(*) string,
 in FIXED BIN(31) string_length)
// Creates an unbounded string from a CHAR(n) data item
309

CHAPTER 9 | API Reference
STR2OBJ(in PTR object_string,
 out PTR object_reference)
// Creates an object reference from an interoperable object

reference (IOR).

TYPEGET(in PTR any_pointer,
 out CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Extracts the type name from an any.

TYPESET(in PTR any_pointer,
 in CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Sets the type name of an any

WSTRCON(inout PTR string_pointer,
 in PTR addon_string_pointer)
// Concatenates two unbounded wide strings.

WSTRDUP(in PTR string_pointer,
 out PTR duplicate_string_pointer)
// Duplicates a given unbounded wide string.

WSTFRE(in PTR string_pointer)
// Frees the storage used by an unbounded wide string.

WSTRGET(in PTR string_pointer,
 out GRAPHIC(*) string,
 in FIXED BIN(31) string_length)
// Copies the contents of an unbounded wide string to a PL/I
// graphic

WSTRLEN(in PTR string_pointer,
 out FIXED BIN(31) string_length)
/ Returns the number of characters held in the wide string
// (excluding trailing nulls).

WSTRSET(out PTR string_pointer,
 in CHAR(*) string,
 in FIXED BIN(31) string_length)
// Creates an unbounded wide string from a GRAPHIC(n) data item

WSTRSTS(out PTR string_pointer,
 in CHAR(*) string,
 in FIXED BIN(31) string_length)
// Creates an unbounded wide string from a GRAPHIC(n) data item
 310

API Reference Summary
Auxiliary function CHECK_ERRORS(in CHAR(*) function_name)
 RETURNS(FIXED BIN(31) error_number)
// Tests the completion status of the last PL/I runtime call.
311

CHAPTER 9 | API Reference
API Reference Details

Introduction This section provides details of each available API function, in alphabetic
order.

In this section The following topics are discussed in this section:

ANYFREE page 315

ANYGET page 317

ANYSET page 319

MEMALOC page 321

MEMDBUG page 322

MEMFREE page 324

OBJDUPL page 325

OBJGTID page 327

OBJNEW page 329

OBJREL page 331

OBJRIR page 333

OBJ2STR page 335

ORBARGS page 337

PODERR page 340

PODEXEC page 345

PODGET page 348

PODINFO page 351

PODPUT page 353
 312

API Reference Details
PODREG page 356

PODREQ page 358

PODRUN page 361

PODSRVR page 362

PODSTAT page 364

PODTIME page 367

PODVER page 369

SEQALOC page 370

SEQDUPL page 373

SEQFREE page 375

SEQGET page 377

SEQINIT page 380

SEQLEN page 382

SEQLSET page 384

SEQMAX page 387

SEQSET page 390

STRCON page 393

STRDUPL page 395

STRFREE page 396

STRGET page 397

STRLENG page 399

STRSET page 401

STRSETS page 403

STR2OBJ page 404

TYPEGET page 409
313

CHAPTER 9 | API Reference
TYPESET page 412

WSTRCON page 414

WSTRDUP page 416

WSTRFRE page 417

WSTRGET page 419

WSTRLEN page 421

WSTRSET page 423

WSTRSTS page 425

CHECK_ERRORS page 426
 314

API Reference Details
ANYFREE

Synopsis ANYFREE(inout PTR any_pointer);
// Frees memory allocated to an any.

Usage Common to clients and servers.

Description The ANYFREE function releases the memory held by an any type that is being
used to hold a value and its corresponding typecode. Do not try to use the
any type after freeing its memory, because doing so might result in a
runtime error.

When you call the ANYSET function, it allocates memory to store the actual
value of the any. When you call the TYPESET function, it allocates memory to
store the typecode associated with the value to be marshalled. When you
subsequently call ANYFREE, it releases the memory that has been allocated
via ANYSET and TYPESET.

Parameters The parameter for ANYFREE can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT include member (where
idlmembername represents the name of the IDL member that contains
the IDL definitions):

any_pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

interface test {
 attribute any myany;
};

dcl 1 test_myany_type based,
 3 result ptr init(sysnull());
315

CHAPTER 9 | API Reference
Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM include member:

3. The following is an example of how to use ANYFREE in association with
the preceding code:

See also � �ANYSET� on page 319.

� �TYPESET� on page 412.

� �Memory Handling� on page 275.

dcl 1 test_myany_attr aligned like test_myany_type;

dcl short_value fixed bin(15) init(0);

/* Retrieve the short value out of the any type */
/* NB: We have determined the any type contained a CORBA */
/* short type through calling TYPEGET and testing its */
/* result. */
call anyget(test_myany_attr.result, addr(short_value));
put skip list('myany contains the value', short_value);

…

/* We are now finished using the any type, so free its */
/* storage. */

call anyfree(test_myany_attr.result);
 316

API Reference Details
ANYGET

Synopsis ANYGET(in PTR any_pointer,
 out PTR any_data_buffer);
// Extracts data out of an any.

Usage Common to clients and servers.

Description The ANYGET function provides access to the buffer value that is contained in
an any. You should check to see what type of data is contained in the any,
and then ensure you supply a data buffer that is large enough to receive its
contents. Before you call ANYGET you can use TYPEGET to extract the type of
the data contained in the any.

Parameters The parameters for ANYGET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT include member (where
idlmembername represents the name of the IDL member that contains
the IDL definitions):

any_pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

any_data_buffer This is an out parameter that is used to store the value
extracted from the any. The address of this buffer is
passed to ANYGET.

interface test {
 attribute any myany;
};

dcl 1 test_myany_type based,
 3 result ptr init(sysnull());
317

CHAPTER 9 | API Reference
Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM include member:

3. The following is an example of how to use ANYGET in association with
the preceding code:

See also �ANYSET� on page 319.

dcl 1 test_myany_attr aligned like test_myany_type;

dcl short_value fixed bin(15) init(0);
dcl long_value fixed bin(31) init(0);

/* Retrieve the typecode of the any, so we know how to */
/* manipulate the data within it. */
call typeget(test_myany_attr, test_typecode,
 test_typecode_length);

select(test_typecode);
 when(CORBA_SHORT) do;
 /* Retrieve the short value out of the any. */
 call anyget(test_myany_attr.result,
 addr(short_value));
 put skip list('myany contains the value',
 short_value);
 end;
 when(CORBA_LONG) do;
 /* Retrieve the long value out of the any. */
 call anyget(test_myany_attr.result,
 addr(long_value));
 put skip list('myany contains the value',
 long_value);
 end;
 …
end;

/* Now we are finished with the any, so free its storage */
call anyfree(test_myany_attr.result);
 318

API Reference Details
ANYSET

Synopsis ANYSET(inout PTR any_pointer,
 in PTR any_data_buffer)
// Inserts data into an any.

Usage Common to clients and servers.

Description The ANYSET function copies the supplied data, which is placed in the data
buffer by the application, into the any. ANYSET allocates the memory that is
required to store the value of the any. You must call TYPESET before calling
ANYSET, to set the typecode of the any. Ensure that this typecode matches
the type of the data being copied to the any.

The address of the data_buffer is passed as an OUT parameter to ANYSET.

Parameters The parameters for ANYSET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT include member (where
idlmembername represents the name of the IDL member that contains
the IDL definitions):

any_pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

any_data_buffer This is an in parameter that contains the data to be
copied to the any. The address of this buffer is passed to
ANYSET.

interface test {
 attribute any myany;
};

dcl 1 test_myany_type based,
 3 result ptr init(sysnull());
319

CHAPTER 9 | API Reference
Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM include member:

3. The following is an example of how to use ANYSET in association with
the preceding code:

Exceptions A CORBA::BAD_INV_ORDER::TYPESET_NOT_CALLED exception is raised if the
typecode of the any has not been set via the TYPESET function.

See also � �ANYGET� on page 317.

� �TYPESET� on page 412.

dcl 1 test_myany_attr aligned like test_myany_type;

dcl float_value float dec(6) init(3.14159);

/* The basic CORBA typecodes are declared in the CORBA */
/* include file. Complex types in the IDL are defined in */
/* the T-suffixed include file generated for that IDL */
/* file. */
test_typecode = CORBA_TYPE_FLOAT;

call typeset(test_myany_attr.result, test_typecode, 1);
call anyset(test_myany_attr.result, addr(float_value);
 320

API Reference Details
MEMALOC

Synopsis MEMALOC(out PTR memory_pointer,
 in FIXED BIN(31) memory_size)
// Allocates memory at runtime from the program heap.

Usage Common to clients and servers.

Description The MEMALOC function allocates the specified number of bytes of memory
from the program heap at runtime, and returns a pointer to the start of this
memory block. MEMALOC is used to allocate space for dynamic structures.

Parameters The parameters for MEMALOC can be described as follows:

Example The following is an example of how to use MEMALOC in a client or server
program:

Exceptions A CORBA::NO_MEMORY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

See also �MEMFREE� on page 324.

memory_pointer This is an out parameter that contains a pointer to
the allocated memory block.

memory_size This is an in parameter that specifies in bytes the
amount of memory that is to be allocated.

dcl memory_block ptr init(sysnull());
dcl size_of_memory_req fixed bin(31) init(32);

/* Allocate a block of 32 bytes of memory */
call memaloc(memory_block, size_of_memory_req);
if check_errors('memaloc') ^= completion_status_yes then return;
321

CHAPTER 9 | API Reference
MEMDBUG

Synopsis MEMDBUG(in PTR memory_pointer,
 in FIXED BIN(15) memory_dump_size,
 in CHAR(*) text_string,
 in FIXED BIN(15) text_string_length)
// Output a formatted memory dump for the specified block of
// memory.

Usage Common to clients and servers.

Description The MEMDBUG function allows you to output a specified formatted segment of
memory and a text description. It is used for debugging purposes only.

Parameters The parameters for MEMDBUG can be described as follows:

Example The example can be broken down as follows:

1. The following code displays the contents of a struct, called my_struct:

2. The preceding call produces a result such as the following:

memory_pointer This is an in parameter that contains a pointer to
the allocated memory block.

memory_dump_size This is an in parameter that specifies in bytes the
amount of memory that is to be allocated for the
memory dump.

text_string This is an in parameter that contains the text string
relating to the memory dump.

text_string_length This is an in parameter that specifies the length of
the text string.

call memdbug(addr(my_struct),64,'Memory dump of MY_STRUCT',24);
 322

API Reference Details
DEBUG DUMP - MEMORY DUMP OF MY_STRUCT
00x3a598(00000): 0000E3C5 E2E340D9 C5E2E4D3 E3E20000 '..TEST

RESULTS.'
00x3a598(00010): 00E98572 009CB99A 0000FFFF 00004040

'.ZeÊ..........'
00x3a598(00020): 00000000 E2E3C1E3 C9E2E3C9 C3E20000

'..STATISTICS..'
00x3a598(00030): 000046A2 A3998995 8700FFFF 40404000

'..ãstrln9.. '
323

CHAPTER 9 | API Reference
MEMFREE

Synopsis MEMFREE(in PTR memory_pointer)
// Frees the memory allocated at the address passed in.

Usage Common to clients and servers.

Description The MEMFREE function releases dynamically allocated memory, by means of a
a pointer that was originally obtained by using MEMALOC. Do not try to use
this pointer after freeing it, because doing so might result in a runtime error.

Parameters The parameter for MEMFREE can be described as follows:

Example The following is an example of how to use MEMFREE in a client or server
program:

See also �MEMALOC� on page 321.

memory_pointer This is an in parameter that contains a pointer to
the allocated memory block.

dcl memory_block ptr init(sysnull());
dcl size_of_memory_req fixed bin(31) init(32);

call memaloc(memory_block, size_of_memory_req);
if check_errors('memaloc') ^= completion_status_yes then return;

…

/* Finished using the block of memory, so free it */
call memfree(memory_block);
 324

API Reference Details
OBJDUPL

Synopsis OBJDUPL(in PTR object_reference,
 out PTR duplicate_obj_ref)
// Duplicates an object reference.

Usage Common to clients and servers.

Description The OBJDUPL function creates a duplicate reference to an object. It returns a
new reference to the original object reference and increments the reference
count of the object. It is equivalent to calling CORBA::Object::_duplicate()
in C++. Because object references are opaque and ORB-dependent, your
application cannot allocate storage for them. Therefore, if more than one
copy of an object reference is required, you can use OBJDUPL to create a
duplicate.

Parameters The parameters for OBJDUPL can be described as follows:

object_reference This is an in parameter containing the valid object
reference.

duplicate_obj_ref This is an out parameter containing the duplicate
object reference.
325

CHAPTER 9 | API Reference
Example The following code shows how OBJDUPL can be used within a server:

See also �OBJREL� on page 331 and �Object References and Memory Management�
on page 289.

dcl 1 get_an_object_args,
 3 result ptr init(sysnull());

dcl test_prg_object ptr init(sysnull());
dcl my_object ptr init(sysnull());

…

/* test_prg_object already set up from earlier processing */
call podexec(test_prg_object,
 get_an_object,
 get_an_object_args,
 no_user_exceptions);
if check_errors(’objdupl’) ^= completion_status_yes then return;

/* Duplicate the returned object */
call objdupl(get_an_object_args.result,my_object);
if check_errors(’objdupl’) ^= completion_status_yes then return;

/* Processing done with the duplicated object reference */
…

/* Finished using the duplicated object reference, so free it */
call objrel(my_object);
if check_errors(’objrel’) ^= completion_status_yes then return;
 326

API Reference Details
OBJGTID

Synopsis OBJGTID(in PTR object_reference,
 out CHAR(*) object_id,
 in FIXED BIN(31) object_id_length)
// Retrieves the object ID from an object reference.

Usage Specific to batch servers. Not relevant to CICS or IMS.

Description The OBJGTID function retrieves the object ID string from an object reference.
It is equivalent to calling POA::reference_to_id in C++.

Parameters The parameters for OBJGTID can be described as follows:

object_reference This is an in parameter that contains the valid
object reference.

object_id This is an out parameter that is a bounded string
containing the object name relating to the specified
object reference. If this string is not large enough to
contain the object name, the returned string is
truncated.

object_id_length This is an in parameter that specifies the length of
the object name.
327

CHAPTER 9 | API Reference
Example The following code shows how OBJGTID can be used within a client:

Exceptions A CORBA::BAD_PARAM::LENGTH_TOO_SMALL exception is raised if the length of
the string containing the object name is greater than the object_id_length
parameter.

A CORBA::BAD_PARAM::INVALID_OBJECT_ID exception is raised if an Orbix
2.3 object reference is passed.

A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
PODSRVR is not called.

dcl object_id char(256);
dcl simple_obj ptr;

…

/* IOR is read from the file written by the server */
%include READIOR;

…

/* Create an object reference from the IOR */
call str2obj(iorrec_ptr,simple_obj);
if check_errors('str2obj')^=completion_status_yes then return;

/* Retrieve the object ID from the object reference */
call objgtid(simple_obj,object_id,length(object_id));
if check_errors('objgtid')^=completion_status_yes then return;

put skip list('Object ID retrieved: ' || object_id);
 328

API Reference Details
OBJNEW

Synopsis OBJNEW(in CHAR(*) server_name,
 in CHAR(*) interface_name,
 in CHAR(*) object_id,
 out PTR object_reference)
// Creates a unique object reference.

Usage Server-specific.

Description The OBJNEW function creates a unique object reference that encapsulates the
specified object identifier and interface names. The resulting reference can
be returned to clients to initiate requests on that object. It is equivalent to
calling POA::create_reference_with_id in C++.

Parameters The parameters for OBJNEW can be described as follows:

server_name This is an in parameter that is a bounded string
containing the server name. This must be the same
as the value passed to PODSRVR. This string must be
terminated by at least one space.

interface_name This is an in parameter that is a bounded string
containing the interface name. This string must be
terminated by at least one space. The
idlmembernameT include member contains a PL/I
declaration for each interface defined in the
relevant IDL member. These definitions are stored
in the Interface List section and have a _intf suffix.

object_id This is an in parameter that is a bounded string
containing the object identifier name relating to the
specified object reference. This string must be
terminated by at least one space.

object_reference This is an out parameter that contains the created
object reference.
329

CHAPTER 9 | API Reference
Example The following is an example of how OBJNEW is typically used in a server
program (where IOR variable declarations have been omitted for the sake of
brevity):

Exceptions A CORBA::BAD_PARAM::INVALID_SERVER_NAME exception is raised if the
server name does not match the server name passed to ORBSRVR.

A CORBA::BAD_PARAM::NO_OBJECT_IDENTIFIER exception is raised if the
parameter for the object identifier name is an invalid string.

A CORBA::BAD_INV_ORDER::INTERFACE_NOT_REGISTERED exception is raised
if the specified interface has not been registered via ORBREG.

