
ProgramGuide.book Page 1 Monday, February 22, 1999 3:03 PM
Orbix C++
Programmer’s Guide
IONA Technologies PLC
February 1999

ProgramGuide.book Page 2 Monday, February 22, 1999 3:03 PM
Orbix is a Registered Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1991-1999 by IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M 2 2 3 0

Contents

ProgramGuide.book Page iii Monday, February 22, 1999 3:03 PM
 Preface xiii
Audience xiii
Organization of the Orbix Documentation xiii
Organization of this Guide xiv
Document Conventions xv

Part I Introduction to Orbix

Chapter 1 Introduction to CORBA and Orbix 3
CORBA and Distributed Object Programming 3

The Role of an Object Request Broker 4
The Structure of a CORBA Application 5
The Structure of a Dynamic CORBA Application 6
Interoperability between Object Request Brokers 7

The Object Management Architecture 8
The CORBAservices 9
The CORBAfacilities 10

How Orbix Implements CORBA 10

Chapter 2 Getting Started With Orbix 13
Developing a Distributed Application 14
Defining IDL Interfaces 14
Compiling IDL Interfaces 16

Setting Up Configuration for the IDL Compiler 16
Running the IDL Compiler 17
Output from the IDL Compiler 18
The Client Stub Code 19
The Object Skeleton Code 19

Implementing the IDL Interfaces 20
iii

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page iv Monday, February 22, 1999 3:03 PM
Writing an Orbix Server Application 23
Initializing the ORB 23
Creating an Implementation Object 24
Receiving Client Requests 25

Writing an Orbix Client Application 28
Initializing the ORB 28
CORBA Object References 28
Getting a Reference to an Object 29
Invoking IDL Attributes and Operations 30

Compiling the Client and Server 32
Compiling the Client 32
Compiling the Server 32

Running the Application 33
Running the Orbix Daemon 33
Registering the Server 34
Running the Client 35

Summary of Programming Steps 36

Part II Orbix Programming

Chapter 3 Introduction to CORBA IDL 39
IDL Modules and Scoping 40
Defining IDL Interfaces 40

Attributes in IDL Interface Definitions 41
Operations in IDL Interface Definitions 42
Inheritance of IDL Interfaces 45
Forward Declaration of IDL Interfaces 48

Overview of the IDL Data Types 48
IDL Basic Types 49
IDL Complex Types 50
IDL Pseudo Object Types 56
Defining Data Type Names and Constants 56
 iv

C o n t e n t s

ProgramGuide.book Page v Monday, February 22, 1999 3:03 PM
Chapter 4 The CORBA IDL to C++ Mapping 59
Overview of the Mapping 60
Mapping for Modules and Scoping 60

Alternative Mappings for Modules 61
Mapping for Interfaces 62

Mapping for Attributes 63
Mapping for Operations 65
Mapping for Inheritance of IDL Interfaces 68
Object Reference Counts and Nil Object References 71

Mapping for IDL Data Types 74
Mapping for Basic Types 74
Mapping for Complex Types 75
Mapping for Enum 76
Mapping for Struct 76
Mapping for Union 78
Mapping for String 82
General Mapping for Sequences 84
Mapping for Unbounded Sequences 85
Mapping for Bounded Sequences 89
Bounded Sequence Examples 90
Mapping for Fixed 92
Mapping for Array 95
Mapping for Typedef 96

Mapping for Pseudo-Object Types 97
Memory Management and _var Types 98
Memory Management for Parameters 102

in Parameters 102
inout Parameters 104
out Parameters 108
Return Values 110
An Example of Applying the Rules for Object References 111

Chapter 5 Using and Implementing IDL Interfaces 113
Overview of an Example Application 113
Overview of the Programming Steps 114
Defining IDL Interfaces 114
Implementing IDL Interfaces 115

Defining Implementation Classes for IDL Interfaces 119
v

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page vi Monday, February 22, 1999 3:03 PM
Developing a Server Program 129
Writing a Server main() Function 129

Developing a Client Program 134
Alternatives to the Naming Service 136

Registering the Server 137
Execution Trace for the Example Application 138
Comparing the TIE and BOAImpl Approaches 142

Wrapping Existing Code 142
Providing Different Implementations of the Same Interface 144
Providing Different Interfaces to the Same Implementation 145
Comparison of the BOAImpl and TIE Approaches 145

Chapter 6 Making Objects Available in Orbix 147
Identifying CORBA Objects 148

Interoperable Object References 148
Orbix Object References 149
Assigning Markers to Orbix Objects 150

Using the CORBA Naming Service 152
The Interface to the Naming Service 152
Format of Names in the Naming Service 152
Making Initial Contact with the Naming Service 153
Associating Names with Objects 154
Using Names to Find Objects 154
Associating a Compound Name with an Object 155
Using the Naming Service in Orbix Example Applications 156

Transferring Object References 157
Passing Object References as Operation Parameters 157
Transferring Object Reference Strings 158

Binding to Orbix Objects 159

Chapter 7 Exception Handling in Orbix 165
An Example of Raising and Handling Exceptions 166

The Generated C++ Code for User-Defined Exceptions 167
Handling Exceptions in a Client 168
Handling Specific System Exceptions 170
Throwing Exceptions in a Server 172
Information Available in System Exceptions 173
Throwing a System Exception 174
 vi

C o n t e n t s

ProgramGuide.book Page vii Monday, February 22, 1999 3:03 PM
Chapter 8 Using Inheritance of IDL Interfaces 175
The IDL Interfaces 175

The Generated C++ Code 176
Implementation Class Hierarchies 177
The Implementation Classes 178
Using Inheritance in a Client 182
Multiple Inheritance of IDL Interfaces 183

Chapter 9 Orbix Connections and Events 187
Overview of the Direct API to Orbix 188

Initializing a Connection to the ORB 189
Obtaining Initial Object References 189

Managing Orbix Connections and Events 190
Establishing Connections between Clients and Servers 191
Event Processing in Orbix 194

Chapter 10 Advanced Programming Topics 199
Developing Collocated Clients and Servers 200

Testing for the Presence of Collocation 201
Writing Code for both Collocation and Distribution 201

Determining Locality of Objects 203
Casting from Interface to Implementation Class 204
Actions when Proxy Code is Unavailable 206
Multiple Implementations of an Interface 207
Multiple Interfaces per Implementation 208

Using the TIE Approach 209
Using the BOAImpl Approach 211

Passing Context Information to IDL Operations 212
Receiving Diagnostic Messages from Orbix 216
vii

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page viii Monday, February 22, 1999 3:03 PM
Part III Dynamic Orbix Programming

Chapter 11 The TypeCode Data Type 219
Overview of the TypeCode Data Type 220
Implementation of TypeCode in Orbix 222

CORBA::TypeCode_ptr Constants 222
TypeCode Public Members 223
CORBA::TypeCode::IT_create() 224

Examples of Using TypeCode 224
Use of TypeCode in Type CORBA::Any 224
Use of TypeCode when Querying the Interface Repository 225

Chapter 12 The Any Data Type 227
Inserting Data into an Any with operator<<=() 228

Inserting a Basic Type 229
Inserting a User-Defined Type 229

Interpreting an any with operator>>=() 231
Interpreting a Basic Type 231
Interpreting a User-Defined Type 232

Other Ways to Construct and Interpret an Any 233
Inserting Values at Construction Time 233
Low Level Access to a CORBA::Any 236
Inserting and Extracting Array Types 238
Inserting and Extracting boolean, octet and char 239

Any Constructors, Destructor and Assignment 240
Any as a Parameter or Return Value 241

Chapter 13 Dynamic Invocation Interface 243
Using the DII 244

Programming Steps in Using the DII 245
The CORBA Approach to Using the DII 246

Setting up a Request 246
Setting up a Request Using _request() 247
Setting up a Request Using _create_request() 249
Using the Interface Repository when Setting Up a Request 252
Invoking a Request 253
Retrieving the Results of a Request 255
 viii

C o n t e n t s

ProgramGuide.book Page ix Monday, February 22, 1999 3:03 PM
Getting Information About a Request Object 255
The Orbix-Specific Approach to Using the DII 256

Setting Up a Request 256
Invoking a Request 258
Retrieving the Results of a Request 259
Additional Information About operator<<() 260

Chapter 14 Dynamic Skeleton Interface 265
Uses of the DSI 266
Using the DSI 267

Creating CORBA::DynamicImplementation Objects 267
Registering CORBA::DynamicImplementation Objects 268

Example of Using the DSI 270
Example of Using params() 272

Chapter 15 The Interface Repository 275
Configuring the Interface Repository 276
Runtime Information about IDL Definitions 276
The Structure of Interface Repository Data 277

Containment Relationships 279
Simple Types 280

Abstract Interfaces in the Interface Repository 281
Class Hierarchy and Abstract Base Interfaces 282
The Interface IRObject 282

Containment in the Interface Repository 283
The Contained Interface 286
The Container Interface 287
Containment Descriptions 289

Type Interfaces in the Interface Repository 292
Named Types 293
Unnamed Types 295

Retrieving Information about IDL Definitions 296
CORBA::Object::_get_interface() 296
Browsing or Listing a Repository 296
Finding an Object Using its Repository ID 299

Example of Using the Interface Repository 299
Repository IDs 301

Pragma Directives 302
ix

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page x Monday, February 22, 1999 3:03 PM
Part IV Advanced Orbix Programming

Chapter 16 Filtering Operation Calls 307
Introduction to Per-process Filters 308

Pre-marshalling Filter Points 309
Post-marshalling Filter Points 309
Failure Points 310

Introduction to Per-Object Filters 312
Using Per-Process Filters 314

An Example Per-Process Filter 316
Installing a Per-Process Filter 318
Raising an Exception in a Filter 318
Piggybacking Extra Data to the Request Buffer 320
Defining an Authentication Filter 322

Using Per-Object Filters 323
IDL Compiler Switch to Enable Object Filtering 326

Chapter 17 Using Smart Proxy Classes 327
Management of Proxies by Proxy Factories 328
Generating Smart Proxies 329

A Simple Smart Proxy Example 332
The Account IDL Interface 332
Defining a New Proxy Class 332

Chapter 18 Callbacks from Servers to Clients 339
Implementing Callbacks in Orbix 339
Defining the IDL Interfaces 340
Implementing the IDL Interfaces 341
Writing the Client 345
Writing the Server 348
Preventing Deadlock in a Callback Model 350

Using Non-Blocking Operation Invocations 350
Using Multiple Threads of Execution 353

Callbacks and Bidirectional Connections 353
 x

C o n t e n t s

ProgramGuide.book Page xi Monday, February 22, 1999 3:03 PM
Chapter 19 Loading Objects at Runtime 355
Overview of Creating a Loader 356

Installing a Loader 357
Specifying a Loader for an Object 357

Loaders and Object Naming 359
Loading Objects 361
Saving Objects 363
Writing a Loader 364
Example Loader 364

The IDL Interface 364
Implementing the IDL 365
Coding the Loader 371
Loaders are Transparent to Clients 375

Chapter 20 Locating Servers at Runtime 377
The Default Locator 377

Default lookUp() Functionality 378
Writing a New Locator 380

Chapter 21 Using Opaque Types in IDL 383
Using Opaque Types 385

IDL Definitions 385
Mapping of Opaque Types to C++ 386
Memory Management Rules 388
Implementing an Opaque Type 389
Implementing an Interface that uses an Opaque Type 393

Chapter 22 Transforming Requests 395
Transforming Request Data 396

The IT_reqTransformer Class 396
Registering a Transformer 398

An Example Transformer 399

Chapter 23 Using Threads with Orbix-MT 403
Benefits of Multi-threaded Clients and Servers 404

Multi-threaded Servers 404
Multi-threaded Clients 405
xi

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page xii Monday, February 22, 1999 3:03 PM
Comparison with Non-Blocking Calls 406
Thread Programming in Orbix 407

Compiling Orbix-MT Applications 408
Operating System Support for Creating Threads 409
Creating a Thread to Handle a Request 410

Concurrency Control 412
Models of Thread Support 413

Implementing Models of Thread Support 414
Changing the Thread Calls made by Orbix 415
Changing Internal Orbix Thread Creation 416

Chapter 24 Service Contexts in Orbix 417
The Orbix Service Context API 419

ServiceContextHandler Class 419
ORB Interfaces 420
ServiceContextList 420

Using Service Contexts in Orbix Applications 421
ServiceContext Per-Request Model 421
ServiceContext Per-Object Model 424
Main Components of the Service Context Model 427

Service Context Handlers and Filter points 428

Appendix A Orbix IDL Compiler Options 433

 Index 439
 xii

ProgramGuide.book Page xiii Monday, February 22, 1999 3:03 PM
Preface
Orbix is a standards-based programming environment for building and
integrating distributed applications. Orbix is a full implementation of the Object
Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA).

Audience
This guide is intended for use by application programmers who wish to
familiarize themselves with distributed programming with Orbix. This guide
addresses all levels of Orbix programming, from getting started to advanced
topics. Before reading this guide, you should be familiar with the C++
programming language.

Organization of the Orbix Documentation
The complete Orbix documentation set includes the following manuals:

• The Orbix C++ Programmer’s Guide provides a complete guide to Orbix
programming.

• The Orbix C++ Programmer’s Reference provides an exhaustive
reference for the Orbix application programming interface.

• The Orbix C++ Administrator’s Guide explains how to configure and
manage the components of the Orbix environment using the command
line and Orbix GUI tools.
xiii

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page xiv Monday, February 22, 1999 3:03 PM
Organization of this Guide
The Orbix C++ Programmer’s Guide is divided into four parts as follows:

Part I, Introduction to Orbix
This part provides an overview of the OMG’s CORBA architecture and
describes briefly how Orbix implements this architecture. This part also
describes a simple example that enables you to get started with Orbix
programming. Read this part first to get a sense of how the Orbix programming
environment works.

Part II, Orbix Programming
This part describes the core topics of Orbix programming that all programmers
need to know. Read this part to learn the main programming techniques that
most Orbix applications require.

Part III, Dynamic Orbix Programming
This part describes a special subset of Orbix programming components that
allow you to write dynamic applications. The concept of dynamic Orbix
programming is described in Part I11. Each chapter is dedicated to a single
dynamic Orbix component.

Part IV, Advanced Orbix Programming

Orbix extends the CORBA specification by adding features that allow you to
write more flexible distributed applications. Each chapter in this part describes
an advanced Orbix feature. Browse this part to discover the advanced features
available in Orbix and select the features that may be useful in your applications.
 xiv

P r e f a c e

ProgramGuide.book Page xv Monday, February 22, 1999 3:03 PM
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width in normal text represents portions of
code and literal names of items such as classes, functions,
variables, and data structures. For example, text might
refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or
characters.

No prompt When a command’s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.
xv

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page xvi Monday, February 22, 1999 3:03 PM
...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xvi

ProgramGuide.book Page i Monday, February 22, 1999 3:03 PM
Part I
Introduction to Orbix

ProgramGuide.book Page ii Monday, February 22, 1999 3:03 PM

ProgramGuide.book Page 3 Monday, February 22, 1999 3:03 PM
 1
Introduction to CORBA and Orbix

Orbix is a software environment that allows you to build and integrate
distributed applications. Orbix is a full implementation of the Object
Management Group’s (OMG) Common Object Request Broker
Architecture (CORBA) specification. This chapter introduces CORBA
and describes how Orbix implements this specification.

CORBA and Distributed Object Programming
The diversity of modern networks makes the task of network programming very
difficult. Distributed applications often consist of several communicating
programs written in different programming languages and running on different
operating systems. Network programmers must consider all of these factors
when developing applications.

The Common Object Request Broker Architecture (CORBA) defines a
framework for developing object-oriented, distributed applications. This
architecture makes network programming much easier by allowing you to
create distributed applications that interact as though they were implemented in
a single programming language on one computer.

CORBA also brings the advantages of object-oriented techniques to a
distributed environment. It allows you to design a distributed application as a set
of cooperating objects and to re-use existing objects in new applications.
3

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 4 Monday, February 22, 1999 3:03 PM
The Role of an Object Request Broker

CORBA defines a standard architecture for Object Request Brokers (ORBs). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The role of the ORB is
to hide the underlying complexity of network communications from the
programmer.

An ORB allows you to create standard software objects whose member
functions can be invoked by client programs located anywhere in your network.
A program that contains instances of CORBA objects is often known as a server.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 1.1, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Figure 1.1: The Object Request Broker

2EMHFW

2EMHFW 5HTXHVW %URNHU

&OLHQW

&OLHQW +RVW 6HUYHU +RVW

)XQFWLRQ
&DOO
 4

I n t r od u c t i o n t o C ORB A a n d O r b i x

ProgramGuide.book Page 5 Monday, February 22, 1999 3:03 PM
The Nature of Objects in CORBA

CORBA objects are just standard software objects implemented in any
supported programming language. CORBA supports several languages, including
C++, Java, and Smalltalk.

With a few calls to an ORB’s application programming interface (API), you can
make CORBA objects available to client programs in your network. Clients can
be written in any supported programming language and can call the member
functions of a CORBA object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in the
CORBA Interface Definition Language (IDL). The interface definition specifies
which member functions are available to a client, without making any
assumptions about the implementation of the object.

To call member functions on a CORBA object, a client needs only the object’s
IDL definition. The client does not need to know details such as the
programming language used to implement the object, the location of the object
in the network, or the operating system on which the object runs.

The separation between an object’s interface and its implementation has several
advantages. For example, it allows you to change the programming language in
which an object is implemented without changing clients that access the object.
It also allows you to make existing objects available across a network.

The Structure of a CORBA Application

The first step in developing a CORBA application is use CORBA IDL to define
the interfaces to objects in your system. You then compile these interfaces using
an IDL compiler.

An IDL compiler generates C++ from IDL definitions. This C++ includes client
stub code, which allows you to develop client programs, and object skeleton
code, which allows you to implement CORBA objects.

As shown in Figure 1.2 on page 6, when a client calls a member function on a
CORBA object, the call is transferred through the client stub code to the ORB.
If the client has not accessed the object before, the ORB refers to a database,
5

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 6 Monday, February 22, 1999 3:03 PM
known as the Implementation Repository, to determine exactly which object
should receive the function call. The ORB then passes the function call through
the object skeleton code to the target object.

Figure 1.2: Invoking on a CORBA Object

The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the
IDL associated with your objects and use the generated C++ code in your
applications. This means that your client programs can only call member
functions on objects whose interfaces are known at compile-time. If a client
wishes to obtain information about an object’s IDL interface at runtime, it needs
an alternative, dynamic approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the
IDL interfaces implemented by objects in your network. A client program can
query this database at runtime to get information about those interfaces. The
client can then call member functions on objects using a component of the ORB
called the Dynamic Invocation Interface (DII), as shown in Figure 1.3 on page 7.

2EMHFW

)XQFWLRQ
&DOO

2EMHFW 5HTXHVW %URNHU

&OLHQW +RVW 6HUYHU +RVW

&OLHQW

&OLHQW
6WXE
&RGH

2EMHFW
6NHOHWRQ
&RGH
 6

I n t r od u c t i o n t o C ORB A a n d O r b i x

ProgramGuide.book Page 7 Monday, February 22, 1999 3:03 PM
Figure 1.3: Client Invoking a Function Using the DII

CORBA also supports dynamic server programming. A CORBA program can
receive function calls through IDL interfaces for which no CORBA object exists.
Using an ORB component called the Dynamic Skeleton Interface (DSI), the
server can then examine the structure of these function calls and implement
them at runtime. Figure 1.4 on page 8 shows a dynamic client program
communicating with a dynamic server implementation.

Interoperability between Object Request Brokers

The components of an ORB make the distribution of programs transparent to
network programmers. To achieve this, the ORB components must
communicate with each other across the network.

In many networks, several ORB implementations coexist and programs
developed with one ORB implementation must communicate with those
developed with another. To ensure that this happens, CORBA specifies that
ORB components must communicate using a standard network protocol, called
the Internet Inter-ORB Protocol (IIOP).

2EMHFW

)XQFWLRQ
&DOO

2EMHFW 5HTXHVW %URNHU

&OLHQW +RVW 6HUYHU +RVW

&OLHQW

'��
2EMHFW
6NHOHWRQ
&RGH
7

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 8 Monday, February 22, 1999 3:03 PM
Figure 1.4: Function Call Using the DII and DSI

The Object Management Architecture
An ORB is one component of the OMG’s Object Management Architecture
(OMA). This architecture defines a framework for communications between
distributed objects.

As shown in Figure 1.5 on page 9, the OMA includes four elements:

• Application objects.

• The ORB.

• The CORBAservices.

• The CORBAfacilities.

Application objects are objects that implement programmer-defined IDL
interfaces. These objects communicate with each other, and with the
CORBAservices and CORBAfacilities, through the ORB. The CORBAservices
and CORBAfacilities are sets of objects that implement IDL interfaces defined by
CORBA and provide useful services for some distributed applications.

2EMHFW

)XQFWLRQ
&DOO

2EMHFW 5HTXHVW %URNHU

&OLHQW +RVW 6HUYHU +RVW

&OLHQW

'�� '6�
 8

I n t r od u c t i o n t o C ORB A a n d O r b i x

ProgramGuide.book Page 9 Monday, February 22, 1999 3:03 PM
When writing Orbix applications, you may require one or more CORBAservices
or CORBAfacilities. This section provides a brief overview of these components
of the OMA.

Figure 1.5: The Object Management Architecture

The CORBAservices

The CORBAservices define a set of low-level services that allow application
objects to communicate in a standard way. These services include the following:

• The Naming Service. Before using a CORBA object, a client program
must get an identifier for the object, known as an object reference. This
service allows a client to locate object references based on abstract,
programmer-defined object names.

• The Trader Service. This service allows a client to locate object
references based on the desired properties of an object.

• The Object Transaction Service. This service allows CORBA programs to
interact using transactional processing models.

$SSOLFDWLRQ 2EMHFWV

&25%$VHUYLFHV &25%$IDFLOLWLHV

2EMHFW 5HTXHVW %URNHU
9

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 10 Monday, February 22, 1999 3:03 PM
• The Security Service. This service allows CORBA programs to interact
using secure communications.

• The Event Service. This service allows objects to communicate using
decoupled, event-based semantics, instead of the basic CORBA
function-call semantics.

IONA Technologies implements several CORBAservices including all the
services listed above.

The CORBAfacilities

The CORBAfacilities define a set of high-level services that applications
frequently require when manipulating distributed objects. The CORBAfacilities
are divided into two categories:

• The horizontal CORBAfacilities.

• The vertical CORBAfacilities.

The horizontal CORBAfacilities consist of user interface, information
management, systems management, and task management facilities. The vertical
CORBAfacilities standardize IDL specifications for market sectors such as
healthcare and telecommunications.

How Orbix Implements CORBA
Orbix is an ORB that fully implements the CORBA 2 specification. By default, all
Orbix components and applications communicate using the CORBA standard
IIOP protocol.

The components of Orbix are as follows:

• The IDL compiler parses IDL definitions and produces C++ code that
allows you to develop client and server programs.

• The Orbix library is linked against every Orbix program and implements
several components of the ORB, including the DII, the DSI, and the core
ORB functionality.
 10

I n t r od u c t i o n t o C ORB A a n d O r b i x

ProgramGuide.book Page 11 Monday, February 22, 1999 3:03 PM
• The Orbix daemon is a process that runs on each server host and
implements several ORB components, including the Implementation
Repository.

• The Orbix Interface Repository server is a process that implements the
Interface Repository.

Orbix also includes several programming features that extend the capabilities of
the ORB. These features are described in Part IV, “Advanced Orbix
Programming”.
11

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 12 Monday, February 22, 1999 3:03 PM
 12

ProgramGuide.book Page 13 Monday, February 22, 1999 3:03 PM
 2
Getting Started With Orbix

The chapter describes how to develop a distributed application using
Orbix. An example application illustrates the steps involved in the
development process. These include defining an IDL interface,
implementing this interface in C++, and developing a C++ client
application.

This chapter describes the basic programming steps required to create Orbix
objects, write server programs that expose those objects, and write client
programs that access those objects.

This chapter illustrates the programming steps using an example named
BankSimple. In this example, an Orbix server program implements two types of
objects: a single object implementing the Bank interface, and multiple objects
implementing the Account interface. A client program uses these clearly-defined
object interfaces to create and find accounts, and to deposit and withdraw
money.

On Windows and UNIX, the source code for the example described in this
chapter is available in the demos\banksimple directory of your Orbix
installation.

On OS/390, the location of the source code is documented in
orbixhlq.DEMOS.README(BANKSIMP), where orbixhlq represents your
installation’s high-level qualifier. This source code may differ slightly from the
code published in this guide.
13

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 14 Monday, February 22, 1999 3:03 PM
Developing a Distributed Application
To develop an Orbix application, you must perform the following steps:

1. Identify the objects required in your system and define public interfaces
to those objects using CORBA Interface Definition Language (IDL).

2. Compile the IDL interfaces.

3. Implement the IDL interfaces using C++ classes.

4. Write a server program that creates instances of the implementation
classes.

5. Write a client program that accesses the server object.

6. Compile the client and server.

7. Run the application

Defining IDL Interfaces
Defining IDL interfaces to your objects is the most important step in developing
an Orbix application. These interfaces define how clients access objects
regardless of the location of those objects on the network.

An interface definition contains attributes and operations. Attributes allow clients
to get and set values on the object. Operations are functions that clients can call
on an object.

For example, the following IDL from the BankSimple example defines two
interfaces for objects representing a bank application. The interfaces are defined
inside an IDL module to prevent clashes with similarly-named interfaces defined
in subsequent examples.

The interfaces to the BankSimple example are defined in IDL as follows:

// IDL
// In file banksimple.idl

1 module BankSimple {

typedef float CashAmount;

2 interface Account;
 14

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 15 Monday, February 22, 1999 3:03 PM
3 interface Bank {
Account create_account (in string name);
Account find_account (in string name);

};

4 interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

5 void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};
};

This code is explained as follows:

1. An IDL module is equivalent to a C++ namespace, and groups the
definitions into a common namespace. Using a module is not mandatory,
but is good practice.

2. This is a forward declaration to the Account interface. It allows you to
refer to Account in the Bank interface, before actually defining Account.

3. The Bank interface contains two operations: create_account() and
find_account(), allowing a client to create and search for an account.

4. The Account interface contains two attributes: name and balance; both
are readonly. This means that clients can get the balance or name, but
cannot directly set them. If the readonly keyword is omitted, clients can
also set these values.

5. The Account interface also contains two operations: deposit() and
withdraw(). The deposit() operation allows a client to deposit money
in the account. The withdraw() operation allows a client to withdraw
money from the account.

The parameters to these operations are labelled with the IDL keyword in. This
means that their values are passed from the client to the object. Operation
parameters can be labelled as in, out (passed from the object to the client) or
inout (passed in both directions).
15

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 16 Monday, February 22, 1999 3:03 PM
Compiling IDL Interfaces
You must compile IDL definitions using the Orbix IDL compiler. Before running
the IDL compiler, ensure that your configuration is correct.

Setting Up Configuration for the IDL Compiler

You should ensure that the environment variable IT_CONFIG_PATH is set to the
location of iona.cfg, the root Orbix configuration file.

UNIX
On UNIX, if iona.cfg is in directory /local/iona, perform the following steps:

1. Under sh enter:

% IT_CONFIG_PATH=/local/iona
% export IT_CONFIG_PATH

or under csh enter:

% setenv IT_CONFIG_PATH /local/iona

2. Set the environment variable LD_LIBRARY_PATH to include the location of
the Orbix lib directory in a similar manner.

Windows

On Windows, if iona.cfg is in directory C:\iona\config, enter the following
at the DOS prompt:

> set IT_CONFIG_PATH=C:\iona\config

OS/390
On OS/390, you can specify the IT_CONFIG_PATH environment variable using
ENVAR in the list of runtime options preceding the arguments to any Language
Environment program. For example:

//STEP1 EXEC PGM=progname.
// PARM='ENVAR(“IT_CONFIG_PATH=TEST.PARMS(ORBIXCFG)”)
// /arguments'
 16

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 17 Monday, February 22, 1999 3:03 PM
Refer to the Orbix for OS/390 Administrator’s Guide for full details about running
Orbix on OS/390.

Running the IDL Compiler

The IDL compiler checks the validity of the specification and generates C++
code that allows you to write client and server programs.

Windows and UNIX
To compile the Bank and Account interfaces defined in file banksimple.idl, run
the IDL compiler as follows:

idl [options] banksimple.idl

The -B compiler option produces BOAImpl classes for the server. Refer to
Appendix A, “Orbix IDL Compiler Options” for a complete list of IDL compiler
options.

OS/390

On OS/390, you can run the IDL compiler in batch or as a TSO command. All
the JCL procedures that are supplied by IONA are stored in orbixhlq.PROCS.
The JCL to run the IDL compiler in batch is as follows:

//STEP1 EXEC PROC=ORXI,
// INTERFACE=BANKSIMP,
// IDLPARMS=’-B’,
// IDL=orbixhlq.DEMOS.IDL,
// HH=output.pds.hh,
// STUBS=output.pds.stubs

The TSO command to run the IDL compiler on OS/390 is as follows:

CALL ’orbixhlq.LOAD(IDL)’ ’-B orbixhlq.DEMOS.IDL(BANKSIMP)’ ASIS

You must pass a fully-qualified data set name as an argument to the IDL
compiler. The IDL compiler reads the input from this PDS and then writes the
generated C++ files to it.
17

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 18 Monday, February 22, 1999 3:03 PM
Output from the IDL Compiler

The IDL compiler produces three C++ files that communicate with Orbix:

1. A common header file containing declarations used by both client and
server mode. This header file should be included in all client and server
programs.

2. A source file to be compiled and linked with servers (object skeleton
code).

3. A source file to be compiled and linked with clients (client stub code).

These source files contain C++ definitions that correspond to your IDL
definitions. These C++ definitions allow you to write C++ client and server
programs.

By default, these files are named as follows:

For clarity, this chapter assumes that the IDL compiler-generated files in the
demos\banksimple directory of your Orbix installation are compiled using the
following command:

idl -B -c client.cxx -s server.cxx banksimple.idl

Using the -s and -c switches means that the compiler output filenames are the
same for both Windows and UNIX:

These are the filenames used in this chapter.

File Windows UNIX OS/390

Header file banksimple.hh banksimple.hh output.pds.hh(
BANKSIM)

Client stub code banksimpleC.cpp banksimpleC.C output.pds.stubs(
BANKSIMC)

Server skeleton
code

banksimpleS.cpp banksimpleS.C output.pds.stubs(
BANKSIMS)

File Description File

Header file banksimple.hh

Client stub code banksimple.client.cxx

Server skeleton code banksimple.server.cxx
 18

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 19 Monday, February 22, 1999 3:03 PM
The Client Stub Code

The files banksimple.hh and banksimple.client.cxx define the C++ code
that a client uses to access a Bank object. This code is termed the client stub
code. For example, the banksimple.hh file for the BankSimple IDL includes a
class to represent Bank and Account objects from a client’s point of view.

The IDL declarations for the Account interface include the C++ definitions in
the following code extract:

// C++
// In file banksimple.hh

// Automatically generated by the IDL compiler.
class Account: public virtual CORBA::Object {
public:

// CORBA support functions and error handling are
// omitted here for clarity
virtual char * name ()

throw (CORBA::SystemException);
virtual CashAmount balance ()

throw (CORBA::SystemException);
virtual void deposit (CashAmount amount)

throw (CORBA::SystemException);
virtual void withdraw (CashAmount amount)

throw (CORBA::SystemException);
};

The environment argument (the last argument passed to each method) is
omitted here.

This class represents the IDL Account interface in C++ allowing C++ clients to
treat Account objects like any other C++ object. The readonly name and
balance attributes map to member functions of the same name. The deposit()
and withdraw() operations map to C++ member functions with equivalent
parameters.

The Object Skeleton Code

The files banksimple.hh and banksimple.server.cxx define the C++ code
that allows a server program to implement IDL interfaces and accept operation
calls from clients to objects. This code is known as the object skeleton code.
19

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 20 Monday, February 22, 1999 3:03 PM
These server-side skeletons receive CORBA calls and pass them onto
application code. When implementing a server using the BOAImpl approach, you
inherit from a BOAImpl class generated by the IDL compiler.

For the Account interface the BOAImpl class includes the following C++
definitions:

// C++
// In file banksimple.hh

// Automatically generated by IDL compiler.
class AccountBOAImpl: public virtual Account {
public:

virtual char * name ()
throw (CORBA::SystemException) = 0;

virtual CashAmount balance ()
throw (CORBA::SystemException) = 0;

virtual void deposit (CashAmount amount)
throw (CORBA::SystemException) = 0;

virtual void withdraw(CashAmount amount)
throw (CORBA::SystemException) = 0;

};

To implement the Account interface, you must inherit from this class and
override the pure virtual functions that represent IDL operations with
application code.

Implementing the IDL Interfaces
This example uses the CORBA BOAImpl approach to implementing an IDL
interface. It uses two classes to implement the Bank and Account IDL interfaces
in C++: BankSimple_BankImpl and BankSimple_AccountImpl. These classes
inherit the IDL compiler-generated BankSimple::BankBOAImpl and
BankSimple::AccountBOAImpl classes. These base classes provide all the Orbix
functionality. All that remains is to override the abstract member functions that
represent the IDL operations.

For example, the code for BankSimple_BankImpl is as follows:

// C++
// In file BankSimple\banksimple_bankimpl.h
// Implementation class for the Bank IDL interface.
 20

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 21 Monday, February 22, 1999 3:03 PM
...
1 class BankSimple_BankImpl : public virtual BankSimple::BankBOAImpl

{
public:

// Mapped IDL operations.
2 virtual BankSimple::Account_ptr

create_account(const char * name, CORBA::Environment&);
virtual BankSimple::Account_ptr

find_account(const char * name, CORBA::Environment&);
// C++ constructor and destructor.

3 BankSimple_BankImpl();
virtual ~BankSimple_BankImpl();

protected:
static const int MAX_ACCOUNTS;

4 BankSimple::Account_var * m_accounts;
};

This code is explained as follows:

1. Inheriting from the BOAImpl class generated by the IDL compiler
provides Orbix functionality for the server objects.

2. Operations defined in IDL are implemented by corresponding operations
in C++. The IDL Account type is represented by an Account_ptr.

3. The constructor and destructor are normal C++ functions that can be
called by server code. Only IDL functions can be called remotely by
clients.

4. The accounts created by the bank are stored in an array of Account_var.
These are like pointers; for more information on Account_var, refer to
“CORBA Object References” on page 28.

You can implement the member functions of BankSimple_BankImpl as follows:

// C++
// In file banksimple_bankimpl.cxx

#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”

1 const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;
BankSimple_BankImpl::BankSimple_BankImpl() :
m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {
21

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 22 Monday, February 22, 1999 3:03 PM
// Make sure all accounts are nil.
for (int i = 0; i < MAX_ACCOUNTS; ++i){

m_accounts[i] = BankSimple::Account::_nil();
}

}

BankSimple_BankImpl::~BankSimple_BankImpl() {
delete [] m_accounts;

}

// Add a new account.
BankSimple::Account_ptr BankSimple_BankImpl::create_account
(const char * name, CORBA::Environment &) {

int i = 0;
for (; i < MAX_ACCOUNTS && !CORBA::is_nil(m_accounts[i]); ++i)
{}
if (i < MAX_ACCOUNTS){

2 m_accounts[i] = new BankSimple_AccountImpl(name, 0.0);
cout << “create_account: Created account with name: ”

 << name << endl;
3 return BankSimple::Account::_duplicate(m_accounts[i]);

}
else{

cout << “create_account: failed, no space left!” << endl;
4 return BankSimple::Account::_nil();

}
}

// Find a named account.
BankSimple::Account_ptr BankSimple_BankImpl::find_account
(const char * name, CORBA::Environment &) {

int i = 0;
for (; i < MAX_ACCOUNTS &&(CORBA::is_nil(m_accounts[i]) ||

strcmp(name, m_accounts[i]->name()) != 0); ++i)
{ }

if (i < MAX_ACCOUNTS){
cout << “find_account: found account named” << name << endl;
return BankSimple::Account::_duplicate(m_accounts[i]);

}

 22

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 23 Monday, February 22, 1999 3:03 PM
else{
cout << “find_account: no account named” << name << endl;
return BankSimple::Account::_nil();

}
}

The code is explained as follows:

1. The maximum number of accounts that the bank can handle in this simple
implementation is set as a constant of 1000 .

2. New accounts are created with a balance of zero.

3. When an Account reference is returned from create_account() and
find_account() operations, it must be duplicated. According to CORBA
memory management rules, this reference is released by the caller.

4. If an account cannot be created, nil is returned.

Refer to the banksimple\demos directory of your Orbix installation for the
corresponding code for BankSimple_AccountImpl .

Writing an Orbix Server Application
To write a C++ program that acts as an Orbix server, perform the following
steps:

1. Initialize the server connection to the Orbix ORB, and to the Basic
Object Adaptor (BOA).

2. Create an implementation object. This is done by creating instances of
the implementation classes.

3. Allow Orbix to receive and process incoming requests from clients.

This section describes each of these programming steps in turn.

Initializing the ORB

Because Orbix uses the standard OMG IDL to C++ mapping, all servers and
clients must call CORBA::ORB_init() to initialize the ORB. This returns a
reference to the ORB object. The ORB methods defined by the standard can
then be invoked on this instance.
23

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 24 Monday, February 22, 1999 3:03 PM
// C++
// In file server.cxx
...
try {

...
// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc,argv,“Orbix”);
...

}
catch (CORBA::Exception &e) {

cout << “Unexpected exception” << e << endl;
}

In this code sample, the argc parameter refers to the number of arguments in
argv . The argv parameter is a sequence of configuration strings used if “Orbix”
is a null string; the string “Orbix” identifies the ORB. Refer to the Orbix C++
Programmer’s Reference for more information on CORBA::ORB_init().

Orbix raises a C++ exception to indicate that a function call has failed. All
CORBA exceptions derive from CORBA::Exception. Many Orbix functions (for
example, ORB_init()) and all IDL operations may raise a CORBA system
exception, of type CORBA::SystemException.

You must use C++ try/catch statements to handle exceptions, as illustrated in
the preceding code sample. In the remainder of this chapter, try/catch
statements are omitted for clarity.

Creating an Implementation Object

To create an implementation object, you must create an instance of your
implementation class in your server program. Typically a server program creates
a small number of objects in its main() function, and these objects may in turn
create further objects. In the BankSimple example, the server creates a single
bank object in its main() function. This bank object then creates accounts when
create_account() is called by the client.

For example, to create an instance of BankSimple::Bank in your server main()
function, do the following:

// C++
// In file server.cxx

#include “banksimple_bankimpl.h”
 24

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 25 Monday, February 22, 1999 3:03 PM
int main (...) {
...
// Create a bank implementation object.
BankSimple::Bank_var my_bank = new BankSimple_BankImpl;
...

}

A server program can create any number of implementation objects for any
number of IDL interfaces.

Receiving Client Requests

When a server instantiates an Orbix object (for example, one inheriting from
the BOAImpl class), it is automatically registered with Orbix as a distributed
object. To make objects available to clients, the server must call the Orbix
function CORBA::BOA::impl_is_ready() to complete its initialization and to
process operation calls from clients.

You can code a complete server main() function as follows:

// C++
// In file server.cxx

#include “banksimple_bankImpl.h”
#include “banksimple_accountImpl.h”
#include <it_demo_nsw.h>

// Server mainline.
int main (int argc, char * argv[]) {

try {
// Use standard demo server options.

1 IT_Demo_ServerOptions serveropt(“IT_Demo/BankSimple/Bank”);
...

2 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, “Orbix”);
CORBA::BOA_var boa = orb->BOA_init(argc, argv, “Orbix_BOA”);

// Set diagnostics.
orb->setDiagnostics(serveropt.diagnostics());

// Set server name.
3 orb->setServerName(serveropt.server_name());
25

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 26 Monday, February 22, 1999 3:03 PM
// Indicate server should not quit while clients
// are connected.
boa->setNoHangup(1);
// Set up Naming Service Wrappers (NSW).

4 IT_Demo_NSW ns_wrapper;
5 ns_wrapper.setNamePrefix(serveropt.context());
6 const char *bank_name = “BankSimple.Bank”;

...
// Create a bank implementation object.

7 BankSimple::Bank_var my_bank = new BankSimple_BankImpl;

8 // Register server object with the Naming Service.
if (serveropt.bindns()) {

cout << “Binding objects in the Naming Service” << endl;
ns_wrapper.registerObject(bank_name, my_bank);

}

// Server has completed initialization, wait for
// incoming requests.

9 boa->impl_is_ready((char*)serveropt.server_name(),
serveropt.timeout());

// impl_is_ready() returns only when Orbix times-out
// an idle server.
cout << “server exiting” << endl;

}
catch (const CORBA::Exception &e) {

cerr << “Unexpected exception” << e << endl;
return 1;

}
return 0;

};

This code is explained as follows:

1. Create the standard server options for use throughout the
demonstration and set the server name to IT_Demo/BankSimple/Bank .
The Orbix demos\demolib directory contains the standard server and
client options used by the Bank series examples in this book.

2. Initialize the ORB and BOA. The ORB object provides functionality
common to both clients and servers. The BOA (Basic Object Adapter)
object is derived from the ORB and provides additional server-side
functionality.
 26

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 27 Monday, February 22, 1999 3:03 PM
The ORB and the BOA are different views of the same ORB API—this
object is also available via the global variable CORBA::Orbix. However,
use of this variable is not CORBA-defined and is discouraged.

3. Set the server name using setServerName(serveropt.server_name()).
This is required by Orbix before exporting object references.

4. Create a Naming Service Wrapper (NSW) object. To simplify the use of
the Naming Service, a Naming Service Wrapper is provided. This hides
the low-level detail of the CORBA Naming Service. Refer to “Using the
Naming Service in Orbix Example Applications” on page 156 for details of
the Naming Service wrapper functions.

5. Define a name prefix that is used for subsequent operations.

6. BankSimple.Bank is the name that the bank object is known by in the
Naming Service.

7. The created BankSimple instance is my_bank. This object implements an
instance of the IDL interface Bank. This is called directly from client
applications using the CORBA standard Internet Inter-ORB Protocol
(IIOP).

8. The server now registers its objects in the Naming Service using the
Naming Service wrapper function registerObject().

9. The CORBA::BOA::impl_is_ready() operation is called to complete
server initialization. This takes a server name and a timeout value as
parameters. You can specify any name for your server; however, the
name should match the name used to register the server in the
Implementation Repository, and the argument used to call
setServerName().

The timeout value indicates the period of time, in milliseconds, that the
impl_is_ready() call should block for while waiting for an operation call
to arrive from a client. If no call arrives in this period, impl_is_ready()
returns. If a call arrives, Orbix calls the appropriate member function on
the implementation object and the timeout counter starts again from
zero.
27

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 28 Monday, February 22, 1999 3:03 PM
Writing an Orbix Client Application
To write a C++ client program to an Orbix object, you must perform the
following steps:

1. Initialize the client connection to the ORB.

2. Get a reference to an object.

3. Invoke attributes and operations defined in the object’s IDL interface.

This section describes each of these steps in turn.

Initializing the ORB

All clients and servers must call CORBA::ORB_init() to initialize the ORB. This
returns a reference to the ORB object. The ORB methods defined by the
standard can then be invoked on this instance.

CORBA Object References

A CORBA object reference identifies an object in your system. When an object
reference enters a client address space, Orbix creates a proxy object that acts as
a local representative for the remote implementation object. Orbix forwards
operation invocations on the proxy object to corresponding functions in the
implementation object.

Consider an object reference as a pointer that can point to an object in a remote
server process. Object references to an object of interface X are represented by
a type X_ptr, which behaves like a normal C++ pointer.

An object reference requires some memory in the client (the memory needed
by the proxy object), so you must release each reference when finished by
calling CORBA::release(). The CORBA::release() method releases the client
memory used by the object reference—it does not affect the remote server
object.

For interface X, the IDL compiler also generates a smart pointer class called
X_var that automates memory management. X_var behaves just like X_ptr,
except it releases the reference when it goes out of scope, or if a new reference
is assigned.
 28

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 29 Monday, February 22, 1999 3:03 PM
Getting a Reference to an Object

The flexible CORBA-defined way to obtain object references is to use the
standard CORBA Naming Service. The CORBA Naming Service allows a name
to be bound to an object and allows that object to be found subsequently by
resolving that name within the Naming Service.

A server that holds an object reference can register it with the Naming Service,
giving it a name that can be used by other components of the system to find the
object. The Naming Service maintains a database of bindings between names and
object references. A binding is an association between a name and an object
reference. Clients can call the Naming Service to resolve a name, and this
returns the object reference bound to that name. The Naming Service provides
operations to resolve a name, to create new bindings, to delete existing bindings,
and to list the bound names.

A name is always resolved within a given naming context. The naming context
objects in the system are organized into a graph, which may form a naming
hierarchy, much like that of a file system. The following sample code shows how
the client uses the Naming Service wrapper functions to obtain an object
reference:

// C++
// In file client.cxx
...
// Naming Service Setup.
// Create a Naming Service Wrapper object.
IT_Demo_NSW ns_wrapper;

1 ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Specify the object name in the Naming Service.

2 const char *object_name = "BankSimple.Bank";

// Get a reference to the required object from the NSW.
3 CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
4 BankSimple::Bank_var bank = BankSimple::Bank::_narrow(obj);

if (CORBA::is_nil(bank)) {
29

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 30 Monday, February 22, 1999 3:03 PM
cerr << "Object \"" << object_name
<< "\"in the Naming Service" << endl
<< "\tis not of the expected type."<< endl;

return 1;
}

// Start client menu loop
5 BankMenu main_menu(bank);

main_menu.start();
}

...
}

This code is described as follows:

1. Define a name prefix used by the Naming Service wrapper object for
subsequent operations.

2. BankSimple.Bank is the name by which the bank object is known in the
Naming Service.

3. The method nswrapper::resolveName() retrieves the object reference
from the Naming Service placed there by servers. The object_name
parameter is the name of the object to resolve. This must match the
name used by the server when it calls registerObject().

4. The return type from resolveName() is of type CORBA::Object. You
must call _narrow() to safely cast down from the base class to the Bank
IDL class, before you can make invocations on remote Bank objects. The
client stub code generated for every IDL class contains the _narrow()
function definition for that class.

5. This creates and runs a main menu for Bank clients. This menu enables
you to find or create accounts by calling the appropriate C++ member
function on the object reference.

Invoking IDL Attributes and Operations

To access an attribute or an operation associated with an object, call the
appropriate C++ member function on the object reference. The client-side
proxy redirects this C++ call across the network to the appropriate member
function of the implementation object.
 30

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 31 Monday, February 22, 1999 3:03 PM
The main BankSimple client program calls a simple interactive menu. This
enables you to call IDL operations on a Bank. The following code extracts show
the code called when you choose to create or find an account:

// C++
// In file bankmenu.cxx

void BankMenu::do_create() throw(CORBA::SystemException) {

cout << “Enter account name: ” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

1 BankSimple::Account_var account = m_bank->create_account(name);

// Start a sub-menu with the returned account reference.
AccountMenu sub_menu(account);
sub_menu.start();

}

// do_find -- calls find account and runs account menu.

void BankMenu::do_find throw (CORBA::SystemException) {

cout << “Enter account name: “ << flush;
2 CORBA::String_var name = IT_Demo_Menu::get_string();

BankSimple::Account_var account = m_bank->find_account(name);
AccountMenu sub_menu(account)

sub_menu.start();
}

This code is explained as follows:

1. m_bank is a Bank_var —a C++ helper class automatically generated by
the IDL compiler from the Bank interface. This is used like a normal C++
pointer to call IDL operations just like C++ operations.

2. The String_var name variable is used for the account name entered. The
caller is not responsible for releasing the memory—String_var
automatically does this when it goes out of scope.

Use the C++ arrow operator (->) to access the operations defined in IDL
through a BankSimple::Bank_var object. Call those member functions using
normal C++ calls and test for errors using C++ exception handling.
31

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 32 Monday, February 22, 1999 3:03 PM
Compiling the Client and Server
To build the client and server, you must compile and link the relevant C++ files
with the Orbix library. On UNIX, this is liborbix; on Windows, this is
ITMi.lib. These files are available in the Orbix lib directory.

Note: For demonstration-specific functionality, you must also include
libdemo.a on UNIX and demolib.lib on Windows.

Compiling the Client

To build the client application, compile and link the following C++ files, and the
Orbix library:

• banksimple.client.cxx

• client.cxx

• bankmenu.cxx

• accountmenu.cxx

client.cxx is the source file for the client main() function.

Compiling the Server

To build the server application, compile and link the following C++ files, and the
Orbix library.

• banksimple.server.cxx

• banksimple_bankimpl.cxx

• banksimple_accountimpl.cxx

• server.cxx

server.cxx is the source file for the server main() function.

The Orbix demos\banksimple directory includes a makefile that compiles and
links the bank client and server demonstration code.
 32

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 33 Monday, February 22, 1999 3:03 PM
To build the executables, type one of the following in the demos\banksimple
directory of your Orbix installation:

To build the executables on OS/390, run the job orbixhlq.DEMOS.BUILD.JCL
(BANKSIMP).

Running the Application
To run the application, do the following:

1. Run the Orbix daemon process (orbixd) on the server host.

2. Register the server in the Orbix Implementation Repository.

3. Run the client program.

Running the Orbix Daemon

Before a client can access a server, the server must be registered with the Orbix
daemon. Before running the Orbix daemon, ensure that the environment
variable IT_CONFIG_PATH is set as described in “Setting Up Configuration for the
IDL Compiler” on page 16.

Windows and UNIX
You can run the Orbix daemon on the server host by typing orbixd at the
command line or using the Start menu on Windows.

OS/390
On OS/390, the daemon can be run as a batch job or a started task. Sample JCL
is supplied in orbixhlq.JCL(ORBIXD).

Windows > nmake

UNIX % make
33

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 34 Monday, February 22, 1999 3:03 PM
Registering the Server

The Implementation Repository is the component of Orbix that stores
information about servers available in the system. Before running your
application, you must register your server in the Implementation Repository.

Windows and UNIX
To register the server(s), use either the Server Manager GUI tool or run the
Orbix putit command on the server host as follows:

putit server_name server_executable

OS/390

To register the server(s), you can execute utilities either by TSO call commands
or the Orbix ISPF panels. For example:

CALL orbixhlq.LOAD(PUTIT)’server_name execution_jcl_location’ ASIS

On all platforms, server_name is the name of your server passed to
impl_is_ready().

If a server binds names in the Naming Service, you may need to run it once to
allow it to set up the name bindings. Details of how to do this depend on the
server used. The demonstrations provide a makefile that do the necessary
server registration and set up names in the Naming Service.

To register the server, type one of the following:

On OS/390, the details for each demonstration are documented in a member of
orbixhlq.DEMOS.README.

Windows > nmake register

UNIX % make register
 34

G e t t i n g S t a r t e d W i t h O r b i x

ProgramGuide.book Page 35 Monday, February 22, 1999 3:03 PM
Running the Client

When a client binds to an object in a server registered in the Implementation
Repository, the Orbix daemon automatically launches the server executable file.
Consequently, you can run the client without running the server in advance.

Before running the client, ensure that the environment variable IT_CONFIG_PATH
is set as described in “Setting Up Configuration for the IDL Compiler” on
page 16.

Windows and UNIX
Run the example client by entering client at the command-line prompt. The
client displays a text menu allowing you to choose the actions you want to take,
and then prompts you for the necessary information. The server outputs
messages when it processes incoming calls. You can see these messages by
looking at the application shell window launched by the Orbix daemon.

OS/390
Run the example client using the following TSO command:

CALL orbixhlq.DEMOS.LOAD(BANKCLNT)
'ENVAR(“IT_CONFIG_PATH= orbixhlq.PROCS(ORBIXCFG)”)/'

The client displays a text menu allowing you to choose the actions you want to
take, and then prompts you for the necessary information. The server outputs
messages when it processes incoming calls. You can view these messages by
looking at the SYSPRINT output.
35

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 36 Monday, February 22, 1999 3:03 PM
Summary of Programming Steps
To develop a distributed application with Orbix, do the following:

1. Identify the objects required in your system and define the public
interfaces to those objects using the CORBA Interface Definition
Language (IDL).

2. Compile the IDL interfaces.

3. Implement the IDL interfaces with C++ classes.

4. Write a server program that creates instances of the implementation
classes. This involves:

i. Initializing the ORB.

ii. Creating initial implementation objects.

iii. Allowing Orbix to receive and process incoming requests from
clients.

5. Write a client program that accesses the server objects. This involves:

i. Initializing the ORB.

ii. Getting a reference to an object.

iii. Invoking object attributes and operations.

6. Compile the client and server.

7. Run the application. This involves:

i. Running the Orbix daemon process.

ii. Registering the server in the Implementation Repository.

iii. Running the client.
 36

ProgramGuide.book Page 37 Monday, February 22, 1999 3:03 PM
Part II
Orbix Programming

ProgramGuide.book Page 38 Monday, February 22, 1999 3:03 PM

ProgramGuide.book Page 39 Monday, February 22, 1999 3:03 PM
 3
Introduction to CORBA IDL

The CORBA Interface Definition Language (IDL) is used to define
interfaces to objects in your network. This chapter introduces the
features of CORBA IDL and illustrates the syntax used to describe
interfaces.

The first step in developing a CORBA application is to define the interfaces to
the objects required in your distributed system. To define these interfaces, you
use CORBA IDL.

IDL allows you to define interfaces to objects without specifying the
implementation of those interfaces. To implement an IDL interface, you define a
C++ class that can be accessed through that interface and then you create
objects of that class within an Orbix server application.

In fact, you can implement IDL interfaces using any programming language for
which an IDL mapping is available. An IDL mapping specifies how an interface
defined in IDL corresponds to an implementation defined in a programming
language. CORBA applications written in different programming languages are
fully interoperable.

CORBA defines standard mappings from IDL to several programming languages,
including C++, Java, and Smalltalk. The Orbix IDL compiler converts IDL
definitions to corresponding C++ definitions, in accordance with the standard
IDL to C++ mapping.
39

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 40 Monday, February 22, 1999 3:03 PM
IDL Modules and Scoping
An IDL module defines a naming scope for a set of IDL definitions. Modules
allow you to group interface and other IDL type definitions in logical name
spaces. When writing IDL definitions, always use modules to avoid possible
name clashes.

The following example illustrates the use of modules in IDL:

// IDL
module BankSimple {

interface Bank {
...
};

interface Account {
...
};

};

The interfaces Bank and Account are scoped within the module BankSimple.
IDL definitions are available directly within the scope in which you define them.
In other naming scopes, you must use the scoping operator (::) to access these
definitions. For example, the fully scoped name of interfaces Bank and Account
are BankSimple::Bank and BankSimple::Account respectively.

IDL modules can be reopened. For example, a module declaration can appear
several times in a single IDL specification if each declaration contains different
data types. In most IDL specifications, this feature of modules is not required.

Defining IDL Interfaces
An IDL interface describes the functions that an object supports in a distributed
application. Interface definitions provide all of the information that clients need
to access the object across a network.
 40

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 41 Monday, February 22, 1999 3:03 PM
Consider the example of an interface that describes objects which implement
bank accounts in a distributed application. The IDL interface definition is as
follows:

//IDL
module BankSimple {

// Define a named type to represent money.
typedef float CashAmount;
// Forward declaration of interface Account.
interface Account;

interface Bank {
...

};

interface Account {
// The account owner and balance.
readonly attribute string name;
readonly attribute CashAmount balance;

// Operations available on the account.
void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};
};

The definition of interface Account includes both attributes and operations.
These are the main elements of any IDL interface definition.

Attributes in IDL Interface Definitions

Conceptually, attributes correspond to variables that an object implements.
Attributes indicate that these variables are available in an object and that clients
can read or write their values.

In general, attributes map to a pair of functions in the programming language
used to implement the object. These functions allow client applications to read
or write the attribute values. However, if an attribute is preceded by the
keyword readonly, then clients can only read the attribute value.
41

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 42 Monday, February 22, 1999 3:03 PM
For example, the Account interface defines the attributes name and balance.
These attributes represent information about the account which the object
implementation can set, but which client applications can only read.

Operations in IDL Interface Definitions

IDL operations define the format of functions, methods, or operations that
clients use to access the functionality of an object. An IDL operation can take
parameters and return a value, using any of the available IDL data types.

For example, the Account interface defines the operations deposit() and
withdraw() as follows:

//IDL
module BankSimple {

typedef float CashAmount;
...

interface Account {
// Operations available on the account.
void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);
...

};
};

Each operation takes a parameter and has a void return type.

Each parameter definition must specify the direction in which the parameter
value is passed. The possible parameter passing modes are as follows:

Parameter passing modes clarify operation definitions and allow an IDL compiler
to map operations accurately to a target programming language.

in The parameter is passed from the caller of the operation to
the object.

out The parameter is passed from the object to the caller.

inout The parameter is passed in both directions.
 42

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 43 Monday, February 22, 1999 3:03 PM
Raising Exceptions in IDL Operations

IDL operations can raise exceptions to indicate the occurrence of an error.
CORBA defines two types of exceptions:

• System exceptions are a set of standard exceptions defined by CORBA.

• User-defined exceptions are exceptions that you define in your IDL
specification.

Implicitly, all IDL operations can raise any of the CORBA system exceptions. No
reference to system exceptions appears in an IDL specification.

To specify that an operation can raise a user-defined exception, first define the
exception structure and then add an IDL raises clause to the operation
definition. For example, the operation withdraw() in interface Account could
raise an exception to indicate that the withdrawal has failed, as follows:

// IDL
module BankExceptions {

typedef float CashAmount;
...

interface Account {
exception InsufficientFunds {

string reason;
};

void withdraw(in CashAmount amount)
raises(InsufficientFunds);

...
};

};

An IDL exception is a data structure that contains member fields. In the
preceding example, the exception InsufficientFunds includes a single member
of type string.

The raises clause follows the definition of operation withdraw() to indicate
that this operation can raise exception InsufficientFunds. If an operation can
raise more then one type of user-defined exception, include each exception
identifier in the raises clause and separate the identifiers using commas.
43

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 44 Monday, February 22, 1999 3:03 PM
Invocation Semantics for IDL Operations

By default, IDL operations calls are synchronous, that is a client calls an
operation and blocks until the object has processed the operation call and
returned a value. The IDL keyword oneway allows you to modify these
invocation semantics.

If you precede an operation definition with the keyword oneway, a client that
calls the operation will not block while the object processes the call. For
example, you could add a oneway operation to interface Account that sends a
notice to an Account object, as follows:

module BankSimple {
...

interface Account {
oneway void notice(in string text);
...

};
};

Orbix does not guarantee that a oneway operation call will succeed; so if a
oneway operation fails, a client may never know. There is only one circumstance
in which Orbix indicates failure of a oneway operation. If a oneway operation call
fails before Orbix transmits the call from the client address space, then Orbix
raises a system exception.

A oneway operation can not have any out or inout parameters and can not
return a value. In addition, a oneway operation can not have an associated
raises clause.

Passing Context Information to IDL Operations

CORBA context objects allow a client to map a set of identifiers to a set of
string values. When defining an IDL operation, you can specify that the operation
should receive the client mapping for particular identifiers as an implicit part of
the operation call. To do this, add a context clause to the operation definition.

Consider the example of an Account object, where each client maintains a set of
identifiers, such as sys_time and sys_location that map to information that
the operation deposit() logs for each deposit received. To ensure that this
information is passed with every operation call, extend the definition of
deposit() as follows:
 44

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 45 Monday, February 22, 1999 3:03 PM
// IDL
module BankSimple {

typedef float CashAmount;
...

interface Account {
void deposit(in CashAmount amount)

context(“sys_time”, “sys_location”);
...

};
};

A context clause includes the identifiers for which the operation expects to
receive mappings.

Note that IDL contexts are rarely used in practice.

Inheritance of IDL Interfaces

IDL supports inheritance of interfaces. An IDL interface can inherit all the
elements of one or more other interfaces.

For example, the following IDL definition illustrates two interfaces, called
CheckingAccount and SavingsAccount , that inherit from interface Account :

// IDL
module BankSimple{

interface Account {
...

};

interface CheckingAccount : Account {
readonly attribute overdraftLimit;
boolean orderChequeBook ();

};

interface SavingsAccount : Account {
float calculateInterest ();

};
};

Interfaces CheckingAccount and SavingsAccount implicitly include all elements
of interface Account .
45

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 46 Monday, February 22, 1999 3:03 PM
An object that implements CheckingAccount can accept invocations on any of
the attributes and operations of this interface, and on any of the elements of
interface Account. However, a CheckingAccount object may provide different
implementations of the elements of interface Account to an object that
implements Account only.

The following IDL definition shows how to define an interface that inherits both
CheckingAccount and SavingsAccount:

// IDL
module BankSimple {

interface Account {
...

};

interface CheckingAccount : Account {
...

};

interface SavingsAccount : Account {
...

};

interface PremiumAccount :
CheckingAccount, SavingsAccount {
...

};
};

Interface PremiumAccount is an example of multiple inheritance in IDL.
Figure 3.1 on page 47 illustrates the inheritance hierarchy for this interface.

If you define an interface that inherits from two interfaces which contain a
constant, type, or exception definition of the same name, you must fully scope
that name when using that constant, type, or exception. An interface can not
inherit from two interfaces that include operations or attributes that have the
same name.
 46

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 47 Monday, February 22, 1999 3:03 PM
Figure 3.1: Multiple Inheritance of IDL Interfaces

The Object Interface Type

IDL includes the pre-defined interface Object, which all user-defined interfaces
inherit implicitly. The operations defined in this interface are described in the
Orbix C++ Programmer’s Reference Guide.

While interface Object is never defined explicitly in your IDL specification, the
operations of this interface are available through all your interface types. In
addition, you can use Object as an attribute or operation parameter type to
indicate that the attribute or operation accepts any interface type, for example:

// IDL
interface ObjectLocator {

void getAnyObject (out Object obj);
};

Note that it is not legal IDL syntax to inherit interface Object explicitly.

Account

SavingsAccountCheckingAccount

PremiumAccount
47

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 48 Monday, February 22, 1999 3:03 PM
Forward Declaration of IDL Interfaces

In an IDL definition, you must declare an IDL interface before you reference it. A
forward declaration declares the name of an interface without defining it. This
feature of IDL allows you to define interfaces that mutually reference each
other.

For example, IDL interface Bank includes an operation of IDL interface type
Account, to indicate that Bank stores a reference to an Account object. If the
definition of interface Account follows the definition of interface Bank, you must
forward declare Account as follows:

// IDL
module BankSimple {

// Forward declaration of Account.
interface Account;

interface Bank {
Account create_account (in string name);
Account find_account (in string name);

};
// Full definition of Account.
interface Account {

...
};

};

The syntax for a forward declaration is the keyword interface followed by the
interface identifier.

Overview of the IDL Data Types
In addition to IDL module, interface, and exception types, there are three
general categories of data type in IDL:

• Basic types.

• Complex types.

• Pseudo object types.

This section examines each category of IDL types in turn and also describes how
you can define new data type names in IDL.
 48

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 49 Monday, February 22, 1999 3:03 PM
IDL Basic Types

The following table lists the basic types supported in IDL.

The any data type allows you to specify that an attribute value, an operation
parameter, or an operation return value can contain an arbitrary type of value to
be determined at runtime. Type any is described in detail in Chapter 12, “The
Any Data Type” on page 227.

IDL Type Range of Values

short -215...215-1 (16-bit)

unsigned short 0...216-1 (16-bit)

long –231...2 31-1 (32-bit)

unsigned long 0...2 32-1 (32-bit)

long long –2 63...2 63-1 (64-bit)

unsigned long long 0...-2 64 (64-bit)

float IEEE single-precision floating point numbers.

double IEEE double-precision floating point numbers.

char An 8-bit value.

boolean TRUE or FALSE.

octet An 8-bit value that is guaranteed not to undergo any
conversion during transmission.

any The any type allows the specification of values that can
express an arbitrary IDL type.
49

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 50 Monday, February 22, 1999 3:03 PM
IDL Complex Types

This section describes the IDL data types enum, struct, union, string, sequence,
array, and fixed.

Enum
An enumerated type allows you to assign identifiers to the members of a set of
values, for example:

// IDL
module BankSimple {

enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency balanceCurrency;
...

};
};

In this example, attribute balanceCurrency in interface Account can take any
one of the values pound, dollar, yen, or franc.

Struct
A struct data type allows you to package a set of named members of various
types, for example:

// IDL
module BankSimple{

struct CustomerDetails {
string name;
short age;

};

interface Bank {
CustomerDetails getCustomerDetails

(in string name);
...

};
};
 50

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 51 Monday, February 22, 1999 3:03 PM
In this example, the struct CustomerDetails has two members. The operation
getCustomerDetails() returns a struct of type CustomerDetails that includes
values for the customer name and age.