A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
PODSRVR is not called.

dcl server_name char(06) init('SIMPLE ');
dcl interface_name char(18) init
 ('IDL:Simple/SimpleObject:1.0 ');
dcl my_object_id char(10) init('Simple_01 ');
dcl my_object ptr init(sysnull());

…
/* Register our interface with the PL/I runtime */
call podreg(simple_interface);

/* Now create an object reference for the server, so we */
/* can use it to create an IOR, allowing clients to */
/* invoke operations on our server. */
call objnew(server_name, interface_name, my_object_id,
 my_object);
if check_errors('objnew') ^= completion_status_yes then return;

/* Create the IOR */
call obj2str(my_object, iorrec_ptr);
if check_errors(’obj2str’) ^= completion_status_yes then return;

/* Retrieve the string from the unbounded string */
call strget(iorrec_ptr, iorrec, iorrec_len);
if check_errors(’strget’) ^= completion_status_yes then return;

/* Now we can write out our server IOR string to a file */
write file(IORFILE) from(iorrec);
 330

API Reference Details
OBJREL

Synopsis OBJREL(in PTR object_reference)
// Releases an object reference.

Usage Common to clients and servers.

Description The OBJREL function indicates that the caller will no longer access the object
reference. It is equivalent to calling CORBA::release() in C++. OBJREL
decrements the reference count of the object reference.

Parameters The parameter for OBJREL can be described as follows:

object_reference This is an in parameter that contains the valid
object reference.
331

CHAPTER 9 | API Reference
Example The following is an example of how OBJREL is typically used in a server
program:

See also �OBJDUPL� on page 325 and �Object References and Memory
Management� on page 289.

dcl 1 get_an_object_args,
 3 result ptr init(sysnull());

dcl test_prg_object ptr init(sysnull());
dcl my_object ptr init(sysnull());

…

/* test_prg_object already set up from earlier processing */
call podexec(test_prg_object,
 get_an_object,
 get_an_object_args,
 no_user_exceptions);
if check_errors('objdupl') ^= completion_status_yes then return;

/* Duplicate the returned object */
call objdupl(get_an_object_args.result,my_object);
if check_errors('objdupl') ^= completion_status_yes then return;

/* Processing done with the duplicated object reference */
…

/* Finished using the duplicated object reference, so free it */
call objrel(my_object);
if check_errors('objrel') ^= completion_status_yes then return;
 332

API Reference Details
OBJRIR

Synopsis OBJRIR(out PTR object_reference,
 in CHAR(*) desired_service)
// Returns an object reference to an object through which a
// service such as the Naming Service can be used.

Usage Common to batch clients and servers. Not relevant to CICS or IMS.

Description The OBJRIR function returns an object reference, through which a service
(for example, the Interface Repository or a CORBAservice like the Naming
Service) can be used. For example, the Naming Service is accessed by using
a desired_service string with the "NameService " value. It is equivalent to
calling ORB::resolve_initial_references() in C++.

Table 45 shows the common services available, along with the PL/I
identifier assigned to each service. The PL/I identifiers are declared in the
CORBA include member.

 Parameters The parameters for OBJRIR can be described as follows:

Exceptions A CORBA::ORB::InvalidName exception is raised if the desired_service
string is invalid.

Table 45: Summary of Common Services and Their PL/I Identifiers

Service PL/I Identifier

InterfaceRepository IFR_SERVICE

NameService NAMING_SERVICE

TradingService TRADING_SERVICE

object_reference This is an out parameter that contains an object
reference for the desired service.

desired_service This is an in parameter that is a string specifying
the desired service. This string is terminated by a
space.
333

CHAPTER 9 | API Reference
Example The following is an example of how to use OBJRIR in a client program, to
obtain the object reference to the NameService (which is then used to
retrieve the object reference for a server called Simple):

dcl name_service_obj ptr init(sysnull());
dcl simple_obj ptr init(sysnull());

/* Retrieve the object reference for the NameService */
call objrir(name_service_obj,naming_service);
if check_errors('objrir') ^= completion_status_yes then return;

/* The setting up of the resolve request to retrieve the */
/* object reference for the Simple server is omitted here */
/* for brevity. */
…

/* Call resolve on the NameService using the */
/* object reference retrieved via OBJRIR. */
call podexec(name_service_obj,
 NamingContext_resolve,
 NamingContext_resolve_args,
 NAMING_user_exceptions);
if check_errors('podexec') ^= completion_status_yes then return;

/* Assign our simple_obj to the object reference */
/* retrieved from the call to the NameService. */
simple_obj=NamingContext_resolve_args.result;

/* Now we have retrieved the object reference for our */
/* client, we can invoke calls on it. */
/* Our example call below does not take any parameters */
/* so no setup is required prior to invoking. */
call podexec(simple_obj,
 simple_call_me,
 addr(simple_call_me_args),
 no_user_exceptions);
if check_errors('podexec') ^= completion_status_yes then return;
…

 334

API Reference Details
OBJ2STR

Synopsis OBJ2STR(in PTR object_reference,
 out CHAR(*) object_string)
// Retrieves the object ID from an IOR.

Usage Common to batch clients and servers. Not relevant to CICS or IMS.

Description The OBJ2STR function creates an interoperable object reference (IOR) from a
valid object reference. The object reference string that is passed to OBJ2STR
must be terminated with a null character. You can use the STRSET function
to create this string.

Parameters The parameters for OBJ2STR can be described as follows:

object_reference This is an in parameter that contains the object
reference.

object_string This is an out parameter that contains the
stringified representation of the object reference
(that is, the IOR).
335

CHAPTER 9 | API Reference
Example The following example shows part of the server mainline code, generated in
the idlmembernameSV member by the Orbix IDL compiler, with added
comments for clarity:

See also �STR2OBJ� on page 404.

call objnew(server_name,
 Simple_SimpleObject_intf,
 Simple_SimpleObject_objid,
 Simple_SimpleObject_obj);
if check_errors(’objnew’) ^= completion_status_yes then return;

/* Write out the IOR for each interface */
open file(IORFILE);

call obj2str(Simple_SimpleObject_obj,
 iorrec_ptr);
if check_errors(’obj2str’) ^= completion_status_yes then return;

call strget(iorrect_ptr,iorrec,iorrec_len);
if check_errors(’strget’) ^= completion_status_yes then return;

write file(IORFILE) FROM(iorrec);
close file(IORFILE);
 336

API Reference Details
ORBARGS

Synopsis ORBARGS(in CHAR(*) argument_string,
 in FIXED BIN(31) argument_string_length,
 in CHAR(*) orb_name,
 in FIXED BIN(31) orb_name_length)
// Initializes a client or server connection to an ORB.

Usage Common to clients and servers.

Description The ORBARGS function initializes a client or server connection to the ORB. It
is equivalent to calling CORBA::ORB_init() in C++. It first initializes an
application in the ORB environment and then it returns the ORB
pseudo-object reference to the application for use in future ORB calls.

Because applications do not initially have an object on which to invoke ORB
calls, ORB_init() is a bootstrap call into the CORBA environment.
Therefore, the ORB_init() call is part of the CORBA module but is not part of
the CORBA::ORB class.

The arg_list is optional and is usually not set. The use of the orb_name is
recommended, because if it is not specified, a default ORB name is used.

Special ORB identifiers (indicated by either the orb_name parameter or the
-ORBid argument) are intended to uniquely identify each ORB used within
the same location domain in a multi-ORB application. The ORB identifiers
are allocated by the ORB administrator who is responsible for ensuring that
the names are unambiguous.

When you are assigning ORB identifiers via ORBARGS, if the orb_name
parameter has a value, any -ORBid arguments in the argv are ignored.
However, all other ORB arguments in argv might be significant during the
ORB initialization process. If the orb_name parameter is null, the ORB
identifier is obtained from the -ORBid argument of argv. If the orb_name is
null and there is no -ORBid argument in argv, the default ORB is returned in
the call.

Note: Orbix PL/I batch does not support the passing of arguments via
PPARM at runtime. However, if you want to pass an ORB name at
runtime, you can use a DD:ORBARGS instead.
337

CHAPTER 9 | API Reference
Parameters The parameters for ORBARGS can be described as follows:

ORB arguments Each ORB argument is a sequence of configuration strings or options of the
following form:

The suffix is the name of the ORB option being set. The value is the value to
which the option is set. There must be a space between the suffix and the
value. Any string in the argument list that is not in one of these formats is
ignored by the ORB_init() method.

Valid ORB arguments include:

argument_string This is an in parameter that is a bounded string
containing the argument list of the
environment-specific data for the call. See �ORB
arguments� for more details.

argument_string_length This is an in parameter that specifies the length
of the argument string list.

orb_name This is an in parameter that is a bounded string
containing the ORB identifier for the initialized
ORB, which must be unique for each server
across a location domain. However, client-side
ORBs and other "transient" ORBs do not register
with the locator, so it does not matter what
name they are assigned.

orb_name_length This is an in parameter that specifies the length
of the ORB identifier string.

-ORBsuffix value

-ORBboot_domain value This indicates where to get boot configuration
information.

-ORBdomain value This indicates where to get the ORB actual
configuration information.

-ORBid value This is the ORB identifier.

-ORBname value This is the ORB name.
 338

API Reference Details
Example The following is an example of client code at ORB setup time:

Exceptions A CORBA::BAD_INV_ORDER::ADAPTER_ALREADY_INITIALIZED exception is
raised if ORBARGS is called more than once in a client or server.

dcl arg_list char(40) init('');
dcl arg_list_len fixed bin(31) init(0);
dcl orb_name char(07) init('simple ');
dcl orb_name_len fixed bin(31) init(6);

%include CORBA;
%include CHKERRS;
%include SIMPLEM;
%include SIMPLEX;
%include SETUPCL; /* Various DCLs for the client */
%include IORFILE; /* Describes the IOR File type */

open file(IORFILE) input;
%include READIOR; /* Read in the server's IOR */

/* Initialize the runtime status information block for */
alloc pod_status_information set(pod_status_ptr);
call podstat(pod_status_ptr);

/* Initialize the ORB connection with the name 'simple' */
call orbargs(arg_list, arg_list_len, orb_name, orb_name_len);
if check_errors('orbargs') ^= completion_status_yes then return;

/* Register the interface with the PL/I runtime */
call podreg(addr(Simple_SimpleObject_interface));
if check_errors('podreg') ^= completion_status_yes then return;
…

Note: The %include CHKERRS statement in the preceding example is used
in server and batch client programs. It is replaced with %include CHKCLCIC
in CICS client programs, and %include CHKCLIMS in IMS client programs.
339

CHAPTER 9 | API Reference
PODERR

Synopsis PODERR(in PTR user_exception_buffer)
// Allows a PL/I server to raise a user exception for an
// operation.

Usage Server-specific.

Description The PODERR function allows a PL/I server to raise a user exception for the
operation that supports the exception(s), which can then be picked up on
the client side via the user exception buffer that is passed to PODEXEC for the
relevant operation. To raise a user exception, the server program must set
the exception_id, the d discriminator, and the appropriate exception buffer.

The server calls PODERR instead of PODPUT in this instance, and this informs
the client that a user exception has been raised. See �Memory Handling� on
page 275 for more details. Calling PODERR does not terminate the server
program.

The client can determine if a user exception has been raised, by testing to
see whether the exception_id of the operation�s user_exception_buffer
passed to PODEXEC is equal to zero after the call. See �PODEXEC� on
page 345 for an example of how a PL/I client determines if a user exception
has been raised.

Parameters The parameter for PODERR can be described as follows:

user_exception_bufferThis is an in parameter that contains the PL/I
representation of the user exceptions that the IDL
operations support. The address of the user
exception buffer is passed to PODERR.
 340

API Reference Details
Example The example can be broken down as follows:

1. Consider the following IDL:

interface test {
 exception bad {
 long value;
 string<32> reason;
 };

 exception critical {
 short value_x;
 string<31> likely_cause;
 string<63> action_required;
 };

 long myop(in long number) raises(bad, critical);
};
341

CHAPTER 9 | API Reference
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code for the user exception block, in the idlmembernameM
include member (where idlmembername represents the name of the IDL
member that contains the IDL definitions):

The following operation structure declaration is also generated in the
idlmembernameM include member:

The body of the operation structure is generated as follows, in the
idlmembernameT include member:

/*---*/
/* Defined User Exceptions */
/*---*/
dcl 1 TEST_user_exceptions,
 3 exception_id ptr,
 3 d fixed bin(31) init(0),
 3 u ptr;

dcl 1 test_bad_exc_d fixed bin(31) init(1);
dcl 1 test_critical_exc_d fixed bin(31) init(2);

dcl 1 test_bad_exc based(TEST_user_exceptions.u),
 3 idl_value fixed bin(31) init(0),
 3 reason char(32) init('');

dcl 1 test_critical_exc
based(TEST_user_exceptions.u),

 3 value_x fixed bin(15) init(0),
 3 likely_cause char(31) init(''),
 3 action_required char(63) init('');

dcl TEST_user_exceptions_area area(96);
TEST_user_exceptions.u = addr(TEST_user_exceptions_area);

dcl 1 test_myop_args aligned like test_myop_type;

dcl 1 test_myop_type based,
 3 number fixed bin(31) init(0),
 3 result fixed bin(31) init(0);
 342

API Reference Details
3. The following piece of client code shows how the client calls PODERR:

Because the myop operation can throw user exceptions, the address of
the user exception structure is passed as the fourth parameter.

4. The following piece of server code shows how the server can set up
and throw an exception in the myop operation:

test_myop_args.number = 42;
call podexec(test_obj, test_myop, addr(test_myop_args),
 addr(TEST_user_exceptions));

if myop_args.number = 0 then
 do;
 /* Set the exception ID */
 strset(TEST_user_exceptions.exception_id,
 test_bad_exid, test_bad_len);

 /* Set the exception discriminator */
 TEST_user_exceptions.d = test_bad_exc_d;
 test_bad_exc.idl_value = 9999;
 test_bad_exc.reason = 'Input must be greater than 0';
 call poderr(TEST_user_exceptions);
 end;
else
 do;
 …
343

CHAPTER 9 | API Reference
5. A test such as the following can be set up in the client code to check
for a user exception:

Exceptions The appropriate CORBA exception is raised if an attempt is made to raise a
user exception that is not related to the invoked operation.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

See also � �PODEXEC� on page 345.

� The BANK demonstration in orbixhlq.DEMOS.PLI.SRC for a complete
example of how to use PODERR.

select(TEST_user_exceptions.d);
 when(no_exceptions_thrown) /* no user exception has */
 /* been thrown */
 put skip list('No exceptions thrown, return value is:',
 test_myop_args.result);
 when(test_bad_exc_d) do;
 put skip list('User exception ''bad'' was thrown:');
 put skip list('value returned was',
 test_bad_exc.idl_value);
 put skip list('reason returned was ' ||
 test_bad_exc.reason);
 end;
 when(test_critical_exc_d) do;
 put skip list('User exception ''critical'' was
 thrown:');
 put skip list('value_x returned was',
 test_critical_exc.value_x);
 put skip list('likely_cause was ' ||
 test_critical_exc.likely_cause);
 put skip list('action_required is ' ||
 test_critical_exc.action_required);
 end;
end;
 344

API Reference Details
PODEXEC

Synopsis PODEXEC(in PTR object_reference,
 in CHAR(*) operation_name,
 inout PTR operation_buffer,
 inout PTR user_exception_buffer)
// Invokes an operation on the specified object.

Usage Client-specific.

Description The PODEXEC function allows a PL/I client to invoke operations on the server
interface represented by the supplied object reference. All in and inout
parameters must be set up prior to the call. PODEXEC invokes the specified
operation for the specified object, and marshals and populates the operation
buffer, depending on whether they are in, out, inout, or return arguments.

As shown in the following example, the client can test for a user exception
by examining the exception_id of the operation�s user exception_buffer
after calling PODEXEC. A non-zero value indicates a user exception. A zero
value indicates that no user exception was raised by the operation that the
call to PODEXEC invoked. If an exception is raised, you must reset the
discriminator of the user exception block to zero by setting the discrim_d to
no_user_exceptions_thrown.

The following example is based on the grid demonstration. Some of the
referenced data items in the example are found in the GRIDM and GRIDX
include members. The address of the operation_buffer is passed to
PODEXEC in the third argument.

Parameters The parameters for PODEXEC can be described as follows:

object_reference This is an in parameter that contains the valid
object reference. You can use STR2OBJ to create
this object reference.
345

CHAPTER 9 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT include member (where
idlmembername represents the name of the IDL member that contains
the IDL definitions):

operation_name This is an in parameter that is a string
containing the operation name to be invoked.
This string is terminated by a space. It is defined
in the idlmembernameM and idlmembernameT
include members generated by the Orbix IDL
compiler.

operation_buffer This is an inout parameter that contains a PL/I
structure of the data types that the operation
supports. The address of the buffer is passed to
PODEXEC. It is defined in the idlmembernameM
and idlmembernameT include members
generated by the Orbix IDL compiler.

user_exception_buffer This is an inout parameter that contains the
PL/I representation of the user exceptions that
the IDL operations support. The address of the
user exception buffer is passed to PODEXEC. It is
defined in the idlmembernameM and
idlmembernameT include members generated by
the Orbix IDL compiler. If the operation can
throw a user exception, the address of the
associated user exception block is passed as this
parameter. Where a user exception has not been
defined, the NO_USER_EXCEPTIONS null pointer
variable, which is defined in the CORBA include
member, is used instead.

interface test {
 string<32> call_me(in string<32> input_string);
};

dcl 1 test_call_me_type based,
 3 input_string char(32) init(''),
 3 result char(32) init('');
 346

API Reference Details
Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM include member:

3. The following piece of client code shows how to call the call_me
operation:

Exceptions A CORBA::BAD_INV_ORDER::INTERFACE_NOT_REGISTERED exception is raised
if the client tries to invoke an operation on an interface that has not been
registered via ORBREG.

A CORBA::BAD_PARAM::INVALID_DISCRIMINATOR_TYPECODE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A CORBA::BAD_PARAM::UNKNOWN_OPERATION exception is raised if the
operation is not valid for the interface.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

See also The BANK demonstration in orbixhlq.DEMOS.PLI.SRC for a complete
example of how to use PODEXEC.

dcl 1 test_call_me_args aligned like test_call_me_type;

/* Register the test interface with the PL/I runtime */
call podreg(addr(test_interface));
if check_errors('podreg') ^= completion_status_yes then return;
/* Create an object reference from the server's IOR */
call str2obj(iorrec_ptr,test_obj);
if check_errors('objset')^=completion_status_yes then return;

/* Set up the input arguments */
test_call_me_args.input_string = 'hello';

/* We are now ready to call operation call_me */
call podexec(test_obj, test_call_me,
 addr(test_call_me_args), no_user_exceptions);
if check_errors('podexec') ^= completion_status_yes then return;

put skip list('result received back from call_me: ' ||
test_call_me_args.result);
347

CHAPTER 9 | API Reference
PODGET

Synopsis PODGET(in PTR operation_buffer)
// Marshals in and inout arguments for an operation on the server
// side from an incoming request.

Usage Server-specific.

Description Each operation implementation must begin with a call to PODGET and end
with a call to PODPUT. Even if the operation takes no parameters and has no
return value, you must still call PODGET and PODPUT and, in such cases, pass
a dummy CHAR(1) data item, which the Orbix IDL compiler generates for
such cases.

PODGET copies the incoming operation�s argument values into the complete
PL/I operation parameter buffer that is supplied. This buffer is generated
automatically by the Orbix IDL compiler. Only IN and INOUT values in this
structure are populated by this call.

The Orbix IDL compiler generates the call for PODGET in the idlmembernameD
include member, for each attribute and operation defined in the IDL.

Parameters The parameter for PODGET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

operation_buffer This is an in parameter that contains a PL/I
structure representing the data types that the
operation supports. The address of the buffer is
passed to PODGET.

interface foo {
 long bar(in short n, out short m);
};
 348

API Reference Details
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following structure definition in the idlmembernameT include member
(where idlmembername represents the name of the IDL member that
contains the IDL definitions):

3. The declaration in the idlmembernameM include member is as follows:

4. A subset of the idlmembernameD include member is as follows, with
comments added for clarity:

Exceptions A CORBA::BAD_INV_ORDER::ARGS_ALREADY_READ exception is raised if the in
or inout parameter for the request has already been processed.

dcl 1 foo_bar_type based,
 3 n fixed bin(15) init(0),
 3 m fixed bin(15) init(0),
 3 result fixed bin(31) init(0);

dcl 1 foo_bar_args aligned like foo_bar_type;

select(interface);
 when(foo_tc) do;
 select(operation);
 when (foo_bar) do;
 /* Fill the foo_bar_args structure with the incoming */
 /* data. The IN value 'n' will be filled. */
 call podget(addr(foo_bar_args));
 if check_errors('podget') ^= completion_status_yes then
 return;

 /* Now call the user implementation code for op */
 /* foo_bar. */
 call proc_foo_bar(addr(foo_bar_args));

 /* Transmit the out value 'm' and result of op */
 /* foo_bar. */
 call podput(addr(foo_bar_args));
 if check_errors('podput') ^= completion_status_yes then
 return;
 end;
 otherwise;
 …
349

CHAPTER 9 | API Reference
A CORBA::BAD_PARAM::INVALID_DISCRIMINATOR_TYPECODE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

See also �PODPUT� on page 353.
 350

API Reference Details
PODINFO

Synopsis PODINFO(out PTR status_info_pointer)
// Retrieves address of the PL/I runtime status structure.

Usage Common to clients and servers.

Description The PODINFO function obtains the address of pod_status_information. If
the buffer has not been allocated, it is assigned a null value. Assuming that
the buffer has been allocated elsewhere, and that it was followed
subsequently by a call to PODSTAT, the call to PODINFO acts as if a call to
PODSTAT has been made. This is because PODINFO recalls the address of the
status_information_buffer through the pod_status_ptr (when it is used
as shown in the following example). PODINFO allows the same status buffer
to be used across multiple PL/I modules, which will be linked together later
when the application is compiled.

Parameters The parameter for PODINFO can be described as follows::

Example The following shows how pod_status_information is set up in the PL/I
server mainline code, which the Orbix IDL compiler generates in the
idlmembernameV module:

The check_errors function uses pod_status_information to determine
whether an error has occurred in the most recently called runtime function.
However, because the check_errors function can be included from any PL/I

status_info_pointer This is an out parameter that contains the address
of the PL/I runtime status information structure.

alloc pod_status_information set(pod_status_ptr);
call podstat(pod_status_ptr);
351

CHAPTER 9 | API Reference
module, and not just from the server mainline, you must call PODINFO to
connect the pod_status_information buffer with the original buffer, via the
pod_status_ptr. This is shown in the following piece of code from
check_errors, with added comments for clarity:

See also �PODSTAT� on page 364.

/* pod_status_information is based on pod_status_ptr */
/* podinfo retrieves the address of the block of memory */
/* it was originally assigned to in the server program. */
call podinfo(pod_status_ptr);

/* Now we have a link to the original status buffer */
exception_number = pod_status_information.exception_number;

if exception_number = 0 then
 …
 352

API Reference Details
PODPUT

Synopsis PODPUT(out PTR operation_buffer)
// Marshals return, out, and inout arguments for an operation on
// the server side from an incoming request.

Usage Server-specific.

Description Each operation implementation must begin with a call to PODGET and end
with a call to PODPUT. The PODPUT function copies the operation�s outgoing
argument values from the complete PL/I operation parameter buffer passed
to it. This buffer is generated automatically by the Orbix IDL compiler. Only
inout, out, and the result out item are populated by this call.

You must ensure that all inout, out, and result values are correctly
allocated (for dynamic types) and populated. If a user exception has been
raised before calling PODPUT, no inout, out, or result parameters are
marshalled, and nothing is returned in such cases. If a user exception has
been raised, PODERR must be called instead of PODPUT, and no inout, out, or
result parameters are marshalled. See �PODERR� on page 340 for more
details.

The Orbix IDL compiler generates the call for PODPUT in the idlmembernameD
include member for each attribute and operation defined in the IDL.

Parameters The parameter for PODPUT can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

operation_buffer This is an out parameter that contains a PL/I
structure of the data types that the operation
supports. The address of the buffer is passed to
PODPUT.

interface foo {
 long bar(in short n, out short m);
};
353

CHAPTER 9 | API Reference
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following structure definition in the idlmembernameT include member
(where idlmembername represents the name of the IDL member that
contains the IDL definitions):

3. The declaration in the idlmembernameM include member is as follows:

4. A subset of the idlmembernameD include member is as follows, with
comments added for clarity:

Exceptions A CORBA::BAD_INV_ORDER::ARGS_NOT_READ exception is raised if the in or
inout parameters for the request have not been processed.

dcl 1 foo_bar_type based,
 3 n fixed bin(15) init(0),
 3 m fixed bin(15) init(0),
 3 result fixed bin(31) init(0);

dcl 1 foo_bar_args aligned like foo_bar_type;

select(interface);
 when(foo_tc) do;
 select(operation);
 when (foo_bar) do;
 /* Fill the foo_bar_args structure with the incoming */
 /* data. The IN value 'n' will be filled. */
 call podget(addr(foo_bar_args));
 if check_errors('podget') ^= completion_status_yes then
 return;

 /* Now call the user implementation code for op */
 /* foo_bar. */
 call proc_foo_bar(addr(foo_bar_args));

 /* Transmit the out value 'm' and result of op */
 /* foo_bar. */
 call podput(addr(foo_bar_args));
 if check_errors('podput') ^= completion_status_yes then
 return;
 end;
 otherwise;
 …
 354

API Reference Details
A CORBA::BAD_PARAM::INVALID_DISCRIMINATOR_TYPECODE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

See also �PODGET� on page 348.
355

CHAPTER 9 | API Reference
PODREG

Synopsis PODREG(in PTR interface_description)
// Describes an IDL interface to the PL/I runtime

Usage Common to clients and servers.

Description The PODREG function registers an interface with the PL/I runtime, by using
the interface description that is stored in the idlmembernameX include
member, which the Orbix IDL compiler generates.

The Orbix IDL compiler generates an idlmembernameX include member for
each IDL interface (where idlmembername represents the name of the IDL
member that contains the IDL definitions). The idlmembernameX contains a
structure for each interface, which the Orbix IDL compiler populates with
information about the IDL. The PODREG function uses this populated
interface information to register an interface with the PL/I runtime, for use in
subsequent calls to PODGET and PODPUT.

You must call PODREG for every interface that the client or server uses. In this
case, you must pass the address of the structure stored in the
idlmembernameX include member for each interface, to register the
information about the interface with the PL/I runtime. The format for this
structure name is interface_name_interface.

Parameters The parameter for PODREG can be described as follows:

interface_descriptionThis is an in parameter that contains the address of
the interface definition.
 356

API Reference Details
Example The following code shows part of the setup for a typical PL/I client:

Exceptions A CORBA::BAD_INV_ORDER::INTERFACE_ALREADY_REGISTERED exception is
raised if the client or server attempts to register the same interface more
than once.

/* Location of the interface descriptor(s) for the */
/* IDL file MYIDL, containing interface MyIntf */
%include MYIDLX;
…

/* The server's IOR is read in, code omitted for brevity */
…

/* Initialize the client's connection to the ORB */
call orbargs(arg_list,
 arg_list_len,
 orb_name,
 orb_name_len);

/* Register interface MyIntf with the PL/I runtime */
call podreg(addr(MyIntf_interface));
if check_errors('podreg') ^= completion_status_yes then return;

/* Create an object reference from the IOR */
call str2obj(iorrec_ptr,shlong_obj);
if check_errors('str2obj')^=completion_status_yes then return;

/* Client is now ready to start setting up calls to the server */
357

CHAPTER 9 | API Reference
PODREQ

Synopsis PODREQ(in PTR request_details)
// Provides current request information.

Usage Server-specific.

Description The server implementation module calls PODREQ to extract the relevant
information about the current request. PODREQ provides information about
the current invocation request in a request information buffer, which is
defined as follows in the supplied DISPINIT include member:

In the preceding structure, the first three data items are unbounded CORBA
character strings. You can use the STRGET function to copy the first three
data items into CHAR(n) buffers. The TARGET item is the PL/I object reference
for the operation invocation. After PODREQ is called, the structure contains
the following data:

You can call PODREQ only once for each operation invocation. PODREQ must
be called after a request has been dispatched to a server, and before any
calls are made to access the parameter values. The DISPINIT include
member contains a call to STRGET to retrieve the operation name from the
reqinfo data item. You can make similar calls to retrieve the other variables
in reqinfo.

dcl 1 reqinfo,
 3 interface_name ptr;
 3 operation_name ptr;
 3 principal ptr;
 3 target ptr;

INTERFACE_NAME The name of the interface, which is stored as an
unbounded string.

OPERATION_NAME The name of the operation for the invocation request,
which is stored as an unbounded string.

PRINCIPAL The name of the client principal that invoked the request,
which is stored as an unbounded string.

TARGET The object reference of the target object.
 358

API Reference Details
Parameters The parameter for PODREQ can be described as follows:

Example The example can be broken down as follows:

1. The following code is in the idlmembernameI server implementation
module, generated by the Orbix IDL compiler (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

2. The following code is in the supplied DISPINIT include member that
the server implementation includes:

request_details This is an in parameter that contains a PL/I
structure representing the current request.

/* Entry point to enable the Orbix PL/I runtime to call */
/* out to the server implementation for when a request */
/* comes in. */
DISPTCH: ENTRY;

/* reqinfo is used to store information about the current */
/* request */
dcl 1 reqinfo,
 3 interface_name ptr init(sysnull()),
 3 operation_name ptr init(sysnull()),
 3 principal ptr init(sysnull()),
 3 target ptr init(sysnull());

dcl operation char(256);
dcl operation_length fixed bin(31) init(256);

/* Retrieve the information about the current request */
/* received */
call podreq(reqinfo);
if check_errors('podreq') ^= completion_status_yes then

return;

/* We can now retrieve the operation name of this request */
call strget(operation_name,
 operation,
 operation_length);
if check_errors('strget') ^= completion_status_yes then

return;
359

CHAPTER 9 | API Reference
3. The select statement in the SELECT include member then calls the
appropriate server implementation procedure.

Exceptions A CORBA::BAD_INV_ORDER::NO_CURRENT_REQUEST exception is raised if there
is no request currently in progress.

A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
PODSRVR is not called.

See also �STRGET� on page 397.
 360

API Reference Details
PODRUN

Synopsis PODRUN
// Indicates the server is ready to accept requests.

Usage Server-specific.

Description The PODRUN function indicates that a server is ready to start receiving client
requests. It is equivalent to calling ORB::run() in C++. See the CORBA
Programmer�s Reference, C++ for more details about ORB::run(). There
are no parameters required for calling PODRUN.

Parameters PODRUN takes no parameters.

Example In the idlmembernameV module (that is, the server mainline member), which
the Orbix IDL compiler generates, the final PL/I runtime call is a call to
PODRUN. PODRUN is called after the server has written its IOR to a member, as
shown in the following example:

Exceptions A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
PODSRVR is not called.

/* Write out the IOR for each interface */
open file(IORFILE) output;

call objget(grid_obj,
 iorrec,iorrec_len);
if check_errors('objget') ^= completion_status_yes then return;
read file(IORFILE) into(iorrec);

close file(IORFILE);

/* Server is now ready to accept requests */
call podrun(server_name,server_name_len);
if check_errors('podrun') ^= completion_status_yes then return;
361

CHAPTER 9 | API Reference
PODSRVR

Synopsis PODSRVR(in CHAR(*) server_name,
 in FIXED BIN(31) server_name_length)
// Sets the server name for the current server process.

Usage Server-specific.

Description The PODSRVR function sets the server name for the current server. You must
call this only once in a server, and it must be called before PODRUN.

Parameters The parameters for PODSRVR can be described as follows:

server_name This is an in parameter that is a bounded string
containing the server name.

server_name_length This is an in parameter that specifies the length of
the string containing the server name.
 362

API Reference Details
Example The following code is based on the generated code for the simple server
demonstration, with extra comments for clarity:

Exceptions A CORBA::BAD_INV_ORDER::SERVER_NAME_ALREADY_SET exception is raised if
ORBSRVR is called more than once.

dcl srv_name char(256) var;
dcl server_name char(256);
dcl server_name_len fixed bin(31);
…
/* Server name srv_name is read in from a file */
server_name = srv_name;
server_name_len = length(srv_name);
…
/* Initialize the server connection to the ORB */
call orbargs(arg_list,arg_list_len,orb_name,orb_name_len);
if check_errors('orbargs') ^= completion_status_yes then return;

/* Call podsrvr using the server name passed in */
call podsrvr(server_name,server_name_len);
if check_errors('podsrvr') ^= completion_status_yes then return;

/* Register interface : simple */
call podregi(addr(simple_interface),
 simple_obj);
if check_errors('podregi') ^= completion_status_yes then return;

/* Write out the IOR for the interface */
…

/* Server is now ready to accept requests */
call podrun(server_name,server_name_len);
if check_errors('podrun') ^= completion_status_yes then return;

…

363

CHAPTER 9 | API Reference
PODSTAT

Synopsis PODSTAT(in PTR status_buffer)
// Registers the status information structure.

Usage Common to clients and servers.

Description The PODSTAT function registers the supplied status information structure to
the PL/I runtime. The status of any PL/I runtime call is then available for
examination, for example, to test if a call has completed successfully. You
should call PODSTAT before any other PL/I runtime call. The address of the
status structure is passed to PODSTAT. After each subsequent call to the PL/I
runtime, a call to CHECK_ERRORS should be made to test the completion
status of the call.

You should call PODSTAT in every program. For a client, it should be called in
the main module. For a server, it should be called in the server mainline
(that is, the idlmembernameV module generated by the Orbix IDL compiler).
If you do not call PODSTAT, no status information is available. Also, if an
exception occurs and PODSTAT has not been called, the program terminates
unless either of the following applies:

� Storage has been assigned to POD_STATUS_INFORMATION, which ensures
that COMPLETION_STATUS always equals zero (that is, no error).

� No calls to check_errors are made.

If neither of the preceding scenarios apply when an exception occurs at
runtime, and you have not called PODSTAT, the application terminates with
the following message:

If you need to access the status information from other PL/I modules that
might be linked into your client or server, use PODINFO to retrieve the stored
pointer to the original POD_STATUS_INFORMATION data structure. You can
then access the status information as usual.