Union
A union data type allows you to define a structure that can contain only one of
several alternative members at any given time. A union saves space in memory,
as the amount of storage required for a union is the amount necessary to store
its largest member.

All IDL unions are discriminated. A discriminated union associates a label value
with each member. The value of the label indicates which member of the union
currently stores a value.

For example, consider the following IDL union definition:

// IDL
struct DateStructure {

short Day;
short Month;
short Year;

};

union Date switch (short) {
case 1: string stringFormat;
case 2: long digitalFormat;
default: DateStructure structFormat;

};

The union type Date is discriminated by a short value. For example, if this short
value is 1, then the union member stringFormat stores a date value as an IDL
string. The default label associated with the member structFormat indicates
that if the short value is not 1 or 2, then the structFormat member stores a
date value as an IDL struct.

Note that the type specified in parentheses after the switch keyword must be
an integer, char, boolean or enum type and the value of each case label must be
compatible with this type.
51

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 52 Monday, February 22, 1999 3:03 PM
String

An IDL string represents a character string, where each character can take any
value of the char basic type.

If the maximum length of an IDL string is specified in the string declaration, then
the string is bounded. Otherwise the string is unbounded.

The following example shows how to declare bounded and unbounded strings:

// IDL
module BankSimple {

interface Account {
// A bounded string with maximum length 10.
attribute string<10> sortCode;

// An unbounded string.
readonly attribute string name;
...

};
};

Sequence
In IDL, you can declare a sequence of any IDL data type. An IDL sequence is
similar to a one-dimensional array of elements.

An IDL sequence does not have a fixed length. If the sequence has a fixed
maximum length, then the sequence is bounded. Otherwise, the sequence is
unbounded.

For example, the following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

// IDL
module BankSimple {

interface Account {
...

};

struct LimitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<Account, 50> accounts;

};
 52

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 53 Monday, February 22, 1999 3:03 PM
struct UnlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<Account> accounts;

};
};

A sequence must be named by an IDL typedef declaration before it can be used
as the type of an IDL attribute or operation parameter. Refer to “Defining Data
Type Names and Constants” on page 56 for details. The following code
illustrates this:

// IDL
module BankSimple {

typedef sequence<string> CustomerSeq;

interface Account {
void getCustomerList(out CustomerSeq names);
...

};
};

Arrays

In IDL, you can declare an array of any IDL data type. IDL arrays can be multi-
dimensional and always have a fixed size. For example, you can define an IDL
struct with an array member as follows:

// IDL
module BankSimple {

...

interface Account {
...

};

struct CustomerAccountInfo {
string name;
Account accounts[3];

};
53

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 54 Monday, February 22, 1999 3:03 PM
interface Bank {
getCustomerAccountInfo (in string name,

out CustomerAccountInfo accounts);
...

};
};

In this example, struct CustomerAccountInfo provides access to an array of
Account objects for a bank customer, where each customer can have a
maximum of three accounts.

An array must be named by an IDL typedef declaration before it can be used as
the type of an IDL attribute or operation parameter. The IDL typedef
declaration allows you define an alias for a data type, as described in “Defining
Data Type Names and Constants” on page 56.

The following code illustrates this:

// IDL
module BankSimple {

interface Account {
...

};

typedef Account AccountArray[100];

interface Bank {
readonly attribute AccountArray accounts;
...

};
};

Note that an array is a less flexible data type than an IDL sequence, because an
array always has a fixed length. An IDL sequence always has a variable length,
although it may have an associated maximum length value.
 54

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 55 Monday, February 22, 1999 3:03 PM
Fixed

The fixed data type allows you to represent number in two parts: a digit and a
scale. The digit represents the length of the number, and the scale is a non-
negative integer that represents the position of the decimal point in the number,
relative to the rightmost digit.

module BankSimple {
typedef fixed<10,4> ExchangeRate;

struct Rates {
ExchangeRate USRate;
ExchangeRate UKRate;
ExchangeRate IRRate;

};
};

In this case, the ExchangeRate type has a digit of size 10, and a scale of 4. This
means that it can represent numbers up to (+/-)999999.9999.

The maximum value for the digits is 31, and scale cannot be greater than digits.
The maximum value that a fixed type can hold is equal to the maximum value of
a double.

Scale can also be a negative number. This means that the decimal point is moved
scale digits in a rightward direction, causing trailing zeros to be added to the
value of the fixed. For example, fixed <3,-4> with a numeric value of 123
actually represents the number 1230000. This provides a mechanism for storing
numbers with trailing zeros in an efficient manner.

Note: Fixed <3, -4> can also be represented as fixed <7, 0>.

Constant fixed types can also be declared in IDL. The digits and scale are
automatically calculated from the constant value. For example:

module Circle {
const fixed pi = 3.142857;

};

This yields a fixed type with a digits value of 7, and a scale value of 6.
55

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 56 Monday, February 22, 1999 3:03 PM
IDL Pseudo Object Types

CORBA defines a set of pseudo object types that ORB implementations use
when mapping IDL to some programming languages. These object types have
interfaces defined in IDL but do not have to follow the normal IDL mapping for
interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation
parameter types in an IDL specification:

CORBA::NamedValue
CORBA::Principal
CORBA::TypeCode

To use any of these three types in an IDL specification, include the file orb.idl
in the IDL file as follows:

// IDL
#include <orb.idl>
...

This statement indicates to the IDL compiler that types NamedValue, Principal,
and TypeCode may be used. The file orb.idl should not actually exist in your
system. Do not name any of your IDL files orb.idl.

Defining Data Type Names and Constants

IDL allows you to define new data type names and constants. This section
describes how to use each of these features of IDL.

Data Type Names

The typedef keyword allows you define a meaningful or more simple name for
an IDL type. The following IDL provides a simple example of using this keyword:

// IDL
module BankSimple {

interface Account {
...

};

typedef Account StandardAccount;
};
 56

I n t r o d u c t i o n t o C ORBA I D L

ProgramGuide.book Page 57 Monday, February 22, 1999 3:03 PM
The identifier StandardAccount can act as an alias for type Account in
subsequent IDL definitions. Note that CORBA does not specify whether the
identifiers Account and StandardAccount represent distinct IDL data types in
this example.

Constants
IDL allows you to specify constant data values using one of several basic data
types. To declare a constant, use the IDL keyword const, for example:

// IDL
module BankSimple {

interface Bank {
const long MaxAccounts = 10000;
const float Factor = (10.0 - 6.5) * 3.91;
...

};
};

The value of an IDL constant cannot change. You can define a constant at any
level of scope in your IDL specification.
57

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 58 Monday, February 22, 1999 3:03 PM
 58

ProgramGuide.book Page 59 Monday, February 22, 1999 3:03 PM
 4
The CORBA IDL to C++ Mapping

The CORBA Interface Definition Language (IDL) to C++ mapping
specifies how to write C++ programs that access or implement IDL
interfaces. This chapter describes this mapping in full.

CORBA separates the definition of an object’s interface from the
implementation of that interface. As described in Chapter 3, “Introduction to
CORBA IDL” on page 39, IDL allows you to define interfaces to objects. To
implement and use those interfaces, you must use a programming language such
as C, C++, Java, Ada, or Smalltalk.

The Orbix IDL compiler allows you to implement and use IDL interfaces in
C++. The compiler does this by generating C++ constructs that correspond to
your IDL definitions, in accordance with the standard CORBA IDL to C++
mapping.

This chapter describes the CORBA IDL to C++ mapping, as defined in the C++
mapping section of the OMG Common Object Request Broker Architecture. The
purpose of the chapter is to explain the rules by which the Orbix IDL compiler
converts IDL definitions into C++ code and how to use the generated C++
constructs.

This chapter contains a lot of detailed technical information that you require
when developing Orbix applications. However, you should not try to learn all
the technical details at once. Instead, read this chapter briefly to understand the
mappings for the main IDL constructs, such as modules, interfaces, and basic
types, and the C++ memory management rules associated with the mapping.
When writing applications, consult this chapter for detailed information about
mapping the specific IDL constructs you require.
59

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 60 Monday, February 22, 1999 3:03 PM
Overview of the Mapping
The major elements of the IDL to C++ mapping are:

• An IDL module maps to a C++ namespace of the same name. Alternative
mappings are provided for C++ compilers that do not support the
namespace construct.

• An IDL interface maps to a C++ class of the same name.

• An IDL operation maps to a C++ member function in the corresponding
C++ class.

• An IDL attribute maps to a pair of overloaded C++ member functions in
the corresponding C++ class. These functions allow a client program to
set and read the attribute value.

Note that IDL identifiers map directly to identifiers of the same name in C++.
However, if an IDL definition contains an identifier that exactly matches a C++
keyword, the identifier is mapped to the name of the identifier preceded by an
underscore. An IDL identifier cannot begin with an underscore.

Mapping for Modules and Scoping
IDL modules map to C++ namespaces, where your C++ compiler supports
them. For example:

// IDL
module BankSimple {

struct Details {
...

};
};

This maps to:

// C++
namespace BankSimple {

struct Details {
...

};
};
 60

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 61 Monday, February 22, 1999 3:03 PM
Outside of namespace BankSimple, the struct Details can be referred to as
BankSimple::Details. Alternatively, a C++ using directive allows you to refer
to Details without explicit scoping:

// C++
using namespace BankSimple;
Details d;

Alternative Mappings for Modules

Since namespaces have only recently been added to the C++ language, few
compilers support them. In the absence of support for namespaces, IDL modules
map to C++ classes that have no member functions or data. This allows IDL
scoped names to be mapped directly onto C++ scoped names. For example:

// IDL
module BankSimple {

interface Bank {
...
struct Details {

...
};

};
};

This maps to:

// C++
class BankSimple {
public:

...
class Bank : public virtual CORBA::Object {

...
struct Details {

...
};

};
};

You can use struct Details in C++ as follows:

// C++
BankSimple::Bank::Details d;
61

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 62 Monday, February 22, 1999 3:03 PM
Mapping for Interfaces
Each IDL interface maps to a C++ class that defines a client programmer’s view
of the interface. This class lists the C++ member functions that a client can call
on objects that implement the interface.

Each IDL interface also maps to other C++ classes that allow a server
programmer to implement the interface using either the BOAImpl or TIE
approach. However, this chapter describes only the C++ class that describes
the client view of the interface, as this class is sufficient to illustrate the principles
of the mapping for interfaces.

Consider a simple interface to describe a bank account:

// IDL
...
typedef float CashAmount;
...

interface Account {
readonly attribute CashAmount balance;
void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};

This maps to the following IDL C++ class:

// C++
class Account : public virtual CORBA::Object {
public:

virtual CashAmount balance();
virtual void deposit (in CashAmount amount);
virtual void withdraw (in CashAmount amount);

};

Implicitly, all IDL interfaces inherit from interface CORBA::Object. Class
Account inherits from the Orbix class CORBA::Object, which maps the
functionality of interface CORBA::Object.

Class Account defines the client view of the IDL interface Account.
Conceptually, instances of class Account allow a client to access CORBA objects
that implement interface Account. However, an Orbix program should never
create an instance of class Account and should never use a pointer (Account*)
or a reference (Account&) to this class.
 62

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 63 Monday, February 22, 1999 3:03 PM
Instead, an Orbix program should access objects of type Account through an
interface helper type. Two helper types are generated for each IDL interface: a
_var type and a _ptr type. For example, the helper types for interface Account
are Account_var and Account_ptr.

Conceptually, a _var type is a managed pointer that assumes ownership of the
data to which it points. This means that you can use a _var type such as
Account_var as a pointer to an object of type Account, without ever
deallocating the object memory. If a _var type goes out of scope or is assigned a
new value, Orbix automatically manages the memory associated with the
existing value of the _var type.

A _ptr type is more primitive and has similar semantics to a C++ pointer. In
fact, _ptr types in Orbix are currently implemented as C++ pointers. However,
it is important that you do not use this knowledge because this implementation
may change. For example, you should not attempt conversion to void*,
arithmetic operations and relational operations, including test for equality on
_ptr types.

The _var and _ptr types for an IDL interface allow a client to access IDL
attributes and operations defined by the interface. Examples of how to use the
_var and _ptr types are provided later in this section.

Mapping for Attributes

Each attribute in an IDL interface maps to two member functions in the
corresponding C++ class. Both member functions have the same name as the
attribute: one function allows clients to set the attribute’s value and the other
allows clients to read the value. A readonly attribute maps to a single member
function that allows clients to read the value.

Consider the following IDL interfaces:

// IDL
interface Account {

readonly attribute float balance;
attribute long accountnumber;
...

};
63

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 64 Monday, February 22, 1999 3:03 PM
The following code illustrates the mapping for attributes balance and
accountNumber:

// C++
class Account : public virtual CORBA::Object {
public:

virtual CORBA::Float balance(CORBA::Environment&);
virtual CORBA::Long accountNumber(CORBA::Environment&);
virtual void accountNumber

(Long accountNumber, CORBA::Environment&);
...

};

Note that the IDL type float maps to CORBA::Float, while type long maps to
CORBA::Long. “Mapping for Basic Types” on page 74 provides a detailed
description of this mapping.

The following code illustrates how a client program could access attributes
balance and accountnumber of an Account object:

// C++
Account_var aVar;
CORBA::Float bal=0;
CORBA::Long number=99;
// Code to bind aVar to an Account object omitted.
...

try {
// Get value of balance.
bal = aVar->balance();
// Set and get value of accountNumber.
aVar->accountnumber(number);
number = aVar->accountnumber();

}
catch (CORBA::systemException &se) {

...
}

 64

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 65 Monday, February 22, 1999 3:03 PM
Mapping for Operations

Operations within an interface map to virtual member functions of the
corresponding C++ class. These member functions have the same name as the
relevant IDL operations. This mapping applies to all operations, including those
preceded by the IDL keyword oneway.

Consider the following IDL interfaces:

// IDL
typedef float CashAmount;
....

interface Account {
void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);
...

};

interface Bank {
Account create_account(in string name);

};

The following code illustrates the mapping for IDL operations:

// C++
class Account : public virtual CORBA::Object {
public:

virtual void deposit(CashAmount amount);
virtual void withdraw(CashAmount amount);
...

};

class Bank : public virtual CORBA::Object {
public:

virtual Account_ptr create_account
(const char* name);

};

The IDL operation create_account() has an object reference return type; that
is, it returns an Account object. In the corresponding C++ code for
create_account(), the IDL object reference return type is mapped to the type
Account_ptr. Note that you can assign the return value of function
create_account() to either an Account_ptr or an Account_var value.
65

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 66 Monday, February 22, 1999 3:03 PM
The following code illustrates how a client calls IDL operations on Account and
Bank objects:

// C++
Account_var aVar;
Bank_var bVar;

// Code to bind bVar to a Bank object omitted.
...

try {
aVar = bVar->create_account(“Chris”);
aVar->deposit(100.00);

}
catch (CORBA::systemException &se) {

...
}

“Memory Management for Parameters” on page 102 provides more information
about the mapping for operation parameters.

Mapping for Exceptions

A user-defined IDL exception type maps to a C++ class that derives from class
CORBA::UserException and that contains the exception’s data. For example,
consider the following exception definition:

// IDL
exception CannotCreate {

string reason;
short s;

};

This maps to the following C++:

// C++
class CannotCreate : public CORBA::UserException {
public:

CORBA::String_mgr reason;
CORBA::Short s;

CannotCreate(const char* _reason,
const CORBA::Short& _s);

CannotCreate();
 66

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 67 Monday, February 22, 1999 3:03 PM
CannotCreate(const CannotCreate &);
~CannotCreate();

CannotCreate() &operator = (const CannotCreate &);
static CannotCreate* _narrow(CORBA::Exception *e);

};

The mapping defines a constructor with one parameter for each exception
member; this constructor initializes the exception member to the passed-in
value. In the example, this constructor has two parameters, one for each of the
fields reason and s defined in the exception.

You can throw an exception of type CannotCreate in an operation
implementation as follows:

// C++
// Server code.
throw CannotCreate(“My reason”, 13)

The default exception constructor performs no explicit member initialization.
The copy constructor, assignment operator, and destructor automatically copy
or free the storage associated with the exception. Exceptions are mapped
similarly to variable length structs in that each member of the exception must be
self-managing.

Mapping for Contexts
An operation that specifies a context clause is mapped to a C++ member
function in which an input parameter of type Context_ptr follows all operation-
specific arguments. For example:

// IDL
interface A {

void op(in unsigned long s)
context (“accuracy”, “base”);

};
67

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 68 Monday, February 22, 1999 3:03 PM
This interface maps to:

// C++
class A : public virtual CORBA::Object {
public:

virtual void op(CORBA::ULong s,
CORBA::Context_ptr IT_c);

};

The Context_ptr parameter appears before the Environment parameter. This
order allows the Environment parameter to have a default value.

Mapping for Inheritance of IDL Interfaces

This section describes the mapping for interfaces that inherit from other
interfaces. Consider the following example:

// IDL
interface CheckingAccount : Account {

void setOverdraftLimit(in float limit);
};

The corresponding C++ is:

// C++
class CheckingAccount : public virtual Account {
public:

virtual void setOverdraftLimit(
CORBA::Float limit);

};

A C++ client program that uses the CheckingAccount interface can call the
inherited deposit() function:

// C++
CheckingAccount_var checkingAc;

// Code for binding checkingAc omitted.
...

checkingAc->deposit(90.97);
 68

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 69 Monday, February 22, 1999 3:03 PM
Naturally, assignments from a derived to a base class object reference are
allowed, for example:

// C++
Account_ptr ac = checkingAc;

Note that you should not attempt to make normal or cast assignments in the
opposite direction—from a base class object reference to a derived class object
reference. To make such assignments, you should use the Orbix narrow
mechanism as described in “Narrowing Object References” on page 70.

Widening Object References

The C++ types generated for IDL interfaces support normal inheritance
conversions. For example, for the preceeding Account and CheckingAccount
classes defined the following conversions from a derived class object reference
to a base class reference, known as widenings, are implicit:

• CheckingAccount_ptr to Account_ptr

• CheckingAccount_ptr to Object_ptr

• CheckingAccount_var to Account_ptr

• CheckingAccount_var to Object_ptr

Note: There is no implicit conversion between _var types. An attempt to
widen from one _var type to another causes a compile-time error.
Instead conversion between two _var types requires a call to
_duplicate().

Some widening examples are shown in the code below:

// C++
CheckingAccount_ptr cPtr=;

// Implicit widening:
Account_ptr aPtr = cPtr;

// Implicit widening:
Object_ptr objPtr = cPtr;
69

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 70 Monday, February 22, 1999 3:03 PM
// Implicit widening:
objPtr = aPtr;

CheckingAccount_var cVar = cPtr;
// cVar assumes ownership of cPtr.
aPtr = cVar;
// Implicit widening, cVar retains ownership of cPtr.

objPtr = cVar;
// Implicit widening, cVar retains ownership of cPtr.

Account_var av = cVar;
// Illegal, compile-time error, cannot assign
// between _var variables of different types.

Account_var aVar = CheckingAccount::_duplicate(cVar);
// aVar and cVar both refer to cPtr.
// The reference count of cPtr is incremented.

Narrowing Object References
If a client program receives an object reference of type Account that actually
refers to an implementation object of type CheckingAccount, the client can
safely convert the Account reference to a CheckingAccount reference. This
conversion gives the client access to the operations defined in the derived
interface CheckingAccount.

The process of converting an object reference for a base interface to a reference
for a derived interface is known as narrowing an object reference. To narrow an
object reference, you must use the _narrow() function that is defined as a
static member function for each C++ class generated from an IDL interface.

For example, for interface T, the following C++ class is generated:

// C++
class T : public virtual CORBA::Object {

static T_ptr _narrow(CORBA::Object_ptr);
...

};
 70

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 71 Monday, February 22, 1999 3:03 PM
The following code shows how to narrow an Account reference to a
CheckingAccount reference:

// C++
Account_ptr aPtr;
CheckingAccount_ptr caPtr;

// Code to bind aPtr to an object that implements
// CheckingAccount omitted.
...

// Narrow aPtr to be a CheckingAccount.
if (caPtr = CheckingAccount::_narrow(aPtr))

...
else

// Deal with failure of _narrow().

If the parameter passed to T::_narrow() is not of class T or one of its derived
classes, T::_narrow() returns a nil object reference. The _narrow() function
can also raise a system exception, and you should always check for this.

Each object reference in an address space has an associated reference count. A
successful call to _narrow() increases the reference count of an object
reference by one.

Object Reference Counts and Nil Object References

Each Orbix program may use a single object reference several times. To
determine whether an object reference is currently in use in a program, Orbix
associates a reference count with each reference. This section describes the
Orbix reference counting mechanism and explains how to test for nil object
references.

Object Reference Counts

In Orbix, the reference count of an object is the number of pointers to the
object that exist within the same address space. Each object is initially created
with a reference count of one.
71

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 72 Monday, February 22, 1999 3:03 PM
You can explicitly increase the reference count of an object by calling the
object’s _duplicate() static member function. The CORBA::release()
function on a pointer to an object reduces the object’s reference count by one,
and destroys the object if the reference count is then zero.

For example, consider the following server code:

// C++
// Create a new Bank object:
Bank_ptr bPtr = new Bank_i;
// The reference count of the new object is 1.

Bank::_duplicate(bPtr);
// The reference count of the object is 2.

CORBA::release(bPtr);
// The reference count of the object is 1.

Both implementation objects in servers, and proxies in clients have reference
counts. Calls to _duplicate() and CORBA::release() by a client do not affect
the reference count of the target object in the server. Instead, each proxy has its
own reference count that the client can manipulate by calling _duplicate() and
CORBA::release(). Deletion of a proxy (by a call to CORBA::release() that
causes the reference count to drop to zero) does not affect the reference count
of the target object.

A server can delete an object (by calling CORBA::release() an appropriate
number of times) even if one or more clients hold proxies for this object. If this
happens, subsequent invocations through the proxy causes an
CORBA::INV_OBJREF system exception to be raised.

Some operations implicitly increase the reference count of an object. For
example, if a client obtains a reference to the same object many times—for
example, using the Naming Service—this results in only one proxy being created
in that client’s address space. The reference count of this proxy is the number of
references obtained by the client.

To find the current reference count for an object, call the function _refCount()
on the object reference. This function is defined in class CORBA::Object as
follows:

// C++
// In class CORBA::Object.
CORBA::ULong _refCount();
 72

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 73 Monday, February 22, 1999 3:03 PM
You can call this function as follows:

// C++
T_ptr tPtr;
...
CORBA::ULong count = tPtr->_refCount();

Nil Object References

A nil object reference is a reference that does not refer to any valid Orbix
object. Each C++ class for an IDL interface defines a static function _nil() that
returns a nil object reference for that interface type.

For example, an IDL interface T generates the following C++:

// C++
class T : public virtual CORBA::Object {

static T_ptr _nil(CORBA::Environment&);
...

};

To obtain a nil object reference for T, do the following:

// C++
// Obtain a nil object reference for T:
T_ptr tPtr = T::_nil();

The function is_nil(), defined in the CORBA namespace, determines whether an
object reference is nil. The function is_nil() is declared as:

// C++
// In CORBA namespace.
Boolean is_nil(Object_ptr obj);

The following call is guaranteed to be true:

// C++
CORBA::Boolean result = CORBA::is_nil(T::_nil());

Note that calling is_nil() is the only CORBA-compliant way in which you can
check if an object reference is nil. Do not compare object references using
operator==().
73

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 74 Monday, February 22, 1999 3:03 PM
Mapping for IDL Data Types
This section describes the mapping for each of the IDL basic types, constructed
types, and template types.

Mapping for Basic Types

The IDL basic data types have the mappings shown in the following table:

Each IDL basic type maps to a typedef in the CORBA module; for example, the IDL
type short maps to CORBA::Short in C++. This is because on different
platforms, C++ types such as short and long may have different
representations.

The types CORBA::Short, CORBA::UShort, CORBA::Long, CORBA::ULong,
CORBA::LongLong, CORBA::ULongLong, CORBA::Float, and CORBA::Double are
implemented using distinguishable C++ types. This enables these types to be
used to distinguish between overloaded C++ functions and operators.

IDL C++

short CORBA::Short

long CORBA::Long

long long CORBA::LongLong

unsigned short CORBA::UShort

unsigned long CORBA::ULong

unsigned long long CORBA::ULongLong

float CORBA::Float

double CORBA::Double

char CORBA::Char

boolean CORBA::Boolean

octet CORBA::Octet

any CORBA::Any
 74

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 75 Monday, February 22, 1999 3:03 PM
The IDL type boolean maps to CORBA::Boolean which is implemented as a
typedef to the C++ type unsigned char in Orbix. The mapping of the IDL
boolean type to C++ defines only the values 1 (TRUE) and 0 (FALSE); other
values produce undefined behaviour.

The mapping for type any is described in Chapter 12, “The Any Data Type” on
page 227.

Mapping for Complex Types

The remainder of this section describes the mapping for IDL types enum, struct,
union, string, sequence, fixed, and array. This section also describes the mapping
for IDL typedefs and constants.

The mappings for IDL types struct, union, array, and sequence depend on
whether these types are fixed length or variable length. A fixed length type is one
whose size in bytes is known at compile time. A variable length type is one in
which the number of bytes occupied by the type can only be calculated at
runtime.

The following IDL types are considered to be variable length types:

• A bounded or unbounded string.

• A bounded or unbounded sequence.

• An object reference.

• A struct or union that contains a member whose type is variable length.

• An array with a variable length element type.

• A typedef to a variable length type.

• The type any.
75

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 76 Monday, February 22, 1999 3:03 PM
Mapping for Enum

An IDL enum maps to a corresponding C++ enum. For example:

// IDL
enum Colour {blue, green};

This maps to:

// C++
enum Colour {blue, green,

IT__ENUM_Colour = CORBA_ULONG_MAX};

The additional constant IT__ENUM_Colour is generated in order to force the
C++ compiler to use exactly 32 bits for values declared to be of the enumerated
type.

Mapping for Struct

An IDL struct maps directly to a C++ struct. Each member of the IDL struct
maps to a corresponding member of the C++ struct. The generated struct
contains an empty default constructor, an empty destructor, a copy constructor
and an assignment operator.

Fixed Length Structs

Consider the following IDL fixed length struct:

// IDL
struct AStruct {

long l;
float f;

};

This maps to:

// C++
struct AStruct {

CORBA::Long l;
CORBA::Float f;

};
 76

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 77 Monday, February 22, 1999 3:03 PM
Variable Length structs

Consider the following IDL variable length struct:

// IDL
interface A {

...
};

struct VariableLengthStruct {
short i;
float f;
string str;
A a;

};

This maps to a C++ struct as follows:

// C++
struct VariableLengthStruct {

CORBA::Short i;
CORBA::Float f;
CORBA::String_mgr str;
A_mgr a;

};

Except for strings and object references, the type of the C++ struct member is
the normal mapping of the IDL member’s type.

String and object reference members of a variable length struct map to special
manager classes. Note these manager (_mgr) types are only used internally in
Orbix. You should not write application code that explicitly declares or names
manager classes.

The behaviour of manager types is the same as the normal mapping (char* for
string and A_ptr for an interface) except that the manager type is
responsible for managing the member’s memory. In particular, the assignment
operator releases the storage for the existing member and the copy constructor
copies the member’s storage.
77

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 78 Monday, February 22, 1999 3:03 PM
The implications of this are that the following code, for example, does not cause
a memory leak:

// C++
VariableLengthStruct vls;
char* s1 = CORBA::string_alloc(5+1);
char* s2 = CORBA::string_alloc(6+1);
strcpy(s1, “first”);
strcpy(s2, “second”);
vls.str = s1;
vls.str = s2; // No memory leak, s1 is released.

Mapping for Union

An IDL union maps to a C++ struct. Consider the following IDL declaration:

// IDL
typedef long vector[100];
struct S { ... };
interface A;

union U switch(long) {
case 1: float f;
case 2: vector v;
case 3: string s;
case 4: S st;
default: A obj;

};

This maps to the following C++ struct:

// C++
struct U {
public:

// The discriminant.
CORBA::Long _d() const; (1)

// Constructors, Destructor, and Assignment.
U(); (2)
U(const CORBA::Long); (2a)
U(const U &); (3)
~U(); (4)
U& operator=(const U&); (5)
 78

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 79 Monday, February 22, 1999 3:03 PM
// Accessor and modifier functions for members.
// Basic type member:
CORBA::Float f() const; (6)
void f(CORBA::Float IT_member); (7)

// Array member:
vector_slice* v() const; (8)
void v(vector_slice* IT_member); (9)

// String member:
const char* s() const; (10)
void s(char* IT_member); (11)
void s(CORBA::String_var IT_member); (12)
void s(const char* IT_member); (13)

// Struct member:
S& st(); (14)
const S& st() const; (15)
void st(const S& IT_member); (16)

// Object reference member:
A_ptr obj() const; (17)
void obj(A_ptr IT_member); (18)
...

};

The Discriminant
The value of the discriminant indicates the type of the value that the union
currently holds. This is the value specified in the IDL union definition. The
function _d() (1) returns the current value of the discriminant.

Constructors, Destructor and Assignment
The default constructor (2) does not initialize the discriminant and it does not
initialize any union members. Therefore, it is an error for an application to
access a union before setting it and Orbix does not detect this error. The Orbix
IDL Compiler generates an extra constructor (2a) that takes an argument of the
same type as the discriminant.
79

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 80 Monday, February 22, 1999 3:03 PM
The copy constructor (3) and assignment operator (5) perform a deep-copy of
their parameters; the assignment operator releases old storage if necessary and
then performs a deep copy. The destructor (4) releases all storage owned by the
union.

Accessors and Modifiers
For each member of the union, an accessor function is generated to read the
value of the member and, depending on the type of the member, one or more
modifier functions are generated to change the value of the member.

Setting the union value through a modifier function also sets the discriminant
and, depending on the type of the previous value, may release storage associated
with that value. An attempt to get a value through an accessor function that does
not match the discriminant results in undefined behaviour.

Only the accessor functions for struct, union, sequence, and any return a
reference to the appropriate type: thus, the value of this type may be modified
either by using the appropriate modifier function or by directly modifying the
return value of the accessor. Because the memory associated with these types is
owned by the union, the return value of an accessor function should not be
assigned to a _var type. A _var type would attempt to assume ownership of the
memory.

For a union member whose type is an array, the accessor function (8) returns a
pointer to the array slice (refer to “Mapping for Array” on page 95). The array
slice return type allows for read-write access for array members using
operator[]() defined for arrays.

For string union members, the char* modifier function (11) first frees old
storage before taking ownership of the char* parameter; that is, the parameter
is not copied. The const char* modifier (13) and the String_var modifier (12)
both free old storage before the parameter’s storage is copied.

Since the type of a string literal is char* rather than const char*, the following
code would result in a delete error:

// C++
{

U u;
u.s(“A String”);

// Calls char* version of s. The string is
// not copied.
 80

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 81 Monday, February 22, 1999 3:03 PM
} // Error: u destructor tries to delete
// the string literal “A String”.

Note: The string (char *) is managed by a CORBA::String_mgr whose
destructor calls delete. This results in undefined behaviour which the
C++ compiler is not required to flag.

Thus, an explicit cast to const char* is required in the special case where a
string literal is passed to a string modifier function.

For object reference union members, the modifier function (18) releases the old
object reference and duplicates the new one. An object reference return value
from the accessor function (17) is not duplicated, because the union retains
ownership of the object reference.

Example Program

A C++ program may access the elements of a union as follows:

// C++
U* u;

u = new U;
u->f(19.2);

// And later:
switch (u->_d()) {

case 1 : cout << “f = ” << u->f()
<< endl; break;

case 2 : cout << “v = ” << u->v()
<< endl; break;

case 3 : cout << “s = ” << u->s()
<< endl; break;

// Do not free the returned string.

case 4 : cout << “st = ” << “x = ” << u->st().x
 << “ ” << “y = ” << u->st().y

<< endl; break;
81

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 82 Monday, February 22, 1999 3:03 PM
default: cout << “A = ” << u->obj() << endl; break;
// Do not release the returned object
// reference.

}

Mapping for String

IDL strings are mapped to character arrays that terminate with ‘\0’ (the ASCII
NUL character). The length of the string is encoded in the character array itself
through the placement of the NUL character.

In addition, the CORBA namespace defines a class String_var that contains a
char* value and automatically frees the memory referenced by this pointer
when a String_var object is deallocated, for example, by going out of scope.

The String_var class provides operations to convert to and from char* values,
and operator[]() allows access to characters within the string.

Consider the following IDL:

// IDL
typedef string<10> stringTen; // A bounded string.
typedef string stringInf; // An unbounded string.

The corresponding C++ is:

// C++
typedef char* stringTen;
typedef CORBA::String_var stringTen_var;
typedef char* stringInf;
typedef CORBA::String_var stringInf_var;

You can define instances of these types in C++ as follows:

// C++
stringTen s1 = 0;
stringInf s2 = 0;

// Or using the _var type:
CORBA::stringTen_var sv1;
CORBA::stringInf_var sv2;

At all times, a bounded string pointer, such as stringTen, should reference a
storage area large enough to hold its type’s maximum string length.
 82

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 83 Monday, February 22, 1999 3:03 PM
Dynamic Allocation of Strings

To allocate and free a string dynamically, you must use the following functions
from the CORBA namespace:

// C++
// In namespace CORBA.
char* string_alloc(CORBA::ULong len);
void string_free(char*);

Do not use the C++ new and delete operators to allocate memory for strings
passed to Orbix from a client or server. However, you can use new and delete
to allocate a string that is local to the program and is never passed to Orbix.

The string_alloc() function dynamically allocates a string, or returns a null
pointer if it cannot perform the allocation. The string_free() function
deallocates a string that was allocated with string_alloc(). For example:

// C++
{

char* s = CORBA::string_alloc(10+1);
strcpy(s, “0123456789”);
...
CORBA::string_free(s);

}

The function CORBA::string_dup() copies a string passed to it: as a parameter

// C++
char* string_dup(const char*);

Space for the copy is allocated using string_alloc() .

By using the CORBA::String_var types, you are relieved of the responsibility of
freeing the space for a string. For example:

// C++
{

CORBA::String_var sVar = CORBA::string_alloc(10+1);
strcpy(sVar, “0123456789”);
...

} // String held by sVar automatically freed here.
83

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 84 Monday, February 22, 1999 3:03 PM
Bounds Checking of String Parameters

Although you can define bounded IDL string types, C++ does not perform any
bounds checking to prevent a string from exceeding the bound. Since strings
map to char*, they are effectively unbounded.

Consequently, Orbix takes responsibility for checking the bounds of strings
passed as operation parameters. If you attempt to pass a string to Orbix that
exceeds the bound for the corresponding IDL string type, Orbix detects this
error and raises a system exception.

General Mapping for Sequences

The IDL data type sequence is mapped to a C++ class that behaves like an array
with a current length and a maximum length. A _var type is also generated for
each sequence.

The maximum length for a bounded sequence is defined in the sequence’s IDL
type and cannot be explicitly controlled by the programmer. Attempting to set
the current length to a value larger than the maximum length given in the IDL
specification is undefined. Orbix checks the length against maximum bound and,
if this is greater, does nothing.

For an unbounded sequence, the initial value of the maximum length can be
specified in the sequence constructor to allow control over the size of the initial
buffer allocation. The programmer may always explicitly modify the current
length of any sequence.

If the length of an unbounded sequence is set to a larger value than the current
length, the sequence data may be reallocated. Reallocation is conceptually
equivalent to creating a new sequence of the desired new length, copying the old
sequence elements into the new sequence, releasing the original elements, and
then assigning the old sequence to be the same as the new sequence. Setting the
length to a smaller value than the current length does not result in any
reallocation. The current length is set to the new value and the maximum
remains the same.
 84

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 85 Monday, February 22, 1999 3:03 PM
Mapping for Unbounded Sequences

Consider the following IDL declaration:

// IDL
typedef sequence<long> unbounded;

The IDL compiler generates the following class definition:

// C++
class unbounded {
public:

unbounded(); (1)
unbounded(const unbounded&); (2)

// This constructor uses existing space.
unbounded((3)

CORBA::ULong max,
CORBA::ULong length,
CORBA::Long* data,
CORBA::Boolean release = 0);

// This constructor allocates space.
unbounded(CORBA::ULong max); (4)

~unbounded(); (5)
unbounded& operator=(const unbounded&); (6)

static CORBA::Long* allocbuf((7)
CORBA::ULong nelems);

static void freebuf(CORBA::Long* data); (8)

CORBA::ULong maximum() const; (9)

CORBA::ULong length() const; (10)
void length(CORBA::ULong len); (11)

CORBA::Long& operator[]((12)
CORBA::ULong IT_i);

const CORBA::Long& operator[]((13)
CORBA::ULong IT_i) const;

};
85

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 86 Monday, February 22, 1999 3:03 PM
Constructors, Destructor and Assignment

The default constructor (1) sets the sequence length to 0 and sets the maximum
length to 0.

The copy constructor (2) creates a new sequence with the same maximum and
length as the given sequence, and copies each of its current elements.

Constructor (3) allows the buffer space for a sequence to be allocated externally
to the definition of the sequence itself. Normally sequences manage their own
memory. However, this constructor allows ownership of the buffer to be
determined by the release parameter: 0 (false) means the caller owns the
storage, while 1 (true) means that the sequence assumes ownership of the
storage. If release is true, the buffer must have been allocated using the
sequence allocbuf() function, and the sequence passes it to freebuf() when
finished with it. In general, constructor (3) particularly with the release
parameter set to 0, should be used with caution and only when absolutely
necessary.

For constructor (3), the type of the data parameter for strings and object
references is char* and A_ptr (for interface A) respectively. In other words,
string buffers are passed as char** and object reference buffers are passed as
A_ptr*.

Constructor (4) allows only the initial value of the maximum length to be set.
This allows applications to control how much buffer space is initially allocated by
the sequence. This constructor also sets the length to 0.

The destructor (5) automatically frees the allocated storage containing the
sequence’s elements, unless the sequence was created using constructor (3)
with the release parameter set to false. For sequences of strings,
CORBA::string_free() is called on each string; for sequences of object
references, CORBA::release() is called on each object reference.

Sequence Buffer Management: allocbuf() and freebuf()

The static member functions, allocbuf() (7) and freebuf() (8) control
memory allocation for sequence buffers when constructor (3) is used.

The function allocbuf() dynamically allocates a buffer of elements that can be
passed to constructor (3) in its data parameter; it returns a null pointer if it
cannot perform the allocation.
 86

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 87 Monday, February 22, 1999 3:03 PM
The freebuf() function deallocates a buffer that was allocated with
allocbuf(). The freebuf() function ignores null pointers passed to it. For
sequences of array types, the return type of allocbuf() and the argument type
of freebuf() are pointers to array slices (refer to “Mapping for Array” on
page 95).

When the release flag is set to true and the sequence element type is either a
string or an object reference, the sequence individually frees each element
before freeing the buffer. It frees strings using string_free(), and it frees
object references using release().

Other Functions
The function maximum() (9) returns the total amount of buffer space currently
available. This allows applications to know how many items they can insert into
an unbounded sequence without causing a reallocation to occur.

The overloaded operators operator[]() (12, 13) return the element of the
sequence at the given index. They may not be used to access or modify any
element beyond the current sequence length. Before operator[]() is used on a
sequence, the length of the sequence must first be set using the modifier
function length() (11) function, unless the sequence was constructed using
constructor (3).

For strings and object references, operator[]() for a sequence returns a type
with the same semantics as the types used for the string and object reference
members of structs and arrays, so that assignment to the string or object
reference sequence member releases old storage when appropriate.

Unbounded Sequences Example

This section shows how to create the unbounded sequence defined in the
following IDL:

// IDL
typedef sequence<long> unbounded;
87

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 88 Monday, February 22, 1999 3:03 PM
You can create an instance of this sequence in any of the following ways:

• Using the default constructor:

// C++
unbounded x;

The sequence length is set to 0 and the maximum length is set to 0. This
does not allocate any space for the buffer elements.

• By specifying the initial value for the maximum length of the sequence:

// C++
unbounded y(10);

The initial buffer allocation for this sequence is enough to hold ten
elements. The sequence length is set to 0, the maximum is set to 10.

• Using the copy constructor:

// C++
unbounded c = y;

This copies y’s state into c. The buffer is copied, not shared.

• Dynamically allocating the sequence using the C++ new operator:

// C++
unbounded* s1 = new unbounded;
unbounded* s2 = new unbounded(10);
...
delete s1;
delete s2

By defining a _var type, you do not have to explicitly free the sequence
when you are finished with it. Like the mapped class, the _var type for a
sequence provides the operator[]().

// C++
unbounded_var uVar = new unbounded;

uVar->length(10);
CORBA::Long i;
for (i=0; i<10; i++)

uVar[i] = i;
...
// Do not call ‘delete uVar’.
 88

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 89 Monday, February 22, 1999 3:03 PM
• Allocating the buffer space externally to the definition of the sequence
itself.

// C++
CORBA::Long* data = unbounded::allocbuf(10);
unbounded z(10, 10, data, 1);
CORBA::Long i;
// You can initialize the sequence as follows:
for (i=0; i<10; i++)

z[i] = i;
...
z::freebuf(data);

In this example, the last parameter to z’s constructor is 1. This indicates
that sequence assumes ownership of the buffer. The data buffer is freed
automatically when z goes out of scope.

If the last parameter were 0, the data buffer would have to be freed by
calling unbounded::freebuf(data).

It is not often necessary to use this form of sequence construction.

Mapping for Bounded Sequences

This section describes the mapping for bounded sequences. For example,
consider the following IDL:

// IDL
typedef sequence<long, 10> bounded;

The corresponding C++ code is as follows:

// C++
class bounded {
public:

bounded(); (1)
bounded(const bounded&); (2)
bounded(CORBA::ULong length, (3)

CORBA::Long* data,
CORBA::Boolean release = 0);

~bounded(); (4)

bounded& operator=(const bounded&); (5)
89

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 90 Monday, February 22, 1999 3:03 PM
static CORBA::Long* allocbuf((6)
CORBA::ULong nelems);

static void freebuf(CORBA::Long* data); (7)

CORBA::ULong maximum() const; (8)
CORBA::ULong length() const; (9)
void length(CORBA::ULong len); (10)

CORBA::Long& operator[]((11)
CORBA::ULong IT_i);

const CORBA::Long& operator[]((12)
CORBA::ULong IT_i) const;

};

The mapping is as described for unbounded sequences except for the differences
indicated in the following paragraphs.

The maximum length is part of the type and cannot be set or modified.

The maximum() function (8) always returns the bound of the sequence as given
in its IDL type declaration.

Bounded Sequence Examples

Consider the following IDL declaration:

// IDL
typedef sequence<long, 10> boundedTen;

You can declare an instance of boundedTen in a variety of ways:

• Using the default constructor:

// C++
boundedTen x;

The length of the sequence is set to 0 and the maximum length is set to
10. Space is allocated in the buffer for 10 elements.

• Using the copy constructor:

// C++
boundedTen c = x;

This copies x’s state into c. The buffer is copied, not shared.
 90

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 91 Monday, February 22, 1999 3:03 PM
• By dynamically allocating the sequence:

// C++
boundedTen* w = new boundedTen;

CORBA::Long i;
w->length(10);
for (i=0; i<10; i++)

(*w)[i] = i;
...
delete w;

By defining a _var type, you do not have to explicitly free the sequence
when you are finished with it. Like the mapped class, the _var type for a
sequence provides the operator[](). For example:

// C++
boundedTen_var wVar = new boundedTen;

CORBA::Long i;
for (i=0; i<10; i++)

wVar[i] = i;
...
// Do not call ‘delete wVar’.

• Using constructor (3) as follows:

// C++
CORBA::Long* data = boundedTen::allocbuf(10);
CORBA::Long i;

boundedTen z(10, data, 1); // 1 for true.

// You can initialize the sequence as follows
// using the overloaded operator[]():
for (i=0; i<10; i++)

z[i] = i;

As for unbounded sequences, avoid this form of sequence construction
whenever possible. In this example, the release parameter is set to 1
(true) to indicate that sequence z is to responsible for releasing the
buffer, data.
91

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 92 Monday, February 22, 1999 3:03 PM
Mapping for Fixed

The fixed type maps to a C++ template class, as shown in the following example:

// IDL
typedef fixed <10, 6> ExchangeRate;
const fixed pi=3.1415926;

// C++
typedef CORBA_Fixed<10, 6> ExchangeRate;
static const CORBA_Fixed

<(unsigned short)7, (short)6> pi=3.1415926;

The fixed template class is defined as follows:

template<unsigned short d, short s> class CORBA_Fixed {
public:

Fixed(const int val=0);
Fixed(const long double val);
Fixed(const Fixed<d, s> val);
~Fixed();

operator Fixed<d, s> () const;
operator double() const;

Fixed<d, s> operator=(const Fixed<d, s> val);
Fixed<d, s> operator++();
Fixed<d, s> operator++(int);
Fixed<d, s> operator--();
Fixed<d, s> operator--(int);
Fixed<d, s>+() const;
Fixed<d, s>-() const;
int operator!() const;
Fixed<d, s> operator+=(const Fixed<d, s> &val1);
Fixed<d, s> operator-=(const Fixed<d, s> &val1);
Fixed<d, s> operator*=(const Fixed<d, s> &val1);
Fixed<d, s> operator/=(const Fixed<d, s> &val1);

const unsigned short Fixed_Digits() const;
const short Fixed_Scale() const;
 92

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 93 Monday, February 22, 1999 3:03 PM
The class mainly consists of conversion and arithmetic operators to all the fixed
types. These types are for use as native numeric types and allow assignment
from and to other numeric types.

// C++
double rate=1.4234;
ExchangeRate USRate(rate);

USRate += 0.1;
cout << “US Exchange Rate = ” << USRate << endl;

// outputs 0001.523400

The Fixed_Digits() and Fixed_Scale() operations return the digits and scale
of the fixed type.

A set of global operators for the fixed type is also provided.

Streaming Operators

The streaming operators for fixed are as follows:

ostream& operator<<(ostream& os, const Fixed<d, s> &val);
istream& operator<<(istream& is, Fixed<d, s> &val);

These operators allow native streaming to ostreams and input from istreams .
This output is padded:

// C++
ExchangeRate USRate(1.40);
cout << “US Exchange Rate = ” << USRate << endl;

// outputs 0001.400000

Arithmetic Operators
The arithmethic operators for fixed are as follows:

Fixed<d, s>operator + (const Fixed<d, s> &val1,
const Fixed<d, s> &val2);

Fixed<d, s> operator - (const Fixed<d, s> &val1,
const Fixed<d, s> &val2);

Fixed<d, s> operator * (const Fixed<d, s> &val1,
const Fixed<d, s> &val2);

Fixed<d, s> operator / (const Fixed<d, s> &val1,
const Fixed<d, s> &val2);
93

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 94 Monday, February 22, 1999 3:03 PM
These operations allow binary arithmetic operations between fixed types. For
example:

// C++
ExchangeRate USRate(1.453);
ExchangeRate UKRate(0.84);
ExchangeRate diff;

diff = USRate-UKRate;
cout << “difference between US rate and UK rate is ”

<< diff << endl;
// outputs 0000.613000;

Logical Operators

The logical operators for fixed are as follows:

int operator > (const Fixed<d1, s1> &val1,
const Fixed<d2, s2> &val2);

int operator < (const Fixed<d1, s1> &val1,
const Fixed<d2, s2> &val2);

int operator >= (const Fixed<d1, s1> &val1,
const Fixed<d2, s2> &val2);

int operator >= (const Fixed<d1, s1> &val1,
const Fixed<d2, s2> &val2);

int operator == (const Fixed<d1, s1> &val1,
const Fixed<d2, s2> &val2);

int operator != (const Fixed<d1, s1> &val1,
const Fixed<d2, s2> &val2);

These operators provide logical arithmetic on fixed types. For example:

// C++
ExchangeRate USRate(1.453);
ExchangeRate UKRate(0.84);

if (USRate <= UKRate)
{

// Do stuff...
};
 94

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 95 Monday, February 22, 1999 3:03 PM
Mapping for Array

An IDL array maps to a corresponding C++ array definition. A _var type for the
array and a _forany type, which allows the array to be inserted into and
extracted from an any, are also generated.

All array indices in IDL and C++ run from 0 to <size-1>. If the array element is
a string or an object reference, the mapping to C++ uses the same rule as for
structure members, that is, assignment to an array element releases the storage
associated with the old value.

Arrays as Out Parameters and Return Values
Arrays as out parameters and return values are handled via a pointer to an array
slice. An array slice is an array with all the dimensions of the original specified
except the first one; for example, a slice of a 2-dimensional array is a 1-
dimensional array, a slice of a 1-dimensional array is the element type.

The CORBA IDL to C++ mapping provides a typedef for each array slice type.
For example, consider the following IDL:

// IDL
typedef long arrayLong[10];
typedef float arrayFloat[5][3];

This generates the following array and array slice typedefs:

// C++
typedef long arrayLong[10];
typedef long arrayLong_slice;

typedef float arrayFloat[5][3];
typedef float arrayFloat_slice[3];

Dynamic Allocation of Arrays

To allocate an array dynamically, you must use functions which are defined at the
same scope as the array type. For array T, these functions are defined as:

// C++
T_slice* T_alloc();
void T_free (T_slice*);
95

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 96 Monday, February 22, 1999 3:03 PM
The function T_alloc() dynamically allocates an array, or returns a null pointer
if it cannot perform the allocation. The T_free() function deallocates an array
that was allocated with T_alloc(). For example, consider the following array
definition:

// IDL
typedef long vector[10];

You can use the functions vector_alloc() and vector_free() as follows:

// C++
vector_slice* aVector = vector_alloc();
// The size of the array is as specified
// in the IDL definition. It allocates a 10
// element array of CORBA::Long.
...
vector_free(aVector);

Mapping for Typedef

A typedef definition maps to corresponding C++ typedef definitions. For
example, consider the following typedef:

// IDL
typedef long CustomerId;

This generates the following C++ typedef:

// C++
typedef CORBA::Long CustomerId;

Mapping for Constants

Consider a global, file level, IDL constant such as:

// IDL
const long MaxLen = 4;

This maps to a file level C++ static const:

// C++
static const CORBA::Long MaxLen = 4;
 96

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 97 Monday, February 22, 1999 3:03 PM
An IDL constant in an interface or module maps to a C++ static const
member of the corresponding C++ class. For example:

// IDL
interface CheckingAccount : Account {

const float MaxOverdraft = 1000.00;
};

This maps to the following C++:

// C++
class CheckingAccount : public virtual Account {
public:

static const CORBA::Float MaxOverdraft;
};

The following definition is also generated for the value of this constant, and is
placed in the client stub implementation file:

// C++
const CORBA::Float

CheckingAccount::MaxOverdraft = 1000.00;

Mapping for Pseudo-Object Types
For most pseudo-object types, the CORBA specification defines an operation to
create a pseudo-object. For example, the pseudo-interface ORB defines the
operations create_list() and create_operation_list() to create an
NVList (an NVList describes the arguments of an IDL operation) and operation
create_environment() to create an Environment.

To provide a consistent way to create pseudo-objects, in particular, for those
pseudo-object types for which the CORBA specification does not provide a
creation operation, Orbix provides static IT_create() function(s) for all
pseudo-object types in the corresponding C++ class. These functions provide an
Orbix-specific means to create and obtain a pseudo-object reference. An
overloaded version of IT_create() is provided that corresponds to each C++
constructor defined on the class. IT_create() should be used in preference to
C++ operator new but only where there is no suitable compliant way to obtain a
pseudo-object reference. Use of IT_create() in preference to new ensures
memory management consistency.
97

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 98 Monday, February 22, 1999 3:03 PM
The Orbix C++ Programmer’s Reference Guide gives details of the IT_create()
functions available for each pseudo-interface. The entry for IT_create() also
indicates the compliant way, if any, of obtaining an object reference to a
pseudo-object.

Memory Management and _var Types
This section describes the _var types that help you to manage memory
deallocation for some IDL types. The Orbix IDL compiler generates _var types
for the following:

• Each interface type.

• Type string.

• All variable length complex data types; for example, an array or sequence
of strings, and structs of variable data length.

• All fixed length complex data types, for consistency with variable length
types.

Conceptually, a_var type can be considered as an abstract pointer that assumes
ownership of the data to which it points.

For example, consider the following interface definition:

// IDL
interface A {

void op();
};

The following C++ code illustrates the functionality of a _var type for this
interface:

// C++
{

// Set aPtr to refer to an object:
A_ptr aPtr = ...
A_var aVar = aPtr;

// Here, aVar assumes ownership of aPtr.
// The object reference is not duplicated.

aVar->op();
 98

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 99 Monday, February 22, 1999 3:03 PM
...
}

// Here, aVar is released (its
// reference count decremented).

The general form of the _var class for IDL type T is:

// C++
class T_var {
public:

T_var(); (1)
T_var(T_ptr IT_p); (2)
T_var(const T_var& IT_s); (3)
T_var& operator=(T_ptr IT_p); (4)
T_var& operator=(const T_var& IT_s); (5)
~T_var(); (6)
T* operator->(); (7)

};

Constructors and Destructor

The default constructor (1) creates a T_var containing a null pointer to its data
or a nil object reference as appropriate. A T_var initialized using the default
constructor can always legally be passed as an out parameter.

Constructor (2) creates a T_var that, when destroyed, frees the storage pointed
to by its parameter. The parameter to this constructor should never be a null
pointer. Orbix does not detect null pointers passed to this constructor.

The copy constructor (3) deep-copies any data pointed to by the T_var
constructor parameter. This copy is freed when the T_var is destroyed or when
a new value is assigned to it.

The destructor frees any data pointed to by the T_var strings and array types
are deallocated using the CORBA::string_free() and S_free() (for array of
type S) deallocation functions respectively; object references are released.

The following code illustrates some of these points:

// C++
{

A_var aVar = ...
String_var sVar = string_alloc(10);
...
aVar->op();
99

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 100 Monday, February 22, 1999 3:03 PM
...
} // Here, aVar is released,
 // sVar is freed.

Assignment Operators

The assignment operator (4) results in any old data pointed to by the T_var
being freed before assuming ownership of the T* (or T_ptr) parameter. For
example:

// C++
// Set aVar to refer to an object reference.
A_var aVar = ...

// Set aPtr to refer to an object reference.
A_ptr aPtr = ...

// The following assignment causes the _ptr
// owned by aVar to be released before aVar
// assumes ownership of aPtr.
aVar = aPtr;

The normal assignment operator (5) deep-copies any data pointed to by the
T_var assignment parameter. This copy is destroyed when the T_var is
destroyed or when a new value is assigned to it.

// C++
{

T_var t1Var = ...
T_var t2Var = ...

// The following assignment frees t1Var and
// deep copies t2Var, duplicating its
// object reference.
t1Var = t2Var;

}

// Here, t1Var and t2Var are released. They both /
// refer to the same object so the reference count
// of the object is decremented twice.
 100

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 101 Monday, February 22, 1999 3:03 PM
Assignment between _var types is only allowed between _vars of the same
type. In particular, no widening or narrowing is allowed. Thus the following
assignments are illegal:

// C++
// B is a derived interface of A.
A_var aVar = ...
B_var bVar = ...
aVar = bVar; // ILLEGAL.
bVar = aVar; // ILLEGAL.

You cannot create a T_var from a const T*, or assign a const T* to a T_var.
Recall that a T_var assumes ownership of the pointers passed to it and frees this
pointer when the T_var goes out of scope or is otherwise freed. This deletion
cannot be done on a const T*. To allow construction from a const T* or
assignment to a T_var, the T_var would have to copy the const object. This
copy is forbidden by the standard C++ mapping, allowing the application
programmer to decide if a copy is really wanted or not. Explicit copying of const
T* objects into T_var types can be achieved via the copy constructor for T, as
shown below:

// C++
const T* t = ...;
T_var tVar = new T(*t);

operator->()
The overloaded operator->() (7) returns the T* or T_ptr held by the T_var,
but retains ownership of it. You should not call this function unless the T_var
has been initialized with a valid T* or T_var.

For example:

// C++
A_var aVar;
// First initialize aVar.
aVar = ... // Perhaps an object reference
 // returned from the Naming Service.
// You can now call member functions.
aVar->op();
101

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 102 Monday, February 22, 1999 3:03 PM
The following are some examples of illegal code:

// C++
A_var aVar;
aVar->op(); // ILLEGAL! Attempt to call function
 // on uninitialized _var.
A_ptr aPtr;
aPtr = aVar; // ILLEGAL! Attempt to convert
 // uninitialized _var. Orbix does
 // not detect this error.

The second example above is illegal because an uninitialized _var contains no
pointer, and thus cannot be converted to a _ptr type.

Memory Management for Parameters
When passing operation parameters between clients and objects in a distributed
application, you must ensure that memory leakage does not occur. Since main
memory pointers cannot be meaningfully passed between hosts in a distributed
system, the transmission of a pointer to a block of memory requires the block to
be transmitted by value and re-constructed in the receiver’s address space. You
must take care not to cause memory leakage for the original or the new copy.

This section explains the mapping for parameters and return values and explains
the memory management rules that clients and servers must follow to ensure
that memory is not leaked in their address spaces.

Passing basic types, enums, and fixed length structs as parameters is quite
straightforward in Orbix. However, you must be careful when passing strings
and other variable length data types, including object references.

in Parameters

When passing an in parameter, a client programmer allocates the necessary
storage and provides a data value. Orbix does not automatically free this storage
on the client side.
 102

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 103 Monday, February 22, 1999 3:03 PM
For example, consider the following IDL operation:

// IDL
interface A {

...
};

interface B {
void op(in float f, in string s, in A a);

};

A client can call operation op() as follows:

// C++
{

CORBA::Float f = 12.0;
char* s = CORBA::string_alloc(4);
strcpy(s, “Two”);
A_Ptr aPtr = ...
B_ptr bPtr = ...
bPtr->op(f, s, aPtr);
...
string_free(s);
CORBA::release(aPtr);
CORBA::release(bPtr);

}

On the server side, the parameter is passed to the function that implements the
IDL operation. Orbix frees the parameter upon completion of the function call
in order to avoid a memory leak. If you wish to keep a copy of the parameter in
the server, you must copy it before the implementation function returns.
103

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 104 Monday, February 22, 1999 3:03 PM
This is illustrated in the following implementation function for operation op():

// C++
void B_i::op(CORBA::Float f, const char* s,

A_ptr a, CORBA::Environment&) {
...
// Retain in parameters.
// Copy the string and maybe assign it to
// member data:
char* copy = string_alloc(strlen(s)+1);
strcpy(copy, s);
...

// Duplicate the object reference:
A::_duplicate(a);

}

Note: A client program should not pass a NULL or uninitialized pointer for an
in parameter type that maps to a pointer (*) or a reference to a pointer
(*&).

inout Parameters

In the case of inout parameters, a value is both passed from the client to the
server and vice versa. Thus, it is the responsibility of the client programmer to
allocate memory for a value to be passed in.

In the case of variable length types, the value being passed back out from the
server is potentially longer than the value which was passed in. This leads to
memory management rules that you must examine on a type-by-type basis.

Object Reference inout Parameters

On the client side, the programmer must ensure that the parameter is a valid
object reference that actually refers to an object. In particular, when passing a
T_var as an inout parameter, where T is an interface type, the T_var should be
initialized to refer to some object.
 104

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 105 Monday, February 22, 1999 3:03 PM
If the client wishes to continue to use the object reference being passed in as an
inout parameter, it must first duplicate the reference. This is because the server
can modify the object reference to refer to something else when the operation
is invoked. If this were to happen, the object reference for the existing object
would be automatically released.

On the server side, the object reference is made available to the programmer
for the duration of the function call. The object referenced is automatically
released at the end of the function call. If the server wishes to keep this
reference, it must duplicate it.

The server programmer is free to modify the object reference to refer to
another object. To do so, you must first release the existing object reference
using CORBA::release(). Alternatively, you can release the existing object
reference by assigning it to a local _var variable, for example:

// C++
// Server code.
void B_i::opInout(CORBA::Float& f,

char*& s, A_ptr& a,
CORBA::Environment&) {

A_var aTempVar = a;
a = ... // New object reference.
...

}

Any previous value held in the _var variable is properly deallocated at the end of
the function call.

String inout Parameters
On the client side, you must ensure that the parameter is a valid NUL-terminated
char*. It is your responsibility to allocate storage for the passed char*. This
storage must be allocated via string_alloc().

After the operation has been invoked, the char* may point to a different area of
memory, since the server is free to deallocate the input string and reassign the
char* to point to new storage. It is your responsibility to free the storage when
it is no longer needed.

On the server side, the string pointed to by the char* which is passed in may be
modified before being implicitly returned to the client, or the char* itself may be
modified. In the latter case, it is your responsibility to free the memory pointed
105

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 106 Monday, February 22, 1999 3:03 PM
to by the char* before reassigning the parameter. In both cases, the storage is
automatically freed at the end of the function call. If the server wishes to keep a
copy of the string, it must take an explicit copy of it.

An alternative way to ensure that the storage for an inout string parameter is
released is to assign it to a local _var variable, for example:

// C++
// Server code.
void B_i::opInout(CORBA::Float& f,

char*& s, A_ptr& a,
CORBA::Environment&) {

String_var sTempVar = s;
s = ... // New string.
...

}

Any previous value held in the _var variable is properly deallocated at the end of
the function call.

For unbounded strings, the server programmer is free to pass a string back to
the client that is longer than the string which was passed in. Doing so would, of
course, cause an automatic reallocation of memory at the client side to
accommodate the new string.

Sequence inout Parameters
On the client side, you must ensure that the parameter is a valid sequence of the
appropriate type. Recall that this sequence may have been created with either
‘release=0’ (false) semantics or ‘release=1’ (true) semantics. In the former
case, the sequence is not responsible for managing its own memory. In the latter
case, the sequence frees its storage when it is destroyed, or when a new value is
assigned into the sequence.

In all cases, it is the responsibility of the client programmer to release the
storage associated with a sequence passed back from a server as an inout
parameter.

On the server side, Orbix is unaware of whether the incoming sequence
parameter was created with release=0 or release=1 semantics, since this
information is not transmitted as part of a sequence. Orbix must assume that
release is set to 1, since failure to release the memory could result in a
memory leak.
 106

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 107 Monday, February 22, 1999 3:03 PM
The sequence is made available to the server for the duration of the function
call, and is freed automatically upon completion of the call. If the server
programmer wishes to use the sequence after the call is complete, the sequence
must be copied.

A server programmer is free to modify the contents of the sequence received as
an inout parameter. In particular, the length of the sequence that is passed back
to the client is not constrained by the length of the sequence that was passed in.

Where possible, use only sequences created with release=1 as inout
parameters.

Type any inout Parameters
The memory management rules for inout parameters of type any are the same
as those for sequence parameters as described above.

There is a constructor for type CORBA::Any which has a release parameter,
analogous to that of the sequence constructors (refer to Chapter 12, “The Any
Data Type” on page 227). However, the warning provided above in relation to
inout sequence parameters does not apply to type any.

Other inout Parameters

For all other types, including variable length unions, arrays and structs, the rules
are the same.

The client must make sure that a valid value of the correct type is passed to the
server. The client must allocate any necessary storage for this value, except that
which is encapsulated and managed within the parameter itself. The client is
responsible for freeing any storage associated with the value passed back from
the server in the inout parameter, except that which is managed by the
parameter itself. This client responsibility is alleviated by the use of _var types,
where appropriate.

The server is free to change any value which is passed to it as an inout
parameter. The value is made available to the server for the duration of the
function call. If the server wishes to continue to use the memory associated with
the parameter, it must take a copy of this memory.
107

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 108 Monday, February 22, 1999 3:03 PM
out Parameters

A client program passes an out parameter as a pointer. A client may pass a
reference to a pointer with a null value for out parameters because the server
does not examine the value but instead just overwrites it.

The client programmer is responsible for freeing storage returned to it via a
variable length out parameter. The memory associated with a variable length
parameter is properly freed if a _var variable is passed to the operation.

For example, consider the following IDL:

// IDL
struct VariableLengthStruct {

string aString;
};

struct FixedLengthStruct {
float aFloat;

};

interface A {
void opOut(out float f,

out FixedLengthStruct fs,
out VariableLengthStruct vs);

};

The operation opOut() is implemented by the following C++ function:

// C++
A_i::opOut(

CORBA::Float& f,
FixedLengthStruct& fs,
VariableLengthStruct*& vs,
CORBA::Environment&) {
...

}

 108

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 109 Monday, February 22, 1999 3:03 PM
A client calls this operation as follows:

// C++
{

FixedLengthStruct_var fs;
VariableLengthStruct_var vs;
A_var aVar = ...;
aVar->opOut(fs, vs);
aVar->opOut(fs, vs); // 1st results freed.

} // 2nd results freed.

The client must explicitly free memory if _var types are not used.