An exception has occurred but PODSTAT has not been called.
Place the PODSTAT API call in your application, compile and
rerun. Exiting now.
 364

API Reference Details
Parameters The parameter for PODSTAT can be described as follows:

Example The Orbix IDL compiler generates the following code in the idlmembernameV
(that is, server mainline) module:

Exceptions If a CORBA exception is raised, the CORBA_EXCEPTION, COMPLETION_STATUS,
and EXCEPTION_MINOR_CODE field is set to non-zero. You can use the
CHECK_ERRORS function to test for this. The CORBA include member lists the
values that the CORBA_EXCEPTION field can be set to.

status_buffer This is an in parameter that contains a PL/I
representation of the status information block
structure. This buffer is populated when a CORBA
system exception occurs during subsequent API
calls.

%include CORBA;

…

alloc pod_status_information set(pod_status_ptr);

call podstat(pod_status_ptr);
if check_errors('podstat') ^= completion_status_yes then return;
365

CHAPTER 9 | API Reference
Definition POD_STATUS_INFORMATION is defined in the CORBA include member. For
example:

A CORBA::BAD_INV_ORDER::STAT_ALREADY_CALLED exception is raised if
PODSTAT is called more than once.

See also �CHECK_ERRORS� on page 426.

/*
 (EXTRACT FROM CORBA)
 EXCEPTION_TEXT is a pointer to the text of the exception.
 STRGET must be used to extract this text.
*/
DCL POD_STATUS_PTR PTR;
DCL 1 POD_STATUS_INFORMATION BASED(POD_STATUS_PTR),
 3 CORBA_EXCEPTION FIXED BIN(15) INIT(0),
 3 COMPLETION_STATUS FIXED BIN(15) INIT(0),
 3 EXCEPTION_MINOR_CODE FIXED BIN(31) INIT(0),
 3 EXCEPTION_TEXT PTR INIT(SYSNULL());

DCL COMPLETION_STATUS_YES FIXED BIN(15) INIT(0) STATIC;
DCL COMPLETION_STATUS_NO FIXED BIN(15) INIT(1) STATIC;
DCL COMPLETION_STATUS_MAYBE FIXED BIN(15) INIT(2) STATIC;
 366

API Reference Details
PODTIME

Synopsis PODTIME(in FIXED BIN(15) timeout_type
 in FIXED BIN(31) timeout_value)
// Used by clients for setting the call timeout.
// Used by servers for setting the event timeout.

Usage Common to batch clients and servers. Not relevant to CICS or IMS.

Description The PODTIME function provides:

� Call timeout support to clients. This means that it specifies how long
before a client should be timed out after having established a
connection with a server. In this case, the value set by PODSTAT is
ignored when making a connection between a client and server. The
value only comes into effect after the connection has been established.

� Event timeout support to servers. This means that it specifies how long
a server should wait between connection requests.

Parameters The parameters for PODTIME can be described as follows:

timeout_type This is an in parameter that specifies whether call
timeout or event timeout functionality is required. It
must be set to one of the two values defined in the
CORBA include member for POD_EVENT_TIMEOUT or
POD_CALL_TIMEOUT. In this case, value 1
corresponds to event timeout, and value 2
corresponds to call timeout.

timeout_value This is an in parameter that specifies the timeout
value in milliseconds.
367

CHAPTER 9 | API Reference
Server example On the server side, PODTIME must be called immediately before calling
PODRUN. After PODRUN has been called, the event timeout value cannot be
changed. For example:

Client example On the client side, PODTIME must be called before calling PODEXEC. For
example:

Exceptions A CORBA::BAD_PARAM::INVALID_TIMEOUT_TYPE exception is raised if the
timeout_type parameter is not set to one of the two values defined for
POD_EVENT_TIMEOUT or POD_CALL_TIMEOUT in the CORBA include member.

…
/* Set the event timeout value to two minutes */
call podtime(pod_event_timeout,120000);
if check_errors(’podtime’) ^= completion_status_yes then return;

call podrun;
if check_errors(’podrun’) ^= completion_status_yes then return;

…
/* Set the call timeout value to thirty seconds */
call podtime(pod_call_timeout,30000);
if check_errors(’podtime’) ^= completion_status_yes then return;

call podexec(…);
if check_errors(’podexec’) ^= completion_status_yes then return;
 368

API Reference Details
PODVER

Overview PODVER(out CHAR(*) runtime_id_version,
 out CHAR(*) runtime_compile_time_date)
// Returns PL/I runtime compile-time information.

Usage Common to clients and servers.

Description The PODVER function is used to determine which version of the PL/I runtime
is being used to compile Orbix PL/I programs, because this information is
not provided by the ordinary PL/I runtime libraries (that is, those without
debugging output).

Parameters The parameters for PODVER can be described as follows:

Example The following code example shows how a client or server can call PODVER:

runtime_id_version This is an out parameter that specifies the PL/I
runtime ID and version. It is 14 characters in length
and takes the following format:

POD2000 v6.0.x

runtime_compile_time
_date

This is an out parameter that specifies compile
time and date information. It is 20 characters in
length and takes the following format:

MMM DD YYYY at xx:xx

dcl getpodver char(14);
dcl getpoddate char(20);

call podver(getpodver,getpoddate);

put skip list('pod type and version = ' || getpodver);
put skip list ('pod compile date & time = ' || getpoddate);
369

CHAPTER 9 | API Reference
SEQALOC

Synopsis SEQALOC(out PTR sequence_control_data,
 in FIXED BIN(31) sequence_size,
 in CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Allocates memory for an unbounded sequence.

Usage Common to clients and servers.

Description The SEQALOC function allocates initial storage for an unbounded sequence.
You must call SEQALOC before you call SEQSET for the first time. The length
supplied to the function is the initial sequence size requested. The typecode
supplied to SEQALOC must be the sequence typecode.

You can use SEQALOC only on unbounded sequences.

Parameters The parameters for SEQALOC can be described as follows:

sequence_control_data This is an inout parameter that contains the
unbounded sequence control data.

sequence_size This is an in parameter that specifies the
maximum expected size of the sequence.

typecode_key This is an in parameter that contains a PL/I
structure representing the typecode key. This is a
bounded string.

typecode_key_length This is an in parameter that specifies the length
of the typecode key.

Note: The typecode keys are defined in the idlmembernameT include
member, and are suffixed with _tc.
 370

API Reference Details
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module::

3. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can then be used by
the user�s implementation code in the idlmembernameI module:

Exceptions A CORBA::NO_MEMORY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

interface example {
 typedef sequence<long> seqlong;
 attribute seqlong myseq;
};

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_buf fixed bin (31) init(0);

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;

/* Extract from EXAMPLI showing some of the user's */
/* implementation. Allocate space for 20 elements */
/* in the unbounded sequence myseq. */
call seqaloc(example_myseq_attr.result.result_seq,
 20,
 example_seqlong_tc,
 length(example_seqlong_tc));
371

CHAPTER 9 | API Reference
A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly.

See also � �SEQFREE� on page 375.

� �SEQSET� on page 390.

� �Memory Handling� on page 275.
 372

API Reference Details
SEQDUPL

Synopsis SEQDUPL(in PTR sequence_control_data,
 out PTR dupl_seq_control_data)
// Duplicates an unbounded sequence control block.

Usage Common to clients and servers.

Description The SEQDUPL function creates a copy of an unbounded sequence. The new
sequence has the same attributes as the original sequence. The sequence
data is copied into a newly allocated buffer. The program owns this
allocated buffer. When this buffer is no longer required, SEQFREE must be
called to release the storage allocated to it.

You can call SEQDUPL only on unbounded sequences.

Parameters The parameters for SEQDUPL can be described as follows:

sequence_control_data This is an in parameter that contains the
unbounded sequence control data. The address
of the buffer is passed to SEQDUPL.

dupl_seq_control_data This is an out parameter that contains the
duplicated unbounded sequence control data
block.
373

CHAPTER 9 | API Reference
Example The following is an example of how to use SEQDUPL in a client or server
program (the example is based on two unbounded sequences of float
types�that is, sequence<float> in IDL):

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly.

See also � �SEQFREE� on page 375.

� �Memory Handling� on page 275.

dcl 1 example_seq_args aligned,
 3 result,
 5 result_seq ptr,
 5 result_buf float dec(6);

dcl 1 example_seq_2_args aligned,
 3 result,
 5 result_seq ptr,
 5 result_buf float dec(6);

/* seqaloc step for example_seq_args and seqset is omitted */
…
call seqdupl(example_seq_args.result.result_seq,
 example_seq_2_args.result.result_seq);
…

 374

API Reference Details
SEQFREE

Synopsis SEQFREE(in PTR sequence_control_data)
// Frees the memory allocated to an unbounded sequence.

Usage Common to clients and servers.

Description The SEQFREE function releases storage assigned to a sequence. (Storage is
assigned to a sequence by calling SEQALOC or SEQINIT.) Do not try to use the
sequence again after freeing its memory, because doing so might result in a
runtime error. Memory leaks can occur if you do not call SEQFREE in a logical
order of innermost nested sequence to outermost.

You can use SEQFREE both on bounded and unbounded sequences.

Parameters The parameter for SEQFREE can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

sequence_control_data This is an in parameter that contains the
unbounded sequence control data.

interface example {
 typedef sequence<long,10> seqlong10;
 attribute seqlong10 myseq;
};

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_dat(10) fixed bin (31) init((10)0);
375

CHAPTER 9 | API Reference
Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

3. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can be used by the
user�s implementation code in the idlmembernameI module:

See also � �SEQALOC� on page 370.

� �Memory Handling� on page 275.

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;

/* Extract from EXAMPLI showing some of the user’s */
/* implementation. Our unbouded sequence gets initialized */
/* with 25 elements’ space */
call seqaloc(example_myseq_attr.result.result_seq,
 25,
 example_seqlong_tc,
 length(example_seqlong_tc));
if check_errors('seqaloc') ^= completion_status_yes then

return;

/* Processing omitted */
…

/* Finished working with the unbounded sequence, now */
/* free it */
call seqfree(example_myseq.result.result_seq);
 376

API Reference Details
SEQGET

Synopsis SEQGET(in PTR sequence_control_data,
 in FIXED BIN(31) element_number,
 out PTR sequence_data)
// Retrieves the specified element from an unbounded sequence.

Usage Common to clients and servers.

Description The SEQGET function provides access to a specific element of an unbounded
sequence. The data is copied from the specified element into the supplied
sequence buffer (that is, into the sequence_data parameter).

You can use SEQGET only on unbounded sequences.

Parameters The parameters for SEQGET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

sequence_control_data This is an in parameter that contains the
unbounded sequence control data.

element_number This is an in parameter that specifies the index
of the element number to be retrieved.

sequence_data This is an out parameter that contains the buffer
to which the sequence data is to be copied.

interface example {
 typedef sequence<long> seqlong;
 attribute seqlong myseq;
};
377

CHAPTER 9 | API Reference
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

3. Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_buf fixed bin (31) init(0);

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;
 378

API Reference Details
4. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can then be used by
the user�s implementation code in a client program:

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly.

A CORBA::BAD_PARAM::INVALID_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current length.

See also �SEQSET� on page 390.

/* Extract from a client showing some of the user’s */
/* implementation */
dcl (i, myseq_len, myseq_value) fixed bin(31) init(0);

/* Retrieve the contents of attribute myseq */
call podexec(example_obj,
 example_get_myseq,
 addr(example_myseq_args),
 no_user_exceptions);
if check_errors('podexec') ^= completion_status_yes then

return;

/* Find out how many elements of myseq’s sequence have */
/* been set */
call seqlen(example_myseq_attr, myseq_len);
if check_errors('seqlen') ^= completion_status_yes then

return;

put skip list('Number of results returned:', myseq_len);

/* Display the contents of each element in the attribute */
do i = 1 to myseq_len;
 call seqget(example_myseq_args.result.result_seq, i,
 myseq_value);
 put skip list('Element', i, ' contains', myseq_value);
end;
379

CHAPTER 9 | API Reference
SEQINIT

Synopsis SEQINIT(out PTR sequence_control_data,
 in CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Initializes a bounded sequence

Usage Common to clients and servers.

Description The SEQINIT function initializes a bounded sequence. It sets the maximum
and current length to the size of the bounded sequence, and it sets the
sequence typecode to be the same as the typecode supplied to SEQINIT. The
sequence data buffer is set to null. If you want to fill only part of the
sequence, you can use SEQLSET to indicate how many items of the sequence
have been filled.

You must supply SEQINIT with the sequence typecode.

SEQINIT can be used only on bounded sequences.

Parameters The parameters for SEQINIT can be described as follows:

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if an
unbounded sequence is passed to SEQINIT.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if an invalid
typecode is passed to SEQINIT.

sequence_control_data This is an out parameter that contains the
unbounded sequence control data.

typecode_key This is an in parameter that contains a PL/I
structure representing the typecode key. This is a
bounded string.

typecode_key_length This is an in parameter that specifies the length of
the typecode key.
 380

API Reference Details
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

3. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can then be used by
the user�s implementation code in the idlmembernameI module:

See also �SEQLSET� on page 384.

interface example {
 typedef sequence<long,10> seqlong10;
 attribute seqlong10 myseq;
};

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_dat(10) fixed bin (31) init((10)0);

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;

/* Extract from EXAMPLI showing some of the user’s */
/* implementation. Initialize our bounded sequence before */
/* we use it. */
call seqinit(example_myseq_attr.result.result_seq,
 example_seqlong10_tc,
 length(example_seqlong10_tc));
381

CHAPTER 9 | API Reference
SEQLEN

Synopsis SEQLEN(in PTR sequence_control_data,
 out FIXED BIN(31) sequence_size)
// Retrieves the current length of the sequence

Usage Common to clients and servers.

Description The SEQLEN function retrieves the current length of a given bounded or
unbounded sequence.

You can call SEQLEN both on bounded and unbounded sequences.

Parameters The parameters for SEQLEN can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

sequence_control_data This is an in parameter that contains the
unbounded sequence control data.

sequence_size This is an out parameter that specifies the
maximum size of the sequence.

interface example {
 typedef sequence<long> seqlong;
 attribute seqlong myseq;
};

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_buf fixed bin (31) init(0);
 382

API Reference Details
Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

3. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can then be used by
the user�s implementation code in a client program:

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if a null pointer
is supplied to SEQLEN.

See also �SEQMAX� on page 387.

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;

/* Extract from a client showing some of the user’s */
/* implementation */
dcl (i, myseq_len, myseq_value) fixed bin(31) init(0);

/* Retrieve the contents of attribute myseq */
call podexec(example_obj, example_get_myseq,
 addr(example_myseq_args), no_user_exceptions);
if check_errors('podexec') ^= completion_status_yes then

return;

/* Find out how many elements of myseq’s sequence have */
/* been set */
call seqlen(example_myseq_attr, myseq_len);
if check_errors('seqlen') ^= completion_status_yes then

return;

put skip list('Number of results returned:', myseq_len;
383

CHAPTER 9 | API Reference
SEQLSET

Synopsis SEQLSET(in PTR sequence_control_data,
 in FIXED BIN(31) new_sequence_size)
// Changes the number of elements in the sequence

Usage Common to clients and servers.

Description The SEQLSET function resizes a sequence. The parameter for the new length
of the sequence can have any value between 0 and the current length of the
sequence plus one. However, it cannot be larger than the maximum length
for the sequence. If a sequence is made smaller, the contents of the
elements greater than the new length of the sequence are undefined.

SEQLSET is typically used when the full bounds of a bounded sequence, or
the full allocation of an unbounded sequence, is not needed for storing a set
of results. It can also be used for setting a sequence to a length of zero, to
indicate, for example, that no records match a query.

You can call SEQLSET both on bounded and unbounded sequences.

Parameters The parameters for SEQLSET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

sequence_control_data This is an in parameter that contains the
unbounded sequence control data.

new_sequence_size This is an out parameter that specifies the new
maximum size of the sequence.

interface example {
 typedef sequence<long,10> seqlong10;
 attribute seqlong10 myseq;
};
 384

API Reference Details
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_dat(10) fixed bin (31) init(10)0);

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;
385

CHAPTER 9 | API Reference
3. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can be used by the
user�s implementation code in the idlmembernameI module:

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if an attempt is
made to set any element to be greater than either the current length of the
sequence plus one or the maximum length defined for the sequence, or if a
null sequence is passed to SEQLSET.

See also �SEQMAX� on page 387.

/* Extract from EXAMPLI showing some of the user’s */
/* implementation. A simple example where the user asks */
/* for a set of powers of a given number */
dcl base_number fixed bin(31);
dcl number_of_entries fixed bin(31);

/* Initialization and misc processing omitted */
…

base_number = 4;
number_of_entries = 6;

/* Resize the sequence to be of size number_of_entries. */
/* This is done to facilitate the client. The client will */
/* call SEQLEN and process just the returned number of */
/* entries, not the entire bounded sequence, unless it */
/* is fully filled. */
call seqlset(example_myseq_args.result.result_seq,
 number_of_entries);
if check_errors('seqlset') ^= completion_status_yes then

return;

do i = 1 to number_of_entries;
 example_myseq_attr.result.result_dat(i) = base_number**i;
end;
 386

API Reference Details
SEQMAX

Synopsis SEQMAX(in PTR sequence_control_data,
 out FIXED BIN(31) max_sequence_size)
// Returns the maximum set length of the sequence

Usage Common to clients and servers.

Description The SEQMAX function retrieves the current maximum length of a given
sequence. In the case of a bounded sequence, the current maximum length
is set to the bounded size. In the case of an unbounded sequence, the
current maximum length is at least the size of the initial number of elements
declared for the unbounded sequence (for example, through SEQALOC).

You can call SEQMAX both on bounded and unbounded sequences.

Parameters The parameters for SEQMAX can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

sequence_control_data This is an in parameter that contains the
unbounded sequence control data.

max_sequence_size This is an out parameter that specifies the
maximum size of the sequence.

interface example {
 typedef sequence<long> seqlong;
 attribute seqlong myseq;
};
387

CHAPTER 9 | API Reference
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameM module:

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_buf fixed bin (31) init(0);

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;
 388

API Reference Details
3. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can be used by the
user�s implementation in the idlmembernameI module:

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if a null pointer
is supplied to SEQMAX.

See also � �SEQALOC� on page 370.

� �SEQLEN� on page 382.

/* Extract from EXAMPLI showing some of the user’s */
/* implementation */
dcl myseq_length fixed bin(31) init(0);

/* Initialize our unbounded sequence with 25 elements */
call seqaloc(myseq_args.result.result_seq,
 25,
 useqlong_tc,
 length(useqlong_tc));
if check_errors('seqaloc') ^= completion_status_yes then

return;

…

/* Check what the maximum length of the sequence is now. */
/* Note that it may not necessarily be 25 - if more than */
/* 25 elements were set in the sequence, the maximum */
/* length will be dynamically increased to cater for the */
/* longer sequence. */

call seqmax(example_myseq_attr.result_seq, myseq_length);
if check_errors('seqmax') ^= completion_status_yes then

return;

put skip list ('Present maximum length of myseq =',
myseq_length);
389

CHAPTER 9 | API Reference
SEQSET

Synopsis SEQSET(in PTR sequence_control_data,
 in FIXED BIN(31) element_number,
 in PTR sequence_data)
// Places the specified data into the specified element of an
// unbounded sequence.

Usage Common to clients and servers.

Description The SEQSET function copies the supplied data into the requested element of
an unbounded sequence. You can set any element ranging between 1 and
the current length of a sequence plus one. If the current length plus one is
greater than the maximum size of the sequence, the sequence is reallocated
to hold the enlarged sequence.

You can call SEQSET only on unbounded sequences.

The algorithm used by SEQSET to determine the new maximum size of the
sequence, whenever necessary, is:

Parameters The parameters for SEQSET can be described as follows:

max_seq_size = SEQMAX(sequence_control_data)

if element_number > max_seq_size then
 if max_seq_size < 8192 then
 new_max_seq_size = max_seq_size * 2
 else
 new_max_seq_size = max_seq_size + (max_seq_size/8)
 end
end

sequence_control_data This is an in parameter that contains the
unbounded sequence control data.

element_number This is an in parameter that specifies the index
of the element number that is to be set.

sequence_data This is an in parameter that contains the buffer
containing the data that is to be placed in the
sequence.
 390

API Reference Details
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

3. Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

interface example {
 typedef sequence<long> seqlong;
 attribute seqlong myseq;
};

/* Extract from EXAMPLT */
dcl 1 example_myseq_type based,
 3 result,
 5 result_seq ptr init(sysnull()),
 5 result_buf fixed bin (31) init(0);

/* Extract from EXAMPLM */
dcl 1 example_myseq_attr aligned like example_myseq_type;
391

CHAPTER 9 | API Reference
4. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can be used by the
user�s implementation code in the idlmembernameI module:

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly. For example, if an invalid sequence typecode
was passed to SEQSET or if the sequence is a bounded sequence.

A CORBA::BAD_PARAM::INVALID_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current maximum length of
the sequence plus one.

A CORBA::NO_MEMORY exception is raised if the sequence needs to be
resized and there is not enough memory to resize it.

See also �SEQGET� on page 377.

/* Extract from EXAMPLI showing some of the user’s */
/* implementation */
dcl element_num fixed bin(31);
dcl max_seq_ele fixed bin(31);

/* Set up the sequence to hold 10 elements */
max_seq_ele = 10;
call seqaloc(example_myseq_args.result.result_seq,
 max_seq_ele);

/* Set each element of the unbounded sequence with */
/* multiples of 12 */
do element_num = 1 to max_seq_ele;
 example_myseq_args.result.result_buf = element_num*12;

 call seqset(example_myseq_arts.result.result_seq,
 element_num,
 addr(example_myseq_args.result.result_buf));
 if check_errors('seqset') ^= completion_status_yes then
 return;
end;
 392

API Reference Details
STRCON

Synopsis STRCON(inout PTR string_pointer,
 in PTR addon_string_pointer)
// Concatenates two unbounded strings.

Usage Common to clients and servers.

Description The STRCON function concatenates the two supplied unbounded strings, and
returns the concatenated unbounded string in the first parameter. The
original storage allocated to the first string pointer is deleted, because it is
assigned the concatenated string instead.

Parameters The parameters for STRCON can be described as follows:

string_pointer This is an inout parameter that is the unbounded
string pointer containing a copy of the bounded
string that is to be modified. This string is
subsequently returned with the
addon_string_pointer string appended to it.

addon_string_pointer This is an in parameter that contains the string to
be concatenated to the other string supplied in
string_pointer.
393

CHAPTER 9 | API Reference
Example 1. Consider the following test program:

2. The results that are printed from this test program are as follows:

TEST: PROC OPTIONS(MAIN);

dcl first_part ptr;
dcl second_part ptr;
dcl temp_string char(40) init('');
dcl temp_string_len fixed bin(31) init(40);

temp_string = 'Hello ';
call strset(first_part, temp_string, temp_string_len);

temp_string = 'There';
call strset(second_part, temp_string, temp_string_len);

call strcon(first_part, second_part);

temp_string = '';
call strget(first_part, temp_string, temp_string_len);

put skip list('Contents of first_part are: ', temp_string);

END TEST;

Contents of first_part are: Hello There
 394

API Reference Details
STRDUPL

Synopsis STRDUPL(in PTR string_pointer,
 out PTR duplicate_string_pointer)
// Duplicates a given unbounded string

Usage Common to clients and servers.

Description The STRDUPL function takes in an unbounded string as its first parameter,
duplicates the string, and returns it via its second parameter. This involves a
complete copy (that is, the storage used by the in string is also duplicated).

Parameters The parameters for STRDUPL can be described as follows:

Example The following is an example of how to use STRDUPL in a client or sever
program:

string_pointer This is an in parameter that is the unbounded
string pointer containing a copy of the bounded
string.

duplicate_string_pointer This is an out parameter that contains the
duplicated string.

dcl orig_str_ptr PTR;
dcl dupl_str_ptr PTR;
dcl temp_string char(40) init('hello');
dcl temp_string_len fixed bin (31) init(40);

/* Set up our first string */
call strset(orig_str_ptr, temp_string, temp_string_len);
if check_errors('strset') ^= completion_status_yes then return;

/* Make a copy of orig_str_ptr, storing this in */
/* dupl_str_ptr */
call strdupl(orig_str_ptr, dupl_str_ptr);
if check_errors('strdupl') ^= completion_status_yes then return;
395

CHAPTER 9 | API Reference
STRFREE

Synopsis STRFREE(in PTR string_pointer)
// Frees the storage used by an unbounded string

Usage Common to clients and servers.

Description The STRFREE function releases dynamically allocated memory for an
unbounded string, via a pointer that was originally obtained by calling
STRSET. Do not try to use the unbounded string after freeing it, because
doing so might result in a runtime error.

Parameters The parameter for STRFREE can be described as follows:

Example The following is an example of how to use STRFREE in a client or server
program:

See also � �STRSET� on page 401.

� �Memory Handling� on page 275.

string_pointer This is an in parameter that is the unbounded string
pointer containing a copy of the unbounded string.

dcl unb_string ptr init(sysnull());
dcl pli_string char(32) init('Orbix');

call strset(unb_string, pli_string, length(pli_string));
if check_errors('strset') ^= completion_status_yes then return;
…

/* Retrieve the string from the unbounded string */
pli_string='';
call strget(unb_string, pli_string, length(pli_string));
put skip list('The string set was: ' || pli_string);

/* Finished using the unbounded string now, so free it */
call strfree(unb_string);
 396

API Reference Details
STRGET

Synopsis STRGET(in PTR string_pointer,
 out CHAR(*) string,
 in FIXED BIN(31) string_length)
// Copies the contents of an unbounded string to a PL/I string

Usage Common to clients and servers.

Description The STRGET function copies the characters from the unbounded string
pointer to the PL/I string item. If the unbounded string does not contain
enough characters to fill the PL/I string exactly, the PL/I string is padded
with spaces. If the length of the unbounded string is greater than the size of
the PL/I string, only the length specified by the third parameter is copied
into the PL/I string from the string pointer.

Parameters The parameters for STRGET can be described as follows:

Note: Null characters are never copied from the string_pointer to the
target string.

string_pointer This is an in parameter that is the unbounded string
pointer containing a copy of the unbounded string.

string This is an out parameter that is a bounded string to
which the contents of the string pointer are copied. This
string is terminated by a space if it is larger than the
contents of the string pointer.

string_length This is an in parameter that specifies the length of the
unbounded string.
397

CHAPTER 9 | API Reference
Example 1. Consider the following test program:

2. The results printed out from the preceding test program are:

See also �STRSET� on page 401.

TEST: PROC OPTIONS(MAIN);

%include CORBA;

/* Temporary string used to set a string in src_pointer */
dcl temp_string char(32) init('Hello there');

/* This is the supplied PL/I unbounded string pointer */
dcl str_pointer ptr;

/* This is the PL/I representation of the string */
dcl dest char(64);

/* Set up the src_pointer unbounded string */
call strset(str_pointer, temp_string, length(temp_string));
if check_errors('strset') ^= completion_status_yes then return;

/* Our call to strget will now retrieve the string stored */
/* in str_pointer and set the dest PL/I string */
call strget(str_pointer, dest, length(dest));
if check_errors('strget') ^= completion_status_yes then return;

put skip list('Contents of str_pointer: ' || dest);

END TEST;

Contents of str_pointer: Hello there
 398

API Reference Details
STRLENG

Synopsis STRLENG(in PTR string_pointer,
 out FIXED BIN(31) string_length)
// Returns the actual length of an unbounded string

Usage Common to clients and servers.

Description The STRLENG function returns the number of characters in an unbounded
string.

Parameters The parameters for STRLENG can be described as follows:

Example 1. Consider the following test program:

string_pointer This is an in parameter that is the unbounded string
pointer containing the unbounded string.

string_length This is an out parameter that is used to retrieve the
actual length of the string that the string_pointer
contains.

TEST: PROC OPTIONS(MAIN);

%include CORBA;

dcl str_ptr ptr;
dcl len fixed bin(31);
dcl temp_string char(32);

temp_string = 'This is a string';
call strset(str_ptr, temp_string, length(temp_string));
if check_errors('strset') ^= completion_status_yes then return;

/* Call strleng and store the result in len */
call strleng(str_ptr, len);
if check_errors('strleng') ^= completion_status_yes then return;

put skip list('The length of our unbounded string is', len);

END TEST;
399

CHAPTER 9 | API Reference
2. The results printed out from the preceding test program are:

The length of our unbounded string is 16
 400

API Reference Details
STRSET

Synopsis STRSET(out PTR string_pointer,
 in CHAR(*) string,
 in FIXED BIN(31) string_length)
// Creates an unbounded string from a CHAR(n) data item.

Usage Common to clients and servers.

Description The STRSET function creates an unbounded string, and copies the number of
characters specified in the third parameter for the PL/I string�s length from
the PL/I string to the unbounded string. If the PL/I string contains trailing
spaces, these are not copied to the unbounded string.

Parameters The parameters for STRSET can be described as follows:

Note: STRSET allocates memory for the string from the program heap at
runtime. See �STRFREE� on page 396 and �Unbounded Strings and
Memory Management� on page 285 for details of how this memory is
subsequently released.

string_pointer This is an out parameter to which the unbounded string
is copied.

string This is an in parameter containing the bounded string
that is to be copied. This string is terminated by a space
if it is larger than the contents of the target string pointer.
If the bounded string contains trailing spaces, they are
not copied.

string_length This is an in parameter that specifies the number of
characters to be copied from the bounded string specified
in string.
401

CHAPTER 9 | API Reference
Example 1. Consider the following test program:

2. The following results are displayed after running the preceding test
program:

See also � �STRFREE� on page 396.

� �STRGET� on page 397 .

� �Unbounded Strings and Memory Management� on page 285.

TEST: PROC OPTIONS(MAIN);

% include CORBA;

dcl string_one_ptr PTR;
dcl string_two_ptr PTR;
dcl temp_string CHAR(64);
dcl len FIXED BIN(31);

temp_string = 'This is a string ';

/* Set the first unbounded string with STRSET */
call strset(string_one_ptr, temp_string, length(temp_string));
if check_errors('strset') ^= completion_status_yes then return;

/* Set the second unbounded string with STRSETS */
call strsets(string_two_ptr, temp_string, length(temp_string));
if check_errors('strset') ^= completion_status_yes then return;

/* Retrieve the length of both strings */
call strleng(string_one_ptr, len);
if check_errors('strleng') ^= completion_status_yes then return;
put skip list('The length of String 1 is', len);

call strleng(string_two_ptr, len);
if check_errors('strleng') ^= completion_status_yes then return;
put skip list('The length of String 2 is', len);

END TESTSTR;

THE LENGTH OF STRING 1 IS 16
THE LENGTH OF STRING 2 IS 20
 402

API Reference Details
STRSETS

Synopsis STRSETS(out PTR string_pointer,
 in CHAR(*) string,
 in FIXED BIN(31) string_length)
// Creates an unbounded string from a CHAR(n) data item

Usage Common to clients and servers.

Description The STRSETS function is exactly the same as STRSET, except that STRSETS
does copy trailing spaces to the unbounded string. See �STRSET� on
page 401 for more details.

See also � �STRGET� on page 397.

� �Unbounded Strings and Memory Management� on page 285.

Note: STSETS allocates memory for the string from the program heap at
runtime. See �STRFREE� on page 396 and �Unbounded Strings and
Memory Management� on page 285 for details of how this memory is
subsequently released.
403

CHAPTER 9 | API Reference
STR2OBJ

Synopsis STR2OBJ(in PTR object_string,
 out PTR object_reference)
// Creates an object reference from an interoperable object
// reference (IOR).

Usage Common to clients and servers.

Description The STR2OBJ function creates an object reference from an unbounded string.
When a client has called STR2OBJ to create an object reference, the client
can then invoke operations on the server.

Parameters The parameters for STR2OBJ can be described as follows:

Format for input string The object_string input parameter can take different forms, as follows:

� Stringified interoperable object reference (IOR)

The CORBA specification defines the representation of stringified IOR
references, so this form is interoperable across all ORBs that support
IIOP. For example:

You can use the supplied iordump utility to parse the IOR. The iordump
utility is available with your Orbix Mainframe installation on OS/390
UNIX System Services.

� corbaloc:rir URL

object_string This is an in parameter that contains a pointer to the
address in memory where the interoperable object
reference is held. This parameter can take different
forms. See �Format for input string� for more details.

object_reference This is an out parameter that contains a pointer to the
address in memory where the returned object reference
is held.

IOR:000…
 404

API Reference Details
This is one of two possible formats relating to the corbaloc mechanism.
The corbaloc mechanism uses a human-readable string to identify a
target object. A corbaloc:rir URL can be used to represent an object
reference. It defines a key upon which resolve_initial_references is
called (that is, it is equivalent to calling OBJRIR).

The format of a corbaloc:rir URL is corbaloc:rir:/rir-argument (for
example, "corbaloc:rir:/NameService"). See the CORBA
Programmer�s Guide, C++ for more details on the operation of
resolve_initial_references.

� corbaloc:iiop-address URL

This is the second of two possible formats relating to the corbaloc
mechanism. A corbaloc:iiop-address URL is used to identify
named-keys.

The format of a corbaloc:iiop-address URL is
corbaloc:iiop-address[,iiop-address]…/key-string (for example,
"corbaloc:iiop:xyz.com/BankService").

� itmfaloc URL

The itmfaloc URL facilitates locating IMS and CICS adapter objects.
Using an itmfaloc URL is similar to using the itadmin mfa resolve
command; except that the itmfaloc URL exposes this functionality
directly to Orbix applications.