A fixed-length struct out parameter maps to a struct reference parameter. A
variable-length struct out parameter maps to a reference to a pointer to a
struct. Since the _var type contains conversion operators to both of these
types, the difference in the mapping for out parameters for fixed length and
variable length structs is hidden. If _var types are not used, you must use a
different syntax when passing fixed and variable length structs. For example:

// C++
{

//You must allocate memory for a fixed
//length struct
FixedLengthStruct fs;

//No need to initialize memory for a variable
//length struct
VariableLengthStruct* vs_p;
aVar->opOut(fs, vs_p)

// Use fs and vs_p.
...

// Free pointer vs_p before passing it to
// A_i::opOut() again.
delete vs_p;
aVar->opOut(*fs, vs_p);

// Use fs and vs_p.
...
109

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 110 Monday, February 22, 1999 3:03 PM
// Delete memory pointed to by vs_p
delete vs_p;

}

On the server side, the storage associated with out parameters is freed by
Orbix when the function call completes. The programmer must retain a copy (or
duplicate an object reference) to retain the value. For example:

// C++
A_i::opOut(

CORBA::Float& f,
FixedLengthStruct& fs,
VariableLengthStruct*& vs,
CORBA::Environment&) {

// To retain the variable length struct:
VariableLengthStruct* myVs =

new VariableLengthStruct(*vs);
...

}

In this example, you take a copy of the struct parameter by using the default
C++ copy constructor.

A server may not return a null pointer for an out parameter returned as a T* or
T*&—that is, for a variable length struct or union, a sequence, a variable length
or fixed length array, a string or any.

In all cases, the client is responsible for releasing the storage associated with the
out parameter when the value is no longer required. This responsibility can be
eased by associating the storage with a _var type, where appropriate, which
assumes responsibility for its management.

Return Values

The rules for managing the memory of return values are the same as those for
managing the memory of out parameters, with the exception of fixed-length
arrays. A fixed-length array out parameter maps to a C++ array parameter,
whereas a fixed-length array return value maps to a pointer to an array slice.
The server should set the pointer to a valid instance of the array. This cannot be
a null pointer. It is the responsibility of the client to release the storage
associated with the return value when the value is no longer required.
 110

Th e C O RB A I D L t o C + + Ma p p i n g

ProgramGuide.book Page 111 Monday, February 22, 1999 3:03 PM
An Example of Applying the Rules for Object References

An important example of the parameter passing rules arises in the case of object
references. Consider the following IDL definitions:

// IDL
interface I1 {
};

interface I2 {
I1 op(in I1 par);

};

The following implementation of operation I2::op() is incorrect:

// C++
I1_ptr I2::op(I1_ptr par) {

return par;
}

If the object referenced by the parameter par does not exist in the server
process’s address space before the call, Orbix creates a proxy for this object
within that address space. This object initially has a reference count of one. At
the end of the call to I2::op(), this count is decremented twice—once because
par is an in parameter, and once because it is also a return value. The code
therefore tries to return a reference that is found by attempting to access a
proxy that no longer exists—with undefined results.

A similar error in reference counts results if the object (or its proxy) referenced
by the parameter par already exists in the server process’s address space.

The correct coding of I2::op() is:

// C++
I1_ptr I2::op(I1_ptr par) {

return I1::_duplicate(par);
}

111

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 112 Monday, February 22, 1999 3:03 PM
 112

ProgramGuide.book Page 113 Monday, February 22, 1999 3:03 PM
 5
Using and Implementing IDL
Interfaces

This chapter describes how servers create objects that implement
IDL interfaces, and shows how clients access these objects through
IDL interfaces. This chapter shows how to use and implement
CORBA objects through a detailed description of the banking
application introduced in Chapter 2, “Getting Started With Orbix”.

Overview of an Example Application
In the BankSimple example, an Orbix server creates a single distributed object
that represents a bank. This object manages other distributed objects that
represent customer accounts at the bank.

A client contacts the server by getting a reference to the bank object. This client
then calls operations on the bank object, instructing the bank to create new
accounts for specified customers. The bank object creates account objects in
response to these requests and returns them to the client. The client can then
call operations on these new account objects.

This application design, where one type of distributed object acts as a factory for
creating another type of distributed object, is very common in CORBA.

The source code for the example described in this chapter is available in the
demos\banksimple directory of your Orbix installation.
113

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 114 Monday, February 22, 1999 3:03 PM
Overview of the Programming Steps
1. Define IDL interfaces to your application objects.

2. Compile the IDL interfaces.

3. Implement the IDL interfaces with C++ classes.

4. Write a server program that creates instances of the implementation
classes. This involves:

i. Initializing the ORB.

ii. Creating initial implementation objects.

iii. Allowing Orbix to receive and process incoming requests from
clients.

5. Write a client program that accesses the server objects. This involves:

i. Initializing the ORB.

ii. Getting a reference to an object.

iii. Invoking object attributes and operations.

6. Compile the client and server.

7. Run the application. This involves:

i. Running the Orbix daemon process.

ii. Registering the server in the Implementation Repository.

iii. Running the client.

Defining IDL Interfaces
This example uses two IDL interfaces: an interface for the bank object created
by the server and an interface that allows clients to access the account objects
created by the bank.

The IDL interfaces are called Bank and Account, defined as follows:

// IDL
// In banksimple.idl

module BankSimple {

typedef float CashAmount;
interface Account;
 114

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 115 Monday, February 22, 1999 3:03 PM
// A factory for bank accounts.
interface Bank {

// Create new account with specified name.
Account create_account(in string name);
// Find the specified named account.
Account find_account(in string name);

};

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);

};
};

The server creates a Bank object that accepts operation calls such as
create_account() from clients. The operation create_account() instructs
the Bank object to create a new Account object in the server. The operation
find_account() instructs the Bank object to find an existing Account object.

In this example, all of the objects (both Bank and Account objects) are created in
a single server process. A real system could use several different servers and
many server processes.

For details on how to compile your IDL interfaces, refer to “Compiling IDL
Interfaces” on page 14.

Implementing IDL Interfaces
This section describes in detail the mechanisms enabling you to define C++
classes to implement IDL interfaces. To implement an IDL interface, you must
provide a C++ class that includes member functions corresponding to the
operations and attributes of the IDL interface. Orbix supports two mechanisms
for relating an implementation class to its IDL interface:

• The BOAImpl approach.

• The TIE approach.
115

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 116 Monday, February 22, 1999 3:03 PM
Most server programmers use one of these approaches exclusively, but you can
use both in the same server. Client programmers do not need to be concerned
with which of these mechanisms is used.

The BOAImpl Approach to Implementing Interfaces
For each IDL interface, Orbix generates a C++ class with the same name. Orbix
also generates a second C++ class for each IDL interface, taking the name of the
interface with BOAImpl appended. For example, it generates the class
AccountBOAImpl for the IDL interface Account, and the class BankBOAImpl for
the IDL interface Bank. To indicate that a C++ class implements a given IDL
interface, that class should inherit from the corresponding BOAImpl-class.

Each BOAImpl class inherits from a corresponding IDL Compiler-generated
C++ class; for example, AccountBOAImpl inherits from Account. BOAImpl
classes inherit from each other in the same way that the corresponding IDL
interfaces do.

Figure 5.1: The BOAImpl Approach to Defining a C++ Implementation Class

IDL Compiler

Account (IDL interface)

Account (IDL C++ class)

AccountBOAImpl

(C++ class that you write to implement
the interface Account)

AccountImpl
 116

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 117 Monday, February 22, 1999 3:03 PM
The BOAImpl approach is shown in Figure 5.1 for the Account IDL interface.
For simplicity, the fully-scoped name (BankSimple::Account) is not used.

The Orbix IDL compiler produces the C++ classes Account and
AccountBOAImpl. You define a new class, AccountImpl, that implements the
functions defined in the IDL interface. In addition to functions that correspond
to IDL operations and attributes, class AccountImpl can contain user-defined
constructors, a destructor, and private and protected members.

Note: This guide uses the convention that interface A is implemented by class
AImpl. It is not necessary to follow this naming scheme. In any case, some
applications might need to implement interface A several times.

The TIE Approach to Implementing Interfaces

Using the TIE approach, you can implement the IDL operations and attributes in
a class that does not inherit from the BOAImpl class. In this case, you must
indicate to Orbix that the class implements a particular IDL interface by using a
C++ macro to tie together your class and the IDL interface.

To use the TIE mechanism, the server programmer indicates that a particular
class implements a given IDL C++ class by calling a DEF_TIE macro, which has
the general form:

DEF_TIE_IDL C++ class name (implementation class name)

Each call to this macro defines a TIE class. This class records that a particular
IDL C++ class is implemented by a particular implementation class. Consider the
macro call:

DEF_TIE_Account(AccountImpl)

This generates a class named TIE_Account(AccountImpl). Figure 5.2 shows the
TIE approach. For simplicity, the fully scoped name, BankSimple::Account, is
not used.
117

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 118 Monday, February 22, 1999 3:03 PM
Figure 5.2: The TIE Approach to Implementing Interfaces

DEF_TIE macros also work when interfaces are defined in IDL modules. For
example, if interface I is defined in module M, the macros take the following
form:

DEF_TIE_M_Impl (implementation class name)
TIE_M_Impl (implementation class name)

For example, interface Account is defined in module BankSimple and
implemented by C++ class AccountImpl. The macros thus take the following
form:

• DEF_TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro is called in the implementation header file (in this case,
banksimple_accountimpl.h).

• TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro is called in the implementation file (in this case,
banksimple_bankimpl.cxx).

Refer to “Using the TIE Approach” on page 123 for more details.

Account (IDL interface)

Account (IDL C++ class)

AccountImpl

IDL compiler

TIE_Account(AccountImpl)

(C++ class that you write to
implement the interface Account)
 118

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 119 Monday, February 22, 1999 3:03 PM
Defining Implementation Classes for IDL Interfaces

This section illustrates both the BOAImpl and TIE approaches. Two
implementation classes are required:

Note: You can automatically generate a skeleton version of the class and
function definitions for BankSimple::BankImpl and
BankSimple::AccountImpl by specifying the -S switch to the IDL
compiler.

The -S switch produces two files. If the IDL definitions are in the file
banksimple.idl, the skeleton definitions are placed in the following files:

You can edit both files to provide a full implementation class. You must add
member variables, constructors, and destructors. Other member functions can
be added if required. You can use either the BOAImpl or the TIE approach to
relate the implementation classes to your IDL C++ classes.

Using the BOAImpl Approach

Using this approach, you should indicate that a class implements a specific IDL
interface by inheriting from the corresponding BOAImpl-class generated by the
IDL compiler:

// C++
// In file banksimple_accountimpl.h

#define BANKSIMPLE_ACCOUNTIMPL_H_

BankSimple_BankImpl Implements the Bank interface.

BankSimple_AccountImpl Implements the Account interface.

banksimple_ih This is the class header file that defines the class.
This file declares the member functions that you
must implement. It can be renamed to
banksimple_bankimpl.h.

banksimple.ic This is the code file. It gives an empty body for
each member function and can be renamed to
banksimple_bankimpl.cxx.
119

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 120 Monday, February 22, 1999 3:03 PM
#include “banksimple.hh”

// The Account implementation class.
class BankSimple_AccountImpl :

public virtual BankSimple::AccountBOAImpl {
public:

// IDL operations
virtual void deposit

(BankSimple::CashAmount amount, CORBA::Environment&);
virtual void withdraw

(BankSimple::CashAmount amount, CORBA::Environment&);

// IDL attributes
virtual char* name(CORBA::Environment&);
virtual void name

(const char * _new_value, CORBA::Environment&);
virtual BankSimple::CashAmount balance

(CORBA::Environment&);

// C++ operations
BankSimple_AccountImpl

(const char* name, BankSimple::CashAmount balance);
virtual ~BankSimple_AccountImpl();

protected:
CORBA::String_var m_name;
BankSimple::CashAmount m_balance;
...

};

// C++
// In file banksimple_bankimpl.h.

#define BANKSIMPLE_BANKIMPL_H_
#include <banksimple.hh>

// The Bank implementation class.
class BankSimple_BankImpl : public virtual BankSimple::BankBOAImpl
{

public:
// IDL operations.
virtual BankSimple::Account_ptr
create_account(const char* name, CORBA::Environment&);
 120

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 121 Monday, February 22, 1999 3:03 PM
virtual BankSimple::Account_ptr
find_account(const char* name, CORBA::Environment&);

// C++ operations.
BankSimple_BankImpl();
virtual ~BankSimple_BankImpl();

protected:
// This bank stores account in an array in memory.
static const int MAX_ACCOUNTS;
BankSimple::Account_var* m_accounts;
....

};

Note: The BOAImpl class is produced only if the -B switch is specified to the
IDL compiler.

Classes BankSimple_BankImpl and BankSimple_AccountImpl redefine each of
the functions inherited from their respective BOAImpl classes. They can also add
constructors, destructors, member functions and member variables. Virtual
inheritance is not strictly necessary in the code shown; it is used in case C++
multiple inheritance is required later. Any function inherited from the BOAImpl
class is virtual because it is defined as virtual in the BOAImpl class. Therefore, it
is not strictly necessary to explicitly mark them as virtual in an implementation
class (for example, BankSimple_AccountImpl).

The accounts managed by a bank are stored in a array with members of type
BankSimple::Account_var.

Outline of the Bank Implementation (BOAImpl Approach)

First, in BankSimple_BankImpl::create_account(), you should construct a
new BankSimple::Bank object. The function create_account() corresponds
to an IDL operation, and its return value is of type BankSimple::Account_ptr:

// C++
// In file banksimple_bankimpl.cxx.

// Add a new account.
BaBankSimple::Account_ptr
BankSimple_AccountImpl::create_account
121

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 122 Monday, February 22, 1999 3:03 PM
(const char* name, CORBA::Environment &) {

int i = 0;
for (; i < MAX_ACCOUNTS & !CORBA::is_nil(m_accounts[i]); ++i)
{ }

if (i < MAX_ACCOUNTS){
// Create an account with zero balance.
m_accounts[i]=new BankSimple_AccountImpl(name, 0.0);
cout << “create_account: Created with name:” << name << endl;
return BankSimple::Account::_duplicate(m_accounts[i];

}
else {

// Cannot create an account, return nil.
cout << “create_account: failed, no space left!” << endl;
return BankSimple::Account::_nil();

}
}

You must call BankSimple::Account::_duplicate() because Orbix calls
CORBA::release() on any object returned as an out /inout parameter or as a
return value. The reference count on the new object is initially one, and
subsequently calling CORBA::release() without first calling
BankSimple::Account::_duplicate() results in deletion of the object.

Using the BOAImpl approach, the Bank implementation code is as follows:

// C++
// In file bankSimple_bankImpl.cxx.

// Implementation of the BankSimple::Bank interface.
#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”

// Maximum number of accounts handled by the bank.
const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;

// BankSimple_BankImpl constructor.
BankSimple_BankImpl::BankSimple_BankImpl():

m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {
 122

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 123 Monday, February 22, 1999 3:03 PM
// Make sure all accounts are nil.
for (int i = 0; i < MAX_ACCOUNTS; ++i) {

m_accounts[i] = BankSimple::Account::_nil();
}

// BankSimple_BankImpl destructor.
BankSimple_BankImpl::~BankSimple_BankImpl() {

delete [] m_accounts;
}

// Add a new account.
BankSimple::Account_ptr
BankSimple_AccountImpl::create_account

(const char* name, CORBA::Environment &) {
...
}

// Find a named account
BankSimple::Account_ptr
BankSimple_BankImpl::find_account

(const char * name, CORBA::Environment &) {
...
}

}

In this example, the possibility of making the server objects persistent is ignored.
You can do this by storing the account and bank data in files or in a database.
Refer to Chapter 19, “Loading Objects at Runtime” on page 355 for more
details.

Using the TIE Approach
Using the TIE Approach, an implementation class does not have to inherit from
any particular base class. Instead, a class implements a specific IDL interface by
using the DEF_TIE macro.

The DEF_TIE Macro

A version of the DEF_TIE macro is available for each IDL C++ class. The macro
takes one parameter—the name of a C++ class implementing this interface:

// C++
// In file banksimple_accountimpl.h
123

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 124 Monday, February 22, 1999 3:03 PM
class BankSimple_AccountImpl {
... // As before.
};

// DEF_TIE Macro call.
DEF_TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro call defines a TIE class that indicates that class
BankSimple_AccountImpl implements interface BankSimple::Account.

// C++
// In file banksimple_bankimpl.h

class BankSimple_BankImpl {
. . . // As before.

};

// DEF_TIE Macro call.
DEF_TIE_BankSimple_Bank(BankSimple_BankImpl)

This macro call defines a TIE class which indicates that class
BankSimple_BankImpl implements interface BankSimple::Bank.

The TIE Class

The TIE_BankSimple_Account(BankSimple_AccountImpl) construct is a
preprocessor macro call that expands to the name of a C++ class representing
the relationship between the BankSimple::Account and
BankSimple_AccountImpl classes. This class is defined by the macro call
DEF_TIE_BankSimple_Account(BankSimple_AccountImpl). Its constructor
takes a pointer to a BankSimple_AccountImpl object as a parameter.

The C++ class generated by calling the macro
TIE_BankSimple_Account(BankSimple_AccountImpl) has a name that is a
legal C++ identifier, but you do not need to use its actual name. You should use
the macro call TIE_BankSimple_Account(BankSimple_AccountImpl) when
you wish to use this class.

The TIE approach gives a complete separation of the class hierarchies for the IDL
Compiler-generated C++ classes and the class hierarchies of the C++ classes
used to implement the IDL interfaces.
 124

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 125 Monday, February 22, 1999 3:03 PM
Consider an IDL operation that returns a reference to an Account object; for
example, BankSimple::Bank::create_account(). In the IDL C++ class, this is
translated into a function returning an BankSimple::Account_ptr.

However, using the TIE approach, the actual object to which a reference is
returned is of type BankSimple_AccountImpl. This is not a derived class of
BankSimple::Account. Therefore, the server should create an object of type
TIE_BankSimple_Account(BankSimple_AccountImpl). This TIE object
references the BankSimple_AccountImpl object, and a reference to the TIE
object should be returned by the function. This is because the class
TIE_BankSimple_Account(BankSimple_AccountImpl) is a derived class of
class BankSimple::Account. All invocations on the TIE object are automatically
forwarded by it to the associated BankSimple_AccountImpl object.

When you code the server you create the BankSimple_AccountImpl object and
a TIE object. The server should then use the TIE object, rather than the
BankSimple_AccountImpl object directly. A bank’s linked list of accounts, for
example, should then point to TIE objects, rather than directly pointing to the
BankSimple_AccountImpl objects.

A TIE object automatically delegates all incoming operation calls to its
corresponding implementation object. For example, all invocations on a
TIE_Account(BankSimple_AccountImpl) object are automatically passed to
the BankSimple_AccountImpl object to which the TIE object holds a pointer.

Note: By default, calling CORBA::release() on a TIE object with a reference
count of one also deletes the referenced object. The TIE object’s
destructor calls the delete operator on the implementation object
pointer it holds. This is usually the desired behaviour; however, you can
use CORBA::BOA::propagateTIEdelete() to specify whether the TIE
object should be deleted. Refer to the Orbix C++ Programmer’s
Reference for more details.

Using the TIE approach, the bank service header file might look as follows:

// C++
// In file banksimple_bankimpl.h

#define BANKSIMPLE_BANKIMPL_H_
#include <banksimple.hh>
125

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 126 Monday, February 22, 1999 3:03 PM
class BankSimple_BankImpl {
public:

// IDL-defined operations.
virtual BankSimple::Account_ptr
create_account(const char * name, CORBA::Environment&);

virtual BankSimple::Account_ptr
find_account(const char * name, CORBA::Environment&);
// C++ operations.
BankSimple_BankImpl();
virtual ~BankSimple_BankImpl();

protected:
// This bank steored accounts in an array of Account_var.
static const int MAX_ACCOUNTS;
BankSimple::Account_var* m_accounts;

};

// Indicate that BankSimple_BankImp implements
// IDL interface BankSimple::Account.
DEF_TIE_BankSimple_Account(BankSimple_BankImpl)

Outline of the Bank Implementation (TIE Approach)

An outline of the code for BankSimple_BankImpl::create_account() is
shown below:

// C++
// In file banksimple_bankimpl.cxx

BankSimple::Account_ptr BankSimple_BankImpl::create_account
(const char * name, CORBA::Environment &) {

// Ensure that a valid account name is found.
int i = 0;
for (; i < MAX_ACCOUNTS && CORBA::is_nil(m_accounts[i]) ++i) {

...
}

 126

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 127 Monday, February 22, 1999 3:03 PM
if (i < MAX_ACCOUNTS) {
// Create an account with zero balance.
m_accounts[i] =

 new TIE_BankSimple_Account(BankSimple_AccountImpl)
(new BankSimple_AccountImpl(name, 0.0));

...
}
else {

... // Cannot create account, return nil.
}

};

The BankSimple::Account_ptr is initialized to reference a TIE object that
points in turn to the new BankSimple_AccountImpl object.

Note: The object that a TIE object points to must be dynamically allocated using
C++ operator new. By default, when a TIE object is destroyed, it deletes
the object that it points to. The object must therefore be dynamically
allocated.

Using the TIE approach, the Bank implementation class code is as follows:

// C++
// In file banksimple_bankimpl.cxx

// Implementation of the BankSimple::Bank interface.
#include “banksimple_bankimpl.h”
#include “banksimple_bccountimpl.h”

const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;

// Constructor.
BankSimple_BankImpl::BankSimple_BankImpl():

m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {

// Make sure all accounts are nil.
for (int i = 0; i < MAX_ACCOUNTS; ++i) {

m_accounts[i] = BankSimple::Account::_nil();
}

}

127

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 128 Monday, February 22, 1999 3:03 PM
// Destructor.
BankSimple_BankImpl::~BankSimple_BankImpl() {

delete [] m_accounts;
}
// Add a new account.
BankSimple::Account_ptr

BankSimple_AccountImpl::create_account(const char*name,
CORBA::Enviroment &) {

int i = 0;
for (; i < MAX_ACCOUNTS & !CORBA::is_nil(m_accounts[i]); ++i)
{ }

if (i < MAX_ACCOUNTS) {
m_accounts[i]=

new TIE_BankSimple_Account(BankSimple_AccountImpl)
(new BankSimple_AccountImpl(name, 0.0);

cout << “create_account: Created with name:” << name << endl;
return BankSimple::Account::_duplicate(m_accounts[i];

}
else {

cout << “create_account: failed, no space left!” << endl;
return BankSimple::Account::_nil();

}
}

// Find a named account
BankSimple::Account_ptr

BankSimple_BankImpl::find_account (const char * name,
CORBA::Enviroment &) {

... // Same as for BOAImpl approach.
}

};
 128

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 129 Monday, February 22, 1999 3:03 PM
Developing a Server Program
To develop a server program, you must do the following:

• Create initial implementation objects for these interfaces.

• Make these objects available to clients, by allowing Orbix to receive and
process incoming requests from clients.

This section describes how you can write a server main() function that creates
a Bank implementation object and makes this object available to clients.

Writing a Server main() Function

This section shows the main() function of the banking application, using both
the BOAImpl and the TIE approaches. In this example, the server main()
function creates an implementation object of type Bank.

Using the BOAImpl Approach
The main() function for the server shows the creation of a Bank object. You
could write this as follows:

// C++
// In file server.cxx.

#include <it_demo_nsw.h>
#include “banksimple_bankimpl.h”
#inlcude “banksimple_accountimpl.h”

int main(int argc, char * argv[])) {
try {

// Process command line arguments and server options.
....

// initialize the ORB and BOA (CORBA-defined).
CORBA::ORB_var orb = CORBA::Orb_init (argc, argv, “Orbix”);
CORBA::BOA_var boa = orb->BOA_init(argc, argv, “Orbix_BOA”);

// Set diagnostics as specified on the command line.
orb->setDiagnostics(serveropt.diagnostics());
129

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 130 Monday, February 22, 1999 3:03 PM
// Set server name (required to export object references).
orb->setServerName(serveropt.server_name());

// Indicate server should not quit when clients are
// connected.
boa->setNoHangup(1);

// For correct IOR generation, you must call
// impl_is_ready() before objects are created.
boa->impl_is_ready((char*)serveropt.server_name(), 0);

// Create a new Bank implementation object.
BankSimple::Bank_var my_bank = new BankSimple_BankImpl;
// To simplify the use of the naming service, a Naming
// Service Wrapper (NSW) is provided. Refer to
// DemoLib/IT_DEMO_NSW* for further details.

// Define a NSW object and define a name prefix to be
// used for subsequent operations.
IT_Demo_NSW ns_wrapper:
ns_wrapper.setNamePrefix(serveropt.context());

// Specify the name that the bank object is known as in
// the naming service.
const char *bank_name - “BankSimple.Bank”;

// Create missing contexts and overwrite existing entries in
// the naming serivce.
ns_wrapper.setBehaviourOptions

(IT_Demo_NSW::createMissingContexts);
ns_wrapper.setBehaviourOption

(IT_Demo_NSW::overwriteExistingObject)

// If unbind option is specified, unbind the server’s
// objects from the naming service and exit.
if (server.opt.unbindns()) {

cout << “Un-binding objects from the Naming Service”
<< endl;

ns_wrapper.removeObject(bank_name);
cout << “exiting...” << endl;
return 0;

}

 130

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 131 Monday, February 22, 1999 3:03 PM
// If the bind option is specified on the command line,
// register the server’s object with the naming service.
if (serveropt.bindns()) {

cout << “Binding objects in the Naming Service”
<< endl;

ns_wrapper.registerObject(bank_name, my_bank);
}

// Server has completed initialization, and waits for
// incoming requests.
boa->impl_is_ready((char*)serveropt.server_name(),

 serveropt.timeout());

// impl_is_ready() returns only when Orbix times-out an
// idle server.
cout << “server exiting” << endl;

}
catch (CORBA::Exception &e) {

cerr <<“Unexpected exception” << e << endl;
return 1;

}
return 0;

}

This server initializes a BankSimple::Bank_var object reference with a new
BankSimple_BankImpl object. The BankSimple_BankImpl object is created
using a default constructor.

Before creating the Bank object, the server initializes the ORB and BOA. The
server then calls impl_is_ready() to indicate that it has completed initialization
and is ready to receive operation requests on its objects.

Using the TIE Approach
The implementation of the server main() function is similar in the TIE approach.
The difference is that the server creates a TIE object in addition to a
BankSimple_BankImpl object:

// C++
// In file server.cxx.

#include <BankSimple_BankImpl.h>
#inlcude <BankSimple_AccountImpl.h>
131

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 132 Monday, February 22, 1999 3:03 PM
#include <IT_Demo_NSW.h>

int main(int argc, char * argv[])) {
....

// Create a new Bank implementation object.
BankSimple::Bank_var my_bank =

new TIE_BankSimple_Bank(BankSimple_BankImpl)
(new BankSimple_BankImpl);

....
// Wait for imcoming requests.
boa->impl_is_ready((char*)serveropt.server_name(),

 serveropt.timeout());
cout << “server exiting” << endl;

...
}

This server main() initializes a BankSimple::Bank_var object reference with a
new TIE object. The BankSimple_BankImpl object is created using a default
constructor. The accounts managed by a bank are stored in a list with members
of type BankSimple::Account_ptr . In this case, therefore, the linked list is
composed of TIE objects.

Initializing the Server

A server is normally coded so that it initializes itself and creates an initial set of
objects. It then calls boa->impl_is_ready() to indicate that it has completed its
initialization and is ready to receive operation requests on its objects.

impl_is_ready()

The impl_is_ready() function normally does not return immediately. It blocks
the server until an event occurs, handles the event, and re-blocks the server to
wait for another event. A server must call impl_is_ready() ; however, a client
must not call this function.

The impl_is_ready() function is declared as follows:

// C++
// In class CORBA::BOA.
void impl_is_ready (

const char* server_name = “ ”,
CORBA::ULong timeOut =

CORBA::Orbix::DEFAULT_TIMEOUT,
 132

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 133 Monday, February 22, 1999 3:03 PM
CORBA::Environment& IT_env =
CORBA::default_environment);

When a server is launched by Orbix, the server name is already known to Orbix
and therefore does not need to be passed to impl_is_ready(). However, when
a server is launched manually or externally to Orbix, the server name must be
communicated to Orbix before any Orbix services are used.

The normal way to do this is as the first parameter to impl_is_ready(). To
allow a server to be launched either automatically or manually, you should
specify the server_name parameter.

By default, servers must be registered with Orbix, using the putit command. If
an unknown server name is passed to impl_is_ready(), the call is rejected.
However, you can configure the Orbix daemon (orbixd) to allow unregistered
servers to be run manually. Refer to the Orbix C++ Administrator’s Guide for
details.

If you do not want to specify the server_name, but want to specify a non-default
timeOut or Environment, you should pass a zero length string ("") for the value
of the server_name parameter.

The impl_is_ready() function returns only when a timeout occurs or an
exception occurs while waiting for or processing an event. The timeout
parameter indicates the number of milliseconds to wait between events.

A timeout occurs if Orbix has to wait longer than the specified timeout for the
next event. A timeout of zero indicates that impl_is_ready() should time out
and return immediately without checking for any pending event. A timeout does
not cause impl_is_ready() to raise an exception.

Note: A server can time out either because it has no clients for the timeout
duration, or because none of its clients uses it for that period.

The default timeout can be passed explicitly as CORBA::ORB::DEFAULT_TIMEOUT.
You can specify an infinite timeout by passing CORBA::ORB::INFINITE_TIMEOUT.
133

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 134 Monday, February 22, 1999 3:03 PM
Developing a Client Program
From the point of view of the client, the functionality provided by the
BankSimple example is defined by the IDL interface definitions. A typical client
program locates a remote object, gets a reference to the object and then
invokes operations on the object.

These three concepts, object location, getting an object reference, and remote
invocations, are important concepts in distributed systems:

• Object location involves searching for an object in the available nodes.

• Getting a reference to an object—establishes the facilities required to
make remote invocations possible. In Orbix this involves the implicit
creation of a proxy—a reference to the proxy is then returned to the
client.

• Remote invocations in Orbix occur when normal C++ function calls are
made on proxies.

These concepts are illustrated in this section. This client uses the Naming
Service Wrappers to find and get a reference to a Bank object. Remote function
invocations can then be made on the object. Alternatives to using the Naming
Service are discussed later in this section.

You should refer to Chapter 6, “Making Objects Available in Orbix” on page 147
for a detailed discussion.

The main BankSimple client program performs initialization and then starts a
simple interactive menu, enabling you to call IDL operations on a Bank. The
client uses the following files to make remote invocations:

• bankmenu.cxx

This calls operations on the Bank IDL interface.

• accountmenu.cxx

This calls operations on the Account IDL interface.

The code for the client is as follows:

// C++
// In file client.cxx

#include <it_demo_streams.h>
 134

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 135 Monday, February 22, 1999 3:03 PM
#include <it_demo_clientoptions.h>
#include <it_demo_nsw.h>
#include "bankmenu.h"

// Connects to bank object, and runs a simple menu loop
// to call operations on bank or accounts.
int main (int argc,char *argv[]) {

...
// ORB Setup - initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "Orbix");

// Set the diagnostic level from the options
orb->setDiagnostics(clientopt.diagnostics());

// Naming Service Setup
IT_Demo_NSW ns_wrapper;
ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Specify the object name in the naming service.
const char *object_name = "BankSimple.Bank";

// Get a reference to the required object from the NSW.
CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
BankSimple::Bank_var bank = BankSimple::Bank::_narrow(obj);
if (CORBA::is_nil(bank)) {

cerr << "Object \"" << object_name
<< "\"in the naming service" << endl
<< "\tis not of the expected type."<< endl;

return 1;
}

// Start client menu loop
BankMenu main_menu(bank);
main_menu.start();

}
...

}

135

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 136 Monday, February 22, 1999 3:03 PM
Alternatives to the Naming Service

Using the Naming Service is the CORBA-defined way to establish
communications with a particular object. There are two other ways that a client
can obtain a reference to an object it needs to communicate with:

• Using a return value or an out parameter to an IDL operation call.

• Using the Orbix-specific _bind() mechanism.

Using a Return Value or an Out Parameter
A client can also receive an object reference as a return value or as an out
parameter to an IDL operation call. This results in the creation of a proxy in the
client’s address space. Operation create_account(), for example, returns a
reference to an Account object, and a client that calls this operation can then
make operation calls on the new object.

Using _bind()
The following code sample shows how a client could obtain a reference to a
Bank object using the Orbix-specific _bind() operation:

try {
CORBA::ORB_var orb =

CORBA::ORB_init(argc,argv,“Orbix”);
BankSimple::Bank_var bank =

BankSimple::Bank::_bind(“:IT_demo/BankSimple/Bank”);
...

}
catch (CORBA::Exception &e) {

cout << “Unexpected exception” << e << endl;
}

The bind mechanism is implemented by the static member function _bind() of
C++ class BankSimple::Bank . This function takes a parameter that specifies the
location of the required implementation object in the system. Orbix can choose
any Bank object within the named server. The value returned by
BankSimple::Bank::_bind() is a remote object reference. This is a pointer to
a proxy object in the client address space. Refer to “Tabular Summary of
Parameters to _bind()” on page 163 for further information.
 136

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 137 Monday, February 22, 1999 3:03 PM
In general, a process must use the Naming Service or call _bind() at least once
in order to communicate with objects outside of its address space. However, it
should not overuse either the Naming Service or _bind(). For many
applications it is better for a server to make its objects known to its clients
through IDL interfaces provided by other objects.

Where possible, you should use a combination of the Naming Service and object
references returned through IDL operations to make objects available to clients
in your Orbix applications. The Orbix _bind() function is convenient, but is not
defined in the CORBA standard.

Registering the Server
The last step in developing and installing your application is to register the server
with the Implementation Repository.

The Orbix Implementation Repository records each server name and executable
filename. Registering a server enables the Orbix daemon (orbixd) to launch a
server that is not running when one of its objects is used. If the Orbix daemon is
configured to allow unregistered servers, server registration is optional, and
server that is not known to Orbix can then be run manually. Its call to
CORBA::BOA::impl_is_ready() must specify its server name. In addition, the
server must call to impl_is_ready() before any other calls to Orbix.

Every node in a network that runs servers must have access to an
Implementation Repository. Repositories can be shared using a network file
system.

You can register a server using either the Server Manager GUI tool or run the
Orbix putit command on the server host as follows:

putit server name server path [server command line arguments]

For example, on UNIX, the Bank server might be registered as follows:

% putit Bank /usr/users/joe/banker

The executable file /usr/users/joe/banker is then registered as the
implementation code of the server named Bank at the current host. The putit
command does not run the executable; you can execute this explicitly from the
shell. Alternatively, it is launched automatically by Orbix in response to an
incoming operation invocation.
137

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 138 Monday, February 22, 1999 3:03 PM
For more information on registration and activation of servers, refer to the
Orbix C++ Administrator’s Guide.

Execution Trace for the Example Application
This section considers the events that occur when the Bank server and client are
run. The TIE approach is used to show the initial trace, and then the BOAImpl
approach is discussed.

First a server with the name "Bank" is registered in the Implementation
Repository. Then, when an invocation arrives from a client, Orbix launches the
server using the specified executable file; for example, /usr/users/joe/banker.

The server process creates a new TIE (of class TIE_Bank(BankImpl)) for an
object of class BankSimple_BankImpl, and waits on
CORBA::BOA::impl_is_ready():

// C++
// In file server.cxx.

#include “banksimple_bankimpl.h”
#inlcude “banksimple_accountimpl.h”
#include “IT_Demo_NSW.h”

int main(int argc, char * argv[])) {
....
// Create a new Bank implementation object.
BankSimple::Bank_var my_bank =

new TIE_BankSimple_Bank(BankSimple_BankImpl)
(new BankSimple_BankImpl);

....
// Wait for imcoming requests.
boa->impl_is_ready((char*)serveropt.server_name(),

 serveropt.timeout());
cout << “server exiting” << endl;

...

}

The state of the server, at the time of the impl_is_ready() call, is shown in
Figure 5.3. The server is now waiting for incoming requests. If impl_is_ready()
times out, the server terminates.
 138

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 139 Monday, February 22, 1999 3:03 PM
Figure 5.3: State of the Server at Launch

Now consider the client: it first binds to a Bank object, using the Naming
Service; for example:

// C++
// In file client.cxx
...
int main (int argc,char *argv[]) {

...
// Naming Service Setup
IT_Demo_NSW ns_wrapper;
ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Specify the object name in the naming service.
const char *object_name = "BankSimple.Bank";

// Get a reference to the Bank object from the NSW.
CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
BankSimple::Bank_var bank = BankSimple::Bank::_narrow(obj);

BankSimple::Bank_var my_bank

BankSimple_BankImpl

Server Process

Orbix Library Code

Bank TIE
139

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 140 Monday, February 22, 1999 3:03 PM
The result is an automatically generated proxy object in the client, which acts as
a stand-in for the remote BankSimple_BankImpl object in the server. The
object reference bank within the client is now a remote object reference as
shown in Figure 5.4.

The client programmer is not aware of the TIE object. Nevertheless, all remote
operation invocations on our BankSimple_BankImpl object go via the TIE.

Figure 5.4: Client Binds to Bank Object (TIE Approach)

The client program proceeds by using the client menu to ask the bank to open a
new account:

// C++
// In file bankmenu.cxx
...
BankSimple::Account_var account

= m_bank->create_account(name);

BankSimple::Bank_var m_bank BankSimple::Bank_var my_bank

Client Process Server Process

Orbix Library CodeOrbix Library Code

Bank TIE

Bank
proxy

BankSimple_BankImpl

object
 140

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 141 Monday, February 22, 1999 3:03 PM
When the m_bank->create_account() call is made, the function
BankSimple::BankImpl::create_account() is called (via the TIE) within the
bank server. This generates a new BankSimple_AccountImpl object and
associated TIE object. The TIE object is linked into the BankSimple_BankImpl
object’s list of Accounts.

Finally, create_account() returns the Account reference back to the client. At
the client side, a new proxy is created for the Account object, and this is
referenced by the m_account variable (Figure 5.5).

Figure 5.5: Client Accesses Account Object (TIE Approach)

BankSimple::Account_var

BankSimple::Bank_var m_bank

Client Process Server Process

Bank
proxy

Account
proxy

BankSimple::Bank_var
my_bank

Bank TIE account TIE

object

BankSimple_AccountImpl

object

BankSimple_BankImpl

Orbix Library CodeOrbix Library Code

m_account
141

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 142 Monday, February 22, 1999 3:03 PM
Using the BOAImpl approach, the final diagram is as shown in Figure 5.6.

Figure 5.6: Client Accesses Account Object (BOAImpl Approach)

Comparing the TIE and BOAImpl Approaches
This section highlights further ways you can use the TIE and BOAImpl
approaches to provide implementation classes, and compares both approaches.

Wrapping Existing Code

Orbix provides a mechanism to achieve application integration for both new and
existing applications. An application can allow other code to use its services by
providing a number of IDL interfaces and making these available to the overall
system. This allows you to write new applications by combining the facilities of
existing applications. Because the components of the system are objects whose
internals are hidden from their clients, these objects can provide the basis for

BankSimple::Account_var

Orbix Library Code Orbix Library Code

BankSimple::Bank_var m_bank

Client Process Server Process

Bank
proxy

Account
proxy

BankSimple::Bank_var my_bank

object

BankSimple_AccountImpl

object

BankSimple_BankImpl

m_account
 142

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 143 Monday, February 22, 1999 3:03 PM
integrating with legacy systems. Over time, legacy systems can be replaced with
newer systems which nevertheless provide the same CORBA interfaces. One
aspect of this wrapping of existing code is the ability to implement an IDL
interface using existing C++ classes.

Using the TIE Approach
The TIE approach is clear on whether or not it supports wrapping existing code.
If the existing C++ class has exactly the correct member functions (each
function has exactly the correct name and correct parameter types), you must
call the appropriate DEF_TIE macro. In addition, you must also add the
CORBA::Environment parameter to the member functions because existing
code would not have this parameter. The existing code may have other functions
that do not correspond to IDL attributes or operations in the IDL interface in
question. However, if the existing C++ code does not have exactly the correct
member functions, the TIE approach cannot be used.

Using the BOAImpl Approach
To use the BOAImpl approach for existing code, you must use C++ multiple
inheritance to specify the relationship between the IDL C++ class and the
previously written implementation class. Instances of the derived class are then
valid implementations of the IDL interface. Figure 5.7 on page 144 shows how
you can use the BOAImpl approach to allow a pre-existing class to implement an
IDL interface. The programmer has already implemented a class, BankAccount,
which provides an implementation of each of the functions of the IDL interface.
To indicate that this class implements the IDL interface, a class
BankSimple_AccountImpl has been defined that inherits from both the
BOAImpl-class and the class, BankAccount, which provides the functions. Class
BankSimple_AccountImpl is the class which is said to implement the IDL
interface.

This is more difficult to code than the corresponding code for the TIE approach,
where a call to the appropriate DEF_TIE macro may be all that is required.
However, the BOAImpl approach is significantly more flexible in its use of
existing code. In particular, the code for class BankSimple_AccountImpl can
manipulate any call that it receives before passing it on to the code for class
BankAccount. This manipulation can compensate for differences in function
names and parameters, and differences in function semantics.
143

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 144 Monday, February 22, 1999 3:03 PM
Figure 5.7: BOAImpl Approach to Allow an Existing Class to Implement an IDL Interface

Providing Different Implementations of the Same Interface

Both the BOAImpl and TIE approaches allow you to provide a number of
different implementations of the same IDL interface—to provide more than one
implementation class for a given IDL interface. This is an important feature,
especially in a large heterogeneous distributed system. An object can then be
created as an instance of any one of the implementation classes. Client
programmers need not be aware of which class has been chosen.

IDL compiler

BankSimple::Account (IDL interface)

BankSimple::Account (IDL C++ class)

BankSimple::AccountBOAImpl BankSimple::BankAccount (C++ class
already written to
implement the
interface)

BankSimple::AccountImpl (C++ class defined using multiple
inheritance from the implementation
class and the BOAImpl-class)
 144

U s i n g an d I mp l e m en t i n g I D L I n t e r f a c e s

ProgramGuide.book Page 145 Monday, February 22, 1999 3:03 PM
Providing Different Interfaces to the Same Implementation

You can have a C++ implementation class that implements more than one IDL
interface. This class must declare all of the operations defined in all of the
interfaces it implements. In the TIE approach, this common class is tied to
different IDL interfaces using multiple DEF_TIE macro calls.

In the BOAImpl approach, this usually requires an IDL interface that derives
from all of the IDL interfaces in question.

Comparison of the BOAImpl and TIE Approaches

This section briefly compares the BOAImpl and TIE approaches to implementing
IDL interfaces in C++. In real terms, these do not differ greatly in their power,
and it is frequently a matter of personal taste which one is preferred. The TIE
and BOAImpl approaches can be freely mixed within the same server.

The TIE approach has a small advantage in that it allows an advanced feature
known as “per-object” filtering to be used. This allows you to specify additional
code that is to be executed when an invocation is made on a particular object;
from the same or a different address space. Both the BOAImpl and the TIE
approach enable you to specify additional code to be executed when an attribute
or operation invocation is made across an address space boundary; from a client/
server to a client/server on the same or a different host.

Refer to Chapter 16, “Filtering Operation Calls” on page 307 for more
information on using filters with Orbix.
145

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 146 Monday, February 22, 1999 3:03 PM
 146

ProgramGuide.book Page 147 Monday, February 22, 1999 3:03 PM
 6
Making Objects Available in Orbix

A central requirement in a distributed object system is for clients to
be able to locate the objects they wish to use. This chapter describes
how you can make objects available in servers and locate those
objects in clients.

Before using a CORBA object, a client must establish contact with it. To do this,
the client must get an object reference for the required object. An object
reference is a unique value that tells an ORB where an object is and how to
communicate with it.

A problem for every CORBA application is how servers can make object
references available to clients and how clients can retrieve these references to
establish contact with objects. This chapter describes three solutions to this
problem:

• Using the CORBA Naming Service.

• Using a basic protocol to transfer object references between servers and
clients.

• Using the Orbix _bind() function.

These solutions are presented after a brief introduction to how object
references work in CORBA.
147

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 148 Monday, February 22, 1999 3:03 PM
Identifying CORBA Objects
Every CORBA object is identified by an object reference—a unique value that
includes all the information an ORB requires to locate and communicate with
the object. When a client gets a reference to an object, the ORB creates a proxy
in the client’s address space. When the client calls an operation on the proxy,
the ORB transmits the request to the target object.

Orbix supports two protocols for communications between clients and servers:

• The CORBA standard Internet Inter-ORB Protocol (IIOP), which is the
default protocol.

• The Orbix protocol.

Each of these communication protocols has its own object reference format.

Interoperable Object References

An object that is accessible using IIOP is identified by a CORBA interoperable
object reference (IOR). An IOR encodes various pieces of information about an
object, including:

• The Internet address of the object’s host.

• A port number used to communicate with the object.

• An object reference, in the format of the native ORB protocol.

For example, an IOR for an Orbix object includes the object’s full Orbix object
reference.

IORs are managed internally by the ORB. It is not necessary for you to know the
detailed structure of an IOR. However, you may wish to publish IORs in their
string format, as described in “Transferring Object Reference Strings” on
page 158.
 148

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 149 Monday, February 22, 1999 3:03 PM
Orbix Object References

Every object created in an Orbix application has an associated Orbix object
reference. This object reference includes the following information:

• An object name that is unique within the object’s server. This name is
known as the object’s marker.

• The object’s server name.

• The server’s host name.

For example, the object reference for a bank account would include the object’s
marker name, the name of the server that manages the account, and the name of
the server’s host. The bank server could, if necessary, create and name different
bank objects with different names, all managed by the same server.

In more detail, an Orbix object reference is fully specified by the following fields:

• Object marker.

• Server name.

• Server host name.

• IDL interface type of the object.

• Interface Repository (IFR) server in which the interface definition is
stored.

• IFR server host.

All Orbix objects inherit the C++ class CORBA::Object. This interface supplies
several methods common to all object references, including
_object_to_string(). Given an Orbix object reference, this function produces
a string that has the following format:

:\host:server_name:marker:IFR_host:IFR_server:IDL_interface
149

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 150 Monday, February 22, 1999 3:03 PM
Class CORBA::Object also provides access to the individual fields of an object
reference string through the following set of accessor functions:

// C++
// in class CORBA::Object.
const char* _host(Environment& env =

default_environment) const;
const char* _implementation(Environment& env =

default_environment) const;
const char* _marker(Environment& env =

default_environment) const;
const char* _interfaceHost(Environment& env =

default_environment) const;
const char* _interfaceImplementation(

Environment& env =
default_environment) const;

const char* _interfaceMarker(Environment& env =
default_environment) const;

In general, the IFR host name (interfaceHost) and IFR server
(interfaceImplementation) fields are set to default values. Orbix automatically
assigns the server host, server name, and IDL interface fields on object creation
and it is not generally necessary to update these values. Orbix also assigns a
marker value to each object, but you can choose alternative marker values in
order to name Orbix objects explicitly.

Assigning Markers to Orbix Objects

There are two ways to specify a marker for an object: by setting the marker
when creating the object or by calling the modifier function
CORBA::Object::_marker(). If you do not specify a marker for an object,
Orbix automatically sets the marker value.

The method of assigning a marker when creating an object depends on the
approach used to implement the IDL interface:

• If you use the TIE approach, pass a marker name to the second parameter
(of type const char*) of a TIE constructor. For example:

// C++
BankSimple::Bank_var bVar = new TIE_Bank
(BankSimple_BankImpl)

(new BankSimple_BankImpl, "College_Green");
 150

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 151 Monday, February 22, 1999 3:03 PM
• If you use the BOAImpl approach, pass a marker name to the first
parameter (of type const char*) of a BOAImpl constructor. For
example:

// C++
class BankSimple_BankImpl : public virtual
BankBOAImpl {
public:

BankSimple_BankImpl (const char* marker);
...

};

BankSimple_BankImpl::BankSimple_BankImpl
(const char* marker) : BankBOAImpl (marker) {

}

Choosing Marker Names
A marker name chosen by Orbix consists of a string composed entirely of
numeric characters. You can ensure that your markers are different from those
chosen by Orbix by not using strings that consist entirely of numeric characters.
Marker names cannot contain the character ‘:’ or the null character.

An object’s interface name together with its marker name must be unique within
a server. If a chosen marker is already in use when an object is named, Orbix
silently assigns a different marker to the object. The object with the original
marker will be unaffected. There are two ways to test for this, depending on
how a marker is assigned to an object:

• If _marker(const char*) is used, you can test for a false return value;
this indicates a name clash.

• If the marker is assigned when creating a TIE or when calling a BOAImpl
class constructor, you can test for a name clash by calling the
parameterless accessor function _marker() on the new object and
comparing the marker with the one you tried to assign. This approach is
necessary because the return value from the new operator is non-zero if
there is a name clash.
151

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 152 Monday, February 22, 1999 3:03 PM
Using the CORBA Naming Service
The Naming Service allows you to associate abstract names with CORBA
objects and allows clients to find those objects by looking up the corresponding
names. A server that holds a CORBA object binds a name to the object by
contacting the Naming Service. To obtain a reference to the object, a client
contacts the Naming Service and resolves the specified name.

Most CORBA applications make some use of the Naming Service. Each copy of
Orbix includes a copy of OrbixNames, IONA Technologies’ implementation of
the Naming Service, so you can use the Naming Service in any of your
applications.

This section provides an overview of the Naming Service and briefly describes
how you use the standard interface to the Naming Service. Before using this
service, refer to the OrbixNames Programmer’s and Administrator’s Guide for
more detailed information.

The Interface to the Naming Service

The programming interface to the Naming Service is defined in IDL. A standard
set of IDL interfaces allow you to access all the Naming Service features.
OrbixNames, for example, is a normal Orbix server that contains objects that
implement these interfaces.

The Naming Service interfaces are defined in the IDL module CosNaming:

// IDL
module CosNaming {

// Naming Service IDL definitions.
...

};

Format of Names in the Naming Service

The Naming Service maintains a database of names and the objects associated
with them. In the Naming Service, names can be associated with two types of
objects: a naming context or an application object. A naming context is an object
in the Naming Service within which you can resolve the names of other objects.
 152

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 153 Monday, February 22, 1999 3:03 PM
The full name of an object, including all the associated naming contexts, is known
as a compound name. The first component of a compound name gives the name
of a naming context, in which the second component is accessed. This process
continues until the last component of the compound name has been reached.

A name component is defined as an IDL structure, of type
CosNaming::NameComponent, that holds two strings:

// IDL
// In module CosNaming.
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

A name is a sequence of these structures:

typedef sequence<NameComponent> Name;

The id member of a NameComponent is a simple identifier for the object; the
kind member is a secondary way to differentiate objects and is intended to be
used by the application layer. Both the id and kind members of a
NameComponent are used to differentiate names.

Making Initial Contact with the Naming Service

The IDL interface NamingContext, defined in module CosNaming, provides
access to most features of the Naming Service. The first step in using the
Naming Service is to get a reference to an object of this type.

Each Naming Service contains a special CosNaming::NamingContext object,
called the root naming context, that acts as an entry point to the service. The
root naming context allows you to create new naming contexts, bind names to
objects, resolve object names, and browse existing names.

To get a reference to the root naming context, pass the string NameService to
the following C++ function call on the ORB (the CORBA::Orbix object):

// C++
// In class CORBA::ORB.
Object_ptr resolve_initial_references(

const char* identifier)
153

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 154 Monday, February 22, 1999 3:03 PM
You can then narrow the returned object reference using the function
CosNaming::NamingContext::_narrow(). Some configuration is required for
this to work, as described in the OrbixNames Programmer’s and Administrator’s
Guide.

Associating Names with Objects

Once you have a reference to the root naming context, you can begin to
associate names with objects. The operation
CosNaming::NamingContext::bind() enables you to bind a name to an object
in your application. This operation is defined as:

void bind (in Name n, in Object o)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To use this operation, you first create a CosNaming::Name structure containing
the name you want to bind to your object. You then pass this structure and the
corresponding object reference as parameters to bind().

Using Names to Find Objects

Given an abstract name for an object, you can retrieve a reference to the object
by calling CosNaming::NamingContext::resolve(). This operation is defined
as:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

When you call resolve(), the Naming Service retrieves the object reference
associated with the specified CosNaming::Name value and returns it to your
application.
 154

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 155 Monday, February 22, 1999 3:03 PM
Associating a Compound Name with an Object

If you want to use compound names for your objects, you must first create
naming contexts. For example, consider the compound name shown in
Figure 6.1.

To create this compound name:

1. Create a naming context and bind a name with identifier company (and no
kind value) to it.

2. Create another naming context, in the scope of the company context, and
bind the name staff to it.

3. Bind the name james to your application object in the scope of the staff
context.

The operation CosNaming::NamingContext::bind_new_context() enables
you to create naming contexts:

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To create a new naming context and bind a name to it, create a
CosNaming::Name structure for the context name and pass it to
bind_new_context(). If the call is successful, the operation returns a reference
to your newly-created naming context.

Figure 6.1: An Example Compound Name

james

staff

company
155

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 156 Monday, February 22, 1999 3:03 PM
Using the Naming Service in Orbix Example Applications

The code examples presented in other chapters of this guide use the Naming
Service. To simplify the code, these examples access the Naming Service through
a set of wrapper functions. These functions then communicate with the Naming
Service using the standard IDL interfaces.

The wrapper functions are defined in the class IT_Demo_nsw. You can find the
declaration of this class in the file IT_Demo_nsw.h in the demos directory of your
Orbix installation.

The functions are:

The functions registerObject(), resolveName(), and removeObject() take
object names as parameters. To avoid the creation of CosNaming::Name
structures directly in sample code, these functions take name parameters in the
string format described in the OrbixNames Programmer’s and Administrator’s
Guide. This is a convenient way to format names and is also used by the
OrbixNames command-line utilities.

registerObject() This function takes two parameters: a string format
name and an object reference. It converts the string to a
CosNaming::Name structure and then binds this name to
the specified object. If you specify a compound name, the
naming contexts must already exist.

resolveName() This function takes a string format name, converts it to
an equivalent CosNaming::Name structure and attempts
to resolve this name in the Naming Service. It returns a
reference to the object associated with the name.

removeObject() This function removes the association between a name
and an object in the Naming Service.

setNamePrefix() Function setNamePrefix() allows you to shorten the
name parameters passed to registerObject(),
resolveName(), and removeObject(). The specified
string prefix is added to the name parameter passed to
each subsequent call to these operations.

clearNamePrefix() This function clears the string prefix added to each name
parameter by setNamePrefix().
 156

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 157 Monday, February 22, 1999 3:03 PM
Transferring Object References
There are two ways to pass object references directly between a server and a
client:

• Using IDL operation parameters.

• Using the string format of object references.

This section examines each in turn.

Passing Object References as Operation Parameters

IDL operations can return object references as parameters or return values; for
example:

// IDL
interface Account;

interface Bank {
// Create a new account.
Account create_account (in string name);
// Find an existing account.
Account find_account (in string name);

};

interface Account {

...
};

An object that implements interface Bank acts as a factory for the creation of
Account objects. The operations create_account() and find_account() pass
object references to clients as return values.

Of course, to receive an object reference from an operation, a client must first
be able to call the operation. This implies that the client already has a reference
to some object in the server. A common strategy in CORBA applications is to
make one or more server objects available through the Naming Service, or some
similar mechanism, and let these act as entry points to other server objects.

In fact, the Naming Service itself uses this strategy. A standard function call,
resolve_initial_references() returns the root naming context and this
object acts as an entry point to all other objects in the service.
157

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 158 Monday, February 22, 1999 3:03 PM
Transferring Object Reference Strings

One way to pass an object reference from a server to a client without
establishing communications first, is to use object reference strings. As described
in “Identifying CORBA Objects” on page 148, you can get the string form of an
object reference by calling the function CORBA::ORB::object_to_string().
Given the string form of an object reference, an Orbix client can create a proxy
for that object by passing the string to the function
CORBA::ORB::string_to_object().

One simple protocol for passing an object reference from a server to a client is
as follows:

1. The server calls CORBA::ORB::object_to_string() to get the string
format of an object reference.

2. The server writes this string to a location, for example a file, accessible by
both client and server.

3. The client reads the object reference string.

4. The client calls CORBA::ORB::string_to_object() to create a proxy.

For example, given an object reference string that identifies a
BankSimple::Bank object, a client can create a proxy as follows:

// C++
// Assign object reference string to bankString.
String_var bankString = ... ;

// Create proxy.
BankSimple::Bank_var bVar =

CORBA::Orbix.string_to_object(bankString);

The function string_to_object() is overloaded to allow the individual fields of
a stringified object reference to be specified. See the entries for
CORBA::ORB::string_to_object() in the Orbix C++ Programmer’s Reference
for more details.
 158

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 159 Monday, February 22, 1999 3:03 PM
Binding to Orbix Objects
The Orbix _bind() function finds a particular object using specific information
about the object’s location in a distributed system. For example, when calling
_bind() you can specify the exact object you require in a particular server on a
particular host. You can also omit some of this information and allow Orbix
some freedom in choosing the object.

Using _bind() is not recommended for most applications. This function is
presented here for completeness, but its use is deprecated and it may be
removed from future versions of Orbix.

Overview of the _bind() Function
The _bind() function is a static member function automatically generated by
the IDL compiler for each IDL C++ class. For interface BankSimple::Bank, the
full declaration of _bind() is:

// C++
static BankSimple::Bank_ptr _bind

(const char* markerServer, const char* host, const
CORBA::Context&, CORBA::Environment& IT_env =

CORBA::default_environment);

Combining default parameters and overloading, _bind() can take the following
sets of parameters:

• markerServer, host, Context, Environment (the last is defaulted).

• markerServer, host, Environment (the last is defaulted).

• Environment (defaulted).

• markerServer, host.

• markerServer.

• A full object reference as returned by the function
CORBA::ORB::object_to_string().

• No parameters.

The _bind() function supports polymorphic binds. This means that a call to
A::_bind() can be made to an object of interface B, if interface A is a base
interface of or the same interface as interface B.
159

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 160 Monday, February 22, 1999 3:03 PM
The markerServer Parameter to _bind()

The markerServer parameter denotes a specific server name and object within
that server. It can be a string of the form:

marker:server_name

The marker identifies a specific object within the server. The server name is the
name with which the server is registered in the Implementation Repository.

If the server name is not given in the markerServer parameter, the server name
defaults to the name of the IDL C++ class for _bind(). For example, in a
parameterless call to BankSimple::Bank::_bind(), the server name defaults to
Bank. This means that the target server must have been registered with the
name Bank.

If the marker is not given, it defaults to that of any object, within the server
specified, that implements the interface given by the IDL C++ class name
specified. The chosen object may have been named explicitly by the programmer
or assigned a default marker name by Orbix.

If the string does not contain a ‘:’ character, the string is understood to be a
marker with no explicit server name. Since colon (‘:’) is used as a separator, it is
illegal for a marker or a server name to include a ‘:’ character.

The _bind() function first looks for the object in the caller’s address space if:

• No server name is explicitly given.

• The server name and host name are that of the caller.

This means that there is a subtle difference between

// C++
BankSimple::Bank_ptr b =
BankSimple::Bank::_bind("College_Green");

and

BankSimple::Bank_ptr b =
BankSimple::Bank::_bind("College_Green:Bank");

The former always first looks for the object in the caller’s address space; the
latter only does so if the caller is a server called Bank.
 160

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 161 Monday, February 22, 1999 3:03 PM
Examples of the markerServer parameter that could be used in a call to
BankSimple::Bank::_bind() are:

Finally, if the markerServer parameter has at least two ‘:’ characters within it, it
is not treated as a marker:server-name pair, but it is assumed to be the string
form of a full object reference. A full object reference string is returned by the
function CORBA::ORB::object_to_string(), to which you can pass any Orbix
object as a parameter. A call to _bind() with a full object reference string is
similar to a call to the function CORBA::ORB::string_to_object().

The host Parameter to _bind()
The host parameter to _bind() specifies the Internet host name or the Internet
address of a node on which to find the server. An Internet address is assumed to
be a string of the form xxx.xxx.xxx.xxx, where x is a decimal digit.

If a null string is provided, Orbix uses the locator to find the object’s server in the
distributed system. The Orbix locator allows the locations of servers to be
recorded, as is explained in Chapter 20, “Locating Servers at Runtime” on
page 377. This configuration information is then used during _bind(), provided
that the host parameter is not explicitly given.

"College_Green:AIB" The College_Green object at the AIB server.

"College_Green" The College_Green object at the Bank server.

"College_Green:" The College_Green object at the Bank server.

"" Any Bank object at the Bank server.

"College_Green:myBank" The College_Green object at the myBank server.

":myBank" Any Bank object at the myBank server.
161

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 162 Monday, February 22, 1999 3:03 PM
Example calls to _bind()

This section shows a selection of sample calls to _bind().

// C++
// Bind to any Bank object in any "Bank" server.
// That object should implement the Bank IDL
// interface.
BankSimple::Bank_var bVar = BankSimple::Bank::_bind();

// Bind to any Bank object in the "Bank" server
// at node alpha (in the current domain).
// That object should implement the Bank IDL
// interface.
BankSimple::Bank_var bVar =
BankSimple::Bank::_bind ("", "alpha");

// Bind to the "College_Green" object within the
// "Bank" server at node alpha (in the current
// domain). That object should implement the
// Bank IDL interface.
BankSimple::Bank_var bVar =
BankSimple::Bank::_bind ("College_Green", "alpha");

// Bind to the "College_Green" object (in server
// "Bank") somewhere within the network.
// College_Green should implement the Bank
// IDL interface.
BankSimple::Bank_var bVar =
BankSimple::Bank::_bind("College_Green");

// Bind to the "College_Green" object in the "AIB"
// server somewhere in the network. That object
// must implement the Bank IDL interface.
BankSimple::Bank_var bVar =
BankSimple::Bank::_bind("College_Green:AIB");

// Bind to the "College_Green" object at the "AIB"
// server at node beta, in the internet domain
// "mc.ie". That object should implement the Bank
// IDL interface.
BankSimple::Bank_var bVar =
BankSimple::Bank::_bind ("College_Green:AIB", "beta.mc.ie");
 162

Mak in g O b j e c t s A v a i l a b l e i n O r b i x

ProgramGuide.book Page 163 Monday, February 22, 1999 3:03 PM
Tabular Summary of Parameters to _bind()

The following table summarizes the rules for a general-form call to _bind() :

// C++
T1_var tVar;
tVar = T2::_bind("M:S", "H", C);

T1 T1 must be the same or a base type of T2.

T2 T2 is an IDL interface name. It is not the name of a server, unless a
server is explicitly registered with the same name as an interface. The
object that is found must implement interface T2 or a derived
interface of this.

M M is a marker name—the name of an object within the specified
server. If M is left blank, _bind() is allowed to find any object in the
specified server with a correct interface (T2 or a derived interface).

S S is a server name—a name used previously to register a server in the
Implementation Repository. If S is left blank (that is, if the
markerServer parameter to _bind() is the empty string, or has no
“:” character, or terminates with a “:” character), the name T2 is
used as the server name. In this case, a server must have been
explicitly registered with the name T2.

H This is an Internet host name or (if the string is in the format
xxx.xxx.xxx.xxx, where x is a decimal digit) an Internet address. If H
is the empty string, Orbix uses its locator to try to find the required
server.

C This context is passed to the locator (Refer to “Locating Servers at
Runtime” on page 377); however, the built-in locator does not use its
context parameter.
163

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 164 Monday, February 22, 1999 3:03 PM
Binding and Exceptions

By default, _bind() raises an exception if the desired object is unknown to
Orbix. Doing so requires Orbix to ping that desired object in order to check its
availability1. The ping causes the target server process to be activated if
necessary, and it confirms that this server recognizes the target object.

You can improve efficiency by reducing the number of remote invocations. To
do this, call the function pingDuringBind() to disable the ping operation:

// C++
// In class CORBA::ORB.
CORBA::Orbix.pingDuringBind(0); // 0 for false.

The previous setting is returned. The Orbix C++ Programmer’s Reference
provides more details about this function.

When ping is disabled, binding to an unavailable object does not raise an
exception at that time. Instead, an exception is raised when the proxy object is
first used.

A program should always check for exceptions when calling _bind(), whether
or not pinging is enabled. Even when ping is disabled, this function can raise an
exception in some circumstances.

1. The ping operation is defined by Orbix and it has no effect on the target object. For the
Orbix protocol, it is defined by Orbix, for IIOP, it is a LocateRequest.
 164

ProgramGuide.book Page 165 Monday, February 22, 1999 3:03 PM
 7
Exception Handling in Orbix

The implementation of an IDL operation or attribute can throw an
exception to indicate that a processing error has occurred. This
chapter describes Orbix exception handling in detail, using an
example named BankExceptions. This example builds on the
concepts illustrated in the BankSimple example in Chapter 2 and
Chapter 5.