The format of an itmfaloc URL is itmfaloc:itmfaloc-argument (for
example, "itmfaloc:Simple/SimpleObject"). See the CICS Adapters
Administrator�s Guide and the IMS Adapters Administrator�s Guide for
details on the operation of itmfaloc URLs.
405

CHAPTER 9 | API Reference
Stringified IOR example Consider the following example of a client program that first shows how the
server�s object reference is retrieved via STR2OBJ, and then shows how the
object reference is subsequently used:

dcl IORFILE file stream;
dcl iorrec char(2048) init(' ');
dcl iorrec_len fixed bin(31) init(2048);
dcl iorrec_ptr ptr init(sysnull());

…

/* Read in the IOR from a file */
get file(IORFILE) edit(iorrec) (column (1), a(iorrec_len));
close file(IORFILE);

/* Create an unbounded IOR string */
call strset(iorrec_ptr, iorrec, iorrec_len);
if check_errors('strset') ^= completion_status_yes then return;

/* Create an object reference now using the unbounded IOR */
/* string */
call str2obj(iorrec_ptr, Simple_SimpleObject_obj);
if check_errors('objset') ^= completion_status_yes then return;

/* We are now ready to invoke operations on the server */
call podexec(Simple_SimpleObject_obj,
 Simple_SimpleObject_call_me,
 addr(Simple_SimpleObject_c_ba77_args),
 no_user_exceptions);
if check_errors('podexec') ^=completion_status_yes then return;
 406

API Reference Details
corbaloc:rir URL example Consider the following example that uses a corbaloc to call
resolve_initial_references on the Naming Service:

corbaloc:iiop-address URL
example

You can use STR2OBJ to resolve a named key. A named key, in essence,
associates a string identifier with an object reference. This allows access to
the named key via the string identifier. Named key pairings are stored by the
locator. The following is an example of how to create a named key:

Consider the following example that shows how to use STR2OBJ to resolve
this named key:

dcl corbaloc_str char(26) init ('corbaloc:rir:/NameService ');
dcl corbaloc_ptr ptr init(sysnull());
dcl naming_service_obj ptr init(sysnull());

/* Create an unbounded corbaloc string to Naming Service */
call strset(corbaloc_ptr, corbaloc_str, length(corbaloc_str));
if check_errors('strset') ^= completion_status_yes then return;

/* Create an object reference using the unbounded corbaloc str */
call str2obj(corbaloc_ptr, naming_service_obj);

/* Can now invoke on naming service */

itadmin named_key create -key TestObjectNK IOR:…

dcl corbaloc_str char(46)
 init ('corbaloc:iiop:1.2@localhost:5001/TestObjectNK ');
dcl corbaloc_ptr ptr init(sysnull());
dcl test_object_obj ptr init(sysnull());

/* Create an unbounded corbaloc string to the Test Object */
call strset(corbaloc_ptr, corbaloc_str, length(corbaloc_str));
if check_errors('strset') ^= completion_status_yes then return;

/* Create an object reference using the unbounded corbaloc str */
call str2obj(corbaloc_ptr, test_object_obj);

/* Can now invoke on TestObject */
407

CHAPTER 9 | API Reference
itmfaloc URL example You can use STR2OBJ to locate IMS and CICS server objects via the itmfaloc
mechanism. To use an itmfaloc URL, ensure that the configuration scope
used contains a valid initial reference for the adapter that is to be used. You
can do this in either of the following ways:

� Ensure that the LOCAL_MFA_REFERENCE in your Orbix configuration
contains an object reference for the adapter you want to use.

� Use either "-ORBname iona_services.imsa" or "-ORBname
iona_services.cicsa" to explicitly pass across a domain that defines
IT_MFA initial references.

Consider the following example that shows how to locate IMS and CICS
server objects via the itmfaloc URL mechanism:

See also �OBJ2STR� on page 335.

dcl corbaloc_str char(29)
 init ('itmfaloc:Simple/SimpleObject ');
dcl corbaloc_ptr ptr init(sysnull());
dcl test_object_obj ptr init(sysnull());

/* Create an unbounded corbaloc string to the */
/* Simple/SimpleObject interface defined to an IMS/CICS */
/* adapter */
call strset(corbaloc_ptr, corbaloc_str, length(corbaloc_str));
if check_errors('strset') ^= completion_status_yes then return;

/* Create an object reference using the unbounded corbaloc str */
call str2obj(corbaloc_ptr, test_object_obj);

/* Can now invoke on Simple/SimpleObject */
 408

API Reference Details
TYPEGET

Synopsis TYPEGET(in PTR any_pointer,
 out CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Extracts the type name from an any.

Usage Common to clients and servers.

Description The TYPEGET function returns the typecode of the value of the any. You can
then use the typecode to ensure that the correct buffer is passed to the
ANYGET function for extracting the value of the any.

Parameters The parameters for TYPEGET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

any_pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

typecode_key This is an out parameter that contains a PL/I
structure to which the typecode key is copied. This is
a bounded string.

typecode_key_length This is an in parameter that specifies the length of
the typecode key.

interface example {
 attribute any myany;
};
409

CHAPTER 9 | API Reference
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

/* Extract from EXAMPLT */
dcl 1 example_myany_attr aligned,
 3 result ptr;

/* Extract from EXAMPLM */
dcl 1 example_myany_attr aligned like example_myany_type;
 410

API Reference Details
3. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameI module:

Exceptions A CORBA::BAD_INV_ORDER::TYPESET_NOT_CALLED exception is raised if the
typecode of the any has not been set via TYPESET.

See also � �ANYGET� on page 317.

� �ANYSET� on page 319.

/* Extract from EXAMPLI showing some of the user’s */
/* implementation */
dcl short_value fixed bin(15);
dcl long_value fixed bin(31);

call typeget(example_myany_attr.result,
 example_typecode,
 example_typecode_length);
if check_errors('typeget') ^= completion_status_yes then

return;
select(example_typecode);
 when(corba_type_short)
 do;
 call anyget(example_myany_attr.result,
 addr(short_value));
 if check_errors('anyget') ^= completion_status_yes
 then return;

 put skip list ('Short from ANY is', short_value);
 end;
 when(corba_type_long)
 do;
 call anyget(example_myany_attr.result,
 addr(long_value));
 if check_errors('anyget') ^=completion_status_yes
 then return;

 put skip list('Long from ANY is', long_value);
 end;
 otherwise
 put skip list ('No SELECT case defined to extract the
 ANY');
end;
411

CHAPTER 9 | API Reference
TYPESET

Synopsis TYPESET(in PTR any_pointer,
 in CHAR(*) typecode_key,
 in FIXED BIN(31) typecode_key_length)
// Sets the type name of an any

Usage Common to clients and servers.

Description The TYPESET function sets the type of the any to the supplied typecode. You
must call TYPESET before you call ANYSET, because ANYSET uses the current
typecode information to insert the data into the any.

Parameters The parameters for TYPESET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the idlmembernameT module (where idlmembername
represents the name of the IDL member that contains the IDL
definitions):

any_pointer This is an in parameter that is a pointer to the
address in memory where the any is stored.

typecode_key This is an in parameter containing the typecode
string representation.

typecode_key_length This is an in parameter that specifies the length of
the typecode string.

interface example {
 attribute any myany;
};

/* Extract from EXAMPLT */
dcl 1 example_myany_type aligned,
 3 result ptr;
 412

API Reference Details
Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the idlmembernameM module:

3. The following example shows how the code generated in the
idlmembernameT and idlmembernameM modules can be used by the
user�s implementation code in the idlmembernameI module.

Exceptions A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined from the typecode key passed to TYPESET.

See also � �ANYGET� on page 317.

� �ANYSET� on page 319.

� �TYPEGET� on page 409.

/* Extract from EXAMPLM */
dcl 1 example_myany_attr aligned like example_myany_type;

/* Extract from EXAMPLI showing some of the user’s */
/* implementation */
dcl short_value fixed bin(15);

/* Set up our value and typecode for the ANY */
short value = 12;
example_type_code = corba_type_short;

/* Now we are ready to set the ANY myany */
call typeset(example_myany_attr.result,
 example_typecode,
 example_typecode_length);

call anyset(example_myany_attr.result, addr(short_value));
if check_errors('anyset') ^= completion_status_yes then

return;
413

CHAPTER 9 | API Reference
WSTRCON

Synopsis WSTRCON(inout PTR widestring_pointer,
 in PTR addon_widestring_pointer)
// Concatenates two unbounded wide strings.

Usage Common to clients and servers.

Description The WSTRCON function concatenates the two supplied unbounded wide
strings, and returns the concatenated unbounded wide string for the first
parameter. The original storage allocated to the first wide string pointer is
deleted, because it is assigned the concatenated wide string instead.

Parameters The parameters for WSTRCON can be described as follows:

widestring_pointer This is an inout parameter that is the
unbounded string pointer containing a copy of
the bounded wide string. This wide string is
subsequently returned with the
addon_widestring_pointer wide string
appended to it.

addon_widestring_pointerThis is an in parameter that contains the wide
string to be concatenated to the other wide
string supplied in string_pointer.
 414

API Reference Details
Example 1. Consider the following test program:

2. The results printed by the preceding test program are as follows:

TEST: PROC OPTIONS(MAIN);

dcl first_part ptr;
dcl second_part ptr;
dcl temp_graphic graphic(40) init('');
dcl temp_graphic_len fixed bin(31) init(40);
dcl temp_string char(40) init('');

temp_graphic = graphic('Hello ');
call wstrset(first_part, temp_graphic, temp_graphic_len);

temp_graphic = graphic('There');
call wstrset(second_part, temp_graphic, temp_graphic_len);
call wstrcon(first_part, second_part);

temp_graphic = graphic('');
call wstrget(first_part, temp_graphic, temp_graphic_len);

temp_string = char(temp_graphic);
put skip list('Contents of first_part are: ', temp_string);

END TEST;

Contents of first_part are: Hello There
415

CHAPTER 9 | API Reference
WSTRDUP

Synopsis WSTRDUP(in PTR widestring_pointer,
 out PTR duplicate_widestring_pointer)
// Duplicates a given unbounded wide string.

Usage Common to clients and servers.

Description The WSTRDUP function takes an unbounded wide string as a first parameter,
duplicates the string, and then returns the duplicate wide string via its
second parameter. This involves a complete copy (that is, the storage used
by the in wide string is also duplicated).

Parameters The parameters for WSTRDUP can be described as follows:

Example Consider the following example:

widestring_pointer This is an in parameter that is the
unbounded string pointer containing a
copy of the unbounded wide string.

duplicate_widestring_pointer This is an out parameter that contains the
duplicated wide string.

dcl orig_widestr_ptr ptr;
dcl dupl_widestr_ptr ptr;
dcl temp_graphic graphic(40) init(graphic('hello'));
dcl temp_graphic_len fixed bin(31) init(40);

/* Set up our first wide string */
call wstrset(orig_widestr_ptr, temp_graphic,
 temp_graphic_len);
if check_errors('wstrset') ^= completion_status_yes then return;

/* Make a copy of orig_widestr_ptr, */
/* storing it in dupl_widestr_ptr */
call wstrdup(orig_widestr_ptr, dupl_widestr_ptr);
if check_errors('wstrdup') ^= completion_status_yes then return;
 416

API Reference Details
WSTRFRE

Synopsis WSTFRE(in PTR widestring_pointer)
// Frees the storage used by an unbounded wide string.

Usage Common to clients and servers.

Description The WSTRFRE function releases dynamically allocated memory for an
unbounded wide string, via a pointer that was originally obtained by calling
WSTRSET. Do not try to use the unbounded wide string after freeing it,
because doing so might result in a runtime error.

Parameters The parameter for WSTRFRE can be described as follows:

widestring_pointer This is an in parameter that is the unbounded wide
string pointer containing a copy of the unbounded
wide string.
417

CHAPTER 9 | API Reference
Example The following is an example of how to use WSTRFRE in a client or server
program:

See also �WSTRSET� on page 423.

TSTWSTR: PROC OPTIONS(MAIN);

%include CORBA;

dcl wstring_ptr PTR;
dcl temp_graphic GRAPHIC(64);

temp_graphic = graphic(’This is a graphic ’);
call wstrset(wstring_ptr, temp_graphic);
…

/* Retrieve the string from the unbounded wide string */
call wstrget(wstring_ptr, temp_graphic,
 length(temp_graphic));
put skip list(’The string set was: ’ || char(temp_graphic));

/* Finished using the unbounded wide string, so free it */
call wstrfre(wstring_ptr);

END TSTWSTR;
 418

API Reference Details
WSTRGET

Synopsis WSTRGET(in PTR widestring_pointer,
 out GRAPHIC(*) widestring,
 in FIXED BIN(31) widestring_length)
// Copies the contents of an unbounded wide string to a PL/I
// graphic.

Usage Common to clients and servers.

Description The WSTRGET function copies the characters in the incoming unbounded
wide string pointer to the PL/I graphic string item. If the unbounded wide
string does not contain enough characters to fill the GRAPHIC wide string
exactly, the GRAPHIC wide string is padded with spaces. If the length of the
wide string is greater than the size of the GRAPHIC wide string, only the
length specified by the third parameter is copied into the GRAPHIC wide
string from the unbounded wide string pointer. The third parameter specifies
the maximum number of graphic characters that the GRAPHIC wide string
can hold.

Null characters are never copied from the wide string to the GRAPHIC wide
string.

Parameters The parameters for WSTRGET can be described as follows:

widestring_pointer This is an in parameter that is the unbounded string
pointer containing a copy of the unbounded wide
string.

widestring This is an out parameter that is a bounded wide
string to which the contents of string_pointer are
copied. This string is terminated by a space if it is
larger than the contents of string_pointer.

widestring_length This is an in parameter that specifies the length of
the unbounded wide string.
419

CHAPTER 9 | API Reference
Example The example can be broken down as follows:

1. Consider the following test program:

2. The preceding test program prints the following results:

See also �WSTRSET� on page 423.

TEST: PROC OPTIONS(MAIN);

%include CORBA;

/* Temporary graphic used to set the wide string is */
/* wide_str_pointer */
dcl temp_graphic graphic(32) init(graphic('Hello there'));

/* Temporary string used for retrieving data from */
/* the graphic */
dcl temp_string char(32) init('');

/* This is the supplied PL/I unbounded wide string */
/* pointer */
dcl wide_str_pointer ptr;

Set up the wide_str_pointer unbounded string */
call wstrset(wide_str_pointer, temp_graphic,
 length(temp_graphic));
if check_errors('wstrset') ^= completion_status_yes then

return;

/* Our call to wstrget will now retrieve the graphic */
/* stored in wide_str_pointer and set temp_graphic */
temp_graphic = '';
call wstrget(wide_str_pointer, temp_graphic,
 length(temp_graphic));
if check_errors('wstrget') ^= completion_status_yes then

return;

temp_string = character(temp_graphic);
put skip list('Contents of wide_str_pointer: ' ||

temp_string);

END TEST;

Contents of wide_str_pointer: Hello There
 420

API Reference Details
WSTRLEN

Synopsis WSTRLEN(in PTR widestring_pointer,
 out FIXED BIN(31) widestring_length)
/ Returns the number of characters held in the wide string
// (excluding trailing nulls).

Usage Common to clients and servers.

Description The WSTRLEN function returns the number of characters in an unbounded
wide string.

Parameters The parameters for WSTRLEN can be described as follows:

widestring_pointer This is an in parameter that is the unbounded wide
string pointer containing the unbounded wide string.

widestring_length This is an out parameter that is used to retrieve the
actual length of the wide string that the
widestring_pointer contains.
421

CHAPTER 9 | API Reference
Example 1. Consider the following test program:

2. The preceding program prints the following results:

TEST: PROC OPTIONS(MAIN);

%include CORBA;

dcl wide_str_ptr ptr;
dcl len fixed bin(31);
dcl temp_graphic graphic(32);

temp_graphic = graphic('This is a graphic');

call wstrset(wide_str_ptr, temp_graphic,
 length(temp_graphic));
if check_errors('wstrset') ^= completion_status_yes then

return;

/* Call wstrlen and store the result in len */
call wstrlen(wide_str_ptr, len);
if check_errors('wstrlen') ^= completion_status_yes then

return;

put skip list('The length of our unbounded wide string is',
len);

END TEST;

The length of our unbounded wide string is 17
 422

API Reference Details
WSTRSET

Synopsis WSTRSET(out PTR widestring_pointer,
 in GRAPHIC(*) widestring,
 in FIXED BIN(31) widestring_length)
// Creates an unbounded wide string from a GRAPHIC(n) data item

Usage Common to clients and servers.

Description The WSTRSET function creates an unbounded wide string, and then copies
the number of graphic characters specified in the third parameter from the
GRAPHIC wide string to the wide string. WSTRSET does not copy trailing
spaces to the wide string, if they are present in the GRAPHIC wide string.

Parameters The parameters for WSTRSET can be described as follows:

widestring_pointer This is an out parameter to which the unbounded
wide string is copied.

widestring This is an in parameter containing the bounded wide
string that is to be copied. This string is terminated
by a space if it is larger than the contents of the
target string pojnter. If the bounded wide string
contains trailing spaces, they are not copied.

widestring_length This is an in parameter that specifies the number of
characters to be copied from the bounded wide string
specified in string.
423

CHAPTER 9 | API Reference
Example 1. Consider the following test program:

2. The preceding test program displays the following results:

See also �WSTRGET� on page 419.