There are two types of exceptions that an IDL operation can throw:

• User-defined exceptions.

These exceptions are defined explicitly in your IDL definitions, and can
only be thrown by operations.

• System exceptions.

These are pre-defined exceptions that all operations and attributes can
throw.

This chapter describes user-defined exceptions and system exceptions in turn
and shows how to throw and catch these exceptions.

The examples in this chapter, and throughout this guide, assume that your C++
compiler supports C++ exception handling.
165

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 166 Monday, February 22, 1999 3:03 PM
An Example of Raising and Handling Exceptions
This chapter extends the BankSimple example so that the create_account()
operation can raise an exception if the bank cannot create an Account object.
The source code for the example described in this chapter is available in the
demos\bankexceptions directory of your Orbix installation.

The exception CannotCreate is defined within the Bank interface. This defines a
string member that indicates the reason that the Bank rejected the request:

// IDL
// In file bankexceptions.idl

module BankExceptions {
typedef float CashAmount;
interface Account;

interface Bank {
1 // User-defined exceptions.

exception CannotCreate { string reason; };
exception NoSuchAccount { string name; };

Account create_account (in string name)
2 raises (CannotCreate);

Account find_account (in string name)
raises (NoSuchAccount);

};

interface Account {
// User-defined exception.

3 exception InsufficientFunds { };

readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount);
void withdraw (in CashAmount amount)

raises (InsufficientFunds);
};

};
 166

E x c e p t i o n H an d l i n g i n O r b i x

ProgramGuide.book Page 167 Monday, February 22, 1999 3:03 PM
This IDL is explained as follows:

1. CannotCreate and NoSuchAccount are user-defined exceptions defined
for the Bank IDL interface.

2. Operation BankExceptions::Bank::create_account() can raise the
BankExceptions::Bank::CannotCreate exception. It can only raise
listed user-defined exceptions. It can raise any system-defined exception.

3. An exception does not need to have any data members.

Note: Read or write access to any IDL attribute can also raise any
system-defined exception.

The Generated C++ Code for User-Defined Exceptions

The IDL compiler generates the following C++ definition for the CannotCreate
user-defined exception from the Bank IDL definition:

// C++
// In file bankexceptions.hh

class CannotCreate : public CORBA::UserException {
...

public:
static const char* _ex;
CORBA::String_mgr reason;

virtual CORBA::Exception* copy() const;
CannotCreate (const char * _reason);
virtual void _throwit ();
static CannotCreate* CALL_SPEC _narrow

(CORBA::Exception *e);
CannotCreate(const CannotCreate &);
CannotCreate();
virtual ~CannotCreate();
CannotCreate& operator= (const CannotCreate&);

};

Exception BankExceptions::Bank::CannotCreate is translated into a C++
class with the same name. Each C++ class corresponding to an IDL exception
has a constructor that takes a parameter for each member of the exception.
167

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 168 Monday, February 22, 1999 3:03 PM
Because the CannotCreate exception has one member (reason, of type
string), class BankExceptions::Bank::CannotCreate has a constructor that
allows that single member to be initialized.

Handling Exceptions in a Client

A client (or server) calling an operation that can raise a user exception should
handle that exception using an appropriate C++ catch clause. All clients should
also catch system exceptions. The BankSimple client calls the
create_account() operation as follows:

// C++
// In file bankmenu.cxx

BankMenu::BankMenu(BankExceptions::Bank_ptr bank)
throw() : m_bank (BankExceptions::Bank::_duplicate(bank))

{ }
...

// do_create -- calls create_account and runs an account menu
void BankMenu::do_create() throw(CORBA::SystemException) {

cout << “Enter account name: ” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

try {
BankExceptions::Account_var account =

m_bank->create_account(name);

// Start a sub-menu with the returned account reference
AccountMenu sub_menu(account);
sub_menu.start();

}
catch (const BankExceptions::Bank::CannotCreate

 &cant_create)
{

cout << “Cannot create an account, reason:”
<< cant_create.reason << endl;

}
}

 168

E x c e p t i o n H an d l i n g i n O r b i x

ProgramGuide.book Page 169 Monday, February 22, 1999 3:03 PM
The handler for the BankExceptions::Bank::CannotCreate exception outputs
an error message and exits the program. The parameter to the catch clause is
passed by reference.

The operator<<() function defined on class SystemException outputs a text
description of the individual system exception raised. This text is read from a
standard file, and can be modified for individual installations. Refer to the Orbix
C++ Programmer’s Reference for more details.

If the handler for the BankExceptions::Bank::CannotCreate exception does
not exit the program, you must be careful about the value of the variable
m_bank. In particular, if an exception occurs in create_account(), the return
value of this operation call would be undefined, and hence m_bank would be
undefined (as specified by the C++ exception model).1 A simple way to address
this is shown in the following code segment, where the nil object reference value
is assigned to m_bank, and this value is tested for before m_bank is used after the
catch clauses:

// C++
// In file bankmenu.cxx

// Ensure the bank reference is valid.
1 if (CORBA::is_nil(m_bank)) {

cout << “Cannot proceed - bank reference is nil”;
}
else {

// Loop printing the menu and executing selections
...
try {

...
}
catch (const CORBA::SystemException& e) {

cout << “Unexpected exception:” << e << endl;
}

}
}

1. Similarly, the C++ exception model specifies that the values of out and inout
parameters are undefined if an operation raises an exception.
169

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 170 Monday, February 22, 1999 3:03 PM
The is_nil() function determines whether the object reference is nil. A nil
object reference is one that does not refer to any valid Orbix object. The
is_nil() function, defined in the CORBA namespace, is the only
CORBA-compliant way of ascertaining whether an object reference is nil.

Handling Specific System Exceptions

A client may also provide a handler for a specific system exception. For example,
to explicitly handle a CORBA::COMM_FAILURE exception that might be raised from
a call to create_account(), the client could write code as follows:

// C++

#define EXCEPTIONS
#include “BankMenu.h”
#include <IT_Demo_Menu.h>

BankMenu::BankMenu(BankExceptions::Bank_ptr bank)
throw() : m_bank (BankExceptions::Bank::_duplicate(bank)) { }

...

void BankMenu::do_create() throw(CORBA::SystemException) {

cout << “Enter account name:” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

try {
BankExceptions::Account_var account =

m_bank->create_account(name);

// Start a sub-menu with the returned account reference
AccountMenu sub_menu(account);
sub_menu.start();

}
catch (CORBA::COMM_FAILURE& se) {

cout << “Communications failure exception”
<< endl << &se << endl;

}
catch (CORBA::SystemExceptions& se) {

cout << “Unexpected system exception”
<< endl << &se << endl;

}

 170

E x c e p t i o n H an d l i n g i n O r b i x

ProgramGuide.book Page 171 Monday, February 22, 1999 3:03 PM
catch(const BankExceptions::Bank::CannotCreate & cant_create) {
cout << “Cannot create an account, reason:”

<< cant_create.reason << endl;
}

}

The handler for a specific system exception must appear before the handler for
CORBA::SystemException . In C++, catch clauses are attempted in the order
specified, and the first matching handler is called. Because of implicit casting, a
handler for CORBA::SystemException matches all system exceptions (because
all system exception classes are derived from class CORBA::SystemException).
Therefore it should normally appear after all handlers for specific system
exceptions.

To handle individual system exceptions as shown in the previous code fragment,
you must issue the #define EXCEPTIONS directive before including the
standard file <CORBA.h>.

The specific definitions of these system exceptions are not normally included in
CORBA.h in order to reduce the size of the file and also to enhance the speed of
C++ compilation. Refer to the Orbix C++ Programmer’s Reference for a list of
system exceptions.

You can use the message output by the operator<<() function on class
CORBA::SystemException to determine the type of system exception that
occurred. A handler for an individual system exception is only required when
specific action is to be taken if that exception occurs.
171

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 172 Monday, February 22, 1999 3:03 PM
Throwing Exceptions in a Server

This section shows how to extend the definition of the function
BankExceptions_BankImpl::create_account() to raise an exception, using
the normal C++ throw statement. The function newAccount() can be coded as
follows:

// C++
// In file bankexceptions_bankimpl.cxx

BankExceptions::Account_ptr
BankExceptions_BankImpl::create_account (const char * name,

CORBA::Environment &) throw(BankExceptions::Bank::CannotCreate)
{

int empty = -1;
int exists = -1;
int i = 0;
for (; i < MAX_ACCOUNTS; ++i) {

if (CORBA::is_nil(m_accounts[i])) {
empty = i;

}
else if (strcmp(m_accounts[i]->name(), name) == 0) {

exists = i;
break;

}
}
// Test for errors and throw an exception if a problem occurs.
if (exists != -1) {

cout << “create_account: failed because name exists” << endl;
throw BankExceptions::Bank::CannotCreate

(“Account with same name already exists.”);
}
else if (empty == -1) {

cout <<“create_account: failed because no more space”<<endl;
throw BankExceptions::Bank::CannotCreate

(“No more space for new accounts.”);
}

// No errors - create an account with zero balance.
m_accounts[empty] = new BankExceptions_AccountImpl(name, 0.0);
cout << “create_account: Created account with name:”

<< name << endl;
 172

E x c e p t i o n H an d l i n g i n O r b i x

ProgramGuide.book Page 173 Monday, February 22, 1999 3:03 PM
// Duplicate the returned reference.
return BankExceptions::Account::_duplicate(m_accounts[empty]);

}

This code uses the automatically-generated constructor of class
BankExceptions::Bank::CannotCreate to initialize the exception’s reason
member with the strings “Account with name already exists” and “No more
space for new accounts”.

Information Available in System Exceptions

System exceptions have two member functions that you can use in some
applications:

• completed()

• minor()

completed()

The completed() function returns an enum type that indicates how far the
operation or attribute call progressed before the exception was raised. The
values are:

COMPLETED_NO The system exception was raised before the operation or
attribute call began to execute.

COMPLETED_YES The system exception was raised after the operation or
attribute call completed its execution.

COMPLETED_MAYBE It is uncertain whether or not the operation or attribute
call started execution, and, if it did, whether or not it
completed. For example, the status will be
COMPLETED_MAYBE if a client’s host receives no indication
of success or failure after transmitting a request to a
target object on another host.
173

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 174 Monday, February 22, 1999 3:03 PM
minor()

The minor() function returns an unsigned long value to give more details of
the particular system exception raised. For example, if the COMM_FAILURE system
exception is caught by a client, it can access the minor field of the system
exception to determine why this occurred. Each system exception has a set of
minor values associated with it, and those for COMM_FAILURE include TIMEOUT
and STRING_TOO_BIG.

Throwing a System Exception

In some circumstances you may need to throw a system exception. You can
specify the system exception’s minor field and completion status using the
constructor:

// C++
SystemException(ULong minor_id,

CompletionStatus completed_status);

The following line of code illustrates the use of this constructor by throwing a
COMM_FAILURE exception with minor code TIMEOUT and completion status
COMPLETED_NO:

// C++
throw CORBA::COMM_FAILURE(TIMEOUT, COMPLETED_NO);
 174

ProgramGuide.book Page 175 Monday, February 22, 1999 3:03 PM
 8
Using Inheritance of IDL Interfaces

This chapter describes how to implement inheritance of IDL
interfaces, using an example named BankInherit. This example
builds on the concepts illustrated in the BankSimple and
BankExceptions examples in Chapter 5 and Chapter 7, respectively.

You can define a new IDL interface that uses functionality provided by an
existing interface. The new interface inherits or derives from the base interface.
IDL also supports multiple inheritance, allowing an interface to have several
immediate base interfaces. This chapter shows how to use inheritance in Orbix
using the BankInherit example.

A version of the source code for the example described in this chapter is
available in the demos\bankinherit directory of your Orbix installation.

The IDL Interfaces
The IDL for the BankInherit example demonstrates the use of single inheritance
of IDL interfaces:

// IDL
// In file bankinherit.idl

#include "bankexceptions.idl"

module BankInherit {
interface CheckingAccount; // forward reference
175

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 176 Monday, February 22, 1999 3:03 PM
// BetterBank manufactures checking accounts.
1 interface BetterBank : BankExceptions::Bank {
2 // New operation to create new checking accounts.

CheckingAccount create_checking (in string name,
in BankExceptions::CashAmount overdraft)
raises(CannotCreate);

};

// New CheckingAccount interface.
3 interface CheckingAccount : BankExceptions::Account {

readonly attribute BankExceptions::CashAmount overdraft;
};

};

This IDL can be explained as follows:

1. BetterBank inherits the operations of BankExceptions::Bank and adds
a new operation to create checking accounts. You do not need to list the
account operations from BankExceptions::Bank because these are now
inherited.

2. The new create_checking()operation added to interface BetterBank
manufactures CheckingAccounts.

3. The new interface CheckingAccount derived from interface
BankExceptions::Account. CheckingAccount has an overdraft limit,
and the implementation allows the balance to become negative.

The Generated C++ Code

The IDL compiler produces the following IDL C++ classes for the BankInherit
IDL interface:

// C++
// The file bankinherit.hh
...
#include <CORBA.h>
...
class CheckingAccount: public virtual

BankExceptions::Account {
// Various details for Orbix.
public:
// Various details for Orbix.
 176

U s i n g I n h e r i t a n c e o f I D L I n t e r f a c e s

ProgramGuide.book Page 177 Monday, February 22, 1999 3:03 PM
virtual BankExceptions::CashAmount overdraft
(CORBA::Environment&IT_env=CORBA::IT_chooseDefaultEnv();

};
...
class BetterBank: public virtual BankExceptions::Bank{

// Various details for Orbix.
public:
// Various details for Orbix.

...
virtual BankInherit::CheckingAccount_ptr create_checking(

 const char * name, BankExceptions::CashAmount overdraft,
 CORBA::Environment &IT_env = CORBA::IT_chooseDefaultEnv());

};

Implementation Class Hierarchies
The class hierarchy for IDL C++ classes produced by the IDL compiler directly
corresponds to the interface hierarchy given in the IDL source files. Figure 8.1
shows the inheritance hierarchy, using the BOAImpl approach. For simplicity,
this diagram omits some details (for example, an implementation class also
inherits from its corresponding IDL C++ class).

Figure 8.1: IDL and Corresponding C++ Class Hierarchies

IDL Interfaces IDL C++ Classes Implementation Classes

Account Account Account

CheckingAccount CheckingAccount CheckingAccount_impl
177

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 178 Monday, February 22, 1999 3:03 PM
The Implementation Classes
You can code the CheckingAccount interface using the BOAImpl or the TIE
approach.

The BOAImpl Approach
Using the BOAImpl approach, you can implement the CheckingAccount IDL
interface as follows:

// C++
// In file bankinherit_accountimpl.h
...
#include "bankinherit.hh"
#include "bankexceptions_accountimpl.h"

class BankInherit_CheckingAccountImpl : public virtual
BankExceptions_AccountImpl, public virtual
BankInherit::CheckingAccountBOAImpl {

public:
// IDL operation
virtual void withdraw(
BankExceptions::CashAmount amount,CORBA::Environment&)
throw (BankExceptions::Account::InsufficientFunds);

// IDL attributes
virtual BankExceptions::CashAmount
overdraft(CORBA::Environment&)
throw();

// C++ operations
BankInherit_CheckingAccountImpl(
const char* name,
BankExceptions::CashAmount balance,
BankExceptions::CashAmount overdraft)
throw ();

virtual ~BankInherit_CheckingAccountImpl() throw();
 178

U s i n g I n h e r i t a n c e o f I D L I n t e r f a c e s

ProgramGuide.book Page 179 Monday, February 22, 1999 3:03 PM
protected:
BankExceptions::CashAmount m_overdraft;
...

};

BankInherit_CheckingAccountImpl is the application implementation class.
Using the BOAImpl approach, this class inherits from the IDL-generated
BOAImpl class.

You can implement the BetterBank IDL interface as follows:

// C++.
// In file bankinherit_bankimpl.h

#include "bankinherit.hh"
#include "bankexceptions_bankimpl.h"

class BankInherit_BetterBankImpl : public virtual
BankExceptions_BankImpl, public virtual
BankInherit::BetterBankBOAImpl {

public:
// IDL operations
virtual BankInherit::CheckingAccount_ptr create_checking(

const char * name, BankExceptions::CashAmount overdraft,
CORBA::Environment&)

throw(BankExceptions::Bank::CannotCreate);

// C++ operations
BankInherit_BetterBankImpl() throw();
virtual ~BankInherit_BetterBankImpl() throw();
...

};

BankInherit_BetterBankImpl is the application implementation class. Using
the BOAImpl approach, this class inherits from the IDL-generated BOAImpl
class.
179

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 180 Monday, February 22, 1999 3:03 PM
The create_checking() operation is implemented as follows:

// C++
// In file bankinherit.bankimpl.cxx
...
#include "bankinherit_bankimpl.h"
#include "bankinherit_accountimpl.h"

BankInherit::CheckingAccount_ptr
BankInherit_BetterBankImpl::create_checking (

const char * name, BankExceptions::CashAmount overdraft,
CORBA::Environment &)throw(BankExceptions::Bank::CannotCreate)

{
...
// Create an account with 0 balance using the BOAImpl approach.
BankInherit::CheckingAccount_var newly_created_checkingaccount;
newly_created_checkingaccount

= new BankInherit_CheckingAccountImpl(name, 0.0, overdraft);
m_accounts[empty]

= BankInherit::CheckingAccount::_duplicate(
newly_created_checkingaccount);

...
// Duplicate the returned reference.
return BankInherit::CheckingAccount::_duplicate(

newly_created_checkingaccount);
}

The return statement is slightly different in create_checking() than for
create_account(). This is because you cannot call _duplicate() on a
CheckingAccount object stored in the Account array. The temporary variable
newly_created_checkingaccount is used to get around this problem.

The TIE Approach
Using the TIE approach, the CheckingAccount IDL interface could be
implemented as follows:

// C++
...

1 class BankInherit_CheckingAccountImpl :
public virtual BankExceptions_AccountImpl {

public:
// Same as for BOAImpl.
 180

U s i n g I n h e r i t a n c e o f I D L I n t e r f a c e s

ProgramGuide.book Page 181 Monday, February 22, 1999 3:03 PM
...
}

// DEF_TIE macro call.
2 DEF_TIE_BankInherit_CheckingAccount(BankInherit_CheckingAccountImpl)

This code is explained as follows:

1. The class BankInherit_CheckingAccountImpl inherits from
BankExceptions_AccountImpl only. It does not need to inherit from
from the IDL-generated BOAImpl class.

2. Indicates that BankInherit_CheckingAccountImpl implements
BankInherit::CheckingAccount. This generates a TIE class
TIE_CheckingAccount(BankSimple_CheckingAccountImpl).

The BetterBank IDL interface can therefore be implemented as follows:

// C++
...
class BankInherit_BetterBankImpl :

public virtual BankExceptions_BankImpl {
public:

// Same as for BOAImpl.
...

}

// DEF_TIE macro call.
DEF_TIE__BankInherit_BetterBank(BankInherit_BetterBankImpl);

Using the TIE approach, you can implement the create_checking() operation
as follows:

// C++
...
BankInherit::CheckingAccount_ptr
BankInherit_BetterBankImpl::create_checking (

const char * name, BankExceptions::CashAmount overdraft,
CORBA::Environment &)throw(BankExceptions::Bank::CannotCreate)

{
...
// Create an account with zero balance using TIE approach.
BankInherit::CheckingAccount_var newly_created_checkingaccount;
181

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 182 Monday, February 22, 1999 3:03 PM
newly_created_checkingaccount
= new TIE_BankInherit_CheckingAccount(

BankInherit_CheckingAccountImpl)
(new BankInherit_CheckingAccountImpl(name, 0.0,

overdraft));
...

}

Using Inheritance in a Client
A client can proceed to manipulate CheckingAccounts in a similar way to
Accounts in, “Handling Exceptions in a Client” on page 168:

// C++
// In file BankMenu.cxx

#include "bankmenu.h"
#include <it_demo_menu.h>

// BankMenu constructor, takes a Bank reference.
BankMenu::BankMenu(BankInherit::BetterBank_ptr bank)
throw() : m_betterbank(BankInherit::BetterBank::_duplicate(bank))
{}

// BankMenu destructor.
BankMenu::~BankMenu() throw(){
// Nothing to do - Bank_var automatically releases reference
}

// Start main menu loop.
void
BankMenu::start() throw() {

// Ensure the bank reference is valid.
if (CORBA::is_nil(m_betterbank)) {

cout << "Cannot proceed - bank reference is nil";
}
else {
// Loop printing the menu and executing selections
...

}
...
 182

U s i n g I n h e r i t a n c e o f I D L I n t e r f a c e s

ProgramGuide.book Page 183 Monday, February 22, 1999 3:03 PM
// Calls create_checking and runs an account menu.
void BankMenu::do_create_checking() throw(CORBA::SystemException){

cout << "Enter account name: " << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();
...
try {

BankInherit::CheckingAccount_var checkingaccount =
m_betterbank->create_checking(name, 100);

// Start a sub-menu with the returned account reference
AccountMenu sub_menu(checkingaccount);
sub_menu.start();

}
catch (const BankExceptions::Bank::CannotCreate&

cant_create) {
cout << "Cannot create an account, reason: "
<< cant_create.reason << endl;

}
}

// Calls find_account and runs an account menu.
void BankMenu::do_find() throw(CORBA::SystemException) {

// Same as for BankExceptions.
...
}

The client implementation is not affected by the approach used to implement the
server—either TIE or BOAImpl.

Multiple Inheritance of IDL Interfaces
IDL supports multiple inheritance as shown in the following example:

// IDL
module BankSimple {

typedef float CashAmount;
interface Account;

interface Bank {
...

};
183

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 184 Monday, February 22, 1999 3:03 PM
interface Account {
readonly attribute string name;
readonly attribue CashAmount balance;

void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);

};

// Derived from interface Account.
interface CheckingAccount : BankSimple::Account {

readonly attribute CashAmount overdraftLimit;
};

// Derived from interface Account.
interface DepositAccount : BankSimple::Account {

};

// Indirectly derived from interface Account.
interface PremiumAccount : CheckingAccount, DepositAccount {
};

}

The corresponding IDL C++ classes use multiple inheritance:

// C++
// The file "bank.hh".
#include <CORBA.h>

class BankSimple::Account :
public virtual CORBA::Object {
// As before.

};

class CheckingAccount :
public virtual BankSimple::Account {
// As before.

};

class DepositAccount :
public virtual BankSimple::Account {
// ...

};
 184

U s i n g I n h e r i t a n c e o f I D L I n t e r f a c e s

ProgramGuide.book Page 185 Monday, February 22, 1999 3:03 PM
class PremiumAccount :
public virtual CheckingAccount,

public virtual DepositAccount {
// ...

};

IDL forbids any ambiguity arising due to name clashes of operations and
attributes when two or more direct base interfaces are combined. This means
that an IDL interface cannot inherit from two or more interfaces with the same
operation or attribute name. You can, however, inherit two or more constants,
types or exceptions with the same name from more than one interface.
However, these must be qualified with the name of the interface (an IDL-scoped
name must be used).
185

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 186 Monday, February 22, 1999 3:03 PM
 186

ProgramGuide.book Page 187 Monday, February 22, 1999 3:03 PM
 9
Orbix Connections and Events

Orbix applications need to control how Orbix processes events such
as operation calls and establishing connections between clients and
servers. To do this, applications communicate with the ORB through
a direct API that allows them to configure the behaviour of Orbix.
This chapter outlines this API and describes how you can use it to
adapt the Orbix connection establishment and event processing
models.

This chapter acts as a guide to the main connection and event management
functions in Orbix. You should read this chapter for an overview of these
functions and refer to the Orbix C++ Programmer’s Reference for details of
particular functions required in your applications.
187

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 188 Monday, February 22, 1999 3:03 PM
Overview of the Direct API to Orbix
On the client-side, the interface to Orbix is presented via the class CORBA::ORB.
On the server, the class CORBA::BOA (a derived class of CORBA::ORB) specifies
the interface to Orbix, as shown in Figure 9.1.

Figure 9.1: Interfaces to Orbix on Client and Server

The acronym BOA stands for Basic Object Adapter. An Object Adapter is the
CORBA term given to the environment in which server applications run. An
object adapter provides services such as:

• Registration of servers.

• Instantiation of objects at runtime and creation and management of
object references.

• Handling of incoming client calls.

• Dispatching of client requests to server objects.

The BOA or Basic Object Adapter is an object adapter specified by CORBA that
must be provided by every ORB. An ORB may optionally provide other object
adapters and a server may support a number of object adapters to serve
different types of requests.

Refer to the Orbix C++ Programmer’s Reference for the full interface to
CORBA::ORB and CORBA::BOA.

CORBA::ORB

(Client interface to Orbix)

CORBA::BOA
(Server interface to Orbix)
 188

O r b i x Co n n e c t i o n s a n d E v e n t s

ProgramGuide.book Page 189 Monday, February 22, 1999 3:03 PM
Initializing a Connection to the ORB

The CORBA standard defines how a client or server can obtain a reference to
the ORB so that they can communicate with it. The function defined for this
purpose is CORBA::ORB_init(), which you can use as follows:

// C++
...
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv, “Orbix”);

ORB_init() initializes a client or server’s connection to the ORB. It should not
be viewed as initializing the ORB itself because the ORB is pervasive rather than
just existing within the client or server. You can call any function defined on class
CORBA::ORB (for example, string_to_object()) by using the pointer returned
from the ORB_init() call.

Servers should carry out a further step, to obtain a reference to the Object
Adapter, and in particular to the BOA:

// C++
CORBA::BOA_ptr boa = orb->BOA_init(argc, argv, “Orbix_BOA”);

CORBA::ORB::BOA_init() initializes a server’s connection to the BOA. An ORB
may also provide other object adapters—in this case, it should provide a
function to initialize a connection to each.

Functions such as impl_is_ready() defined on class CORBA::BOA can be called
using the object reference returned from the BOA_init() call. On the client-
side, you do not need to perform these steps although, for compliance to the
CORBA standard, you may wish to add them.

Obtaining Initial Object References

Some object services and, in particular, the Interface Repository and the
CORBAservices, can only be used by first obtaining a reference to an initial
service object. The Naming Service provides a general purpose facility for doing
this. When using the Naming Service, you need some way to obtain a reference
to an initial Naming Service object.
189

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 190 Monday, February 22, 1999 3:03 PM
CORBA addresses this difficulty by providing two operations in interface ORB.
These provide the facilities of a simplified Naming Service, in which (flat, rather
than hierarchical) names can be resolved to obtain initial references to important
objects in the system:

module CORBA {
interface ORB {

...
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ObjectIdList list_initial_services();

Object resolve_initial_references
(in ObjectId identifier)
raises (InvalidName);

};
};

Only a small group of names are understood by
resolve_initial_references(), and these are listed by
list_initial_services(). Currently only strings “NameService” and
“InterfaceRepository” are supported. The function
resolve_initial_references() returns an object reference, which must be
narrowed to the correct object type.

Managing Orbix Connections and Events
When an Orbix client first contacts a server, a single communication channel is
established between the client-server pair. This connection is then used for all
subsequent operation calls from the client to the server. The connection is
closed only when either the client or the server exits.

If the server makes operation calls, known as callbacks, to objects that exist in
the client, the connection usage depends on which communications protocol
you are using. If your applications communicate over the Orbix protocol, all
communications in both directions use a single client-server connection.
However, if your applications use the CORBA Internet Inter-ORB Protocol
(IIOP), Orbix opens a second connection from the server to the client when the
 190

O r b i x Co n n e c t i o n s a n d E v e n t s

ProgramGuide.book Page 191 Monday, February 22, 1999 3:03 PM
server attempts its first callback operation. By default, all IIOP operation calls are
only transmitted in one direction across a client-server connection as specified
by CORBA. Refer to the chapter “Callbacks from Servers to Clients” on
page 339 for more information on using callbacks in Orbix.

When a connection has been established between a client and server, you must
instruct Orbix to process incoming operation calls. Orbix does this by
monitoring the file descriptor associated with each client-server connection and
responding to events on the file descriptor.

This section highlights some of the Orbix functions that allow you to manage
Orbix connection establishment and event processing.

Establishing Connections between Clients and Servers

This section describes the following issues associated with establishing a
connection between a client and a server:

• Setting a timeout on a connection attempt.

• Specifying the number of connection attempt retries.

• Filtering bad connection attempts in servers.

• Reconnecting to a server that has crashed and restarted.

• Receiving callbacks from Orbix to application code when connections are
opened or closed.

Setting a Timeout on a Connection Attempt

By default, there is a timeout of 30 seconds for establishing connection from a
client to a server to confirm that both are operational. This timeout can be
changed using the function CORBA::ORB::connectionTimeout().

Under some circumstances, CORBA::ORB::connectionTimeout() has no effect.
For example, if the server’s host is known but is down or unreachable, a TCP/IP
connect can block for a considerable time depending on the target operating
system. In these circumstances, you can use the function
CORBA::ORB::abortSlowConnects() to abort connection attempts that exceed
the value specified in connectionTimeout().
191

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 192 Monday, February 22, 1999 3:03 PM
Specifying Connection Attempt Retries

If a connection cannot be made on the first attempt because the server cannot
be contacted, Orbix retries the attempt every two seconds until either the call
can be made or until there have been too many retries. You can use the function
CORBA::ORB::maxConnectRetries() to set the maximum number of retries
that should be attempted. The default number is 10.

Filtering Bad Connection Attempts

By default, an exception is raised if a bad connection is made to a server waiting
on the event handling functions (CORBA::BOA::impl_is_ready(),
CORBA::BOA::obj_is_ready(), CORBA::BOA::processEvents()). Such bad
connections can be caused by, for example, a server that cannot interpret the
data that it accesses.

You may wish to allow Orbix to handle such attempts without raising an
exception. Refer to the Orbix C++ Programmer’s Reference entry for
CORBA::BOA::filterBadConnectAttempts() for details.

Reconnecting to a Failed Server
When a server exits while a client is still connected, the next invocation by the
client raises a system exception of type CORBA::COMM_FAILURE. If the client
attempts another invocation, Orbix automatically tries to re-establish the
connection.

This default behaviour can be changed by passing the value 1 (true) to the
function CORBA::ORB::noReconnectOnFailure(). Then, all client attempts to
contact a server subsequent to closure of the communications channel raises a
CORBA::COMM_FAILURE system exception.

Receiving Callbacks for New or Closed Connections

Orbix allows a client or server to receive a callback each time a connection to
another Orbix program is opened or closed. To receive such callbacks, first
define a class that inherits the Orbix class CORBA::IT_IOCallback. Class
CORBA::IT_IOCallback is defined as follows:

class IT_IOCallback {
public:
 192

O r b i x Co n n e c t i o n s a n d E v e n t s

ProgramGuide.book Page 193 Monday, February 22, 1999 3:03 PM
// The following functions are called when an
// Orbix file descriptor opens or closes.
virtual void OrbixFDOpen(int fd) {};
virtual void OrbixFDClose(int fd) {};

// The following functions are called when
// activity is detected on a foreign fd.

// A registered foreign fd is ready for reading.
virtual void ForeignFDRead(int fd) {};

// A registered foreign fd is ready for writing.
virtual void ForeignFDWrite(int fd) {};

// A registered foreign fd has fired for
// exceptions.
virtual void ForeignFDExcept(int fd) {};

};

Your sub-class of CORBA::IT_IOCallback should override one or more of the
IT_IOCallback member functions. For example, if you override
OrbixFDOpen(), this function is called each time a connection to your
application is opened. Similarly, if you override OrbixFDClose(), this function is
called each time a connection to your application is closed. Both OrbixFDOpen()
and OrbixFDClose() receive the file descriptor associated with the relevant
Orbix connection as a parameter.

When you implement a derived class of CORBA::IT_IOCallback, create an
instance of this class and register this object with Orbix by calling
CORBA::ORB::registerIOCallbackObject() on the ORB. This function is
described in the Orbix C++ Programmer’s Reference.

The functions ForeignFDRead(), ForeignFDWrite(), and ForeignFDExcept()
allow you to integrate Orbix event processing with foreign event processing as
described in “Integrating the Orbix Event Loop with Foreign Events” on
page 194.
193

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 194 Monday, February 22, 1999 3:03 PM
Event Processing in Orbix

This section describes the following issues associated with processing Orbix
events:

• Orbix event processing functions.

• Integrating the Orbix event loop with foreign events.

• Ensuring that servers process events while clients are connected.

• Setting timeouts on operation calls from clients.

Orbix Event Processing Functions
The function impl_is_ready(), defined on class CORBA::BOA, allows you to
initialize a server and start processing incoming connection attempts and
operation calls on existing connections. Class CORBA::BOA also provides several
other event processing functions that allow you to handle incoming events in a
client or in a server that has already been initialized.

The relevant functions are CORBA::BOA::processNextEvent(),
CORBA::BOA::processEvents() and CORBA::BOA::obj_is_ready(). You can
also test whether or not there is an outstanding event using
CORBA::BOA::isEventPending(). Refer to the relevant entries in class
CORBA::BOA of the Orbix C++ Programmer’s Reference for details.

Integrating the Orbix Event Loop with Foreign Events

When you call an Orbix event processing function, Orbix monitors all file
descriptors associated with its event loop. This file descriptor set includes each
file descriptor associated with an open connection from another Orbix program.

If you wish to integrate Orbix with another system that has an event processing
loop, you can do this by adding the file descriptors for the foreign system to the
Orbix event loop.

To add foreign file descriptors to the Orbix event loop, call one of the following
functions defined in class CORBA::ORB:

void addForeignFD
(const int fd, unsigned char aState);

void addForeignFDSet
(fd_set& theFDset, unsigned char aState);
 194

O r b i x Co n n e c t i o n s a n d E v e n t s

ProgramGuide.book Page 195 Monday, February 22, 1999 3:03 PM
To remove foreign file descriptors from the Orbix event loop, call one of the
following functions:

void removeForeignFD
(const int fd, unsigned char aState);

void removeForeignFDSet
(fd_set& theFDset, unsigned char aState);

There are three sets of foreign file descriptors registered with the Orbix event
loop: one set is monitored for reads, another for writes, and the third for
exceptions. You can register a file descriptor in one or more of these sets. To
do this, specify the values FD_READ, FD_WRITE, FD_EXCEPTION (or any logical
combination of these values) in the aState parameter, passed each of the
registration functions.

When Orbix detects an event on a foreign file descriptor, it attempts to call a
function in your application code. To receive this callback, implement the class
CORBA::IT_IOCallback, as described in “Receiving Callbacks for New or
Closed Connections” on page 192 and override one of the functions
ForeignFDRead(), ForeignFDWrite(), and ForeignFDExcept().

Note: If you wish to integrate foreign file descriptors with the Orbix event loop,
you must define the macro WANT_ORBIX_FDS before including the file
CORBA.h.

Processing Events while Clients are Still Connected

By default, the event processing functions impl_is_ready(), obj_is_ready(),
processEvents() and processNextEvent(), (defined in class CORBA::BOA)
time out when a user-defined or defaulted period has elapsed between
events; for example, an incoming operation call, or a connection or
disconnection by a client.

Consequently, impl_is_ready() can time out when its clients are idle for a
period. A server may prefer to remain active while there are clients connected,
active or not. Then the server should make the following call:

// C++
CORBA::Orbix.setNoHangup(1); // 1 for true.
195

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 196 Monday, February 22, 1999 3:03 PM
Refer to the entry for CORBA::BOA::setNoHangup() in the Orbix C++
Programmer’s Reference for full details.

Setting Timeouts on Operation Calls
An operation call that is not defined as oneway can be given a timeout specified
in milliseconds. If a reply is not received within the given timeout interval, the
invocation fails with a CORBA::COMM_FAILURE exception.

The timeout for a call can be given by setting a value in an Environment, using
the following function:

// C++
// In class CORBA::Environment.
void timeout(CORBA::Long);

For example:

// C++
CORBA::Environment env;
CORBA::Long timeoutValue = ...;
Account_var aVar = ...;
try {

env.timeout(timeoutValue);
aVar->deposit(12.00, env);

}
catch (CORBA::COMM_FAILURE&) {

cout << “---Timed out after” << timeoutValue
 << “msecs...” << endl;

}

catch (CORBA::SystemException& se) {
cout << “Unexpected exception:” << endl

<< &se;
}

The value set by the CORBA::Environment::timeout() function remains active
until reset for the environment for which it was set.

A timeout can also be specified in a _bind() call:

// C++
CORBA::Environment env;
CORBA::Long timeoutValue = ...;
Bank_var bVar;
 196

O r b i x Co n n e c t i o n s a n d E v e n t s

ProgramGuide.book Page 197 Monday, February 22, 1999 3:03 PM
try {
env.timeout(timeoutValue);
bVar = Bank::_bind(“:AIB”,“”,env);

}
catch (CORBA::COMM_FAILURE&) {

cout << “--- Timed out after ” << timeoutValue
<< “msecs...” << endl;

}

In this case, the timeout applies to the implicit ping call attempted during binding.

The timeout, if any, in an Environment variable can be read using the
parameterless function:

// C++
// In class CORBA::Environment.
CORBA::Long timeout()

As an alternative, timeouts can be set for all remote calls by calling the following
function on the ORB object:

//C++
// In class CORBA::ORB.
unsigned long defaultTxTimeout

(CORBA::ULong val = INFINITE_TIMEOUT,
CORBA::Environment &env = default_environment)

This function returns the previous value. The value set by this function is then
used for all remote calls. However, if a timeout is set in an Environment , it
supersedes any value set globally in the ORB. By default, no call has a timeout,
that is, the default timeout is infinite.

If a remote call establishes a connection between the client and server, then
there is a separate timeout on connection establishment that can be controlled
by the connectionTimeout() function defined in class CORBA::ORB. The
timeouts specified by CORBA::ORB::defaultTxTimeout() or
CORBA::Environment::timeout() become effective once a connection is
established.
197

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 198 Monday, February 22, 1999 3:03 PM
 198

ProgramGuide.book Page 199 Monday, February 22, 1999 3:03 PM
 10
Advanced Programming Topics

This chapter presents a number of advanced topics that have not
been covered in previous chapters.

The topics covered in this chapter are:

• How to write applications where the client and server are collocated—
that is, within the same address space.

• How to determine whether a specific object is local or remote.

• How to obtain a pointer to an implementation class.

• How to raise an exception if the correct proxy code is not available in a
client.

• How multiple implementations can be provided for the same IDL
interface.

• How an implementation class may implement multiple interfaces.

• How to use the CORBA type Context.

• How to modify the level of diagnostic messages displayed by Orbix.
199

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 200 Monday, February 22, 1999 3:03 PM
Developing Collocated Clients and Servers
For some applications, it is useful to use IDL to define the interfaces between
objects, even if these objects are not distributed. Further, the objects in some
applications may or may not be distributed, depending on how the application is
configured by its installer. It is useful to be able to write application code that can
work efficiently in all these cases.

To address these issues, Orbix supports the collocation of client and server
objects within the same address space. When a bind call is made by a client or
server, Orbix will first look for the object in the caller’s address space, unless
the bind call specifies a remote host. If the target object is found in that address
space, subsequent calls on the object are very efficient. This is because direct
C++ function calls are used from the client to the server application code, and
the Orbix runtime is bypassed.

Collocation can be enforced by calling the following function:

// C++
// In class CORBA::ORB.
orb->collocated(1);

This call controls the lookup mechanism: it prevents binding to objects outside
the current process’s address space. This function returns the previous setting
as a CORBA::Boolean.

If the target object cannot be found within the application’s address space, Orbix
normally tries to locate the object in the same or a different node. However, if
collocation is set, Orbix never tries to bind to an object outside of the caller’s
address space. If an object is not found in the caller’s address space, _bind()
raises a CORBA::INV_OBJREF system exception.

Calls to collocated(1) are normally made during the initialization of a
combined client/server. However, collocation can be unset (thereby reinstating
remote binding) at any time by calling collocated(0).
 200

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 201 Monday, February 22, 1999 3:03 PM
Testing for the Presence of Collocation

A program can test whether or not collocation is currently set by making the
function call:

// C++
// In class CORBA::ORB.
CORBA::Boolean isOn = orb->collocated();

This returns a CORBA::Boolean value 1 (true) if collocation is set, and returns 0
(false) otherwise.

A program may wish to use this so that it can create local objects if collocation is
set, but not create these objects otherwise; in the latter case, it expects these
objects to be created and managed by a remote server.

Writing Code for both Collocation and Distribution

The following code works in both the collocated and the distributed case. Either
of these two cases can be selected at runtime, perhaps from a command-line
switch. The general strategy for a collocated application is to write a mainline
that first conducts the usual server-side initialization (and in particular creates
target Orbix objects for the server application—here just the Bank object), and
then continues with the mainline of the client application. In the distributed case,
some server, which is not shown here, is instead responsible for creating the
target objects.

// C++

// Only the TIE approach is shown.
// The BOAImpl approach is very similar.
// Assume we have DEF_TIE_Bank(BankImpl);
...
main(int argc, char** argv) {

Bank_var localBankVar, remoteBankVar;
Account_var aVar;
201

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 202 Monday, February 22, 1999 3:03 PM
// Use, for example, the command line arguments
// to decide whether or not to make this call:
if (...) {

orb->collocated(1); // true
localBankVar =

new TIE_Bank(BankImpl)(new BankImpl());
}
try {

// The bind to ‘srv’ is done locally
// if collocated; else remote bind:
remoteBankVar = Bank::_bind();
aVar =

p->newAccount(“jack”);
aVar->makeLodgement(100.00);
cout << “balance is ”

<< aVar->balance() << endl;
}
catch (SystemException& se) {

cout << “Unexpected exception:” << endl
<< &se;

}
catch (...) {
}

}

An example of collocation is supplied in the Orbix3.0\demo\Cxx\colocate
directory of your Orbix installation.

Note: The example code shown here assumes that a remote server is
responsible for creating the target objects if collocation is not set.
Otherwise, it would be necessary to call impl_is_ready() .
 202

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 203 Monday, February 22, 1999 3:03 PM
Determining Locality of Objects
You can use the CORBA::Object::_isRemote() function to determine whether
or not a reference to an IDL C++ class is remote—that is, whether or not the
object it references is in a different address space on the same or a different
host). An example of its use is shown below:

// C++
// Bank server mainline.
main() {

Bank_var bVar; // IDL C++ class.

// The BOAImpl approach.
bVar = new BankImpl;
bVar->_marker(“College_Green”);

// The TIE approach.
// bVar = new TIE_Bank(BankImpl)
// (new BankImpl(), “College_Green”);

if (!bVar->_isRemote())
cout << “Object is local (as expected!)”);

// else - IMPOSSIBLE: object *IS* local.
}

// C++
// Client mainline.
main() {

// Bind to *any* Bank service.
Bank_var bVar = Bank::_bind();

if (bVar->_isRemote())
cout << “Object is remote (as expected!)”

<< endl;
// else object is local (or non-existent).

}

203

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 204 Monday, February 22, 1999 3:03 PM
Casting from Interface to Implementation Class
This section describes how to cast, when using the BOAImpl approach, from an
interface class to an implementation class written by a programmer. Although
this is not frequently required, it can be useful in some cases.

Consider interface Account, and the C++ implementation class AccountImpl
defined as follows:

// C++
class AccountImpl : public virtual AccountBOAImpl
{

...
};

The overall class hierarchy is shown in Figure 10.1.

Figure 10.1: Casting From Interface Class to Implementation Class Using the BOAImpl Approach

If you have an object reference for an Account, there is a difficulty casting this to
a pointer to an AccountImpl. C++ prohibits this cast because the inheritance
between AccountBOAImpl and Account is virtual.

IDL Compiler

Account (IDL interface)

Account (IDL C++ class)

AccountBOAImpl

(C++ class written by you to implement
the interface Account)

AccountImpl
 204

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 205 Monday, February 22, 1999 3:03 PM
Casts from interface to implementation class are not frequently required,
because invoking a function on the Account object reference is sufficient.
However, you can add an extra member function (not defined in the IDL
interface) to the implementation class, and this is only available for use if you
have a pointer to the implementation class.

Orbix provides a DEREF() macro that, when called on a TIE object, returns a
pointer to an implementation object. This macro implicitly calls the function
CORBA::Object::_deref(). To cast from an interface to an implementation
class using the BOAImpl approach, you should first redefine CORBA::Object::
_deref() function in the implementation class:

// C++
class AccountImpl : public virtual AccountBOAImpl{

....
virtual void* _deref() { return this; }

};

You can then use the DEREF() macro to achieve the cast as follows:

// C++
Account_ptr aPtr =;
AccountImpl* p_i = (AccountImpl*) DEREF(aPtr);

If _deref() is not redefined by AccountImpl, then it inherits an implementation
that returns a pointer to the BOAImpl class.

Naturally, the need for the cast could be removed by defining the extra functions
as IDL operations in the IDL interface. However, this would make these
operations available to remote processes, possibly against the requirements of
the application. In addition, some C++ functions cannot be translated into IDL in
a straightforward way.
205

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 206 Monday, February 22, 1999 3:03 PM
Actions when Proxy Code is Unavailable
When a reference to a remote object enters a client or server address space,
Orbix constructs a proxy for that object. This proxy (a normal C++ object) is
constructed to execute the proxy code corresponding to the actual interface of
the true object it represents.

Hence, if a server object has an operation of the form:

// IDL
// In some interface.
void op(in Account a);

and if a reference to a remote CurrentAccount (a derived interface of Account)
is passed as a parameter to this operation, Orbix tries to set up a proxy for a
CurrentAccount in the server address space.

If the server was not linked with the IDL-compiler generated proxy code for
CurrentAccount, Orbix instead creates a proxy for an Account in the server
address space. This means that, Orbix uses the static rather than the dynamic
type of the parameter. The same applies when an object reference enters a
client.

If resorting to the static type is unacceptable, call the following function on the
ORB object, passing a false value for the first parameter:

// C++
// In class CORBA::ORB.
unsigned char resortToStatic(CORBA::Boolean,

CORBA::Environment& env
= CORBA::default_environment)

This function returns the previous setting; the default setting is true. Setting the
value to false means that Orbix raises an exception if the server or client is not
linked with the actual proxy code.
 206

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 207 Monday, February 22, 1999 3:03 PM
Multiple Implementations of an Interface
There may be more than one implementation of the same IDL interface:

• In the BOAImpl approach, you can define multiple classes which inherit
from the same BOAImpl-class.

• In the TIE approach, you can declare further relationships using a
DEF_TIE macro.

For example, in the BOAImpl approach, the following provides a second
implementation class of the Bank interface:

// C++
class BuildingSocietyImpl :

public virtual BankBOAImpl {
public:

BuildingSocietyImpl();
virtual ~BuildingSocietyImpl();

// Functions for IDL operations.
Account_ptr newAccount(const char* name,

CORBA::Environment& env =
CORBA::default_environment);

void deleteAccount(Account_ptr a,
CORBA::Environment& env =

CORBA::default_environment);
};

In the TIE approach, the following can be used:

// C++

class BuildingSocietyImpl {
public:

BuildingSocietyImpl();
virtual ~BuildingSociety_i();

// Functions for IDL operations.
Account_ptr newAccount(const char* name,

CORBA::Environment& env =
CORBA::default_evironment);
207

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 208 Monday, February 22, 1999 3:03 PM
void deleteAccount(Account_ptr a,
CORBA::Environment& env =

CORBA::default_environment);
};

DEF_TIE_Bank(BuildingSocietyImpl)
// A class TIE_Bank(BuildingSocietyImpl).

Both of the TIE classes, TIE_Bank(BankImpl) and
TIE_Bank(BuildingSocietyImpl), are now derived classes of the IDL C++
class Bank.

The argument to the constructor of TIE_Bank(BankImpl) must be a
BankImpl*, and that of TIE_Bank(BuildingSocietyImpl) must be a
BuildingSocietyImpl*:

// C++
Bank_ptr b1Ptr = new TIE_Bank(BankImpl)

(new BankImpl);
Bank_ptr b2Ptr = new TIE_Bank(BuildingSocietyImpl)

(new BuildingSocietyImpl);

Because the two TIE classes are derived classes of (the IDL C++ class) Bank, the
pointers b1Ptr and b2Ptr can both refer to either of these two TIE objects:

// C++
b1Ptr = b2Ptr; // OK, b1Ptr now points to a

// BuildingSocietyImpl TIE.

Multiple Interfaces per Implementation
In addition to being able to implement the same IDL interface using two or more
different implementation classes, the same implementation class can implement
two or more IDL interfaces, even if these IDL interfaces are not themselves
related by inheritance. Consider the following two interfaces:

// IDL
// An IDL factory for bank accounts.
interface Bank {

exception Reject { string reason; };

Account newAccount(in string name)
raises (reject);
 208

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 209 Monday, February 22, 1999 3:03 PM
void deleteAccount(in Account a);
};
// An IDL management interface for accounts.
interface Manager {

Account firstAccount();
Account nextAccount();
void deleteAccount(in Account a);

};

Here, Bank does not inherit from Manager, nor vice versa. The next two
sections show how the two interfaces Bank and Manager can be implemented by
the same C++ class, using the TIE approach and the BOAImpl approach,
respectively.

Using the TIE Approach

Using multiple interfaces for an implementation is more straightforward in the
TIE approach. First you should write a class that provides all of the functions in
the two interfaces:

// C++
class BigBankImpl {
public:

BigBankImpl();
virtual ~BigBankImpl();

// Functions for IDL operations:
Account_ptr newAccount(const char* name,

CORBA::Environment& env =
CORBA::default_environment);

void deleteAccount(Account_ptr a,
CORBA::Environment& env =

CORBA::default_environment);
Account_ptr firstAccount

(CORBA::Environment& env =
CORBA::default_environment);

Account_ptr nextAccount
(CORBA::Environment& env =

CORBA::default_environment);
};
209

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 210 Monday, February 22, 1999 3:03 PM
Now class BigBankImpl can implement the IDL interfaces Bank and Manager as
follows:

// C++
// Indicate that Bank is implemented by BigBankImpl.
DEF_TIE_Bank(BigBankImpl)
// You now have a class TIE_Bank(BigBankImpl).

// Indicate that Manager is implemented by BigBankImpl.
DEF_TIE_Manager(BigBankImpl)
// You now have a class TIE_Manager(BigBankImpl).

An instance of BigBankImpl acts as an object of type Bank when it is accessed
through a TIE of class TIE_Bank(BigBankImpl). An instance of BigBankImpl
acts as an object of type Manager when it is accessed through a TIE of class
TIE_Manager(BigBankImpl).

In addition, note that the same object can provide both of these interfaces:

// C++
// Use the same object to implement
// both Bank and Manager.

// The TIE approach.
Bank_ptr bPtr = new

TIE_Bank(BigBankImpl)(new BigBankImpl);
Manager_ptr mPtr = new TIE_Manager(BigBankImpl)

((BigBankImpl*)DEREF(bPtr));

The DEREF() macro is applied to a reference to an IDL C++ class; and an
explicit type cast is required. If the reference denotes a local object, DEREF()
returns a reference to that object. If the reference is remote, DEREF() returns a
reference to the proxy.

You can determine whether or not a reference is remote by using the function
CORBA::Object::_isRemote().
 210

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 211 Monday, February 22, 1999 3:03 PM
Using the BOAImpl Approach

Using the BOAImpl approach, BigBankImpl should not be defined as follows:

// C++
// Incorrect approach:
class BigBankImpl : public virtual BankBOAImpl,

public virtual ManagerBOAImpl {
...

};

If this definition is used, it would not be possible to determine whether an object
of type BigBankImpl was of type BankBOAImpl or ManagerBOAImpl. This is
important if the two interfaces are not related by inheritance.

The natural solution is to define a new IDL interface that inherits from both
Bank and Manager, and for the C++ implementation class to inherit from the
BOAImpl class corresponding to that new interface.

If it is not possible to introduce the new IDL interface, you can proceed as
follows. Class BigBankImpl can inherit from one of the BOAImpl classes, for
example BankBOAImpl, but it should include functions to implement all of the
functions in Bank and Manager:

// C++
class BigBankImpl : public virtual BankBOAImpl {
public:

BigBankImpl();
~BigBankImpl();

// Functions for Bank IDL operations:
Account_ptr newAccount(const char* name,

CORBA::Environment& env =
CORBA::default_environment);

void deleteAccount(Account_ptr a,
CORBA::Environment& env =

CORBA::default_environment);
// Functions for Manager IDL operations:
Account_ptr firstAccount

(CORBA::Environment& env =
CORBA::default_environment);
211

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 212 Monday, February 22, 1999 3:03 PM
Account_ptr nextAccount
(CORBA::Environment& env =

CORBA::default_environment);
};

Calls on the Bank interface can go directly to an object of type BigBankImpl.
However, you need a second object to handle the Manager aspects. This object
should forward all function invocations to its corresponding BigBankImpl
object, which implements both the Bank and the Manager functions. It is clear,
therefore, that the TIE approach is easier to use when a single object needs to
have more than one unrelated interface.

Passing Context Information to IDL Operations
A context is a two-dimensional table that maps identifier strings to value strings.
A context may be defined in IDL as part of an operation specification. An
operation that specifies a context clause is mapped to a C++ member function
that takes an extra parameter (just before the Environment parameter). For
example, the following interface:

// IDL
interface A {

void op(in unsigned long s)
context (“accuracy”, “base”);

};

maps to:

// C++
class A {
public:

virtual void op(CORBA::ULong s,
CORBA::Context_ptr IT_c,
CORBA::Environment&
 env = CORBA::default_environment);

};
 212

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 213 Monday, February 22, 1999 3:03 PM
Instances of CORBA::Context are pseudo-objects. A client can create a Context
as follows:

// C++
CORBA::Context_ptr cPtr =

CORBA::Context::create_context();

This creates an initially empty Context object, to which identifier:string mappings
can be added, and that can be passed to a function that takes a Context
parameter.

On the server side, Orbix constructs a new Context from the value received in
the incoming operation request and calls the target object’s operation. Orbix
releases the context when the call returns. If the server requires that the
context be retained after the call, you should use _duplicate() to increase the
reference count of the context argument passed in the call.

You can obtain the default context for a process by calling
get_default_context():

// C++
// In class CORBA::ORB::get_default_context().
Context_ptr defC;
orb->get_default_context(defC);

You must free the Context allocated in defC.

The default context provides a useful mechanism for sharing context changes
between different parts of a program. This context is initially empty.

Context Hierarchies
Context objects can be nested in context hierarchies by specifying the parent
parameter when creating a child Context, or by using the create_child()
function. Figure 10.2 on page 214 illustrates an example context hierarchy.
213

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 214 Monday, February 22, 1999 3:03 PM
Figure 10.2: Hierarchy of Contexts

A hierarchy may be set up by specifying the parent context in the constructor; a
name can also be given to a context:

// C++
Context_ptr c1 =

CORBA::Context::IT_create(“high”);
Context_ptr c2 =

CORBA::Context::IT_create(“middle”, c1);
Context_ptr c3 =

CORBA::Context::IT_create(“low”, c2);

You must free the Context pseudo-object reference returned from the call to
IT_create() , or alternatively, assign it to a CORBA::Context_var variable for
automatic management.

CORBA::Context::get_values()
CORBA::Context provides a function get_values() to retrieve the property
values in a Context ; it is defined as:

// C++
// In class CORBA::Context.
Status get_values(

const char* start_scope;
const Flags op_flags;
const char* prop_name;
NVList_ptr& values;
Environment& env = default_environment);

c1 high

c2 middle

c3 low
 214

Adv a n c e d P r o g r amm i n g T op i c s

ProgramGuide.book Page 215 Monday, February 22, 1999 3:03 PM
You can use the start_scope parameter to get_values() to specify that the
search for the values requested is to be made in a (direct or indirect) parent
context of the context on which the call is made. The call searches backwards
for a context with the specified name. If this is found, it searches for the specified
Identifiers in that context. For example, the following code specifies that the
search for identifiers beginning with “sys_” should begin in the context named
middle :

// C++

NVList_ptr listPtr = CORBA::NVList::IT_create();
if (!(c3->get_values(“middle”,

0, “sys_*”, listPtr)))
// Handle the error.

else {
// Iterate through the NVList pointed
// to by listPtr:

}

Alternatively, you could code this example to detect an exception raised by
get_values() if no entry is found.

If zero is passed as the first parameter to get_values() , the search begins in the
context that is the target of the call. If no matching identifiers are found,
get_values() returns zero (false).

CORBA::Context::get_values() has a parameter of type Flags . When the null
(zero) flag is passed to get_values() , searching of identifiers propagates
upwards to parent contexts. If the Flags parameter passed to get_values() is
CORBA::CTX_RESTRICT_SCOPE, searching is restricted to the specified start
scope or target Context object. Refer to the entry for class CORBA::Flags in
the Orbix C++ Programmer’s Reference for more details.
215

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 216 Monday, February 22, 1999 3:03 PM
Receiving Diagnostic Messages from Orbix
Orbix enables you to control the output of runtime diagnostic messages on both
the client and server. You can set three levels of diagnostics as follows:

Refer to the entry for CORBA::ORB::setDiagnostics() in the Orbix C++
Programmer’s Reference for more details.

Level Output

0 No diagnostics

1 Simple diagnostics (this is the default)

2 Full diagnostics
 216

ProgramGuide.book Page 217 Monday, February 22, 1999 3:03 PM
Part III
Dynamic Orbix
Programming

ProgramGuide.book Page 218 Monday, February 22, 1999 3:03 PM

ProgramGuide.book Page 219 Monday, February 22, 1999 3:03 PM
 11
The TypeCode Data Type

The IDL pseudo-object type TypeCode is used in CORBA to describe
arbitrary complex IDL types at runtime. This chapter describes how
you can manipulate TypeCode values.

The IDL data type TypeCode is used for two main purposes in CORBA systems:

• To describe the contents of an IDL value of type any. The TypeCode data
type forms an important part of the mapping from IDL type any to C++
type CORBA::Any. This is described in detail in Chapter 12, “The Any
Data Type” on page 227.

• As a parameter from some of the operations of the Interface Repository.
This is described in Chapter 15, “The Interface Repository” on page 275.

In an IDL specification, you can use a TypeCode as an attribute type or as the
type of a parameter or return value to an operation. To make the TypeCode
data type available, your IDL must include the following directive:

#include <orb.idl>

The IDL type TypeCode maps to a CORBA::TypeCode_ptr parameter in the C++
generated from your IDL definitions. The IDL TypeCode interface is
implemented by the Orbix C++ class CORBA::TypeCode.
219

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 220 Monday, February 22, 1999 3:03 PM
Overview of the TypeCode Data Type
This section describes the standard IDL interface CORBA::TypeCode, as well as
the C++ class CORBA::TypeCode.

Each TypeCode consists of the following:

• A kind.

The kind specifies the overall classification of the TypeCode: for example,
whether it is a basic type, a struct, a sequence, and so on.

• A sequence of parameters.

The parameters give the details of the type definition and are of type
CORBA::Any. For example, the IDL type sequence<long,20> has the kind
tk_sequence and has two parameters—the first parameter is a
CORBA::Any that contains a TypeCode for long, the second parameter is
a CORBA::Any that contains the value 20.

The IDL interface for TypeCode is shown below. Refer to the Orbix C++
Programmer’s Reference for a full description of this interface. It includes an
operation kind() to query the kind of a TypeCode and an operation
parameter() to access individual parameters of a TypeCode.

// IDL
// In module CORBA.
enum TCKind {

tk_null, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal,
tk_objref, tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble, tk_wchar,
tk_wstring, tk_fixed, tk_opaque

}
exception Bounds {};

pseudo interface TypeCode {
TCKind kind();
long param_count();
any parameter(in long index) raises(Bounds);
boolean equal(in TypeCode tc);

};
 220

T h e T y p e C od e D a t a T y p e

ProgramGuide.book Page 221 Monday, February 22, 1999 3:03 PM
The C++ signatures of these IDL operations are as follows:

// C++
TCKind kind(CORBA::Environment& env =

CORBA::default_environment) const;
CORBA::Any parameter(CORBA::Long index,

CORBA::Environment& env =
CORBA::default_environment) const;

The parameter() operation raises the exception Bounds if an attempt is made
to access a non-existent parameter. The number of parameters that a TypeCode
has varies with the kind of the TypeCode. This number is returned by the
param_count() operation of the TypeCode interface. The generated signature of
this operation is as follows:

// C++
CORBA::Long param_count(CORBA::Environment& env

= CORBA::default_environment) const;

The parameters of each kind of TypeCode are listed in detail in the entry for
CORBA::TypeCode in the Orbix C++ Programmer’s Reference. Some examples
are as follows:

• A TypeCode of kind tk_struct has one parameter giving the struct name
and then two parameters for each member of the struct: the first giving
the member’s name and the second giving its TypeCode. A struct with N
members has 2N+1 parameters. Each parameter is contained in a
CORBA::Any.

• A TypeCode of kind tk_string has one parameter—an integer giving the
maximum length of the string. A zero length indicates an unbounded
string. The parameter is contained in a CORBA::Any.
221

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 222 Monday, February 22, 1999 3:03 PM
Implementation of TypeCode in Orbix
The IDL type TypeCode is implemented by the C++ class CORBA::TypeCode. An
IDL operation with a parameter of type TypeCode is translated into a C++
member function with a parameter of type CORBA::TypeCode_ptr. A
declaration for the object that it references can be generated by the IDL
compiler from named type definitions that appear in an IDL file—that is, from
the following types:

interface
typedef
struct
union
enum

CORBA::TypeCode_ptr Constants

For each user-defined type that appears in an IDL file, a CORBA::TypeCode_ptr
can be generated. The TypeCode_ptr points to a TypeCode constant generated
by the IDL compiler. These constants have names of the form _tc_<type>
where <type> is the user-defined type. For example, consider the following IDL
specification:

interface Interesting {
typedef long longType;
struct Useful {

longType l;
};

};

The following CORBA::TypeCode_ptr constants are generated for this definition:

_tc_Interesting
_tc_longType
_tc_Useful

Note: These definitions are only generated if you specify the -A switch to the
Orbix IDL compiler.
 222

T h e T y p e C od e D a t a T y p e

ProgramGuide.book Page 223 Monday, February 22, 1999 3:03 PM
A number of predefined CORBA::TypeCode object reference constants are
always available to allow the user to access TypeCodes for standard types. Refer
to the entry for CORBA::TypeCode in the Orbix C++ Programmer’s Reference
for a complete list. The following are some examples:

CORBA::_tc_float is an object reference for a float TypeCode.

CORBA::_tc_string is an object reference for a string TypeCode.

CORBA::_tc_TypeCode is an object reference for a TypeCode TypeCode.

TypeCode Public Members

The C++ class CORBA::TypeCode defines the following public members:

• Constructors:

CORBA::TypeCode();
CORBA::TypeCode()(const CORBA::TypeCode&);

• A destructor.

• operator=(), which allows assignment of objects of type
CORBA::TypeCode.

• Function equal(), which allows comparison of objects of type
CORBA::TypeCode.

• operator==() and operator!=, which make it easier to compare
objects. These operators are specific to the Orbix implementation of
TypeCode.

• Function kind(), which returns a value of the enumerate type TCKind.

• Function param_count(), which returns the number of parameters of the
CORBA::TypeCode.

• Function parameter(), which returns an individual parameter. This takes
the parameter index (the first parameter is at index -1).
223

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 224 Monday, February 22, 1999 3:03 PM
CORBA::TypeCode::IT_create()

In addition to the public members listed above, the following function is provided
in the public interface to class CORBA::TypeCode:

static TypeCode_ptr IT_create(
const TypeCode_ptr& tc,
Environment& = default_environment);

IT_create() is provided by Orbix to initialize a TypeCode pseudo-object
reference, because the CORBA standard does not specify a way to obtain a
TypeCode pseudo-object reference. Use of IT_create() is recommended in
preference to C++ operator new() in order to ensure memory management
consistency.

Examples of Using TypeCode
This section explains the following examples of using TypeCode in Orbix:

• Use of TypeCode in type CORBA::Any.

• Use of TypeCode when querying the Interface Repository.

Use of TypeCode in Type CORBA::Any

Consider an example IDL definition:

// IDL
struct Example {

long l;
};

If you compile this definition with the IDL compiler -A switch, the
CORBA::TypeCode_ptr constant _tc_Example is generated.

Assume the following IDL operation:

// IDL
interface Bar {

void op(in any a);
};
 224

T h e T y p e C od e D a t a T y p e

ProgramGuide.book Page 225 Monday, February 22, 1999 3:03 PM
A client program invokes the IDL operation op() as follows:

// C++
// Client code.
Bar_var bVar;
...
CORBA::Any a ;
// Initialize a. (Not shown in this chapter.)
...
bVar->op(a);

On the server-side, you can query the actual type of the parameter to op(). For
example:

// C++
// Server code.
void Bar_i::op(const CORBA::Any& a,

CORBA::Environment&) {
CORBA::TypeCode_ptr t = a.type();
if(t->equal(_tc_Example)) {

cerr << "Don’t like struct Example!"
<< endl;

}
else... // Continue processing here.

}

This is one of the most common uses of TypeCodes —namely, the runtime
querying of type information from a CORBA::Any.

Use of TypeCode when Querying the Interface Repository

The Orbix Interface Repository maintains information about IDL type
definitions, allowing information about definitions to be determined at runtime.
The kind() and parameter() member functions of class CORBA::TypeCode can
be used to query the Interface Repository.

For example, when querying information about an operation of an interface, the
number of its arguments can be found, and then the TypeCode of each argument
can be determined. You can use the functions kind() and parameter() on each
TypeCode to determine the details of the type of each argument. Chapter 15,
“The Interface Repository” on page 275 describes the use of the Interface
Repository in detail, including examples of using TypeCode.
225

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 226 Monday, February 22, 1999 3:03 PM
 226

ProgramGuide.book Page 227 Monday, February 22, 1999 3:03 PM
 12
The Any Data Type

This chapter explains the IDL type any and the corresponding C++
class CORBA::Any, using an example. IDL type any indicates that
a value of an arbitrary type can be passed as a parameter or a return
value.

This chapter discusses different means of constructing and interpreting an any. It
first discusses the use of operator <<= (left-shift assign operator) and operator
>>= (right-shift assign operator). This approach is CORBA-defined, and is both
the simplest to use and the most type-safe. However, there are situations where
these operators cannot be used. This chapter also describes alternative
mechanisms for constructing and interpreting an any.

Consider the following interface:

// IDL

interface AnyDemo {
void passSomethingIn (in any any_type_parameter);
...

}

A client can construct an any to contain a type that can be specified in IDL, and
then pass this in a call to operation passSomethingIn(). An application
receiving an any must determine the type of value stored by the any and then
extract the value.
227

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 228 Monday, February 22, 1999 3:03 PM
The IDL type any maps to the C++ class CORBA::Any. Refer to the Orbix C++
Programmer’s Reference for the full specification of this class. This class contains
some private member data, accessible via public accessor functions, that store
both the type of the any and its value. The type is stored as a CORBA::TypeCode,
and the value is stored as a void*.

Inserting Data into an Any with operator<<=()
The C++ class CORBA::Any contains a number of left-shift assign operators
(<<=) that enable you to assign a value to an any. An overloaded version of
operator<<=() is provided for each of the basic IDL types such as long,
unsigned long, float, double, string and so on. In addition, the Orbix IDL
compiler can generate such an operator for each user-defined type that appears
in an IDL specification.

Note: Operators for user-defined type are generated only if the -A switch is
passed to the IDL compiler. Refer to Appendix A, “Orbix IDL Compiler
Options” on page 433 for more details.

The IDL definition for the example used in this chapter is as follows:

// IDL
// In file anydemo.idl

// Illustrates user-defined types and anys.
typedef sequence<long> LongSequence;
...
interface AnyDemo {

// Takes in any type that can be specified in IDL.
void passSomethingIn (in any any_type_parameter);

// Passes out any type specified in IDL.
void getSomethingOut (out any any_type_parameter);

// Passes in an any type and passes out an any
// containing a different type.
void passSomethingInOut (

inout any any_type_parameter);
};
 228

T h e A n y D a t a T y p e

ProgramGuide.book Page 229 Monday, February 22, 1999 3:03 PM
A version of the code for the example described in this chapter is available in
demos\anydemo directory of your Orbix installation.

Inserting a Basic Type

Orbix provides a pre-defined overloaded version of operator<<=() for basic
IDL types such as long, unsigned long, float, double string and so on.

Assume that a client programmer wishes to pass an any containing an IDL short
(or, in C++, a CORBA::Short) as the parameter to the passSomethingIn()
operation. The client can use the following operator, which is a standard
member of the class CORBA::Any:

void operator<<=(CORBA::Short s);

Inserting a User-Defined Type

If the client wishes to pass a more complex user-defined type, such as
LongSequence (in file anydemo.idl), it can use the following generated
operators:

void operator<<=(CORBA::Any& a,
const LongSequence& t);

Using this operator, you can write the following code:

// C++
// In file anydemo_menu.cxx.

// Builds an any containing a sequence of type
// LongSequence and then calls passSomethingIn.
void AnyDemoMenu::do_send_sequence() {

try {
CORBA::Any a;

// Build a sequence of length 2.
LongSequence sequence_to_insert(2);
sequence_to_insert.length(2);

// Insert a value into the sequence.
sequence_to_insert[0] = 1;
sequence_to_insert[1] = 2;
229

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 230 Monday, February 22, 1999 3:03 PM
// Use operator<<=() to insert the sequence
// into the any.
a <<= sequence_to_insert;

// Print out the contents of the sequence.
cout << "Call passSomethingIn with sequence

contents:" << sequence_to_insert[0] <<" "
<< sequence_to_insert[1] <<endl << endl;

// Now invoke passSomethingIn.
m_any_demo->passSomethingIn (a);

}
catch (CORBA::SystemException &sysEx) {
...
}

}

These operators provide a type-safe mechanism for inserting data into an any.
The correct operator is called based on the type of the value being inserted.
Furthermore, if an attempt is made to insert a value that has no corresponding
IDL type, this results in a compile-time error.

Using the left-shift assign operator to insert a value into an any sets both the
value of the CORBA::Any and the CORBA::TypeCode property for the
CORBA::Any.

Each left-shift assign operator makes a copy of the value being inserted; for
example, in the case of object references, _duplicate() is used. The
CORBA::Any is then responsible for the memory management of the copy.
Previous values held by the CORBA::Any are properly deallocated; for example,
using CORBA::release() in the case of object references.

Refer to “Other Ways to Construct and Interpret an Any” on page 233 for
details of how to insert boolean, char, array and octet values.
 230

T h e A n y D a t a T y p e

ProgramGuide.book Page 231 Monday, February 22, 1999 3:03 PM
Interpreting an any with operator>>=()
The C++ class CORBA::Any contains several right-shift assign operators (>>=)
that enable you to extract the value stored in an any. These operators
correspond to the basic IDL types such as long, unsigned long, float, double,
string and so on. As with operator<<=(), the IDL compiler can generate an
operator>>=() for each user-defined type that appears in an IDL specification.
These additional operators are only generated if the -A switch is specified to the
IDL compiler.

Interpreting a Basic Type

The following example illustrates the use of the right-shift assign operators to
extract the value stored in an any. Each operator>>=() returns a
CORBA::Boolean value to indicate whether or not a value of the required type
can be extracted from the any. Each operator>>=() returns 1 if the any
contains a value whose CORBA::TypeCode matches the type of the right-hand
parameter; and returns 0 otherwise. You can extract a value as follows:

// C++
// In file anydemo_menu.cxx.

// Shows how an any is passed as an out parameter.
void AnyDemoMenu::do_get_any() {

1 CORBA::Any* any_type_parameter;

cout << "Call getSomethingOut" << endl;
m_any_demo->getSomethingOut(any_type_parameter);

// Assumes that the server passes a string.
char* extracted_string = 0;

2 if (*any_type_parameter >>= extracted_string) {

// Print out the string.
cout << "any out parameter contains a string with
value :" << extracted_string << endl << endl;

}

231

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 232 Monday, February 22, 1999 3:03 PM
else {
// Error message.

cout << "unexpected value contained in any"
<< endl;

}
}

This code is explained as follows:

1. The CORBA::Any variable retains ownership of the memory it returns
when operator>>=() is called. Because the memory is managed by the
CORBA::Any type there is no need for you to manage the memory.

2. The function operator>>=() is used to interpret the contents of the any
parameter. If successful, the operator causes the extracted pointer to
point to the memory storage managed by the any.

Interpreting a User-Defined Type

More complex, user-defined types can also be extracted using the right-shift
operators generated by the IDL compiler. For example, the LongSequence IDL
type from “Inserting a User-Defined Type” on page 229:

// IDL
typedef sequence<long> LongSequence;

You can extract a LongSequence from a CORBA::Any as follows:

void AnyDemoMenu::do_get_any() {
CORBA::Any* any_type_parameter;

cout << "Call getSomethingOut" << endl;

m_any_demo->getSomethingOut(any_type_parameter);

LongSequence* extracted_sequence = 0

if (*any_type_parameter >>= extracted_sequence) {
cout << "any out parameter contains a sequence
with value :" << extracted_sequence << endl
<< endl;

}

 232

T h e A n y D a t a T y p e

ProgramGuide.book Page 233 Monday, February 22, 1999 3:03 PM
else {
cout << "unexpected value contained in any"
<< endl;

}
}

The generated right-shift operator for user-defined types takes a pointer to the
generated type as the right-hand parameter. If the call to the operator is
successful, this pointer points to the memory managed by the CORBA::Any.

No attempt should be made to delete or otherwise free the memory managed
by the CORBA::Any. Extraction into a _var variable violates this rule, because the
_var variable attempts to assume ownership of the memory. Furthermore, it is
an error to attempt to access the storage associated with a CORBA::Any after
the CORBA::Any variable has been deallocated.

Other Ways to Construct and Interpret an Any
This section presents a number of other ways to construct and interpret an any.
You should use the >>= and <<= operators wherever possible, but there are
occasions when you must use a more complex approach.

Inserting Values at Construction Time

Instead of creating a CORBA::Any variable using the default constructor, and then
inserting a value using operator<<=(), an application can specify the value and
its type when the CORBA::Any is being constructed. This alternative constructor
has the following signature:

// C++
Any(CORBA::TypeCode_ptr tc, void* value,

CORBA::Boolean release = 0);

This is not used normally, because it is more difficult to use than
operator<<=(), and because it is not type-safe. Specifically, the type of the value
passed to the value parameter may not match the type passed in parameter tc.
A mismatch is not detected because the value parameter is of type void* and
this leads to subsequent errors.
233

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 234 Monday, February 22, 1999 3:03 PM
However, there are some types that must be inserted in this way, for example
bounded strings. Both bounded and unbounded IDL strings map to char* in
C++, and hence both cannot be inserted using operator<<=(). This operator is
used to insert unbounded strings only. A CORBA::Any containing a bounded
string must be created using a specific constructor. You can use the function
CORBA::Any::replace() to make assignments. Refer to “Low Level Access to a
CORBA::Any” on page 236 for more details.

For example, you can construct a CORBA::Any variable to contain a bounded
string as follows:

// C++
// In file anydemo_menu.cxx.

// Insert a bounded string into an any using the
// constructor.
void AnyDemoMenu::do_send_bounded_string() {

try {
// Allocate the correct memory for the string.

1 char* string_to_insert =
CORBA::string_alloc(string_length);

strcpy(string_to_insert,"Making Software
Work Together (TM)");

// Call to constructor.
2 CORBA::Any a(_tc_BoundedString, &string_to_insert, 1);

// Invoke passSomethingIn as normal.
cout << "Call passSomethingIn with string value :"
<< string_to_insert << endl << endl;
m_any_demo->passSomethingIn (a);

}
catch (CORBA::SystemException &sysEx) {

cerr << "System exception: Call passSomethingIn
with a string failed" << endl;
cerr << &sysEx;

}
catch (CORBA::Exception &sysEx) {

cerr << "Exception: Call passSomethingIn with a
string failed" << endl;
cerr << &sysEx;

}

 234

T h e A n y D a t a T y p e

ProgramGuide.book Page 235 Monday, February 22, 1999 3:03 PM
catch (...) {
cerr << "Unexpected exception: Call
passSomethingIn with a string failed" << endl;

}
}

This code is explained as follows:

1. Because this example uses a bounded string, you must ensure that the
string is allocated the appropriate amount of memory. The constant
string_length is defined in anydemo.idl.

2. The first parameter to the CORBA::Any constructor is a pseudo-object
reference for a CORBA::TypeCode. In this case, the constant
_tc_BoundedString is passed. This constant is generated by the IDL
compiler.

The second parameter is a pointer to the value to be inserted into the
CORBA::Any; in this case string_to_insert. This value should be of the
type specified by the CORBA::TypeCode_ptr parameter. The behaviour is
undefined if the CORBA::TypeCode_ptr and the value parameters do not
agree. When constructing CORBA::Anys for string types, the second
parameter is of type char**.

The third parameter, release, specifies which code assumes ownership
of the memory occupied by the value in the CORBA::Any variable
(string_to_insert). If this is 1 (true), the CORBA::Any assumes
ownership of the storage pointed to by the value parameter. If this
parameter is 0 (false), the caller must manage the memory associated
with the value. The default is zero.

In this example, the CORBA::Any assumes ownership of the memory
associated with the variable string_to_insert: the application code is
not required to free this memory.
235

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 236 Monday, February 22, 1999 3:03 PM
Low Level Access to a CORBA::Any

Class CORBA::Any provides three type-unsafe functions enabling low level access
to an Any. These are defined as follows:

// C++
void replace(CORBA::TypeCode_ptr, void* value,

CORBA::Boolean release = 0);

CORBA::TypeCode_ptr type() const;

const void* value() const;

replace()
The replace() function is only intended for use with types that cannot use the
type-safe operator interface. It can be used at any time after construction of a
CORBA::Any to replace the existing CORBA::TypeCode and value. Like the
various <<= operators, it releases the previous CORBA::TypeCode and if
necessary, deallocates the storage previously associated with the value. The
release parameter has the same semantics as the release parameter of the
CORBA::Any constructor described in “Inserting Values at Construction Time”
on page 233.

type()

The type() function returns an object reference for a CORBA::TypeCode that
describes the type of the CORBA::Any. As with all object references, the caller
must release the reference when it is no longer needed, or assign it to a
CORBA::TypeCode_var variable for automatic management.

value()

The value() function returns a pointer to the data stored in the CORBA::Any,
or, if no value is stored, it returns the null pointer. This value may be cast to the
appropriate C++ type depending on the CORBA::TypeCode of the CORBA::Any.
The rules for the actual C++ type returned for each different IDL type are listed
in the entry for CORBA::Any in the Orbix C++ Programmer’s Reference.
 236

T h e A n y D a t a T y p e

ProgramGuide.book Page 237 Monday, February 22, 1999 3:03 PM
If the CORBA::Any contains an object reference for an object whose type is
unknown at compile time, the type() function returns a reference for a
CORBA::TypeCode object that is equal to the _tc_object typecode constant.
The value() function returns a void* that can be cast to a
CORBA::Object_ptr*.

Example of Using type() and value()
The following example determines the type of an any by comparing the contents
of the any with the typecode constant for a bounded string:

// C++
// In file anydemo_impl.cxx.

void AnyDemoImpl::passSomethingIn(
const CORBA::Any& any_type_parameter,
CORBA::Environment &)
throw(CORBA::SystemException) {
...

CORBA::TypeCode_ptr type= any_type_parameter.type();

// Checks if the any contains a bounded string.
if (type->equal(_tc_BoundedString)) {

// Returns a void pointer to the bounded string.
char** any_contents =

(char**)any_type_parameter.value();
const char* bounded_string = *any_contents;

// Print out the contents.
cout << "passSomethingIn extracted a bounded

string of length " << strlen(bounded_string)
<< " and value " << bounded_string << endl
<< endl;

}
else {

// Error message.
cout << "passSomethingIn: unexpected value"
<< endl;

}
}

237

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 238 Monday, February 22, 1999 3:03 PM
Orbix defines a typecode constant for each built-in type, and you can instruct
the IDL compiler to generate typecode constants for each user-defined type.
This is discussed in more detail in Chapter 11, “The TypeCode Data Type” on
page 219.

Refer to the Orbix C++ Programmer’s Reference for more details on the
replace(), type() and value() functions.

Inserting and Extracting Array Types

Recall that IDL arrays are mapped to regular C++ arrays. This presents a
problem for the type-safe operator interface to CORBA::Any. C++ array
parameters decompose to a pointer to their first element, so you cannot use the
operators to insert or extract arrays of different lengths.

Nevertheless, arrays can be inserted and extracted using the operators, because
a distinct C++ type is generated for each IDL array—specifically to help with
insertion and extraction into or out of CORBA::Any variables. The name of this
type is the name of the array followed by the suffix “_forany”.

The following example shows type-safe manipulation of arrays and CORBA::Anys:

// IDL
typedef long longArray[2][2];

// C++
longArray_forany m_array = { {14, 15}, {24, 25} };

// Insertion:
CORBA::Any a;
if (a <<= m_array) {

cout << “Success!” << endl;
}

// Extraction:
longArray_forany extractedValue;
if (a >>= extractedValue) {

cout << “Element [1][2] is ”
<< extractedValue[1][2] << endl;

}

 238

T h e A n y D a t a T y p e

ProgramGuide.book Page 239 Monday, February 22, 1999 3:03 PM
These types, like the array _var types, provide an operator[]() to access the
array members, but the _forany types do not delete any storage associated with
the array when they are themselves destroyed. This is a good match for the
semantics of operator>>=(). The CORBA::Any retains ownership of the
memory returned by the operator. There is therefore no memory leak in this
code sample.

Inserting and Extracting boolean, octet and char

The standard CORBA IDL to C++ mapping does not require that the IDL types
boolean, octet and char map to distinct C++ types. Therefore, it is not
possible to insert and extract each of these using operator<<=() and
operator>>=(). Remember that the overloaded right-shift and left-shift
assignment operators are distinguished based on the type of the right-hand
argument.

In Orbix, the types boolean and octet map to the same underlying C++ type
(unsigned char). Type char maps to a different type (C++ char), so a separate
operator could have been provided for it, but this would not be CORBA
compliant.

The distinction is achieved by using helper types that are nested within the C++
class CORBA::Any. These helper types are structs; refer to the entry for
CORBA::Any in the Orbix C++ Programmer’s Reference for details on their
syntax. Left-shift and right-shift assignment operators are provided for each of
these helper types.

These helper classes can be used as follows:

// C++
CORBA::Any a;

// Insert a boolean into the CORBA::Any a:
CORBA::Boolean b = 1;
a <<= CORBA::Any::from_boolean(b);

// Extract the boolean.
CORBA::Boolean extractedValue;
if (a >>= CORBA::Any::to_boolean(extractedValue)){

cout << “Success!” << endl;
}

239

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 240 Monday, February 22, 1999 3:03 PM
// Insert an octet into the CORBA::Any a:
CORBA::Octet o = 1;
a <<= CORBA::Any::from_octet(o);

// Extract the octet from a:
CORBA::Octet extractedValue;
if (a >>= CORBA::Any::to_octet(extractedValue)) {

cout << “Success!” << endl;
}

// Insert a char into the CORBA::Any a:
CORBA::Char c = ‘b’;
a <<= CORBA::Any::from_char(c);

// Extract the char from a:
CORBA::Char extractedValue;
if (a >>= CORBA::Any::to_char(extractedValue)) {

cout << “Success!” << endl;
}

Any Constructors, Destructor and Assignment
In addition to the functionality already described, the C++ class CORBA::Any
also contains the following:

• A default constructor.

This creates a CORBA::Any with a CORBA::TypeCode of kind tk_null and
no value.

• A copy constructor.

This calls _duplicate() on the CORBA::TypeCode_ptr of its CORBA::Any
parameter and deep copies the parameter’s value.

• A constructor for setting the type and value of an CORBA::Any for
untyped values.

This is described in “Inserting Values at Construction Time” on page 233.
 240

T h e A n y D a t a T y p e

ProgramGuide.book Page 241 Monday, February 22, 1999 3:03 PM
• An assignment operator.

This releases its own CORBA::TypeCode_ptr and deallocates the memory
associated with its current value, if any. It then duplicates the
CORBA::TypeCode_ptr of its CORBA::Any parameter and deep copies the
parameter’s value.

• A destructor.

This calls CORBA::release() on the CORBA::TypeCode_ptr and
deallocates the memory associated with the value, if any.

Any as a Parameter or Return Value
The mappings for IDL any operation parameters and return value are illustrated
by the following IDL operation:

// IDL
any op(in any a1, out any a2, inout any a3);

This maps to:

// C++
CORBA::Any* op(const CORBA::Any& a1,

CORBA::Any*& a2, CORBA::Any& a3);

Because both return values and out parameters map to pointers to CORBA::Any,
a CORBA::Any_var class is provided that manages the memory associated with
this pointer. The CORBA::Any_var class calls the C++ operator delete on its
associated CORBA::Any* when it is itself destroyed; for example, by going out of
scope.
241

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 242 Monday, February 22, 1999 3:03 PM
 242

ProgramGuide.book Page 243 Monday, February 22, 1999 3:03 PM
 13
Dynamic Invocation Interface

In a normal Orbix client program, the IDL interfaces that the client
can access are determined when the client is compiled. The Dynamic
Invocation Interface (DII) allows a client to call operations on IDL
interfaces that were unknown when the client was compiled.

IDL is used to describe interfaces to CORBA objects, and the Orbix IDL
compiler generates the necessary support to enable clients to make calls to
remote objects. Specifically, the IDL compiler automatically builds the
appropriate code to manage proxies, to dispatch incoming requests within a
server, and to manage the underlying Orbix services.

Using this approach, the IDL interfaces that a client program can use are
determined when the client program is compiled. Unfortunately, this is too
limiting for a small but important subset of applications. These application
programs and tools require that they can use an indeterminate range of
interfaces: interfaces that perhaps were not even conceived at the time the
applications were developed. Examples include browsers, gateways,
management support tools and distributed debuggers.

Orbix supports the CORBA Dynamic Invocation Interface (DII), this allows an
application to issue requests for any interface, even if that interface was
unknown when the application was compiled.

The DII allows invocations to be constructed at runtime by specifying the target
object reference, the operation or attribute name and the parameters to be
passed. A server receiving an incoming invocation request does not know
whether the client that sent the request used the normal, static approach or the
dynamic approach to compose the request.
243

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 244 Monday, February 22, 1999 3:03 PM
Using the DII
This chapter uses a banking example to demonstrate the use of the DII. This
example has the following IDL definitions:

// IDL
interface Account {

readonly attribute float balance;

void makeDeposit(in float f);
void makeWithdrawal(in float f);

};

interface Bank {
exception Reject {

string reason;
};

// Create an account.
Account newAccount(in string owner,

inout float initialBalance) raises (Reject);

// Delete an account.
void deleteAccount(in Account a);

};

To help illustrate the use of the DII the operation Bank::newAccount() has
been extended to take an inout parameter denoting the initial balance.

The examples that follow show how you can make dynamic invocations by
constructing a Request object and then causing the specified operation or
attribute call to be made. The examples make the equivalent of the following call
to operation newAccount():

// C++
Bank_var bankVar = ...
CORBA::Float initialBalance = 1000.00;
bankVar->newAccount("Chris", initialBalance);
 244

U s i n g t h e D I I

ProgramGuide.book Page 245 Monday, February 22, 1999 3:03 PM
Programming Steps in Using the DII

To make an invocation using the DII, do the following:

1. Get a reference to the target object.

2. Construct a Request object.

3. Populate the Request object with information about the invocation,
including the object reference, the name of the operation or attribute to
be called, and the parameters to the operation.

4. Invoke the request.

5. Retrieve the results of the operation.

There are two ways to use the DII:

• Using CORBA-defined functions

• Using the Orbix stream-like interface

The Orbix stream-like interface to the DII is easier to use than the CORBA-
defined functions, but this interface is not CORBA-compliant.

There are two common types of client program that use the DII:

• A client interacts with the Interface Repository to determine a target
object’s interface, including the name and parameters of one or all of its
operations and then uses this information to construct DII requests.

• A client, such as a gateway, receives the details of a request to be made.
In the case of a gateway, this may arrive as part of a network package.
The gateway can then translate this into a DII call, without checking the
details with the Interface Repository. If there is any mismatch, the
gateway will receive an exception from Orbix, and can report an error to
the caller.

Some client programs also use the DII to call an operation with deferred
synchronous semantics, which is not possible using normal static operation calls.
Deferred synchronous calls are described in “Invoking a Deferred Synchronous
Request” on page 254.
245

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 246 Monday, February 22, 1999 3:03 PM
The CORBA Approach to Using the DII
The first step in using the DII is to obtain a reference to the target object for the
request. You can do this using any of the standard methods described in
Chapter 6, “Making Objects Available in Orbix”.

Note: All IDL interfaces inherit from type CORBA::Object, so every object
reference can be represented using type CORBA::Object_ptr. Some
client programs may use a user-defined object reference type, but most
clients that use the DII use the most-general type, CORBA::Object_ptr.

The remainder of this section describes how you create and invoke a request
with the CORBA-compliant approach to using the DII.

Setting up a Request

There are two CORBA-compliant ways to construct a Request object:

1. Using the function _request() defined in class CORBA::Object. This is
declared as:

// C++
typedef char* Identifier;

Request_ptr _request(Identifier operation,
Environment& env = default_environment);

A program that uses the function _request() must be linked with the
Interface Repository client library, as described in Chapter 15, “The
Interface Repository”.

2. Using the function _create_request() also defined in class
CORBA::Object. This is declared as:

// C++
Status _create_request(

Context_ptr ctx,
const char* operation,
NVList_ptr arg_list,
NamedValue_ptr& result,
Request_ptr& request,
Flags req_flags,
 246

T h e C O R B A A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 247 Monday, February 22, 1999 3:03 PM
 Environment& env=default_environment);

Setting up a Request Using _request()

You can set up a request by invoking _request() on the target object and
specifying the name of the operation that is to be invoked. You can then
populate the Request object with the parameters to the call.

Creating the Request Object
To create a Request object, first obtain an object reference to the target object.
Call _request() on the target object as follows:

// C++
// Get object reference.
CORBA::Object_var target =

CORBA::Orbix::string_to_object(refStr);

// Create a Request object
// for operation newAccount().
CORBA::Request_var request =

target->_request("newAccount");

The function _request() takes the name of the target operation or attribute as
a parameter. If you wish to call a get or set function for an attribute, then prefix
the attribute name with _get_ or _set_ as required.

Adding the Parameters to the Request Object
There are two steps in adding the parameters to the Request object:

1. Call the function CORBA::Request::arguments() to get an empty list of
name-value pairs corresponding to the parameters of the operation to be
called. This list is of type CORBA::NVList, which is a list of
CORBA::NamedValue objects.

2. Add a CORBA::NamedValue object to the list for each operation
parameter value. The CORBA::NamedValue object stores the name of the
parameter and the corresponding value, represented as type CORBA::Any.
247

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 248 Monday, February 22, 1999 3:03 PM
You can get the empty parameter list for a request and create a
CORBA::NamedValue object for each parameter as follows:

// C++
CORBA::NamedValue_ptr ownerArg;
CORBA::NamedValue_ptr balanceArg;

ownerArg =
req->arguments()->add(CORBA::ARG_IN);

balanceArg =
req->arguments()->add(CORBA::ARG_INOUT);

The function CORBA::NVList::add() creates a CORBA::NamedValue and adds it
to the operation parameter list. It returns a CORBA::NamedValue_ptr for the
newly created object. This object does not yet contain the required parameter
value.

You must specify the parameter passing mode when creating each of the
CORBA::NamedValue objects. Specify these modes in the order in which the
parameters appear in the IDL definition for the operation.

The parameter passing modes are as follows:

To set the parameter values, get a pointer to the CORBA::Any in each
CORBA::NamedValue object in the parameter list and update it with the
corresponding value. To get the CORBA::Any value, use the
CORBA::NamedValue::value() function.

For example, to update the first parameter to the operation newAccount() do
the following:

CORBA::Any* ownerValue = ownerArg->value();

// Insert the parameter value:
*ownerValue <<= "Chris";

CORBA::ARG_IN Input parameters (IDL in).

CORBA::ARG_OUT Output parameters (IDL out).

CORBA::ARG_INOUT Input/output parameters (IDL inout).
 248

T h e C O R B A A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 249 Monday, February 22, 1999 3:03 PM
To update the second parameter do the following:

CORBA::Any* balanceValue = balanceArg->value();

// Insert the parameter value:
*balanceValue <<= 1000.00;

At this point, the request has been constructed and is ready to be invoked.

Adding a Context Parameter to the Request
If the IDL operation has an associated IDL context clause, then you can add a
Context object can to the request. To do this, use the operation ctx() defined
on class Request. This function is described in the entry for class Request in the
Orbix C++ Programmer’s Reference.

Setting up a Request Using _create_request()

Another way to set up a request is to first create a list object, of type
CORBA::NVList, containing the values of the operation parameters and then
invoke _create_request() on the target object, passing the request details to
this function.

Creating a List of Parameter Values
There are two steps in creating a list of parameter values:

1. Create an empty list of name-value pairs to contain the parameters. This
list is of type CORBA::NVList, which is a list of CORBA::NamedValue
objects.

2. Add a CORBA::NamedValue object to the list for each operation
parameter value. The CORBA::NamedValue object stores the name of the
parameter and the corresponding value, represented as type CORBA::Any.
249

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 250 Monday, February 22, 1999 3:03 PM
Create a CORBA::NVList and prepare the list to hold the parameter values as
follows:

// C++
CORBA::NVList_ptr argList;
CORBA::NamedValue_ptr ownerArg;
CORBA::NamedValue_ptr balanceArg;

if (CORBA::Orbix.create_list(2, arglist) {
ownerArg = argList->add(CORBA::ARG_IN);
balanceArg = argList->add(CORBA::ARG_INOUT);

}

The function CORBA::NVList::add() is described in “Adding the Parameters to
the Request Object” on page 247.

The CORBA::NVList object assumes ownership of the memory for each
CORBA::NamedValue object in the list. You should not release the
CORBA::NamedValue_ptr returned from CORBA::NVList::add() and you
should not assign the result to an _var variable.

To set the parameter values, insert each value into the CORBA::Any associated
with the corresponding CORBA::NamedValue object, as described in “Adding the
Parameters to the Request Object” on page 247:

CORBA::Any* ownerValue = ownerArg->value();
CORBA::Any* balanceValue = balanceArg->value();

// Insert the parameter values.
*ownerValue <<= "Chris";
*balanceValue <<= 1000.00;
 250

T h e C O R B A A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 251 Monday, February 22, 1999 3:03 PM
Creating the Request Object
The function _create_request() is defined in class CORBA::Object as follows:

// C++
Status _create_request(

Context_ptr ctx,
const char* operation,
NVList_ptr arg_list,
NamedValue_ptr& result,
Request_ptr& request,
Flags req_flags,
Environment& env = default_environment);

The parameters to this function are as follows:

The return type Status is a typedef for CORBA::ULong. Function
_create_request() returns a non-zero value to indicate success and a zero
value to indicate failure.

When calling _create_request(), you initialize parameters ctx, operation,
arg_list, and req_flags in advance. You do not need to initialize parameters
result or request.

Once you call _create_request(), you must specify the TypeCode of the
operation return value. To do this, call CORBA::Request::set_return_type()
on the Request object, passing the TypeCode constant associated with the
return type.

ctx A pointer to the Context object to be sent in the
request, if the operation has an associated IDL context
clause.

operation The name of the operation to be called. If you wish to
call a get or set function for an attribute, specify the name
of the attribute preceded by the string _get_ or _set_.

arg_list The parameters to the operation.

result The location for the return value.

request The pointer to the new Request object to be created.

req_flags The flags for the request.

env The Environment parameter for exception handling.
251

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 252 Monday, February 22, 1999 3:03 PM
The example shown below constructs a Request for operation newAccount():

// C++
CORBA::Request_ptr request;
CORBA::NVList_ptr argList;
CORBA::NamedValue_ptr result;

// Add parameter values to argList.
...

// Construct the Request object.
if(target->_create_request(

CORBA::Context::_nil(), "newAccount", argList,
result, request, 0)) {

request->set_return_type(_tc_Account);

// Invoke the request.
...

}

Using the Interface Repository when Setting Up a Request

Both CORBA-compliant methods of setting up a Request object require that
you create a CORBA::NVList object containing the values of the operation
parameters. If you have obtained a description of an operation from the Orbix
Interface Repository, as described in Chapter 15, an alternative way to create
the CORBA::NVList object is available.

An operation is described in the Interface Repository by an object of type
CORBA::OperationDef. The function CORBA::ORB::create_operation_list()
is defined as follows:

// C++
Status create_operation_list(

OperationDef_ptr operation,
NVList_ptr& new_list,
CORBA::Environment& env = default_environment);

Call this function on the CORBA::Orbix object, passing a CORBA::OperationDef
object that describes the target operation and an empty CORBA::NVList object.
This function updates the CORBA::NVList object with one element for each
argument. Each element is initialized with the correct parameter passing mode,
 252

T h e C O R B A A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 253 Monday, February 22, 1999 3:03 PM
the name of the argument, and an initial value of type CORBA::Any. The value of
the CORBA::Any is not initialized.

To call CORBA::ORB::create_operation_list(), a client must be linked
against the Interface Repository client library, as described in Chapter 15, “The
Interface Repository”.

Invoking a Request

Once the parameters are inserted, you can invoke a request as follows:

// C++
try {

if (request->invoke())
// Call to invoke() succeeded.

else
// Call to invoke() failed.

}
catch (CORBA::SystemException& se) {

cout << "Unexpected Exception" << &se << endl;
}

Exceptions are handled in the same manner as for static function invocations.
However, user-defined exceptions are not currently supported.

Invoking a Request for a Oneway Operation
The function CORBA::Request::invoke() calls the target operation and blocks
the client until the operation returns. You can not use invoke to call a oneway
operation. Instead, you must use the function
CORBA::Request::send_oneway().

For example, if the Request object request was set up for a oneway operation
call, then you could invoke send_oneway() as follows:

// C++
try {

request->send_oneway();
}
catch (CORBA::SystemException& se) {

cout << "Unexpected Exception" << &se << endl; }
253

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 254 Monday, February 22, 1999 3:03 PM
Note: You can also use send_oneway() to invoke a normal, non-oneway,
operation. The effect of this is that the client is not blocked while the
operation call is being processed, but all return values, out, and inout
parameters are discarded. This functionality is rarely required.

Invoking a Deferred Synchronous Request
The DII allows you to make operation calls using deferred synchronous semantics.
Using these semantics, a client can call an operation, continue processing in
parallel with the operation, and then retrieve the operation results when
required.

To use this method of invoking a request, do the following:

1. Invoke the request by calling CORBA::Request::send_deferred().

2. Continue processing in parallel with the operation.

3. If you wish to check if the result of the operation is available, call the
function CORBA::Request::poll_response() on the Request object.
This function returns a non-zero value if a response has been received.

4. To get the result of the operation, call
CORBA::Request::get_response() on the Request object.

For more details on the functions CORBA::Request::send_deferred(),
CORBA::Request::poll_response(), and CORBA::Request::get_response(),
see the entry for class CORBA::Request in the Orbix C++ Programmer’s Reference.

Invoking Multiple Requests Simultaneously
Two functions defined on class CORBA::ORB allow you to invoke multiple DII
requests simultaneously. To call multiple oneway operations simultaneously,
invoke the function CORBA::ORB::send_multiple_requests_oneway() on the
CORBA::Orbix object. To call multiple deferred synchronous operations, call
CORBA::ORB::send_multiple_requests_deferred() on the same object.
These functions are described in the entry for class CORBA::ORB in the Orbix C++
Programmer’s Reference.
 254

T h e C O R B A A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 255 Monday, February 22, 1999 3:03 PM
Retrieving the Results of a Request

When you invoke a request, the values of the out and inout parameters are
automatically modified within the CORBA::NVList that contains the parameter
values. The function CORBA::Request::arguments() returns this list. To get
the parameter values, do the following:

1. Call arguments() on the Request object to get the parameter list. This
function returns a CORBA::NVList_ptr.

2. Use the function CORBA::NVList::item() to return an element at a
particular index in the list and get the CORBA::NamedValue objects
associated with the out and inout parameters.

3. Call CORBA::NamedValue::value() to get a pointer to the CORBA::Any
value for each parameter.

4. Extract the parameter values from the CORBA::Any.

The function CORBA::NVList::item() is described in the entry for class
CORBA::NVList in the Orbix C++ Programmer’s Reference.

To get the return value of the operation, call the function result() on the
Request object. This function is defined in class CORBA::Request as follows:

// C++
CORBA::NamedValue_ptr result(Environment& env

= default_environment);

This function returns a reference to a CORBA::NamedValue. Before calling this
function, you must create the CORBA::NamedValue object as follows:

CORBA::NamedValue_ptr nv =
CORBA::NamedValue::IT_create();

Use the value() function defined on CORBA::NamedValue to extract the
CORBA::Any containing the return value of the operation, as for out and inout
parameters.

Getting Information About a Request Object

Given a Request object, you can get the operation name and the target object
reference using the functions CORBA::Request::operation() and
CORBA::Request::target(), respectively. Chapter 16, “Filtering Operation
Calls” provides an example in which these functions are required.
255

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 256 Monday, February 22, 1999 3:03 PM
The Orbix-Specific Approach to Using the DII
As in the CORBA-compliant approach to using the DII, the first step in using the
Orbix-specific approach is to obtain a reference to the target object for the
request. You can do this using any of the standard methods described in
Chapter 6, “Making Objects Available in Orbix”.

The remainder of this section describes how you create and invoke a request
with the Orbix stream-like interface to the DII.

Setting Up a Request

Orbix allows you to instantiate a Request object using the normal C++
mechanisms. For example, you can create a Request object as follows:

// C++
CORBA::Object_ptr target;
// Get a reference for the target object.
...

CORBA::Request request(target);

The Request constructor used in this example takes the target object reference
as a parameter.

The next step is to set the target operation name. To do this, call the function
CORBA::Request::setOperation() on the Request object, for example:

// C++
request.setOperation("newAccount");

Once you set the operation name, you must specify the TypeCode of the
operation return value. To do this, call CORBA::Request::set_return_type()
on the Request object, passing the TypeCode constant associated with the
return type. For example, to set the return type to Account, call
CORBA::Request::set_return_type() as follows:

//C++
request.set_return_type(_tc_Account);

You can then insert the values of the operation parameters into the request.
Orbix allows you to do this as if Request object were an I/O stream. Class
CORBA::Request supports operator<<() for all of the IDL basic types, except
octet.
 256

T h e O r b i x - S p e c i f i c A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 257 Monday, February 22, 1999 3:03 PM
For example, to insert the parameters for operation newAccount(), do the
following:

// C++
CORBA::Float initialBalance = 1000.00

request << "Chris";
request << CORBA::inoutMode << initialBalance;

The parameters must be inserted in the correct order. Orbix dynamically type-
checks the values when the request arrives at the remote object.

The default parameter passing mode is in. You can specify the parameter passing
mode using one of the following manipulators:

Using a manipulator changes the parameter attribute mode for all subsequent
parameters for this Request object or until another manipulator is used.

Adding a Context Parameter to the Request
You can also use operator<<() to specify a Context object to be passed in a
request. Use this operator to pass the Context object as the last parameter to
the request, as if the Context object were an IDL in parameter.

CORBA::inMode Input parameters (IDL in).

CORBA::outMode Output parameters (IDL out).

CORBA::inoutMode Input/output parameters (IDL inout).
257

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 258 Monday, February 22, 1999 3:03 PM
Invoking a Request

Once you insert the operation parameters, you can invoke the request as
described in “Invoking a Request” on page 253. For example, the most common
way to invoke a request is to call CORBA::Request::invoke() as follows:

// C++
try {

if (request->invoke())
// Call to invoke() succeeded.

else
// Call to invoke() failed.

}
catch (CORBA::SystemException& se) {

cout << "Unexpected Exception" << &se << endl;
}

Resetting a Request Object
If you wish to invoke several DII requests in a single program, you can use
several Request variables, using the appropriate operation settings for each.
Alternatively, you can use a single Request variable and reset this variable for
each request.

To reset an existing Request object, call CORBA::Request::reset(). You can
then set new values for the target object, for example as follows:

// C++
request.reset();
request.setTarget(aPtr);
request.setOperation("makeDeposit");

You can also do this as follows:

// C++
request.reset(aPtr, "makeDeposit");

You can then insert new operation parameters into the request. You should also
set the request return type, as described in “Creating the Request Object” on
page 251.
 258

T h e O r b i x - S p e c i f i c A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 259 Monday, February 22, 1999 3:03 PM
Retrieving the Results of a Request

When the operation returns, you can examine the return value and output
parameters. If there are any out and inout parameters, these are modified by
the call and no special action is required to access their values. For example,
after calling invoke() on a request to operation newAccount(), the actual
parameter initialBalance is updated automatically.

To get the operation return value, use the extraction operator, operator>>(),
as follows:

// C++
Account_ptr aPtr;
CORBA::Object_ptr oPtr;

try {
// Call newAccount() using Request request.
...

// Extract the return value.
request >> oPtr;
if (aPtr = Account::_narrow(oPtr)) {

// Use the returned Account object reference.
...

}
}
catch (CORBA::SystemException& se) {

cout << "Unexpected System Exception"
<< &se << endl;

}
catch (...) {

cout << "Unexpected exception << endl;
...

}

Note: operator>>() is used to extract just the return value from the request
and not to extract the output parameters.
259

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 260 Monday, February 22, 1999 3:03 PM
Additional Information About operator<<()

As a further example of operator<<(), consider the following IDL operation:

// IDL
long op(in long i, inout float f, out char c);

You can insert the parameters for this operation as follows:

// C++
CORBA::Request request;
CORBA::Long i = 4L;
CORBA::Float f1 = 8.9;
CORBA::Char ch;

request << i
 << CORBA::inoutMode << f1
 << CORBA::outMode << ch;

Note that parameters to operator<<() are passed by reference, so you must
write:

<< f1

rather than:

<< &f1

Input (in) parameters are not copied into the request argument list; so if the
values of the variables are changed between their insertion and invocation, the
new values are transmitted. In other words, operator<<() uses “call by
reference” semantics. Care must be taken to ensure that the parameters remain
in existence and have the desired values when the invocation of the Request is
actually made. An example of such an error would be to insert a local variable
within a function and to return from the function before the Request invocation
is made.

Parameters inserted using operator<<() are, by default, nameless. However,
you can explicitly give the parameter a name, using CORBA::arg():

// C++
// Insert parameter "height".
request << CORBA::arg("height") << 65;
 260

T h e O r b i x - S p e c i f i c A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 261 Monday, February 22, 1999 3:03 PM
The naming of parameters does not remove the requirement that parameters
must be inserted in the proper order. However, if the same parameter name is
used again, its previous value is replaced with the new value.

Note: arg affects only a single use of operator<<(). The manipulators inMode,
outMode, and inoutMode affect all subsequent uses of operator<<() on a
given Request object until the next mode change.

Inserting and Extracting Octets
An octet cannot be inserted into or extracted from a Request using operators
<< and >>.

This restriction arises because both IDL octet and boolean map to the same
underlying C++ type. Since the type boolean is used more frequently than
octet, operator<<(unsigned char) and operator>>(unsigned char)
assume that their parameter is a boolean; and this assumption may lead to
conversion errors between heterogeneous machines if the parameter is in fact
an octet.

To insert an octet into a Request, use the function
CORBA::Request::insertOctet():

// C++
CORBA::octet o = 0xA2;
request.insertOctet(o);

Use the function CORBA::Request::extractOctet(octet&) to extract an
octet return value.

Inserting and Extracting User-Defined Types
Two manipulators, CORBA::insert and CORBA::extract, allow you to insert
and extract user-defined IDL types into and out of a Request object.
261

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 262 Monday, February 22, 1999 3:03 PM
The use of these manipulators for structs is illustrated in the code segment
below:

// IDL
struct Example {

long m1;
char m2;

};

// C++
CORBA::Request request;
Example e;
e.m1 = 27; e.m2 = ’c’;
request << CORBA::insert(

_tc_Example, &e, CORBA::inMode);

CORBA::insert uses the CORBA::TypeCode constant generated by the IDL
compiler for each user-defined type. In this case, _tc_Example is the TypeCode
for the IDL struct Example. Refer to “The TypeCode Data Type” on page 219
for a full explanation of TypeCodes.

User-defined IDL types can be extracted from a Request using the
CORBA::extract manipulator:

// C++
CORBA::Request request;
st s1;
request >> CORBA::extract(_tc_Example, &s1);

The CORBA::insert and CORBA::extract manipulators also work for primitive
types.

Inserting and Extracting Arrays
To insert an array of basic types into a Request, one of the following functions
should be called on the Request object:

encodeCharArray() encodeOctetArray()

encodeShortArray() encodeUShortArray()

encodeLongArray() encodeULongArray()

encodeFloatArray() encodeBooleanArray()
 262

T h e O r b i x - S p e c i f i c A p p r o a c h t o U s i n g t h e D I I

ProgramGuide.book Page 263 Monday, February 22, 1999 3:03 PM
Each is defined in class CORBA::Request and takes a pointer to the first element
of the array, and the array length (as a CORBA::ULong).

To extract an array, one of the following functions should be called on the
Request object:

Each takes a pointer which is updated to point to the first element of the array,
and a reference to a CORBA::ULong which is updated to hold the length of the
array.

Restrictions on Some Compilers
On most compilers, a CORBA::Float can be inserted as follows:

// C++
CORBA::Float f =;
r << f;

However, for some compilers, it is necessary to cast the CORBA::Float as it is
being inserted:

// C++
r << (CORBA::Float)f;

Otherwise it may be implicitly cast to a C++ double.

The latter form needs to be used when writing portable code.

Similarly, some compilers require an explicit cast to insert object references:

// C++
CORBA::Object_ptr o = ...
r << (CORBA::Object_ptr)o;

decodeCharArray() decodeOctetArray()

decodeShortArray() decodeUShortArray()

decodeLongArray() decodeULongArray()

decodeFloatArray() decodeBooleanArray()
263

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 264 Monday, February 22, 1999 3:03 PM
 264

ProgramGuide.book Page 265 Monday, February 22, 1999 3:03 PM
 14
Dynamic Skeleton Interface

The Dynamic Skeleton Interface (DSI) is the server-side equivalent
of the DII. It allows a server to receive an operation or attribute
invocation on any object, even one with an IDL interface that is
unknown at compile time. The server does not need to be linked
with the skeleton code for an interface to accept operation
invocations on that interface.

Instead, a server can define a function that is informed of an incoming operation
or attribute invocation. That function determines the identity of the object being
invoked. The name of the operation and the types and values of each argument
must be provided by the user. The function can then carry out the task that is
being requested by the client, and construct and return the result.

Just as use of the DII is significantly less common than use of the normal static
invocations, use of the DSI is significantly less common than use of the static
interface implementations. A client is not aware that a server is, in fact,
implemented using the DSI; it simply makes IDL calls as normal.

To process incoming operation or attribute invocations using the DSI, a server
must make a call to the ORB to indicate that it wishes to use the DSI for a
specified IDL interface. The same server can use the static interface
implementations to handle operation or attribute invocations on other
interfaces: however, it cannot use the DSI and static implementation on the
same interface.
265

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 266 Monday, February 22, 1999 3:03 PM
Uses of the DSI
The DSI has been explicitly designed to help programmers write gateways. Using
the DSI, a gateway can accept operation or attribute invocations on any specified
set of interfaces and pass them to another system. A gateway can be written to
interface between CORBA and some non-CORBA systems. The gateway would
need to know the protocol rules of non-CORBA system but it would be the
only part of the CORBA system that would require this knowledge. The rest of
the CORBA system would continue to make IDL calls as usual.

The IIOP protocol allows an object in one ORB to invoke on an object in
another ORB. Non-CORBA systems do not need to support this protocol. One
way to interface CORBA to such systems is to construct a gateway using the
DSI. This gateway would appear as a CORBA server that contains many CORBA
objects. In reality, the server would use the DSI to trap the incoming invocations
and translate them into calls to the non-CORBA system. A combination of the
DSI and DII allows a process to be a bidirectional gateway. The process can
receive messages from the non-CORBA system and use the DII to make
CORBA calls. It can use the DSI to receive requests from the CORBA system
and translate these into messages in the non-CORBA system.

Other uses of the DSI are also possible. For example, a server can contain a very
large number of non-CORBA objects that it wishes to make available to its
clients. One way to achieve this is to provide an individual CORBA object to act
as a front-end for each non-CORBA object. However, in some cases this
multiplicity of objects may cause too much overhead.

Another way is to provide a single front-end object that can be used to invoke
on any of the objects, probably by adding a parameter to each call that specifies
which non-CORBA object is to be manipulated. This would of course change the
client’s view because the client would not be able to invoke on each object
individually, treating it as a proper CORBA object.

The DSI can be used to achieve the same space saving as achieved when using a
single front-end object, but clients can be given the view that there is one
CORBA object for each underlying object. The server would indicate that it
wished to accept invocations on the IDL interface using the DSI, and, when
informed of such an invocation, it would identify the target object, the operation
or attribute being called, and the parameters (if any). It would then make the call
on the underlying non-CORBA object, receive the result, and return it to the
calling client.
 266

D y n am i c S k e l e t on I n t e r f a c e

ProgramGuide.book Page 267 Monday, February 22, 1999 3:03 PM
Using the DSI
To use the DSI, you must perform the following steps in your server program:

1. Create one or more objects that have the
CORBA::DynamicImplementation interface, and register these with
Orbix.

2. Register each of these objects to handle requests for a specified IDL
interface.

Creating CORBA::DynamicImplementation Objects

The IDL interface CORBA::DynamicImplementation is defined as follows:

// Pseudo IDL
// In module CORBA.
pseudo interface DynamicImplementation {

void invoke(inout ServerRequest request,
inout Environment env);

};

The single operation, invoke(), is informed of incoming operation and attribute
requests. It can use the ServerRequest parameter to determine what operation
or attribute is being invoked and on what object. This parameter is also used to
obtain in and inout parameters, and to return out and inout parameters and
the return value to the caller. It can also be used to return an exception to the
caller. An implementation of invoke() is known as a Dynamic Implementation
Routine (DIR).

Interface DynamicImplementation is invisible to clients. In particular, the
interfaces that they use do not inherit from it. If they were to inherit from
DynamicImplementation, then the fact that the DSI is used at the server-side
would not be transparent to the clients.
267

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 268 Monday, February 22, 1999 3:03 PM
Registering CORBA::DynamicImplementation Objects

Once an instance of DynamicImplementation has been created, it must be
registered to handle requests of a specified interface by calling the setImpl()
operation on the CORBA::Orbix object:

// IDL
// In module CORBA.
interface BOA {

...
void setImpl(in ImplementationDef implDef,

in DynamicImplementation impl);
...

};

The ServerRequest object that is passed to
DynamicImplementation::invoke() is created by Orbix once it receives an
incoming request and recognizes it as one that is to be handled by the DSI. This
means that an instance of DynamicImplementation has been registered to
handle the target interface.

The ServerRequest Data Type

The ServerRequest type is defined in IDL as follows:

// Pesudo IDL
// In module CORBA.
pseudo interface ServerRequest {

Identifier op_name();
Context ctx();
any result();
void params(inout NVList parms);

// The following are Orbix specific.
readonly attribute Object target;
readonly attribute Identifier operation;

// operation is the same as op_name()
attribute NVList arguments;

// arguments is closely related to params()
attribute any exception;
attribute Environment env;

};
 268

D y n am i c S k e l e t on I n t e r f a c e

ProgramGuide.book Page 269 Monday, February 22, 1999 3:03 PM
Instances of this interface are pseudo-objects; this means that references to
them cannot be transmitted through IDL interfaces.

Because this is a recent addition to the CORBA standard, it was necessary to
make Orbix-specific extensions to it to address some inconsistencies in the
standard, and also to provide compatibility between type Request and
ServerRequest.

The attributes and operations of ServerRequest have the following meanings:

target This is an object reference to the target object. Naturally, the
target object will not actually exist as a normal CORBA object,
so this is actually an object (of a derived type of
CORBA::Object) that is created by Orbix temporarily for the
duration of the call. The operations on this object can be used
to determine the marker of the target object, and its interface
name.

operation /

op_name()

This attribute or operation gives the name of the operation
being invoked.

arguments /

params()

This attribute or operation allows the invoke() operation to
specify the types of incoming arguments. The attribute
arguments is explained in detail later in this section.

result This allows the invoke() operation to return the result of an
operation or attribute call to the caller. In C++, the result is
given as a pointer to a CORBA::Any that holds the value to be
returned to the caller.

exception This allows the invoke() operation to return an exception to
the caller. In C++, the exception is given as a pointer to a
CORBA::Any that holds the exception to be returned to the
caller.

env This returns the environment parameter (of type
CORBA::Environment) associated with the call.

ctx This returns the context associated with the call.
269

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 270 Monday, February 22, 1999 3:03 PM
There are some special rules determining how you can call these attributes and
operations:

The other attributes, target, operation and env, can be used at any time, and
any number of times.

Example of Using the DSI
To implement the Dynamic Implementation Routine, invoke(), you should first
declare a class that inherits from CORBA::DynamicImplementation; for
example:

// C++
class myDSI :

public CORBA::DynamicImplementation {
public:

virtual void invoke(CORBA::ServerRequest&);
};

operation /
op_name()

This attribute/operation must be called at least once in each
execution of the invoke() function.

arguments /
params()

This attribute/operation must be called exactly once in each
execution of the invoke() function.

result This must be called once for operations with non-void return
types and not at all for operations with void return types. If it
is called, the exception attribute cannot be used.

exception This can be called at most once. If it is called, the result
attribute cannot be used.

ctx This can be called at most once. If it is called, it must be called
before the arguments/params() attribute/operation is called.
 270

D y n am i c S k e l e t on I n t e r f a c e

ProgramGuide.book Page 271 Monday, February 22, 1999 3:03 PM
You must create an instance of this and register it using
CORBA::BOA::setImpl().

// C++
{

myDSI myDSIinstance;
CORBA::Orbix.setImpl(“interfaceName”, myDSIinstance);
...

}

The following pseudo-code gives an outline of how to implement a simple
version of invoke() . It explicitly tests for operations called “firstOp” and
“secondOp”. An outline of the code for “firstOp” is shown:

// C++
void myDSI::invoke(CORBA::ServerRequest& rSrvReq,

CORBA::Environment& env,
CORBA::Environment& IT_env = CORBA::default_environment){

CORBA::Object_ptr theTarget = rSrvReq.target();
// Use _marker() to determine the marker of the
// target object.

const char* pOpName = rSrvReq.op_name();1

try {
if (strcmp(pOpName,“firstOp”) == 0) {

// Access the in and inout parameters and
// set up variables that will hold the
// out parameters. Both steps are achieved
// using params(), explained later.

// Carry out the required actions.
// If anything goes wrong, use exception()
// to pass an exception back to the caller.

// Prepare to send the reply to the caller.
// First construct a CORBA::Any object to
// hold the value.
CORBA::Any* pResult = new CORBA::Any;

1. OpName then holds the name of the invoked operation; if an attribute, say attr , is called, the
name will be “_set_attr” or “_get_attr”.
271

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 272 Monday, February 22, 1999 3:03 PM
// Secondly, insert the value into pResult,
// using operator<<=().
pResult <<= 24;

// Then use result() to give the result back:
rSrvReq.result(pResult);

}
else if (strcmp(pOpName, “secondOp”) == 0) {

// Similar code as before.
}

}
catch (...) {

// Use exception() to pass an exception
// back to the caller.
// Note that CORBA forbids invoke()
// raising an exception.

}
}

Some real implementations of invoke() may not have a set of strings to
compare using strcmp() , but instead may need to look up some configuration
table, or determine how to proceed in some other way.

Example of Using params()

In the first example of using params() , it is assumed that there are two
arguments to the operation called, both in parameters of type short , and
named “n” and “m”, respectively. There is also a return value of type long.
 272

D y n am i c S k e l e t on I n t e r f a c e

ProgramGuide.book Page 273 Monday, February 22, 1999 3:03 PM
The code to call params() and result() can then be as follows:

// C++
// Build the argument list.
CORBA::NVList_ptr pArgList;

if (CORBA::Orbix.create_list(2, pArglist) {

CORBA::Short valueOf_n = 0;
CORBA::Short valueOf_m = 0;
CORBA::Any* pFirstAny = new CORBA::Any

(CORBA::_tc_short, &valueOf_n, 0);
CORBA::Any pSecondAny = new CORBA::Any

(CORBA::_tc_short, &valueOf_m, 0);
pArgList->add_value(“n”, *pFirstAny, CORBA::DSI_ARG_IN);
pArgList->add_value(“m”, *pSecondAny, CORBA::DSI_ARG_IN);

// Give the prepared argument list to the ServerRequest.
rSrvReq.params(pArgList);

// Now, valueOf_n contains the value or parameter n.
// And valueOf_m contains the value of parameter m.

// Prepare the space for the reply:
CORBA::Long pValue;
// Then execute the required code for the operation
// that the client has called. Put the final value
// in pValue.

// Create the result.
CORBA::Any* pResult = new CORBA::Any;
pResult <<= pValue;
rSrvReq.result(pResult, IT_env);
...

}

273

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 274 Monday, February 22, 1999 3:03 PM
In the second example of using params(), it is assumed that there are two
arguments to the operation that has been called, the first, named “n”, is an out
parameters of type short, and the second, named “m”, is an inout parameter of
type long. There is no return value. The code to call params() can then be as
follows:

// C++
// Build the argument list.
CORBA::NVList_ptr pArgList;

if (CORBA::Orbix.create_list(2, pArglist) {
CORBA::Short valueOf_n = 0;
CORBA::Long valueOf_m = 0;
CORBA::Any* pFirstAny = new CORBA::Any

(CORBA::_tc_short, &valueOf_n, 0);
CORBA::Any* pSecondAny = new CORBA::Any

(CORBA::_tc_long, &valueOf_m, 0);
pArgList->add_value

(“n”, *pFirstAny, CORBA::DSI_ARG_OUT);
pArgList->add_value

(“m”, *pSecondAny, CORBA::DSI_ARG_INOUT);

// Give the prepared argument list to the ServerRequest:
rSrvReq.params(pArgList);
...

}

Once this code has been executed, the proper action of invoke() can be
carried out. During that time, the incoming value of the second parameter, m, is
available in valueOf_m . The values that valueOf_n and valueOf_m have at the
end of the function call will be passed back to the caller (as the out and inout
parameters, n and m, respectively).
 274

ProgramGuide.book Page 275 Monday, February 22, 1999 3:03 PM
 15
The Interface Repository

This chapter describes the Interface Repository, the component of
Orbix that provides persistent storage of IDL modules, interfaces and
other IDL types. Orbix programs can query the Interface Repository
at runtime to obtain information about IDL definitions.

There are several ways to use the Interface Repository in your Orbix
applications. For example, you can iterate through the Interface Repository to
browse or list its contents. Alternatively, given an object reference, the object’s
type and all information about that type can be determined at runtime by calling
functions defined by the Interface Repository.

Such facilities are important for some tools, such as:

• Browsers that allow you to determine that types that have been defined
in the system, and to list the details of chosen types.

• CASE tools that aid software design, writing and debugging.

• Application level code that uses the Dynamic Invocation Interface (DII) to
invoke on objects whose types were unknown at compile time. This code
may need to determine the details of the object being invoked in order to
construct the request using the DII.

• A gateway that requires runtime type information about the type of an
object being invoked.

The Interface Repository provides a set of IDL interfaces to browse and list its
contents, and to determine the type information for a given object.
275

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 276 Monday, February 22, 1999 3:03 PM
Configuring the Interface Repository
Before writing applications to read the contents of the Interface Repository, you
must first install and configure the repository as described in the Orbix C++
Administrator’s Guide.

Orbix implements the Interface Repository using a standard Orbix server named
IFR. To install the Interface Repository, you must run the Orbix daemon
process and register this server.

Orbix provides a command-line utility, called putidl, that allows you to add IDL
definitions to the Interface Repository. The Orbix GUI tools also includes
graphical interface to the Interface Repository. Refer to the Orbix C++
Administrator’s Guide for more details.

Runtime Information about IDL Definitions
The Interface Repository maintains full information about the IDL definitions
that have been passed to it. A program can use the Interface Repository to
browse through the set of modules and interfaces, determining the name of each
module, the name of each interface and the full definition of that interface. A
program can also find a full IDL definition if given the name of a module,
interface, attribute, operation, struct, union, enum, typedef, constant or
exception.

For example, given any object reference, you can use the Interface Repository to
determine all of the information about that interface. In particular, you can
determine:

• The module in which the interface was defined, if any.

• The name of the interface.

• The interface’s attributes, and their definitions.

• The interface’s operations, and their full definition, including parameter,
context and exception definitions.

• The interface’s base interfaces.

A short example at the end of this chapter demonstrates the use of the Interface
Repository.
 276

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 277 Monday, February 22, 1999 3:03 PM
The Structure of Interface Repository Data
The data in the Interface Repository is best viewed as a set of CORBA objects
where one object is stored in the repository for each IDL type definition.
Objects in the Interface Repository support one of the following IDL interface
types, reflecting the IDL constructs they describe:

Repository The type of the repository itself, in which all of its other
objects are nested.

ModuleDef The interface for a ModuleDef definition. Each module has a
name and can contain definitions of any type (except
Repository).

InterfaceDef The interface for an InterfaceDef definition. Each interface
has a name, a possible inheritance declaration, and can contain
definitions of type attribute, operation, exception, typedef and
constant.

AttributeDef The interface for an AttributeDef definition. Each attribute
has a name and a type, and a mode that determines whether
or not it is readonly.

OperationDef The interface for an OperationDef definition. Each operation
has a name, a return value, a set of parameters and, optionally,
raises and context clauses.

ConstantDef The interface for a ConstantDef definition. Each constant has
a name, a type and a value.

ExceptionDef The interface for an ExceptionDef definition. Each exception
has a name and a set of member definitions.

StructDef The interface for a StructDef definition. Each struct has a
name, and also holds the definition of each of its members.

UnionDef The interface for a UnionDef definition. Each union has a
name, and also holds a discriminator type and the definition of
each of its members.

EmumDef The interface for an EnumDef definition. Each enum has a name,
and also holds its list of member identifiers.

AliasDef The interface for a typedef statement in IDL. Each alias has a
name and a type that it maps to.
277

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 278 Monday, February 22, 1999 3:03 PM
In addition, the following abstract types (types without direct instances) are
defined:

IRObject
IDLType
TypedefDef
Contained
Container

Understanding these types is the key to understanding how to use the Interface
Repository.

PrimitiveDef The interface for primitive IDL types. Objects of this type
correspond to a type such as short and long, and are pre-
defined within the Interface Repository.

StringDef The interface for a string type. Each string type records its
bound. Objects of this type do not have a name. If they have
been defined using an IDL typedef statement, then they will
have an associated AliasDef object. (Objects of this type
correspond to bounded strings.)

SequenceDef The interface for a sequence type. Each sequence type
records its bound (a value of zero indicates an unbounded
sequence type) and its element type. Objects of this type do
not have a name. If they have been defined using an IDL
typedef statement, then they will have an associated
AliasDef object.

ArrayDef The interface for an array type. Each array type records its
length and its element type. Objects of this type do not have a
name. If they have been defined using an IDL typedef
statement, then they will have an associated AliasDef object.
Each ArrayDef object represents one dimension; multiple
ArrayDef objects are required to represent a multi-
dimensional array type.
 278

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 279 Monday, February 22, 1999 3:03 PM
Containment Relationships

You can interrogate any object of these types to determine their definitions.
They are organized in a natural manner according to the IDL interface. For
example, each InterfaceDef object is said to contain objects representing the
interface’s constant, type, exceptions, attribute, and operation definitions. The
outermost object is of type Repository.

The containment relationships between the Interface Repository types are as
follows:

A Repository can contain:

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef
ModuleDef

A ModuleDef can contain:

ConstantDef
TypedefDef
ExceptionDef
ModuleDef
InterfaceDef

An InterfaceDef can contain:

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Objects of type ModuleDef, InterfaceDef, ConstantDef, ExceptionDef, and
TypedefDef can also appear outside of any module, directly within a repository.

You can determine the full interface definition given any object of the Interface
Repository types. For example, InterfaceDef defines operations or attributes
to determine an interface’s name, its inheritance hierarchy, and the description
of each operation and each attribute.

Refer to “The interfaces that use containment are of three different types:” on
page 285 for more information.
279

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 280 Monday, February 22, 1999 3:03 PM
Simple Types

The Interface Repository defines the following simple IDL definitions:

// IDL
// In module CORBA.
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;
typedef string VersionSpec;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant,
dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository

};

An Identifier is a simple name that identifies modules, interfaces, constants,
typedefs, exceptions, attributes, and operations.

A ScopedName gives an entity’s name relative to a scope. A ScopedName that
begins with “::” is an absolute scoped name. This is a name that uniquely
identifies an entity within a repository. For example, the name
::Finance::Account::withdraw. A ScopedName that does not begin with “::”
is a relative scoped name. This is a name that identifies an entity relative to some
other entity. For example, withdraw within the entity with the absolute scoped
name ::Finance::Account.

A RepositoryId is a string that uniquely identifies an object within a repository,
or globally within a set of repositories if more than one is being used. The object
can be a constant, exception, attribute, operation, structure, union,
enumeration, alias, interface or module.

Type VersionSpec is used to indicate the version number of an Interface
Repository object. This means that it allows the Interface Repository to
distinguish two or more versions of a definition, each with the same name but
with details that evolve over time. However, the Interface Repository is not
 280

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 281 Monday, February 22, 1999 3:03 PM
required to support such versioning. It is not required to store more than one
definition with any given name. The Orbix Interface Repository currently does
not support versioning.