TSTWSTR: PROC OPTIONS(MAIN);

%include CORBA;

dcl wstring_one_ptr ptr;
dcl wstring_two_ptr ptr;
dcl temp_graphic graphic(64);
dcl len fixed bin(31);

temp_graphic = graphic('This is a graphic ');

/* Set the first unbounded wide string with WSTRSET */
call wstrset(wstring_one_ptr, temp_graphic,
 length(temp_graphic));
if check_errors('wstrset') ^= completion_status_yes then

return;

/* Set the second unbounded wide string with WSTRSTS */
call strsets(wstring_two_ptr, temp_graphic,
 length(temp_graphic));
if check_errors('wstrsts') ^= completion_status_yes then

return;

/* Retrieve the length of both wide strings */
call wstrlen(wstring_one_ptr, len);
if check_errors('wstrlen') ^= completion_status_yes then

return;
put skip list('The length of wide string 1 is', len);

call wstrlen(wstring_two_ptr, len);
if check_errors('wstrlen') ^= completion_status_yes then

return;
put skip list('The length of wide string 2 is', len);

END TSTWSTR;

The length of wide string 1 is 17
The length of wide string 2 is 20
 424

API Reference Details
WSTRSTS

Synopsis WSTRSTS(out PTR widestring_pointer,
 in GRAPHIC(*) widestring,
 in FIXED BIN(31) widestring_length)
// Creates an unbounded wide string from a GRAPHIC(n) data item

Usage Common to clients and servers.

Description The WSTRSTS function is exactly the same as WSTRSET, except that WSTRSTS
does copy trailing spaces to the unbounded wide string. See �WSTRSET� on
page 423 for more details.

See also �WSTRGET� on page 419.
425

CHAPTER 9 | API Reference
CHECK_ERRORS

Synopsis CHECK_ERRORS(in CHAR(*) function_name)
 RETURNS(FIXED BIN(31) error_number)
// Tests the completion status of the last PL/I runtime call.

Usage Common to clients and servers.

Description The CHECK_ERRORS helper function tests whether the most recent call to the
PL/I runtime completed successfully. It is not part of the PL/I runtime itself.
CHECK_ERRORS examines the corba_exception variable in the
pod_status_information structure, which is updated after every PL/I
runtime call. If a CORBA exception has not occurred, CHECK_ERRORS returns
a completion_status value of zero; if a CORBA exception has occurred,
CHECK_ERRORS returns a completion_status value of other than zero. If the
completion_status value is not zero, a message is displayed showing
details about the error that occurred.

The completion_status value is stored in the pod_status_information
structure in the CORBA include member. This return value can be used to
determine whether or not to continue processing. The completion_status
value can be one of the following:

� COMPLETION_STATUS_YES corresponds to value 0.

� COMPLETION_STATUS_NO corresponds to value 1.

� COMPLETION_STATUS_MAYBE corresponds to value 2.

Parameters The parameters for CHECK_ERRORS can be described as follows:

function_name This is an in parameter that contains the name of the
function being called.

error_number This is a return parameter that contains the error number
pertaining to the error raised.
 426

API Reference Details
Definition The CHECK_ERRORS function is defined as follows in the CHKERRS include
member:

/* Determine the system exception name from the exception */
/* number */
 %include EXCNAME;

/**/
/* Function : CHECK_ERRORS */
/* Purpose : Test the last PL/I Runtime call for system */
/* exceptions */
/**/
 CHECK_ERRORS: PROC(FUNCTION_NAME) RETURNS(FIXED BIN(15));

 dcl function_name char(*);
 dcl sysprint ext file stream print output;
 dcl exception_len fixed bin(31);
 dcl exception_info char(*) ctl;
 dcl pliretc builtin;

 call podinfo(pod_status_ptr);

 if pod_status_information.corba_exception ^= 0 then
 do;
 call strleng(pod_status_information.exception_text,

 exception_len);
 alloc exception_info char(exception_len);
 call strget(pod_status_information.exception_text,
 exception_info,exception_len);

 put skip list('System Exception encountered');
 put skip list('Function called :',function_name);
 put skip list('Exception name :',
 corba_exc_name(pod_status_information.corba_exception));
 put skip list('Exception :',exception_info);
 free exception_info;

 call pliretc(12); /* set the return code for the program */
 end;

 return(pod_status_information.completion_status);

 END CHECK_ERRORS;
427

CHAPTER 9 | API Reference
Example The following is an example of how to use CHECK_ERRORS in a program:

Note: The CHKERRS include member is used in server and batch client
programs. It is replaced with CHKCLCIC in CICS client programs, and
CHKCLIMS in IMS client programs. See Table 6 on page 52 and Table 14
on page 96 for more details of these include members.

call strset(orig_str_ptr, input_string, length(input_string));
if check_errors('strset') ^= completion_status_yes then return;
 428

Deprecated and Removed APIs
Deprecated and Removed APIs

Deprecated APIs This section summarizes the APIs that were available with the Orbix 2.3
PL/I adapter, but which are now deprecated with the Orbix PL/I runtime.

OBJGET(PTR, /* IN : object reference */
 CHAR(*), /* OUT: IOR reference */
 FIXED BIN(31)); /* IN : IOR reference length */
// Orbix 2.3 : Returned an interoperable object reference (IOR).
// Orbix Mainframe: Replaced with OMG PL/I function OBJ2STR.
// Works as in Orbix 2.3.x.

OBJGETM(PTR, /* IN : object reference */
 CHAR(*), /* OUT: marker name */
 FIXED BIN(31)); /* IN : marker name length */
// Orbix 2.3 : Retrieves the marker name from an object reference.
// Orbix Mainframe: Replaced with OMG PL/I function OBJGTID.
// Retrieves the object ID from an IOR.

OBJSET(CHAR(*), /* IN : object name */
 PTR); /* OUT: object reference */
// Creates an object reference from a stringified Orbix object
// reference.

OBJSETM(CHAR(*), /* IN : object name */
 CHAR(*), /* IN : marker */
 PTR); /* OUT: object reference */
// Creates an object reference from a stringified Orbix object
// reference and sets its marker.

PODALOC(PTR, /* OUT: pointer to memory block */
 FIXED BIN(31)); /* IN : amount of memory required */
// Orbix 2.3 : Allocated memory.
// Orbix Mainframe: Replaced with OMG PL/I function MEMALOC.
// Performs the same function as in Orbix 2.3.

PODEBUG(PTR, /* IN : pointer to memory */
 FIXED BIN(15), /* IN : size of memory dump */
 CHAR(*), /* IN : explanatory text string */
 FIXED BIN(15)); /* IN : length of text string */
// Orbix 2.3 : Output a formatted memory dump for the specified
// block of memory.
// Orbix Mainframe: Replaced with OMG PL/I function MEMDBUG.
// Performs the same function as in Orbix 2.3.
429

CHAPTER 9 | API Reference
PODFREE(PTR); /* IN : pointer to memory block */
// Orbix 2.3 : Freed the specified block of memory.
// Orbix Mainframe: Replaced with OMG PL/I function MEMDBUG.
// Performs the same function as in Orbix 2.3.

PODHOST(CHAR(*), /* OUT: hostname length */
 FIXED BIN(31)); /* IN : hostname */
// Orbix 2.3 : Returned hostname of server.
// Orbix Mainframe: Not required by Orbix PL/I servers.

PODINIT(CHAR(*), /* IN : server name */
 FIXED BIN(31)); /* IN : server name length */
// Orbix 2.3 : Equivalent to calling ORB::run() in C++. Parameters
// supplied to PODINIT are ignored.
// Orbix Mainframe: Replaced with PODRUN.

PODRASS(FIXED BIN(31), /* IN : minor error number */
 FIXED BIN(15)); /* IN : completion status */
// Orbix 2.3 : Signalled a user exception to Orbix via return
// codes.
// Orbix Mainframe: Replaced with PODERR. Throws a system
// exception.

PODREGI(PTR, /* IN : interface description */
 PTR); /* OUT: object reference */
// Orbix 2.3 : Described an interface to the PL/I runtime,
// returning an IOR.
// Orbix Mainframe: Superceded by using PODREG and OBJNEW.

Removed APIs This section summarizes the APIs that are no longer available with Orbix
PL/I.

OBJGETO(PTR, /* IN : object reference */
 CHAR(*), /* OUT: Orbix object reference */
 FIXED BIN(31)); /* IN : Orbix object reference length */
// Orbix 2.3 : Returns a stringified Orbix object reference.
// Orbix Mainframe: Not supported because Orbix protocol not
// supported.

OBJLEN(PTR, /* IN : IOR string */
 FIXED BIN(31)); /* OUT: length of object reference */
OBJLENO(PTR, /* IN : object reference */
 FIXED BIN(31)); /* OUT: length of object reference */
// Orbix 2.3 : Returns the length of an object reference.
// Orbix Mainframe: Not supported. Not required for Orbix
// Mainframe.
 430

Deprecated and Removed APIs
PODEXEC(PTR, /* IN : object reference */
 CHAR(*), /* IN : operation name */
 PTR); /* INOUT: address(operation_buffer) */
// Orbix 2.3 : Invokes an operation on the object.
// Orbix Mainframe: Replaced with a new version with a fourth
// parameter for a user exception data field.
431

CHAPTER 9 | API Reference
 432

Part 3
Appendices

In this part This part contains the following appendices:

POA Policies page 435

System Exceptions page 439

Installed Data Sets page 443

APPENDIX A

POA Policies
This appendix summarizes the POA policies that are supported
by the Orbix PL/I runtime, and the argument used with each
policy.

In this appendix This appendix contains the following sections:

Overview A POA�s policies play an important role in determining how the POA
implements and manages objects and processes client requests. There is
only one POA created by the Orbix PL/I runtime, and that POA uses only the
policies listed in this chapter.

See the CORBA Programmer�s Guide, C++ for more details about POAs
and POA policies. See the PortableServer::POA interface in the CORBA
Programmer�s Reference, C++ for more details about the POA interface
and its policies.

Overview page 435

POA policy listing page 436

Note: The POA policies described in this chapter are the only POA
policies that the Orbix PL/I runtime supports. Orbix PL/I programmers have
no control over these POA policies. They are outlined here simply for the
purposes of illustration and the sake of completeness.
435

CHAPTER A | POA Policies
POA policy listing Table 46 describes the policies that are supported by the Orbix PL/I
runtime, and the argument used with each policy.

Table 46: POA Policies Supported by PL/I Runtime (Sheet 1 of 3)

Policy Argument Used Description

Id Assignment USER_ID This policy determines whether
object IDs are generated by the
POA or the application. The
USER_ID argument specifies that
only the application can assign
object IDs to objects in this POA.
The application must ensure that
all user-assigned IDs are unique
across all instances of the same
POA.

USER_ID is usually assigned to a
POA that has an object lifespan
policy of PERSISTENT (that is, it
generates object references whose
validity can span multiple
instances of a POA or server
process, so the application
requires explicit control over object
IDs).

Id Uniqueness MULTIPLE_ID This policy determines whether a
servant can be associated with
multiple objects in this POA. The
MULTIPLE_ID specifies that any
servant in the POA can be
associated with multiple object
IDs.

Implicit Activation NO_IMPLICIT_ACTIVATION This policy determines the POA�s
activation policy. The
NO_IMPLICIT_ACTIVATION
argument specifies that the POA
only supports explicit activation of
servants.
 436

Lifespan PERSISTENT This policy determines whether
object references outlive the
process in which they were
created. The PERSISTENT
argument specifies that the IOR
contains the address of the
location domain�s implementation
repository, which maps all servers
and their POAs to their current
locations. Given a request for a
persistent object, the Orbix
daemon uses the object�s virtual
address first, and looks up the
actual location of the server
process via the implementation
repository.

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY This policy determines how the
POA finds servants to implement
requests. The
USE_ACTIVE_OBJECT_MAP_ONLY
argument assumes that all object
IDs are mapped to a servant in the
active object map. The active
object map maintains an
object-servant mapping until the
object is explicitly deactivated via
deactivate_object().

This policy is typically used for a
POA that processes requests for a
small number of objects. If the
object ID is not found in the active
object map, an OBJECT_NOT_EXIST
exception is raised to the client.
This policy requires that the POA
has a servant retention policy of
RETAIN.

Table 46: POA Policies Supported by PL/I Runtime (Sheet 2 of 3)

Policy Argument Used Description
437

CHAPTER A | POA Policies
Servant Retention RETAIN The RETAIN argument with this
policy specifies that the POA
retains active servants in its active
object map.

Thread SINGLE_THREAD_MODEL The SINGLE_THREAD_MODEL
argument with this policy specifies
that requests for a single-threaded
POA are processed sequentially. In
a multi-threaded environment, all
calls by a single-threaded POA to
implementation code (that is,
servants and servant managers)
are made in a manner that is safe
for code that does not account for
multi-threading.

Table 46: POA Policies Supported by PL/I Runtime (Sheet 3 of 3)

Policy Argument Used Description
 438

APPENDIX B

System Exceptions
This appendix summarizes the Orbix system exceptions that
are specific to the Orbix PL/I runtime.

In this appendix This appendix contains the following sections:

CORBA::INITIALIZE::
exceptions

The following exception is defined within the CORBA::INITIALIZE:: scope:

Note: This appendix does not describe other Orbix system exceptions that
are not specific to the PL/I runtime. See the CORBA Programmer�s Guide,
C++ for details of these other system exceptions.

CORBA::INITIALIZE:: exceptions page 439

CORBA::BAD_PARAM:: exceptions page 440

CORBA::INTERNAL:: exceptions page 440

CORBA::BAD_INV_ORDER:: exceptions page 440

UNKNOWN This exception is raised by any API when the exact
problem cannot be determined.
439

CHAPTER B | System Exceptions
CORBA::BAD_PARAM::
exceptions

The following exceptions are defined within the CORBA::BAD_PARAM:: scope:

CORBA::INTERNAL::
exceptions

The following exceptions are defined within the CORBA::INTERNAL:: scope:

CORBA::BAD_INV_ORDER::
exceptions

The following exceptions are defined within the CORBA::BAD_INV_ORDER::
scope:

UNKNOWN_OPERATION This exception is raised by PODEXEC, if the
operation is not valid for the interface.

NO_OBJECT_IDENTIFIER This exception is raised by OBJNEW, if the
parameter for the object name is an invalid string.

INVALID_SERVER_NAME This exception is raised if the server name that is
passed does not match the server name passed to
PODSRVR.

UNEXPECTED_INVOCATION This exception is raised on the server side when a
request is being processed, if a previous request
has not completed successfully.

UNKNOWN_TYPECODE This exception is raised internally by the PL/I
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the idlmembernameX
include member or the application itself.

INVALID_STREAMABLE This exception is raised internally by the PL/I
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the idlmembernameX
include member of the application itself.

INTERFACE_NOT_REGISTERED This exception is raised if the specified
interface has not been registered via
PODREG.

INTERFACE_ALREADY_REGISTEREDThis exception is raised by PODREG, if the
client or server attempts to register the
same interface more than once.
 440

ADAPTER_ALREADY_INITIALIZED This exception is raised by ORBARGS, if it is
called more than once in a client or server.

STAT_ALREADY_CALLED This exception is raised by PODSTAT if it is
called more than once.

SERVER_NAME_ALREADY_SET This exception is raised by PODSRVR, if the
API is called more than once.

SERVER_NAME_NOT_SET This exception is raised by OBJNEW, PODREQ,
OBJGTID, or PODRUN, if PODSRVR is called.

NO_CURRENT_REQUEST This exception is raised by PODREQ, if no
request is currently in progress.

ARGS_NOT_READ This exception is raised by PODPUT, if the in
or inout parameters for the request have
not been processed.

ARGS_ALREADY_READ This exception is raised by PODGET, if the in
or inout parameters for the request have
already been processed.

TYPESET_NOT_CALLED This exception is raised by ANYSET or
TYPEGET, if the typecode for the any type
has not been set via a call to TYPESET.
441

CHAPTER B | System Exceptions
 442

APPENDIX C

Installed Data Sets
This appendix provides an overview listing of the data sets
installed with Orbix Mainframe that are relevant to
development and deployment of PL/I applications.

In this appendix This appendix contains the following sections:

Overview The list of data sets provided in this appendix is specific to PL/I and
intentionally omits any data sets specific to COBOL or C++. For a full list of
all installed data sets see the Mainframe Installation Guide.

List of PL/I-related data sets Table 47 lists the installed data sets that are relevant to PL/I.