Each Interface Repository object has an attribute (called def_kind) of type
DefinitionKind that records the kind of the Interface Repository object. For
example, the def_kind attribute of an interfaceDef object is dk_interface.
The enumerate constants dk_none and dk_all have special meanings when
searching for objects in a repository.

Abstract Interfaces in the Interface Repository
There are five abstract interfaces defined for the Interface Repository, as
follows:

• IRObject

• IDLType

• TypedefDef

• Contained

• Container

These are of key importance in understanding the basic structure of the
Interface Repository, and provide basic functionality for each of the concrete
interface types.
281

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 282 Monday, February 22, 1999 3:03 PM
Class Hierarchy and Abstract Base Interfaces

The Interface Repository defines five abstract base interfaces (interfaces that
cannot have direct instances). These are used to define the other Interface
Repository types:

The interface hierarchy for all of the Interface Repository interfaces is shown in
Figure 15.1 on page 284.

The Interface IRObject

The interface IRObject is defined as follows:

// IDL
// In module CORBA.
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};

IRObject This is the base interface of all Interface Repository objects. Its
only attribute defines the kind of an Interface Repository object.

IDLType All Interface Repository interfaces that hold the definition of a
type directly or indirectly inherit from this interface.

TypedefDef This is the base interface for all Interface Repository types that
can have names (except interfaces): structures, unions,
enumerations and aliases (results of IDL typedef definitions).

Contained Many Interface Repository objects can be contained in others and
these all inherit from Contained. The exact meaning of
containment is explained later.

Container Some Interface Repository interfaces, such as Repository,
ModuleDef and InterfaceDef, can contain other Interface
Repository objects. These interfaces inherit from Container.
 282

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 283 Monday, February 22, 1999 3:03 PM
This is the base interface of all Interface Repository types. The attribute
def_kind is useful because it provides a simple way of determining the type of
an Interface Repository object. Other than defining an attribute and operation,
and acting as the base interface of other interfaces, IRObject plays no further
role in the Interface Repository.

You can delete an Interface Repository object by calling its destroy()
operation. This also deletes any objects contained in the target object. It is an
error to call destroy() on a Repository or a PrimitiveDef object.

Containment in the Interface Repository
Definitions in the IDL language have a nested structure. For example, a module
can contain definitions of interfaces, and the interfaces themselves can contain
definitions of attributes, operations and many others. Consider the following
fragment of IDL:

// IDL
module Finance {

interface Account {
readonly attribute float balance;
void deposit(in float amount);
void withdraw(in float amount);

};
interface Bank {

Account create_account();
};

};

In this example the module Finance (represented in the Interface Repository as
a ModuleDef object) contains the two interface definitions Bank and Account
(each represented by an individual InterfaceDef object). These two interfaces
contain further definitions. For example, the interface Account contains a single
attribute and two operations.
283

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 284 Monday, February 22, 1999 3:03 PM
Figure 15.1: The Hierarchy for Interface Repository Interfaces

IRObject

TypedefDef

Repository

Contained

ModuleDef

Container

PrimitiveDef
StringDef
SequenceDef
ArrayDef

ConstantDef
ExceptionDef
AttributeDef
OperationDef

StructDef InterfaceDef
UnionDef
EnumDef
AliasDef

attribute identifier name...

readonly attribute DefinitionKind def_kind

readonly attribute TypeCode type;

// Abstract

// Abstract

// Abstract// Abstract

// Abstract

// Base interface

Set of unnamed types.Set of named types.

// of all named
// types (except
// interfaces)

IDL Type
 284

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 285 Monday, February 22, 1999 3:03 PM
The notion of containment is basic to the structure of the IDL definitions, and
the Interface Repository specification abstracts the properties of containment.
For example, an Interface Repository object (such as a ModuleDef or
InterfaceDef object) that can contain further definitions also needs a function
to list its contents. Similarly an Interface Repository object that can be contained
within another Interface Repository object may want to know the identity of the
object it is contained in. This leads naturally to the definition of two abstract
base interfaces Container and Contained, which group together common
operations and attributes. Most of the objects in the repository are derived from
one or both of Container or Contained (the exceptions are instances of
PrimitiveDef, StringDef, SequenceDef, and ArrayDef).

You can access a considerable part of the structure of the Interface Repository
by using the operations and attributes of Container and Contained.
Understanding containment is crucial to understanding most of the Interface
Repository functionality.

The interfaces that use containment are of three different types:

• Interfaces that inherit only from Container.

• Interfaces that inherit from both Container and Contained.

• Interfaces that inherit only from Contained.

These are as follows:

The Repository itself is the only interface that can be a pure Container. There
is only one Repository object per Interface Repository server and it has all of
the other definitions nested inside it.

Objects of type ModuleDef and InterfaceDef can create additional layers of
nesting and therefore they derive from both Container and Contained.

Inheriting From Interface

Container Repository

Container and Contained ModuleDef, InterfaceDef

Contained ConstantDef, ExceptionDef,
AttributeDef, OperationDef, StructDef,
UnionDef, EnumDef, AliasDef, TypedefDef
285

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 286 Monday, February 22, 1999 3:03 PM
The remaining types of objects have a simpler structure and derive just from
Contained. The last interface, TypedefDef, is unique in that it is an abstract
interface.

The Contained Interface

This section is limited to a discussion of the basic attributes and operations of
interface Contained. An outline of the Contained interface is as follows:

//IDL
typedef Identifier string;

interface Contained : IRObject {
// Incomplete list of operations and

attributes...
...
attribute Identifier name;
...
readonly attribute Container defined_in;
...
struct Description {

DefinitionKind kind;
any value;

};
Description describe();

};

A basic attribute of any contained object is its name. The attribute name has the
type Identifier that is just a typedef for a string. For example, the module
Finance is represented in the repository by a ModuleDef object. The inherited
ModuleDef::name attribute resolves to the string “Finance” . Similarly, an
OperationDef object representing withdraw has an OperationDef::name that
resolves to “withdraw” . The Repository object itself evidently has no name,
because it does not inherit from Contained .

Another basic attribute is Contained::defined_in that stores an object
reference to the Container in which the object is defined. This attribute is all
that is needed to express the idea of containment for a Contained object. The
attribute defined_in stores a uniquely defined Container reference because a
given definition appears only once in IDL. However, because of the possibility of
 286

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 287 Monday, February 22, 1999 3:03 PM
inheritance between interfaces, a given object may be contained in more than
one interface. In the following example, interface CurrentAccount is derived
from interface Account:

//IDL
// in module Finance
interface CurrentAccount : Account {

readonly attribute overDraftLimit;
};

The attribute balance is contained in interface Account and also contained in
interface CurrentAccount. However, the result of querying
AttributeDef::defined_in() for the balance attribute will always return an
object for Account. This is because the definition of attribute balance appears
in the base interface Account.

A Contained object may include more than just containment information. For
example, an OperationDef object has a list of parameters associated with it and
details of the return type. The operation Contained::describe() provides
access to these details by returning a generic Description structure (discussed
later).

The Container Interface

Some of the basic definitions for interface Container are as follows:

//IDL
typedef sequence<Contained> ContainedSeq;
enum DefinitionKind {dk_name, dk_all,

dk_Attribute, dk_Constant, dk_Exception,
dk_Interface, dk_Module, dk_Operation,
dk_Typedef, dk_Alias, dk_Struct, dk_Union,
dk_Enum, dk_Primitive, dk_String, dk_Sequence,
dk_Array, dk_Repository};

interface Container : IRObject {
// Incomplete list of operations and attributes
...
ContainedSeq contents(

in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};
287

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 288 Monday, February 22, 1999 3:03 PM
Container::contents()

The contents() operation is the most basic operation associated with a
Container. It returns a sequence of Contained objects that belong to the
Container. By using contents(), it is possible to browse a Container and
descend nested layers of containment. Once the appropriate Contained object
has been found, the details of its definition can be found by invoking
Contained::describe() to obtain a detailed Description of the object. The
use of Container::contents() coupled with Contained::describe()
provides a basic way of browsing the Interface Repository. However, there are a
number of approaches to browsing the Interface Repository that can be more
efficient. These more sophisticated search operations are discussed in
“Retrieving Information about IDL Definitions” on page 296.

The arguments to operation contents() make use of DefinitionKind. This is
an enum type that is used to tag the different kinds of repository objects. In
addition to the interfaces for concrete repository objects there are three
additional tags: The tag dk_none matches no repository object, the tag dk_all
matches any repository object, and the tag dk_Typedef matches any one of
dk_Alias, dk_Struct, dk_Union, or dk_Enum. The arguments to contents()
can be described as follows:

The returned value is then a sequence of Contained objects that match the
given criteria.

There are a number of additional operations of the interface Container that
enable efficient searching of the repository. Refer to the Orbix C++
Programmer’s Reference for details.

limit_type A tag of type DefinitionKind that can be used to limit
the list of contents to certain kinds of repository
objects. A value of dk_all lists all objects.

exclude_inherited This argument is only relevant if the Container happens
to be an InterfaceDef object. In the case of an
InterfaceDef, it determines whether or not inherited
definitions should be included in the contents listing.
TRUE indicates they should be excluded while FALSE
indicates they should be included.
 288

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 289 Monday, February 22, 1999 3:03 PM
Containment Descriptions

The containment framework reveals which definitions are made within which
interface or module. However, each repository object, besides the possible
property of being a Contained or Container, also retains the details of an IDL
definition. Calling describe() on a Contained object returns a Description
struct holding these details.

Both interfaces Contained and Container define their own version of a
Description struct which are, respectively, Contained::Description and
Container::Description. The Container::Description structure differs
slightly from the Contained::Description. Consider the following fragment of
the IDL interface for Container:

//IDL
interface Container : IRObject {

// Incomplete listing of interface
...
struct Description {

Contained contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq;
DescriptionSeq describe_contents(

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned objects);

...
};

Note the extra member contained_object appearing in this Description
structure.

Container::describe_contents()
The Container::Description is used by describe_contents(). This
operation effectively combines calling contents() on the Container plus calling
describe() on each of the returned objects.
289

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 290 Monday, February 22, 1999 3:03 PM
The arguments to describe_contents() are as follows:

The describe_contents() operation returns a sequence of Description
structures, one for each of the Contained objects found.

The Description structure itself serves as a wrapper for the detailed
description that is specific to a repository object. For example, the interface
OperationDef inherits the operation OperationDef::describe.

OperationDesription
Associated with the OperationDef interface is the struct
OperationDescription. This has the following structure:

// IDL
struct OperationDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

limit_type A tag of type DefinitionKind which may be used to
limit the list of contents to certain kinds of
repository objects. A value of dk_all lists all objects.

exclude_inherited This argument is only relevant if the Container
happens to be an InterfaceDef object. For the case
of an InterfaceDef it determines whether or not
inherited definitions should be included in the
contents listing. TRUE indicates they should be
excluded while FALSE indicates they should be
included.

max_returned_objects Specifies the maximum length of the sequence
returned.
 290

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 291 Monday, February 22, 1999 3:03 PM
This structure is not returned directly by the operation
OperationDef::describe(). Initially it returns a Contained::Description
wrapper. The first layer is tagged by Description::kind, which equals
dk_Operation, and the substance of the Description is in the
Description::value. The second layer is given by the value, which is an any.
Inside the any there is a TypeCode _tc_OperationDescription and the value
of the any is the OperationDescription structure itself.

The various members of the OperationDescription structure have the
following meaning:

name The name of the operation as it appears in the definition. For
example, the operation Account::makeWithdrawal would have
the name “makeWithdrawal” .

id The id is just a RepositoryId for the OperationDef object. A
RepositoryId is basically a particular way of naming repository
objects.

defined_in The member defined_in gives the RepositoryId for the
parent Container of the OperationDef object.

version The version of type VersionSpec is used to indicate the
version number of an Interface Repository object. This would
allow the Interface Repository to distinguish two or more
versions of a definition which have the same name but with
details that evolve over time. The Orbix Interface Repository
currently does not support versioning.

result The TypeCode of the result returned by the defined operation.

mode The mode specifies whether the operation is normal (OP_NORMAL)
or oneway (OP_ONEWAY).

contexts The member contexts is of type ContextIdSeq that is a typedef
for a sequence of strings. The sequence lists the context
identifiers specified in the context clause of the operation.

parameters The member parameters is a sequence of
ParameterDescription structures that give details of each
parameter to the operation.

exceptions The member exceptions is a sequence of
ExceptionDescription structures giving details of the
exceptions specified in the raises clause of the operation.
291

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 292 Monday, February 22, 1999 3:03 PM
The OperationDescription provides all of the information present in the
original definition of the operation. As is the case with many aspects of the
Interface Repository, the CORBA specification provides for more than one way
of accessing this information. The interface OperationDef also defines a number
of attributes that allow direct access to the members of the above structure.
Frequently, in a distributed environment it is more convenient to obtain the
complete description in a single step. This is why the OperationDescription
structure is provided.

Only those repository interfaces that inherit from Contained have an associated
description structure, and of those, not all have a unique description structure.
Specifically, the interfaces EnumDef, UnionDef, AliasDef, and StructDef all use
a similar sort of description called TypeDescription.

The interface InterfaceDef is a special case because there is an extra
description structure associated with it called FullInterfaceDescription. This
structure is provided in the light of the special importance of InterfaceDef
objects. It enables a full description of the interface plus all its contents to be
obtained in one step. The description is given as the return value of the special
operation InterfaceDef::describe_interface().

Type Interfaces in the Interface Repository
A number of repository interfaces are used to represent definitions of types in
the Interface Repository. These are the following interfaces:

• StructDef

• UnionDef

• EnumDef

• AliasDef

• InterfaceDef

• PrimitiveDef

• StringDef

• SequenceDef

• ArrayDef
 292

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 293 Monday, February 22, 1999 3:03 PM
This property is independent of and overlaps with the properties of
containment. It is useful to represent this property by having those objects
inherit from an abstract base interface which is called IDLType and is defined as
follows:

// IDL
// In module CORBA.
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

This base interface defines just a single attribute that gives the TypeCode of the
defined type. It is also useful for referring to the type interfaces collectively.

The type interfaces can be classified as either named or unnamed types.

Named Types

The named type interfaces are as follows:

• StructDef

• UnionDef

• EnumDef

• AliasDef

• InterfaceDef.

For example, consider the following IDL definition:

// IDL
enum UD {UP, DOWN};

This effectively defines a new type, UD, which may be used wherever an ordinary
type might appear. It is represented by an EnumDef object. More obviously, the
following IDL definition gives rise to the new type AccountName:

typedef string AccountName;

These two interfaces are examples of named types. That is, the definitions give
rise to a new type identifier, such as “UD” or “AccountName” , which may be
reused throughout the IDL file.
293

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 294 Monday, February 22, 1999 3:03 PM
A further distinction is made between InterfaceDef and the other named
types. The named types StructDef, UnionDef, EnumDef, and AliasDef are
grouped together by deriving from the abstract base interface TypedefDef. It is
important to note that interface TypedefDef does not directly represent an IDL
typedef. The interface AliasDef (which derives from TypedefDef) is the
interface representing an IDL typedef. The abstract interface TypedefDef is
defined as follows:

// IDL
// In module CORBA.
interface TypedefDef : Contained, IDLType {
};

The definition of TypedefDef is trivial and causes the four named interfaces to
derive from Contained in addition to IDLType. The interfaces inherit the
attribute Contained::name. This gives the name of the type, and the operation
Contained::describe().

For example, the definition of enum UD gives rise to an EnumDef object which has
an EnumDef::name of “UD” . Calling EnumDef::describe() gives access to a
description of type TypeDescription . The type member of the
TypeDescription gives the TypeCode of the enum. The TypedefDef interfaces
all share the same description structure, TypeDescription .

The interface InterfaceDef is also a named type but it is a special case. Its
inheritance is given as follows:

// IDL
// In module CORBA.
interface InterfaceDef : Contained, Container,
IDLType {

...
};

Interface InterfaceDef has three base interfaces. Since IDL object references
can be used in just the same way as any ordinary type, IntefaceDef inherits
from IDLType . For example, the definition interface Account {...}; gives
rise to an InterfaceDef object. This object has an InterfaceDef::name which
is “Account” and this name may be reused as a type.
 294

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 295 Monday, February 22, 1999 3:03 PM
Unnamed Types

The unnamed type interfaces are as follows:

• PrimitiveDef

• StringDef

• SequenceDef

• ArrayDef

These interfaces are not strictly necessary but offer an approach to querying the
types in the repository that operates in parallel to the use of TypeCodes.

Therefore there are two independent approaches to querying types in the
repository. The traditional approach is to provide TypeCode attributes whenever
necessary so that all the types defined in the repository can be determined.
However, the Interface Repository also provides a complete object-oriented
approach for querying the types.

Consider the following example where the return type of getLongAddress
needs to be determined:

// IDL
interface Mailer {

sequence<string> getLongAddress();
};

The definition of getLongAddress() maps to an object of type OperationDef in
the repository. One way of querying the return type is to call
OperationDef::result_def() that returns an object reference of type
IDLType. The type of object returned by result_def() can be determined by
getting the attribute OperationDef::def_kind that is inherited from IRObject.

In this example the object reference is of type SequenceDef corresponding to
the sequence<string> return type. The returned SequenceDef object may be
further queried by getting the attribute SequenceDef::element_type_def. This
returns an IDLType which is a PrimitiveDef object. This PrimitiveDef object,
in turn, has an attribute PrimitiveDef::kind that has a value of pk_string. At
this stage the return type has been fully determined to be a sequence<string>.

The alternative approach is to obtain the TypeCode at the outset. This retrieves
the complete type information in a single step. For example, the OperationDef
object associated with getLongAddress has an attribute
OperationDef::result, which gives the TypeCode of sequence<string>.
295

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 296 Monday, February 22, 1999 3:03 PM
Retrieving Information about IDL Definitions
There are three ways to retrieve information from the Interface Repository:

1. Given an object reference, its corresponding InterfaceDef object can
be found. From this, all of the details of the object’s interface definition
can be determined.

2. Obtain an object reference to a Repository, after which the full contents
can then be navigated.

3. Given a RepositoryId, a reference to the corresponding object in the
Interface Repository can be obtained and interrogated.

These are explained in more detail in the following three subsections.

CORBA::Object::_get_interface()

Given an object reference to any CORBA object, say objVar, an object
reference to an InterfaceDef object can be acquired as follows:

// C++
// Must include <ifr.hh>
CORBA::InterfaceDef_var ifVar =

objVar->_get_interface();

The member function _get_interface() returns a reference to an object
within the Interface Repository.

Browsing or Listing a Repository

Once a reference to a Repository object is obtained, the contents of that
repository can be browsed or listed. There are two ways to obtain such an
object reference.

Firstly, the resolve_initial_references() operation can be called on the
ORB (of type CORBA::ORB), passing the string “InterfaceRepository” as a
parameter. This returns an object reference of type CORBA::Object, which can
then be narrowed to a CORBA::Repository reference.
 296

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 297 Monday, February 22, 1999 3:03 PM
Alternatively, the Orbix _bind() function can be used, as follows:

// C++
Repository_var repVar =

Repository::_bind(“:IFR”, “”);

The operations that enable browsing of the Repository are provided by the
abstract interface Container . There are four provided, as follows:

• contents()

• describe_contents()

• lookup()

• lookup_name()

The last two are particularly useful because they provide a facility for searching
the Repository.

The IDL for the search operations is as follows:

// IDL
// In module CORBA.
interface Container : IRObject {

...
Contained lookup(in ScopedName search_name);
...
ContainedSeq lookup_name(

in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};

Container::lookup()
The operation lookup() provides a simple search facility based on a
ScopedName. For example, consider the case where Container is a ModuleDef
object representing Finance. Passing the string “Account::balance” to
ModuleDef::lookup() then retrieves a reference to an AttributeDef object
representing balance . This is an example of using a relative ScopedName.
However, lookup() is not restricted to just searching a specific Container . By
passing an absolute ScopedName as an argument it is possible to search the
whole repository given any Container as a starting point. For example, given the
297

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 298 Monday, February 22, 1999 3:03 PM
InterfaceDef for Account it is possible to pass the string
“::Finance::Bank::newAccount” to InterfaceDef::lookup to find the
newAccount operation lying within the scope of the interface Bank .

Container::lookup_name()
The operation lookup_name() provides a different approach to searching a
Container . Instead of the ScopedName it specifies only a simple name to search
for within the Container . Because more than one match is possible with a given
simple name, the lookup () operation can return a sequence of Contained
objects.

The parameters to lookup_name() are as follows:

Note: You cannot use the lookup_name() operation to search outside of the
given Container .

search_name Specifies the simple name of the object to search for.
The Orbix implementation also allows the use of “*”
which matches any simple name.

levels_to_search Specifies the number of levels of nesting to be included in
the search. If set to 1, the search is restricted to the
current object. If set to -1, the search is unrestricted.

limit_type Limits the objects that are returned. If it is set to dk_all ,
all objects are returned. If set to the DefinitionKind
for a particular Interface Repository kind, only objects of
that kind are returned. For example, if operations are of
interest, limit_type can be set to dk_operation .

exclude_inherited If set to TRUE, inherited objects are not returned. If set
to FALSE, all objects, including those inherited, are
returned.
 298

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 299 Monday, February 22, 1999 3:03 PM
Finding an Object Using its Repository ID

A Repository ID (of type CORBA::RepositoryId) can be passed as a parameter
to the lookup_id() operation of an object reference for a repository (of type
CORBA::Repository). This returns a reference to an object of type Contained,
and this can be narrowed to the correct object reference type.

Example of Using the Interface Repository
This section presents some sample code that uses the Interface Repository.The
following code prints the list of operation names and attribute names defined on
the interface of a given object:

// C++
// The following three lines must appear near
// the top of the file:
//
#include <ifr.hh>
#include <IT_ifr.hh>
IT_InterfaceDef_var iDummy;

int i;
Repository_var rVar;
Contained_var cVar;
InterfaceDef_var interfaceVar;
InterfaceDef::FullInterfaceDescription_var full;

try {
// Bind to the IFR server:
rVar = Repository::_bind(“:IFR”);

// Get the interface definition:
cVar = lookup(“grid”);
interfaceVar = InterfaceDef::_narrow(cVar);

// Get a full interface description:
full = interfaceVar->describe_interface();
// Now print out the operation names:
cout << “The operation names are:” << endl;
for (i=0; i < full->operations.length(); i++)

cout << full->operations[i].name << endl;
299

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 300 Monday, February 22, 1999 3:03 PM
// Now print out the attribute names:
cout << “The attribute names are:” << endl;
for (i=0; i < full->attributes.length(); i++)

cout << full->attributes[i].name << endl;
}
catch (...) {

...
}

All applications that use the Interface Repository must include the file ifr.hh .
This file is available in the include directory of your Orbix installation. In
addition, you must link these applications against the Orbix library. This is
available in the lib directory of your Orbix installation.

The example can be extended by finding the OperationDef object for an
operation called doit() . The Container::lookup_name() can be used as
follows:

// C++
ContainedSeq_var opSeq;
OperationDef_var doitOpVar;

try {
cout << “Looking up operation doit()”

<< endl;
opSeq = interfaceVar->lookup_name(

“doit”, 1, dk_Operation, 0);
if (opSeq->length() != 1) {

cout << “Incorrect result for lookup_name()”;
exit(1);

} else {
// Narrow the result to be an OperationDef.
doitOpVar =

OperationDef::_narrow(opSeq[0]))
}
...

}
catch (...) {

...
}

 300

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 301 Monday, February 22, 1999 3:03 PM
Repository IDs
Each Interface Repository object that describes an IDL definition has a
Repository ID. A Repository ID globally identifies an IDL module, interface,
constant, typedef, exception, attribute, or operation definition. A Repository ID
is simply a string that identifies the IDL definition.

Three formats for Repository IDs are defined by CORBA. However, Repository
IDs are not, in general, required to be in one of these formats. The formats
defined by CORBA are described next.

OMG IDL Format
This format is derived from the IDL definition’s scoped name. It contains three
components which are separated by colons (:) as follows:

IDL:<identifier/identifier/
identifier/...>:<version number>

• The first component identifies the Repository ID format as the OMG IDL
format.

• The second component consists of a list of identifiers. These identifiers
are derived from the scoped name by substituting “/” instead of “::” .

• The third component contains a version number with the following
format:

<major>.<minor>

Consider the following IDL definitions:

// IDL
interface Account {

attribute float balance;
void deposit(in float amount);

};

The following is an IDL format Repository ID for the attribute
Account::balance based on these definitions:

IDL:Account/balance:1.0

This is the format of the Repository ID that is used by default in Orbix.
301

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 302 Monday, February 22, 1999 3:03 PM
DCE UUID Format

The DCE UUID format is the following:

DCE:<UUID>:<minor version number>

LOCAL Format
Local format IDs are for local use within an Interface Repository and are not
intended to be known outside that repository. They have the following format:

LOCAL:<ID>

Local format Repository IDs may be useful in a development environment as a
way to avoid conflicts with Repository IDs using other formats.

Pragma Directives

You can control Repository IDs using pragma directives in an IDL source file.
These pragmas enable you to control the format of a Repository ID for IDL
definitions. At present Orbix supports the use of all three pragma directives: ID,
prefix and version.

ID Pragma

An ID pragma directive takes the format:

#pragma ID <name> “<id>”

The <name> can be a fully scoped name or an identifier whose scope is
interpreted relative to the scope in which the pragma directive is included. The
<id> is the repository ID string which is to be associated with the <name>.

Prefix Pragma

A Prefix pragma directive takes the format:

#pragma prefix “<string>”

The <string> sets the current prefix used in generating repository IDs. The
specified prefix applies to repository IDs generated after the pragma until the
end of the current scope is reached or another prefix pragma is encountered.
 302

T h e I n t e r f a c e R e po s i t o r y

ProgramGuide.book Page 303 Monday, February 22, 1999 3:03 PM
Version Pragma

You can specify a version number for an IDL definition’s Repository ID (IDL
format) by using a version pragma. The version pragma directive takes the
format:

#pragma version <name> <major>.<minor>

The <name> can be a fully scoped name or an identifier whose scope is
interpreted relative to the scope in which the pragma directive is included.
Where no version pragma is specified for an IDL definition, the version number
for the definition defaults to 1.0.

For example, consider the following:

// IDL
module Engineering {

interface component {
};
#pragma ID component “IDL:iona.com/component:1.0”

};

#pragma prefix “FirstTrust”
module Finance {

module Banking {
#pragma prefix “CorporateBanking”

interface Account {
};

};
module Stockmarket {

interface invest {
};

};
#pragma version Banking::Account 2.7

};
303

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 304 Monday, February 22, 1999 3:03 PM
These definitions yield the following Repository IDs:

::Engineering::component IDL:iona.com/component:1.0
::Finance::Banking::Account IDL:CorporateBanking/Account:2.7
::Finance::Stockmarket::invest IDL:FirstTrust/Finance/

Stockmarket/invest:1.0

It is important to realize that pragma directives do not only affect Repository
IDs. If pragma directives are used to set the version of an interface, the version
number also becomes embedded in the string format of an object reference. A
client must bind to a server object whose interface has a matching version
number. If the IDL interface on the server side has no version, _bind() does not
require matching versions. In the present implementation of the Interface
Repository, you should use only one version number per Interface Repository.
 304

ProgramGuide.book Page 305 Monday, February 22, 1999 3:03 PM
Part IV
Advanced Orbix
Programming

ProgramGuide.book Page 306 Monday, February 22, 1999 3:03 PM

ProgramGuide.book Page 307 Monday, February 22, 1999 3:03 PM
 16
Filtering Operation Calls

Orbix allows you to specify that additional code is to be executed
before or after the normal operation or attribute code. This support
is provided by allowing applications to create filters that can perform
security checks, provide debugging traps or information, maintain an
audit trail, and so on. Filters are an Orbix-specific feature.

There are two forms of filters:

• per-process filters

Per-process filters see all operation and attribute calls leaving or entering
a client’s or server’s address space, irrespective of the target object.

• per-object filters

Per-object filters apply to individual objects.

Both of these filter types are illustrated in Figure 16.1 on page 308.
“Introduction to Per-process Filters” on page 308 and “Introduction to Per-
Object Filters” on page 312 give a brief introduction to each. The remainder of
the chapter then describes each in detail.

Use of the Dynamic Invocation Interface does not by-pass the filtering
mechanism. Calls made using the DII result in the use of all appropriate outgoing
and incoming filters.

Note: Because of the Orbix-specific nature of filters, you cannot use filters with
non-IONA ORBs.
307

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 308 Monday, February 22, 1999 3:03 PM
Figure 16.1: Per-process and Per-object Filtering

Introduction to Per-process Filters
Per-process filters monitor all incoming and outgoing operation and attribute
requests to and from an address space. Each process can have a chain of such
filters, with each element of the chain performing its own actions. You can add a
new element to the chain by carrying out the following two steps:

• Define a class that inherits from class CORBA::Filter.

• Create a single instance of the new class.

Each filter of the chain can monitor ten individual points during the transmission
and reception of an operation or attribute request. Refer to Figure 16.2 on
page 311.

Objects

Client or Server Process

o1 o2 o3

per-object filter
attached to object o2

chain of per-process
filters
 308

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 309 Monday, February 22, 1999 3:03 PM
Pre-marshalling Filter Points

The four most commonly used filter points are as follows:

• out request pre-marshal (in the caller’s address space)

This filter monitors the point before an operation or attribute request is
transmitted from the filter’s address space to any object in another
address space. Specifically, it monitors the point before the operation’s
parameters have been added to the request packet.

• in request pre-marshal (in the target object’s address space)

This filter monitors the point where an operation or attribute request
has arrived at the filter’s address space, but before it has been processed.
Specifically, it monitors the point before the operation has been sent to
the target object and before the operation’s parameters have been
removed from the request packet.

• out reply pre-marshal (in the target object’s address space)

This filter monitors the point after the operation or attribute request has
been processed by the target object, but before the result has been
transmitted to the caller’s address space. Specifically, it monitors the
point before an operation’s out parameters and return value have been
added to the reply packet.

• in reply pre-marshal (in the caller’s address space)

This filter monitors the point after the result of an operation or attribute
request has arrived at the filter’s address space, but before the result has
been processed. Specifically, it monitors the point before an operation’s
return parameters and return value have been removed from the reply
packet.

Post-marshalling Filter Points

There are four similar post-marshalling monitor points:

• out request post-marshal (in the caller’s address space)

This filter operates the same way as ‘out request pre-marshal’ but after
the operation’s parameters have been added to the request packet.
309

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 310 Monday, February 22, 1999 3:03 PM
• in request post-marshal (in the target object’s address space)

This filter operates the same way as ‘in request pre-marshal’ but after the
operation’s parameters have been removed from the request packet.

• out reply post-marshal (in the target object’s address space)

This filter operates the same way as ‘out reply pre-marshal’ but after the
operation’s out parameters and return value have been added to the
reply packet.

• in reply post-marshal (in the caller’s address space)

This operates the same as ‘in reply pre-marshal’ but after the operation’s
out parameters and return value have been removed from the reply
packet.

Failure Points

Two additional monitor points deal with exceptional conditions:

• out reply failure (in the target object’s address space)

This is called if the target object raises an exception or if any preceding
filter point (‘in request’ or ‘out reply’) raises an exception or uses its
return value to indicate that the call should not be processed any further.

• in reply failure (in the caller’s address space)

This is called if the target object raises an exception or if any preceding
filter point (‘out request’, ‘in request’, ‘out reply’ or ‘in reply’) raises an
exception or uses its return value to indicate that the call should not be
processed any further.

Once an exception is raised or a filter point uses its return value to indicate that
the call should not be processed further, no further monitor points (other than
the two failure monitor points) are called. If this occurs in the caller’s address
space, in reply failure is called. If it occurs in the target object’s address space,
out reply failure and in reply failure are both called (in the target object’s and the
caller’s address spaces respectively).

All monitor points (eight marshalling points and two failure points) are shown in
Figure 16.2.
 310

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 311 Monday, February 22, 1999 3:03 PM
Figure 16.2: Per-process Monitor Points

A particular filter on the per-process filter chain may perform actions for any
number of these filter points, although it is common to handle four filter points,
for example:

• out request pre-marshal

• out reply pre-marshal

• in request pre-marshal

• in reply pre-marshal

In addition to monitoring incoming and outgoing requests, a filter on the client
side and a filter on the server side can co-operate to pass data between them, in
addition to the normal parameters of an operation (or attribute) call. For
example, the ‘out’ filter points of a filter in the client can be used to insert extra
data into the request package (for example, in ‘out request pre-marshal’); and
the ‘in’ filter points of a filter in the server can be used to extract this data (for
example, in ‘in request pre-marshal’).

Each filter point must indicate how the handling of the request should be
continued once the filter point itself has completed. In particular, a filter point
can determine whether or not Orbix is to continue to process the request or to
return an exception to the caller.

request

reply

outRequestPreMarshal

outRequestPostMarshal

inReplyPostMarshal

inReplyPreMarshal

outReplyPostMarshal

inRequestPreMarshal

inRequestPostMarshal

outReplyPreMarshal

target

outReplyFailure

object

inReplyFailure

Client Process Server Process
311

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 312 Monday, February 22, 1999 3:03 PM
Because per-process filters are applied only when an invocation leaves or arrives
at an address space, they are not informed of invocations between collocated
objects.

Example Usages of Per-Process Filter
In addition, there are two special forms of per-process filters, each with its own
special use:

Introduction to Per-Object Filters
Per-object filters are associated with a particular object, rather than with all
objects in an address space as in per-process filtering. Unlike per-process filters,
per-object filters apply even for intra-process operation requests.

The following filtering points are supported:

• per-object pre

This filter applies to operation invocations on a particular object—before
they are passed to the target object.

• per-object post

This filter applies to operation invocations on a particular object—after
they have been processed by the target object.

A per-object pre-filter can indicate, by raising an exception, that the actual
operation call should not be passed to the target object.

Authentication filter A filter that passes authentication information from a
client to a server. The ability to verify the identify of the
caller is a fundamental requirement for security.
Authentication filters are discussed in “Defining an
Authentication Filter” on page 322.

Thread filter A filter that (optionally) creates lightweight threads when
an operation invocation arrives at a server. The filter
point inRequestPreMarshal() actually creates the
thread. These filters are available in Orbix-MT only, refer
to Chapter 23, “Using Threads with Orbix-MT” on
page 403 for details.
 312

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 313 Monday, February 22, 1999 3:03 PM
Per-object filters are created by carrying out the following three steps:

1. Define a new class that implements all of the IDL operations and
attributes for the target object.

2. Create an instance of this new class. This instance behaves as a per-object
filter when it is installed.

3. Install this filter object as either a pre-filter or as a post-filter to a
particular target object.

It is important to realize that a per-object filter is either a pre-filter or a post-
filter. In contrast, a single per-process filter can perform actions for any or all of
its eight monitor points.

An object can have a chain of pre-filters and/or a chain of post-filters. For
example, a chain of pre-filters can be constructed by attaching a pre-filter to the
object, then attaching a pre-filter to that filter, and so on.

Note that per-object filtering can only be used if:

• The TIE approach has been used to associate the target object’s class
with its IDL C++ class.

• Per-object filtering was enabled when the corresponding IDL interface
was compiled by the IDL compiler (see “IDL Compiler Switch to Enable
Object Filtering” on page 326).

The parameters to an IDL operation request are readily available for both pre
and post per-object filters. Any in and inout parameters are valid for pre filters;
in, out and inout parameters and return values are valid for post filters. In
contrast, for per-process filters, parameters to the operation request are not in
general available.

The per-process ‘in request’ (both pre and post-marshal) filters are applied
before any per-object pre-filter. The per-object post-filters are applied before
any per-process ‘out reply’ (both pre and post-marshal) filters.
313

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 314 Monday, February 22, 1999 3:03 PM
Using Per-Process Filters
A per-process filter is installed by defining a derived class of class
CORBA::Filter, and re-defining one or more of its member functions:

outRequestPreMarshal() Operates in the caller’s filter before outgoing
requests (before marshalling).

outRequestPostMarshal() Operates in the caller’s filter before outgoing
requests (after marshalling).

inRequestPreMarshal() Operates in the receiver’s filter before
incoming requests (before marshalling).

inRequestPostMarshal() Operates in the receiver’s filter before
incoming requests (after marshalling).

outReplyPreMarshal() Operates in the receiver’s filter before
outgoing replies (before marshalling).

outReplyPostMarshal() Operates in the receiver’s filter before
outgoing replies (after marshalling).

inReplyPreMarshal() Operates in the caller’s filter before incoming
replies (before marshalling).

inReplyPostMarshal() Operates in the caller’s filter before incoming
replies (after marshalling).

outReplyFailure() Operates in the receiver’s filter if a preceding
filter point raises an exception or indicates
that the call should not be processed further
or if the target object raises an exception.

inReplyFailure() Operates in the caller’s address space if the
target object raises an exception or a
preceding filter point raises an exception or
indicates that the call should not be
processed further.
 314

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 315 Monday, February 22, 1999 3:03 PM
Each of these member functions takes two parameters; the marshalling member
functions (the functions not concerned with failure) return a CORBA::Boolean
value to indicate whether or not Orbix should continue to make the request.1

For example:

CORBA::Boolean
outRequestPreMarshal(CORBA::Request& r,

CORBA::Environment&);

The failure functions, outReplyFailure() and inReplyFailure(), have a void
return type.

You can obtain the details of the request being made by calling member
functions on the CORBA::Request parameter. Examples of this are shown in “An
Example Per-Process Filter” on page 316. The CORBA::Environment variable
can be used to raise an exception if the C++ compiler does not support native
exceptions. Refer to the Orbix C++ Programmer’s Reference for full details of
these functions.

The constructor of class Filter adds the newly created filter object into the
per-process filter chain. Direct instances of Filter cannot be created (the
constructor is protected to enforce this). Derived classes of Filter normally
have public constructors.

Note: Each function (except the two failure functions) returns a value to
indicate how the call should continue. Redefinitions of these functions in
a derived class should retain the same semantics for the return value as
specified in the relevant entries in the Orbix C++ Programmer’s
Reference.

You should define derived classes of Filter and redefine some subset of the
member functions to carry out the required filtering. If any of the non-failure
monitoring functions is not redefined in a derived class of CORBA::Filter, then
the following implementation is inherited in all cases:

// C++
{ return 1; } // Continue the call.

1. inRequestPreMarshal() returns an int value.
315

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 316 Monday, February 22, 1999 3:03 PM
The failure filter functions inherit the following implementation:

// C++
{ return; }

Note that the two ‘out reply’ marshalling filter points are used only if the
operation request is issued to the target object. The two ‘in reply’ marshalling
filter points are used only if the operation request is sent out of the caller’s
address space.

An Example Per-Process Filter

Consider the following simple example of a per-process filter:

// C++
#include <CORBA.h>
#include <iostream.h>

class ProcessFilter :
public virtual CORBA::Filter {

public:
CORBA::Boolean
outRequestPreMarshal(CORBA::Request& r,

CORBA::Environment&) {
CORBA::String_var s;
s = (r.target())->_object_to_string();
cout << endl << “Request out-going to ”
 << s << “ with operation name ”
 << r.operation() << endl;
return 1; // Continue the call.

}
int inRequestPreMarshal(CORBA::Request& r,

CORBA::Environment&) {
CORBA::String_var s;
s = (r.target())->_object_to_string();
cout << endl << “Request incoming to ”
 << s << “ with operation name ”
 << r.operation() << endl;
return 1; // Continue the call.

}

CORBA::Boolean outReplyPreMarshal(
CORBA::Request& r,
 316

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 317 Monday, February 22, 1999 3:03 PM
CORBA::Environment&) {
cout << “ Incoming operation ”
 << r.operation()
 << “ finished. ” << endl << endl;
return 1; // Continue the call.

}

CORBA::Boolean inReplyPreMarshal(
CORBA::Request& r,
CORBA::Environment&) {

cout << “Outgoing ” << r.operation()
 << “finished.” << endl << endl;
return 1; // Continue the call.

}

void outReplyFailure(
CORBA::Request& r,
CORBA::Environment&) {

cout << “Operation” << r.operation()
 << “raised exception.” << endl << endl;
return;

}

void inReplyFailure(
CORBA::Request& r,
CORBA::Environment&) {

cout << “Operation” << r.operation()
 << “raised exception.” << endl << endl;
return;

}
};

Filter classes can have any name; but they must inherit from CORBA::Filter .
CORBA::Filter has a protected default constructor; ProcessFilter is given a
default (no parameter) public constructor by C++.

The function target() can be applied to a Request to find the object reference
of the target object; and the function _object_to_string() can be applied to
an object reference to get a string form of an object reference. The function
operation() can be applied to a Request to find the name of the operation
being called.
317

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 318 Monday, February 22, 1999 3:03 PM
Installing a Per-Process Filter

To install this per-process filter, you need only create an instance of it, usually at
the file level:

// C++
ProcessFilter myFilter;

This object automatically adds itself to the per-process filter chain.

Raising an Exception in a Filter

Any of the per-process filter points can raise an exception in the normal manner.
For example, the inRequestPostMarshal() filter point can be changed to raise
a NO_PERMISSION system exception:

// C++
CORBA::Boolean
ProcessFilter::inRequestPostMarshal(

CORBA::Request& r,
CORBA::Environment& env) {

if (.....) {
throw CORBA::NO_PERMISSION(

CORBA::INVOKE_DENIED,
CORBA::COMPLETED_NO);

// The NO_PERMISSION system exception
// has been raised here, with a minor
// code of INVOKE_DENIED, and a
// completion status of COMPLETED_NO.

}
...

}

Rules for Raising an Exception

The following rules apply when a filter point raises an exception:

• Per-process filters can raise only system exceptions. Any such exception
is propagated by Orbix back to the caller. However, raising an exception
in an inReplyPostMarshal() filter point does not cause the exception to
be propagated: at that stage, the invocation is essentially already
completed and it is too late to raise an exception.
 318

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 319 Monday, February 22, 1999 3:03 PM
• If any filter point raises an exception, then no further filter points are
processed for that invocation, except for one or both of the failure filter
points, outReplyFailure() and inReplyFailure().

• If one of the following filter points:

outRequestPreMarshal()
outRequestPostMarshal()
inRequestPreMarshal()
inRequestPostMarshal()

raises an exception then the actual function call is not forwarded to the
target application object.

• If the operation implementation raises a user exception and one of the
filter points

outReplyFailure()
inReplyFailure()

raises a system exception, the system exception is raised in the calling
client (that is, the user exception is overwritten). You may wish to test
whether an exception has already been raised before raising one in the
filter. You can do this by testing the environment formal variable, for
example env, as follows:

// C++
if (env.exception()) {

// Have exception already.
}

• If the operation implementation raises a system exception, no further
filter points, except one or both of outReplyFailure() and
inReplyFailure() are called for this invocation.
319

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 320 Monday, February 22, 1999 3:03 PM
Piggybacking Extra Data to the Request Buffer

One of the outRequest filter points in a client can add extra piggybacked data to
an outgoing request buffer—and this data is then made available to the
corresponding inRequest filter point on the server side. In addition, one of the
‘out reply’ marshalling filter points on a server can add data to an outgoing reply.
This data is then made available to the corresponding inReply filter point on the
client-side.

At each of the four ‘out’ marshalling monitor points, you can add data by using
operator<<() on the Request parameter, for example:

// C++
CORBA::Long l = 27L;
// . . .
r << l;

This is the same operator<<() that is used in the DII. Refer to Chapter 13,
“Dynamic Invocation Interface” on page 243 for details.

At each of the ‘in’ marshalling monitor points, data can be extracted using
operator>>(), for example,

// C++
CORBA::Long j;
// . . .
r >> j;

This is a fundamental difference from the normal use of operator>>() for the
Dynamic Invocation Interface, as described in Chapter 13, “Dynamic Invocation
Interface” on page 243. In the dynamic invocation interface, operator>>() is
only used to determine the return value of an invocation. In particular, inout
and out parameters are not obtained using operator>>(), but their values are
instead established using the outMode and inoutMode stream manipulators. In
contrast here, operator>>() can be used to extract piggybacked data from an
incoming request (or reply).
 320

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 321 Monday, February 22, 1999 3:03 PM
Matching Insertion and Extraction Points

You must ensure that the insertion and extraction points match correctly,
as follows:

For example, a value inserted by outRequestPreMarshal() must be extracted
by inRequestPreMarshal(). Unmatched insertions and extractions corrupt the
request buffer and potentially cause a program crash.

When only one filter is being used, its outRequestPostMarshal() function can
add piggybacked data that the corresponding inRequestPostMarshal()
function, on the called side, does not remove. However, this would cause
problems if more than one filter is used.

Ensuring that Unexpected Extra Data is not Passed

When coding a filter that adds extra data to the request, care should be taken
not to include this data when communicating with a server that does not expect
it. Frequently, a filter should add extra data only if the target object is in one of
an expected set of servers.

For example, it is necessary to include the following code in
outRequestPreMarshal() and outRequestPostMarshal() (assuming the
Request parameter is r):

// C++
// First find the server name.
CORBA::ImplementationDef_ptr impl;
impl = (r.target())->get_implementation();

if (strcmp(impl, “some_server”) == 0) {
// Can add extra data.

}

Insertion Point Extraction Point

outRequestPreMarshal() inRequestPreMarshal()

outReplyPreMarshal() inReplyPreMarshal()

outRequestPostMarshal() inRequestPostMarshal()

outReplyPostMarshal() inReplyPostMarshal()
321

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 322 Monday, February 22, 1999 3:03 PM
else {
// Do not add any extra data.

}

The function CORBA::Object::_get_implementation() returns the server
name of an object reference (in this case, of the target object).

You should be particularly careful not to add data when communicating with the
Orbix daemon, IT_daemon. The Orbix library communicates with the daemon
process, and you should ensure that you do not pass extra data to the daemon.

Defining an Authentication Filter

Verification of the identity of the caller of an operation is a fundamental
component of a protection system. Orbix supports this by installing an
authentication filter in every process’s filter chain. This default implementation
transmits the name of the principal (user name) to the server when the channel
between the client and the server is first established and adds it to all requests at
the server side. A server object can obtain the user name of the caller by calling
the function:

// C++
// In class CORBA::BOA.
char* get_principal(Object_ptr,

Environment& env = default_environment);

on the CORBA::Orbix object. The first parameter, of type Object_ptr, is not
used.

The default authentication filter can be overridden by declaring a derived class of
CORBA::AuthenticationFilter and creating an instance of this class. For
example, an alternative authentication filter may use a ticket-based
authentication system rather than passing the caller’s user name.
 322

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 323 Monday, February 22, 1999 3:03 PM
Using Per-Object Filters
You can attach a pre and/or a post per-object filter to an individual object of a
given IDL C++ class. Consider the following IDL interface:

// IDL
interface Inc {

unsigned long increment(in unsigned long vin);
};

This maps to the following C++ class:

// C++
class Inc : public virtual CORBA::Object {

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment& env =

CORBA::default_environment);
};

You can implement interface Inc as follows:

// C++
class IncImpl {

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment&)

{ return (vin+1); }
};

DEF_TIE_Inc(IncImpl);

Note: To facilitate object-level filtering, you must use the TIE approach.

If you have two objects of this type created, as follows:

// C++
Inc_ptr i1 = new TIE_Inc(IncImpl) (new IncImpl());
Inc_ptr i2 = new TIE_Inc(IncImpl) (new IncImpl());

you may wish to have pre and/or post-filtering on; for example, the specific
object referenced by i1. To achieve this, you must define one or more
additional classes and additional TIE classes.
323

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 324 Monday, February 22, 1999 3:03 PM
To perform pre-filtering, you could define a class (for example, FilterPre) to
have the same functions and parameters as a normal implementation class of the
corresponding IDL C++ class:

// C++
class FilterPre {
public:

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment&) {

cout << “*** PRE call with parameter ”
 << vin << endl;
return 0; // Here any value will do.

}
};

Similarly, to perform post-filtering, you could define a class (for example,
FilterPost) as follows:

// C++
class FilterPost {
public:

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment&) {

cout << “*** POST call with parameter ”
 << vin << endl;
return 0; // Any value will do.

}
};

In the examples shown here, a per-object filter cannot access the object it is
filtering. A filter can however do this by having a member variable that points to
the object it is filtering. You can set up this member using a constructor
parameter for the filter.

You need to create TIE classes for these filters:

// C++
DEF_TIE_Inc(FilterPre)
DEF_TIE_Inc(FilterPost)
 324

F i l t e r i n g O pe r a t i o n C a l l s

ProgramGuide.book Page 325 Monday, February 22, 1999 3:03 PM
To apply filters to a specific object, do the following:

// C++
// Create two filter objects.
Inc_ptr serverPre = new TIE_Inc(FilterPre)

(new FilterPre());
Inc_ptr serverPost = new TIE_Inc(FilterPost)

(new FilterPost());

// Attach the two filter objects to
// the target object pointed to by i1.
i1->_attachPre(serverPre);
i1->_attachPost(serverPost);

It is not always necessary to attach both a pre and a post-filter to an object.

Attaching a pre-filter to an object that already has a pre-filter causes the old
filter to be removed and the new one to be attached. The same applies to a post
filter.

The functions _attachPre() and _attachPost() return, respectively, the
previous pre-filter and post-filter, if any, attached to the object. The functions
_getPre() and _getPost() return a pointer to an object’s pre-filter and post-
filter, respectively.

To attach a chain of per-object pre-filters to an object, _attachPre() can be
used to attach the first pre-filter, and then it can be used again to attach a pre-
filter to the first pre-filter, and so on. The same applies to post-filters.

If a per-object pre-filter raises an exception in the normal way, the actual
operation call is not made. Normally, this exception is returned to the client to
indicate the outcome of the invocation. However, if the pre-filter raises the
exception CORBA::FILTER_SUPPRESS, no exception is returned to the caller—
the caller cannot tell that the operation call has not been processed as normal.

You can raise a FILTER_SUPPRESS exception as follows:

// C++
throw CORBA::FILTER_SUPPRESS(

CORBA::FILTER_SUPPRESS_IND,
CORBA::COMPLETED_NO);
325

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 326 Monday, February 22, 1999 3:03 PM
In the preceding example, the same filter objects (those pointed to by
serverPre and serverPost) could be used to filter invocations to many objects.
Other filters, for example a filter holding a pointer to the object it is filtering, can
only be used to filter one object.

IDL Compiler Switch to Enable Object Filtering

Per-object filtering can be applied to an IDL interface only if it has been compiled
with the -F switch to the IDL compiler. By default, -F is not set, so object level
filtering is not enabled.
 326

ProgramGuide.book Page 327 Monday, February 22, 1999 3:03 PM
 17
Using Smart Proxy Classes

Smart Proxies are an Orbix-specific feature that allow you to
implement proxy classes manually, thereby enabling optimization of
client interaction with remote services. This chapter describes how
proxy objects are generated, and the general steps involved in
implementing smart proxy support for a given interface. It also
describes how to build a simple smart proxy, using an example that
builds on the BankSimple example from Chapter 2 and
Chapter 5.

It is sometimes beneficial to be able to implement proxy classes manually.
Although it is not expected that you do this if you are a client programmer
calling a remote interface; it is a useful option if you are implementing an
interface. You can provide smart proxy code, for example, to optimize how your
clients use the services provided.

A typical example would be to use a smart proxy to examine client requests
bound for server objects. The smart proxy forwards requests only if certain
criteria are met. The example used in this chapter uses a smart proxy to check if
there is sufficient funds in the account before forwarding the request to the
server.

This involves constructing a smart proxy for the Account interface. You can do
this by manually programming a class derived from the IDL C++ class Account
(generated by the IDL compiler). This inheritance is best considered in terms of
inheriting from the default proxy class generated by the IDL compiler.
327

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 328 Monday, February 22, 1999 3:03 PM
In fact, the IDL C++ class and the default proxy class are the same class, created
for every application that you write. The member functions of class Account
package requests for the target object; the member functions of a derived class
can provide optimized application specific coding.

You can then link client programs with this smart proxy code, but you do not
have to change them in any other way. When a proxy is created in a client’s
address space, a smart proxy is created rather than a default one.

Note: Use of the Dynamic Invocation Interface currently bypasses the smart
proxy mechanism. Calls made using the DII do not result in invocations
on smart proxies.

This chapter first considers the details of how proxy objects are actually
generated, and the general steps needed to implement smart proxy support for a
given interface. It then describes how to build a simple smart proxy using an
example.

The source code for the example described in this chapter is available in the
demos\banksmartproxy directory of your Orbix installation.

Management of Proxies by Proxy Factories

This section begins describing how Orbix manages proxies. The Orbix IDL
compiler generates the following classes for each IDL interface:

• An IDL C++ class—this is also the default proxy class.

• A default proxy factory class for that class.

The Default Proxy Class

The default proxy class gives the code for standard proxies for that IDL
interface. This proxy transmits requests to its real object and returns the results
it receives to the caller.
 328

U s i n g S m a r t P r o x y C l a s s e s

ProgramGuide.book Page 329 Monday, February 22, 1999 3:03 PM
The Default Proxy Factory Class

The proxy factory class produced by the IDL compiler creates these standard
proxies for its class, and there is a single global instance of this class linked into
the client code. This instance constructs a new standard proxy for its IDL
interface when requested by Orbix. The proxy factory class is termed the
default proxy factory class.

For example, the IDL compiler generates the following classes for IDL interface
BankSimple::Account:

• BankSimple::Account

This is the IDL C++ class—it also acts as the default proxy class.

• BankSimple::AccountProxyFactoryClass

This is the default proxy factory class for interface Account.

• BankSimple::AccountProxyFactory

This is the single global instance of AccountProxyFactoryClass.

Generating Smart Proxies

To provide smart proxies for an IDL interface you must:

1. Define the smart proxy class.

This must inherit from its IDL C++ class.

2. Define a proxy factory class.

This creates instances of the smart proxy class on request using
its New() member function.

3. Create a single instance of the proxy factory class.

Client programs must be linked with the smart proxy class and the proxy factory
class, and must create the instance of the proxy factory class. You should
normally provide a header file and a corresponding object file to carry out all of
these steps. This involves very minimal changes for clients—their normal
operation invocation code remains unchanged.
329

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 330 Monday, February 22, 1999 3:03 PM
When these steps are carried out, Orbix communicates with the factory
whenever it needs to create a proxy of that interface as follows:

• When a reference to an object of that interface is passed back as an out
or inout parameter or a return value, or when a reference to a remote
object enters an address space via an in parameter.

• When the interface’s _bind() function is called.

• When CORBA::Orbix.string_to_object() is called with a stringified
object reference for a proxy of that interface.

Creating a Smart Proxy
The following steps describe in more detail the steps you must perform to
create a smart proxy:

1. Declare and implement the smart proxy class, derived from its IDL C++
class. The constructor of this class is used by the smart proxy factory,
in step 2.

2. Declare and implement a new proxy factory class, derived from the
default proxy factory class.

Orbix calls a proxy factory’s New() member function when it wishes to
create a proxy for a particular interface. The a new proxy factory class
should redefine the New() function to create new smart proxy objects
from the class in step 1. Alternatively, it should return zero to indicate
that it is not willing to create a smart proxy.

3. Declare a global object of this new class.

The constructor of the base class automatically registers this new proxy
factory object with the factory manager in Orbix.

Smart Proxy Factory Chains

You can define more than one smart proxy class (and associated smart proxy
factory class) for a given IDL interface. Orbix maintains a linked list of all of the
proxy factories for a given IDL interface.

A chain of smart proxy factories is allowed for an IDL interface because the
same IDL interface might be provided by a number of different servers in the
system. It may be useful to have different smart proxy code to handle each
server, or set of servers.
 330

U s i n g S m a r t P r o x y C l a s s e s

ProgramGuide.book Page 331 Monday, February 22, 1999 3:03 PM
Each factory in turn can examine the marker and server name of the target
object for which the proxy is to be created, and decide whether to create a
smart proxy for it or to defer the request to the next proxy factory in the chain.
Initially, there is a single entry in this list—the default proxy factory class.

When a new proxy is required, Orbix calls all of the registered proxy factories
for the class until one of them successfully builds a new proxy. The only
guarantee on the order of use of smart proxy factories is that the factory
manager ensures that an interface’s default proxy factory object is the last
factory on the chain. Thus if no other proxy factory is willing to manufacture a
new proxy, a standard proxy is constructed.

The factory manager requests each proxy factory to manufacture a new proxy
via its New() member function. The first parameter to this function is the full
object reference of the target object:

// C++
// Returns a pointer to the new smart proxy:
void* New(const char*, CORBA::Environment&)

The code for this function may need to extract the target object’s marker. One
way to extract the target object’s marker and server name is by constructing a
direct occurrence of CORBA::Object, passing the full object reference string as
a constructor parameter, and then calling _marker() and _implementation()
on that temporary object.

The New() function can raise an exception, in the normal way. If the function
returns zero, but does not raise an exception, Orbix tries the next smart proxy
factory in the chain.
331

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 332 Monday, February 22, 1999 3:03 PM
A Simple Smart Proxy Example
This section describes a simple smart proxy class for interface Account, based
on the BankSimple example.

The Account IDL Interface

The BankSimple IDL interface for Account is as follows:

// IDL
// In file banksimple.idl

...
module BankSimple {

typedef float CashAmount;
...
interface Account {

readonly attribute string name;
readonly attribute CashAmount balance;
void deposit(in float f);
void withdraw(in float f);

}
};

Defining a New Proxy Class

This section defines a smart proxy class, named SmartAccount, for class
Account. SmartAccount objects check if the client has sufficient funds before the
withdraw() operation reaches the server:

// C++
// In file banksimple_smartaccount.h

#include "banksimple.hh"

1 class SmartAccount : public virtual
BankSimple::Account {

 332

U s i n g S m a r t P r o x y C l a s s e s

ProgramGuide.book Page 333 Monday, February 22, 1999 3:03 PM
public:
// The required constructor:

2 SmartAccount(const char*);

// Functions for IDL operations and attributes.
// List only those which require a different
// implementation in the smart proxy class:

3 virtual void withdraw(
BankSimple::CashAmountamount,
CORBA::Environment& env = CORBA::default_environment);

};

This code is described as follows:

1. Class SmartAccount inherits from the default proxy code (the IDL C++
class) generated by the IDL compiler. It therefore inherits all of the code
required to make a remote invocation. Each SmartAccount function can
call its base class function to make a remote call. Virtual inheritance is not
strictly necessary in the previous code sample. It is used in case C++
multiple inheritance is required later.

2. The constructor for the smart proxy class takes a full object reference
string as a parameter. It must pass this to the constructor of its default
proxy class.

3. The withdraw() function is overridden because of the extra check
performed by the smart proxy to see if there are sufficient funds in the
account.

The corresponding implementation of the withdraw() function is as follows:

// C++
// In file banksimple_smartaccount.cxx

#include "banksimple_smartaccount.h"
#include <iostream.h>

// Constructor.
SmartAccount::SmartAccount(const char* OR)

: BankSimple::Account(OR){}

// Implementation of the withdraw() function.
void SmartAccount::withdraw(

BankSimple::CashAmount amount, CORBA::Environment&)
{

333

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 334 Monday, February 22, 1999 3:03 PM
float balance;
...

// Check the account balance.
balance = BankSimple::Account::balance();
...
if ((balance-amount) < 0) {

cout <<"Smart Proxy detected insufficient funds
for withdraw operation."<<endl;

cout <<"Withdraw operation not called"<<endl;
return;

}
...
BankSimple::Account::withdraw(amount);
...

}

The SmartAccount() constructor calls the constructor of the IDL C++ class for
which it implements proxies (Account), passing it the string form of the object
reference for the remote object. This call is necessary because the constructor
of Account in turn calls the constructor of its base class CORBA::Object,
registering the proxy in the object table. The object table registers all objects in
an address space. Refer to CORBA::ORB::resizeObjectTable() in the Orbix
C++ Programmer’s Reference for more details.

The functions inherited from Account are used to make remote calls.

Defining a New Proxy Factory Class
The next step is to define a new proxy factory to generate smart proxies when
required. The default proxy factory produced by the IDL compiler for interface
Account is AccountProxyFactoryClass—you should derive from this class, as
the following code shows:

// C++
// In file banksimple_smartaccount.h

#include "banksimple.hh"
...
class SmartAccountFactoryClass : public virtual

BankSimple::AccountProxyFactoryClass {
 334

U s i n g S m a r t P r o x y C l a s s e s

ProgramGuide.book Page 335 Monday, February 22, 1999 3:03 PM
public:
// Constructor:
SmartAccountFactoryClass() : CORBA::ProxyFactory(

BankSimple_Account_IR) {}

// The New() member function is called when a
// proxy is required.
virtual void* New (

const char* OR,
CORBA::Environment&) {
// Create and return a new smart proxy.
return(BankSimple::Account_ptr)

new SmartAccount(OR);
}

};

The member initialization list of the constructor of class
SmartAccountFactoryClass makes a call to the constructor of class
ProxyFactory (the base class of AccountProxyFactoryClass). The parameter
passed is BankSimple_Account_IR, an automatically-defined macro.

Each default proxy factory class has a default constructor without any
parameters. The constructor of SmartAccountFactoryClass therefore does
not need to be concerned with calling the constructor of
AccountProxyFactoryClass; however, it must call the ProxyFactory
constructor. Figure 17.1 shows the various class hierarchies involved.

Figure 17.1: Class Hierarchy for Smart Proxy Class

ProxyFactory

AccountProxyFactoryClass

SmartAccountFactoryClass

CORBA::Object

Account

SmartAccount
335

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 336 Monday, February 22, 1999 3:03 PM
The SmartAccountFactoryClass::New() function is called by Orbix to signal
that a smart proxy is to be created. Orbix passes it the object reference of the
object for which the proxy is required. The New() function dynamically
constructs the smart proxy, passing it the object reference. Orbix also passes
any other constructor parameters agreed on by the smart proxy and the smart
proxy factory.

Note: A member variable, m_next, is defined in the default proxy factory class
for each interface. This is automatically maintained by Orbix and should
not be modified by any factory.

If an Account smart proxy factory needs to test whether or not it should create
a smart proxy, its New() function should do the following:

// C++
if (...) // Test condition omitted here.

// The target object is one that you should
// create a smart proxy for.
return (BankSimple::Account_ptr)

new SmartAccount(OR);
else

// Pass on the object reference parameter to the
// next factory in the factory chain.
return 0;

The factory can use the stringified object reference parameter to determine
whether it should create a smart proxy: it might determine this from the server
name of the object reference, or perhaps by communicating with the object’s
server. If the request is propagated as far as the default factory, it will create a
standard proxy.

In the code for SmartProxyFactoryClass above, all account proxies are built as
smart proxies. We could re-implement SmartAccountFactoryClass::New()
to build smart proxies only for particular remote servers. To do this,
SmartAccountFactoryClass::New() should find the server name of the target
object to decide whether it should create a smart proxy, or pass the request to
the next factory in the linked list (and finally to the default proxy factory class
that constructs a standard proxy).
 336

U s i n g S m a r t P r o x y C l a s s e s

ProgramGuide.book Page 337 Monday, February 22, 1999 3:03 PM
Declaring a New Proxy Factory Class Instance

Finally, you need to declare a single instance of this new class:

// C++
// In file banksimple_smartaccount.cxx
SmartAccountFactoryClass SmartAccountFactory;

The constructor of the base class then registers this new factory—entering it
into the linked list of factories for interface Account.
337

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 338 Monday, February 22, 1999 3:03 PM
 338

ProgramGuide.book Page 339 Monday, February 22, 1999 3:03 PM
 18
Callbacks from Servers to Clients

Orbix clients usually invoke operations on objects in Orbix servers.
However, Orbix clients can also implement some of the functionality
associated with servers, and all servers can act as clients. This
flexibility increases the range of client-server architectures that you
can implement with Orbix. This chapter describes a common
approach to implementing callbacks in an Orbix application,
illustrated by a stock-trading example.

A callback is an operation invocation made from a server to an object
implemented in a client. Callbacks allow servers to send information to clients
without forcing clients to explicitly request the information.

Implementing Callbacks in Orbix
This chapter introduces a simple model for implementing callbacks in a
distributed system. It describes the following steps:

1. Defining the IDL interfaces for the system.

2. Implementing the IDL Interfaces.

3. Writing the client.

4. Writing the server.
339

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 340 Monday, February 22, 1999 3:03 PM
Defining the IDL Interfaces
In the stock-trading example, the client invokes operations on the server and the
server invokes operations on the client. You must therefore define IDL
interfaces that allow each application to access the other. In the simplest case,
this involves two interfaces, for example:

// IDL
// In file stock.idl

// Implemented by the client.
interface StockInfoCB {

...
};

// Implemented by the server.
interface RegStockInfo {

...
};

In this example, the client application supplies an implementation of type
StockInfoCB, while the server implements RegStockInfo.

The server in this example cannot bind to the client implementation object,
because clients are not registered in the Orbix Implementation Repository.
Instead, the IDL definition provides a Register() operation that allows the
client to explicitly pass an implementation object reference to the server.

The full IDL for the stock-trading example is as follows:

// IDL
// In file stock.idl

1 interface StockInfoCB {
oneway void NotifyPriceChange

(in string stockname, in float newprice);
};
 340

Ca l l b a c k s f r om S e r v e r s t o C l i e n t s

ProgramGuide.book Page 341 Monday, February 22, 1999 3:03 PM
2 interface RegStockInfo {
void Register (in StockInfoCB obj);
void Deregister (in StockInfoCB obj);

3 void Notify (in float newprice);
};

This IDL is described as follows:

1. StockInfoCB is the callback interface implemented by the client. Its
NotifyPriceChange() operation is invoked by the server when a
stock price changes.

NotifyPriceChange() is a oneway operation. This means that the
server calling this operation does not block while the client object
processes the call. Orbix does not guarantee that a oneway operation call
will succeed; if a oneway operation fails, the client may not know. Refer
to “Preventing Deadlock in a Callback Model” on page 350 for more
details.

2. RegStockInfo is the register interface implemented by the server. Its
Register() and Deregister()operations enable clients that wish to
receive stock price callbacks to register or deregister for a given stock.

3. The Notify() operation is used by the server to notify clients of a stock
price change. Notify() calls the NotifyPriceChange() operation.

The source code for the example described in this chapter is available in the
Orbix demos\callback directory.

Implementing the IDL Interfaces
You can use the BOAImpl or TIE approach to implementing IDL interfaces.
Using the BOAImpl approach, the implementation class for type RegStockInfo
is as follows:

// C++
// In file stock_impl.h

#include <it_demo_streams.h>
#include "stock.hh"

// Implementation class
class RegStockInfoImpl : public RegStockInfoBOAImpl {
341

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 342 Monday, February 22, 1999 3:03 PM
public:
// C++ operations
RegStockInfoImpl(char* initialname);
~RegStockInfoImpl();

// IDL operations
void Register (

StockInfoCB_ptr obj,
CORBA::Environment &env)
throw (CORBA::SystemException);

void Deregister (
StockInfoCB_ptr obj,
CORBA::Environment &env)
throw (CORBA::SystemException);

void Notify (
CORBA::Float newprice,
CORBA::Environment &env)
throw (CORBA::SystemException);

protected:
// A list of all the objects to callback.
StockInfoCB_ptr clientlist[20];

CORBA::Long number_clients;
int max_number_clients;
char* stockname;

};

The implementation of the Register() function for the RegStockInfo interface
requires special attention:

// C++
// In file stock_impl.cxx

// Called by a client wishing to receive
// stock price callbacks.
void RegStockInfoImpl::Register (StockInfoCB_ptr obj,

CORBA::Environment &) throw (CORBA::SystemException)
{

if(number_clients > max_number_clients) {
cout << "All server connections used for
callback purposes"
 342

Ca l l b a c k s f r om S e r v e r s t o C l i e n t s

ProgramGuide.book Page 343 Monday, February 22, 1999 3:03 PM
<<endl;
return;

}
cout << "Registering client for stockname "

<< stockname << endl;
clientlist[number_clients] =

StockInfoCB::_duplicate(obj);
number_clients++;

}

This Register() function receives an object reference from the client. When
this object reference enters the server address space, a proxy for the client’s
StockInfoCB object is created, as shown in Figure 18.1 The server uses this
proxy to call back to the client. The implementation of Register() stores the
reference to the proxy for later use.

Figure 18.1: Client Passes Implementation Object Reference to Server

Once the server creates the proxy in its address space, it can invoke
NotifyPriceChange() (using its Notify() operation) to respond to a change in
a stock price.

Im plem entation
obje c t for type
StockInfoCB

P roxy of type
RegStockInfo

O rbix C lient

P roxy of type
StockInfoCB

Im plem entation
obje c t for type
RegStockInfo

O rbix S erver

Register()

return
343

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 344 Monday, February 22, 1999 3:03 PM
The implementation of the Notify() function that calls NotifyPriceChange()
is as follows:

// C++
// In file stock_impl.cxx

// Called by the server when sending stock price
// updates (callbacks) to the client.
void RegStockInfoImpl::Notify(

CORBA::Float newprice,
CORBA::Environment &)
throw (CORBA::SystemException) {
if(number_clients>0) {

for (int i=0; i < number_clients; i++) {
try {

clientlist[i]>NotifyPriceChange(
"IONAY",newprice);

}
catch (const CORBA::Exception &e) {

cerr << "Unexpected exception: "
<< e << endl;

}
}

}
}

The NotifyPriceChange() invocation on the StockInfoCB proxy is routed to
the client implementation object as shown in Figure 18.2 on page 345.

The transmission of requests from server to client is possible because Orbix
maintains an open communications channel between client and server while
both processes are alive. The server can send the callback invocation directly to
the client and does not need to route it through an Orbix daemon. Therefore,
the client can process the callback event without being registered in the Orbix
Implementation Repository and without being given a server name.
 344

Ca l l b a c k s f r om S e r v e r s t o C l i e n t s

ProgramGuide.book Page 345 Monday, February 22, 1999 3:03 PM
Figure 18.2: Server Invoking Operation on Client Callback Object

Writing the Client
The code for the client main() function is as follows:

// C++
// In file client.cxx.
...
#include "stock.hh"
#include "callback.h"

int main (int argc, char *argv[]) {
try {

// Basic Setup. Process command-line arguments.
...
// ORB Setup - initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "Orbix");
CORBA::BOA_var boa = orb->BOA_init(argc, argv, "Orbix_BOA");

// Set the diagnostic level from the options
orb->setDiagnostics(clientopt.diagnostics());

Im plem entation
 for type

StockInfoCB

P roxy of type
RegStockInfo

O rbix C lient

P roxy of type
StockInfoCB

Im plem entation
for type

RegStockInfo

O rbix S erver
NotifyPriceChange()

rou ted to c lient
implem entation ob jec t

return
345

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 346 Monday, February 22, 1999 3:03 PM
// Naming Service Setup
// Resolve an object using a Naming Service Wrapper (NSW).
// See demolib/it_demo_nsw.* for details.
...

// Create a Naming Service Wrapper object and define a name
// prefix used for subsequent operations.
IT_Demo_NSW ns_wrapper;
ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Provide the object’s name in the Naming Service.
const char *object_name = "CallBack.CallBack";

// Use the NSW to obtain a reference to the required object.
CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
RegStockInfo_var stock = RegStockInfo::_narrow(obj);
if (CORBA::is_nil(obj)) {

cerr << "Object in naming service is not of expected
type"<< endl;

}

// Perform demo-specific operations on the CORBA object.
StockInfoCB_var cbobj = new StockInfoCBImpl();
cout << "Sending request for IONAY stock prices"<<endl;
stock->Register(cbobj);

// Client is coded to receive ten callbacks.
for (int i=0; i < 10; i++) {

boa->processNextEvent();
}
cout << "Sending request deregister from IONAY stock price
callbacks "<<endl;
stock->Deregister(cbobj);

}
catch (CORBA::Exception& e) {

cerr << "Unexpected exception" << e << endl;
cerr << "Demo failed" << endl;
exit(1);

}

 346

Ca l l b a c k s f r om S e r v e r s t o C l i e n t s

ProgramGuide.book Page 347 Monday, February 22, 1999 3:03 PM
cout << "Demo finished" << endl;
return 0;

}

This client creates an implementation object of type StockInfoCBImpl. It then
invokes the Register() function and connects to an object of type
RegStockInfo in the server. At this point, the client holds an implementation
object of type StockInfoCB and a proxy for an object of type RegStockInfo, as
shown in Figure 18.3.

To allow the server to invoke operations on the StockInfoCB implementation
object, the client must pass this object reference to the server. Consequently,
the client then calls the operation Register() on the RegStockInfo proxy
object, as shown in Figure 18.3.

Figure 18.3: Client-Server Callback Interaction

Im plem entation
 for type

StockInfoCB

P roxy of type
RegStockInfo

O rbix C lient

P roxy of type
StockInfoCB

Im plem entation
for type

RegStockInfo

O rbix S erver

NotifyPriceChange()

return

return

Register()
347

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 348 Monday, February 22, 1999 3:03 PM
Writing the Server
The code for the server main() function is as follows:

// C++
// In file server.cxx
...
#include "stock_impl.h"

int main(int argc, char * argv[]) {
try {

...

// ORB and BOA setup.
// Initialize the ORB and BOA
CORBA::ORB_var orb = CORBA::ORB_init

(argc, argv, "Orbix");
CORBA::BOA_var boa = orb->BOA_init

(argc, argv, "Orbix_BOA");

// Set diagnostics and server name.
...

// Server should not quit while clients
// are connected.
boa->setNoHangup(1);

boa->impl_is_ready
((char*)serveropt.server_name(), 0);

// Create an implementation object.
RegStockInfo_var symbol

= new RegStockInfoImpl("IONAY");

// Naming Service setup as normal.
...

// ORB/BOA event processing
// Server completed its initialization,
// and waiting for incoming requests.
boa->impl_is_ready

((char*)serveropt.server_name(), 0);
 348

Ca l l b a c k s f r om S e r v e r s t o C l i e n t s

ProgramGuide.book Page 349 Monday, February 22, 1999 3:03 PM
// Set share price.
float shareprice = 18.5;

if (!serveropt.bindns()) {
for (int i=0; i<100;i++) {

if (boa->isEventPending()) {
boa->processNextEvent();

}
// Calculate a new stock price
symbol->Notify(shareprice);

// Share price increases by 25 cents
// on each iteration.
shareprice += .25;
...
// Sleep for 3 seconds.
Sleep(3000);

}
}
cout << "server exiting" << endl;

}
catch (const CORBA::Exception &e) {

cerr << "Unexpected exception: " << e << endl;
return 1;

}
return 0;

}

This server creates an implementation object of type RegStockInfo, and
registers this object in the Naming Service using a Naming Service Wrapper. It
then sets the share price and notifies the client of share price changes using the
Notify() operation. This calls the NotifyPriceChange() operation, which
calls back to the client.

The call to processNextEvent() is made in case a client wishes to register or
deregister. This call has a zero timeout value. This means that the server is not
blocked; the call returns immediatelly if there is no pending event.

The server main thread must either sleep or do other processing to avoid
exiting.
349

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 350 Monday, February 22, 1999 3:03 PM
Note: You should only invoke setServerName() from the server. If a client
invokes setServerName(), server operations on its callback object will
fail to connect.

Preventing Deadlock in a Callback Model
When an application invokes an IDL operation on an Orbix object, by default,
the caller is blocked until the operation returns. Deadlock can occur in a single-
threaded system where applications can both invoke and implement operations.

For example, in the stock trading application, a simple deadlock can occur if the
server attempts to call back to the client in the implementation of the function
Register(). In this case, the client is blocked on the call to Register() when
the server invokes NotifyPriceChange(). The NotifyPriceChange() call
blocks the server until the client reaches an event processing call and handles the
server request. Each application is blocked, pending the return of the other, as
shown in Figure 18.4 on page 351.

Unfortunately, it is not always possible to design a callback architecture where
simultaneous invocations between groups of processes are guaranteed never to
occur. However, there are alternative approaches to preventing deadlock in an
Orbix system.

The two primary approaches to preventing deadlock are as follows:

• Using non-blocking operation invocations.

• Using a multi-threaded event processing model.

These approaches are discussed in the two subsections that follow.

Using Non-Blocking Operation Invocations

There are two ways to invoke an IDL operation in an Orbix application without
blocking the caller:

• Declaring an IDL operation as oneway.

• Invoking the operation using the deferred synchronous approach
supported by the Dynamic Invocation Interface (DII).
 350

Ca l l b a c k s f r om S e r v e r s t o C l i e n t s

ProgramGuide.book Page 351 Monday, February 22, 1999 3:03 PM
Figure 18.4: Deadlock in a Callback Model

Declaring an IDL Operation as Oneway

You can declare an IDL operation oneway only if it has no out, or inout
parameters and no return value. A oneway operation can only raise an exception
if a local error occurs before a call is transmitted. Consequently, the delivery
semantics for a oneway request are “best-effort” only. This means that a caller
can invoke a oneway request and continue processing immediately, but is not
guaranteed that the request arrives at the server.

You can avoid deadlock, as shown in Figure 18.4, by declaring either Register()
or NotifyPriceChange() as a oneway operation. The IDL for the stock trading
example is as follows:

// IDL
interface StockInfoCB {

oneway void NotifyPriceChange (in String message);
};

interface RegStockInfo {
void Register (in StockInfoCB objRef);

};

Im plem entation
 for type

StockInfoCB

P roxy of type
RegStockInfo

O rbix C lient

P roxy of type
StockInfoCB

Im plem entation
for type

RegStockInfo

O rbix S erver

1.)

2.) S erver blocked in

pending return of
Register()

NotifyPriceChange()

C lient blocked
pending return of
Register()
351

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 352 Monday, February 22, 1999 3:03 PM
In this case, the client’s call to NotifyPriceChange() returns immediately,
without waiting for the server’s implementation function call to return. This
allows the client to enter the Orbix event processing call. At this point, the
callback invocation from the server is processed and routed to the client’s
implementation of Register(). When this function call returns, the server no
longer blocks and both applications wait again for incoming events.

Note: Using oneway operations does not prevent deadlock in SSL-enabled
callback applications because establishing SSL connections requires a
response from the client. This problem does not occur for multi-
threaded SSL-enabled application. Refer to the OrbixSLL C++
Programmer’s and Administrator’s Guide for details.

Using the Deferred Synchronous Approach
You can achieve a similar functionality by using the Orbix DII deferred
synchronous approach to invoking operations. As described in Chapter 13,
“Dynamic Invocation Interface” on page 243, the DII allows an application to
dynamically construct a function invocation at runtime, by creating a
CORBA::Request object. You can then send the invocation to the target object
using one of a set of functions supported by the DII.

The section “Dynamic Skeleton Interface” on page 265 describes how to call the
following functions on an orb to invoke an operation without blocking the caller.
If any of the following functions are used, the caller can continue to process in
parallel with the target implementation function:

CORBA::Request::send_deferred()
CORBA::Request::send_oneway()
CORBA::ORB::send_multiple_requests_deferred()
CORBA::ORB::send_multiple_requests_oneway()

Operation results can be retrieved at a later point in the caller’s processing, and
avoid deadlock as if the operation call is a oneway invocation.
 352

Ca l l b a c k s f r om S e r v e r s t o C l i e n t s

ProgramGuide.book Page 353 Monday, February 22, 1999 3:03 PM
Using Multiple Threads of Execution

An Orbix application can create multiple threads of execution. To prevent
deadlock, it can be useful to create a separate thread dedicated to handling
Orbix events. Refer to Chapter 23, “Using Threads with Orbix-MT” on
page 403 for details of how to create threads using Orbix.

If another thread in this application becomes blocked while invoking an
operation on a remote object, the event processing continues in parallel. The
remote operation can then safely call back to the multi-threaded application
without causing deadlock.

Event Processing Functions

Orbix applications can use event processing functions that do not implicitly
initialize the application server name. The client can safely call either the function
processEvents() or the function processNextEvent() on the ORB object.

These event processing functions are defined on Orbix class BOA. If the client is
to receive callbacks, the client’s ORB object must be initialized as type BOA. The
client call, for example, to, processEvents() blocks while waiting for incoming
Orbix events. If the server invokes an operation on the StockInfoCB object
reference forwarded by the client, this call is processed by processEvents()
and routed to the correct function in the client's implementation object.

Callbacks and Bidirectional Connections
If you use the Orbix protocol, the server sends its callbacks on the same
connection that the client initiated and used to make requests on the server.
This means that the client does not need to accept an incoming connection.

Standard IIOP, on the other hand, requires that the client accept a connection
from the server to allow the callbacks to be sent. Orbix introduces an optional
extension to IIOP to allow the protocol to use bidirectional connections.
Bidirectional connections allow clients to receive requests from servers on the
connection that the client originated to the server.
353

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 354 Monday, February 22, 1999 3:03 PM
To configure your client to use bidirectional connections, call
CORBA::ORB::supportBidirectionalIIOP() with the on parameter set to
true. This is defined as follows:

CORBA::Boolean supportBidirectionalIIOP(
CORBA::Boolean on,
Environment& env=default_environment);

By default, bidirectional IIOP is disabled. Refer to the Orbix C++ Programmer’s
Reference for more details on supportBidirectionalIIOP().
 354

ProgramGuide.book Page 355 Monday, February 22, 1999 3:03 PM
 19
Loading Objects at Runtime

If a client invokes an IDL operation on an object that does not exist
in a server, Orbix returns an exception to the client. However, Orbix
also allows server programmers to create loaders that are
responsible for instantiating objects in response to client requests.
This chapter explains how to use loaders in Orbix, using an example
named BankPersistent. This example is based on the BankExceptions
example and builds on concepts already introduced.

When an operation invocation arrives at a process, Orbix searches for the
target object in the object table for that process. By default, if the object is not
found, Orbix returns an exception to the caller. However, if one or more loader
objects are installed in the process, these are informed about the object fault and
allowed to load the target object and resume the invocation transparently to the
caller. The loaders are C++ objects maintained in a chain, and are tried in turn
until one can load the object. If no loader can load the object, an exception is
returned to the caller.
355

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 356 Monday, February 22, 1999 3:03 PM
Loaders are not just called when a “missing object” is the target of a request;
they are also called when an object reference enters an address space. This can
arise in the following ways:

• When a call to either _bind() or CORBA::Orbix.string_to_object()
is made from within a process.

• For a server, as an in parameter.

• For a client (or a server making a function call), as an out or inout
parameter, or a return value.

The loaders are given an opportunity to respond to such object faults by loading
the target object of the reference into the process address space. If no loader
can load the referenced object, Orbix constructs a proxy for the object.

Loaders can provide support for persistent objects. These are long-lived objects
stored on disk in the file system or in a database.

Overview of Creating a Loader
To create a loader, first define a derived class of CORBA::LoaderClass. You can
then install a loader by creating a (dynamic) instance of that new class.

CORBA::LoaderClass provides the following functions:

• load()

Orbix uses this function to inform a loader of an object fault. The loader
is given the marker of the missing object so that it can identify the object
to load.

• save()

When a process terminates, its loader(s) can save the objects in its
address space. To enable this, Orbix makes an individual call to save()
for each object managed by that loader. The save() function is also called
when an object is destroyed.

You can also explicitly call save() using the CORBA::Object::_save()
function, defined on all Orbix objects.

• record() and rename()

These functions are used to enable naming of objects when using loaders.
Refer to “Loaders and Object Naming” on page 359 for more details.
 356

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 357 Monday, February 22, 1999 3:03 PM
For full details of class CORBA::LoaderClass, refer to the Orbix C++
Programmer’s Reference

Installing a Loader

You should remember three important points when creating a loader object:

• A loader must be created dynamically using new() and should not be
deleted explicitly by application code. Otherwise an error occurs when
Orbix tries to delete the loader as the process terminates.

Static creation of loaders is not supported because of the possibility that
C++ may destroy a loader before Orbix calls that loader’s save()
function. This would affect each of the objects it controls.

• If a loader’s constructor uses either of the functions
CORBA::ORB::isBaseInterfaceOf() or
CORBA::ORB::baseInterfacesOf(), that loader must not be created
before the first line of the main function. This means that the loader
cannot be created directly at the file level or in the constructor of an
object created at the file level. Attempts to break this rule could lead to
calls on these functions before their underlying data structures are
initialized. This depends on the C++ compiler used.

• The constructor of CORBA::LoaderClass (the base class of all loaders)
takes a CORBA::Boolean parameter that must be non-zero if the new
loader’s load() function is to be called by Orbix. The default value of this
parameter is false.

Specifying a Loader for an Object

Each object is associated with a loader object that is informed when the object is
named or renamed and when the object is to be saved. If no loader is explicitly
specified for an object, it is associated with a default loader, implemented by
Orbix. This loader does not support persistence.

An object’s loader can be specified as the object is being created, using either the
TIE or the BOAImpl approach.
357

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 358 Monday, February 22, 1999 3:03 PM
Using the BOAImpl Approach

In the BOAImpl approach, you can specify a loader for an object by declaring the
implementation class constructor to take a pointer to the loader as a parameter.
You should then call this constructor, passing on this pointer as a parameter to
set the loader for the object. For example:

// C++
// In file bankexceptions_bankimpl.h

class BankExceptions_BankImpl : public virtual
BankExceptions::BankBOAImpl {
public:

// Constructor.
BankExceptions_BankImpl(

CORBA::LoaderClass* loader) throw();
...

}

// In file bankexceptions_bankimpl.cxx

// BankExceptions_BankImpl constructor call
BankExceptions_BankImpl::BankExceptions_BankImpl(
CORBA::LoaderClass* loader) throw() :

m_accounts(
new BankExceptions::Account_var[MAX_ACCOUNTS]),
account_loader(loader)

...

You can obtain a pointer to an object’s loader by calling:

// C++
// In class CORBA::Object.
CORBA::LoaderClass* _loader(

CORBA::Environment& env =
CORBA::default_environment);
 358

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 359 Monday, February 22, 1999 3:03 PM
Using the TIE Approach

In the TIE approach, you can specify a loader for an object by passing a pointer
to the loader as a parameter to the TIE constructor. For example,

// C++
// myLoader is a pointer to a loader object.
bank= new TIE_BankExceptions_Bank(

BankExceptions_BankImpl) (
new BankExceptions_BankImpl(),// Object pointer
myLoader); // Loader pointer

Loaders and Object Naming
When supporting persistent objects, it is often important to control the markers
that are assigned to them. For example, you often need to use an object’s
marker as a key to search for its persistent data. The format of these keys
depend on how the loader implements the persistence. Therefore, it is common
for loaders to choose object markers, or at least to be allowed to accept or
reject markers chosen by application level code.

Naming Objects

The two main ways to name objects when using loaders are as follows:

• Using the constructor.

• Using _marker().

Naming Objects Using the Constructor
Using the BOAImpl approach, you can pass the marker name to the BOAImpl
constructor, for example:

// C++
// In file bankexceptions_accountimpl.cxx

// BankExceptions_AccountImpl constructor
BankExceptions_AccountImpl::BankExceptions_AccountImpl(

const char* name,
BankExceptions::CashAmount balance,
359

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 360 Monday, February 22, 1999 3:03 PM
const char* marker,
CORBA::LoaderClass* loader) throw() :

BankExceptions::AccountBOAImpl(marker, loader),
m_balance(balance), m_name(name) {}

...

This constructor sets the marker as the account name and sets the loader for
the account object.

Naming Objects Using _marker()
CORBA::Object::_marker(const char*) sets the target object’s marker name;
for example:

bank->_marker(“mybank”);

Refer to Chapter 6, “Making Objects Available in Orbix” on page 147 for more
details on naming objects in Orbix.

record() and rename()

Regardless of whether _marker() or the constructor is used, Orbix calls the
object’s loader to confirm the chosen name, thereby allowing the loader to
override the choice. When using the constructor, Orbix calls record(). When
using _marker() Orbix calls rename() because the object already exists.

Orbix executes the following algorithm when an object is created, or an object’s
existing marker is changed:

• If the specified marker (char* pointer) is not null, Orbix checks whether
the name is already in use within the process. If it is not in use, the name
is suggested to the loader (by calling record() or rename()). The loader
can accept the name by not changing it. Alternatively, the loader can
reject it by changing it to a new name. If the loader changes the name,
Orbix again checks that the new name is not already in use within the
current process; if it is already in use, the object will not be correctly
registered.

• If no name is specified or if the specified name is already in use within the
current process, Orbix passes a nil char* pointer to the loader (by calling
record() or rename()) which must then choose a name. Orbix then
checks the chosen name; the object will not be correctly registered if this
chosen name is already in use.
 360

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 361 Monday, February 22, 1999 3:03 PM
If necessary, both record() and rename() can raise an exception. The
implementations of rename() and record() in CORBA::LoaderClass both
return without changing the suggested name. The implementation of load() and
save() perform no actions.

The Default Loader
The default loader is associated with all objects that are not explicitly associated
with a loader. This is an instance of CORBA::NullLoaderClass, a derived class of
CORBA::LoaderClass. This class inherits load(), save() and rename() from
CORBA::LoaderClass. It implements record() so that if no marker name is
suggested it chooses one that is a string of decimal digits, different to any already
generated in the current process. The default loader does not support
persistence.

Loading Objects
When an object fault occurs, the load() function is called on each loader in the
chain until one successfully returns the address of the object, or until they all
return zero. Orbix cannot call the correct loader directly, because the object
does not yet exist in the address space.

The load() function performs the following tasks:

• It determines if the required object is to be loaded by the current loader.

• If the required object is to be loaded, it recreates the object and assigns it
the correct marker.
361

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 362 Monday, February 22, 1999 3:03 PM
The load() function is passed the following information:

• The interface name.

• The target object’s marker.

• A CORBA::Boolean value, set as follows depending on why the object
fault occurred:

• An Environment parameter.

The interface name of the missing object is determined as follows:

• If an object fault occurs because of the following call:

p = I1::_bind(<parameters>);

the interface name in load() is “I1”.

If the first parameter to the _bind() is a full object reference string,
Orbix returns an exception if the reference’s Interface field is not I1 or a
derived interface of I1.

Refer to the entry for CORBA::ORB::object_to_string() in the Orbix
C++ Programmer’s Reference for details on the string format of Orbix
object references.

• If an object fault occurs during the following call:

p = CORBA::Orbix.string_to_object
(<full object reference string>);

the interface name in load() is extracted from the full object reference
string.

• If a loader is called because of a reference entering an address space (as
an in, out or inout parameter, a return value, or as the target object of
an operation call), the interface name in load() is the interface name
extracted from the object reference.

1 Because of a call to _bind() or
CORBA::Orbix.string_to_object() by the process that
contains the loader.

0 Because of an object fault on the target object of an incoming
operation invocation, or on an in, out or inout parameter
or return value.
 362

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 363 Monday, February 22, 1999 3:03 PM
Saving Objects
When a process terminates, Orbix iterates through all the objects in its object
table and calls the save() function on the loader associated with each object. A
loader may save the object to persistent storage (either by calling a function on
the object, or by accessing the object’s data and writing this data itself).

The save() function is also called on the loader associated with an object when
that object is destroyed. You can also explicitly call an object’s _save() function.
The _save() function simply calls the save() function on the object’s loader.
You must call _save() in the same address space as the target object—calling it
in a client process on a proxy has no effect.

The reason parameter to save() indicates why this function has been called. Its
possible values are as follows:

If the reason is objectDeletion, you would normally code a loader’s save()
function to delete the persistent representation of the object, as follows:

// C++
if (reason == CORBA::objectDeletion)

// Delete the persistent representation

On process termination, Orbix does not delete the objects themselves as it
iterates through its object table. Instead Orbix calls save() on each object’s
loader. It does, however, destroy the loader objects after they have been used.

processTermination The process is about to exit.

explicitCall The object’s _save() function has been called.

objectDeletion CORBA::release() has been called on the object,
which previously had a reference count of 1.
363

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 364 Monday, February 22, 1999 3:03 PM
Writing a Loader
If you are writing a loader for a specific interface, you would typically perform
the following actions:

• Redefine the load() function to do the main work of the loader—to load
the object on demand. The object’s marker is normally used to find the
object in the persistent store.

• Redefine the save() function so that it saves its objects on process
termination, and also if _save() is called. This normally deletes an
object’s persistent storage if the save reason is objectDeletion.

• Redefine the record() and rename() functions. Often, record()
chooses the marker for a new object; and rename() is written to prevent
an object’s marker being changed. However, record() and rename() are
sometimes not redefined in a simple application, where the code that
chooses markers at the application level can be trusted to choose correct
values.

Example Loader
This section presents a simple loader example named BankPersistent. This
example builds on the BankExceptions example introduced in Chapter 7. The
code used in this example is available in the demos\bankpersistent directory of
your Orbix installation.

The IDL Interface

This example uses the BankExceptions IDL, as follows:

// IDL
// In file bankexceptions.idl

module BankExceptions {
typedef float CashAmount;
interface Account;
 364

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 365 Monday, February 22, 1999 3:03 PM
interface Bank {
// User-defined exceptions.
exception CannotCreate { string reason; };
exception NoSuchAccount { string name; };

Account create_account (in string name)
raises (CannotCreate);

Account find_account (in string name)
raises (NoSuchAccount);

};

interface Account {
// User-defined exception.
exception InsufficientFunds { };

readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount);
void withdraw (in CashAmount amount)

raises (InsufficientFunds);
};

};

Implementing the IDL

This example uses the BOAImpl approach. Interfaces Account and Bank are
implemented by classes BankExceptions_AccountImpl and
BankExceptions_BankImpl, respectively.

Instances of class BankExceptions_AccountImpl are made persistent using a
class named Loader inheriting from CORBA::LoaderClass. A simple persistence
mechanism is used, with one file per account object. This section shows the
implementation of classes AccountImpl and BankImpl. The implementation of
class Loader is shown in “Coding the Loader” on page 371.
365

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 366 Monday, February 22, 1999 3:03 PM
Class AccountImpl

Class AccountImpl is implemented as follows:

// C++
// In file bankexceptions_accountimpl.h
...
#include "bankexceptions.hh"

1 class BankExceptions_AccountImpl : public virtual
BankExceptions::AccountBOAImpl
{
public:

// IDL operations
virtual void deposit(BankExceptions::CashAmount amount,

CORBA::Environment&) throw();

virtual void withdraw(BankExceptions::CashAmount amount,
CORBA::Environment&)

throw (BankExceptions::Account::InsufficientFunds);

// IDL attributes
virtual char* name(CORBA::Environment&) throw();

virtual void
name(const char * _new_value, CORBA::Environment&)
throw();

virtual BankExceptions::CashAmount
balance(CORBA::Environment&) throw();

// C++ operations
2 BankExceptions_AccountImpl (

const char* name,
BankExceptions::CashAmount balance,
const char* marker,
CORBA::LoaderClass* loader) throw ();

virtual ~BankExceptions_AccountImpl() throw();

3 static BankExceptions::Account_ptr LoadObject(
const char* marker, CORBA::LoaderClass *)
throw();
 366

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 367 Monday, February 22, 1999 3:03 PM
4 virtual void SaveObject(char* file_name) throw();

5 virtual void* _deref() { return this;}

protected:
CORBA::String_var m_name;
BankExceptions::CashAmount m_balance;

// The following are not implemented:
BankExceptions_AccountImpl(const

BankExceptions_AccountImpl &);
BankExceptions_AccountImpl& operator=(const

BankExceptions_AccountImpl &);
};

This code is explained as follows:

1. BankExceptions_AccountImpl is the application implementation class,
inheriting from the IDL-generated BOAImpl class.

2. The BankExceptions_AccountImpl constructor sets the marker as the
account name and sets the loader for the account object.

3. The LoadObject() function is called from the load() function of the
loader. This is passed the name of the file to load the account from.

4. The SaveObject() function writes the member variables of an account
to a specified file.

5. The _deref() function casts from the Account interface class to the
implementation class. A reference to the implementation class is required
because you cannot call non-IDL operations (in this case, SaveObject())
from an interface class. Refer to “Casting from Interface to
Implementation Class” on page 204 for more details.
367

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 368 Monday, February 22, 1999 3:03 PM
LoadObject()

The LoadObject() function is called from the load() function of the loader.
This loads an Account object from a specified file. LoadObject() can be coded
as follows:

// C++
// In file bankexceptions_accountimpl.cxx

1 BankExceptions::Account_ptr
BankExceptions_AccountImpl::LoadObject(

const char* marker, CORBA::LoaderClass* loader
) throw() {

char file_name[260];

2 char* envvar = getenv("IT_DEMO_ACCOUNTS_DIR");
if (envvar == NULL) {

envvar = "";
}
strcpy(file_name, envvar);
strcat(file_name, marker);
strcat(file_name, ".ser");

ifstream account_file(file_name);
if (account_file) {

char loaded_account_name[100];
float loaded_account_balance;
account_file >> loaded_account_name

 >> loaded_account_balance;

// Now recreate the object
BankExceptions::Account_var loaded_account

= new BankExceptions_AccountImpl(
loaded_account_name,
loaded_account_balance,

marker, loader);
return
BankExceptions::Account::_duplicate(loaded_account);

}

 368

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 369 Monday, February 22, 1999 3:03 PM
else {
cerr << "Error loading file "<< file_name

<< endl;
return 0;

}
}

This code is described as follows:

1. Loader::load() must call LoadObject() because load() does not have
access to the Account private data members.

2. Save the file to <IT_DEMO_ACCOUNTS_DIR><marker>.ser. By default
during make register, the makefile sets the IT_DEMO_ACCOUNTS_DIR
environment variable to the bankpersistent demonstration directory.

SaveObject()

The SaveObject() function is called from the save() function of the loader.
This saves an Account object to a given file name when the server exits.
SaveObject() can be coded as follows:

// C++
// In file bankexceptions_bankimpl.cxx

void BankExceptions_AccountImpl::SaveObject(
char* file_name) throw()

{
ofstream account_file(file_name);
if (!account_file) {

cerr << "Cannot open file " << file_name
<< "for writing"<< endl;

cerr << "Object not saved" <<endl;
}

account_file << m_name << endl << m_balance
<< endl;

if (!account_file) {
cerr << "Cannot write to file " << file_name
<< endl;
cerr << "Object not saved" <<endl;

}
}

369

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 370 Monday, February 22, 1999 3:03 PM
Loader::save() must call SaveObject() because save() does not have access
to the Account private data members

Class BankImpl
Class BankImpl is implemented as follows:

// C++
#include "bankexceptions.hh"
#include "it_demo_nsw.h"

class BankExceptions_BankImpl : public virtual
BankExceptions::BankBOAImpl
{
public:

// IDL operations
virtual BankExceptions::Account_ptr
create_account(const char * name,

CORBA::Environment&)
throw(BankExceptions::Bank::CannotCreate);

virtual BankExceptions::Account_ptr
find_account(const char * name, CORBA::Environment&)
throw(BankExceptions::Bank::NoSuchAccount);

// C++ operations
BankExceptions_BankImpl(CORBA::LoaderClass* loader)
throw();
virtual ~BankExceptions_BankImpl() throw();

protected:
// Size of m_accounts array storing accounts.
static const int MAX_ACCOUNTS;
// An array of Account_var
BankExceptions::Account_var* m_accounts;
CORBA::LoaderClass* account_loader;

// The following are not implemented
BankExceptions_BankImpl(

const BankExceptions_BankImpl &);
BankExceptions_BankImpl& operator=(const

BankExceptions_BankImpl &);
};
 370

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 371 Monday, February 22, 1999 3:03 PM
Coding the Loader

A single loader object, of class Loader, is created in the server main() function,
and each Account object created is assigned this loader. Each
BankExceptions_BankImpl object holds a pointer to the loader object to
associate with each Account object when it is created. Accounts are assigned an
account name that acts as a marker for the object. The ability to choose markers
is an important feature for persistence.

Bank objects are not associated with an application level loader. These are
implicitly associated with the Orbix default loader. The server mainline creates a
loader and a bank as follows:

// C++
// In file server.cxx.

// Loaders must be created dynamically.
Loader* accountloader = new Loader();
BankExceptions::Bank_var my_bank

= new BankExceptions_BankImpl(accountloader);

Class Loader

Class Loader is the loader class for Account objects. This inherits from
CORBA::LoaderClass. You can implement class Loader as follows:

// C++
// In file bankpersistent_loader.h

class Loader : public CORBA::LoaderClass {

public:
Loader();
virtual ~Loader();

// Load object with given interface and marker.
virtual CORBA::Object_ptr load (

const char* object_interface,
const char* marker,
CORBA::Boolean isBind,
CORBA::Environment&);
371

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 372 Monday, February 22, 1999 3:03 PM
// Save object.
virtual void save (

CORBA::Object*,
CORBA::saveReason reason,
CORBA::Environment&);

};

Class Loader redefines the load() and save() functions and inherits rename()
and record() from CORBA::LoaderClass.

The Loader member functions can be implemented as follows:

// C++
// In file bankpersistent_loader.cxx

// The Loader constructor registers the loader
// object as a loader.

1 Loader::Loader ()
: CORBA::LoaderClass(1)

{}

// Loader destructor
Loader::~Loader() {
}

2 // Loader::load()
CORBA::Object_ptr Loader::load (

const char *object_interface,
const char *marker,
CORBA::Boolean, CORBA::Environment&)

{
cout << "Loading object ... " <<endl

<< "interface: " << object_interface
<< endl << "marker: " << marker <<endl ;

return BankExceptions_AccountImpl::LoadObject(
marker, this);

}

 372

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 373 Monday, February 22, 1999 3:03 PM
3 // Loader::save()
void Loader::save (

CORBA::Object_ptr obj,
CORBA::saveReason reason,
CORBA::Environment&)

{
if (reason == CORBA::explicitCall) {

char* file_name = new char[260];

cout<< "Saving object ... " <<endl
<< "marker/filename: "
<< obj->_marker () <<endl ;

BankExceptions::Account_var accountvar =
BankExceptions::Account::_narrow(obj);

4 BankExceptions_AccountImpl* account_to_save =
(BankExceptions_AccountImpl*)
 accountvar->_deref();

5 strcpy(file_name, getenv("IT_DEMO_ACCOUNTS_DIR"));
strcat(file_name, obj->_marker ());
strcat(file_name, ".ser");
account_to_save->SaveObject (file_name);

6 IT_Demo_NSW ns_wrapper;

// Set up object_name of the form
// BankPersistent.<accountname>
char object_name [100];
strcpy(object_name , "IT_Demo.BankPersistent.");
strcat(object_name, obj->_marker ());

ns_wrapper.setBehaviourOption(
IT_Demo_NSW::createMissingContexts);

ns_wrapper.setBehaviourOption(
IT_Demo_NSW::overwriteExistingObject);
373

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 374 Monday, February 22, 1999 3:03 PM
try{
ns_wrapper.registerObject(

object_name, accountvar);
}
catch (const CORBA::Exception &e) {
cout << "Unexpected exception" << e << endl;

throw;
}

CORBA::release(obj);
delete [] file_name;
return;

}
}

This code is explained as follows:

1. The CORBA::LoaderClass() constructor takes a parameter indicating
whether the loader being created should be included in the list of loaders
tried when an object fault occurs. By default, this value is false. The
Loader() constructor passes a value of 1 to the constructor. This
indicates that instances of Loader should be added to this list.

2. Orbix calls the Loader::load() function when an object fault occurs on
an account object associated with this loader. This in turn calls
BankExceptions_AccountImpl::LoadObject().

The AccountImpl::LoadObject() function assigns the correct marker
to the newly-created object. If it fails to do this, subsequent calls on the
same object result in further object faults and calls to the
Loader::load() function.

You could use the Loader::load() function to read the data itself,
rather than calling the static function AccountImpl::LoadObject().
However, to construct the object, load() would be dependent on there
being a constructor on class AccountImpl that takes all of an account’s
state as parameters. Because this is not the case for all classes, it is safer
to introduce a function such as LoadObject().

Equally, Loader::save() could access the account’s data and write it out,
rather than calling AccountImpl::SaveObject(). However, it would
then be dependent on AccountImpl providing access to all of its state.
 374

L o a d i n g O b j e c t s a t R u n t im e

ProgramGuide.book Page 375 Monday, February 22, 1999 3:03 PM
In addition, defining LoadObject() and SaveObject() within class
AccountImpl provides a useful split of functionality between the
application level class, AccountImpl, and the loader class.

3. Orbix calls the save() function after the _save() is called on the
Account object by the bankexceptions_bankimpl destructor. The
Account object is passed in the first parameter. This example only
handles the explicit call saveReason.

4. You must convert from CORBA::Object_ptr to an implementation
object because the SaveObject() function is not an IDL operation.

5. Save the file to <IT_DEMO_ACCOUNTS_DIR> <marker>.ser. The
environment variable IT_DEMO_ACCOUNTS_DIR is set by the makefile when
make register is executed.

6. Bind the object in the Naming Service. The Account object bound is not
used by the client. Instead, it is used by future server executions to check
if an account exists in persistent storage.

Loaders are Transparent to Clients

When using loaders, clients can make invocations in the normal way. For
example, a client that wishes to create a specific account can execute the
following:

// C++
// In file bankmenu.cxx

// Call create_account() and run an account menu
void BankMenu::do_create()

throw(CORBA::SystemException)
{

cout << "Enter account name: " << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

try
{

BankExceptions::Account_var account =
m_bank->create_account(name);
375

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 376 Monday, February 22, 1999 3:03 PM
// Start a sub-menu with the returned account
// reference
AccountMenu sub_menu(account);
sub_menu.start();

}
catch (const BankExceptions::Bank::CannotCreate&

cant_create) {
cout << "Cannot create an account, reason: "

<< cant_create.reason << endl;
}

}

The load() function of the loader object is called if the target account is not
already present in the server. If the loader recognizes the object, it handles the
object fault by recreating the object from the saved data. If the load request
cannot be handled by that loader, the default loader is tried next and this always
indicates that it cannot load the object. This finally results in a
CORBA::INV_OBJREF exception being returned to the caller.
 376

ProgramGuide.book Page 377 Monday, February 22, 1999 3:03 PM
 20
Locating Servers at Runtime

When _bind() is called with a null host name, Orbix uses the locator
to find the target object in the distributed system. This chapter
describes the default locator supplied with Orbix and explains how
to replace it with a user-defined locator implementation.

The Default Locator
The default Orbix locator mechanism searches for a server using the following
sequence of steps:

1. The locator first attempts to contact an Orbix daemon process at the
local (client) host. If no such process exists, the location attempt fails.

2. The locator invokes the method lookUp(). This contacts the local Orbix
daemon and requests a list of host names for the specified server name.

3. The host names returned by the Orbix daemon are arranged in random
order. Orbix iterates through this list, attempting to verify the
registration of the server at each host in turn until it finds a host at which
the desired server is registered. The locator returns the first host at
which the desired server is registered.

If the location attempt fails, the _bind() call also fails and throws an Orbix
system exception. The location attempt succeeds when it locates a host at
which the server name passed to _bind() has been registered.
377

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 378 Monday, February 22, 1999 3:03 PM
Of course, this does not guarantee that the _bind() itself succeeds because
_bind() fully succeeds only when it successfully launches the server (if
necessary) and locates the specified object within the server.

For successful operation of the default locator, you must specify server names
and corresponding target hosts in advance. You must configure the default
locator with respect to the local Orbix daemon process, which manipulates the
locator configuration files. This configuration is described in the Orbix C++
Administrator’s Guide.

Default lookUp() Functionality

Although you do not normally need to make explicit use of the locator (because
it is used implicitly through calls to _bind()), it can sometimes be useful to do
so. A call to the locator specifies a server name (as const char*) and returns a
sequence of host names (as strings). The locator interface is defined by class
CORBA::locatorClass. You can use the locator as follows:

// C++
char server[100];
// Then set this to the name of required server.

// Initially empty:
CORBA::ORB::IT_StringSeq hosts;

try {
// The lookUp() function takes a parameter of
// type Context_ptr; we will pass the
// default context. To obtain the
// default context, call:
CORBA::Orbix.get_default_context(ctx);
hosts =

CORBA::locator->lookUp(server, 5, ctx);
}
catch(const CORBA::SystemException& se) {

cout << “Exception calling locator” << endl
 << &se;

}

 378

L o c a t i n g S e r v e r s a t R u n t im e

ProgramGuide.book Page 379 Monday, February 22, 1999 3:03 PM
CORBA::ULong seqLen = hosts.length();
if (seqLen > 0) {

// Sequence of host names found ok.

// The sequence can be iterated over using:

CORBA::ULong i;
for (i=0; i < seqLen; i++)

cout << hosts[i] << endl;

// The sequence will be cleaned up (deleting
// the strings it contains) when it goes out of
// scope.

}
else { // Not found.

. . .
}

Note: The locator is pointed to by CORBA::locator. This usually points to the
default locator, but it can be assigned to a specialized locator. Refer to
“Writing a New Locator” on page 380 for more details.

Each string in the sequence of strings returned by lookUp() gives the name of a
host that provides that server. The lookUp() function returns an empty
sequence if no host names can be found for the specified server. If the call
succeeds, the program can choose any of the returned host names,1 or perhaps
iterate over them attempting to bind to the required object at each in turn.
Receiving an exception on one of the binds indicates an error such as the host
not being available.

The second parameter to lookUp() specifies the maximum number of hops that
can be used to fulfil a request, thereby limiting the number of hosts involved in a
search. The _bind() function uses the value CORBA::_LOCATOR_HOPS, which you
can change if you wish to modify how _bind() uses lookUp(). Explicit calls to
lookUp() can specify any CORBA::ULong value, except that the constant value
CORBA::_MAX_LOCATOR_HOPS is used if a greater value is specified.

1. The default implementation of the locator randomizes the sequence before returning it. This is a
basic technique in load balancing to avoid swamping any one server.
379

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 380 Monday, February 22, 1999 3:03 PM
The lookUp() function searches for a server by first testing if it has been
registered on the local host. If it is not, then the default locator searches for the
server using the location files described in the Orbix C++ Administrator’s Guide.

The following parameters can be passed to lookUp():

ServiceName, MaxHops, Context, Environment

You can use the Context parameter to pass information to the locator; for
example, to specify how to locate the required object, or to specify how to
choose between a set of servers with the specified name (as is the case in a
trader). The context passed in this parameter can be:

• A specific context object.

• The context obtained by calling CORBA::ORB::get_default_context()
on the CORBA::Orbix object.

• An empty anonymous context obtained by calling
CORBA::Context::IT_create() with no parameters.

The default locator ignores the Context parameter. The _bind() function
passes through its Context argument when it calls lookUp().

Refer to “Parameters to lookUp()” on page 381 for a description of the
parameters to lookUp().

Writing a New Locator
If the default search facility for servers is not appropriate, or if it needs to be
augmented for a given application, an alternative locator can be installed by:

• Defining a derived class of CORBA::locatorClass.

• Creating a single instance of the new class.

• Assigning the pointer CORBA::locator to point to that instance.

Note: A given process must have a single locator at all times. If the value of
CORBA::locator is not changed, it references an object that implements
the default locator algorithm.
 380

L o c a t i n g S e r v e r s a t R u n t im e

ProgramGuide.book Page 381 Monday, February 22, 1999 3:03 PM
The locator is passed the name of the server being sought and it should return a
list of names of hosts on which that server is registered in the Implementation
Repository.

CORBA::locator is defined as follows:

// C++
class locatorClass {
protected:

locatorClass();
public:

virtual CORBA::ORB::IT_StringSeq lookUp(
const char* ServiceName,
ULong MaxHops,
const Context& context,
Environment& env);

};

A call to _bind() of the form:

// C++
I::_bind(“marker:server”, “”, c1);

results in a call to lookUp() of the form:

// C++
lookUp(“server”, <max_hops>, c1);

where <max_hops> is determined by Orbix.

Parameters to lookUp()

The parameters of lookUp() are as follows:

ServiceName The name of the server being sought.

MaxHops In the default locator this is interpreted as the maximum
number of machines to search for the required server. An
interpretation similar to this one should be retained in a
user-defined locator if it is to be used without changing client
code that explicitly calls lookUp() .
381

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 382 Monday, February 22, 1999 3:03 PM
It is often advisable that a locator randomises the sequence before returning it.
This is a basic technique in load balancing, to avoid swamping any one server.

When lookUp() is called while Orbix is searching for an object, Orbix continues
after the call as follows:

• The local host is used if it appears anywhere in the returned sequence.

• If not, the request is sent to each host in turn until the call completes
successfully or until an error occurs; unavailable hosts are skipped.

context A context parameter. This allows a client to pass extra
information to the locator; for example, constraints on how
to search for the server. A trader is an example of where this
is important: the context parameter can be used to define
properties to be used when deciding between a set of servers
with the same name.

env The standard variable that allows the function to raise an
exception.
 382

ProgramGuide.book Page 383 Monday, February 22, 1999 3:03 PM
 21
Using Opaque Types in IDL

Orbix provides an extension to IDL that allows you to define opaque
data types. You can pass opaque data types by value through an
IDL definition without any interference from Orbix. This chapter
describes how to use these Orbix-specific data types.

In accordance with the CORBA standard, Orbix objects are passed to and from
IDL operations by reference. All such objects are described by an interface
defined in IDL. Objects supporting an IDL interface are created in a server and
object references rather than actual copies of the objects are passed to clients.

This model is appropriate to the majority of applications that use an ORB.
However, in some circumstances, you may wish to pass objects across a
CORBA IDL interface by value rather than by reference. Passing an object by
value means that the internal state of the object is included in an operation
parameter or return value and a copy of the object is constructed in the
receiving process.

In addition, there has been demand for a mechanism that allows existing C++
objects to be passed across an IDL interface without the necessity to
retrospectively define IDL interfaces for these objects. Such a mechanism allows
the integration of IDL types with non-IDL data types within a CORBA
environment.

The opaque types mechanism described in this chapter addresses both of these
issues. A data type may be identified in IDL as opaque by the introduction of a
new keyword, opaque. This means that nothing (except that it is a valid IDL
type) is known at the IDL level. A type defined to be opaque behaves like an
interface type. It can therefore be passed as a parameter or return value to an
383

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 384 Monday, February 22, 1999 3:03 PM
IDL operation, or used as an attribute type or as a member of a struct or
exception. An opaque type is always passed to and from IDL operations by value,
and you must supply a C++ class which implements the type. You must also
provide marshalling functions that define how the object’s state is packaged for
transmission across the network and unmarshalling functions that define how
the object’s state can be extracted by the receiving process.

Note: Because of the Orbix-specific nature of opaques, you cannot use opaque
types with the CORBA-defined Interface Repository.

Possible Alternative Solutions
IONA’s approach to passing objects between client and server processes by
value is to introduce a new type constructor at the IDL level.

You can achieve similar results without extending the IDL language. One
solution to transmitting an object by value is to define its state in an IDL struct
definition. This solution is unsatisfactory for two reasons: first, you must
separate state information from interface information; second, in the IDL
definitions, you should make explicit information that properly belongs to the
implementation.

A second solution is to pass an object’s state information in binary form as a
sequence<octet>. This mechanism does not make explicit the type of the
information transmitted, so it does not violate the object’s privacy. However, no
marshalling or unmarshalling is performed on a sequence<octet>, so byte-
swapping and other data-conversion becomes your responsibility. Furthermore,
in stripping the interface of type information, the ORB assumes the role of an
RPC package.
 384

U s i n g O p a qu e T y p e s i n I D L

ProgramGuide.book Page 385 Monday, February 22, 1999 3:03 PM
Using Opaque Types
This section demonstrates how to use the opaque mechanism to pass a user-
defined type by value in IDL operations.

IDL Definitions

The example used defines an IDL interface Calendar that makes use of the
opaque type Date. The IDL definitions are as follows:

// IDL
// In, for example, file calendar.idl.
opaque Date;

interface Calendar {
// Today’s date:
readonly attribute Date today;

// How long from the given date until today ?
unsigned long daysSince(in Date d);

};

The opaque data type is introduced by the keyword opaque . An opaque type can
be defined at file-level scope or within a module, at the same level as an interface
definition. Like a typedef definition, opaque introduces a new IDL type. In the
example, the new Date type is used as an attribute type and as an in parameter.

You can define the IDL definitions as follows:

idl -K calendar.idl

opaque is not a keyword in CORBA IDL, so the -K IDL compiler switch is used
to indicate that support for opaque types is required.
385

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 386 Monday, February 22, 1999 3:03 PM
Mapping of Opaque Types to C++

An opaque type declaration maps to an include directive in the C++ header file
generated by the IDL compiler. For example, the declaration:

// IDL
// In calender.idl.
opaque Date;

maps to:

// C++
// In calender.hh.
#include <calenderO.h>;

In addition, the IDL compiler generates three operator prototypes for the
opaque data type as follows:

// C++
// In calender.hh.
CORBA::Request& operator<<(

CORBA::Request&, const Date*);
CORBA::Request& operator<<(

CORBA::Request&, Date*&);
CORBA::Request& operator>>(

CORBA::Request&, Date*&);

To use the opaque type Date, you must define a C++ class Date in file
calenderO.h and implement these operators. The operator implementations
specify how to marshal and unmarshal the opaque type. These specify how to
stream the opaque object’s state into and out of a CORBA::Request object so
that an object defined to be opaque can be transmitted over a network. Thus,
the mapping to C++ for the IDL definitions on page 385 is as follows:

// C++
// In calender.hh.
#include <calenderO.h>;

// This operator is now deprecated refer to page 391.
CORBA::Request& operator<<(

CORBA::Request&, const Date*);
 386

U s i n g O p a qu e T y p e s i n I D L

ProgramGuide.book Page 387 Monday, February 22, 1999 3:03 PM
CORBA::Request& operator<<(
CORBA::Request&, Date*&);

CORBA::Request& operator>>(
CORBA::Request&, Date*&);

...
class Calendar: public virtual CORBA::Object {
public:

...
// Details omitted.
virtual Date* today(

CORBA::Environment& IT_env =
CORBA::default_environment);

virtual CORBA::ULong daysSince(
const Date* d,
CORBA::Environment& IT_env =

CORBA::default_environment);
};

Mapping for Operation Parameters

The mapping for opaque types used as operation parameters and return values is
shown in the following table:

IDL in out inout return

T T* T*& T*& T*
387

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 388 Monday, February 22, 1999 3:03 PM
Memory Management Rules

The memory management rules for opaque types follow a strict pattern of their
own to allow as flexible use of opaques as possible. These rules are outlined as
follows:

in parameters

inout parameters

Client side You need to allocate storage and provide an appropriate value.

You should not pass an uninitialized pointer.

You must free the storage when it is no longer required, using
the C++ delete operator.

Server side Orbix makes the parameter available for the duration of the
operation call.

You must copy the parameter if it is to be retained beyond the
lifetime of the operation call.

Client side You must allocate storage and provide an appropriate value.

You should not pass an uninitialized pointer.

You must free the storage when it is no longer required, using
the C++ delete operator.

Server side Orbix makes the parameter available for the duration of the
operation call.

You can change the value passed in. If the value passed in is
changed, the old value must be freed.

The value is not deallocated automatically by Orbix when the
operation completes.
 388

U s i n g O p a qu e T y p e s i n I D L

ProgramGuide.book Page 389 Monday, February 22, 1999 3:03 PM
out parameters and return values

Implementing an Opaque Type

You must provide an implementation class for the opaque type. This class must
be defined in the file included in the generated.hh file.

A simple class definition for the Date class is as follows:

// C++
// In file calenderO.h.
#include <iostream.h>
...

class Date {
friend CORBA::Request& operator<<(

CORBA::Request&, const Date*);
friend CORBA::Request& operator<<(

CORBA::Request&, Date*&);
friend CORBA::Request& operator>>(

CORBA::Request&, Date*&);
protected:

short day, month, year;
public:

Date();
Date(short d, short m, short y);
void print();

};

Client side In line with the rules for CORBA types, you cannot modify
the value passed back in an out parameter. A copy of the
value passed back can, of course, be modified.

You must free the storage associated with an out parameter,
when it is no longer required, using the C++ delete
operator.

Server side You must allocate storage and perform initialization.

The value is not deallocated automatically by Orbix when the
operation completes.

You should not return an uninitialized pointer.
389

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 390 Monday, February 22, 1999 3:03 PM
This class could be implemented as follows:

// C++
// In, for example, date.cc.
#include <iostream.h>
#include “calendar.hh”
#include “date.h”
...

Date::Date() {
// Construct an object containing today’s date
// (code not shown).

}

Date::Date(short d, short m, short yr) {
day = d;
month = m;
year = yr;

}

void Date::print() {
cout << day << “/” << month << “/” << year;

}

To complete the implementation, you must implement the marhsalling operators
as follows:

• The insertion operator, operator<<(), marshals the opaque object’s

state into a CORBA::Request for transmission to a remote process.1

On the client side, the const version of this operator is used to marshal
in parameters and the non-const version is used to marshal inout
parameters. On the server side, the (non-const version of the) operator
is used to marshal inout and out parameters and operation results.

• The extraction operator, operator>>(), unmarshals an opaque object
that is received from a remote process in a CORBA::Request.

1. Class CORBA::Request is used to package an operation request and to return out and
inout parameters and results. For more details, see Chapter 13, “Dynamic Invocation
Interface” on page 243of this guide, and the entry for CORBA::Request in the Orbix C++
Programmer’s Reference.
 390

U s i n g O p a qu e T y p e s i n I D L

ProgramGuide.book Page 391 Monday, February 22, 1999 3:03 PM
On the client side, this operator is used to unmarshal inout and out
parameters and results. On the server side, it is used to unmarshal in and
inout parameters.

Note: Recent revisions in the operator prototypes for opaques have
deprecated this operator. These revisions add more flexibility in terms of
memory management. However, this operator is still used here for
backwards compatibility.

The following is an implementation of these operators for the Date class:

// C++
// Marshalling operator for (client side)
// in parameters.
CORBA::Request& operator<<(

CORBA::Request& r, const Date* d) {
if (d) {

r << d->day;
r << d->month;
r << d->year;

} else {
r << 0;
r << 0;
r << 0;

}
return r;

}

// Marshalling operator for (client and
// server side) inout parameters and (server
// side) out parameters.
CORBA::Request& operator<<(

CORBA::Request& r, Date*& d) {
if (d) {

r << d->day;
r << d->month;
r << d->year;

} else {
r << 0;
r << 0;
r << 0;
391

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 392 Monday, February 22, 1999 3:03 PM
}
// To avoid memory leak of inout and out
// parameters:
delete d;

return r;
}

// Unmarshalling operator for (client side) inout
// and out parameters and results and for (server
// side) in and inout parameters.
CORBA::Request& operator>>(

CORBA::Request& r, Date*& d) {
d = new Date;
r >> d->day;
r >> d->month;
r >> d->year;
return r;

}

The order in which class Date’s members are inserted into the CORBA::Request
is irrelevant. However, the unmarshalling operator must extract the members in
the same order as the order in which they are inserted.

Because a nil (zero) pointer might be passed in a parameter expecting an opaque
type, the insertion operators should ensure that appropriate zero values for
each member are inserted into the CORBA::Request. If required to handle
marshalling errors, the insertion and extraction operators for an opaque type
may raise a CORBA::MARSHAL system exception.

Note: The non-const version of the marshalling operator, operator<<(),
should free the memory allocated to the opaque object (allocated in
operator>>()) in order to avoid a memory leak for inout and out
parameters on the server side.
 392

U s i n g O p a qu e T y p e s i n I D L

ProgramGuide.book Page 393 Monday, February 22, 1999 3:03 PM
Implementing an Interface that uses an Opaque Type

The implementation of the Calendar interface is straightforward; the code is
shown below.

// C++
#include “calendar.hh”
#include “date.h”

class CalendarImpl : public CalendarBOAImpl {
protected:

Date* day;
public:

CalendarImpl();
virtual Date* today(

CORBA::Environment& IT_env
= CORBA::default_environment);

virtual CORBA::ULong daysSince(
const Date* d,
CORBA::Environment& IT_env

= CORBA::default_environment);
};

CalendarImpl::CalendarImpl() {
day = 0;

}

Date* CalendarImpl::today(
CORBA::Environment&) {

Date* d = new Date;
return d;

}

CORBA::ULong CalendarImpl::daysSince(
const Date* d, CORBA::Environment&){

// Calculate number of days between this
// date and date in d (code not shown).

}

393

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 394 Monday, February 22, 1999 3:03 PM
 394

ProgramGuide.book Page 395 Monday, February 22, 1999 3:03 PM
 22
Transforming Requests

This chapter describes how you can use transformers to modify data
buffers containing Orbix operation call information, immediately
before and after transmission across the network. Transformers are
an Orbix-specific feature.

In Orbix, an operation invocation or an operation reply is transmitted between
a client and a server in a CORBA::Request object. Using the Dynamic Invocation
Interface, a CORBA::Request is explicitly created while a static invocation results
in the implicit creation of a CORBA::Request object.

This chapter describes how you can modify a CORBA::Request’s data buffer,
allowing a client or server process to specify what modifications to the buffer
should occur when requests or replies are transmitted to other processes. The
ability to modify this data directly preceding its transmission, or directly
subsequent to its reception means that you can add additional information to
the data stream; for example, information identifying the participants in the
communication. The data stream may be encrypted for security purposes and so
on. The process of modifying a CORBA::Request’s data buffer is known as
transforming the data buffer.

The functionality provided by Request transformation is at a lower level than
that provided by filters, as described in Chapter 16 “Filtering Operation Calls”
on page 307. Transforming requests allows access to the actual data buffer
transmitted in a Request.
395

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 396 Monday, February 22, 1999 3:03 PM
Note: Because of the Orbix-specific nature of transformers, you cannot use
transformers with non-IONA ORBs.

Transforming Request Data
Transformation of a CORBA::Request’s data buffer is performed by a transformer
object. To obtain a new transformer object do the following:

1. Define a class that inherits from the class CORBA::IT_reqTransformer.

2. Create an instance of this class.

3. Register this instance with Orbix.

You can register the transformer object so that it performs
transformations on all communications to and from the process that
contains the transformer object. Alternatively, you can register the
transformer so that transformations are performed only on
communications to and from a particular server on a particular host that
contains the transformer.

Because transformations are applied when an operation invocation leaves or
arrives at an address space, no transformations are applied when the caller and
invoked object are collocated.

The IT_reqTransformer Class

The CORBA::IT_reqTransformer class defines the interface to transformer
objects. This class is defined as follows:

// C++
// In class CORBA.
class IT_reqTransformer {
protected:

const char* m_remote_host;
public:

virtual Boolean transform(
Octet*& data,
ULong& actual_sz,
ULong& allocd_sz,
 396

T r an s f o rm i n g R e q u e s t s

ProgramGuide.book Page 397 Monday, February 22, 1999 3:03 PM
Boolean send,
Boolean is_first);

virtual void free_buf(
unsigned char* data,
ULong actual_sz,
ULong allocd_sz);

virtual const char* transform_error();

void setRemoteHost(const char* c);
};

A class derived from IT_reqTransformer can access a CORBA::Request’s data
and can therefore manipulate or transform the data as required. The derived
class must, at least, override the transform() function. Refer to the Orbix C++
Programmer’s Reference for full details on the IT_reqTransformer class.

The transform() function is called by Orbix immediately before transmitting
the data in a Request from an address space and immediately subsequent to
receiving a Request from another address space. The derived class can allocate
new storage to handle any alteration in the data size caused by the
transformation. If the derived class alters the method by which the data is stored
in buffers, you may also need to override the default free_buf() operation to
handle the release of this data. Before calling the transform() function, Orbix
records the name of the host that initiates a request in the member
m_remote_host.

The transform() function may indicate that a TRANSFORM_ERR system exception
should be raised by Orbix by returning 0 (false) from transform().

A derived class may implement the transform_error() function to return a
string containing suitable error text. The string returned by this function forms
part of the error string output by the operator:

// C++
friend ostream& operator<<(

ostream&, CORBA::SystemException*);

when the TRANSFORM_ERR exception is caught. You must free the string returned
by transform_error(), using CORBA::string_free().
397

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 398 Monday, February 22, 1999 3:03 PM
Registering a Transformer

Orbix provides two functions to register a transformer object (an instance of
CORBA::IT_reqTransformer). You can call both on the CORBA::Orbix object.

1. The function:

// C++
// In class CORBA::ORB.
IT_reqTransformer* setMyReqTransformer(

IT_reqTransformer* transformer,
Environment& env = CORBA::default_environment)

registers a transformer object as the default transformer for all Requests
entering and leaving an address space.

2. The function:

// C++
// In class CORBA::ORB.
void setReqTransformer(

IT_reqTransformer* transformer,
const char* server,
const char* host = 0,
Environment& env = CORBA::default_environment)

registers a transformer object for all Requests destined for a specific
server and host and for all Requests received from a specific server and
host. This function can be called more than once to register different
server/host pairs.

A transformer registered using setReqTransformer() overrides any default
transformer registered with setMyReqTransformer().

Note: At most one transformation is applied to any Request—the default
transformation registered with setMyReqTransformer() or overriding
specific transformation registered with setReqTransformer().
 398

T r an s f o rm i n g R e q u e s t s

ProgramGuide.book Page 399 Monday, February 22, 1999 3:03 PM
An Example Transformer
This section presents a simple example of a transformer that adds the name of
the sending host to a Request’s buffer when sending a Request out of a process.
It also removes the host name from a Request’s buffer when the process
receives a Request object that contains a operation reply.