Overview page 443

List of PL/I-related data sets page 443

Table 47: List of Installed Data Sets Relevant to PL/I (Sheet 1 of 4)

Data Set Description

orbixhlq.ADMIN.GRAMMAR Contains itadmin grammar files.

orbixhlq.ADMIN.HELP Contains itadmin help files.

orbixhlq.ADMIN.LOAD Contains Orbix administration programs.

orbixhlq.CONFIG Contains Orbix configuration information.
443

CHAPTER C | Installed Data Sets
orbixhlq.DEMOS.CICS.MFAMAP Used to store CICS server adapter mapping
member information for demonstrations.

orbixhlq.DEMOS.CICS.PLI.BLD.JCL Contains jobs to build the CICS PL/I
demonstrations.

orbixhlq.DEMOS.CICS.PLI.LOAD Used to store programs for the CICS PL/I
demonstrations.

orbixhlq.DEMOS.CICS.PLI.PLINCL Used to store generated files for the CICS PL/I
demonstrations.

orbixhlq.DEMOS.CICS.PLI.README Contains documentation for the CICS PL/I
demonstrations.

orbixhlq.DEMOS.CICS.PLI.SRC Contains program source for the CICS PL/I
demonstrations.

orbixhlq.DEMOS.IDL Contains IDL for demonstrations.

orbixhlq.DEMOS.IMS.MFAMAP Used to store IMS server adapter mapping
member information for demonstrations.

orbixhlq.DEMOS.IMS.PLI.BLD.JCL Contains jobs to build the IMS PL/I
demonstrations.

orbixhlq.DEMOS.IMS.PLI.LOAD Used to store programs for the IMS PL/I
demonstrations.

orbixhlq.DEMOS.IMS.PLI.PLINCL Used to store generated files for the IMS PL/I
demonstrations.

orbixhlq.DEMOS.IMS.PLI.README Contains documentation for the IMS PL/I
demonstrations.

orbixhlq.DEMOS.IMS.PLI.SRC Contains program source for the IMS PL/I
demonstrations.

orbixhlq.DEMOS.IORS Used to store IORs for demonstrations.

orbixhlq.DEMOS.PLI.BLD.JCL Contains jobs to build the PL/I demonstrations.

Table 47: List of Installed Data Sets Relevant to PL/I (Sheet 2 of 4)

Data Set Description
 444

orbixhlq.DEMOS.PLI.LOAD Used to store programs for the PL/I
demonstrations.

orbixhlq.DEMOS.PLI.MAP Used to store name substitution maps for the PL/I
demonstrations.

orbixhlq.DEMOS.PLI.PLINCL Used to store generated files for the PL/I
demonstrations.

orbixhlq.DEMOS.PLI.README Contains documentation for the PL/I
demonstrations.

orbixhlq.DEMOS.PLI.RUN.JCL Contains jobs to run the PL/I demonstrations.

orbixhlq.DEMOS.PLI.SRC Contains program source for the PL/I
demonstrations.

orbixhlq.DEMOS.TYPEINFO Optional type information store.

orbixhlq.DOMAINS Contains Orbix configuration information.

orbixhlq.INCLUDE.IT@CICS.IDL Contains IDL files.

orbixhlq.INCLUDE.IT@IMS.IDL Contains IDL files.

orbixhlq.INCLUDE.IT@MFA.IDL Contains IDL files.

orbixhlq.INCLUDE.OMG.IDL Contains IDL files.

orbixhlq.INCLUDE.ORBIX.IDL Contains IDL files.

orbixhlq.INCLUDE.ORBIX@XT.IDL Contains IDL files.

orbixhlq.INCLUDE.PLINCL Contains include files for PL/I demonstrations.

orbixhlq.JCL Contains jobs to run Orbix.

orbixhlq.LKED Contains side-decks for the DLLs.

orbixhlq.LPA Contains LPA eligible programs.

orbixhlq.MFA.LOAD Contains DLLS required for deployment of Orbix
programs in IMS.

Table 47: List of Installed Data Sets Relevant to PL/I (Sheet 3 of 4)

Data Set Description
445

CHAPTER C | Installed Data Sets
orbixhlq.PLI.LIB Contains programs for Orbix PL/I support.

orbixhlq.PLICICS.LIB Contains programs for CICS-to-CICS PL/I support.

orbixhlq.PROCS Contains JCL procedures.

orbixhlq.RUN Contains binaries & DLLs.

Table 47: List of Installed Data Sets Relevant to PL/I (Sheet 4 of 4)

Data Set Description
 446

Index

A
abstract interfaces in IDL 154
ADAPTER_ALREADY_INITIALIZED exception 441
address space layout for PL/I batch application 46
ANYFREE function 315
ANYGET function 317
ANYSET function 319
any type

in IDL 158
mapping to PL/I 204
memory handling for 293

APIs 305
application interfaces, developing 21, 56, 99
ARGS_ALREADY_READ exception 441
ARGS_NOT_READ exception 441
array type

in IDL 167
mapping to PL/I 203

attributes
in IDL 143
mapping to PL/I 217

B
basic types

in IDL 156
mapping to PL/I 183

bitwise operators 174
boolean type, mapping to PL/I 187
bounded sequences

mapping to PL/I 200
memory handling for 277

built-in types in IDL 156

C
char type

in IDL 157
mapping to PL/I 189

CHECK_ERRORS function 426
CHKCICS include member 97
CHKCLCIC include member 96
CHKCLIMS include member 52
CHKERRS copybook 18
CHKERRS include member 53, 97
client output for batch 45
clients

building for batch 40
building for CICS 127
building for IMS 84
introduction to 7
preparing to run in CICS 128
preparing to run in IMS 85
running in batch 44
writing for batch 37
writing for CICS 123
writing for IMS 80

configuration domains 11
constant definitions in IDL 171
constant expressions in IDL 174
constant fixed types in IDL 161
CORBA

introduction to 4
objects 5

CORBACOM copybook 19
CORBACOM include member 53, 97
CORBA copybook 19
CORBA include member 53, 97
CORBASV copybook 19
CORBASV include member 53, 97

D
data sets installed 443
data types, defining in IDL 170
decimal fractions 161
DISPINIT copybook 19
DISPINIT include member 53, 97
DLIDATA include member 53

E
empty interfaces in IDL 145
enum type

in IDL 163
mapping to PL/I 188
ordinal values of 163

exceptions, in IDL 144
447

INDEX
 See also system exceptions, user exceptions
EXCNAME copybook 19
EXCNAME include member 53, 97
extended built-in types in IDL 159

F
fixed type

in IDL 160
mapping to PL/I 193

floating point type in IDL 157
forward declaration of interfaces in IDL 151

G
GETUNIQ include member 54

I
Id Assignment policy 436
identifier names, mapping to PL/I 179, 181
IDL

abstract interfaces 154
arrays 167
attributes 143
built-in types 156
constant definitions 171
constant expressions 174
defining 22, 56, 99
empty interfaces 145
enum type 163
exceptions 144
extended built-in types 159
forward declaration of interfaces 151
inheritance redefinition 150
interface inheritance 146
introduction to interfaces 5
local interfaces 152
modules and name scoping 137
multiple inheritance 147
object interface inheritance 149
operations 141
sequence type 168
struct type 164
structure 136
union type 165
valuetypes 153

IDL-to-PL/I mapping
any type 204
array type 203
attributes 217
 448
basic types 183
boolean type 187
char type 189
enum type 188
exception type 206
fixed type 193
identifier names 179, 181
octet type 189
operations 212
sequence type 200
string type 190
struct type 196
typedefs 210
union type 197
user exception type 206

Id Uniqueness policy 436
IIOP protocol 4
Implicit Activation policy 436
IMSPCB include member 54
include members, generating for batch 23
include members, generating for CICS 105
include members, generating for IMS 62
inheritance redefinition in IDL 150
INTERFACE_ALREADY_REGISTERED

exception 440
interface inheritance in IDL 146
INTERFACE_NOT_REGISTERED exception 440
interfaces, developing for your application 21, 56,

99
INVALID_SERVER_NAME exception 440
INVALID_STREAMABLE exception 440
IORREC copybook 19

J
JCL components, checking 20, 54, 98

L
Lifespan policy 437
local interfaces in IDL 152
local object pseudo-operations 153
location domains 11
locator daemon

introduction to 12
starting 42

long double type in IDL 160
long long type in IDL 159

INDEX
M
MEMALOC function 321
MEMDBUG function 322
MEMFREE function 324
memory handling

any type 293
bounded sequences 277
object references 289
routines for 300
unbounded sequences 281
unbounded strings 285
user exceptions 298

modules and name scoping in IDL 137
MULTIPLE_ID argument 436
multiple inheritance in IDL 147

N
NO_CURRENT_REQUEST exception 441
node daemon

introduction to 12
starting 43

NO_IMPLICIT_ACTIVATION argument 436
NO_OBJECT_IDENTIFIER exception 440

O
OBJ2STR function 335

in batch server mainline 34
OBJDUPL function 325
object interface inheritance in IDL 149
object references

introduction to 5
memory handling for 289

object request broker. See ORB
objects, defined in CORBA 5
OBJGTID function 327
OBJNEW function 329

in batch server mainline 34
in CICS server mainline 116

OBJNEW function in IMS server mainline 73
OBJREL function

in batch client 39
in batch server mainline 34
in CICS client 126
in CICS server mainline 116
in IMS client 83

OBJREL function in IMS server mainline 73
OBJRIR function 333
octet type
in IDL 157
mapping to PL/I 189

operations
in IDL 141
mapping to PL/I 212

ORB, role of 7
ORBARGS function 337

in batch client 39
in batch server mainline 34
in CICS client 125
in CICS server mainline 115
in IMS client 83

ORBARGS function in IMS server mainline 73
Orbix IDL compiler

configuration settings 263
introduction to 23, 59, 102
-M argument 247
-O argument 254
running 234
-S argument 256
specifying arguments for 244
-V argument 260

Orbix locator daemon. See locator daemon
Orbix node daemon. See node daemon
Orbix PL/I runtime 47, 305

P
PERSISTENT argument 437
PL/I runtime 47
PL/I source, generating for batch 23
PL/I source, generating for CICS 105
PL/I source, generating for IMS 62
PL/I structures 26, 62, 105
plug-ins, introduction to 9
PODERR function 340
PODEXEC function 345

in batch client 39
in CICS client 126
in IMS client 83

PODGET function 201, 348
in batch server implementation 30

PODGET function in CICS server
implementation 113

PODGET function in IMS server implementation 70
PODINFO function 351
PODPUT function 202, 353

in batch server implementation 31
449

INDEX
PODPUT function in CICS server
implementation 113

PODPUT function in IMS server implementation 70
PODREG function 356

in batch client 39
in batch server mainline 34
in CICS client 125
in CICS server mainline 116
in IMS client 83

PODREG function in IMS server mainline 73
PODREQ function 358

in batch server implementation 30
in CICS server implementation 112

PODREQ function in IMS server implementation 69
PODRUN function 361

in batch server mainline 34
in CICS server mainline 116

PODRUN function in IMS server mainline 73
PODSRVR function 362

in batch server mainline 34
in CICS server mainline 115

PODSRVR function in IMS server mainline 73
PODSTAT 72
PODSTAT function 364

in batch server mainline 34
in CICS client 125
in CICS server mainline 115
in IMS client 82

PODSTAT function in IMS server mainline 72
PODTIME function 367

R
READIOR copybook 19
Request Processing policy 437
RETAIN argument 438

S
SEQALLOC function 202
SEQALOC function 370
SEQDUPL function 373
SEQFREE function 375
SEQGET function 377
SEQINIT function 380
SEQLEN function 382
SEQLSET function 384
SEQMAX function 387
SEQSET function 390
 450
sequence type
in IDL 168
mapping to PL/I 200
See also memory handling

Servant Retention policy 438
SERVER_NAME_ALREADY_SET exception 441
SERVER_NAME_NOT_SET exception 441
server output for batch 45
servers

building for batch 35
building for CICS 117
building for IMS 74
introduction to 7
preparing to run in CICS 118
preparing to run in IMS 75
running in batch 44
writing batch implementation code for 29
writing batch mainline code for 32
writing CICS implementation code for 111
writing CICS mainline code for 114
writing IMS implementation code for 68
writing IMS mainline code for 71

SETUPCL copybook 19
SIMPLIDL 236
SIMPLIDL JCL

example for CICS 102
example for IMS 59

SINGLE_THREAD_MODEL argument 438
SSL 9
STAT_ALREADY_CALLED exception 441
STR2OBJ function 404

in CICS client 126
in IMS client 83

STR2OBJ function in batch client 39
STRCON function 393
STRDUPL function 395
STRGET function 397

in batch server implementation 30
STRGET function in CICS server

implementation 112
STRGET function in IMS server implementation 70
string type

in IDL 157
mapping to PL/I 190
See also memory handling

STRLENG function 399
STRSET function 401

in CICS client 125
in IMS client 83

INDEX
STRSETS function 403
struct type

in IDL 164
mapping to PL/I 196

T
Thread policy 438
typedefs, mapping to PL/I 210
TYPEGET function 409
TYPESET function 412
TYPESET_NOT_CALLED exception 441

U
unbounded sequences, memory handling for 281
unbounded strings, memory handling for 285
UNEXPECTED_INVOCATION exception 440
union type

in IDL 165
mapping to PL/I 197

UNKNOWN exception 439
UNKNOWN_OPERATION exception 440
UNKNOWN_TYPECODE exception 440
URLSTR copybook 20
URLSTR include member 54, 97
USE_ACTIVE_OBJECT_MAP_ONLY argument 437
user exceptions

mapping to PL/I 206
memory handling for 298

USER_ID argument 436

V
valuetypes in IDL 153

W
wchar type in IDL 160
WSTRCON function 414
WSTRDUP function 416
WSTRGET function 419
wstring type in IDL 160
WSTRLEN function 421
WSTRSET function 423
WSTRSTS function 425
451

INDEX
 452

	List of Figures
	List of Tables
	Preface
	Programmer’s Guide
	Introduction to Orbix
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Orbix Plug-In Design
	Orbix Application Deployment
	Location Domains
	Configuration Domains

	Getting Started in Batch
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating PL/I Source and Include Members

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server

	Developing the Client
	Writing the Client
	Building the Client

	Running the Application
	Starting the Orbix Locator Daemon
	Starting the Orbix Node Daemon
	Running the Server and Client
	Application Output

	Application Address Space Layout

	Getting Started in IMS
	Overview
	Developing the Application Interfaces
	Defining IDL Interfaces
	Orbix IDL Compiler
	Generated PL/I Include Members, Source, and Mapping Member

	Developing the IMS Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in IMS

	Developing the IMS Client
	Writing the Client
	Building the Client
	Preparing the Client to Run in IMS

	Running the Demonstrations
	Running Batch Client against IMS Server
	Running IMS Client against Batch Server

	Getting Started in CICS
	Overview
	Developing the Application Interfaces
	Defining IDL Interfaces
	Orbix IDL Compiler
	Generated PL/I Include Members, Source, and Mapping Member

	Developing the CICS Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in CICS

	Developing the CICS Client
	Writing the Client
	Building the Client
	Preparing the Client to Run in CICS

	Running the Demonstrations
	Running Batch Client against CICS Server
	Running CICS Client against Batch Server

	IDL Interfaces
	IDL
	Modules and Name Scoping
	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	IDL-to-PL/I Mapping
	Mapping for Identifier Names
	Mapping Very Long and Leading Underscored Names
	Mapping for Basic Types
	Mapping for Boolean Type
	Mapping for Enum Type
	Mapping for Octet and Char Types
	Mapping for String Types
	Mapping for Fixed Type
	Mapping for Struct Type
	Mapping for Union Type
	Mapping for Sequence Types
	Mapping for Array Type
	Mapping for the Any Type
	Mapping for User Exception Type
	Mapping for Typedefs
	Mapping for Operations
	Mapping for Attributes
	Mapping for Operations with a Void Return Type and No Parameters
	Mapping for Inherited Interfaces
	Mapping for Multiple Interfaces

	Orbix IDL Compiler
	Running the Orbix IDL Compiler
	Running the Orbix IDL Compiler in Batch
	Running the Orbix IDL Compiler in UNIX System Services

	Generated PL/I Source and Include Members
	Orbix IDL Compiler Arguments
	Summary of the arguments
	Specifying Compiler Arguments
	-D Argument
	-M Argument
	-O Argument
	-S Argument
	-T Argument
	-V Argument
	-W Argument

	Orbix IDL Compiler Configuration
	PL/I Configuration Variables
	Adapter Mapping Member Configuration Variables
	Providing Arguments to the IDL Compiler

	Memory Handling
	Operation Parameters
	Bounded Sequences and Memory Management
	Unbounded Sequences and Memory Management
	Unbounded Strings and Memory Management
	Object References and Memory Management
	The any Type and Memory Management
	User Exceptions and Memory Management

	Memory Management Routines

	Programmer’s Reference
	API Reference
	API Reference Summary
	API Reference Details
	ANYFREE
	ANYGET
	ANYSET
	MEMALOC
	MEMDBUG
	MEMFREE
	OBJDUPL
	OBJGTID
	OBJNEW
	OBJREL
	OBJRIR
	OBJ2STR
	ORBARGS
	PODERR
	PODEXEC
	PODGET
	PODINFO
	PODPUT
	PODREG
	PODREQ
	PODRUN
	PODSRVR
	PODSTAT
	PODTIME
	PODVER
	SEQALOC
	SEQDUPL
	SEQFREE
	SEQGET
	SEQINIT
	SEQLEN
	SEQLSET
	SEQMAX
	SEQSET
	STRCON
	STRDUPL
	STRFREE
	STRGET
	STRLENG
	STRSET
	STRSETS
	STR2OBJ
	TYPEGET
	TYPESET
	WSTRCON
	WSTRDUP
	WSTRFRE
	WSTRGET
	WSTRLEN
	WSTRSET
	WSTRSTS
	CHECK_ERRORS

	Deprecated and Removed APIs

	Appendices
	POA Policies
	System Exceptions
	Installed Data Sets

	Index