The transformer is implemented by class Transformer defined as follows:

// C++
#include <CORBA.h>
#include <iostream.h>

#define ERR_STR “Transformer: bad transformation”

class Transformer :
public CORBA::IT_reqTransformer {

public:
virtual CORBA::Boolean transform(

CPRBA::Octet*& data,
CORBA::ULong& actual_sz,
CORBA::ULong& allocd_sz,
CORBA::Boolean send,
CORBA::Boolean first);

virtual const char* transform_error();
};

extern Transformer* transformer;
399

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 400 Monday, February 22, 1999 3:03 PM
The Transform class overrides the functions transform() and
transform_error() only. These are implemented as follows.

// C++
...
unsigned char Transformer::transform(

CORBA::Octet*& data,
CORBA::ULong& actual_sz,
CORBA::ULong& allocd_sz,
CORBA::Boolean send,
CORBA::Boolean first) {

if (!first)
return 1;

unsigned long i;
// m_remote_host is set by Orbix prior
// to invoking transform().
if (send) { // Sending.

unsigned long shift = strlen(m_remote_host);
unsigned char * old_data = data;

if ((shift + actual_sz) > allocd_sz) {
data = new unsigned char [shift + actual_sz];

}

for (i = shift + actual_sz -1; (i >= shift); i--)
data [i] = old_data [i - shift];

for (i = 0; i < shift; i++)
data [i] = m_remote_host [i];

actual_sz += shift;

if (data != old_data)
delete[] old_data;

}
else {

unsigned long shift =
strlen(CORBA::Orbix.myHost());

char* this_host = new char[shift];
this_host = strdup(CORBA::Orbix.myHost());
for (i = 0; i < shift; i++)
 400

T r an s f o rm i n g R e q u e s t s

ProgramGuide.book Page 401 Monday, February 22, 1999 3:03 PM
if (data [i] != this_host [i])
return 0;

for (i = 0; i < actual_sz - shift ; i++)
data [i] = data [i + shift];

actual_sz -= shift;
delete this_host;

}

cout << "---USER Transform returning"
<< " actual_sz: " << actual_sz
<< " allocd_sz: " << allocd_sz
<< " send: " << (int)send << endl;

return 1;

const char* Transformer::transform_error() {
return ERR_STR;

}

// Create a Transformer:
Transformer* transformer = new Transformer;

The first parameter to the function transform() indicates whether the buffer
in data is the first in a sequence of buffers. In Orbix, a Request object being sent
from an address space can contain more than one data buffer while a Request
object received into an address space always contains just one buffer. In this
example, the first buffer is the only one modified by transform(). The send
parameter indicates whether the Request is incoming or outgoing. The
transform() function uses the send parameter to determine whether to add or
remove the host name to the Request’s buffer.

Registering the Transformer

Calling the following on the ORB registers this transformer as the default
transformer for a client or server process:

setMyReqTransformer(transformer);
401

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 402 Monday, February 22, 1999 3:03 PM
To register a transformer that acts on Requests going to or received from a
specific server on a specific host, make the following call on the ORB:

setReqTransformer(
transformer, “myServer”, “alpha”);
 402

ProgramGuide.book Page 403 Monday, February 22, 1999 3:03 PM
 23
Using Threads with Orbix-MT

This chapter presents details of Orbix-MT, the multi-threaded version
of Orbix. It explains the benefits of multi-threaded clients and servers,
and the mechanisms available for multi-threaded programming.

Normally, Orbix client and server programs contain one thread that starts
executing at the beginning of the program and continues until the program
terminates. Many modern operating systems allow a process to create
lightweight threads, with each thread having its own set of CPU registers and its
own stack. Each thread is independently scheduled by the operating system, so it
can run in parallel with the other threads in its process. The mechanisms for
creating and controlling threads differ between operating systems, but the
underlying concepts are common. The POSIX standard is supported by most
UNIX systems.

The programming steps required to create threads in Orbix are straightforward.
In addition, you can program many different models of thread support.

The example code in this chapter uses POSIX-compliant threads to illustrate
these concepts. The Orbix3.0\demo directory of your Orbix installation
provides analogous examples for the threads package available on your
operating system.
403

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 404 Monday, February 22, 1999 3:03 PM
Benefits of Multi-threaded Clients and Servers
Both clients and servers can benefit from multi-threading. However, the
advantages of multi-threading are more apparent for servers than for clients.

Multi-threaded Servers

For some servers, it is satisfactory to accept one request at a time and to
process each request to completion before accepting the next. Where
parallelism is not required by an application, there is little point in making such a
server multi-threaded. However, some servers would offer a better service to
their clients if they processed a number of requests in parallel. Parallelism of
such requests may be possible because a set of clients can concurrently use
different objects in the same server, or because some of the objects in the
server can be used concurrently by a number of clients.

Some operations can take a significant amount of time to execute, because they
are compute-bound, because they perform a large number of I/O operations, or
because they make invocations on remote objects. If a server can execute only
one such operation at a time, clients suffer because of long latencies before their
requests can be started. The main benefits of multi-threading are that the latency
of requests can be reduced, and the number of requests that a server can handle
over a given period of time can be higher. Multi-threading also enables you to
take advantage of multi-processor machines.

The simplest threading model is where a thread is created automatically for each
incoming operation/attribute request. Each thread executes the code for the
operation/attribute being called, executes the low level code that sends the reply
to the caller, and then terminates. Any number of such threads can run
concurrently in a server, and they can use normal concurrency control
techniques to prevent corruption of the server’s data. You must program this
protection at two levels: the underlying ORB library must be thread-safe so that
concurrent threads do not corrupt internal variables and tables; and the
application level must be made thread- safe by the programmer.

Threads are not without their costs, however. Firstly, it may be more efficient to
avoid creating a thread to execute a very simple operation. The overhead of
creating a thread may be greater than the potential benefit of parallelism.
Secondly, you must ensure that the application code is thread-safe.
 404

U s i n g T h r e a d s w i t h O r b i x -M T

ProgramGuide.book Page 405 Monday, February 22, 1999 3:03 PM
Specifically, Solaris, Windows NT and POSIX threads are pre-emptive. This
means that they can be interrupted at any time and delayed while other threads
execute. Nevertheless, the benefits frequently outweigh the costs and multi-
threaded servers are considered essential for many applications.

A benefit of using Orbix is that the actual creation of threads in a server is very
simple, and therefore adds little or no cost for the programmer.

You can also explicitly create threads in servers, using the threading facilities of
the underlying operating system. You can do this so that a remote call can be
made without blocking the server. You can also do this within the code that
implements an operation or attribute, so that some complex algorithm can be
parallelized and performed by a number of threads. These threads can be in
addition to those created implicitly to handle each request.

Multi-threaded Clients

Multi-threaded clients can also be useful. A client can create a thread that makes
a remote operation call, rather than making that remote call directly. The result
is that the thread that makes the call blocks until the operation call has
completed, but the rest of the client can continue in parallel. “Comparison with
Non-Blocking Calls” on page 406 compares this approach with the use of non-
blocking calls made by single-threaded clients. Another advantage of a multi-
threaded client is that it can receive incoming operation requests to its objects
without having to poll for communication events; for example, it can receive
callbacks from a server.

Clients must create threads explicitly, using the threading facilities of the
underlying operating system; this is not difficult to perform. Naturally, you must
code multi-threaded clients to ensure they are thread-safe, using some
concurrency control mechanism. For servers, the difficulty of doing this depends
on the complexity of the data, the complexity of the concurrency control rules,
and the form of concurrency control mechanism being used.
405

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 406 Monday, February 22, 1999 3:03 PM
Comparison with Non-Blocking Calls

You can gain some of the benefits of using multiple threads by making operation
calls that do not block the caller. IDL oneway calls do not block their caller, and
you can make normal calls without blocking by using the DII and the
send_deferred() function on a Request. Non-blocking calls can be made within
a client or a server.

However, there is little to recommend in using non-blocking calls. Using threads
is easier and more powerful than using non-blocking calls:

• Easier

Threads provide an easier means of gaining concurrency. Consider a
client that wishes to carry out a number of actions, each requiring a
number of two-way operation requests. One way to do this is to make
the first two-way operation call associated with each action without
blocking, and to process the results in whatever order they arrive. In this
way, at any time, there is one outstanding (non-blocking) operation call
for each action. Once a reply arrives for the current operation call for an
action, the next call for that action can be made. The difficulty here is that
the client must loop to accept each reply, and it must maintain a table to
indicate the next request to make for each action. This is complex and
error-prone.

In contrast, the equivalent coding using threads is very simple. A thread
can be created for each action, and that action can make normal blocking
calls for each request that is to be made in turn.

• More powerful

The real benefit of multi-threaded servers is the ability to handle calls
from a number of clients concurrently. This cannot be gained using non-
blocking calls.

Consider an attempt to do so. A single-threaded server can accept an
incoming operation request, and during the processing of this request it
can use a non-blocking call to make a request on a remote object.
Naturally, the server does not block while the remote object is
processing the call, but it cannot accept another incoming operation
request from the same or another client.
 406

U s i n g T h r e a d s w i t h O r b i x -M T

ProgramGuide.book Page 407 Monday, February 22, 1999 3:03 PM
The only way that it can accept another operation call is to complete the

first call:1 the call on whose behalf it has made the non-blocking remote
call. The server cannot accept another call until it has completed the
current one.

Nevertheless, non-blocking calls can sometimes be useful. Firstly, some
operating systems do not support threads; and secondly, although threads may
be available, it might not be possible to use them because an application is using
a library that is not thread-safe. Finally, for very simple uses in clients, the
complexity of using non-blocking calls is no greater than that of using threads.
Nevertheless, the real benefits of multi-threaded servers is the ability to handle
calls from different clients concurrently. This cannot be gained using non-
blocking calls.

Thread Programming in Orbix
Orbix-MT provides a thread-safe version of the Orbix libraries for use with the
underlying operating system’s threads package. At appropriate points within the
Orbix libraries, locking code has been added to ensure that the Orbix internal
data structures are correctly managed in a pre-emptive threading environment.
The Orbix libraries are thread-safe.

In addition to the locking code, the client and server library both create and use
threads internally. These threads are not exposed to application programmers,
and execute code within the library only.

Note: All existing application code written for the non-threaded Orbix libraries
continues to execute correctly if linked with the threaded Orbix libraries.
In addition, an Orbix-MT programmer can choose to ignore threads.

Although the threaded Orbix libraries create some threads internally, by default
there is only one thread to handle incoming requests: for example, a server only
handles one call at a time. To create a thread per incoming request, you must
install a filter that creates these threads. Refer to Chapter 16 “Filtering

1. By exiting the C++ member function that implements the operation.
407

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 408 Monday, February 22, 1999 3:03 PM
Operation Calls” on page 307 for details. This code is supplied, and can be used
without modification. It should be viewed as code that extends the ORB, rather
than as application level code.

You can use application level threads within a client application, or within a
server application, or within both. A non-threaded client can interact with a
threaded server, and vice-versa. Naturally, applications written using the
standard (non thread-safe) Orbix product can also interact with threaded
applications. Server applications can choose when to create threads, including in
response to incoming operation requests.

Compiling Orbix-MT Applications

This section describes the compilation switches required when building Orbix-
MT applications on Windows and UNIX platforms.

Windows Platforms
The Orbix libraries are built with the /MD switch, which links them with the
MSVCRT multi-threaded runtime libraries. You should also build your
applications using the /MD switch.

UNIX Platforms
To build an application using the thread-safe version of the Orbix libraries, it is
important to compile with -D_REENTRANT. In fact, this is true for most threaded
applications. It ensures that the C++ compiler generates re-entrant code
correctly, and also selects the correct header file options:

% CC -D_REENTRANT foo.cc

Your link line should link with the mt form of the Orbix libraries, and with the
appropriate library for the threads package used. The details vary depending on
the particular platform, so you should consult a Makefile provided in the
Orbix3.0/demo directory for exact details.
 408

U s i n g T h r e a d s w i t h O r b i x -M T

ProgramGuide.book Page 409 Monday, February 22, 1999 3:03 PM
UNIX examples are as follows:

Solaris

% CC -D_REENTRANT -o foo foo.cc \
-lorbixmt -mt -lnsl -lsocket

POSIX-Compliant

% CC -D_REENTRANT -o foo foo.cc \
-lorbixmt -threads -lrt

Operating System Support for Creating Threads

Before discussing the filter code that creates threads, this section shows the
code that is required on some operating systems to create a thread.

Windows NT

// C++
#include <process.h>
HANDLE CreateThread(

LPSECURITY_ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpbThreadParm,
DWORD fdwCreate,
LPDWORD lpIDThread);

Solaris

// C++
#include <thread.h>
thr_create (void* stack_base, size_t stack_size,

void*(start_routine)(void*), void* arg,
long flags, thread_t* new_thread)

POSIX-Compliant

// C++
#include <pthread.h>
int pthread_create(pthread_t* tid,

pthread_attr_t*,
void*(start_routine)(void*), void* arg);
409

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 410 Monday, February 22, 1999 3:03 PM
If a client or server creates a thread to make a remote request, it can wait for
that thread to terminate using one of the following calls:

Creating a Thread to Handle a Request

As explained in Chapter 16, a per process filter’s inRequestPreMarshal()
function can create a thread to handle an incoming request. The
inRequestPreMarshal() function should use an underlying threads package—
for example, the Solaris threads package—to create a thread, and the thread
should then handle the request, usually by instructing Orbix to send the
invocation to the target object.

The inRequestPreMarshal() function should return -1 to Orbix to indicate
that it has created a thread that handles the call. Unlike the other filter points,
inRequestPreMarshal() has a return type int. This allows it to return 1 to
indicate that the request is accepted and should be processed as normal; return
0 to indicate that the request should be rejected; or return -1 to indicate that
the call is being handled by a separate thread.

The new filter class should inherit from CORBA::ThreadFilter, which in turn
derives from CORBA::Filter. The code below is the example thread filter that
creates a thread per request. The version shown uses the Solaris threading
facility.

// C++
class CreatesThread : public CORBA::ThreadFilter {
public:

// Only consider one monitor point here.
virtual int inRequestPreMarshal

(CORBA::Request&,
 CORBA::Environment&);

};

// Create the required single instance.
CreatesThread threadDispatcher;

Windows NT WaitForSingleObject()

Solaris thr_join()

POSIX pthread_join()
 410

U s i n g T h r e a d s w i t h O r b i x -M T

ProgramGuide.book Page 411 Monday, February 22, 1999 3:03 PM
// Define start function for new thread
static void* startThread(void* vp) {

// Tell Orbix to resume processing a request.
CORBA::Orbix.continueThreadDispatch

(*(CORBA::Request*)vp);
return 0;

}

// Implementation of inRequestPreMarshal().
int CreatesThread::inRequestPreMarshal

(CORBA::Request& r,
 CORBA::Environment&) {

// Create a thread using the threads-package:
// The thread entry point is ‘startThread’
thread_t tid;
thr_create(NULL, 0, startThread, (void*)&r,
 THR_DETATCHED, &tid);
// Indicate to Orbix that a thread was created.
return -1;

}

CreatesThread::inRequestPreMarshal() is the first part of this code to
execute. It uses the Solaris function thr_create() to create the new thread,
specifying that the new thread is to execute the function startThread() . The
value -1 is returned to inform Orbix that a new thread has been created.

The role of startThread() is to instruct Orbix to continue to process the
operation or attribute request within the new thread. It does this by calling the
low-level Orbix function continueThreadDispatch() , passing it the Request
variable that represents the request being made. The request is passed to
startThread() as parameter vp , which although declared to be of type void* ,
is actually of type CORBA::Request* . The rules of the Solaris threading package
dictate that the function that a thread is to execute (startThread() in this case)
must take a void* parameter—passed as the fourth parameter to
thr_create().
411

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 412 Monday, February 22, 1999 3:03 PM
Concurrency Control
Although Orbix contains sufficient locks to ensure the thread-safety of its
internal variables and tables, and the low-level variables associated with each
Orbix object, you must add appropriate synchronisation code to the shared data
structures and objects created in an application. Refer to the appropriate system
programmer’s manual to understand how to do this for a particular threads
package.

Note: Orbix does not synchronize access to application level objects and
application data structures.

Thus, for example, if a server programmer creates a thread filter as described in
“Creating a Thread to Handle a Request” on page 410, it is possible that several
application level threads may try to access the same application object in the
server. In particular, if clients simultaneously request the server to invoke IDL
operations on the same target object within the server, that object will be
subject to concurrent access. You must thus take care that access to the state of
the target application object is synchronized as appropriate, by using locking
code built using the underlying threads package. For example:

// C++
class Foo {

short m_counter; // Some state.
mutex_t* m_lock; // Mutex lock for state.

public:
Foo() {

m_counter = 0;
mutex_init(&m_lock, USYNC_THREAD, NULL);

}
void increment() {

mutex_lock(&m_lock);
m_counter++;
mutex_unlock(&m_lock);

}
};

Each CORBA::Object in Orbix includes an internal read/write lock used by
Orbix to synchronize concurrent access to the Orbix-specific state of that
object.
 412

U s i n g T h r e a d s w i t h O r b i x -M T

ProgramGuide.book Page 413 Monday, February 22, 1999 3:03 PM
A read lock is acquired, for example, if a thread calls the
CORBA::Object::_refCount() member function. Similarly, a write lock is
acquired for the duration of the _duplicate() static member function on each
IDL C++ class. However this read/write lock is not acquired when any
application specific state of that object is accessed. For example, if an
implementation class derives from a BOAImpl class that in turn derives indirectly
from CORBA::Object adds member variables, or if a smart proxy does likewise,
this additional state is not protected by the internal CORBA::Object read/write
lock.

In principle, the internal CORBA::Object read/write lock could be made available
to derived BOAImpl classes. In practice, however, there is a possibility that
deadlock situations might occur because of interactions between the internal use
of this lock in Orbix, and the use made by a programmer in a derived class. For
this reason, access to the internal lock is discouraged.

Models of Thread Support
In addition to the thread per request model described in “Creating a Thread to
Handle a Request” on page 410, a derived class of ThreadFilter can be used to
program other models, such as the following:

Pool of Threads

In this model, a pool of threads is created to handle incoming requests. The size
of the pool puts some limit on the server’s use of resources, and in some cases
that is better than the unbounded nature of the thread per request model. Each
thread waits for an incoming request, and handles it before looping to repeat this
sequence.This can provide the best balance between concurrency and resource
usage.

Thread Per Client

In this model, a thread is created for each client process that is currently
connected to a server. Each thread handles the requests from one client
process, and ignores other requests. This may be useful if thread creation is too
expensive to have a thread created for each request; but of course it does give
the potential of having idle threads corresponding to clients that are currently
413

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 414 Monday, February 22, 1999 3:03 PM
not making requests to objects in the server. One particularly important use of
this model is for DBMS integration, where in some cases it is important to run all
of a client’s requests in the same thread. This is normally because it is necessary
to run consecutive requests from the same client in the same transaction.

Thread Per Object
In this model, a thread is created for each object (actually, for a subset of the
objects in the server). Each of these threads accept requests for one object only,
and ignores all others. This can be an important model in real-time processing,
where the threads associated with some objects need to be given higher
priorities that those associated with others.

Implementing Models of Thread Support

This section gives a brief outline of how you can implement these models.

Implementing Pool of Threads
To implement this model, you should create a pool of threads, and each thread
should wait on a shared semaphore. When a request arrives, the
inRequestPreMarshal() function of the ThreadFilter should place a pointer
to the Request in an agreed variable, and signal the semaphore. Alternatively, a
queue can be used. One of the threads will awaken, and should call
continueThreadDispatch() before looping to repeat the sequence.

Implementing Thread Per Client
There are two variations on how this should be implemented, depending on
whether or not a single client can make concurrent calls on objects in a server. If
a client can only make one call at a time, then the inRequestPreMarshal()
function should determine the identity of the caller, perhaps finding the file
descriptor on the server that the call was made through. It should then use this
to locate the corresponding thread. Specifically, a synchronisation variable (a
mutex or semaphore) is located; and this is signalled so that the thread will
awaken. The inRequestPreMarshal() function should pass (a pointer to) the
Request object to the thread, so that it can call continueThreadDispatch().
 414

U s i n g T h r e a d s w i t h O r b i x -M T

ProgramGuide.book Page 415 Monday, February 22, 1999 3:03 PM
If a client can make concurrent calls to the objects in the server,
inRequestPreMarshal() should use a queue to communicate with the chosen
thread. It should add the Request to the correct thread’s queue, and signal a
semaphore to mark the fact that there is one more entry in the queue. There
should be one semaphore and one queue per thread, and each thread should
wait on its own semaphore.

Implementing Thread Per Object
To implement this model, you should create a thread for each (or a subset of)
the objects in the server. Each thread should have it’s own semaphore and
queue of requests, and it should wait on its own semaphore.

The inRequestPreMarshal() function should add the Request to the correct
queue of requests, and signal the correct semaphore. When the thread awakens,
it should call continueThreadDispatch() to process the topmost request, and
then loop to await the next one.

Changing the Thread Calls made by Orbix
As noted in “Operating System Support for Creating Threads” on page 409,
Orbix creates its own threads and synchronisation structures (mutexs,
semaphores and read/write locks) by calling the underlying threads package.
Within the Orbix source code, these calls are made via a C++ interface.
However, some threads packages—such as that of Solaris—provide for a
number of alternative parameters to the creation of locks and threads. For
example, in Solaris, locks can be created using the USYNC_THREAD or
USYNC_PROCESS options. Refer, for example, to the rw_init(9F) man page
entry.

The choice of parameters made in the Orbix source code to create threads and
locks for Solaris is contained in the Orbix multi-threaded library on Solaris,
liborbixmt.The coding of this file can be changed, if desired, for a particular
application. The new object file should then be included prior to the Orbix
libraries on the link line.
415

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 416 Monday, February 22, 1999 3:03 PM
Changing Internal Orbix Thread Creation
When you run an Orbix application, Orbix starts an internal thread that waits
for incoming connection attempts from other applications. This thread is known
as the listener thread. When the listener thread detects the first incoming
connection attempt, it starts another thread, known as a connection thread, that
accepts incoming requests from all connections and dispatches those requests to
your application code.

If required, you can configure Orbix to create more than one connection thread
in your application. This increases the use of parallelism in your application. The
function maxFDsPerConnectionThread(), defined on class CORBA::ORB, allows
you to specify the number of connections to be associated with each connection
thread.

This function is defined as follows:

// C++
// In class CORBA::ORB
void maxFDsPerConnectionThread(unsigned long max);

To specify the maximum number of connections associated with each
connection thread, call this function on the ORB object, passing an unsigned
long value as the parameter max.

Orbix attempts to respond appropriately to the value passed to
maxFDsPerConnectionThread(), but this is not guaranteed. For example, if you
pass a value lower than the current connection limit, Orbix will not shut down
existing threads that are processing more connections than the new limit.

To read the current limit, call the following function on the CORBA::Orbix
object:

// C++
// In class CORBA::ORB
unsigned long maxFDsPerConnectionThread();
 416

ProgramGuide.book Page 417 Monday, February 22, 1999 3:03 PM
 24
Service Contexts in Orbix

This chapter introduces service contexts in Orbix applications. Service
contexts are a CORBA-defined way of implicitly passing service-
specific information in IIOP requests and replies. This chapter
describes the Orbix APIs that enable you to supply and consume
context information.

Service contexts provide a mechanism for passing service-specific information as
hidden parameters in Internet Inter-ORB Protocol (IIOP) message headers. The
CORBA interoperability specification defines service contexts as a sequence of
octets with an associated identity number. For example:

module IIOP {
typedef unsigned long ServiceId;

struct ServiceContext {
1 ServiceId context_id;
2 sequence<octet> context_data;

};
typedef sequence <ServiceContext> ServiceContextList;

const ServiceId TransactionService = 0;
const ServiceId CodeSets = 1;

};
417

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 418 Monday, February 22, 1999 3:03 PM
The code is explained as follows:

1. The context_id is the means by which a particular service context is
recognized.

2. The context_data or octet sequence is the data part of the context.

According to the General Inter-ORB Protocol (GIOP) specification, service
contexts are transmitted between clients and servers in GIOP RequestHeaders
and ReplyHeaders.

The RequestHeader_1_0 and RequestHeader_1_1 structs are defined in IDL as
follows:

module GIOP {

// GIOP 1.0
struct RequestHeader_1_0 {

 IOP::ServiceContextList service_context;
 unsigned long request_id;
 boolean response_expected;
 sequence<octet> object_key;
 string operation;
 Principal requesting_principal;

};

// GIOP 1.1
struct RequestHeader_1_1 {

 IOP::ServiceContextList service_context;
 unsigned long request_id;
 boolean response_expected;
 octet object_key;
 string operation;
 Principal requesting_principal;

};
 418

S e r v i c e C on t e x t s i n O r b i x

ProgramGuide.book Page 419 Monday, February 22, 1999 3:03 PM
The Orbix Service Context API
The CORBA-compliant API for service contexts in Orbix comprises the
following external interfaces:

• The ServiceContextHandler class.

• The ORB interfaces.

• The ServiceContextList.

ServiceContextHandler Class

The ServiceContextHandler class is the base class used to define handlers for
a particular ServiceContext ID you want to deal with. There is a handler
registered on the client and the server for each ServiceContext you wish to
handle. The handlers are recognized by their ID, which corresponds to the ID of
the ServiceContext they are handling.

The ServiceContextHandler class is defined as follows:

class ServiceContextHandler {
public:

CORBA(Ulong) m_serviceContextId;

ServiceContextHandler
(CORBA::Ulong SrvCntxtId, CORBA(Environment env));

~ServiceContextHandler();

CORBA::Boolean incomingRequestHandler
(CORBA::Request &req, CORBA::Environment env);

CORBA::Boolean outboundRequestHandler
(CORBA::Request &req, CORBA::Environment env);

CORBA::Boolean incomingReplyHandler
(CORBA::Request &req, CORBA::Environment env);

CORBA::Boolean outboundReplyHandler
(CORBA::Request &req, CORBA::Environment env);

};
419

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 420 Monday, February 22, 1999 3:03 PM
ORB Interfaces

ORB APIs are provided to allow services to supply and consume context
information at appropriate points in the process of sending and receiving
requests and replies.

Examples of ORB APIs are as follows:

CORBA::ORB::registerPerRequestServiceContext
(ServiceContextHandler &CtxHandler);

CORBA::ORB::unregisterPerRequestServiceContext
 (CORBA::Ulong CtxHandlerId);

CORBA::ORB::registerPerObjectServiceContext
(ServiceContextHandler &CtxHandler,
 CORBA::Object &handledObject);

CORBA::ORB::unregisterPerObjectServiceContext
(CORBA::Ulong &CtxHandlerId,
 CORBA::Object &HandledObject);

ServiceContextList

The ServiceContextList is a field in an IIOP message header containing all the
service context data associated with a particular request or reply. The
ServiceContextList is implemented as a sequence of ServiceContexts.

class ServiceContextList {
public:
// Includes all of the normal sequence operators.
...
friend PerObjectServiceContextHandler;
friend PerRequestServiceContextHandler;

};
 420

S e r v i c e C on t e x t s i n O r b i x

ProgramGuide.book Page 421 Monday, February 22, 1999 3:03 PM
Using Service Contexts in Orbix Applications
The API for service contexts in Orbix is based on two usage models:

• ServiceContext per request.

This is where service contexts are handled on all requests and replies
entering and leaving a process.

• ServiceContext per object.

This is where only service context information is handled for requests
and replies going to or coming from a particular object.

The mechanism whereby a particular service context per request can be
implemented is discussed in detail here. An overview of the implementation of a
particular service context per object is also given.

ServiceContext Per-Request Model

Consider the following overview of implementing service contexts per request
in Orbix applications.

Client Side
To add service context information to all requests leaving a client, do the
following:

1. Call the useServiceContext() method to switch on ServiceContexts.

2. In the user code, derive some classes from the base class
ServiceContextHandler—for example, myHandler.

3. Create an instance of this class within the client passing it
ServiceContext_id.

4. Register this handler instance with the ORB using
CORBA::ORB::registerPerRequestServiceContextHandler

(myHandler,env).

5. This registration means that if any out-going requests now leave the
client, the method ServiceContextHandler::outboundRequest() is
called. As a parameter, this method is passed a reference to the request
that caused the invocation.
421

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 422 Monday, February 22, 1999 3:03 PM
6. Depending on what the application wants to do, the request is
interrogated by the user handler class. For example, the user-handler
class may indicate that the operation name is foobar and trigger another
process to be performed.

7. In the user code of myHandler::outboundRequest(), create a new
instance of ServiceContext. Populate the context_data part of the
ServiceContext with information and add it to the
ServiceContextList.

This ServiceContextList is marshalled with the request message and is
passed across the wire to the server. Once the handler method has
completed, the ORB possesses a copy of this newly-allocated memory.
This copy is deleted after the request has been marshalled.

.

Figure 24.1: Service Contexts Per Request: Client Side

Request

Client

myHandler()

Register myHandler(Id);

Calls outboundRequest()
for each Handler

ORB

SCL SC

Request Message

SCL

List of registered

SCL gets marshalled with
the request on the wire

handlers
 422

S e r v i c e C on t e x t s i n O r b i x

ProgramGuide.book Page 423 Monday, February 22, 1999 3:03 PM
Figure 24.1 on page 422 illustrates the operation of the service context per-
request model on the client side.

The design is similar on the server side in that it creates and registers handlers,
and re-implements the methods from the ServiceContextHandler class.

Server Side
To receive service context information from all requests entering a server, do
the following:

1. Call the useServiceContext() method to switch on service contexts.

2. In the user code, derive some classes from the base class
ServiceContextHandler—for example, myHandler().

3. Create an instance of this class within the server, passing it the
ServiceContext_id. You can use the same code on both the server and
client sides.

4. Register this handler instance with the ORB using
CORBA::ORB::registerPerRequestServiceContextHandler
(myHandler env).

5. This registration means that when a request comes into the server
address space, the ServiceContextList in the request’s header is
unmarshalled and the incoming request methods are called on the
relevant handlers.

6. Using the incomingRequest() method, take a copy of the
ServiceContext required, extract whatever information is needed from
it, and call whatever code is necessary.

7. After the handler has returned, and all other ServiceContext handlers
have completed, the request continues as normal.

Note: Replies are treated the same as requests. They activate the
outboundReply() and incomingReply() handlers in the same manner.
423

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 424 Monday, February 22, 1999 3:03 PM
Figure 24.2 illustrates the operation of the service context per-request model on
the server side.

Figure 24.2: Service Contexts Per Request: Server Side

ServiceContext Per-Object Model

Consider the following overview of implementing service contexts per object in
Orbix applications.

Client Side
Adding ServiceContexts to requests leaving the client for a particular object
involves creating and registering handlers. In particular, this involves the
following:

1. Calling the registerPerObjectServiceContextHandler() method.
This method passes over the handler and object reference.

Request

Server

myHandler()

Calls IncomingRequest()
for each handler

ORB

Request Message

SCL

List of registered
handlers

Wire (unmarshalling)
 424

S e r v i c e C on t e x t s i n O r b i x

ProgramGuide.book Page 425 Monday, February 22, 1999 3:03 PM
2. Converting the object reference to a stringified object reference. After a
hashing algorithm is performed on it, it is inserted into a hash table.

3. Each entry in the hash table is made up of a key (stringified object
reference) and a value (list of handlers).

4. Calling the outboundRequest() method for each object reference where
any service context ID corresponds to a registered handler.

5. Each ServiceContext in the ServiceContextList has the same ID as
one of the handlers registered for that object.

6. With each request, only one ServiceContextList gets marshalled and
sent across on the wire.

Figure 24.3 illustrates the operation of the service context per-object model on
the client side.

Figure 24.3: Service Contexts Per-Object: Client Side

Request

Client

myHandler()

Calls outBoundRequest()
for each handler

ORB

Request Message

SCL

List of
handlers

Hash
table

Hash(ObjRef)

SCL
SC

Register
myHandler(Id);

SCL gets marshalled with the Request on the wire
425

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 426 Monday, February 22, 1999 3:03 PM
Server Side

Receiving ServiceContexts from requests entering the server for a particular
object also involves creating and registering handlers. In particular, this involves
the following:

1. Obtaining an object reference and converting it into a stringified object
reference.

2. Performing a hashing algorithm on the stringified object reference and
searching for it in a populated list of handlers.

3. Calling the incomingRequest() method for any service context ID that
corresponds to a registered handler.

Figure 24.4 illustrates the operation of the service context per-object model on
the server side.

Figure 24.4: Service Contexts Per Object: Server Side

Request

Server

myHandler()

Calls IncomingRequest()
for each handler that has been

ORB

Request Message

SCL

List of

Wire (unmarshalling)

registered for this object

handlers
Hash
table

Hash(ObjRef)
 426

S e r v i c e C on t e x t s i n O r b i x

ProgramGuide.book Page 427 Monday, February 22, 1999 3:03 PM
Main Components of the Service Context Model

The ServiceContext per-request and ServiceContext per-object models
comprise a number of components. This section defines each of the components
and explains how they fit together.

ServiceContextHandler
This base class is for users to define their own handlers for a particular
ServiceContext ID that they want to deal with. For each ServiceContext you
wish to handle, there is a handler registered on the client and the server. The
handlers are recognized by their ID which corresponds to the ID of the
ServiceContext they are handling.

PerRequestServiceContextHandler
This is a ServiceContextHandler that has been registered as a handler for all
requests on the client or server side. The user derives from the base class,
registers the handler, and the handler is recognized by its ID—which
corresponds to the ID of the ServiceContext that it handles.

PerObjectServiceContextHandler
This is a ServiceContextHandler that has been registered as a handler for all
requests to a particular object on the client or server side. The user derives
from the base class, registers the handler, and the handler is recognized by its
ID—which corresponds to the ID of the ServiceContext that it handles.

Note: The code in the handler describes what you would do with the service
context data in the service context.
427

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 428 Monday, February 22, 1999 3:03 PM
PerRequestServiceContextHandlerList

This is a list of service context handlers. For all requests or replies leaving an
address space, all the outbound methods in all handlers are called. This is
because you do not know which ServiceContext to add to each request.

PerObjectServiceContextHandlerList

This works the same way as PerRequestServiceContextHandlerList except
that only requests and replies pertaining to a particular object are tagged and
their ServiceContext information investigated. This is actually a list indexed by
both the context ID and the CORBA::Object that it references.

Service Context Handlers and Filter points
Service context handlers interact with Orbix filter points. In Orbix, there are 10
filter points including the in reply and out reply failure filter points. Refer to
“Filtering Operation Calls” on page 307 for more details.

The service context mechanism provides four more points for interaction with
requests and replies in a typical invocation. Figure 24.5 on page 429 shows the
location of the ServiceContextHandlers in an invocation, the subsequent
reply, and the order in which they are called.

You should note the following:

• If an exception is thrown in any of the outRequest() pre or post-
marshall filter points on the client side, the incomingReplyHandler() is
not called.

• One-way calls do not return anything. Thus they do not call the client
side inboundReplyHandler.
 428

S e r v i c e C on t e x t s i n O r b i x

ProgramGuide.book Page 429 Monday, February 22, 1999 3:03 PM
Figure 24.5: Service Context Handlers and Filter Points

For an example of using service contexts, refer to the demos\servicecontext
directory of your Orbix installation.

incomingRequestHandler

inRequestPreMarshall

inRequestPostMarshall

outboundReplyHandler

outRequestPostMarshall

outRequestPreMarshall

outboundRequestHandler

inReplyPostMarshall

incomingReplyHandler

inReplyPreMarshall

inReplyFailure

outReplyFailure

outReplyPostMarshall

outReplyPreMarshall
429

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 430 Monday, February 22, 1999 3:03 PM
 430

ProgramGuide.book Page 431 Monday, February 22, 1999 3:03 PM
Appendices

ProgramGuide.book Page 432 Monday, February 22, 1999 3:03 PM

ProgramGuide.book Page 433 Monday, February 22, 1999 3:03 PM
Appendix A
Orbix IDL Compiler Options

This appendix describes the command-line switches to the Orbix IDL compiler.
The IDL compiler command is idl. This command accepts the following
switches:

IDL Compiler Switch Description

-A Required if the IDL file contains the definition of a struct,
union, sequence, or object reference, an instance of which
can be contained directly in an any—that is, returned by
CORBA::Any::value(). The structs defined by the
Interface Repository can be passed as a component of a
parameter of type any without specifying the -A switch.

-B Required if you use the BOAImpl approach to implement
the interfaces in the IDL file. The -B switch requests the
generation of BOAImpl classes for each interface. You can
use the TIE approach to implement any of the interfaces in
the IDL file whether or not the -B switch has been
specified.

Clients are not affected by whether or not -B is specified.

-Bonly The -Bonly switch has the same effect as the -B flag, but it
also represses the generation of TIE code.

-D <name> Predefine the macro name to be 1 within the IDL file.

-D

<name>=<definition>
Predefine the macro <name> to be <definition>.
433

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 434 Monday, February 22, 1999 3:03 PM
-E Only run the Orbix IDL pre-processor. Do not pass the
output of the pre-processor to the Orbix IDL compiler,
but output the pre-processed file to the standard output.
By default, the output of the Orbix IDL pre-processor is
sent to the Orbix IDL compiler.

-F Generate code that allows object-level filtering.

-K Required if the IDL file uses the opaque type specifier.

-M <filename> Required if more than one IDL file in an application uses
IDL sequences of the same type. The function definitions
for sequences are then output to the specified file. This file
must be compiled and then linked into the client and
server. Each run of the IDL compiler appends to the end
of the specified file, so this file should be deleted when the
directory is cleaned up.

-N Specifies that the IDL compiler is to compile and produce
code for included files (files included using the #include
directive). Without the -N switch, included files are
compiled but no code is output.

-O Generates a makefile rule, describing the dependencies.

-P <filename> Allows the statements specified in <filename> to be
executed before the standard proxy code. Its effect is to
insert a #include directive at the appropriate place in the
proxy code. <filename> can be any string acceptable to
the #include directive. A filename enclosed in angle
brackets (for example, <file.h>) denotes a standard
include file; while a filename enclosed in quotes (for
example, "../../file.h") denotes a file elsewhere. In
some cases, this can be an alternative to writing smart
proxies.
 434

Ap pe n d i x A

ProgramGuide.book Page 435 Monday, February 22, 1999 3:03 PM
-Q <dbIntegration> Provides support for integration with database
management systems. Valid values for <dbIntegration>
depend on the database management system as specified in
the relevant documentation provided with the database
adapter.

-S Specifies that the compiler is to produce files with the
initial coding of the implementation classes for the IDL
interfaces in the file. Two output files are produced as
follows:

<filenamePrefix>.ih

This gives the definition of the class and the declaration of
its member functions. The name of the class is the name of
the IDL interface with “==” appended. This name must be
changed before the file compiles.

<filenamePrefix>.ic

This gives the definition of the member functions—each
with a blank body. Once again, the name of the class needs
to be changed. The .ih file #includes the normal header
file (by default .hh) produced by the compiler. The .ic file
includes its corresponding .ih header file.

-U <name> Undefine the macro name. If -U is specified for a macro
name, that macro name is not defined even if -D is used to
define it.

-c <extension> Specifies the file extension to be used when generating the
client source file from the IDL file. The default is C.C, C.cc
or C.cpp depending on the target C++ compiler.

-f Do not suppress code generation for sequence<octet>
and sequence<string> types. These are normally
suppressed because their code is included in <CORBA.h>,
and generation would lead to duplicate definitions. This
switch is rarely needed. You should also refer to the -i
switch.
435

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 436 Monday, February 22, 1999 3:03 PM
-h <extension> Specifies the file extension to be used when generating the
header file for the IDL file. This is .hh by default.

-i Force insertion of sequence<octet>/sequence<string>
types into the IDL parse tree. This switch is normally be
used in conjunction with the -f switch. However, it is
rarely needed because CORBA.h provides such support.

-m <protocol> Specify the marshalling protocol to be used in operation
invocations. There are two protocols:

orbixOnly: The Orbix protocol.

interOp: The Internet Inter-ORB Protocol (IIOP).

-oc <path> Specify the target directory for the client stubs. This flag
overrides the -out switch.

-os <path> Specify the target directory for the server stubs. This flag
overrides the -out switch.

-out <path> Specify the target directory for the client and server stubs.
The -oc and -os flags override the -out flag.

-s <extension> Specify the file extension to be used when generating the
server source file from the IDL file. The default is S.C,
S.cc or S.cpp depending on the target C++ compiler.

-two_arg_def_tie Generate two argument version of the DEF_TIE_ macros.
This flag is required to associate scoped classes with your
TIE classes.

-typeCode Used with the -A switch to indicate that pre-Orbix 3.0
TypeCodes should be generated.

-v Output version information for the IDL compiler; and the
version number of the C++ compiler supported.
 436

ProgramGuide.book Page 437 Monday, February 22, 1999 3:03 PM
Index

ProgramGuide.book Page 438 Monday, February 22, 1999 3:03 PM

ProgramGuide.book Page 439 Monday, February 22, 1999 3:03 PM
Index
A
abortSlowConnects() 191
activation of servers 137
addForeignFD() 194
addForeignFDSet 194
allocbuf() 86
any 219, 227

constructing 228
inout parameters 107
interpreting 231
mapping for 75
parameter 241

AnyDemo example 227
ARG_IN 248, 257
ARG_INOUT 248, 257
ARG_OUT 248, 257
arrays 53, 95

dynamic allocation 95
slices 95

_attachPost() 325
_attachPre() 325
AttributeDef 279
attributes 14, 41

readonly 15
authentication filters 312, 322

B
BankExceptions example 166
BankInherit example 175
BankPersistent example 364
BankSimple example 14, 113
Basic Object Adapter 188
basic types, in IDL 49, 74

mapping for 62
binding 136

and smart proxies 330
examples 162
host parameter to _bind() 161
markerServer parameter to _bind() 160
timeouts 196
use of locators 377

BOAImpl approach 119
compared to TIE approach 142
multiple interfaces per implementation 211

BOA_init() 189
bounded sequences 89

C
callbacks

avoiding deadlock 350
connection 192
examples 340
from servers to clients 339
implementing 339

casting
from interface to implementation class 204
object references 70

clients 4
example 134
example using inheritance 182
handling exceptions 168
multi-threaded 404
server timing out 195

collocation 200
compiler, IDL

switches 433
compiling

IDL 16
multi-threaded programs 408

complex types, in IDL 50
components 153
compound name 153
concurrency control 412
connection threads 416
connections 187

management in Orbix 190
connectionTimeout() 191
ConstantDef 279
constants 57, 96
containment 283
contexts 44, 67, 212, 249
conversions

object references 69
439

O r b i x C+ + P r o g r amme r ’ s G u i d e

ProgramGuide.book Page 440 Monday, February 22, 1999 3:03 PM
CORBA
introduction to 3

CORBA::
ARG_IN 248, 257
ARG_INOUT 248, 257
ARG_OUT 248, 257
IT_reqTransformer 396
ORB_init() 189
release() 72, 86
string_alloc() 83
string_free() 83
String_mgr 77

CORBA::Any
constructing 228
interpreting 231
low-level access 236
parameter 241
replace() 236
type() 236
value() 236

CORBA::BOA 188
CORBA::BOA::

filterBadConnectAttempts() 192
impl_is_ready() 192
isEventPending() 194
obj_is_ready() 192, 194
processEvents() 192, 194
processNextEvent() 194
setNoHangup() 196

CORBA::Context 67
CORBA::Context::

IT_create() 213
CORBA::DynamicImplementation 267
CORBA::Environment::

timeout() 196
CORBA::Filter 308, 315
CORBA::Filter::

_attachPost() 325
inReplyFailure() 314
inReplyPostMarshal() 314
inReplyPreMarshal() 314
inRequestPostMarshal() 314
inRequestPreMarshal() 314
outReplyFailure() 314
outReplyPostMarshal() 314
outReplyPreMarshal() 314
outRequestPostMarshal() 314
outRequestPreMarshal() 314

CORBA::Flags 215
CORBA::is_nil() 73
 440
CORBA::LoaderClass::
load() 361

CORBA::locatorClass::
lookUp() 379–381

CORBA::NamedValue 249
CORBA::NVList 249
CORBA::Object::

_attachPre() 325
_create_request() 246
_deref() 205
_get_implementation() 321
_implementation() 331
_isRemote() 203
_loader() 358
_marker() 331
_narrow() 70
_object_to_string() 316, 317

CORBA::Object::_get_interface() 296
CORBA::ORB 188
CORBA::ORB::

abortSlowConnects() 191
addForeignFD() 194
addForeignFDSet() 194
BOA_init() 189
connectionTimeOut() 191
create_list() 250
create_operation_list() 252
defaultTxTimeout() 197
get_default_context() 213
impl_is_ready() 132
list_initial_references() 190
maxConnectRetries() 192
noReconnectOnFailure() 192
removeForeignFD() 195
removeForeignFDSet() 195
resolve_initial_references() 190
resortToStatic() 206
setMyReqTransformer() 398
setReqTransformer() 398
string_to_object() 158, 356

CORBA::Request::
decodeBooleanArray() 263
decodeCharArray() 263
decodeFloatArray() 263
decodeLongArray() 263
decodeOctetArray() 263
decodeShortArray() 263
decodeULongArray() 263
decodeUShortArray() 263
encodeBooleanArray() 262

I n d e x

ProgramGuide.book Page 441 Monday, February 22, 1999 3:03 PM
encodeCharArray() 262
encodeFloatArray() 262
encodeLongArray() 262
encodeOctetArray() 262
encodeShortArray() 262
encodeULongArray() 262
encodeUShortArray() 262
getOperation() 255
invoke() 253, 258
reset() 258
setOperation() 256, 258
setTarget() 258
target() 255, 317

CORBA::ServerRequest 268
CORBA::TypeCode::

IT_create() 224
kind() 221
param_count() 221
parameter() 221

CORBA::UserException 66
CORBAfacilities 8, 10
CORBAservices 8, 9
create_context() 213
create_list() 250
create-operation_list() 252
_create_request() 246

D
daemon 11, 137
deadlock

avoiding in callback models 350
decodeBooleanArray() 263
decodeCharArray() 263
decodeFloatArray() 263
decodeLongArray() 263
decodeOctetArray() 263
decodeShortArray() 263
decodeULongArray() 263
decodeUShortArray() 263
default loader 357–361
default locator 377
defaultTxTimeout() 197
deferred synchronous invocations 352
deferred synchronous operations 254
DEF_TIE() 117
_deref() 205
diagnostics 216
DII 6, 243–263, 307, 320

invoking multiple requests 254
using with the Interface Repository 252
DSI 7, 265–274
dynamic allocation of

arrays 95
strings 83

dynamic CORBA programming 6
Dynamic Invocation Interface. See DII
Dynamic Skeleton Interface. See DSI
DynamicImplementation 267

E
encodeBooleanArray() 262
encodeCharArray() 262
encodeFloatArray() 262
encodeLongArray() 262
encodeOctetArray() 262
encodeShortArray() 262
encodeULongArray() 262
encodeUShortArray() 262
enums 50
error messages 216
event processing

in threads 353
Event Service 10
events 187, 190

integrating with foreign event loops 194
processing in Orbix 194

examples
AnyDemo 227
BankExceptions 166
BankInherit 175
BankPersistent 364
BankSimple 14, 113
stock-trading 339

ExceptionDef 279
EXCEPTIONS 171
exceptions 43, 165

generated code 167
handling in clients 168
throwing 172

explicitCall 363
extracting structs, unions and sequences using

DII 261

F
faults, object 355
filterBadConnectAttempts() 192
filters 307–325

adding data 311
and service contexts 428
441

O r b i x C+ + P r o g r amme r ’ s G u i d e

ProgramGuide.book Page 442 Monday, February 22, 1999 3:03 PM
authentication 312
IT_daemon 321
per-object 323

chain 308
post 312
pre 312

per-process 314
chain 315
example 316
in reply 309, 310
in reply failure 310
in request 310
out reply 310
out reply failure 310
out request 309

relationship to DII 307
thread 312

FILTER_SUPPRESS 325
fixed data types 55, 92
fixed-length structs 76
Flags 215
forward declarations, in IDL 48
freebuf() 86
FullInterfaceDescription 299
function 72

G
get_default_context() 213
_get_implementation() 321
_get_interface() 296
getOperation() 255

H
hops, locator 379–381
host parameter

to _bind() 161

I
IDL 14, 36, 39–57

compiler 5, 10, 16
options 433

implementing interfaces 20
opaque 385

IIOP 7, 10, 190
implementation classes 23, 119
Implementation Repository 6, 137, 381
_implementation() 331
implementing interfaces

comparison of approaches 142
 442
impl_is_ready() 27, 132, 192
in parameters 102

mapping for 102
memory management 102

inheritance 45, 175–185
multiple inheritance 183
usage from a client 182
writing implementation classes 178

initial references
obtaining 189

initialisation 189
inout parameters 104

any 107
mapping for 104
memory management 104
object references 104
sequences 106
strings 105

inReplyFailure() 314
inReplyPostMarshal() 314
inReplyPreMarshal() 314
inRequestPostMarshal() 314
inRequestPreMarshal() 314, 410
Interface Repository 6, 11, 219, 245, 275–304

class hierarchy 282
configuring 276
containment 283
getting initial reference to 189
use of TypeCode 225
using with the DII 252

InterfaceDef 279
interfaces 40–48

implementing
steps involved 114

inheritance of 45
inheritance of type Object 47
mapping for 62

Internet Inter-ORB Protocol. See IIOP
invocation semantics, for operations 44
invoke() 253, 258
INVOKE_DENIED 318
isEventPending() 194
is_nil() 73
_isRemote() 203
IT_CONFIG_PATH 16
IT_create() 97, 224
IT_daemon 321
IT_IOCallback 192
ITMi.lib 32
IT_reqTransformer 396

I n d e x

ProgramGuide.book Page 443 Monday, February 22, 1999 3:03 PM
K
kind() 221

L
liborbix 32
library

thread-safe 408
library, Orbix 10
listener threads 416
list_initial_references() 190
load() 361
_loader() 358
LoaderClass 356
loaders 355–376

default 357–361
dynamically creating 356
installing 357
object naming 359

locality of objects 203
locatorClass 380
_LOCATOR_HOPS 379
locators 377–382

default 377
hops 379–381

locks 412
lookUp() 379–381

parameters 381

M
macros

DEF_TIE() 117
DEREF() 205
EXCEPTIONS 171
WANT_ORBIX_FDS 195

manager classes 77
mapping 59–111

overview 60
_marker() 331
markerServer parameter to _bind() 160
marshalling 384
maxConnectRetries() 192
MaxHops 380–381
_MAX_LOCATOR_HOPS 379
ModuleDef 279
modules 40, 60, 61

alternative mapping for 61
multiple implementations 207
multiple inheritance 183
multiple requests, invoking 254
N
NamedValue 56, 249
NameService 153
Naming Service 9

getting initial reference to 189
wrapper functions 156

_narrow() 70, 71
narrowing object references 70
NO_PERMISSION 318
noReconnectOnFailure() 192
NVList 249

O
Object 47
object adapters 188
object faults 355
Object Management Architecture 8
Object Transaction Service 9
objectDeletion 363
_ObjectRef 149

methods
_object_to_string() 149

objects
creating 24
in CORBA 5
making available to clients 25
references to 28

inout parameters 104
narrowing 70
widening 69

_object_to_string() 149, 316, 317
obj_is_ready() 192, 194
OMA 8
oneway operations 44, 351

calling with the DII 253
opaque types, in IDL 383–393

memory management 388
operation() 316, 317
OperationDef 279
operations 14, 42

invocation semantics 44
non-blocking operations 350
oneway operations 351
timeouts for 196

orb.idl 56, 219
ORB_init() 189
Orbix library 32
orbixd 11, 137
Orbix-MT 403
443

O r b i x C+ + P r o g r amme r ’ s G u i d e

ProgramGuide.book Page 444 Monday, February 22, 1999 3:03 PM
out parameters
mapping for 108
memory management 108

output, from Orbix 216
outReplyFailure() 314
outReplyPostMarshal() 314
outReplyPreMarshal() 314
outRequestPostMarshal() 314, 321
outRequestPreMarshal() 314, 321

P
param_count() 221
parameter() 221
parameters 102

any 241
in TypeCode 220
passing modes in IDL 15, 42

piggybacked data 320
pingDuringBind() 164
pinging 164
pragma directives 302
Principal 56
processEvents() 192, 194
processNextEvent() 194
processTermination 363
proxy 28, 136

code unavailable 206
proxy factories 328
pseudo object types, in IDL 56
putit 137

R
readonly attributes 15
record() 360
references, object 28, 69
registering

a request transformer 398
registerPerObjectServiceContext 420
registerPerRequestServiceContext 420
release 72
release() 86
removeForeignFD() 195
removeForeignFDSet() 195
rename() 360
replace() 236
Repository IDs 299
Request 317, 320

adding data to 320
creating 246
 444
retrieving results 255
transforming request data 395

_request() 246
reset() 258
resolve_initial_references() 153, 190
resortToStatic() 206
retry attempts 192
return value

any 241
return values 110

memory management 110

S
save() 361, 363
saving objects 363
scoping, in IDL 40
security 312
Security Service 10
sequences 52

bounded 89
buffers 86
inout parameters 106

ServerRequest 268
servers 4

activation 137
example 129
initialisation 132
multi-threaded 404
throwing exceptions 172
timing out 195

service contexts 417
and filter points 428
per-object 424
per-request 421

ServiceContextHandler 419
setMyReqTransformer() 398
setNoHangup() 196
setOperation() 256, 258
setReqTransformer() 398
setTarget() 258
skeleton code 5
slices, array 95
smart proxies 327

binding 330
generating 329

stock-trading example 339
String_mgr 77
strings 52, 82

bounds checking 84
dynamic allocation 83

I n d e x

ProgramGuide.book Page 445 Monday, February 22, 1999 3:03 PM
inout parameters 105
manager classes 77

string_to_object() 356, 362
String_var 82
structs 50

mapping for 76
stub code 5
system exceptions 170

throwing 174

T
target() 255, 317
tc 222
threads 403

creating 408, 409
event processing in 353
implementing 414
internal Orbix-MT threads 416
models of thread support 413
pool of threads 413
thread per object 414
threads per client 413

throwing exceptions 172
TIE approach 117, 123

compared to BOAImpl approach 142
multiple interfaces per implementation 209

timeout() 196
timeouts

for connections 191
for operation calls 196

Trader Service 9
transformers

implementing 396
registering 398

transforming request data 395
type() 236
TypeCode 56, 219, 262
TypeDef 279
typedefs 56, 96

U
unbounded sequences 85
unions 51, 78
unmarshalling 384
unregisterPerObjectServiceContext 420
unregisterPerRequestServiceContext 420
user-defined exceptions 167
UserException 66
USYNC_PROCESS 415
USYNC_THREAD 415

V
value() 236
variable-length structs 77

W
WANT_ORBIX_FDS 195
widening object references 69
wrapping legacy code 142
445

O r b i x C+ + P r o g r am m e r ’ s G u i d e

ProgramGuide.book Page 446 Monday, February 22, 1999 3:03 PM
 446

	Preface
	Audience
	Organization of the Orbix Documentation
	Organization of this Guide
	Document Conventions

	Part I. Introduction to Orbix
	1. Introduction to CORBA and Orbix
	CORBA and Distributed Object Programming
	The Role of an Object Request Broker
	The Structure of a CORBA Application
	The Structure of a Dynamic CORBA Application
	Interoperability between Object Request Brokers

	The Object Management Architecture
	The CORBAservices
	The CORBAfacilities

	How Orbix Implements CORBA

	2. Getting Started With Orbix
	Developing a Distributed Application
	Defining IDL Interfaces
	Compiling IDL Interfaces
	Setting Up Configuration for the IDL Compiler
	Running the IDL Compiler
	Output from the IDL Compiler
	The Client Stub Code
	The Object Skeleton Code

	Implementing the IDL Interfaces
	Writing an Orbix Server Application
	Initializing the ORB
	Creating an Implementation Object
	Receiving Client Requests

	Writing an Orbix Client Application
	Initializing the ORB
	CORBA Object References
	Getting a Reference to an Object
	Invoking IDL Attributes and Operations

	Compiling the Client and Server
	Compiling the Client
	Compiling the Server

	Running the Application
	Running the Orbix Daemon
	Registering the Server
	Running the Client

	Summary of Programming Steps

	Part II. Orbix Programming
	3. Introduction to CORBA IDL
	IDL Modules and Scoping
	Defining IDL Interfaces
	Attributes in IDL Interface Definitions
	Operations in IDL Interface Definitions
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces

	Overview of the IDL Data Types
	IDL Basic Types
	IDL Complex Types
	IDL Pseudo Object Types
	Defining Data Type Names and Constants

	4. The CORBA IDL to C++ Mapping
	Overview of the Mapping
	Mapping for Modules and Scoping
	Alternative Mappings for Modules

	Mapping for Interfaces
	Mapping for Attributes
	Mapping for Operations
	Mapping for Inheritance of IDL Interfaces
	Object Reference Counts and Nil Object References

	Mapping for IDL Data Types
	Mapping for Basic Types
	Mapping for Complex Types
	Mapping for Enum
	Mapping for Struct
	Mapping for Union
	Mapping for String
	General Mapping for Sequences
	Mapping for Unbounded Sequences
	Mapping for Bounded Sequences
	Bounded Sequence Examples
	Mapping for Fixed
	Mapping for Array
	Mapping for Typedef

	Mapping for Pseudo-Object Types
	Memory Management and _var Types
	Memory Management for Parameters
	in Parameters
	inout Parameters
	out Parameters
	Return Values
	An Example of Applying the Rules for Object References

	5. Using and Implementing IDL Interfaces
	Overview of an Example Application
	Overview of the Programming Steps
	Defining IDL Interfaces
	Implementing IDL Interfaces
	Defining Implementation Classes for IDL Interfaces

	Developing a Server Program
	Writing a Server main() Function

	Developing a Client Program
	Alternatives to the Naming Service

	Registering the Server
	Execution Trace for the Example Application
	Comparing the TIE and BOAImpl Approaches
	Wrapping Existing Code
	Providing Different Implementations of the Same Interface
	Providing Different Interfaces to the Same Implementation
	Comparison of the BOAImpl and TIE Approaches

	6. Making Objects Available in Orbix
	Identifying CORBA Objects
	Interoperable Object References
	Orbix Object References
	Assigning Markers to Orbix Objects

	Using the CORBA Naming Service
	The Interface to the Naming Service
	Format of Names in the Naming Service
	Making Initial Contact with the Naming Service
	Associating Names with Objects
	Using Names to Find Objects
	Associating a Compound Name with an Object
	Using the Naming Service in Orbix Example Applications

	Transferring Object References
	Passing Object References as Operation Parameters
	Transferring Object Reference Strings

	Binding to Orbix Objects

	7. Exception Handling in Orbix
	An Example of Raising and Handling Exceptions
	The Generated C++ Code for User-Defined Exceptions
	Handling Exceptions in a Client
	Handling Specific System Exceptions
	Throwing Exceptions in a Server
	Information Available in System Exceptions
	Throwing a System Exception

	8. Using Inheritance of IDL Interfaces
	The IDL Interfaces
	The Generated C++ Code

	Implementation Class Hierarchies
	The Implementation Classes
	Using Inheritance in a Client
	Multiple Inheritance of IDL Interfaces

	9. Orbix Connections and Events
	Overview of the Direct API to Orbix
	Initializing a Connection to the ORB
	Obtaining Initial Object References

	Managing Orbix Connections and Events
	Establishing Connections between Clients and Servers
	Event Processing in Orbix

	10. Advanced Programming Topics
	Developing Collocated Clients and Servers
	Testing for the Presence of Collocation
	Writing Code for both Collocation and Distribution

	Determining Locality of Objects
	Casting from Interface to Implementation Class
	Actions when Proxy Code is Unavailable
	Multiple Implementations of an Interface
	Multiple Interfaces per Implementation
	Using the TIE Approach
	Using the BOAImpl Approach

	Passing Context Information to IDL Operations
	Receiving Diagnostic Messages from Orbix

	Part III. Dynamic Orbix Programming
	11. The TypeCode Data Type
	Overview of the TypeCode Data Type
	Implementation of TypeCode in Orbix
	CORBA::TypeCode_ptr Constants
	TypeCode Public Members
	CORBA::TypeCode::IT_create()

	Examples of Using TypeCode
	Use of TypeCode in Type CORBA::Any
	Use of TypeCode when Querying the Interface Repository

	12. The Any Data Type
	Inserting Data into an Any with operator<<=()
	Inserting a Basic Type
	Inserting a User-Defined Type

	Interpreting an any with operator>>=()
	Interpreting a Basic Type
	Interpreting a User-Defined Type

	Other Ways to Construct and Interpret an Any
	Inserting Values at Construction Time
	Low Level Access to a CORBA::Any
	Inserting and Extracting Array Types
	Inserting and Extracting boolean, octet and char

	Any Constructors, Destructor and Assignment
	Any as a Parameter or Return Value

	13. Dynamic Invocation Interface
	Using the DII
	Programming Steps in Using the DII

	The CORBA Approach to Using the DII
	Setting up a Request
	Setting up a Request Using _request()
	Setting up a Request Using _create_request()
	Using the Interface Repository when Setting Up a Request
	Invoking a Request
	Retrieving the Results of a Request
	Getting Information About a Request Object

	The Orbix-Specific Approach to Using the DII
	Setting Up a Request
	Invoking a Request
	Retrieving the Results of a Request
	Additional Information About operator<<()

	14. Dynamic Skeleton Interface
	Uses of the DSI
	Using the DSI
	Creating CORBA::DynamicImplementation Objects
	Registering CORBA::DynamicImplementation Objects

	Example of Using the DSI
	Example of Using params()

	15. The Interface Repository
	Configuring the Interface Repository
	Runtime Information about IDL Definitions
	The Structure of Interface Repository Data
	Containment Relationships
	Simple Types

	Abstract Interfaces in the Interface Repository
	Class Hierarchy and Abstract Base Interfaces
	The Interface IRObject

	Containment in the Interface Repository
	The Contained Interface
	The Container Interface
	Containment Descriptions

	Type Interfaces in the Interface Repository
	Named Types
	Unnamed Types

	Retrieving Information about IDL Definitions
	CORBA::Object::_get_interface()
	Browsing or Listing a Repository
	Finding an Object Using its Repository ID

	Example of Using the Interface Repository
	Repository IDs
	Pragma Directives

	Part IV. Advanced Orbix Programming
	16. Filtering Operation Calls
	Introduction to Per-process Filters
	Pre-marshalling Filter Points
	Post-marshalling Filter Points
	Failure Points

	Introduction to Per-Object Filters
	Using Per-Process Filters
	An Example Per-Process Filter
	Installing a Per-Process Filter
	Raising an Exception in a Filter
	Piggybacking Extra Data to the Request Buffer
	Defining an Authentication Filter

	Using Per-Object Filters
	IDL Compiler Switch to Enable Object Filtering

	17. Using Smart Proxy Classes
	Management of Proxies by Proxy Factories
	Generating Smart Proxies
	A Simple Smart Proxy Example
	The Account IDL Interface
	Defining a New Proxy Class

	18. Callbacks from Servers to Clients
	Implementing Callbacks in Orbix
	Defining the IDL Interfaces
	Implementing the IDL Interfaces
	Writing the Client
	Writing the Server
	Preventing Deadlock in a Callback Model
	Using Non-Blocking Operation Invocations
	Using Multiple Threads of Execution

	Callbacks and Bidirectional Connections

	19. Loading Objects at Runtime
	Overview of Creating a Loader
	Installing a Loader
	Specifying a Loader for an Object

	Loaders and Object Naming
	Loading Objects
	Saving Objects
	Writing a Loader
	Example Loader
	The IDL Interface
	Implementing the IDL
	Coding the Loader
	Loaders are Transparent to Clients

	20. Locating Servers at Runtime
	The Default Locator
	Default lookUp() Functionality

	Writing a New Locator

	21. Using Opaque Types in IDL
	Using Opaque Types
	IDL Definitions
	Mapping of Opaque Types to C++
	Memory Management Rules
	Implementing an Opaque Type
	Implementing an Interface that uses an Opaque Type

	22. Transforming Requests
	Transforming Request Data
	The IT_reqTransformer Class
	Registering a Transformer

	An Example Transformer

	23. Using Threads with Orbix-MT
	Benefits of Multi-threaded Clients and Servers
	Multi-threaded Servers
	Multi-threaded Clients
	Comparison with Non-Blocking Calls

	Thread Programming in Orbix
	Compiling Orbix-MT Applications
	Operating System Support for Creating Threads
	Creating a Thread to Handle a Request

	Concurrency Control
	Models of Thread Support
	Implementing Models of Thread Support

	Changing the Thread Calls made by Orbix
	Changing Internal Orbix Thread Creation

	24. Service Contexts in Orbix
	The Orbix Service Context API
	Using Service Contexts in Orbix Applications
	ServiceContextHandler Class
	ORB Interfaces
	ServiceContextList
	Service Context Handlers and Filter points
	ServiceContext Per-Request Model
	ServiceContext Per-Object Model
	Main Components of the Service Context Model

	Appendix A. Orbix IDL Compiler Options
	Index

